]> git.lizzy.rs Git - rust.git/blob - src/librustc_resolve/lib.rs
Rollup merge of #43979 - Jouan:Add-links-for-impls, r=GuillaumeGomez
[rust.git] / src / librustc_resolve / lib.rs
1 // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 #![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
12       html_favicon_url = "https://doc.rust-lang.org/favicon.ico",
13       html_root_url = "https://doc.rust-lang.org/nightly/")]
14 #![deny(warnings)]
15
16 #![feature(rustc_diagnostic_macros)]
17
18 #[macro_use]
19 extern crate log;
20 #[macro_use]
21 extern crate syntax;
22 extern crate syntax_pos;
23 extern crate rustc_errors as errors;
24 extern crate arena;
25 #[macro_use]
26 extern crate rustc;
27
28 use self::Namespace::*;
29 use self::TypeParameters::*;
30 use self::RibKind::*;
31
32 use rustc::hir::map::{Definitions, DefCollector};
33 use rustc::hir::{self, PrimTy, TyBool, TyChar, TyFloat, TyInt, TyUint, TyStr};
34 use rustc::middle::cstore::CrateLoader;
35 use rustc::session::Session;
36 use rustc::lint;
37 use rustc::hir::def::*;
38 use rustc::hir::def_id::{CRATE_DEF_INDEX, LOCAL_CRATE, DefId};
39 use rustc::ty;
40 use rustc::hir::{Freevar, FreevarMap, TraitCandidate, TraitMap, GlobMap};
41 use rustc::util::nodemap::{NodeMap, NodeSet, FxHashMap, FxHashSet, DefIdMap};
42
43 use syntax::codemap::{dummy_spanned, respan};
44 use syntax::ext::hygiene::{Mark, SyntaxContext};
45 use syntax::ast::{self, Name, NodeId, Ident, SpannedIdent, FloatTy, IntTy, UintTy};
46 use syntax::ext::base::SyntaxExtension;
47 use syntax::ext::base::Determinacy::{self, Determined, Undetermined};
48 use syntax::ext::base::MacroKind;
49 use syntax::symbol::{Symbol, keywords};
50 use syntax::util::lev_distance::find_best_match_for_name;
51
52 use syntax::visit::{self, FnKind, Visitor};
53 use syntax::attr;
54 use syntax::ast::{Arm, BindingMode, Block, Crate, Expr, ExprKind};
55 use syntax::ast::{FnDecl, ForeignItem, ForeignItemKind, Generics};
56 use syntax::ast::{Item, ItemKind, ImplItem, ImplItemKind};
57 use syntax::ast::{Local, Mutability, Pat, PatKind, Path};
58 use syntax::ast::{QSelf, TraitItemKind, TraitRef, Ty, TyKind};
59 use syntax::feature_gate::{feature_err, emit_feature_err, GateIssue};
60
61 use syntax_pos::{Span, DUMMY_SP, MultiSpan};
62 use errors::DiagnosticBuilder;
63
64 use std::cell::{Cell, RefCell};
65 use std::cmp;
66 use std::collections::BTreeSet;
67 use std::fmt;
68 use std::mem::replace;
69 use std::rc::Rc;
70
71 use resolve_imports::{ImportDirective, ImportDirectiveSubclass, NameResolution, ImportResolver};
72 use macros::{InvocationData, LegacyBinding, LegacyScope, MacroBinding};
73
74 // NB: This module needs to be declared first so diagnostics are
75 // registered before they are used.
76 mod diagnostics;
77
78 mod macros;
79 mod check_unused;
80 mod build_reduced_graph;
81 mod resolve_imports;
82
83 /// A free importable items suggested in case of resolution failure.
84 struct ImportSuggestion {
85     path: Path,
86 }
87
88 /// A field or associated item from self type suggested in case of resolution failure.
89 enum AssocSuggestion {
90     Field,
91     MethodWithSelf,
92     AssocItem,
93 }
94
95 #[derive(Eq)]
96 struct BindingError {
97     name: Name,
98     origin: BTreeSet<Span>,
99     target: BTreeSet<Span>,
100 }
101
102 impl PartialOrd for BindingError {
103     fn partial_cmp(&self, other: &BindingError) -> Option<cmp::Ordering> {
104         Some(self.cmp(other))
105     }
106 }
107
108 impl PartialEq for BindingError {
109     fn eq(&self, other: &BindingError) -> bool {
110         self.name == other.name
111     }
112 }
113
114 impl Ord for BindingError {
115     fn cmp(&self, other: &BindingError) -> cmp::Ordering {
116         self.name.cmp(&other.name)
117     }
118 }
119
120 enum ResolutionError<'a> {
121     /// error E0401: can't use type parameters from outer function
122     TypeParametersFromOuterFunction,
123     /// error E0403: the name is already used for a type parameter in this type parameter list
124     NameAlreadyUsedInTypeParameterList(Name, &'a Span),
125     /// error E0407: method is not a member of trait
126     MethodNotMemberOfTrait(Name, &'a str),
127     /// error E0437: type is not a member of trait
128     TypeNotMemberOfTrait(Name, &'a str),
129     /// error E0438: const is not a member of trait
130     ConstNotMemberOfTrait(Name, &'a str),
131     /// error E0408: variable `{}` is not bound in all patterns
132     VariableNotBoundInPattern(&'a BindingError),
133     /// error E0409: variable `{}` is bound in inconsistent ways within the same match arm
134     VariableBoundWithDifferentMode(Name, Span),
135     /// error E0415: identifier is bound more than once in this parameter list
136     IdentifierBoundMoreThanOnceInParameterList(&'a str),
137     /// error E0416: identifier is bound more than once in the same pattern
138     IdentifierBoundMoreThanOnceInSamePattern(&'a str),
139     /// error E0426: use of undeclared label
140     UndeclaredLabel(&'a str),
141     /// error E0429: `self` imports are only allowed within a { } list
142     SelfImportsOnlyAllowedWithin,
143     /// error E0430: `self` import can only appear once in the list
144     SelfImportCanOnlyAppearOnceInTheList,
145     /// error E0431: `self` import can only appear in an import list with a non-empty prefix
146     SelfImportOnlyInImportListWithNonEmptyPrefix,
147     /// error E0432: unresolved import
148     UnresolvedImport(Option<(Span, &'a str, &'a str)>),
149     /// error E0433: failed to resolve
150     FailedToResolve(&'a str),
151     /// error E0434: can't capture dynamic environment in a fn item
152     CannotCaptureDynamicEnvironmentInFnItem,
153     /// error E0435: attempt to use a non-constant value in a constant
154     AttemptToUseNonConstantValueInConstant,
155     /// error E0530: X bindings cannot shadow Ys
156     BindingShadowsSomethingUnacceptable(&'a str, Name, &'a NameBinding<'a>),
157     /// error E0128: type parameters with a default cannot use forward declared identifiers
158     ForwardDeclaredTyParam,
159 }
160
161 fn resolve_error<'sess, 'a>(resolver: &'sess Resolver,
162                             span: Span,
163                             resolution_error: ResolutionError<'a>) {
164     resolve_struct_error(resolver, span, resolution_error).emit();
165 }
166
167 fn resolve_struct_error<'sess, 'a>(resolver: &'sess Resolver,
168                                    span: Span,
169                                    resolution_error: ResolutionError<'a>)
170                                    -> DiagnosticBuilder<'sess> {
171     match resolution_error {
172         ResolutionError::TypeParametersFromOuterFunction => {
173             let mut err = struct_span_err!(resolver.session,
174                                            span,
175                                            E0401,
176                                            "can't use type parameters from outer function; \
177                                            try using a local type parameter instead");
178             err.span_label(span, "use of type variable from outer function");
179             err
180         }
181         ResolutionError::NameAlreadyUsedInTypeParameterList(name, first_use_span) => {
182              let mut err = struct_span_err!(resolver.session,
183                                             span,
184                                             E0403,
185                                             "the name `{}` is already used for a type parameter \
186                                             in this type parameter list",
187                                             name);
188              err.span_label(span, "already used");
189              err.span_label(first_use_span.clone(), format!("first use of `{}`", name));
190              err
191         }
192         ResolutionError::MethodNotMemberOfTrait(method, trait_) => {
193             let mut err = struct_span_err!(resolver.session,
194                                            span,
195                                            E0407,
196                                            "method `{}` is not a member of trait `{}`",
197                                            method,
198                                            trait_);
199             err.span_label(span, format!("not a member of trait `{}`", trait_));
200             err
201         }
202         ResolutionError::TypeNotMemberOfTrait(type_, trait_) => {
203             let mut err = struct_span_err!(resolver.session,
204                              span,
205                              E0437,
206                              "type `{}` is not a member of trait `{}`",
207                              type_,
208                              trait_);
209             err.span_label(span, format!("not a member of trait `{}`", trait_));
210             err
211         }
212         ResolutionError::ConstNotMemberOfTrait(const_, trait_) => {
213             let mut err = struct_span_err!(resolver.session,
214                              span,
215                              E0438,
216                              "const `{}` is not a member of trait `{}`",
217                              const_,
218                              trait_);
219             err.span_label(span, format!("not a member of trait `{}`", trait_));
220             err
221         }
222         ResolutionError::VariableNotBoundInPattern(binding_error) => {
223             let target_sp = binding_error.target.iter().map(|x| *x).collect::<Vec<_>>();
224             let msp = MultiSpan::from_spans(target_sp.clone());
225             let msg = format!("variable `{}` is not bound in all patterns", binding_error.name);
226             let mut err = resolver.session.struct_span_err_with_code(msp, &msg, "E0408");
227             for sp in target_sp {
228                 err.span_label(sp, format!("pattern doesn't bind `{}`", binding_error.name));
229             }
230             let origin_sp = binding_error.origin.iter().map(|x| *x).collect::<Vec<_>>();
231             for sp in origin_sp {
232                 err.span_label(sp, "variable not in all patterns");
233             }
234             err
235         }
236         ResolutionError::VariableBoundWithDifferentMode(variable_name,
237                                                         first_binding_span) => {
238             let mut err = struct_span_err!(resolver.session,
239                              span,
240                              E0409,
241                              "variable `{}` is bound in inconsistent \
242                              ways within the same match arm",
243                              variable_name);
244             err.span_label(span, "bound in different ways");
245             err.span_label(first_binding_span, "first binding");
246             err
247         }
248         ResolutionError::IdentifierBoundMoreThanOnceInParameterList(identifier) => {
249             let mut err = struct_span_err!(resolver.session,
250                              span,
251                              E0415,
252                              "identifier `{}` is bound more than once in this parameter list",
253                              identifier);
254             err.span_label(span, "used as parameter more than once");
255             err
256         }
257         ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(identifier) => {
258             let mut err = struct_span_err!(resolver.session,
259                              span,
260                              E0416,
261                              "identifier `{}` is bound more than once in the same pattern",
262                              identifier);
263             err.span_label(span, "used in a pattern more than once");
264             err
265         }
266         ResolutionError::UndeclaredLabel(name) => {
267             let mut err = struct_span_err!(resolver.session,
268                                            span,
269                                            E0426,
270                                            "use of undeclared label `{}`",
271                                            name);
272             err.span_label(span, format!("undeclared label `{}`", name));
273             err
274         }
275         ResolutionError::SelfImportsOnlyAllowedWithin => {
276             struct_span_err!(resolver.session,
277                              span,
278                              E0429,
279                              "{}",
280                              "`self` imports are only allowed within a { } list")
281         }
282         ResolutionError::SelfImportCanOnlyAppearOnceInTheList => {
283             struct_span_err!(resolver.session,
284                              span,
285                              E0430,
286                              "`self` import can only appear once in the list")
287         }
288         ResolutionError::SelfImportOnlyInImportListWithNonEmptyPrefix => {
289             struct_span_err!(resolver.session,
290                              span,
291                              E0431,
292                              "`self` import can only appear in an import list with a \
293                               non-empty prefix")
294         }
295         ResolutionError::UnresolvedImport(name) => {
296             let (span, msg) = match name {
297                 Some((sp, n, _)) => (sp, format!("unresolved import `{}`", n)),
298                 None => (span, "unresolved import".to_owned()),
299             };
300             let mut err = struct_span_err!(resolver.session, span, E0432, "{}", msg);
301             if let Some((_, _, p)) = name {
302                 err.span_label(span, p);
303             }
304             err
305         }
306         ResolutionError::FailedToResolve(msg) => {
307             let mut err = struct_span_err!(resolver.session, span, E0433,
308                                            "failed to resolve. {}", msg);
309             err.span_label(span, msg);
310             err
311         }
312         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem => {
313             struct_span_err!(resolver.session,
314                              span,
315                              E0434,
316                              "{}",
317                              "can't capture dynamic environment in a fn item; use the || { ... } \
318                               closure form instead")
319         }
320         ResolutionError::AttemptToUseNonConstantValueInConstant => {
321             let mut err = struct_span_err!(resolver.session,
322                              span,
323                              E0435,
324                              "attempt to use a non-constant value in a constant");
325             err.span_label(span, "non-constant value");
326             err
327         }
328         ResolutionError::BindingShadowsSomethingUnacceptable(what_binding, name, binding) => {
329             let shadows_what = PathResolution::new(binding.def()).kind_name();
330             let mut err = struct_span_err!(resolver.session,
331                                            span,
332                                            E0530,
333                                            "{}s cannot shadow {}s", what_binding, shadows_what);
334             err.span_label(span, format!("cannot be named the same as a {}", shadows_what));
335             let participle = if binding.is_import() { "imported" } else { "defined" };
336             let msg = format!("a {} `{}` is {} here", shadows_what, name, participle);
337             err.span_label(binding.span, msg);
338             err
339         }
340         ResolutionError::ForwardDeclaredTyParam => {
341             let mut err = struct_span_err!(resolver.session, span, E0128,
342                                            "type parameters with a default cannot use \
343                                             forward declared identifiers");
344             err.span_label(span, format!("defaulted type parameters \
345                                            cannot be forward declared"));
346             err
347         }
348     }
349 }
350
351 #[derive(Copy, Clone, Debug)]
352 struct BindingInfo {
353     span: Span,
354     binding_mode: BindingMode,
355 }
356
357 // Map from the name in a pattern to its binding mode.
358 type BindingMap = FxHashMap<Ident, BindingInfo>;
359
360 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
361 enum PatternSource {
362     Match,
363     IfLet,
364     WhileLet,
365     Let,
366     For,
367     FnParam,
368 }
369
370 impl PatternSource {
371     fn is_refutable(self) -> bool {
372         match self {
373             PatternSource::Match | PatternSource::IfLet | PatternSource::WhileLet => true,
374             PatternSource::Let | PatternSource::For | PatternSource::FnParam  => false,
375         }
376     }
377     fn descr(self) -> &'static str {
378         match self {
379             PatternSource::Match => "match binding",
380             PatternSource::IfLet => "if let binding",
381             PatternSource::WhileLet => "while let binding",
382             PatternSource::Let => "let binding",
383             PatternSource::For => "for binding",
384             PatternSource::FnParam => "function parameter",
385         }
386     }
387 }
388
389 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
390 enum PathSource<'a> {
391     // Type paths `Path`.
392     Type,
393     // Trait paths in bounds or impls.
394     Trait,
395     // Expression paths `path`, with optional parent context.
396     Expr(Option<&'a Expr>),
397     // Paths in path patterns `Path`.
398     Pat,
399     // Paths in struct expressions and patterns `Path { .. }`.
400     Struct,
401     // Paths in tuple struct patterns `Path(..)`.
402     TupleStruct,
403     // `m::A::B` in `<T as m::A>::B::C`.
404     TraitItem(Namespace),
405     // Path in `pub(path)`
406     Visibility,
407     // Path in `use a::b::{...};`
408     ImportPrefix,
409 }
410
411 impl<'a> PathSource<'a> {
412     fn namespace(self) -> Namespace {
413         match self {
414             PathSource::Type | PathSource::Trait | PathSource::Struct |
415             PathSource::Visibility | PathSource::ImportPrefix => TypeNS,
416             PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct => ValueNS,
417             PathSource::TraitItem(ns) => ns,
418         }
419     }
420
421     fn global_by_default(self) -> bool {
422         match self {
423             PathSource::Visibility | PathSource::ImportPrefix => true,
424             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
425             PathSource::Struct | PathSource::TupleStruct |
426             PathSource::Trait | PathSource::TraitItem(..) => false,
427         }
428     }
429
430     fn defer_to_typeck(self) -> bool {
431         match self {
432             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
433             PathSource::Struct | PathSource::TupleStruct => true,
434             PathSource::Trait | PathSource::TraitItem(..) |
435             PathSource::Visibility | PathSource::ImportPrefix => false,
436         }
437     }
438
439     fn descr_expected(self) -> &'static str {
440         match self {
441             PathSource::Type => "type",
442             PathSource::Trait => "trait",
443             PathSource::Pat => "unit struct/variant or constant",
444             PathSource::Struct => "struct, variant or union type",
445             PathSource::TupleStruct => "tuple struct/variant",
446             PathSource::Visibility => "module",
447             PathSource::ImportPrefix => "module or enum",
448             PathSource::TraitItem(ns) => match ns {
449                 TypeNS => "associated type",
450                 ValueNS => "method or associated constant",
451                 MacroNS => bug!("associated macro"),
452             },
453             PathSource::Expr(parent) => match parent.map(|p| &p.node) {
454                 // "function" here means "anything callable" rather than `Def::Fn`,
455                 // this is not precise but usually more helpful than just "value".
456                 Some(&ExprKind::Call(..)) => "function",
457                 _ => "value",
458             },
459         }
460     }
461
462     fn is_expected(self, def: Def) -> bool {
463         match self {
464             PathSource::Type => match def {
465                 Def::Struct(..) | Def::Union(..) | Def::Enum(..) |
466                 Def::Trait(..) | Def::TyAlias(..) | Def::AssociatedTy(..) |
467                 Def::PrimTy(..) | Def::TyParam(..) | Def::SelfTy(..) => true,
468                 _ => false,
469             },
470             PathSource::Trait => match def {
471                 Def::Trait(..) => true,
472                 _ => false,
473             },
474             PathSource::Expr(..) => match def {
475                 Def::StructCtor(_, CtorKind::Const) | Def::StructCtor(_, CtorKind::Fn) |
476                 Def::VariantCtor(_, CtorKind::Const) | Def::VariantCtor(_, CtorKind::Fn) |
477                 Def::Const(..) | Def::Static(..) | Def::Local(..) | Def::Upvar(..) |
478                 Def::Fn(..) | Def::Method(..) | Def::AssociatedConst(..) => true,
479                 _ => false,
480             },
481             PathSource::Pat => match def {
482                 Def::StructCtor(_, CtorKind::Const) |
483                 Def::VariantCtor(_, CtorKind::Const) |
484                 Def::Const(..) | Def::AssociatedConst(..) => true,
485                 _ => false,
486             },
487             PathSource::TupleStruct => match def {
488                 Def::StructCtor(_, CtorKind::Fn) | Def::VariantCtor(_, CtorKind::Fn) => true,
489                 _ => false,
490             },
491             PathSource::Struct => match def {
492                 Def::Struct(..) | Def::Union(..) | Def::Variant(..) |
493                 Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => true,
494                 _ => false,
495             },
496             PathSource::TraitItem(ns) => match def {
497                 Def::AssociatedConst(..) | Def::Method(..) if ns == ValueNS => true,
498                 Def::AssociatedTy(..) if ns == TypeNS => true,
499                 _ => false,
500             },
501             PathSource::ImportPrefix => match def {
502                 Def::Mod(..) | Def::Enum(..) => true,
503                 _ => false,
504             },
505             PathSource::Visibility => match def {
506                 Def::Mod(..) => true,
507                 _ => false,
508             },
509         }
510     }
511
512     fn error_code(self, has_unexpected_resolution: bool) -> &'static str {
513         __diagnostic_used!(E0404);
514         __diagnostic_used!(E0405);
515         __diagnostic_used!(E0412);
516         __diagnostic_used!(E0422);
517         __diagnostic_used!(E0423);
518         __diagnostic_used!(E0425);
519         __diagnostic_used!(E0531);
520         __diagnostic_used!(E0532);
521         __diagnostic_used!(E0573);
522         __diagnostic_used!(E0574);
523         __diagnostic_used!(E0575);
524         __diagnostic_used!(E0576);
525         __diagnostic_used!(E0577);
526         __diagnostic_used!(E0578);
527         match (self, has_unexpected_resolution) {
528             (PathSource::Trait, true) => "E0404",
529             (PathSource::Trait, false) => "E0405",
530             (PathSource::Type, true) => "E0573",
531             (PathSource::Type, false) => "E0412",
532             (PathSource::Struct, true) => "E0574",
533             (PathSource::Struct, false) => "E0422",
534             (PathSource::Expr(..), true) => "E0423",
535             (PathSource::Expr(..), false) => "E0425",
536             (PathSource::Pat, true) | (PathSource::TupleStruct, true) => "E0532",
537             (PathSource::Pat, false) | (PathSource::TupleStruct, false) => "E0531",
538             (PathSource::TraitItem(..), true) => "E0575",
539             (PathSource::TraitItem(..), false) => "E0576",
540             (PathSource::Visibility, true) | (PathSource::ImportPrefix, true) => "E0577",
541             (PathSource::Visibility, false) | (PathSource::ImportPrefix, false) => "E0578",
542         }
543     }
544 }
545
546 #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
547 pub enum Namespace {
548     TypeNS,
549     ValueNS,
550     MacroNS,
551 }
552
553 #[derive(Clone, Default, Debug)]
554 pub struct PerNS<T> {
555     value_ns: T,
556     type_ns: T,
557     macro_ns: Option<T>,
558 }
559
560 impl<T> ::std::ops::Index<Namespace> for PerNS<T> {
561     type Output = T;
562     fn index(&self, ns: Namespace) -> &T {
563         match ns {
564             ValueNS => &self.value_ns,
565             TypeNS => &self.type_ns,
566             MacroNS => self.macro_ns.as_ref().unwrap(),
567         }
568     }
569 }
570
571 impl<T> ::std::ops::IndexMut<Namespace> for PerNS<T> {
572     fn index_mut(&mut self, ns: Namespace) -> &mut T {
573         match ns {
574             ValueNS => &mut self.value_ns,
575             TypeNS => &mut self.type_ns,
576             MacroNS => self.macro_ns.as_mut().unwrap(),
577         }
578     }
579 }
580
581 struct UsePlacementFinder {
582     target_module: NodeId,
583     span: Option<Span>,
584     found_use: bool,
585 }
586
587 impl<'tcx> Visitor<'tcx> for UsePlacementFinder {
588     fn visit_mod(
589         &mut self,
590         module: &'tcx ast::Mod,
591         _: Span,
592         _: &[ast::Attribute],
593         node_id: NodeId,
594     ) {
595         if self.span.is_some() {
596             return;
597         }
598         if node_id != self.target_module {
599             visit::walk_mod(self, module);
600             return;
601         }
602         // find a use statement
603         for item in &module.items {
604             match item.node {
605                 ItemKind::Use(..) => {
606                     // don't suggest placing a use before the prelude
607                     // import or other generated ones
608                     if item.span == DUMMY_SP {
609                         let mut span = item.span;
610                         span.hi = span.lo;
611                         self.span = Some(span);
612                         self.found_use = true;
613                         return;
614                     }
615                 },
616                 // don't place use before extern crate
617                 ItemKind::ExternCrate(_) => {}
618                 // but place them before the first other item
619                 _ => if self.span.map_or(true, |span| item.span < span ) {
620                     let mut span = item.span;
621                     span.hi = span.lo;
622                     self.span = Some(span);
623                 },
624             }
625         }
626         assert!(self.span.is_some(), "a file can't have no items and emit suggestions");
627     }
628 }
629
630 impl<'a, 'tcx> Visitor<'tcx> for Resolver<'a> {
631     fn visit_item(&mut self, item: &'tcx Item) {
632         self.resolve_item(item);
633     }
634     fn visit_arm(&mut self, arm: &'tcx Arm) {
635         self.resolve_arm(arm);
636     }
637     fn visit_block(&mut self, block: &'tcx Block) {
638         self.resolve_block(block);
639     }
640     fn visit_expr(&mut self, expr: &'tcx Expr) {
641         self.resolve_expr(expr, None);
642     }
643     fn visit_local(&mut self, local: &'tcx Local) {
644         self.resolve_local(local);
645     }
646     fn visit_ty(&mut self, ty: &'tcx Ty) {
647         match ty.node {
648             TyKind::Path(ref qself, ref path) => {
649                 self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
650             }
651             TyKind::ImplicitSelf => {
652                 let self_ty = keywords::SelfType.ident();
653                 let def = self.resolve_ident_in_lexical_scope(self_ty, TypeNS, true, ty.span)
654                               .map_or(Def::Err, |d| d.def());
655                 self.record_def(ty.id, PathResolution::new(def));
656             }
657             TyKind::Array(ref element, ref length) => {
658                 self.visit_ty(element);
659                 self.with_constant_rib(|this| {
660                     this.visit_expr(length);
661                 });
662                 return;
663             }
664             _ => (),
665         }
666         visit::walk_ty(self, ty);
667     }
668     fn visit_poly_trait_ref(&mut self,
669                             tref: &'tcx ast::PolyTraitRef,
670                             m: &'tcx ast::TraitBoundModifier) {
671         self.smart_resolve_path(tref.trait_ref.ref_id, None,
672                                 &tref.trait_ref.path, PathSource::Trait);
673         visit::walk_poly_trait_ref(self, tref, m);
674     }
675     fn visit_variant(&mut self,
676                      variant: &'tcx ast::Variant,
677                      generics: &'tcx Generics,
678                      item_id: ast::NodeId) {
679         if let Some(ref dis_expr) = variant.node.disr_expr {
680             // resolve the discriminator expr as a constant
681             self.with_constant_rib(|this| {
682                 this.visit_expr(dis_expr);
683             });
684         }
685
686         // `visit::walk_variant` without the discriminant expression.
687         self.visit_variant_data(&variant.node.data,
688                                 variant.node.name,
689                                 generics,
690                                 item_id,
691                                 variant.span);
692     }
693     fn visit_foreign_item(&mut self, foreign_item: &'tcx ForeignItem) {
694         let type_parameters = match foreign_item.node {
695             ForeignItemKind::Fn(_, ref generics) => {
696                 HasTypeParameters(generics, ItemRibKind)
697             }
698             ForeignItemKind::Static(..) => NoTypeParameters,
699         };
700         self.with_type_parameter_rib(type_parameters, |this| {
701             visit::walk_foreign_item(this, foreign_item);
702         });
703     }
704     fn visit_fn(&mut self,
705                 function_kind: FnKind<'tcx>,
706                 declaration: &'tcx FnDecl,
707                 _: Span,
708                 node_id: NodeId) {
709         let rib_kind = match function_kind {
710             FnKind::ItemFn(_, generics, ..) => {
711                 self.visit_generics(generics);
712                 ItemRibKind
713             }
714             FnKind::Method(_, sig, _, _) => {
715                 self.visit_generics(&sig.generics);
716                 MethodRibKind(!sig.decl.has_self())
717             }
718             FnKind::Closure(_) => ClosureRibKind(node_id),
719         };
720
721         // Create a value rib for the function.
722         self.ribs[ValueNS].push(Rib::new(rib_kind));
723
724         // Create a label rib for the function.
725         self.label_ribs.push(Rib::new(rib_kind));
726
727         // Add each argument to the rib.
728         let mut bindings_list = FxHashMap();
729         for argument in &declaration.inputs {
730             self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
731
732             self.visit_ty(&argument.ty);
733
734             debug!("(resolving function) recorded argument");
735         }
736         visit::walk_fn_ret_ty(self, &declaration.output);
737
738         // Resolve the function body.
739         match function_kind {
740             FnKind::ItemFn(.., body) |
741             FnKind::Method(.., body) => {
742                 self.visit_block(body);
743             }
744             FnKind::Closure(body) => {
745                 self.visit_expr(body);
746             }
747         };
748
749         debug!("(resolving function) leaving function");
750
751         self.label_ribs.pop();
752         self.ribs[ValueNS].pop();
753     }
754     fn visit_generics(&mut self, generics: &'tcx Generics) {
755         // For type parameter defaults, we have to ban access
756         // to following type parameters, as the Substs can only
757         // provide previous type parameters as they're built.
758         let mut default_ban_rib = Rib::new(ForwardTyParamBanRibKind);
759         default_ban_rib.bindings.extend(generics.ty_params.iter()
760             .skip_while(|p| p.default.is_none())
761             .map(|p| (Ident::with_empty_ctxt(p.ident.name), Def::Err)));
762
763         for param in &generics.ty_params {
764             for bound in &param.bounds {
765                 self.visit_ty_param_bound(bound);
766             }
767
768             if let Some(ref ty) = param.default {
769                 self.ribs[TypeNS].push(default_ban_rib);
770                 self.visit_ty(ty);
771                 default_ban_rib = self.ribs[TypeNS].pop().unwrap();
772             }
773
774             // Allow all following defaults to refer to this type parameter.
775             default_ban_rib.bindings.remove(&Ident::with_empty_ctxt(param.ident.name));
776         }
777         for lt in &generics.lifetimes { self.visit_lifetime_def(lt); }
778         for p in &generics.where_clause.predicates { self.visit_where_predicate(p); }
779     }
780 }
781
782 #[derive(Copy, Clone)]
783 enum TypeParameters<'a, 'b> {
784     NoTypeParameters,
785     HasTypeParameters(// Type parameters.
786                       &'b Generics,
787
788                       // The kind of the rib used for type parameters.
789                       RibKind<'a>),
790 }
791
792 // The rib kind controls the translation of local
793 // definitions (`Def::Local`) to upvars (`Def::Upvar`).
794 #[derive(Copy, Clone, Debug)]
795 enum RibKind<'a> {
796     // No translation needs to be applied.
797     NormalRibKind,
798
799     // We passed through a closure scope at the given node ID.
800     // Translate upvars as appropriate.
801     ClosureRibKind(NodeId /* func id */),
802
803     // We passed through an impl or trait and are now in one of its
804     // methods. Allow references to ty params that impl or trait
805     // binds. Disallow any other upvars (including other ty params that are
806     // upvars).
807     //
808     // The boolean value represents the fact that this method is static or not.
809     MethodRibKind(bool),
810
811     // We passed through an item scope. Disallow upvars.
812     ItemRibKind,
813
814     // We're in a constant item. Can't refer to dynamic stuff.
815     ConstantItemRibKind,
816
817     // We passed through a module.
818     ModuleRibKind(Module<'a>),
819
820     // We passed through a `macro_rules!` statement
821     MacroDefinition(DefId),
822
823     // All bindings in this rib are type parameters that can't be used
824     // from the default of a type parameter because they're not declared
825     // before said type parameter. Also see the `visit_generics` override.
826     ForwardTyParamBanRibKind,
827 }
828
829 /// One local scope.
830 #[derive(Debug)]
831 struct Rib<'a> {
832     bindings: FxHashMap<Ident, Def>,
833     kind: RibKind<'a>,
834 }
835
836 impl<'a> Rib<'a> {
837     fn new(kind: RibKind<'a>) -> Rib<'a> {
838         Rib {
839             bindings: FxHashMap(),
840             kind,
841         }
842     }
843 }
844
845 enum LexicalScopeBinding<'a> {
846     Item(&'a NameBinding<'a>),
847     Def(Def),
848 }
849
850 impl<'a> LexicalScopeBinding<'a> {
851     fn item(self) -> Option<&'a NameBinding<'a>> {
852         match self {
853             LexicalScopeBinding::Item(binding) => Some(binding),
854             _ => None,
855         }
856     }
857
858     fn def(self) -> Def {
859         match self {
860             LexicalScopeBinding::Item(binding) => binding.def(),
861             LexicalScopeBinding::Def(def) => def,
862         }
863     }
864 }
865
866 #[derive(Clone)]
867 enum PathResult<'a> {
868     Module(Module<'a>),
869     NonModule(PathResolution),
870     Indeterminate,
871     Failed(Span, String, bool /* is the error from the last segment? */),
872 }
873
874 enum ModuleKind {
875     Block(NodeId),
876     Def(Def, Name),
877 }
878
879 /// One node in the tree of modules.
880 pub struct ModuleData<'a> {
881     parent: Option<Module<'a>>,
882     kind: ModuleKind,
883
884     // The def id of the closest normal module (`mod`) ancestor (including this module).
885     normal_ancestor_id: DefId,
886
887     resolutions: RefCell<FxHashMap<(Ident, Namespace), &'a RefCell<NameResolution<'a>>>>,
888     legacy_macro_resolutions: RefCell<Vec<(Mark, Ident, Span, MacroKind)>>,
889     macro_resolutions: RefCell<Vec<(Box<[Ident]>, Span)>>,
890
891     // Macro invocations that can expand into items in this module.
892     unresolved_invocations: RefCell<FxHashSet<Mark>>,
893
894     no_implicit_prelude: bool,
895
896     glob_importers: RefCell<Vec<&'a ImportDirective<'a>>>,
897     globs: RefCell<Vec<&'a ImportDirective<'a>>>,
898
899     // Used to memoize the traits in this module for faster searches through all traits in scope.
900     traits: RefCell<Option<Box<[(Ident, &'a NameBinding<'a>)]>>>,
901
902     // Whether this module is populated. If not populated, any attempt to
903     // access the children must be preceded with a
904     // `populate_module_if_necessary` call.
905     populated: Cell<bool>,
906
907     /// Span of the module itself. Used for error reporting.
908     span: Span,
909
910     expansion: Mark,
911 }
912
913 type Module<'a> = &'a ModuleData<'a>;
914
915 impl<'a> ModuleData<'a> {
916     fn new(parent: Option<Module<'a>>,
917            kind: ModuleKind,
918            normal_ancestor_id: DefId,
919            expansion: Mark,
920            span: Span) -> Self {
921         ModuleData {
922             parent,
923             kind,
924             normal_ancestor_id,
925             resolutions: RefCell::new(FxHashMap()),
926             legacy_macro_resolutions: RefCell::new(Vec::new()),
927             macro_resolutions: RefCell::new(Vec::new()),
928             unresolved_invocations: RefCell::new(FxHashSet()),
929             no_implicit_prelude: false,
930             glob_importers: RefCell::new(Vec::new()),
931             globs: RefCell::new((Vec::new())),
932             traits: RefCell::new(None),
933             populated: Cell::new(normal_ancestor_id.is_local()),
934             span,
935             expansion,
936         }
937     }
938
939     fn for_each_child<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
940         for (&(ident, ns), name_resolution) in self.resolutions.borrow().iter() {
941             name_resolution.borrow().binding.map(|binding| f(ident, ns, binding));
942         }
943     }
944
945     fn for_each_child_stable<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
946         let resolutions = self.resolutions.borrow();
947         let mut resolutions = resolutions.iter().map(|(&(ident, ns), &resolution)| {
948                                                     // Pre-compute keys for sorting
949                                                     (ident.name.as_str(), ns, ident, resolution)
950                                                 })
951                                                 .collect::<Vec<_>>();
952         resolutions.sort_unstable_by_key(|&(str, ns, ..)| (str, ns));
953         for &(_, ns, ident, resolution) in resolutions.iter() {
954             resolution.borrow().binding.map(|binding| f(ident, ns, binding));
955         }
956     }
957
958     fn def(&self) -> Option<Def> {
959         match self.kind {
960             ModuleKind::Def(def, _) => Some(def),
961             _ => None,
962         }
963     }
964
965     fn def_id(&self) -> Option<DefId> {
966         self.def().as_ref().map(Def::def_id)
967     }
968
969     // `self` resolves to the first module ancestor that `is_normal`.
970     fn is_normal(&self) -> bool {
971         match self.kind {
972             ModuleKind::Def(Def::Mod(_), _) => true,
973             _ => false,
974         }
975     }
976
977     fn is_trait(&self) -> bool {
978         match self.kind {
979             ModuleKind::Def(Def::Trait(_), _) => true,
980             _ => false,
981         }
982     }
983
984     fn is_local(&self) -> bool {
985         self.normal_ancestor_id.is_local()
986     }
987
988     fn nearest_item_scope(&'a self) -> Module<'a> {
989         if self.is_trait() { self.parent.unwrap() } else { self }
990     }
991 }
992
993 impl<'a> fmt::Debug for ModuleData<'a> {
994     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
995         write!(f, "{:?}", self.def())
996     }
997 }
998
999 // Records a possibly-private value, type, or module definition.
1000 #[derive(Clone, Debug)]
1001 pub struct NameBinding<'a> {
1002     kind: NameBindingKind<'a>,
1003     expansion: Mark,
1004     span: Span,
1005     vis: ty::Visibility,
1006 }
1007
1008 pub trait ToNameBinding<'a> {
1009     fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a>;
1010 }
1011
1012 impl<'a> ToNameBinding<'a> for &'a NameBinding<'a> {
1013     fn to_name_binding(self, _: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> {
1014         self
1015     }
1016 }
1017
1018 #[derive(Clone, Debug)]
1019 enum NameBindingKind<'a> {
1020     Def(Def),
1021     Module(Module<'a>),
1022     Import {
1023         binding: &'a NameBinding<'a>,
1024         directive: &'a ImportDirective<'a>,
1025         used: Cell<bool>,
1026         legacy_self_import: bool,
1027     },
1028     Ambiguity {
1029         b1: &'a NameBinding<'a>,
1030         b2: &'a NameBinding<'a>,
1031         legacy: bool,
1032     }
1033 }
1034
1035 struct PrivacyError<'a>(Span, Name, &'a NameBinding<'a>);
1036
1037 struct UseError<'a> {
1038     err: DiagnosticBuilder<'a>,
1039     /// Attach `use` statements for these candidates
1040     candidates: Vec<ImportSuggestion>,
1041     /// The node id of the module to place the use statements in
1042     node_id: NodeId,
1043     /// Whether the diagnostic should state that it's "better"
1044     better: bool,
1045 }
1046
1047 struct AmbiguityError<'a> {
1048     span: Span,
1049     name: Name,
1050     lexical: bool,
1051     b1: &'a NameBinding<'a>,
1052     b2: &'a NameBinding<'a>,
1053     legacy: bool,
1054 }
1055
1056 impl<'a> NameBinding<'a> {
1057     fn module(&self) -> Option<Module<'a>> {
1058         match self.kind {
1059             NameBindingKind::Module(module) => Some(module),
1060             NameBindingKind::Import { binding, .. } => binding.module(),
1061             NameBindingKind::Ambiguity { legacy: true, b1, .. } => b1.module(),
1062             _ => None,
1063         }
1064     }
1065
1066     fn def(&self) -> Def {
1067         match self.kind {
1068             NameBindingKind::Def(def) => def,
1069             NameBindingKind::Module(module) => module.def().unwrap(),
1070             NameBindingKind::Import { binding, .. } => binding.def(),
1071             NameBindingKind::Ambiguity { legacy: true, b1, .. } => b1.def(),
1072             NameBindingKind::Ambiguity { .. } => Def::Err,
1073         }
1074     }
1075
1076     fn def_ignoring_ambiguity(&self) -> Def {
1077         match self.kind {
1078             NameBindingKind::Import { binding, .. } => binding.def_ignoring_ambiguity(),
1079             NameBindingKind::Ambiguity { b1, .. } => b1.def_ignoring_ambiguity(),
1080             _ => self.def(),
1081         }
1082     }
1083
1084     fn get_macro(&self, resolver: &mut Resolver<'a>) -> Rc<SyntaxExtension> {
1085         resolver.get_macro(self.def_ignoring_ambiguity())
1086     }
1087
1088     // We sometimes need to treat variants as `pub` for backwards compatibility
1089     fn pseudo_vis(&self) -> ty::Visibility {
1090         if self.is_variant() { ty::Visibility::Public } else { self.vis }
1091     }
1092
1093     fn is_variant(&self) -> bool {
1094         match self.kind {
1095             NameBindingKind::Def(Def::Variant(..)) |
1096             NameBindingKind::Def(Def::VariantCtor(..)) => true,
1097             _ => false,
1098         }
1099     }
1100
1101     fn is_extern_crate(&self) -> bool {
1102         match self.kind {
1103             NameBindingKind::Import {
1104                 directive: &ImportDirective {
1105                     subclass: ImportDirectiveSubclass::ExternCrate, ..
1106                 }, ..
1107             } => true,
1108             _ => false,
1109         }
1110     }
1111
1112     fn is_import(&self) -> bool {
1113         match self.kind {
1114             NameBindingKind::Import { .. } => true,
1115             _ => false,
1116         }
1117     }
1118
1119     fn is_glob_import(&self) -> bool {
1120         match self.kind {
1121             NameBindingKind::Import { directive, .. } => directive.is_glob(),
1122             NameBindingKind::Ambiguity { b1, .. } => b1.is_glob_import(),
1123             _ => false,
1124         }
1125     }
1126
1127     fn is_importable(&self) -> bool {
1128         match self.def() {
1129             Def::AssociatedConst(..) | Def::Method(..) | Def::AssociatedTy(..) => false,
1130             _ => true,
1131         }
1132     }
1133
1134     fn is_macro_def(&self) -> bool {
1135         match self.kind {
1136             NameBindingKind::Def(Def::Macro(..)) => true,
1137             _ => false,
1138         }
1139     }
1140
1141     fn descr(&self) -> &'static str {
1142         if self.is_extern_crate() { "extern crate" } else { self.def().kind_name() }
1143     }
1144 }
1145
1146 /// Interns the names of the primitive types.
1147 struct PrimitiveTypeTable {
1148     primitive_types: FxHashMap<Name, PrimTy>,
1149 }
1150
1151 impl PrimitiveTypeTable {
1152     fn new() -> PrimitiveTypeTable {
1153         let mut table = PrimitiveTypeTable { primitive_types: FxHashMap() };
1154
1155         table.intern("bool", TyBool);
1156         table.intern("char", TyChar);
1157         table.intern("f32", TyFloat(FloatTy::F32));
1158         table.intern("f64", TyFloat(FloatTy::F64));
1159         table.intern("isize", TyInt(IntTy::Is));
1160         table.intern("i8", TyInt(IntTy::I8));
1161         table.intern("i16", TyInt(IntTy::I16));
1162         table.intern("i32", TyInt(IntTy::I32));
1163         table.intern("i64", TyInt(IntTy::I64));
1164         table.intern("i128", TyInt(IntTy::I128));
1165         table.intern("str", TyStr);
1166         table.intern("usize", TyUint(UintTy::Us));
1167         table.intern("u8", TyUint(UintTy::U8));
1168         table.intern("u16", TyUint(UintTy::U16));
1169         table.intern("u32", TyUint(UintTy::U32));
1170         table.intern("u64", TyUint(UintTy::U64));
1171         table.intern("u128", TyUint(UintTy::U128));
1172         table
1173     }
1174
1175     fn intern(&mut self, string: &str, primitive_type: PrimTy) {
1176         self.primitive_types.insert(Symbol::intern(string), primitive_type);
1177     }
1178 }
1179
1180 /// The main resolver class.
1181 pub struct Resolver<'a> {
1182     session: &'a Session,
1183
1184     pub definitions: Definitions,
1185
1186     graph_root: Module<'a>,
1187
1188     prelude: Option<Module<'a>>,
1189
1190     // n.b. This is used only for better diagnostics, not name resolution itself.
1191     has_self: FxHashSet<DefId>,
1192
1193     // Names of fields of an item `DefId` accessible with dot syntax.
1194     // Used for hints during error reporting.
1195     field_names: FxHashMap<DefId, Vec<Name>>,
1196
1197     // All imports known to succeed or fail.
1198     determined_imports: Vec<&'a ImportDirective<'a>>,
1199
1200     // All non-determined imports.
1201     indeterminate_imports: Vec<&'a ImportDirective<'a>>,
1202
1203     // The module that represents the current item scope.
1204     current_module: Module<'a>,
1205
1206     // The current set of local scopes for types and values.
1207     // FIXME #4948: Reuse ribs to avoid allocation.
1208     ribs: PerNS<Vec<Rib<'a>>>,
1209
1210     // The current set of local scopes, for labels.
1211     label_ribs: Vec<Rib<'a>>,
1212
1213     // The trait that the current context can refer to.
1214     current_trait_ref: Option<(Module<'a>, TraitRef)>,
1215
1216     // The current self type if inside an impl (used for better errors).
1217     current_self_type: Option<Ty>,
1218
1219     // The idents for the primitive types.
1220     primitive_type_table: PrimitiveTypeTable,
1221
1222     def_map: DefMap,
1223     pub freevars: FreevarMap,
1224     freevars_seen: NodeMap<NodeMap<usize>>,
1225     pub export_map: ExportMap,
1226     pub trait_map: TraitMap,
1227
1228     // A map from nodes to anonymous modules.
1229     // Anonymous modules are pseudo-modules that are implicitly created around items
1230     // contained within blocks.
1231     //
1232     // For example, if we have this:
1233     //
1234     //  fn f() {
1235     //      fn g() {
1236     //          ...
1237     //      }
1238     //  }
1239     //
1240     // There will be an anonymous module created around `g` with the ID of the
1241     // entry block for `f`.
1242     block_map: NodeMap<Module<'a>>,
1243     module_map: FxHashMap<DefId, Module<'a>>,
1244     extern_module_map: FxHashMap<(DefId, bool /* MacrosOnly? */), Module<'a>>,
1245
1246     pub make_glob_map: bool,
1247     /// Maps imports to the names of items actually imported (this actually maps
1248     /// all imports, but only glob imports are actually interesting).
1249     pub glob_map: GlobMap,
1250
1251     used_imports: FxHashSet<(NodeId, Namespace)>,
1252     pub maybe_unused_trait_imports: NodeSet,
1253
1254     /// privacy errors are delayed until the end in order to deduplicate them
1255     privacy_errors: Vec<PrivacyError<'a>>,
1256     /// ambiguity errors are delayed for deduplication
1257     ambiguity_errors: Vec<AmbiguityError<'a>>,
1258     /// `use` injections are delayed for better placement and deduplication
1259     use_injections: Vec<UseError<'a>>,
1260
1261     gated_errors: FxHashSet<Span>,
1262     disallowed_shadowing: Vec<&'a LegacyBinding<'a>>,
1263
1264     arenas: &'a ResolverArenas<'a>,
1265     dummy_binding: &'a NameBinding<'a>,
1266     use_extern_macros: bool, // true if `#![feature(use_extern_macros)]`
1267
1268     crate_loader: &'a mut CrateLoader,
1269     macro_names: FxHashSet<Ident>,
1270     global_macros: FxHashMap<Name, &'a NameBinding<'a>>,
1271     lexical_macro_resolutions: Vec<(Ident, &'a Cell<LegacyScope<'a>>)>,
1272     macro_map: FxHashMap<DefId, Rc<SyntaxExtension>>,
1273     macro_defs: FxHashMap<Mark, DefId>,
1274     local_macro_def_scopes: FxHashMap<NodeId, Module<'a>>,
1275     macro_exports: Vec<Export>,
1276     pub whitelisted_legacy_custom_derives: Vec<Name>,
1277     pub found_unresolved_macro: bool,
1278
1279     // List of crate local macros that we need to warn about as being unused.
1280     // Right now this only includes macro_rules! macros, and macros 2.0.
1281     unused_macros: FxHashSet<DefId>,
1282
1283     // Maps the `Mark` of an expansion to its containing module or block.
1284     invocations: FxHashMap<Mark, &'a InvocationData<'a>>,
1285
1286     // Avoid duplicated errors for "name already defined".
1287     name_already_seen: FxHashMap<Name, Span>,
1288
1289     // If `#![feature(proc_macro)]` is set
1290     proc_macro_enabled: bool,
1291
1292     // A set of procedural macros imported by `#[macro_use]` that have already been warned about
1293     warned_proc_macros: FxHashSet<Name>,
1294
1295     potentially_unused_imports: Vec<&'a ImportDirective<'a>>,
1296
1297     // This table maps struct IDs into struct constructor IDs,
1298     // it's not used during normal resolution, only for better error reporting.
1299     struct_constructors: DefIdMap<(Def, ty::Visibility)>,
1300
1301     // Only used for better errors on `fn(): fn()`
1302     current_type_ascription: Vec<Span>,
1303 }
1304
1305 pub struct ResolverArenas<'a> {
1306     modules: arena::TypedArena<ModuleData<'a>>,
1307     local_modules: RefCell<Vec<Module<'a>>>,
1308     name_bindings: arena::TypedArena<NameBinding<'a>>,
1309     import_directives: arena::TypedArena<ImportDirective<'a>>,
1310     name_resolutions: arena::TypedArena<RefCell<NameResolution<'a>>>,
1311     invocation_data: arena::TypedArena<InvocationData<'a>>,
1312     legacy_bindings: arena::TypedArena<LegacyBinding<'a>>,
1313 }
1314
1315 impl<'a> ResolverArenas<'a> {
1316     fn alloc_module(&'a self, module: ModuleData<'a>) -> Module<'a> {
1317         let module = self.modules.alloc(module);
1318         if module.def_id().map(|def_id| def_id.is_local()).unwrap_or(true) {
1319             self.local_modules.borrow_mut().push(module);
1320         }
1321         module
1322     }
1323     fn local_modules(&'a self) -> ::std::cell::Ref<'a, Vec<Module<'a>>> {
1324         self.local_modules.borrow()
1325     }
1326     fn alloc_name_binding(&'a self, name_binding: NameBinding<'a>) -> &'a NameBinding<'a> {
1327         self.name_bindings.alloc(name_binding)
1328     }
1329     fn alloc_import_directive(&'a self, import_directive: ImportDirective<'a>)
1330                               -> &'a ImportDirective {
1331         self.import_directives.alloc(import_directive)
1332     }
1333     fn alloc_name_resolution(&'a self) -> &'a RefCell<NameResolution<'a>> {
1334         self.name_resolutions.alloc(Default::default())
1335     }
1336     fn alloc_invocation_data(&'a self, expansion_data: InvocationData<'a>)
1337                              -> &'a InvocationData<'a> {
1338         self.invocation_data.alloc(expansion_data)
1339     }
1340     fn alloc_legacy_binding(&'a self, binding: LegacyBinding<'a>) -> &'a LegacyBinding<'a> {
1341         self.legacy_bindings.alloc(binding)
1342     }
1343 }
1344
1345 impl<'a, 'b: 'a> ty::DefIdTree for &'a Resolver<'b> {
1346     fn parent(self, id: DefId) -> Option<DefId> {
1347         match id.krate {
1348             LOCAL_CRATE => self.definitions.def_key(id.index).parent,
1349             _ => self.session.cstore.def_key(id).parent,
1350         }.map(|index| DefId { index: index, ..id })
1351     }
1352 }
1353
1354 impl<'a> hir::lowering::Resolver for Resolver<'a> {
1355     fn resolve_hir_path(&mut self, path: &mut hir::Path, is_value: bool) {
1356         let namespace = if is_value { ValueNS } else { TypeNS };
1357         let hir::Path { ref segments, span, ref mut def } = *path;
1358         let path: Vec<SpannedIdent> = segments.iter()
1359             .map(|seg| respan(span, Ident::with_empty_ctxt(seg.name)))
1360             .collect();
1361         match self.resolve_path(&path, Some(namespace), true, span) {
1362             PathResult::Module(module) => *def = module.def().unwrap(),
1363             PathResult::NonModule(path_res) if path_res.unresolved_segments() == 0 =>
1364                 *def = path_res.base_def(),
1365             PathResult::NonModule(..) => match self.resolve_path(&path, None, true, span) {
1366                 PathResult::Failed(span, msg, _) => {
1367                     resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
1368                 }
1369                 _ => {}
1370             },
1371             PathResult::Indeterminate => unreachable!(),
1372             PathResult::Failed(span, msg, _) => {
1373                 resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
1374             }
1375         }
1376     }
1377
1378     fn get_resolution(&mut self, id: NodeId) -> Option<PathResolution> {
1379         self.def_map.get(&id).cloned()
1380     }
1381
1382     fn definitions(&mut self) -> &mut Definitions {
1383         &mut self.definitions
1384     }
1385 }
1386
1387 impl<'a> Resolver<'a> {
1388     pub fn new(session: &'a Session,
1389                krate: &Crate,
1390                crate_name: &str,
1391                make_glob_map: MakeGlobMap,
1392                crate_loader: &'a mut CrateLoader,
1393                arenas: &'a ResolverArenas<'a>)
1394                -> Resolver<'a> {
1395         let root_def_id = DefId::local(CRATE_DEF_INDEX);
1396         let root_module_kind = ModuleKind::Def(Def::Mod(root_def_id), keywords::Invalid.name());
1397         let graph_root = arenas.alloc_module(ModuleData {
1398             no_implicit_prelude: attr::contains_name(&krate.attrs, "no_implicit_prelude"),
1399             ..ModuleData::new(None, root_module_kind, root_def_id, Mark::root(), krate.span)
1400         });
1401         let mut module_map = FxHashMap();
1402         module_map.insert(DefId::local(CRATE_DEF_INDEX), graph_root);
1403
1404         let mut definitions = Definitions::new();
1405         DefCollector::new(&mut definitions, Mark::root())
1406             .collect_root(crate_name, &session.local_crate_disambiguator().as_str());
1407
1408         let mut invocations = FxHashMap();
1409         invocations.insert(Mark::root(),
1410                            arenas.alloc_invocation_data(InvocationData::root(graph_root)));
1411
1412         let features = session.features.borrow();
1413
1414         let mut macro_defs = FxHashMap();
1415         macro_defs.insert(Mark::root(), root_def_id);
1416
1417         Resolver {
1418             session,
1419
1420             definitions,
1421
1422             // The outermost module has def ID 0; this is not reflected in the
1423             // AST.
1424             graph_root,
1425             prelude: None,
1426
1427             has_self: FxHashSet(),
1428             field_names: FxHashMap(),
1429
1430             determined_imports: Vec::new(),
1431             indeterminate_imports: Vec::new(),
1432
1433             current_module: graph_root,
1434             ribs: PerNS {
1435                 value_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1436                 type_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1437                 macro_ns: Some(vec![Rib::new(ModuleRibKind(graph_root))]),
1438             },
1439             label_ribs: Vec::new(),
1440
1441             current_trait_ref: None,
1442             current_self_type: None,
1443
1444             primitive_type_table: PrimitiveTypeTable::new(),
1445
1446             def_map: NodeMap(),
1447             freevars: NodeMap(),
1448             freevars_seen: NodeMap(),
1449             export_map: NodeMap(),
1450             trait_map: NodeMap(),
1451             module_map,
1452             block_map: NodeMap(),
1453             extern_module_map: FxHashMap(),
1454
1455             make_glob_map: make_glob_map == MakeGlobMap::Yes,
1456             glob_map: NodeMap(),
1457
1458             used_imports: FxHashSet(),
1459             maybe_unused_trait_imports: NodeSet(),
1460
1461             privacy_errors: Vec::new(),
1462             ambiguity_errors: Vec::new(),
1463             use_injections: Vec::new(),
1464             gated_errors: FxHashSet(),
1465             disallowed_shadowing: Vec::new(),
1466
1467             arenas,
1468             dummy_binding: arenas.alloc_name_binding(NameBinding {
1469                 kind: NameBindingKind::Def(Def::Err),
1470                 expansion: Mark::root(),
1471                 span: DUMMY_SP,
1472                 vis: ty::Visibility::Public,
1473             }),
1474
1475             // The `proc_macro` and `decl_macro` features imply `use_extern_macros`
1476             use_extern_macros:
1477                 features.use_extern_macros || features.proc_macro || features.decl_macro,
1478
1479             crate_loader,
1480             macro_names: FxHashSet(),
1481             global_macros: FxHashMap(),
1482             lexical_macro_resolutions: Vec::new(),
1483             macro_map: FxHashMap(),
1484             macro_exports: Vec::new(),
1485             invocations,
1486             macro_defs,
1487             local_macro_def_scopes: FxHashMap(),
1488             name_already_seen: FxHashMap(),
1489             whitelisted_legacy_custom_derives: Vec::new(),
1490             proc_macro_enabled: features.proc_macro,
1491             warned_proc_macros: FxHashSet(),
1492             potentially_unused_imports: Vec::new(),
1493             struct_constructors: DefIdMap(),
1494             found_unresolved_macro: false,
1495             unused_macros: FxHashSet(),
1496             current_type_ascription: Vec::new(),
1497         }
1498     }
1499
1500     pub fn arenas() -> ResolverArenas<'a> {
1501         ResolverArenas {
1502             modules: arena::TypedArena::new(),
1503             local_modules: RefCell::new(Vec::new()),
1504             name_bindings: arena::TypedArena::new(),
1505             import_directives: arena::TypedArena::new(),
1506             name_resolutions: arena::TypedArena::new(),
1507             invocation_data: arena::TypedArena::new(),
1508             legacy_bindings: arena::TypedArena::new(),
1509         }
1510     }
1511
1512     fn per_ns<T, F: FnMut(&mut Self, Namespace) -> T>(&mut self, mut f: F) -> PerNS<T> {
1513         PerNS {
1514             type_ns: f(self, TypeNS),
1515             value_ns: f(self, ValueNS),
1516             macro_ns: match self.use_extern_macros {
1517                 true => Some(f(self, MacroNS)),
1518                 false => None,
1519             },
1520         }
1521     }
1522
1523     /// Entry point to crate resolution.
1524     pub fn resolve_crate(&mut self, krate: &Crate) {
1525         ImportResolver { resolver: self }.finalize_imports();
1526         self.current_module = self.graph_root;
1527         self.finalize_current_module_macro_resolutions();
1528
1529         visit::walk_crate(self, krate);
1530
1531         check_unused::check_crate(self, krate);
1532         self.report_errors(krate);
1533         self.crate_loader.postprocess(krate);
1534     }
1535
1536     fn new_module(
1537         &self,
1538         parent: Module<'a>,
1539         kind: ModuleKind,
1540         normal_ancestor_id: DefId,
1541         expansion: Mark,
1542         span: Span,
1543     ) -> Module<'a> {
1544         let module = ModuleData::new(Some(parent), kind, normal_ancestor_id, expansion, span);
1545         self.arenas.alloc_module(module)
1546     }
1547
1548     fn record_use(&mut self, ident: Ident, ns: Namespace, binding: &'a NameBinding<'a>, span: Span)
1549                   -> bool /* true if an error was reported */ {
1550         match binding.kind {
1551             NameBindingKind::Import { directive, binding, ref used, legacy_self_import }
1552                     if !used.get() => {
1553                 used.set(true);
1554                 directive.used.set(true);
1555                 if legacy_self_import {
1556                     self.warn_legacy_self_import(directive);
1557                     return false;
1558                 }
1559                 self.used_imports.insert((directive.id, ns));
1560                 self.add_to_glob_map(directive.id, ident);
1561                 self.record_use(ident, ns, binding, span)
1562             }
1563             NameBindingKind::Import { .. } => false,
1564             NameBindingKind::Ambiguity { b1, b2, legacy } => {
1565                 self.ambiguity_errors.push(AmbiguityError {
1566                     span: span, name: ident.name, lexical: false, b1: b1, b2: b2, legacy,
1567                 });
1568                 if legacy {
1569                     self.record_use(ident, ns, b1, span);
1570                 }
1571                 !legacy
1572             }
1573             _ => false
1574         }
1575     }
1576
1577     fn add_to_glob_map(&mut self, id: NodeId, ident: Ident) {
1578         if self.make_glob_map {
1579             self.glob_map.entry(id).or_insert_with(FxHashSet).insert(ident.name);
1580         }
1581     }
1582
1583     /// This resolves the identifier `ident` in the namespace `ns` in the current lexical scope.
1584     /// More specifically, we proceed up the hierarchy of scopes and return the binding for
1585     /// `ident` in the first scope that defines it (or None if no scopes define it).
1586     ///
1587     /// A block's items are above its local variables in the scope hierarchy, regardless of where
1588     /// the items are defined in the block. For example,
1589     /// ```rust
1590     /// fn f() {
1591     ///    g(); // Since there are no local variables in scope yet, this resolves to the item.
1592     ///    let g = || {};
1593     ///    fn g() {}
1594     ///    g(); // This resolves to the local variable `g` since it shadows the item.
1595     /// }
1596     /// ```
1597     ///
1598     /// Invariant: This must only be called during main resolution, not during
1599     /// import resolution.
1600     fn resolve_ident_in_lexical_scope(&mut self,
1601                                       mut ident: Ident,
1602                                       ns: Namespace,
1603                                       record_used: bool,
1604                                       path_span: Span)
1605                                       -> Option<LexicalScopeBinding<'a>> {
1606         if ns == TypeNS {
1607             ident.ctxt = if ident.name == keywords::SelfType.name() {
1608                 SyntaxContext::empty() // FIXME(jseyfried) improve `Self` hygiene
1609             } else {
1610                 ident.ctxt.modern()
1611             }
1612         }
1613
1614         // Walk backwards up the ribs in scope.
1615         let mut module = self.graph_root;
1616         for i in (0 .. self.ribs[ns].len()).rev() {
1617             if let Some(def) = self.ribs[ns][i].bindings.get(&ident).cloned() {
1618                 // The ident resolves to a type parameter or local variable.
1619                 return Some(LexicalScopeBinding::Def(
1620                     self.adjust_local_def(ns, i, def, record_used, path_span)
1621                 ));
1622             }
1623
1624             module = match self.ribs[ns][i].kind {
1625                 ModuleRibKind(module) => module,
1626                 MacroDefinition(def) if def == self.macro_defs[&ident.ctxt.outer()] => {
1627                     // If an invocation of this macro created `ident`, give up on `ident`
1628                     // and switch to `ident`'s source from the macro definition.
1629                     ident.ctxt.remove_mark();
1630                     continue
1631                 }
1632                 _ => continue,
1633             };
1634
1635             let item = self.resolve_ident_in_module_unadjusted(
1636                 module, ident, ns, false, record_used, path_span,
1637             );
1638             if let Ok(binding) = item {
1639                 // The ident resolves to an item.
1640                 return Some(LexicalScopeBinding::Item(binding));
1641             }
1642
1643             match module.kind {
1644                 ModuleKind::Block(..) => {}, // We can see through blocks
1645                 _ => break,
1646             }
1647         }
1648
1649         ident.ctxt = ident.ctxt.modern();
1650         loop {
1651             module = unwrap_or!(self.hygienic_lexical_parent(module, &mut ident.ctxt), break);
1652             let orig_current_module = self.current_module;
1653             self.current_module = module; // Lexical resolutions can never be a privacy error.
1654             let result = self.resolve_ident_in_module_unadjusted(
1655                 module, ident, ns, false, record_used, path_span,
1656             );
1657             self.current_module = orig_current_module;
1658
1659             match result {
1660                 Ok(binding) => return Some(LexicalScopeBinding::Item(binding)),
1661                 Err(Undetermined) => return None,
1662                 Err(Determined) => {}
1663             }
1664         }
1665
1666         match self.prelude {
1667             Some(prelude) if !module.no_implicit_prelude => {
1668                 self.resolve_ident_in_module_unadjusted(prelude, ident, ns, false, false, path_span)
1669                     .ok().map(LexicalScopeBinding::Item)
1670             }
1671             _ => None,
1672         }
1673     }
1674
1675     fn hygienic_lexical_parent(&mut self, mut module: Module<'a>, ctxt: &mut SyntaxContext)
1676                                -> Option<Module<'a>> {
1677         if !module.expansion.is_descendant_of(ctxt.outer()) {
1678             return Some(self.macro_def_scope(ctxt.remove_mark()));
1679         }
1680
1681         if let ModuleKind::Block(..) = module.kind {
1682             return Some(module.parent.unwrap());
1683         }
1684
1685         let mut module_expansion = module.expansion.modern(); // for backward compatibility
1686         while let Some(parent) = module.parent {
1687             let parent_expansion = parent.expansion.modern();
1688             if module_expansion.is_descendant_of(parent_expansion) &&
1689                parent_expansion != module_expansion {
1690                 return if parent_expansion.is_descendant_of(ctxt.outer()) {
1691                     Some(parent)
1692                 } else {
1693                     None
1694                 };
1695             }
1696             module = parent;
1697             module_expansion = parent_expansion;
1698         }
1699
1700         None
1701     }
1702
1703     fn resolve_ident_in_module(&mut self,
1704                                module: Module<'a>,
1705                                mut ident: Ident,
1706                                ns: Namespace,
1707                                ignore_unresolved_invocations: bool,
1708                                record_used: bool,
1709                                span: Span)
1710                                -> Result<&'a NameBinding<'a>, Determinacy> {
1711         ident.ctxt = ident.ctxt.modern();
1712         let orig_current_module = self.current_module;
1713         if let Some(def) = ident.ctxt.adjust(module.expansion) {
1714             self.current_module = self.macro_def_scope(def);
1715         }
1716         let result = self.resolve_ident_in_module_unadjusted(
1717             module, ident, ns, ignore_unresolved_invocations, record_used, span,
1718         );
1719         self.current_module = orig_current_module;
1720         result
1721     }
1722
1723     fn resolve_crate_root(&mut self, mut ctxt: SyntaxContext) -> Module<'a> {
1724         let module = match ctxt.adjust(Mark::root()) {
1725             Some(def) => self.macro_def_scope(def),
1726             None => return self.graph_root,
1727         };
1728         self.get_module(DefId { index: CRATE_DEF_INDEX, ..module.normal_ancestor_id })
1729     }
1730
1731     fn resolve_self(&mut self, ctxt: &mut SyntaxContext, module: Module<'a>) -> Module<'a> {
1732         let mut module = self.get_module(module.normal_ancestor_id);
1733         while module.span.ctxt.modern() != *ctxt {
1734             let parent = module.parent.unwrap_or_else(|| self.macro_def_scope(ctxt.remove_mark()));
1735             module = self.get_module(parent.normal_ancestor_id);
1736         }
1737         module
1738     }
1739
1740     // AST resolution
1741     //
1742     // We maintain a list of value ribs and type ribs.
1743     //
1744     // Simultaneously, we keep track of the current position in the module
1745     // graph in the `current_module` pointer. When we go to resolve a name in
1746     // the value or type namespaces, we first look through all the ribs and
1747     // then query the module graph. When we resolve a name in the module
1748     // namespace, we can skip all the ribs (since nested modules are not
1749     // allowed within blocks in Rust) and jump straight to the current module
1750     // graph node.
1751     //
1752     // Named implementations are handled separately. When we find a method
1753     // call, we consult the module node to find all of the implementations in
1754     // scope. This information is lazily cached in the module node. We then
1755     // generate a fake "implementation scope" containing all the
1756     // implementations thus found, for compatibility with old resolve pass.
1757
1758     fn with_scope<F>(&mut self, id: NodeId, f: F)
1759         where F: FnOnce(&mut Resolver)
1760     {
1761         let id = self.definitions.local_def_id(id);
1762         let module = self.module_map.get(&id).cloned(); // clones a reference
1763         if let Some(module) = module {
1764             // Move down in the graph.
1765             let orig_module = replace(&mut self.current_module, module);
1766             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(module)));
1767             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(module)));
1768
1769             self.finalize_current_module_macro_resolutions();
1770             f(self);
1771
1772             self.current_module = orig_module;
1773             self.ribs[ValueNS].pop();
1774             self.ribs[TypeNS].pop();
1775         } else {
1776             f(self);
1777         }
1778     }
1779
1780     /// Searches the current set of local scopes for labels.
1781     /// Stops after meeting a closure.
1782     fn search_label(&self, mut ident: Ident) -> Option<Def> {
1783         for rib in self.label_ribs.iter().rev() {
1784             match rib.kind {
1785                 NormalRibKind => {}
1786                 // If an invocation of this macro created `ident`, give up on `ident`
1787                 // and switch to `ident`'s source from the macro definition.
1788                 MacroDefinition(def) => {
1789                     if def == self.macro_defs[&ident.ctxt.outer()] {
1790                         ident.ctxt.remove_mark();
1791                     }
1792                 }
1793                 _ => {
1794                     // Do not resolve labels across function boundary
1795                     return None;
1796                 }
1797             }
1798             let result = rib.bindings.get(&ident).cloned();
1799             if result.is_some() {
1800                 return result;
1801             }
1802         }
1803         None
1804     }
1805
1806     fn resolve_item(&mut self, item: &Item) {
1807         let name = item.ident.name;
1808
1809         debug!("(resolving item) resolving {}", name);
1810
1811         self.check_proc_macro_attrs(&item.attrs);
1812
1813         match item.node {
1814             ItemKind::Enum(_, ref generics) |
1815             ItemKind::Ty(_, ref generics) |
1816             ItemKind::Struct(_, ref generics) |
1817             ItemKind::Union(_, ref generics) |
1818             ItemKind::Fn(.., ref generics, _) => {
1819                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind),
1820                                              |this| visit::walk_item(this, item));
1821             }
1822
1823             ItemKind::DefaultImpl(_, ref trait_ref) => {
1824                 self.with_optional_trait_ref(Some(trait_ref), |this, _| {
1825                     // Resolve type arguments in trait path
1826                     visit::walk_trait_ref(this, trait_ref);
1827                 });
1828             }
1829             ItemKind::Impl(.., ref generics, ref opt_trait_ref, ref self_type, ref impl_items) =>
1830                 self.resolve_implementation(generics,
1831                                             opt_trait_ref,
1832                                             &self_type,
1833                                             item.id,
1834                                             impl_items),
1835
1836             ItemKind::Trait(_, ref generics, ref bounds, ref trait_items) => {
1837                 // Create a new rib for the trait-wide type parameters.
1838                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
1839                     let local_def_id = this.definitions.local_def_id(item.id);
1840                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
1841                         this.visit_generics(generics);
1842                         walk_list!(this, visit_ty_param_bound, bounds);
1843
1844                         for trait_item in trait_items {
1845                             this.check_proc_macro_attrs(&trait_item.attrs);
1846
1847                             match trait_item.node {
1848                                 TraitItemKind::Const(ref ty, ref default) => {
1849                                     this.visit_ty(ty);
1850
1851                                     // Only impose the restrictions of
1852                                     // ConstRibKind for an actual constant
1853                                     // expression in a provided default.
1854                                     if let Some(ref expr) = *default{
1855                                         this.with_constant_rib(|this| {
1856                                             this.visit_expr(expr);
1857                                         });
1858                                     }
1859                                 }
1860                                 TraitItemKind::Method(ref sig, _) => {
1861                                     let type_parameters =
1862                                         HasTypeParameters(&sig.generics,
1863                                                           MethodRibKind(!sig.decl.has_self()));
1864                                     this.with_type_parameter_rib(type_parameters, |this| {
1865                                         visit::walk_trait_item(this, trait_item)
1866                                     });
1867                                 }
1868                                 TraitItemKind::Type(..) => {
1869                                     this.with_type_parameter_rib(NoTypeParameters, |this| {
1870                                         visit::walk_trait_item(this, trait_item)
1871                                     });
1872                                 }
1873                                 TraitItemKind::Macro(_) => panic!("unexpanded macro in resolve!"),
1874                             };
1875                         }
1876                     });
1877                 });
1878             }
1879
1880             ItemKind::Mod(_) | ItemKind::ForeignMod(_) => {
1881                 self.with_scope(item.id, |this| {
1882                     visit::walk_item(this, item);
1883                 });
1884             }
1885
1886             ItemKind::Static(ref ty, _, ref expr) |
1887             ItemKind::Const(ref ty, ref expr) => {
1888                 self.with_item_rib(|this| {
1889                     this.visit_ty(ty);
1890                     this.with_constant_rib(|this| {
1891                         this.visit_expr(expr);
1892                     });
1893                 });
1894             }
1895
1896             ItemKind::Use(ref view_path) => {
1897                 match view_path.node {
1898                     ast::ViewPathList(ref prefix, ref items) if items.is_empty() => {
1899                         // Resolve prefix of an import with empty braces (issue #28388).
1900                         self.smart_resolve_path(item.id, None, prefix, PathSource::ImportPrefix);
1901                     }
1902                     _ => {}
1903                 }
1904             }
1905
1906             ItemKind::ExternCrate(_) | ItemKind::MacroDef(..) | ItemKind::GlobalAsm(_)=> {
1907                 // do nothing, these are just around to be encoded
1908             }
1909
1910             ItemKind::Mac(_) => panic!("unexpanded macro in resolve!"),
1911         }
1912     }
1913
1914     fn with_type_parameter_rib<'b, F>(&'b mut self, type_parameters: TypeParameters<'a, 'b>, f: F)
1915         where F: FnOnce(&mut Resolver)
1916     {
1917         match type_parameters {
1918             HasTypeParameters(generics, rib_kind) => {
1919                 let mut function_type_rib = Rib::new(rib_kind);
1920                 let mut seen_bindings = FxHashMap();
1921                 for type_parameter in &generics.ty_params {
1922                     let ident = type_parameter.ident.modern();
1923                     debug!("with_type_parameter_rib: {}", type_parameter.id);
1924
1925                     if seen_bindings.contains_key(&ident) {
1926                         let span = seen_bindings.get(&ident).unwrap();
1927                         let err =
1928                             ResolutionError::NameAlreadyUsedInTypeParameterList(ident.name, span);
1929                         resolve_error(self, type_parameter.span, err);
1930                     }
1931                     seen_bindings.entry(ident).or_insert(type_parameter.span);
1932
1933                     // plain insert (no renaming)
1934                     let def_id = self.definitions.local_def_id(type_parameter.id);
1935                     let def = Def::TyParam(def_id);
1936                     function_type_rib.bindings.insert(ident, def);
1937                     self.record_def(type_parameter.id, PathResolution::new(def));
1938                 }
1939                 self.ribs[TypeNS].push(function_type_rib);
1940             }
1941
1942             NoTypeParameters => {
1943                 // Nothing to do.
1944             }
1945         }
1946
1947         f(self);
1948
1949         if let HasTypeParameters(..) = type_parameters {
1950             self.ribs[TypeNS].pop();
1951         }
1952     }
1953
1954     fn with_label_rib<F>(&mut self, f: F)
1955         where F: FnOnce(&mut Resolver)
1956     {
1957         self.label_ribs.push(Rib::new(NormalRibKind));
1958         f(self);
1959         self.label_ribs.pop();
1960     }
1961
1962     fn with_item_rib<F>(&mut self, f: F)
1963         where F: FnOnce(&mut Resolver)
1964     {
1965         self.ribs[ValueNS].push(Rib::new(ItemRibKind));
1966         self.ribs[TypeNS].push(Rib::new(ItemRibKind));
1967         f(self);
1968         self.ribs[TypeNS].pop();
1969         self.ribs[ValueNS].pop();
1970     }
1971
1972     fn with_constant_rib<F>(&mut self, f: F)
1973         where F: FnOnce(&mut Resolver)
1974     {
1975         self.ribs[ValueNS].push(Rib::new(ConstantItemRibKind));
1976         f(self);
1977         self.ribs[ValueNS].pop();
1978     }
1979
1980     fn with_current_self_type<T, F>(&mut self, self_type: &Ty, f: F) -> T
1981         where F: FnOnce(&mut Resolver) -> T
1982     {
1983         // Handle nested impls (inside fn bodies)
1984         let previous_value = replace(&mut self.current_self_type, Some(self_type.clone()));
1985         let result = f(self);
1986         self.current_self_type = previous_value;
1987         result
1988     }
1989
1990     fn with_optional_trait_ref<T, F>(&mut self, opt_trait_ref: Option<&TraitRef>, f: F) -> T
1991         where F: FnOnce(&mut Resolver, Option<DefId>) -> T
1992     {
1993         let mut new_val = None;
1994         let mut new_id = None;
1995         if let Some(trait_ref) = opt_trait_ref {
1996             let path: Vec<_> = trait_ref.path.segments.iter()
1997                 .map(|seg| respan(seg.span, seg.identifier))
1998                 .collect();
1999             let def = self.smart_resolve_path_fragment(trait_ref.ref_id,
2000                                                        None,
2001                                                        &path,
2002                                                        trait_ref.path.span,
2003                                                        trait_ref.path.segments.last().unwrap().span,
2004                                                        PathSource::Trait)
2005                 .base_def();
2006             if def != Def::Err {
2007                 new_id = Some(def.def_id());
2008                 let span = trait_ref.path.span;
2009                 if let PathResult::Module(module) = self.resolve_path(&path, None, false, span) {
2010                     new_val = Some((module, trait_ref.clone()));
2011                 }
2012             }
2013         }
2014         let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
2015         let result = f(self, new_id);
2016         self.current_trait_ref = original_trait_ref;
2017         result
2018     }
2019
2020     fn with_self_rib<F>(&mut self, self_def: Def, f: F)
2021         where F: FnOnce(&mut Resolver)
2022     {
2023         let mut self_type_rib = Rib::new(NormalRibKind);
2024
2025         // plain insert (no renaming, types are not currently hygienic....)
2026         self_type_rib.bindings.insert(keywords::SelfType.ident(), self_def);
2027         self.ribs[TypeNS].push(self_type_rib);
2028         f(self);
2029         self.ribs[TypeNS].pop();
2030     }
2031
2032     fn resolve_implementation(&mut self,
2033                               generics: &Generics,
2034                               opt_trait_reference: &Option<TraitRef>,
2035                               self_type: &Ty,
2036                               item_id: NodeId,
2037                               impl_items: &[ImplItem]) {
2038         // If applicable, create a rib for the type parameters.
2039         self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2040             // Dummy self type for better errors if `Self` is used in the trait path.
2041             this.with_self_rib(Def::SelfTy(None, None), |this| {
2042                 // Resolve the trait reference, if necessary.
2043                 this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| {
2044                     let item_def_id = this.definitions.local_def_id(item_id);
2045                     this.with_self_rib(Def::SelfTy(trait_id, Some(item_def_id)), |this| {
2046                         if let Some(trait_ref) = opt_trait_reference.as_ref() {
2047                             // Resolve type arguments in trait path
2048                             visit::walk_trait_ref(this, trait_ref);
2049                         }
2050                         // Resolve the self type.
2051                         this.visit_ty(self_type);
2052                         // Resolve the type parameters.
2053                         this.visit_generics(generics);
2054                         this.with_current_self_type(self_type, |this| {
2055                             for impl_item in impl_items {
2056                                 this.check_proc_macro_attrs(&impl_item.attrs);
2057                                 this.resolve_visibility(&impl_item.vis);
2058                                 match impl_item.node {
2059                                     ImplItemKind::Const(..) => {
2060                                         // If this is a trait impl, ensure the const
2061                                         // exists in trait
2062                                         this.check_trait_item(impl_item.ident,
2063                                                             ValueNS,
2064                                                             impl_item.span,
2065                                             |n, s| ResolutionError::ConstNotMemberOfTrait(n, s));
2066                                         visit::walk_impl_item(this, impl_item);
2067                                     }
2068                                     ImplItemKind::Method(ref sig, _) => {
2069                                         // If this is a trait impl, ensure the method
2070                                         // exists in trait
2071                                         this.check_trait_item(impl_item.ident,
2072                                                             ValueNS,
2073                                                             impl_item.span,
2074                                             |n, s| ResolutionError::MethodNotMemberOfTrait(n, s));
2075
2076                                         // We also need a new scope for the method-
2077                                         // specific type parameters.
2078                                         let type_parameters =
2079                                             HasTypeParameters(&sig.generics,
2080                                                             MethodRibKind(!sig.decl.has_self()));
2081                                         this.with_type_parameter_rib(type_parameters, |this| {
2082                                             visit::walk_impl_item(this, impl_item);
2083                                         });
2084                                     }
2085                                     ImplItemKind::Type(ref ty) => {
2086                                         // If this is a trait impl, ensure the type
2087                                         // exists in trait
2088                                         this.check_trait_item(impl_item.ident,
2089                                                             TypeNS,
2090                                                             impl_item.span,
2091                                             |n, s| ResolutionError::TypeNotMemberOfTrait(n, s));
2092
2093                                         this.visit_ty(ty);
2094                                     }
2095                                     ImplItemKind::Macro(_) =>
2096                                         panic!("unexpanded macro in resolve!"),
2097                                 }
2098                             }
2099                         });
2100                     });
2101                 });
2102             });
2103         });
2104     }
2105
2106     fn check_trait_item<F>(&mut self, ident: Ident, ns: Namespace, span: Span, err: F)
2107         where F: FnOnce(Name, &str) -> ResolutionError
2108     {
2109         // If there is a TraitRef in scope for an impl, then the method must be in the
2110         // trait.
2111         if let Some((module, _)) = self.current_trait_ref {
2112             if self.resolve_ident_in_module(module, ident, ns, false, false, span).is_err() {
2113                 let path = &self.current_trait_ref.as_ref().unwrap().1.path;
2114                 resolve_error(self, span, err(ident.name, &path_names_to_string(path)));
2115             }
2116         }
2117     }
2118
2119     fn resolve_local(&mut self, local: &Local) {
2120         // Resolve the type.
2121         walk_list!(self, visit_ty, &local.ty);
2122
2123         // Resolve the initializer.
2124         walk_list!(self, visit_expr, &local.init);
2125
2126         // Resolve the pattern.
2127         self.resolve_pattern(&local.pat, PatternSource::Let, &mut FxHashMap());
2128     }
2129
2130     // build a map from pattern identifiers to binding-info's.
2131     // this is done hygienically. This could arise for a macro
2132     // that expands into an or-pattern where one 'x' was from the
2133     // user and one 'x' came from the macro.
2134     fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
2135         let mut binding_map = FxHashMap();
2136
2137         pat.walk(&mut |pat| {
2138             if let PatKind::Ident(binding_mode, ident, ref sub_pat) = pat.node {
2139                 if sub_pat.is_some() || match self.def_map.get(&pat.id).map(|res| res.base_def()) {
2140                     Some(Def::Local(..)) => true,
2141                     _ => false,
2142                 } {
2143                     let binding_info = BindingInfo { span: ident.span, binding_mode: binding_mode };
2144                     binding_map.insert(ident.node, binding_info);
2145                 }
2146             }
2147             true
2148         });
2149
2150         binding_map
2151     }
2152
2153     // check that all of the arms in an or-pattern have exactly the
2154     // same set of bindings, with the same binding modes for each.
2155     fn check_consistent_bindings(&mut self, arm: &Arm) {
2156         if arm.pats.is_empty() {
2157             return;
2158         }
2159
2160         let mut missing_vars = FxHashMap();
2161         let mut inconsistent_vars = FxHashMap();
2162         for (i, p) in arm.pats.iter().enumerate() {
2163             let map_i = self.binding_mode_map(&p);
2164
2165             for (j, q) in arm.pats.iter().enumerate() {
2166                 if i == j {
2167                     continue;
2168                 }
2169
2170                 let map_j = self.binding_mode_map(&q);
2171                 for (&key, &binding_i) in &map_i {
2172                     if map_j.len() == 0 {                   // Account for missing bindings when
2173                         let binding_error = missing_vars    // map_j has none.
2174                             .entry(key.name)
2175                             .or_insert(BindingError {
2176                                 name: key.name,
2177                                 origin: BTreeSet::new(),
2178                                 target: BTreeSet::new(),
2179                             });
2180                         binding_error.origin.insert(binding_i.span);
2181                         binding_error.target.insert(q.span);
2182                     }
2183                     for (&key_j, &binding_j) in &map_j {
2184                         match map_i.get(&key_j) {
2185                             None => {  // missing binding
2186                                 let binding_error = missing_vars
2187                                     .entry(key_j.name)
2188                                     .or_insert(BindingError {
2189                                         name: key_j.name,
2190                                         origin: BTreeSet::new(),
2191                                         target: BTreeSet::new(),
2192                                     });
2193                                 binding_error.origin.insert(binding_j.span);
2194                                 binding_error.target.insert(p.span);
2195                             }
2196                             Some(binding_i) => {  // check consistent binding
2197                                 if binding_i.binding_mode != binding_j.binding_mode {
2198                                     inconsistent_vars
2199                                         .entry(key.name)
2200                                         .or_insert((binding_j.span, binding_i.span));
2201                                 }
2202                             }
2203                         }
2204                     }
2205                 }
2206             }
2207         }
2208         let mut missing_vars = missing_vars.iter().collect::<Vec<_>>();
2209         missing_vars.sort();
2210         for (_, v) in missing_vars {
2211             resolve_error(self,
2212                           *v.origin.iter().next().unwrap(),
2213                           ResolutionError::VariableNotBoundInPattern(v));
2214         }
2215         let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
2216         inconsistent_vars.sort();
2217         for (name, v) in inconsistent_vars {
2218             resolve_error(self, v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
2219         }
2220     }
2221
2222     fn resolve_arm(&mut self, arm: &Arm) {
2223         self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2224
2225         let mut bindings_list = FxHashMap();
2226         for pattern in &arm.pats {
2227             self.resolve_pattern(&pattern, PatternSource::Match, &mut bindings_list);
2228         }
2229
2230         // This has to happen *after* we determine which
2231         // pat_idents are variants
2232         self.check_consistent_bindings(arm);
2233
2234         walk_list!(self, visit_expr, &arm.guard);
2235         self.visit_expr(&arm.body);
2236
2237         self.ribs[ValueNS].pop();
2238     }
2239
2240     fn resolve_block(&mut self, block: &Block) {
2241         debug!("(resolving block) entering block");
2242         // Move down in the graph, if there's an anonymous module rooted here.
2243         let orig_module = self.current_module;
2244         let anonymous_module = self.block_map.get(&block.id).cloned(); // clones a reference
2245
2246         let mut num_macro_definition_ribs = 0;
2247         if let Some(anonymous_module) = anonymous_module {
2248             debug!("(resolving block) found anonymous module, moving down");
2249             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2250             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2251             self.current_module = anonymous_module;
2252             self.finalize_current_module_macro_resolutions();
2253         } else {
2254             self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2255         }
2256
2257         // Descend into the block.
2258         for stmt in &block.stmts {
2259             if let ast::StmtKind::Item(ref item) = stmt.node {
2260                 if let ast::ItemKind::MacroDef(..) = item.node {
2261                     num_macro_definition_ribs += 1;
2262                     let def = self.definitions.local_def_id(item.id);
2263                     self.ribs[ValueNS].push(Rib::new(MacroDefinition(def)));
2264                     self.label_ribs.push(Rib::new(MacroDefinition(def)));
2265                 }
2266             }
2267
2268             self.visit_stmt(stmt);
2269         }
2270
2271         // Move back up.
2272         self.current_module = orig_module;
2273         for _ in 0 .. num_macro_definition_ribs {
2274             self.ribs[ValueNS].pop();
2275             self.label_ribs.pop();
2276         }
2277         self.ribs[ValueNS].pop();
2278         if let Some(_) = anonymous_module {
2279             self.ribs[TypeNS].pop();
2280         }
2281         debug!("(resolving block) leaving block");
2282     }
2283
2284     fn fresh_binding(&mut self,
2285                      ident: &SpannedIdent,
2286                      pat_id: NodeId,
2287                      outer_pat_id: NodeId,
2288                      pat_src: PatternSource,
2289                      bindings: &mut FxHashMap<Ident, NodeId>)
2290                      -> PathResolution {
2291         // Add the binding to the local ribs, if it
2292         // doesn't already exist in the bindings map. (We
2293         // must not add it if it's in the bindings map
2294         // because that breaks the assumptions later
2295         // passes make about or-patterns.)
2296         let mut def = Def::Local(self.definitions.local_def_id(pat_id));
2297         match bindings.get(&ident.node).cloned() {
2298             Some(id) if id == outer_pat_id => {
2299                 // `Variant(a, a)`, error
2300                 resolve_error(
2301                     self,
2302                     ident.span,
2303                     ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(
2304                         &ident.node.name.as_str())
2305                 );
2306             }
2307             Some(..) if pat_src == PatternSource::FnParam => {
2308                 // `fn f(a: u8, a: u8)`, error
2309                 resolve_error(
2310                     self,
2311                     ident.span,
2312                     ResolutionError::IdentifierBoundMoreThanOnceInParameterList(
2313                         &ident.node.name.as_str())
2314                 );
2315             }
2316             Some(..) if pat_src == PatternSource::Match => {
2317                 // `Variant1(a) | Variant2(a)`, ok
2318                 // Reuse definition from the first `a`.
2319                 def = self.ribs[ValueNS].last_mut().unwrap().bindings[&ident.node];
2320             }
2321             Some(..) => {
2322                 span_bug!(ident.span, "two bindings with the same name from \
2323                                        unexpected pattern source {:?}", pat_src);
2324             }
2325             None => {
2326                 // A completely fresh binding, add to the lists if it's valid.
2327                 if ident.node.name != keywords::Invalid.name() {
2328                     bindings.insert(ident.node, outer_pat_id);
2329                     self.ribs[ValueNS].last_mut().unwrap().bindings.insert(ident.node, def);
2330                 }
2331             }
2332         }
2333
2334         PathResolution::new(def)
2335     }
2336
2337     fn resolve_pattern(&mut self,
2338                        pat: &Pat,
2339                        pat_src: PatternSource,
2340                        // Maps idents to the node ID for the
2341                        // outermost pattern that binds them.
2342                        bindings: &mut FxHashMap<Ident, NodeId>) {
2343         // Visit all direct subpatterns of this pattern.
2344         let outer_pat_id = pat.id;
2345         pat.walk(&mut |pat| {
2346             match pat.node {
2347                 PatKind::Ident(bmode, ref ident, ref opt_pat) => {
2348                     // First try to resolve the identifier as some existing
2349                     // entity, then fall back to a fresh binding.
2350                     let binding = self.resolve_ident_in_lexical_scope(ident.node, ValueNS,
2351                                                                       false, pat.span)
2352                                       .and_then(LexicalScopeBinding::item);
2353                     let resolution = binding.map(NameBinding::def).and_then(|def| {
2354                         let ivmode = BindingMode::ByValue(Mutability::Immutable);
2355                         let always_binding = !pat_src.is_refutable() || opt_pat.is_some() ||
2356                                              bmode != ivmode;
2357                         match def {
2358                             Def::StructCtor(_, CtorKind::Const) |
2359                             Def::VariantCtor(_, CtorKind::Const) |
2360                             Def::Const(..) if !always_binding => {
2361                                 // A unit struct/variant or constant pattern.
2362                                 self.record_use(ident.node, ValueNS, binding.unwrap(), ident.span);
2363                                 Some(PathResolution::new(def))
2364                             }
2365                             Def::StructCtor(..) | Def::VariantCtor(..) |
2366                             Def::Const(..) | Def::Static(..) => {
2367                                 // A fresh binding that shadows something unacceptable.
2368                                 resolve_error(
2369                                     self,
2370                                     ident.span,
2371                                     ResolutionError::BindingShadowsSomethingUnacceptable(
2372                                         pat_src.descr(), ident.node.name, binding.unwrap())
2373                                 );
2374                                 None
2375                             }
2376                             Def::Local(..) | Def::Upvar(..) | Def::Fn(..) | Def::Err => {
2377                                 // These entities are explicitly allowed
2378                                 // to be shadowed by fresh bindings.
2379                                 None
2380                             }
2381                             def => {
2382                                 span_bug!(ident.span, "unexpected definition for an \
2383                                                        identifier in pattern: {:?}", def);
2384                             }
2385                         }
2386                     }).unwrap_or_else(|| {
2387                         self.fresh_binding(ident, pat.id, outer_pat_id, pat_src, bindings)
2388                     });
2389
2390                     self.record_def(pat.id, resolution);
2391                 }
2392
2393                 PatKind::TupleStruct(ref path, ..) => {
2394                     self.smart_resolve_path(pat.id, None, path, PathSource::TupleStruct);
2395                 }
2396
2397                 PatKind::Path(ref qself, ref path) => {
2398                     self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
2399                 }
2400
2401                 PatKind::Struct(ref path, ..) => {
2402                     self.smart_resolve_path(pat.id, None, path, PathSource::Struct);
2403                 }
2404
2405                 _ => {}
2406             }
2407             true
2408         });
2409
2410         visit::walk_pat(self, pat);
2411     }
2412
2413     // High-level and context dependent path resolution routine.
2414     // Resolves the path and records the resolution into definition map.
2415     // If resolution fails tries several techniques to find likely
2416     // resolution candidates, suggest imports or other help, and report
2417     // errors in user friendly way.
2418     fn smart_resolve_path(&mut self,
2419                           id: NodeId,
2420                           qself: Option<&QSelf>,
2421                           path: &Path,
2422                           source: PathSource)
2423                           -> PathResolution {
2424         let segments = &path.segments.iter()
2425             .map(|seg| respan(seg.span, seg.identifier))
2426             .collect::<Vec<_>>();
2427         let ident_span = path.segments.last().map_or(path.span, |seg| seg.span);
2428         self.smart_resolve_path_fragment(id, qself, segments, path.span, ident_span, source)
2429     }
2430
2431     fn smart_resolve_path_fragment(&mut self,
2432                                    id: NodeId,
2433                                    qself: Option<&QSelf>,
2434                                    path: &[SpannedIdent],
2435                                    span: Span,
2436                                    ident_span: Span,
2437                                    source: PathSource)
2438                                    -> PathResolution {
2439         let ns = source.namespace();
2440         let is_expected = &|def| source.is_expected(def);
2441         let is_enum_variant = &|def| if let Def::Variant(..) = def { true } else { false };
2442
2443         // Base error is amended with one short label and possibly some longer helps/notes.
2444         let report_errors = |this: &mut Self, def: Option<Def>| {
2445             // Make the base error.
2446             let expected = source.descr_expected();
2447             let path_str = names_to_string(path);
2448             let code = source.error_code(def.is_some());
2449             let (base_msg, fallback_label, base_span) = if let Some(def) = def {
2450                 (format!("expected {}, found {} `{}`", expected, def.kind_name(), path_str),
2451                  format!("not a {}", expected), span)
2452             } else {
2453                 let item_str = path[path.len() - 1].node;
2454                 let item_span = path[path.len() - 1].span;
2455                 let (mod_prefix, mod_str) = if path.len() == 1 {
2456                     (format!(""), format!("this scope"))
2457                 } else if path.len() == 2 && path[0].node.name == keywords::CrateRoot.name() {
2458                     (format!(""), format!("the crate root"))
2459                 } else {
2460                     let mod_path = &path[..path.len() - 1];
2461                     let mod_prefix = match this.resolve_path(mod_path, Some(TypeNS), false, span) {
2462                         PathResult::Module(module) => module.def(),
2463                         _ => None,
2464                     }.map_or(format!(""), |def| format!("{} ", def.kind_name()));
2465                     (mod_prefix, format!("`{}`", names_to_string(mod_path)))
2466                 };
2467                 (format!("cannot find {} `{}` in {}{}", expected, item_str, mod_prefix, mod_str),
2468                  format!("not found in {}", mod_str), item_span)
2469             };
2470             let mut err = this.session.struct_span_err_with_code(base_span, &base_msg, code);
2471
2472             // Emit special messages for unresolved `Self` and `self`.
2473             if is_self_type(path, ns) {
2474                 __diagnostic_used!(E0411);
2475                 err.code("E0411".into());
2476                 err.span_label(span, "`Self` is only available in traits and impls");
2477                 return (err, Vec::new());
2478             }
2479             if is_self_value(path, ns) {
2480                 __diagnostic_used!(E0424);
2481                 err.code("E0424".into());
2482                 err.span_label(span, format!("`self` value is only available in \
2483                                                methods with `self` parameter"));
2484                 return (err, Vec::new());
2485             }
2486
2487             // Try to lookup the name in more relaxed fashion for better error reporting.
2488             let ident = *path.last().unwrap();
2489             let candidates = this.lookup_import_candidates(ident.node.name, ns, is_expected);
2490             if candidates.is_empty() && is_expected(Def::Enum(DefId::local(CRATE_DEF_INDEX))) {
2491                 let enum_candidates =
2492                     this.lookup_import_candidates(ident.node.name, ns, is_enum_variant);
2493                 let mut enum_candidates = enum_candidates.iter()
2494                     .map(|suggestion| import_candidate_to_paths(&suggestion)).collect::<Vec<_>>();
2495                 enum_candidates.sort();
2496                 for (sp, variant_path, enum_path) in enum_candidates {
2497                     if sp == DUMMY_SP {
2498                         let msg = format!("there is an enum variant `{}`, \
2499                                         try using `{}`?",
2500                                         variant_path,
2501                                         enum_path);
2502                         err.help(&msg);
2503                     } else {
2504                         err.span_suggestion(span, "you can try using the variant's enum",
2505                                             enum_path);
2506                     }
2507                 }
2508             }
2509             if path.len() == 1 && this.self_type_is_available(span) {
2510                 if let Some(candidate) = this.lookup_assoc_candidate(ident.node, ns, is_expected) {
2511                     let self_is_available = this.self_value_is_available(path[0].node.ctxt, span);
2512                     match candidate {
2513                         AssocSuggestion::Field => {
2514                             err.span_suggestion(span, "try",
2515                                                 format!("self.{}", path_str));
2516                             if !self_is_available {
2517                                 err.span_label(span, format!("`self` value is only available in \
2518                                                                methods with `self` parameter"));
2519                             }
2520                         }
2521                         AssocSuggestion::MethodWithSelf if self_is_available => {
2522                             err.span_suggestion(span, "try",
2523                                                 format!("self.{}", path_str));
2524                         }
2525                         AssocSuggestion::MethodWithSelf | AssocSuggestion::AssocItem => {
2526                             err.span_suggestion(span, "try",
2527                                                 format!("Self::{}", path_str));
2528                         }
2529                     }
2530                     return (err, candidates);
2531                 }
2532             }
2533
2534             let mut levenshtein_worked = false;
2535
2536             // Try Levenshtein.
2537             if let Some(candidate) = this.lookup_typo_candidate(path, ns, is_expected, span) {
2538                 err.span_label(ident_span, format!("did you mean `{}`?", candidate));
2539                 levenshtein_worked = true;
2540             }
2541
2542             // Try context dependent help if relaxed lookup didn't work.
2543             if let Some(def) = def {
2544                 match (def, source) {
2545                     (Def::Macro(..), _) => {
2546                         err.span_label(span, format!("did you mean `{}!(...)`?", path_str));
2547                         return (err, candidates);
2548                     }
2549                     (Def::TyAlias(..), PathSource::Trait) => {
2550                         err.span_label(span, "type aliases cannot be used for traits");
2551                         return (err, candidates);
2552                     }
2553                     (Def::Mod(..), PathSource::Expr(Some(parent))) => match parent.node {
2554                         ExprKind::Field(_, ident) => {
2555                             err.span_label(parent.span, format!("did you mean `{}::{}`?",
2556                                                                  path_str, ident.node));
2557                             return (err, candidates);
2558                         }
2559                         ExprKind::MethodCall(ref segment, ..) => {
2560                             err.span_label(parent.span, format!("did you mean `{}::{}(...)`?",
2561                                                                  path_str, segment.identifier));
2562                             return (err, candidates);
2563                         }
2564                         _ => {}
2565                     },
2566                     _ if ns == ValueNS && is_struct_like(def) => {
2567                         if let Def::Struct(def_id) = def {
2568                             if let Some((ctor_def, ctor_vis))
2569                                     = this.struct_constructors.get(&def_id).cloned() {
2570                                 if is_expected(ctor_def) && !this.is_accessible(ctor_vis) {
2571                                     err.span_label(span, format!("constructor is not visible \
2572                                                                    here due to private fields"));
2573                                 }
2574                             }
2575                         }
2576                         err.span_label(span, format!("did you mean `{} {{ /* fields */ }}`?",
2577                                                        path_str));
2578                         return (err, candidates);
2579                     }
2580                     _ => {}
2581                 }
2582             }
2583
2584             // Fallback label.
2585             if !levenshtein_worked {
2586                 err.span_label(base_span, fallback_label);
2587                 this.type_ascription_suggestion(&mut err, base_span);
2588             }
2589             (err, candidates)
2590         };
2591         let report_errors = |this: &mut Self, def: Option<Def>| {
2592             let (err, candidates) = report_errors(this, def);
2593             let def_id = this.current_module.normal_ancestor_id;
2594             let node_id = this.definitions.as_local_node_id(def_id).unwrap();
2595             let better = def.is_some();
2596             this.use_injections.push(UseError { err, candidates, node_id, better });
2597             err_path_resolution()
2598         };
2599
2600         let resolution = match self.resolve_qpath_anywhere(id, qself, path, ns, span,
2601                                                            source.defer_to_typeck(),
2602                                                            source.global_by_default()) {
2603             Some(resolution) if resolution.unresolved_segments() == 0 => {
2604                 if is_expected(resolution.base_def()) || resolution.base_def() == Def::Err {
2605                     resolution
2606                 } else {
2607                     // Add a temporary hack to smooth the transition to new struct ctor
2608                     // visibility rules. See #38932 for more details.
2609                     let mut res = None;
2610                     if let Def::Struct(def_id) = resolution.base_def() {
2611                         if let Some((ctor_def, ctor_vis))
2612                                 = self.struct_constructors.get(&def_id).cloned() {
2613                             if is_expected(ctor_def) && self.is_accessible(ctor_vis) {
2614                                 let lint = lint::builtin::LEGACY_CONSTRUCTOR_VISIBILITY;
2615                                 self.session.buffer_lint(lint, id, span,
2616                                     "private struct constructors are not usable through \
2617                                      reexports in outer modules",
2618                                 );
2619                                 res = Some(PathResolution::new(ctor_def));
2620                             }
2621                         }
2622                     }
2623
2624                     res.unwrap_or_else(|| report_errors(self, Some(resolution.base_def())))
2625                 }
2626             }
2627             Some(resolution) if source.defer_to_typeck() => {
2628                 // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
2629                 // or `<T>::A::B`. If `B` should be resolved in value namespace then
2630                 // it needs to be added to the trait map.
2631                 if ns == ValueNS {
2632                     let item_name = path.last().unwrap().node;
2633                     let traits = self.get_traits_containing_item(item_name, ns);
2634                     self.trait_map.insert(id, traits);
2635                 }
2636                 resolution
2637             }
2638             _ => report_errors(self, None)
2639         };
2640
2641         if let PathSource::TraitItem(..) = source {} else {
2642             // Avoid recording definition of `A::B` in `<T as A>::B::C`.
2643             self.record_def(id, resolution);
2644         }
2645         resolution
2646     }
2647
2648     fn type_ascription_suggestion(&self,
2649                                   err: &mut DiagnosticBuilder,
2650                                   base_span: Span) {
2651         debug!("type_ascription_suggetion {:?}", base_span);
2652         let cm = self.session.codemap();
2653         debug!("self.current_type_ascription {:?}", self.current_type_ascription);
2654         if let Some(sp) = self.current_type_ascription.last() {
2655             let mut sp = *sp;
2656             loop {  // try to find the `:`, bail on first non-':'/non-whitespace
2657                 sp = sp.next_point();
2658                 if let Ok(snippet) = cm.span_to_snippet(sp.to(sp.next_point())) {
2659                     debug!("snippet {:?}", snippet);
2660                     let line_sp = cm.lookup_char_pos(sp.hi).line;
2661                     let line_base_sp = cm.lookup_char_pos(base_span.lo).line;
2662                     debug!("{:?} {:?}", line_sp, line_base_sp);
2663                     if snippet == ":" {
2664                         err.span_label(base_span,
2665                                        "expecting a type here because of type ascription");
2666                         if line_sp != line_base_sp {
2667                             err.span_suggestion_short(sp,
2668                                                       "did you mean to use `;` here instead?",
2669                                                       ";".to_string());
2670                         }
2671                         break;
2672                     } else if snippet.trim().len() != 0  {
2673                         debug!("tried to find type ascription `:` token, couldn't find it");
2674                         break;
2675                     }
2676                 } else {
2677                     break;
2678                 }
2679             }
2680         }
2681     }
2682
2683     fn self_type_is_available(&mut self, span: Span) -> bool {
2684         let binding = self.resolve_ident_in_lexical_scope(keywords::SelfType.ident(),
2685                                                           TypeNS, false, span);
2686         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
2687     }
2688
2689     fn self_value_is_available(&mut self, ctxt: SyntaxContext, span: Span) -> bool {
2690         let ident = Ident { name: keywords::SelfValue.name(), ctxt: ctxt };
2691         let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, false, span);
2692         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
2693     }
2694
2695     // Resolve in alternative namespaces if resolution in the primary namespace fails.
2696     fn resolve_qpath_anywhere(&mut self,
2697                               id: NodeId,
2698                               qself: Option<&QSelf>,
2699                               path: &[SpannedIdent],
2700                               primary_ns: Namespace,
2701                               span: Span,
2702                               defer_to_typeck: bool,
2703                               global_by_default: bool)
2704                               -> Option<PathResolution> {
2705         let mut fin_res = None;
2706         // FIXME: can't resolve paths in macro namespace yet, macros are
2707         // processed by the little special hack below.
2708         for (i, ns) in [primary_ns, TypeNS, ValueNS, /*MacroNS*/].iter().cloned().enumerate() {
2709             if i == 0 || ns != primary_ns {
2710                 match self.resolve_qpath(id, qself, path, ns, span, global_by_default) {
2711                     // If defer_to_typeck, then resolution > no resolution,
2712                     // otherwise full resolution > partial resolution > no resolution.
2713                     Some(res) if res.unresolved_segments() == 0 || defer_to_typeck =>
2714                         return Some(res),
2715                     res => if fin_res.is_none() { fin_res = res },
2716                 };
2717             }
2718         }
2719         let is_global = self.global_macros.get(&path[0].node.name).cloned()
2720             .map(|binding| binding.get_macro(self).kind() == MacroKind::Bang).unwrap_or(false);
2721         if primary_ns != MacroNS && (is_global ||
2722                                      self.macro_names.contains(&path[0].node.modern())) {
2723             // Return some dummy definition, it's enough for error reporting.
2724             return Some(
2725                 PathResolution::new(Def::Macro(DefId::local(CRATE_DEF_INDEX), MacroKind::Bang))
2726             );
2727         }
2728         fin_res
2729     }
2730
2731     /// Handles paths that may refer to associated items.
2732     fn resolve_qpath(&mut self,
2733                      id: NodeId,
2734                      qself: Option<&QSelf>,
2735                      path: &[SpannedIdent],
2736                      ns: Namespace,
2737                      span: Span,
2738                      global_by_default: bool)
2739                      -> Option<PathResolution> {
2740         if let Some(qself) = qself {
2741             if qself.position == 0 {
2742                 // FIXME: Create some fake resolution that can't possibly be a type.
2743                 return Some(PathResolution::with_unresolved_segments(
2744                     Def::Mod(DefId::local(CRATE_DEF_INDEX)), path.len()
2745                 ));
2746             }
2747             // Make sure `A::B` in `<T as A>::B::C` is a trait item.
2748             let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
2749             let res = self.smart_resolve_path_fragment(id, None, &path[..qself.position + 1],
2750                                                        span, span, PathSource::TraitItem(ns));
2751             return Some(PathResolution::with_unresolved_segments(
2752                 res.base_def(), res.unresolved_segments() + path.len() - qself.position - 1
2753             ));
2754         }
2755
2756         let result = match self.resolve_path(&path, Some(ns), true, span) {
2757             PathResult::NonModule(path_res) => path_res,
2758             PathResult::Module(module) if !module.is_normal() => {
2759                 PathResolution::new(module.def().unwrap())
2760             }
2761             // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
2762             // don't report an error right away, but try to fallback to a primitive type.
2763             // So, we are still able to successfully resolve something like
2764             //
2765             // use std::u8; // bring module u8 in scope
2766             // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
2767             //     u8::max_value() // OK, resolves to associated function <u8>::max_value,
2768             //                     // not to non-existent std::u8::max_value
2769             // }
2770             //
2771             // Such behavior is required for backward compatibility.
2772             // The same fallback is used when `a` resolves to nothing.
2773             PathResult::Module(..) | PathResult::Failed(..)
2774                     if (ns == TypeNS || path.len() > 1) &&
2775                        self.primitive_type_table.primitive_types
2776                            .contains_key(&path[0].node.name) => {
2777                 let prim = self.primitive_type_table.primitive_types[&path[0].node.name];
2778                 match prim {
2779                     TyUint(UintTy::U128) | TyInt(IntTy::I128) => {
2780                         if !self.session.features.borrow().i128_type {
2781                             emit_feature_err(&self.session.parse_sess,
2782                                                 "i128_type", span, GateIssue::Language,
2783                                                 "128-bit type is unstable");
2784
2785                         }
2786                     }
2787                     _ => {}
2788                 }
2789                 PathResolution::with_unresolved_segments(Def::PrimTy(prim), path.len() - 1)
2790             }
2791             PathResult::Module(module) => PathResolution::new(module.def().unwrap()),
2792             PathResult::Failed(span, msg, false) => {
2793                 resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
2794                 err_path_resolution()
2795             }
2796             PathResult::Failed(..) => return None,
2797             PathResult::Indeterminate => bug!("indetermined path result in resolve_qpath"),
2798         };
2799
2800         if path.len() > 1 && !global_by_default && result.base_def() != Def::Err &&
2801            path[0].node.name != keywords::CrateRoot.name() &&
2802            path[0].node.name != keywords::DollarCrate.name() {
2803             let unqualified_result = {
2804                 match self.resolve_path(&[*path.last().unwrap()], Some(ns), false, span) {
2805                     PathResult::NonModule(path_res) => path_res.base_def(),
2806                     PathResult::Module(module) => module.def().unwrap(),
2807                     _ => return Some(result),
2808                 }
2809             };
2810             if result.base_def() == unqualified_result {
2811                 let lint = lint::builtin::UNUSED_QUALIFICATIONS;
2812                 self.session.buffer_lint(lint, id, span, "unnecessary qualification")
2813             }
2814         }
2815
2816         Some(result)
2817     }
2818
2819     fn resolve_path(&mut self,
2820                     path: &[SpannedIdent],
2821                     opt_ns: Option<Namespace>, // `None` indicates a module path
2822                     record_used: bool,
2823                     path_span: Span)
2824                     -> PathResult<'a> {
2825         let mut module = None;
2826         let mut allow_super = true;
2827
2828         for (i, &ident) in path.iter().enumerate() {
2829             debug!("resolve_path ident {} {:?}", i, ident);
2830             let is_last = i == path.len() - 1;
2831             let ns = if is_last { opt_ns.unwrap_or(TypeNS) } else { TypeNS };
2832
2833             if i == 0 && ns == TypeNS && ident.node.name == keywords::SelfValue.name() {
2834                 let mut ctxt = ident.node.ctxt.modern();
2835                 module = Some(self.resolve_self(&mut ctxt, self.current_module));
2836                 continue
2837             } else if allow_super && ns == TypeNS && ident.node.name == keywords::Super.name() {
2838                 let mut ctxt = ident.node.ctxt.modern();
2839                 let self_module = match i {
2840                     0 => self.resolve_self(&mut ctxt, self.current_module),
2841                     _ => module.unwrap(),
2842                 };
2843                 if let Some(parent) = self_module.parent {
2844                     module = Some(self.resolve_self(&mut ctxt, parent));
2845                     continue
2846                 } else {
2847                     let msg = "There are too many initial `super`s.".to_string();
2848                     return PathResult::Failed(ident.span, msg, false);
2849                 }
2850             }
2851             allow_super = false;
2852
2853             if i == 0 && ns == TypeNS && ident.node.name == keywords::CrateRoot.name() {
2854                 module = Some(self.resolve_crate_root(ident.node.ctxt.modern()));
2855                 continue
2856             } else if i == 0 && ns == TypeNS && ident.node.name == keywords::DollarCrate.name() {
2857                 module = Some(self.resolve_crate_root(ident.node.ctxt));
2858                 continue
2859             }
2860
2861             let binding = if let Some(module) = module {
2862                 self.resolve_ident_in_module(module, ident.node, ns, false, record_used, path_span)
2863             } else if opt_ns == Some(MacroNS) {
2864                 self.resolve_lexical_macro_path_segment(ident.node, ns, record_used, path_span)
2865                     .map(MacroBinding::binding)
2866             } else {
2867                 match self.resolve_ident_in_lexical_scope(ident.node, ns, record_used, path_span) {
2868                     Some(LexicalScopeBinding::Item(binding)) => Ok(binding),
2869                     Some(LexicalScopeBinding::Def(def))
2870                             if opt_ns == Some(TypeNS) || opt_ns == Some(ValueNS) => {
2871                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
2872                             def, path.len() - 1
2873                         ));
2874                     }
2875                     _ => Err(if record_used { Determined } else { Undetermined }),
2876                 }
2877             };
2878
2879             match binding {
2880                 Ok(binding) => {
2881                     let def = binding.def();
2882                     let maybe_assoc = opt_ns != Some(MacroNS) && PathSource::Type.is_expected(def);
2883                     if let Some(next_module) = binding.module() {
2884                         module = Some(next_module);
2885                     } else if def == Def::Err {
2886                         return PathResult::NonModule(err_path_resolution());
2887                     } else if opt_ns.is_some() && (is_last || maybe_assoc) {
2888                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
2889                             def, path.len() - i - 1
2890                         ));
2891                     } else {
2892                         return PathResult::Failed(ident.span,
2893                                                   format!("Not a module `{}`", ident.node),
2894                                                   is_last);
2895                     }
2896                 }
2897                 Err(Undetermined) => return PathResult::Indeterminate,
2898                 Err(Determined) => {
2899                     if let Some(module) = module {
2900                         if opt_ns.is_some() && !module.is_normal() {
2901                             return PathResult::NonModule(PathResolution::with_unresolved_segments(
2902                                 module.def().unwrap(), path.len() - i
2903                             ));
2904                         }
2905                     }
2906                     let msg = if module.and_then(ModuleData::def) == self.graph_root.def() {
2907                         let is_mod = |def| match def { Def::Mod(..) => true, _ => false };
2908                         let mut candidates =
2909                             self.lookup_import_candidates(ident.node.name, TypeNS, is_mod);
2910                         candidates.sort_by_key(|c| (c.path.segments.len(), c.path.to_string()));
2911                         if let Some(candidate) = candidates.get(0) {
2912                             format!("Did you mean `{}`?", candidate.path)
2913                         } else {
2914                             format!("Maybe a missing `extern crate {};`?", ident.node)
2915                         }
2916                     } else if i == 0 {
2917                         format!("Use of undeclared type or module `{}`", ident.node)
2918                     } else {
2919                         format!("Could not find `{}` in `{}`", ident.node, path[i - 1].node)
2920                     };
2921                     return PathResult::Failed(ident.span, msg, is_last);
2922                 }
2923             }
2924         }
2925
2926         PathResult::Module(module.unwrap_or(self.graph_root))
2927     }
2928
2929     // Resolve a local definition, potentially adjusting for closures.
2930     fn adjust_local_def(&mut self,
2931                         ns: Namespace,
2932                         rib_index: usize,
2933                         mut def: Def,
2934                         record_used: bool,
2935                         span: Span) -> Def {
2936         let ribs = &self.ribs[ns][rib_index + 1..];
2937
2938         // An invalid forward use of a type parameter from a previous default.
2939         if let ForwardTyParamBanRibKind = self.ribs[ns][rib_index].kind {
2940             if record_used {
2941                 resolve_error(self, span, ResolutionError::ForwardDeclaredTyParam);
2942             }
2943             assert_eq!(def, Def::Err);
2944             return Def::Err;
2945         }
2946
2947         match def {
2948             Def::Upvar(..) => {
2949                 span_bug!(span, "unexpected {:?} in bindings", def)
2950             }
2951             Def::Local(def_id) => {
2952                 for rib in ribs {
2953                     match rib.kind {
2954                         NormalRibKind | ModuleRibKind(..) | MacroDefinition(..) |
2955                         ForwardTyParamBanRibKind => {
2956                             // Nothing to do. Continue.
2957                         }
2958                         ClosureRibKind(function_id) => {
2959                             let prev_def = def;
2960                             let node_id = self.definitions.as_local_node_id(def_id).unwrap();
2961
2962                             let seen = self.freevars_seen
2963                                            .entry(function_id)
2964                                            .or_insert_with(|| NodeMap());
2965                             if let Some(&index) = seen.get(&node_id) {
2966                                 def = Def::Upvar(def_id, index, function_id);
2967                                 continue;
2968                             }
2969                             let vec = self.freevars
2970                                           .entry(function_id)
2971                                           .or_insert_with(|| vec![]);
2972                             let depth = vec.len();
2973                             def = Def::Upvar(def_id, depth, function_id);
2974
2975                             if record_used {
2976                                 vec.push(Freevar {
2977                                     def: prev_def,
2978                                     span,
2979                                 });
2980                                 seen.insert(node_id, depth);
2981                             }
2982                         }
2983                         ItemRibKind | MethodRibKind(_) => {
2984                             // This was an attempt to access an upvar inside a
2985                             // named function item. This is not allowed, so we
2986                             // report an error.
2987                             if record_used {
2988                                 resolve_error(self, span,
2989                                         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem);
2990                             }
2991                             return Def::Err;
2992                         }
2993                         ConstantItemRibKind => {
2994                             // Still doesn't deal with upvars
2995                             if record_used {
2996                                 resolve_error(self, span,
2997                                         ResolutionError::AttemptToUseNonConstantValueInConstant);
2998                             }
2999                             return Def::Err;
3000                         }
3001                     }
3002                 }
3003             }
3004             Def::TyParam(..) | Def::SelfTy(..) => {
3005                 for rib in ribs {
3006                     match rib.kind {
3007                         NormalRibKind | MethodRibKind(_) | ClosureRibKind(..) |
3008                         ModuleRibKind(..) | MacroDefinition(..) | ForwardTyParamBanRibKind |
3009                         ConstantItemRibKind => {
3010                             // Nothing to do. Continue.
3011                         }
3012                         ItemRibKind => {
3013                             // This was an attempt to use a type parameter outside
3014                             // its scope.
3015                             if record_used {
3016                                 resolve_error(self, span,
3017                                               ResolutionError::TypeParametersFromOuterFunction);
3018                             }
3019                             return Def::Err;
3020                         }
3021                     }
3022                 }
3023             }
3024             _ => {}
3025         }
3026         return def;
3027     }
3028
3029     fn lookup_assoc_candidate<FilterFn>(&mut self,
3030                                         ident: Ident,
3031                                         ns: Namespace,
3032                                         filter_fn: FilterFn)
3033                                         -> Option<AssocSuggestion>
3034         where FilterFn: Fn(Def) -> bool
3035     {
3036         fn extract_node_id(t: &Ty) -> Option<NodeId> {
3037             match t.node {
3038                 TyKind::Path(None, _) => Some(t.id),
3039                 TyKind::Rptr(_, ref mut_ty) => extract_node_id(&mut_ty.ty),
3040                 // This doesn't handle the remaining `Ty` variants as they are not
3041                 // that commonly the self_type, it might be interesting to provide
3042                 // support for those in future.
3043                 _ => None,
3044             }
3045         }
3046
3047         // Fields are generally expected in the same contexts as locals.
3048         if filter_fn(Def::Local(DefId::local(CRATE_DEF_INDEX))) {
3049             if let Some(node_id) = self.current_self_type.as_ref().and_then(extract_node_id) {
3050                 // Look for a field with the same name in the current self_type.
3051                 if let Some(resolution) = self.def_map.get(&node_id) {
3052                     match resolution.base_def() {
3053                         Def::Struct(did) | Def::Union(did)
3054                                 if resolution.unresolved_segments() == 0 => {
3055                             if let Some(field_names) = self.field_names.get(&did) {
3056                                 if field_names.iter().any(|&field_name| ident.name == field_name) {
3057                                     return Some(AssocSuggestion::Field);
3058                                 }
3059                             }
3060                         }
3061                         _ => {}
3062                     }
3063                 }
3064             }
3065         }
3066
3067         // Look for associated items in the current trait.
3068         if let Some((module, _)) = self.current_trait_ref {
3069             if let Ok(binding) =
3070                     self.resolve_ident_in_module(module, ident, ns, false, false, module.span) {
3071                 let def = binding.def();
3072                 if filter_fn(def) {
3073                     return Some(if self.has_self.contains(&def.def_id()) {
3074                         AssocSuggestion::MethodWithSelf
3075                     } else {
3076                         AssocSuggestion::AssocItem
3077                     });
3078                 }
3079             }
3080         }
3081
3082         None
3083     }
3084
3085     fn lookup_typo_candidate<FilterFn>(&mut self,
3086                                        path: &[SpannedIdent],
3087                                        ns: Namespace,
3088                                        filter_fn: FilterFn,
3089                                        span: Span)
3090                                        -> Option<Symbol>
3091         where FilterFn: Fn(Def) -> bool
3092     {
3093         let add_module_candidates = |module: Module, names: &mut Vec<Name>| {
3094             for (&(ident, _), resolution) in module.resolutions.borrow().iter() {
3095                 if let Some(binding) = resolution.borrow().binding {
3096                     if filter_fn(binding.def()) {
3097                         names.push(ident.name);
3098                     }
3099                 }
3100             }
3101         };
3102
3103         let mut names = Vec::new();
3104         if path.len() == 1 {
3105             // Search in lexical scope.
3106             // Walk backwards up the ribs in scope and collect candidates.
3107             for rib in self.ribs[ns].iter().rev() {
3108                 // Locals and type parameters
3109                 for (ident, def) in &rib.bindings {
3110                     if filter_fn(*def) {
3111                         names.push(ident.name);
3112                     }
3113                 }
3114                 // Items in scope
3115                 if let ModuleRibKind(module) = rib.kind {
3116                     // Items from this module
3117                     add_module_candidates(module, &mut names);
3118
3119                     if let ModuleKind::Block(..) = module.kind {
3120                         // We can see through blocks
3121                     } else {
3122                         // Items from the prelude
3123                         if let Some(prelude) = self.prelude {
3124                             if !module.no_implicit_prelude {
3125                                 add_module_candidates(prelude, &mut names);
3126                             }
3127                         }
3128                         break;
3129                     }
3130                 }
3131             }
3132             // Add primitive types to the mix
3133             if filter_fn(Def::PrimTy(TyBool)) {
3134                 for (name, _) in &self.primitive_type_table.primitive_types {
3135                     names.push(*name);
3136                 }
3137             }
3138         } else {
3139             // Search in module.
3140             let mod_path = &path[..path.len() - 1];
3141             if let PathResult::Module(module) = self.resolve_path(mod_path, Some(TypeNS),
3142                                                                   false, span) {
3143                 add_module_candidates(module, &mut names);
3144             }
3145         }
3146
3147         let name = path[path.len() - 1].node.name;
3148         // Make sure error reporting is deterministic.
3149         names.sort_by_key(|name| name.as_str());
3150         match find_best_match_for_name(names.iter(), &name.as_str(), None) {
3151             Some(found) if found != name => Some(found),
3152             _ => None,
3153         }
3154     }
3155
3156     fn with_resolved_label<F>(&mut self, label: Option<SpannedIdent>, id: NodeId, f: F)
3157         where F: FnOnce(&mut Resolver)
3158     {
3159         if let Some(label) = label {
3160             let def = Def::Label(id);
3161             self.with_label_rib(|this| {
3162                 this.label_ribs.last_mut().unwrap().bindings.insert(label.node, def);
3163                 f(this);
3164             });
3165         } else {
3166             f(self);
3167         }
3168     }
3169
3170     fn resolve_labeled_block(&mut self, label: Option<SpannedIdent>, id: NodeId, block: &Block) {
3171         self.with_resolved_label(label, id, |this| this.visit_block(block));
3172     }
3173
3174     fn resolve_expr(&mut self, expr: &Expr, parent: Option<&Expr>) {
3175         // First, record candidate traits for this expression if it could
3176         // result in the invocation of a method call.
3177
3178         self.record_candidate_traits_for_expr_if_necessary(expr);
3179
3180         // Next, resolve the node.
3181         match expr.node {
3182             ExprKind::Path(ref qself, ref path) => {
3183                 self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
3184                 visit::walk_expr(self, expr);
3185             }
3186
3187             ExprKind::Struct(ref path, ..) => {
3188                 self.smart_resolve_path(expr.id, None, path, PathSource::Struct);
3189                 visit::walk_expr(self, expr);
3190             }
3191
3192             ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
3193                 match self.search_label(label.node) {
3194                     None => {
3195                         self.record_def(expr.id, err_path_resolution());
3196                         resolve_error(self,
3197                                       label.span,
3198                                       ResolutionError::UndeclaredLabel(&label.node.name.as_str()));
3199                     }
3200                     Some(def @ Def::Label(_)) => {
3201                         // Since this def is a label, it is never read.
3202                         self.record_def(expr.id, PathResolution::new(def));
3203                     }
3204                     Some(_) => {
3205                         span_bug!(expr.span, "label wasn't mapped to a label def!");
3206                     }
3207                 }
3208
3209                 // visit `break` argument if any
3210                 visit::walk_expr(self, expr);
3211             }
3212
3213             ExprKind::IfLet(ref pattern, ref subexpression, ref if_block, ref optional_else) => {
3214                 self.visit_expr(subexpression);
3215
3216                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
3217                 self.resolve_pattern(pattern, PatternSource::IfLet, &mut FxHashMap());
3218                 self.visit_block(if_block);
3219                 self.ribs[ValueNS].pop();
3220
3221                 optional_else.as_ref().map(|expr| self.visit_expr(expr));
3222             }
3223
3224             ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),
3225
3226             ExprKind::While(ref subexpression, ref block, label) => {
3227                 self.with_resolved_label(label, expr.id, |this| {
3228                     this.visit_expr(subexpression);
3229                     this.visit_block(block);
3230                 });
3231             }
3232
3233             ExprKind::WhileLet(ref pattern, ref subexpression, ref block, label) => {
3234                 self.with_resolved_label(label, expr.id, |this| {
3235                     this.visit_expr(subexpression);
3236                     this.ribs[ValueNS].push(Rib::new(NormalRibKind));
3237                     this.resolve_pattern(pattern, PatternSource::WhileLet, &mut FxHashMap());
3238                     this.visit_block(block);
3239                     this.ribs[ValueNS].pop();
3240                 });
3241             }
3242
3243             ExprKind::ForLoop(ref pattern, ref subexpression, ref block, label) => {
3244                 self.visit_expr(subexpression);
3245                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
3246                 self.resolve_pattern(pattern, PatternSource::For, &mut FxHashMap());
3247
3248                 self.resolve_labeled_block(label, expr.id, block);
3249
3250                 self.ribs[ValueNS].pop();
3251             }
3252
3253             // Equivalent to `visit::walk_expr` + passing some context to children.
3254             ExprKind::Field(ref subexpression, _) => {
3255                 self.resolve_expr(subexpression, Some(expr));
3256             }
3257             ExprKind::MethodCall(ref segment, ref arguments) => {
3258                 let mut arguments = arguments.iter();
3259                 self.resolve_expr(arguments.next().unwrap(), Some(expr));
3260                 for argument in arguments {
3261                     self.resolve_expr(argument, None);
3262                 }
3263                 self.visit_path_segment(expr.span, segment);
3264             }
3265
3266             ExprKind::Repeat(ref element, ref count) => {
3267                 self.visit_expr(element);
3268                 self.with_constant_rib(|this| {
3269                     this.visit_expr(count);
3270                 });
3271             }
3272             ExprKind::Call(ref callee, ref arguments) => {
3273                 self.resolve_expr(callee, Some(expr));
3274                 for argument in arguments {
3275                     self.resolve_expr(argument, None);
3276                 }
3277             }
3278             ExprKind::Type(ref type_expr, _) => {
3279                 self.current_type_ascription.push(type_expr.span);
3280                 visit::walk_expr(self, expr);
3281                 self.current_type_ascription.pop();
3282             }
3283             _ => {
3284                 visit::walk_expr(self, expr);
3285             }
3286         }
3287     }
3288
3289     fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &Expr) {
3290         match expr.node {
3291             ExprKind::Field(_, name) => {
3292                 // FIXME(#6890): Even though you can't treat a method like a
3293                 // field, we need to add any trait methods we find that match
3294                 // the field name so that we can do some nice error reporting
3295                 // later on in typeck.
3296                 let traits = self.get_traits_containing_item(name.node, ValueNS);
3297                 self.trait_map.insert(expr.id, traits);
3298             }
3299             ExprKind::MethodCall(ref segment, ..) => {
3300                 debug!("(recording candidate traits for expr) recording traits for {}",
3301                        expr.id);
3302                 let traits = self.get_traits_containing_item(segment.identifier, ValueNS);
3303                 self.trait_map.insert(expr.id, traits);
3304             }
3305             _ => {
3306                 // Nothing to do.
3307             }
3308         }
3309     }
3310
3311     fn get_traits_containing_item(&mut self, mut ident: Ident, ns: Namespace)
3312                                   -> Vec<TraitCandidate> {
3313         debug!("(getting traits containing item) looking for '{}'", ident.name);
3314
3315         let mut found_traits = Vec::new();
3316         // Look for the current trait.
3317         if let Some((module, _)) = self.current_trait_ref {
3318             if self.resolve_ident_in_module(module, ident, ns, false, false, module.span).is_ok() {
3319                 let def_id = module.def_id().unwrap();
3320                 found_traits.push(TraitCandidate { def_id: def_id, import_id: None });
3321             }
3322         }
3323
3324         ident.ctxt = ident.ctxt.modern();
3325         let mut search_module = self.current_module;
3326         loop {
3327             self.get_traits_in_module_containing_item(ident, ns, search_module, &mut found_traits);
3328             search_module =
3329                 unwrap_or!(self.hygienic_lexical_parent(search_module, &mut ident.ctxt), break);
3330         }
3331
3332         if let Some(prelude) = self.prelude {
3333             if !search_module.no_implicit_prelude {
3334                 self.get_traits_in_module_containing_item(ident, ns, prelude, &mut found_traits);
3335             }
3336         }
3337
3338         found_traits
3339     }
3340
3341     fn get_traits_in_module_containing_item(&mut self,
3342                                             ident: Ident,
3343                                             ns: Namespace,
3344                                             module: Module<'a>,
3345                                             found_traits: &mut Vec<TraitCandidate>) {
3346         let mut traits = module.traits.borrow_mut();
3347         if traits.is_none() {
3348             let mut collected_traits = Vec::new();
3349             module.for_each_child(|name, ns, binding| {
3350                 if ns != TypeNS { return }
3351                 if let Def::Trait(_) = binding.def() {
3352                     collected_traits.push((name, binding));
3353                 }
3354             });
3355             *traits = Some(collected_traits.into_boxed_slice());
3356         }
3357
3358         for &(trait_name, binding) in traits.as_ref().unwrap().iter() {
3359             let module = binding.module().unwrap();
3360             let mut ident = ident;
3361             if ident.ctxt.glob_adjust(module.expansion, binding.span.ctxt.modern()).is_none() {
3362                 continue
3363             }
3364             if self.resolve_ident_in_module_unadjusted(module, ident, ns, false, false, module.span)
3365                    .is_ok() {
3366                 let import_id = match binding.kind {
3367                     NameBindingKind::Import { directive, .. } => {
3368                         self.maybe_unused_trait_imports.insert(directive.id);
3369                         self.add_to_glob_map(directive.id, trait_name);
3370                         Some(directive.id)
3371                     }
3372                     _ => None,
3373                 };
3374                 let trait_def_id = module.def_id().unwrap();
3375                 found_traits.push(TraitCandidate { def_id: trait_def_id, import_id: import_id });
3376             }
3377         }
3378     }
3379
3380     /// When name resolution fails, this method can be used to look up candidate
3381     /// entities with the expected name. It allows filtering them using the
3382     /// supplied predicate (which should be used to only accept the types of
3383     /// definitions expected e.g. traits). The lookup spans across all crates.
3384     ///
3385     /// NOTE: The method does not look into imports, but this is not a problem,
3386     /// since we report the definitions (thus, the de-aliased imports).
3387     fn lookup_import_candidates<FilterFn>(&mut self,
3388                                           lookup_name: Name,
3389                                           namespace: Namespace,
3390                                           filter_fn: FilterFn)
3391                                           -> Vec<ImportSuggestion>
3392         where FilterFn: Fn(Def) -> bool
3393     {
3394         let mut candidates = Vec::new();
3395         let mut worklist = Vec::new();
3396         let mut seen_modules = FxHashSet();
3397         worklist.push((self.graph_root, Vec::new(), false));
3398
3399         while let Some((in_module,
3400                         path_segments,
3401                         in_module_is_extern)) = worklist.pop() {
3402             self.populate_module_if_necessary(in_module);
3403
3404             // We have to visit module children in deterministic order to avoid
3405             // instabilities in reported imports (#43552).
3406             in_module.for_each_child_stable(|ident, ns, name_binding| {
3407                 // avoid imports entirely
3408                 if name_binding.is_import() && !name_binding.is_extern_crate() { return; }
3409                 // avoid non-importable candidates as well
3410                 if !name_binding.is_importable() { return; }
3411
3412                 // collect results based on the filter function
3413                 if ident.name == lookup_name && ns == namespace {
3414                     if filter_fn(name_binding.def()) {
3415                         // create the path
3416                         let mut segms = path_segments.clone();
3417                         segms.push(ast::PathSegment::from_ident(ident, name_binding.span));
3418                         let path = Path {
3419                             span: name_binding.span,
3420                             segments: segms,
3421                         };
3422                         // the entity is accessible in the following cases:
3423                         // 1. if it's defined in the same crate, it's always
3424                         // accessible (since private entities can be made public)
3425                         // 2. if it's defined in another crate, it's accessible
3426                         // only if both the module is public and the entity is
3427                         // declared as public (due to pruning, we don't explore
3428                         // outside crate private modules => no need to check this)
3429                         if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
3430                             candidates.push(ImportSuggestion { path: path });
3431                         }
3432                     }
3433                 }
3434
3435                 // collect submodules to explore
3436                 if let Some(module) = name_binding.module() {
3437                     // form the path
3438                     let mut path_segments = path_segments.clone();
3439                     path_segments.push(ast::PathSegment::from_ident(ident, name_binding.span));
3440
3441                     if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
3442                         // add the module to the lookup
3443                         let is_extern = in_module_is_extern || name_binding.is_extern_crate();
3444                         if seen_modules.insert(module.def_id().unwrap()) {
3445                             worklist.push((module, path_segments, is_extern));
3446                         }
3447                     }
3448                 }
3449             })
3450         }
3451
3452         candidates
3453     }
3454
3455     fn record_def(&mut self, node_id: NodeId, resolution: PathResolution) {
3456         debug!("(recording def) recording {:?} for {}", resolution, node_id);
3457         if let Some(prev_res) = self.def_map.insert(node_id, resolution) {
3458             panic!("path resolved multiple times ({:?} before, {:?} now)", prev_res, resolution);
3459         }
3460     }
3461
3462     fn resolve_visibility(&mut self, vis: &ast::Visibility) -> ty::Visibility {
3463         match *vis {
3464             ast::Visibility::Public => ty::Visibility::Public,
3465             ast::Visibility::Crate(..) => ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX)),
3466             ast::Visibility::Inherited => {
3467                 ty::Visibility::Restricted(self.current_module.normal_ancestor_id)
3468             }
3469             ast::Visibility::Restricted { ref path, id } => {
3470                 let def = self.smart_resolve_path(id, None, path,
3471                                                   PathSource::Visibility).base_def();
3472                 if def == Def::Err {
3473                     ty::Visibility::Public
3474                 } else {
3475                     let vis = ty::Visibility::Restricted(def.def_id());
3476                     if self.is_accessible(vis) {
3477                         vis
3478                     } else {
3479                         self.session.span_err(path.span, "visibilities can only be restricted \
3480                                                           to ancestor modules");
3481                         ty::Visibility::Public
3482                     }
3483                 }
3484             }
3485         }
3486     }
3487
3488     fn is_accessible(&self, vis: ty::Visibility) -> bool {
3489         vis.is_accessible_from(self.current_module.normal_ancestor_id, self)
3490     }
3491
3492     fn is_accessible_from(&self, vis: ty::Visibility, module: Module<'a>) -> bool {
3493         vis.is_accessible_from(module.normal_ancestor_id, self)
3494     }
3495
3496     fn report_errors(&mut self, krate: &Crate) {
3497         self.report_shadowing_errors();
3498         self.report_with_use_injections(krate);
3499         let mut reported_spans = FxHashSet();
3500
3501         for &AmbiguityError { span, name, b1, b2, lexical, legacy } in &self.ambiguity_errors {
3502             if !reported_spans.insert(span) { continue }
3503             let participle = |binding: &NameBinding| {
3504                 if binding.is_import() { "imported" } else { "defined" }
3505             };
3506             let msg1 = format!("`{}` could refer to the name {} here", name, participle(b1));
3507             let msg2 = format!("`{}` could also refer to the name {} here", name, participle(b2));
3508             let note = if b1.expansion == Mark::root() || !lexical && b1.is_glob_import() {
3509                 format!("consider adding an explicit import of `{}` to disambiguate", name)
3510             } else if let Def::Macro(..) = b1.def() {
3511                 format!("macro-expanded {} do not shadow",
3512                         if b1.is_import() { "macro imports" } else { "macros" })
3513             } else {
3514                 format!("macro-expanded {} do not shadow when used in a macro invocation path",
3515                         if b1.is_import() { "imports" } else { "items" })
3516             };
3517             if legacy {
3518                 let id = match b2.kind {
3519                     NameBindingKind::Import { directive, .. } => directive.id,
3520                     _ => unreachable!(),
3521                 };
3522                 let mut span = MultiSpan::from_span(span);
3523                 span.push_span_label(b1.span, msg1);
3524                 span.push_span_label(b2.span, msg2);
3525                 let msg = format!("`{}` is ambiguous", name);
3526                 self.session.buffer_lint(lint::builtin::LEGACY_IMPORTS, id, span, &msg);
3527             } else {
3528                 let mut err =
3529                     self.session.struct_span_err(span, &format!("`{}` is ambiguous", name));
3530                 err.span_note(b1.span, &msg1);
3531                 match b2.def() {
3532                     Def::Macro(..) if b2.span == DUMMY_SP =>
3533                         err.note(&format!("`{}` is also a builtin macro", name)),
3534                     _ => err.span_note(b2.span, &msg2),
3535                 };
3536                 err.note(&note).emit();
3537             }
3538         }
3539
3540         for &PrivacyError(span, name, binding) in &self.privacy_errors {
3541             if !reported_spans.insert(span) { continue }
3542             span_err!(self.session, span, E0603, "{} `{}` is private", binding.descr(), name);
3543         }
3544     }
3545
3546     fn report_with_use_injections(&mut self, krate: &Crate) {
3547         for UseError { mut err, candidates, node_id, better } in self.use_injections.drain(..) {
3548             let mut finder = UsePlacementFinder {
3549                 target_module: node_id,
3550                 span: None,
3551                 found_use: false,
3552             };
3553             visit::walk_crate(&mut finder, krate);
3554             if !candidates.is_empty() {
3555                 let span = finder.span.expect("did not find module");
3556                 show_candidates(&mut err, span, &candidates, better, finder.found_use);
3557             }
3558             err.emit();
3559         }
3560     }
3561
3562     fn report_shadowing_errors(&mut self) {
3563         for (ident, scope) in replace(&mut self.lexical_macro_resolutions, Vec::new()) {
3564             self.resolve_legacy_scope(scope, ident, true);
3565         }
3566
3567         let mut reported_errors = FxHashSet();
3568         for binding in replace(&mut self.disallowed_shadowing, Vec::new()) {
3569             if self.resolve_legacy_scope(&binding.parent, binding.ident, false).is_some() &&
3570                reported_errors.insert((binding.ident, binding.span)) {
3571                 let msg = format!("`{}` is already in scope", binding.ident);
3572                 self.session.struct_span_err(binding.span, &msg)
3573                     .note("macro-expanded `macro_rules!`s may not shadow \
3574                            existing macros (see RFC 1560)")
3575                     .emit();
3576             }
3577         }
3578     }
3579
3580     fn report_conflict(&mut self,
3581                        parent: Module,
3582                        ident: Ident,
3583                        ns: Namespace,
3584                        new_binding: &NameBinding,
3585                        old_binding: &NameBinding) {
3586         // Error on the second of two conflicting names
3587         if old_binding.span.lo > new_binding.span.lo {
3588             return self.report_conflict(parent, ident, ns, old_binding, new_binding);
3589         }
3590
3591         let container = match parent.kind {
3592             ModuleKind::Def(Def::Mod(_), _) => "module",
3593             ModuleKind::Def(Def::Trait(_), _) => "trait",
3594             ModuleKind::Block(..) => "block",
3595             _ => "enum",
3596         };
3597
3598         let old_noun = match old_binding.is_import() {
3599             true => "import",
3600             false => "definition",
3601         };
3602
3603         let new_participle = match new_binding.is_import() {
3604             true => "imported",
3605             false => "defined",
3606         };
3607
3608         let (name, span) = (ident.name, new_binding.span);
3609
3610         if let Some(s) = self.name_already_seen.get(&name) {
3611             if s == &span {
3612                 return;
3613             }
3614         }
3615
3616         let old_kind = match (ns, old_binding.module()) {
3617             (ValueNS, _) => "value",
3618             (MacroNS, _) => "macro",
3619             (TypeNS, _) if old_binding.is_extern_crate() => "extern crate",
3620             (TypeNS, Some(module)) if module.is_normal() => "module",
3621             (TypeNS, Some(module)) if module.is_trait() => "trait",
3622             (TypeNS, _) => "type",
3623         };
3624
3625         let namespace = match ns {
3626             ValueNS => "value",
3627             MacroNS => "macro",
3628             TypeNS => "type",
3629         };
3630
3631         let msg = format!("the name `{}` is defined multiple times", name);
3632
3633         let mut err = match (old_binding.is_extern_crate(), new_binding.is_extern_crate()) {
3634             (true, true) => struct_span_err!(self.session, span, E0259, "{}", msg),
3635             (true, _) | (_, true) => match new_binding.is_import() && old_binding.is_import() {
3636                 true => struct_span_err!(self.session, span, E0254, "{}", msg),
3637                 false => struct_span_err!(self.session, span, E0260, "{}", msg),
3638             },
3639             _ => match (old_binding.is_import(), new_binding.is_import()) {
3640                 (false, false) => struct_span_err!(self.session, span, E0428, "{}", msg),
3641                 (true, true) => struct_span_err!(self.session, span, E0252, "{}", msg),
3642                 _ => struct_span_err!(self.session, span, E0255, "{}", msg),
3643             },
3644         };
3645
3646         err.note(&format!("`{}` must be defined only once in the {} namespace of this {}",
3647                           name,
3648                           namespace,
3649                           container));
3650
3651         err.span_label(span, format!("`{}` re{} here", name, new_participle));
3652         if old_binding.span != syntax_pos::DUMMY_SP {
3653             err.span_label(old_binding.span, format!("previous {} of the {} `{}` here",
3654                                                       old_noun, old_kind, name));
3655         }
3656
3657         err.emit();
3658         self.name_already_seen.insert(name, span);
3659     }
3660
3661     fn warn_legacy_self_import(&self, directive: &'a ImportDirective<'a>) {
3662         let (id, span) = (directive.id, directive.span);
3663         let msg = "`self` no longer imports values";
3664         self.session.buffer_lint(lint::builtin::LEGACY_IMPORTS, id, span, msg);
3665     }
3666
3667     fn check_proc_macro_attrs(&mut self, attrs: &[ast::Attribute]) {
3668         if self.proc_macro_enabled { return; }
3669
3670         for attr in attrs {
3671             if attr.path.segments.len() > 1 {
3672                 continue
3673             }
3674             let ident = attr.path.segments[0].identifier;
3675             let result = self.resolve_lexical_macro_path_segment(ident,
3676                                                                  MacroNS,
3677                                                                  false,
3678                                                                  attr.path.span);
3679             if let Ok(binding) = result {
3680                 if let SyntaxExtension::AttrProcMacro(..) = *binding.binding().get_macro(self) {
3681                     attr::mark_known(attr);
3682
3683                     let msg = "attribute procedural macros are experimental";
3684                     let feature = "proc_macro";
3685
3686                     feature_err(&self.session.parse_sess, feature,
3687                                 attr.span, GateIssue::Language, msg)
3688                         .span_note(binding.span(), "procedural macro imported here")
3689                         .emit();
3690                 }
3691             }
3692         }
3693     }
3694 }
3695
3696 fn is_struct_like(def: Def) -> bool {
3697     match def {
3698         Def::VariantCtor(_, CtorKind::Fictive) => true,
3699         _ => PathSource::Struct.is_expected(def),
3700     }
3701 }
3702
3703 fn is_self_type(path: &[SpannedIdent], namespace: Namespace) -> bool {
3704     namespace == TypeNS && path.len() == 1 && path[0].node.name == keywords::SelfType.name()
3705 }
3706
3707 fn is_self_value(path: &[SpannedIdent], namespace: Namespace) -> bool {
3708     namespace == ValueNS && path.len() == 1 && path[0].node.name == keywords::SelfValue.name()
3709 }
3710
3711 fn names_to_string(idents: &[SpannedIdent]) -> String {
3712     let mut result = String::new();
3713     for (i, ident) in idents.iter()
3714                             .filter(|i| i.node.name != keywords::CrateRoot.name())
3715                             .enumerate() {
3716         if i > 0 {
3717             result.push_str("::");
3718         }
3719         result.push_str(&ident.node.name.as_str());
3720     }
3721     result
3722 }
3723
3724 fn path_names_to_string(path: &Path) -> String {
3725     names_to_string(&path.segments.iter()
3726                         .map(|seg| respan(seg.span, seg.identifier))
3727                         .collect::<Vec<_>>())
3728 }
3729
3730 /// Get the path for an enum and the variant from an `ImportSuggestion` for an enum variant.
3731 fn import_candidate_to_paths(suggestion: &ImportSuggestion) -> (Span, String, String) {
3732     let variant_path = &suggestion.path;
3733     let variant_path_string = path_names_to_string(variant_path);
3734
3735     let path_len = suggestion.path.segments.len();
3736     let enum_path = ast::Path {
3737         span: suggestion.path.span,
3738         segments: suggestion.path.segments[0..path_len - 1].to_vec(),
3739     };
3740     let enum_path_string = path_names_to_string(&enum_path);
3741
3742     (suggestion.path.span, variant_path_string, enum_path_string)
3743 }
3744
3745
3746 /// When an entity with a given name is not available in scope, we search for
3747 /// entities with that name in all crates. This method allows outputting the
3748 /// results of this search in a programmer-friendly way
3749 fn show_candidates(err: &mut DiagnosticBuilder,
3750                    span: Span,
3751                    candidates: &[ImportSuggestion],
3752                    better: bool,
3753                    found_use: bool) {
3754
3755     // we want consistent results across executions, but candidates are produced
3756     // by iterating through a hash map, so make sure they are ordered:
3757     let mut path_strings: Vec<_> =
3758         candidates.into_iter().map(|c| path_names_to_string(&c.path)).collect();
3759     path_strings.sort();
3760
3761     let better = if better { "better " } else { "" };
3762     let msg_diff = match path_strings.len() {
3763         1 => " is found in another module, you can import it",
3764         _ => "s are found in other modules, you can import them",
3765     };
3766     let msg = format!("possible {}candidate{} into scope", better, msg_diff);
3767
3768     for candidate in &mut path_strings {
3769         // produce an additional newline to separate the new use statement
3770         // from the directly following item.
3771         let additional_newline = if found_use {
3772             ""
3773         } else {
3774             "\n"
3775         };
3776         *candidate = format!("use {};\n{}", candidate, additional_newline);
3777     }
3778
3779     err.span_suggestions(span, &msg, path_strings);
3780 }
3781
3782 /// A somewhat inefficient routine to obtain the name of a module.
3783 fn module_to_string(module: Module) -> String {
3784     let mut names = Vec::new();
3785
3786     fn collect_mod(names: &mut Vec<Ident>, module: Module) {
3787         if let ModuleKind::Def(_, name) = module.kind {
3788             if let Some(parent) = module.parent {
3789                 names.push(Ident::with_empty_ctxt(name));
3790                 collect_mod(names, parent);
3791             }
3792         } else {
3793             // danger, shouldn't be ident?
3794             names.push(Ident::from_str("<opaque>"));
3795             collect_mod(names, module.parent.unwrap());
3796         }
3797     }
3798     collect_mod(&mut names, module);
3799
3800     if names.is_empty() {
3801         return "???".to_string();
3802     }
3803     names_to_string(&names.into_iter()
3804                         .rev()
3805                         .map(|n| dummy_spanned(n))
3806                         .collect::<Vec<_>>())
3807 }
3808
3809 fn err_path_resolution() -> PathResolution {
3810     PathResolution::new(Def::Err)
3811 }
3812
3813 #[derive(PartialEq,Copy, Clone)]
3814 pub enum MakeGlobMap {
3815     Yes,
3816     No,
3817 }
3818
3819 __build_diagnostic_array! { librustc_resolve, DIAGNOSTICS }