]> git.lizzy.rs Git - rust.git/blob - src/librustc_resolve/lib.rs
Rollup merge of #59041 - saleemjaffer:trait_doc_comment_better_error_msg, r=pnkfelix
[rust.git] / src / librustc_resolve / lib.rs
1 #![doc(html_root_url = "https://doc.rust-lang.org/nightly/")]
2
3 #![feature(crate_visibility_modifier)]
4 #![feature(label_break_value)]
5 #![feature(nll)]
6 #![feature(rustc_diagnostic_macros)]
7
8 #![recursion_limit="256"]
9
10 #![deny(rust_2018_idioms)]
11
12 pub use rustc::hir::def::{Namespace, PerNS};
13
14 use GenericParameters::*;
15 use RibKind::*;
16
17 use rustc::hir::map::{Definitions, DefCollector};
18 use rustc::hir::{self, PrimTy, Bool, Char, Float, Int, Uint, Str};
19 use rustc::middle::cstore::CrateStore;
20 use rustc::session::Session;
21 use rustc::lint;
22 use rustc::hir::def::*;
23 use rustc::hir::def::Namespace::*;
24 use rustc::hir::def_id::{CRATE_DEF_INDEX, LOCAL_CRATE, DefId};
25 use rustc::hir::{Freevar, FreevarMap, TraitCandidate, TraitMap, GlobMap};
26 use rustc::ty::{self, DefIdTree};
27 use rustc::util::nodemap::{NodeMap, NodeSet, FxHashMap, FxHashSet, DefIdMap};
28 use rustc::{bug, span_bug};
29
30 use rustc_metadata::creader::CrateLoader;
31 use rustc_metadata::cstore::CStore;
32
33 use syntax::source_map::SourceMap;
34 use syntax::ext::hygiene::{Mark, Transparency, SyntaxContext};
35 use syntax::ast::{self, Name, NodeId, Ident, FloatTy, IntTy, UintTy};
36 use syntax::ext::base::SyntaxExtension;
37 use syntax::ext::base::Determinacy::{self, Determined, Undetermined};
38 use syntax::ext::base::MacroKind;
39 use syntax::symbol::{Symbol, keywords};
40 use syntax::util::lev_distance::find_best_match_for_name;
41
42 use syntax::visit::{self, FnKind, Visitor};
43 use syntax::attr;
44 use syntax::ast::{CRATE_NODE_ID, Arm, IsAsync, BindingMode, Block, Crate, Expr, ExprKind};
45 use syntax::ast::{FnDecl, ForeignItem, ForeignItemKind, GenericParamKind, Generics};
46 use syntax::ast::{Item, ItemKind, ImplItem, ImplItemKind};
47 use syntax::ast::{Label, Local, Mutability, Pat, PatKind, Path};
48 use syntax::ast::{QSelf, TraitItemKind, TraitRef, Ty, TyKind};
49 use syntax::ptr::P;
50 use syntax::{span_err, struct_span_err, unwrap_or, walk_list};
51
52 use syntax_pos::{BytePos, Span, DUMMY_SP, MultiSpan};
53 use errors::{Applicability, DiagnosticBuilder, DiagnosticId};
54
55 use log::debug;
56
57 use std::cell::{Cell, RefCell};
58 use std::{cmp, fmt, iter, mem, ptr};
59 use std::collections::BTreeSet;
60 use std::mem::replace;
61 use rustc_data_structures::ptr_key::PtrKey;
62 use rustc_data_structures::sync::Lrc;
63
64 use resolve_imports::{ImportDirective, ImportDirectiveSubclass, NameResolution, ImportResolver};
65 use macros::{InvocationData, LegacyBinding, ParentScope};
66
67 // N.B., this module needs to be declared first so diagnostics are
68 // registered before they are used.
69 mod diagnostics;
70 mod error_reporting;
71 mod macros;
72 mod check_unused;
73 mod build_reduced_graph;
74 mod resolve_imports;
75
76 fn is_known_tool(name: Name) -> bool {
77     ["clippy", "rustfmt"].contains(&&*name.as_str())
78 }
79
80 enum Weak {
81     Yes,
82     No,
83 }
84
85 enum ScopeSet {
86     Import(Namespace),
87     AbsolutePath(Namespace),
88     Macro(MacroKind),
89     Module,
90 }
91
92 /// A free importable items suggested in case of resolution failure.
93 struct ImportSuggestion {
94     did: Option<DefId>,
95     path: Path,
96 }
97
98 /// A field or associated item from self type suggested in case of resolution failure.
99 enum AssocSuggestion {
100     Field,
101     MethodWithSelf,
102     AssocItem,
103 }
104
105 #[derive(Eq)]
106 struct BindingError {
107     name: Name,
108     origin: BTreeSet<Span>,
109     target: BTreeSet<Span>,
110 }
111
112 struct TypoSuggestion {
113     candidate: Symbol,
114
115     /// The kind of the binding ("crate", "module", etc.)
116     kind: &'static str,
117
118     /// An appropriate article to refer to the binding ("a", "an", etc.)
119     article: &'static str,
120 }
121
122 impl PartialOrd for BindingError {
123     fn partial_cmp(&self, other: &BindingError) -> Option<cmp::Ordering> {
124         Some(self.cmp(other))
125     }
126 }
127
128 impl PartialEq for BindingError {
129     fn eq(&self, other: &BindingError) -> bool {
130         self.name == other.name
131     }
132 }
133
134 impl Ord for BindingError {
135     fn cmp(&self, other: &BindingError) -> cmp::Ordering {
136         self.name.cmp(&other.name)
137     }
138 }
139
140 /// A span, message, replacement text, and applicability.
141 type Suggestion = (Span, String, String, Applicability);
142
143 enum ResolutionError<'a> {
144     /// Error E0401: can't use type or const parameters from outer function.
145     GenericParamsFromOuterFunction(Def),
146     /// Error E0403: the name is already used for a type or const parameter in this generic
147     /// parameter list.
148     NameAlreadyUsedInParameterList(Name, &'a Span),
149     /// Error E0407: method is not a member of trait.
150     MethodNotMemberOfTrait(Name, &'a str),
151     /// Error E0437: type is not a member of trait.
152     TypeNotMemberOfTrait(Name, &'a str),
153     /// Error E0438: const is not a member of trait.
154     ConstNotMemberOfTrait(Name, &'a str),
155     /// Error E0408: variable `{}` is not bound in all patterns.
156     VariableNotBoundInPattern(&'a BindingError),
157     /// Error E0409: variable `{}` is bound in inconsistent ways within the same match arm.
158     VariableBoundWithDifferentMode(Name, Span),
159     /// Error E0415: identifier is bound more than once in this parameter list.
160     IdentifierBoundMoreThanOnceInParameterList(&'a str),
161     /// Error E0416: identifier is bound more than once in the same pattern.
162     IdentifierBoundMoreThanOnceInSamePattern(&'a str),
163     /// Error E0426: use of undeclared label.
164     UndeclaredLabel(&'a str, Option<Name>),
165     /// Error E0429: `self` imports are only allowed within a `{ }` list.
166     SelfImportsOnlyAllowedWithin,
167     /// Error E0430: `self` import can only appear once in the list.
168     SelfImportCanOnlyAppearOnceInTheList,
169     /// Error E0431: `self` import can only appear in an import list with a non-empty prefix.
170     SelfImportOnlyInImportListWithNonEmptyPrefix,
171     /// Error E0433: failed to resolve.
172     FailedToResolve { label: String, suggestion: Option<Suggestion> },
173     /// Error E0434: can't capture dynamic environment in a fn item.
174     CannotCaptureDynamicEnvironmentInFnItem,
175     /// Error E0435: attempt to use a non-constant value in a constant.
176     AttemptToUseNonConstantValueInConstant,
177     /// Error E0530: `X` bindings cannot shadow `Y`s.
178     BindingShadowsSomethingUnacceptable(&'a str, Name, &'a NameBinding<'a>),
179     /// Error E0128: type parameters with a default cannot use forward-declared identifiers.
180     ForwardDeclaredTyParam, // FIXME(const_generics:defaults)
181 }
182
183 /// Combines an error with provided span and emits it.
184 ///
185 /// This takes the error provided, combines it with the span and any additional spans inside the
186 /// error and emits it.
187 fn resolve_error<'sess, 'a>(resolver: &'sess Resolver<'_>,
188                             span: Span,
189                             resolution_error: ResolutionError<'a>) {
190     resolve_struct_error(resolver, span, resolution_error).emit();
191 }
192
193 fn resolve_struct_error<'sess, 'a>(resolver: &'sess Resolver<'_>,
194                                    span: Span,
195                                    resolution_error: ResolutionError<'a>)
196                                    -> DiagnosticBuilder<'sess> {
197     match resolution_error {
198         ResolutionError::GenericParamsFromOuterFunction(outer_def) => {
199             let mut err = struct_span_err!(resolver.session,
200                 span,
201                 E0401,
202                 "can't use generic parameters from outer function",
203             );
204             err.span_label(span, format!("use of generic parameter from outer function"));
205
206             let cm = resolver.session.source_map();
207             match outer_def {
208                 Def::SelfTy(maybe_trait_defid, maybe_impl_defid) => {
209                     if let Some(impl_span) = maybe_impl_defid.and_then(|def_id| {
210                         resolver.definitions.opt_span(def_id)
211                     }) {
212                         err.span_label(
213                             reduce_impl_span_to_impl_keyword(cm, impl_span),
214                             "`Self` type implicitly declared here, by this `impl`",
215                         );
216                     }
217                     match (maybe_trait_defid, maybe_impl_defid) {
218                         (Some(_), None) => {
219                             err.span_label(span, "can't use `Self` here");
220                         }
221                         (_, Some(_)) => {
222                             err.span_label(span, "use a type here instead");
223                         }
224                         (None, None) => bug!("`impl` without trait nor type?"),
225                     }
226                     return err;
227                 },
228                 Def::TyParam(def_id) => {
229                     if let Some(span) = resolver.definitions.opt_span(def_id) {
230                         err.span_label(span, "type variable from outer function");
231                     }
232                 }
233                 Def::ConstParam(def_id) => {
234                     if let Some(span) = resolver.definitions.opt_span(def_id) {
235                         err.span_label(span, "const variable from outer function");
236                     }
237                 }
238                 _ => {
239                     bug!("GenericParamsFromOuterFunction should only be used with Def::SelfTy, \
240                          Def::TyParam");
241                 }
242             }
243
244             // Try to retrieve the span of the function signature and generate a new message with
245             // a local type or const parameter.
246             let sugg_msg = &format!("try using a local generic parameter instead");
247             if let Some((sugg_span, new_snippet)) = cm.generate_local_type_param_snippet(span) {
248                 // Suggest the modification to the user
249                 err.span_suggestion(
250                     sugg_span,
251                     sugg_msg,
252                     new_snippet,
253                     Applicability::MachineApplicable,
254                 );
255             } else if let Some(sp) = cm.generate_fn_name_span(span) {
256                 err.span_label(sp,
257                     format!("try adding a local generic parameter in this method instead"));
258             } else {
259                 err.help(&format!("try using a local generic parameter instead"));
260             }
261
262             err
263         }
264         ResolutionError::NameAlreadyUsedInParameterList(name, first_use_span) => {
265              let mut err = struct_span_err!(resolver.session,
266                                             span,
267                                             E0403,
268                                             "the name `{}` is already used for a generic \
269                                             parameter in this list of generic parameters",
270                                             name);
271              err.span_label(span, "already used");
272              err.span_label(first_use_span.clone(), format!("first use of `{}`", name));
273              err
274         }
275         ResolutionError::MethodNotMemberOfTrait(method, trait_) => {
276             let mut err = struct_span_err!(resolver.session,
277                                            span,
278                                            E0407,
279                                            "method `{}` is not a member of trait `{}`",
280                                            method,
281                                            trait_);
282             err.span_label(span, format!("not a member of trait `{}`", trait_));
283             err
284         }
285         ResolutionError::TypeNotMemberOfTrait(type_, trait_) => {
286             let mut err = struct_span_err!(resolver.session,
287                              span,
288                              E0437,
289                              "type `{}` is not a member of trait `{}`",
290                              type_,
291                              trait_);
292             err.span_label(span, format!("not a member of trait `{}`", trait_));
293             err
294         }
295         ResolutionError::ConstNotMemberOfTrait(const_, trait_) => {
296             let mut err = struct_span_err!(resolver.session,
297                              span,
298                              E0438,
299                              "const `{}` is not a member of trait `{}`",
300                              const_,
301                              trait_);
302             err.span_label(span, format!("not a member of trait `{}`", trait_));
303             err
304         }
305         ResolutionError::VariableNotBoundInPattern(binding_error) => {
306             let target_sp = binding_error.target.iter().cloned().collect::<Vec<_>>();
307             let msp = MultiSpan::from_spans(target_sp.clone());
308             let msg = format!("variable `{}` is not bound in all patterns", binding_error.name);
309             let mut err = resolver.session.struct_span_err_with_code(
310                 msp,
311                 &msg,
312                 DiagnosticId::Error("E0408".into()),
313             );
314             for sp in target_sp {
315                 err.span_label(sp, format!("pattern doesn't bind `{}`", binding_error.name));
316             }
317             let origin_sp = binding_error.origin.iter().cloned();
318             for sp in origin_sp {
319                 err.span_label(sp, "variable not in all patterns");
320             }
321             err
322         }
323         ResolutionError::VariableBoundWithDifferentMode(variable_name,
324                                                         first_binding_span) => {
325             let mut err = struct_span_err!(resolver.session,
326                              span,
327                              E0409,
328                              "variable `{}` is bound in inconsistent \
329                              ways within the same match arm",
330                              variable_name);
331             err.span_label(span, "bound in different ways");
332             err.span_label(first_binding_span, "first binding");
333             err
334         }
335         ResolutionError::IdentifierBoundMoreThanOnceInParameterList(identifier) => {
336             let mut err = struct_span_err!(resolver.session,
337                              span,
338                              E0415,
339                              "identifier `{}` is bound more than once in this parameter list",
340                              identifier);
341             err.span_label(span, "used as parameter more than once");
342             err
343         }
344         ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(identifier) => {
345             let mut err = struct_span_err!(resolver.session,
346                              span,
347                              E0416,
348                              "identifier `{}` is bound more than once in the same pattern",
349                              identifier);
350             err.span_label(span, "used in a pattern more than once");
351             err
352         }
353         ResolutionError::UndeclaredLabel(name, lev_candidate) => {
354             let mut err = struct_span_err!(resolver.session,
355                                            span,
356                                            E0426,
357                                            "use of undeclared label `{}`",
358                                            name);
359             if let Some(lev_candidate) = lev_candidate {
360                 err.span_label(span, format!("did you mean `{}`?", lev_candidate));
361             } else {
362                 err.span_label(span, format!("undeclared label `{}`", name));
363             }
364             err
365         }
366         ResolutionError::SelfImportsOnlyAllowedWithin => {
367             struct_span_err!(resolver.session,
368                              span,
369                              E0429,
370                              "{}",
371                              "`self` imports are only allowed within a { } list")
372         }
373         ResolutionError::SelfImportCanOnlyAppearOnceInTheList => {
374             let mut err = struct_span_err!(resolver.session, span, E0430,
375                                            "`self` import can only appear once in an import list");
376             err.span_label(span, "can only appear once in an import list");
377             err
378         }
379         ResolutionError::SelfImportOnlyInImportListWithNonEmptyPrefix => {
380             let mut err = struct_span_err!(resolver.session, span, E0431,
381                                            "`self` import can only appear in an import list with \
382                                             a non-empty prefix");
383             err.span_label(span, "can only appear in an import list with a non-empty prefix");
384             err
385         }
386         ResolutionError::FailedToResolve { label, suggestion } => {
387             let mut err = struct_span_err!(resolver.session, span, E0433,
388                                            "failed to resolve: {}", &label);
389             err.span_label(span, label);
390
391             if let Some((span, msg, suggestion, applicability)) = suggestion {
392                 err.span_suggestion(span, &msg, suggestion, applicability);
393             }
394
395             err
396         }
397         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem => {
398             let mut err = struct_span_err!(resolver.session,
399                                            span,
400                                            E0434,
401                                            "{}",
402                                            "can't capture dynamic environment in a fn item");
403             err.help("use the `|| { ... }` closure form instead");
404             err
405         }
406         ResolutionError::AttemptToUseNonConstantValueInConstant => {
407             let mut err = struct_span_err!(resolver.session, span, E0435,
408                                            "attempt to use a non-constant value in a constant");
409             err.span_label(span, "non-constant value");
410             err
411         }
412         ResolutionError::BindingShadowsSomethingUnacceptable(what_binding, name, binding) => {
413             let shadows_what = binding.descr();
414             let mut err = struct_span_err!(resolver.session, span, E0530, "{}s cannot shadow {}s",
415                                            what_binding, shadows_what);
416             err.span_label(span, format!("cannot be named the same as {} {}",
417                                          binding.article(), shadows_what));
418             let participle = if binding.is_import() { "imported" } else { "defined" };
419             let msg = format!("the {} `{}` is {} here", shadows_what, name, participle);
420             err.span_label(binding.span, msg);
421             err
422         }
423         ResolutionError::ForwardDeclaredTyParam => {
424             let mut err = struct_span_err!(resolver.session, span, E0128,
425                                            "type parameters with a default cannot use \
426                                             forward declared identifiers");
427             err.span_label(
428                 span, "defaulted type parameters cannot be forward declared".to_string());
429             err
430         }
431     }
432 }
433
434 /// Adjust the impl span so that just the `impl` keyword is taken by removing
435 /// everything after `<` (`"impl<T> Iterator for A<T> {}" -> "impl"`) and
436 /// everything after the first whitespace (`"impl Iterator for A" -> "impl"`).
437 ///
438 /// *Attention*: the method used is very fragile since it essentially duplicates the work of the
439 /// parser. If you need to use this function or something similar, please consider updating the
440 /// `source_map` functions and this function to something more robust.
441 fn reduce_impl_span_to_impl_keyword(cm: &SourceMap, impl_span: Span) -> Span {
442     let impl_span = cm.span_until_char(impl_span, '<');
443     let impl_span = cm.span_until_whitespace(impl_span);
444     impl_span
445 }
446
447 #[derive(Copy, Clone, Debug)]
448 struct BindingInfo {
449     span: Span,
450     binding_mode: BindingMode,
451 }
452
453 /// Map from the name in a pattern to its binding mode.
454 type BindingMap = FxHashMap<Ident, BindingInfo>;
455
456 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
457 enum PatternSource {
458     Match,
459     IfLet,
460     WhileLet,
461     Let,
462     For,
463     FnParam,
464 }
465
466 impl PatternSource {
467     fn descr(self) -> &'static str {
468         match self {
469             PatternSource::Match => "match binding",
470             PatternSource::IfLet => "if let binding",
471             PatternSource::WhileLet => "while let binding",
472             PatternSource::Let => "let binding",
473             PatternSource::For => "for binding",
474             PatternSource::FnParam => "function parameter",
475         }
476     }
477 }
478
479 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
480 enum AliasPossibility {
481     No,
482     Maybe,
483 }
484
485 #[derive(Copy, Clone, Debug)]
486 enum PathSource<'a> {
487     // Type paths `Path`.
488     Type,
489     // Trait paths in bounds or impls.
490     Trait(AliasPossibility),
491     // Expression paths `path`, with optional parent context.
492     Expr(Option<&'a Expr>),
493     // Paths in path patterns `Path`.
494     Pat,
495     // Paths in struct expressions and patterns `Path { .. }`.
496     Struct,
497     // Paths in tuple struct patterns `Path(..)`.
498     TupleStruct,
499     // `m::A::B` in `<T as m::A>::B::C`.
500     TraitItem(Namespace),
501     // Path in `pub(path)`
502     Visibility,
503 }
504
505 impl<'a> PathSource<'a> {
506     fn namespace(self) -> Namespace {
507         match self {
508             PathSource::Type | PathSource::Trait(_) | PathSource::Struct |
509             PathSource::Visibility => TypeNS,
510             PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct => ValueNS,
511             PathSource::TraitItem(ns) => ns,
512         }
513     }
514
515     fn global_by_default(self) -> bool {
516         match self {
517             PathSource::Visibility => true,
518             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
519             PathSource::Struct | PathSource::TupleStruct |
520             PathSource::Trait(_) | PathSource::TraitItem(..) => false,
521         }
522     }
523
524     fn defer_to_typeck(self) -> bool {
525         match self {
526             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
527             PathSource::Struct | PathSource::TupleStruct => true,
528             PathSource::Trait(_) | PathSource::TraitItem(..) |
529             PathSource::Visibility => false,
530         }
531     }
532
533     fn descr_expected(self) -> &'static str {
534         match self {
535             PathSource::Type => "type",
536             PathSource::Trait(_) => "trait",
537             PathSource::Pat => "unit struct/variant or constant",
538             PathSource::Struct => "struct, variant or union type",
539             PathSource::TupleStruct => "tuple struct/variant",
540             PathSource::Visibility => "module",
541             PathSource::TraitItem(ns) => match ns {
542                 TypeNS => "associated type",
543                 ValueNS => "method or associated constant",
544                 MacroNS => bug!("associated macro"),
545             },
546             PathSource::Expr(parent) => match parent.map(|p| &p.node) {
547                 // "function" here means "anything callable" rather than `Def::Fn`,
548                 // this is not precise but usually more helpful than just "value".
549                 Some(&ExprKind::Call(..)) => "function",
550                 _ => "value",
551             },
552         }
553     }
554
555     fn is_expected(self, def: Def) -> bool {
556         match self {
557             PathSource::Type => match def {
558                 Def::Struct(..) | Def::Union(..) | Def::Enum(..) |
559                 Def::Trait(..) | Def::TraitAlias(..) | Def::TyAlias(..) |
560                 Def::AssociatedTy(..) | Def::PrimTy(..) | Def::TyParam(..) |
561                 Def::SelfTy(..) | Def::Existential(..) | Def::ForeignTy(..) => true,
562                 _ => false,
563             },
564             PathSource::Trait(AliasPossibility::No) => match def {
565                 Def::Trait(..) => true,
566                 _ => false,
567             },
568             PathSource::Trait(AliasPossibility::Maybe) => match def {
569                 Def::Trait(..) => true,
570                 Def::TraitAlias(..) => true,
571                 _ => false,
572             },
573             PathSource::Expr(..) => match def {
574                 Def::Ctor(_, _, CtorKind::Const) | Def::Ctor(_, _, CtorKind::Fn) |
575                 Def::Const(..) | Def::Static(..) | Def::Local(..) | Def::Upvar(..) |
576                 Def::Fn(..) | Def::Method(..) | Def::AssociatedConst(..) |
577                 Def::SelfCtor(..) | Def::ConstParam(..) => true,
578                 _ => false,
579             },
580             PathSource::Pat => match def {
581                 Def::Ctor(_, _, CtorKind::Const) |
582                 Def::Const(..) | Def::AssociatedConst(..) |
583                 Def::SelfCtor(..) => true,
584                 _ => false,
585             },
586             PathSource::TupleStruct => match def {
587                 Def::Ctor(_, _, CtorKind::Fn) | Def::SelfCtor(..) => true,
588                 _ => false,
589             },
590             PathSource::Struct => match def {
591                 Def::Struct(..) | Def::Union(..) | Def::Variant(..) |
592                 Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => true,
593                 _ => false,
594             },
595             PathSource::TraitItem(ns) => match def {
596                 Def::AssociatedConst(..) | Def::Method(..) if ns == ValueNS => true,
597                 Def::AssociatedTy(..) if ns == TypeNS => true,
598                 _ => false,
599             },
600             PathSource::Visibility => match def {
601                 Def::Mod(..) => true,
602                 _ => false,
603             },
604         }
605     }
606
607     fn error_code(self, has_unexpected_resolution: bool) -> &'static str {
608         __diagnostic_used!(E0404);
609         __diagnostic_used!(E0405);
610         __diagnostic_used!(E0412);
611         __diagnostic_used!(E0422);
612         __diagnostic_used!(E0423);
613         __diagnostic_used!(E0425);
614         __diagnostic_used!(E0531);
615         __diagnostic_used!(E0532);
616         __diagnostic_used!(E0573);
617         __diagnostic_used!(E0574);
618         __diagnostic_used!(E0575);
619         __diagnostic_used!(E0576);
620         __diagnostic_used!(E0577);
621         __diagnostic_used!(E0578);
622         match (self, has_unexpected_resolution) {
623             (PathSource::Trait(_), true) => "E0404",
624             (PathSource::Trait(_), false) => "E0405",
625             (PathSource::Type, true) => "E0573",
626             (PathSource::Type, false) => "E0412",
627             (PathSource::Struct, true) => "E0574",
628             (PathSource::Struct, false) => "E0422",
629             (PathSource::Expr(..), true) => "E0423",
630             (PathSource::Expr(..), false) => "E0425",
631             (PathSource::Pat, true) | (PathSource::TupleStruct, true) => "E0532",
632             (PathSource::Pat, false) | (PathSource::TupleStruct, false) => "E0531",
633             (PathSource::TraitItem(..), true) => "E0575",
634             (PathSource::TraitItem(..), false) => "E0576",
635             (PathSource::Visibility, true) => "E0577",
636             (PathSource::Visibility, false) => "E0578",
637         }
638     }
639 }
640
641 // A minimal representation of a path segment. We use this in resolve because
642 // we synthesize 'path segments' which don't have the rest of an AST or HIR
643 // `PathSegment`.
644 #[derive(Clone, Copy, Debug)]
645 pub struct Segment {
646     ident: Ident,
647     id: Option<NodeId>,
648 }
649
650 impl Segment {
651     fn from_path(path: &Path) -> Vec<Segment> {
652         path.segments.iter().map(|s| s.into()).collect()
653     }
654
655     fn from_ident(ident: Ident) -> Segment {
656         Segment {
657             ident,
658             id: None,
659         }
660     }
661
662     fn names_to_string(segments: &[Segment]) -> String {
663         names_to_string(&segments.iter()
664                             .map(|seg| seg.ident)
665                             .collect::<Vec<_>>())
666     }
667 }
668
669 impl<'a> From<&'a ast::PathSegment> for Segment {
670     fn from(seg: &'a ast::PathSegment) -> Segment {
671         Segment {
672             ident: seg.ident,
673             id: Some(seg.id),
674         }
675     }
676 }
677
678 struct UsePlacementFinder {
679     target_module: NodeId,
680     span: Option<Span>,
681     found_use: bool,
682 }
683
684 impl UsePlacementFinder {
685     fn check(krate: &Crate, target_module: NodeId) -> (Option<Span>, bool) {
686         let mut finder = UsePlacementFinder {
687             target_module,
688             span: None,
689             found_use: false,
690         };
691         visit::walk_crate(&mut finder, krate);
692         (finder.span, finder.found_use)
693     }
694 }
695
696 impl<'tcx> Visitor<'tcx> for UsePlacementFinder {
697     fn visit_mod(
698         &mut self,
699         module: &'tcx ast::Mod,
700         _: Span,
701         _: &[ast::Attribute],
702         node_id: NodeId,
703     ) {
704         if self.span.is_some() {
705             return;
706         }
707         if node_id != self.target_module {
708             visit::walk_mod(self, module);
709             return;
710         }
711         // find a use statement
712         for item in &module.items {
713             match item.node {
714                 ItemKind::Use(..) => {
715                     // don't suggest placing a use before the prelude
716                     // import or other generated ones
717                     if item.span.ctxt().outer().expn_info().is_none() {
718                         self.span = Some(item.span.shrink_to_lo());
719                         self.found_use = true;
720                         return;
721                     }
722                 },
723                 // don't place use before extern crate
724                 ItemKind::ExternCrate(_) => {}
725                 // but place them before the first other item
726                 _ => if self.span.map_or(true, |span| item.span < span ) {
727                     if item.span.ctxt().outer().expn_info().is_none() {
728                         // don't insert between attributes and an item
729                         if item.attrs.is_empty() {
730                             self.span = Some(item.span.shrink_to_lo());
731                         } else {
732                             // find the first attribute on the item
733                             for attr in &item.attrs {
734                                 if self.span.map_or(true, |span| attr.span < span) {
735                                     self.span = Some(attr.span.shrink_to_lo());
736                                 }
737                             }
738                         }
739                     }
740                 },
741             }
742         }
743     }
744 }
745
746 /// Walks the whole crate in DFS order, visiting each item, resolving names as it goes.
747 impl<'a, 'tcx> Visitor<'tcx> for Resolver<'a> {
748     fn visit_item(&mut self, item: &'tcx Item) {
749         self.resolve_item(item);
750     }
751     fn visit_arm(&mut self, arm: &'tcx Arm) {
752         self.resolve_arm(arm);
753     }
754     fn visit_block(&mut self, block: &'tcx Block) {
755         self.resolve_block(block);
756     }
757     fn visit_anon_const(&mut self, constant: &'tcx ast::AnonConst) {
758         debug!("visit_anon_const {:?}", constant);
759         self.with_constant_rib(|this| {
760             visit::walk_anon_const(this, constant);
761         });
762     }
763     fn visit_expr(&mut self, expr: &'tcx Expr) {
764         self.resolve_expr(expr, None);
765     }
766     fn visit_local(&mut self, local: &'tcx Local) {
767         self.resolve_local(local);
768     }
769     fn visit_ty(&mut self, ty: &'tcx Ty) {
770         match ty.node {
771             TyKind::Path(ref qself, ref path) => {
772                 self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
773             }
774             TyKind::ImplicitSelf => {
775                 let self_ty = keywords::SelfUpper.ident();
776                 let def = self.resolve_ident_in_lexical_scope(self_ty, TypeNS, Some(ty.id), ty.span)
777                               .map_or(Def::Err, |d| d.def());
778                 self.record_def(ty.id, PathResolution::new(def));
779             }
780             _ => (),
781         }
782         visit::walk_ty(self, ty);
783     }
784     fn visit_poly_trait_ref(&mut self,
785                             tref: &'tcx ast::PolyTraitRef,
786                             m: &'tcx ast::TraitBoundModifier) {
787         self.smart_resolve_path(tref.trait_ref.ref_id, None,
788                                 &tref.trait_ref.path, PathSource::Trait(AliasPossibility::Maybe));
789         visit::walk_poly_trait_ref(self, tref, m);
790     }
791     fn visit_foreign_item(&mut self, foreign_item: &'tcx ForeignItem) {
792         let generic_params = match foreign_item.node {
793             ForeignItemKind::Fn(_, ref generics) => {
794                 HasGenericParams(generics, ItemRibKind)
795             }
796             ForeignItemKind::Static(..) => NoGenericParams,
797             ForeignItemKind::Ty => NoGenericParams,
798             ForeignItemKind::Macro(..) => NoGenericParams,
799         };
800         self.with_generic_param_rib(generic_params, |this| {
801             visit::walk_foreign_item(this, foreign_item);
802         });
803     }
804     fn visit_fn(&mut self,
805                 function_kind: FnKind<'tcx>,
806                 declaration: &'tcx FnDecl,
807                 _: Span,
808                 node_id: NodeId)
809     {
810         debug!("(resolving function) entering function");
811         let (rib_kind, asyncness) = match function_kind {
812             FnKind::ItemFn(_, ref header, ..) =>
813                 (FnItemRibKind, header.asyncness.node),
814             FnKind::Method(_, ref sig, _, _) =>
815                 (TraitOrImplItemRibKind, sig.header.asyncness.node),
816             FnKind::Closure(_) =>
817                 // Async closures aren't resolved through `visit_fn`-- they're
818                 // processed separately
819                 (ClosureRibKind(node_id), IsAsync::NotAsync),
820         };
821
822         // Create a value rib for the function.
823         self.ribs[ValueNS].push(Rib::new(rib_kind));
824
825         // Create a label rib for the function.
826         self.label_ribs.push(Rib::new(rib_kind));
827
828         // Add each argument to the rib.
829         let mut bindings_list = FxHashMap::default();
830         for argument in &declaration.inputs {
831             self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
832
833             self.visit_ty(&argument.ty);
834
835             debug!("(resolving function) recorded argument");
836         }
837         visit::walk_fn_ret_ty(self, &declaration.output);
838
839         // Resolve the function body, potentially inside the body of an async closure
840         if let IsAsync::Async { closure_id, .. } = asyncness {
841             let rib_kind = ClosureRibKind(closure_id);
842             self.ribs[ValueNS].push(Rib::new(rib_kind));
843             self.label_ribs.push(Rib::new(rib_kind));
844         }
845
846         match function_kind {
847             FnKind::ItemFn(.., body) |
848             FnKind::Method(.., body) => {
849                 self.visit_block(body);
850             }
851             FnKind::Closure(body) => {
852                 self.visit_expr(body);
853             }
854         };
855
856         // Leave the body of the async closure
857         if asyncness.is_async() {
858             self.label_ribs.pop();
859             self.ribs[ValueNS].pop();
860         }
861
862         debug!("(resolving function) leaving function");
863
864         self.label_ribs.pop();
865         self.ribs[ValueNS].pop();
866     }
867
868     fn visit_generics(&mut self, generics: &'tcx Generics) {
869         // For type parameter defaults, we have to ban access
870         // to following type parameters, as the InternalSubsts can only
871         // provide previous type parameters as they're built. We
872         // put all the parameters on the ban list and then remove
873         // them one by one as they are processed and become available.
874         let mut default_ban_rib = Rib::new(ForwardTyParamBanRibKind);
875         let mut found_default = false;
876         default_ban_rib.bindings.extend(generics.params.iter()
877             .filter_map(|param| match param.kind {
878                 GenericParamKind::Const { .. } |
879                 GenericParamKind::Lifetime { .. } => None,
880                 GenericParamKind::Type { ref default, .. } => {
881                     found_default |= default.is_some();
882                     if found_default {
883                         Some((Ident::with_empty_ctxt(param.ident.name), Def::Err))
884                     } else {
885                         None
886                     }
887                 }
888             }));
889
890         for param in &generics.params {
891             match param.kind {
892                 GenericParamKind::Lifetime { .. } => self.visit_generic_param(param),
893                 GenericParamKind::Type { ref default, .. } => {
894                     for bound in &param.bounds {
895                         self.visit_param_bound(bound);
896                     }
897
898                     if let Some(ref ty) = default {
899                         self.ribs[TypeNS].push(default_ban_rib);
900                         self.visit_ty(ty);
901                         default_ban_rib = self.ribs[TypeNS].pop().unwrap();
902                     }
903
904                     // Allow all following defaults to refer to this type parameter.
905                     default_ban_rib.bindings.remove(&Ident::with_empty_ctxt(param.ident.name));
906                 }
907                 GenericParamKind::Const { ref ty } => {
908                     for bound in &param.bounds {
909                         self.visit_param_bound(bound);
910                     }
911
912                     self.visit_ty(ty);
913                 }
914             }
915         }
916         for p in &generics.where_clause.predicates {
917             self.visit_where_predicate(p);
918         }
919     }
920 }
921
922 #[derive(Copy, Clone)]
923 enum GenericParameters<'a, 'b> {
924     NoGenericParams,
925     HasGenericParams(// Type parameters.
926                       &'b Generics,
927
928                       // The kind of the rib used for type parameters.
929                       RibKind<'a>),
930 }
931
932 /// The rib kind controls the translation of local
933 /// definitions (`Def::Local`) to upvars (`Def::Upvar`).
934 #[derive(Copy, Clone, Debug)]
935 enum RibKind<'a> {
936     /// No translation needs to be applied.
937     NormalRibKind,
938
939     /// We passed through a closure scope at the given `NodeId`.
940     /// Translate upvars as appropriate.
941     ClosureRibKind(NodeId /* func id */),
942
943     /// We passed through an impl or trait and are now in one of its
944     /// methods or associated types. Allow references to ty params that impl or trait
945     /// binds. Disallow any other upvars (including other ty params that are
946     /// upvars).
947     TraitOrImplItemRibKind,
948
949     /// We passed through a function definition. Disallow upvars.
950     /// Permit only those const parameters that are specified in the function's generics.
951     FnItemRibKind,
952
953     /// We passed through an item scope. Disallow upvars.
954     ItemRibKind,
955
956     /// We're in a constant item. Can't refer to dynamic stuff.
957     ConstantItemRibKind,
958
959     /// We passed through a module.
960     ModuleRibKind(Module<'a>),
961
962     /// We passed through a `macro_rules!` statement
963     MacroDefinition(DefId),
964
965     /// All bindings in this rib are type parameters that can't be used
966     /// from the default of a type parameter because they're not declared
967     /// before said type parameter. Also see the `visit_generics` override.
968     ForwardTyParamBanRibKind,
969 }
970
971 /// A single local scope.
972 ///
973 /// A rib represents a scope names can live in. Note that these appear in many places, not just
974 /// around braces. At any place where the list of accessible names (of the given namespace)
975 /// changes or a new restrictions on the name accessibility are introduced, a new rib is put onto a
976 /// stack. This may be, for example, a `let` statement (because it introduces variables), a macro,
977 /// etc.
978 ///
979 /// Different [rib kinds](enum.RibKind) are transparent for different names.
980 ///
981 /// The resolution keeps a separate stack of ribs as it traverses the AST for each namespace. When
982 /// resolving, the name is looked up from inside out.
983 #[derive(Debug)]
984 struct Rib<'a> {
985     bindings: FxHashMap<Ident, Def>,
986     kind: RibKind<'a>,
987 }
988
989 impl<'a> Rib<'a> {
990     fn new(kind: RibKind<'a>) -> Rib<'a> {
991         Rib {
992             bindings: Default::default(),
993             kind,
994         }
995     }
996 }
997
998 /// An intermediate resolution result.
999 ///
1000 /// This refers to the thing referred by a name. The difference between `Def` and `Item` is that
1001 /// items are visible in their whole block, while defs only from the place they are defined
1002 /// forward.
1003 enum LexicalScopeBinding<'a> {
1004     Item(&'a NameBinding<'a>),
1005     Def(Def),
1006 }
1007
1008 impl<'a> LexicalScopeBinding<'a> {
1009     fn item(self) -> Option<&'a NameBinding<'a>> {
1010         match self {
1011             LexicalScopeBinding::Item(binding) => Some(binding),
1012             _ => None,
1013         }
1014     }
1015
1016     fn def(self) -> Def {
1017         match self {
1018             LexicalScopeBinding::Item(binding) => binding.def(),
1019             LexicalScopeBinding::Def(def) => def,
1020         }
1021     }
1022 }
1023
1024 #[derive(Copy, Clone, Debug)]
1025 enum ModuleOrUniformRoot<'a> {
1026     /// Regular module.
1027     Module(Module<'a>),
1028
1029     /// Virtual module that denotes resolution in crate root with fallback to extern prelude.
1030     CrateRootAndExternPrelude,
1031
1032     /// Virtual module that denotes resolution in extern prelude.
1033     /// Used for paths starting with `::` on 2018 edition.
1034     ExternPrelude,
1035
1036     /// Virtual module that denotes resolution in current scope.
1037     /// Used only for resolving single-segment imports. The reason it exists is that import paths
1038     /// are always split into two parts, the first of which should be some kind of module.
1039     CurrentScope,
1040 }
1041
1042 impl ModuleOrUniformRoot<'_> {
1043     fn same_def(lhs: Self, rhs: Self) -> bool {
1044         match (lhs, rhs) {
1045             (ModuleOrUniformRoot::Module(lhs),
1046              ModuleOrUniformRoot::Module(rhs)) => lhs.def() == rhs.def(),
1047             (ModuleOrUniformRoot::CrateRootAndExternPrelude,
1048              ModuleOrUniformRoot::CrateRootAndExternPrelude) |
1049             (ModuleOrUniformRoot::ExternPrelude, ModuleOrUniformRoot::ExternPrelude) |
1050             (ModuleOrUniformRoot::CurrentScope, ModuleOrUniformRoot::CurrentScope) => true,
1051             _ => false,
1052         }
1053     }
1054 }
1055
1056 #[derive(Clone, Debug)]
1057 enum PathResult<'a> {
1058     Module(ModuleOrUniformRoot<'a>),
1059     NonModule(PathResolution),
1060     Indeterminate,
1061     Failed {
1062         span: Span,
1063         label: String,
1064         suggestion: Option<Suggestion>,
1065         is_error_from_last_segment: bool,
1066     },
1067 }
1068
1069 enum ModuleKind {
1070     /// An anonymous module; e.g., just a block.
1071     ///
1072     /// ```
1073     /// fn main() {
1074     ///     fn f() {} // (1)
1075     ///     { // This is an anonymous module
1076     ///         f(); // This resolves to (2) as we are inside the block.
1077     ///         fn f() {} // (2)
1078     ///     }
1079     ///     f(); // Resolves to (1)
1080     /// }
1081     /// ```
1082     Block(NodeId),
1083     /// Any module with a name.
1084     ///
1085     /// This could be:
1086     ///
1087     /// * A normal module â€’ either `mod from_file;` or `mod from_block { }`.
1088     /// * A trait or an enum (it implicitly contains associated types, methods and variant
1089     ///   constructors).
1090     Def(Def, Name),
1091 }
1092
1093 /// One node in the tree of modules.
1094 pub struct ModuleData<'a> {
1095     parent: Option<Module<'a>>,
1096     kind: ModuleKind,
1097
1098     // The def id of the closest normal module (`mod`) ancestor (including this module).
1099     normal_ancestor_id: DefId,
1100
1101     resolutions: RefCell<FxHashMap<(Ident, Namespace), &'a RefCell<NameResolution<'a>>>>,
1102     single_segment_macro_resolutions: RefCell<Vec<(Ident, MacroKind, ParentScope<'a>,
1103                                                    Option<&'a NameBinding<'a>>)>>,
1104     multi_segment_macro_resolutions: RefCell<Vec<(Vec<Segment>, Span, MacroKind, ParentScope<'a>,
1105                                                   Option<Def>)>>,
1106     builtin_attrs: RefCell<Vec<(Ident, ParentScope<'a>)>>,
1107
1108     // Macro invocations that can expand into items in this module.
1109     unresolved_invocations: RefCell<FxHashSet<Mark>>,
1110
1111     no_implicit_prelude: bool,
1112
1113     glob_importers: RefCell<Vec<&'a ImportDirective<'a>>>,
1114     globs: RefCell<Vec<&'a ImportDirective<'a>>>,
1115
1116     // Used to memoize the traits in this module for faster searches through all traits in scope.
1117     traits: RefCell<Option<Box<[(Ident, &'a NameBinding<'a>)]>>>,
1118
1119     // Whether this module is populated. If not populated, any attempt to
1120     // access the children must be preceded with a
1121     // `populate_module_if_necessary` call.
1122     populated: Cell<bool>,
1123
1124     /// Span of the module itself. Used for error reporting.
1125     span: Span,
1126
1127     expansion: Mark,
1128 }
1129
1130 type Module<'a> = &'a ModuleData<'a>;
1131
1132 impl<'a> ModuleData<'a> {
1133     fn new(parent: Option<Module<'a>>,
1134            kind: ModuleKind,
1135            normal_ancestor_id: DefId,
1136            expansion: Mark,
1137            span: Span) -> Self {
1138         ModuleData {
1139             parent,
1140             kind,
1141             normal_ancestor_id,
1142             resolutions: Default::default(),
1143             single_segment_macro_resolutions: RefCell::new(Vec::new()),
1144             multi_segment_macro_resolutions: RefCell::new(Vec::new()),
1145             builtin_attrs: RefCell::new(Vec::new()),
1146             unresolved_invocations: Default::default(),
1147             no_implicit_prelude: false,
1148             glob_importers: RefCell::new(Vec::new()),
1149             globs: RefCell::new(Vec::new()),
1150             traits: RefCell::new(None),
1151             populated: Cell::new(normal_ancestor_id.is_local()),
1152             span,
1153             expansion,
1154         }
1155     }
1156
1157     fn for_each_child<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1158         for (&(ident, ns), name_resolution) in self.resolutions.borrow().iter() {
1159             name_resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1160         }
1161     }
1162
1163     fn for_each_child_stable<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1164         let resolutions = self.resolutions.borrow();
1165         let mut resolutions = resolutions.iter().collect::<Vec<_>>();
1166         resolutions.sort_by_cached_key(|&(&(ident, ns), _)| (ident.as_str(), ns));
1167         for &(&(ident, ns), &resolution) in resolutions.iter() {
1168             resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1169         }
1170     }
1171
1172     fn def(&self) -> Option<Def> {
1173         match self.kind {
1174             ModuleKind::Def(def, _) => Some(def),
1175             _ => None,
1176         }
1177     }
1178
1179     fn def_id(&self) -> Option<DefId> {
1180         self.def().as_ref().map(Def::def_id)
1181     }
1182
1183     // `self` resolves to the first module ancestor that `is_normal`.
1184     fn is_normal(&self) -> bool {
1185         match self.kind {
1186             ModuleKind::Def(Def::Mod(_), _) => true,
1187             _ => false,
1188         }
1189     }
1190
1191     fn is_trait(&self) -> bool {
1192         match self.kind {
1193             ModuleKind::Def(Def::Trait(_), _) => true,
1194             _ => false,
1195         }
1196     }
1197
1198     fn nearest_item_scope(&'a self) -> Module<'a> {
1199         if self.is_trait() { self.parent.unwrap() } else { self }
1200     }
1201
1202     fn is_ancestor_of(&self, mut other: &Self) -> bool {
1203         while !ptr::eq(self, other) {
1204             if let Some(parent) = other.parent {
1205                 other = parent;
1206             } else {
1207                 return false;
1208             }
1209         }
1210         true
1211     }
1212 }
1213
1214 impl<'a> fmt::Debug for ModuleData<'a> {
1215     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1216         write!(f, "{:?}", self.def())
1217     }
1218 }
1219
1220 /// Records a possibly-private value, type, or module definition.
1221 #[derive(Clone, Debug)]
1222 pub struct NameBinding<'a> {
1223     kind: NameBindingKind<'a>,
1224     ambiguity: Option<(&'a NameBinding<'a>, AmbiguityKind)>,
1225     expansion: Mark,
1226     span: Span,
1227     vis: ty::Visibility,
1228 }
1229
1230 pub trait ToNameBinding<'a> {
1231     fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a>;
1232 }
1233
1234 impl<'a> ToNameBinding<'a> for &'a NameBinding<'a> {
1235     fn to_name_binding(self, _: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> {
1236         self
1237     }
1238 }
1239
1240 #[derive(Clone, Debug)]
1241 enum NameBindingKind<'a> {
1242     Def(Def, /* is_macro_export */ bool),
1243     Module(Module<'a>),
1244     Import {
1245         binding: &'a NameBinding<'a>,
1246         directive: &'a ImportDirective<'a>,
1247         used: Cell<bool>,
1248     },
1249 }
1250
1251 impl<'a> NameBindingKind<'a> {
1252     /// Is this a name binding of a import?
1253     fn is_import(&self) -> bool {
1254         match *self {
1255             NameBindingKind::Import { .. } => true,
1256             _ => false,
1257         }
1258     }
1259 }
1260
1261 struct PrivacyError<'a>(Span, Ident, &'a NameBinding<'a>);
1262
1263 struct UseError<'a> {
1264     err: DiagnosticBuilder<'a>,
1265     /// Attach `use` statements for these candidates.
1266     candidates: Vec<ImportSuggestion>,
1267     /// The `NodeId` of the module to place the use-statements in.
1268     node_id: NodeId,
1269     /// Whether the diagnostic should state that it's "better".
1270     better: bool,
1271 }
1272
1273 #[derive(Clone, Copy, PartialEq, Debug)]
1274 enum AmbiguityKind {
1275     Import,
1276     BuiltinAttr,
1277     DeriveHelper,
1278     LegacyHelperVsPrelude,
1279     LegacyVsModern,
1280     GlobVsOuter,
1281     GlobVsGlob,
1282     GlobVsExpanded,
1283     MoreExpandedVsOuter,
1284 }
1285
1286 impl AmbiguityKind {
1287     fn descr(self) -> &'static str {
1288         match self {
1289             AmbiguityKind::Import =>
1290                 "name vs any other name during import resolution",
1291             AmbiguityKind::BuiltinAttr =>
1292                 "built-in attribute vs any other name",
1293             AmbiguityKind::DeriveHelper =>
1294                 "derive helper attribute vs any other name",
1295             AmbiguityKind::LegacyHelperVsPrelude =>
1296                 "legacy plugin helper attribute vs name from prelude",
1297             AmbiguityKind::LegacyVsModern =>
1298                 "`macro_rules` vs non-`macro_rules` from other module",
1299             AmbiguityKind::GlobVsOuter =>
1300                 "glob import vs any other name from outer scope during import/macro resolution",
1301             AmbiguityKind::GlobVsGlob =>
1302                 "glob import vs glob import in the same module",
1303             AmbiguityKind::GlobVsExpanded =>
1304                 "glob import vs macro-expanded name in the same \
1305                  module during import/macro resolution",
1306             AmbiguityKind::MoreExpandedVsOuter =>
1307                 "macro-expanded name vs less macro-expanded name \
1308                  from outer scope during import/macro resolution",
1309         }
1310     }
1311 }
1312
1313 /// Miscellaneous bits of metadata for better ambiguity error reporting.
1314 #[derive(Clone, Copy, PartialEq)]
1315 enum AmbiguityErrorMisc {
1316     SuggestCrate,
1317     SuggestSelf,
1318     FromPrelude,
1319     None,
1320 }
1321
1322 struct AmbiguityError<'a> {
1323     kind: AmbiguityKind,
1324     ident: Ident,
1325     b1: &'a NameBinding<'a>,
1326     b2: &'a NameBinding<'a>,
1327     misc1: AmbiguityErrorMisc,
1328     misc2: AmbiguityErrorMisc,
1329 }
1330
1331 impl<'a> NameBinding<'a> {
1332     fn module(&self) -> Option<Module<'a>> {
1333         match self.kind {
1334             NameBindingKind::Module(module) => Some(module),
1335             NameBindingKind::Import { binding, .. } => binding.module(),
1336             _ => None,
1337         }
1338     }
1339
1340     fn def(&self) -> Def {
1341         match self.kind {
1342             NameBindingKind::Def(def, _) => def,
1343             NameBindingKind::Module(module) => module.def().unwrap(),
1344             NameBindingKind::Import { binding, .. } => binding.def(),
1345         }
1346     }
1347
1348     fn is_ambiguity(&self) -> bool {
1349         self.ambiguity.is_some() || match self.kind {
1350             NameBindingKind::Import { binding, .. } => binding.is_ambiguity(),
1351             _ => false,
1352         }
1353     }
1354
1355     // We sometimes need to treat variants as `pub` for backwards compatibility
1356     fn pseudo_vis(&self) -> ty::Visibility {
1357         if self.is_variant() && self.def().def_id().is_local() {
1358             ty::Visibility::Public
1359         } else {
1360             self.vis
1361         }
1362     }
1363
1364     fn is_variant(&self) -> bool {
1365         match self.kind {
1366             NameBindingKind::Def(Def::Variant(..), _) |
1367             NameBindingKind::Def(Def::Ctor(_, CtorOf::Variant, ..), _) => true,
1368             _ => false,
1369         }
1370     }
1371
1372     fn is_extern_crate(&self) -> bool {
1373         match self.kind {
1374             NameBindingKind::Import {
1375                 directive: &ImportDirective {
1376                     subclass: ImportDirectiveSubclass::ExternCrate { .. }, ..
1377                 }, ..
1378             } => true,
1379             NameBindingKind::Module(
1380                 &ModuleData { kind: ModuleKind::Def(Def::Mod(def_id), _), .. }
1381             ) => def_id.index == CRATE_DEF_INDEX,
1382             _ => false,
1383         }
1384     }
1385
1386     fn is_import(&self) -> bool {
1387         match self.kind {
1388             NameBindingKind::Import { .. } => true,
1389             _ => false,
1390         }
1391     }
1392
1393     fn is_glob_import(&self) -> bool {
1394         match self.kind {
1395             NameBindingKind::Import { directive, .. } => directive.is_glob(),
1396             _ => false,
1397         }
1398     }
1399
1400     fn is_importable(&self) -> bool {
1401         match self.def() {
1402             Def::AssociatedConst(..) | Def::Method(..) | Def::AssociatedTy(..) => false,
1403             _ => true,
1404         }
1405     }
1406
1407     fn is_macro_def(&self) -> bool {
1408         match self.kind {
1409             NameBindingKind::Def(Def::Macro(..), _) => true,
1410             _ => false,
1411         }
1412     }
1413
1414     fn macro_kind(&self) -> Option<MacroKind> {
1415         match self.def() {
1416             Def::Macro(_, kind) => Some(kind),
1417             Def::NonMacroAttr(..) => Some(MacroKind::Attr),
1418             _ => None,
1419         }
1420     }
1421
1422     fn descr(&self) -> &'static str {
1423         if self.is_extern_crate() { "extern crate" } else { self.def().kind_name() }
1424     }
1425
1426     fn article(&self) -> &'static str {
1427         if self.is_extern_crate() { "an" } else { self.def().article() }
1428     }
1429
1430     // Suppose that we resolved macro invocation with `invoc_parent_expansion` to binding `binding`
1431     // at some expansion round `max(invoc, binding)` when they both emerged from macros.
1432     // Then this function returns `true` if `self` may emerge from a macro *after* that
1433     // in some later round and screw up our previously found resolution.
1434     // See more detailed explanation in
1435     // https://github.com/rust-lang/rust/pull/53778#issuecomment-419224049
1436     fn may_appear_after(&self, invoc_parent_expansion: Mark, binding: &NameBinding<'_>) -> bool {
1437         // self > max(invoc, binding) => !(self <= invoc || self <= binding)
1438         // Expansions are partially ordered, so "may appear after" is an inversion of
1439         // "certainly appears before or simultaneously" and includes unordered cases.
1440         let self_parent_expansion = self.expansion;
1441         let other_parent_expansion = binding.expansion;
1442         let certainly_before_other_or_simultaneously =
1443             other_parent_expansion.is_descendant_of(self_parent_expansion);
1444         let certainly_before_invoc_or_simultaneously =
1445             invoc_parent_expansion.is_descendant_of(self_parent_expansion);
1446         !(certainly_before_other_or_simultaneously || certainly_before_invoc_or_simultaneously)
1447     }
1448 }
1449
1450 /// Interns the names of the primitive types.
1451 ///
1452 /// All other types are defined somewhere and possibly imported, but the primitive ones need
1453 /// special handling, since they have no place of origin.
1454 #[derive(Default)]
1455 struct PrimitiveTypeTable {
1456     primitive_types: FxHashMap<Name, PrimTy>,
1457 }
1458
1459 impl PrimitiveTypeTable {
1460     fn new() -> PrimitiveTypeTable {
1461         let mut table = PrimitiveTypeTable::default();
1462
1463         table.intern("bool", Bool);
1464         table.intern("char", Char);
1465         table.intern("f32", Float(FloatTy::F32));
1466         table.intern("f64", Float(FloatTy::F64));
1467         table.intern("isize", Int(IntTy::Isize));
1468         table.intern("i8", Int(IntTy::I8));
1469         table.intern("i16", Int(IntTy::I16));
1470         table.intern("i32", Int(IntTy::I32));
1471         table.intern("i64", Int(IntTy::I64));
1472         table.intern("i128", Int(IntTy::I128));
1473         table.intern("str", Str);
1474         table.intern("usize", Uint(UintTy::Usize));
1475         table.intern("u8", Uint(UintTy::U8));
1476         table.intern("u16", Uint(UintTy::U16));
1477         table.intern("u32", Uint(UintTy::U32));
1478         table.intern("u64", Uint(UintTy::U64));
1479         table.intern("u128", Uint(UintTy::U128));
1480         table
1481     }
1482
1483     fn intern(&mut self, string: &str, primitive_type: PrimTy) {
1484         self.primitive_types.insert(Symbol::intern(string), primitive_type);
1485     }
1486 }
1487
1488 #[derive(Debug, Default, Clone)]
1489 pub struct ExternPreludeEntry<'a> {
1490     extern_crate_item: Option<&'a NameBinding<'a>>,
1491     pub introduced_by_item: bool,
1492 }
1493
1494 /// The main resolver class.
1495 ///
1496 /// This is the visitor that walks the whole crate.
1497 pub struct Resolver<'a> {
1498     session: &'a Session,
1499     cstore: &'a CStore,
1500
1501     pub definitions: Definitions,
1502
1503     graph_root: Module<'a>,
1504
1505     prelude: Option<Module<'a>>,
1506     pub extern_prelude: FxHashMap<Ident, ExternPreludeEntry<'a>>,
1507
1508     /// N.B., this is used only for better diagnostics, not name resolution itself.
1509     has_self: FxHashSet<DefId>,
1510
1511     /// Names of fields of an item `DefId` accessible with dot syntax.
1512     /// Used for hints during error reporting.
1513     field_names: FxHashMap<DefId, Vec<Name>>,
1514
1515     /// All imports known to succeed or fail.
1516     determined_imports: Vec<&'a ImportDirective<'a>>,
1517
1518     /// All non-determined imports.
1519     indeterminate_imports: Vec<&'a ImportDirective<'a>>,
1520
1521     /// The module that represents the current item scope.
1522     current_module: Module<'a>,
1523
1524     /// The current set of local scopes for types and values.
1525     /// FIXME #4948: Reuse ribs to avoid allocation.
1526     ribs: PerNS<Vec<Rib<'a>>>,
1527
1528     /// The current set of local scopes, for labels.
1529     label_ribs: Vec<Rib<'a>>,
1530
1531     /// The trait that the current context can refer to.
1532     current_trait_ref: Option<(Module<'a>, TraitRef)>,
1533
1534     /// The current self type if inside an impl (used for better errors).
1535     current_self_type: Option<Ty>,
1536
1537     /// The current self item if inside an ADT (used for better errors).
1538     current_self_item: Option<NodeId>,
1539
1540     /// FIXME: Refactor things so that these fields are passed through arguments and not resolver.
1541     /// We are resolving a last import segment during import validation.
1542     last_import_segment: bool,
1543     /// This binding should be ignored during in-module resolution, so that we don't get
1544     /// "self-confirming" import resolutions during import validation.
1545     blacklisted_binding: Option<&'a NameBinding<'a>>,
1546
1547     /// The idents for the primitive types.
1548     primitive_type_table: PrimitiveTypeTable,
1549
1550     def_map: DefMap,
1551     import_map: ImportMap,
1552     pub freevars: FreevarMap,
1553     freevars_seen: NodeMap<NodeMap<usize>>,
1554     pub export_map: ExportMap,
1555     pub trait_map: TraitMap,
1556
1557     /// A map from nodes to anonymous modules.
1558     /// Anonymous modules are pseudo-modules that are implicitly created around items
1559     /// contained within blocks.
1560     ///
1561     /// For example, if we have this:
1562     ///
1563     ///  fn f() {
1564     ///      fn g() {
1565     ///          ...
1566     ///      }
1567     ///  }
1568     ///
1569     /// There will be an anonymous module created around `g` with the ID of the
1570     /// entry block for `f`.
1571     block_map: NodeMap<Module<'a>>,
1572     module_map: FxHashMap<DefId, Module<'a>>,
1573     extern_module_map: FxHashMap<(DefId, bool /* MacrosOnly? */), Module<'a>>,
1574     binding_parent_modules: FxHashMap<PtrKey<'a, NameBinding<'a>>, Module<'a>>,
1575
1576     /// Maps glob imports to the names of items actually imported.
1577     pub glob_map: GlobMap,
1578
1579     used_imports: FxHashSet<(NodeId, Namespace)>,
1580     pub maybe_unused_trait_imports: NodeSet,
1581     pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
1582
1583     /// A list of labels as of yet unused. Labels will be removed from this map when
1584     /// they are used (in a `break` or `continue` statement)
1585     pub unused_labels: FxHashMap<NodeId, Span>,
1586
1587     /// Privacy errors are delayed until the end in order to deduplicate them.
1588     privacy_errors: Vec<PrivacyError<'a>>,
1589     /// Ambiguity errors are delayed for deduplication.
1590     ambiguity_errors: Vec<AmbiguityError<'a>>,
1591     /// `use` injections are delayed for better placement and deduplication.
1592     use_injections: Vec<UseError<'a>>,
1593     /// Crate-local macro expanded `macro_export` referred to by a module-relative path.
1594     macro_expanded_macro_export_errors: BTreeSet<(Span, Span)>,
1595
1596     arenas: &'a ResolverArenas<'a>,
1597     dummy_binding: &'a NameBinding<'a>,
1598
1599     crate_loader: &'a mut CrateLoader<'a>,
1600     macro_names: FxHashSet<Ident>,
1601     builtin_macros: FxHashMap<Name, &'a NameBinding<'a>>,
1602     macro_use_prelude: FxHashMap<Name, &'a NameBinding<'a>>,
1603     pub all_macros: FxHashMap<Name, Def>,
1604     macro_map: FxHashMap<DefId, Lrc<SyntaxExtension>>,
1605     macro_defs: FxHashMap<Mark, DefId>,
1606     local_macro_def_scopes: FxHashMap<NodeId, Module<'a>>,
1607
1608     /// List of crate local macros that we need to warn about as being unused.
1609     /// Right now this only includes macro_rules! macros, and macros 2.0.
1610     unused_macros: FxHashSet<DefId>,
1611
1612     /// Maps the `Mark` of an expansion to its containing module or block.
1613     invocations: FxHashMap<Mark, &'a InvocationData<'a>>,
1614
1615     /// Avoid duplicated errors for "name already defined".
1616     name_already_seen: FxHashMap<Name, Span>,
1617
1618     potentially_unused_imports: Vec<&'a ImportDirective<'a>>,
1619
1620     /// Table for mapping struct IDs into struct constructor IDs,
1621     /// it's not used during normal resolution, only for better error reporting.
1622     struct_constructors: DefIdMap<(Def, ty::Visibility)>,
1623
1624     /// Only used for better errors on `fn(): fn()`.
1625     current_type_ascription: Vec<Span>,
1626
1627     injected_crate: Option<Module<'a>>,
1628 }
1629
1630 /// Nothing really interesting here; it just provides memory for the rest of the crate.
1631 #[derive(Default)]
1632 pub struct ResolverArenas<'a> {
1633     modules: arena::TypedArena<ModuleData<'a>>,
1634     local_modules: RefCell<Vec<Module<'a>>>,
1635     name_bindings: arena::TypedArena<NameBinding<'a>>,
1636     import_directives: arena::TypedArena<ImportDirective<'a>>,
1637     name_resolutions: arena::TypedArena<RefCell<NameResolution<'a>>>,
1638     invocation_data: arena::TypedArena<InvocationData<'a>>,
1639     legacy_bindings: arena::TypedArena<LegacyBinding<'a>>,
1640 }
1641
1642 impl<'a> ResolverArenas<'a> {
1643     fn alloc_module(&'a self, module: ModuleData<'a>) -> Module<'a> {
1644         let module = self.modules.alloc(module);
1645         if module.def_id().map(|def_id| def_id.is_local()).unwrap_or(true) {
1646             self.local_modules.borrow_mut().push(module);
1647         }
1648         module
1649     }
1650     fn local_modules(&'a self) -> std::cell::Ref<'a, Vec<Module<'a>>> {
1651         self.local_modules.borrow()
1652     }
1653     fn alloc_name_binding(&'a self, name_binding: NameBinding<'a>) -> &'a NameBinding<'a> {
1654         self.name_bindings.alloc(name_binding)
1655     }
1656     fn alloc_import_directive(&'a self, import_directive: ImportDirective<'a>)
1657                               -> &'a ImportDirective<'_> {
1658         self.import_directives.alloc(import_directive)
1659     }
1660     fn alloc_name_resolution(&'a self) -> &'a RefCell<NameResolution<'a>> {
1661         self.name_resolutions.alloc(Default::default())
1662     }
1663     fn alloc_invocation_data(&'a self, expansion_data: InvocationData<'a>)
1664                              -> &'a InvocationData<'a> {
1665         self.invocation_data.alloc(expansion_data)
1666     }
1667     fn alloc_legacy_binding(&'a self, binding: LegacyBinding<'a>) -> &'a LegacyBinding<'a> {
1668         self.legacy_bindings.alloc(binding)
1669     }
1670 }
1671
1672 impl<'a, 'b: 'a> ty::DefIdTree for &'a Resolver<'b> {
1673     fn parent(self, id: DefId) -> Option<DefId> {
1674         match id.krate {
1675             LOCAL_CRATE => self.definitions.def_key(id.index).parent,
1676             _ => self.cstore.def_key(id).parent,
1677         }.map(|index| DefId { index, ..id })
1678     }
1679 }
1680
1681 /// This interface is used through the AST→HIR step, to embed full paths into the HIR. After that
1682 /// the resolver is no longer needed as all the relevant information is inline.
1683 impl<'a> hir::lowering::Resolver for Resolver<'a> {
1684     fn resolve_hir_path(
1685         &mut self,
1686         path: &ast::Path,
1687         is_value: bool,
1688     ) -> hir::Path {
1689         self.resolve_hir_path_cb(path, is_value,
1690                                  |resolver, span, error| resolve_error(resolver, span, error))
1691     }
1692
1693     fn resolve_str_path(
1694         &mut self,
1695         span: Span,
1696         crate_root: Option<&str>,
1697         components: &[&str],
1698         is_value: bool
1699     ) -> hir::Path {
1700         let root = if crate_root.is_some() {
1701             keywords::PathRoot
1702         } else {
1703             keywords::Crate
1704         };
1705         let segments = iter::once(root.ident())
1706             .chain(
1707                 crate_root.into_iter()
1708                     .chain(components.iter().cloned())
1709                     .map(Ident::from_str)
1710             ).map(|i| self.new_ast_path_segment(i)).collect::<Vec<_>>();
1711
1712
1713         let path = ast::Path {
1714             span,
1715             segments,
1716         };
1717
1718         self.resolve_hir_path(&path, is_value)
1719     }
1720
1721     fn get_resolution(&mut self, id: NodeId) -> Option<PathResolution> {
1722         self.def_map.get(&id).cloned()
1723     }
1724
1725     fn get_import(&mut self, id: NodeId) -> PerNS<Option<PathResolution>> {
1726         self.import_map.get(&id).cloned().unwrap_or_default()
1727     }
1728
1729     fn definitions(&mut self) -> &mut Definitions {
1730         &mut self.definitions
1731     }
1732 }
1733
1734 impl<'a> Resolver<'a> {
1735     /// Rustdoc uses this to resolve things in a recoverable way. `ResolutionError<'a>`
1736     /// isn't something that can be returned because it can't be made to live that long,
1737     /// and also it's a private type. Fortunately rustdoc doesn't need to know the error,
1738     /// just that an error occurred.
1739     pub fn resolve_str_path_error(&mut self, span: Span, path_str: &str, is_value: bool)
1740         -> Result<hir::Path, ()> {
1741         let mut errored = false;
1742
1743         let path = if path_str.starts_with("::") {
1744             ast::Path {
1745                 span,
1746                 segments: iter::once(keywords::PathRoot.ident())
1747                     .chain({
1748                         path_str.split("::").skip(1).map(Ident::from_str)
1749                     })
1750                     .map(|i| self.new_ast_path_segment(i))
1751                     .collect(),
1752             }
1753         } else {
1754             ast::Path {
1755                 span,
1756                 segments: path_str
1757                     .split("::")
1758                     .map(Ident::from_str)
1759                     .map(|i| self.new_ast_path_segment(i))
1760                     .collect(),
1761             }
1762         };
1763         let path = self.resolve_hir_path_cb(&path, is_value, |_, _, _| errored = true);
1764         if errored || path.def == Def::Err {
1765             Err(())
1766         } else {
1767             Ok(path)
1768         }
1769     }
1770
1771     /// Like `resolve_hir_path`, but takes a callback in case there was an error.
1772     fn resolve_hir_path_cb<F>(
1773         &mut self,
1774         path: &ast::Path,
1775         is_value: bool,
1776         error_callback: F,
1777     ) -> hir::Path
1778         where F: for<'c, 'b> FnOnce(&'c mut Resolver<'_>, Span, ResolutionError<'b>)
1779     {
1780         let namespace = if is_value { ValueNS } else { TypeNS };
1781         let span = path.span;
1782         let segments = &path.segments;
1783         let path = Segment::from_path(&path);
1784         // FIXME(Manishearth): intra-doc links won't get warned of epoch changes.
1785         let def = match self.resolve_path_without_parent_scope(&path, Some(namespace), true,
1786                                                                span, CrateLint::No) {
1787             PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
1788                 module.def().unwrap(),
1789             PathResult::NonModule(path_res) if path_res.unresolved_segments() == 0 =>
1790                 path_res.base_def(),
1791             PathResult::NonModule(..) => {
1792                 error_callback(self, span, ResolutionError::FailedToResolve {
1793                     label: String::from("type-relative paths are not supported in this context"),
1794                     suggestion: None,
1795                 });
1796                 Def::Err
1797             }
1798             PathResult::Module(..) | PathResult::Indeterminate => unreachable!(),
1799             PathResult::Failed { span, label, suggestion, .. } => {
1800                 error_callback(self, span, ResolutionError::FailedToResolve {
1801                     label,
1802                     suggestion,
1803                 });
1804                 Def::Err
1805             }
1806         };
1807
1808         let segments: Vec<_> = segments.iter().map(|seg| {
1809             let mut hir_seg = hir::PathSegment::from_ident(seg.ident);
1810             hir_seg.def = Some(self.def_map.get(&seg.id).map_or(Def::Err, |p| p.base_def()));
1811             hir_seg
1812         }).collect();
1813         hir::Path {
1814             span,
1815             def,
1816             segments: segments.into(),
1817         }
1818     }
1819
1820     fn new_ast_path_segment(&self, ident: Ident) -> ast::PathSegment {
1821         let mut seg = ast::PathSegment::from_ident(ident);
1822         seg.id = self.session.next_node_id();
1823         seg
1824     }
1825 }
1826
1827 impl<'a> Resolver<'a> {
1828     pub fn new(session: &'a Session,
1829                cstore: &'a CStore,
1830                krate: &Crate,
1831                crate_name: &str,
1832                crate_loader: &'a mut CrateLoader<'a>,
1833                arenas: &'a ResolverArenas<'a>)
1834                -> Resolver<'a> {
1835         let root_def_id = DefId::local(CRATE_DEF_INDEX);
1836         let root_module_kind = ModuleKind::Def(Def::Mod(root_def_id), keywords::Invalid.name());
1837         let graph_root = arenas.alloc_module(ModuleData {
1838             no_implicit_prelude: attr::contains_name(&krate.attrs, "no_implicit_prelude"),
1839             ..ModuleData::new(None, root_module_kind, root_def_id, Mark::root(), krate.span)
1840         });
1841         let mut module_map = FxHashMap::default();
1842         module_map.insert(DefId::local(CRATE_DEF_INDEX), graph_root);
1843
1844         let mut definitions = Definitions::new();
1845         DefCollector::new(&mut definitions, Mark::root())
1846             .collect_root(crate_name, session.local_crate_disambiguator());
1847
1848         let mut extern_prelude: FxHashMap<Ident, ExternPreludeEntry<'_>> =
1849             session.opts.externs.iter().map(|kv| (Ident::from_str(kv.0), Default::default()))
1850                                        .collect();
1851
1852         if !attr::contains_name(&krate.attrs, "no_core") {
1853             extern_prelude.insert(Ident::from_str("core"), Default::default());
1854             if !attr::contains_name(&krate.attrs, "no_std") {
1855                 extern_prelude.insert(Ident::from_str("std"), Default::default());
1856                 if session.rust_2018() {
1857                     extern_prelude.insert(Ident::from_str("meta"), Default::default());
1858                 }
1859             }
1860         }
1861
1862         let mut invocations = FxHashMap::default();
1863         invocations.insert(Mark::root(),
1864                            arenas.alloc_invocation_data(InvocationData::root(graph_root)));
1865
1866         let mut macro_defs = FxHashMap::default();
1867         macro_defs.insert(Mark::root(), root_def_id);
1868
1869         Resolver {
1870             session,
1871
1872             cstore,
1873
1874             definitions,
1875
1876             // The outermost module has def ID 0; this is not reflected in the
1877             // AST.
1878             graph_root,
1879             prelude: None,
1880             extern_prelude,
1881
1882             has_self: FxHashSet::default(),
1883             field_names: FxHashMap::default(),
1884
1885             determined_imports: Vec::new(),
1886             indeterminate_imports: Vec::new(),
1887
1888             current_module: graph_root,
1889             ribs: PerNS {
1890                 value_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1891                 type_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1892                 macro_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1893             },
1894             label_ribs: Vec::new(),
1895
1896             current_trait_ref: None,
1897             current_self_type: None,
1898             current_self_item: None,
1899             last_import_segment: false,
1900             blacklisted_binding: None,
1901
1902             primitive_type_table: PrimitiveTypeTable::new(),
1903
1904             def_map: Default::default(),
1905             import_map: Default::default(),
1906             freevars: Default::default(),
1907             freevars_seen: Default::default(),
1908             export_map: FxHashMap::default(),
1909             trait_map: Default::default(),
1910             module_map,
1911             block_map: Default::default(),
1912             extern_module_map: FxHashMap::default(),
1913             binding_parent_modules: FxHashMap::default(),
1914
1915             glob_map: Default::default(),
1916
1917             used_imports: FxHashSet::default(),
1918             maybe_unused_trait_imports: Default::default(),
1919             maybe_unused_extern_crates: Vec::new(),
1920
1921             unused_labels: FxHashMap::default(),
1922
1923             privacy_errors: Vec::new(),
1924             ambiguity_errors: Vec::new(),
1925             use_injections: Vec::new(),
1926             macro_expanded_macro_export_errors: BTreeSet::new(),
1927
1928             arenas,
1929             dummy_binding: arenas.alloc_name_binding(NameBinding {
1930                 kind: NameBindingKind::Def(Def::Err, false),
1931                 ambiguity: None,
1932                 expansion: Mark::root(),
1933                 span: DUMMY_SP,
1934                 vis: ty::Visibility::Public,
1935             }),
1936
1937             crate_loader,
1938             macro_names: FxHashSet::default(),
1939             builtin_macros: FxHashMap::default(),
1940             macro_use_prelude: FxHashMap::default(),
1941             all_macros: FxHashMap::default(),
1942             macro_map: FxHashMap::default(),
1943             invocations,
1944             macro_defs,
1945             local_macro_def_scopes: FxHashMap::default(),
1946             name_already_seen: FxHashMap::default(),
1947             potentially_unused_imports: Vec::new(),
1948             struct_constructors: Default::default(),
1949             unused_macros: FxHashSet::default(),
1950             current_type_ascription: Vec::new(),
1951             injected_crate: None,
1952         }
1953     }
1954
1955     pub fn arenas() -> ResolverArenas<'a> {
1956         Default::default()
1957     }
1958
1959     /// Runs the function on each namespace.
1960     fn per_ns<F: FnMut(&mut Self, Namespace)>(&mut self, mut f: F) {
1961         f(self, TypeNS);
1962         f(self, ValueNS);
1963         f(self, MacroNS);
1964     }
1965
1966     fn macro_def(&self, mut ctxt: SyntaxContext) -> DefId {
1967         loop {
1968             match self.macro_defs.get(&ctxt.outer()) {
1969                 Some(&def_id) => return def_id,
1970                 None => ctxt.remove_mark(),
1971             };
1972         }
1973     }
1974
1975     /// Entry point to crate resolution.
1976     pub fn resolve_crate(&mut self, krate: &Crate) {
1977         ImportResolver { resolver: self }.finalize_imports();
1978         self.current_module = self.graph_root;
1979         self.finalize_current_module_macro_resolutions();
1980
1981         visit::walk_crate(self, krate);
1982
1983         check_unused::check_crate(self, krate);
1984         self.report_errors(krate);
1985         self.crate_loader.postprocess(krate);
1986     }
1987
1988     fn new_module(
1989         &self,
1990         parent: Module<'a>,
1991         kind: ModuleKind,
1992         normal_ancestor_id: DefId,
1993         expansion: Mark,
1994         span: Span,
1995     ) -> Module<'a> {
1996         let module = ModuleData::new(Some(parent), kind, normal_ancestor_id, expansion, span);
1997         self.arenas.alloc_module(module)
1998     }
1999
2000     fn record_use(&mut self, ident: Ident, ns: Namespace,
2001                   used_binding: &'a NameBinding<'a>, is_lexical_scope: bool) {
2002         if let Some((b2, kind)) = used_binding.ambiguity {
2003             self.ambiguity_errors.push(AmbiguityError {
2004                 kind, ident, b1: used_binding, b2,
2005                 misc1: AmbiguityErrorMisc::None,
2006                 misc2: AmbiguityErrorMisc::None,
2007             });
2008         }
2009         if let NameBindingKind::Import { directive, binding, ref used } = used_binding.kind {
2010             // Avoid marking `extern crate` items that refer to a name from extern prelude,
2011             // but not introduce it, as used if they are accessed from lexical scope.
2012             if is_lexical_scope {
2013                 if let Some(entry) = self.extern_prelude.get(&ident.modern()) {
2014                     if let Some(crate_item) = entry.extern_crate_item {
2015                         if ptr::eq(used_binding, crate_item) && !entry.introduced_by_item {
2016                             return;
2017                         }
2018                     }
2019                 }
2020             }
2021             used.set(true);
2022             directive.used.set(true);
2023             self.used_imports.insert((directive.id, ns));
2024             self.add_to_glob_map(&directive, ident);
2025             self.record_use(ident, ns, binding, false);
2026         }
2027     }
2028
2029     #[inline]
2030     fn add_to_glob_map(&mut self, directive: &ImportDirective<'_>, ident: Ident) {
2031         if directive.is_glob() {
2032             self.glob_map.entry(directive.id).or_default().insert(ident.name);
2033         }
2034     }
2035
2036     /// This resolves the identifier `ident` in the namespace `ns` in the current lexical scope.
2037     /// More specifically, we proceed up the hierarchy of scopes and return the binding for
2038     /// `ident` in the first scope that defines it (or None if no scopes define it).
2039     ///
2040     /// A block's items are above its local variables in the scope hierarchy, regardless of where
2041     /// the items are defined in the block. For example,
2042     /// ```rust
2043     /// fn f() {
2044     ///    g(); // Since there are no local variables in scope yet, this resolves to the item.
2045     ///    let g = || {};
2046     ///    fn g() {}
2047     ///    g(); // This resolves to the local variable `g` since it shadows the item.
2048     /// }
2049     /// ```
2050     ///
2051     /// Invariant: This must only be called during main resolution, not during
2052     /// import resolution.
2053     fn resolve_ident_in_lexical_scope(&mut self,
2054                                       mut ident: Ident,
2055                                       ns: Namespace,
2056                                       record_used_id: Option<NodeId>,
2057                                       path_span: Span)
2058                                       -> Option<LexicalScopeBinding<'a>> {
2059         assert!(ns == TypeNS  || ns == ValueNS);
2060         if ident.name == keywords::Invalid.name() {
2061             return Some(LexicalScopeBinding::Def(Def::Err));
2062         }
2063         ident.span = if ident.name == keywords::SelfUpper.name() {
2064             // FIXME(jseyfried) improve `Self` hygiene
2065             ident.span.with_ctxt(SyntaxContext::empty())
2066         } else if ns == TypeNS {
2067             ident.span.modern()
2068         } else {
2069             ident.span.modern_and_legacy()
2070         };
2071
2072         // Walk backwards up the ribs in scope.
2073         let record_used = record_used_id.is_some();
2074         let mut module = self.graph_root;
2075         for i in (0 .. self.ribs[ns].len()).rev() {
2076             debug!("walk rib\n{:?}", self.ribs[ns][i].bindings);
2077             if let Some(def) = self.ribs[ns][i].bindings.get(&ident).cloned() {
2078                 // The ident resolves to a type parameter or local variable.
2079                 return Some(LexicalScopeBinding::Def(
2080                     self.adjust_local_def(ns, i, def, record_used, path_span)
2081                 ));
2082             }
2083
2084             module = match self.ribs[ns][i].kind {
2085                 ModuleRibKind(module) => module,
2086                 MacroDefinition(def) if def == self.macro_def(ident.span.ctxt()) => {
2087                     // If an invocation of this macro created `ident`, give up on `ident`
2088                     // and switch to `ident`'s source from the macro definition.
2089                     ident.span.remove_mark();
2090                     continue
2091                 }
2092                 _ => continue,
2093             };
2094
2095             let item = self.resolve_ident_in_module_unadjusted(
2096                 ModuleOrUniformRoot::Module(module),
2097                 ident,
2098                 ns,
2099                 record_used,
2100                 path_span,
2101             );
2102             if let Ok(binding) = item {
2103                 // The ident resolves to an item.
2104                 return Some(LexicalScopeBinding::Item(binding));
2105             }
2106
2107             match module.kind {
2108                 ModuleKind::Block(..) => {}, // We can see through blocks
2109                 _ => break,
2110             }
2111         }
2112
2113         ident.span = ident.span.modern();
2114         let mut poisoned = None;
2115         loop {
2116             let opt_module = if let Some(node_id) = record_used_id {
2117                 self.hygienic_lexical_parent_with_compatibility_fallback(module, &mut ident.span,
2118                                                                          node_id, &mut poisoned)
2119             } else {
2120                 self.hygienic_lexical_parent(module, &mut ident.span)
2121             };
2122             module = unwrap_or!(opt_module, break);
2123             let orig_current_module = self.current_module;
2124             self.current_module = module; // Lexical resolutions can never be a privacy error.
2125             let result = self.resolve_ident_in_module_unadjusted(
2126                 ModuleOrUniformRoot::Module(module),
2127                 ident,
2128                 ns,
2129                 record_used,
2130                 path_span,
2131             );
2132             self.current_module = orig_current_module;
2133
2134             match result {
2135                 Ok(binding) => {
2136                     if let Some(node_id) = poisoned {
2137                         self.session.buffer_lint_with_diagnostic(
2138                             lint::builtin::PROC_MACRO_DERIVE_RESOLUTION_FALLBACK,
2139                             node_id, ident.span,
2140                             &format!("cannot find {} `{}` in this scope", ns.descr(), ident),
2141                             lint::builtin::BuiltinLintDiagnostics::
2142                                 ProcMacroDeriveResolutionFallback(ident.span),
2143                         );
2144                     }
2145                     return Some(LexicalScopeBinding::Item(binding))
2146                 }
2147                 Err(Determined) => continue,
2148                 Err(Undetermined) =>
2149                     span_bug!(ident.span, "undetermined resolution during main resolution pass"),
2150             }
2151         }
2152
2153         if !module.no_implicit_prelude {
2154             if ns == TypeNS {
2155                 if let Some(binding) = self.extern_prelude_get(ident, !record_used) {
2156                     return Some(LexicalScopeBinding::Item(binding));
2157                 }
2158             }
2159             if ns == TypeNS && is_known_tool(ident.name) {
2160                 let binding = (Def::ToolMod, ty::Visibility::Public,
2161                                DUMMY_SP, Mark::root()).to_name_binding(self.arenas);
2162                 return Some(LexicalScopeBinding::Item(binding));
2163             }
2164             if let Some(prelude) = self.prelude {
2165                 if let Ok(binding) = self.resolve_ident_in_module_unadjusted(
2166                     ModuleOrUniformRoot::Module(prelude),
2167                     ident,
2168                     ns,
2169                     false,
2170                     path_span,
2171                 ) {
2172                     return Some(LexicalScopeBinding::Item(binding));
2173                 }
2174             }
2175         }
2176
2177         None
2178     }
2179
2180     fn hygienic_lexical_parent(&mut self, module: Module<'a>, span: &mut Span)
2181                                -> Option<Module<'a>> {
2182         if !module.expansion.is_descendant_of(span.ctxt().outer()) {
2183             return Some(self.macro_def_scope(span.remove_mark()));
2184         }
2185
2186         if let ModuleKind::Block(..) = module.kind {
2187             return Some(module.parent.unwrap());
2188         }
2189
2190         None
2191     }
2192
2193     fn hygienic_lexical_parent_with_compatibility_fallback(&mut self, module: Module<'a>,
2194                                                            span: &mut Span, node_id: NodeId,
2195                                                            poisoned: &mut Option<NodeId>)
2196                                                            -> Option<Module<'a>> {
2197         if let module @ Some(..) = self.hygienic_lexical_parent(module, span) {
2198             return module;
2199         }
2200
2201         // We need to support the next case under a deprecation warning
2202         // ```
2203         // struct MyStruct;
2204         // ---- begin: this comes from a proc macro derive
2205         // mod implementation_details {
2206         //     // Note that `MyStruct` is not in scope here.
2207         //     impl SomeTrait for MyStruct { ... }
2208         // }
2209         // ---- end
2210         // ```
2211         // So we have to fall back to the module's parent during lexical resolution in this case.
2212         if let Some(parent) = module.parent {
2213             // Inner module is inside the macro, parent module is outside of the macro.
2214             if module.expansion != parent.expansion &&
2215             module.expansion.is_descendant_of(parent.expansion) {
2216                 // The macro is a proc macro derive
2217                 if module.expansion.looks_like_proc_macro_derive() {
2218                     if parent.expansion.is_descendant_of(span.ctxt().outer()) {
2219                         *poisoned = Some(node_id);
2220                         return module.parent;
2221                     }
2222                 }
2223             }
2224         }
2225
2226         None
2227     }
2228
2229     fn resolve_ident_in_module(
2230         &mut self,
2231         module: ModuleOrUniformRoot<'a>,
2232         ident: Ident,
2233         ns: Namespace,
2234         parent_scope: Option<&ParentScope<'a>>,
2235         record_used: bool,
2236         path_span: Span
2237     ) -> Result<&'a NameBinding<'a>, Determinacy> {
2238         self.resolve_ident_in_module_ext(
2239             module, ident, ns, parent_scope, record_used, path_span
2240         ).map_err(|(determinacy, _)| determinacy)
2241     }
2242
2243     fn resolve_ident_in_module_ext(
2244         &mut self,
2245         module: ModuleOrUniformRoot<'a>,
2246         mut ident: Ident,
2247         ns: Namespace,
2248         parent_scope: Option<&ParentScope<'a>>,
2249         record_used: bool,
2250         path_span: Span
2251     ) -> Result<&'a NameBinding<'a>, (Determinacy, Weak)> {
2252         let orig_current_module = self.current_module;
2253         match module {
2254             ModuleOrUniformRoot::Module(module) => {
2255                 ident.span = ident.span.modern();
2256                 if let Some(def) = ident.span.adjust(module.expansion) {
2257                     self.current_module = self.macro_def_scope(def);
2258                 }
2259             }
2260             ModuleOrUniformRoot::ExternPrelude => {
2261                 ident.span = ident.span.modern();
2262                 ident.span.adjust(Mark::root());
2263             }
2264             ModuleOrUniformRoot::CrateRootAndExternPrelude |
2265             ModuleOrUniformRoot::CurrentScope => {
2266                 // No adjustments
2267             }
2268         }
2269         let result = self.resolve_ident_in_module_unadjusted_ext(
2270             module, ident, ns, parent_scope, false, record_used, path_span,
2271         );
2272         self.current_module = orig_current_module;
2273         result
2274     }
2275
2276     fn resolve_crate_root(&mut self, ident: Ident) -> Module<'a> {
2277         let mut ctxt = ident.span.ctxt();
2278         let mark = if ident.name == keywords::DollarCrate.name() {
2279             // When resolving `$crate` from a `macro_rules!` invoked in a `macro`,
2280             // we don't want to pretend that the `macro_rules!` definition is in the `macro`
2281             // as described in `SyntaxContext::apply_mark`, so we ignore prepended modern marks.
2282             // FIXME: This is only a guess and it doesn't work correctly for `macro_rules!`
2283             // definitions actually produced by `macro` and `macro` definitions produced by
2284             // `macro_rules!`, but at least such configurations are not stable yet.
2285             ctxt = ctxt.modern_and_legacy();
2286             let mut iter = ctxt.marks().into_iter().rev().peekable();
2287             let mut result = None;
2288             // Find the last modern mark from the end if it exists.
2289             while let Some(&(mark, transparency)) = iter.peek() {
2290                 if transparency == Transparency::Opaque {
2291                     result = Some(mark);
2292                     iter.next();
2293                 } else {
2294                     break;
2295                 }
2296             }
2297             // Then find the last legacy mark from the end if it exists.
2298             for (mark, transparency) in iter {
2299                 if transparency == Transparency::SemiTransparent {
2300                     result = Some(mark);
2301                 } else {
2302                     break;
2303                 }
2304             }
2305             result
2306         } else {
2307             ctxt = ctxt.modern();
2308             ctxt.adjust(Mark::root())
2309         };
2310         let module = match mark {
2311             Some(def) => self.macro_def_scope(def),
2312             None => return self.graph_root,
2313         };
2314         self.get_module(DefId { index: CRATE_DEF_INDEX, ..module.normal_ancestor_id })
2315     }
2316
2317     fn resolve_self(&mut self, ctxt: &mut SyntaxContext, module: Module<'a>) -> Module<'a> {
2318         let mut module = self.get_module(module.normal_ancestor_id);
2319         while module.span.ctxt().modern() != *ctxt {
2320             let parent = module.parent.unwrap_or_else(|| self.macro_def_scope(ctxt.remove_mark()));
2321             module = self.get_module(parent.normal_ancestor_id);
2322         }
2323         module
2324     }
2325
2326     // AST resolution
2327     //
2328     // We maintain a list of value ribs and type ribs.
2329     //
2330     // Simultaneously, we keep track of the current position in the module
2331     // graph in the `current_module` pointer. When we go to resolve a name in
2332     // the value or type namespaces, we first look through all the ribs and
2333     // then query the module graph. When we resolve a name in the module
2334     // namespace, we can skip all the ribs (since nested modules are not
2335     // allowed within blocks in Rust) and jump straight to the current module
2336     // graph node.
2337     //
2338     // Named implementations are handled separately. When we find a method
2339     // call, we consult the module node to find all of the implementations in
2340     // scope. This information is lazily cached in the module node. We then
2341     // generate a fake "implementation scope" containing all the
2342     // implementations thus found, for compatibility with old resolve pass.
2343
2344     pub fn with_scope<F, T>(&mut self, id: NodeId, f: F) -> T
2345         where F: FnOnce(&mut Resolver<'_>) -> T
2346     {
2347         let id = self.definitions.local_def_id(id);
2348         let module = self.module_map.get(&id).cloned(); // clones a reference
2349         if let Some(module) = module {
2350             // Move down in the graph.
2351             let orig_module = replace(&mut self.current_module, module);
2352             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(module)));
2353             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(module)));
2354
2355             self.finalize_current_module_macro_resolutions();
2356             let ret = f(self);
2357
2358             self.current_module = orig_module;
2359             self.ribs[ValueNS].pop();
2360             self.ribs[TypeNS].pop();
2361             ret
2362         } else {
2363             f(self)
2364         }
2365     }
2366
2367     /// Searches the current set of local scopes for labels. Returns the first non-`None` label that
2368     /// is returned by the given predicate function
2369     ///
2370     /// Stops after meeting a closure.
2371     fn search_label<P, R>(&self, mut ident: Ident, pred: P) -> Option<R>
2372         where P: Fn(&Rib<'_>, Ident) -> Option<R>
2373     {
2374         for rib in self.label_ribs.iter().rev() {
2375             match rib.kind {
2376                 NormalRibKind => {}
2377                 // If an invocation of this macro created `ident`, give up on `ident`
2378                 // and switch to `ident`'s source from the macro definition.
2379                 MacroDefinition(def) => {
2380                     if def == self.macro_def(ident.span.ctxt()) {
2381                         ident.span.remove_mark();
2382                     }
2383                 }
2384                 _ => {
2385                     // Do not resolve labels across function boundary
2386                     return None;
2387                 }
2388             }
2389             let r = pred(rib, ident);
2390             if r.is_some() {
2391                 return r;
2392             }
2393         }
2394         None
2395     }
2396
2397     fn resolve_adt(&mut self, item: &Item, generics: &Generics) {
2398         debug!("resolve_adt");
2399         self.with_current_self_item(item, |this| {
2400             this.with_generic_param_rib(HasGenericParams(generics, ItemRibKind), |this| {
2401                 let item_def_id = this.definitions.local_def_id(item.id);
2402                 this.with_self_rib(Def::SelfTy(None, Some(item_def_id)), |this| {
2403                     visit::walk_item(this, item);
2404                 });
2405             });
2406         });
2407     }
2408
2409     fn future_proof_import(&mut self, use_tree: &ast::UseTree) {
2410         let segments = &use_tree.prefix.segments;
2411         if !segments.is_empty() {
2412             let ident = segments[0].ident;
2413             if ident.is_path_segment_keyword() || ident.span.rust_2015() {
2414                 return;
2415             }
2416
2417             let nss = match use_tree.kind {
2418                 ast::UseTreeKind::Simple(..) if segments.len() == 1 => &[TypeNS, ValueNS][..],
2419                 _ => &[TypeNS],
2420             };
2421             let report_error = |this: &Self, ns| {
2422                 let what = if ns == TypeNS { "type parameters" } else { "local variables" };
2423                 this.session.span_err(ident.span, &format!("imports cannot refer to {}", what));
2424             };
2425
2426             for &ns in nss {
2427                 match self.resolve_ident_in_lexical_scope(ident, ns, None, use_tree.prefix.span) {
2428                     Some(LexicalScopeBinding::Def(..)) => {
2429                         report_error(self, ns);
2430                     }
2431                     Some(LexicalScopeBinding::Item(binding)) => {
2432                         let orig_blacklisted_binding =
2433                             mem::replace(&mut self.blacklisted_binding, Some(binding));
2434                         if let Some(LexicalScopeBinding::Def(..)) =
2435                                 self.resolve_ident_in_lexical_scope(ident, ns, None,
2436                                                                     use_tree.prefix.span) {
2437                             report_error(self, ns);
2438                         }
2439                         self.blacklisted_binding = orig_blacklisted_binding;
2440                     }
2441                     None => {}
2442                 }
2443             }
2444         } else if let ast::UseTreeKind::Nested(use_trees) = &use_tree.kind {
2445             for (use_tree, _) in use_trees {
2446                 self.future_proof_import(use_tree);
2447             }
2448         }
2449     }
2450
2451     fn resolve_item(&mut self, item: &Item) {
2452         let name = item.ident.name;
2453         debug!("(resolving item) resolving {} ({:?})", name, item.node);
2454
2455         match item.node {
2456             ItemKind::Ty(_, ref generics) |
2457             ItemKind::Fn(_, _, ref generics, _) |
2458             ItemKind::Existential(_, ref generics) => {
2459                 self.with_generic_param_rib(HasGenericParams(generics, ItemRibKind),
2460                                              |this| visit::walk_item(this, item));
2461             }
2462
2463             ItemKind::Enum(_, ref generics) |
2464             ItemKind::Struct(_, ref generics) |
2465             ItemKind::Union(_, ref generics) => {
2466                 self.resolve_adt(item, generics);
2467             }
2468
2469             ItemKind::Impl(.., ref generics, ref opt_trait_ref, ref self_type, ref impl_items) =>
2470                 self.resolve_implementation(generics,
2471                                             opt_trait_ref,
2472                                             &self_type,
2473                                             item.id,
2474                                             impl_items),
2475
2476             ItemKind::Trait(.., ref generics, ref bounds, ref trait_items) => {
2477                 // Create a new rib for the trait-wide type parameters.
2478                 self.with_generic_param_rib(HasGenericParams(generics, ItemRibKind), |this| {
2479                     let local_def_id = this.definitions.local_def_id(item.id);
2480                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2481                         this.visit_generics(generics);
2482                         walk_list!(this, visit_param_bound, bounds);
2483
2484                         for trait_item in trait_items {
2485                             let generic_params = HasGenericParams(&trait_item.generics,
2486                                                                     TraitOrImplItemRibKind);
2487                             this.with_generic_param_rib(generic_params, |this| {
2488                                 match trait_item.node {
2489                                     TraitItemKind::Const(ref ty, ref default) => {
2490                                         this.visit_ty(ty);
2491
2492                                         // Only impose the restrictions of
2493                                         // ConstRibKind for an actual constant
2494                                         // expression in a provided default.
2495                                         if let Some(ref expr) = *default{
2496                                             this.with_constant_rib(|this| {
2497                                                 this.visit_expr(expr);
2498                                             });
2499                                         }
2500                                     }
2501                                     TraitItemKind::Method(_, _) => {
2502                                         visit::walk_trait_item(this, trait_item)
2503                                     }
2504                                     TraitItemKind::Type(..) => {
2505                                         visit::walk_trait_item(this, trait_item)
2506                                     }
2507                                     TraitItemKind::Macro(_) => {
2508                                         panic!("unexpanded macro in resolve!")
2509                                     }
2510                                 };
2511                             });
2512                         }
2513                     });
2514                 });
2515             }
2516
2517             ItemKind::TraitAlias(ref generics, ref bounds) => {
2518                 // Create a new rib for the trait-wide type parameters.
2519                 self.with_generic_param_rib(HasGenericParams(generics, ItemRibKind), |this| {
2520                     let local_def_id = this.definitions.local_def_id(item.id);
2521                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2522                         this.visit_generics(generics);
2523                         walk_list!(this, visit_param_bound, bounds);
2524                     });
2525                 });
2526             }
2527
2528             ItemKind::Mod(_) | ItemKind::ForeignMod(_) => {
2529                 self.with_scope(item.id, |this| {
2530                     visit::walk_item(this, item);
2531                 });
2532             }
2533
2534             ItemKind::Static(ref ty, _, ref expr) |
2535             ItemKind::Const(ref ty, ref expr) => {
2536                 debug!("resolve_item ItemKind::Const");
2537                 self.with_item_rib(|this| {
2538                     this.visit_ty(ty);
2539                     this.with_constant_rib(|this| {
2540                         this.visit_expr(expr);
2541                     });
2542                 });
2543             }
2544
2545             ItemKind::Use(ref use_tree) => {
2546                 self.future_proof_import(use_tree);
2547             }
2548
2549             ItemKind::ExternCrate(..) |
2550             ItemKind::MacroDef(..) | ItemKind::GlobalAsm(..) => {
2551                 // do nothing, these are just around to be encoded
2552             }
2553
2554             ItemKind::Mac(_) => panic!("unexpanded macro in resolve!"),
2555         }
2556     }
2557
2558     fn with_generic_param_rib<'b, F>(&'b mut self, generic_params: GenericParameters<'a, 'b>, f: F)
2559         where F: FnOnce(&mut Resolver<'_>)
2560     {
2561         debug!("with_generic_param_rib");
2562         match generic_params {
2563             HasGenericParams(generics, rib_kind) => {
2564                 let mut function_type_rib = Rib::new(rib_kind);
2565                 let mut function_value_rib = Rib::new(rib_kind);
2566                 let mut seen_bindings = FxHashMap::default();
2567                 for param in &generics.params {
2568                     match param.kind {
2569                         GenericParamKind::Lifetime { .. } => {}
2570                         GenericParamKind::Type { .. } => {
2571                             let ident = param.ident.modern();
2572                             debug!("with_generic_param_rib: {}", param.id);
2573
2574                             if seen_bindings.contains_key(&ident) {
2575                                 let span = seen_bindings.get(&ident).unwrap();
2576                                 let err = ResolutionError::NameAlreadyUsedInParameterList(
2577                                     ident.name,
2578                                     span,
2579                                 );
2580                                 resolve_error(self, param.ident.span, err);
2581                             }
2582                             seen_bindings.entry(ident).or_insert(param.ident.span);
2583
2584                         // Plain insert (no renaming).
2585                         let def = Def::TyParam(self.definitions.local_def_id(param.id));
2586                             function_type_rib.bindings.insert(ident, def);
2587                             self.record_def(param.id, PathResolution::new(def));
2588                         }
2589                         GenericParamKind::Const { .. } => {
2590                             let ident = param.ident.modern();
2591                             debug!("with_generic_param_rib: {}", param.id);
2592
2593                             if seen_bindings.contains_key(&ident) {
2594                                 let span = seen_bindings.get(&ident).unwrap();
2595                                 let err = ResolutionError::NameAlreadyUsedInParameterList(
2596                                     ident.name,
2597                                     span,
2598                                 );
2599                                 resolve_error(self, param.ident.span, err);
2600                             }
2601                             seen_bindings.entry(ident).or_insert(param.ident.span);
2602
2603                             let def = Def::ConstParam(self.definitions.local_def_id(param.id));
2604                             function_value_rib.bindings.insert(ident, def);
2605                             self.record_def(param.id, PathResolution::new(def));
2606                         }
2607                     }
2608                 }
2609                 self.ribs[ValueNS].push(function_value_rib);
2610                 self.ribs[TypeNS].push(function_type_rib);
2611             }
2612
2613             NoGenericParams => {
2614                 // Nothing to do.
2615             }
2616         }
2617
2618         f(self);
2619
2620         if let HasGenericParams(..) = generic_params {
2621             self.ribs[TypeNS].pop();
2622             self.ribs[ValueNS].pop();
2623         }
2624     }
2625
2626     fn with_label_rib<F>(&mut self, f: F)
2627         where F: FnOnce(&mut Resolver<'_>)
2628     {
2629         self.label_ribs.push(Rib::new(NormalRibKind));
2630         f(self);
2631         self.label_ribs.pop();
2632     }
2633
2634     fn with_item_rib<F>(&mut self, f: F)
2635         where F: FnOnce(&mut Resolver<'_>)
2636     {
2637         self.ribs[ValueNS].push(Rib::new(ItemRibKind));
2638         self.ribs[TypeNS].push(Rib::new(ItemRibKind));
2639         f(self);
2640         self.ribs[TypeNS].pop();
2641         self.ribs[ValueNS].pop();
2642     }
2643
2644     fn with_constant_rib<F>(&mut self, f: F)
2645         where F: FnOnce(&mut Resolver<'_>)
2646     {
2647         debug!("with_constant_rib");
2648         self.ribs[ValueNS].push(Rib::new(ConstantItemRibKind));
2649         self.label_ribs.push(Rib::new(ConstantItemRibKind));
2650         f(self);
2651         self.label_ribs.pop();
2652         self.ribs[ValueNS].pop();
2653     }
2654
2655     fn with_current_self_type<T, F>(&mut self, self_type: &Ty, f: F) -> T
2656         where F: FnOnce(&mut Resolver<'_>) -> T
2657     {
2658         // Handle nested impls (inside fn bodies)
2659         let previous_value = replace(&mut self.current_self_type, Some(self_type.clone()));
2660         let result = f(self);
2661         self.current_self_type = previous_value;
2662         result
2663     }
2664
2665     fn with_current_self_item<T, F>(&mut self, self_item: &Item, f: F) -> T
2666         where F: FnOnce(&mut Resolver<'_>) -> T
2667     {
2668         let previous_value = replace(&mut self.current_self_item, Some(self_item.id));
2669         let result = f(self);
2670         self.current_self_item = previous_value;
2671         result
2672     }
2673
2674     /// This is called to resolve a trait reference from an `impl` (i.e., `impl Trait for Foo`).
2675     fn with_optional_trait_ref<T, F>(&mut self, opt_trait_ref: Option<&TraitRef>, f: F) -> T
2676         where F: FnOnce(&mut Resolver<'_>, Option<DefId>) -> T
2677     {
2678         let mut new_val = None;
2679         let mut new_id = None;
2680         if let Some(trait_ref) = opt_trait_ref {
2681             let path: Vec<_> = Segment::from_path(&trait_ref.path);
2682             let def = self.smart_resolve_path_fragment(
2683                 trait_ref.ref_id,
2684                 None,
2685                 &path,
2686                 trait_ref.path.span,
2687                 PathSource::Trait(AliasPossibility::No),
2688                 CrateLint::SimplePath(trait_ref.ref_id),
2689             ).base_def();
2690             if def != Def::Err {
2691                 new_id = Some(def.def_id());
2692                 let span = trait_ref.path.span;
2693                 if let PathResult::Module(ModuleOrUniformRoot::Module(module)) =
2694                     self.resolve_path_without_parent_scope(
2695                         &path,
2696                         Some(TypeNS),
2697                         false,
2698                         span,
2699                         CrateLint::SimplePath(trait_ref.ref_id),
2700                     )
2701                 {
2702                     new_val = Some((module, trait_ref.clone()));
2703                 }
2704             }
2705         }
2706         let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
2707         let result = f(self, new_id);
2708         self.current_trait_ref = original_trait_ref;
2709         result
2710     }
2711
2712     fn with_self_rib<F>(&mut self, self_def: Def, f: F)
2713         where F: FnOnce(&mut Resolver<'_>)
2714     {
2715         let mut self_type_rib = Rib::new(NormalRibKind);
2716
2717         // plain insert (no renaming, types are not currently hygienic....)
2718         self_type_rib.bindings.insert(keywords::SelfUpper.ident(), self_def);
2719         self.ribs[TypeNS].push(self_type_rib);
2720         f(self);
2721         self.ribs[TypeNS].pop();
2722     }
2723
2724     fn with_self_struct_ctor_rib<F>(&mut self, impl_id: DefId, f: F)
2725         where F: FnOnce(&mut Resolver<'_>)
2726     {
2727         let self_def = Def::SelfCtor(impl_id);
2728         let mut self_type_rib = Rib::new(NormalRibKind);
2729         self_type_rib.bindings.insert(keywords::SelfUpper.ident(), self_def);
2730         self.ribs[ValueNS].push(self_type_rib);
2731         f(self);
2732         self.ribs[ValueNS].pop();
2733     }
2734
2735     fn resolve_implementation(&mut self,
2736                               generics: &Generics,
2737                               opt_trait_reference: &Option<TraitRef>,
2738                               self_type: &Ty,
2739                               item_id: NodeId,
2740                               impl_items: &[ImplItem]) {
2741         debug!("resolve_implementation");
2742         // If applicable, create a rib for the type parameters.
2743         self.with_generic_param_rib(HasGenericParams(generics, ItemRibKind), |this| {
2744             // Dummy self type for better errors if `Self` is used in the trait path.
2745             this.with_self_rib(Def::SelfTy(None, None), |this| {
2746                 // Resolve the trait reference, if necessary.
2747                 this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| {
2748                     let item_def_id = this.definitions.local_def_id(item_id);
2749                     this.with_self_rib(Def::SelfTy(trait_id, Some(item_def_id)), |this| {
2750                         if let Some(trait_ref) = opt_trait_reference.as_ref() {
2751                             // Resolve type arguments in the trait path.
2752                             visit::walk_trait_ref(this, trait_ref);
2753                         }
2754                         // Resolve the self type.
2755                         this.visit_ty(self_type);
2756                         // Resolve the generic parameters.
2757                         this.visit_generics(generics);
2758                         // Resolve the items within the impl.
2759                         this.with_current_self_type(self_type, |this| {
2760                             this.with_self_struct_ctor_rib(item_def_id, |this| {
2761                                 debug!("resolve_implementation with_self_struct_ctor_rib");
2762                                 for impl_item in impl_items {
2763                                     this.resolve_visibility(&impl_item.vis);
2764
2765                                     // We also need a new scope for the impl item type parameters.
2766                                     let generic_params = HasGenericParams(&impl_item.generics,
2767                                                                           TraitOrImplItemRibKind);
2768                                     this.with_generic_param_rib(generic_params, |this| {
2769                                         use self::ResolutionError::*;
2770                                         match impl_item.node {
2771                                             ImplItemKind::Const(..) => {
2772                                                 debug!(
2773                                                     "resolve_implementation ImplItemKind::Const",
2774                                                 );
2775                                                 // If this is a trait impl, ensure the const
2776                                                 // exists in trait
2777                                                 this.check_trait_item(
2778                                                     impl_item.ident,
2779                                                     ValueNS,
2780                                                     impl_item.span,
2781                                                     |n, s| ConstNotMemberOfTrait(n, s),
2782                                                 );
2783
2784                                                 this.with_constant_rib(|this| {
2785                                                     visit::walk_impl_item(this, impl_item)
2786                                                 });
2787                                             }
2788                                             ImplItemKind::Method(..) => {
2789                                                 // If this is a trait impl, ensure the method
2790                                                 // exists in trait
2791                                                 this.check_trait_item(impl_item.ident,
2792                                                                       ValueNS,
2793                                                                       impl_item.span,
2794                                                     |n, s| MethodNotMemberOfTrait(n, s));
2795
2796                                                 visit::walk_impl_item(this, impl_item);
2797                                             }
2798                                             ImplItemKind::Type(ref ty) => {
2799                                                 // If this is a trait impl, ensure the type
2800                                                 // exists in trait
2801                                                 this.check_trait_item(impl_item.ident,
2802                                                                       TypeNS,
2803                                                                       impl_item.span,
2804                                                     |n, s| TypeNotMemberOfTrait(n, s));
2805
2806                                                 this.visit_ty(ty);
2807                                             }
2808                                             ImplItemKind::Existential(ref bounds) => {
2809                                                 // If this is a trait impl, ensure the type
2810                                                 // exists in trait
2811                                                 this.check_trait_item(impl_item.ident,
2812                                                                       TypeNS,
2813                                                                       impl_item.span,
2814                                                     |n, s| TypeNotMemberOfTrait(n, s));
2815
2816                                                 for bound in bounds {
2817                                                     this.visit_param_bound(bound);
2818                                                 }
2819                                             }
2820                                             ImplItemKind::Macro(_) =>
2821                                                 panic!("unexpanded macro in resolve!"),
2822                                         }
2823                                     });
2824                                 }
2825                             });
2826                         });
2827                     });
2828                 });
2829             });
2830         });
2831     }
2832
2833     fn check_trait_item<F>(&mut self, ident: Ident, ns: Namespace, span: Span, err: F)
2834         where F: FnOnce(Name, &str) -> ResolutionError<'_>
2835     {
2836         // If there is a TraitRef in scope for an impl, then the method must be in the
2837         // trait.
2838         if let Some((module, _)) = self.current_trait_ref {
2839             if self.resolve_ident_in_module(
2840                 ModuleOrUniformRoot::Module(module),
2841                 ident,
2842                 ns,
2843                 None,
2844                 false,
2845                 span,
2846             ).is_err() {
2847                 let path = &self.current_trait_ref.as_ref().unwrap().1.path;
2848                 resolve_error(self, span, err(ident.name, &path_names_to_string(path)));
2849             }
2850         }
2851     }
2852
2853     fn resolve_local(&mut self, local: &Local) {
2854         // Resolve the type.
2855         walk_list!(self, visit_ty, &local.ty);
2856
2857         // Resolve the initializer.
2858         walk_list!(self, visit_expr, &local.init);
2859
2860         // Resolve the pattern.
2861         self.resolve_pattern(&local.pat, PatternSource::Let, &mut FxHashMap::default());
2862     }
2863
2864     // build a map from pattern identifiers to binding-info's.
2865     // this is done hygienically. This could arise for a macro
2866     // that expands into an or-pattern where one 'x' was from the
2867     // user and one 'x' came from the macro.
2868     fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
2869         let mut binding_map = FxHashMap::default();
2870
2871         pat.walk(&mut |pat| {
2872             if let PatKind::Ident(binding_mode, ident, ref sub_pat) = pat.node {
2873                 if sub_pat.is_some() || match self.def_map.get(&pat.id).map(|res| res.base_def()) {
2874                     Some(Def::Local(..)) => true,
2875                     _ => false,
2876                 } {
2877                     let binding_info = BindingInfo { span: ident.span, binding_mode: binding_mode };
2878                     binding_map.insert(ident, binding_info);
2879                 }
2880             }
2881             true
2882         });
2883
2884         binding_map
2885     }
2886
2887     // check that all of the arms in an or-pattern have exactly the
2888     // same set of bindings, with the same binding modes for each.
2889     fn check_consistent_bindings(&mut self, pats: &[P<Pat>]) {
2890         if pats.is_empty() {
2891             return;
2892         }
2893
2894         let mut missing_vars = FxHashMap::default();
2895         let mut inconsistent_vars = FxHashMap::default();
2896         for (i, p) in pats.iter().enumerate() {
2897             let map_i = self.binding_mode_map(&p);
2898
2899             for (j, q) in pats.iter().enumerate() {
2900                 if i == j {
2901                     continue;
2902                 }
2903
2904                 let map_j = self.binding_mode_map(&q);
2905                 for (&key, &binding_i) in &map_i {
2906                     if map_j.is_empty() {                   // Account for missing bindings when
2907                         let binding_error = missing_vars    // map_j has none.
2908                             .entry(key.name)
2909                             .or_insert(BindingError {
2910                                 name: key.name,
2911                                 origin: BTreeSet::new(),
2912                                 target: BTreeSet::new(),
2913                             });
2914                         binding_error.origin.insert(binding_i.span);
2915                         binding_error.target.insert(q.span);
2916                     }
2917                     for (&key_j, &binding_j) in &map_j {
2918                         match map_i.get(&key_j) {
2919                             None => {  // missing binding
2920                                 let binding_error = missing_vars
2921                                     .entry(key_j.name)
2922                                     .or_insert(BindingError {
2923                                         name: key_j.name,
2924                                         origin: BTreeSet::new(),
2925                                         target: BTreeSet::new(),
2926                                     });
2927                                 binding_error.origin.insert(binding_j.span);
2928                                 binding_error.target.insert(p.span);
2929                             }
2930                             Some(binding_i) => {  // check consistent binding
2931                                 if binding_i.binding_mode != binding_j.binding_mode {
2932                                     inconsistent_vars
2933                                         .entry(key.name)
2934                                         .or_insert((binding_j.span, binding_i.span));
2935                                 }
2936                             }
2937                         }
2938                     }
2939                 }
2940             }
2941         }
2942         let mut missing_vars = missing_vars.iter().collect::<Vec<_>>();
2943         missing_vars.sort();
2944         for (_, v) in missing_vars {
2945             resolve_error(self,
2946                           *v.origin.iter().next().unwrap(),
2947                           ResolutionError::VariableNotBoundInPattern(v));
2948         }
2949         let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
2950         inconsistent_vars.sort();
2951         for (name, v) in inconsistent_vars {
2952             resolve_error(self, v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
2953         }
2954     }
2955
2956     fn resolve_arm(&mut self, arm: &Arm) {
2957         self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2958
2959         let mut bindings_list = FxHashMap::default();
2960         for pattern in &arm.pats {
2961             self.resolve_pattern(&pattern, PatternSource::Match, &mut bindings_list);
2962         }
2963
2964         // This has to happen *after* we determine which pat_idents are variants.
2965         self.check_consistent_bindings(&arm.pats);
2966
2967         if let Some(ast::Guard::If(ref expr)) = arm.guard {
2968             self.visit_expr(expr)
2969         }
2970         self.visit_expr(&arm.body);
2971
2972         self.ribs[ValueNS].pop();
2973     }
2974
2975     fn resolve_block(&mut self, block: &Block) {
2976         debug!("(resolving block) entering block");
2977         // Move down in the graph, if there's an anonymous module rooted here.
2978         let orig_module = self.current_module;
2979         let anonymous_module = self.block_map.get(&block.id).cloned(); // clones a reference
2980
2981         let mut num_macro_definition_ribs = 0;
2982         if let Some(anonymous_module) = anonymous_module {
2983             debug!("(resolving block) found anonymous module, moving down");
2984             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2985             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2986             self.current_module = anonymous_module;
2987             self.finalize_current_module_macro_resolutions();
2988         } else {
2989             self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2990         }
2991
2992         // Descend into the block.
2993         for stmt in &block.stmts {
2994             if let ast::StmtKind::Item(ref item) = stmt.node {
2995                 if let ast::ItemKind::MacroDef(..) = item.node {
2996                     num_macro_definition_ribs += 1;
2997                     let def = self.definitions.local_def_id(item.id);
2998                     self.ribs[ValueNS].push(Rib::new(MacroDefinition(def)));
2999                     self.label_ribs.push(Rib::new(MacroDefinition(def)));
3000                 }
3001             }
3002
3003             self.visit_stmt(stmt);
3004         }
3005
3006         // Move back up.
3007         self.current_module = orig_module;
3008         for _ in 0 .. num_macro_definition_ribs {
3009             self.ribs[ValueNS].pop();
3010             self.label_ribs.pop();
3011         }
3012         self.ribs[ValueNS].pop();
3013         if anonymous_module.is_some() {
3014             self.ribs[TypeNS].pop();
3015         }
3016         debug!("(resolving block) leaving block");
3017     }
3018
3019     fn fresh_binding(&mut self,
3020                      ident: Ident,
3021                      pat_id: NodeId,
3022                      outer_pat_id: NodeId,
3023                      pat_src: PatternSource,
3024                      bindings: &mut FxHashMap<Ident, NodeId>)
3025                      -> PathResolution {
3026         // Add the binding to the local ribs, if it
3027         // doesn't already exist in the bindings map. (We
3028         // must not add it if it's in the bindings map
3029         // because that breaks the assumptions later
3030         // passes make about or-patterns.)
3031         let ident = ident.modern_and_legacy();
3032         let mut def = Def::Local(pat_id);
3033         match bindings.get(&ident).cloned() {
3034             Some(id) if id == outer_pat_id => {
3035                 // `Variant(a, a)`, error
3036                 resolve_error(
3037                     self,
3038                     ident.span,
3039                     ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(
3040                         &ident.as_str())
3041                 );
3042             }
3043             Some(..) if pat_src == PatternSource::FnParam => {
3044                 // `fn f(a: u8, a: u8)`, error
3045                 resolve_error(
3046                     self,
3047                     ident.span,
3048                     ResolutionError::IdentifierBoundMoreThanOnceInParameterList(
3049                         &ident.as_str())
3050                 );
3051             }
3052             Some(..) if pat_src == PatternSource::Match ||
3053                         pat_src == PatternSource::IfLet ||
3054                         pat_src == PatternSource::WhileLet => {
3055                 // `Variant1(a) | Variant2(a)`, ok
3056                 // Reuse definition from the first `a`.
3057                 def = self.ribs[ValueNS].last_mut().unwrap().bindings[&ident];
3058             }
3059             Some(..) => {
3060                 span_bug!(ident.span, "two bindings with the same name from \
3061                                        unexpected pattern source {:?}", pat_src);
3062             }
3063             None => {
3064                 // A completely fresh binding, add to the lists if it's valid.
3065                 if ident.name != keywords::Invalid.name() {
3066                     bindings.insert(ident, outer_pat_id);
3067                     self.ribs[ValueNS].last_mut().unwrap().bindings.insert(ident, def);
3068                 }
3069             }
3070         }
3071
3072         PathResolution::new(def)
3073     }
3074
3075     fn resolve_pattern(&mut self,
3076                        pat: &Pat,
3077                        pat_src: PatternSource,
3078                        // Maps idents to the node ID for the
3079                        // outermost pattern that binds them.
3080                        bindings: &mut FxHashMap<Ident, NodeId>) {
3081         // Visit all direct subpatterns of this pattern.
3082         let outer_pat_id = pat.id;
3083         pat.walk(&mut |pat| {
3084             debug!("resolve_pattern pat={:?} node={:?}", pat, pat.node);
3085             match pat.node {
3086                 PatKind::Ident(bmode, ident, ref opt_pat) => {
3087                     // First try to resolve the identifier as some existing
3088                     // entity, then fall back to a fresh binding.
3089                     let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS,
3090                                                                       None, pat.span)
3091                                       .and_then(LexicalScopeBinding::item);
3092                     let resolution = binding.map(NameBinding::def).and_then(|def| {
3093                         let is_syntactic_ambiguity = opt_pat.is_none() &&
3094                             bmode == BindingMode::ByValue(Mutability::Immutable);
3095                         match def {
3096                             Def::Ctor(_, _, CtorKind::Const) |
3097                             Def::Const(..) if is_syntactic_ambiguity => {
3098                                 // Disambiguate in favor of a unit struct/variant
3099                                 // or constant pattern.
3100                                 self.record_use(ident, ValueNS, binding.unwrap(), false);
3101                                 Some(PathResolution::new(def))
3102                             }
3103                             Def::Ctor(..) | Def::Const(..) | Def::Static(..) => {
3104                                 // This is unambiguously a fresh binding, either syntactically
3105                                 // (e.g., `IDENT @ PAT` or `ref IDENT`) or because `IDENT` resolves
3106                                 // to something unusable as a pattern (e.g., constructor function),
3107                                 // but we still conservatively report an error, see
3108                                 // issues/33118#issuecomment-233962221 for one reason why.
3109                                 resolve_error(
3110                                     self,
3111                                     ident.span,
3112                                     ResolutionError::BindingShadowsSomethingUnacceptable(
3113                                         pat_src.descr(), ident.name, binding.unwrap())
3114                                 );
3115                                 None
3116                             }
3117                             Def::Fn(..) | Def::Err => {
3118                                 // These entities are explicitly allowed
3119                                 // to be shadowed by fresh bindings.
3120                                 None
3121                             }
3122                             def => {
3123                                 span_bug!(ident.span, "unexpected definition for an \
3124                                                        identifier in pattern: {:?}", def);
3125                             }
3126                         }
3127                     }).unwrap_or_else(|| {
3128                         self.fresh_binding(ident, pat.id, outer_pat_id, pat_src, bindings)
3129                     });
3130
3131                     self.record_def(pat.id, resolution);
3132                 }
3133
3134                 PatKind::TupleStruct(ref path, ..) => {
3135                     self.smart_resolve_path(pat.id, None, path, PathSource::TupleStruct);
3136                 }
3137
3138                 PatKind::Path(ref qself, ref path) => {
3139                     self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
3140                 }
3141
3142                 PatKind::Struct(ref path, ..) => {
3143                     self.smart_resolve_path(pat.id, None, path, PathSource::Struct);
3144                 }
3145
3146                 _ => {}
3147             }
3148             true
3149         });
3150
3151         visit::walk_pat(self, pat);
3152     }
3153
3154     // High-level and context dependent path resolution routine.
3155     // Resolves the path and records the resolution into definition map.
3156     // If resolution fails tries several techniques to find likely
3157     // resolution candidates, suggest imports or other help, and report
3158     // errors in user friendly way.
3159     fn smart_resolve_path(&mut self,
3160                           id: NodeId,
3161                           qself: Option<&QSelf>,
3162                           path: &Path,
3163                           source: PathSource<'_>)
3164                           -> PathResolution {
3165         self.smart_resolve_path_with_crate_lint(id, qself, path, source, CrateLint::SimplePath(id))
3166     }
3167
3168     /// A variant of `smart_resolve_path` where you also specify extra
3169     /// information about where the path came from; this extra info is
3170     /// sometimes needed for the lint that recommends rewriting
3171     /// absolute paths to `crate`, so that it knows how to frame the
3172     /// suggestion. If you are just resolving a path like `foo::bar`
3173     /// that appears in an arbitrary location, then you just want
3174     /// `CrateLint::SimplePath`, which is what `smart_resolve_path`
3175     /// already provides.
3176     fn smart_resolve_path_with_crate_lint(
3177         &mut self,
3178         id: NodeId,
3179         qself: Option<&QSelf>,
3180         path: &Path,
3181         source: PathSource<'_>,
3182         crate_lint: CrateLint
3183     ) -> PathResolution {
3184         self.smart_resolve_path_fragment(
3185             id,
3186             qself,
3187             &Segment::from_path(path),
3188             path.span,
3189             source,
3190             crate_lint,
3191         )
3192     }
3193
3194     fn smart_resolve_path_fragment(&mut self,
3195                                    id: NodeId,
3196                                    qself: Option<&QSelf>,
3197                                    path: &[Segment],
3198                                    span: Span,
3199                                    source: PathSource<'_>,
3200                                    crate_lint: CrateLint)
3201                                    -> PathResolution {
3202         let ns = source.namespace();
3203         let is_expected = &|def| source.is_expected(def);
3204
3205         let report_errors = |this: &mut Self, def: Option<Def>| {
3206             let (err, candidates) = this.smart_resolve_report_errors(path, span, source, def);
3207             let def_id = this.current_module.normal_ancestor_id;
3208             let node_id = this.definitions.as_local_node_id(def_id).unwrap();
3209             let better = def.is_some();
3210             this.use_injections.push(UseError { err, candidates, node_id, better });
3211             err_path_resolution()
3212         };
3213
3214         let resolution = match self.resolve_qpath_anywhere(
3215             id,
3216             qself,
3217             path,
3218             ns,
3219             span,
3220             source.defer_to_typeck(),
3221             source.global_by_default(),
3222             crate_lint,
3223         ) {
3224             Some(resolution) if resolution.unresolved_segments() == 0 => {
3225                 if is_expected(resolution.base_def()) || resolution.base_def() == Def::Err {
3226                     resolution
3227                 } else {
3228                     // Add a temporary hack to smooth the transition to new struct ctor
3229                     // visibility rules. See #38932 for more details.
3230                     let mut res = None;
3231                     if let Def::Struct(def_id) = resolution.base_def() {
3232                         if let Some((ctor_def, ctor_vis))
3233                                 = self.struct_constructors.get(&def_id).cloned() {
3234                             if is_expected(ctor_def) && self.is_accessible(ctor_vis) {
3235                                 let lint = lint::builtin::LEGACY_CONSTRUCTOR_VISIBILITY;
3236                                 self.session.buffer_lint(lint, id, span,
3237                                     "private struct constructors are not usable through \
3238                                      re-exports in outer modules",
3239                                 );
3240                                 res = Some(PathResolution::new(ctor_def));
3241                             }
3242                         }
3243                     }
3244
3245                     res.unwrap_or_else(|| report_errors(self, Some(resolution.base_def())))
3246                 }
3247             }
3248             Some(resolution) if source.defer_to_typeck() => {
3249                 // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
3250                 // or `<T>::A::B`. If `B` should be resolved in value namespace then
3251                 // it needs to be added to the trait map.
3252                 if ns == ValueNS {
3253                     let item_name = path.last().unwrap().ident;
3254                     let traits = self.get_traits_containing_item(item_name, ns);
3255                     self.trait_map.insert(id, traits);
3256                 }
3257                 resolution
3258             }
3259             _ => report_errors(self, None)
3260         };
3261
3262         if let PathSource::TraitItem(..) = source {} else {
3263             // Avoid recording definition of `A::B` in `<T as A>::B::C`.
3264             self.record_def(id, resolution);
3265         }
3266         resolution
3267     }
3268
3269     /// Only used in a specific case of type ascription suggestions
3270     #[doc(hidden)]
3271     fn get_colon_suggestion_span(&self, start: Span) -> Span {
3272         let cm = self.session.source_map();
3273         start.to(cm.next_point(start))
3274     }
3275
3276     fn type_ascription_suggestion(
3277         &self,
3278         err: &mut DiagnosticBuilder<'_>,
3279         base_span: Span,
3280     ) {
3281         debug!("type_ascription_suggetion {:?}", base_span);
3282         let cm = self.session.source_map();
3283         let base_snippet = cm.span_to_snippet(base_span);
3284         debug!("self.current_type_ascription {:?}", self.current_type_ascription);
3285         if let Some(sp) = self.current_type_ascription.last() {
3286             let mut sp = *sp;
3287             loop {
3288                 // Try to find the `:`; bail on first non-':' / non-whitespace.
3289                 sp = cm.next_point(sp);
3290                 if let Ok(snippet) = cm.span_to_snippet(sp.to(cm.next_point(sp))) {
3291                     let line_sp = cm.lookup_char_pos(sp.hi()).line;
3292                     let line_base_sp = cm.lookup_char_pos(base_span.lo()).line;
3293                     if snippet == ":" {
3294                         let mut show_label = true;
3295                         if line_sp != line_base_sp {
3296                             err.span_suggestion_short(
3297                                 sp,
3298                                 "did you mean to use `;` here instead?",
3299                                 ";".to_string(),
3300                                 Applicability::MaybeIncorrect,
3301                             );
3302                         } else {
3303                             let colon_sp = self.get_colon_suggestion_span(sp);
3304                             let after_colon_sp = self.get_colon_suggestion_span(
3305                                 colon_sp.shrink_to_hi(),
3306                             );
3307                             if !cm.span_to_snippet(after_colon_sp).map(|s| s == " ")
3308                                 .unwrap_or(false)
3309                             {
3310                                 err.span_suggestion(
3311                                     colon_sp,
3312                                     "maybe you meant to write a path separator here",
3313                                     "::".to_string(),
3314                                     Applicability::MaybeIncorrect,
3315                                 );
3316                                 show_label = false;
3317                             }
3318                             if let Ok(base_snippet) = base_snippet {
3319                                 let mut sp = after_colon_sp;
3320                                 for _ in 0..100 {
3321                                     // Try to find an assignment
3322                                     sp = cm.next_point(sp);
3323                                     let snippet = cm.span_to_snippet(sp.to(cm.next_point(sp)));
3324                                     match snippet {
3325                                         Ok(ref x) if x.as_str() == "=" => {
3326                                             err.span_suggestion(
3327                                                 base_span,
3328                                                 "maybe you meant to write an assignment here",
3329                                                 format!("let {}", base_snippet),
3330                                                 Applicability::MaybeIncorrect,
3331                                             );
3332                                             show_label = false;
3333                                             break;
3334                                         }
3335                                         Ok(ref x) if x.as_str() == "\n" => break,
3336                                         Err(_) => break,
3337                                         Ok(_) => {}
3338                                     }
3339                                 }
3340                             }
3341                         }
3342                         if show_label {
3343                             err.span_label(base_span,
3344                                            "expecting a type here because of type ascription");
3345                         }
3346                         break;
3347                     } else if !snippet.trim().is_empty() {
3348                         debug!("tried to find type ascription `:` token, couldn't find it");
3349                         break;
3350                     }
3351                 } else {
3352                     break;
3353                 }
3354             }
3355         }
3356     }
3357
3358     fn self_type_is_available(&mut self, span: Span) -> bool {
3359         let binding = self.resolve_ident_in_lexical_scope(keywords::SelfUpper.ident(),
3360                                                           TypeNS, None, span);
3361         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3362     }
3363
3364     fn self_value_is_available(&mut self, self_span: Span, path_span: Span) -> bool {
3365         let ident = Ident::new(keywords::SelfLower.name(), self_span);
3366         let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, None, path_span);
3367         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3368     }
3369
3370     // Resolve in alternative namespaces if resolution in the primary namespace fails.
3371     fn resolve_qpath_anywhere(&mut self,
3372                               id: NodeId,
3373                               qself: Option<&QSelf>,
3374                               path: &[Segment],
3375                               primary_ns: Namespace,
3376                               span: Span,
3377                               defer_to_typeck: bool,
3378                               global_by_default: bool,
3379                               crate_lint: CrateLint)
3380                               -> Option<PathResolution> {
3381         let mut fin_res = None;
3382         // FIXME: can't resolve paths in macro namespace yet, macros are
3383         // processed by the little special hack below.
3384         for (i, ns) in [primary_ns, TypeNS, ValueNS, /*MacroNS*/].iter().cloned().enumerate() {
3385             if i == 0 || ns != primary_ns {
3386                 match self.resolve_qpath(id, qself, path, ns, span, global_by_default, crate_lint) {
3387                     // If defer_to_typeck, then resolution > no resolution,
3388                     // otherwise full resolution > partial resolution > no resolution.
3389                     Some(res) if res.unresolved_segments() == 0 || defer_to_typeck =>
3390                         return Some(res),
3391                     res => if fin_res.is_none() { fin_res = res },
3392                 };
3393             }
3394         }
3395         if primary_ns != MacroNS &&
3396            (self.macro_names.contains(&path[0].ident.modern()) ||
3397             self.builtin_macros.get(&path[0].ident.name).cloned()
3398                                .and_then(NameBinding::macro_kind) == Some(MacroKind::Bang) ||
3399             self.macro_use_prelude.get(&path[0].ident.name).cloned()
3400                                   .and_then(NameBinding::macro_kind) == Some(MacroKind::Bang)) {
3401             // Return some dummy definition, it's enough for error reporting.
3402             return Some(
3403                 PathResolution::new(Def::Macro(DefId::local(CRATE_DEF_INDEX), MacroKind::Bang))
3404             );
3405         }
3406         fin_res
3407     }
3408
3409     /// Handles paths that may refer to associated items.
3410     fn resolve_qpath(&mut self,
3411                      id: NodeId,
3412                      qself: Option<&QSelf>,
3413                      path: &[Segment],
3414                      ns: Namespace,
3415                      span: Span,
3416                      global_by_default: bool,
3417                      crate_lint: CrateLint)
3418                      -> Option<PathResolution> {
3419         debug!(
3420             "resolve_qpath(id={:?}, qself={:?}, path={:?}, \
3421              ns={:?}, span={:?}, global_by_default={:?})",
3422             id,
3423             qself,
3424             path,
3425             ns,
3426             span,
3427             global_by_default,
3428         );
3429
3430         if let Some(qself) = qself {
3431             if qself.position == 0 {
3432                 // This is a case like `<T>::B`, where there is no
3433                 // trait to resolve.  In that case, we leave the `B`
3434                 // segment to be resolved by type-check.
3435                 return Some(PathResolution::with_unresolved_segments(
3436                     Def::Mod(DefId::local(CRATE_DEF_INDEX)), path.len()
3437                 ));
3438             }
3439
3440             // Make sure `A::B` in `<T as A::B>::C` is a trait item.
3441             //
3442             // Currently, `path` names the full item (`A::B::C`, in
3443             // our example).  so we extract the prefix of that that is
3444             // the trait (the slice upto and including
3445             // `qself.position`). And then we recursively resolve that,
3446             // but with `qself` set to `None`.
3447             //
3448             // However, setting `qself` to none (but not changing the
3449             // span) loses the information about where this path
3450             // *actually* appears, so for the purposes of the crate
3451             // lint we pass along information that this is the trait
3452             // name from a fully qualified path, and this also
3453             // contains the full span (the `CrateLint::QPathTrait`).
3454             let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
3455             let res = self.smart_resolve_path_fragment(
3456                 id,
3457                 None,
3458                 &path[..=qself.position],
3459                 span,
3460                 PathSource::TraitItem(ns),
3461                 CrateLint::QPathTrait {
3462                     qpath_id: id,
3463                     qpath_span: qself.path_span,
3464                 },
3465             );
3466
3467             // The remaining segments (the `C` in our example) will
3468             // have to be resolved by type-check, since that requires doing
3469             // trait resolution.
3470             return Some(PathResolution::with_unresolved_segments(
3471                 res.base_def(), res.unresolved_segments() + path.len() - qself.position - 1
3472             ));
3473         }
3474
3475         let result = match self.resolve_path_without_parent_scope(
3476             &path,
3477             Some(ns),
3478             true,
3479             span,
3480             crate_lint,
3481         ) {
3482             PathResult::NonModule(path_res) => path_res,
3483             PathResult::Module(ModuleOrUniformRoot::Module(module)) if !module.is_normal() => {
3484                 PathResolution::new(module.def().unwrap())
3485             }
3486             // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
3487             // don't report an error right away, but try to fallback to a primitive type.
3488             // So, we are still able to successfully resolve something like
3489             //
3490             // use std::u8; // bring module u8 in scope
3491             // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
3492             //     u8::max_value() // OK, resolves to associated function <u8>::max_value,
3493             //                     // not to non-existent std::u8::max_value
3494             // }
3495             //
3496             // Such behavior is required for backward compatibility.
3497             // The same fallback is used when `a` resolves to nothing.
3498             PathResult::Module(ModuleOrUniformRoot::Module(_)) |
3499             PathResult::Failed { .. }
3500                     if (ns == TypeNS || path.len() > 1) &&
3501                        self.primitive_type_table.primitive_types
3502                            .contains_key(&path[0].ident.name) => {
3503                 let prim = self.primitive_type_table.primitive_types[&path[0].ident.name];
3504                 PathResolution::with_unresolved_segments(Def::PrimTy(prim), path.len() - 1)
3505             }
3506             PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3507                 PathResolution::new(module.def().unwrap()),
3508             PathResult::Failed { is_error_from_last_segment: false, span, label, suggestion } => {
3509                 resolve_error(self, span, ResolutionError::FailedToResolve { label, suggestion });
3510                 err_path_resolution()
3511             }
3512             PathResult::Module(..) | PathResult::Failed { .. } => return None,
3513             PathResult::Indeterminate => bug!("indetermined path result in resolve_qpath"),
3514         };
3515
3516         if path.len() > 1 && !global_by_default && result.base_def() != Def::Err &&
3517            path[0].ident.name != keywords::PathRoot.name() &&
3518            path[0].ident.name != keywords::DollarCrate.name() {
3519             let unqualified_result = {
3520                 match self.resolve_path_without_parent_scope(
3521                     &[*path.last().unwrap()],
3522                     Some(ns),
3523                     false,
3524                     span,
3525                     CrateLint::No,
3526                 ) {
3527                     PathResult::NonModule(path_res) => path_res.base_def(),
3528                     PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3529                         module.def().unwrap(),
3530                     _ => return Some(result),
3531                 }
3532             };
3533             if result.base_def() == unqualified_result {
3534                 let lint = lint::builtin::UNUSED_QUALIFICATIONS;
3535                 self.session.buffer_lint(lint, id, span, "unnecessary qualification")
3536             }
3537         }
3538
3539         Some(result)
3540     }
3541
3542     fn resolve_path_without_parent_scope(
3543         &mut self,
3544         path: &[Segment],
3545         opt_ns: Option<Namespace>, // `None` indicates a module path in import
3546         record_used: bool,
3547         path_span: Span,
3548         crate_lint: CrateLint,
3549     ) -> PathResult<'a> {
3550         // Macro and import paths must have full parent scope available during resolution,
3551         // other paths will do okay with parent module alone.
3552         assert!(opt_ns != None && opt_ns != Some(MacroNS));
3553         let parent_scope = ParentScope { module: self.current_module, ..self.dummy_parent_scope() };
3554         self.resolve_path(path, opt_ns, &parent_scope, record_used, path_span, crate_lint)
3555     }
3556
3557     fn resolve_path(
3558         &mut self,
3559         path: &[Segment],
3560         opt_ns: Option<Namespace>, // `None` indicates a module path in import
3561         parent_scope: &ParentScope<'a>,
3562         record_used: bool,
3563         path_span: Span,
3564         crate_lint: CrateLint,
3565     ) -> PathResult<'a> {
3566         let mut module = None;
3567         let mut allow_super = true;
3568         let mut second_binding = None;
3569         self.current_module = parent_scope.module;
3570
3571         debug!(
3572             "resolve_path(path={:?}, opt_ns={:?}, record_used={:?}, \
3573              path_span={:?}, crate_lint={:?})",
3574             path,
3575             opt_ns,
3576             record_used,
3577             path_span,
3578             crate_lint,
3579         );
3580
3581         for (i, &Segment { ident, id }) in path.iter().enumerate() {
3582             debug!("resolve_path ident {} {:?} {:?}", i, ident, id);
3583             let record_segment_def = |this: &mut Self, def| {
3584                 if record_used {
3585                     if let Some(id) = id {
3586                         if !this.def_map.contains_key(&id) {
3587                             assert!(id != ast::DUMMY_NODE_ID, "Trying to resolve dummy id");
3588                             this.record_def(id, PathResolution::new(def));
3589                         }
3590                     }
3591                 }
3592             };
3593
3594             let is_last = i == path.len() - 1;
3595             let ns = if is_last { opt_ns.unwrap_or(TypeNS) } else { TypeNS };
3596             let name = ident.name;
3597
3598             allow_super &= ns == TypeNS &&
3599                 (name == keywords::SelfLower.name() ||
3600                  name == keywords::Super.name());
3601
3602             if ns == TypeNS {
3603                 if allow_super && name == keywords::Super.name() {
3604                     let mut ctxt = ident.span.ctxt().modern();
3605                     let self_module = match i {
3606                         0 => Some(self.resolve_self(&mut ctxt, self.current_module)),
3607                         _ => match module {
3608                             Some(ModuleOrUniformRoot::Module(module)) => Some(module),
3609                             _ => None,
3610                         },
3611                     };
3612                     if let Some(self_module) = self_module {
3613                         if let Some(parent) = self_module.parent {
3614                             module = Some(ModuleOrUniformRoot::Module(
3615                                 self.resolve_self(&mut ctxt, parent)));
3616                             continue;
3617                         }
3618                     }
3619                     let msg = "there are too many initial `super`s.".to_string();
3620                     return PathResult::Failed {
3621                         span: ident.span,
3622                         label: msg,
3623                         suggestion: None,
3624                         is_error_from_last_segment: false,
3625                     };
3626                 }
3627                 if i == 0 {
3628                     if name == keywords::SelfLower.name() {
3629                         let mut ctxt = ident.span.ctxt().modern();
3630                         module = Some(ModuleOrUniformRoot::Module(
3631                             self.resolve_self(&mut ctxt, self.current_module)));
3632                         continue;
3633                     }
3634                     if name == keywords::PathRoot.name() && ident.span.rust_2018() {
3635                         module = Some(ModuleOrUniformRoot::ExternPrelude);
3636                         continue;
3637                     }
3638                     if name == keywords::PathRoot.name() &&
3639                        ident.span.rust_2015() && self.session.rust_2018() {
3640                         // `::a::b` from 2015 macro on 2018 global edition
3641                         module = Some(ModuleOrUniformRoot::CrateRootAndExternPrelude);
3642                         continue;
3643                     }
3644                     if name == keywords::PathRoot.name() ||
3645                        name == keywords::Crate.name() ||
3646                        name == keywords::DollarCrate.name() {
3647                         // `::a::b`, `crate::a::b` or `$crate::a::b`
3648                         module = Some(ModuleOrUniformRoot::Module(
3649                             self.resolve_crate_root(ident)));
3650                         continue;
3651                     }
3652                 }
3653             }
3654
3655             // Report special messages for path segment keywords in wrong positions.
3656             if ident.is_path_segment_keyword() && i != 0 {
3657                 let name_str = if name == keywords::PathRoot.name() {
3658                     "crate root".to_string()
3659                 } else {
3660                     format!("`{}`", name)
3661                 };
3662                 let label = if i == 1 && path[0].ident.name == keywords::PathRoot.name() {
3663                     format!("global paths cannot start with {}", name_str)
3664                 } else {
3665                     format!("{} in paths can only be used in start position", name_str)
3666                 };
3667                 return PathResult::Failed {
3668                     span: ident.span,
3669                     label,
3670                     suggestion: None,
3671                     is_error_from_last_segment: false,
3672                 };
3673             }
3674
3675             let binding = if let Some(module) = module {
3676                 self.resolve_ident_in_module(module, ident, ns, None, record_used, path_span)
3677             } else if opt_ns.is_none() || opt_ns == Some(MacroNS) {
3678                 assert!(ns == TypeNS);
3679                 let scopes = if opt_ns.is_none() { ScopeSet::Import(ns) } else { ScopeSet::Module };
3680                 self.early_resolve_ident_in_lexical_scope(ident, scopes, parent_scope, record_used,
3681                                                           record_used, path_span)
3682             } else {
3683                 let record_used_id =
3684                     if record_used { crate_lint.node_id().or(Some(CRATE_NODE_ID)) } else { None };
3685                 match self.resolve_ident_in_lexical_scope(ident, ns, record_used_id, path_span) {
3686                     // we found a locally-imported or available item/module
3687                     Some(LexicalScopeBinding::Item(binding)) => Ok(binding),
3688                     // we found a local variable or type param
3689                     Some(LexicalScopeBinding::Def(def))
3690                             if opt_ns == Some(TypeNS) || opt_ns == Some(ValueNS) => {
3691                         record_segment_def(self, def);
3692                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3693                             def, path.len() - 1
3694                         ));
3695                     }
3696                     _ => Err(Determinacy::determined(record_used)),
3697                 }
3698             };
3699
3700             match binding {
3701                 Ok(binding) => {
3702                     if i == 1 {
3703                         second_binding = Some(binding);
3704                     }
3705                     let def = binding.def();
3706                     let maybe_assoc = opt_ns != Some(MacroNS) && PathSource::Type.is_expected(def);
3707                     if let Some(next_module) = binding.module() {
3708                         module = Some(ModuleOrUniformRoot::Module(next_module));
3709                         record_segment_def(self, def);
3710                     } else if def == Def::ToolMod && i + 1 != path.len() {
3711                         if binding.is_import() {
3712                             self.session.struct_span_err(
3713                                 ident.span, "cannot use a tool module through an import"
3714                             ).span_note(
3715                                 binding.span, "the tool module imported here"
3716                             ).emit();
3717                         }
3718                         let def = Def::NonMacroAttr(NonMacroAttrKind::Tool);
3719                         return PathResult::NonModule(PathResolution::new(def));
3720                     } else if def == Def::Err {
3721                         return PathResult::NonModule(err_path_resolution());
3722                     } else if opt_ns.is_some() && (is_last || maybe_assoc) {
3723                         self.lint_if_path_starts_with_module(
3724                             crate_lint,
3725                             path,
3726                             path_span,
3727                             second_binding,
3728                         );
3729                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3730                             def, path.len() - i - 1
3731                         ));
3732                     } else {
3733                         return PathResult::Failed {
3734                             span: ident.span,
3735                             label: format!("not a module `{}`", ident),
3736                             suggestion: None,
3737                             is_error_from_last_segment: is_last,
3738                         };
3739                     }
3740                 }
3741                 Err(Undetermined) => return PathResult::Indeterminate,
3742                 Err(Determined) => {
3743                     if let Some(ModuleOrUniformRoot::Module(module)) = module {
3744                         if opt_ns.is_some() && !module.is_normal() {
3745                             return PathResult::NonModule(PathResolution::with_unresolved_segments(
3746                                 module.def().unwrap(), path.len() - i
3747                             ));
3748                         }
3749                     }
3750                     let module_def = match module {
3751                         Some(ModuleOrUniformRoot::Module(module)) => module.def(),
3752                         _ => None,
3753                     };
3754                     let (label, suggestion) = if module_def == self.graph_root.def() {
3755                         let is_mod = |def| match def { Def::Mod(..) => true, _ => false };
3756                         let mut candidates =
3757                             self.lookup_import_candidates(ident, TypeNS, is_mod);
3758                         candidates.sort_by_cached_key(|c| {
3759                             (c.path.segments.len(), c.path.to_string())
3760                         });
3761                         if let Some(candidate) = candidates.get(0) {
3762                             (
3763                                 String::from("unresolved import"),
3764                                 Some((
3765                                     ident.span,
3766                                     String::from("a similar path exists"),
3767                                     candidate.path.to_string(),
3768                                     Applicability::MaybeIncorrect,
3769                                 )),
3770                             )
3771                         } else if !ident.is_reserved() {
3772                             (format!("maybe a missing `extern crate {};`?", ident), None)
3773                         } else {
3774                             // the parser will already have complained about the keyword being used
3775                             return PathResult::NonModule(err_path_resolution());
3776                         }
3777                     } else if i == 0 {
3778                         (format!("use of undeclared type or module `{}`", ident), None)
3779                     } else {
3780                         (format!("could not find `{}` in `{}`", ident, path[i - 1].ident), None)
3781                     };
3782                     return PathResult::Failed {
3783                         span: ident.span,
3784                         label,
3785                         suggestion,
3786                         is_error_from_last_segment: is_last,
3787                     };
3788                 }
3789             }
3790         }
3791
3792         self.lint_if_path_starts_with_module(crate_lint, path, path_span, second_binding);
3793
3794         PathResult::Module(match module {
3795             Some(module) => module,
3796             None if path.is_empty() => ModuleOrUniformRoot::CurrentScope,
3797             _ => span_bug!(path_span, "resolve_path: non-empty path `{:?}` has no module", path),
3798         })
3799     }
3800
3801     fn lint_if_path_starts_with_module(
3802         &self,
3803         crate_lint: CrateLint,
3804         path: &[Segment],
3805         path_span: Span,
3806         second_binding: Option<&NameBinding<'_>>,
3807     ) {
3808         let (diag_id, diag_span) = match crate_lint {
3809             CrateLint::No => return,
3810             CrateLint::SimplePath(id) => (id, path_span),
3811             CrateLint::UsePath { root_id, root_span } => (root_id, root_span),
3812             CrateLint::QPathTrait { qpath_id, qpath_span } => (qpath_id, qpath_span),
3813         };
3814
3815         let first_name = match path.get(0) {
3816             // In the 2018 edition this lint is a hard error, so nothing to do
3817             Some(seg) if seg.ident.span.rust_2015() && self.session.rust_2015() => seg.ident.name,
3818             _ => return,
3819         };
3820
3821         // We're only interested in `use` paths which should start with
3822         // `{{root}}` currently.
3823         if first_name != keywords::PathRoot.name() {
3824             return
3825         }
3826
3827         match path.get(1) {
3828             // If this import looks like `crate::...` it's already good
3829             Some(Segment { ident, .. }) if ident.name == keywords::Crate.name() => return,
3830             // Otherwise go below to see if it's an extern crate
3831             Some(_) => {}
3832             // If the path has length one (and it's `PathRoot` most likely)
3833             // then we don't know whether we're gonna be importing a crate or an
3834             // item in our crate. Defer this lint to elsewhere
3835             None => return,
3836         }
3837
3838         // If the first element of our path was actually resolved to an
3839         // `ExternCrate` (also used for `crate::...`) then no need to issue a
3840         // warning, this looks all good!
3841         if let Some(binding) = second_binding {
3842             if let NameBindingKind::Import { directive: d, .. } = binding.kind {
3843                 // Careful: we still want to rewrite paths from
3844                 // renamed extern crates.
3845                 if let ImportDirectiveSubclass::ExternCrate { source: None, .. } = d.subclass {
3846                     return
3847                 }
3848             }
3849         }
3850
3851         let diag = lint::builtin::BuiltinLintDiagnostics
3852             ::AbsPathWithModule(diag_span);
3853         self.session.buffer_lint_with_diagnostic(
3854             lint::builtin::ABSOLUTE_PATHS_NOT_STARTING_WITH_CRATE,
3855             diag_id, diag_span,
3856             "absolute paths must start with `self`, `super`, \
3857             `crate`, or an external crate name in the 2018 edition",
3858             diag);
3859     }
3860
3861     // Resolve a local definition, potentially adjusting for closures.
3862     fn adjust_local_def(&mut self,
3863                         ns: Namespace,
3864                         rib_index: usize,
3865                         mut def: Def,
3866                         record_used: bool,
3867                         span: Span) -> Def {
3868         debug!("adjust_local_def");
3869         let ribs = &self.ribs[ns][rib_index + 1..];
3870
3871         // An invalid forward use of a type parameter from a previous default.
3872         if let ForwardTyParamBanRibKind = self.ribs[ns][rib_index].kind {
3873             if record_used {
3874                 resolve_error(self, span, ResolutionError::ForwardDeclaredTyParam);
3875             }
3876             assert_eq!(def, Def::Err);
3877             return Def::Err;
3878         }
3879
3880         match def {
3881             Def::Upvar(..) => {
3882                 span_bug!(span, "unexpected {:?} in bindings", def)
3883             }
3884             Def::Local(node_id) => {
3885                 use ResolutionError::*;
3886                 let mut res_err = None;
3887
3888                 for rib in ribs {
3889                     match rib.kind {
3890                         NormalRibKind | ModuleRibKind(..) | MacroDefinition(..) |
3891                         ForwardTyParamBanRibKind => {
3892                             // Nothing to do. Continue.
3893                         }
3894                         ClosureRibKind(function_id) => {
3895                             let prev_def = def;
3896
3897                             let seen = self.freevars_seen
3898                                            .entry(function_id)
3899                                            .or_default();
3900                             if let Some(&index) = seen.get(&node_id) {
3901                                 def = Def::Upvar(node_id, index, function_id);
3902                                 continue;
3903                             }
3904                             let vec = self.freevars
3905                                           .entry(function_id)
3906                                           .or_default();
3907                             let depth = vec.len();
3908                             def = Def::Upvar(node_id, depth, function_id);
3909
3910                             if record_used {
3911                                 vec.push(Freevar {
3912                                     def: prev_def,
3913                                     span,
3914                                 });
3915                                 seen.insert(node_id, depth);
3916                             }
3917                         }
3918                         ItemRibKind | FnItemRibKind | TraitOrImplItemRibKind => {
3919                             // This was an attempt to access an upvar inside a
3920                             // named function item. This is not allowed, so we
3921                             // report an error.
3922                             if record_used {
3923                                 // We don't immediately trigger a resolve error, because
3924                                 // we want certain other resolution errors (namely those
3925                                 // emitted for `ConstantItemRibKind` below) to take
3926                                 // precedence.
3927                                 res_err = Some(CannotCaptureDynamicEnvironmentInFnItem);
3928                             }
3929                         }
3930                         ConstantItemRibKind => {
3931                             // Still doesn't deal with upvars
3932                             if record_used {
3933                                 resolve_error(self, span, AttemptToUseNonConstantValueInConstant);
3934                             }
3935                             return Def::Err;
3936                         }
3937                     }
3938                 }
3939                 if let Some(res_err) = res_err {
3940                      resolve_error(self, span, res_err);
3941                      return Def::Err;
3942                 }
3943             }
3944             Def::TyParam(..) | Def::SelfTy(..) => {
3945                 for rib in ribs {
3946                     match rib.kind {
3947                         NormalRibKind | TraitOrImplItemRibKind | ClosureRibKind(..) |
3948                         ModuleRibKind(..) | MacroDefinition(..) | ForwardTyParamBanRibKind |
3949                         ConstantItemRibKind => {
3950                             // Nothing to do. Continue.
3951                         }
3952                         ItemRibKind | FnItemRibKind => {
3953                             // This was an attempt to use a type parameter outside its scope.
3954                             if record_used {
3955                                 resolve_error(
3956                                     self,
3957                                     span,
3958                                     ResolutionError::GenericParamsFromOuterFunction(def),
3959                                 );
3960                             }
3961                             return Def::Err;
3962                         }
3963                     }
3964                 }
3965             }
3966             Def::ConstParam(..) => {
3967                 let mut ribs = ribs.iter().peekable();
3968                 if let Some(Rib { kind: FnItemRibKind, .. }) = ribs.peek() {
3969                     // When declaring const parameters inside function signatures, the first rib
3970                     // is always a `FnItemRibKind`. In this case, we can skip it, to avoid it
3971                     // (spuriously) conflicting with the const param.
3972                     ribs.next();
3973                 }
3974                 for rib in ribs {
3975                     if let ItemRibKind | FnItemRibKind = rib.kind {
3976                         // This was an attempt to use a const parameter outside its scope.
3977                         if record_used {
3978                             resolve_error(
3979                                 self,
3980                                 span,
3981                                 ResolutionError::GenericParamsFromOuterFunction(def),
3982                             );
3983                         }
3984                         return Def::Err;
3985                     }
3986                 }
3987             }
3988             _ => {}
3989         }
3990         def
3991     }
3992
3993     fn lookup_assoc_candidate<FilterFn>(&mut self,
3994                                         ident: Ident,
3995                                         ns: Namespace,
3996                                         filter_fn: FilterFn)
3997                                         -> Option<AssocSuggestion>
3998         where FilterFn: Fn(Def) -> bool
3999     {
4000         fn extract_node_id(t: &Ty) -> Option<NodeId> {
4001             match t.node {
4002                 TyKind::Path(None, _) => Some(t.id),
4003                 TyKind::Rptr(_, ref mut_ty) => extract_node_id(&mut_ty.ty),
4004                 // This doesn't handle the remaining `Ty` variants as they are not
4005                 // that commonly the self_type, it might be interesting to provide
4006                 // support for those in future.
4007                 _ => None,
4008             }
4009         }
4010
4011         // Fields are generally expected in the same contexts as locals.
4012         if filter_fn(Def::Local(ast::DUMMY_NODE_ID)) {
4013             if let Some(node_id) = self.current_self_type.as_ref().and_then(extract_node_id) {
4014                 // Look for a field with the same name in the current self_type.
4015                 if let Some(resolution) = self.def_map.get(&node_id) {
4016                     match resolution.base_def() {
4017                         Def::Struct(did) | Def::Union(did)
4018                                 if resolution.unresolved_segments() == 0 => {
4019                             if let Some(field_names) = self.field_names.get(&did) {
4020                                 if field_names.iter().any(|&field_name| ident.name == field_name) {
4021                                     return Some(AssocSuggestion::Field);
4022                                 }
4023                             }
4024                         }
4025                         _ => {}
4026                     }
4027                 }
4028             }
4029         }
4030
4031         // Look for associated items in the current trait.
4032         if let Some((module, _)) = self.current_trait_ref {
4033             if let Ok(binding) = self.resolve_ident_in_module(
4034                     ModuleOrUniformRoot::Module(module),
4035                     ident,
4036                     ns,
4037                     None,
4038                     false,
4039                     module.span,
4040                 ) {
4041                 let def = binding.def();
4042                 if filter_fn(def) {
4043                     return Some(if self.has_self.contains(&def.def_id()) {
4044                         AssocSuggestion::MethodWithSelf
4045                     } else {
4046                         AssocSuggestion::AssocItem
4047                     });
4048                 }
4049             }
4050         }
4051
4052         None
4053     }
4054
4055     fn lookup_typo_candidate<FilterFn>(
4056         &mut self,
4057         path: &[Segment],
4058         ns: Namespace,
4059         filter_fn: FilterFn,
4060         span: Span,
4061     ) -> Option<TypoSuggestion>
4062     where
4063         FilterFn: Fn(Def) -> bool,
4064     {
4065         let add_module_candidates = |module: Module<'_>, names: &mut Vec<TypoSuggestion>| {
4066             for (&(ident, _), resolution) in module.resolutions.borrow().iter() {
4067                 if let Some(binding) = resolution.borrow().binding {
4068                     if filter_fn(binding.def()) {
4069                         names.push(TypoSuggestion {
4070                             candidate: ident.name,
4071                             article: binding.def().article(),
4072                             kind: binding.def().kind_name(),
4073                         });
4074                     }
4075                 }
4076             }
4077         };
4078
4079         let mut names = Vec::new();
4080         if path.len() == 1 {
4081             // Search in lexical scope.
4082             // Walk backwards up the ribs in scope and collect candidates.
4083             for rib in self.ribs[ns].iter().rev() {
4084                 // Locals and type parameters
4085                 for (ident, def) in &rib.bindings {
4086                     if filter_fn(*def) {
4087                         names.push(TypoSuggestion {
4088                             candidate: ident.name,
4089                             article: def.article(),
4090                             kind: def.kind_name(),
4091                         });
4092                     }
4093                 }
4094                 // Items in scope
4095                 if let ModuleRibKind(module) = rib.kind {
4096                     // Items from this module
4097                     add_module_candidates(module, &mut names);
4098
4099                     if let ModuleKind::Block(..) = module.kind {
4100                         // We can see through blocks
4101                     } else {
4102                         // Items from the prelude
4103                         if !module.no_implicit_prelude {
4104                             names.extend(self.extern_prelude.clone().iter().flat_map(|(ident, _)| {
4105                                 self.crate_loader
4106                                     .maybe_process_path_extern(ident.name, ident.span)
4107                                     .and_then(|crate_id| {
4108                                         let crate_mod = Def::Mod(DefId {
4109                                             krate: crate_id,
4110                                             index: CRATE_DEF_INDEX,
4111                                         });
4112
4113                                         if filter_fn(crate_mod) {
4114                                             Some(TypoSuggestion {
4115                                                 candidate: ident.name,
4116                                                 article: "a",
4117                                                 kind: "crate",
4118                                             })
4119                                         } else {
4120                                             None
4121                                         }
4122                                     })
4123                             }));
4124
4125                             if let Some(prelude) = self.prelude {
4126                                 add_module_candidates(prelude, &mut names);
4127                             }
4128                         }
4129                         break;
4130                     }
4131                 }
4132             }
4133             // Add primitive types to the mix
4134             if filter_fn(Def::PrimTy(Bool)) {
4135                 names.extend(
4136                     self.primitive_type_table.primitive_types.iter().map(|(name, _)| {
4137                         TypoSuggestion {
4138                             candidate: *name,
4139                             article: "a",
4140                             kind: "primitive type",
4141                         }
4142                     })
4143                 )
4144             }
4145         } else {
4146             // Search in module.
4147             let mod_path = &path[..path.len() - 1];
4148             if let PathResult::Module(module) = self.resolve_path_without_parent_scope(
4149                 mod_path, Some(TypeNS), false, span, CrateLint::No
4150             ) {
4151                 if let ModuleOrUniformRoot::Module(module) = module {
4152                     add_module_candidates(module, &mut names);
4153                 }
4154             }
4155         }
4156
4157         let name = path[path.len() - 1].ident.name;
4158         // Make sure error reporting is deterministic.
4159         names.sort_by_cached_key(|suggestion| suggestion.candidate.as_str());
4160
4161         match find_best_match_for_name(
4162             names.iter().map(|suggestion| &suggestion.candidate),
4163             &name.as_str(),
4164             None,
4165         ) {
4166             Some(found) if found != name => names
4167                 .into_iter()
4168                 .find(|suggestion| suggestion.candidate == found),
4169             _ => None,
4170         }
4171     }
4172
4173     fn with_resolved_label<F>(&mut self, label: Option<Label>, id: NodeId, f: F)
4174         where F: FnOnce(&mut Resolver<'_>)
4175     {
4176         if let Some(label) = label {
4177             self.unused_labels.insert(id, label.ident.span);
4178             let def = Def::Label(id);
4179             self.with_label_rib(|this| {
4180                 let ident = label.ident.modern_and_legacy();
4181                 this.label_ribs.last_mut().unwrap().bindings.insert(ident, def);
4182                 f(this);
4183             });
4184         } else {
4185             f(self);
4186         }
4187     }
4188
4189     fn resolve_labeled_block(&mut self, label: Option<Label>, id: NodeId, block: &Block) {
4190         self.with_resolved_label(label, id, |this| this.visit_block(block));
4191     }
4192
4193     fn resolve_expr(&mut self, expr: &Expr, parent: Option<&Expr>) {
4194         // First, record candidate traits for this expression if it could
4195         // result in the invocation of a method call.
4196
4197         self.record_candidate_traits_for_expr_if_necessary(expr);
4198
4199         // Next, resolve the node.
4200         match expr.node {
4201             ExprKind::Path(ref qself, ref path) => {
4202                 self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
4203                 visit::walk_expr(self, expr);
4204             }
4205
4206             ExprKind::Struct(ref path, ..) => {
4207                 self.smart_resolve_path(expr.id, None, path, PathSource::Struct);
4208                 visit::walk_expr(self, expr);
4209             }
4210
4211             ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
4212                 let def = self.search_label(label.ident, |rib, ident| {
4213                     rib.bindings.get(&ident.modern_and_legacy()).cloned()
4214                 });
4215                 match def {
4216                     None => {
4217                         // Search again for close matches...
4218                         // Picks the first label that is "close enough", which is not necessarily
4219                         // the closest match
4220                         let close_match = self.search_label(label.ident, |rib, ident| {
4221                             let names = rib.bindings.iter().map(|(id, _)| &id.name);
4222                             find_best_match_for_name(names, &*ident.as_str(), None)
4223                         });
4224                         self.record_def(expr.id, err_path_resolution());
4225                         resolve_error(self,
4226                                       label.ident.span,
4227                                       ResolutionError::UndeclaredLabel(&label.ident.as_str(),
4228                                                                        close_match));
4229                     }
4230                     Some(Def::Label(id)) => {
4231                         // Since this def is a label, it is never read.
4232                         self.record_def(expr.id, PathResolution::new(Def::Label(id)));
4233                         self.unused_labels.remove(&id);
4234                     }
4235                     Some(_) => {
4236                         span_bug!(expr.span, "label wasn't mapped to a label def!");
4237                     }
4238                 }
4239
4240                 // visit `break` argument if any
4241                 visit::walk_expr(self, expr);
4242             }
4243
4244             ExprKind::IfLet(ref pats, ref subexpression, ref if_block, ref optional_else) => {
4245                 self.visit_expr(subexpression);
4246
4247                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
4248                 let mut bindings_list = FxHashMap::default();
4249                 for pat in pats {
4250                     self.resolve_pattern(pat, PatternSource::IfLet, &mut bindings_list);
4251                 }
4252                 // This has to happen *after* we determine which pat_idents are variants
4253                 self.check_consistent_bindings(pats);
4254                 self.visit_block(if_block);
4255                 self.ribs[ValueNS].pop();
4256
4257                 optional_else.as_ref().map(|expr| self.visit_expr(expr));
4258             }
4259
4260             ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),
4261
4262             ExprKind::While(ref subexpression, ref block, label) => {
4263                 self.with_resolved_label(label, expr.id, |this| {
4264                     this.visit_expr(subexpression);
4265                     this.visit_block(block);
4266                 });
4267             }
4268
4269             ExprKind::WhileLet(ref pats, ref subexpression, ref block, label) => {
4270                 self.with_resolved_label(label, expr.id, |this| {
4271                     this.visit_expr(subexpression);
4272                     this.ribs[ValueNS].push(Rib::new(NormalRibKind));
4273                     let mut bindings_list = FxHashMap::default();
4274                     for pat in pats {
4275                         this.resolve_pattern(pat, PatternSource::WhileLet, &mut bindings_list);
4276                     }
4277                     // This has to happen *after* we determine which pat_idents are variants.
4278                     this.check_consistent_bindings(pats);
4279                     this.visit_block(block);
4280                     this.ribs[ValueNS].pop();
4281                 });
4282             }
4283
4284             ExprKind::ForLoop(ref pattern, ref subexpression, ref block, label) => {
4285                 self.visit_expr(subexpression);
4286                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
4287                 self.resolve_pattern(pattern, PatternSource::For, &mut FxHashMap::default());
4288
4289                 self.resolve_labeled_block(label, expr.id, block);
4290
4291                 self.ribs[ValueNS].pop();
4292             }
4293
4294             ExprKind::Block(ref block, label) => self.resolve_labeled_block(label, block.id, block),
4295
4296             // Equivalent to `visit::walk_expr` + passing some context to children.
4297             ExprKind::Field(ref subexpression, _) => {
4298                 self.resolve_expr(subexpression, Some(expr));
4299             }
4300             ExprKind::MethodCall(ref segment, ref arguments) => {
4301                 let mut arguments = arguments.iter();
4302                 self.resolve_expr(arguments.next().unwrap(), Some(expr));
4303                 for argument in arguments {
4304                     self.resolve_expr(argument, None);
4305                 }
4306                 self.visit_path_segment(expr.span, segment);
4307             }
4308
4309             ExprKind::Call(ref callee, ref arguments) => {
4310                 self.resolve_expr(callee, Some(expr));
4311                 for argument in arguments {
4312                     self.resolve_expr(argument, None);
4313                 }
4314             }
4315             ExprKind::Type(ref type_expr, _) => {
4316                 self.current_type_ascription.push(type_expr.span);
4317                 visit::walk_expr(self, expr);
4318                 self.current_type_ascription.pop();
4319             }
4320             // Resolve the body of async exprs inside the async closure to which they desugar
4321             ExprKind::Async(_, async_closure_id, ref block) => {
4322                 let rib_kind = ClosureRibKind(async_closure_id);
4323                 self.ribs[ValueNS].push(Rib::new(rib_kind));
4324                 self.label_ribs.push(Rib::new(rib_kind));
4325                 self.visit_block(&block);
4326                 self.label_ribs.pop();
4327                 self.ribs[ValueNS].pop();
4328             }
4329             // `async |x| ...` gets desugared to `|x| future_from_generator(|| ...)`, so we need to
4330             // resolve the arguments within the proper scopes so that usages of them inside the
4331             // closure are detected as upvars rather than normal closure arg usages.
4332             ExprKind::Closure(
4333                 _, IsAsync::Async { closure_id: inner_closure_id, .. }, _,
4334                 ref fn_decl, ref body, _span,
4335             ) => {
4336                 let rib_kind = ClosureRibKind(expr.id);
4337                 self.ribs[ValueNS].push(Rib::new(rib_kind));
4338                 self.label_ribs.push(Rib::new(rib_kind));
4339                 // Resolve arguments:
4340                 let mut bindings_list = FxHashMap::default();
4341                 for argument in &fn_decl.inputs {
4342                     self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
4343                     self.visit_ty(&argument.ty);
4344                 }
4345                 // No need to resolve return type-- the outer closure return type is
4346                 // FunctionRetTy::Default
4347
4348                 // Now resolve the inner closure
4349                 {
4350                     let rib_kind = ClosureRibKind(inner_closure_id);
4351                     self.ribs[ValueNS].push(Rib::new(rib_kind));
4352                     self.label_ribs.push(Rib::new(rib_kind));
4353                     // No need to resolve arguments: the inner closure has none.
4354                     // Resolve the return type:
4355                     visit::walk_fn_ret_ty(self, &fn_decl.output);
4356                     // Resolve the body
4357                     self.visit_expr(body);
4358                     self.label_ribs.pop();
4359                     self.ribs[ValueNS].pop();
4360                 }
4361                 self.label_ribs.pop();
4362                 self.ribs[ValueNS].pop();
4363             }
4364             _ => {
4365                 visit::walk_expr(self, expr);
4366             }
4367         }
4368     }
4369
4370     fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &Expr) {
4371         match expr.node {
4372             ExprKind::Field(_, ident) => {
4373                 // FIXME(#6890): Even though you can't treat a method like a
4374                 // field, we need to add any trait methods we find that match
4375                 // the field name so that we can do some nice error reporting
4376                 // later on in typeck.
4377                 let traits = self.get_traits_containing_item(ident, ValueNS);
4378                 self.trait_map.insert(expr.id, traits);
4379             }
4380             ExprKind::MethodCall(ref segment, ..) => {
4381                 debug!("(recording candidate traits for expr) recording traits for {}",
4382                        expr.id);
4383                 let traits = self.get_traits_containing_item(segment.ident, ValueNS);
4384                 self.trait_map.insert(expr.id, traits);
4385             }
4386             _ => {
4387                 // Nothing to do.
4388             }
4389         }
4390     }
4391
4392     fn get_traits_containing_item(&mut self, mut ident: Ident, ns: Namespace)
4393                                   -> Vec<TraitCandidate> {
4394         debug!("(getting traits containing item) looking for '{}'", ident.name);
4395
4396         let mut found_traits = Vec::new();
4397         // Look for the current trait.
4398         if let Some((module, _)) = self.current_trait_ref {
4399             if self.resolve_ident_in_module(
4400                 ModuleOrUniformRoot::Module(module),
4401                 ident,
4402                 ns,
4403                 None,
4404                 false,
4405                 module.span,
4406             ).is_ok() {
4407                 let def_id = module.def_id().unwrap();
4408                 found_traits.push(TraitCandidate { def_id: def_id, import_id: None });
4409             }
4410         }
4411
4412         ident.span = ident.span.modern();
4413         let mut search_module = self.current_module;
4414         loop {
4415             self.get_traits_in_module_containing_item(ident, ns, search_module, &mut found_traits);
4416             search_module = unwrap_or!(
4417                 self.hygienic_lexical_parent(search_module, &mut ident.span), break
4418             );
4419         }
4420
4421         if let Some(prelude) = self.prelude {
4422             if !search_module.no_implicit_prelude {
4423                 self.get_traits_in_module_containing_item(ident, ns, prelude, &mut found_traits);
4424             }
4425         }
4426
4427         found_traits
4428     }
4429
4430     fn get_traits_in_module_containing_item(&mut self,
4431                                             ident: Ident,
4432                                             ns: Namespace,
4433                                             module: Module<'a>,
4434                                             found_traits: &mut Vec<TraitCandidate>) {
4435         assert!(ns == TypeNS || ns == ValueNS);
4436         let mut traits = module.traits.borrow_mut();
4437         if traits.is_none() {
4438             let mut collected_traits = Vec::new();
4439             module.for_each_child(|name, ns, binding| {
4440                 if ns != TypeNS { return }
4441                 if let Def::Trait(_) = binding.def() {
4442                     collected_traits.push((name, binding));
4443                 }
4444             });
4445             *traits = Some(collected_traits.into_boxed_slice());
4446         }
4447
4448         for &(trait_name, binding) in traits.as_ref().unwrap().iter() {
4449             let module = binding.module().unwrap();
4450             let mut ident = ident;
4451             if ident.span.glob_adjust(module.expansion, binding.span.ctxt().modern()).is_none() {
4452                 continue
4453             }
4454             if self.resolve_ident_in_module_unadjusted(
4455                 ModuleOrUniformRoot::Module(module),
4456                 ident,
4457                 ns,
4458                 false,
4459                 module.span,
4460             ).is_ok() {
4461                 let import_id = match binding.kind {
4462                     NameBindingKind::Import { directive, .. } => {
4463                         self.maybe_unused_trait_imports.insert(directive.id);
4464                         self.add_to_glob_map(&directive, trait_name);
4465                         Some(directive.id)
4466                     }
4467                     _ => None,
4468                 };
4469                 let trait_def_id = module.def_id().unwrap();
4470                 found_traits.push(TraitCandidate { def_id: trait_def_id, import_id: import_id });
4471             }
4472         }
4473     }
4474
4475     fn lookup_import_candidates_from_module<FilterFn>(&mut self,
4476                                           lookup_ident: Ident,
4477                                           namespace: Namespace,
4478                                           start_module: &'a ModuleData<'a>,
4479                                           crate_name: Ident,
4480                                           filter_fn: FilterFn)
4481                                           -> Vec<ImportSuggestion>
4482         where FilterFn: Fn(Def) -> bool
4483     {
4484         let mut candidates = Vec::new();
4485         let mut seen_modules = FxHashSet::default();
4486         let not_local_module = crate_name != keywords::Crate.ident();
4487         let mut worklist = vec![(start_module, Vec::<ast::PathSegment>::new(), not_local_module)];
4488
4489         while let Some((in_module,
4490                         path_segments,
4491                         in_module_is_extern)) = worklist.pop() {
4492             self.populate_module_if_necessary(in_module);
4493
4494             // We have to visit module children in deterministic order to avoid
4495             // instabilities in reported imports (#43552).
4496             in_module.for_each_child_stable(|ident, ns, name_binding| {
4497                 // avoid imports entirely
4498                 if name_binding.is_import() && !name_binding.is_extern_crate() { return; }
4499                 // avoid non-importable candidates as well
4500                 if !name_binding.is_importable() { return; }
4501
4502                 // collect results based on the filter function
4503                 if ident.name == lookup_ident.name && ns == namespace {
4504                     let def = name_binding.def();
4505                     if filter_fn(def) {
4506                         // create the path
4507                         let mut segms = path_segments.clone();
4508                         if lookup_ident.span.rust_2018() {
4509                             // crate-local absolute paths start with `crate::` in edition 2018
4510                             // FIXME: may also be stabilized for Rust 2015 (Issues #45477, #44660)
4511                             segms.insert(
4512                                 0, ast::PathSegment::from_ident(crate_name)
4513                             );
4514                         }
4515
4516                         segms.push(ast::PathSegment::from_ident(ident));
4517                         let path = Path {
4518                             span: name_binding.span,
4519                             segments: segms,
4520                         };
4521                         // the entity is accessible in the following cases:
4522                         // 1. if it's defined in the same crate, it's always
4523                         // accessible (since private entities can be made public)
4524                         // 2. if it's defined in another crate, it's accessible
4525                         // only if both the module is public and the entity is
4526                         // declared as public (due to pruning, we don't explore
4527                         // outside crate private modules => no need to check this)
4528                         if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
4529                             let did = match def {
4530                                 Def::Ctor(did, ..) => self.parent(did),
4531                                 _ => def.opt_def_id(),
4532                             };
4533                             candidates.push(ImportSuggestion { did, path });
4534                         }
4535                     }
4536                 }
4537
4538                 // collect submodules to explore
4539                 if let Some(module) = name_binding.module() {
4540                     // form the path
4541                     let mut path_segments = path_segments.clone();
4542                     path_segments.push(ast::PathSegment::from_ident(ident));
4543
4544                     let is_extern_crate_that_also_appears_in_prelude =
4545                         name_binding.is_extern_crate() &&
4546                         lookup_ident.span.rust_2018();
4547
4548                     let is_visible_to_user =
4549                         !in_module_is_extern || name_binding.vis == ty::Visibility::Public;
4550
4551                     if !is_extern_crate_that_also_appears_in_prelude && is_visible_to_user {
4552                         // add the module to the lookup
4553                         let is_extern = in_module_is_extern || name_binding.is_extern_crate();
4554                         if seen_modules.insert(module.def_id().unwrap()) {
4555                             worklist.push((module, path_segments, is_extern));
4556                         }
4557                     }
4558                 }
4559             })
4560         }
4561
4562         candidates
4563     }
4564
4565     /// When name resolution fails, this method can be used to look up candidate
4566     /// entities with the expected name. It allows filtering them using the
4567     /// supplied predicate (which should be used to only accept the types of
4568     /// definitions expected, e.g., traits). The lookup spans across all crates.
4569     ///
4570     /// N.B., the method does not look into imports, but this is not a problem,
4571     /// since we report the definitions (thus, the de-aliased imports).
4572     fn lookup_import_candidates<FilterFn>(&mut self,
4573                                           lookup_ident: Ident,
4574                                           namespace: Namespace,
4575                                           filter_fn: FilterFn)
4576                                           -> Vec<ImportSuggestion>
4577         where FilterFn: Fn(Def) -> bool
4578     {
4579         let mut suggestions = self.lookup_import_candidates_from_module(
4580             lookup_ident, namespace, self.graph_root, keywords::Crate.ident(), &filter_fn);
4581
4582         if lookup_ident.span.rust_2018() {
4583             let extern_prelude_names = self.extern_prelude.clone();
4584             for (ident, _) in extern_prelude_names.into_iter() {
4585                 if let Some(crate_id) = self.crate_loader.maybe_process_path_extern(ident.name,
4586                                                                                     ident.span) {
4587                     let crate_root = self.get_module(DefId {
4588                         krate: crate_id,
4589                         index: CRATE_DEF_INDEX,
4590                     });
4591                     self.populate_module_if_necessary(&crate_root);
4592
4593                     suggestions.extend(self.lookup_import_candidates_from_module(
4594                         lookup_ident, namespace, crate_root, ident, &filter_fn));
4595                 }
4596             }
4597         }
4598
4599         suggestions
4600     }
4601
4602     fn find_module(&mut self,
4603                    module_def: Def)
4604                    -> Option<(Module<'a>, ImportSuggestion)>
4605     {
4606         let mut result = None;
4607         let mut seen_modules = FxHashSet::default();
4608         let mut worklist = vec![(self.graph_root, Vec::new())];
4609
4610         while let Some((in_module, path_segments)) = worklist.pop() {
4611             // abort if the module is already found
4612             if result.is_some() { break; }
4613
4614             self.populate_module_if_necessary(in_module);
4615
4616             in_module.for_each_child_stable(|ident, _, name_binding| {
4617                 // abort if the module is already found or if name_binding is private external
4618                 if result.is_some() || !name_binding.vis.is_visible_locally() {
4619                     return
4620                 }
4621                 if let Some(module) = name_binding.module() {
4622                     // form the path
4623                     let mut path_segments = path_segments.clone();
4624                     path_segments.push(ast::PathSegment::from_ident(ident));
4625                     if module.def() == Some(module_def) {
4626                         let path = Path {
4627                             span: name_binding.span,
4628                             segments: path_segments,
4629                         };
4630                         let did = module.def().and_then(|def| def.opt_def_id());
4631                         result = Some((module, ImportSuggestion { did, path }));
4632                     } else {
4633                         // add the module to the lookup
4634                         if seen_modules.insert(module.def_id().unwrap()) {
4635                             worklist.push((module, path_segments));
4636                         }
4637                     }
4638                 }
4639             });
4640         }
4641
4642         result
4643     }
4644
4645     fn collect_enum_variants(&mut self, enum_def: Def) -> Option<Vec<Path>> {
4646         if let Def::Enum(..) = enum_def {} else {
4647             panic!("Non-enum def passed to collect_enum_variants: {:?}", enum_def)
4648         }
4649
4650         self.find_module(enum_def).map(|(enum_module, enum_import_suggestion)| {
4651             self.populate_module_if_necessary(enum_module);
4652
4653             let mut variants = Vec::new();
4654             enum_module.for_each_child_stable(|ident, _, name_binding| {
4655                 if let Def::Variant(..) = name_binding.def() {
4656                     let mut segms = enum_import_suggestion.path.segments.clone();
4657                     segms.push(ast::PathSegment::from_ident(ident));
4658                     variants.push(Path {
4659                         span: name_binding.span,
4660                         segments: segms,
4661                     });
4662                 }
4663             });
4664             variants
4665         })
4666     }
4667
4668     fn record_def(&mut self, node_id: NodeId, resolution: PathResolution) {
4669         debug!("(recording def) recording {:?} for {}", resolution, node_id);
4670         if let Some(prev_res) = self.def_map.insert(node_id, resolution) {
4671             panic!("path resolved multiple times ({:?} before, {:?} now)", prev_res, resolution);
4672         }
4673     }
4674
4675     fn resolve_visibility(&mut self, vis: &ast::Visibility) -> ty::Visibility {
4676         match vis.node {
4677             ast::VisibilityKind::Public => ty::Visibility::Public,
4678             ast::VisibilityKind::Crate(..) => {
4679                 ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX))
4680             }
4681             ast::VisibilityKind::Inherited => {
4682                 ty::Visibility::Restricted(self.current_module.normal_ancestor_id)
4683             }
4684             ast::VisibilityKind::Restricted { ref path, id, .. } => {
4685                 // For visibilities we are not ready to provide correct implementation of "uniform
4686                 // paths" right now, so on 2018 edition we only allow module-relative paths for now.
4687                 // On 2015 edition visibilities are resolved as crate-relative by default,
4688                 // so we are prepending a root segment if necessary.
4689                 let ident = path.segments.get(0).expect("empty path in visibility").ident;
4690                 let crate_root = if ident.is_path_segment_keyword() {
4691                     None
4692                 } else if ident.span.rust_2018() {
4693                     let msg = "relative paths are not supported in visibilities on 2018 edition";
4694                     self.session.struct_span_err(ident.span, msg)
4695                         .span_suggestion(
4696                             path.span,
4697                             "try",
4698                             format!("crate::{}", path),
4699                             Applicability::MaybeIncorrect,
4700                         )
4701                         .emit();
4702                     return ty::Visibility::Public;
4703                 } else {
4704                     let ctxt = ident.span.ctxt();
4705                     Some(Segment::from_ident(Ident::new(
4706                         keywords::PathRoot.name(), path.span.shrink_to_lo().with_ctxt(ctxt)
4707                     )))
4708                 };
4709
4710                 let segments = crate_root.into_iter()
4711                     .chain(path.segments.iter().map(|seg| seg.into())).collect::<Vec<_>>();
4712                 let def = self.smart_resolve_path_fragment(
4713                     id,
4714                     None,
4715                     &segments,
4716                     path.span,
4717                     PathSource::Visibility,
4718                     CrateLint::SimplePath(id),
4719                 ).base_def();
4720                 if def == Def::Err {
4721                     ty::Visibility::Public
4722                 } else {
4723                     let vis = ty::Visibility::Restricted(def.def_id());
4724                     if self.is_accessible(vis) {
4725                         vis
4726                     } else {
4727                         self.session.span_err(path.span, "visibilities can only be restricted \
4728                                                           to ancestor modules");
4729                         ty::Visibility::Public
4730                     }
4731                 }
4732             }
4733         }
4734     }
4735
4736     fn is_accessible(&self, vis: ty::Visibility) -> bool {
4737         vis.is_accessible_from(self.current_module.normal_ancestor_id, self)
4738     }
4739
4740     fn is_accessible_from(&self, vis: ty::Visibility, module: Module<'a>) -> bool {
4741         vis.is_accessible_from(module.normal_ancestor_id, self)
4742     }
4743
4744     fn set_binding_parent_module(&mut self, binding: &'a NameBinding<'a>, module: Module<'a>) {
4745         if let Some(old_module) = self.binding_parent_modules.insert(PtrKey(binding), module) {
4746             if !ptr::eq(module, old_module) {
4747                 span_bug!(binding.span, "parent module is reset for binding");
4748             }
4749         }
4750     }
4751
4752     fn disambiguate_legacy_vs_modern(
4753         &self,
4754         legacy: &'a NameBinding<'a>,
4755         modern: &'a NameBinding<'a>,
4756     ) -> bool {
4757         // Some non-controversial subset of ambiguities "modern macro name" vs "macro_rules"
4758         // is disambiguated to mitigate regressions from macro modularization.
4759         // Scoping for `macro_rules` behaves like scoping for `let` at module level, in general.
4760         match (self.binding_parent_modules.get(&PtrKey(legacy)),
4761                self.binding_parent_modules.get(&PtrKey(modern))) {
4762             (Some(legacy), Some(modern)) =>
4763                 legacy.normal_ancestor_id == modern.normal_ancestor_id &&
4764                 modern.is_ancestor_of(legacy),
4765             _ => false,
4766         }
4767     }
4768
4769     fn binding_description(&self, b: &NameBinding<'_>, ident: Ident, from_prelude: bool) -> String {
4770         if b.span.is_dummy() {
4771             let add_built_in = match b.def() {
4772                 // These already contain the "built-in" prefix or look bad with it.
4773                 Def::NonMacroAttr(..) | Def::PrimTy(..) | Def::ToolMod => false,
4774                 _ => true,
4775             };
4776             let (built_in, from) = if from_prelude {
4777                 ("", " from prelude")
4778             } else if b.is_extern_crate() && !b.is_import() &&
4779                         self.session.opts.externs.get(&ident.as_str()).is_some() {
4780                 ("", " passed with `--extern`")
4781             } else if add_built_in {
4782                 (" built-in", "")
4783             } else {
4784                 ("", "")
4785             };
4786
4787             let article = if built_in.is_empty() { b.article() } else { "a" };
4788             format!("{a}{built_in} {thing}{from}",
4789                     a = article, thing = b.descr(), built_in = built_in, from = from)
4790         } else {
4791             let introduced = if b.is_import() { "imported" } else { "defined" };
4792             format!("the {thing} {introduced} here",
4793                     thing = b.descr(), introduced = introduced)
4794         }
4795     }
4796
4797     fn report_ambiguity_error(&self, ambiguity_error: &AmbiguityError<'_>) {
4798         let AmbiguityError { kind, ident, b1, b2, misc1, misc2 } = *ambiguity_error;
4799         let (b1, b2, misc1, misc2, swapped) = if b2.span.is_dummy() && !b1.span.is_dummy() {
4800             // We have to print the span-less alternative first, otherwise formatting looks bad.
4801             (b2, b1, misc2, misc1, true)
4802         } else {
4803             (b1, b2, misc1, misc2, false)
4804         };
4805
4806         let mut err = struct_span_err!(self.session, ident.span, E0659,
4807                                        "`{ident}` is ambiguous ({why})",
4808                                        ident = ident, why = kind.descr());
4809         err.span_label(ident.span, "ambiguous name");
4810
4811         let mut could_refer_to = |b: &NameBinding<'_>, misc: AmbiguityErrorMisc, also: &str| {
4812             let what = self.binding_description(b, ident, misc == AmbiguityErrorMisc::FromPrelude);
4813             let note_msg = format!("`{ident}` could{also} refer to {what}",
4814                                    ident = ident, also = also, what = what);
4815
4816             let mut help_msgs = Vec::new();
4817             if b.is_glob_import() && (kind == AmbiguityKind::GlobVsGlob ||
4818                                       kind == AmbiguityKind::GlobVsExpanded ||
4819                                       kind == AmbiguityKind::GlobVsOuter &&
4820                                       swapped != also.is_empty()) {
4821                 help_msgs.push(format!("consider adding an explicit import of \
4822                                         `{ident}` to disambiguate", ident = ident))
4823             }
4824             if b.is_extern_crate() && ident.span.rust_2018() {
4825                 help_msgs.push(format!(
4826                     "use `::{ident}` to refer to this {thing} unambiguously",
4827                     ident = ident, thing = b.descr(),
4828                 ))
4829             }
4830             if misc == AmbiguityErrorMisc::SuggestCrate {
4831                 help_msgs.push(format!(
4832                     "use `crate::{ident}` to refer to this {thing} unambiguously",
4833                     ident = ident, thing = b.descr(),
4834                 ))
4835             } else if misc == AmbiguityErrorMisc::SuggestSelf {
4836                 help_msgs.push(format!(
4837                     "use `self::{ident}` to refer to this {thing} unambiguously",
4838                     ident = ident, thing = b.descr(),
4839                 ))
4840             }
4841
4842             err.span_note(b.span, &note_msg);
4843             for (i, help_msg) in help_msgs.iter().enumerate() {
4844                 let or = if i == 0 { "" } else { "or " };
4845                 err.help(&format!("{}{}", or, help_msg));
4846             }
4847         };
4848
4849         could_refer_to(b1, misc1, "");
4850         could_refer_to(b2, misc2, " also");
4851         err.emit();
4852     }
4853
4854     fn report_errors(&mut self, krate: &Crate) {
4855         self.report_with_use_injections(krate);
4856
4857         for &(span_use, span_def) in &self.macro_expanded_macro_export_errors {
4858             let msg = "macro-expanded `macro_export` macros from the current crate \
4859                        cannot be referred to by absolute paths";
4860             self.session.buffer_lint_with_diagnostic(
4861                 lint::builtin::MACRO_EXPANDED_MACRO_EXPORTS_ACCESSED_BY_ABSOLUTE_PATHS,
4862                 CRATE_NODE_ID, span_use, msg,
4863                 lint::builtin::BuiltinLintDiagnostics::
4864                     MacroExpandedMacroExportsAccessedByAbsolutePaths(span_def),
4865             );
4866         }
4867
4868         for ambiguity_error in &self.ambiguity_errors {
4869             self.report_ambiguity_error(ambiguity_error);
4870         }
4871
4872         let mut reported_spans = FxHashSet::default();
4873         for &PrivacyError(dedup_span, ident, binding) in &self.privacy_errors {
4874             if reported_spans.insert(dedup_span) {
4875                 span_err!(self.session, ident.span, E0603, "{} `{}` is private",
4876                           binding.descr(), ident.name);
4877             }
4878         }
4879     }
4880
4881     fn report_with_use_injections(&mut self, krate: &Crate) {
4882         for UseError { mut err, candidates, node_id, better } in self.use_injections.drain(..) {
4883             let (span, found_use) = UsePlacementFinder::check(krate, node_id);
4884             if !candidates.is_empty() {
4885                 show_candidates(&mut err, span, &candidates, better, found_use);
4886             }
4887             err.emit();
4888         }
4889     }
4890
4891     fn report_conflict<'b>(&mut self,
4892                        parent: Module<'_>,
4893                        ident: Ident,
4894                        ns: Namespace,
4895                        new_binding: &NameBinding<'b>,
4896                        old_binding: &NameBinding<'b>) {
4897         // Error on the second of two conflicting names
4898         if old_binding.span.lo() > new_binding.span.lo() {
4899             return self.report_conflict(parent, ident, ns, old_binding, new_binding);
4900         }
4901
4902         let container = match parent.kind {
4903             ModuleKind::Def(Def::Mod(_), _) => "module",
4904             ModuleKind::Def(Def::Trait(_), _) => "trait",
4905             ModuleKind::Block(..) => "block",
4906             _ => "enum",
4907         };
4908
4909         let old_noun = match old_binding.is_import() {
4910             true => "import",
4911             false => "definition",
4912         };
4913
4914         let new_participle = match new_binding.is_import() {
4915             true => "imported",
4916             false => "defined",
4917         };
4918
4919         let (name, span) = (ident.name, self.session.source_map().def_span(new_binding.span));
4920
4921         if let Some(s) = self.name_already_seen.get(&name) {
4922             if s == &span {
4923                 return;
4924             }
4925         }
4926
4927         let old_kind = match (ns, old_binding.module()) {
4928             (ValueNS, _) => "value",
4929             (MacroNS, _) => "macro",
4930             (TypeNS, _) if old_binding.is_extern_crate() => "extern crate",
4931             (TypeNS, Some(module)) if module.is_normal() => "module",
4932             (TypeNS, Some(module)) if module.is_trait() => "trait",
4933             (TypeNS, _) => "type",
4934         };
4935
4936         let msg = format!("the name `{}` is defined multiple times", name);
4937
4938         let mut err = match (old_binding.is_extern_crate(), new_binding.is_extern_crate()) {
4939             (true, true) => struct_span_err!(self.session, span, E0259, "{}", msg),
4940             (true, _) | (_, true) => match new_binding.is_import() && old_binding.is_import() {
4941                 true => struct_span_err!(self.session, span, E0254, "{}", msg),
4942                 false => struct_span_err!(self.session, span, E0260, "{}", msg),
4943             },
4944             _ => match (old_binding.is_import(), new_binding.is_import()) {
4945                 (false, false) => struct_span_err!(self.session, span, E0428, "{}", msg),
4946                 (true, true) => struct_span_err!(self.session, span, E0252, "{}", msg),
4947                 _ => struct_span_err!(self.session, span, E0255, "{}", msg),
4948             },
4949         };
4950
4951         err.note(&format!("`{}` must be defined only once in the {} namespace of this {}",
4952                           name,
4953                           ns.descr(),
4954                           container));
4955
4956         err.span_label(span, format!("`{}` re{} here", name, new_participle));
4957         err.span_label(
4958             self.session.source_map().def_span(old_binding.span),
4959             format!("previous {} of the {} `{}` here", old_noun, old_kind, name),
4960         );
4961
4962         // See https://github.com/rust-lang/rust/issues/32354
4963         use NameBindingKind::Import;
4964         let directive = match (&new_binding.kind, &old_binding.kind) {
4965             // If there are two imports where one or both have attributes then prefer removing the
4966             // import without attributes.
4967             (Import { directive: new, .. }, Import { directive: old, .. }) if {
4968                 !new_binding.span.is_dummy() && !old_binding.span.is_dummy() &&
4969                     (new.has_attributes || old.has_attributes)
4970             } => {
4971                 if old.has_attributes {
4972                     Some((new, new_binding.span, true))
4973                 } else {
4974                     Some((old, old_binding.span, true))
4975                 }
4976             },
4977             // Otherwise prioritize the new binding.
4978             (Import { directive, .. }, other) if !new_binding.span.is_dummy() =>
4979                 Some((directive, new_binding.span, other.is_import())),
4980             (other, Import { directive, .. }) if !old_binding.span.is_dummy() =>
4981                 Some((directive, old_binding.span, other.is_import())),
4982             _ => None,
4983         };
4984
4985         // Check if the target of the use for both bindings is the same.
4986         let duplicate = new_binding.def().opt_def_id() == old_binding.def().opt_def_id();
4987         let has_dummy_span = new_binding.span.is_dummy() || old_binding.span.is_dummy();
4988         let from_item = self.extern_prelude.get(&ident)
4989             .map(|entry| entry.introduced_by_item)
4990             .unwrap_or(true);
4991         // Only suggest removing an import if both bindings are to the same def, if both spans
4992         // aren't dummy spans. Further, if both bindings are imports, then the ident must have
4993         // been introduced by a item.
4994         let should_remove_import = duplicate && !has_dummy_span &&
4995             ((new_binding.is_extern_crate() || old_binding.is_extern_crate()) || from_item);
4996
4997         match directive {
4998             Some((directive, span, true)) if should_remove_import && directive.is_nested() =>
4999                 self.add_suggestion_for_duplicate_nested_use(&mut err, directive, span),
5000             Some((directive, _, true)) if should_remove_import && !directive.is_glob() => {
5001                 // Simple case - remove the entire import. Due to the above match arm, this can
5002                 // only be a single use so just remove it entirely.
5003                 err.tool_only_span_suggestion(
5004                     directive.use_span_with_attributes,
5005                     "remove unnecessary import",
5006                     String::new(),
5007                     Applicability::MaybeIncorrect,
5008                 );
5009             },
5010             Some((directive, span, _)) =>
5011                 self.add_suggestion_for_rename_of_use(&mut err, name, directive, span),
5012             _ => {},
5013         }
5014
5015         err.emit();
5016         self.name_already_seen.insert(name, span);
5017     }
5018
5019     /// This function adds a suggestion to change the binding name of a new import that conflicts
5020     /// with an existing import.
5021     ///
5022     /// ```ignore (diagnostic)
5023     /// help: you can use `as` to change the binding name of the import
5024     ///    |
5025     /// LL | use foo::bar as other_bar;
5026     ///    |     ^^^^^^^^^^^^^^^^^^^^^
5027     /// ```
5028     fn add_suggestion_for_rename_of_use(
5029         &self,
5030         err: &mut DiagnosticBuilder<'_>,
5031         name: Symbol,
5032         directive: &ImportDirective<'_>,
5033         binding_span: Span,
5034     ) {
5035         let suggested_name = if name.as_str().chars().next().unwrap().is_uppercase() {
5036             format!("Other{}", name)
5037         } else {
5038             format!("other_{}", name)
5039         };
5040
5041         let mut suggestion = None;
5042         match directive.subclass {
5043             ImportDirectiveSubclass::SingleImport { type_ns_only: true, .. } =>
5044                 suggestion = Some(format!("self as {}", suggested_name)),
5045             ImportDirectiveSubclass::SingleImport { source, .. } => {
5046                 if let Some(pos) = source.span.hi().0.checked_sub(binding_span.lo().0)
5047                                                      .map(|pos| pos as usize) {
5048                     if let Ok(snippet) = self.session.source_map()
5049                                                      .span_to_snippet(binding_span) {
5050                         if pos <= snippet.len() {
5051                             suggestion = Some(format!(
5052                                 "{} as {}{}",
5053                                 &snippet[..pos],
5054                                 suggested_name,
5055                                 if snippet.ends_with(";") { ";" } else { "" }
5056                             ))
5057                         }
5058                     }
5059                 }
5060             }
5061             ImportDirectiveSubclass::ExternCrate { source, target, .. } =>
5062                 suggestion = Some(format!(
5063                     "extern crate {} as {};",
5064                     source.unwrap_or(target.name),
5065                     suggested_name,
5066                 )),
5067             _ => unreachable!(),
5068         }
5069
5070         let rename_msg = "you can use `as` to change the binding name of the import";
5071         if let Some(suggestion) = suggestion {
5072             err.span_suggestion(
5073                 binding_span,
5074                 rename_msg,
5075                 suggestion,
5076                 Applicability::MaybeIncorrect,
5077             );
5078         } else {
5079             err.span_label(binding_span, rename_msg);
5080         }
5081     }
5082
5083     /// This function adds a suggestion to remove a unnecessary binding from an import that is
5084     /// nested. In the following example, this function will be invoked to remove the `a` binding
5085     /// in the second use statement:
5086     ///
5087     /// ```ignore (diagnostic)
5088     /// use issue_52891::a;
5089     /// use issue_52891::{d, a, e};
5090     /// ```
5091     ///
5092     /// The following suggestion will be added:
5093     ///
5094     /// ```ignore (diagnostic)
5095     /// use issue_52891::{d, a, e};
5096     ///                      ^-- help: remove unnecessary import
5097     /// ```
5098     ///
5099     /// If the nested use contains only one import then the suggestion will remove the entire
5100     /// line.
5101     ///
5102     /// It is expected that the directive provided is a nested import - this isn't checked by the
5103     /// function. If this invariant is not upheld, this function's behaviour will be unexpected
5104     /// as characters expected by span manipulations won't be present.
5105     fn add_suggestion_for_duplicate_nested_use(
5106         &self,
5107         err: &mut DiagnosticBuilder<'_>,
5108         directive: &ImportDirective<'_>,
5109         binding_span: Span,
5110     ) {
5111         assert!(directive.is_nested());
5112         let message = "remove unnecessary import";
5113         let source_map = self.session.source_map();
5114
5115         // Two examples will be used to illustrate the span manipulations we're doing:
5116         //
5117         // - Given `use issue_52891::{d, a, e};` where `a` is a duplicate then `binding_span` is
5118         //   `a` and `directive.use_span` is `issue_52891::{d, a, e};`.
5119         // - Given `use issue_52891::{d, e, a};` where `a` is a duplicate then `binding_span` is
5120         //   `a` and `directive.use_span` is `issue_52891::{d, e, a};`.
5121
5122         // Find the span of everything after the binding.
5123         //   ie. `a, e};` or `a};`
5124         let binding_until_end = binding_span.with_hi(directive.use_span.hi());
5125
5126         // Find everything after the binding but not including the binding.
5127         //   ie. `, e};` or `};`
5128         let after_binding_until_end = binding_until_end.with_lo(binding_span.hi());
5129
5130         // Keep characters in the span until we encounter something that isn't a comma or
5131         // whitespace.
5132         //   ie. `, ` or ``.
5133         //
5134         // Also note whether a closing brace character was encountered. If there
5135         // was, then later go backwards to remove any trailing commas that are left.
5136         let mut found_closing_brace = false;
5137         let after_binding_until_next_binding = source_map.span_take_while(
5138             after_binding_until_end,
5139             |&ch| {
5140                 if ch == '}' { found_closing_brace = true; }
5141                 ch == ' ' || ch == ','
5142             }
5143         );
5144
5145         // Combine the two spans.
5146         //   ie. `a, ` or `a`.
5147         //
5148         // Removing these would leave `issue_52891::{d, e};` or `issue_52891::{d, e, };`
5149         let span = binding_span.with_hi(after_binding_until_next_binding.hi());
5150
5151         // If there was a closing brace then identify the span to remove any trailing commas from
5152         // previous imports.
5153         if found_closing_brace {
5154             if let Ok(prev_source) = source_map.span_to_prev_source(span) {
5155                 // `prev_source` will contain all of the source that came before the span.
5156                 // Then split based on a command and take the first (ie. closest to our span)
5157                 // snippet. In the example, this is a space.
5158                 let prev_comma = prev_source.rsplit(',').collect::<Vec<_>>();
5159                 let prev_starting_brace = prev_source.rsplit('{').collect::<Vec<_>>();
5160                 if prev_comma.len() > 1 && prev_starting_brace.len() > 1 {
5161                     let prev_comma = prev_comma.first().unwrap();
5162                     let prev_starting_brace = prev_starting_brace.first().unwrap();
5163
5164                     // If the amount of source code before the comma is greater than
5165                     // the amount of source code before the starting brace then we've only
5166                     // got one item in the nested item (eg. `issue_52891::{self}`).
5167                     if prev_comma.len() > prev_starting_brace.len() {
5168                         // So just remove the entire line...
5169                         err.span_suggestion(
5170                             directive.use_span_with_attributes,
5171                             message,
5172                             String::new(),
5173                             Applicability::MaybeIncorrect,
5174                         );
5175                         return;
5176                     }
5177
5178                     let span = span.with_lo(BytePos(
5179                         // Take away the number of bytes for the characters we've found and an
5180                         // extra for the comma.
5181                         span.lo().0 - (prev_comma.as_bytes().len() as u32) - 1
5182                     ));
5183                     err.tool_only_span_suggestion(
5184                         span, message, String::new(), Applicability::MaybeIncorrect,
5185                     );
5186                     return;
5187                 }
5188             }
5189         }
5190
5191         err.span_suggestion(span, message, String::new(), Applicability::MachineApplicable);
5192     }
5193
5194     fn extern_prelude_get(&mut self, ident: Ident, speculative: bool)
5195                           -> Option<&'a NameBinding<'a>> {
5196         if ident.is_path_segment_keyword() {
5197             // Make sure `self`, `super` etc produce an error when passed to here.
5198             return None;
5199         }
5200         self.extern_prelude.get(&ident.modern()).cloned().and_then(|entry| {
5201             if let Some(binding) = entry.extern_crate_item {
5202                 if !speculative && entry.introduced_by_item {
5203                     self.record_use(ident, TypeNS, binding, false);
5204                 }
5205                 Some(binding)
5206             } else {
5207                 let crate_id = if !speculative {
5208                     self.crate_loader.process_path_extern(ident.name, ident.span)
5209                 } else if let Some(crate_id) =
5210                         self.crate_loader.maybe_process_path_extern(ident.name, ident.span) {
5211                     crate_id
5212                 } else {
5213                     return None;
5214                 };
5215                 let crate_root = self.get_module(DefId { krate: crate_id, index: CRATE_DEF_INDEX });
5216                 self.populate_module_if_necessary(&crate_root);
5217                 Some((crate_root, ty::Visibility::Public, DUMMY_SP, Mark::root())
5218                     .to_name_binding(self.arenas))
5219             }
5220         })
5221     }
5222 }
5223
5224 fn is_self_type(path: &[Segment], namespace: Namespace) -> bool {
5225     namespace == TypeNS && path.len() == 1 && path[0].ident.name == keywords::SelfUpper.name()
5226 }
5227
5228 fn is_self_value(path: &[Segment], namespace: Namespace) -> bool {
5229     namespace == ValueNS && path.len() == 1 && path[0].ident.name == keywords::SelfLower.name()
5230 }
5231
5232 fn names_to_string(idents: &[Ident]) -> String {
5233     let mut result = String::new();
5234     for (i, ident) in idents.iter()
5235                             .filter(|ident| ident.name != keywords::PathRoot.name())
5236                             .enumerate() {
5237         if i > 0 {
5238             result.push_str("::");
5239         }
5240         result.push_str(&ident.as_str());
5241     }
5242     result
5243 }
5244
5245 fn path_names_to_string(path: &Path) -> String {
5246     names_to_string(&path.segments.iter()
5247                         .map(|seg| seg.ident)
5248                         .collect::<Vec<_>>())
5249 }
5250
5251 /// Gets the stringified path for an enum from an `ImportSuggestion` for an enum variant.
5252 fn import_candidate_to_enum_paths(suggestion: &ImportSuggestion) -> (String, String) {
5253     let variant_path = &suggestion.path;
5254     let variant_path_string = path_names_to_string(variant_path);
5255
5256     let path_len = suggestion.path.segments.len();
5257     let enum_path = ast::Path {
5258         span: suggestion.path.span,
5259         segments: suggestion.path.segments[0..path_len - 1].to_vec(),
5260     };
5261     let enum_path_string = path_names_to_string(&enum_path);
5262
5263     (variant_path_string, enum_path_string)
5264 }
5265
5266 /// When an entity with a given name is not available in scope, we search for
5267 /// entities with that name in all crates. This method allows outputting the
5268 /// results of this search in a programmer-friendly way
5269 fn show_candidates(err: &mut DiagnosticBuilder<'_>,
5270                    // This is `None` if all placement locations are inside expansions
5271                    span: Option<Span>,
5272                    candidates: &[ImportSuggestion],
5273                    better: bool,
5274                    found_use: bool) {
5275
5276     // we want consistent results across executions, but candidates are produced
5277     // by iterating through a hash map, so make sure they are ordered:
5278     let mut path_strings: Vec<_> =
5279         candidates.into_iter().map(|c| path_names_to_string(&c.path)).collect();
5280     path_strings.sort();
5281
5282     let better = if better { "better " } else { "" };
5283     let msg_diff = match path_strings.len() {
5284         1 => " is found in another module, you can import it",
5285         _ => "s are found in other modules, you can import them",
5286     };
5287     let msg = format!("possible {}candidate{} into scope", better, msg_diff);
5288
5289     if let Some(span) = span {
5290         for candidate in &mut path_strings {
5291             // produce an additional newline to separate the new use statement
5292             // from the directly following item.
5293             let additional_newline = if found_use {
5294                 ""
5295             } else {
5296                 "\n"
5297             };
5298             *candidate = format!("use {};\n{}", candidate, additional_newline);
5299         }
5300
5301         err.span_suggestions(
5302             span,
5303             &msg,
5304             path_strings.into_iter(),
5305             Applicability::Unspecified,
5306         );
5307     } else {
5308         let mut msg = msg;
5309         msg.push(':');
5310         for candidate in path_strings {
5311             msg.push('\n');
5312             msg.push_str(&candidate);
5313         }
5314     }
5315 }
5316
5317 /// A somewhat inefficient routine to obtain the name of a module.
5318 fn module_to_string(module: Module<'_>) -> Option<String> {
5319     let mut names = Vec::new();
5320
5321     fn collect_mod(names: &mut Vec<Ident>, module: Module<'_>) {
5322         if let ModuleKind::Def(_, name) = module.kind {
5323             if let Some(parent) = module.parent {
5324                 names.push(Ident::with_empty_ctxt(name));
5325                 collect_mod(names, parent);
5326             }
5327         } else {
5328             // danger, shouldn't be ident?
5329             names.push(Ident::from_str("<opaque>"));
5330             collect_mod(names, module.parent.unwrap());
5331         }
5332     }
5333     collect_mod(&mut names, module);
5334
5335     if names.is_empty() {
5336         return None;
5337     }
5338     Some(names_to_string(&names.into_iter()
5339                         .rev()
5340                         .collect::<Vec<_>>()))
5341 }
5342
5343 fn err_path_resolution() -> PathResolution {
5344     PathResolution::new(Def::Err)
5345 }
5346
5347 #[derive(Copy, Clone, Debug)]
5348 enum CrateLint {
5349     /// Do not issue the lint.
5350     No,
5351
5352     /// This lint applies to some arbitrary path; e.g., `impl ::foo::Bar`.
5353     /// In this case, we can take the span of that path.
5354     SimplePath(NodeId),
5355
5356     /// This lint comes from a `use` statement. In this case, what we
5357     /// care about really is the *root* `use` statement; e.g., if we
5358     /// have nested things like `use a::{b, c}`, we care about the
5359     /// `use a` part.
5360     UsePath { root_id: NodeId, root_span: Span },
5361
5362     /// This is the "trait item" from a fully qualified path. For example,
5363     /// we might be resolving  `X::Y::Z` from a path like `<T as X::Y>::Z`.
5364     /// The `path_span` is the span of the to the trait itself (`X::Y`).
5365     QPathTrait { qpath_id: NodeId, qpath_span: Span },
5366 }
5367
5368 impl CrateLint {
5369     fn node_id(&self) -> Option<NodeId> {
5370         match *self {
5371             CrateLint::No => None,
5372             CrateLint::SimplePath(id) |
5373             CrateLint::UsePath { root_id: id, .. } |
5374             CrateLint::QPathTrait { qpath_id: id, .. } => Some(id),
5375         }
5376     }
5377 }
5378
5379 __build_diagnostic_array! { librustc_resolve, DIAGNOSTICS }