]> git.lizzy.rs Git - rust.git/blob - src/librustc_resolve/lib.rs
Whitespace fix again.
[rust.git] / src / librustc_resolve / lib.rs
1 // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 #![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
12        html_favicon_url = "https://doc.rust-lang.org/favicon.ico",
13        html_root_url = "https://doc.rust-lang.org/nightly/")]
14
15 #![feature(crate_visibility_modifier)]
16 #![cfg_attr(not(stage0), feature(nll))]
17 #![feature(rustc_diagnostic_macros)]
18 #![feature(slice_sort_by_cached_key)]
19
20 #[macro_use]
21 extern crate log;
22 #[macro_use]
23 extern crate syntax;
24 extern crate syntax_pos;
25 extern crate rustc_errors as errors;
26 extern crate arena;
27 #[macro_use]
28 extern crate rustc;
29 extern crate rustc_data_structures;
30 extern crate rustc_metadata;
31
32 pub use rustc::hir::def::{Namespace, PerNS};
33
34 use self::TypeParameters::*;
35 use self::RibKind::*;
36
37 use rustc::hir::map::{Definitions, DefCollector};
38 use rustc::hir::{self, PrimTy, Bool, Char, Float, Int, Uint, Str};
39 use rustc::middle::cstore::CrateStore;
40 use rustc::session::Session;
41 use rustc::lint;
42 use rustc::hir::def::*;
43 use rustc::hir::def::Namespace::*;
44 use rustc::hir::def_id::{CRATE_DEF_INDEX, LOCAL_CRATE, DefId};
45 use rustc::ty;
46 use rustc::hir::{Freevar, FreevarMap, TraitCandidate, TraitMap, GlobMap};
47 use rustc::util::nodemap::{NodeMap, NodeSet, FxHashMap, FxHashSet, DefIdMap};
48
49 use rustc_metadata::creader::CrateLoader;
50 use rustc_metadata::cstore::CStore;
51
52 use syntax::source_map::SourceMap;
53 use syntax::ext::hygiene::{Mark, Transparency, SyntaxContext};
54 use syntax::ast::{self, Name, NodeId, Ident, FloatTy, IntTy, UintTy};
55 use syntax::ext::base::SyntaxExtension;
56 use syntax::ext::base::Determinacy::{self, Determined, Undetermined};
57 use syntax::ext::base::MacroKind;
58 use syntax::symbol::{Symbol, keywords};
59 use syntax::util::lev_distance::find_best_match_for_name;
60
61 use syntax::visit::{self, FnKind, Visitor};
62 use syntax::attr;
63 use syntax::ast::{CRATE_NODE_ID, Arm, IsAsync, BindingMode, Block, Crate, Expr, ExprKind};
64 use syntax::ast::{FnDecl, ForeignItem, ForeignItemKind, GenericParamKind, Generics};
65 use syntax::ast::{Item, ItemKind, ImplItem, ImplItemKind};
66 use syntax::ast::{Label, Local, Mutability, Pat, PatKind, Path};
67 use syntax::ast::{QSelf, TraitItemKind, TraitRef, Ty, TyKind};
68 use syntax::feature_gate::{feature_err, GateIssue};
69 use syntax::ptr::P;
70
71 use syntax_pos::{Span, DUMMY_SP, MultiSpan};
72 use errors::{Applicability, DiagnosticBuilder, DiagnosticId};
73
74 use std::cell::{Cell, RefCell};
75 use std::cmp;
76 use std::collections::BTreeSet;
77 use std::fmt;
78 use std::iter;
79 use std::mem::replace;
80 use rustc_data_structures::sync::Lrc;
81
82 use resolve_imports::{ImportDirective, ImportDirectiveSubclass, NameResolution, ImportResolver};
83 use macros::{InvocationData, LegacyBinding, ParentScope};
84
85 // NB: This module needs to be declared first so diagnostics are
86 // registered before they are used.
87 mod diagnostics;
88
89 mod macros;
90 mod check_unused;
91 mod build_reduced_graph;
92 mod resolve_imports;
93
94 fn is_known_tool(name: Name) -> bool {
95     ["clippy", "rustfmt"].contains(&&*name.as_str())
96 }
97
98 /// A free importable items suggested in case of resolution failure.
99 struct ImportSuggestion {
100     path: Path,
101 }
102
103 /// A field or associated item from self type suggested in case of resolution failure.
104 enum AssocSuggestion {
105     Field,
106     MethodWithSelf,
107     AssocItem,
108 }
109
110 #[derive(Eq)]
111 struct BindingError {
112     name: Name,
113     origin: BTreeSet<Span>,
114     target: BTreeSet<Span>,
115 }
116
117 impl PartialOrd for BindingError {
118     fn partial_cmp(&self, other: &BindingError) -> Option<cmp::Ordering> {
119         Some(self.cmp(other))
120     }
121 }
122
123 impl PartialEq for BindingError {
124     fn eq(&self, other: &BindingError) -> bool {
125         self.name == other.name
126     }
127 }
128
129 impl Ord for BindingError {
130     fn cmp(&self, other: &BindingError) -> cmp::Ordering {
131         self.name.cmp(&other.name)
132     }
133 }
134
135 enum ResolutionError<'a> {
136     /// error E0401: can't use type parameters from outer function
137     TypeParametersFromOuterFunction(Def),
138     /// error E0403: the name is already used for a type parameter in this type parameter list
139     NameAlreadyUsedInTypeParameterList(Name, &'a Span),
140     /// error E0407: method is not a member of trait
141     MethodNotMemberOfTrait(Name, &'a str),
142     /// error E0437: type is not a member of trait
143     TypeNotMemberOfTrait(Name, &'a str),
144     /// error E0438: const is not a member of trait
145     ConstNotMemberOfTrait(Name, &'a str),
146     /// error E0408: variable `{}` is not bound in all patterns
147     VariableNotBoundInPattern(&'a BindingError),
148     /// error E0409: variable `{}` is bound in inconsistent ways within the same match arm
149     VariableBoundWithDifferentMode(Name, Span),
150     /// error E0415: identifier is bound more than once in this parameter list
151     IdentifierBoundMoreThanOnceInParameterList(&'a str),
152     /// error E0416: identifier is bound more than once in the same pattern
153     IdentifierBoundMoreThanOnceInSamePattern(&'a str),
154     /// error E0426: use of undeclared label
155     UndeclaredLabel(&'a str, Option<Name>),
156     /// error E0429: `self` imports are only allowed within a { } list
157     SelfImportsOnlyAllowedWithin,
158     /// error E0430: `self` import can only appear once in the list
159     SelfImportCanOnlyAppearOnceInTheList,
160     /// error E0431: `self` import can only appear in an import list with a non-empty prefix
161     SelfImportOnlyInImportListWithNonEmptyPrefix,
162     /// error E0433: failed to resolve
163     FailedToResolve(&'a str),
164     /// error E0434: can't capture dynamic environment in a fn item
165     CannotCaptureDynamicEnvironmentInFnItem,
166     /// error E0435: attempt to use a non-constant value in a constant
167     AttemptToUseNonConstantValueInConstant,
168     /// error E0530: X bindings cannot shadow Ys
169     BindingShadowsSomethingUnacceptable(&'a str, Name, &'a NameBinding<'a>),
170     /// error E0128: type parameters with a default cannot use forward declared identifiers
171     ForwardDeclaredTyParam,
172 }
173
174 /// Combines an error with provided span and emits it
175 ///
176 /// This takes the error provided, combines it with the span and any additional spans inside the
177 /// error and emits it.
178 fn resolve_error<'sess, 'a>(resolver: &'sess Resolver,
179                             span: Span,
180                             resolution_error: ResolutionError<'a>) {
181     resolve_struct_error(resolver, span, resolution_error).emit();
182 }
183
184 fn resolve_struct_error<'sess, 'a>(resolver: &'sess Resolver,
185                                    span: Span,
186                                    resolution_error: ResolutionError<'a>)
187                                    -> DiagnosticBuilder<'sess> {
188     match resolution_error {
189         ResolutionError::TypeParametersFromOuterFunction(outer_def) => {
190             let mut err = struct_span_err!(resolver.session,
191                                            span,
192                                            E0401,
193                                            "can't use type parameters from outer function");
194             err.span_label(span, "use of type variable from outer function");
195
196             let cm = resolver.session.source_map();
197             match outer_def {
198                 Def::SelfTy(maybe_trait_defid, maybe_impl_defid) => {
199                     if let Some(impl_span) = maybe_impl_defid.and_then(|def_id| {
200                         resolver.definitions.opt_span(def_id)
201                     }) {
202                         err.span_label(
203                             reduce_impl_span_to_impl_keyword(cm, impl_span),
204                             "`Self` type implicitly declared here, by this `impl`",
205                         );
206                     }
207                     match (maybe_trait_defid, maybe_impl_defid) {
208                         (Some(_), None) => {
209                             err.span_label(span, "can't use `Self` here");
210                         }
211                         (_, Some(_)) => {
212                             err.span_label(span, "use a type here instead");
213                         }
214                         (None, None) => bug!("`impl` without trait nor type?"),
215                     }
216                     return err;
217                 },
218                 Def::TyParam(typaram_defid) => {
219                     if let Some(typaram_span) = resolver.definitions.opt_span(typaram_defid) {
220                         err.span_label(typaram_span, "type variable from outer function");
221                     }
222                 },
223                 _ => {
224                     bug!("TypeParametersFromOuterFunction should only be used with Def::SelfTy or \
225                          Def::TyParam")
226                 }
227             }
228
229             // Try to retrieve the span of the function signature and generate a new message with
230             // a local type parameter
231             let sugg_msg = "try using a local type parameter instead";
232             if let Some((sugg_span, new_snippet)) = cm.generate_local_type_param_snippet(span) {
233                 // Suggest the modification to the user
234                 err.span_suggestion_with_applicability(
235                     sugg_span,
236                     sugg_msg,
237                     new_snippet,
238                     Applicability::MachineApplicable,
239                 );
240             } else if let Some(sp) = cm.generate_fn_name_span(span) {
241                 err.span_label(sp, "try adding a local type parameter in this method instead");
242             } else {
243                 err.help("try using a local type parameter instead");
244             }
245
246             err
247         }
248         ResolutionError::NameAlreadyUsedInTypeParameterList(name, first_use_span) => {
249              let mut err = struct_span_err!(resolver.session,
250                                             span,
251                                             E0403,
252                                             "the name `{}` is already used for a type parameter \
253                                             in this type parameter list",
254                                             name);
255              err.span_label(span, "already used");
256              err.span_label(first_use_span.clone(), format!("first use of `{}`", name));
257              err
258         }
259         ResolutionError::MethodNotMemberOfTrait(method, trait_) => {
260             let mut err = struct_span_err!(resolver.session,
261                                            span,
262                                            E0407,
263                                            "method `{}` is not a member of trait `{}`",
264                                            method,
265                                            trait_);
266             err.span_label(span, format!("not a member of trait `{}`", trait_));
267             err
268         }
269         ResolutionError::TypeNotMemberOfTrait(type_, trait_) => {
270             let mut err = struct_span_err!(resolver.session,
271                              span,
272                              E0437,
273                              "type `{}` is not a member of trait `{}`",
274                              type_,
275                              trait_);
276             err.span_label(span, format!("not a member of trait `{}`", trait_));
277             err
278         }
279         ResolutionError::ConstNotMemberOfTrait(const_, trait_) => {
280             let mut err = struct_span_err!(resolver.session,
281                              span,
282                              E0438,
283                              "const `{}` is not a member of trait `{}`",
284                              const_,
285                              trait_);
286             err.span_label(span, format!("not a member of trait `{}`", trait_));
287             err
288         }
289         ResolutionError::VariableNotBoundInPattern(binding_error) => {
290             let target_sp = binding_error.target.iter().cloned().collect::<Vec<_>>();
291             let msp = MultiSpan::from_spans(target_sp.clone());
292             let msg = format!("variable `{}` is not bound in all patterns", binding_error.name);
293             let mut err = resolver.session.struct_span_err_with_code(
294                 msp,
295                 &msg,
296                 DiagnosticId::Error("E0408".into()),
297             );
298             for sp in target_sp {
299                 err.span_label(sp, format!("pattern doesn't bind `{}`", binding_error.name));
300             }
301             let origin_sp = binding_error.origin.iter().cloned();
302             for sp in origin_sp {
303                 err.span_label(sp, "variable not in all patterns");
304             }
305             err
306         }
307         ResolutionError::VariableBoundWithDifferentMode(variable_name,
308                                                         first_binding_span) => {
309             let mut err = struct_span_err!(resolver.session,
310                              span,
311                              E0409,
312                              "variable `{}` is bound in inconsistent \
313                              ways within the same match arm",
314                              variable_name);
315             err.span_label(span, "bound in different ways");
316             err.span_label(first_binding_span, "first binding");
317             err
318         }
319         ResolutionError::IdentifierBoundMoreThanOnceInParameterList(identifier) => {
320             let mut err = struct_span_err!(resolver.session,
321                              span,
322                              E0415,
323                              "identifier `{}` is bound more than once in this parameter list",
324                              identifier);
325             err.span_label(span, "used as parameter more than once");
326             err
327         }
328         ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(identifier) => {
329             let mut err = struct_span_err!(resolver.session,
330                              span,
331                              E0416,
332                              "identifier `{}` is bound more than once in the same pattern",
333                              identifier);
334             err.span_label(span, "used in a pattern more than once");
335             err
336         }
337         ResolutionError::UndeclaredLabel(name, lev_candidate) => {
338             let mut err = struct_span_err!(resolver.session,
339                                            span,
340                                            E0426,
341                                            "use of undeclared label `{}`",
342                                            name);
343             if let Some(lev_candidate) = lev_candidate {
344                 err.span_label(span, format!("did you mean `{}`?", lev_candidate));
345             } else {
346                 err.span_label(span, format!("undeclared label `{}`", name));
347             }
348             err
349         }
350         ResolutionError::SelfImportsOnlyAllowedWithin => {
351             struct_span_err!(resolver.session,
352                              span,
353                              E0429,
354                              "{}",
355                              "`self` imports are only allowed within a { } list")
356         }
357         ResolutionError::SelfImportCanOnlyAppearOnceInTheList => {
358             let mut err = struct_span_err!(resolver.session, span, E0430,
359                                            "`self` import can only appear once in an import list");
360             err.span_label(span, "can only appear once in an import list");
361             err
362         }
363         ResolutionError::SelfImportOnlyInImportListWithNonEmptyPrefix => {
364             let mut err = struct_span_err!(resolver.session, span, E0431,
365                                            "`self` import can only appear in an import list with \
366                                             a non-empty prefix");
367             err.span_label(span, "can only appear in an import list with a non-empty prefix");
368             err
369         }
370         ResolutionError::FailedToResolve(msg) => {
371             let mut err = struct_span_err!(resolver.session, span, E0433,
372                                            "failed to resolve. {}", msg);
373             err.span_label(span, msg);
374             err
375         }
376         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem => {
377             let mut err = struct_span_err!(resolver.session,
378                                            span,
379                                            E0434,
380                                            "{}",
381                                            "can't capture dynamic environment in a fn item");
382             err.help("use the `|| { ... }` closure form instead");
383             err
384         }
385         ResolutionError::AttemptToUseNonConstantValueInConstant => {
386             let mut err = struct_span_err!(resolver.session, span, E0435,
387                                            "attempt to use a non-constant value in a constant");
388             err.span_label(span, "non-constant value");
389             err
390         }
391         ResolutionError::BindingShadowsSomethingUnacceptable(what_binding, name, binding) => {
392             let shadows_what = PathResolution::new(binding.def()).kind_name();
393             let mut err = struct_span_err!(resolver.session,
394                                            span,
395                                            E0530,
396                                            "{}s cannot shadow {}s", what_binding, shadows_what);
397             err.span_label(span, format!("cannot be named the same as a {}", shadows_what));
398             let participle = if binding.is_import() { "imported" } else { "defined" };
399             let msg = format!("a {} `{}` is {} here", shadows_what, name, participle);
400             err.span_label(binding.span, msg);
401             err
402         }
403         ResolutionError::ForwardDeclaredTyParam => {
404             let mut err = struct_span_err!(resolver.session, span, E0128,
405                                            "type parameters with a default cannot use \
406                                             forward declared identifiers");
407             err.span_label(
408                 span, "defaulted type parameters cannot be forward declared".to_string());
409             err
410         }
411     }
412 }
413
414 /// Adjust the impl span so that just the `impl` keyword is taken by removing
415 /// everything after `<` (`"impl<T> Iterator for A<T> {}" -> "impl"`) and
416 /// everything after the first whitespace (`"impl Iterator for A" -> "impl"`)
417 ///
418 /// Attention: The method used is very fragile since it essentially duplicates the work of the
419 /// parser. If you need to use this function or something similar, please consider updating the
420 /// source_map functions and this function to something more robust.
421 fn reduce_impl_span_to_impl_keyword(cm: &SourceMap, impl_span: Span) -> Span {
422     let impl_span = cm.span_until_char(impl_span, '<');
423     let impl_span = cm.span_until_whitespace(impl_span);
424     impl_span
425 }
426
427 #[derive(Copy, Clone, Debug)]
428 struct BindingInfo {
429     span: Span,
430     binding_mode: BindingMode,
431 }
432
433 /// Map from the name in a pattern to its binding mode.
434 type BindingMap = FxHashMap<Ident, BindingInfo>;
435
436 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
437 enum PatternSource {
438     Match,
439     IfLet,
440     WhileLet,
441     Let,
442     For,
443     FnParam,
444 }
445
446 impl PatternSource {
447     fn descr(self) -> &'static str {
448         match self {
449             PatternSource::Match => "match binding",
450             PatternSource::IfLet => "if let binding",
451             PatternSource::WhileLet => "while let binding",
452             PatternSource::Let => "let binding",
453             PatternSource::For => "for binding",
454             PatternSource::FnParam => "function parameter",
455         }
456     }
457 }
458
459 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
460 enum AliasPossibility {
461     No,
462     Maybe,
463 }
464
465 #[derive(Copy, Clone, Debug)]
466 enum PathSource<'a> {
467     // Type paths `Path`.
468     Type,
469     // Trait paths in bounds or impls.
470     Trait(AliasPossibility),
471     // Expression paths `path`, with optional parent context.
472     Expr(Option<&'a Expr>),
473     // Paths in path patterns `Path`.
474     Pat,
475     // Paths in struct expressions and patterns `Path { .. }`.
476     Struct,
477     // Paths in tuple struct patterns `Path(..)`.
478     TupleStruct,
479     // `m::A::B` in `<T as m::A>::B::C`.
480     TraitItem(Namespace),
481     // Path in `pub(path)`
482     Visibility,
483     // Path in `use a::b::{...};`
484     ImportPrefix,
485 }
486
487 impl<'a> PathSource<'a> {
488     fn namespace(self) -> Namespace {
489         match self {
490             PathSource::Type | PathSource::Trait(_) | PathSource::Struct |
491             PathSource::Visibility | PathSource::ImportPrefix => TypeNS,
492             PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct => ValueNS,
493             PathSource::TraitItem(ns) => ns,
494         }
495     }
496
497     fn global_by_default(self) -> bool {
498         match self {
499             PathSource::Visibility | PathSource::ImportPrefix => true,
500             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
501             PathSource::Struct | PathSource::TupleStruct |
502             PathSource::Trait(_) | PathSource::TraitItem(..) => false,
503         }
504     }
505
506     fn defer_to_typeck(self) -> bool {
507         match self {
508             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
509             PathSource::Struct | PathSource::TupleStruct => true,
510             PathSource::Trait(_) | PathSource::TraitItem(..) |
511             PathSource::Visibility | PathSource::ImportPrefix => false,
512         }
513     }
514
515     fn descr_expected(self) -> &'static str {
516         match self {
517             PathSource::Type => "type",
518             PathSource::Trait(_) => "trait",
519             PathSource::Pat => "unit struct/variant or constant",
520             PathSource::Struct => "struct, variant or union type",
521             PathSource::TupleStruct => "tuple struct/variant",
522             PathSource::Visibility => "module",
523             PathSource::ImportPrefix => "module or enum",
524             PathSource::TraitItem(ns) => match ns {
525                 TypeNS => "associated type",
526                 ValueNS => "method or associated constant",
527                 MacroNS => bug!("associated macro"),
528             },
529             PathSource::Expr(parent) => match parent.map(|p| &p.node) {
530                 // "function" here means "anything callable" rather than `Def::Fn`,
531                 // this is not precise but usually more helpful than just "value".
532                 Some(&ExprKind::Call(..)) => "function",
533                 _ => "value",
534             },
535         }
536     }
537
538     fn is_expected(self, def: Def) -> bool {
539         match self {
540             PathSource::Type => match def {
541                 Def::Struct(..) | Def::Union(..) | Def::Enum(..) |
542                 Def::Trait(..) | Def::TyAlias(..) | Def::AssociatedTy(..) |
543                 Def::PrimTy(..) | Def::TyParam(..) | Def::SelfTy(..) |
544                 Def::Existential(..) |
545                 Def::ForeignTy(..) => true,
546                 _ => false,
547             },
548             PathSource::Trait(AliasPossibility::No) => match def {
549                 Def::Trait(..) => true,
550                 _ => false,
551             },
552             PathSource::Trait(AliasPossibility::Maybe) => match def {
553                 Def::Trait(..) => true,
554                 Def::TraitAlias(..) => true,
555                 _ => false,
556             },
557             PathSource::Expr(..) => match def {
558                 Def::StructCtor(_, CtorKind::Const) | Def::StructCtor(_, CtorKind::Fn) |
559                 Def::VariantCtor(_, CtorKind::Const) | Def::VariantCtor(_, CtorKind::Fn) |
560                 Def::Const(..) | Def::Static(..) | Def::Local(..) | Def::Upvar(..) |
561                 Def::Fn(..) | Def::Method(..) | Def::AssociatedConst(..) |
562                 Def::SelfCtor(..) => true,
563                 _ => false,
564             },
565             PathSource::Pat => match def {
566                 Def::StructCtor(_, CtorKind::Const) |
567                 Def::VariantCtor(_, CtorKind::Const) |
568                 Def::Const(..) | Def::AssociatedConst(..) |
569                 Def::SelfCtor(..) => true,
570                 _ => false,
571             },
572             PathSource::TupleStruct => match def {
573                 Def::StructCtor(_, CtorKind::Fn) |
574                 Def::VariantCtor(_, CtorKind::Fn) |
575                 Def::SelfCtor(..) => true,
576                 _ => false,
577             },
578             PathSource::Struct => match def {
579                 Def::Struct(..) | Def::Union(..) | Def::Variant(..) |
580                 Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => true,
581                 _ => false,
582             },
583             PathSource::TraitItem(ns) => match def {
584                 Def::AssociatedConst(..) | Def::Method(..) if ns == ValueNS => true,
585                 Def::AssociatedTy(..) if ns == TypeNS => true,
586                 _ => false,
587             },
588             PathSource::ImportPrefix => match def {
589                 Def::Mod(..) | Def::Enum(..) => true,
590                 _ => false,
591             },
592             PathSource::Visibility => match def {
593                 Def::Mod(..) => true,
594                 _ => false,
595             },
596         }
597     }
598
599     fn error_code(self, has_unexpected_resolution: bool) -> &'static str {
600         __diagnostic_used!(E0404);
601         __diagnostic_used!(E0405);
602         __diagnostic_used!(E0412);
603         __diagnostic_used!(E0422);
604         __diagnostic_used!(E0423);
605         __diagnostic_used!(E0425);
606         __diagnostic_used!(E0531);
607         __diagnostic_used!(E0532);
608         __diagnostic_used!(E0573);
609         __diagnostic_used!(E0574);
610         __diagnostic_used!(E0575);
611         __diagnostic_used!(E0576);
612         __diagnostic_used!(E0577);
613         __diagnostic_used!(E0578);
614         match (self, has_unexpected_resolution) {
615             (PathSource::Trait(_), true) => "E0404",
616             (PathSource::Trait(_), false) => "E0405",
617             (PathSource::Type, true) => "E0573",
618             (PathSource::Type, false) => "E0412",
619             (PathSource::Struct, true) => "E0574",
620             (PathSource::Struct, false) => "E0422",
621             (PathSource::Expr(..), true) => "E0423",
622             (PathSource::Expr(..), false) => "E0425",
623             (PathSource::Pat, true) | (PathSource::TupleStruct, true) => "E0532",
624             (PathSource::Pat, false) | (PathSource::TupleStruct, false) => "E0531",
625             (PathSource::TraitItem(..), true) => "E0575",
626             (PathSource::TraitItem(..), false) => "E0576",
627             (PathSource::Visibility, true) | (PathSource::ImportPrefix, true) => "E0577",
628             (PathSource::Visibility, false) | (PathSource::ImportPrefix, false) => "E0578",
629         }
630     }
631 }
632
633 struct UsePlacementFinder {
634     target_module: NodeId,
635     span: Option<Span>,
636     found_use: bool,
637 }
638
639 impl UsePlacementFinder {
640     fn check(krate: &Crate, target_module: NodeId) -> (Option<Span>, bool) {
641         let mut finder = UsePlacementFinder {
642             target_module,
643             span: None,
644             found_use: false,
645         };
646         visit::walk_crate(&mut finder, krate);
647         (finder.span, finder.found_use)
648     }
649 }
650
651 impl<'tcx> Visitor<'tcx> for UsePlacementFinder {
652     fn visit_mod(
653         &mut self,
654         module: &'tcx ast::Mod,
655         _: Span,
656         _: &[ast::Attribute],
657         node_id: NodeId,
658     ) {
659         if self.span.is_some() {
660             return;
661         }
662         if node_id != self.target_module {
663             visit::walk_mod(self, module);
664             return;
665         }
666         // find a use statement
667         for item in &module.items {
668             match item.node {
669                 ItemKind::Use(..) => {
670                     // don't suggest placing a use before the prelude
671                     // import or other generated ones
672                     if item.span.ctxt().outer().expn_info().is_none() {
673                         self.span = Some(item.span.shrink_to_lo());
674                         self.found_use = true;
675                         return;
676                     }
677                 },
678                 // don't place use before extern crate
679                 ItemKind::ExternCrate(_) => {}
680                 // but place them before the first other item
681                 _ => if self.span.map_or(true, |span| item.span < span ) {
682                     if item.span.ctxt().outer().expn_info().is_none() {
683                         // don't insert between attributes and an item
684                         if item.attrs.is_empty() {
685                             self.span = Some(item.span.shrink_to_lo());
686                         } else {
687                             // find the first attribute on the item
688                             for attr in &item.attrs {
689                                 if self.span.map_or(true, |span| attr.span < span) {
690                                     self.span = Some(attr.span.shrink_to_lo());
691                                 }
692                             }
693                         }
694                     }
695                 },
696             }
697         }
698     }
699 }
700
701 /// This thing walks the whole crate in DFS manner, visiting each item, resolving names as it goes.
702 impl<'a, 'tcx, 'cl> Visitor<'tcx> for Resolver<'a, 'cl> {
703     fn visit_item(&mut self, item: &'tcx Item) {
704         self.resolve_item(item);
705     }
706     fn visit_arm(&mut self, arm: &'tcx Arm) {
707         self.resolve_arm(arm);
708     }
709     fn visit_block(&mut self, block: &'tcx Block) {
710         self.resolve_block(block);
711     }
712     fn visit_anon_const(&mut self, constant: &'tcx ast::AnonConst) {
713         self.with_constant_rib(|this| {
714             visit::walk_anon_const(this, constant);
715         });
716     }
717     fn visit_expr(&mut self, expr: &'tcx Expr) {
718         self.resolve_expr(expr, None);
719     }
720     fn visit_local(&mut self, local: &'tcx Local) {
721         self.resolve_local(local);
722     }
723     fn visit_ty(&mut self, ty: &'tcx Ty) {
724         match ty.node {
725             TyKind::Path(ref qself, ref path) => {
726                 self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
727             }
728             TyKind::ImplicitSelf => {
729                 let self_ty = keywords::SelfType.ident();
730                 let def = self.resolve_ident_in_lexical_scope(self_ty, TypeNS, Some(ty.id), ty.span)
731                               .map_or(Def::Err, |d| d.def());
732                 self.record_def(ty.id, PathResolution::new(def));
733             }
734             _ => (),
735         }
736         visit::walk_ty(self, ty);
737     }
738     fn visit_poly_trait_ref(&mut self,
739                             tref: &'tcx ast::PolyTraitRef,
740                             m: &'tcx ast::TraitBoundModifier) {
741         self.smart_resolve_path(tref.trait_ref.ref_id, None,
742                                 &tref.trait_ref.path, PathSource::Trait(AliasPossibility::Maybe));
743         visit::walk_poly_trait_ref(self, tref, m);
744     }
745     fn visit_foreign_item(&mut self, foreign_item: &'tcx ForeignItem) {
746         let type_parameters = match foreign_item.node {
747             ForeignItemKind::Fn(_, ref generics) => {
748                 HasTypeParameters(generics, ItemRibKind)
749             }
750             ForeignItemKind::Static(..) => NoTypeParameters,
751             ForeignItemKind::Ty => NoTypeParameters,
752             ForeignItemKind::Macro(..) => NoTypeParameters,
753         };
754         self.with_type_parameter_rib(type_parameters, |this| {
755             visit::walk_foreign_item(this, foreign_item);
756         });
757     }
758     fn visit_fn(&mut self,
759                 function_kind: FnKind<'tcx>,
760                 declaration: &'tcx FnDecl,
761                 _: Span,
762                 node_id: NodeId)
763     {
764         let (rib_kind, asyncness) = match function_kind {
765             FnKind::ItemFn(_, ref header, ..) =>
766                 (ItemRibKind, header.asyncness),
767             FnKind::Method(_, ref sig, _, _) =>
768                 (TraitOrImplItemRibKind, sig.header.asyncness),
769             FnKind::Closure(_) =>
770                 // Async closures aren't resolved through `visit_fn`-- they're
771                 // processed separately
772                 (ClosureRibKind(node_id), IsAsync::NotAsync),
773         };
774
775         // Create a value rib for the function.
776         self.ribs[ValueNS].push(Rib::new(rib_kind));
777
778         // Create a label rib for the function.
779         self.label_ribs.push(Rib::new(rib_kind));
780
781         // Add each argument to the rib.
782         let mut bindings_list = FxHashMap();
783         for argument in &declaration.inputs {
784             self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
785
786             self.visit_ty(&argument.ty);
787
788             debug!("(resolving function) recorded argument");
789         }
790         visit::walk_fn_ret_ty(self, &declaration.output);
791
792         // Resolve the function body, potentially inside the body of an async closure
793         if let IsAsync::Async { closure_id, .. } = asyncness {
794             let rib_kind = ClosureRibKind(closure_id);
795             self.ribs[ValueNS].push(Rib::new(rib_kind));
796             self.label_ribs.push(Rib::new(rib_kind));
797         }
798
799         match function_kind {
800             FnKind::ItemFn(.., body) |
801             FnKind::Method(.., body) => {
802                 self.visit_block(body);
803             }
804             FnKind::Closure(body) => {
805                 self.visit_expr(body);
806             }
807         };
808
809         // Leave the body of the async closure
810         if asyncness.is_async() {
811             self.label_ribs.pop();
812             self.ribs[ValueNS].pop();
813         }
814
815         debug!("(resolving function) leaving function");
816
817         self.label_ribs.pop();
818         self.ribs[ValueNS].pop();
819     }
820     fn visit_generics(&mut self, generics: &'tcx Generics) {
821         // For type parameter defaults, we have to ban access
822         // to following type parameters, as the Substs can only
823         // provide previous type parameters as they're built. We
824         // put all the parameters on the ban list and then remove
825         // them one by one as they are processed and become available.
826         let mut default_ban_rib = Rib::new(ForwardTyParamBanRibKind);
827         let mut found_default = false;
828         default_ban_rib.bindings.extend(generics.params.iter()
829             .filter_map(|param| match param.kind {
830                 GenericParamKind::Lifetime { .. } => None,
831                 GenericParamKind::Type { ref default, .. } => {
832                     found_default |= default.is_some();
833                     if found_default {
834                         Some((Ident::with_empty_ctxt(param.ident.name), Def::Err))
835                     } else {
836                         None
837                     }
838                 }
839             }));
840
841         for param in &generics.params {
842             match param.kind {
843                 GenericParamKind::Lifetime { .. } => self.visit_generic_param(param),
844                 GenericParamKind::Type { ref default, .. } => {
845                     for bound in &param.bounds {
846                         self.visit_param_bound(bound);
847                     }
848
849                     if let Some(ref ty) = default {
850                         self.ribs[TypeNS].push(default_ban_rib);
851                         self.visit_ty(ty);
852                         default_ban_rib = self.ribs[TypeNS].pop().unwrap();
853                     }
854
855                     // Allow all following defaults to refer to this type parameter.
856                     default_ban_rib.bindings.remove(&Ident::with_empty_ctxt(param.ident.name));
857                 }
858             }
859         }
860         for p in &generics.where_clause.predicates {
861             self.visit_where_predicate(p);
862         }
863     }
864 }
865
866 #[derive(Copy, Clone)]
867 enum TypeParameters<'a, 'b> {
868     NoTypeParameters,
869     HasTypeParameters(// Type parameters.
870                       &'b Generics,
871
872                       // The kind of the rib used for type parameters.
873                       RibKind<'a>),
874 }
875
876 /// The rib kind controls the translation of local
877 /// definitions (`Def::Local`) to upvars (`Def::Upvar`).
878 #[derive(Copy, Clone, Debug)]
879 enum RibKind<'a> {
880     /// No translation needs to be applied.
881     NormalRibKind,
882
883     /// We passed through a closure scope at the given node ID.
884     /// Translate upvars as appropriate.
885     ClosureRibKind(NodeId /* func id */),
886
887     /// We passed through an impl or trait and are now in one of its
888     /// methods or associated types. Allow references to ty params that impl or trait
889     /// binds. Disallow any other upvars (including other ty params that are
890     /// upvars).
891     TraitOrImplItemRibKind,
892
893     /// We passed through an item scope. Disallow upvars.
894     ItemRibKind,
895
896     /// We're in a constant item. Can't refer to dynamic stuff.
897     ConstantItemRibKind,
898
899     /// We passed through a module.
900     ModuleRibKind(Module<'a>),
901
902     /// We passed through a `macro_rules!` statement
903     MacroDefinition(DefId),
904
905     /// All bindings in this rib are type parameters that can't be used
906     /// from the default of a type parameter because they're not declared
907     /// before said type parameter. Also see the `visit_generics` override.
908     ForwardTyParamBanRibKind,
909 }
910
911 /// One local scope.
912 ///
913 /// A rib represents a scope names can live in. Note that these appear in many places, not just
914 /// around braces. At any place where the list of accessible names (of the given namespace)
915 /// changes or a new restrictions on the name accessibility are introduced, a new rib is put onto a
916 /// stack. This may be, for example, a `let` statement (because it introduces variables), a macro,
917 /// etc.
918 ///
919 /// Different [rib kinds](enum.RibKind) are transparent for different names.
920 ///
921 /// The resolution keeps a separate stack of ribs as it traverses the AST for each namespace. When
922 /// resolving, the name is looked up from inside out.
923 #[derive(Debug)]
924 struct Rib<'a> {
925     bindings: FxHashMap<Ident, Def>,
926     kind: RibKind<'a>,
927 }
928
929 impl<'a> Rib<'a> {
930     fn new(kind: RibKind<'a>) -> Rib<'a> {
931         Rib {
932             bindings: FxHashMap(),
933             kind,
934         }
935     }
936 }
937
938 /// An intermediate resolution result.
939 ///
940 /// This refers to the thing referred by a name. The difference between `Def` and `Item` is that
941 /// items are visible in their whole block, while defs only from the place they are defined
942 /// forward.
943 enum LexicalScopeBinding<'a> {
944     Item(&'a NameBinding<'a>),
945     Def(Def),
946 }
947
948 impl<'a> LexicalScopeBinding<'a> {
949     fn item(self) -> Option<&'a NameBinding<'a>> {
950         match self {
951             LexicalScopeBinding::Item(binding) => Some(binding),
952             _ => None,
953         }
954     }
955
956     fn def(self) -> Def {
957         match self {
958             LexicalScopeBinding::Item(binding) => binding.def(),
959             LexicalScopeBinding::Def(def) => def,
960         }
961     }
962 }
963
964 #[derive(Copy, Clone, Debug)]
965 pub enum ModuleOrUniformRoot<'a> {
966     /// Regular module.
967     Module(Module<'a>),
968
969     /// The `{{root}}` (`CrateRoot` aka "global") / `extern` initial segment
970     /// in which external crates resolve, and also `crate` (only in `{{root}}`,
971     /// but *not* `extern`), in the Rust 2018 edition.
972     UniformRoot(Name),
973 }
974
975 #[derive(Clone, Debug)]
976 enum PathResult<'a> {
977     Module(ModuleOrUniformRoot<'a>),
978     NonModule(PathResolution),
979     Indeterminate,
980     Failed(Span, String, bool /* is the error from the last segment? */),
981 }
982
983 enum ModuleKind {
984     /// An anonymous module, eg. just a block.
985     ///
986     /// ```
987     /// fn main() {
988     ///     fn f() {} // (1)
989     ///     { // This is an anonymous module
990     ///         f(); // This resolves to (2) as we are inside the block.
991     ///         fn f() {} // (2)
992     ///     }
993     ///     f(); // Resolves to (1)
994     /// }
995     /// ```
996     Block(NodeId),
997     /// Any module with a name.
998     ///
999     /// This could be:
1000     ///
1001     /// * A normal module â€’ either `mod from_file;` or `mod from_block { }`.
1002     /// * A trait or an enum (it implicitly contains associated types, methods and variant
1003     ///   constructors).
1004     Def(Def, Name),
1005 }
1006
1007 /// One node in the tree of modules.
1008 pub struct ModuleData<'a> {
1009     parent: Option<Module<'a>>,
1010     kind: ModuleKind,
1011
1012     // The def id of the closest normal module (`mod`) ancestor (including this module).
1013     normal_ancestor_id: DefId,
1014
1015     resolutions: RefCell<FxHashMap<(Ident, Namespace), &'a RefCell<NameResolution<'a>>>>,
1016     legacy_macro_resolutions: RefCell<Vec<(Ident, MacroKind, ParentScope<'a>, Option<Def>)>>,
1017     macro_resolutions: RefCell<Vec<(Box<[Ident]>, Span)>>,
1018     builtin_attrs: RefCell<Vec<(Ident, ParentScope<'a>)>>,
1019
1020     // Macro invocations that can expand into items in this module.
1021     unresolved_invocations: RefCell<FxHashSet<Mark>>,
1022
1023     no_implicit_prelude: bool,
1024
1025     glob_importers: RefCell<Vec<&'a ImportDirective<'a>>>,
1026     globs: RefCell<Vec<&'a ImportDirective<'a>>>,
1027
1028     // Used to memoize the traits in this module for faster searches through all traits in scope.
1029     traits: RefCell<Option<Box<[(Ident, &'a NameBinding<'a>)]>>>,
1030
1031     // Whether this module is populated. If not populated, any attempt to
1032     // access the children must be preceded with a
1033     // `populate_module_if_necessary` call.
1034     populated: Cell<bool>,
1035
1036     /// Span of the module itself. Used for error reporting.
1037     span: Span,
1038
1039     expansion: Mark,
1040 }
1041
1042 type Module<'a> = &'a ModuleData<'a>;
1043
1044 impl<'a> ModuleData<'a> {
1045     fn new(parent: Option<Module<'a>>,
1046            kind: ModuleKind,
1047            normal_ancestor_id: DefId,
1048            expansion: Mark,
1049            span: Span) -> Self {
1050         ModuleData {
1051             parent,
1052             kind,
1053             normal_ancestor_id,
1054             resolutions: RefCell::new(FxHashMap()),
1055             legacy_macro_resolutions: RefCell::new(Vec::new()),
1056             macro_resolutions: RefCell::new(Vec::new()),
1057             builtin_attrs: RefCell::new(Vec::new()),
1058             unresolved_invocations: RefCell::new(FxHashSet()),
1059             no_implicit_prelude: false,
1060             glob_importers: RefCell::new(Vec::new()),
1061             globs: RefCell::new(Vec::new()),
1062             traits: RefCell::new(None),
1063             populated: Cell::new(normal_ancestor_id.is_local()),
1064             span,
1065             expansion,
1066         }
1067     }
1068
1069     fn for_each_child<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1070         for (&(ident, ns), name_resolution) in self.resolutions.borrow().iter() {
1071             name_resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1072         }
1073     }
1074
1075     fn for_each_child_stable<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1076         let resolutions = self.resolutions.borrow();
1077         let mut resolutions = resolutions.iter().collect::<Vec<_>>();
1078         resolutions.sort_by_cached_key(|&(&(ident, ns), _)| (ident.as_str(), ns));
1079         for &(&(ident, ns), &resolution) in resolutions.iter() {
1080             resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1081         }
1082     }
1083
1084     fn def(&self) -> Option<Def> {
1085         match self.kind {
1086             ModuleKind::Def(def, _) => Some(def),
1087             _ => None,
1088         }
1089     }
1090
1091     fn def_id(&self) -> Option<DefId> {
1092         self.def().as_ref().map(Def::def_id)
1093     }
1094
1095     // `self` resolves to the first module ancestor that `is_normal`.
1096     fn is_normal(&self) -> bool {
1097         match self.kind {
1098             ModuleKind::Def(Def::Mod(_), _) => true,
1099             _ => false,
1100         }
1101     }
1102
1103     fn is_trait(&self) -> bool {
1104         match self.kind {
1105             ModuleKind::Def(Def::Trait(_), _) => true,
1106             _ => false,
1107         }
1108     }
1109
1110     fn is_local(&self) -> bool {
1111         self.normal_ancestor_id.is_local()
1112     }
1113
1114     fn nearest_item_scope(&'a self) -> Module<'a> {
1115         if self.is_trait() { self.parent.unwrap() } else { self }
1116     }
1117 }
1118
1119 impl<'a> fmt::Debug for ModuleData<'a> {
1120     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1121         write!(f, "{:?}", self.def())
1122     }
1123 }
1124
1125 /// Records a possibly-private value, type, or module definition.
1126 #[derive(Clone, Debug)]
1127 pub struct NameBinding<'a> {
1128     kind: NameBindingKind<'a>,
1129     expansion: Mark,
1130     span: Span,
1131     vis: ty::Visibility,
1132 }
1133
1134 pub trait ToNameBinding<'a> {
1135     fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a>;
1136 }
1137
1138 impl<'a> ToNameBinding<'a> for &'a NameBinding<'a> {
1139     fn to_name_binding(self, _: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> {
1140         self
1141     }
1142 }
1143
1144 #[derive(Clone, Debug)]
1145 enum NameBindingKind<'a> {
1146     Def(Def, /* is_macro_export */ bool),
1147     Module(Module<'a>),
1148     Import {
1149         binding: &'a NameBinding<'a>,
1150         directive: &'a ImportDirective<'a>,
1151         used: Cell<bool>,
1152     },
1153     Ambiguity {
1154         b1: &'a NameBinding<'a>,
1155         b2: &'a NameBinding<'a>,
1156     }
1157 }
1158
1159 struct PrivacyError<'a>(Span, Name, &'a NameBinding<'a>);
1160
1161 struct UseError<'a> {
1162     err: DiagnosticBuilder<'a>,
1163     /// Attach `use` statements for these candidates
1164     candidates: Vec<ImportSuggestion>,
1165     /// The node id of the module to place the use statements in
1166     node_id: NodeId,
1167     /// Whether the diagnostic should state that it's "better"
1168     better: bool,
1169 }
1170
1171 struct AmbiguityError<'a> {
1172     ident: Ident,
1173     b1: &'a NameBinding<'a>,
1174     b2: &'a NameBinding<'a>,
1175 }
1176
1177 impl<'a> NameBinding<'a> {
1178     fn module(&self) -> Option<Module<'a>> {
1179         match self.kind {
1180             NameBindingKind::Module(module) => Some(module),
1181             NameBindingKind::Import { binding, .. } => binding.module(),
1182             _ => None,
1183         }
1184     }
1185
1186     fn def(&self) -> Def {
1187         match self.kind {
1188             NameBindingKind::Def(def, _) => def,
1189             NameBindingKind::Module(module) => module.def().unwrap(),
1190             NameBindingKind::Import { binding, .. } => binding.def(),
1191             NameBindingKind::Ambiguity { .. } => Def::Err,
1192         }
1193     }
1194
1195     fn def_ignoring_ambiguity(&self) -> Def {
1196         match self.kind {
1197             NameBindingKind::Import { binding, .. } => binding.def_ignoring_ambiguity(),
1198             NameBindingKind::Ambiguity { b1, .. } => b1.def_ignoring_ambiguity(),
1199             _ => self.def(),
1200         }
1201     }
1202
1203     fn get_macro<'b: 'a>(&self, resolver: &mut Resolver<'a, 'b>) -> Lrc<SyntaxExtension> {
1204         resolver.get_macro(self.def_ignoring_ambiguity())
1205     }
1206
1207     // We sometimes need to treat variants as `pub` for backwards compatibility
1208     fn pseudo_vis(&self) -> ty::Visibility {
1209         if self.is_variant() && self.def().def_id().is_local() {
1210             ty::Visibility::Public
1211         } else {
1212             self.vis
1213         }
1214     }
1215
1216     fn is_variant(&self) -> bool {
1217         match self.kind {
1218             NameBindingKind::Def(Def::Variant(..), _) |
1219             NameBindingKind::Def(Def::VariantCtor(..), _) => true,
1220             _ => false,
1221         }
1222     }
1223
1224     fn is_extern_crate(&self) -> bool {
1225         match self.kind {
1226             NameBindingKind::Import {
1227                 directive: &ImportDirective {
1228                     subclass: ImportDirectiveSubclass::ExternCrate(_), ..
1229                 }, ..
1230             } => true,
1231             _ => false,
1232         }
1233     }
1234
1235     fn is_import(&self) -> bool {
1236         match self.kind {
1237             NameBindingKind::Import { .. } => true,
1238             _ => false,
1239         }
1240     }
1241
1242     fn is_renamed_extern_crate(&self) -> bool {
1243         if let NameBindingKind::Import { directive, ..} = self.kind {
1244             if let ImportDirectiveSubclass::ExternCrate(Some(_)) = directive.subclass {
1245                 return true;
1246             }
1247         }
1248         false
1249     }
1250
1251     fn is_glob_import(&self) -> bool {
1252         match self.kind {
1253             NameBindingKind::Import { directive, .. } => directive.is_glob(),
1254             NameBindingKind::Ambiguity { b1, .. } => b1.is_glob_import(),
1255             _ => false,
1256         }
1257     }
1258
1259     fn is_importable(&self) -> bool {
1260         match self.def() {
1261             Def::AssociatedConst(..) | Def::Method(..) | Def::AssociatedTy(..) => false,
1262             _ => true,
1263         }
1264     }
1265
1266     fn is_macro_def(&self) -> bool {
1267         match self.kind {
1268             NameBindingKind::Def(Def::Macro(..), _) => true,
1269             _ => false,
1270         }
1271     }
1272
1273     fn macro_kind(&self) -> Option<MacroKind> {
1274         match self.def_ignoring_ambiguity() {
1275             Def::Macro(_, kind) => Some(kind),
1276             Def::NonMacroAttr(..) => Some(MacroKind::Attr),
1277             _ => None,
1278         }
1279     }
1280
1281     fn descr(&self) -> &'static str {
1282         if self.is_extern_crate() { "extern crate" } else { self.def().kind_name() }
1283     }
1284
1285     // Suppose that we resolved macro invocation with `invoc_parent_expansion` to binding `binding`
1286     // at some expansion round `max(invoc, binding)` when they both emerged from macros.
1287     // Then this function returns `true` if `self` may emerge from a macro *after* that
1288     // in some later round and screw up our previously found resolution.
1289     // See more detailed explanation in
1290     // https://github.com/rust-lang/rust/pull/53778#issuecomment-419224049
1291     fn may_appear_after(&self, invoc_parent_expansion: Mark, binding: &NameBinding) -> bool {
1292         // self > max(invoc, binding) => !(self <= invoc || self <= binding)
1293         // Expansions are partially ordered, so "may appear after" is an inversion of
1294         // "certainly appears before or simultaneously" and includes unordered cases.
1295         let self_parent_expansion = self.expansion;
1296         let other_parent_expansion = binding.expansion;
1297         let certainly_before_other_or_simultaneously =
1298             other_parent_expansion.is_descendant_of(self_parent_expansion);
1299         let certainly_before_invoc_or_simultaneously =
1300             invoc_parent_expansion.is_descendant_of(self_parent_expansion);
1301         !(certainly_before_other_or_simultaneously || certainly_before_invoc_or_simultaneously)
1302     }
1303 }
1304
1305 /// Interns the names of the primitive types.
1306 ///
1307 /// All other types are defined somewhere and possibly imported, but the primitive ones need
1308 /// special handling, since they have no place of origin.
1309 struct PrimitiveTypeTable {
1310     primitive_types: FxHashMap<Name, PrimTy>,
1311 }
1312
1313 impl PrimitiveTypeTable {
1314     fn new() -> PrimitiveTypeTable {
1315         let mut table = PrimitiveTypeTable { primitive_types: FxHashMap() };
1316
1317         table.intern("bool", Bool);
1318         table.intern("char", Char);
1319         table.intern("f32", Float(FloatTy::F32));
1320         table.intern("f64", Float(FloatTy::F64));
1321         table.intern("isize", Int(IntTy::Isize));
1322         table.intern("i8", Int(IntTy::I8));
1323         table.intern("i16", Int(IntTy::I16));
1324         table.intern("i32", Int(IntTy::I32));
1325         table.intern("i64", Int(IntTy::I64));
1326         table.intern("i128", Int(IntTy::I128));
1327         table.intern("str", Str);
1328         table.intern("usize", Uint(UintTy::Usize));
1329         table.intern("u8", Uint(UintTy::U8));
1330         table.intern("u16", Uint(UintTy::U16));
1331         table.intern("u32", Uint(UintTy::U32));
1332         table.intern("u64", Uint(UintTy::U64));
1333         table.intern("u128", Uint(UintTy::U128));
1334         table
1335     }
1336
1337     fn intern(&mut self, string: &str, primitive_type: PrimTy) {
1338         self.primitive_types.insert(Symbol::intern(string), primitive_type);
1339     }
1340 }
1341
1342 /// The main resolver class.
1343 ///
1344 /// This is the visitor that walks the whole crate.
1345 pub struct Resolver<'a, 'b: 'a> {
1346     session: &'a Session,
1347     cstore: &'a CStore,
1348
1349     pub definitions: Definitions,
1350
1351     graph_root: Module<'a>,
1352
1353     prelude: Option<Module<'a>>,
1354     extern_prelude: FxHashSet<Name>,
1355
1356     /// n.b. This is used only for better diagnostics, not name resolution itself.
1357     has_self: FxHashSet<DefId>,
1358
1359     /// Names of fields of an item `DefId` accessible with dot syntax.
1360     /// Used for hints during error reporting.
1361     field_names: FxHashMap<DefId, Vec<Name>>,
1362
1363     /// All imports known to succeed or fail.
1364     determined_imports: Vec<&'a ImportDirective<'a>>,
1365
1366     /// All non-determined imports.
1367     indeterminate_imports: Vec<&'a ImportDirective<'a>>,
1368
1369     /// The module that represents the current item scope.
1370     current_module: Module<'a>,
1371
1372     /// The current set of local scopes for types and values.
1373     /// FIXME #4948: Reuse ribs to avoid allocation.
1374     ribs: PerNS<Vec<Rib<'a>>>,
1375
1376     /// The current set of local scopes, for labels.
1377     label_ribs: Vec<Rib<'a>>,
1378
1379     /// The trait that the current context can refer to.
1380     current_trait_ref: Option<(Module<'a>, TraitRef)>,
1381
1382     /// The current self type if inside an impl (used for better errors).
1383     current_self_type: Option<Ty>,
1384
1385     /// The idents for the primitive types.
1386     primitive_type_table: PrimitiveTypeTable,
1387
1388     def_map: DefMap,
1389     import_map: ImportMap,
1390     pub freevars: FreevarMap,
1391     freevars_seen: NodeMap<NodeMap<usize>>,
1392     pub export_map: ExportMap,
1393     pub trait_map: TraitMap,
1394
1395     /// A map from nodes to anonymous modules.
1396     /// Anonymous modules are pseudo-modules that are implicitly created around items
1397     /// contained within blocks.
1398     ///
1399     /// For example, if we have this:
1400     ///
1401     ///  fn f() {
1402     ///      fn g() {
1403     ///          ...
1404     ///      }
1405     ///  }
1406     ///
1407     /// There will be an anonymous module created around `g` with the ID of the
1408     /// entry block for `f`.
1409     block_map: NodeMap<Module<'a>>,
1410     module_map: FxHashMap<DefId, Module<'a>>,
1411     extern_module_map: FxHashMap<(DefId, bool /* MacrosOnly? */), Module<'a>>,
1412
1413     pub make_glob_map: bool,
1414     /// Maps imports to the names of items actually imported (this actually maps
1415     /// all imports, but only glob imports are actually interesting).
1416     pub glob_map: GlobMap,
1417
1418     used_imports: FxHashSet<(NodeId, Namespace)>,
1419     pub maybe_unused_trait_imports: NodeSet,
1420     pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
1421
1422     /// A list of labels as of yet unused. Labels will be removed from this map when
1423     /// they are used (in a `break` or `continue` statement)
1424     pub unused_labels: FxHashMap<NodeId, Span>,
1425
1426     /// privacy errors are delayed until the end in order to deduplicate them
1427     privacy_errors: Vec<PrivacyError<'a>>,
1428     /// ambiguity errors are delayed for deduplication
1429     ambiguity_errors: Vec<AmbiguityError<'a>>,
1430     /// `use` injections are delayed for better placement and deduplication
1431     use_injections: Vec<UseError<'a>>,
1432     /// `use` injections for proc macros wrongly imported with #[macro_use]
1433     proc_mac_errors: Vec<macros::ProcMacError>,
1434     /// crate-local macro expanded `macro_export` referred to by a module-relative path
1435     macro_expanded_macro_export_errors: BTreeSet<(Span, Span)>,
1436
1437     arenas: &'a ResolverArenas<'a>,
1438     dummy_binding: &'a NameBinding<'a>,
1439
1440     crate_loader: &'a mut CrateLoader<'b>,
1441     macro_names: FxHashSet<Ident>,
1442     builtin_macros: FxHashMap<Name, &'a NameBinding<'a>>,
1443     macro_use_prelude: FxHashMap<Name, &'a NameBinding<'a>>,
1444     pub all_macros: FxHashMap<Name, Def>,
1445     macro_map: FxHashMap<DefId, Lrc<SyntaxExtension>>,
1446     macro_defs: FxHashMap<Mark, DefId>,
1447     local_macro_def_scopes: FxHashMap<NodeId, Module<'a>>,
1448     pub whitelisted_legacy_custom_derives: Vec<Name>,
1449     pub found_unresolved_macro: bool,
1450
1451     /// List of crate local macros that we need to warn about as being unused.
1452     /// Right now this only includes macro_rules! macros, and macros 2.0.
1453     unused_macros: FxHashSet<DefId>,
1454
1455     /// Maps the `Mark` of an expansion to its containing module or block.
1456     invocations: FxHashMap<Mark, &'a InvocationData<'a>>,
1457
1458     /// Avoid duplicated errors for "name already defined".
1459     name_already_seen: FxHashMap<Name, Span>,
1460
1461     /// A set of procedural macros imported by `#[macro_use]` that have already been warned about
1462     warned_proc_macros: FxHashSet<Name>,
1463
1464     potentially_unused_imports: Vec<&'a ImportDirective<'a>>,
1465
1466     /// This table maps struct IDs into struct constructor IDs,
1467     /// it's not used during normal resolution, only for better error reporting.
1468     struct_constructors: DefIdMap<(Def, ty::Visibility)>,
1469
1470     /// Only used for better errors on `fn(): fn()`
1471     current_type_ascription: Vec<Span>,
1472
1473     injected_crate: Option<Module<'a>>,
1474
1475     /// Only supposed to be used by rustdoc, otherwise should be false.
1476     pub ignore_extern_prelude_feature: bool,
1477 }
1478
1479 /// Nothing really interesting here, it just provides memory for the rest of the crate.
1480 pub struct ResolverArenas<'a> {
1481     modules: arena::TypedArena<ModuleData<'a>>,
1482     local_modules: RefCell<Vec<Module<'a>>>,
1483     name_bindings: arena::TypedArena<NameBinding<'a>>,
1484     import_directives: arena::TypedArena<ImportDirective<'a>>,
1485     name_resolutions: arena::TypedArena<RefCell<NameResolution<'a>>>,
1486     invocation_data: arena::TypedArena<InvocationData<'a>>,
1487     legacy_bindings: arena::TypedArena<LegacyBinding<'a>>,
1488 }
1489
1490 impl<'a> ResolverArenas<'a> {
1491     fn alloc_module(&'a self, module: ModuleData<'a>) -> Module<'a> {
1492         let module = self.modules.alloc(module);
1493         if module.def_id().map(|def_id| def_id.is_local()).unwrap_or(true) {
1494             self.local_modules.borrow_mut().push(module);
1495         }
1496         module
1497     }
1498     fn local_modules(&'a self) -> ::std::cell::Ref<'a, Vec<Module<'a>>> {
1499         self.local_modules.borrow()
1500     }
1501     fn alloc_name_binding(&'a self, name_binding: NameBinding<'a>) -> &'a NameBinding<'a> {
1502         self.name_bindings.alloc(name_binding)
1503     }
1504     fn alloc_import_directive(&'a self, import_directive: ImportDirective<'a>)
1505                               -> &'a ImportDirective {
1506         self.import_directives.alloc(import_directive)
1507     }
1508     fn alloc_name_resolution(&'a self) -> &'a RefCell<NameResolution<'a>> {
1509         self.name_resolutions.alloc(Default::default())
1510     }
1511     fn alloc_invocation_data(&'a self, expansion_data: InvocationData<'a>)
1512                              -> &'a InvocationData<'a> {
1513         self.invocation_data.alloc(expansion_data)
1514     }
1515     fn alloc_legacy_binding(&'a self, binding: LegacyBinding<'a>) -> &'a LegacyBinding<'a> {
1516         self.legacy_bindings.alloc(binding)
1517     }
1518 }
1519
1520 impl<'a, 'b: 'a, 'cl: 'b> ty::DefIdTree for &'a Resolver<'b, 'cl> {
1521     fn parent(self, id: DefId) -> Option<DefId> {
1522         match id.krate {
1523             LOCAL_CRATE => self.definitions.def_key(id.index).parent,
1524             _ => self.cstore.def_key(id).parent,
1525         }.map(|index| DefId { index, ..id })
1526     }
1527 }
1528
1529 /// This interface is used through the AST→HIR step, to embed full paths into the HIR. After that
1530 /// the resolver is no longer needed as all the relevant information is inline.
1531 impl<'a, 'cl> hir::lowering::Resolver for Resolver<'a, 'cl> {
1532     fn resolve_hir_path(&mut self, path: &mut hir::Path, is_value: bool) {
1533         self.resolve_hir_path_cb(path, is_value,
1534                                  |resolver, span, error| resolve_error(resolver, span, error))
1535     }
1536
1537     fn resolve_str_path(
1538         &mut self,
1539         span: Span,
1540         crate_root: Option<&str>,
1541         components: &[&str],
1542         args: Option<P<hir::GenericArgs>>,
1543         is_value: bool
1544     ) -> hir::Path {
1545         let mut segments = iter::once(keywords::CrateRoot.ident())
1546             .chain(
1547                 crate_root.into_iter()
1548                     .chain(components.iter().cloned())
1549                     .map(Ident::from_str)
1550             ).map(hir::PathSegment::from_ident).collect::<Vec<_>>();
1551
1552         if let Some(args) = args {
1553             let ident = segments.last().unwrap().ident;
1554             *segments.last_mut().unwrap() = hir::PathSegment {
1555                 ident,
1556                 args: Some(args),
1557                 infer_types: true,
1558             };
1559         }
1560
1561         let mut path = hir::Path {
1562             span,
1563             def: Def::Err,
1564             segments: segments.into(),
1565         };
1566
1567         self.resolve_hir_path(&mut path, is_value);
1568         path
1569     }
1570
1571     fn get_resolution(&mut self, id: NodeId) -> Option<PathResolution> {
1572         self.def_map.get(&id).cloned()
1573     }
1574
1575     fn get_import(&mut self, id: NodeId) -> PerNS<Option<PathResolution>> {
1576         self.import_map.get(&id).cloned().unwrap_or_default()
1577     }
1578
1579     fn definitions(&mut self) -> &mut Definitions {
1580         &mut self.definitions
1581     }
1582 }
1583
1584 impl<'a, 'crateloader> Resolver<'a, 'crateloader> {
1585     /// Rustdoc uses this to resolve things in a recoverable way. ResolutionError<'a>
1586     /// isn't something that can be returned because it can't be made to live that long,
1587     /// and also it's a private type. Fortunately rustdoc doesn't need to know the error,
1588     /// just that an error occurred.
1589     pub fn resolve_str_path_error(&mut self, span: Span, path_str: &str, is_value: bool)
1590         -> Result<hir::Path, ()> {
1591         use std::iter;
1592         let mut errored = false;
1593
1594         let mut path = if path_str.starts_with("::") {
1595             hir::Path {
1596                 span,
1597                 def: Def::Err,
1598                 segments: iter::once(keywords::CrateRoot.ident()).chain({
1599                     path_str.split("::").skip(1).map(Ident::from_str)
1600                 }).map(hir::PathSegment::from_ident).collect(),
1601             }
1602         } else {
1603             hir::Path {
1604                 span,
1605                 def: Def::Err,
1606                 segments: path_str.split("::").map(Ident::from_str)
1607                                   .map(hir::PathSegment::from_ident).collect(),
1608             }
1609         };
1610         self.resolve_hir_path_cb(&mut path, is_value, |_, _, _| errored = true);
1611         if errored || path.def == Def::Err {
1612             Err(())
1613         } else {
1614             Ok(path)
1615         }
1616     }
1617
1618     /// resolve_hir_path, but takes a callback in case there was an error
1619     fn resolve_hir_path_cb<F>(&mut self, path: &mut hir::Path, is_value: bool, error_callback: F)
1620         where F: for<'c, 'b> FnOnce(&'c mut Resolver, Span, ResolutionError<'b>)
1621     {
1622         let namespace = if is_value { ValueNS } else { TypeNS };
1623         let hir::Path { ref segments, span, ref mut def } = *path;
1624         let path: Vec<_> = segments.iter().map(|seg| seg.ident).collect();
1625         // FIXME (Manishearth): Intra doc links won't get warned of epoch changes
1626         match self.resolve_path(None, &path, Some(namespace), true, span, CrateLint::No) {
1627             PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
1628                 *def = module.def().unwrap(),
1629             PathResult::NonModule(path_res) if path_res.unresolved_segments() == 0 =>
1630                 *def = path_res.base_def(),
1631             PathResult::NonModule(..) => match self.resolve_path(
1632                 None,
1633                 &path,
1634                 None,
1635                 true,
1636                 span,
1637                 CrateLint::No,
1638             ) {
1639                 PathResult::Failed(span, msg, _) => {
1640                     error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1641                 }
1642                 _ => {}
1643             },
1644             PathResult::Module(ModuleOrUniformRoot::UniformRoot(_)) |
1645             PathResult::Indeterminate => unreachable!(),
1646             PathResult::Failed(span, msg, _) => {
1647                 error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1648             }
1649         }
1650     }
1651 }
1652
1653 impl<'a, 'crateloader: 'a> Resolver<'a, 'crateloader> {
1654     pub fn new(session: &'a Session,
1655                cstore: &'a CStore,
1656                krate: &Crate,
1657                crate_name: &str,
1658                make_glob_map: MakeGlobMap,
1659                crate_loader: &'a mut CrateLoader<'crateloader>,
1660                arenas: &'a ResolverArenas<'a>)
1661                -> Resolver<'a, 'crateloader> {
1662         let root_def_id = DefId::local(CRATE_DEF_INDEX);
1663         let root_module_kind = ModuleKind::Def(Def::Mod(root_def_id), keywords::Invalid.name());
1664         let graph_root = arenas.alloc_module(ModuleData {
1665             no_implicit_prelude: attr::contains_name(&krate.attrs, "no_implicit_prelude"),
1666             ..ModuleData::new(None, root_module_kind, root_def_id, Mark::root(), krate.span)
1667         });
1668         let mut module_map = FxHashMap();
1669         module_map.insert(DefId::local(CRATE_DEF_INDEX), graph_root);
1670
1671         let mut definitions = Definitions::new();
1672         DefCollector::new(&mut definitions, Mark::root())
1673             .collect_root(crate_name, session.local_crate_disambiguator());
1674
1675         let mut extern_prelude: FxHashSet<Name> =
1676             session.opts.externs.iter().map(|kv| Symbol::intern(kv.0)).collect();
1677
1678         // HACK(eddyb) this ignore the `no_{core,std}` attributes.
1679         // FIXME(eddyb) warn (elsewhere) if core/std is used with `no_{core,std}`.
1680         // if !attr::contains_name(&krate.attrs, "no_core") {
1681         // if !attr::contains_name(&krate.attrs, "no_std") {
1682         extern_prelude.insert(Symbol::intern("core"));
1683         extern_prelude.insert(Symbol::intern("std"));
1684         extern_prelude.insert(Symbol::intern("meta"));
1685
1686         let mut invocations = FxHashMap();
1687         invocations.insert(Mark::root(),
1688                            arenas.alloc_invocation_data(InvocationData::root(graph_root)));
1689
1690         let mut macro_defs = FxHashMap();
1691         macro_defs.insert(Mark::root(), root_def_id);
1692
1693         Resolver {
1694             session,
1695
1696             cstore,
1697
1698             definitions,
1699
1700             // The outermost module has def ID 0; this is not reflected in the
1701             // AST.
1702             graph_root,
1703             prelude: None,
1704             extern_prelude,
1705
1706             has_self: FxHashSet(),
1707             field_names: FxHashMap(),
1708
1709             determined_imports: Vec::new(),
1710             indeterminate_imports: Vec::new(),
1711
1712             current_module: graph_root,
1713             ribs: PerNS {
1714                 value_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1715                 type_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1716                 macro_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1717             },
1718             label_ribs: Vec::new(),
1719
1720             current_trait_ref: None,
1721             current_self_type: None,
1722
1723             primitive_type_table: PrimitiveTypeTable::new(),
1724
1725             def_map: NodeMap(),
1726             import_map: NodeMap(),
1727             freevars: NodeMap(),
1728             freevars_seen: NodeMap(),
1729             export_map: FxHashMap(),
1730             trait_map: NodeMap(),
1731             module_map,
1732             block_map: NodeMap(),
1733             extern_module_map: FxHashMap(),
1734
1735             make_glob_map: make_glob_map == MakeGlobMap::Yes,
1736             glob_map: NodeMap(),
1737
1738             used_imports: FxHashSet(),
1739             maybe_unused_trait_imports: NodeSet(),
1740             maybe_unused_extern_crates: Vec::new(),
1741
1742             unused_labels: FxHashMap(),
1743
1744             privacy_errors: Vec::new(),
1745             ambiguity_errors: Vec::new(),
1746             use_injections: Vec::new(),
1747             proc_mac_errors: Vec::new(),
1748             macro_expanded_macro_export_errors: BTreeSet::new(),
1749
1750             arenas,
1751             dummy_binding: arenas.alloc_name_binding(NameBinding {
1752                 kind: NameBindingKind::Def(Def::Err, false),
1753                 expansion: Mark::root(),
1754                 span: DUMMY_SP,
1755                 vis: ty::Visibility::Public,
1756             }),
1757
1758             crate_loader,
1759             macro_names: FxHashSet(),
1760             builtin_macros: FxHashMap(),
1761             macro_use_prelude: FxHashMap(),
1762             all_macros: FxHashMap(),
1763             macro_map: FxHashMap(),
1764             invocations,
1765             macro_defs,
1766             local_macro_def_scopes: FxHashMap(),
1767             name_already_seen: FxHashMap(),
1768             whitelisted_legacy_custom_derives: Vec::new(),
1769             warned_proc_macros: FxHashSet(),
1770             potentially_unused_imports: Vec::new(),
1771             struct_constructors: DefIdMap(),
1772             found_unresolved_macro: false,
1773             unused_macros: FxHashSet(),
1774             current_type_ascription: Vec::new(),
1775             injected_crate: None,
1776             ignore_extern_prelude_feature: false,
1777         }
1778     }
1779
1780     pub fn arenas() -> ResolverArenas<'a> {
1781         ResolverArenas {
1782             modules: arena::TypedArena::new(),
1783             local_modules: RefCell::new(Vec::new()),
1784             name_bindings: arena::TypedArena::new(),
1785             import_directives: arena::TypedArena::new(),
1786             name_resolutions: arena::TypedArena::new(),
1787             invocation_data: arena::TypedArena::new(),
1788             legacy_bindings: arena::TypedArena::new(),
1789         }
1790     }
1791
1792     /// Runs the function on each namespace.
1793     fn per_ns<F: FnMut(&mut Self, Namespace)>(&mut self, mut f: F) {
1794         f(self, TypeNS);
1795         f(self, ValueNS);
1796         f(self, MacroNS);
1797     }
1798
1799     fn macro_def(&self, mut ctxt: SyntaxContext) -> DefId {
1800         loop {
1801             match self.macro_defs.get(&ctxt.outer()) {
1802                 Some(&def_id) => return def_id,
1803                 None => ctxt.remove_mark(),
1804             };
1805         }
1806     }
1807
1808     /// Entry point to crate resolution.
1809     pub fn resolve_crate(&mut self, krate: &Crate) {
1810         ImportResolver { resolver: self }.finalize_imports();
1811         self.current_module = self.graph_root;
1812         self.finalize_current_module_macro_resolutions();
1813
1814         visit::walk_crate(self, krate);
1815
1816         check_unused::check_crate(self, krate);
1817         self.report_errors(krate);
1818         self.crate_loader.postprocess(krate);
1819     }
1820
1821     fn new_module(
1822         &self,
1823         parent: Module<'a>,
1824         kind: ModuleKind,
1825         normal_ancestor_id: DefId,
1826         expansion: Mark,
1827         span: Span,
1828     ) -> Module<'a> {
1829         let module = ModuleData::new(Some(parent), kind, normal_ancestor_id, expansion, span);
1830         self.arenas.alloc_module(module)
1831     }
1832
1833     fn record_use(&mut self, ident: Ident, ns: Namespace, binding: &'a NameBinding<'a>)
1834                   -> bool /* true if an error was reported */ {
1835         match binding.kind {
1836             NameBindingKind::Import { directive, binding, ref used }
1837                     if !used.get() => {
1838                 used.set(true);
1839                 directive.used.set(true);
1840                 self.used_imports.insert((directive.id, ns));
1841                 self.add_to_glob_map(directive.id, ident);
1842                 self.record_use(ident, ns, binding)
1843             }
1844             NameBindingKind::Import { .. } => false,
1845             NameBindingKind::Ambiguity { b1, b2 } => {
1846                 self.ambiguity_errors.push(AmbiguityError { ident, b1, b2 });
1847                 true
1848             }
1849             _ => false
1850         }
1851     }
1852
1853     fn add_to_glob_map(&mut self, id: NodeId, ident: Ident) {
1854         if self.make_glob_map {
1855             self.glob_map.entry(id).or_default().insert(ident.name);
1856         }
1857     }
1858
1859     /// This resolves the identifier `ident` in the namespace `ns` in the current lexical scope.
1860     /// More specifically, we proceed up the hierarchy of scopes and return the binding for
1861     /// `ident` in the first scope that defines it (or None if no scopes define it).
1862     ///
1863     /// A block's items are above its local variables in the scope hierarchy, regardless of where
1864     /// the items are defined in the block. For example,
1865     /// ```rust
1866     /// fn f() {
1867     ///    g(); // Since there are no local variables in scope yet, this resolves to the item.
1868     ///    let g = || {};
1869     ///    fn g() {}
1870     ///    g(); // This resolves to the local variable `g` since it shadows the item.
1871     /// }
1872     /// ```
1873     ///
1874     /// Invariant: This must only be called during main resolution, not during
1875     /// import resolution.
1876     fn resolve_ident_in_lexical_scope(&mut self,
1877                                       mut ident: Ident,
1878                                       ns: Namespace,
1879                                       record_used_id: Option<NodeId>,
1880                                       path_span: Span)
1881                                       -> Option<LexicalScopeBinding<'a>> {
1882         let record_used = record_used_id.is_some();
1883         assert!(ns == TypeNS  || ns == ValueNS);
1884         if ns == TypeNS {
1885             ident.span = if ident.name == keywords::SelfType.name() {
1886                 // FIXME(jseyfried) improve `Self` hygiene
1887                 ident.span.with_ctxt(SyntaxContext::empty())
1888             } else {
1889                 ident.span.modern()
1890             }
1891         } else {
1892             ident = ident.modern_and_legacy();
1893         }
1894
1895         // Walk backwards up the ribs in scope.
1896         let mut module = self.graph_root;
1897         for i in (0 .. self.ribs[ns].len()).rev() {
1898             if let Some(def) = self.ribs[ns][i].bindings.get(&ident).cloned() {
1899                 // The ident resolves to a type parameter or local variable.
1900                 return Some(LexicalScopeBinding::Def(
1901                     self.adjust_local_def(ns, i, def, record_used, path_span)
1902                 ));
1903             }
1904
1905             module = match self.ribs[ns][i].kind {
1906                 ModuleRibKind(module) => module,
1907                 MacroDefinition(def) if def == self.macro_def(ident.span.ctxt()) => {
1908                     // If an invocation of this macro created `ident`, give up on `ident`
1909                     // and switch to `ident`'s source from the macro definition.
1910                     ident.span.remove_mark();
1911                     continue
1912                 }
1913                 _ => continue,
1914             };
1915
1916             let item = self.resolve_ident_in_module_unadjusted(
1917                 ModuleOrUniformRoot::Module(module),
1918                 ident,
1919                 ns,
1920                 false,
1921                 record_used,
1922                 path_span,
1923             );
1924             if let Ok(binding) = item {
1925                 // The ident resolves to an item.
1926                 return Some(LexicalScopeBinding::Item(binding));
1927             }
1928
1929             match module.kind {
1930                 ModuleKind::Block(..) => {}, // We can see through blocks
1931                 _ => break,
1932             }
1933         }
1934
1935         ident.span = ident.span.modern();
1936         let mut poisoned = None;
1937         loop {
1938             let opt_module = if let Some(node_id) = record_used_id {
1939                 self.hygienic_lexical_parent_with_compatibility_fallback(module, &mut ident.span,
1940                                                                          node_id, &mut poisoned)
1941             } else {
1942                 self.hygienic_lexical_parent(module, &mut ident.span)
1943             };
1944             module = unwrap_or!(opt_module, break);
1945             let orig_current_module = self.current_module;
1946             self.current_module = module; // Lexical resolutions can never be a privacy error.
1947             let result = self.resolve_ident_in_module_unadjusted(
1948                 ModuleOrUniformRoot::Module(module),
1949                 ident,
1950                 ns,
1951                 false,
1952                 record_used,
1953                 path_span,
1954             );
1955             self.current_module = orig_current_module;
1956
1957             match result {
1958                 Ok(binding) => {
1959                     if let Some(node_id) = poisoned {
1960                         self.session.buffer_lint_with_diagnostic(
1961                             lint::builtin::PROC_MACRO_DERIVE_RESOLUTION_FALLBACK,
1962                             node_id, ident.span,
1963                             &format!("cannot find {} `{}` in this scope", ns.descr(), ident),
1964                             lint::builtin::BuiltinLintDiagnostics::
1965                                 ProcMacroDeriveResolutionFallback(ident.span),
1966                         );
1967                     }
1968                     return Some(LexicalScopeBinding::Item(binding))
1969                 }
1970                 Err(Determined) => continue,
1971                 Err(Undetermined) =>
1972                     span_bug!(ident.span, "undetermined resolution during main resolution pass"),
1973             }
1974         }
1975
1976         if !module.no_implicit_prelude {
1977             // `record_used` means that we don't try to load crates during speculative resolution
1978             if record_used && ns == TypeNS && self.extern_prelude.contains(&ident.name) {
1979                 if !self.session.features_untracked().extern_prelude &&
1980                    !self.ignore_extern_prelude_feature {
1981                     feature_err(&self.session.parse_sess, "extern_prelude",
1982                                 ident.span, GateIssue::Language,
1983                                 "access to extern crates through prelude is experimental").emit();
1984                 }
1985
1986                 let crate_id = self.crate_loader.process_path_extern(ident.name, ident.span);
1987                 let crate_root = self.get_module(DefId { krate: crate_id, index: CRATE_DEF_INDEX });
1988                 self.populate_module_if_necessary(&crate_root);
1989
1990                 let binding = (crate_root, ty::Visibility::Public,
1991                                ident.span, Mark::root()).to_name_binding(self.arenas);
1992                 return Some(LexicalScopeBinding::Item(binding));
1993             }
1994             if ns == TypeNS && is_known_tool(ident.name) {
1995                 let binding = (Def::ToolMod, ty::Visibility::Public,
1996                                ident.span, Mark::root()).to_name_binding(self.arenas);
1997                 return Some(LexicalScopeBinding::Item(binding));
1998             }
1999             if let Some(prelude) = self.prelude {
2000                 if let Ok(binding) = self.resolve_ident_in_module_unadjusted(
2001                     ModuleOrUniformRoot::Module(prelude),
2002                     ident,
2003                     ns,
2004                     false,
2005                     false,
2006                     path_span,
2007                 ) {
2008                     return Some(LexicalScopeBinding::Item(binding));
2009                 }
2010             }
2011         }
2012
2013         None
2014     }
2015
2016     fn hygienic_lexical_parent(&mut self, module: Module<'a>, span: &mut Span)
2017                                -> Option<Module<'a>> {
2018         if !module.expansion.is_descendant_of(span.ctxt().outer()) {
2019             return Some(self.macro_def_scope(span.remove_mark()));
2020         }
2021
2022         if let ModuleKind::Block(..) = module.kind {
2023             return Some(module.parent.unwrap());
2024         }
2025
2026         None
2027     }
2028
2029     fn hygienic_lexical_parent_with_compatibility_fallback(&mut self, module: Module<'a>,
2030                                                            span: &mut Span, node_id: NodeId,
2031                                                            poisoned: &mut Option<NodeId>)
2032                                                            -> Option<Module<'a>> {
2033         if let module @ Some(..) = self.hygienic_lexical_parent(module, span) {
2034             return module;
2035         }
2036
2037         // We need to support the next case under a deprecation warning
2038         // ```
2039         // struct MyStruct;
2040         // ---- begin: this comes from a proc macro derive
2041         // mod implementation_details {
2042         //     // Note that `MyStruct` is not in scope here.
2043         //     impl SomeTrait for MyStruct { ... }
2044         // }
2045         // ---- end
2046         // ```
2047         // So we have to fall back to the module's parent during lexical resolution in this case.
2048         if let Some(parent) = module.parent {
2049             // Inner module is inside the macro, parent module is outside of the macro.
2050             if module.expansion != parent.expansion &&
2051             module.expansion.is_descendant_of(parent.expansion) {
2052                 // The macro is a proc macro derive
2053                 if module.expansion.looks_like_proc_macro_derive() {
2054                     if parent.expansion.is_descendant_of(span.ctxt().outer()) {
2055                         *poisoned = Some(node_id);
2056                         return module.parent;
2057                     }
2058                 }
2059             }
2060         }
2061
2062         None
2063     }
2064
2065     fn resolve_ident_in_module(&mut self,
2066                                module: ModuleOrUniformRoot<'a>,
2067                                mut ident: Ident,
2068                                ns: Namespace,
2069                                record_used: bool,
2070                                span: Span)
2071                                -> Result<&'a NameBinding<'a>, Determinacy> {
2072         ident.span = ident.span.modern();
2073         let orig_current_module = self.current_module;
2074         if let ModuleOrUniformRoot::Module(module) = module {
2075             if let Some(def) = ident.span.adjust(module.expansion) {
2076                 self.current_module = self.macro_def_scope(def);
2077             }
2078         }
2079         let result = self.resolve_ident_in_module_unadjusted(
2080             module, ident, ns, false, record_used, span,
2081         );
2082         self.current_module = orig_current_module;
2083         result
2084     }
2085
2086     fn resolve_crate_root(&mut self, ident: Ident) -> Module<'a> {
2087         let mut ctxt = ident.span.ctxt();
2088         let mark = if ident.name == keywords::DollarCrate.name() {
2089             // When resolving `$crate` from a `macro_rules!` invoked in a `macro`,
2090             // we don't want to pretend that the `macro_rules!` definition is in the `macro`
2091             // as described in `SyntaxContext::apply_mark`, so we ignore prepended modern marks.
2092             // FIXME: This is only a guess and it doesn't work correctly for `macro_rules!`
2093             // definitions actually produced by `macro` and `macro` definitions produced by
2094             // `macro_rules!`, but at least such configurations are not stable yet.
2095             ctxt = ctxt.modern_and_legacy();
2096             let mut iter = ctxt.marks().into_iter().rev().peekable();
2097             let mut result = None;
2098             // Find the last modern mark from the end if it exists.
2099             while let Some(&(mark, transparency)) = iter.peek() {
2100                 if transparency == Transparency::Opaque {
2101                     result = Some(mark);
2102                     iter.next();
2103                 } else {
2104                     break;
2105                 }
2106             }
2107             // Then find the last legacy mark from the end if it exists.
2108             for (mark, transparency) in iter {
2109                 if transparency == Transparency::SemiTransparent {
2110                     result = Some(mark);
2111                 } else {
2112                     break;
2113                 }
2114             }
2115             result
2116         } else {
2117             ctxt = ctxt.modern();
2118             ctxt.adjust(Mark::root())
2119         };
2120         let module = match mark {
2121             Some(def) => self.macro_def_scope(def),
2122             None => return self.graph_root,
2123         };
2124         self.get_module(DefId { index: CRATE_DEF_INDEX, ..module.normal_ancestor_id })
2125     }
2126
2127     fn resolve_self(&mut self, ctxt: &mut SyntaxContext, module: Module<'a>) -> Module<'a> {
2128         let mut module = self.get_module(module.normal_ancestor_id);
2129         while module.span.ctxt().modern() != *ctxt {
2130             let parent = module.parent.unwrap_or_else(|| self.macro_def_scope(ctxt.remove_mark()));
2131             module = self.get_module(parent.normal_ancestor_id);
2132         }
2133         module
2134     }
2135
2136     // AST resolution
2137     //
2138     // We maintain a list of value ribs and type ribs.
2139     //
2140     // Simultaneously, we keep track of the current position in the module
2141     // graph in the `current_module` pointer. When we go to resolve a name in
2142     // the value or type namespaces, we first look through all the ribs and
2143     // then query the module graph. When we resolve a name in the module
2144     // namespace, we can skip all the ribs (since nested modules are not
2145     // allowed within blocks in Rust) and jump straight to the current module
2146     // graph node.
2147     //
2148     // Named implementations are handled separately. When we find a method
2149     // call, we consult the module node to find all of the implementations in
2150     // scope. This information is lazily cached in the module node. We then
2151     // generate a fake "implementation scope" containing all the
2152     // implementations thus found, for compatibility with old resolve pass.
2153
2154     pub fn with_scope<F, T>(&mut self, id: NodeId, f: F) -> T
2155         where F: FnOnce(&mut Resolver) -> T
2156     {
2157         let id = self.definitions.local_def_id(id);
2158         let module = self.module_map.get(&id).cloned(); // clones a reference
2159         if let Some(module) = module {
2160             // Move down in the graph.
2161             let orig_module = replace(&mut self.current_module, module);
2162             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(module)));
2163             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(module)));
2164
2165             self.finalize_current_module_macro_resolutions();
2166             let ret = f(self);
2167
2168             self.current_module = orig_module;
2169             self.ribs[ValueNS].pop();
2170             self.ribs[TypeNS].pop();
2171             ret
2172         } else {
2173             f(self)
2174         }
2175     }
2176
2177     /// Searches the current set of local scopes for labels. Returns the first non-None label that
2178     /// is returned by the given predicate function
2179     ///
2180     /// Stops after meeting a closure.
2181     fn search_label<P, R>(&self, mut ident: Ident, pred: P) -> Option<R>
2182         where P: Fn(&Rib, Ident) -> Option<R>
2183     {
2184         for rib in self.label_ribs.iter().rev() {
2185             match rib.kind {
2186                 NormalRibKind => {}
2187                 // If an invocation of this macro created `ident`, give up on `ident`
2188                 // and switch to `ident`'s source from the macro definition.
2189                 MacroDefinition(def) => {
2190                     if def == self.macro_def(ident.span.ctxt()) {
2191                         ident.span.remove_mark();
2192                     }
2193                 }
2194                 _ => {
2195                     // Do not resolve labels across function boundary
2196                     return None;
2197                 }
2198             }
2199             let r = pred(rib, ident);
2200             if r.is_some() {
2201                 return r;
2202             }
2203         }
2204         None
2205     }
2206
2207     fn resolve_adt(&mut self, item: &Item, generics: &Generics) {
2208         self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2209             let item_def_id = this.definitions.local_def_id(item.id);
2210             if this.session.features_untracked().self_in_typedefs {
2211                 this.with_self_rib(Def::SelfTy(None, Some(item_def_id)), |this| {
2212                     visit::walk_item(this, item);
2213                 });
2214             } else {
2215                 visit::walk_item(this, item);
2216             }
2217         });
2218     }
2219
2220     fn resolve_item(&mut self, item: &Item) {
2221         let name = item.ident.name;
2222         debug!("(resolving item) resolving {}", name);
2223
2224         match item.node {
2225             ItemKind::Ty(_, ref generics) |
2226             ItemKind::Fn(_, _, ref generics, _) |
2227             ItemKind::Existential(_, ref generics) => {
2228                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind),
2229                                              |this| visit::walk_item(this, item));
2230             }
2231
2232             ItemKind::Enum(_, ref generics) |
2233             ItemKind::Struct(_, ref generics) |
2234             ItemKind::Union(_, ref generics) => {
2235                 self.resolve_adt(item, generics);
2236             }
2237
2238             ItemKind::Impl(.., ref generics, ref opt_trait_ref, ref self_type, ref impl_items) =>
2239                 self.resolve_implementation(generics,
2240                                             opt_trait_ref,
2241                                             &self_type,
2242                                             item.id,
2243                                             impl_items),
2244
2245             ItemKind::Trait(.., ref generics, ref bounds, ref trait_items) => {
2246                 // Create a new rib for the trait-wide type parameters.
2247                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2248                     let local_def_id = this.definitions.local_def_id(item.id);
2249                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2250                         this.visit_generics(generics);
2251                         walk_list!(this, visit_param_bound, bounds);
2252
2253                         for trait_item in trait_items {
2254                             let type_parameters = HasTypeParameters(&trait_item.generics,
2255                                                                     TraitOrImplItemRibKind);
2256                             this.with_type_parameter_rib(type_parameters, |this| {
2257                                 match trait_item.node {
2258                                     TraitItemKind::Const(ref ty, ref default) => {
2259                                         this.visit_ty(ty);
2260
2261                                         // Only impose the restrictions of
2262                                         // ConstRibKind for an actual constant
2263                                         // expression in a provided default.
2264                                         if let Some(ref expr) = *default{
2265                                             this.with_constant_rib(|this| {
2266                                                 this.visit_expr(expr);
2267                                             });
2268                                         }
2269                                     }
2270                                     TraitItemKind::Method(_, _) => {
2271                                         visit::walk_trait_item(this, trait_item)
2272                                     }
2273                                     TraitItemKind::Type(..) => {
2274                                         visit::walk_trait_item(this, trait_item)
2275                                     }
2276                                     TraitItemKind::Macro(_) => {
2277                                         panic!("unexpanded macro in resolve!")
2278                                     }
2279                                 };
2280                             });
2281                         }
2282                     });
2283                 });
2284             }
2285
2286             ItemKind::TraitAlias(ref generics, ref bounds) => {
2287                 // Create a new rib for the trait-wide type parameters.
2288                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2289                     let local_def_id = this.definitions.local_def_id(item.id);
2290                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2291                         this.visit_generics(generics);
2292                         walk_list!(this, visit_param_bound, bounds);
2293                     });
2294                 });
2295             }
2296
2297             ItemKind::Mod(_) | ItemKind::ForeignMod(_) => {
2298                 self.with_scope(item.id, |this| {
2299                     visit::walk_item(this, item);
2300                 });
2301             }
2302
2303             ItemKind::Static(ref ty, _, ref expr) |
2304             ItemKind::Const(ref ty, ref expr) => {
2305                 self.with_item_rib(|this| {
2306                     this.visit_ty(ty);
2307                     this.with_constant_rib(|this| {
2308                         this.visit_expr(expr);
2309                     });
2310                 });
2311             }
2312
2313             ItemKind::Use(ref use_tree) => {
2314                 // Imports are resolved as global by default, add starting root segment.
2315                 let path = Path {
2316                     segments: use_tree.prefix.make_root().into_iter().collect(),
2317                     span: use_tree.span,
2318                 };
2319                 self.resolve_use_tree(item.id, use_tree.span, item.id, use_tree, &path);
2320             }
2321
2322             ItemKind::ExternCrate(_) | ItemKind::MacroDef(..) | ItemKind::GlobalAsm(_) => {
2323                 // do nothing, these are just around to be encoded
2324             }
2325
2326             ItemKind::Mac(_) => panic!("unexpanded macro in resolve!"),
2327         }
2328     }
2329
2330     /// For the most part, use trees are desugared into `ImportDirective` instances
2331     /// when building the reduced graph (see `build_reduced_graph_for_use_tree`). But
2332     /// there is one special case we handle here: an empty nested import like
2333     /// `a::{b::{}}`, which desugares into...no import directives.
2334     fn resolve_use_tree(
2335         &mut self,
2336         root_id: NodeId,
2337         root_span: Span,
2338         id: NodeId,
2339         use_tree: &ast::UseTree,
2340         prefix: &Path,
2341     ) {
2342         match use_tree.kind {
2343             ast::UseTreeKind::Nested(ref items) => {
2344                 let path = Path {
2345                     segments: prefix.segments
2346                         .iter()
2347                         .chain(use_tree.prefix.segments.iter())
2348                         .cloned()
2349                         .collect(),
2350                     span: prefix.span.to(use_tree.prefix.span),
2351                 };
2352
2353                 if items.len() == 0 {
2354                     // Resolve prefix of an import with empty braces (issue #28388).
2355                     self.smart_resolve_path_with_crate_lint(
2356                         id,
2357                         None,
2358                         &path,
2359                         PathSource::ImportPrefix,
2360                         CrateLint::UsePath { root_id, root_span },
2361                     );
2362                 } else {
2363                     for &(ref tree, nested_id) in items {
2364                         self.resolve_use_tree(root_id, root_span, nested_id, tree, &path);
2365                     }
2366                 }
2367             }
2368             ast::UseTreeKind::Simple(..) => {},
2369             ast::UseTreeKind::Glob => {},
2370         }
2371     }
2372
2373     fn with_type_parameter_rib<'b, F>(&'b mut self, type_parameters: TypeParameters<'a, 'b>, f: F)
2374         where F: FnOnce(&mut Resolver)
2375     {
2376         match type_parameters {
2377             HasTypeParameters(generics, rib_kind) => {
2378                 let mut function_type_rib = Rib::new(rib_kind);
2379                 let mut seen_bindings = FxHashMap();
2380                 for param in &generics.params {
2381                     match param.kind {
2382                         GenericParamKind::Lifetime { .. } => {}
2383                         GenericParamKind::Type { .. } => {
2384                             let ident = param.ident.modern();
2385                             debug!("with_type_parameter_rib: {}", param.id);
2386
2387                             if seen_bindings.contains_key(&ident) {
2388                                 let span = seen_bindings.get(&ident).unwrap();
2389                                 let err = ResolutionError::NameAlreadyUsedInTypeParameterList(
2390                                     ident.name,
2391                                     span,
2392                                 );
2393                                 resolve_error(self, param.ident.span, err);
2394                             }
2395                             seen_bindings.entry(ident).or_insert(param.ident.span);
2396
2397                         // Plain insert (no renaming).
2398                         let def = Def::TyParam(self.definitions.local_def_id(param.id));
2399                             function_type_rib.bindings.insert(ident, def);
2400                             self.record_def(param.id, PathResolution::new(def));
2401                         }
2402                     }
2403                 }
2404                 self.ribs[TypeNS].push(function_type_rib);
2405             }
2406
2407             NoTypeParameters => {
2408                 // Nothing to do.
2409             }
2410         }
2411
2412         f(self);
2413
2414         if let HasTypeParameters(..) = type_parameters {
2415             self.ribs[TypeNS].pop();
2416         }
2417     }
2418
2419     fn with_label_rib<F>(&mut self, f: F)
2420         where F: FnOnce(&mut Resolver)
2421     {
2422         self.label_ribs.push(Rib::new(NormalRibKind));
2423         f(self);
2424         self.label_ribs.pop();
2425     }
2426
2427     fn with_item_rib<F>(&mut self, f: F)
2428         where F: FnOnce(&mut Resolver)
2429     {
2430         self.ribs[ValueNS].push(Rib::new(ItemRibKind));
2431         self.ribs[TypeNS].push(Rib::new(ItemRibKind));
2432         f(self);
2433         self.ribs[TypeNS].pop();
2434         self.ribs[ValueNS].pop();
2435     }
2436
2437     fn with_constant_rib<F>(&mut self, f: F)
2438         where F: FnOnce(&mut Resolver)
2439     {
2440         self.ribs[ValueNS].push(Rib::new(ConstantItemRibKind));
2441         self.label_ribs.push(Rib::new(ConstantItemRibKind));
2442         f(self);
2443         self.label_ribs.pop();
2444         self.ribs[ValueNS].pop();
2445     }
2446
2447     fn with_current_self_type<T, F>(&mut self, self_type: &Ty, f: F) -> T
2448         where F: FnOnce(&mut Resolver) -> T
2449     {
2450         // Handle nested impls (inside fn bodies)
2451         let previous_value = replace(&mut self.current_self_type, Some(self_type.clone()));
2452         let result = f(self);
2453         self.current_self_type = previous_value;
2454         result
2455     }
2456
2457     /// This is called to resolve a trait reference from an `impl` (i.e. `impl Trait for Foo`)
2458     fn with_optional_trait_ref<T, F>(&mut self, opt_trait_ref: Option<&TraitRef>, f: F) -> T
2459         where F: FnOnce(&mut Resolver, Option<DefId>) -> T
2460     {
2461         let mut new_val = None;
2462         let mut new_id = None;
2463         if let Some(trait_ref) = opt_trait_ref {
2464             let path: Vec<_> = trait_ref.path.segments.iter()
2465                 .map(|seg| seg.ident)
2466                 .collect();
2467             let def = self.smart_resolve_path_fragment(
2468                 trait_ref.ref_id,
2469                 None,
2470                 &path,
2471                 trait_ref.path.span,
2472                 PathSource::Trait(AliasPossibility::No),
2473                 CrateLint::SimplePath(trait_ref.ref_id),
2474             ).base_def();
2475             if def != Def::Err {
2476                 new_id = Some(def.def_id());
2477                 let span = trait_ref.path.span;
2478                 if let PathResult::Module(ModuleOrUniformRoot::Module(module)) =
2479                     self.resolve_path(
2480                         None,
2481                         &path,
2482                         None,
2483                         false,
2484                         span,
2485                         CrateLint::SimplePath(trait_ref.ref_id),
2486                     )
2487                 {
2488                     new_val = Some((module, trait_ref.clone()));
2489                 }
2490             }
2491         }
2492         let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
2493         let result = f(self, new_id);
2494         self.current_trait_ref = original_trait_ref;
2495         result
2496     }
2497
2498     fn with_self_rib<F>(&mut self, self_def: Def, f: F)
2499         where F: FnOnce(&mut Resolver)
2500     {
2501         let mut self_type_rib = Rib::new(NormalRibKind);
2502
2503         // plain insert (no renaming, types are not currently hygienic....)
2504         self_type_rib.bindings.insert(keywords::SelfType.ident(), self_def);
2505         self.ribs[TypeNS].push(self_type_rib);
2506         f(self);
2507         self.ribs[TypeNS].pop();
2508     }
2509
2510     fn with_self_struct_ctor_rib<F>(&mut self, impl_id: DefId, f: F)
2511         where F: FnOnce(&mut Resolver)
2512     {
2513         let self_def = Def::SelfCtor(impl_id);
2514         let mut self_type_rib = Rib::new(NormalRibKind);
2515         self_type_rib.bindings.insert(keywords::SelfType.ident(), self_def);
2516         self.ribs[ValueNS].push(self_type_rib);
2517         f(self);
2518         self.ribs[ValueNS].pop();
2519     }
2520
2521     fn resolve_implementation(&mut self,
2522                               generics: &Generics,
2523                               opt_trait_reference: &Option<TraitRef>,
2524                               self_type: &Ty,
2525                               item_id: NodeId,
2526                               impl_items: &[ImplItem]) {
2527         // If applicable, create a rib for the type parameters.
2528         self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2529             // Dummy self type for better errors if `Self` is used in the trait path.
2530             this.with_self_rib(Def::SelfTy(None, None), |this| {
2531                 // Resolve the trait reference, if necessary.
2532                 this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| {
2533                     let item_def_id = this.definitions.local_def_id(item_id);
2534                     this.with_self_rib(Def::SelfTy(trait_id, Some(item_def_id)), |this| {
2535                         if let Some(trait_ref) = opt_trait_reference.as_ref() {
2536                             // Resolve type arguments in the trait path.
2537                             visit::walk_trait_ref(this, trait_ref);
2538                         }
2539                         // Resolve the self type.
2540                         this.visit_ty(self_type);
2541                         // Resolve the type parameters.
2542                         this.visit_generics(generics);
2543                         // Resolve the items within the impl.
2544                         this.with_current_self_type(self_type, |this| {
2545                             this.with_self_struct_ctor_rib(item_def_id, |this| {
2546                                 for impl_item in impl_items {
2547                                     this.resolve_visibility(&impl_item.vis);
2548
2549                                     // We also need a new scope for the impl item type parameters.
2550                                     let type_parameters = HasTypeParameters(&impl_item.generics,
2551                                                                             TraitOrImplItemRibKind);
2552                                     this.with_type_parameter_rib(type_parameters, |this| {
2553                                         use self::ResolutionError::*;
2554                                         match impl_item.node {
2555                                             ImplItemKind::Const(..) => {
2556                                                 // If this is a trait impl, ensure the const
2557                                                 // exists in trait
2558                                                 this.check_trait_item(impl_item.ident,
2559                                                                       ValueNS,
2560                                                                       impl_item.span,
2561                                                     |n, s| ConstNotMemberOfTrait(n, s));
2562                                                 this.with_constant_rib(|this|
2563                                                     visit::walk_impl_item(this, impl_item)
2564                                                 );
2565                                             }
2566                                             ImplItemKind::Method(..) => {
2567                                                 // If this is a trait impl, ensure the method
2568                                                 // exists in trait
2569                                                 this.check_trait_item(impl_item.ident,
2570                                                                       ValueNS,
2571                                                                       impl_item.span,
2572                                                     |n, s| MethodNotMemberOfTrait(n, s));
2573
2574                                                 visit::walk_impl_item(this, impl_item);
2575                                             }
2576                                             ImplItemKind::Type(ref ty) => {
2577                                                 // If this is a trait impl, ensure the type
2578                                                 // exists in trait
2579                                                 this.check_trait_item(impl_item.ident,
2580                                                                       TypeNS,
2581                                                                       impl_item.span,
2582                                                     |n, s| TypeNotMemberOfTrait(n, s));
2583
2584                                                 this.visit_ty(ty);
2585                                             }
2586                                             ImplItemKind::Existential(ref bounds) => {
2587                                                 // If this is a trait impl, ensure the type
2588                                                 // exists in trait
2589                                                 this.check_trait_item(impl_item.ident,
2590                                                                       TypeNS,
2591                                                                       impl_item.span,
2592                                                     |n, s| TypeNotMemberOfTrait(n, s));
2593
2594                                                 for bound in bounds {
2595                                                     this.visit_param_bound(bound);
2596                                                 }
2597                                             }
2598                                             ImplItemKind::Macro(_) =>
2599                                                 panic!("unexpanded macro in resolve!"),
2600                                         }
2601                                     });
2602                                 }
2603                             });
2604                         });
2605                     });
2606                 });
2607             });
2608         });
2609     }
2610
2611     fn check_trait_item<F>(&mut self, ident: Ident, ns: Namespace, span: Span, err: F)
2612         where F: FnOnce(Name, &str) -> ResolutionError
2613     {
2614         // If there is a TraitRef in scope for an impl, then the method must be in the
2615         // trait.
2616         if let Some((module, _)) = self.current_trait_ref {
2617             if self.resolve_ident_in_module(
2618                 ModuleOrUniformRoot::Module(module),
2619                 ident,
2620                 ns,
2621                 false,
2622                 span,
2623             ).is_err() {
2624                 let path = &self.current_trait_ref.as_ref().unwrap().1.path;
2625                 resolve_error(self, span, err(ident.name, &path_names_to_string(path)));
2626             }
2627         }
2628     }
2629
2630     fn resolve_local(&mut self, local: &Local) {
2631         // Resolve the type.
2632         walk_list!(self, visit_ty, &local.ty);
2633
2634         // Resolve the initializer.
2635         walk_list!(self, visit_expr, &local.init);
2636
2637         // Resolve the pattern.
2638         self.resolve_pattern(&local.pat, PatternSource::Let, &mut FxHashMap());
2639     }
2640
2641     // build a map from pattern identifiers to binding-info's.
2642     // this is done hygienically. This could arise for a macro
2643     // that expands into an or-pattern where one 'x' was from the
2644     // user and one 'x' came from the macro.
2645     fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
2646         let mut binding_map = FxHashMap();
2647
2648         pat.walk(&mut |pat| {
2649             if let PatKind::Ident(binding_mode, ident, ref sub_pat) = pat.node {
2650                 if sub_pat.is_some() || match self.def_map.get(&pat.id).map(|res| res.base_def()) {
2651                     Some(Def::Local(..)) => true,
2652                     _ => false,
2653                 } {
2654                     let binding_info = BindingInfo { span: ident.span, binding_mode: binding_mode };
2655                     binding_map.insert(ident, binding_info);
2656                 }
2657             }
2658             true
2659         });
2660
2661         binding_map
2662     }
2663
2664     // check that all of the arms in an or-pattern have exactly the
2665     // same set of bindings, with the same binding modes for each.
2666     fn check_consistent_bindings(&mut self, pats: &[P<Pat>]) {
2667         if pats.is_empty() {
2668             return;
2669         }
2670
2671         let mut missing_vars = FxHashMap();
2672         let mut inconsistent_vars = FxHashMap();
2673         for (i, p) in pats.iter().enumerate() {
2674             let map_i = self.binding_mode_map(&p);
2675
2676             for (j, q) in pats.iter().enumerate() {
2677                 if i == j {
2678                     continue;
2679                 }
2680
2681                 let map_j = self.binding_mode_map(&q);
2682                 for (&key, &binding_i) in &map_i {
2683                     if map_j.len() == 0 {                   // Account for missing bindings when
2684                         let binding_error = missing_vars    // map_j has none.
2685                             .entry(key.name)
2686                             .or_insert(BindingError {
2687                                 name: key.name,
2688                                 origin: BTreeSet::new(),
2689                                 target: BTreeSet::new(),
2690                             });
2691                         binding_error.origin.insert(binding_i.span);
2692                         binding_error.target.insert(q.span);
2693                     }
2694                     for (&key_j, &binding_j) in &map_j {
2695                         match map_i.get(&key_j) {
2696                             None => {  // missing binding
2697                                 let binding_error = missing_vars
2698                                     .entry(key_j.name)
2699                                     .or_insert(BindingError {
2700                                         name: key_j.name,
2701                                         origin: BTreeSet::new(),
2702                                         target: BTreeSet::new(),
2703                                     });
2704                                 binding_error.origin.insert(binding_j.span);
2705                                 binding_error.target.insert(p.span);
2706                             }
2707                             Some(binding_i) => {  // check consistent binding
2708                                 if binding_i.binding_mode != binding_j.binding_mode {
2709                                     inconsistent_vars
2710                                         .entry(key.name)
2711                                         .or_insert((binding_j.span, binding_i.span));
2712                                 }
2713                             }
2714                         }
2715                     }
2716                 }
2717             }
2718         }
2719         let mut missing_vars = missing_vars.iter().collect::<Vec<_>>();
2720         missing_vars.sort();
2721         for (_, v) in missing_vars {
2722             resolve_error(self,
2723                           *v.origin.iter().next().unwrap(),
2724                           ResolutionError::VariableNotBoundInPattern(v));
2725         }
2726         let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
2727         inconsistent_vars.sort();
2728         for (name, v) in inconsistent_vars {
2729             resolve_error(self, v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
2730         }
2731     }
2732
2733     fn resolve_arm(&mut self, arm: &Arm) {
2734         self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2735
2736         let mut bindings_list = FxHashMap();
2737         for pattern in &arm.pats {
2738             self.resolve_pattern(&pattern, PatternSource::Match, &mut bindings_list);
2739         }
2740
2741         // This has to happen *after* we determine which pat_idents are variants
2742         self.check_consistent_bindings(&arm.pats);
2743
2744         match arm.guard {
2745             Some(ast::Guard::If(ref expr)) => self.visit_expr(expr),
2746             _ => {}
2747         }
2748         self.visit_expr(&arm.body);
2749
2750         self.ribs[ValueNS].pop();
2751     }
2752
2753     fn resolve_block(&mut self, block: &Block) {
2754         debug!("(resolving block) entering block");
2755         // Move down in the graph, if there's an anonymous module rooted here.
2756         let orig_module = self.current_module;
2757         let anonymous_module = self.block_map.get(&block.id).cloned(); // clones a reference
2758
2759         let mut num_macro_definition_ribs = 0;
2760         if let Some(anonymous_module) = anonymous_module {
2761             debug!("(resolving block) found anonymous module, moving down");
2762             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2763             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2764             self.current_module = anonymous_module;
2765             self.finalize_current_module_macro_resolutions();
2766         } else {
2767             self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2768         }
2769
2770         // Descend into the block.
2771         for stmt in &block.stmts {
2772             if let ast::StmtKind::Item(ref item) = stmt.node {
2773                 if let ast::ItemKind::MacroDef(..) = item.node {
2774                     num_macro_definition_ribs += 1;
2775                     let def = self.definitions.local_def_id(item.id);
2776                     self.ribs[ValueNS].push(Rib::new(MacroDefinition(def)));
2777                     self.label_ribs.push(Rib::new(MacroDefinition(def)));
2778                 }
2779             }
2780
2781             self.visit_stmt(stmt);
2782         }
2783
2784         // Move back up.
2785         self.current_module = orig_module;
2786         for _ in 0 .. num_macro_definition_ribs {
2787             self.ribs[ValueNS].pop();
2788             self.label_ribs.pop();
2789         }
2790         self.ribs[ValueNS].pop();
2791         if anonymous_module.is_some() {
2792             self.ribs[TypeNS].pop();
2793         }
2794         debug!("(resolving block) leaving block");
2795     }
2796
2797     fn fresh_binding(&mut self,
2798                      ident: Ident,
2799                      pat_id: NodeId,
2800                      outer_pat_id: NodeId,
2801                      pat_src: PatternSource,
2802                      bindings: &mut FxHashMap<Ident, NodeId>)
2803                      -> PathResolution {
2804         // Add the binding to the local ribs, if it
2805         // doesn't already exist in the bindings map. (We
2806         // must not add it if it's in the bindings map
2807         // because that breaks the assumptions later
2808         // passes make about or-patterns.)
2809         let ident = ident.modern_and_legacy();
2810         let mut def = Def::Local(pat_id);
2811         match bindings.get(&ident).cloned() {
2812             Some(id) if id == outer_pat_id => {
2813                 // `Variant(a, a)`, error
2814                 resolve_error(
2815                     self,
2816                     ident.span,
2817                     ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(
2818                         &ident.as_str())
2819                 );
2820             }
2821             Some(..) if pat_src == PatternSource::FnParam => {
2822                 // `fn f(a: u8, a: u8)`, error
2823                 resolve_error(
2824                     self,
2825                     ident.span,
2826                     ResolutionError::IdentifierBoundMoreThanOnceInParameterList(
2827                         &ident.as_str())
2828                 );
2829             }
2830             Some(..) if pat_src == PatternSource::Match ||
2831                         pat_src == PatternSource::IfLet ||
2832                         pat_src == PatternSource::WhileLet => {
2833                 // `Variant1(a) | Variant2(a)`, ok
2834                 // Reuse definition from the first `a`.
2835                 def = self.ribs[ValueNS].last_mut().unwrap().bindings[&ident];
2836             }
2837             Some(..) => {
2838                 span_bug!(ident.span, "two bindings with the same name from \
2839                                        unexpected pattern source {:?}", pat_src);
2840             }
2841             None => {
2842                 // A completely fresh binding, add to the lists if it's valid.
2843                 if ident.name != keywords::Invalid.name() {
2844                     bindings.insert(ident, outer_pat_id);
2845                     self.ribs[ValueNS].last_mut().unwrap().bindings.insert(ident, def);
2846                 }
2847             }
2848         }
2849
2850         PathResolution::new(def)
2851     }
2852
2853     fn resolve_pattern(&mut self,
2854                        pat: &Pat,
2855                        pat_src: PatternSource,
2856                        // Maps idents to the node ID for the
2857                        // outermost pattern that binds them.
2858                        bindings: &mut FxHashMap<Ident, NodeId>) {
2859         // Visit all direct subpatterns of this pattern.
2860         let outer_pat_id = pat.id;
2861         pat.walk(&mut |pat| {
2862             match pat.node {
2863                 PatKind::Ident(bmode, ident, ref opt_pat) => {
2864                     // First try to resolve the identifier as some existing
2865                     // entity, then fall back to a fresh binding.
2866                     let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS,
2867                                                                       None, pat.span)
2868                                       .and_then(LexicalScopeBinding::item);
2869                     let resolution = binding.map(NameBinding::def).and_then(|def| {
2870                         let is_syntactic_ambiguity = opt_pat.is_none() &&
2871                             bmode == BindingMode::ByValue(Mutability::Immutable);
2872                         match def {
2873                             Def::StructCtor(_, CtorKind::Const) |
2874                             Def::VariantCtor(_, CtorKind::Const) |
2875                             Def::Const(..) if is_syntactic_ambiguity => {
2876                                 // Disambiguate in favor of a unit struct/variant
2877                                 // or constant pattern.
2878                                 self.record_use(ident, ValueNS, binding.unwrap());
2879                                 Some(PathResolution::new(def))
2880                             }
2881                             Def::StructCtor(..) | Def::VariantCtor(..) |
2882                             Def::Const(..) | Def::Static(..) => {
2883                                 // This is unambiguously a fresh binding, either syntactically
2884                                 // (e.g. `IDENT @ PAT` or `ref IDENT`) or because `IDENT` resolves
2885                                 // to something unusable as a pattern (e.g. constructor function),
2886                                 // but we still conservatively report an error, see
2887                                 // issues/33118#issuecomment-233962221 for one reason why.
2888                                 resolve_error(
2889                                     self,
2890                                     ident.span,
2891                                     ResolutionError::BindingShadowsSomethingUnacceptable(
2892                                         pat_src.descr(), ident.name, binding.unwrap())
2893                                 );
2894                                 None
2895                             }
2896                             Def::Fn(..) | Def::Err => {
2897                                 // These entities are explicitly allowed
2898                                 // to be shadowed by fresh bindings.
2899                                 None
2900                             }
2901                             def => {
2902                                 span_bug!(ident.span, "unexpected definition for an \
2903                                                        identifier in pattern: {:?}", def);
2904                             }
2905                         }
2906                     }).unwrap_or_else(|| {
2907                         self.fresh_binding(ident, pat.id, outer_pat_id, pat_src, bindings)
2908                     });
2909
2910                     self.record_def(pat.id, resolution);
2911                 }
2912
2913                 PatKind::TupleStruct(ref path, ..) => {
2914                     self.smart_resolve_path(pat.id, None, path, PathSource::TupleStruct);
2915                 }
2916
2917                 PatKind::Path(ref qself, ref path) => {
2918                     self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
2919                 }
2920
2921                 PatKind::Struct(ref path, ..) => {
2922                     self.smart_resolve_path(pat.id, None, path, PathSource::Struct);
2923                 }
2924
2925                 _ => {}
2926             }
2927             true
2928         });
2929
2930         visit::walk_pat(self, pat);
2931     }
2932
2933     // High-level and context dependent path resolution routine.
2934     // Resolves the path and records the resolution into definition map.
2935     // If resolution fails tries several techniques to find likely
2936     // resolution candidates, suggest imports or other help, and report
2937     // errors in user friendly way.
2938     fn smart_resolve_path(&mut self,
2939                           id: NodeId,
2940                           qself: Option<&QSelf>,
2941                           path: &Path,
2942                           source: PathSource)
2943                           -> PathResolution {
2944         self.smart_resolve_path_with_crate_lint(id, qself, path, source, CrateLint::SimplePath(id))
2945     }
2946
2947     /// A variant of `smart_resolve_path` where you also specify extra
2948     /// information about where the path came from; this extra info is
2949     /// sometimes needed for the lint that recommends rewriting
2950     /// absolute paths to `crate`, so that it knows how to frame the
2951     /// suggestion. If you are just resolving a path like `foo::bar`
2952     /// that appears...somewhere, though, then you just want
2953     /// `CrateLint::SimplePath`, which is what `smart_resolve_path`
2954     /// already provides.
2955     fn smart_resolve_path_with_crate_lint(
2956         &mut self,
2957         id: NodeId,
2958         qself: Option<&QSelf>,
2959         path: &Path,
2960         source: PathSource,
2961         crate_lint: CrateLint
2962     ) -> PathResolution {
2963         let segments = &path.segments.iter()
2964             .map(|seg| seg.ident)
2965             .collect::<Vec<_>>();
2966         self.smart_resolve_path_fragment(id, qself, segments, path.span, source, crate_lint)
2967     }
2968
2969     fn smart_resolve_path_fragment(&mut self,
2970                                    id: NodeId,
2971                                    qself: Option<&QSelf>,
2972                                    path: &[Ident],
2973                                    span: Span,
2974                                    source: PathSource,
2975                                    crate_lint: CrateLint)
2976                                    -> PathResolution {
2977         let ident_span = path.last().map_or(span, |ident| ident.span);
2978         let ns = source.namespace();
2979         let is_expected = &|def| source.is_expected(def);
2980         let is_enum_variant = &|def| if let Def::Variant(..) = def { true } else { false };
2981
2982         // Base error is amended with one short label and possibly some longer helps/notes.
2983         let report_errors = |this: &mut Self, def: Option<Def>| {
2984             // Make the base error.
2985             let expected = source.descr_expected();
2986             let path_str = names_to_string(path);
2987             let code = source.error_code(def.is_some());
2988             let (base_msg, fallback_label, base_span) = if let Some(def) = def {
2989                 (format!("expected {}, found {} `{}`", expected, def.kind_name(), path_str),
2990                  format!("not a {}", expected),
2991                  span)
2992             } else {
2993                 let item_str = path[path.len() - 1];
2994                 let item_span = path[path.len() - 1].span;
2995                 let (mod_prefix, mod_str) = if path.len() == 1 {
2996                     (String::new(), "this scope".to_string())
2997                 } else if path.len() == 2 && path[0].name == keywords::CrateRoot.name() {
2998                     (String::new(), "the crate root".to_string())
2999                 } else {
3000                     let mod_path = &path[..path.len() - 1];
3001                     let mod_prefix = match this.resolve_path(None, mod_path, Some(TypeNS),
3002                                                              false, span, CrateLint::No) {
3003                         PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3004                             module.def(),
3005                         _ => None,
3006                     }.map_or(String::new(), |def| format!("{} ", def.kind_name()));
3007                     (mod_prefix, format!("`{}`", names_to_string(mod_path)))
3008                 };
3009                 (format!("cannot find {} `{}` in {}{}", expected, item_str, mod_prefix, mod_str),
3010                  format!("not found in {}", mod_str),
3011                  item_span)
3012             };
3013             let code = DiagnosticId::Error(code.into());
3014             let mut err = this.session.struct_span_err_with_code(base_span, &base_msg, code);
3015
3016             // Emit special messages for unresolved `Self` and `self`.
3017             if is_self_type(path, ns) {
3018                 __diagnostic_used!(E0411);
3019                 err.code(DiagnosticId::Error("E0411".into()));
3020                 let available_in = if this.session.features_untracked().self_in_typedefs {
3021                     "impls, traits, and type definitions"
3022                 } else {
3023                     "traits and impls"
3024                 };
3025                 err.span_label(span, format!("`Self` is only available in {}", available_in));
3026                 return (err, Vec::new());
3027             }
3028             if is_self_value(path, ns) {
3029                 __diagnostic_used!(E0424);
3030                 err.code(DiagnosticId::Error("E0424".into()));
3031                 err.span_label(span, format!("`self` value is only available in \
3032                                                methods with `self` parameter"));
3033                 return (err, Vec::new());
3034             }
3035
3036             // Try to lookup the name in more relaxed fashion for better error reporting.
3037             let ident = *path.last().unwrap();
3038             let candidates = this.lookup_import_candidates(ident.name, ns, is_expected);
3039             if candidates.is_empty() && is_expected(Def::Enum(DefId::local(CRATE_DEF_INDEX))) {
3040                 let enum_candidates =
3041                     this.lookup_import_candidates(ident.name, ns, is_enum_variant);
3042                 let mut enum_candidates = enum_candidates.iter()
3043                     .map(|suggestion| import_candidate_to_paths(&suggestion)).collect::<Vec<_>>();
3044                 enum_candidates.sort();
3045                 for (sp, variant_path, enum_path) in enum_candidates {
3046                     if sp.is_dummy() {
3047                         let msg = format!("there is an enum variant `{}`, \
3048                                         try using `{}`?",
3049                                         variant_path,
3050                                         enum_path);
3051                         err.help(&msg);
3052                     } else {
3053                         err.span_suggestion_with_applicability(
3054                             span,
3055                             "you can try using the variant's enum",
3056                             enum_path,
3057                             Applicability::MachineApplicable,
3058                         );
3059                     }
3060                 }
3061             }
3062             if path.len() == 1 && this.self_type_is_available(span) {
3063                 if let Some(candidate) = this.lookup_assoc_candidate(ident, ns, is_expected) {
3064                     let self_is_available = this.self_value_is_available(path[0].span, span);
3065                     match candidate {
3066                         AssocSuggestion::Field => {
3067                             err.span_suggestion_with_applicability(
3068                                 span,
3069                                 "try",
3070                                 format!("self.{}", path_str),
3071                                 Applicability::MachineApplicable,
3072                             );
3073                             if !self_is_available {
3074                                 err.span_label(span, format!("`self` value is only available in \
3075                                                                methods with `self` parameter"));
3076                             }
3077                         }
3078                         AssocSuggestion::MethodWithSelf if self_is_available => {
3079                             err.span_suggestion_with_applicability(
3080                                 span,
3081                                 "try",
3082                                 format!("self.{}", path_str),
3083                                 Applicability::MachineApplicable,
3084                             );
3085                         }
3086                         AssocSuggestion::MethodWithSelf | AssocSuggestion::AssocItem => {
3087                             err.span_suggestion_with_applicability(
3088                                 span,
3089                                 "try",
3090                                 format!("Self::{}", path_str),
3091                                 Applicability::MachineApplicable,
3092                             );
3093                         }
3094                     }
3095                     return (err, candidates);
3096                 }
3097             }
3098
3099             let mut levenshtein_worked = false;
3100
3101             // Try Levenshtein.
3102             if let Some(candidate) = this.lookup_typo_candidate(path, ns, is_expected, span) {
3103                 err.span_label(ident_span, format!("did you mean `{}`?", candidate));
3104                 levenshtein_worked = true;
3105             }
3106
3107             // Try context dependent help if relaxed lookup didn't work.
3108             if let Some(def) = def {
3109                 match (def, source) {
3110                     (Def::Macro(..), _) => {
3111                         err.span_label(span, format!("did you mean `{}!(...)`?", path_str));
3112                         return (err, candidates);
3113                     }
3114                     (Def::TyAlias(..), PathSource::Trait(_)) => {
3115                         err.span_label(span, "type aliases cannot be used for traits");
3116                         return (err, candidates);
3117                     }
3118                     (Def::Mod(..), PathSource::Expr(Some(parent))) => match parent.node {
3119                         ExprKind::Field(_, ident) => {
3120                             err.span_label(parent.span, format!("did you mean `{}::{}`?",
3121                                                                  path_str, ident));
3122                             return (err, candidates);
3123                         }
3124                         ExprKind::MethodCall(ref segment, ..) => {
3125                             err.span_label(parent.span, format!("did you mean `{}::{}(...)`?",
3126                                                                  path_str, segment.ident));
3127                             return (err, candidates);
3128                         }
3129                         _ => {}
3130                     },
3131                     (Def::Enum(..), PathSource::TupleStruct)
3132                         | (Def::Enum(..), PathSource::Expr(..))  => {
3133                         if let Some(variants) = this.collect_enum_variants(def) {
3134                             err.note(&format!("did you mean to use one \
3135                                                of the following variants?\n{}",
3136                                 variants.iter()
3137                                     .map(|suggestion| path_names_to_string(suggestion))
3138                                     .map(|suggestion| format!("- `{}`", suggestion))
3139                                     .collect::<Vec<_>>()
3140                                     .join("\n")));
3141
3142                         } else {
3143                             err.note("did you mean to use one of the enum's variants?");
3144                         }
3145                         return (err, candidates);
3146                     },
3147                     (Def::Struct(def_id), _) if ns == ValueNS => {
3148                         if let Some((ctor_def, ctor_vis))
3149                                 = this.struct_constructors.get(&def_id).cloned() {
3150                             let accessible_ctor = this.is_accessible(ctor_vis);
3151                             if is_expected(ctor_def) && !accessible_ctor {
3152                                 err.span_label(span, format!("constructor is not visible \
3153                                                               here due to private fields"));
3154                             }
3155                         } else {
3156                             // HACK(estebank): find a better way to figure out that this was a
3157                             // parser issue where a struct literal is being used on an expression
3158                             // where a brace being opened means a block is being started. Look
3159                             // ahead for the next text to see if `span` is followed by a `{`.
3160                             let cm = this.session.source_map();
3161                             let mut sp = span;
3162                             loop {
3163                                 sp = cm.next_point(sp);
3164                                 match cm.span_to_snippet(sp) {
3165                                     Ok(ref snippet) => {
3166                                         if snippet.chars().any(|c| { !c.is_whitespace() }) {
3167                                             break;
3168                                         }
3169                                     }
3170                                     _ => break,
3171                                 }
3172                             }
3173                             let followed_by_brace = match cm.span_to_snippet(sp) {
3174                                 Ok(ref snippet) if snippet == "{" => true,
3175                                 _ => false,
3176                             };
3177                             if let (PathSource::Expr(None), true) = (source, followed_by_brace) {
3178                                 err.span_label(
3179                                     span,
3180                                     format!("did you mean `({} {{ /* fields */ }})`?", path_str),
3181                                 );
3182                             } else {
3183                                 err.span_label(
3184                                     span,
3185                                     format!("did you mean `{} {{ /* fields */ }}`?", path_str),
3186                                 );
3187                             }
3188                         }
3189                         return (err, candidates);
3190                     }
3191                     (Def::Union(..), _) |
3192                     (Def::Variant(..), _) |
3193                     (Def::VariantCtor(_, CtorKind::Fictive), _) if ns == ValueNS => {
3194                         err.span_label(span, format!("did you mean `{} {{ /* fields */ }}`?",
3195                                                      path_str));
3196                         return (err, candidates);
3197                     }
3198                     (Def::SelfTy(..), _) if ns == ValueNS => {
3199                         err.span_label(span, fallback_label);
3200                         err.note("can't use `Self` as a constructor, you must use the \
3201                                   implemented struct");
3202                         return (err, candidates);
3203                     }
3204                     (Def::TyAlias(_), _) | (Def::AssociatedTy(..), _) if ns == ValueNS => {
3205                         err.note("can't use a type alias as a constructor");
3206                         return (err, candidates);
3207                     }
3208                     _ => {}
3209                 }
3210             }
3211
3212             // Fallback label.
3213             if !levenshtein_worked {
3214                 err.span_label(base_span, fallback_label);
3215                 this.type_ascription_suggestion(&mut err, base_span);
3216             }
3217             (err, candidates)
3218         };
3219         let report_errors = |this: &mut Self, def: Option<Def>| {
3220             let (err, candidates) = report_errors(this, def);
3221             let def_id = this.current_module.normal_ancestor_id;
3222             let node_id = this.definitions.as_local_node_id(def_id).unwrap();
3223             let better = def.is_some();
3224             this.use_injections.push(UseError { err, candidates, node_id, better });
3225             err_path_resolution()
3226         };
3227
3228         let resolution = match self.resolve_qpath_anywhere(
3229             id,
3230             qself,
3231             path,
3232             ns,
3233             span,
3234             source.defer_to_typeck(),
3235             source.global_by_default(),
3236             crate_lint,
3237         ) {
3238             Some(resolution) if resolution.unresolved_segments() == 0 => {
3239                 if is_expected(resolution.base_def()) || resolution.base_def() == Def::Err {
3240                     resolution
3241                 } else {
3242                     // Add a temporary hack to smooth the transition to new struct ctor
3243                     // visibility rules. See #38932 for more details.
3244                     let mut res = None;
3245                     if let Def::Struct(def_id) = resolution.base_def() {
3246                         if let Some((ctor_def, ctor_vis))
3247                                 = self.struct_constructors.get(&def_id).cloned() {
3248                             if is_expected(ctor_def) && self.is_accessible(ctor_vis) {
3249                                 let lint = lint::builtin::LEGACY_CONSTRUCTOR_VISIBILITY;
3250                                 self.session.buffer_lint(lint, id, span,
3251                                     "private struct constructors are not usable through \
3252                                      re-exports in outer modules",
3253                                 );
3254                                 res = Some(PathResolution::new(ctor_def));
3255                             }
3256                         }
3257                     }
3258
3259                     res.unwrap_or_else(|| report_errors(self, Some(resolution.base_def())))
3260                 }
3261             }
3262             Some(resolution) if source.defer_to_typeck() => {
3263                 // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
3264                 // or `<T>::A::B`. If `B` should be resolved in value namespace then
3265                 // it needs to be added to the trait map.
3266                 if ns == ValueNS {
3267                     let item_name = *path.last().unwrap();
3268                     let traits = self.get_traits_containing_item(item_name, ns);
3269                     self.trait_map.insert(id, traits);
3270                 }
3271                 resolution
3272             }
3273             _ => report_errors(self, None)
3274         };
3275
3276         if let PathSource::TraitItem(..) = source {} else {
3277             // Avoid recording definition of `A::B` in `<T as A>::B::C`.
3278             self.record_def(id, resolution);
3279         }
3280         resolution
3281     }
3282
3283     fn type_ascription_suggestion(&self,
3284                                   err: &mut DiagnosticBuilder,
3285                                   base_span: Span) {
3286         debug!("type_ascription_suggetion {:?}", base_span);
3287         let cm = self.session.source_map();
3288         debug!("self.current_type_ascription {:?}", self.current_type_ascription);
3289         if let Some(sp) = self.current_type_ascription.last() {
3290             let mut sp = *sp;
3291             loop {  // try to find the `:`, bail on first non-':'/non-whitespace
3292                 sp = cm.next_point(sp);
3293                 if let Ok(snippet) = cm.span_to_snippet(sp.to(cm.next_point(sp))) {
3294                     debug!("snippet {:?}", snippet);
3295                     let line_sp = cm.lookup_char_pos(sp.hi()).line;
3296                     let line_base_sp = cm.lookup_char_pos(base_span.lo()).line;
3297                     debug!("{:?} {:?}", line_sp, line_base_sp);
3298                     if snippet == ":" {
3299                         err.span_label(base_span,
3300                                        "expecting a type here because of type ascription");
3301                         if line_sp != line_base_sp {
3302                             err.span_suggestion_short_with_applicability(
3303                                 sp,
3304                                 "did you mean to use `;` here instead?",
3305                                 ";".to_string(),
3306                                 Applicability::MaybeIncorrect,
3307                             );
3308                         }
3309                         break;
3310                     } else if snippet.trim().len() != 0  {
3311                         debug!("tried to find type ascription `:` token, couldn't find it");
3312                         break;
3313                     }
3314                 } else {
3315                     break;
3316                 }
3317             }
3318         }
3319     }
3320
3321     fn self_type_is_available(&mut self, span: Span) -> bool {
3322         let binding = self.resolve_ident_in_lexical_scope(keywords::SelfType.ident(),
3323                                                           TypeNS, None, span);
3324         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3325     }
3326
3327     fn self_value_is_available(&mut self, self_span: Span, path_span: Span) -> bool {
3328         let ident = Ident::new(keywords::SelfValue.name(), self_span);
3329         let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, None, path_span);
3330         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3331     }
3332
3333     // Resolve in alternative namespaces if resolution in the primary namespace fails.
3334     fn resolve_qpath_anywhere(&mut self,
3335                               id: NodeId,
3336                               qself: Option<&QSelf>,
3337                               path: &[Ident],
3338                               primary_ns: Namespace,
3339                               span: Span,
3340                               defer_to_typeck: bool,
3341                               global_by_default: bool,
3342                               crate_lint: CrateLint)
3343                               -> Option<PathResolution> {
3344         let mut fin_res = None;
3345         // FIXME: can't resolve paths in macro namespace yet, macros are
3346         // processed by the little special hack below.
3347         for (i, ns) in [primary_ns, TypeNS, ValueNS, /*MacroNS*/].iter().cloned().enumerate() {
3348             if i == 0 || ns != primary_ns {
3349                 match self.resolve_qpath(id, qself, path, ns, span, global_by_default, crate_lint) {
3350                     // If defer_to_typeck, then resolution > no resolution,
3351                     // otherwise full resolution > partial resolution > no resolution.
3352                     Some(res) if res.unresolved_segments() == 0 || defer_to_typeck =>
3353                         return Some(res),
3354                     res => if fin_res.is_none() { fin_res = res },
3355                 };
3356             }
3357         }
3358         if primary_ns != MacroNS &&
3359            (self.macro_names.contains(&path[0].modern()) ||
3360             self.builtin_macros.get(&path[0].name).cloned()
3361                                .and_then(NameBinding::macro_kind) == Some(MacroKind::Bang) ||
3362             self.macro_use_prelude.get(&path[0].name).cloned()
3363                                   .and_then(NameBinding::macro_kind) == Some(MacroKind::Bang)) {
3364             // Return some dummy definition, it's enough for error reporting.
3365             return Some(
3366                 PathResolution::new(Def::Macro(DefId::local(CRATE_DEF_INDEX), MacroKind::Bang))
3367             );
3368         }
3369         fin_res
3370     }
3371
3372     /// Handles paths that may refer to associated items.
3373     fn resolve_qpath(&mut self,
3374                      id: NodeId,
3375                      qself: Option<&QSelf>,
3376                      path: &[Ident],
3377                      ns: Namespace,
3378                      span: Span,
3379                      global_by_default: bool,
3380                      crate_lint: CrateLint)
3381                      -> Option<PathResolution> {
3382         debug!(
3383             "resolve_qpath(id={:?}, qself={:?}, path={:?}, \
3384              ns={:?}, span={:?}, global_by_default={:?})",
3385             id,
3386             qself,
3387             path,
3388             ns,
3389             span,
3390             global_by_default,
3391         );
3392
3393         if let Some(qself) = qself {
3394             if qself.position == 0 {
3395                 // This is a case like `<T>::B`, where there is no
3396                 // trait to resolve.  In that case, we leave the `B`
3397                 // segment to be resolved by type-check.
3398                 return Some(PathResolution::with_unresolved_segments(
3399                     Def::Mod(DefId::local(CRATE_DEF_INDEX)), path.len()
3400                 ));
3401             }
3402
3403             // Make sure `A::B` in `<T as A::B>::C` is a trait item.
3404             //
3405             // Currently, `path` names the full item (`A::B::C`, in
3406             // our example).  so we extract the prefix of that that is
3407             // the trait (the slice upto and including
3408             // `qself.position`). And then we recursively resolve that,
3409             // but with `qself` set to `None`.
3410             //
3411             // However, setting `qself` to none (but not changing the
3412             // span) loses the information about where this path
3413             // *actually* appears, so for the purposes of the crate
3414             // lint we pass along information that this is the trait
3415             // name from a fully qualified path, and this also
3416             // contains the full span (the `CrateLint::QPathTrait`).
3417             let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
3418             let res = self.smart_resolve_path_fragment(
3419                 id,
3420                 None,
3421                 &path[..qself.position + 1],
3422                 span,
3423                 PathSource::TraitItem(ns),
3424                 CrateLint::QPathTrait {
3425                     qpath_id: id,
3426                     qpath_span: qself.path_span,
3427                 },
3428             );
3429
3430             // The remaining segments (the `C` in our example) will
3431             // have to be resolved by type-check, since that requires doing
3432             // trait resolution.
3433             return Some(PathResolution::with_unresolved_segments(
3434                 res.base_def(), res.unresolved_segments() + path.len() - qself.position - 1
3435             ));
3436         }
3437
3438         let result = match self.resolve_path(
3439             None,
3440             &path,
3441             Some(ns),
3442             true,
3443             span,
3444             crate_lint,
3445         ) {
3446             PathResult::NonModule(path_res) => path_res,
3447             PathResult::Module(ModuleOrUniformRoot::Module(module)) if !module.is_normal() => {
3448                 PathResolution::new(module.def().unwrap())
3449             }
3450             // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
3451             // don't report an error right away, but try to fallback to a primitive type.
3452             // So, we are still able to successfully resolve something like
3453             //
3454             // use std::u8; // bring module u8 in scope
3455             // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
3456             //     u8::max_value() // OK, resolves to associated function <u8>::max_value,
3457             //                     // not to non-existent std::u8::max_value
3458             // }
3459             //
3460             // Such behavior is required for backward compatibility.
3461             // The same fallback is used when `a` resolves to nothing.
3462             PathResult::Module(ModuleOrUniformRoot::Module(_)) |
3463             PathResult::Failed(..)
3464                     if (ns == TypeNS || path.len() > 1) &&
3465                        self.primitive_type_table.primitive_types
3466                            .contains_key(&path[0].name) => {
3467                 let prim = self.primitive_type_table.primitive_types[&path[0].name];
3468                 PathResolution::with_unresolved_segments(Def::PrimTy(prim), path.len() - 1)
3469             }
3470             PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3471                 PathResolution::new(module.def().unwrap()),
3472             PathResult::Failed(span, msg, false) => {
3473                 resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
3474                 err_path_resolution()
3475             }
3476             PathResult::Module(ModuleOrUniformRoot::UniformRoot(_)) |
3477             PathResult::Failed(..) => return None,
3478             PathResult::Indeterminate => bug!("indetermined path result in resolve_qpath"),
3479         };
3480
3481         if path.len() > 1 && !global_by_default && result.base_def() != Def::Err &&
3482            path[0].name != keywords::CrateRoot.name() &&
3483            path[0].name != keywords::DollarCrate.name() {
3484             let unqualified_result = {
3485                 match self.resolve_path(
3486                     None,
3487                     &[*path.last().unwrap()],
3488                     Some(ns),
3489                     false,
3490                     span,
3491                     CrateLint::No,
3492                 ) {
3493                     PathResult::NonModule(path_res) => path_res.base_def(),
3494                     PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3495                         module.def().unwrap(),
3496                     _ => return Some(result),
3497                 }
3498             };
3499             if result.base_def() == unqualified_result {
3500                 let lint = lint::builtin::UNUSED_QUALIFICATIONS;
3501                 self.session.buffer_lint(lint, id, span, "unnecessary qualification")
3502             }
3503         }
3504
3505         Some(result)
3506     }
3507
3508     fn resolve_path(
3509         &mut self,
3510         base_module: Option<ModuleOrUniformRoot<'a>>,
3511         path: &[Ident],
3512         opt_ns: Option<Namespace>, // `None` indicates a module path
3513         record_used: bool,
3514         path_span: Span,
3515         crate_lint: CrateLint,
3516     ) -> PathResult<'a> {
3517         let parent_scope = ParentScope { module: self.current_module, ..self.dummy_parent_scope() };
3518         self.resolve_path_with_parent_scope(base_module, path, opt_ns, &parent_scope,
3519                                             record_used, path_span, crate_lint)
3520     }
3521
3522     fn resolve_path_with_parent_scope(
3523         &mut self,
3524         base_module: Option<ModuleOrUniformRoot<'a>>,
3525         path: &[Ident],
3526         opt_ns: Option<Namespace>, // `None` indicates a module path
3527         parent_scope: &ParentScope<'a>,
3528         record_used: bool,
3529         path_span: Span,
3530         crate_lint: CrateLint,
3531     ) -> PathResult<'a> {
3532         let mut module = base_module;
3533         let mut allow_super = true;
3534         let mut second_binding = None;
3535         self.current_module = parent_scope.module;
3536
3537         debug!(
3538             "resolve_path(path={:?}, opt_ns={:?}, record_used={:?}, \
3539              path_span={:?}, crate_lint={:?})",
3540             path,
3541             opt_ns,
3542             record_used,
3543             path_span,
3544             crate_lint,
3545         );
3546
3547         for (i, &ident) in path.iter().enumerate() {
3548             debug!("resolve_path ident {} {:?}", i, ident);
3549             let is_last = i == path.len() - 1;
3550             let ns = if is_last { opt_ns.unwrap_or(TypeNS) } else { TypeNS };
3551             let name = ident.name;
3552
3553             allow_super &= ns == TypeNS &&
3554                 (name == keywords::SelfValue.name() ||
3555                  name == keywords::Super.name());
3556
3557             if ns == TypeNS {
3558                 if allow_super && name == keywords::Super.name() {
3559                     let mut ctxt = ident.span.ctxt().modern();
3560                     let self_module = match i {
3561                         0 => Some(self.resolve_self(&mut ctxt, self.current_module)),
3562                         _ => match module {
3563                             Some(ModuleOrUniformRoot::Module(module)) => Some(module),
3564                             _ => None,
3565                         },
3566                     };
3567                     if let Some(self_module) = self_module {
3568                         if let Some(parent) = self_module.parent {
3569                             module = Some(ModuleOrUniformRoot::Module(
3570                                 self.resolve_self(&mut ctxt, parent)));
3571                             continue;
3572                         }
3573                     }
3574                     let msg = "There are too many initial `super`s.".to_string();
3575                     return PathResult::Failed(ident.span, msg, false);
3576                 }
3577                 if i == 0 {
3578                     if name == keywords::SelfValue.name() {
3579                         let mut ctxt = ident.span.ctxt().modern();
3580                         module = Some(ModuleOrUniformRoot::Module(
3581                             self.resolve_self(&mut ctxt, self.current_module)));
3582                         continue;
3583                     }
3584                     if name == keywords::Extern.name() ||
3585                        name == keywords::CrateRoot.name() &&
3586                        self.session.features_untracked().extern_absolute_paths &&
3587                        self.session.rust_2018() {
3588                         module = Some(ModuleOrUniformRoot::UniformRoot(name));
3589                         continue;
3590                     }
3591                     if name == keywords::CrateRoot.name() ||
3592                        name == keywords::Crate.name() ||
3593                        name == keywords::DollarCrate.name() {
3594                         // `::a::b`, `crate::a::b` or `$crate::a::b`
3595                         module = Some(ModuleOrUniformRoot::Module(
3596                             self.resolve_crate_root(ident)));
3597                         continue;
3598                     }
3599                 }
3600             }
3601
3602             // Report special messages for path segment keywords in wrong positions.
3603             if ident.is_path_segment_keyword() && i != 0 {
3604                 let name_str = if name == keywords::CrateRoot.name() {
3605                     "crate root".to_string()
3606                 } else {
3607                     format!("`{}`", name)
3608                 };
3609                 let msg = if i == 1 && path[0].name == keywords::CrateRoot.name() {
3610                     format!("global paths cannot start with {}", name_str)
3611                 } else {
3612                     format!("{} in paths can only be used in start position", name_str)
3613                 };
3614                 return PathResult::Failed(ident.span, msg, false);
3615             }
3616
3617             let binding = if let Some(module) = module {
3618                 self.resolve_ident_in_module(module, ident, ns, record_used, path_span)
3619             } else if opt_ns == Some(MacroNS) {
3620                 assert!(ns == TypeNS);
3621                 self.resolve_lexical_macro_path_segment(ident, ns, None, parent_scope, record_used,
3622                                                         record_used, path_span).map(|(b, _)| b)
3623             } else {
3624                 let record_used_id =
3625                     if record_used { crate_lint.node_id().or(Some(CRATE_NODE_ID)) } else { None };
3626                 match self.resolve_ident_in_lexical_scope(ident, ns, record_used_id, path_span) {
3627                     // we found a locally-imported or available item/module
3628                     Some(LexicalScopeBinding::Item(binding)) => Ok(binding),
3629                     // we found a local variable or type param
3630                     Some(LexicalScopeBinding::Def(def))
3631                             if opt_ns == Some(TypeNS) || opt_ns == Some(ValueNS) => {
3632                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3633                             def, path.len() - 1
3634                         ));
3635                     }
3636                     _ => Err(if record_used { Determined } else { Undetermined }),
3637                 }
3638             };
3639
3640             match binding {
3641                 Ok(binding) => {
3642                     if i == 1 {
3643                         second_binding = Some(binding);
3644                     }
3645                     let def = binding.def();
3646                     let maybe_assoc = opt_ns != Some(MacroNS) && PathSource::Type.is_expected(def);
3647                     if let Some(next_module) = binding.module() {
3648                         module = Some(ModuleOrUniformRoot::Module(next_module));
3649                     } else if def == Def::ToolMod && i + 1 != path.len() {
3650                         let def = Def::NonMacroAttr(NonMacroAttrKind::Tool);
3651                         return PathResult::NonModule(PathResolution::new(def));
3652                     } else if def == Def::Err {
3653                         return PathResult::NonModule(err_path_resolution());
3654                     } else if opt_ns.is_some() && (is_last || maybe_assoc) {
3655                         self.lint_if_path_starts_with_module(
3656                             crate_lint,
3657                             path,
3658                             path_span,
3659                             second_binding,
3660                         );
3661                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3662                             def, path.len() - i - 1
3663                         ));
3664                     } else {
3665                         return PathResult::Failed(ident.span,
3666                                                   format!("Not a module `{}`", ident),
3667                                                   is_last);
3668                     }
3669                 }
3670                 Err(Undetermined) => return PathResult::Indeterminate,
3671                 Err(Determined) => {
3672                     if let Some(ModuleOrUniformRoot::Module(module)) = module {
3673                         if opt_ns.is_some() && !module.is_normal() {
3674                             return PathResult::NonModule(PathResolution::with_unresolved_segments(
3675                                 module.def().unwrap(), path.len() - i
3676                             ));
3677                         }
3678                     }
3679                     let module_def = match module {
3680                         Some(ModuleOrUniformRoot::Module(module)) => module.def(),
3681                         _ => None,
3682                     };
3683                     let msg = if module_def == self.graph_root.def() {
3684                         let is_mod = |def| match def { Def::Mod(..) => true, _ => false };
3685                         let mut candidates =
3686                             self.lookup_import_candidates(name, TypeNS, is_mod);
3687                         candidates.sort_by_cached_key(|c| {
3688                             (c.path.segments.len(), c.path.to_string())
3689                         });
3690                         if let Some(candidate) = candidates.get(0) {
3691                             format!("Did you mean `{}`?", candidate.path)
3692                         } else {
3693                             format!("Maybe a missing `extern crate {};`?", ident)
3694                         }
3695                     } else if i == 0 {
3696                         format!("Use of undeclared type or module `{}`", ident)
3697                     } else {
3698                         format!("Could not find `{}` in `{}`", ident, path[i - 1])
3699                     };
3700                     return PathResult::Failed(ident.span, msg, is_last);
3701                 }
3702             }
3703         }
3704
3705         self.lint_if_path_starts_with_module(crate_lint, path, path_span, second_binding);
3706
3707         PathResult::Module(module.unwrap_or_else(|| {
3708             span_bug!(path_span, "resolve_path: empty(?) path {:?} has no module", path);
3709         }))
3710
3711     }
3712
3713     fn lint_if_path_starts_with_module(
3714         &self,
3715         crate_lint: CrateLint,
3716         path: &[Ident],
3717         path_span: Span,
3718         second_binding: Option<&NameBinding>,
3719     ) {
3720         // In the 2018 edition this lint is a hard error, so nothing to do
3721         if self.session.rust_2018() {
3722             return
3723         }
3724
3725         // In the 2015 edition there's no use in emitting lints unless the
3726         // crate's already enabled the feature that we're going to suggest
3727         if !self.session.features_untracked().crate_in_paths {
3728             return
3729         }
3730
3731         let (diag_id, diag_span) = match crate_lint {
3732             CrateLint::No => return,
3733             CrateLint::SimplePath(id) => (id, path_span),
3734             CrateLint::UsePath { root_id, root_span } => (root_id, root_span),
3735             CrateLint::QPathTrait { qpath_id, qpath_span } => (qpath_id, qpath_span),
3736         };
3737
3738         let first_name = match path.get(0) {
3739             Some(ident) => ident.name,
3740             None => return,
3741         };
3742
3743         // We're only interested in `use` paths which should start with
3744         // `{{root}}` or `extern` currently.
3745         if first_name != keywords::Extern.name() && first_name != keywords::CrateRoot.name() {
3746             return
3747         }
3748
3749         match path.get(1) {
3750             // If this import looks like `crate::...` it's already good
3751             Some(ident) if ident.name == keywords::Crate.name() => return,
3752             // Otherwise go below to see if it's an extern crate
3753             Some(_) => {}
3754             // If the path has length one (and it's `CrateRoot` most likely)
3755             // then we don't know whether we're gonna be importing a crate or an
3756             // item in our crate. Defer this lint to elsewhere
3757             None => return,
3758         }
3759
3760         // If the first element of our path was actually resolved to an
3761         // `ExternCrate` (also used for `crate::...`) then no need to issue a
3762         // warning, this looks all good!
3763         if let Some(binding) = second_binding {
3764             if let NameBindingKind::Import { directive: d, .. } = binding.kind {
3765                 // Careful: we still want to rewrite paths from
3766                 // renamed extern crates.
3767                 if let ImportDirectiveSubclass::ExternCrate(None) = d.subclass {
3768                     return
3769                 }
3770             }
3771         }
3772
3773         let diag = lint::builtin::BuiltinLintDiagnostics
3774             ::AbsPathWithModule(diag_span);
3775         self.session.buffer_lint_with_diagnostic(
3776             lint::builtin::ABSOLUTE_PATHS_NOT_STARTING_WITH_CRATE,
3777             diag_id, diag_span,
3778             "absolute paths must start with `self`, `super`, \
3779             `crate`, or an external crate name in the 2018 edition",
3780             diag);
3781     }
3782
3783     // Resolve a local definition, potentially adjusting for closures.
3784     fn adjust_local_def(&mut self,
3785                         ns: Namespace,
3786                         rib_index: usize,
3787                         mut def: Def,
3788                         record_used: bool,
3789                         span: Span) -> Def {
3790         let ribs = &self.ribs[ns][rib_index + 1..];
3791
3792         // An invalid forward use of a type parameter from a previous default.
3793         if let ForwardTyParamBanRibKind = self.ribs[ns][rib_index].kind {
3794             if record_used {
3795                 resolve_error(self, span, ResolutionError::ForwardDeclaredTyParam);
3796             }
3797             assert_eq!(def, Def::Err);
3798             return Def::Err;
3799         }
3800
3801         match def {
3802             Def::Upvar(..) => {
3803                 span_bug!(span, "unexpected {:?} in bindings", def)
3804             }
3805             Def::Local(node_id) => {
3806                 for rib in ribs {
3807                     match rib.kind {
3808                         NormalRibKind | ModuleRibKind(..) | MacroDefinition(..) |
3809                         ForwardTyParamBanRibKind => {
3810                             // Nothing to do. Continue.
3811                         }
3812                         ClosureRibKind(function_id) => {
3813                             let prev_def = def;
3814
3815                             let seen = self.freevars_seen
3816                                            .entry(function_id)
3817                                            .or_default();
3818                             if let Some(&index) = seen.get(&node_id) {
3819                                 def = Def::Upvar(node_id, index, function_id);
3820                                 continue;
3821                             }
3822                             let vec = self.freevars
3823                                           .entry(function_id)
3824                                           .or_default();
3825                             let depth = vec.len();
3826                             def = Def::Upvar(node_id, depth, function_id);
3827
3828                             if record_used {
3829                                 vec.push(Freevar {
3830                                     def: prev_def,
3831                                     span,
3832                                 });
3833                                 seen.insert(node_id, depth);
3834                             }
3835                         }
3836                         ItemRibKind | TraitOrImplItemRibKind => {
3837                             // This was an attempt to access an upvar inside a
3838                             // named function item. This is not allowed, so we
3839                             // report an error.
3840                             if record_used {
3841                                 resolve_error(self, span,
3842                                         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem);
3843                             }
3844                             return Def::Err;
3845                         }
3846                         ConstantItemRibKind => {
3847                             // Still doesn't deal with upvars
3848                             if record_used {
3849                                 resolve_error(self, span,
3850                                         ResolutionError::AttemptToUseNonConstantValueInConstant);
3851                             }
3852                             return Def::Err;
3853                         }
3854                     }
3855                 }
3856             }
3857             Def::TyParam(..) | Def::SelfTy(..) => {
3858                 for rib in ribs {
3859                     match rib.kind {
3860                         NormalRibKind | TraitOrImplItemRibKind | ClosureRibKind(..) |
3861                         ModuleRibKind(..) | MacroDefinition(..) | ForwardTyParamBanRibKind |
3862                         ConstantItemRibKind => {
3863                             // Nothing to do. Continue.
3864                         }
3865                         ItemRibKind => {
3866                             // This was an attempt to use a type parameter outside
3867                             // its scope.
3868                             if record_used {
3869                                 resolve_error(self, span,
3870                                     ResolutionError::TypeParametersFromOuterFunction(def));
3871                             }
3872                             return Def::Err;
3873                         }
3874                     }
3875                 }
3876             }
3877             _ => {}
3878         }
3879         return def;
3880     }
3881
3882     fn lookup_assoc_candidate<FilterFn>(&mut self,
3883                                         ident: Ident,
3884                                         ns: Namespace,
3885                                         filter_fn: FilterFn)
3886                                         -> Option<AssocSuggestion>
3887         where FilterFn: Fn(Def) -> bool
3888     {
3889         fn extract_node_id(t: &Ty) -> Option<NodeId> {
3890             match t.node {
3891                 TyKind::Path(None, _) => Some(t.id),
3892                 TyKind::Rptr(_, ref mut_ty) => extract_node_id(&mut_ty.ty),
3893                 // This doesn't handle the remaining `Ty` variants as they are not
3894                 // that commonly the self_type, it might be interesting to provide
3895                 // support for those in future.
3896                 _ => None,
3897             }
3898         }
3899
3900         // Fields are generally expected in the same contexts as locals.
3901         if filter_fn(Def::Local(ast::DUMMY_NODE_ID)) {
3902             if let Some(node_id) = self.current_self_type.as_ref().and_then(extract_node_id) {
3903                 // Look for a field with the same name in the current self_type.
3904                 if let Some(resolution) = self.def_map.get(&node_id) {
3905                     match resolution.base_def() {
3906                         Def::Struct(did) | Def::Union(did)
3907                                 if resolution.unresolved_segments() == 0 => {
3908                             if let Some(field_names) = self.field_names.get(&did) {
3909                                 if field_names.iter().any(|&field_name| ident.name == field_name) {
3910                                     return Some(AssocSuggestion::Field);
3911                                 }
3912                             }
3913                         }
3914                         _ => {}
3915                     }
3916                 }
3917             }
3918         }
3919
3920         // Look for associated items in the current trait.
3921         if let Some((module, _)) = self.current_trait_ref {
3922             if let Ok(binding) = self.resolve_ident_in_module(
3923                     ModuleOrUniformRoot::Module(module),
3924                     ident,
3925                     ns,
3926                     false,
3927                     module.span,
3928                 ) {
3929                 let def = binding.def();
3930                 if filter_fn(def) {
3931                     return Some(if self.has_self.contains(&def.def_id()) {
3932                         AssocSuggestion::MethodWithSelf
3933                     } else {
3934                         AssocSuggestion::AssocItem
3935                     });
3936                 }
3937             }
3938         }
3939
3940         None
3941     }
3942
3943     fn lookup_typo_candidate<FilterFn>(&mut self,
3944                                        path: &[Ident],
3945                                        ns: Namespace,
3946                                        filter_fn: FilterFn,
3947                                        span: Span)
3948                                        -> Option<Symbol>
3949         where FilterFn: Fn(Def) -> bool
3950     {
3951         let add_module_candidates = |module: Module, names: &mut Vec<Name>| {
3952             for (&(ident, _), resolution) in module.resolutions.borrow().iter() {
3953                 if let Some(binding) = resolution.borrow().binding {
3954                     if filter_fn(binding.def()) {
3955                         names.push(ident.name);
3956                     }
3957                 }
3958             }
3959         };
3960
3961         let mut names = Vec::new();
3962         if path.len() == 1 {
3963             // Search in lexical scope.
3964             // Walk backwards up the ribs in scope and collect candidates.
3965             for rib in self.ribs[ns].iter().rev() {
3966                 // Locals and type parameters
3967                 for (ident, def) in &rib.bindings {
3968                     if filter_fn(*def) {
3969                         names.push(ident.name);
3970                     }
3971                 }
3972                 // Items in scope
3973                 if let ModuleRibKind(module) = rib.kind {
3974                     // Items from this module
3975                     add_module_candidates(module, &mut names);
3976
3977                     if let ModuleKind::Block(..) = module.kind {
3978                         // We can see through blocks
3979                     } else {
3980                         // Items from the prelude
3981                         if !module.no_implicit_prelude {
3982                             names.extend(self.extern_prelude.iter().cloned());
3983                             if let Some(prelude) = self.prelude {
3984                                 add_module_candidates(prelude, &mut names);
3985                             }
3986                         }
3987                         break;
3988                     }
3989                 }
3990             }
3991             // Add primitive types to the mix
3992             if filter_fn(Def::PrimTy(Bool)) {
3993                 names.extend(
3994                     self.primitive_type_table.primitive_types.iter().map(|(name, _)| name)
3995                 )
3996             }
3997         } else {
3998             // Search in module.
3999             let mod_path = &path[..path.len() - 1];
4000             if let PathResult::Module(module) = self.resolve_path(None, mod_path, Some(TypeNS),
4001                                                                   false, span, CrateLint::No) {
4002                 if let ModuleOrUniformRoot::Module(module) = module {
4003                     add_module_candidates(module, &mut names);
4004                 }
4005             }
4006         }
4007
4008         let name = path[path.len() - 1].name;
4009         // Make sure error reporting is deterministic.
4010         names.sort_by_cached_key(|name| name.as_str());
4011         match find_best_match_for_name(names.iter(), &name.as_str(), None) {
4012             Some(found) if found != name => Some(found),
4013             _ => None,
4014         }
4015     }
4016
4017     fn with_resolved_label<F>(&mut self, label: Option<Label>, id: NodeId, f: F)
4018         where F: FnOnce(&mut Resolver)
4019     {
4020         if let Some(label) = label {
4021             self.unused_labels.insert(id, label.ident.span);
4022             let def = Def::Label(id);
4023             self.with_label_rib(|this| {
4024                 let ident = label.ident.modern_and_legacy();
4025                 this.label_ribs.last_mut().unwrap().bindings.insert(ident, def);
4026                 f(this);
4027             });
4028         } else {
4029             f(self);
4030         }
4031     }
4032
4033     fn resolve_labeled_block(&mut self, label: Option<Label>, id: NodeId, block: &Block) {
4034         self.with_resolved_label(label, id, |this| this.visit_block(block));
4035     }
4036
4037     fn resolve_expr(&mut self, expr: &Expr, parent: Option<&Expr>) {
4038         // First, record candidate traits for this expression if it could
4039         // result in the invocation of a method call.
4040
4041         self.record_candidate_traits_for_expr_if_necessary(expr);
4042
4043         // Next, resolve the node.
4044         match expr.node {
4045             ExprKind::Path(ref qself, ref path) => {
4046                 self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
4047                 visit::walk_expr(self, expr);
4048             }
4049
4050             ExprKind::Struct(ref path, ..) => {
4051                 self.smart_resolve_path(expr.id, None, path, PathSource::Struct);
4052                 visit::walk_expr(self, expr);
4053             }
4054
4055             ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
4056                 let def = self.search_label(label.ident, |rib, ident| {
4057                     rib.bindings.get(&ident.modern_and_legacy()).cloned()
4058                 });
4059                 match def {
4060                     None => {
4061                         // Search again for close matches...
4062                         // Picks the first label that is "close enough", which is not necessarily
4063                         // the closest match
4064                         let close_match = self.search_label(label.ident, |rib, ident| {
4065                             let names = rib.bindings.iter().map(|(id, _)| &id.name);
4066                             find_best_match_for_name(names, &*ident.as_str(), None)
4067                         });
4068                         self.record_def(expr.id, err_path_resolution());
4069                         resolve_error(self,
4070                                       label.ident.span,
4071                                       ResolutionError::UndeclaredLabel(&label.ident.as_str(),
4072                                                                        close_match));
4073                     }
4074                     Some(Def::Label(id)) => {
4075                         // Since this def is a label, it is never read.
4076                         self.record_def(expr.id, PathResolution::new(Def::Label(id)));
4077                         self.unused_labels.remove(&id);
4078                     }
4079                     Some(_) => {
4080                         span_bug!(expr.span, "label wasn't mapped to a label def!");
4081                     }
4082                 }
4083
4084                 // visit `break` argument if any
4085                 visit::walk_expr(self, expr);
4086             }
4087
4088             ExprKind::IfLet(ref pats, ref subexpression, ref if_block, ref optional_else) => {
4089                 self.visit_expr(subexpression);
4090
4091                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
4092                 let mut bindings_list = FxHashMap();
4093                 for pat in pats {
4094                     self.resolve_pattern(pat, PatternSource::IfLet, &mut bindings_list);
4095                 }
4096                 // This has to happen *after* we determine which pat_idents are variants
4097                 self.check_consistent_bindings(pats);
4098                 self.visit_block(if_block);
4099                 self.ribs[ValueNS].pop();
4100
4101                 optional_else.as_ref().map(|expr| self.visit_expr(expr));
4102             }
4103
4104             ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),
4105
4106             ExprKind::While(ref subexpression, ref block, label) => {
4107                 self.with_resolved_label(label, expr.id, |this| {
4108                     this.visit_expr(subexpression);
4109                     this.visit_block(block);
4110                 });
4111             }
4112
4113             ExprKind::WhileLet(ref pats, ref subexpression, ref block, label) => {
4114                 self.with_resolved_label(label, expr.id, |this| {
4115                     this.visit_expr(subexpression);
4116                     this.ribs[ValueNS].push(Rib::new(NormalRibKind));
4117                     let mut bindings_list = FxHashMap();
4118                     for pat in pats {
4119                         this.resolve_pattern(pat, PatternSource::WhileLet, &mut bindings_list);
4120                     }
4121                     // This has to happen *after* we determine which pat_idents are variants
4122                     this.check_consistent_bindings(pats);
4123                     this.visit_block(block);
4124                     this.ribs[ValueNS].pop();
4125                 });
4126             }
4127
4128             ExprKind::ForLoop(ref pattern, ref subexpression, ref block, label) => {
4129                 self.visit_expr(subexpression);
4130                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
4131                 self.resolve_pattern(pattern, PatternSource::For, &mut FxHashMap());
4132
4133                 self.resolve_labeled_block(label, expr.id, block);
4134
4135                 self.ribs[ValueNS].pop();
4136             }
4137
4138             ExprKind::Block(ref block, label) => self.resolve_labeled_block(label, block.id, block),
4139
4140             // Equivalent to `visit::walk_expr` + passing some context to children.
4141             ExprKind::Field(ref subexpression, _) => {
4142                 self.resolve_expr(subexpression, Some(expr));
4143             }
4144             ExprKind::MethodCall(ref segment, ref arguments) => {
4145                 let mut arguments = arguments.iter();
4146                 self.resolve_expr(arguments.next().unwrap(), Some(expr));
4147                 for argument in arguments {
4148                     self.resolve_expr(argument, None);
4149                 }
4150                 self.visit_path_segment(expr.span, segment);
4151             }
4152
4153             ExprKind::Call(ref callee, ref arguments) => {
4154                 self.resolve_expr(callee, Some(expr));
4155                 for argument in arguments {
4156                     self.resolve_expr(argument, None);
4157                 }
4158             }
4159             ExprKind::Type(ref type_expr, _) => {
4160                 self.current_type_ascription.push(type_expr.span);
4161                 visit::walk_expr(self, expr);
4162                 self.current_type_ascription.pop();
4163             }
4164             // Resolve the body of async exprs inside the async closure to which they desugar
4165             ExprKind::Async(_, async_closure_id, ref block) => {
4166                 let rib_kind = ClosureRibKind(async_closure_id);
4167                 self.ribs[ValueNS].push(Rib::new(rib_kind));
4168                 self.label_ribs.push(Rib::new(rib_kind));
4169                 self.visit_block(&block);
4170                 self.label_ribs.pop();
4171                 self.ribs[ValueNS].pop();
4172             }
4173             // `async |x| ...` gets desugared to `|x| future_from_generator(|| ...)`, so we need to
4174             // resolve the arguments within the proper scopes so that usages of them inside the
4175             // closure are detected as upvars rather than normal closure arg usages.
4176             ExprKind::Closure(
4177                 _, IsAsync::Async { closure_id: inner_closure_id, .. }, _,
4178                 ref fn_decl, ref body, _span,
4179             ) => {
4180                 let rib_kind = ClosureRibKind(expr.id);
4181                 self.ribs[ValueNS].push(Rib::new(rib_kind));
4182                 self.label_ribs.push(Rib::new(rib_kind));
4183                 // Resolve arguments:
4184                 let mut bindings_list = FxHashMap();
4185                 for argument in &fn_decl.inputs {
4186                     self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
4187                     self.visit_ty(&argument.ty);
4188                 }
4189                 // No need to resolve return type-- the outer closure return type is
4190                 // FunctionRetTy::Default
4191
4192                 // Now resolve the inner closure
4193                 {
4194                     let rib_kind = ClosureRibKind(inner_closure_id);
4195                     self.ribs[ValueNS].push(Rib::new(rib_kind));
4196                     self.label_ribs.push(Rib::new(rib_kind));
4197                     // No need to resolve arguments: the inner closure has none.
4198                     // Resolve the return type:
4199                     visit::walk_fn_ret_ty(self, &fn_decl.output);
4200                     // Resolve the body
4201                     self.visit_expr(body);
4202                     self.label_ribs.pop();
4203                     self.ribs[ValueNS].pop();
4204                 }
4205                 self.label_ribs.pop();
4206                 self.ribs[ValueNS].pop();
4207             }
4208             _ => {
4209                 visit::walk_expr(self, expr);
4210             }
4211         }
4212     }
4213
4214     fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &Expr) {
4215         match expr.node {
4216             ExprKind::Field(_, ident) => {
4217                 // FIXME(#6890): Even though you can't treat a method like a
4218                 // field, we need to add any trait methods we find that match
4219                 // the field name so that we can do some nice error reporting
4220                 // later on in typeck.
4221                 let traits = self.get_traits_containing_item(ident, ValueNS);
4222                 self.trait_map.insert(expr.id, traits);
4223             }
4224             ExprKind::MethodCall(ref segment, ..) => {
4225                 debug!("(recording candidate traits for expr) recording traits for {}",
4226                        expr.id);
4227                 let traits = self.get_traits_containing_item(segment.ident, ValueNS);
4228                 self.trait_map.insert(expr.id, traits);
4229             }
4230             _ => {
4231                 // Nothing to do.
4232             }
4233         }
4234     }
4235
4236     fn get_traits_containing_item(&mut self, mut ident: Ident, ns: Namespace)
4237                                   -> Vec<TraitCandidate> {
4238         debug!("(getting traits containing item) looking for '{}'", ident.name);
4239
4240         let mut found_traits = Vec::new();
4241         // Look for the current trait.
4242         if let Some((module, _)) = self.current_trait_ref {
4243             if self.resolve_ident_in_module(
4244                 ModuleOrUniformRoot::Module(module),
4245                 ident,
4246                 ns,
4247                 false,
4248                 module.span,
4249             ).is_ok() {
4250                 let def_id = module.def_id().unwrap();
4251                 found_traits.push(TraitCandidate { def_id: def_id, import_id: None });
4252             }
4253         }
4254
4255         ident.span = ident.span.modern();
4256         let mut search_module = self.current_module;
4257         loop {
4258             self.get_traits_in_module_containing_item(ident, ns, search_module, &mut found_traits);
4259             search_module = unwrap_or!(
4260                 self.hygienic_lexical_parent(search_module, &mut ident.span), break
4261             );
4262         }
4263
4264         if let Some(prelude) = self.prelude {
4265             if !search_module.no_implicit_prelude {
4266                 self.get_traits_in_module_containing_item(ident, ns, prelude, &mut found_traits);
4267             }
4268         }
4269
4270         found_traits
4271     }
4272
4273     fn get_traits_in_module_containing_item(&mut self,
4274                                             ident: Ident,
4275                                             ns: Namespace,
4276                                             module: Module<'a>,
4277                                             found_traits: &mut Vec<TraitCandidate>) {
4278         assert!(ns == TypeNS || ns == ValueNS);
4279         let mut traits = module.traits.borrow_mut();
4280         if traits.is_none() {
4281             let mut collected_traits = Vec::new();
4282             module.for_each_child(|name, ns, binding| {
4283                 if ns != TypeNS { return }
4284                 if let Def::Trait(_) = binding.def() {
4285                     collected_traits.push((name, binding));
4286                 }
4287             });
4288             *traits = Some(collected_traits.into_boxed_slice());
4289         }
4290
4291         for &(trait_name, binding) in traits.as_ref().unwrap().iter() {
4292             let module = binding.module().unwrap();
4293             let mut ident = ident;
4294             if ident.span.glob_adjust(module.expansion, binding.span.ctxt().modern()).is_none() {
4295                 continue
4296             }
4297             if self.resolve_ident_in_module_unadjusted(
4298                 ModuleOrUniformRoot::Module(module),
4299                 ident,
4300                 ns,
4301                 false,
4302                 false,
4303                 module.span,
4304             ).is_ok() {
4305                 let import_id = match binding.kind {
4306                     NameBindingKind::Import { directive, .. } => {
4307                         self.maybe_unused_trait_imports.insert(directive.id);
4308                         self.add_to_glob_map(directive.id, trait_name);
4309                         Some(directive.id)
4310                     }
4311                     _ => None,
4312                 };
4313                 let trait_def_id = module.def_id().unwrap();
4314                 found_traits.push(TraitCandidate { def_id: trait_def_id, import_id: import_id });
4315             }
4316         }
4317     }
4318
4319     fn lookup_import_candidates_from_module<FilterFn>(&mut self,
4320                                           lookup_name: Name,
4321                                           namespace: Namespace,
4322                                           start_module: &'a ModuleData<'a>,
4323                                           crate_name: Ident,
4324                                           filter_fn: FilterFn)
4325                                           -> Vec<ImportSuggestion>
4326         where FilterFn: Fn(Def) -> bool
4327     {
4328         let mut candidates = Vec::new();
4329         let mut worklist = Vec::new();
4330         let mut seen_modules = FxHashSet();
4331         let not_local_module = crate_name != keywords::Crate.ident();
4332         worklist.push((start_module, Vec::<ast::PathSegment>::new(), not_local_module));
4333
4334         while let Some((in_module,
4335                         path_segments,
4336                         in_module_is_extern)) = worklist.pop() {
4337             self.populate_module_if_necessary(in_module);
4338
4339             // We have to visit module children in deterministic order to avoid
4340             // instabilities in reported imports (#43552).
4341             in_module.for_each_child_stable(|ident, ns, name_binding| {
4342                 // avoid imports entirely
4343                 if name_binding.is_import() && !name_binding.is_extern_crate() { return; }
4344                 // avoid non-importable candidates as well
4345                 if !name_binding.is_importable() { return; }
4346
4347                 // collect results based on the filter function
4348                 if ident.name == lookup_name && ns == namespace {
4349                     if filter_fn(name_binding.def()) {
4350                         // create the path
4351                         let mut segms = path_segments.clone();
4352                         if self.session.rust_2018() {
4353                             // crate-local absolute paths start with `crate::` in edition 2018
4354                             // FIXME: may also be stabilized for Rust 2015 (Issues #45477, #44660)
4355                             segms.insert(
4356                                 0, ast::PathSegment::from_ident(crate_name)
4357                             );
4358                         }
4359
4360                         segms.push(ast::PathSegment::from_ident(ident));
4361                         let path = Path {
4362                             span: name_binding.span,
4363                             segments: segms,
4364                         };
4365                         // the entity is accessible in the following cases:
4366                         // 1. if it's defined in the same crate, it's always
4367                         // accessible (since private entities can be made public)
4368                         // 2. if it's defined in another crate, it's accessible
4369                         // only if both the module is public and the entity is
4370                         // declared as public (due to pruning, we don't explore
4371                         // outside crate private modules => no need to check this)
4372                         if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
4373                             candidates.push(ImportSuggestion { path: path });
4374                         }
4375                     }
4376                 }
4377
4378                 // collect submodules to explore
4379                 if let Some(module) = name_binding.module() {
4380                     // form the path
4381                     let mut path_segments = path_segments.clone();
4382                     path_segments.push(ast::PathSegment::from_ident(ident));
4383
4384                     let is_extern_crate_that_also_appears_in_prelude =
4385                         name_binding.is_extern_crate() &&
4386                         self.session.rust_2018();
4387
4388                     let is_visible_to_user =
4389                         !in_module_is_extern || name_binding.vis == ty::Visibility::Public;
4390
4391                     if !is_extern_crate_that_also_appears_in_prelude && is_visible_to_user {
4392                         // add the module to the lookup
4393                         let is_extern = in_module_is_extern || name_binding.is_extern_crate();
4394                         if seen_modules.insert(module.def_id().unwrap()) {
4395                             worklist.push((module, path_segments, is_extern));
4396                         }
4397                     }
4398                 }
4399             })
4400         }
4401
4402         candidates
4403     }
4404
4405     /// When name resolution fails, this method can be used to look up candidate
4406     /// entities with the expected name. It allows filtering them using the
4407     /// supplied predicate (which should be used to only accept the types of
4408     /// definitions expected e.g. traits). The lookup spans across all crates.
4409     ///
4410     /// NOTE: The method does not look into imports, but this is not a problem,
4411     /// since we report the definitions (thus, the de-aliased imports).
4412     fn lookup_import_candidates<FilterFn>(&mut self,
4413                                           lookup_name: Name,
4414                                           namespace: Namespace,
4415                                           filter_fn: FilterFn)
4416                                           -> Vec<ImportSuggestion>
4417         where FilterFn: Fn(Def) -> bool
4418     {
4419         let mut suggestions = vec![];
4420
4421         suggestions.extend(
4422             self.lookup_import_candidates_from_module(
4423                 lookup_name, namespace, self.graph_root, keywords::Crate.ident(), &filter_fn
4424             )
4425         );
4426
4427         if self.session.features_untracked().extern_prelude {
4428             let extern_prelude_names = self.extern_prelude.clone();
4429             for &name in extern_prelude_names.iter() {
4430                 let ident = Ident::with_empty_ctxt(name);
4431                 match self.crate_loader.maybe_process_path_extern(name, ident.span) {
4432                     Some(crate_id) => {
4433                         let crate_root = self.get_module(DefId {
4434                             krate: crate_id,
4435                             index: CRATE_DEF_INDEX,
4436                         });
4437                         self.populate_module_if_necessary(&crate_root);
4438
4439                         suggestions.extend(
4440                             self.lookup_import_candidates_from_module(
4441                                 lookup_name, namespace, crate_root, ident, &filter_fn
4442                             )
4443                         );
4444                     }
4445                     None => {}
4446                 }
4447             }
4448         }
4449
4450         suggestions
4451     }
4452
4453     fn find_module(&mut self,
4454                    module_def: Def)
4455                    -> Option<(Module<'a>, ImportSuggestion)>
4456     {
4457         let mut result = None;
4458         let mut worklist = Vec::new();
4459         let mut seen_modules = FxHashSet();
4460         worklist.push((self.graph_root, Vec::new()));
4461
4462         while let Some((in_module, path_segments)) = worklist.pop() {
4463             // abort if the module is already found
4464             if result.is_some() { break; }
4465
4466             self.populate_module_if_necessary(in_module);
4467
4468             in_module.for_each_child_stable(|ident, _, name_binding| {
4469                 // abort if the module is already found or if name_binding is private external
4470                 if result.is_some() || !name_binding.vis.is_visible_locally() {
4471                     return
4472                 }
4473                 if let Some(module) = name_binding.module() {
4474                     // form the path
4475                     let mut path_segments = path_segments.clone();
4476                     path_segments.push(ast::PathSegment::from_ident(ident));
4477                     if module.def() == Some(module_def) {
4478                         let path = Path {
4479                             span: name_binding.span,
4480                             segments: path_segments,
4481                         };
4482                         result = Some((module, ImportSuggestion { path: path }));
4483                     } else {
4484                         // add the module to the lookup
4485                         if seen_modules.insert(module.def_id().unwrap()) {
4486                             worklist.push((module, path_segments));
4487                         }
4488                     }
4489                 }
4490             });
4491         }
4492
4493         result
4494     }
4495
4496     fn collect_enum_variants(&mut self, enum_def: Def) -> Option<Vec<Path>> {
4497         if let Def::Enum(..) = enum_def {} else {
4498             panic!("Non-enum def passed to collect_enum_variants: {:?}", enum_def)
4499         }
4500
4501         self.find_module(enum_def).map(|(enum_module, enum_import_suggestion)| {
4502             self.populate_module_if_necessary(enum_module);
4503
4504             let mut variants = Vec::new();
4505             enum_module.for_each_child_stable(|ident, _, name_binding| {
4506                 if let Def::Variant(..) = name_binding.def() {
4507                     let mut segms = enum_import_suggestion.path.segments.clone();
4508                     segms.push(ast::PathSegment::from_ident(ident));
4509                     variants.push(Path {
4510                         span: name_binding.span,
4511                         segments: segms,
4512                     });
4513                 }
4514             });
4515             variants
4516         })
4517     }
4518
4519     fn record_def(&mut self, node_id: NodeId, resolution: PathResolution) {
4520         debug!("(recording def) recording {:?} for {}", resolution, node_id);
4521         if let Some(prev_res) = self.def_map.insert(node_id, resolution) {
4522             panic!("path resolved multiple times ({:?} before, {:?} now)", prev_res, resolution);
4523         }
4524     }
4525
4526     fn resolve_visibility(&mut self, vis: &ast::Visibility) -> ty::Visibility {
4527         match vis.node {
4528             ast::VisibilityKind::Public => ty::Visibility::Public,
4529             ast::VisibilityKind::Crate(..) => {
4530                 ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX))
4531             }
4532             ast::VisibilityKind::Inherited => {
4533                 ty::Visibility::Restricted(self.current_module.normal_ancestor_id)
4534             }
4535             ast::VisibilityKind::Restricted { ref path, id, .. } => {
4536                 // Visibilities are resolved as global by default, add starting root segment.
4537                 let segments = path.make_root().iter().chain(path.segments.iter())
4538                     .map(|seg| seg.ident)
4539                     .collect::<Vec<_>>();
4540                 let def = self.smart_resolve_path_fragment(
4541                     id,
4542                     None,
4543                     &segments,
4544                     path.span,
4545                     PathSource::Visibility,
4546                     CrateLint::SimplePath(id),
4547                 ).base_def();
4548                 if def == Def::Err {
4549                     ty::Visibility::Public
4550                 } else {
4551                     let vis = ty::Visibility::Restricted(def.def_id());
4552                     if self.is_accessible(vis) {
4553                         vis
4554                     } else {
4555                         self.session.span_err(path.span, "visibilities can only be restricted \
4556                                                           to ancestor modules");
4557                         ty::Visibility::Public
4558                     }
4559                 }
4560             }
4561         }
4562     }
4563
4564     fn is_accessible(&self, vis: ty::Visibility) -> bool {
4565         vis.is_accessible_from(self.current_module.normal_ancestor_id, self)
4566     }
4567
4568     fn is_accessible_from(&self, vis: ty::Visibility, module: Module<'a>) -> bool {
4569         vis.is_accessible_from(module.normal_ancestor_id, self)
4570     }
4571
4572     fn report_ambiguity_error(&self, ident: Ident, b1: &NameBinding, b2: &NameBinding) {
4573         let participle = |is_import: bool| if is_import { "imported" } else { "defined" };
4574         let msg1 =
4575             format!("`{}` could refer to the name {} here", ident, participle(b1.is_import()));
4576         let msg2 =
4577             format!("`{}` could also refer to the name {} here", ident, participle(b2.is_import()));
4578         let note = if b1.expansion != Mark::root() {
4579             Some(if let Def::Macro(..) = b1.def() {
4580                 format!("macro-expanded {} do not shadow",
4581                         if b1.is_import() { "macro imports" } else { "macros" })
4582             } else {
4583                 format!("macro-expanded {} do not shadow when used in a macro invocation path",
4584                         if b1.is_import() { "imports" } else { "items" })
4585             })
4586         } else if b1.is_glob_import() {
4587             Some(format!("consider adding an explicit import of `{}` to disambiguate", ident))
4588         } else {
4589             None
4590         };
4591
4592         let mut err = struct_span_err!(self.session, ident.span, E0659, "`{}` is ambiguous", ident);
4593         err.span_label(ident.span, "ambiguous name");
4594         err.span_note(b1.span, &msg1);
4595         match b2.def() {
4596             Def::Macro(..) if b2.span.is_dummy() =>
4597                 err.note(&format!("`{}` is also a builtin macro", ident)),
4598             _ => err.span_note(b2.span, &msg2),
4599         };
4600         if let Some(note) = note {
4601             err.note(&note);
4602         }
4603         err.emit();
4604     }
4605
4606     fn report_errors(&mut self, krate: &Crate) {
4607         self.report_with_use_injections(krate);
4608         self.report_proc_macro_import(krate);
4609         let mut reported_spans = FxHashSet();
4610
4611         for &(span_use, span_def) in &self.macro_expanded_macro_export_errors {
4612             let msg = "macro-expanded `macro_export` macros from the current crate \
4613                        cannot be referred to by absolute paths";
4614             self.session.buffer_lint_with_diagnostic(
4615                 lint::builtin::MACRO_EXPANDED_MACRO_EXPORTS_ACCESSED_BY_ABSOLUTE_PATHS,
4616                 CRATE_NODE_ID, span_use, msg,
4617                 lint::builtin::BuiltinLintDiagnostics::
4618                     MacroExpandedMacroExportsAccessedByAbsolutePaths(span_def),
4619             );
4620         }
4621
4622         for &AmbiguityError { ident, b1, b2 } in &self.ambiguity_errors {
4623             if reported_spans.insert(ident.span) {
4624                 self.report_ambiguity_error(ident, b1, b2);
4625             }
4626         }
4627
4628         for &PrivacyError(span, name, binding) in &self.privacy_errors {
4629             if !reported_spans.insert(span) { continue }
4630             span_err!(self.session, span, E0603, "{} `{}` is private", binding.descr(), name);
4631         }
4632     }
4633
4634     fn report_with_use_injections(&mut self, krate: &Crate) {
4635         for UseError { mut err, candidates, node_id, better } in self.use_injections.drain(..) {
4636             let (span, found_use) = UsePlacementFinder::check(krate, node_id);
4637             if !candidates.is_empty() {
4638                 show_candidates(&mut err, span, &candidates, better, found_use);
4639             }
4640             err.emit();
4641         }
4642     }
4643
4644     fn report_conflict<'b>(&mut self,
4645                        parent: Module,
4646                        ident: Ident,
4647                        ns: Namespace,
4648                        new_binding: &NameBinding<'b>,
4649                        old_binding: &NameBinding<'b>) {
4650         // Error on the second of two conflicting names
4651         if old_binding.span.lo() > new_binding.span.lo() {
4652             return self.report_conflict(parent, ident, ns, old_binding, new_binding);
4653         }
4654
4655         let container = match parent.kind {
4656             ModuleKind::Def(Def::Mod(_), _) => "module",
4657             ModuleKind::Def(Def::Trait(_), _) => "trait",
4658             ModuleKind::Block(..) => "block",
4659             _ => "enum",
4660         };
4661
4662         let old_noun = match old_binding.is_import() {
4663             true => "import",
4664             false => "definition",
4665         };
4666
4667         let new_participle = match new_binding.is_import() {
4668             true => "imported",
4669             false => "defined",
4670         };
4671
4672         let (name, span) = (ident.name, self.session.source_map().def_span(new_binding.span));
4673
4674         if let Some(s) = self.name_already_seen.get(&name) {
4675             if s == &span {
4676                 return;
4677             }
4678         }
4679
4680         let old_kind = match (ns, old_binding.module()) {
4681             (ValueNS, _) => "value",
4682             (MacroNS, _) => "macro",
4683             (TypeNS, _) if old_binding.is_extern_crate() => "extern crate",
4684             (TypeNS, Some(module)) if module.is_normal() => "module",
4685             (TypeNS, Some(module)) if module.is_trait() => "trait",
4686             (TypeNS, _) => "type",
4687         };
4688
4689         let msg = format!("the name `{}` is defined multiple times", name);
4690
4691         let mut err = match (old_binding.is_extern_crate(), new_binding.is_extern_crate()) {
4692             (true, true) => struct_span_err!(self.session, span, E0259, "{}", msg),
4693             (true, _) | (_, true) => match new_binding.is_import() && old_binding.is_import() {
4694                 true => struct_span_err!(self.session, span, E0254, "{}", msg),
4695                 false => struct_span_err!(self.session, span, E0260, "{}", msg),
4696             },
4697             _ => match (old_binding.is_import(), new_binding.is_import()) {
4698                 (false, false) => struct_span_err!(self.session, span, E0428, "{}", msg),
4699                 (true, true) => struct_span_err!(self.session, span, E0252, "{}", msg),
4700                 _ => struct_span_err!(self.session, span, E0255, "{}", msg),
4701             },
4702         };
4703
4704         err.note(&format!("`{}` must be defined only once in the {} namespace of this {}",
4705                           name,
4706                           ns.descr(),
4707                           container));
4708
4709         err.span_label(span, format!("`{}` re{} here", name, new_participle));
4710         if !old_binding.span.is_dummy() {
4711             err.span_label(self.session.source_map().def_span(old_binding.span),
4712                            format!("previous {} of the {} `{}` here", old_noun, old_kind, name));
4713         }
4714
4715         // See https://github.com/rust-lang/rust/issues/32354
4716         if old_binding.is_import() || new_binding.is_import() {
4717             let binding = if new_binding.is_import() && !new_binding.span.is_dummy() {
4718                 new_binding
4719             } else {
4720                 old_binding
4721             };
4722
4723             let cm = self.session.source_map();
4724             let rename_msg = "You can use `as` to change the binding name of the import";
4725
4726             if let (Ok(snippet), false) = (cm.span_to_snippet(binding.span),
4727                                            binding.is_renamed_extern_crate()) {
4728                 let suggested_name = if name.as_str().chars().next().unwrap().is_uppercase() {
4729                     format!("Other{}", name)
4730                 } else {
4731                     format!("other_{}", name)
4732                 };
4733
4734                 err.span_suggestion_with_applicability(
4735                     binding.span,
4736                     rename_msg,
4737                     if snippet.ends_with(';') {
4738                         format!("{} as {};", &snippet[..snippet.len() - 1], suggested_name)
4739                     } else {
4740                         format!("{} as {}", snippet, suggested_name)
4741                     },
4742                     Applicability::MachineApplicable,
4743                 );
4744             } else {
4745                 err.span_label(binding.span, rename_msg);
4746             }
4747         }
4748
4749         err.emit();
4750         self.name_already_seen.insert(name, span);
4751     }
4752 }
4753
4754 fn is_self_type(path: &[Ident], namespace: Namespace) -> bool {
4755     namespace == TypeNS && path.len() == 1 && path[0].name == keywords::SelfType.name()
4756 }
4757
4758 fn is_self_value(path: &[Ident], namespace: Namespace) -> bool {
4759     namespace == ValueNS && path.len() == 1 && path[0].name == keywords::SelfValue.name()
4760 }
4761
4762 fn names_to_string(idents: &[Ident]) -> String {
4763     let mut result = String::new();
4764     for (i, ident) in idents.iter()
4765                             .filter(|ident| ident.name != keywords::CrateRoot.name())
4766                             .enumerate() {
4767         if i > 0 {
4768             result.push_str("::");
4769         }
4770         result.push_str(&ident.as_str());
4771     }
4772     result
4773 }
4774
4775 fn path_names_to_string(path: &Path) -> String {
4776     names_to_string(&path.segments.iter()
4777                         .map(|seg| seg.ident)
4778                         .collect::<Vec<_>>())
4779 }
4780
4781 /// Get the path for an enum and the variant from an `ImportSuggestion` for an enum variant.
4782 fn import_candidate_to_paths(suggestion: &ImportSuggestion) -> (Span, String, String) {
4783     let variant_path = &suggestion.path;
4784     let variant_path_string = path_names_to_string(variant_path);
4785
4786     let path_len = suggestion.path.segments.len();
4787     let enum_path = ast::Path {
4788         span: suggestion.path.span,
4789         segments: suggestion.path.segments[0..path_len - 1].to_vec(),
4790     };
4791     let enum_path_string = path_names_to_string(&enum_path);
4792
4793     (suggestion.path.span, variant_path_string, enum_path_string)
4794 }
4795
4796
4797 /// When an entity with a given name is not available in scope, we search for
4798 /// entities with that name in all crates. This method allows outputting the
4799 /// results of this search in a programmer-friendly way
4800 fn show_candidates(err: &mut DiagnosticBuilder,
4801                    // This is `None` if all placement locations are inside expansions
4802                    span: Option<Span>,
4803                    candidates: &[ImportSuggestion],
4804                    better: bool,
4805                    found_use: bool) {
4806
4807     // we want consistent results across executions, but candidates are produced
4808     // by iterating through a hash map, so make sure they are ordered:
4809     let mut path_strings: Vec<_> =
4810         candidates.into_iter().map(|c| path_names_to_string(&c.path)).collect();
4811     path_strings.sort();
4812
4813     let better = if better { "better " } else { "" };
4814     let msg_diff = match path_strings.len() {
4815         1 => " is found in another module, you can import it",
4816         _ => "s are found in other modules, you can import them",
4817     };
4818     let msg = format!("possible {}candidate{} into scope", better, msg_diff);
4819
4820     if let Some(span) = span {
4821         for candidate in &mut path_strings {
4822             // produce an additional newline to separate the new use statement
4823             // from the directly following item.
4824             let additional_newline = if found_use {
4825                 ""
4826             } else {
4827                 "\n"
4828             };
4829             *candidate = format!("use {};\n{}", candidate, additional_newline);
4830         }
4831
4832         err.span_suggestions_with_applicability(
4833             span,
4834             &msg,
4835             path_strings,
4836             Applicability::Unspecified,
4837         );
4838     } else {
4839         let mut msg = msg;
4840         msg.push(':');
4841         for candidate in path_strings {
4842             msg.push('\n');
4843             msg.push_str(&candidate);
4844         }
4845     }
4846 }
4847
4848 /// A somewhat inefficient routine to obtain the name of a module.
4849 fn module_to_string(module: Module) -> Option<String> {
4850     let mut names = Vec::new();
4851
4852     fn collect_mod(names: &mut Vec<Ident>, module: Module) {
4853         if let ModuleKind::Def(_, name) = module.kind {
4854             if let Some(parent) = module.parent {
4855                 names.push(Ident::with_empty_ctxt(name));
4856                 collect_mod(names, parent);
4857             }
4858         } else {
4859             // danger, shouldn't be ident?
4860             names.push(Ident::from_str("<opaque>"));
4861             collect_mod(names, module.parent.unwrap());
4862         }
4863     }
4864     collect_mod(&mut names, module);
4865
4866     if names.is_empty() {
4867         return None;
4868     }
4869     Some(names_to_string(&names.into_iter()
4870                         .rev()
4871                         .collect::<Vec<_>>()))
4872 }
4873
4874 fn err_path_resolution() -> PathResolution {
4875     PathResolution::new(Def::Err)
4876 }
4877
4878 #[derive(PartialEq,Copy, Clone)]
4879 pub enum MakeGlobMap {
4880     Yes,
4881     No,
4882 }
4883
4884 #[derive(Copy, Clone, Debug)]
4885 enum CrateLint {
4886     /// Do not issue the lint
4887     No,
4888
4889     /// This lint applies to some random path like `impl ::foo::Bar`
4890     /// or whatever. In this case, we can take the span of that path.
4891     SimplePath(NodeId),
4892
4893     /// This lint comes from a `use` statement. In this case, what we
4894     /// care about really is the *root* `use` statement; e.g., if we
4895     /// have nested things like `use a::{b, c}`, we care about the
4896     /// `use a` part.
4897     UsePath { root_id: NodeId, root_span: Span },
4898
4899     /// This is the "trait item" from a fully qualified path. For example,
4900     /// we might be resolving  `X::Y::Z` from a path like `<T as X::Y>::Z`.
4901     /// The `path_span` is the span of the to the trait itself (`X::Y`).
4902     QPathTrait { qpath_id: NodeId, qpath_span: Span },
4903 }
4904
4905 impl CrateLint {
4906     fn node_id(&self) -> Option<NodeId> {
4907         match *self {
4908             CrateLint::No => None,
4909             CrateLint::SimplePath(id) |
4910             CrateLint::UsePath { root_id: id, .. } |
4911             CrateLint::QPathTrait { qpath_id: id, .. } => Some(id),
4912         }
4913     }
4914 }
4915
4916 __build_diagnostic_array! { librustc_resolve, DIAGNOSTICS }