]> git.lizzy.rs Git - rust.git/blob - src/librustc_resolve/lib.rs
Hygienize `librustc_typeck`.
[rust.git] / src / librustc_resolve / lib.rs
1 // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 #![crate_name = "rustc_resolve"]
12 #![crate_type = "dylib"]
13 #![crate_type = "rlib"]
14 #![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
15       html_favicon_url = "https://doc.rust-lang.org/favicon.ico",
16       html_root_url = "https://doc.rust-lang.org/nightly/")]
17 #![deny(warnings)]
18
19 #![feature(associated_consts)]
20 #![feature(rustc_diagnostic_macros)]
21
22 #![cfg_attr(stage0, unstable(feature = "rustc_private", issue = "27812"))]
23 #![cfg_attr(stage0, feature(rustc_private))]
24 #![cfg_attr(stage0, feature(staged_api))]
25
26 #[macro_use]
27 extern crate log;
28 #[macro_use]
29 extern crate syntax;
30 extern crate syntax_pos;
31 extern crate rustc_errors as errors;
32 extern crate arena;
33 #[macro_use]
34 extern crate rustc;
35
36 use self::Namespace::*;
37 use self::TypeParameters::*;
38 use self::RibKind::*;
39
40 use rustc::hir::map::{Definitions, DefCollector};
41 use rustc::hir::{self, PrimTy, TyBool, TyChar, TyFloat, TyInt, TyUint, TyStr};
42 use rustc::middle::cstore::CrateLoader;
43 use rustc::session::Session;
44 use rustc::lint;
45 use rustc::hir::def::*;
46 use rustc::hir::def_id::{CRATE_DEF_INDEX, LOCAL_CRATE, DefId};
47 use rustc::ty;
48 use rustc::hir::{Freevar, FreevarMap, TraitCandidate, TraitMap, GlobMap};
49 use rustc::util::nodemap::{NodeMap, NodeSet, FxHashMap, FxHashSet, DefIdMap};
50
51 use syntax::ext::hygiene::{Mark, SyntaxContext};
52 use syntax::ast::{self, Name, NodeId, Ident, SpannedIdent, FloatTy, IntTy, UintTy};
53 use syntax::ext::base::SyntaxExtension;
54 use syntax::ext::base::Determinacy::{self, Determined, Undetermined};
55 use syntax::ext::base::MacroKind;
56 use syntax::symbol::{Symbol, keywords};
57 use syntax::util::lev_distance::find_best_match_for_name;
58
59 use syntax::visit::{self, FnKind, Visitor};
60 use syntax::attr;
61 use syntax::ast::{Arm, BindingMode, Block, Crate, Expr, ExprKind};
62 use syntax::ast::{FnDecl, ForeignItem, ForeignItemKind, Generics};
63 use syntax::ast::{Item, ItemKind, ImplItem, ImplItemKind};
64 use syntax::ast::{Local, Mutability, Pat, PatKind, Path};
65 use syntax::ast::{QSelf, TraitItemKind, TraitRef, Ty, TyKind};
66 use syntax::feature_gate::{feature_err, emit_feature_err, GateIssue};
67
68 use syntax_pos::{Span, DUMMY_SP, MultiSpan};
69 use errors::DiagnosticBuilder;
70
71 use std::cell::{Cell, RefCell};
72 use std::cmp;
73 use std::collections::BTreeSet;
74 use std::fmt;
75 use std::mem::replace;
76 use std::rc::Rc;
77
78 use resolve_imports::{ImportDirective, ImportDirectiveSubclass, NameResolution, ImportResolver};
79 use macros::{InvocationData, LegacyBinding, LegacyScope, MacroBinding};
80
81 // NB: This module needs to be declared first so diagnostics are
82 // registered before they are used.
83 mod diagnostics;
84
85 mod macros;
86 mod check_unused;
87 mod build_reduced_graph;
88 mod resolve_imports;
89
90 /// A free importable items suggested in case of resolution failure.
91 struct ImportSuggestion {
92     path: Path,
93 }
94
95 /// A field or associated item from self type suggested in case of resolution failure.
96 enum AssocSuggestion {
97     Field,
98     MethodWithSelf,
99     AssocItem,
100 }
101
102 #[derive(Eq)]
103 struct BindingError {
104     name: Name,
105     origin: BTreeSet<Span>,
106     target: BTreeSet<Span>,
107 }
108
109 impl PartialOrd for BindingError {
110     fn partial_cmp(&self, other: &BindingError) -> Option<cmp::Ordering> {
111         Some(self.cmp(other))
112     }
113 }
114
115 impl PartialEq for BindingError {
116     fn eq(&self, other: &BindingError) -> bool {
117         self.name == other.name
118     }
119 }
120
121 impl Ord for BindingError {
122     fn cmp(&self, other: &BindingError) -> cmp::Ordering {
123         self.name.cmp(&other.name)
124     }
125 }
126
127 enum ResolutionError<'a> {
128     /// error E0401: can't use type parameters from outer function
129     TypeParametersFromOuterFunction,
130     /// error E0403: the name is already used for a type parameter in this type parameter list
131     NameAlreadyUsedInTypeParameterList(Name, &'a Span),
132     /// error E0407: method is not a member of trait
133     MethodNotMemberOfTrait(Name, &'a str),
134     /// error E0437: type is not a member of trait
135     TypeNotMemberOfTrait(Name, &'a str),
136     /// error E0438: const is not a member of trait
137     ConstNotMemberOfTrait(Name, &'a str),
138     /// error E0408: variable `{}` is not bound in all patterns
139     VariableNotBoundInPattern(&'a BindingError),
140     /// error E0409: variable `{}` is bound in inconsistent ways within the same match arm
141     VariableBoundWithDifferentMode(Name, Span),
142     /// error E0415: identifier is bound more than once in this parameter list
143     IdentifierBoundMoreThanOnceInParameterList(&'a str),
144     /// error E0416: identifier is bound more than once in the same pattern
145     IdentifierBoundMoreThanOnceInSamePattern(&'a str),
146     /// error E0426: use of undeclared label
147     UndeclaredLabel(&'a str),
148     /// error E0429: `self` imports are only allowed within a { } list
149     SelfImportsOnlyAllowedWithin,
150     /// error E0430: `self` import can only appear once in the list
151     SelfImportCanOnlyAppearOnceInTheList,
152     /// error E0431: `self` import can only appear in an import list with a non-empty prefix
153     SelfImportOnlyInImportListWithNonEmptyPrefix,
154     /// error E0432: unresolved import
155     UnresolvedImport(Option<(&'a str, &'a str)>),
156     /// error E0433: failed to resolve
157     FailedToResolve(&'a str),
158     /// error E0434: can't capture dynamic environment in a fn item
159     CannotCaptureDynamicEnvironmentInFnItem,
160     /// error E0435: attempt to use a non-constant value in a constant
161     AttemptToUseNonConstantValueInConstant,
162     /// error E0530: X bindings cannot shadow Ys
163     BindingShadowsSomethingUnacceptable(&'a str, Name, &'a NameBinding<'a>),
164     /// error E0128: type parameters with a default cannot use forward declared identifiers
165     ForwardDeclaredTyParam,
166 }
167
168 fn resolve_error<'sess, 'a>(resolver: &'sess Resolver,
169                             span: Span,
170                             resolution_error: ResolutionError<'a>) {
171     resolve_struct_error(resolver, span, resolution_error).emit();
172 }
173
174 fn resolve_struct_error<'sess, 'a>(resolver: &'sess Resolver,
175                                    span: Span,
176                                    resolution_error: ResolutionError<'a>)
177                                    -> DiagnosticBuilder<'sess> {
178     match resolution_error {
179         ResolutionError::TypeParametersFromOuterFunction => {
180             let mut err = struct_span_err!(resolver.session,
181                                            span,
182                                            E0401,
183                                            "can't use type parameters from outer function; \
184                                            try using a local type parameter instead");
185             err.span_label(span, "use of type variable from outer function");
186             err
187         }
188         ResolutionError::NameAlreadyUsedInTypeParameterList(name, first_use_span) => {
189              let mut err = struct_span_err!(resolver.session,
190                                             span,
191                                             E0403,
192                                             "the name `{}` is already used for a type parameter \
193                                             in this type parameter list",
194                                             name);
195              err.span_label(span, "already used");
196              err.span_label(first_use_span.clone(), format!("first use of `{}`", name));
197              err
198         }
199         ResolutionError::MethodNotMemberOfTrait(method, trait_) => {
200             let mut err = struct_span_err!(resolver.session,
201                                            span,
202                                            E0407,
203                                            "method `{}` is not a member of trait `{}`",
204                                            method,
205                                            trait_);
206             err.span_label(span, format!("not a member of trait `{}`", trait_));
207             err
208         }
209         ResolutionError::TypeNotMemberOfTrait(type_, trait_) => {
210             let mut err = struct_span_err!(resolver.session,
211                              span,
212                              E0437,
213                              "type `{}` is not a member of trait `{}`",
214                              type_,
215                              trait_);
216             err.span_label(span, format!("not a member of trait `{}`", trait_));
217             err
218         }
219         ResolutionError::ConstNotMemberOfTrait(const_, trait_) => {
220             let mut err = struct_span_err!(resolver.session,
221                              span,
222                              E0438,
223                              "const `{}` is not a member of trait `{}`",
224                              const_,
225                              trait_);
226             err.span_label(span, format!("not a member of trait `{}`", trait_));
227             err
228         }
229         ResolutionError::VariableNotBoundInPattern(binding_error) => {
230             let target_sp = binding_error.target.iter().map(|x| *x).collect::<Vec<_>>();
231             let msp = MultiSpan::from_spans(target_sp.clone());
232             let msg = format!("variable `{}` is not bound in all patterns", binding_error.name);
233             let mut err = resolver.session.struct_span_err_with_code(msp, &msg, "E0408");
234             for sp in target_sp {
235                 err.span_label(sp, format!("pattern doesn't bind `{}`", binding_error.name));
236             }
237             let origin_sp = binding_error.origin.iter().map(|x| *x).collect::<Vec<_>>();
238             for sp in origin_sp {
239                 err.span_label(sp, "variable not in all patterns");
240             }
241             err
242         }
243         ResolutionError::VariableBoundWithDifferentMode(variable_name,
244                                                         first_binding_span) => {
245             let mut err = struct_span_err!(resolver.session,
246                              span,
247                              E0409,
248                              "variable `{}` is bound in inconsistent \
249                              ways within the same match arm",
250                              variable_name);
251             err.span_label(span, "bound in different ways");
252             err.span_label(first_binding_span, "first binding");
253             err
254         }
255         ResolutionError::IdentifierBoundMoreThanOnceInParameterList(identifier) => {
256             let mut err = struct_span_err!(resolver.session,
257                              span,
258                              E0415,
259                              "identifier `{}` is bound more than once in this parameter list",
260                              identifier);
261             err.span_label(span, "used as parameter more than once");
262             err
263         }
264         ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(identifier) => {
265             let mut err = struct_span_err!(resolver.session,
266                              span,
267                              E0416,
268                              "identifier `{}` is bound more than once in the same pattern",
269                              identifier);
270             err.span_label(span, "used in a pattern more than once");
271             err
272         }
273         ResolutionError::UndeclaredLabel(name) => {
274             let mut err = struct_span_err!(resolver.session,
275                                            span,
276                                            E0426,
277                                            "use of undeclared label `{}`",
278                                            name);
279             err.span_label(span, format!("undeclared label `{}`", name));
280             err
281         }
282         ResolutionError::SelfImportsOnlyAllowedWithin => {
283             struct_span_err!(resolver.session,
284                              span,
285                              E0429,
286                              "{}",
287                              "`self` imports are only allowed within a { } list")
288         }
289         ResolutionError::SelfImportCanOnlyAppearOnceInTheList => {
290             struct_span_err!(resolver.session,
291                              span,
292                              E0430,
293                              "`self` import can only appear once in the list")
294         }
295         ResolutionError::SelfImportOnlyInImportListWithNonEmptyPrefix => {
296             struct_span_err!(resolver.session,
297                              span,
298                              E0431,
299                              "`self` import can only appear in an import list with a \
300                               non-empty prefix")
301         }
302         ResolutionError::UnresolvedImport(name) => {
303             let msg = match name {
304                 Some((n, _)) => format!("unresolved import `{}`", n),
305                 None => "unresolved import".to_owned(),
306             };
307             let mut err = struct_span_err!(resolver.session, span, E0432, "{}", msg);
308             if let Some((_, p)) = name {
309                 err.span_label(span, p);
310             }
311             err
312         }
313         ResolutionError::FailedToResolve(msg) => {
314             let mut err = struct_span_err!(resolver.session, span, E0433,
315                                            "failed to resolve. {}", msg);
316             err.span_label(span, msg);
317             err
318         }
319         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem => {
320             struct_span_err!(resolver.session,
321                              span,
322                              E0434,
323                              "{}",
324                              "can't capture dynamic environment in a fn item; use the || { ... } \
325                               closure form instead")
326         }
327         ResolutionError::AttemptToUseNonConstantValueInConstant => {
328             let mut err = struct_span_err!(resolver.session,
329                              span,
330                              E0435,
331                              "attempt to use a non-constant value in a constant");
332             err.span_label(span, "non-constant used with constant");
333             err
334         }
335         ResolutionError::BindingShadowsSomethingUnacceptable(what_binding, name, binding) => {
336             let shadows_what = PathResolution::new(binding.def()).kind_name();
337             let mut err = struct_span_err!(resolver.session,
338                                            span,
339                                            E0530,
340                                            "{}s cannot shadow {}s", what_binding, shadows_what);
341             err.span_label(span, format!("cannot be named the same as a {}", shadows_what));
342             let participle = if binding.is_import() { "imported" } else { "defined" };
343             let msg = format!("a {} `{}` is {} here", shadows_what, name, participle);
344             err.span_label(binding.span, msg);
345             err
346         }
347         ResolutionError::ForwardDeclaredTyParam => {
348             let mut err = struct_span_err!(resolver.session, span, E0128,
349                                            "type parameters with a default cannot use \
350                                             forward declared identifiers");
351             err.span_label(span, format!("defaulted type parameters \
352                                            cannot be forward declared"));
353             err
354         }
355     }
356 }
357
358 #[derive(Copy, Clone, Debug)]
359 struct BindingInfo {
360     span: Span,
361     binding_mode: BindingMode,
362 }
363
364 // Map from the name in a pattern to its binding mode.
365 type BindingMap = FxHashMap<Ident, BindingInfo>;
366
367 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
368 enum PatternSource {
369     Match,
370     IfLet,
371     WhileLet,
372     Let,
373     For,
374     FnParam,
375 }
376
377 impl PatternSource {
378     fn is_refutable(self) -> bool {
379         match self {
380             PatternSource::Match | PatternSource::IfLet | PatternSource::WhileLet => true,
381             PatternSource::Let | PatternSource::For | PatternSource::FnParam  => false,
382         }
383     }
384     fn descr(self) -> &'static str {
385         match self {
386             PatternSource::Match => "match binding",
387             PatternSource::IfLet => "if let binding",
388             PatternSource::WhileLet => "while let binding",
389             PatternSource::Let => "let binding",
390             PatternSource::For => "for binding",
391             PatternSource::FnParam => "function parameter",
392         }
393     }
394 }
395
396 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
397 enum PathSource<'a> {
398     // Type paths `Path`.
399     Type,
400     // Trait paths in bounds or impls.
401     Trait,
402     // Expression paths `path`, with optional parent context.
403     Expr(Option<&'a Expr>),
404     // Paths in path patterns `Path`.
405     Pat,
406     // Paths in struct expressions and patterns `Path { .. }`.
407     Struct,
408     // Paths in tuple struct patterns `Path(..)`.
409     TupleStruct,
410     // `m::A::B` in `<T as m::A>::B::C`.
411     TraitItem(Namespace),
412     // Path in `pub(path)`
413     Visibility,
414     // Path in `use a::b::{...};`
415     ImportPrefix,
416 }
417
418 impl<'a> PathSource<'a> {
419     fn namespace(self) -> Namespace {
420         match self {
421             PathSource::Type | PathSource::Trait | PathSource::Struct |
422             PathSource::Visibility | PathSource::ImportPrefix => TypeNS,
423             PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct => ValueNS,
424             PathSource::TraitItem(ns) => ns,
425         }
426     }
427
428     fn global_by_default(self) -> bool {
429         match self {
430             PathSource::Visibility | PathSource::ImportPrefix => true,
431             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
432             PathSource::Struct | PathSource::TupleStruct |
433             PathSource::Trait | PathSource::TraitItem(..) => false,
434         }
435     }
436
437     fn defer_to_typeck(self) -> bool {
438         match self {
439             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
440             PathSource::Struct | PathSource::TupleStruct => true,
441             PathSource::Trait | PathSource::TraitItem(..) |
442             PathSource::Visibility | PathSource::ImportPrefix => false,
443         }
444     }
445
446     fn descr_expected(self) -> &'static str {
447         match self {
448             PathSource::Type => "type",
449             PathSource::Trait => "trait",
450             PathSource::Pat => "unit struct/variant or constant",
451             PathSource::Struct => "struct, variant or union type",
452             PathSource::TupleStruct => "tuple struct/variant",
453             PathSource::Visibility => "module",
454             PathSource::ImportPrefix => "module or enum",
455             PathSource::TraitItem(ns) => match ns {
456                 TypeNS => "associated type",
457                 ValueNS => "method or associated constant",
458                 MacroNS => bug!("associated macro"),
459             },
460             PathSource::Expr(parent) => match parent.map(|p| &p.node) {
461                 // "function" here means "anything callable" rather than `Def::Fn`,
462                 // this is not precise but usually more helpful than just "value".
463                 Some(&ExprKind::Call(..)) => "function",
464                 _ => "value",
465             },
466         }
467     }
468
469     fn is_expected(self, def: Def) -> bool {
470         match self {
471             PathSource::Type => match def {
472                 Def::Struct(..) | Def::Union(..) | Def::Enum(..) |
473                 Def::Trait(..) | Def::TyAlias(..) | Def::AssociatedTy(..) |
474                 Def::PrimTy(..) | Def::TyParam(..) | Def::SelfTy(..) => true,
475                 _ => false,
476             },
477             PathSource::Trait => match def {
478                 Def::Trait(..) => true,
479                 _ => false,
480             },
481             PathSource::Expr(..) => match def {
482                 Def::StructCtor(_, CtorKind::Const) | Def::StructCtor(_, CtorKind::Fn) |
483                 Def::VariantCtor(_, CtorKind::Const) | Def::VariantCtor(_, CtorKind::Fn) |
484                 Def::Const(..) | Def::Static(..) | Def::Local(..) | Def::Upvar(..) |
485                 Def::Fn(..) | Def::Method(..) | Def::AssociatedConst(..) => true,
486                 _ => false,
487             },
488             PathSource::Pat => match def {
489                 Def::StructCtor(_, CtorKind::Const) |
490                 Def::VariantCtor(_, CtorKind::Const) |
491                 Def::Const(..) | Def::AssociatedConst(..) => true,
492                 _ => false,
493             },
494             PathSource::TupleStruct => match def {
495                 Def::StructCtor(_, CtorKind::Fn) | Def::VariantCtor(_, CtorKind::Fn) => true,
496                 _ => false,
497             },
498             PathSource::Struct => match def {
499                 Def::Struct(..) | Def::Union(..) | Def::Variant(..) |
500                 Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => true,
501                 _ => false,
502             },
503             PathSource::TraitItem(ns) => match def {
504                 Def::AssociatedConst(..) | Def::Method(..) if ns == ValueNS => true,
505                 Def::AssociatedTy(..) if ns == TypeNS => true,
506                 _ => false,
507             },
508             PathSource::ImportPrefix => match def {
509                 Def::Mod(..) | Def::Enum(..) => true,
510                 _ => false,
511             },
512             PathSource::Visibility => match def {
513                 Def::Mod(..) => true,
514                 _ => false,
515             },
516         }
517     }
518
519     fn error_code(self, has_unexpected_resolution: bool) -> &'static str {
520         __diagnostic_used!(E0404);
521         __diagnostic_used!(E0405);
522         __diagnostic_used!(E0412);
523         __diagnostic_used!(E0422);
524         __diagnostic_used!(E0423);
525         __diagnostic_used!(E0425);
526         __diagnostic_used!(E0531);
527         __diagnostic_used!(E0532);
528         __diagnostic_used!(E0573);
529         __diagnostic_used!(E0574);
530         __diagnostic_used!(E0575);
531         __diagnostic_used!(E0576);
532         __diagnostic_used!(E0577);
533         __diagnostic_used!(E0578);
534         match (self, has_unexpected_resolution) {
535             (PathSource::Trait, true) => "E0404",
536             (PathSource::Trait, false) => "E0405",
537             (PathSource::Type, true) => "E0573",
538             (PathSource::Type, false) => "E0412",
539             (PathSource::Struct, true) => "E0574",
540             (PathSource::Struct, false) => "E0422",
541             (PathSource::Expr(..), true) => "E0423",
542             (PathSource::Expr(..), false) => "E0425",
543             (PathSource::Pat, true) | (PathSource::TupleStruct, true) => "E0532",
544             (PathSource::Pat, false) | (PathSource::TupleStruct, false) => "E0531",
545             (PathSource::TraitItem(..), true) => "E0575",
546             (PathSource::TraitItem(..), false) => "E0576",
547             (PathSource::Visibility, true) | (PathSource::ImportPrefix, true) => "E0577",
548             (PathSource::Visibility, false) | (PathSource::ImportPrefix, false) => "E0578",
549         }
550     }
551 }
552
553 #[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
554 pub enum Namespace {
555     TypeNS,
556     ValueNS,
557     MacroNS,
558 }
559
560 #[derive(Clone, Default, Debug)]
561 pub struct PerNS<T> {
562     value_ns: T,
563     type_ns: T,
564     macro_ns: Option<T>,
565 }
566
567 impl<T> ::std::ops::Index<Namespace> for PerNS<T> {
568     type Output = T;
569     fn index(&self, ns: Namespace) -> &T {
570         match ns {
571             ValueNS => &self.value_ns,
572             TypeNS => &self.type_ns,
573             MacroNS => self.macro_ns.as_ref().unwrap(),
574         }
575     }
576 }
577
578 impl<T> ::std::ops::IndexMut<Namespace> for PerNS<T> {
579     fn index_mut(&mut self, ns: Namespace) -> &mut T {
580         match ns {
581             ValueNS => &mut self.value_ns,
582             TypeNS => &mut self.type_ns,
583             MacroNS => self.macro_ns.as_mut().unwrap(),
584         }
585     }
586 }
587
588 impl<'a, 'tcx> Visitor<'tcx> for Resolver<'a> {
589     fn visit_item(&mut self, item: &'tcx Item) {
590         self.resolve_item(item);
591     }
592     fn visit_arm(&mut self, arm: &'tcx Arm) {
593         self.resolve_arm(arm);
594     }
595     fn visit_block(&mut self, block: &'tcx Block) {
596         self.resolve_block(block);
597     }
598     fn visit_expr(&mut self, expr: &'tcx Expr) {
599         self.resolve_expr(expr, None);
600     }
601     fn visit_local(&mut self, local: &'tcx Local) {
602         self.resolve_local(local);
603     }
604     fn visit_ty(&mut self, ty: &'tcx Ty) {
605         if let TyKind::Path(ref qself, ref path) = ty.node {
606             self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
607         } else if let TyKind::ImplicitSelf = ty.node {
608             let self_ty = keywords::SelfType.ident();
609             let def = self.resolve_ident_in_lexical_scope(self_ty, TypeNS, true, ty.span)
610                           .map_or(Def::Err, |d| d.def());
611             self.record_def(ty.id, PathResolution::new(def));
612         } else if let TyKind::Array(ref element, ref length) = ty.node {
613             self.visit_ty(element);
614             self.with_constant_rib(|this| {
615                 this.visit_expr(length);
616             });
617             return;
618         }
619         visit::walk_ty(self, ty);
620     }
621     fn visit_poly_trait_ref(&mut self,
622                             tref: &'tcx ast::PolyTraitRef,
623                             m: &'tcx ast::TraitBoundModifier) {
624         self.smart_resolve_path(tref.trait_ref.ref_id, None,
625                                 &tref.trait_ref.path, PathSource::Trait);
626         visit::walk_poly_trait_ref(self, tref, m);
627     }
628     fn visit_variant(&mut self,
629                      variant: &'tcx ast::Variant,
630                      generics: &'tcx Generics,
631                      item_id: ast::NodeId) {
632         if let Some(ref dis_expr) = variant.node.disr_expr {
633             // resolve the discriminator expr as a constant
634             self.with_constant_rib(|this| {
635                 this.visit_expr(dis_expr);
636             });
637         }
638
639         // `visit::walk_variant` without the discriminant expression.
640         self.visit_variant_data(&variant.node.data,
641                                 variant.node.name,
642                                 generics,
643                                 item_id,
644                                 variant.span);
645     }
646     fn visit_foreign_item(&mut self, foreign_item: &'tcx ForeignItem) {
647         let type_parameters = match foreign_item.node {
648             ForeignItemKind::Fn(_, ref generics) => {
649                 HasTypeParameters(generics, ItemRibKind)
650             }
651             ForeignItemKind::Static(..) => NoTypeParameters,
652         };
653         self.with_type_parameter_rib(type_parameters, |this| {
654             visit::walk_foreign_item(this, foreign_item);
655         });
656     }
657     fn visit_fn(&mut self,
658                 function_kind: FnKind<'tcx>,
659                 declaration: &'tcx FnDecl,
660                 _: Span,
661                 node_id: NodeId) {
662         let rib_kind = match function_kind {
663             FnKind::ItemFn(_, generics, ..) => {
664                 self.visit_generics(generics);
665                 ItemRibKind
666             }
667             FnKind::Method(_, sig, _, _) => {
668                 self.visit_generics(&sig.generics);
669                 MethodRibKind(!sig.decl.has_self())
670             }
671             FnKind::Closure(_) => ClosureRibKind(node_id),
672         };
673
674         // Create a value rib for the function.
675         self.ribs[ValueNS].push(Rib::new(rib_kind));
676
677         // Create a label rib for the function.
678         self.label_ribs.push(Rib::new(rib_kind));
679
680         // Add each argument to the rib.
681         let mut bindings_list = FxHashMap();
682         for argument in &declaration.inputs {
683             self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
684
685             self.visit_ty(&argument.ty);
686
687             debug!("(resolving function) recorded argument");
688         }
689         visit::walk_fn_ret_ty(self, &declaration.output);
690
691         // Resolve the function body.
692         match function_kind {
693             FnKind::ItemFn(.., body) |
694             FnKind::Method(.., body) => {
695                 self.visit_block(body);
696             }
697             FnKind::Closure(body) => {
698                 self.visit_expr(body);
699             }
700         };
701
702         debug!("(resolving function) leaving function");
703
704         self.label_ribs.pop();
705         self.ribs[ValueNS].pop();
706     }
707     fn visit_generics(&mut self, generics: &'tcx Generics) {
708         // For type parameter defaults, we have to ban access
709         // to following type parameters, as the Substs can only
710         // provide previous type parameters as they're built.
711         let mut default_ban_rib = Rib::new(ForwardTyParamBanRibKind);
712         default_ban_rib.bindings.extend(generics.ty_params.iter()
713             .skip_while(|p| p.default.is_none())
714             .map(|p| (Ident::with_empty_ctxt(p.ident.name), Def::Err)));
715
716         for param in &generics.ty_params {
717             for bound in &param.bounds {
718                 self.visit_ty_param_bound(bound);
719             }
720
721             if let Some(ref ty) = param.default {
722                 self.ribs[TypeNS].push(default_ban_rib);
723                 self.visit_ty(ty);
724                 default_ban_rib = self.ribs[TypeNS].pop().unwrap();
725             }
726
727             // Allow all following defaults to refer to this type parameter.
728             default_ban_rib.bindings.remove(&Ident::with_empty_ctxt(param.ident.name));
729         }
730         for lt in &generics.lifetimes { self.visit_lifetime_def(lt); }
731         for p in &generics.where_clause.predicates { self.visit_where_predicate(p); }
732     }
733 }
734
735 pub type ErrorMessage = Option<(Span, String)>;
736
737 #[derive(Copy, Clone)]
738 enum TypeParameters<'a, 'b> {
739     NoTypeParameters,
740     HasTypeParameters(// Type parameters.
741                       &'b Generics,
742
743                       // The kind of the rib used for type parameters.
744                       RibKind<'a>),
745 }
746
747 // The rib kind controls the translation of local
748 // definitions (`Def::Local`) to upvars (`Def::Upvar`).
749 #[derive(Copy, Clone, Debug)]
750 enum RibKind<'a> {
751     // No translation needs to be applied.
752     NormalRibKind,
753
754     // We passed through a closure scope at the given node ID.
755     // Translate upvars as appropriate.
756     ClosureRibKind(NodeId /* func id */),
757
758     // We passed through an impl or trait and are now in one of its
759     // methods. Allow references to ty params that impl or trait
760     // binds. Disallow any other upvars (including other ty params that are
761     // upvars).
762     //
763     // The boolean value represents the fact that this method is static or not.
764     MethodRibKind(bool),
765
766     // We passed through an item scope. Disallow upvars.
767     ItemRibKind,
768
769     // We're in a constant item. Can't refer to dynamic stuff.
770     ConstantItemRibKind,
771
772     // We passed through a module.
773     ModuleRibKind(Module<'a>),
774
775     // We passed through a `macro_rules!` statement
776     MacroDefinition(DefId),
777
778     // All bindings in this rib are type parameters that can't be used
779     // from the default of a type parameter because they're not declared
780     // before said type parameter. Also see the `visit_generics` override.
781     ForwardTyParamBanRibKind,
782 }
783
784 /// One local scope.
785 #[derive(Debug)]
786 struct Rib<'a> {
787     bindings: FxHashMap<Ident, Def>,
788     kind: RibKind<'a>,
789 }
790
791 impl<'a> Rib<'a> {
792     fn new(kind: RibKind<'a>) -> Rib<'a> {
793         Rib {
794             bindings: FxHashMap(),
795             kind: kind,
796         }
797     }
798 }
799
800 enum LexicalScopeBinding<'a> {
801     Item(&'a NameBinding<'a>),
802     Def(Def),
803 }
804
805 impl<'a> LexicalScopeBinding<'a> {
806     fn item(self) -> Option<&'a NameBinding<'a>> {
807         match self {
808             LexicalScopeBinding::Item(binding) => Some(binding),
809             _ => None,
810         }
811     }
812
813     fn def(self) -> Def {
814         match self {
815             LexicalScopeBinding::Item(binding) => binding.def(),
816             LexicalScopeBinding::Def(def) => def,
817         }
818     }
819 }
820
821 #[derive(Clone)]
822 enum PathResult<'a> {
823     Module(Module<'a>),
824     NonModule(PathResolution),
825     Indeterminate,
826     Failed(String, bool /* is the error from the last segment? */),
827 }
828
829 enum ModuleKind {
830     Block(NodeId),
831     Def(Def, Name),
832 }
833
834 /// One node in the tree of modules.
835 pub struct ModuleData<'a> {
836     parent: Option<Module<'a>>,
837     kind: ModuleKind,
838
839     // The def id of the closest normal module (`mod`) ancestor (including this module).
840     normal_ancestor_id: DefId,
841
842     resolutions: RefCell<FxHashMap<(Ident, Namespace), &'a RefCell<NameResolution<'a>>>>,
843     legacy_macro_resolutions: RefCell<Vec<(Mark, Ident, Span, MacroKind)>>,
844     macro_resolutions: RefCell<Vec<(Box<[Ident]>, Span)>>,
845
846     // Macro invocations that can expand into items in this module.
847     unresolved_invocations: RefCell<FxHashSet<Mark>>,
848
849     no_implicit_prelude: bool,
850
851     glob_importers: RefCell<Vec<&'a ImportDirective<'a>>>,
852     globs: RefCell<Vec<&'a ImportDirective<'a>>>,
853
854     // Used to memoize the traits in this module for faster searches through all traits in scope.
855     traits: RefCell<Option<Box<[(Ident, &'a NameBinding<'a>)]>>>,
856
857     // Whether this module is populated. If not populated, any attempt to
858     // access the children must be preceded with a
859     // `populate_module_if_necessary` call.
860     populated: Cell<bool>,
861
862     /// Span of the module itself. Used for error reporting.
863     span: Span,
864
865     expansion: Mark,
866 }
867
868 pub type Module<'a> = &'a ModuleData<'a>;
869
870 impl<'a> ModuleData<'a> {
871     fn new(parent: Option<Module<'a>>,
872            kind: ModuleKind,
873            normal_ancestor_id: DefId,
874            expansion: Mark,
875            span: Span) -> Self {
876         ModuleData {
877             parent: parent,
878             kind: kind,
879             normal_ancestor_id: normal_ancestor_id,
880             resolutions: RefCell::new(FxHashMap()),
881             legacy_macro_resolutions: RefCell::new(Vec::new()),
882             macro_resolutions: RefCell::new(Vec::new()),
883             unresolved_invocations: RefCell::new(FxHashSet()),
884             no_implicit_prelude: false,
885             glob_importers: RefCell::new(Vec::new()),
886             globs: RefCell::new((Vec::new())),
887             traits: RefCell::new(None),
888             populated: Cell::new(normal_ancestor_id.is_local()),
889             span: span,
890             expansion: expansion,
891         }
892     }
893
894     fn for_each_child<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
895         for (&(ident, ns), name_resolution) in self.resolutions.borrow().iter() {
896             name_resolution.borrow().binding.map(|binding| f(ident, ns, binding));
897         }
898     }
899
900     fn def(&self) -> Option<Def> {
901         match self.kind {
902             ModuleKind::Def(def, _) => Some(def),
903             _ => None,
904         }
905     }
906
907     fn def_id(&self) -> Option<DefId> {
908         self.def().as_ref().map(Def::def_id)
909     }
910
911     // `self` resolves to the first module ancestor that `is_normal`.
912     fn is_normal(&self) -> bool {
913         match self.kind {
914             ModuleKind::Def(Def::Mod(_), _) => true,
915             _ => false,
916         }
917     }
918
919     fn is_trait(&self) -> bool {
920         match self.kind {
921             ModuleKind::Def(Def::Trait(_), _) => true,
922             _ => false,
923         }
924     }
925
926     fn is_local(&self) -> bool {
927         self.normal_ancestor_id.is_local()
928     }
929
930     fn nearest_item_scope(&'a self) -> Module<'a> {
931         if self.is_trait() { self.parent.unwrap() } else { self }
932     }
933 }
934
935 impl<'a> fmt::Debug for ModuleData<'a> {
936     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
937         write!(f, "{:?}", self.def())
938     }
939 }
940
941 // Records a possibly-private value, type, or module definition.
942 #[derive(Clone, Debug)]
943 pub struct NameBinding<'a> {
944     kind: NameBindingKind<'a>,
945     expansion: Mark,
946     span: Span,
947     vis: ty::Visibility,
948 }
949
950 pub trait ToNameBinding<'a> {
951     fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a>;
952 }
953
954 impl<'a> ToNameBinding<'a> for &'a NameBinding<'a> {
955     fn to_name_binding(self, _: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> {
956         self
957     }
958 }
959
960 #[derive(Clone, Debug)]
961 enum NameBindingKind<'a> {
962     Def(Def),
963     Module(Module<'a>),
964     Import {
965         binding: &'a NameBinding<'a>,
966         directive: &'a ImportDirective<'a>,
967         used: Cell<bool>,
968         legacy_self_import: bool,
969     },
970     Ambiguity {
971         b1: &'a NameBinding<'a>,
972         b2: &'a NameBinding<'a>,
973         legacy: bool,
974     }
975 }
976
977 struct PrivacyError<'a>(Span, Name, &'a NameBinding<'a>);
978
979 struct AmbiguityError<'a> {
980     span: Span,
981     name: Name,
982     lexical: bool,
983     b1: &'a NameBinding<'a>,
984     b2: &'a NameBinding<'a>,
985     legacy: bool,
986 }
987
988 impl<'a> NameBinding<'a> {
989     fn module(&self) -> Option<Module<'a>> {
990         match self.kind {
991             NameBindingKind::Module(module) => Some(module),
992             NameBindingKind::Import { binding, .. } => binding.module(),
993             NameBindingKind::Ambiguity { legacy: true, b1, .. } => b1.module(),
994             _ => None,
995         }
996     }
997
998     fn def(&self) -> Def {
999         match self.kind {
1000             NameBindingKind::Def(def) => def,
1001             NameBindingKind::Module(module) => module.def().unwrap(),
1002             NameBindingKind::Import { binding, .. } => binding.def(),
1003             NameBindingKind::Ambiguity { legacy: true, b1, .. } => b1.def(),
1004             NameBindingKind::Ambiguity { .. } => Def::Err,
1005         }
1006     }
1007
1008     fn def_ignoring_ambiguity(&self) -> Def {
1009         match self.kind {
1010             NameBindingKind::Import { binding, .. } => binding.def_ignoring_ambiguity(),
1011             NameBindingKind::Ambiguity { b1, .. } => b1.def_ignoring_ambiguity(),
1012             _ => self.def(),
1013         }
1014     }
1015
1016     fn get_macro(&self, resolver: &mut Resolver<'a>) -> Rc<SyntaxExtension> {
1017         resolver.get_macro(self.def_ignoring_ambiguity())
1018     }
1019
1020     // We sometimes need to treat variants as `pub` for backwards compatibility
1021     fn pseudo_vis(&self) -> ty::Visibility {
1022         if self.is_variant() { ty::Visibility::Public } else { self.vis }
1023     }
1024
1025     fn is_variant(&self) -> bool {
1026         match self.kind {
1027             NameBindingKind::Def(Def::Variant(..)) |
1028             NameBindingKind::Def(Def::VariantCtor(..)) => true,
1029             _ => false,
1030         }
1031     }
1032
1033     fn is_extern_crate(&self) -> bool {
1034         match self.kind {
1035             NameBindingKind::Import {
1036                 directive: &ImportDirective {
1037                     subclass: ImportDirectiveSubclass::ExternCrate, ..
1038                 }, ..
1039             } => true,
1040             _ => false,
1041         }
1042     }
1043
1044     fn is_import(&self) -> bool {
1045         match self.kind {
1046             NameBindingKind::Import { .. } => true,
1047             _ => false,
1048         }
1049     }
1050
1051     fn is_glob_import(&self) -> bool {
1052         match self.kind {
1053             NameBindingKind::Import { directive, .. } => directive.is_glob(),
1054             NameBindingKind::Ambiguity { b1, .. } => b1.is_glob_import(),
1055             _ => false,
1056         }
1057     }
1058
1059     fn is_importable(&self) -> bool {
1060         match self.def() {
1061             Def::AssociatedConst(..) | Def::Method(..) | Def::AssociatedTy(..) => false,
1062             _ => true,
1063         }
1064     }
1065
1066     fn is_macro_def(&self) -> bool {
1067         match self.kind {
1068             NameBindingKind::Def(Def::Macro(..)) => true,
1069             _ => false,
1070         }
1071     }
1072 }
1073
1074 /// Interns the names of the primitive types.
1075 struct PrimitiveTypeTable {
1076     primitive_types: FxHashMap<Name, PrimTy>,
1077 }
1078
1079 impl PrimitiveTypeTable {
1080     fn new() -> PrimitiveTypeTable {
1081         let mut table = PrimitiveTypeTable { primitive_types: FxHashMap() };
1082
1083         table.intern("bool", TyBool);
1084         table.intern("char", TyChar);
1085         table.intern("f32", TyFloat(FloatTy::F32));
1086         table.intern("f64", TyFloat(FloatTy::F64));
1087         table.intern("isize", TyInt(IntTy::Is));
1088         table.intern("i8", TyInt(IntTy::I8));
1089         table.intern("i16", TyInt(IntTy::I16));
1090         table.intern("i32", TyInt(IntTy::I32));
1091         table.intern("i64", TyInt(IntTy::I64));
1092         table.intern("i128", TyInt(IntTy::I128));
1093         table.intern("str", TyStr);
1094         table.intern("usize", TyUint(UintTy::Us));
1095         table.intern("u8", TyUint(UintTy::U8));
1096         table.intern("u16", TyUint(UintTy::U16));
1097         table.intern("u32", TyUint(UintTy::U32));
1098         table.intern("u64", TyUint(UintTy::U64));
1099         table.intern("u128", TyUint(UintTy::U128));
1100         table
1101     }
1102
1103     fn intern(&mut self, string: &str, primitive_type: PrimTy) {
1104         self.primitive_types.insert(Symbol::intern(string), primitive_type);
1105     }
1106 }
1107
1108 /// The main resolver class.
1109 pub struct Resolver<'a> {
1110     session: &'a Session,
1111
1112     pub definitions: Definitions,
1113
1114     graph_root: Module<'a>,
1115
1116     prelude: Option<Module<'a>>,
1117
1118     // n.b. This is used only for better diagnostics, not name resolution itself.
1119     has_self: FxHashSet<DefId>,
1120
1121     // Names of fields of an item `DefId` accessible with dot syntax.
1122     // Used for hints during error reporting.
1123     field_names: FxHashMap<DefId, Vec<Name>>,
1124
1125     // All imports known to succeed or fail.
1126     determined_imports: Vec<&'a ImportDirective<'a>>,
1127
1128     // All non-determined imports.
1129     indeterminate_imports: Vec<&'a ImportDirective<'a>>,
1130
1131     // The module that represents the current item scope.
1132     current_module: Module<'a>,
1133
1134     // The current set of local scopes for types and values.
1135     // FIXME #4948: Reuse ribs to avoid allocation.
1136     ribs: PerNS<Vec<Rib<'a>>>,
1137
1138     // The current set of local scopes, for labels.
1139     label_ribs: Vec<Rib<'a>>,
1140
1141     // The trait that the current context can refer to.
1142     current_trait_ref: Option<(Module<'a>, TraitRef)>,
1143
1144     // The current self type if inside an impl (used for better errors).
1145     current_self_type: Option<Ty>,
1146
1147     // The idents for the primitive types.
1148     primitive_type_table: PrimitiveTypeTable,
1149
1150     def_map: DefMap,
1151     pub freevars: FreevarMap,
1152     freevars_seen: NodeMap<NodeMap<usize>>,
1153     pub export_map: ExportMap,
1154     pub trait_map: TraitMap,
1155
1156     // A map from nodes to anonymous modules.
1157     // Anonymous modules are pseudo-modules that are implicitly created around items
1158     // contained within blocks.
1159     //
1160     // For example, if we have this:
1161     //
1162     //  fn f() {
1163     //      fn g() {
1164     //          ...
1165     //      }
1166     //  }
1167     //
1168     // There will be an anonymous module created around `g` with the ID of the
1169     // entry block for `f`.
1170     block_map: NodeMap<Module<'a>>,
1171     module_map: FxHashMap<DefId, Module<'a>>,
1172     extern_module_map: FxHashMap<(DefId, bool /* MacrosOnly? */), Module<'a>>,
1173
1174     pub make_glob_map: bool,
1175     // Maps imports to the names of items actually imported (this actually maps
1176     // all imports, but only glob imports are actually interesting).
1177     pub glob_map: GlobMap,
1178
1179     used_imports: FxHashSet<(NodeId, Namespace)>,
1180     pub maybe_unused_trait_imports: NodeSet,
1181
1182     privacy_errors: Vec<PrivacyError<'a>>,
1183     ambiguity_errors: Vec<AmbiguityError<'a>>,
1184     gated_errors: FxHashSet<Span>,
1185     disallowed_shadowing: Vec<&'a LegacyBinding<'a>>,
1186
1187     arenas: &'a ResolverArenas<'a>,
1188     dummy_binding: &'a NameBinding<'a>,
1189     use_extern_macros: bool, // true if `#![feature(use_extern_macros)]`
1190
1191     crate_loader: &'a mut CrateLoader,
1192     macro_names: FxHashSet<Ident>,
1193     global_macros: FxHashMap<Name, &'a NameBinding<'a>>,
1194     lexical_macro_resolutions: Vec<(Ident, &'a Cell<LegacyScope<'a>>)>,
1195     macro_map: FxHashMap<DefId, Rc<SyntaxExtension>>,
1196     macro_defs: FxHashMap<Mark, DefId>,
1197     local_macro_def_scopes: FxHashMap<NodeId, Module<'a>>,
1198     macro_exports: Vec<Export>,
1199     pub whitelisted_legacy_custom_derives: Vec<Name>,
1200     pub found_unresolved_macro: bool,
1201
1202     // List of crate local macros that we need to warn about as being unused.
1203     // Right now this only includes macro_rules! macros.
1204     unused_macros: FxHashSet<DefId>,
1205
1206     // Maps the `Mark` of an expansion to its containing module or block.
1207     invocations: FxHashMap<Mark, &'a InvocationData<'a>>,
1208
1209     // Avoid duplicated errors for "name already defined".
1210     name_already_seen: FxHashMap<Name, Span>,
1211
1212     // If `#![feature(proc_macro)]` is set
1213     proc_macro_enabled: bool,
1214
1215     // A set of procedural macros imported by `#[macro_use]` that have already been warned about
1216     warned_proc_macros: FxHashSet<Name>,
1217
1218     potentially_unused_imports: Vec<&'a ImportDirective<'a>>,
1219
1220     // This table maps struct IDs into struct constructor IDs,
1221     // it's not used during normal resolution, only for better error reporting.
1222     struct_constructors: DefIdMap<(Def, ty::Visibility)>,
1223 }
1224
1225 pub struct ResolverArenas<'a> {
1226     modules: arena::TypedArena<ModuleData<'a>>,
1227     local_modules: RefCell<Vec<Module<'a>>>,
1228     name_bindings: arena::TypedArena<NameBinding<'a>>,
1229     import_directives: arena::TypedArena<ImportDirective<'a>>,
1230     name_resolutions: arena::TypedArena<RefCell<NameResolution<'a>>>,
1231     invocation_data: arena::TypedArena<InvocationData<'a>>,
1232     legacy_bindings: arena::TypedArena<LegacyBinding<'a>>,
1233 }
1234
1235 impl<'a> ResolverArenas<'a> {
1236     fn alloc_module(&'a self, module: ModuleData<'a>) -> Module<'a> {
1237         let module = self.modules.alloc(module);
1238         if module.def_id().map(|def_id| def_id.is_local()).unwrap_or(true) {
1239             self.local_modules.borrow_mut().push(module);
1240         }
1241         module
1242     }
1243     fn local_modules(&'a self) -> ::std::cell::Ref<'a, Vec<Module<'a>>> {
1244         self.local_modules.borrow()
1245     }
1246     fn alloc_name_binding(&'a self, name_binding: NameBinding<'a>) -> &'a NameBinding<'a> {
1247         self.name_bindings.alloc(name_binding)
1248     }
1249     fn alloc_import_directive(&'a self, import_directive: ImportDirective<'a>)
1250                               -> &'a ImportDirective {
1251         self.import_directives.alloc(import_directive)
1252     }
1253     fn alloc_name_resolution(&'a self) -> &'a RefCell<NameResolution<'a>> {
1254         self.name_resolutions.alloc(Default::default())
1255     }
1256     fn alloc_invocation_data(&'a self, expansion_data: InvocationData<'a>)
1257                              -> &'a InvocationData<'a> {
1258         self.invocation_data.alloc(expansion_data)
1259     }
1260     fn alloc_legacy_binding(&'a self, binding: LegacyBinding<'a>) -> &'a LegacyBinding<'a> {
1261         self.legacy_bindings.alloc(binding)
1262     }
1263 }
1264
1265 impl<'a, 'b: 'a> ty::DefIdTree for &'a Resolver<'b> {
1266     fn parent(self, id: DefId) -> Option<DefId> {
1267         match id.krate {
1268             LOCAL_CRATE => self.definitions.def_key(id.index).parent,
1269             _ => self.session.cstore.def_key(id).parent,
1270         }.map(|index| DefId { index: index, ..id })
1271     }
1272 }
1273
1274 impl<'a> hir::lowering::Resolver for Resolver<'a> {
1275     fn resolve_hir_path(&mut self, path: &mut hir::Path, is_value: bool) {
1276         let namespace = if is_value { ValueNS } else { TypeNS };
1277         let hir::Path { ref segments, span, ref mut def } = *path;
1278         let path: Vec<_> = segments.iter().map(|seg| Ident::with_empty_ctxt(seg.name)).collect();
1279         match self.resolve_path(&path, Some(namespace), true, span) {
1280             PathResult::Module(module) => *def = module.def().unwrap(),
1281             PathResult::NonModule(path_res) if path_res.unresolved_segments() == 0 =>
1282                 *def = path_res.base_def(),
1283             PathResult::NonModule(..) => match self.resolve_path(&path, None, true, span) {
1284                 PathResult::Failed(msg, _) => {
1285                     resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
1286                 }
1287                 _ => {}
1288             },
1289             PathResult::Indeterminate => unreachable!(),
1290             PathResult::Failed(msg, _) => {
1291                 resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
1292             }
1293         }
1294     }
1295
1296     fn get_resolution(&mut self, id: NodeId) -> Option<PathResolution> {
1297         self.def_map.get(&id).cloned()
1298     }
1299
1300     fn definitions(&mut self) -> &mut Definitions {
1301         &mut self.definitions
1302     }
1303 }
1304
1305 impl<'a> Resolver<'a> {
1306     pub fn new(session: &'a Session,
1307                krate: &Crate,
1308                crate_name: &str,
1309                make_glob_map: MakeGlobMap,
1310                crate_loader: &'a mut CrateLoader,
1311                arenas: &'a ResolverArenas<'a>)
1312                -> Resolver<'a> {
1313         let root_def_id = DefId::local(CRATE_DEF_INDEX);
1314         let root_module_kind = ModuleKind::Def(Def::Mod(root_def_id), keywords::Invalid.name());
1315         let graph_root = arenas.alloc_module(ModuleData {
1316             no_implicit_prelude: attr::contains_name(&krate.attrs, "no_implicit_prelude"),
1317             ..ModuleData::new(None, root_module_kind, root_def_id, Mark::root(), krate.span)
1318         });
1319         let mut module_map = FxHashMap();
1320         module_map.insert(DefId::local(CRATE_DEF_INDEX), graph_root);
1321
1322         let mut definitions = Definitions::new();
1323         DefCollector::new(&mut definitions, Mark::root())
1324             .collect_root(crate_name, &session.local_crate_disambiguator().as_str());
1325
1326         let mut invocations = FxHashMap();
1327         invocations.insert(Mark::root(),
1328                            arenas.alloc_invocation_data(InvocationData::root(graph_root)));
1329
1330         let features = session.features.borrow();
1331
1332         let mut macro_defs = FxHashMap();
1333         macro_defs.insert(Mark::root(), root_def_id);
1334
1335         Resolver {
1336             session: session,
1337
1338             definitions: definitions,
1339
1340             // The outermost module has def ID 0; this is not reflected in the
1341             // AST.
1342             graph_root: graph_root,
1343             prelude: None,
1344
1345             has_self: FxHashSet(),
1346             field_names: FxHashMap(),
1347
1348             determined_imports: Vec::new(),
1349             indeterminate_imports: Vec::new(),
1350
1351             current_module: graph_root,
1352             ribs: PerNS {
1353                 value_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1354                 type_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1355                 macro_ns: Some(vec![Rib::new(ModuleRibKind(graph_root))]),
1356             },
1357             label_ribs: Vec::new(),
1358
1359             current_trait_ref: None,
1360             current_self_type: None,
1361
1362             primitive_type_table: PrimitiveTypeTable::new(),
1363
1364             def_map: NodeMap(),
1365             freevars: NodeMap(),
1366             freevars_seen: NodeMap(),
1367             export_map: NodeMap(),
1368             trait_map: NodeMap(),
1369             module_map: module_map,
1370             block_map: NodeMap(),
1371             extern_module_map: FxHashMap(),
1372
1373             make_glob_map: make_glob_map == MakeGlobMap::Yes,
1374             glob_map: NodeMap(),
1375
1376             used_imports: FxHashSet(),
1377             maybe_unused_trait_imports: NodeSet(),
1378
1379             privacy_errors: Vec::new(),
1380             ambiguity_errors: Vec::new(),
1381             gated_errors: FxHashSet(),
1382             disallowed_shadowing: Vec::new(),
1383
1384             arenas: arenas,
1385             dummy_binding: arenas.alloc_name_binding(NameBinding {
1386                 kind: NameBindingKind::Def(Def::Err),
1387                 expansion: Mark::root(),
1388                 span: DUMMY_SP,
1389                 vis: ty::Visibility::Public,
1390             }),
1391
1392             // The `proc_macro` and `decl_macro` features imply `use_extern_macros`
1393             use_extern_macros:
1394                 features.use_extern_macros || features.proc_macro || features.decl_macro,
1395
1396             crate_loader: crate_loader,
1397             macro_names: FxHashSet(),
1398             global_macros: FxHashMap(),
1399             lexical_macro_resolutions: Vec::new(),
1400             macro_map: FxHashMap(),
1401             macro_exports: Vec::new(),
1402             invocations: invocations,
1403             macro_defs: macro_defs,
1404             local_macro_def_scopes: FxHashMap(),
1405             name_already_seen: FxHashMap(),
1406             whitelisted_legacy_custom_derives: Vec::new(),
1407             proc_macro_enabled: features.proc_macro,
1408             warned_proc_macros: FxHashSet(),
1409             potentially_unused_imports: Vec::new(),
1410             struct_constructors: DefIdMap(),
1411             found_unresolved_macro: false,
1412             unused_macros: FxHashSet(),
1413         }
1414     }
1415
1416     pub fn arenas() -> ResolverArenas<'a> {
1417         ResolverArenas {
1418             modules: arena::TypedArena::new(),
1419             local_modules: RefCell::new(Vec::new()),
1420             name_bindings: arena::TypedArena::new(),
1421             import_directives: arena::TypedArena::new(),
1422             name_resolutions: arena::TypedArena::new(),
1423             invocation_data: arena::TypedArena::new(),
1424             legacy_bindings: arena::TypedArena::new(),
1425         }
1426     }
1427
1428     fn per_ns<T, F: FnMut(&mut Self, Namespace) -> T>(&mut self, mut f: F) -> PerNS<T> {
1429         PerNS {
1430             type_ns: f(self, TypeNS),
1431             value_ns: f(self, ValueNS),
1432             macro_ns: match self.use_extern_macros {
1433                 true => Some(f(self, MacroNS)),
1434                 false => None,
1435             },
1436         }
1437     }
1438
1439     /// Entry point to crate resolution.
1440     pub fn resolve_crate(&mut self, krate: &Crate) {
1441         ImportResolver { resolver: self }.finalize_imports();
1442         self.current_module = self.graph_root;
1443         self.finalize_current_module_macro_resolutions();
1444         visit::walk_crate(self, krate);
1445
1446         check_unused::check_crate(self, krate);
1447         self.report_errors();
1448         self.crate_loader.postprocess(krate);
1449     }
1450
1451     fn new_module(
1452         &self,
1453         parent: Module<'a>,
1454         kind: ModuleKind,
1455         normal_ancestor_id: DefId,
1456         expansion: Mark,
1457         span: Span,
1458     ) -> Module<'a> {
1459         let module = ModuleData::new(Some(parent), kind, normal_ancestor_id, expansion, span);
1460         self.arenas.alloc_module(module)
1461     }
1462
1463     fn record_use(&mut self, ident: Ident, ns: Namespace, binding: &'a NameBinding<'a>, span: Span)
1464                   -> bool /* true if an error was reported */ {
1465         match binding.kind {
1466             NameBindingKind::Import { directive, binding, ref used, legacy_self_import }
1467                     if !used.get() => {
1468                 used.set(true);
1469                 directive.used.set(true);
1470                 if legacy_self_import {
1471                     self.warn_legacy_self_import(directive);
1472                     return false;
1473                 }
1474                 self.used_imports.insert((directive.id, ns));
1475                 self.add_to_glob_map(directive.id, ident);
1476                 self.record_use(ident, ns, binding, span)
1477             }
1478             NameBindingKind::Import { .. } => false,
1479             NameBindingKind::Ambiguity { b1, b2, legacy } => {
1480                 self.ambiguity_errors.push(AmbiguityError {
1481                     span: span, name: ident.name, lexical: false, b1: b1, b2: b2, legacy: legacy,
1482                 });
1483                 if legacy {
1484                     self.record_use(ident, ns, b1, span);
1485                 }
1486                 !legacy
1487             }
1488             _ => false
1489         }
1490     }
1491
1492     fn add_to_glob_map(&mut self, id: NodeId, ident: Ident) {
1493         if self.make_glob_map {
1494             self.glob_map.entry(id).or_insert_with(FxHashSet).insert(ident.name);
1495         }
1496     }
1497
1498     /// This resolves the identifier `ident` in the namespace `ns` in the current lexical scope.
1499     /// More specifically, we proceed up the hierarchy of scopes and return the binding for
1500     /// `ident` in the first scope that defines it (or None if no scopes define it).
1501     ///
1502     /// A block's items are above its local variables in the scope hierarchy, regardless of where
1503     /// the items are defined in the block. For example,
1504     /// ```rust
1505     /// fn f() {
1506     ///    g(); // Since there are no local variables in scope yet, this resolves to the item.
1507     ///    let g = || {};
1508     ///    fn g() {}
1509     ///    g(); // This resolves to the local variable `g` since it shadows the item.
1510     /// }
1511     /// ```
1512     ///
1513     /// Invariant: This must only be called during main resolution, not during
1514     /// import resolution.
1515     fn resolve_ident_in_lexical_scope(&mut self,
1516                                       mut ident: Ident,
1517                                       ns: Namespace,
1518                                       record_used: bool,
1519                                       path_span: Span)
1520                                       -> Option<LexicalScopeBinding<'a>> {
1521         if ns == TypeNS {
1522             ident.ctxt = ident.ctxt.modern();
1523         }
1524
1525         // Walk backwards up the ribs in scope.
1526         let mut module = self.graph_root;
1527         for i in (0 .. self.ribs[ns].len()).rev() {
1528             if let Some(def) = self.ribs[ns][i].bindings.get(&ident).cloned() {
1529                 // The ident resolves to a type parameter or local variable.
1530                 return Some(LexicalScopeBinding::Def(
1531                     self.adjust_local_def(ns, i, def, record_used, path_span)
1532                 ));
1533             }
1534
1535             module = match self.ribs[ns][i].kind {
1536                 ModuleRibKind(module) => module,
1537                 MacroDefinition(def) if def == self.macro_defs[&ident.ctxt.outer()] => {
1538                     // If an invocation of this macro created `ident`, give up on `ident`
1539                     // and switch to `ident`'s source from the macro definition.
1540                     ident.ctxt.remove_mark();
1541                     continue
1542                 }
1543                 _ => continue,
1544             };
1545
1546             let item = self.resolve_ident_in_module_unadjusted(
1547                 module, ident, ns, false, record_used, path_span,
1548             );
1549             if let Ok(binding) = item {
1550                 // The ident resolves to an item.
1551                 return Some(LexicalScopeBinding::Item(binding));
1552             }
1553
1554             match module.kind {
1555                 ModuleKind::Block(..) => {}, // We can see through blocks
1556                 _ => break,
1557             }
1558         }
1559
1560         ident.ctxt = ident.ctxt.modern();
1561         loop {
1562             module = unwrap_or!(self.hygienic_lexical_parent(module, &mut ident.ctxt), break);
1563             let orig_current_module = self.current_module;
1564             self.current_module = module; // Lexical resolutions can never be a privacy error.
1565             let result = self.resolve_ident_in_module_unadjusted(
1566                 module, ident, ns, false, record_used, path_span,
1567             );
1568             self.current_module = orig_current_module;
1569
1570             match result {
1571                 Ok(binding) => return Some(LexicalScopeBinding::Item(binding)),
1572                 Err(Undetermined) => return None,
1573                 Err(Determined) => {}
1574             }
1575         }
1576
1577         match self.prelude {
1578             Some(prelude) if !module.no_implicit_prelude => {
1579                 self.resolve_ident_in_module_unadjusted(prelude, ident, ns, false, false, path_span)
1580                     .ok().map(LexicalScopeBinding::Item)
1581             }
1582             _ => None,
1583         }
1584     }
1585
1586     fn hygienic_lexical_parent(&mut self, mut module: Module<'a>, ctxt: &mut SyntaxContext)
1587                                -> Option<Module<'a>> {
1588         if !module.expansion.is_descendant_of(ctxt.outer()) {
1589             return Some(self.macro_def_scope(ctxt.remove_mark()));
1590         }
1591
1592         if let ModuleKind::Block(..) = module.kind {
1593             return Some(module.parent.unwrap());
1594         }
1595
1596         let mut module_expansion = module.expansion.modern(); // for backward compatability
1597         while let Some(parent) = module.parent {
1598             let parent_expansion = parent.expansion.modern();
1599             if module_expansion.is_descendant_of(parent_expansion) &&
1600                parent_expansion != module_expansion {
1601                 return if parent_expansion.is_descendant_of(ctxt.outer()) {
1602                     Some(parent)
1603                 } else {
1604                     None
1605                 };
1606             }
1607             module = parent;
1608             module_expansion = parent_expansion;
1609         }
1610
1611         None
1612     }
1613
1614     fn resolve_ident_in_module(&mut self,
1615                                module: Module<'a>,
1616                                mut ident: Ident,
1617                                ns: Namespace,
1618                                ignore_unresolved_invocations: bool,
1619                                record_used: bool,
1620                                span: Span)
1621                                -> Result<&'a NameBinding<'a>, Determinacy> {
1622         ident.ctxt = ident.ctxt.modern();
1623         let orig_current_module = self.current_module;
1624         if let Some(def) = ident.ctxt.adjust(module.expansion) {
1625             self.current_module = self.macro_def_scope(def);
1626         }
1627         let result = self.resolve_ident_in_module_unadjusted(
1628             module, ident, ns, ignore_unresolved_invocations, record_used, span,
1629         );
1630         self.current_module = orig_current_module;
1631         result
1632     }
1633
1634     fn resolve_crate_root(&mut self, mut ctxt: SyntaxContext) -> Module<'a> {
1635         let module = match ctxt.adjust(Mark::root()) {
1636             Some(def) => self.macro_def_scope(def),
1637             None => return self.graph_root,
1638         };
1639         self.get_module(DefId { index: CRATE_DEF_INDEX, ..module.normal_ancestor_id })
1640     }
1641
1642     fn resolve_self(&mut self, ctxt: &mut SyntaxContext, module: Module<'a>) -> Module<'a> {
1643         let mut module = self.get_module(module.normal_ancestor_id);
1644         while module.span.ctxt.modern() != *ctxt {
1645             let parent = module.parent.unwrap_or_else(|| self.macro_def_scope(ctxt.remove_mark()));
1646             module = self.get_module(parent.normal_ancestor_id);
1647         }
1648         module
1649     }
1650
1651     // AST resolution
1652     //
1653     // We maintain a list of value ribs and type ribs.
1654     //
1655     // Simultaneously, we keep track of the current position in the module
1656     // graph in the `current_module` pointer. When we go to resolve a name in
1657     // the value or type namespaces, we first look through all the ribs and
1658     // then query the module graph. When we resolve a name in the module
1659     // namespace, we can skip all the ribs (since nested modules are not
1660     // allowed within blocks in Rust) and jump straight to the current module
1661     // graph node.
1662     //
1663     // Named implementations are handled separately. When we find a method
1664     // call, we consult the module node to find all of the implementations in
1665     // scope. This information is lazily cached in the module node. We then
1666     // generate a fake "implementation scope" containing all the
1667     // implementations thus found, for compatibility with old resolve pass.
1668
1669     fn with_scope<F>(&mut self, id: NodeId, f: F)
1670         where F: FnOnce(&mut Resolver)
1671     {
1672         let id = self.definitions.local_def_id(id);
1673         let module = self.module_map.get(&id).cloned(); // clones a reference
1674         if let Some(module) = module {
1675             // Move down in the graph.
1676             let orig_module = replace(&mut self.current_module, module);
1677             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(module)));
1678             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(module)));
1679
1680             self.finalize_current_module_macro_resolutions();
1681             f(self);
1682
1683             self.current_module = orig_module;
1684             self.ribs[ValueNS].pop();
1685             self.ribs[TypeNS].pop();
1686         } else {
1687             f(self);
1688         }
1689     }
1690
1691     /// Searches the current set of local scopes for labels.
1692     /// Stops after meeting a closure.
1693     fn search_label(&self, mut ident: Ident) -> Option<Def> {
1694         for rib in self.label_ribs.iter().rev() {
1695             match rib.kind {
1696                 NormalRibKind => {}
1697                 // If an invocation of this macro created `ident`, give up on `ident`
1698                 // and switch to `ident`'s source from the macro definition.
1699                 MacroDefinition(def) => {
1700                     if def == self.macro_defs[&ident.ctxt.outer()] {
1701                         ident.ctxt.remove_mark();
1702                     }
1703                 }
1704                 _ => {
1705                     // Do not resolve labels across function boundary
1706                     return None;
1707                 }
1708             }
1709             let result = rib.bindings.get(&ident).cloned();
1710             if result.is_some() {
1711                 return result;
1712             }
1713         }
1714         None
1715     }
1716
1717     fn resolve_item(&mut self, item: &Item) {
1718         let name = item.ident.name;
1719
1720         debug!("(resolving item) resolving {}", name);
1721
1722         self.check_proc_macro_attrs(&item.attrs);
1723
1724         match item.node {
1725             ItemKind::Enum(_, ref generics) |
1726             ItemKind::Ty(_, ref generics) |
1727             ItemKind::Struct(_, ref generics) |
1728             ItemKind::Union(_, ref generics) |
1729             ItemKind::Fn(.., ref generics, _) => {
1730                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind),
1731                                              |this| visit::walk_item(this, item));
1732             }
1733
1734             ItemKind::DefaultImpl(_, ref trait_ref) => {
1735                 self.with_optional_trait_ref(Some(trait_ref), |this, _| {
1736                     // Resolve type arguments in trait path
1737                     visit::walk_trait_ref(this, trait_ref);
1738                 });
1739             }
1740             ItemKind::Impl(.., ref generics, ref opt_trait_ref, ref self_type, ref impl_items) =>
1741                 self.resolve_implementation(generics,
1742                                             opt_trait_ref,
1743                                             &self_type,
1744                                             item.id,
1745                                             impl_items),
1746
1747             ItemKind::Trait(_, ref generics, ref bounds, ref trait_items) => {
1748                 // Create a new rib for the trait-wide type parameters.
1749                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
1750                     let local_def_id = this.definitions.local_def_id(item.id);
1751                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
1752                         this.visit_generics(generics);
1753                         walk_list!(this, visit_ty_param_bound, bounds);
1754
1755                         for trait_item in trait_items {
1756                             this.check_proc_macro_attrs(&trait_item.attrs);
1757
1758                             match trait_item.node {
1759                                 TraitItemKind::Const(ref ty, ref default) => {
1760                                     this.visit_ty(ty);
1761
1762                                     // Only impose the restrictions of
1763                                     // ConstRibKind for an actual constant
1764                                     // expression in a provided default.
1765                                     if let Some(ref expr) = *default{
1766                                         this.with_constant_rib(|this| {
1767                                             this.visit_expr(expr);
1768                                         });
1769                                     }
1770                                 }
1771                                 TraitItemKind::Method(ref sig, _) => {
1772                                     let type_parameters =
1773                                         HasTypeParameters(&sig.generics,
1774                                                           MethodRibKind(!sig.decl.has_self()));
1775                                     this.with_type_parameter_rib(type_parameters, |this| {
1776                                         visit::walk_trait_item(this, trait_item)
1777                                     });
1778                                 }
1779                                 TraitItemKind::Type(..) => {
1780                                     this.with_type_parameter_rib(NoTypeParameters, |this| {
1781                                         visit::walk_trait_item(this, trait_item)
1782                                     });
1783                                 }
1784                                 TraitItemKind::Macro(_) => panic!("unexpanded macro in resolve!"),
1785                             };
1786                         }
1787                     });
1788                 });
1789             }
1790
1791             ItemKind::Mod(_) | ItemKind::ForeignMod(_) => {
1792                 self.with_scope(item.id, |this| {
1793                     visit::walk_item(this, item);
1794                 });
1795             }
1796
1797             ItemKind::Static(ref ty, _, ref expr) |
1798             ItemKind::Const(ref ty, ref expr) => {
1799                 self.with_item_rib(|this| {
1800                     this.visit_ty(ty);
1801                     this.with_constant_rib(|this| {
1802                         this.visit_expr(expr);
1803                     });
1804                 });
1805             }
1806
1807             ItemKind::Use(ref view_path) => {
1808                 match view_path.node {
1809                     ast::ViewPathList(ref prefix, ref items) if items.is_empty() => {
1810                         // Resolve prefix of an import with empty braces (issue #28388).
1811                         self.smart_resolve_path(item.id, None, prefix, PathSource::ImportPrefix);
1812                     }
1813                     _ => {}
1814                 }
1815             }
1816
1817             ItemKind::ExternCrate(_) | ItemKind::MacroDef(..) | ItemKind::GlobalAsm(_)=> {
1818                 // do nothing, these are just around to be encoded
1819             }
1820
1821             ItemKind::Mac(_) => panic!("unexpanded macro in resolve!"),
1822         }
1823     }
1824
1825     fn with_type_parameter_rib<'b, F>(&'b mut self, type_parameters: TypeParameters<'a, 'b>, f: F)
1826         where F: FnOnce(&mut Resolver)
1827     {
1828         match type_parameters {
1829             HasTypeParameters(generics, rib_kind) => {
1830                 let mut function_type_rib = Rib::new(rib_kind);
1831                 let mut seen_bindings = FxHashMap();
1832                 for type_parameter in &generics.ty_params {
1833                     let ident = type_parameter.ident.modern();
1834                     debug!("with_type_parameter_rib: {}", type_parameter.id);
1835
1836                     if seen_bindings.contains_key(&ident) {
1837                         let span = seen_bindings.get(&ident).unwrap();
1838                         let err =
1839                             ResolutionError::NameAlreadyUsedInTypeParameterList(ident.name, span);
1840                         resolve_error(self, type_parameter.span, err);
1841                     }
1842                     seen_bindings.entry(ident).or_insert(type_parameter.span);
1843
1844                     // plain insert (no renaming)
1845                     let def_id = self.definitions.local_def_id(type_parameter.id);
1846                     let def = Def::TyParam(def_id);
1847                     function_type_rib.bindings.insert(ident, def);
1848                     self.record_def(type_parameter.id, PathResolution::new(def));
1849                 }
1850                 self.ribs[TypeNS].push(function_type_rib);
1851             }
1852
1853             NoTypeParameters => {
1854                 // Nothing to do.
1855             }
1856         }
1857
1858         f(self);
1859
1860         if let HasTypeParameters(..) = type_parameters {
1861             self.ribs[TypeNS].pop();
1862         }
1863     }
1864
1865     fn with_label_rib<F>(&mut self, f: F)
1866         where F: FnOnce(&mut Resolver)
1867     {
1868         self.label_ribs.push(Rib::new(NormalRibKind));
1869         f(self);
1870         self.label_ribs.pop();
1871     }
1872
1873     fn with_item_rib<F>(&mut self, f: F)
1874         where F: FnOnce(&mut Resolver)
1875     {
1876         self.ribs[ValueNS].push(Rib::new(ItemRibKind));
1877         self.ribs[TypeNS].push(Rib::new(ItemRibKind));
1878         f(self);
1879         self.ribs[TypeNS].pop();
1880         self.ribs[ValueNS].pop();
1881     }
1882
1883     fn with_constant_rib<F>(&mut self, f: F)
1884         where F: FnOnce(&mut Resolver)
1885     {
1886         self.ribs[ValueNS].push(Rib::new(ConstantItemRibKind));
1887         f(self);
1888         self.ribs[ValueNS].pop();
1889     }
1890
1891     fn with_current_self_type<T, F>(&mut self, self_type: &Ty, f: F) -> T
1892         where F: FnOnce(&mut Resolver) -> T
1893     {
1894         // Handle nested impls (inside fn bodies)
1895         let previous_value = replace(&mut self.current_self_type, Some(self_type.clone()));
1896         let result = f(self);
1897         self.current_self_type = previous_value;
1898         result
1899     }
1900
1901     fn with_optional_trait_ref<T, F>(&mut self, opt_trait_ref: Option<&TraitRef>, f: F) -> T
1902         where F: FnOnce(&mut Resolver, Option<DefId>) -> T
1903     {
1904         let mut new_val = None;
1905         let mut new_id = None;
1906         if let Some(trait_ref) = opt_trait_ref {
1907             let path: Vec<_> = trait_ref.path.segments.iter().map(|seg| seg.identifier).collect();
1908             let def = self.smart_resolve_path_fragment(trait_ref.ref_id,
1909                                                        None,
1910                                                        &path,
1911                                                        trait_ref.path.span,
1912                                                        trait_ref.path.segments.last().unwrap().span,
1913                                                        PathSource::Trait)
1914                 .base_def();
1915             if def != Def::Err {
1916                 new_id = Some(def.def_id());
1917                 let span = trait_ref.path.span;
1918                 if let PathResult::Module(module) = self.resolve_path(&path, None, false, span) {
1919                     new_val = Some((module, trait_ref.clone()));
1920                 }
1921             }
1922         }
1923         let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
1924         let result = f(self, new_id);
1925         self.current_trait_ref = original_trait_ref;
1926         result
1927     }
1928
1929     fn with_self_rib<F>(&mut self, self_def: Def, f: F)
1930         where F: FnOnce(&mut Resolver)
1931     {
1932         let mut self_type_rib = Rib::new(NormalRibKind);
1933
1934         // plain insert (no renaming, types are not currently hygienic....)
1935         self_type_rib.bindings.insert(keywords::SelfType.ident(), self_def);
1936         self.ribs[TypeNS].push(self_type_rib);
1937         f(self);
1938         self.ribs[TypeNS].pop();
1939     }
1940
1941     fn resolve_implementation(&mut self,
1942                               generics: &Generics,
1943                               opt_trait_reference: &Option<TraitRef>,
1944                               self_type: &Ty,
1945                               item_id: NodeId,
1946                               impl_items: &[ImplItem]) {
1947         // If applicable, create a rib for the type parameters.
1948         self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
1949             // Dummy self type for better errors if `Self` is used in the trait path.
1950             this.with_self_rib(Def::SelfTy(None, None), |this| {
1951                 // Resolve the trait reference, if necessary.
1952                 this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| {
1953                     let item_def_id = this.definitions.local_def_id(item_id);
1954                     this.with_self_rib(Def::SelfTy(trait_id, Some(item_def_id)), |this| {
1955                         if let Some(trait_ref) = opt_trait_reference.as_ref() {
1956                             // Resolve type arguments in trait path
1957                             visit::walk_trait_ref(this, trait_ref);
1958                         }
1959                         // Resolve the self type.
1960                         this.visit_ty(self_type);
1961                         // Resolve the type parameters.
1962                         this.visit_generics(generics);
1963                         this.with_current_self_type(self_type, |this| {
1964                             for impl_item in impl_items {
1965                                 this.check_proc_macro_attrs(&impl_item.attrs);
1966                                 this.resolve_visibility(&impl_item.vis);
1967                                 match impl_item.node {
1968                                     ImplItemKind::Const(..) => {
1969                                         // If this is a trait impl, ensure the const
1970                                         // exists in trait
1971                                         this.check_trait_item(impl_item.ident,
1972                                                             ValueNS,
1973                                                             impl_item.span,
1974                                             |n, s| ResolutionError::ConstNotMemberOfTrait(n, s));
1975                                         visit::walk_impl_item(this, impl_item);
1976                                     }
1977                                     ImplItemKind::Method(ref sig, _) => {
1978                                         // If this is a trait impl, ensure the method
1979                                         // exists in trait
1980                                         this.check_trait_item(impl_item.ident,
1981                                                             ValueNS,
1982                                                             impl_item.span,
1983                                             |n, s| ResolutionError::MethodNotMemberOfTrait(n, s));
1984
1985                                         // We also need a new scope for the method-
1986                                         // specific type parameters.
1987                                         let type_parameters =
1988                                             HasTypeParameters(&sig.generics,
1989                                                             MethodRibKind(!sig.decl.has_self()));
1990                                         this.with_type_parameter_rib(type_parameters, |this| {
1991                                             visit::walk_impl_item(this, impl_item);
1992                                         });
1993                                     }
1994                                     ImplItemKind::Type(ref ty) => {
1995                                         // If this is a trait impl, ensure the type
1996                                         // exists in trait
1997                                         this.check_trait_item(impl_item.ident,
1998                                                             TypeNS,
1999                                                             impl_item.span,
2000                                             |n, s| ResolutionError::TypeNotMemberOfTrait(n, s));
2001
2002                                         this.visit_ty(ty);
2003                                     }
2004                                     ImplItemKind::Macro(_) =>
2005                                         panic!("unexpanded macro in resolve!"),
2006                                 }
2007                             }
2008                         });
2009                     });
2010                 });
2011             });
2012         });
2013     }
2014
2015     fn check_trait_item<F>(&mut self, ident: Ident, ns: Namespace, span: Span, err: F)
2016         where F: FnOnce(Name, &str) -> ResolutionError
2017     {
2018         // If there is a TraitRef in scope for an impl, then the method must be in the
2019         // trait.
2020         if let Some((module, _)) = self.current_trait_ref {
2021             if self.resolve_ident_in_module(module, ident, ns, false, false, span).is_err() {
2022                 let path = &self.current_trait_ref.as_ref().unwrap().1.path;
2023                 resolve_error(self, span, err(ident.name, &path_names_to_string(path)));
2024             }
2025         }
2026     }
2027
2028     fn resolve_local(&mut self, local: &Local) {
2029         // Resolve the type.
2030         walk_list!(self, visit_ty, &local.ty);
2031
2032         // Resolve the initializer.
2033         walk_list!(self, visit_expr, &local.init);
2034
2035         // Resolve the pattern.
2036         self.resolve_pattern(&local.pat, PatternSource::Let, &mut FxHashMap());
2037     }
2038
2039     // build a map from pattern identifiers to binding-info's.
2040     // this is done hygienically. This could arise for a macro
2041     // that expands into an or-pattern where one 'x' was from the
2042     // user and one 'x' came from the macro.
2043     fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
2044         let mut binding_map = FxHashMap();
2045
2046         pat.walk(&mut |pat| {
2047             if let PatKind::Ident(binding_mode, ident, ref sub_pat) = pat.node {
2048                 if sub_pat.is_some() || match self.def_map.get(&pat.id).map(|res| res.base_def()) {
2049                     Some(Def::Local(..)) => true,
2050                     _ => false,
2051                 } {
2052                     let binding_info = BindingInfo { span: ident.span, binding_mode: binding_mode };
2053                     binding_map.insert(ident.node, binding_info);
2054                 }
2055             }
2056             true
2057         });
2058
2059         binding_map
2060     }
2061
2062     // check that all of the arms in an or-pattern have exactly the
2063     // same set of bindings, with the same binding modes for each.
2064     fn check_consistent_bindings(&mut self, arm: &Arm) {
2065         if arm.pats.is_empty() {
2066             return;
2067         }
2068
2069         let mut missing_vars = FxHashMap();
2070         let mut inconsistent_vars = FxHashMap();
2071         for (i, p) in arm.pats.iter().enumerate() {
2072             let map_i = self.binding_mode_map(&p);
2073
2074             for (j, q) in arm.pats.iter().enumerate() {
2075                 if i == j {
2076                     continue;
2077                 }
2078
2079                 let map_j = self.binding_mode_map(&q);
2080                 for (&key, &binding_i) in &map_i {
2081                     if map_j.len() == 0 {                   // Account for missing bindings when
2082                         let binding_error = missing_vars    // map_j has none.
2083                             .entry(key.name)
2084                             .or_insert(BindingError {
2085                                 name: key.name,
2086                                 origin: BTreeSet::new(),
2087                                 target: BTreeSet::new(),
2088                             });
2089                         binding_error.origin.insert(binding_i.span);
2090                         binding_error.target.insert(q.span);
2091                     }
2092                     for (&key_j, &binding_j) in &map_j {
2093                         match map_i.get(&key_j) {
2094                             None => {  // missing binding
2095                                 let binding_error = missing_vars
2096                                     .entry(key_j.name)
2097                                     .or_insert(BindingError {
2098                                         name: key_j.name,
2099                                         origin: BTreeSet::new(),
2100                                         target: BTreeSet::new(),
2101                                     });
2102                                 binding_error.origin.insert(binding_j.span);
2103                                 binding_error.target.insert(p.span);
2104                             }
2105                             Some(binding_i) => {  // check consistent binding
2106                                 if binding_i.binding_mode != binding_j.binding_mode {
2107                                     inconsistent_vars
2108                                         .entry(key.name)
2109                                         .or_insert((binding_j.span, binding_i.span));
2110                                 }
2111                             }
2112                         }
2113                     }
2114                 }
2115             }
2116         }
2117         let mut missing_vars = missing_vars.iter().collect::<Vec<_>>();
2118         missing_vars.sort();
2119         for (_, v) in missing_vars {
2120             resolve_error(self,
2121                           *v.origin.iter().next().unwrap(),
2122                           ResolutionError::VariableNotBoundInPattern(v));
2123         }
2124         let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
2125         inconsistent_vars.sort();
2126         for (name, v) in inconsistent_vars {
2127             resolve_error(self, v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
2128         }
2129     }
2130
2131     fn resolve_arm(&mut self, arm: &Arm) {
2132         self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2133
2134         let mut bindings_list = FxHashMap();
2135         for pattern in &arm.pats {
2136             self.resolve_pattern(&pattern, PatternSource::Match, &mut bindings_list);
2137         }
2138
2139         // This has to happen *after* we determine which
2140         // pat_idents are variants
2141         self.check_consistent_bindings(arm);
2142
2143         walk_list!(self, visit_expr, &arm.guard);
2144         self.visit_expr(&arm.body);
2145
2146         self.ribs[ValueNS].pop();
2147     }
2148
2149     fn resolve_block(&mut self, block: &Block) {
2150         debug!("(resolving block) entering block");
2151         // Move down in the graph, if there's an anonymous module rooted here.
2152         let orig_module = self.current_module;
2153         let anonymous_module = self.block_map.get(&block.id).cloned(); // clones a reference
2154
2155         let mut num_macro_definition_ribs = 0;
2156         if let Some(anonymous_module) = anonymous_module {
2157             debug!("(resolving block) found anonymous module, moving down");
2158             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2159             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2160             self.current_module = anonymous_module;
2161             self.finalize_current_module_macro_resolutions();
2162         } else {
2163             self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2164         }
2165
2166         // Descend into the block.
2167         for stmt in &block.stmts {
2168             if let ast::StmtKind::Item(ref item) = stmt.node {
2169                 if let ast::ItemKind::MacroDef(..) = item.node {
2170                     num_macro_definition_ribs += 1;
2171                     let def = self.definitions.local_def_id(item.id);
2172                     self.ribs[ValueNS].push(Rib::new(MacroDefinition(def)));
2173                     self.label_ribs.push(Rib::new(MacroDefinition(def)));
2174                 }
2175             }
2176
2177             self.visit_stmt(stmt);
2178         }
2179
2180         // Move back up.
2181         self.current_module = orig_module;
2182         for _ in 0 .. num_macro_definition_ribs {
2183             self.ribs[ValueNS].pop();
2184             self.label_ribs.pop();
2185         }
2186         self.ribs[ValueNS].pop();
2187         if let Some(_) = anonymous_module {
2188             self.ribs[TypeNS].pop();
2189         }
2190         debug!("(resolving block) leaving block");
2191     }
2192
2193     fn fresh_binding(&mut self,
2194                      ident: &SpannedIdent,
2195                      pat_id: NodeId,
2196                      outer_pat_id: NodeId,
2197                      pat_src: PatternSource,
2198                      bindings: &mut FxHashMap<Ident, NodeId>)
2199                      -> PathResolution {
2200         // Add the binding to the local ribs, if it
2201         // doesn't already exist in the bindings map. (We
2202         // must not add it if it's in the bindings map
2203         // because that breaks the assumptions later
2204         // passes make about or-patterns.)
2205         let mut def = Def::Local(self.definitions.local_def_id(pat_id));
2206         match bindings.get(&ident.node).cloned() {
2207             Some(id) if id == outer_pat_id => {
2208                 // `Variant(a, a)`, error
2209                 resolve_error(
2210                     self,
2211                     ident.span,
2212                     ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(
2213                         &ident.node.name.as_str())
2214                 );
2215             }
2216             Some(..) if pat_src == PatternSource::FnParam => {
2217                 // `fn f(a: u8, a: u8)`, error
2218                 resolve_error(
2219                     self,
2220                     ident.span,
2221                     ResolutionError::IdentifierBoundMoreThanOnceInParameterList(
2222                         &ident.node.name.as_str())
2223                 );
2224             }
2225             Some(..) if pat_src == PatternSource::Match => {
2226                 // `Variant1(a) | Variant2(a)`, ok
2227                 // Reuse definition from the first `a`.
2228                 def = self.ribs[ValueNS].last_mut().unwrap().bindings[&ident.node];
2229             }
2230             Some(..) => {
2231                 span_bug!(ident.span, "two bindings with the same name from \
2232                                        unexpected pattern source {:?}", pat_src);
2233             }
2234             None => {
2235                 // A completely fresh binding, add to the lists if it's valid.
2236                 if ident.node.name != keywords::Invalid.name() {
2237                     bindings.insert(ident.node, outer_pat_id);
2238                     self.ribs[ValueNS].last_mut().unwrap().bindings.insert(ident.node, def);
2239                 }
2240             }
2241         }
2242
2243         PathResolution::new(def)
2244     }
2245
2246     fn resolve_pattern(&mut self,
2247                        pat: &Pat,
2248                        pat_src: PatternSource,
2249                        // Maps idents to the node ID for the
2250                        // outermost pattern that binds them.
2251                        bindings: &mut FxHashMap<Ident, NodeId>) {
2252         // Visit all direct subpatterns of this pattern.
2253         let outer_pat_id = pat.id;
2254         pat.walk(&mut |pat| {
2255             match pat.node {
2256                 PatKind::Ident(bmode, ref ident, ref opt_pat) => {
2257                     // First try to resolve the identifier as some existing
2258                     // entity, then fall back to a fresh binding.
2259                     let binding = self.resolve_ident_in_lexical_scope(ident.node, ValueNS,
2260                                                                       false, pat.span)
2261                                       .and_then(LexicalScopeBinding::item);
2262                     let resolution = binding.map(NameBinding::def).and_then(|def| {
2263                         let always_binding = !pat_src.is_refutable() || opt_pat.is_some() ||
2264                                              bmode != BindingMode::ByValue(Mutability::Immutable);
2265                         match def {
2266                             Def::StructCtor(_, CtorKind::Const) |
2267                             Def::VariantCtor(_, CtorKind::Const) |
2268                             Def::Const(..) if !always_binding => {
2269                                 // A unit struct/variant or constant pattern.
2270                                 self.record_use(ident.node, ValueNS, binding.unwrap(), ident.span);
2271                                 Some(PathResolution::new(def))
2272                             }
2273                             Def::StructCtor(..) | Def::VariantCtor(..) |
2274                             Def::Const(..) | Def::Static(..) => {
2275                                 // A fresh binding that shadows something unacceptable.
2276                                 resolve_error(
2277                                     self,
2278                                     ident.span,
2279                                     ResolutionError::BindingShadowsSomethingUnacceptable(
2280                                         pat_src.descr(), ident.node.name, binding.unwrap())
2281                                 );
2282                                 None
2283                             }
2284                             Def::Local(..) | Def::Upvar(..) | Def::Fn(..) | Def::Err => {
2285                                 // These entities are explicitly allowed
2286                                 // to be shadowed by fresh bindings.
2287                                 None
2288                             }
2289                             def => {
2290                                 span_bug!(ident.span, "unexpected definition for an \
2291                                                        identifier in pattern: {:?}", def);
2292                             }
2293                         }
2294                     }).unwrap_or_else(|| {
2295                         self.fresh_binding(ident, pat.id, outer_pat_id, pat_src, bindings)
2296                     });
2297
2298                     self.record_def(pat.id, resolution);
2299                 }
2300
2301                 PatKind::TupleStruct(ref path, ..) => {
2302                     self.smart_resolve_path(pat.id, None, path, PathSource::TupleStruct);
2303                 }
2304
2305                 PatKind::Path(ref qself, ref path) => {
2306                     self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
2307                 }
2308
2309                 PatKind::Struct(ref path, ..) => {
2310                     self.smart_resolve_path(pat.id, None, path, PathSource::Struct);
2311                 }
2312
2313                 _ => {}
2314             }
2315             true
2316         });
2317
2318         visit::walk_pat(self, pat);
2319     }
2320
2321     // High-level and context dependent path resolution routine.
2322     // Resolves the path and records the resolution into definition map.
2323     // If resolution fails tries several techniques to find likely
2324     // resolution candidates, suggest imports or other help, and report
2325     // errors in user friendly way.
2326     fn smart_resolve_path(&mut self,
2327                           id: NodeId,
2328                           qself: Option<&QSelf>,
2329                           path: &Path,
2330                           source: PathSource)
2331                           -> PathResolution {
2332         let segments = &path.segments.iter().map(|seg| seg.identifier).collect::<Vec<_>>();
2333         let ident_span = path.segments.last().map_or(path.span, |seg| seg.span);
2334         self.smart_resolve_path_fragment(id, qself, segments, path.span, ident_span, source)
2335     }
2336
2337     fn smart_resolve_path_fragment(&mut self,
2338                                    id: NodeId,
2339                                    qself: Option<&QSelf>,
2340                                    path: &[Ident],
2341                                    span: Span,
2342                                    ident_span: Span,
2343                                    source: PathSource)
2344                                    -> PathResolution {
2345         let ns = source.namespace();
2346         let is_expected = &|def| source.is_expected(def);
2347         let is_enum_variant = &|def| if let Def::Variant(..) = def { true } else { false };
2348
2349         // Base error is amended with one short label and possibly some longer helps/notes.
2350         let report_errors = |this: &mut Self, def: Option<Def>| {
2351             // Make the base error.
2352             let expected = source.descr_expected();
2353             let path_str = names_to_string(path);
2354             let code = source.error_code(def.is_some());
2355             let (base_msg, fallback_label, base_span) = if let Some(def) = def {
2356                 (format!("expected {}, found {} `{}`", expected, def.kind_name(), path_str),
2357                  format!("not a {}", expected), span)
2358             } else {
2359                 let item_str = path[path.len() - 1];
2360                 let (mod_prefix, mod_str) = if path.len() == 1 {
2361                     (format!(""), format!("this scope"))
2362                 } else if path.len() == 2 && path[0].name == keywords::CrateRoot.name() {
2363                     (format!(""), format!("the crate root"))
2364                 } else {
2365                     let mod_path = &path[..path.len() - 1];
2366                     let mod_prefix = match this.resolve_path(mod_path, Some(TypeNS), false, span) {
2367                         PathResult::Module(module) => module.def(),
2368                         _ => None,
2369                     }.map_or(format!(""), |def| format!("{} ", def.kind_name()));
2370                     (mod_prefix, format!("`{}`", names_to_string(mod_path)))
2371                 };
2372                 (format!("cannot find {} `{}` in {}{}", expected, item_str, mod_prefix, mod_str),
2373                  format!("not found in {}", mod_str), ident_span)
2374             };
2375             let mut err = this.session.struct_span_err_with_code(base_span, &base_msg, code);
2376
2377             // Emit special messages for unresolved `Self` and `self`.
2378             if is_self_type(path, ns) {
2379                 __diagnostic_used!(E0411);
2380                 err.code("E0411".into());
2381                 err.span_label(span, "`Self` is only available in traits and impls");
2382                 return err;
2383             }
2384             if is_self_value(path, ns) {
2385                 __diagnostic_used!(E0424);
2386                 err.code("E0424".into());
2387                 err.span_label(span, format!("`self` value is only available in \
2388                                                methods with `self` parameter"));
2389                 return err;
2390             }
2391
2392             // Try to lookup the name in more relaxed fashion for better error reporting.
2393             let ident = *path.last().unwrap();
2394             let candidates = this.lookup_import_candidates(ident.name, ns, is_expected);
2395             if !candidates.is_empty() {
2396                 let mut module_span = this.current_module.span;
2397                 module_span.hi = module_span.lo;
2398                 // Report import candidates as help and proceed searching for labels.
2399                 show_candidates(&mut err, module_span, &candidates, def.is_some());
2400             } else if is_expected(Def::Enum(DefId::local(CRATE_DEF_INDEX))) {
2401                 let enum_candidates =
2402                     this.lookup_import_candidates(ident.name, ns, is_enum_variant);
2403                 let mut enum_candidates = enum_candidates.iter()
2404                     .map(|suggestion| import_candidate_to_paths(&suggestion)).collect::<Vec<_>>();
2405                 enum_candidates.sort();
2406                 for (sp, variant_path, enum_path) in enum_candidates {
2407                     let msg = format!("there is an enum variant `{}`, did you mean to use `{}`?",
2408                                       variant_path,
2409                                       enum_path);
2410                     if sp == DUMMY_SP {
2411                         err.help(&msg);
2412                     } else {
2413                         err.span_help(sp, &msg);
2414                     }
2415                 }
2416             }
2417             if path.len() == 1 && this.self_type_is_available(span) {
2418                 if let Some(candidate) = this.lookup_assoc_candidate(ident, ns, is_expected) {
2419                     let self_is_available = this.self_value_is_available(path[0].ctxt, span);
2420                     match candidate {
2421                         AssocSuggestion::Field => {
2422                             err.span_label(span, format!("did you mean `self.{}`?", path_str));
2423                             if !self_is_available {
2424                                 err.span_label(span, format!("`self` value is only available in \
2425                                                                methods with `self` parameter"));
2426                             }
2427                         }
2428                         AssocSuggestion::MethodWithSelf if self_is_available => {
2429                             err.span_label(span, format!("did you mean `self.{}(...)`?",
2430                                                            path_str));
2431                         }
2432                         AssocSuggestion::MethodWithSelf | AssocSuggestion::AssocItem => {
2433                             err.span_label(span, format!("did you mean `Self::{}`?", path_str));
2434                         }
2435                     }
2436                     return err;
2437                 }
2438             }
2439
2440             let mut levenshtein_worked = false;
2441
2442             // Try Levenshtein.
2443             if let Some(candidate) = this.lookup_typo_candidate(path, ns, is_expected, span) {
2444                 err.span_label(ident_span, format!("did you mean `{}`?", candidate));
2445                 levenshtein_worked = true;
2446             }
2447
2448             // Try context dependent help if relaxed lookup didn't work.
2449             if let Some(def) = def {
2450                 match (def, source) {
2451                     (Def::Macro(..), _) => {
2452                         err.span_label(span, format!("did you mean `{}!(...)`?", path_str));
2453                         return err;
2454                     }
2455                     (Def::TyAlias(..), PathSource::Trait) => {
2456                         err.span_label(span, "type aliases cannot be used for traits");
2457                         return err;
2458                     }
2459                     (Def::Mod(..), PathSource::Expr(Some(parent))) => match parent.node {
2460                         ExprKind::Field(_, ident) => {
2461                             err.span_label(parent.span, format!("did you mean `{}::{}`?",
2462                                                                  path_str, ident.node));
2463                             return err;
2464                         }
2465                         ExprKind::MethodCall(ident, ..) => {
2466                             err.span_label(parent.span, format!("did you mean `{}::{}(...)`?",
2467                                                                  path_str, ident.node));
2468                             return err;
2469                         }
2470                         _ => {}
2471                     },
2472                     _ if ns == ValueNS && is_struct_like(def) => {
2473                         if let Def::Struct(def_id) = def {
2474                             if let Some((ctor_def, ctor_vis))
2475                                     = this.struct_constructors.get(&def_id).cloned() {
2476                                 if is_expected(ctor_def) && !this.is_accessible(ctor_vis) {
2477                                     err.span_label(span, format!("constructor is not visible \
2478                                                                    here due to private fields"));
2479                                 }
2480                             }
2481                         }
2482                         err.span_label(span, format!("did you mean `{} {{ /* fields */ }}`?",
2483                                                        path_str));
2484                         return err;
2485                     }
2486                     _ => {}
2487                 }
2488             }
2489
2490             // Fallback label.
2491             if !levenshtein_worked {
2492                 err.span_label(base_span, fallback_label);
2493             }
2494             err
2495         };
2496         let report_errors = |this: &mut Self, def: Option<Def>| {
2497             report_errors(this, def).emit();
2498             err_path_resolution()
2499         };
2500
2501         let resolution = match self.resolve_qpath_anywhere(id, qself, path, ns, span,
2502                                                            source.defer_to_typeck(),
2503                                                            source.global_by_default()) {
2504             Some(resolution) if resolution.unresolved_segments() == 0 => {
2505                 if is_expected(resolution.base_def()) || resolution.base_def() == Def::Err {
2506                     resolution
2507                 } else {
2508                     // Add a temporary hack to smooth the transition to new struct ctor
2509                     // visibility rules. See #38932 for more details.
2510                     let mut res = None;
2511                     if let Def::Struct(def_id) = resolution.base_def() {
2512                         if let Some((ctor_def, ctor_vis))
2513                                 = self.struct_constructors.get(&def_id).cloned() {
2514                             if is_expected(ctor_def) && self.is_accessible(ctor_vis) {
2515                                 let lint = lint::builtin::LEGACY_CONSTRUCTOR_VISIBILITY;
2516                                 self.session.add_lint(lint, id, span,
2517                                     "private struct constructors are not usable through \
2518                                      reexports in outer modules".to_string());
2519                                 res = Some(PathResolution::new(ctor_def));
2520                             }
2521                         }
2522                     }
2523
2524                     res.unwrap_or_else(|| report_errors(self, Some(resolution.base_def())))
2525                 }
2526             }
2527             Some(resolution) if source.defer_to_typeck() => {
2528                 // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
2529                 // or `<T>::A::B`. If `B` should be resolved in value namespace then
2530                 // it needs to be added to the trait map.
2531                 if ns == ValueNS {
2532                     let item_name = *path.last().unwrap();
2533                     let traits = self.get_traits_containing_item(item_name, ns);
2534                     self.trait_map.insert(id, traits);
2535                 }
2536                 resolution
2537             }
2538             _ => report_errors(self, None)
2539         };
2540
2541         if let PathSource::TraitItem(..) = source {} else {
2542             // Avoid recording definition of `A::B` in `<T as A>::B::C`.
2543             self.record_def(id, resolution);
2544         }
2545         resolution
2546     }
2547
2548     fn self_type_is_available(&mut self, span: Span) -> bool {
2549         let binding = self.resolve_ident_in_lexical_scope(keywords::SelfType.ident(),
2550                                                           TypeNS, false, span);
2551         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
2552     }
2553
2554     fn self_value_is_available(&mut self, ctxt: SyntaxContext, span: Span) -> bool {
2555         let ident = Ident { name: keywords::SelfValue.name(), ctxt: ctxt };
2556         let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, false, span);
2557         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
2558     }
2559
2560     // Resolve in alternative namespaces if resolution in the primary namespace fails.
2561     fn resolve_qpath_anywhere(&mut self,
2562                               id: NodeId,
2563                               qself: Option<&QSelf>,
2564                               path: &[Ident],
2565                               primary_ns: Namespace,
2566                               span: Span,
2567                               defer_to_typeck: bool,
2568                               global_by_default: bool)
2569                               -> Option<PathResolution> {
2570         let mut fin_res = None;
2571         // FIXME: can't resolve paths in macro namespace yet, macros are
2572         // processed by the little special hack below.
2573         for (i, ns) in [primary_ns, TypeNS, ValueNS, /*MacroNS*/].iter().cloned().enumerate() {
2574             if i == 0 || ns != primary_ns {
2575                 match self.resolve_qpath(id, qself, path, ns, span, global_by_default) {
2576                     // If defer_to_typeck, then resolution > no resolution,
2577                     // otherwise full resolution > partial resolution > no resolution.
2578                     Some(res) if res.unresolved_segments() == 0 || defer_to_typeck =>
2579                         return Some(res),
2580                     res => if fin_res.is_none() { fin_res = res },
2581                 };
2582             }
2583         }
2584         let is_global = self.global_macros.get(&path[0].name).cloned()
2585             .map(|binding| binding.get_macro(self).kind() == MacroKind::Bang).unwrap_or(false);
2586         if primary_ns != MacroNS && (is_global || self.macro_names.contains(&path[0].modern())) {
2587             // Return some dummy definition, it's enough for error reporting.
2588             return Some(
2589                 PathResolution::new(Def::Macro(DefId::local(CRATE_DEF_INDEX), MacroKind::Bang))
2590             );
2591         }
2592         fin_res
2593     }
2594
2595     /// Handles paths that may refer to associated items.
2596     fn resolve_qpath(&mut self,
2597                      id: NodeId,
2598                      qself: Option<&QSelf>,
2599                      path: &[Ident],
2600                      ns: Namespace,
2601                      span: Span,
2602                      global_by_default: bool)
2603                      -> Option<PathResolution> {
2604         if let Some(qself) = qself {
2605             if qself.position == 0 {
2606                 // FIXME: Create some fake resolution that can't possibly be a type.
2607                 return Some(PathResolution::with_unresolved_segments(
2608                     Def::Mod(DefId::local(CRATE_DEF_INDEX)), path.len()
2609                 ));
2610             }
2611             // Make sure `A::B` in `<T as A>::B::C` is a trait item.
2612             let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
2613             let res = self.smart_resolve_path_fragment(id, None, &path[..qself.position + 1],
2614                                                        span, span, PathSource::TraitItem(ns));
2615             return Some(PathResolution::with_unresolved_segments(
2616                 res.base_def(), res.unresolved_segments() + path.len() - qself.position - 1
2617             ));
2618         }
2619
2620         let result = match self.resolve_path(&path, Some(ns), true, span) {
2621             PathResult::NonModule(path_res) => path_res,
2622             PathResult::Module(module) if !module.is_normal() => {
2623                 PathResolution::new(module.def().unwrap())
2624             }
2625             // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
2626             // don't report an error right away, but try to fallback to a primitive type.
2627             // So, we are still able to successfully resolve something like
2628             //
2629             // use std::u8; // bring module u8 in scope
2630             // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
2631             //     u8::max_value() // OK, resolves to associated function <u8>::max_value,
2632             //                     // not to non-existent std::u8::max_value
2633             // }
2634             //
2635             // Such behavior is required for backward compatibility.
2636             // The same fallback is used when `a` resolves to nothing.
2637             PathResult::Module(..) | PathResult::Failed(..)
2638                     if (ns == TypeNS || path.len() > 1) &&
2639                        self.primitive_type_table.primitive_types.contains_key(&path[0].name) => {
2640                 let prim = self.primitive_type_table.primitive_types[&path[0].name];
2641                 match prim {
2642                     TyUint(UintTy::U128) | TyInt(IntTy::I128) => {
2643                         if !self.session.features.borrow().i128_type {
2644                             emit_feature_err(&self.session.parse_sess,
2645                                                 "i128_type", span, GateIssue::Language,
2646                                                 "128-bit type is unstable");
2647
2648                         }
2649                     }
2650                     _ => {}
2651                 }
2652                 PathResolution::with_unresolved_segments(Def::PrimTy(prim), path.len() - 1)
2653             }
2654             PathResult::Module(module) => PathResolution::new(module.def().unwrap()),
2655             PathResult::Failed(msg, false) => {
2656                 resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
2657                 err_path_resolution()
2658             }
2659             PathResult::Failed(..) => return None,
2660             PathResult::Indeterminate => bug!("indetermined path result in resolve_qpath"),
2661         };
2662
2663         if path.len() > 1 && !global_by_default && result.base_def() != Def::Err &&
2664            path[0].name != keywords::CrateRoot.name() && path[0].name != "$crate" {
2665             let unqualified_result = {
2666                 match self.resolve_path(&[*path.last().unwrap()], Some(ns), false, span) {
2667                     PathResult::NonModule(path_res) => path_res.base_def(),
2668                     PathResult::Module(module) => module.def().unwrap(),
2669                     _ => return Some(result),
2670                 }
2671             };
2672             if result.base_def() == unqualified_result {
2673                 let lint = lint::builtin::UNUSED_QUALIFICATIONS;
2674                 self.session.add_lint(lint, id, span, "unnecessary qualification".to_string());
2675             }
2676         }
2677
2678         Some(result)
2679     }
2680
2681     fn resolve_path(&mut self,
2682                     path: &[Ident],
2683                     opt_ns: Option<Namespace>, // `None` indicates a module path
2684                     record_used: bool,
2685                     path_span: Span)
2686                     -> PathResult<'a> {
2687         let mut module = None;
2688         let mut allow_super = true;
2689
2690         for (i, &ident) in path.iter().enumerate() {
2691             let is_last = i == path.len() - 1;
2692             let ns = if is_last { opt_ns.unwrap_or(TypeNS) } else { TypeNS };
2693
2694             if i == 0 && ns == TypeNS && ident.name == keywords::SelfValue.name() {
2695                 let mut ctxt = ident.ctxt.modern();
2696                 module = Some(self.resolve_self(&mut ctxt, self.current_module));
2697                 continue
2698             } else if allow_super && ns == TypeNS && ident.name == keywords::Super.name() {
2699                 let mut ctxt = ident.ctxt.modern();
2700                 let self_module = match i {
2701                     0 => self.resolve_self(&mut ctxt, self.current_module),
2702                     _ => module.unwrap(),
2703                 };
2704                 if let Some(parent) = self_module.parent {
2705                     module = Some(self.resolve_self(&mut ctxt, parent));
2706                     continue
2707                 } else {
2708                     let msg = "There are too many initial `super`s.".to_string();
2709                     return PathResult::Failed(msg, false);
2710                 }
2711             }
2712             allow_super = false;
2713
2714             if i == 0 && ns == TypeNS && ident.name == keywords::CrateRoot.name() {
2715                 module = Some(self.resolve_crate_root(ident.ctxt.modern()));
2716                 continue
2717             } else if i == 0 && ns == TypeNS && ident.name == "$crate" {
2718                 module = Some(self.resolve_crate_root(ident.ctxt));
2719                 continue
2720             }
2721
2722             let binding = if let Some(module) = module {
2723                 self.resolve_ident_in_module(module, ident, ns, false, record_used, path_span)
2724             } else if opt_ns == Some(MacroNS) {
2725                 self.resolve_lexical_macro_path_segment(ident, ns, record_used, path_span)
2726                     .map(MacroBinding::binding)
2727             } else {
2728                 match self.resolve_ident_in_lexical_scope(ident, ns, record_used, path_span) {
2729                     Some(LexicalScopeBinding::Item(binding)) => Ok(binding),
2730                     Some(LexicalScopeBinding::Def(def))
2731                             if opt_ns == Some(TypeNS) || opt_ns == Some(ValueNS) => {
2732                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
2733                             def, path.len() - 1
2734                         ));
2735                     }
2736                     _ => Err(if record_used { Determined } else { Undetermined }),
2737                 }
2738             };
2739
2740             match binding {
2741                 Ok(binding) => {
2742                     let def = binding.def();
2743                     let maybe_assoc = opt_ns != Some(MacroNS) && PathSource::Type.is_expected(def);
2744                     if let Some(next_module) = binding.module() {
2745                         module = Some(next_module);
2746                     } else if def == Def::Err {
2747                         return PathResult::NonModule(err_path_resolution());
2748                     } else if opt_ns.is_some() && (is_last || maybe_assoc) {
2749                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
2750                             def, path.len() - i - 1
2751                         ));
2752                     } else {
2753                         return PathResult::Failed(format!("Not a module `{}`", ident), is_last);
2754                     }
2755                 }
2756                 Err(Undetermined) => return PathResult::Indeterminate,
2757                 Err(Determined) => {
2758                     if let Some(module) = module {
2759                         if opt_ns.is_some() && !module.is_normal() {
2760                             return PathResult::NonModule(PathResolution::with_unresolved_segments(
2761                                 module.def().unwrap(), path.len() - i
2762                             ));
2763                         }
2764                     }
2765                     let msg = if module.and_then(ModuleData::def) == self.graph_root.def() {
2766                         let is_mod = |def| match def { Def::Mod(..) => true, _ => false };
2767                         let mut candidates =
2768                             self.lookup_import_candidates(ident.name, TypeNS, is_mod);
2769                         candidates.sort_by_key(|c| (c.path.segments.len(), c.path.to_string()));
2770                         if let Some(candidate) = candidates.get(0) {
2771                             format!("Did you mean `{}`?", candidate.path)
2772                         } else {
2773                             format!("Maybe a missing `extern crate {};`?", ident)
2774                         }
2775                     } else if i == 0 {
2776                         format!("Use of undeclared type or module `{}`", ident)
2777                     } else {
2778                         format!("Could not find `{}` in `{}`", ident, path[i - 1])
2779                     };
2780                     return PathResult::Failed(msg, is_last);
2781                 }
2782             }
2783         }
2784
2785         PathResult::Module(module.unwrap_or(self.graph_root))
2786     }
2787
2788     // Resolve a local definition, potentially adjusting for closures.
2789     fn adjust_local_def(&mut self,
2790                         ns: Namespace,
2791                         rib_index: usize,
2792                         mut def: Def,
2793                         record_used: bool,
2794                         span: Span) -> Def {
2795         let ribs = &self.ribs[ns][rib_index + 1..];
2796
2797         // An invalid forward use of a type parameter from a previous default.
2798         if let ForwardTyParamBanRibKind = self.ribs[ns][rib_index].kind {
2799             if record_used {
2800                 resolve_error(self, span,
2801                         ResolutionError::ForwardDeclaredTyParam);
2802             }
2803             assert_eq!(def, Def::Err);
2804             return Def::Err;
2805         }
2806
2807         match def {
2808             Def::Upvar(..) => {
2809                 span_bug!(span, "unexpected {:?} in bindings", def)
2810             }
2811             Def::Local(def_id) => {
2812                 for rib in ribs {
2813                     match rib.kind {
2814                         NormalRibKind | ModuleRibKind(..) | MacroDefinition(..) |
2815                         ForwardTyParamBanRibKind => {
2816                             // Nothing to do. Continue.
2817                         }
2818                         ClosureRibKind(function_id) => {
2819                             let prev_def = def;
2820                             let node_id = self.definitions.as_local_node_id(def_id).unwrap();
2821
2822                             let seen = self.freevars_seen
2823                                            .entry(function_id)
2824                                            .or_insert_with(|| NodeMap());
2825                             if let Some(&index) = seen.get(&node_id) {
2826                                 def = Def::Upvar(def_id, index, function_id);
2827                                 continue;
2828                             }
2829                             let vec = self.freevars
2830                                           .entry(function_id)
2831                                           .or_insert_with(|| vec![]);
2832                             let depth = vec.len();
2833                             def = Def::Upvar(def_id, depth, function_id);
2834
2835                             if record_used {
2836                                 vec.push(Freevar {
2837                                     def: prev_def,
2838                                     span: span,
2839                                 });
2840                                 seen.insert(node_id, depth);
2841                             }
2842                         }
2843                         ItemRibKind | MethodRibKind(_) => {
2844                             // This was an attempt to access an upvar inside a
2845                             // named function item. This is not allowed, so we
2846                             // report an error.
2847                             if record_used {
2848                                 resolve_error(self, span,
2849                                         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem);
2850                             }
2851                             return Def::Err;
2852                         }
2853                         ConstantItemRibKind => {
2854                             // Still doesn't deal with upvars
2855                             if record_used {
2856                                 resolve_error(self, span,
2857                                         ResolutionError::AttemptToUseNonConstantValueInConstant);
2858                             }
2859                             return Def::Err;
2860                         }
2861                     }
2862                 }
2863             }
2864             Def::TyParam(..) | Def::SelfTy(..) => {
2865                 for rib in ribs {
2866                     match rib.kind {
2867                         NormalRibKind | MethodRibKind(_) | ClosureRibKind(..) |
2868                         ModuleRibKind(..) | MacroDefinition(..) | ForwardTyParamBanRibKind |
2869                         ConstantItemRibKind => {
2870                             // Nothing to do. Continue.
2871                         }
2872                         ItemRibKind => {
2873                             // This was an attempt to use a type parameter outside
2874                             // its scope.
2875                             if record_used {
2876                                 resolve_error(self, span,
2877                                               ResolutionError::TypeParametersFromOuterFunction);
2878                             }
2879                             return Def::Err;
2880                         }
2881                     }
2882                 }
2883             }
2884             _ => {}
2885         }
2886         return def;
2887     }
2888
2889     // Calls `f` with a `Resolver` whose current lexical scope is `module`'s lexical scope,
2890     // i.e. the module's items and the prelude (unless the module is `#[no_implicit_prelude]`).
2891     // FIXME #34673: This needs testing.
2892     pub fn with_module_lexical_scope<T, F>(&mut self, module: Module<'a>, f: F) -> T
2893         where F: FnOnce(&mut Resolver<'a>) -> T,
2894     {
2895         self.with_empty_ribs(|this| {
2896             this.ribs[ValueNS].push(Rib::new(ModuleRibKind(module)));
2897             this.ribs[TypeNS].push(Rib::new(ModuleRibKind(module)));
2898             f(this)
2899         })
2900     }
2901
2902     fn with_empty_ribs<T, F>(&mut self, f: F) -> T
2903         where F: FnOnce(&mut Resolver<'a>) -> T,
2904     {
2905         let ribs = replace(&mut self.ribs, PerNS::<Vec<Rib>>::default());
2906         let label_ribs = replace(&mut self.label_ribs, Vec::new());
2907
2908         let result = f(self);
2909         self.ribs = ribs;
2910         self.label_ribs = label_ribs;
2911         result
2912     }
2913
2914     fn lookup_assoc_candidate<FilterFn>(&mut self,
2915                                         ident: Ident,
2916                                         ns: Namespace,
2917                                         filter_fn: FilterFn)
2918                                         -> Option<AssocSuggestion>
2919         where FilterFn: Fn(Def) -> bool
2920     {
2921         fn extract_node_id(t: &Ty) -> Option<NodeId> {
2922             match t.node {
2923                 TyKind::Path(None, _) => Some(t.id),
2924                 TyKind::Rptr(_, ref mut_ty) => extract_node_id(&mut_ty.ty),
2925                 // This doesn't handle the remaining `Ty` variants as they are not
2926                 // that commonly the self_type, it might be interesting to provide
2927                 // support for those in future.
2928                 _ => None,
2929             }
2930         }
2931
2932         // Fields are generally expected in the same contexts as locals.
2933         if filter_fn(Def::Local(DefId::local(CRATE_DEF_INDEX))) {
2934             if let Some(node_id) = self.current_self_type.as_ref().and_then(extract_node_id) {
2935                 // Look for a field with the same name in the current self_type.
2936                 if let Some(resolution) = self.def_map.get(&node_id) {
2937                     match resolution.base_def() {
2938                         Def::Struct(did) | Def::Union(did)
2939                                 if resolution.unresolved_segments() == 0 => {
2940                             if let Some(field_names) = self.field_names.get(&did) {
2941                                 if field_names.iter().any(|&field_name| ident.name == field_name) {
2942                                     return Some(AssocSuggestion::Field);
2943                                 }
2944                             }
2945                         }
2946                         _ => {}
2947                     }
2948                 }
2949             }
2950         }
2951
2952         // Look for associated items in the current trait.
2953         if let Some((module, _)) = self.current_trait_ref {
2954             if let Ok(binding) =
2955                     self.resolve_ident_in_module(module, ident, ns, false, false, module.span) {
2956                 let def = binding.def();
2957                 if filter_fn(def) {
2958                     return Some(if self.has_self.contains(&def.def_id()) {
2959                         AssocSuggestion::MethodWithSelf
2960                     } else {
2961                         AssocSuggestion::AssocItem
2962                     });
2963                 }
2964             }
2965         }
2966
2967         None
2968     }
2969
2970     fn lookup_typo_candidate<FilterFn>(&mut self,
2971                                        path: &[Ident],
2972                                        ns: Namespace,
2973                                        filter_fn: FilterFn,
2974                                        span: Span)
2975                                        -> Option<Symbol>
2976         where FilterFn: Fn(Def) -> bool
2977     {
2978         let add_module_candidates = |module: Module, names: &mut Vec<Name>| {
2979             for (&(ident, _), resolution) in module.resolutions.borrow().iter() {
2980                 if let Some(binding) = resolution.borrow().binding {
2981                     if filter_fn(binding.def()) {
2982                         names.push(ident.name);
2983                     }
2984                 }
2985             }
2986         };
2987
2988         let mut names = Vec::new();
2989         if path.len() == 1 {
2990             // Search in lexical scope.
2991             // Walk backwards up the ribs in scope and collect candidates.
2992             for rib in self.ribs[ns].iter().rev() {
2993                 // Locals and type parameters
2994                 for (ident, def) in &rib.bindings {
2995                     if filter_fn(*def) {
2996                         names.push(ident.name);
2997                     }
2998                 }
2999                 // Items in scope
3000                 if let ModuleRibKind(module) = rib.kind {
3001                     // Items from this module
3002                     add_module_candidates(module, &mut names);
3003
3004                     if let ModuleKind::Block(..) = module.kind {
3005                         // We can see through blocks
3006                     } else {
3007                         // Items from the prelude
3008                         if let Some(prelude) = self.prelude {
3009                             if !module.no_implicit_prelude {
3010                                 add_module_candidates(prelude, &mut names);
3011                             }
3012                         }
3013                         break;
3014                     }
3015                 }
3016             }
3017             // Add primitive types to the mix
3018             if filter_fn(Def::PrimTy(TyBool)) {
3019                 for (name, _) in &self.primitive_type_table.primitive_types {
3020                     names.push(*name);
3021                 }
3022             }
3023         } else {
3024             // Search in module.
3025             let mod_path = &path[..path.len() - 1];
3026             if let PathResult::Module(module) = self.resolve_path(mod_path, Some(TypeNS),
3027                                                                   false, span) {
3028                 add_module_candidates(module, &mut names);
3029             }
3030         }
3031
3032         let name = path[path.len() - 1].name;
3033         // Make sure error reporting is deterministic.
3034         names.sort_by_key(|name| name.as_str());
3035         match find_best_match_for_name(names.iter(), &name.as_str(), None) {
3036             Some(found) if found != name => Some(found),
3037             _ => None,
3038         }
3039     }
3040
3041     fn with_resolved_label<F>(&mut self, label: Option<SpannedIdent>, id: NodeId, f: F)
3042         where F: FnOnce(&mut Resolver)
3043     {
3044         if let Some(label) = label {
3045             let def = Def::Label(id);
3046             self.with_label_rib(|this| {
3047                 this.label_ribs.last_mut().unwrap().bindings.insert(label.node, def);
3048                 f(this);
3049             });
3050         } else {
3051             f(self);
3052         }
3053     }
3054
3055     fn resolve_labeled_block(&mut self, label: Option<SpannedIdent>, id: NodeId, block: &Block) {
3056         self.with_resolved_label(label, id, |this| this.visit_block(block));
3057     }
3058
3059     fn resolve_expr(&mut self, expr: &Expr, parent: Option<&Expr>) {
3060         // First, record candidate traits for this expression if it could
3061         // result in the invocation of a method call.
3062
3063         self.record_candidate_traits_for_expr_if_necessary(expr);
3064
3065         // Next, resolve the node.
3066         match expr.node {
3067             ExprKind::Path(ref qself, ref path) => {
3068                 self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
3069                 visit::walk_expr(self, expr);
3070             }
3071
3072             ExprKind::Struct(ref path, ..) => {
3073                 self.smart_resolve_path(expr.id, None, path, PathSource::Struct);
3074                 visit::walk_expr(self, expr);
3075             }
3076
3077             ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
3078                 match self.search_label(label.node) {
3079                     None => {
3080                         self.record_def(expr.id, err_path_resolution());
3081                         resolve_error(self,
3082                                       label.span,
3083                                       ResolutionError::UndeclaredLabel(&label.node.name.as_str()));
3084                     }
3085                     Some(def @ Def::Label(_)) => {
3086                         // Since this def is a label, it is never read.
3087                         self.record_def(expr.id, PathResolution::new(def));
3088                     }
3089                     Some(_) => {
3090                         span_bug!(expr.span, "label wasn't mapped to a label def!");
3091                     }
3092                 }
3093
3094                 // visit `break` argument if any
3095                 visit::walk_expr(self, expr);
3096             }
3097
3098             ExprKind::IfLet(ref pattern, ref subexpression, ref if_block, ref optional_else) => {
3099                 self.visit_expr(subexpression);
3100
3101                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
3102                 self.resolve_pattern(pattern, PatternSource::IfLet, &mut FxHashMap());
3103                 self.visit_block(if_block);
3104                 self.ribs[ValueNS].pop();
3105
3106                 optional_else.as_ref().map(|expr| self.visit_expr(expr));
3107             }
3108
3109             ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),
3110
3111             ExprKind::While(ref subexpression, ref block, label) => {
3112                 self.with_resolved_label(label, expr.id, |this| {
3113                     this.visit_expr(subexpression);
3114                     this.visit_block(block);
3115                 });
3116             }
3117
3118             ExprKind::WhileLet(ref pattern, ref subexpression, ref block, label) => {
3119                 self.with_resolved_label(label, expr.id, |this| {
3120                     this.visit_expr(subexpression);
3121                     this.ribs[ValueNS].push(Rib::new(NormalRibKind));
3122                     this.resolve_pattern(pattern, PatternSource::WhileLet, &mut FxHashMap());
3123                     this.visit_block(block);
3124                     this.ribs[ValueNS].pop();
3125                 });
3126             }
3127
3128             ExprKind::ForLoop(ref pattern, ref subexpression, ref block, label) => {
3129                 self.visit_expr(subexpression);
3130                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
3131                 self.resolve_pattern(pattern, PatternSource::For, &mut FxHashMap());
3132
3133                 self.resolve_labeled_block(label, expr.id, block);
3134
3135                 self.ribs[ValueNS].pop();
3136             }
3137
3138             // Equivalent to `visit::walk_expr` + passing some context to children.
3139             ExprKind::Field(ref subexpression, _) => {
3140                 self.resolve_expr(subexpression, Some(expr));
3141             }
3142             ExprKind::MethodCall(_, ref types, ref arguments) => {
3143                 let mut arguments = arguments.iter();
3144                 self.resolve_expr(arguments.next().unwrap(), Some(expr));
3145                 for argument in arguments {
3146                     self.resolve_expr(argument, None);
3147                 }
3148                 for ty in types.iter() {
3149                     self.visit_ty(ty);
3150                 }
3151             }
3152
3153             ExprKind::Repeat(ref element, ref count) => {
3154                 self.visit_expr(element);
3155                 self.with_constant_rib(|this| {
3156                     this.visit_expr(count);
3157                 });
3158             }
3159             ExprKind::Call(ref callee, ref arguments) => {
3160                 self.resolve_expr(callee, Some(expr));
3161                 for argument in arguments {
3162                     self.resolve_expr(argument, None);
3163                 }
3164             }
3165
3166             _ => {
3167                 visit::walk_expr(self, expr);
3168             }
3169         }
3170     }
3171
3172     fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &Expr) {
3173         match expr.node {
3174             ExprKind::Field(_, name) => {
3175                 // FIXME(#6890): Even though you can't treat a method like a
3176                 // field, we need to add any trait methods we find that match
3177                 // the field name so that we can do some nice error reporting
3178                 // later on in typeck.
3179                 let traits = self.get_traits_containing_item(name.node, ValueNS);
3180                 self.trait_map.insert(expr.id, traits);
3181             }
3182             ExprKind::MethodCall(name, ..) => {
3183                 debug!("(recording candidate traits for expr) recording traits for {}",
3184                        expr.id);
3185                 let traits = self.get_traits_containing_item(name.node, ValueNS);
3186                 self.trait_map.insert(expr.id, traits);
3187             }
3188             _ => {
3189                 // Nothing to do.
3190             }
3191         }
3192     }
3193
3194     fn get_traits_containing_item(&mut self, mut ident: Ident, ns: Namespace)
3195                                   -> Vec<TraitCandidate> {
3196         debug!("(getting traits containing item) looking for '{}'", ident.name);
3197
3198         let mut found_traits = Vec::new();
3199         // Look for the current trait.
3200         if let Some((module, _)) = self.current_trait_ref {
3201             if self.resolve_ident_in_module(module, ident, ns, false, false, module.span).is_ok() {
3202                 let def_id = module.def_id().unwrap();
3203                 found_traits.push(TraitCandidate { def_id: def_id, import_id: None });
3204             }
3205         }
3206
3207         ident.ctxt = ident.ctxt.modern();
3208         let mut search_module = self.current_module;
3209         loop {
3210             self.get_traits_in_module_containing_item(ident, ns, search_module, &mut found_traits);
3211             search_module =
3212                 unwrap_or!(self.hygienic_lexical_parent(search_module, &mut ident.ctxt), break);
3213         }
3214
3215         if let Some(prelude) = self.prelude {
3216             if !search_module.no_implicit_prelude {
3217                 self.get_traits_in_module_containing_item(ident, ns, prelude, &mut found_traits);
3218             }
3219         }
3220
3221         found_traits
3222     }
3223
3224     fn get_traits_in_module_containing_item(&mut self,
3225                                             ident: Ident,
3226                                             ns: Namespace,
3227                                             module: Module<'a>,
3228                                             found_traits: &mut Vec<TraitCandidate>) {
3229         let mut traits = module.traits.borrow_mut();
3230         if traits.is_none() {
3231             let mut collected_traits = Vec::new();
3232             module.for_each_child(|name, ns, binding| {
3233                 if ns != TypeNS { return }
3234                 if let Def::Trait(_) = binding.def() {
3235                     collected_traits.push((name, binding));
3236                 }
3237             });
3238             *traits = Some(collected_traits.into_boxed_slice());
3239         }
3240
3241         for &(trait_name, binding) in traits.as_ref().unwrap().iter() {
3242             let module = binding.module().unwrap();
3243             let mut ident = ident;
3244             if ident.ctxt.glob_adjust(module.expansion, binding.span.ctxt.modern()).is_none() {
3245                 continue
3246             }
3247             if self.resolve_ident_in_module_unadjusted(module, ident, ns, false, false, module.span)
3248                    .is_ok() {
3249                 let import_id = match binding.kind {
3250                     NameBindingKind::Import { directive, .. } => {
3251                         self.maybe_unused_trait_imports.insert(directive.id);
3252                         self.add_to_glob_map(directive.id, trait_name);
3253                         Some(directive.id)
3254                     }
3255                     _ => None,
3256                 };
3257                 let trait_def_id = module.def_id().unwrap();
3258                 found_traits.push(TraitCandidate { def_id: trait_def_id, import_id: import_id });
3259             }
3260         }
3261     }
3262
3263     /// When name resolution fails, this method can be used to look up candidate
3264     /// entities with the expected name. It allows filtering them using the
3265     /// supplied predicate (which should be used to only accept the types of
3266     /// definitions expected e.g. traits). The lookup spans across all crates.
3267     ///
3268     /// NOTE: The method does not look into imports, but this is not a problem,
3269     /// since we report the definitions (thus, the de-aliased imports).
3270     fn lookup_import_candidates<FilterFn>(&mut self,
3271                                           lookup_name: Name,
3272                                           namespace: Namespace,
3273                                           filter_fn: FilterFn)
3274                                           -> Vec<ImportSuggestion>
3275         where FilterFn: Fn(Def) -> bool
3276     {
3277         let mut candidates = Vec::new();
3278         let mut worklist = Vec::new();
3279         let mut seen_modules = FxHashSet();
3280         worklist.push((self.graph_root, Vec::new(), false));
3281
3282         while let Some((in_module,
3283                         path_segments,
3284                         in_module_is_extern)) = worklist.pop() {
3285             self.populate_module_if_necessary(in_module);
3286
3287             in_module.for_each_child(|ident, ns, name_binding| {
3288
3289                 // avoid imports entirely
3290                 if name_binding.is_import() && !name_binding.is_extern_crate() { return; }
3291                 // avoid non-importable candidates as well
3292                 if !name_binding.is_importable() { return; }
3293
3294                 // collect results based on the filter function
3295                 if ident.name == lookup_name && ns == namespace {
3296                     if filter_fn(name_binding.def()) {
3297                         // create the path
3298                         let mut segms = path_segments.clone();
3299                         segms.push(ast::PathSegment::from_ident(ident, name_binding.span));
3300                         let path = Path {
3301                             span: name_binding.span,
3302                             segments: segms,
3303                         };
3304                         // the entity is accessible in the following cases:
3305                         // 1. if it's defined in the same crate, it's always
3306                         // accessible (since private entities can be made public)
3307                         // 2. if it's defined in another crate, it's accessible
3308                         // only if both the module is public and the entity is
3309                         // declared as public (due to pruning, we don't explore
3310                         // outside crate private modules => no need to check this)
3311                         if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
3312                             candidates.push(ImportSuggestion { path: path });
3313                         }
3314                     }
3315                 }
3316
3317                 // collect submodules to explore
3318                 if let Some(module) = name_binding.module() {
3319                     // form the path
3320                     let mut path_segments = path_segments.clone();
3321                     path_segments.push(ast::PathSegment::from_ident(ident, name_binding.span));
3322
3323                     if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
3324                         // add the module to the lookup
3325                         let is_extern = in_module_is_extern || name_binding.is_extern_crate();
3326                         if seen_modules.insert(module.def_id().unwrap()) {
3327                             worklist.push((module, path_segments, is_extern));
3328                         }
3329                     }
3330                 }
3331             })
3332         }
3333
3334         candidates
3335     }
3336
3337     fn record_def(&mut self, node_id: NodeId, resolution: PathResolution) {
3338         debug!("(recording def) recording {:?} for {}", resolution, node_id);
3339         if let Some(prev_res) = self.def_map.insert(node_id, resolution) {
3340             panic!("path resolved multiple times ({:?} before, {:?} now)", prev_res, resolution);
3341         }
3342     }
3343
3344     fn resolve_visibility(&mut self, vis: &ast::Visibility) -> ty::Visibility {
3345         match *vis {
3346             ast::Visibility::Public => ty::Visibility::Public,
3347             ast::Visibility::Crate(..) => ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX)),
3348             ast::Visibility::Inherited => {
3349                 ty::Visibility::Restricted(self.current_module.normal_ancestor_id)
3350             }
3351             ast::Visibility::Restricted { ref path, id } => {
3352                 let def = self.smart_resolve_path(id, None, path,
3353                                                   PathSource::Visibility).base_def();
3354                 if def == Def::Err {
3355                     ty::Visibility::Public
3356                 } else {
3357                     let vis = ty::Visibility::Restricted(def.def_id());
3358                     if self.is_accessible(vis) {
3359                         vis
3360                     } else {
3361                         self.session.span_err(path.span, "visibilities can only be restricted \
3362                                                           to ancestor modules");
3363                         ty::Visibility::Public
3364                     }
3365                 }
3366             }
3367         }
3368     }
3369
3370     fn is_accessible(&self, vis: ty::Visibility) -> bool {
3371         vis.is_accessible_from(self.current_module.normal_ancestor_id, self)
3372     }
3373
3374     fn is_accessible_from(&self, vis: ty::Visibility, module: Module<'a>) -> bool {
3375         vis.is_accessible_from(module.normal_ancestor_id, self)
3376     }
3377
3378     fn report_errors(&mut self) {
3379         self.report_shadowing_errors();
3380         let mut reported_spans = FxHashSet();
3381
3382         for &AmbiguityError { span, name, b1, b2, lexical, legacy } in &self.ambiguity_errors {
3383             if !reported_spans.insert(span) { continue }
3384             let participle = |binding: &NameBinding| {
3385                 if binding.is_import() { "imported" } else { "defined" }
3386             };
3387             let msg1 = format!("`{}` could refer to the name {} here", name, participle(b1));
3388             let msg2 = format!("`{}` could also refer to the name {} here", name, participle(b2));
3389             let note = if b1.expansion == Mark::root() || !lexical && b1.is_glob_import() {
3390                 format!("consider adding an explicit import of `{}` to disambiguate", name)
3391             } else if let Def::Macro(..) = b1.def() {
3392                 format!("macro-expanded {} do not shadow",
3393                         if b1.is_import() { "macro imports" } else { "macros" })
3394             } else {
3395                 format!("macro-expanded {} do not shadow when used in a macro invocation path",
3396                         if b1.is_import() { "imports" } else { "items" })
3397             };
3398             if legacy {
3399                 let id = match b2.kind {
3400                     NameBindingKind::Import { directive, .. } => directive.id,
3401                     _ => unreachable!(),
3402                 };
3403                 let mut span = MultiSpan::from_span(span);
3404                 span.push_span_label(b1.span, msg1);
3405                 span.push_span_label(b2.span, msg2);
3406                 let msg = format!("`{}` is ambiguous", name);
3407                 self.session.add_lint(lint::builtin::LEGACY_IMPORTS, id, span, msg);
3408             } else {
3409                 let mut err =
3410                     self.session.struct_span_err(span, &format!("`{}` is ambiguous", name));
3411                 err.span_note(b1.span, &msg1);
3412                 match b2.def() {
3413                     Def::Macro(..) if b2.span == DUMMY_SP =>
3414                         err.note(&format!("`{}` is also a builtin macro", name)),
3415                     _ => err.span_note(b2.span, &msg2),
3416                 };
3417                 err.note(&note).emit();
3418             }
3419         }
3420
3421         for &PrivacyError(span, name, binding) in &self.privacy_errors {
3422             if !reported_spans.insert(span) { continue }
3423             if binding.is_extern_crate() {
3424                 // Warn when using an inaccessible extern crate.
3425                 let node_id = match binding.kind {
3426                     NameBindingKind::Import { directive, .. } => directive.id,
3427                     _ => unreachable!(),
3428                 };
3429                 let msg = format!("extern crate `{}` is private", name);
3430                 self.session.add_lint(lint::builtin::INACCESSIBLE_EXTERN_CRATE, node_id, span, msg);
3431             } else {
3432                 let def = binding.def();
3433                 self.session.span_err(span, &format!("{} `{}` is private", def.kind_name(), name));
3434             }
3435         }
3436     }
3437
3438     fn report_shadowing_errors(&mut self) {
3439         for (ident, scope) in replace(&mut self.lexical_macro_resolutions, Vec::new()) {
3440             self.resolve_legacy_scope(scope, ident, true);
3441         }
3442
3443         let mut reported_errors = FxHashSet();
3444         for binding in replace(&mut self.disallowed_shadowing, Vec::new()) {
3445             if self.resolve_legacy_scope(&binding.parent, binding.ident, false).is_some() &&
3446                reported_errors.insert((binding.ident, binding.span)) {
3447                 let msg = format!("`{}` is already in scope", binding.ident);
3448                 self.session.struct_span_err(binding.span, &msg)
3449                     .note("macro-expanded `macro_rules!`s may not shadow \
3450                            existing macros (see RFC 1560)")
3451                     .emit();
3452             }
3453         }
3454     }
3455
3456     fn report_conflict(&mut self,
3457                        parent: Module,
3458                        ident: Ident,
3459                        ns: Namespace,
3460                        binding: &NameBinding,
3461                        old_binding: &NameBinding) {
3462         // Error on the second of two conflicting names
3463         if old_binding.span.lo > binding.span.lo {
3464             return self.report_conflict(parent, ident, ns, old_binding, binding);
3465         }
3466
3467         let container = match parent.kind {
3468             ModuleKind::Def(Def::Mod(_), _) => "module",
3469             ModuleKind::Def(Def::Trait(_), _) => "trait",
3470             ModuleKind::Block(..) => "block",
3471             _ => "enum",
3472         };
3473
3474         let (participle, noun) = match old_binding.is_import() {
3475             true => ("imported", "import"),
3476             false => ("defined", "definition"),
3477         };
3478
3479         let (name, span) = (ident.name, binding.span);
3480
3481         if let Some(s) = self.name_already_seen.get(&name) {
3482             if s == &span {
3483                 return;
3484             }
3485         }
3486
3487         let msg = {
3488             let kind = match (ns, old_binding.module()) {
3489                 (ValueNS, _) => "a value",
3490                 (MacroNS, _) => "a macro",
3491                 (TypeNS, _) if old_binding.is_extern_crate() => "an extern crate",
3492                 (TypeNS, Some(module)) if module.is_normal() => "a module",
3493                 (TypeNS, Some(module)) if module.is_trait() => "a trait",
3494                 (TypeNS, _) => "a type",
3495             };
3496             format!("{} named `{}` has already been {} in this {}",
3497                     kind, name, participle, container)
3498         };
3499
3500         let mut err = match (old_binding.is_extern_crate(), binding.is_extern_crate()) {
3501             (true, true) => struct_span_err!(self.session, span, E0259, "{}", msg),
3502             (true, _) | (_, true) => match binding.is_import() && old_binding.is_import() {
3503                 true => struct_span_err!(self.session, span, E0254, "{}", msg),
3504                 false => struct_span_err!(self.session, span, E0260, "{}", msg),
3505             },
3506             _ => match (old_binding.is_import(), binding.is_import()) {
3507                 (false, false) => struct_span_err!(self.session, span, E0428, "{}", msg),
3508                 (true, true) => struct_span_err!(self.session, span, E0252, "{}", msg),
3509                 _ => struct_span_err!(self.session, span, E0255, "{}", msg),
3510             },
3511         };
3512
3513         err.span_label(span, format!("`{}` already {}", name, participle));
3514         if old_binding.span != syntax_pos::DUMMY_SP {
3515             err.span_label(old_binding.span, format!("previous {} of `{}` here", noun, name));
3516         }
3517         err.emit();
3518         self.name_already_seen.insert(name, span);
3519     }
3520
3521     fn warn_legacy_self_import(&self, directive: &'a ImportDirective<'a>) {
3522         let (id, span) = (directive.id, directive.span);
3523         let msg = "`self` no longer imports values".to_string();
3524         self.session.add_lint(lint::builtin::LEGACY_IMPORTS, id, span, msg);
3525     }
3526
3527     fn check_proc_macro_attrs(&mut self, attrs: &[ast::Attribute]) {
3528         if self.proc_macro_enabled { return; }
3529
3530         for attr in attrs {
3531             if attr.path.segments.len() > 1 {
3532                 continue
3533             }
3534             let ident = attr.path.segments[0].identifier;
3535             let result = self.resolve_lexical_macro_path_segment(ident,
3536                                                                  MacroNS,
3537                                                                  false,
3538                                                                  attr.path.span);
3539             if let Ok(binding) = result {
3540                 if let SyntaxExtension::AttrProcMacro(..) = *binding.binding().get_macro(self) {
3541                     attr::mark_known(attr);
3542
3543                     let msg = "attribute procedural macros are experimental";
3544                     let feature = "proc_macro";
3545
3546                     feature_err(&self.session.parse_sess, feature,
3547                                 attr.span, GateIssue::Language, msg)
3548                         .span_note(binding.span(), "procedural macro imported here")
3549                         .emit();
3550                 }
3551             }
3552         }
3553     }
3554 }
3555
3556 fn is_struct_like(def: Def) -> bool {
3557     match def {
3558         Def::VariantCtor(_, CtorKind::Fictive) => true,
3559         _ => PathSource::Struct.is_expected(def),
3560     }
3561 }
3562
3563 fn is_self_type(path: &[Ident], namespace: Namespace) -> bool {
3564     namespace == TypeNS && path.len() == 1 && path[0].name == keywords::SelfType.name()
3565 }
3566
3567 fn is_self_value(path: &[Ident], namespace: Namespace) -> bool {
3568     namespace == ValueNS && path.len() == 1 && path[0].name == keywords::SelfValue.name()
3569 }
3570
3571 fn names_to_string(idents: &[Ident]) -> String {
3572     let mut result = String::new();
3573     for (i, ident) in idents.iter().filter(|i| i.name != keywords::CrateRoot.name()).enumerate() {
3574         if i > 0 {
3575             result.push_str("::");
3576         }
3577         result.push_str(&ident.name.as_str());
3578     }
3579     result
3580 }
3581
3582 fn path_names_to_string(path: &Path) -> String {
3583     names_to_string(&path.segments.iter().map(|seg| seg.identifier).collect::<Vec<_>>())
3584 }
3585
3586 /// Get the path for an enum and the variant from an `ImportSuggestion` for an enum variant.
3587 fn import_candidate_to_paths(suggestion: &ImportSuggestion) -> (Span, String, String) {
3588     let variant_path = &suggestion.path;
3589     let variant_path_string = path_names_to_string(variant_path);
3590
3591     let path_len = suggestion.path.segments.len();
3592     let enum_path = ast::Path {
3593         span: suggestion.path.span,
3594         segments: suggestion.path.segments[0..path_len - 1].to_vec(),
3595     };
3596     let enum_path_string = path_names_to_string(&enum_path);
3597
3598     (suggestion.path.span, variant_path_string, enum_path_string)
3599 }
3600
3601
3602 /// When an entity with a given name is not available in scope, we search for
3603 /// entities with that name in all crates. This method allows outputting the
3604 /// results of this search in a programmer-friendly way
3605 fn show_candidates(err: &mut DiagnosticBuilder,
3606                    span: Span,
3607                    candidates: &[ImportSuggestion],
3608                    better: bool) {
3609
3610     // we want consistent results across executions, but candidates are produced
3611     // by iterating through a hash map, so make sure they are ordered:
3612     let mut path_strings: Vec<_> =
3613         candidates.into_iter().map(|c| path_names_to_string(&c.path)).collect();
3614     path_strings.sort();
3615
3616     let better = if better { "better " } else { "" };
3617     let msg_diff = match path_strings.len() {
3618         1 => " is found in another module, you can import it",
3619         _ => "s are found in other modules, you can import them",
3620     };
3621     let msg = format!("possible {}candidate{} into scope", better, msg_diff);
3622
3623     for candidate in &mut path_strings {
3624         *candidate = format!("use {};\n", candidate);
3625     }
3626
3627     err.span_suggestions(span, &msg, path_strings);
3628 }
3629
3630 /// A somewhat inefficient routine to obtain the name of a module.
3631 fn module_to_string(module: Module) -> String {
3632     let mut names = Vec::new();
3633
3634     fn collect_mod(names: &mut Vec<Ident>, module: Module) {
3635         if let ModuleKind::Def(_, name) = module.kind {
3636             if let Some(parent) = module.parent {
3637                 names.push(Ident::with_empty_ctxt(name));
3638                 collect_mod(names, parent);
3639             }
3640         } else {
3641             // danger, shouldn't be ident?
3642             names.push(Ident::from_str("<opaque>"));
3643             collect_mod(names, module.parent.unwrap());
3644         }
3645     }
3646     collect_mod(&mut names, module);
3647
3648     if names.is_empty() {
3649         return "???".to_string();
3650     }
3651     names_to_string(&names.into_iter().rev().collect::<Vec<_>>())
3652 }
3653
3654 fn err_path_resolution() -> PathResolution {
3655     PathResolution::new(Def::Err)
3656 }
3657
3658 #[derive(PartialEq,Copy, Clone)]
3659 pub enum MakeGlobMap {
3660     Yes,
3661     No,
3662 }
3663
3664 __build_diagnostic_array! { librustc_resolve, DIAGNOSTICS }