]> git.lizzy.rs Git - rust.git/blob - src/librustc_resolve/lib.rs
Auto merge of #41919 - nrc:save-crate, r=eddyb
[rust.git] / src / librustc_resolve / lib.rs
1 // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 #![crate_name = "rustc_resolve"]
12 #![crate_type = "dylib"]
13 #![crate_type = "rlib"]
14 #![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
15       html_favicon_url = "https://doc.rust-lang.org/favicon.ico",
16       html_root_url = "https://doc.rust-lang.org/nightly/")]
17 #![deny(warnings)]
18
19 #![feature(associated_consts)]
20 #![feature(rustc_diagnostic_macros)]
21
22 #![cfg_attr(stage0, unstable(feature = "rustc_private", issue = "27812"))]
23 #![cfg_attr(stage0, feature(rustc_private))]
24 #![cfg_attr(stage0, feature(staged_api))]
25
26 #[macro_use]
27 extern crate log;
28 #[macro_use]
29 extern crate syntax;
30 extern crate syntax_pos;
31 extern crate rustc_errors as errors;
32 extern crate arena;
33 #[macro_use]
34 extern crate rustc;
35
36 use self::Namespace::*;
37 use self::TypeParameters::*;
38 use self::RibKind::*;
39
40 use rustc::hir::map::{Definitions, DefCollector};
41 use rustc::hir::{self, PrimTy, TyBool, TyChar, TyFloat, TyInt, TyUint, TyStr};
42 use rustc::middle::cstore::CrateLoader;
43 use rustc::session::Session;
44 use rustc::lint;
45 use rustc::hir::def::*;
46 use rustc::hir::def_id::{CrateNum, CRATE_DEF_INDEX, LOCAL_CRATE, DefId};
47 use rustc::ty;
48 use rustc::hir::{Freevar, FreevarMap, TraitCandidate, TraitMap, GlobMap};
49 use rustc::util::nodemap::{NodeMap, NodeSet, FxHashMap, FxHashSet, DefIdMap};
50
51 use syntax::ext::hygiene::{Mark, SyntaxContext};
52 use syntax::ast::{self, Name, NodeId, Ident, SpannedIdent, FloatTy, IntTy, UintTy};
53 use syntax::ext::base::SyntaxExtension;
54 use syntax::ext::base::Determinacy::{Determined, Undetermined};
55 use syntax::ext::base::MacroKind;
56 use syntax::symbol::{Symbol, keywords};
57 use syntax::util::lev_distance::find_best_match_for_name;
58
59 use syntax::visit::{self, FnKind, Visitor};
60 use syntax::attr;
61 use syntax::ast::{Arm, BindingMode, Block, Crate, Expr, ExprKind};
62 use syntax::ast::{FnDecl, ForeignItem, ForeignItemKind, Generics};
63 use syntax::ast::{Item, ItemKind, ImplItem, ImplItemKind};
64 use syntax::ast::{Local, Mutability, Pat, PatKind, Path};
65 use syntax::ast::{QSelf, TraitItemKind, TraitRef, Ty, TyKind};
66 use syntax::feature_gate::{feature_err, emit_feature_err, GateIssue};
67
68 use syntax_pos::{Span, DUMMY_SP, MultiSpan};
69 use errors::DiagnosticBuilder;
70
71 use std::cell::{Cell, RefCell};
72 use std::cmp;
73 use std::collections::BTreeSet;
74 use std::fmt;
75 use std::mem::replace;
76 use std::rc::Rc;
77
78 use resolve_imports::{ImportDirective, ImportDirectiveSubclass, NameResolution, ImportResolver};
79 use macros::{InvocationData, LegacyBinding, LegacyScope, MacroBinding};
80
81 // NB: This module needs to be declared first so diagnostics are
82 // registered before they are used.
83 mod diagnostics;
84
85 mod macros;
86 mod check_unused;
87 mod build_reduced_graph;
88 mod resolve_imports;
89
90 /// A free importable items suggested in case of resolution failure.
91 struct ImportSuggestion {
92     path: Path,
93 }
94
95 /// A field or associated item from self type suggested in case of resolution failure.
96 enum AssocSuggestion {
97     Field,
98     MethodWithSelf,
99     AssocItem,
100 }
101
102 #[derive(Eq)]
103 struct BindingError {
104     name: Name,
105     origin: BTreeSet<Span>,
106     target: BTreeSet<Span>,
107 }
108
109 impl PartialOrd for BindingError {
110     fn partial_cmp(&self, other: &BindingError) -> Option<cmp::Ordering> {
111         Some(self.cmp(other))
112     }
113 }
114
115 impl PartialEq for BindingError {
116     fn eq(&self, other: &BindingError) -> bool {
117         self.name == other.name
118     }
119 }
120
121 impl Ord for BindingError {
122     fn cmp(&self, other: &BindingError) -> cmp::Ordering {
123         self.name.cmp(&other.name)
124     }
125 }
126
127 enum ResolutionError<'a> {
128     /// error E0401: can't use type parameters from outer function
129     TypeParametersFromOuterFunction,
130     /// error E0402: cannot use an outer type parameter in this context
131     OuterTypeParameterContext,
132     /// error E0403: the name is already used for a type parameter in this type parameter list
133     NameAlreadyUsedInTypeParameterList(Name, &'a Span),
134     /// error E0407: method is not a member of trait
135     MethodNotMemberOfTrait(Name, &'a str),
136     /// error E0437: type is not a member of trait
137     TypeNotMemberOfTrait(Name, &'a str),
138     /// error E0438: const is not a member of trait
139     ConstNotMemberOfTrait(Name, &'a str),
140     /// error E0408: variable `{}` is not bound in all patterns
141     VariableNotBoundInPattern(&'a BindingError),
142     /// error E0409: variable `{}` is bound in inconsistent ways within the same match arm
143     VariableBoundWithDifferentMode(Name, Span),
144     /// error E0415: identifier is bound more than once in this parameter list
145     IdentifierBoundMoreThanOnceInParameterList(&'a str),
146     /// error E0416: identifier is bound more than once in the same pattern
147     IdentifierBoundMoreThanOnceInSamePattern(&'a str),
148     /// error E0426: use of undeclared label
149     UndeclaredLabel(&'a str),
150     /// error E0429: `self` imports are only allowed within a { } list
151     SelfImportsOnlyAllowedWithin,
152     /// error E0430: `self` import can only appear once in the list
153     SelfImportCanOnlyAppearOnceInTheList,
154     /// error E0431: `self` import can only appear in an import list with a non-empty prefix
155     SelfImportOnlyInImportListWithNonEmptyPrefix,
156     /// error E0432: unresolved import
157     UnresolvedImport(Option<(&'a str, &'a str)>),
158     /// error E0433: failed to resolve
159     FailedToResolve(&'a str),
160     /// error E0434: can't capture dynamic environment in a fn item
161     CannotCaptureDynamicEnvironmentInFnItem,
162     /// error E0435: attempt to use a non-constant value in a constant
163     AttemptToUseNonConstantValueInConstant,
164     /// error E0530: X bindings cannot shadow Ys
165     BindingShadowsSomethingUnacceptable(&'a str, Name, &'a NameBinding<'a>),
166     /// error E0128: type parameters with a default cannot use forward declared identifiers
167     ForwardDeclaredTyParam,
168 }
169
170 fn resolve_error<'sess, 'a>(resolver: &'sess Resolver,
171                             span: Span,
172                             resolution_error: ResolutionError<'a>) {
173     resolve_struct_error(resolver, span, resolution_error).emit();
174 }
175
176 fn resolve_struct_error<'sess, 'a>(resolver: &'sess Resolver,
177                                    span: Span,
178                                    resolution_error: ResolutionError<'a>)
179                                    -> DiagnosticBuilder<'sess> {
180     match resolution_error {
181         ResolutionError::TypeParametersFromOuterFunction => {
182             let mut err = struct_span_err!(resolver.session,
183                                            span,
184                                            E0401,
185                                            "can't use type parameters from outer function; \
186                                            try using a local type parameter instead");
187             err.span_label(span, "use of type variable from outer function");
188             err
189         }
190         ResolutionError::OuterTypeParameterContext => {
191             struct_span_err!(resolver.session,
192                              span,
193                              E0402,
194                              "cannot use an outer type parameter in this context")
195         }
196         ResolutionError::NameAlreadyUsedInTypeParameterList(name, first_use_span) => {
197              let mut err = struct_span_err!(resolver.session,
198                                             span,
199                                             E0403,
200                                             "the name `{}` is already used for a type parameter \
201                                             in this type parameter list",
202                                             name);
203              err.span_label(span, "already used");
204              err.span_label(first_use_span.clone(), format!("first use of `{}`", name));
205              err
206         }
207         ResolutionError::MethodNotMemberOfTrait(method, trait_) => {
208             let mut err = struct_span_err!(resolver.session,
209                                            span,
210                                            E0407,
211                                            "method `{}` is not a member of trait `{}`",
212                                            method,
213                                            trait_);
214             err.span_label(span, format!("not a member of trait `{}`", trait_));
215             err
216         }
217         ResolutionError::TypeNotMemberOfTrait(type_, trait_) => {
218             let mut err = struct_span_err!(resolver.session,
219                              span,
220                              E0437,
221                              "type `{}` is not a member of trait `{}`",
222                              type_,
223                              trait_);
224             err.span_label(span, format!("not a member of trait `{}`", trait_));
225             err
226         }
227         ResolutionError::ConstNotMemberOfTrait(const_, trait_) => {
228             let mut err = struct_span_err!(resolver.session,
229                              span,
230                              E0438,
231                              "const `{}` is not a member of trait `{}`",
232                              const_,
233                              trait_);
234             err.span_label(span, format!("not a member of trait `{}`", trait_));
235             err
236         }
237         ResolutionError::VariableNotBoundInPattern(binding_error) => {
238             let target_sp = binding_error.target.iter().map(|x| *x).collect::<Vec<_>>();
239             let msp = MultiSpan::from_spans(target_sp.clone());
240             let msg = format!("variable `{}` is not bound in all patterns", binding_error.name);
241             let mut err = resolver.session.struct_span_err_with_code(msp, &msg, "E0408");
242             for sp in target_sp {
243                 err.span_label(sp, format!("pattern doesn't bind `{}`", binding_error.name));
244             }
245             let origin_sp = binding_error.origin.iter().map(|x| *x).collect::<Vec<_>>();
246             for sp in origin_sp {
247                 err.span_label(sp, "variable not in all patterns");
248             }
249             err
250         }
251         ResolutionError::VariableBoundWithDifferentMode(variable_name,
252                                                         first_binding_span) => {
253             let mut err = struct_span_err!(resolver.session,
254                              span,
255                              E0409,
256                              "variable `{}` is bound in inconsistent \
257                              ways within the same match arm",
258                              variable_name);
259             err.span_label(span, "bound in different ways");
260             err.span_label(first_binding_span, "first binding");
261             err
262         }
263         ResolutionError::IdentifierBoundMoreThanOnceInParameterList(identifier) => {
264             let mut err = struct_span_err!(resolver.session,
265                              span,
266                              E0415,
267                              "identifier `{}` is bound more than once in this parameter list",
268                              identifier);
269             err.span_label(span, "used as parameter more than once");
270             err
271         }
272         ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(identifier) => {
273             let mut err = struct_span_err!(resolver.session,
274                              span,
275                              E0416,
276                              "identifier `{}` is bound more than once in the same pattern",
277                              identifier);
278             err.span_label(span, "used in a pattern more than once");
279             err
280         }
281         ResolutionError::UndeclaredLabel(name) => {
282             let mut err = struct_span_err!(resolver.session,
283                                            span,
284                                            E0426,
285                                            "use of undeclared label `{}`",
286                                            name);
287             err.span_label(span, format!("undeclared label `{}`", name));
288             err
289         }
290         ResolutionError::SelfImportsOnlyAllowedWithin => {
291             struct_span_err!(resolver.session,
292                              span,
293                              E0429,
294                              "{}",
295                              "`self` imports are only allowed within a { } list")
296         }
297         ResolutionError::SelfImportCanOnlyAppearOnceInTheList => {
298             struct_span_err!(resolver.session,
299                              span,
300                              E0430,
301                              "`self` import can only appear once in the list")
302         }
303         ResolutionError::SelfImportOnlyInImportListWithNonEmptyPrefix => {
304             struct_span_err!(resolver.session,
305                              span,
306                              E0431,
307                              "`self` import can only appear in an import list with a \
308                               non-empty prefix")
309         }
310         ResolutionError::UnresolvedImport(name) => {
311             let msg = match name {
312                 Some((n, _)) => format!("unresolved import `{}`", n),
313                 None => "unresolved import".to_owned(),
314             };
315             let mut err = struct_span_err!(resolver.session, span, E0432, "{}", msg);
316             if let Some((_, p)) = name {
317                 err.span_label(span, p);
318             }
319             err
320         }
321         ResolutionError::FailedToResolve(msg) => {
322             let mut err = struct_span_err!(resolver.session, span, E0433,
323                                            "failed to resolve. {}", msg);
324             err.span_label(span, msg);
325             err
326         }
327         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem => {
328             struct_span_err!(resolver.session,
329                              span,
330                              E0434,
331                              "{}",
332                              "can't capture dynamic environment in a fn item; use the || { ... } \
333                               closure form instead")
334         }
335         ResolutionError::AttemptToUseNonConstantValueInConstant => {
336             let mut err = struct_span_err!(resolver.session,
337                              span,
338                              E0435,
339                              "attempt to use a non-constant value in a constant");
340             err.span_label(span, "non-constant used with constant");
341             err
342         }
343         ResolutionError::BindingShadowsSomethingUnacceptable(what_binding, name, binding) => {
344             let shadows_what = PathResolution::new(binding.def()).kind_name();
345             let mut err = struct_span_err!(resolver.session,
346                                            span,
347                                            E0530,
348                                            "{}s cannot shadow {}s", what_binding, shadows_what);
349             err.span_label(span, format!("cannot be named the same as a {}", shadows_what));
350             let participle = if binding.is_import() { "imported" } else { "defined" };
351             let msg = format!("a {} `{}` is {} here", shadows_what, name, participle);
352             err.span_label(binding.span, msg);
353             err
354         }
355         ResolutionError::ForwardDeclaredTyParam => {
356             let mut err = struct_span_err!(resolver.session, span, E0128,
357                                            "type parameters with a default cannot use \
358                                             forward declared identifiers");
359             err.span_label(span, format!("defaulted type parameters \
360                                            cannot be forward declared"));
361             err
362         }
363     }
364 }
365
366 #[derive(Copy, Clone, Debug)]
367 struct BindingInfo {
368     span: Span,
369     binding_mode: BindingMode,
370 }
371
372 // Map from the name in a pattern to its binding mode.
373 type BindingMap = FxHashMap<Ident, BindingInfo>;
374
375 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
376 enum PatternSource {
377     Match,
378     IfLet,
379     WhileLet,
380     Let,
381     For,
382     FnParam,
383 }
384
385 impl PatternSource {
386     fn is_refutable(self) -> bool {
387         match self {
388             PatternSource::Match | PatternSource::IfLet | PatternSource::WhileLet => true,
389             PatternSource::Let | PatternSource::For | PatternSource::FnParam  => false,
390         }
391     }
392     fn descr(self) -> &'static str {
393         match self {
394             PatternSource::Match => "match binding",
395             PatternSource::IfLet => "if let binding",
396             PatternSource::WhileLet => "while let binding",
397             PatternSource::Let => "let binding",
398             PatternSource::For => "for binding",
399             PatternSource::FnParam => "function parameter",
400         }
401     }
402 }
403
404 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
405 enum PathSource<'a> {
406     // Type paths `Path`.
407     Type,
408     // Trait paths in bounds or impls.
409     Trait,
410     // Expression paths `path`, with optional parent context.
411     Expr(Option<&'a Expr>),
412     // Paths in path patterns `Path`.
413     Pat,
414     // Paths in struct expressions and patterns `Path { .. }`.
415     Struct,
416     // Paths in tuple struct patterns `Path(..)`.
417     TupleStruct,
418     // `m::A::B` in `<T as m::A>::B::C`.
419     TraitItem(Namespace),
420     // Path in `pub(path)`
421     Visibility,
422     // Path in `use a::b::{...};`
423     ImportPrefix,
424 }
425
426 impl<'a> PathSource<'a> {
427     fn namespace(self) -> Namespace {
428         match self {
429             PathSource::Type | PathSource::Trait | PathSource::Struct |
430             PathSource::Visibility | PathSource::ImportPrefix => TypeNS,
431             PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct => ValueNS,
432             PathSource::TraitItem(ns) => ns,
433         }
434     }
435
436     fn global_by_default(self) -> bool {
437         match self {
438             PathSource::Visibility | PathSource::ImportPrefix => true,
439             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
440             PathSource::Struct | PathSource::TupleStruct |
441             PathSource::Trait | PathSource::TraitItem(..) => false,
442         }
443     }
444
445     fn defer_to_typeck(self) -> bool {
446         match self {
447             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
448             PathSource::Struct | PathSource::TupleStruct => true,
449             PathSource::Trait | PathSource::TraitItem(..) |
450             PathSource::Visibility | PathSource::ImportPrefix => false,
451         }
452     }
453
454     fn descr_expected(self) -> &'static str {
455         match self {
456             PathSource::Type => "type",
457             PathSource::Trait => "trait",
458             PathSource::Pat => "unit struct/variant or constant",
459             PathSource::Struct => "struct, variant or union type",
460             PathSource::TupleStruct => "tuple struct/variant",
461             PathSource::Visibility => "module",
462             PathSource::ImportPrefix => "module or enum",
463             PathSource::TraitItem(ns) => match ns {
464                 TypeNS => "associated type",
465                 ValueNS => "method or associated constant",
466                 MacroNS => bug!("associated macro"),
467             },
468             PathSource::Expr(parent) => match parent.map(|p| &p.node) {
469                 // "function" here means "anything callable" rather than `Def::Fn`,
470                 // this is not precise but usually more helpful than just "value".
471                 Some(&ExprKind::Call(..)) => "function",
472                 _ => "value",
473             },
474         }
475     }
476
477     fn is_expected(self, def: Def) -> bool {
478         match self {
479             PathSource::Type => match def {
480                 Def::Struct(..) | Def::Union(..) | Def::Enum(..) |
481                 Def::Trait(..) | Def::TyAlias(..) | Def::AssociatedTy(..) |
482                 Def::PrimTy(..) | Def::TyParam(..) | Def::SelfTy(..) => true,
483                 _ => false,
484             },
485             PathSource::Trait => match def {
486                 Def::Trait(..) => true,
487                 _ => false,
488             },
489             PathSource::Expr(..) => match def {
490                 Def::StructCtor(_, CtorKind::Const) | Def::StructCtor(_, CtorKind::Fn) |
491                 Def::VariantCtor(_, CtorKind::Const) | Def::VariantCtor(_, CtorKind::Fn) |
492                 Def::Const(..) | Def::Static(..) | Def::Local(..) | Def::Upvar(..) |
493                 Def::Fn(..) | Def::Method(..) | Def::AssociatedConst(..) => true,
494                 _ => false,
495             },
496             PathSource::Pat => match def {
497                 Def::StructCtor(_, CtorKind::Const) |
498                 Def::VariantCtor(_, CtorKind::Const) |
499                 Def::Const(..) | Def::AssociatedConst(..) => true,
500                 _ => false,
501             },
502             PathSource::TupleStruct => match def {
503                 Def::StructCtor(_, CtorKind::Fn) | Def::VariantCtor(_, CtorKind::Fn) => true,
504                 _ => false,
505             },
506             PathSource::Struct => match def {
507                 Def::Struct(..) | Def::Union(..) | Def::Variant(..) |
508                 Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => true,
509                 _ => false,
510             },
511             PathSource::TraitItem(ns) => match def {
512                 Def::AssociatedConst(..) | Def::Method(..) if ns == ValueNS => true,
513                 Def::AssociatedTy(..) if ns == TypeNS => true,
514                 _ => false,
515             },
516             PathSource::ImportPrefix => match def {
517                 Def::Mod(..) | Def::Enum(..) => true,
518                 _ => false,
519             },
520             PathSource::Visibility => match def {
521                 Def::Mod(..) => true,
522                 _ => false,
523             },
524         }
525     }
526
527     fn error_code(self, has_unexpected_resolution: bool) -> &'static str {
528         __diagnostic_used!(E0404);
529         __diagnostic_used!(E0405);
530         __diagnostic_used!(E0412);
531         __diagnostic_used!(E0422);
532         __diagnostic_used!(E0423);
533         __diagnostic_used!(E0425);
534         __diagnostic_used!(E0531);
535         __diagnostic_used!(E0532);
536         __diagnostic_used!(E0573);
537         __diagnostic_used!(E0574);
538         __diagnostic_used!(E0575);
539         __diagnostic_used!(E0576);
540         __diagnostic_used!(E0577);
541         __diagnostic_used!(E0578);
542         match (self, has_unexpected_resolution) {
543             (PathSource::Trait, true) => "E0404",
544             (PathSource::Trait, false) => "E0405",
545             (PathSource::Type, true) => "E0573",
546             (PathSource::Type, false) => "E0412",
547             (PathSource::Struct, true) => "E0574",
548             (PathSource::Struct, false) => "E0422",
549             (PathSource::Expr(..), true) => "E0423",
550             (PathSource::Expr(..), false) => "E0425",
551             (PathSource::Pat, true) | (PathSource::TupleStruct, true) => "E0532",
552             (PathSource::Pat, false) | (PathSource::TupleStruct, false) => "E0531",
553             (PathSource::TraitItem(..), true) => "E0575",
554             (PathSource::TraitItem(..), false) => "E0576",
555             (PathSource::Visibility, true) | (PathSource::ImportPrefix, true) => "E0577",
556             (PathSource::Visibility, false) | (PathSource::ImportPrefix, false) => "E0578",
557         }
558     }
559 }
560
561 #[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
562 pub enum Namespace {
563     TypeNS,
564     ValueNS,
565     MacroNS,
566 }
567
568 #[derive(Clone, Default, Debug)]
569 pub struct PerNS<T> {
570     value_ns: T,
571     type_ns: T,
572     macro_ns: Option<T>,
573 }
574
575 impl<T> ::std::ops::Index<Namespace> for PerNS<T> {
576     type Output = T;
577     fn index(&self, ns: Namespace) -> &T {
578         match ns {
579             ValueNS => &self.value_ns,
580             TypeNS => &self.type_ns,
581             MacroNS => self.macro_ns.as_ref().unwrap(),
582         }
583     }
584 }
585
586 impl<T> ::std::ops::IndexMut<Namespace> for PerNS<T> {
587     fn index_mut(&mut self, ns: Namespace) -> &mut T {
588         match ns {
589             ValueNS => &mut self.value_ns,
590             TypeNS => &mut self.type_ns,
591             MacroNS => self.macro_ns.as_mut().unwrap(),
592         }
593     }
594 }
595
596 impl<'a, 'tcx> Visitor<'tcx> for Resolver<'a> {
597     fn visit_item(&mut self, item: &'tcx Item) {
598         self.resolve_item(item);
599     }
600     fn visit_arm(&mut self, arm: &'tcx Arm) {
601         self.resolve_arm(arm);
602     }
603     fn visit_block(&mut self, block: &'tcx Block) {
604         self.resolve_block(block);
605     }
606     fn visit_expr(&mut self, expr: &'tcx Expr) {
607         self.resolve_expr(expr, None);
608     }
609     fn visit_local(&mut self, local: &'tcx Local) {
610         self.resolve_local(local);
611     }
612     fn visit_ty(&mut self, ty: &'tcx Ty) {
613         if let TyKind::Path(ref qself, ref path) = ty.node {
614             self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
615         } else if let TyKind::ImplicitSelf = ty.node {
616             let self_ty = keywords::SelfType.ident();
617             let def = self.resolve_ident_in_lexical_scope(self_ty, TypeNS, true, ty.span)
618                           .map_or(Def::Err, |d| d.def());
619             self.record_def(ty.id, PathResolution::new(def));
620         } else if let TyKind::Array(ref element, ref length) = ty.node {
621             self.visit_ty(element);
622             self.with_constant_rib(|this| {
623                 this.visit_expr(length);
624             });
625             return;
626         }
627         visit::walk_ty(self, ty);
628     }
629     fn visit_poly_trait_ref(&mut self,
630                             tref: &'tcx ast::PolyTraitRef,
631                             m: &'tcx ast::TraitBoundModifier) {
632         self.smart_resolve_path(tref.trait_ref.ref_id, None,
633                                 &tref.trait_ref.path, PathSource::Trait);
634         visit::walk_poly_trait_ref(self, tref, m);
635     }
636     fn visit_variant(&mut self,
637                      variant: &'tcx ast::Variant,
638                      generics: &'tcx Generics,
639                      item_id: ast::NodeId) {
640         if let Some(ref dis_expr) = variant.node.disr_expr {
641             // resolve the discriminator expr as a constant
642             self.with_constant_rib(|this| {
643                 this.visit_expr(dis_expr);
644             });
645         }
646
647         // `visit::walk_variant` without the discriminant expression.
648         self.visit_variant_data(&variant.node.data,
649                                 variant.node.name,
650                                 generics,
651                                 item_id,
652                                 variant.span);
653     }
654     fn visit_foreign_item(&mut self, foreign_item: &'tcx ForeignItem) {
655         let type_parameters = match foreign_item.node {
656             ForeignItemKind::Fn(_, ref generics) => {
657                 HasTypeParameters(generics, ItemRibKind)
658             }
659             ForeignItemKind::Static(..) => NoTypeParameters,
660         };
661         self.with_type_parameter_rib(type_parameters, |this| {
662             visit::walk_foreign_item(this, foreign_item);
663         });
664     }
665     fn visit_fn(&mut self,
666                 function_kind: FnKind<'tcx>,
667                 declaration: &'tcx FnDecl,
668                 _: Span,
669                 node_id: NodeId) {
670         let rib_kind = match function_kind {
671             FnKind::ItemFn(_, generics, ..) => {
672                 self.visit_generics(generics);
673                 ItemRibKind
674             }
675             FnKind::Method(_, sig, _, _) => {
676                 self.visit_generics(&sig.generics);
677                 MethodRibKind(!sig.decl.has_self())
678             }
679             FnKind::Closure(_) => ClosureRibKind(node_id),
680         };
681
682         // Create a value rib for the function.
683         self.ribs[ValueNS].push(Rib::new(rib_kind));
684
685         // Create a label rib for the function.
686         self.label_ribs.push(Rib::new(rib_kind));
687
688         // Add each argument to the rib.
689         let mut bindings_list = FxHashMap();
690         for argument in &declaration.inputs {
691             self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
692
693             self.visit_ty(&argument.ty);
694
695             debug!("(resolving function) recorded argument");
696         }
697         visit::walk_fn_ret_ty(self, &declaration.output);
698
699         // Resolve the function body.
700         match function_kind {
701             FnKind::ItemFn(.., body) |
702             FnKind::Method(.., body) => {
703                 self.visit_block(body);
704             }
705             FnKind::Closure(body) => {
706                 self.visit_expr(body);
707             }
708         };
709
710         debug!("(resolving function) leaving function");
711
712         self.label_ribs.pop();
713         self.ribs[ValueNS].pop();
714     }
715     fn visit_generics(&mut self, generics: &'tcx Generics) {
716         // For type parameter defaults, we have to ban access
717         // to following type parameters, as the Substs can only
718         // provide previous type parameters as they're built.
719         let mut default_ban_rib = Rib::new(ForwardTyParamBanRibKind);
720         default_ban_rib.bindings.extend(generics.ty_params.iter()
721             .skip_while(|p| p.default.is_none())
722             .map(|p| (Ident::with_empty_ctxt(p.ident.name), Def::Err)));
723
724         for param in &generics.ty_params {
725             for bound in &param.bounds {
726                 self.visit_ty_param_bound(bound);
727             }
728
729             if let Some(ref ty) = param.default {
730                 self.ribs[TypeNS].push(default_ban_rib);
731                 self.visit_ty(ty);
732                 default_ban_rib = self.ribs[TypeNS].pop().unwrap();
733             }
734
735             // Allow all following defaults to refer to this type parameter.
736             default_ban_rib.bindings.remove(&Ident::with_empty_ctxt(param.ident.name));
737         }
738         for lt in &generics.lifetimes { self.visit_lifetime_def(lt); }
739         for p in &generics.where_clause.predicates { self.visit_where_predicate(p); }
740     }
741 }
742
743 pub type ErrorMessage = Option<(Span, String)>;
744
745 #[derive(Copy, Clone)]
746 enum TypeParameters<'a, 'b> {
747     NoTypeParameters,
748     HasTypeParameters(// Type parameters.
749                       &'b Generics,
750
751                       // The kind of the rib used for type parameters.
752                       RibKind<'a>),
753 }
754
755 // The rib kind controls the translation of local
756 // definitions (`Def::Local`) to upvars (`Def::Upvar`).
757 #[derive(Copy, Clone, Debug)]
758 enum RibKind<'a> {
759     // No translation needs to be applied.
760     NormalRibKind,
761
762     // We passed through a closure scope at the given node ID.
763     // Translate upvars as appropriate.
764     ClosureRibKind(NodeId /* func id */),
765
766     // We passed through an impl or trait and are now in one of its
767     // methods. Allow references to ty params that impl or trait
768     // binds. Disallow any other upvars (including other ty params that are
769     // upvars).
770     //
771     // The boolean value represents the fact that this method is static or not.
772     MethodRibKind(bool),
773
774     // We passed through an item scope. Disallow upvars.
775     ItemRibKind,
776
777     // We're in a constant item. Can't refer to dynamic stuff.
778     ConstantItemRibKind,
779
780     // We passed through a module.
781     ModuleRibKind(Module<'a>),
782
783     // We passed through a `macro_rules!` statement
784     MacroDefinition(DefId),
785
786     // All bindings in this rib are type parameters that can't be used
787     // from the default of a type parameter because they're not declared
788     // before said type parameter. Also see the `visit_generics` override.
789     ForwardTyParamBanRibKind,
790 }
791
792 /// One local scope.
793 #[derive(Debug)]
794 struct Rib<'a> {
795     bindings: FxHashMap<Ident, Def>,
796     kind: RibKind<'a>,
797 }
798
799 impl<'a> Rib<'a> {
800     fn new(kind: RibKind<'a>) -> Rib<'a> {
801         Rib {
802             bindings: FxHashMap(),
803             kind: kind,
804         }
805     }
806 }
807
808 enum LexicalScopeBinding<'a> {
809     Item(&'a NameBinding<'a>),
810     Def(Def),
811 }
812
813 impl<'a> LexicalScopeBinding<'a> {
814     fn item(self) -> Option<&'a NameBinding<'a>> {
815         match self {
816             LexicalScopeBinding::Item(binding) => Some(binding),
817             _ => None,
818         }
819     }
820
821     fn def(self) -> Def {
822         match self {
823             LexicalScopeBinding::Item(binding) => binding.def(),
824             LexicalScopeBinding::Def(def) => def,
825         }
826     }
827 }
828
829 #[derive(Clone)]
830 enum PathResult<'a> {
831     Module(Module<'a>),
832     NonModule(PathResolution),
833     Indeterminate,
834     Failed(String, bool /* is the error from the last segment? */),
835 }
836
837 enum ModuleKind {
838     Block(NodeId),
839     Def(Def, Name),
840 }
841
842 /// One node in the tree of modules.
843 pub struct ModuleData<'a> {
844     parent: Option<Module<'a>>,
845     kind: ModuleKind,
846
847     // The def id of the closest normal module (`mod`) ancestor (including this module).
848     normal_ancestor_id: DefId,
849
850     resolutions: RefCell<FxHashMap<(Ident, Namespace), &'a RefCell<NameResolution<'a>>>>,
851     legacy_macro_resolutions: RefCell<Vec<(Mark, Ident, Span, MacroKind)>>,
852     macro_resolutions: RefCell<Vec<(Box<[Ident]>, Span)>>,
853
854     // Macro invocations that can expand into items in this module.
855     unresolved_invocations: RefCell<FxHashSet<Mark>>,
856
857     no_implicit_prelude: bool,
858
859     glob_importers: RefCell<Vec<&'a ImportDirective<'a>>>,
860     globs: RefCell<Vec<&'a ImportDirective<'a>>>,
861
862     // Used to memoize the traits in this module for faster searches through all traits in scope.
863     traits: RefCell<Option<Box<[(Ident, &'a NameBinding<'a>)]>>>,
864
865     // Whether this module is populated. If not populated, any attempt to
866     // access the children must be preceded with a
867     // `populate_module_if_necessary` call.
868     populated: Cell<bool>,
869
870     /// Span of the module itself. Used for error reporting.
871     span: Span,
872 }
873
874 pub type Module<'a> = &'a ModuleData<'a>;
875
876 impl<'a> ModuleData<'a> {
877     fn new(parent: Option<Module<'a>>,
878            kind: ModuleKind,
879            normal_ancestor_id: DefId,
880            span: Span) -> Self {
881         ModuleData {
882             parent: parent,
883             kind: kind,
884             normal_ancestor_id: normal_ancestor_id,
885             resolutions: RefCell::new(FxHashMap()),
886             legacy_macro_resolutions: RefCell::new(Vec::new()),
887             macro_resolutions: RefCell::new(Vec::new()),
888             unresolved_invocations: RefCell::new(FxHashSet()),
889             no_implicit_prelude: false,
890             glob_importers: RefCell::new(Vec::new()),
891             globs: RefCell::new((Vec::new())),
892             traits: RefCell::new(None),
893             populated: Cell::new(normal_ancestor_id.is_local()),
894             span: span,
895         }
896     }
897
898     fn for_each_child<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
899         for (&(ident, ns), name_resolution) in self.resolutions.borrow().iter() {
900             name_resolution.borrow().binding.map(|binding| f(ident, ns, binding));
901         }
902     }
903
904     fn def(&self) -> Option<Def> {
905         match self.kind {
906             ModuleKind::Def(def, _) => Some(def),
907             _ => None,
908         }
909     }
910
911     fn def_id(&self) -> Option<DefId> {
912         self.def().as_ref().map(Def::def_id)
913     }
914
915     // `self` resolves to the first module ancestor that `is_normal`.
916     fn is_normal(&self) -> bool {
917         match self.kind {
918             ModuleKind::Def(Def::Mod(_), _) => true,
919             _ => false,
920         }
921     }
922
923     fn is_trait(&self) -> bool {
924         match self.kind {
925             ModuleKind::Def(Def::Trait(_), _) => true,
926             _ => false,
927         }
928     }
929
930     fn is_local(&self) -> bool {
931         self.normal_ancestor_id.is_local()
932     }
933
934     fn nearest_item_scope(&'a self) -> Module<'a> {
935         if self.is_trait() { self.parent.unwrap() } else { self }
936     }
937 }
938
939 impl<'a> fmt::Debug for ModuleData<'a> {
940     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
941         write!(f, "{:?}", self.def())
942     }
943 }
944
945 // Records a possibly-private value, type, or module definition.
946 #[derive(Clone, Debug)]
947 pub struct NameBinding<'a> {
948     kind: NameBindingKind<'a>,
949     expansion: Mark,
950     span: Span,
951     vis: ty::Visibility,
952 }
953
954 pub trait ToNameBinding<'a> {
955     fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a>;
956 }
957
958 impl<'a> ToNameBinding<'a> for &'a NameBinding<'a> {
959     fn to_name_binding(self, _: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> {
960         self
961     }
962 }
963
964 #[derive(Clone, Debug)]
965 enum NameBindingKind<'a> {
966     Def(Def),
967     Module(Module<'a>),
968     Import {
969         binding: &'a NameBinding<'a>,
970         directive: &'a ImportDirective<'a>,
971         used: Cell<bool>,
972         legacy_self_import: bool,
973     },
974     Ambiguity {
975         b1: &'a NameBinding<'a>,
976         b2: &'a NameBinding<'a>,
977         legacy: bool,
978     }
979 }
980
981 struct PrivacyError<'a>(Span, Name, &'a NameBinding<'a>);
982
983 struct AmbiguityError<'a> {
984     span: Span,
985     name: Name,
986     lexical: bool,
987     b1: &'a NameBinding<'a>,
988     b2: &'a NameBinding<'a>,
989     legacy: bool,
990 }
991
992 impl<'a> NameBinding<'a> {
993     fn module(&self) -> Option<Module<'a>> {
994         match self.kind {
995             NameBindingKind::Module(module) => Some(module),
996             NameBindingKind::Import { binding, .. } => binding.module(),
997             NameBindingKind::Ambiguity { legacy: true, b1, .. } => b1.module(),
998             _ => None,
999         }
1000     }
1001
1002     fn def(&self) -> Def {
1003         match self.kind {
1004             NameBindingKind::Def(def) => def,
1005             NameBindingKind::Module(module) => module.def().unwrap(),
1006             NameBindingKind::Import { binding, .. } => binding.def(),
1007             NameBindingKind::Ambiguity { legacy: true, b1, .. } => b1.def(),
1008             NameBindingKind::Ambiguity { .. } => Def::Err,
1009         }
1010     }
1011
1012     fn def_ignoring_ambiguity(&self) -> Def {
1013         match self.kind {
1014             NameBindingKind::Import { binding, .. } => binding.def_ignoring_ambiguity(),
1015             NameBindingKind::Ambiguity { b1, .. } => b1.def_ignoring_ambiguity(),
1016             _ => self.def(),
1017         }
1018     }
1019
1020     fn get_macro(&self, resolver: &mut Resolver<'a>) -> Rc<SyntaxExtension> {
1021         resolver.get_macro(self.def_ignoring_ambiguity())
1022     }
1023
1024     // We sometimes need to treat variants as `pub` for backwards compatibility
1025     fn pseudo_vis(&self) -> ty::Visibility {
1026         if self.is_variant() { ty::Visibility::Public } else { self.vis }
1027     }
1028
1029     fn is_variant(&self) -> bool {
1030         match self.kind {
1031             NameBindingKind::Def(Def::Variant(..)) |
1032             NameBindingKind::Def(Def::VariantCtor(..)) => true,
1033             _ => false,
1034         }
1035     }
1036
1037     fn is_extern_crate(&self) -> bool {
1038         match self.kind {
1039             NameBindingKind::Import {
1040                 directive: &ImportDirective {
1041                     subclass: ImportDirectiveSubclass::ExternCrate, ..
1042                 }, ..
1043             } => true,
1044             _ => false,
1045         }
1046     }
1047
1048     fn is_import(&self) -> bool {
1049         match self.kind {
1050             NameBindingKind::Import { .. } => true,
1051             _ => false,
1052         }
1053     }
1054
1055     fn is_glob_import(&self) -> bool {
1056         match self.kind {
1057             NameBindingKind::Import { directive, .. } => directive.is_glob(),
1058             NameBindingKind::Ambiguity { b1, .. } => b1.is_glob_import(),
1059             _ => false,
1060         }
1061     }
1062
1063     fn is_importable(&self) -> bool {
1064         match self.def() {
1065             Def::AssociatedConst(..) | Def::Method(..) | Def::AssociatedTy(..) => false,
1066             _ => true,
1067         }
1068     }
1069 }
1070
1071 /// Interns the names of the primitive types.
1072 struct PrimitiveTypeTable {
1073     primitive_types: FxHashMap<Name, PrimTy>,
1074 }
1075
1076 impl PrimitiveTypeTable {
1077     fn new() -> PrimitiveTypeTable {
1078         let mut table = PrimitiveTypeTable { primitive_types: FxHashMap() };
1079
1080         table.intern("bool", TyBool);
1081         table.intern("char", TyChar);
1082         table.intern("f32", TyFloat(FloatTy::F32));
1083         table.intern("f64", TyFloat(FloatTy::F64));
1084         table.intern("isize", TyInt(IntTy::Is));
1085         table.intern("i8", TyInt(IntTy::I8));
1086         table.intern("i16", TyInt(IntTy::I16));
1087         table.intern("i32", TyInt(IntTy::I32));
1088         table.intern("i64", TyInt(IntTy::I64));
1089         table.intern("i128", TyInt(IntTy::I128));
1090         table.intern("str", TyStr);
1091         table.intern("usize", TyUint(UintTy::Us));
1092         table.intern("u8", TyUint(UintTy::U8));
1093         table.intern("u16", TyUint(UintTy::U16));
1094         table.intern("u32", TyUint(UintTy::U32));
1095         table.intern("u64", TyUint(UintTy::U64));
1096         table.intern("u128", TyUint(UintTy::U128));
1097         table
1098     }
1099
1100     fn intern(&mut self, string: &str, primitive_type: PrimTy) {
1101         self.primitive_types.insert(Symbol::intern(string), primitive_type);
1102     }
1103 }
1104
1105 /// The main resolver class.
1106 pub struct Resolver<'a> {
1107     session: &'a Session,
1108
1109     pub definitions: Definitions,
1110
1111     graph_root: Module<'a>,
1112
1113     prelude: Option<Module<'a>>,
1114
1115     trait_item_map: FxHashMap<(DefId, Name, Namespace), (Def, bool /* has self */)>,
1116
1117     // Names of fields of an item `DefId` accessible with dot syntax.
1118     // Used for hints during error reporting.
1119     field_names: FxHashMap<DefId, Vec<Name>>,
1120
1121     // All imports known to succeed or fail.
1122     determined_imports: Vec<&'a ImportDirective<'a>>,
1123
1124     // All non-determined imports.
1125     indeterminate_imports: Vec<&'a ImportDirective<'a>>,
1126
1127     // The module that represents the current item scope.
1128     current_module: Module<'a>,
1129
1130     // The current set of local scopes for types and values.
1131     // FIXME #4948: Reuse ribs to avoid allocation.
1132     ribs: PerNS<Vec<Rib<'a>>>,
1133
1134     // The current set of local scopes, for labels.
1135     label_ribs: Vec<Rib<'a>>,
1136
1137     // The trait that the current context can refer to.
1138     current_trait_ref: Option<(DefId, TraitRef)>,
1139
1140     // The current self type if inside an impl (used for better errors).
1141     current_self_type: Option<Ty>,
1142
1143     // The idents for the primitive types.
1144     primitive_type_table: PrimitiveTypeTable,
1145
1146     def_map: DefMap,
1147     pub freevars: FreevarMap,
1148     freevars_seen: NodeMap<NodeMap<usize>>,
1149     pub export_map: ExportMap,
1150     pub trait_map: TraitMap,
1151
1152     // A map from nodes to anonymous modules.
1153     // Anonymous modules are pseudo-modules that are implicitly created around items
1154     // contained within blocks.
1155     //
1156     // For example, if we have this:
1157     //
1158     //  fn f() {
1159     //      fn g() {
1160     //          ...
1161     //      }
1162     //  }
1163     //
1164     // There will be an anonymous module created around `g` with the ID of the
1165     // entry block for `f`.
1166     block_map: NodeMap<Module<'a>>,
1167     module_map: FxHashMap<DefId, Module<'a>>,
1168     extern_crate_roots: FxHashMap<(CrateNum, bool /* MacrosOnly? */), Module<'a>>,
1169
1170     pub make_glob_map: bool,
1171     // Maps imports to the names of items actually imported (this actually maps
1172     // all imports, but only glob imports are actually interesting).
1173     pub glob_map: GlobMap,
1174
1175     used_imports: FxHashSet<(NodeId, Namespace)>,
1176     pub maybe_unused_trait_imports: NodeSet,
1177
1178     privacy_errors: Vec<PrivacyError<'a>>,
1179     ambiguity_errors: Vec<AmbiguityError<'a>>,
1180     gated_errors: FxHashSet<Span>,
1181     disallowed_shadowing: Vec<&'a LegacyBinding<'a>>,
1182
1183     arenas: &'a ResolverArenas<'a>,
1184     dummy_binding: &'a NameBinding<'a>,
1185     use_extern_macros: bool, // true if `#![feature(use_extern_macros)]`
1186
1187     crate_loader: &'a mut CrateLoader,
1188     macro_names: FxHashSet<Name>,
1189     global_macros: FxHashMap<Name, &'a NameBinding<'a>>,
1190     lexical_macro_resolutions: Vec<(Name, &'a Cell<LegacyScope<'a>>)>,
1191     macro_map: FxHashMap<DefId, Rc<SyntaxExtension>>,
1192     macro_defs: FxHashMap<Mark, DefId>,
1193     local_macro_def_scopes: FxHashMap<NodeId, Module<'a>>,
1194     macro_exports: Vec<Export>,
1195     pub whitelisted_legacy_custom_derives: Vec<Name>,
1196     pub found_unresolved_macro: bool,
1197
1198     // Maps the `Mark` of an expansion to its containing module or block.
1199     invocations: FxHashMap<Mark, &'a InvocationData<'a>>,
1200
1201     // Avoid duplicated errors for "name already defined".
1202     name_already_seen: FxHashMap<Name, Span>,
1203
1204     // If `#![feature(proc_macro)]` is set
1205     proc_macro_enabled: bool,
1206
1207     // A set of procedural macros imported by `#[macro_use]` that have already been warned about
1208     warned_proc_macros: FxHashSet<Name>,
1209
1210     potentially_unused_imports: Vec<&'a ImportDirective<'a>>,
1211
1212     // This table maps struct IDs into struct constructor IDs,
1213     // it's not used during normal resolution, only for better error reporting.
1214     struct_constructors: DefIdMap<(Def, ty::Visibility)>,
1215 }
1216
1217 pub struct ResolverArenas<'a> {
1218     modules: arena::TypedArena<ModuleData<'a>>,
1219     local_modules: RefCell<Vec<Module<'a>>>,
1220     name_bindings: arena::TypedArena<NameBinding<'a>>,
1221     import_directives: arena::TypedArena<ImportDirective<'a>>,
1222     name_resolutions: arena::TypedArena<RefCell<NameResolution<'a>>>,
1223     invocation_data: arena::TypedArena<InvocationData<'a>>,
1224     legacy_bindings: arena::TypedArena<LegacyBinding<'a>>,
1225 }
1226
1227 impl<'a> ResolverArenas<'a> {
1228     fn alloc_module(&'a self, module: ModuleData<'a>) -> Module<'a> {
1229         let module = self.modules.alloc(module);
1230         if module.def_id().map(|def_id| def_id.is_local()).unwrap_or(true) {
1231             self.local_modules.borrow_mut().push(module);
1232         }
1233         module
1234     }
1235     fn local_modules(&'a self) -> ::std::cell::Ref<'a, Vec<Module<'a>>> {
1236         self.local_modules.borrow()
1237     }
1238     fn alloc_name_binding(&'a self, name_binding: NameBinding<'a>) -> &'a NameBinding<'a> {
1239         self.name_bindings.alloc(name_binding)
1240     }
1241     fn alloc_import_directive(&'a self, import_directive: ImportDirective<'a>)
1242                               -> &'a ImportDirective {
1243         self.import_directives.alloc(import_directive)
1244     }
1245     fn alloc_name_resolution(&'a self) -> &'a RefCell<NameResolution<'a>> {
1246         self.name_resolutions.alloc(Default::default())
1247     }
1248     fn alloc_invocation_data(&'a self, expansion_data: InvocationData<'a>)
1249                              -> &'a InvocationData<'a> {
1250         self.invocation_data.alloc(expansion_data)
1251     }
1252     fn alloc_legacy_binding(&'a self, binding: LegacyBinding<'a>) -> &'a LegacyBinding<'a> {
1253         self.legacy_bindings.alloc(binding)
1254     }
1255 }
1256
1257 impl<'a, 'b: 'a> ty::DefIdTree for &'a Resolver<'b> {
1258     fn parent(self, id: DefId) -> Option<DefId> {
1259         match id.krate {
1260             LOCAL_CRATE => self.definitions.def_key(id.index).parent,
1261             _ => self.session.cstore.def_key(id).parent,
1262         }.map(|index| DefId { index: index, ..id })
1263     }
1264 }
1265
1266 impl<'a> hir::lowering::Resolver for Resolver<'a> {
1267     fn resolve_hir_path(&mut self, path: &mut hir::Path, is_value: bool) {
1268         let namespace = if is_value { ValueNS } else { TypeNS };
1269         let hir::Path { ref segments, span, ref mut def } = *path;
1270         let path: Vec<_> = segments.iter().map(|seg| Ident::with_empty_ctxt(seg.name)).collect();
1271         match self.resolve_path(&path, Some(namespace), true, span) {
1272             PathResult::Module(module) => *def = module.def().unwrap(),
1273             PathResult::NonModule(path_res) if path_res.unresolved_segments() == 0 =>
1274                 *def = path_res.base_def(),
1275             PathResult::NonModule(..) => match self.resolve_path(&path, None, true, span) {
1276                 PathResult::Failed(msg, _) => {
1277                     resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
1278                 }
1279                 _ => {}
1280             },
1281             PathResult::Indeterminate => unreachable!(),
1282             PathResult::Failed(msg, _) => {
1283                 resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
1284             }
1285         }
1286     }
1287
1288     fn get_resolution(&mut self, id: NodeId) -> Option<PathResolution> {
1289         self.def_map.get(&id).cloned()
1290     }
1291
1292     fn definitions(&mut self) -> &mut Definitions {
1293         &mut self.definitions
1294     }
1295 }
1296
1297 impl<'a> Resolver<'a> {
1298     pub fn new(session: &'a Session,
1299                krate: &Crate,
1300                crate_name: &str,
1301                make_glob_map: MakeGlobMap,
1302                crate_loader: &'a mut CrateLoader,
1303                arenas: &'a ResolverArenas<'a>)
1304                -> Resolver<'a> {
1305         let root_def_id = DefId::local(CRATE_DEF_INDEX);
1306         let root_module_kind = ModuleKind::Def(Def::Mod(root_def_id), keywords::Invalid.name());
1307         let graph_root = arenas.alloc_module(ModuleData {
1308             no_implicit_prelude: attr::contains_name(&krate.attrs, "no_implicit_prelude"),
1309             ..ModuleData::new(None, root_module_kind, root_def_id, krate.span)
1310         });
1311         let mut module_map = FxHashMap();
1312         module_map.insert(DefId::local(CRATE_DEF_INDEX), graph_root);
1313
1314         let mut definitions = Definitions::new();
1315         DefCollector::new(&mut definitions)
1316             .collect_root(crate_name, &session.local_crate_disambiguator().as_str());
1317
1318         let mut invocations = FxHashMap();
1319         invocations.insert(Mark::root(),
1320                            arenas.alloc_invocation_data(InvocationData::root(graph_root)));
1321
1322         let features = session.features.borrow();
1323
1324         let mut macro_defs = FxHashMap();
1325         macro_defs.insert(Mark::root(), root_def_id);
1326
1327         Resolver {
1328             session: session,
1329
1330             definitions: definitions,
1331
1332             // The outermost module has def ID 0; this is not reflected in the
1333             // AST.
1334             graph_root: graph_root,
1335             prelude: None,
1336
1337             trait_item_map: FxHashMap(),
1338             field_names: FxHashMap(),
1339
1340             determined_imports: Vec::new(),
1341             indeterminate_imports: Vec::new(),
1342
1343             current_module: graph_root,
1344             ribs: PerNS {
1345                 value_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1346                 type_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1347                 macro_ns: Some(vec![Rib::new(ModuleRibKind(graph_root))]),
1348             },
1349             label_ribs: Vec::new(),
1350
1351             current_trait_ref: None,
1352             current_self_type: None,
1353
1354             primitive_type_table: PrimitiveTypeTable::new(),
1355
1356             def_map: NodeMap(),
1357             freevars: NodeMap(),
1358             freevars_seen: NodeMap(),
1359             export_map: NodeMap(),
1360             trait_map: NodeMap(),
1361             module_map: module_map,
1362             block_map: NodeMap(),
1363             extern_crate_roots: FxHashMap(),
1364
1365             make_glob_map: make_glob_map == MakeGlobMap::Yes,
1366             glob_map: NodeMap(),
1367
1368             used_imports: FxHashSet(),
1369             maybe_unused_trait_imports: NodeSet(),
1370
1371             privacy_errors: Vec::new(),
1372             ambiguity_errors: Vec::new(),
1373             gated_errors: FxHashSet(),
1374             disallowed_shadowing: Vec::new(),
1375
1376             arenas: arenas,
1377             dummy_binding: arenas.alloc_name_binding(NameBinding {
1378                 kind: NameBindingKind::Def(Def::Err),
1379                 expansion: Mark::root(),
1380                 span: DUMMY_SP,
1381                 vis: ty::Visibility::Public,
1382             }),
1383
1384             // `#![feature(proc_macro)]` implies `#[feature(extern_macros)]`
1385             use_extern_macros: features.use_extern_macros || features.proc_macro,
1386
1387             crate_loader: crate_loader,
1388             macro_names: FxHashSet(),
1389             global_macros: FxHashMap(),
1390             lexical_macro_resolutions: Vec::new(),
1391             macro_map: FxHashMap(),
1392             macro_exports: Vec::new(),
1393             invocations: invocations,
1394             macro_defs: macro_defs,
1395             local_macro_def_scopes: FxHashMap(),
1396             name_already_seen: FxHashMap(),
1397             whitelisted_legacy_custom_derives: Vec::new(),
1398             proc_macro_enabled: features.proc_macro,
1399             warned_proc_macros: FxHashSet(),
1400             potentially_unused_imports: Vec::new(),
1401             struct_constructors: DefIdMap(),
1402             found_unresolved_macro: false,
1403         }
1404     }
1405
1406     pub fn arenas() -> ResolverArenas<'a> {
1407         ResolverArenas {
1408             modules: arena::TypedArena::new(),
1409             local_modules: RefCell::new(Vec::new()),
1410             name_bindings: arena::TypedArena::new(),
1411             import_directives: arena::TypedArena::new(),
1412             name_resolutions: arena::TypedArena::new(),
1413             invocation_data: arena::TypedArena::new(),
1414             legacy_bindings: arena::TypedArena::new(),
1415         }
1416     }
1417
1418     fn per_ns<T, F: FnMut(&mut Self, Namespace) -> T>(&mut self, mut f: F) -> PerNS<T> {
1419         PerNS {
1420             type_ns: f(self, TypeNS),
1421             value_ns: f(self, ValueNS),
1422             macro_ns: match self.use_extern_macros {
1423                 true => Some(f(self, MacroNS)),
1424                 false => None,
1425             },
1426         }
1427     }
1428
1429     /// Entry point to crate resolution.
1430     pub fn resolve_crate(&mut self, krate: &Crate) {
1431         ImportResolver { resolver: self }.finalize_imports();
1432         self.current_module = self.graph_root;
1433         self.finalize_current_module_macro_resolutions();
1434         visit::walk_crate(self, krate);
1435
1436         check_unused::check_crate(self, krate);
1437         self.report_errors();
1438         self.crate_loader.postprocess(krate);
1439     }
1440
1441     fn new_module(
1442         &self,
1443         parent: Module<'a>,
1444         kind: ModuleKind,
1445         normal_ancestor_id: DefId,
1446         span: Span,
1447     ) -> Module<'a> {
1448         self.arenas.alloc_module(ModuleData::new(Some(parent), kind, normal_ancestor_id, span))
1449     }
1450
1451     fn record_use(&mut self, ident: Ident, ns: Namespace, binding: &'a NameBinding<'a>, span: Span)
1452                   -> bool /* true if an error was reported */ {
1453         match binding.kind {
1454             NameBindingKind::Import { directive, binding, ref used, legacy_self_import }
1455                     if !used.get() => {
1456                 used.set(true);
1457                 directive.used.set(true);
1458                 if legacy_self_import {
1459                     self.warn_legacy_self_import(directive);
1460                     return false;
1461                 }
1462                 self.used_imports.insert((directive.id, ns));
1463                 self.add_to_glob_map(directive.id, ident);
1464                 self.record_use(ident, ns, binding, span)
1465             }
1466             NameBindingKind::Import { .. } => false,
1467             NameBindingKind::Ambiguity { b1, b2, legacy } => {
1468                 self.ambiguity_errors.push(AmbiguityError {
1469                     span: span, name: ident.name, lexical: false, b1: b1, b2: b2, legacy: legacy,
1470                 });
1471                 if legacy {
1472                     self.record_use(ident, ns, b1, span);
1473                 }
1474                 !legacy
1475             }
1476             _ => false
1477         }
1478     }
1479
1480     fn add_to_glob_map(&mut self, id: NodeId, ident: Ident) {
1481         if self.make_glob_map {
1482             self.glob_map.entry(id).or_insert_with(FxHashSet).insert(ident.name);
1483         }
1484     }
1485
1486     /// This resolves the identifier `ident` in the namespace `ns` in the current lexical scope.
1487     /// More specifically, we proceed up the hierarchy of scopes and return the binding for
1488     /// `ident` in the first scope that defines it (or None if no scopes define it).
1489     ///
1490     /// A block's items are above its local variables in the scope hierarchy, regardless of where
1491     /// the items are defined in the block. For example,
1492     /// ```rust
1493     /// fn f() {
1494     ///    g(); // Since there are no local variables in scope yet, this resolves to the item.
1495     ///    let g = || {};
1496     ///    fn g() {}
1497     ///    g(); // This resolves to the local variable `g` since it shadows the item.
1498     /// }
1499     /// ```
1500     ///
1501     /// Invariant: This must only be called during main resolution, not during
1502     /// import resolution.
1503     fn resolve_ident_in_lexical_scope(&mut self,
1504                                       mut ident: Ident,
1505                                       ns: Namespace,
1506                                       record_used: bool,
1507                                       path_span: Span)
1508                                       -> Option<LexicalScopeBinding<'a>> {
1509         if ns == TypeNS {
1510             ident = ident.unhygienize();
1511         }
1512
1513         // Walk backwards up the ribs in scope.
1514         for i in (0 .. self.ribs[ns].len()).rev() {
1515             if let Some(def) = self.ribs[ns][i].bindings.get(&ident).cloned() {
1516                 // The ident resolves to a type parameter or local variable.
1517                 return Some(LexicalScopeBinding::Def(
1518                     self.adjust_local_def(ns, i, def, record_used, path_span)
1519                 ));
1520             }
1521
1522             if let ModuleRibKind(module) = self.ribs[ns][i].kind {
1523                 let item = self.resolve_ident_in_module(module, ident, ns, false,
1524                                                         record_used, path_span);
1525                 if let Ok(binding) = item {
1526                     // The ident resolves to an item.
1527                     return Some(LexicalScopeBinding::Item(binding));
1528                 }
1529
1530                 if let ModuleKind::Block(..) = module.kind { // We can see through blocks
1531                 } else if !module.no_implicit_prelude {
1532                     return self.prelude.and_then(|prelude| {
1533                         self.resolve_ident_in_module(prelude, ident, ns, false,
1534                                                      false, path_span).ok()
1535                     }).map(LexicalScopeBinding::Item)
1536                 } else {
1537                     return None;
1538                 }
1539             }
1540
1541             if let MacroDefinition(def) = self.ribs[ns][i].kind {
1542                 // If an invocation of this macro created `ident`, give up on `ident`
1543                 // and switch to `ident`'s source from the macro definition.
1544                 let ctxt_data = ident.ctxt.data();
1545                 if def == self.macro_defs[&ctxt_data.outer_mark] {
1546                     ident.ctxt = ctxt_data.prev_ctxt;
1547                 }
1548             }
1549         }
1550
1551         None
1552     }
1553
1554     fn resolve_crate_var(&mut self, crate_var_ctxt: SyntaxContext, span: Span) -> Module<'a> {
1555         let mut ctxt_data = crate_var_ctxt.data();
1556         while ctxt_data.prev_ctxt != SyntaxContext::empty() {
1557             ctxt_data = ctxt_data.prev_ctxt.data();
1558         }
1559         let module = self.macro_def_scope(ctxt_data.outer_mark, span);
1560         if module.is_local() { self.graph_root } else { module }
1561     }
1562
1563     // AST resolution
1564     //
1565     // We maintain a list of value ribs and type ribs.
1566     //
1567     // Simultaneously, we keep track of the current position in the module
1568     // graph in the `current_module` pointer. When we go to resolve a name in
1569     // the value or type namespaces, we first look through all the ribs and
1570     // then query the module graph. When we resolve a name in the module
1571     // namespace, we can skip all the ribs (since nested modules are not
1572     // allowed within blocks in Rust) and jump straight to the current module
1573     // graph node.
1574     //
1575     // Named implementations are handled separately. When we find a method
1576     // call, we consult the module node to find all of the implementations in
1577     // scope. This information is lazily cached in the module node. We then
1578     // generate a fake "implementation scope" containing all the
1579     // implementations thus found, for compatibility with old resolve pass.
1580
1581     fn with_scope<F>(&mut self, id: NodeId, f: F)
1582         where F: FnOnce(&mut Resolver)
1583     {
1584         let id = self.definitions.local_def_id(id);
1585         let module = self.module_map.get(&id).cloned(); // clones a reference
1586         if let Some(module) = module {
1587             // Move down in the graph.
1588             let orig_module = replace(&mut self.current_module, module);
1589             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(module)));
1590             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(module)));
1591
1592             self.finalize_current_module_macro_resolutions();
1593             f(self);
1594
1595             self.current_module = orig_module;
1596             self.ribs[ValueNS].pop();
1597             self.ribs[TypeNS].pop();
1598         } else {
1599             f(self);
1600         }
1601     }
1602
1603     /// Searches the current set of local scopes for labels.
1604     /// Stops after meeting a closure.
1605     fn search_label(&self, mut ident: Ident) -> Option<Def> {
1606         for rib in self.label_ribs.iter().rev() {
1607             match rib.kind {
1608                 NormalRibKind => {
1609                     // Continue
1610                 }
1611                 MacroDefinition(def) => {
1612                     // If an invocation of this macro created `ident`, give up on `ident`
1613                     // and switch to `ident`'s source from the macro definition.
1614                     let ctxt_data = ident.ctxt.data();
1615                     if def == self.macro_defs[&ctxt_data.outer_mark] {
1616                         ident.ctxt = ctxt_data.prev_ctxt;
1617                     }
1618                 }
1619                 _ => {
1620                     // Do not resolve labels across function boundary
1621                     return None;
1622                 }
1623             }
1624             let result = rib.bindings.get(&ident).cloned();
1625             if result.is_some() {
1626                 return result;
1627             }
1628         }
1629         None
1630     }
1631
1632     fn resolve_item(&mut self, item: &Item) {
1633         let name = item.ident.name;
1634
1635         debug!("(resolving item) resolving {}", name);
1636
1637         self.check_proc_macro_attrs(&item.attrs);
1638
1639         match item.node {
1640             ItemKind::Enum(_, ref generics) |
1641             ItemKind::Ty(_, ref generics) |
1642             ItemKind::Struct(_, ref generics) |
1643             ItemKind::Union(_, ref generics) |
1644             ItemKind::Fn(.., ref generics, _) => {
1645                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind),
1646                                              |this| visit::walk_item(this, item));
1647             }
1648
1649             ItemKind::DefaultImpl(_, ref trait_ref) => {
1650                 self.with_optional_trait_ref(Some(trait_ref), |this, _| {
1651                     // Resolve type arguments in trait path
1652                     visit::walk_trait_ref(this, trait_ref);
1653                 });
1654             }
1655             ItemKind::Impl(.., ref generics, ref opt_trait_ref, ref self_type, ref impl_items) =>
1656                 self.resolve_implementation(generics,
1657                                             opt_trait_ref,
1658                                             &self_type,
1659                                             item.id,
1660                                             impl_items),
1661
1662             ItemKind::Trait(_, ref generics, ref bounds, ref trait_items) => {
1663                 // Create a new rib for the trait-wide type parameters.
1664                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
1665                     let local_def_id = this.definitions.local_def_id(item.id);
1666                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
1667                         this.visit_generics(generics);
1668                         walk_list!(this, visit_ty_param_bound, bounds);
1669
1670                         for trait_item in trait_items {
1671                             this.check_proc_macro_attrs(&trait_item.attrs);
1672
1673                             match trait_item.node {
1674                                 TraitItemKind::Const(_, ref default) => {
1675                                     // Only impose the restrictions of
1676                                     // ConstRibKind if there's an actual constant
1677                                     // expression in a provided default.
1678                                     if default.is_some() {
1679                                         this.with_constant_rib(|this| {
1680                                             visit::walk_trait_item(this, trait_item)
1681                                         });
1682                                     } else {
1683                                         visit::walk_trait_item(this, trait_item)
1684                                     }
1685                                 }
1686                                 TraitItemKind::Method(ref sig, _) => {
1687                                     let type_parameters =
1688                                         HasTypeParameters(&sig.generics,
1689                                                           MethodRibKind(!sig.decl.has_self()));
1690                                     this.with_type_parameter_rib(type_parameters, |this| {
1691                                         visit::walk_trait_item(this, trait_item)
1692                                     });
1693                                 }
1694                                 TraitItemKind::Type(..) => {
1695                                     this.with_type_parameter_rib(NoTypeParameters, |this| {
1696                                         visit::walk_trait_item(this, trait_item)
1697                                     });
1698                                 }
1699                                 TraitItemKind::Macro(_) => panic!("unexpanded macro in resolve!"),
1700                             };
1701                         }
1702                     });
1703                 });
1704             }
1705
1706             ItemKind::Mod(_) | ItemKind::ForeignMod(_) => {
1707                 self.with_scope(item.id, |this| {
1708                     visit::walk_item(this, item);
1709                 });
1710             }
1711
1712             ItemKind::Const(..) | ItemKind::Static(..) => {
1713                 self.with_constant_rib(|this| {
1714                     visit::walk_item(this, item);
1715                 });
1716             }
1717
1718             ItemKind::Use(ref view_path) => {
1719                 match view_path.node {
1720                     ast::ViewPathList(ref prefix, ref items) if items.is_empty() => {
1721                         // Resolve prefix of an import with empty braces (issue #28388).
1722                         self.smart_resolve_path(item.id, None, prefix, PathSource::ImportPrefix);
1723                     }
1724                     _ => {}
1725                 }
1726             }
1727
1728             ItemKind::ExternCrate(_) | ItemKind::MacroDef(..) | ItemKind::GlobalAsm(_)=> {
1729                 // do nothing, these are just around to be encoded
1730             }
1731
1732             ItemKind::Mac(_) => panic!("unexpanded macro in resolve!"),
1733         }
1734     }
1735
1736     fn with_type_parameter_rib<'b, F>(&'b mut self, type_parameters: TypeParameters<'a, 'b>, f: F)
1737         where F: FnOnce(&mut Resolver)
1738     {
1739         match type_parameters {
1740             HasTypeParameters(generics, rib_kind) => {
1741                 let mut function_type_rib = Rib::new(rib_kind);
1742                 let mut seen_bindings = FxHashMap();
1743                 for type_parameter in &generics.ty_params {
1744                     let name = type_parameter.ident.name;
1745                     debug!("with_type_parameter_rib: {}", type_parameter.id);
1746
1747                     if seen_bindings.contains_key(&name) {
1748                         let span = seen_bindings.get(&name).unwrap();
1749                         resolve_error(self,
1750                                       type_parameter.span,
1751                                       ResolutionError::NameAlreadyUsedInTypeParameterList(name,
1752                                                                                           span));
1753                     }
1754                     seen_bindings.entry(name).or_insert(type_parameter.span);
1755
1756                     // plain insert (no renaming)
1757                     let def_id = self.definitions.local_def_id(type_parameter.id);
1758                     let def = Def::TyParam(def_id);
1759                     function_type_rib.bindings.insert(Ident::with_empty_ctxt(name), def);
1760                     self.record_def(type_parameter.id, PathResolution::new(def));
1761                 }
1762                 self.ribs[TypeNS].push(function_type_rib);
1763             }
1764
1765             NoTypeParameters => {
1766                 // Nothing to do.
1767             }
1768         }
1769
1770         f(self);
1771
1772         if let HasTypeParameters(..) = type_parameters {
1773             self.ribs[TypeNS].pop();
1774         }
1775     }
1776
1777     fn with_label_rib<F>(&mut self, f: F)
1778         where F: FnOnce(&mut Resolver)
1779     {
1780         self.label_ribs.push(Rib::new(NormalRibKind));
1781         f(self);
1782         self.label_ribs.pop();
1783     }
1784
1785     fn with_constant_rib<F>(&mut self, f: F)
1786         where F: FnOnce(&mut Resolver)
1787     {
1788         self.ribs[ValueNS].push(Rib::new(ConstantItemRibKind));
1789         self.ribs[TypeNS].push(Rib::new(ConstantItemRibKind));
1790         f(self);
1791         self.ribs[TypeNS].pop();
1792         self.ribs[ValueNS].pop();
1793     }
1794
1795     fn with_current_self_type<T, F>(&mut self, self_type: &Ty, f: F) -> T
1796         where F: FnOnce(&mut Resolver) -> T
1797     {
1798         // Handle nested impls (inside fn bodies)
1799         let previous_value = replace(&mut self.current_self_type, Some(self_type.clone()));
1800         let result = f(self);
1801         self.current_self_type = previous_value;
1802         result
1803     }
1804
1805     fn with_optional_trait_ref<T, F>(&mut self, opt_trait_ref: Option<&TraitRef>, f: F) -> T
1806         where F: FnOnce(&mut Resolver, Option<DefId>) -> T
1807     {
1808         let mut new_val = None;
1809         let mut new_id = None;
1810         if let Some(trait_ref) = opt_trait_ref {
1811             let def = self.smart_resolve_path(trait_ref.ref_id, None,
1812                                               &trait_ref.path, PathSource::Trait).base_def();
1813             if def != Def::Err {
1814                 new_val = Some((def.def_id(), trait_ref.clone()));
1815                 new_id = Some(def.def_id());
1816             }
1817         }
1818         let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
1819         let result = f(self, new_id);
1820         self.current_trait_ref = original_trait_ref;
1821         result
1822     }
1823
1824     fn with_self_rib<F>(&mut self, self_def: Def, f: F)
1825         where F: FnOnce(&mut Resolver)
1826     {
1827         let mut self_type_rib = Rib::new(NormalRibKind);
1828
1829         // plain insert (no renaming, types are not currently hygienic....)
1830         self_type_rib.bindings.insert(keywords::SelfType.ident(), self_def);
1831         self.ribs[TypeNS].push(self_type_rib);
1832         f(self);
1833         self.ribs[TypeNS].pop();
1834     }
1835
1836     fn resolve_implementation(&mut self,
1837                               generics: &Generics,
1838                               opt_trait_reference: &Option<TraitRef>,
1839                               self_type: &Ty,
1840                               item_id: NodeId,
1841                               impl_items: &[ImplItem]) {
1842         // If applicable, create a rib for the type parameters.
1843         self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
1844             // Dummy self type for better errors if `Self` is used in the trait path.
1845             this.with_self_rib(Def::SelfTy(None, None), |this| {
1846                 // Resolve the trait reference, if necessary.
1847                 this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| {
1848                     let item_def_id = this.definitions.local_def_id(item_id);
1849                     this.with_self_rib(Def::SelfTy(trait_id, Some(item_def_id)), |this| {
1850                         if let Some(trait_ref) = opt_trait_reference.as_ref() {
1851                             // Resolve type arguments in trait path
1852                             visit::walk_trait_ref(this, trait_ref);
1853                         }
1854                         // Resolve the self type.
1855                         this.visit_ty(self_type);
1856                         // Resolve the type parameters.
1857                         this.visit_generics(generics);
1858                         this.with_current_self_type(self_type, |this| {
1859                             for impl_item in impl_items {
1860                                 this.check_proc_macro_attrs(&impl_item.attrs);
1861                                 this.resolve_visibility(&impl_item.vis);
1862                                 match impl_item.node {
1863                                     ImplItemKind::Const(..) => {
1864                                         // If this is a trait impl, ensure the const
1865                                         // exists in trait
1866                                         this.check_trait_item(impl_item.ident.name,
1867                                                             ValueNS,
1868                                                             impl_item.span,
1869                                             |n, s| ResolutionError::ConstNotMemberOfTrait(n, s));
1870                                         visit::walk_impl_item(this, impl_item);
1871                                     }
1872                                     ImplItemKind::Method(ref sig, _) => {
1873                                         // If this is a trait impl, ensure the method
1874                                         // exists in trait
1875                                         this.check_trait_item(impl_item.ident.name,
1876                                                             ValueNS,
1877                                                             impl_item.span,
1878                                             |n, s| ResolutionError::MethodNotMemberOfTrait(n, s));
1879
1880                                         // We also need a new scope for the method-
1881                                         // specific type parameters.
1882                                         let type_parameters =
1883                                             HasTypeParameters(&sig.generics,
1884                                                             MethodRibKind(!sig.decl.has_self()));
1885                                         this.with_type_parameter_rib(type_parameters, |this| {
1886                                             visit::walk_impl_item(this, impl_item);
1887                                         });
1888                                     }
1889                                     ImplItemKind::Type(ref ty) => {
1890                                         // If this is a trait impl, ensure the type
1891                                         // exists in trait
1892                                         this.check_trait_item(impl_item.ident.name,
1893                                                             TypeNS,
1894                                                             impl_item.span,
1895                                             |n, s| ResolutionError::TypeNotMemberOfTrait(n, s));
1896
1897                                         this.visit_ty(ty);
1898                                     }
1899                                     ImplItemKind::Macro(_) =>
1900                                         panic!("unexpanded macro in resolve!"),
1901                                 }
1902                             }
1903                         });
1904                     });
1905                 });
1906             });
1907         });
1908     }
1909
1910     fn check_trait_item<F>(&self, name: Name, ns: Namespace, span: Span, err: F)
1911         where F: FnOnce(Name, &str) -> ResolutionError
1912     {
1913         // If there is a TraitRef in scope for an impl, then the method must be in the
1914         // trait.
1915         if let Some((did, ref trait_ref)) = self.current_trait_ref {
1916             if !self.trait_item_map.contains_key(&(did, name, ns)) {
1917                 let path_str = path_names_to_string(&trait_ref.path);
1918                 resolve_error(self, span, err(name, &path_str));
1919             }
1920         }
1921     }
1922
1923     fn resolve_local(&mut self, local: &Local) {
1924         // Resolve the type.
1925         walk_list!(self, visit_ty, &local.ty);
1926
1927         // Resolve the initializer.
1928         walk_list!(self, visit_expr, &local.init);
1929
1930         // Resolve the pattern.
1931         self.resolve_pattern(&local.pat, PatternSource::Let, &mut FxHashMap());
1932     }
1933
1934     // build a map from pattern identifiers to binding-info's.
1935     // this is done hygienically. This could arise for a macro
1936     // that expands into an or-pattern where one 'x' was from the
1937     // user and one 'x' came from the macro.
1938     fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
1939         let mut binding_map = FxHashMap();
1940
1941         pat.walk(&mut |pat| {
1942             if let PatKind::Ident(binding_mode, ident, ref sub_pat) = pat.node {
1943                 if sub_pat.is_some() || match self.def_map.get(&pat.id).map(|res| res.base_def()) {
1944                     Some(Def::Local(..)) => true,
1945                     _ => false,
1946                 } {
1947                     let binding_info = BindingInfo { span: ident.span, binding_mode: binding_mode };
1948                     binding_map.insert(ident.node, binding_info);
1949                 }
1950             }
1951             true
1952         });
1953
1954         binding_map
1955     }
1956
1957     // check that all of the arms in an or-pattern have exactly the
1958     // same set of bindings, with the same binding modes for each.
1959     fn check_consistent_bindings(&mut self, arm: &Arm) {
1960         if arm.pats.is_empty() {
1961             return;
1962         }
1963
1964         let mut missing_vars = FxHashMap();
1965         let mut inconsistent_vars = FxHashMap();
1966         for (i, p) in arm.pats.iter().enumerate() {
1967             let map_i = self.binding_mode_map(&p);
1968
1969             for (j, q) in arm.pats.iter().enumerate() {
1970                 if i == j {
1971                     continue;
1972                 }
1973
1974                 let map_j = self.binding_mode_map(&q);
1975                 for (&key, &binding_i) in &map_i {
1976                     if map_j.len() == 0 {                   // Account for missing bindings when
1977                         let binding_error = missing_vars    // map_j has none.
1978                             .entry(key.name)
1979                             .or_insert(BindingError {
1980                                 name: key.name,
1981                                 origin: BTreeSet::new(),
1982                                 target: BTreeSet::new(),
1983                             });
1984                         binding_error.origin.insert(binding_i.span);
1985                         binding_error.target.insert(q.span);
1986                     }
1987                     for (&key_j, &binding_j) in &map_j {
1988                         match map_i.get(&key_j) {
1989                             None => {  // missing binding
1990                                 let binding_error = missing_vars
1991                                     .entry(key_j.name)
1992                                     .or_insert(BindingError {
1993                                         name: key_j.name,
1994                                         origin: BTreeSet::new(),
1995                                         target: BTreeSet::new(),
1996                                     });
1997                                 binding_error.origin.insert(binding_j.span);
1998                                 binding_error.target.insert(p.span);
1999                             }
2000                             Some(binding_i) => {  // check consistent binding
2001                                 if binding_i.binding_mode != binding_j.binding_mode {
2002                                     inconsistent_vars
2003                                         .entry(key.name)
2004                                         .or_insert((binding_j.span, binding_i.span));
2005                                 }
2006                             }
2007                         }
2008                     }
2009                 }
2010             }
2011         }
2012         let mut missing_vars = missing_vars.iter().collect::<Vec<_>>();
2013         missing_vars.sort();
2014         for (_, v) in missing_vars {
2015             resolve_error(self,
2016                           *v.origin.iter().next().unwrap(),
2017                           ResolutionError::VariableNotBoundInPattern(v));
2018         }
2019         let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
2020         inconsistent_vars.sort();
2021         for (name, v) in inconsistent_vars {
2022             resolve_error(self, v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
2023         }
2024     }
2025
2026     fn resolve_arm(&mut self, arm: &Arm) {
2027         self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2028
2029         let mut bindings_list = FxHashMap();
2030         for pattern in &arm.pats {
2031             self.resolve_pattern(&pattern, PatternSource::Match, &mut bindings_list);
2032         }
2033
2034         // This has to happen *after* we determine which
2035         // pat_idents are variants
2036         self.check_consistent_bindings(arm);
2037
2038         walk_list!(self, visit_expr, &arm.guard);
2039         self.visit_expr(&arm.body);
2040
2041         self.ribs[ValueNS].pop();
2042     }
2043
2044     fn resolve_block(&mut self, block: &Block) {
2045         debug!("(resolving block) entering block");
2046         // Move down in the graph, if there's an anonymous module rooted here.
2047         let orig_module = self.current_module;
2048         let anonymous_module = self.block_map.get(&block.id).cloned(); // clones a reference
2049
2050         let mut num_macro_definition_ribs = 0;
2051         if let Some(anonymous_module) = anonymous_module {
2052             debug!("(resolving block) found anonymous module, moving down");
2053             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2054             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2055             self.current_module = anonymous_module;
2056             self.finalize_current_module_macro_resolutions();
2057         } else {
2058             self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2059         }
2060
2061         // Descend into the block.
2062         for stmt in &block.stmts {
2063             if let ast::StmtKind::Item(ref item) = stmt.node {
2064                 if let ast::ItemKind::MacroDef(..) = item.node {
2065                     num_macro_definition_ribs += 1;
2066                     let def = self.definitions.local_def_id(item.id);
2067                     self.ribs[ValueNS].push(Rib::new(MacroDefinition(def)));
2068                     self.label_ribs.push(Rib::new(MacroDefinition(def)));
2069                 }
2070             }
2071
2072             self.visit_stmt(stmt);
2073         }
2074
2075         // Move back up.
2076         self.current_module = orig_module;
2077         for _ in 0 .. num_macro_definition_ribs {
2078             self.ribs[ValueNS].pop();
2079             self.label_ribs.pop();
2080         }
2081         self.ribs[ValueNS].pop();
2082         if let Some(_) = anonymous_module {
2083             self.ribs[TypeNS].pop();
2084         }
2085         debug!("(resolving block) leaving block");
2086     }
2087
2088     fn fresh_binding(&mut self,
2089                      ident: &SpannedIdent,
2090                      pat_id: NodeId,
2091                      outer_pat_id: NodeId,
2092                      pat_src: PatternSource,
2093                      bindings: &mut FxHashMap<Ident, NodeId>)
2094                      -> PathResolution {
2095         // Add the binding to the local ribs, if it
2096         // doesn't already exist in the bindings map. (We
2097         // must not add it if it's in the bindings map
2098         // because that breaks the assumptions later
2099         // passes make about or-patterns.)
2100         let mut def = Def::Local(self.definitions.local_def_id(pat_id));
2101         match bindings.get(&ident.node).cloned() {
2102             Some(id) if id == outer_pat_id => {
2103                 // `Variant(a, a)`, error
2104                 resolve_error(
2105                     self,
2106                     ident.span,
2107                     ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(
2108                         &ident.node.name.as_str())
2109                 );
2110             }
2111             Some(..) if pat_src == PatternSource::FnParam => {
2112                 // `fn f(a: u8, a: u8)`, error
2113                 resolve_error(
2114                     self,
2115                     ident.span,
2116                     ResolutionError::IdentifierBoundMoreThanOnceInParameterList(
2117                         &ident.node.name.as_str())
2118                 );
2119             }
2120             Some(..) if pat_src == PatternSource::Match => {
2121                 // `Variant1(a) | Variant2(a)`, ok
2122                 // Reuse definition from the first `a`.
2123                 def = self.ribs[ValueNS].last_mut().unwrap().bindings[&ident.node];
2124             }
2125             Some(..) => {
2126                 span_bug!(ident.span, "two bindings with the same name from \
2127                                        unexpected pattern source {:?}", pat_src);
2128             }
2129             None => {
2130                 // A completely fresh binding, add to the lists if it's valid.
2131                 if ident.node.name != keywords::Invalid.name() {
2132                     bindings.insert(ident.node, outer_pat_id);
2133                     self.ribs[ValueNS].last_mut().unwrap().bindings.insert(ident.node, def);
2134                 }
2135             }
2136         }
2137
2138         PathResolution::new(def)
2139     }
2140
2141     fn resolve_pattern(&mut self,
2142                        pat: &Pat,
2143                        pat_src: PatternSource,
2144                        // Maps idents to the node ID for the
2145                        // outermost pattern that binds them.
2146                        bindings: &mut FxHashMap<Ident, NodeId>) {
2147         // Visit all direct subpatterns of this pattern.
2148         let outer_pat_id = pat.id;
2149         pat.walk(&mut |pat| {
2150             match pat.node {
2151                 PatKind::Ident(bmode, ref ident, ref opt_pat) => {
2152                     // First try to resolve the identifier as some existing
2153                     // entity, then fall back to a fresh binding.
2154                     let binding = self.resolve_ident_in_lexical_scope(ident.node, ValueNS,
2155                                                                       false, pat.span)
2156                                       .and_then(LexicalScopeBinding::item);
2157                     let resolution = binding.map(NameBinding::def).and_then(|def| {
2158                         let always_binding = !pat_src.is_refutable() || opt_pat.is_some() ||
2159                                              bmode != BindingMode::ByValue(Mutability::Immutable);
2160                         match def {
2161                             Def::StructCtor(_, CtorKind::Const) |
2162                             Def::VariantCtor(_, CtorKind::Const) |
2163                             Def::Const(..) if !always_binding => {
2164                                 // A unit struct/variant or constant pattern.
2165                                 self.record_use(ident.node, ValueNS, binding.unwrap(), ident.span);
2166                                 Some(PathResolution::new(def))
2167                             }
2168                             Def::StructCtor(..) | Def::VariantCtor(..) |
2169                             Def::Const(..) | Def::Static(..) => {
2170                                 // A fresh binding that shadows something unacceptable.
2171                                 resolve_error(
2172                                     self,
2173                                     ident.span,
2174                                     ResolutionError::BindingShadowsSomethingUnacceptable(
2175                                         pat_src.descr(), ident.node.name, binding.unwrap())
2176                                 );
2177                                 None
2178                             }
2179                             Def::Local(..) | Def::Upvar(..) | Def::Fn(..) | Def::Err => {
2180                                 // These entities are explicitly allowed
2181                                 // to be shadowed by fresh bindings.
2182                                 None
2183                             }
2184                             def => {
2185                                 span_bug!(ident.span, "unexpected definition for an \
2186                                                        identifier in pattern: {:?}", def);
2187                             }
2188                         }
2189                     }).unwrap_or_else(|| {
2190                         self.fresh_binding(ident, pat.id, outer_pat_id, pat_src, bindings)
2191                     });
2192
2193                     self.record_def(pat.id, resolution);
2194                 }
2195
2196                 PatKind::TupleStruct(ref path, ..) => {
2197                     self.smart_resolve_path(pat.id, None, path, PathSource::TupleStruct);
2198                 }
2199
2200                 PatKind::Path(ref qself, ref path) => {
2201                     self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
2202                 }
2203
2204                 PatKind::Struct(ref path, ..) => {
2205                     self.smart_resolve_path(pat.id, None, path, PathSource::Struct);
2206                 }
2207
2208                 _ => {}
2209             }
2210             true
2211         });
2212
2213         visit::walk_pat(self, pat);
2214     }
2215
2216     // High-level and context dependent path resolution routine.
2217     // Resolves the path and records the resolution into definition map.
2218     // If resolution fails tries several techniques to find likely
2219     // resolution candidates, suggest imports or other help, and report
2220     // errors in user friendly way.
2221     fn smart_resolve_path(&mut self,
2222                           id: NodeId,
2223                           qself: Option<&QSelf>,
2224                           path: &Path,
2225                           source: PathSource)
2226                           -> PathResolution {
2227         let segments = &path.segments.iter().map(|seg| seg.identifier).collect::<Vec<_>>();
2228         let ident_span = path.segments.last().map_or(path.span, |seg| seg.span);
2229         self.smart_resolve_path_fragment(id, qself, segments, path.span, ident_span, source)
2230     }
2231
2232     fn smart_resolve_path_fragment(&mut self,
2233                                    id: NodeId,
2234                                    qself: Option<&QSelf>,
2235                                    path: &[Ident],
2236                                    span: Span,
2237                                    ident_span: Span,
2238                                    source: PathSource)
2239                                    -> PathResolution {
2240         let ns = source.namespace();
2241         let is_expected = &|def| source.is_expected(def);
2242         let is_enum_variant = &|def| if let Def::Variant(..) = def { true } else { false };
2243
2244         // Base error is amended with one short label and possibly some longer helps/notes.
2245         let report_errors = |this: &mut Self, def: Option<Def>| {
2246             // Make the base error.
2247             let expected = source.descr_expected();
2248             let path_str = names_to_string(path);
2249             let code = source.error_code(def.is_some());
2250             let (base_msg, fallback_label, base_span) = if let Some(def) = def {
2251                 (format!("expected {}, found {} `{}`", expected, def.kind_name(), path_str),
2252                  format!("not a {}", expected), span)
2253             } else {
2254                 let item_str = path[path.len() - 1];
2255                 let (mod_prefix, mod_str) = if path.len() == 1 {
2256                     (format!(""), format!("this scope"))
2257                 } else if path.len() == 2 && path[0].name == keywords::CrateRoot.name() {
2258                     (format!(""), format!("the crate root"))
2259                 } else {
2260                     let mod_path = &path[..path.len() - 1];
2261                     let mod_prefix = match this.resolve_path(mod_path, Some(TypeNS), false, span) {
2262                         PathResult::Module(module) => module.def(),
2263                         _ => None,
2264                     }.map_or(format!(""), |def| format!("{} ", def.kind_name()));
2265                     (mod_prefix, format!("`{}`", names_to_string(mod_path)))
2266                 };
2267                 (format!("cannot find {} `{}` in {}{}", expected, item_str, mod_prefix, mod_str),
2268                  format!("not found in {}", mod_str), ident_span)
2269             };
2270             let mut err = this.session.struct_span_err_with_code(base_span, &base_msg, code);
2271
2272             // Emit special messages for unresolved `Self` and `self`.
2273             if is_self_type(path, ns) {
2274                 __diagnostic_used!(E0411);
2275                 err.code("E0411".into());
2276                 err.span_label(span, "`Self` is only available in traits and impls");
2277                 return err;
2278             }
2279             if is_self_value(path, ns) {
2280                 __diagnostic_used!(E0424);
2281                 err.code("E0424".into());
2282                 err.span_label(span, format!("`self` value is only available in \
2283                                                methods with `self` parameter"));
2284                 return err;
2285             }
2286
2287             // Try to lookup the name in more relaxed fashion for better error reporting.
2288             let name = path.last().unwrap().name;
2289             let candidates = this.lookup_import_candidates(name, ns, is_expected);
2290             if !candidates.is_empty() {
2291                 let mut module_span = this.current_module.span;
2292                 module_span.hi = module_span.lo;
2293                 // Report import candidates as help and proceed searching for labels.
2294                 show_candidates(&mut err, module_span, &candidates, def.is_some());
2295             } else if is_expected(Def::Enum(DefId::local(CRATE_DEF_INDEX))) {
2296                 let enum_candidates = this.lookup_import_candidates(name, ns, is_enum_variant);
2297                 let mut enum_candidates = enum_candidates.iter()
2298                     .map(|suggestion| import_candidate_to_paths(&suggestion)).collect::<Vec<_>>();
2299                 enum_candidates.sort();
2300                 for (sp, variant_path, enum_path) in enum_candidates {
2301                     let msg = format!("there is an enum variant `{}`, did you mean to use `{}`?",
2302                                       variant_path,
2303                                       enum_path);
2304                     if sp == DUMMY_SP {
2305                         err.help(&msg);
2306                     } else {
2307                         err.span_help(sp, &msg);
2308                     }
2309                 }
2310             }
2311             if path.len() == 1 && this.self_type_is_available(span) {
2312                 if let Some(candidate) = this.lookup_assoc_candidate(name, ns, is_expected) {
2313                     let self_is_available = this.self_value_is_available(path[0].ctxt, span);
2314                     match candidate {
2315                         AssocSuggestion::Field => {
2316                             err.span_label(span, format!("did you mean `self.{}`?", path_str));
2317                             if !self_is_available {
2318                                 err.span_label(span, format!("`self` value is only available in \
2319                                                                methods with `self` parameter"));
2320                             }
2321                         }
2322                         AssocSuggestion::MethodWithSelf if self_is_available => {
2323                             err.span_label(span, format!("did you mean `self.{}(...)`?",
2324                                                            path_str));
2325                         }
2326                         AssocSuggestion::MethodWithSelf | AssocSuggestion::AssocItem => {
2327                             err.span_label(span, format!("did you mean `Self::{}`?", path_str));
2328                         }
2329                     }
2330                     return err;
2331                 }
2332             }
2333
2334             let mut levenshtein_worked = false;
2335
2336             // Try Levenshtein.
2337             if let Some(candidate) = this.lookup_typo_candidate(path, ns, is_expected, span) {
2338                 err.span_label(ident_span, format!("did you mean `{}`?", candidate));
2339                 levenshtein_worked = true;
2340             }
2341
2342             // Try context dependent help if relaxed lookup didn't work.
2343             if let Some(def) = def {
2344                 match (def, source) {
2345                     (Def::Macro(..), _) => {
2346                         err.span_label(span, format!("did you mean `{}!(...)`?", path_str));
2347                         return err;
2348                     }
2349                     (Def::TyAlias(..), PathSource::Trait) => {
2350                         err.span_label(span, "type aliases cannot be used for traits");
2351                         return err;
2352                     }
2353                     (Def::Mod(..), PathSource::Expr(Some(parent))) => match parent.node {
2354                         ExprKind::Field(_, ident) => {
2355                             err.span_label(parent.span, format!("did you mean `{}::{}`?",
2356                                                                  path_str, ident.node));
2357                             return err;
2358                         }
2359                         ExprKind::MethodCall(ident, ..) => {
2360                             err.span_label(parent.span, format!("did you mean `{}::{}(...)`?",
2361                                                                  path_str, ident.node));
2362                             return err;
2363                         }
2364                         _ => {}
2365                     },
2366                     _ if ns == ValueNS && is_struct_like(def) => {
2367                         if let Def::Struct(def_id) = def {
2368                             if let Some((ctor_def, ctor_vis))
2369                                     = this.struct_constructors.get(&def_id).cloned() {
2370                                 if is_expected(ctor_def) && !this.is_accessible(ctor_vis) {
2371                                     err.span_label(span, format!("constructor is not visible \
2372                                                                    here due to private fields"));
2373                                 }
2374                             }
2375                         }
2376                         err.span_label(span, format!("did you mean `{} {{ /* fields */ }}`?",
2377                                                        path_str));
2378                         return err;
2379                     }
2380                     _ => {}
2381                 }
2382             }
2383
2384             // Fallback label.
2385             if !levenshtein_worked {
2386                 err.span_label(base_span, fallback_label);
2387             }
2388             err
2389         };
2390         let report_errors = |this: &mut Self, def: Option<Def>| {
2391             report_errors(this, def).emit();
2392             err_path_resolution()
2393         };
2394
2395         let resolution = match self.resolve_qpath_anywhere(id, qself, path, ns, span,
2396                                                            source.defer_to_typeck(),
2397                                                            source.global_by_default()) {
2398             Some(resolution) if resolution.unresolved_segments() == 0 => {
2399                 if is_expected(resolution.base_def()) || resolution.base_def() == Def::Err {
2400                     resolution
2401                 } else {
2402                     // Add a temporary hack to smooth the transition to new struct ctor
2403                     // visibility rules. See #38932 for more details.
2404                     let mut res = None;
2405                     if let Def::Struct(def_id) = resolution.base_def() {
2406                         if let Some((ctor_def, ctor_vis))
2407                                 = self.struct_constructors.get(&def_id).cloned() {
2408                             if is_expected(ctor_def) && self.is_accessible(ctor_vis) {
2409                                 let lint = lint::builtin::LEGACY_CONSTRUCTOR_VISIBILITY;
2410                                 self.session.add_lint(lint, id, span,
2411                                     "private struct constructors are not usable through \
2412                                      reexports in outer modules".to_string());
2413                                 res = Some(PathResolution::new(ctor_def));
2414                             }
2415                         }
2416                     }
2417
2418                     res.unwrap_or_else(|| report_errors(self, Some(resolution.base_def())))
2419                 }
2420             }
2421             Some(resolution) if source.defer_to_typeck() => {
2422                 // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
2423                 // or `<T>::A::B`. If `B` should be resolved in value namespace then
2424                 // it needs to be added to the trait map.
2425                 if ns == ValueNS {
2426                     let item_name = path.last().unwrap().name;
2427                     let traits = self.get_traits_containing_item(item_name, ns);
2428                     self.trait_map.insert(id, traits);
2429                 }
2430                 resolution
2431             }
2432             _ => report_errors(self, None)
2433         };
2434
2435         if let PathSource::TraitItem(..) = source {} else {
2436             // Avoid recording definition of `A::B` in `<T as A>::B::C`.
2437             self.record_def(id, resolution);
2438         }
2439         resolution
2440     }
2441
2442     fn self_type_is_available(&mut self, span: Span) -> bool {
2443         let binding = self.resolve_ident_in_lexical_scope(keywords::SelfType.ident(),
2444                                                           TypeNS, false, span);
2445         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
2446     }
2447
2448     fn self_value_is_available(&mut self, ctxt: SyntaxContext, span: Span) -> bool {
2449         let ident = Ident { name: keywords::SelfValue.name(), ctxt: ctxt };
2450         let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, false, span);
2451         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
2452     }
2453
2454     // Resolve in alternative namespaces if resolution in the primary namespace fails.
2455     fn resolve_qpath_anywhere(&mut self,
2456                               id: NodeId,
2457                               qself: Option<&QSelf>,
2458                               path: &[Ident],
2459                               primary_ns: Namespace,
2460                               span: Span,
2461                               defer_to_typeck: bool,
2462                               global_by_default: bool)
2463                               -> Option<PathResolution> {
2464         let mut fin_res = None;
2465         // FIXME: can't resolve paths in macro namespace yet, macros are
2466         // processed by the little special hack below.
2467         for (i, ns) in [primary_ns, TypeNS, ValueNS, /*MacroNS*/].iter().cloned().enumerate() {
2468             if i == 0 || ns != primary_ns {
2469                 match self.resolve_qpath(id, qself, path, ns, span, global_by_default) {
2470                     // If defer_to_typeck, then resolution > no resolution,
2471                     // otherwise full resolution > partial resolution > no resolution.
2472                     Some(res) if res.unresolved_segments() == 0 || defer_to_typeck =>
2473                         return Some(res),
2474                     res => if fin_res.is_none() { fin_res = res },
2475                 };
2476             }
2477         }
2478         let is_global = self.global_macros.get(&path[0].name).cloned()
2479             .map(|binding| binding.get_macro(self).kind() == MacroKind::Bang).unwrap_or(false);
2480         if primary_ns != MacroNS && (is_global || self.macro_names.contains(&path[0].name)) {
2481             // Return some dummy definition, it's enough for error reporting.
2482             return Some(
2483                 PathResolution::new(Def::Macro(DefId::local(CRATE_DEF_INDEX), MacroKind::Bang))
2484             );
2485         }
2486         fin_res
2487     }
2488
2489     /// Handles paths that may refer to associated items.
2490     fn resolve_qpath(&mut self,
2491                      id: NodeId,
2492                      qself: Option<&QSelf>,
2493                      path: &[Ident],
2494                      ns: Namespace,
2495                      span: Span,
2496                      global_by_default: bool)
2497                      -> Option<PathResolution> {
2498         if let Some(qself) = qself {
2499             if qself.position == 0 {
2500                 // FIXME: Create some fake resolution that can't possibly be a type.
2501                 return Some(PathResolution::with_unresolved_segments(
2502                     Def::Mod(DefId::local(CRATE_DEF_INDEX)), path.len()
2503                 ));
2504             }
2505             // Make sure `A::B` in `<T as A>::B::C` is a trait item.
2506             let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
2507             let res = self.smart_resolve_path_fragment(id, None, &path[..qself.position + 1],
2508                                                        span, span, PathSource::TraitItem(ns));
2509             return Some(PathResolution::with_unresolved_segments(
2510                 res.base_def(), res.unresolved_segments() + path.len() - qself.position - 1
2511             ));
2512         }
2513
2514         let result = match self.resolve_path(&path, Some(ns), true, span) {
2515             PathResult::NonModule(path_res) => path_res,
2516             PathResult::Module(module) if !module.is_normal() => {
2517                 PathResolution::new(module.def().unwrap())
2518             }
2519             // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
2520             // don't report an error right away, but try to fallback to a primitive type.
2521             // So, we are still able to successfully resolve something like
2522             //
2523             // use std::u8; // bring module u8 in scope
2524             // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
2525             //     u8::max_value() // OK, resolves to associated function <u8>::max_value,
2526             //                     // not to non-existent std::u8::max_value
2527             // }
2528             //
2529             // Such behavior is required for backward compatibility.
2530             // The same fallback is used when `a` resolves to nothing.
2531             PathResult::Module(..) | PathResult::Failed(..)
2532                     if (ns == TypeNS || path.len() > 1) &&
2533                        self.primitive_type_table.primitive_types.contains_key(&path[0].name) => {
2534                 let prim = self.primitive_type_table.primitive_types[&path[0].name];
2535                 match prim {
2536                     TyUint(UintTy::U128) | TyInt(IntTy::I128) => {
2537                         if !self.session.features.borrow().i128_type {
2538                             emit_feature_err(&self.session.parse_sess,
2539                                                 "i128_type", span, GateIssue::Language,
2540                                                 "128-bit type is unstable");
2541
2542                         }
2543                     }
2544                     _ => {}
2545                 }
2546                 PathResolution::with_unresolved_segments(Def::PrimTy(prim), path.len() - 1)
2547             }
2548             PathResult::Module(module) => PathResolution::new(module.def().unwrap()),
2549             PathResult::Failed(msg, false) => {
2550                 resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
2551                 err_path_resolution()
2552             }
2553             PathResult::Failed(..) => return None,
2554             PathResult::Indeterminate => bug!("indetermined path result in resolve_qpath"),
2555         };
2556
2557         if path.len() > 1 && !global_by_default && result.base_def() != Def::Err &&
2558            path[0].name != keywords::CrateRoot.name() && path[0].name != "$crate" {
2559             let unqualified_result = {
2560                 match self.resolve_path(&[*path.last().unwrap()], Some(ns), false, span) {
2561                     PathResult::NonModule(path_res) => path_res.base_def(),
2562                     PathResult::Module(module) => module.def().unwrap(),
2563                     _ => return Some(result),
2564                 }
2565             };
2566             if result.base_def() == unqualified_result {
2567                 let lint = lint::builtin::UNUSED_QUALIFICATIONS;
2568                 self.session.add_lint(lint, id, span, "unnecessary qualification".to_string());
2569             }
2570         }
2571
2572         Some(result)
2573     }
2574
2575     fn resolve_path(&mut self,
2576                     path: &[Ident],
2577                     opt_ns: Option<Namespace>, // `None` indicates a module path
2578                     record_used: bool,
2579                     path_span: Span)
2580                     -> PathResult<'a> {
2581         let mut module = None;
2582         let mut allow_super = true;
2583
2584         for (i, &ident) in path.iter().enumerate() {
2585             let is_last = i == path.len() - 1;
2586             let ns = if is_last { opt_ns.unwrap_or(TypeNS) } else { TypeNS };
2587
2588             if i == 0 && ns == TypeNS && ident.name == keywords::SelfValue.name() {
2589                 module = Some(self.module_map[&self.current_module.normal_ancestor_id]);
2590                 continue
2591             } else if allow_super && ns == TypeNS && ident.name == keywords::Super.name() {
2592                 let current_module = if i == 0 { self.current_module } else { module.unwrap() };
2593                 let self_module = self.module_map[&current_module.normal_ancestor_id];
2594                 if let Some(parent) = self_module.parent {
2595                     module = Some(self.module_map[&parent.normal_ancestor_id]);
2596                     continue
2597                 } else {
2598                     let msg = "There are too many initial `super`s.".to_string();
2599                     return PathResult::Failed(msg, false);
2600                 }
2601             }
2602             allow_super = false;
2603
2604             if i == 0 && ns == TypeNS && ident.name == keywords::CrateRoot.name() {
2605                 module = Some(self.graph_root);
2606                 continue
2607             } else if i == 0 && ns == TypeNS && ident.name == "$crate" {
2608                 module = Some(self.resolve_crate_var(ident.ctxt, path_span));
2609                 continue
2610             }
2611
2612             let binding = if let Some(module) = module {
2613                 self.resolve_ident_in_module(module, ident, ns, false, record_used, path_span)
2614             } else if opt_ns == Some(MacroNS) {
2615                 self.resolve_lexical_macro_path_segment(ident, ns, record_used, path_span)
2616                     .map(MacroBinding::binding)
2617             } else {
2618                 match self.resolve_ident_in_lexical_scope(ident, ns, record_used, path_span) {
2619                     Some(LexicalScopeBinding::Item(binding)) => Ok(binding),
2620                     Some(LexicalScopeBinding::Def(def))
2621                             if opt_ns == Some(TypeNS) || opt_ns == Some(ValueNS) => {
2622                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
2623                             def, path.len() - 1
2624                         ));
2625                     }
2626                     _ => Err(if record_used { Determined } else { Undetermined }),
2627                 }
2628             };
2629
2630             match binding {
2631                 Ok(binding) => {
2632                     let def = binding.def();
2633                     let maybe_assoc = opt_ns != Some(MacroNS) && PathSource::Type.is_expected(def);
2634                     if let Some(next_module) = binding.module() {
2635                         module = Some(next_module);
2636                     } else if def == Def::Err {
2637                         return PathResult::NonModule(err_path_resolution());
2638                     } else if opt_ns.is_some() && (is_last || maybe_assoc) {
2639                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
2640                             def, path.len() - i - 1
2641                         ));
2642                     } else {
2643                         return PathResult::Failed(format!("Not a module `{}`", ident), is_last);
2644                     }
2645                 }
2646                 Err(Undetermined) => return PathResult::Indeterminate,
2647                 Err(Determined) => {
2648                     if let Some(module) = module {
2649                         if opt_ns.is_some() && !module.is_normal() {
2650                             return PathResult::NonModule(PathResolution::with_unresolved_segments(
2651                                 module.def().unwrap(), path.len() - i
2652                             ));
2653                         }
2654                     }
2655                     let msg = if module.and_then(ModuleData::def) == self.graph_root.def() {
2656                         let is_mod = |def| match def { Def::Mod(..) => true, _ => false };
2657                         let mut candidates =
2658                             self.lookup_import_candidates(ident.name, TypeNS, is_mod);
2659                         candidates.sort_by_key(|c| (c.path.segments.len(), c.path.to_string()));
2660                         if let Some(candidate) = candidates.get(0) {
2661                             format!("Did you mean `{}`?", candidate.path)
2662                         } else {
2663                             format!("Maybe a missing `extern crate {};`?", ident)
2664                         }
2665                     } else if i == 0 {
2666                         format!("Use of undeclared type or module `{}`", ident)
2667                     } else {
2668                         format!("Could not find `{}` in `{}`", ident, path[i - 1])
2669                     };
2670                     return PathResult::Failed(msg, is_last);
2671                 }
2672             }
2673         }
2674
2675         PathResult::Module(module.unwrap_or(self.graph_root))
2676     }
2677
2678     // Resolve a local definition, potentially adjusting for closures.
2679     fn adjust_local_def(&mut self,
2680                         ns: Namespace,
2681                         rib_index: usize,
2682                         mut def: Def,
2683                         record_used: bool,
2684                         span: Span) -> Def {
2685         let ribs = &self.ribs[ns][rib_index + 1..];
2686
2687         // An invalid forward use of a type parameter from a previous default.
2688         if let ForwardTyParamBanRibKind = self.ribs[ns][rib_index].kind {
2689             if record_used {
2690                 resolve_error(self, span,
2691                         ResolutionError::ForwardDeclaredTyParam);
2692             }
2693             assert_eq!(def, Def::Err);
2694             return Def::Err;
2695         }
2696
2697         match def {
2698             Def::Upvar(..) => {
2699                 span_bug!(span, "unexpected {:?} in bindings", def)
2700             }
2701             Def::Local(def_id) => {
2702                 for rib in ribs {
2703                     match rib.kind {
2704                         NormalRibKind | ModuleRibKind(..) | MacroDefinition(..) |
2705                         ForwardTyParamBanRibKind => {
2706                             // Nothing to do. Continue.
2707                         }
2708                         ClosureRibKind(function_id) => {
2709                             let prev_def = def;
2710                             let node_id = self.definitions.as_local_node_id(def_id).unwrap();
2711
2712                             let seen = self.freevars_seen
2713                                            .entry(function_id)
2714                                            .or_insert_with(|| NodeMap());
2715                             if let Some(&index) = seen.get(&node_id) {
2716                                 def = Def::Upvar(def_id, index, function_id);
2717                                 continue;
2718                             }
2719                             let vec = self.freevars
2720                                           .entry(function_id)
2721                                           .or_insert_with(|| vec![]);
2722                             let depth = vec.len();
2723                             def = Def::Upvar(def_id, depth, function_id);
2724
2725                             if record_used {
2726                                 vec.push(Freevar {
2727                                     def: prev_def,
2728                                     span: span,
2729                                 });
2730                                 seen.insert(node_id, depth);
2731                             }
2732                         }
2733                         ItemRibKind | MethodRibKind(_) => {
2734                             // This was an attempt to access an upvar inside a
2735                             // named function item. This is not allowed, so we
2736                             // report an error.
2737                             if record_used {
2738                                 resolve_error(self, span,
2739                                         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem);
2740                             }
2741                             return Def::Err;
2742                         }
2743                         ConstantItemRibKind => {
2744                             // Still doesn't deal with upvars
2745                             if record_used {
2746                                 resolve_error(self, span,
2747                                         ResolutionError::AttemptToUseNonConstantValueInConstant);
2748                             }
2749                             return Def::Err;
2750                         }
2751                     }
2752                 }
2753             }
2754             Def::TyParam(..) | Def::SelfTy(..) => {
2755                 for rib in ribs {
2756                     match rib.kind {
2757                         NormalRibKind | MethodRibKind(_) | ClosureRibKind(..) |
2758                         ModuleRibKind(..) | MacroDefinition(..) | ForwardTyParamBanRibKind => {
2759                             // Nothing to do. Continue.
2760                         }
2761                         ItemRibKind => {
2762                             // This was an attempt to use a type parameter outside
2763                             // its scope.
2764                             if record_used {
2765                                 resolve_error(self, span,
2766                                               ResolutionError::TypeParametersFromOuterFunction);
2767                             }
2768                             return Def::Err;
2769                         }
2770                         ConstantItemRibKind => {
2771                             // see #9186
2772                             if record_used {
2773                                 resolve_error(self, span,
2774                                               ResolutionError::OuterTypeParameterContext);
2775                             }
2776                             return Def::Err;
2777                         }
2778                     }
2779                 }
2780             }
2781             _ => {}
2782         }
2783         return def;
2784     }
2785
2786     // Calls `f` with a `Resolver` whose current lexical scope is `module`'s lexical scope,
2787     // i.e. the module's items and the prelude (unless the module is `#[no_implicit_prelude]`).
2788     // FIXME #34673: This needs testing.
2789     pub fn with_module_lexical_scope<T, F>(&mut self, module: Module<'a>, f: F) -> T
2790         where F: FnOnce(&mut Resolver<'a>) -> T,
2791     {
2792         self.with_empty_ribs(|this| {
2793             this.ribs[ValueNS].push(Rib::new(ModuleRibKind(module)));
2794             this.ribs[TypeNS].push(Rib::new(ModuleRibKind(module)));
2795             f(this)
2796         })
2797     }
2798
2799     fn with_empty_ribs<T, F>(&mut self, f: F) -> T
2800         where F: FnOnce(&mut Resolver<'a>) -> T,
2801     {
2802         let ribs = replace(&mut self.ribs, PerNS::<Vec<Rib>>::default());
2803         let label_ribs = replace(&mut self.label_ribs, Vec::new());
2804
2805         let result = f(self);
2806         self.ribs = ribs;
2807         self.label_ribs = label_ribs;
2808         result
2809     }
2810
2811     fn lookup_assoc_candidate<FilterFn>(&mut self,
2812                                         name: Name,
2813                                         ns: Namespace,
2814                                         filter_fn: FilterFn)
2815                                         -> Option<AssocSuggestion>
2816         where FilterFn: Fn(Def) -> bool
2817     {
2818         fn extract_node_id(t: &Ty) -> Option<NodeId> {
2819             match t.node {
2820                 TyKind::Path(None, _) => Some(t.id),
2821                 TyKind::Rptr(_, ref mut_ty) => extract_node_id(&mut_ty.ty),
2822                 // This doesn't handle the remaining `Ty` variants as they are not
2823                 // that commonly the self_type, it might be interesting to provide
2824                 // support for those in future.
2825                 _ => None,
2826             }
2827         }
2828
2829         // Fields are generally expected in the same contexts as locals.
2830         if filter_fn(Def::Local(DefId::local(CRATE_DEF_INDEX))) {
2831             if let Some(node_id) = self.current_self_type.as_ref().and_then(extract_node_id) {
2832                 // Look for a field with the same name in the current self_type.
2833                 if let Some(resolution) = self.def_map.get(&node_id) {
2834                     match resolution.base_def() {
2835                         Def::Struct(did) | Def::Union(did)
2836                                 if resolution.unresolved_segments() == 0 => {
2837                             if let Some(field_names) = self.field_names.get(&did) {
2838                                 if field_names.iter().any(|&field_name| name == field_name) {
2839                                     return Some(AssocSuggestion::Field);
2840                                 }
2841                             }
2842                         }
2843                         _ => {}
2844                     }
2845                 }
2846             }
2847         }
2848
2849         // Look for associated items in the current trait.
2850         if let Some((trait_did, _)) = self.current_trait_ref {
2851             if let Some(&(def, has_self)) = self.trait_item_map.get(&(trait_did, name, ns)) {
2852                 if filter_fn(def) {
2853                     return Some(if has_self {
2854                         AssocSuggestion::MethodWithSelf
2855                     } else {
2856                         AssocSuggestion::AssocItem
2857                     });
2858                 }
2859             }
2860         }
2861
2862         None
2863     }
2864
2865     fn lookup_typo_candidate<FilterFn>(&mut self,
2866                                        path: &[Ident],
2867                                        ns: Namespace,
2868                                        filter_fn: FilterFn,
2869                                        span: Span)
2870                                        -> Option<Symbol>
2871         where FilterFn: Fn(Def) -> bool
2872     {
2873         let add_module_candidates = |module: Module, names: &mut Vec<Name>| {
2874             for (&(ident, _), resolution) in module.resolutions.borrow().iter() {
2875                 if let Some(binding) = resolution.borrow().binding {
2876                     if filter_fn(binding.def()) {
2877                         names.push(ident.name);
2878                     }
2879                 }
2880             }
2881         };
2882
2883         let mut names = Vec::new();
2884         if path.len() == 1 {
2885             // Search in lexical scope.
2886             // Walk backwards up the ribs in scope and collect candidates.
2887             for rib in self.ribs[ns].iter().rev() {
2888                 // Locals and type parameters
2889                 for (ident, def) in &rib.bindings {
2890                     if filter_fn(*def) {
2891                         names.push(ident.name);
2892                     }
2893                 }
2894                 // Items in scope
2895                 if let ModuleRibKind(module) = rib.kind {
2896                     // Items from this module
2897                     add_module_candidates(module, &mut names);
2898
2899                     if let ModuleKind::Block(..) = module.kind {
2900                         // We can see through blocks
2901                     } else {
2902                         // Items from the prelude
2903                         if let Some(prelude) = self.prelude {
2904                             if !module.no_implicit_prelude {
2905                                 add_module_candidates(prelude, &mut names);
2906                             }
2907                         }
2908                         break;
2909                     }
2910                 }
2911             }
2912             // Add primitive types to the mix
2913             if filter_fn(Def::PrimTy(TyBool)) {
2914                 for (name, _) in &self.primitive_type_table.primitive_types {
2915                     names.push(*name);
2916                 }
2917             }
2918         } else {
2919             // Search in module.
2920             let mod_path = &path[..path.len() - 1];
2921             if let PathResult::Module(module) = self.resolve_path(mod_path, Some(TypeNS),
2922                                                                   false, span) {
2923                 add_module_candidates(module, &mut names);
2924             }
2925         }
2926
2927         let name = path[path.len() - 1].name;
2928         // Make sure error reporting is deterministic.
2929         names.sort_by_key(|name| name.as_str());
2930         match find_best_match_for_name(names.iter(), &name.as_str(), None) {
2931             Some(found) if found != name => Some(found),
2932             _ => None,
2933         }
2934     }
2935
2936     fn with_resolved_label<F>(&mut self, label: Option<SpannedIdent>, id: NodeId, f: F)
2937         where F: FnOnce(&mut Resolver)
2938     {
2939         if let Some(label) = label {
2940             let def = Def::Label(id);
2941             self.with_label_rib(|this| {
2942                 this.label_ribs.last_mut().unwrap().bindings.insert(label.node, def);
2943                 f(this);
2944             });
2945         } else {
2946             f(self);
2947         }
2948     }
2949
2950     fn resolve_labeled_block(&mut self, label: Option<SpannedIdent>, id: NodeId, block: &Block) {
2951         self.with_resolved_label(label, id, |this| this.visit_block(block));
2952     }
2953
2954     fn resolve_expr(&mut self, expr: &Expr, parent: Option<&Expr>) {
2955         // First, record candidate traits for this expression if it could
2956         // result in the invocation of a method call.
2957
2958         self.record_candidate_traits_for_expr_if_necessary(expr);
2959
2960         // Next, resolve the node.
2961         match expr.node {
2962             ExprKind::Path(ref qself, ref path) => {
2963                 self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
2964                 visit::walk_expr(self, expr);
2965             }
2966
2967             ExprKind::Struct(ref path, ..) => {
2968                 self.smart_resolve_path(expr.id, None, path, PathSource::Struct);
2969                 visit::walk_expr(self, expr);
2970             }
2971
2972             ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
2973                 match self.search_label(label.node) {
2974                     None => {
2975                         self.record_def(expr.id, err_path_resolution());
2976                         resolve_error(self,
2977                                       label.span,
2978                                       ResolutionError::UndeclaredLabel(&label.node.name.as_str()));
2979                     }
2980                     Some(def @ Def::Label(_)) => {
2981                         // Since this def is a label, it is never read.
2982                         self.record_def(expr.id, PathResolution::new(def));
2983                     }
2984                     Some(_) => {
2985                         span_bug!(expr.span, "label wasn't mapped to a label def!");
2986                     }
2987                 }
2988
2989                 // visit `break` argument if any
2990                 visit::walk_expr(self, expr);
2991             }
2992
2993             ExprKind::IfLet(ref pattern, ref subexpression, ref if_block, ref optional_else) => {
2994                 self.visit_expr(subexpression);
2995
2996                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2997                 self.resolve_pattern(pattern, PatternSource::IfLet, &mut FxHashMap());
2998                 self.visit_block(if_block);
2999                 self.ribs[ValueNS].pop();
3000
3001                 optional_else.as_ref().map(|expr| self.visit_expr(expr));
3002             }
3003
3004             ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),
3005
3006             ExprKind::While(ref subexpression, ref block, label) => {
3007                 self.with_resolved_label(label, expr.id, |this| {
3008                     this.visit_expr(subexpression);
3009                     this.visit_block(block);
3010                 });
3011             }
3012
3013             ExprKind::WhileLet(ref pattern, ref subexpression, ref block, label) => {
3014                 self.with_resolved_label(label, expr.id, |this| {
3015                     this.visit_expr(subexpression);
3016                     this.ribs[ValueNS].push(Rib::new(NormalRibKind));
3017                     this.resolve_pattern(pattern, PatternSource::WhileLet, &mut FxHashMap());
3018                     this.visit_block(block);
3019                     this.ribs[ValueNS].pop();
3020                 });
3021             }
3022
3023             ExprKind::ForLoop(ref pattern, ref subexpression, ref block, label) => {
3024                 self.visit_expr(subexpression);
3025                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
3026                 self.resolve_pattern(pattern, PatternSource::For, &mut FxHashMap());
3027
3028                 self.resolve_labeled_block(label, expr.id, block);
3029
3030                 self.ribs[ValueNS].pop();
3031             }
3032
3033             // Equivalent to `visit::walk_expr` + passing some context to children.
3034             ExprKind::Field(ref subexpression, _) => {
3035                 self.resolve_expr(subexpression, Some(expr));
3036             }
3037             ExprKind::MethodCall(_, ref types, ref arguments) => {
3038                 let mut arguments = arguments.iter();
3039                 self.resolve_expr(arguments.next().unwrap(), Some(expr));
3040                 for argument in arguments {
3041                     self.resolve_expr(argument, None);
3042                 }
3043                 for ty in types.iter() {
3044                     self.visit_ty(ty);
3045                 }
3046             }
3047
3048             ExprKind::Repeat(ref element, ref count) => {
3049                 self.visit_expr(element);
3050                 self.with_constant_rib(|this| {
3051                     this.visit_expr(count);
3052                 });
3053             }
3054             ExprKind::Call(ref callee, ref arguments) => {
3055                 self.resolve_expr(callee, Some(expr));
3056                 for argument in arguments {
3057                     self.resolve_expr(argument, None);
3058                 }
3059             }
3060
3061             _ => {
3062                 visit::walk_expr(self, expr);
3063             }
3064         }
3065     }
3066
3067     fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &Expr) {
3068         match expr.node {
3069             ExprKind::Field(_, name) => {
3070                 // FIXME(#6890): Even though you can't treat a method like a
3071                 // field, we need to add any trait methods we find that match
3072                 // the field name so that we can do some nice error reporting
3073                 // later on in typeck.
3074                 let traits = self.get_traits_containing_item(name.node.name, ValueNS);
3075                 self.trait_map.insert(expr.id, traits);
3076             }
3077             ExprKind::MethodCall(name, ..) => {
3078                 debug!("(recording candidate traits for expr) recording traits for {}",
3079                        expr.id);
3080                 let traits = self.get_traits_containing_item(name.node.name, ValueNS);
3081                 self.trait_map.insert(expr.id, traits);
3082             }
3083             _ => {
3084                 // Nothing to do.
3085             }
3086         }
3087     }
3088
3089     fn get_traits_containing_item(&mut self, name: Name, ns: Namespace) -> Vec<TraitCandidate> {
3090         debug!("(getting traits containing item) looking for '{}'", name);
3091
3092         let mut found_traits = Vec::new();
3093         // Look for the current trait.
3094         if let Some((trait_def_id, _)) = self.current_trait_ref {
3095             if self.trait_item_map.contains_key(&(trait_def_id, name, ns)) {
3096                 found_traits.push(TraitCandidate { def_id: trait_def_id, import_id: None });
3097             }
3098         }
3099
3100         let mut search_module = self.current_module;
3101         loop {
3102             self.get_traits_in_module_containing_item(name, ns, search_module, &mut found_traits);
3103             match search_module.kind {
3104                 ModuleKind::Block(..) => search_module = search_module.parent.unwrap(),
3105                 _ => break,
3106             }
3107         }
3108
3109         if let Some(prelude) = self.prelude {
3110             if !search_module.no_implicit_prelude {
3111                 self.get_traits_in_module_containing_item(name, ns, prelude, &mut found_traits);
3112             }
3113         }
3114
3115         found_traits
3116     }
3117
3118     fn get_traits_in_module_containing_item(&mut self,
3119                                             name: Name,
3120                                             ns: Namespace,
3121                                             module: Module,
3122                                             found_traits: &mut Vec<TraitCandidate>) {
3123         let mut traits = module.traits.borrow_mut();
3124         if traits.is_none() {
3125             let mut collected_traits = Vec::new();
3126             module.for_each_child(|name, ns, binding| {
3127                 if ns != TypeNS { return }
3128                 if let Def::Trait(_) = binding.def() {
3129                     collected_traits.push((name, binding));
3130                 }
3131             });
3132             *traits = Some(collected_traits.into_boxed_slice());
3133         }
3134
3135         for &(trait_name, binding) in traits.as_ref().unwrap().iter() {
3136             let trait_def_id = binding.def().def_id();
3137             if self.trait_item_map.contains_key(&(trait_def_id, name, ns)) {
3138                 let import_id = match binding.kind {
3139                     NameBindingKind::Import { directive, .. } => {
3140                         self.maybe_unused_trait_imports.insert(directive.id);
3141                         self.add_to_glob_map(directive.id, trait_name);
3142                         Some(directive.id)
3143                     }
3144                     _ => None,
3145                 };
3146                 found_traits.push(TraitCandidate { def_id: trait_def_id, import_id: import_id });
3147             }
3148         }
3149     }
3150
3151     /// When name resolution fails, this method can be used to look up candidate
3152     /// entities with the expected name. It allows filtering them using the
3153     /// supplied predicate (which should be used to only accept the types of
3154     /// definitions expected e.g. traits). The lookup spans across all crates.
3155     ///
3156     /// NOTE: The method does not look into imports, but this is not a problem,
3157     /// since we report the definitions (thus, the de-aliased imports).
3158     fn lookup_import_candidates<FilterFn>(&mut self,
3159                                           lookup_name: Name,
3160                                           namespace: Namespace,
3161                                           filter_fn: FilterFn)
3162                                           -> Vec<ImportSuggestion>
3163         where FilterFn: Fn(Def) -> bool
3164     {
3165         let mut candidates = Vec::new();
3166         let mut worklist = Vec::new();
3167         let mut seen_modules = FxHashSet();
3168         worklist.push((self.graph_root, Vec::new(), false));
3169
3170         while let Some((in_module,
3171                         path_segments,
3172                         in_module_is_extern)) = worklist.pop() {
3173             self.populate_module_if_necessary(in_module);
3174
3175             in_module.for_each_child(|ident, ns, name_binding| {
3176
3177                 // avoid imports entirely
3178                 if name_binding.is_import() && !name_binding.is_extern_crate() { return; }
3179                 // avoid non-importable candidates as well
3180                 if !name_binding.is_importable() { return; }
3181
3182                 // collect results based on the filter function
3183                 if ident.name == lookup_name && ns == namespace {
3184                     if filter_fn(name_binding.def()) {
3185                         // create the path
3186                         let mut segms = path_segments.clone();
3187                         segms.push(ast::PathSegment::from_ident(ident, name_binding.span));
3188                         let path = Path {
3189                             span: name_binding.span,
3190                             segments: segms,
3191                         };
3192                         // the entity is accessible in the following cases:
3193                         // 1. if it's defined in the same crate, it's always
3194                         // accessible (since private entities can be made public)
3195                         // 2. if it's defined in another crate, it's accessible
3196                         // only if both the module is public and the entity is
3197                         // declared as public (due to pruning, we don't explore
3198                         // outside crate private modules => no need to check this)
3199                         if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
3200                             candidates.push(ImportSuggestion { path: path });
3201                         }
3202                     }
3203                 }
3204
3205                 // collect submodules to explore
3206                 if let Some(module) = name_binding.module() {
3207                     // form the path
3208                     let mut path_segments = path_segments.clone();
3209                     path_segments.push(ast::PathSegment::from_ident(ident, name_binding.span));
3210
3211                     if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
3212                         // add the module to the lookup
3213                         let is_extern = in_module_is_extern || name_binding.is_extern_crate();
3214                         if seen_modules.insert(module.def_id().unwrap()) {
3215                             worklist.push((module, path_segments, is_extern));
3216                         }
3217                     }
3218                 }
3219             })
3220         }
3221
3222         candidates
3223     }
3224
3225     fn record_def(&mut self, node_id: NodeId, resolution: PathResolution) {
3226         debug!("(recording def) recording {:?} for {}", resolution, node_id);
3227         if let Some(prev_res) = self.def_map.insert(node_id, resolution) {
3228             panic!("path resolved multiple times ({:?} before, {:?} now)", prev_res, resolution);
3229         }
3230     }
3231
3232     fn resolve_visibility(&mut self, vis: &ast::Visibility) -> ty::Visibility {
3233         match *vis {
3234             ast::Visibility::Public => ty::Visibility::Public,
3235             ast::Visibility::Crate(..) => ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX)),
3236             ast::Visibility::Inherited => {
3237                 ty::Visibility::Restricted(self.current_module.normal_ancestor_id)
3238             }
3239             ast::Visibility::Restricted { ref path, id } => {
3240                 let def = self.smart_resolve_path(id, None, path,
3241                                                   PathSource::Visibility).base_def();
3242                 if def == Def::Err {
3243                     ty::Visibility::Public
3244                 } else {
3245                     let vis = ty::Visibility::Restricted(def.def_id());
3246                     if self.is_accessible(vis) {
3247                         vis
3248                     } else {
3249                         self.session.span_err(path.span, "visibilities can only be restricted \
3250                                                           to ancestor modules");
3251                         ty::Visibility::Public
3252                     }
3253                 }
3254             }
3255         }
3256     }
3257
3258     fn is_accessible(&self, vis: ty::Visibility) -> bool {
3259         vis.is_accessible_from(self.current_module.normal_ancestor_id, self)
3260     }
3261
3262     fn is_accessible_from(&self, vis: ty::Visibility, module: Module<'a>) -> bool {
3263         vis.is_accessible_from(module.normal_ancestor_id, self)
3264     }
3265
3266     fn report_errors(&mut self) {
3267         self.report_shadowing_errors();
3268         let mut reported_spans = FxHashSet();
3269
3270         for &AmbiguityError { span, name, b1, b2, lexical, legacy } in &self.ambiguity_errors {
3271             if !reported_spans.insert(span) { continue }
3272             let participle = |binding: &NameBinding| {
3273                 if binding.is_import() { "imported" } else { "defined" }
3274             };
3275             let msg1 = format!("`{}` could refer to the name {} here", name, participle(b1));
3276             let msg2 = format!("`{}` could also refer to the name {} here", name, participle(b2));
3277             let note = if b1.expansion == Mark::root() || !lexical && b1.is_glob_import() {
3278                 format!("consider adding an explicit import of `{}` to disambiguate", name)
3279             } else if let Def::Macro(..) = b1.def() {
3280                 format!("macro-expanded {} do not shadow",
3281                         if b1.is_import() { "macro imports" } else { "macros" })
3282             } else {
3283                 format!("macro-expanded {} do not shadow when used in a macro invocation path",
3284                         if b1.is_import() { "imports" } else { "items" })
3285             };
3286             if legacy {
3287                 let id = match b2.kind {
3288                     NameBindingKind::Import { directive, .. } => directive.id,
3289                     _ => unreachable!(),
3290                 };
3291                 let mut span = MultiSpan::from_span(span);
3292                 span.push_span_label(b1.span, msg1);
3293                 span.push_span_label(b2.span, msg2);
3294                 let msg = format!("`{}` is ambiguous", name);
3295                 self.session.add_lint(lint::builtin::LEGACY_IMPORTS, id, span, msg);
3296             } else {
3297                 let mut err =
3298                     self.session.struct_span_err(span, &format!("`{}` is ambiguous", name));
3299                 err.span_note(b1.span, &msg1);
3300                 match b2.def() {
3301                     Def::Macro(..) if b2.span == DUMMY_SP =>
3302                         err.note(&format!("`{}` is also a builtin macro", name)),
3303                     _ => err.span_note(b2.span, &msg2),
3304                 };
3305                 err.note(&note).emit();
3306             }
3307         }
3308
3309         for &PrivacyError(span, name, binding) in &self.privacy_errors {
3310             if !reported_spans.insert(span) { continue }
3311             if binding.is_extern_crate() {
3312                 // Warn when using an inaccessible extern crate.
3313                 let node_id = match binding.kind {
3314                     NameBindingKind::Import { directive, .. } => directive.id,
3315                     _ => unreachable!(),
3316                 };
3317                 let msg = format!("extern crate `{}` is private", name);
3318                 self.session.add_lint(lint::builtin::INACCESSIBLE_EXTERN_CRATE, node_id, span, msg);
3319             } else {
3320                 let def = binding.def();
3321                 self.session.span_err(span, &format!("{} `{}` is private", def.kind_name(), name));
3322             }
3323         }
3324     }
3325
3326     fn report_shadowing_errors(&mut self) {
3327         for (name, scope) in replace(&mut self.lexical_macro_resolutions, Vec::new()) {
3328             self.resolve_legacy_scope(scope, name, true);
3329         }
3330
3331         let mut reported_errors = FxHashSet();
3332         for binding in replace(&mut self.disallowed_shadowing, Vec::new()) {
3333             if self.resolve_legacy_scope(&binding.parent, binding.name, false).is_some() &&
3334                reported_errors.insert((binding.name, binding.span)) {
3335                 let msg = format!("`{}` is already in scope", binding.name);
3336                 self.session.struct_span_err(binding.span, &msg)
3337                     .note("macro-expanded `macro_rules!`s may not shadow \
3338                            existing macros (see RFC 1560)")
3339                     .emit();
3340             }
3341         }
3342     }
3343
3344     fn report_conflict(&mut self,
3345                        parent: Module,
3346                        ident: Ident,
3347                        ns: Namespace,
3348                        binding: &NameBinding,
3349                        old_binding: &NameBinding) {
3350         // Error on the second of two conflicting names
3351         if old_binding.span.lo > binding.span.lo {
3352             return self.report_conflict(parent, ident, ns, old_binding, binding);
3353         }
3354
3355         let container = match parent.kind {
3356             ModuleKind::Def(Def::Mod(_), _) => "module",
3357             ModuleKind::Def(Def::Trait(_), _) => "trait",
3358             ModuleKind::Block(..) => "block",
3359             _ => "enum",
3360         };
3361
3362         let (participle, noun) = match old_binding.is_import() {
3363             true => ("imported", "import"),
3364             false => ("defined", "definition"),
3365         };
3366
3367         let (name, span) = (ident.name, binding.span);
3368
3369         if let Some(s) = self.name_already_seen.get(&name) {
3370             if s == &span {
3371                 return;
3372             }
3373         }
3374
3375         let msg = {
3376             let kind = match (ns, old_binding.module()) {
3377                 (ValueNS, _) => "a value",
3378                 (MacroNS, _) => "a macro",
3379                 (TypeNS, _) if old_binding.is_extern_crate() => "an extern crate",
3380                 (TypeNS, Some(module)) if module.is_normal() => "a module",
3381                 (TypeNS, Some(module)) if module.is_trait() => "a trait",
3382                 (TypeNS, _) => "a type",
3383             };
3384             format!("{} named `{}` has already been {} in this {}",
3385                     kind, name, participle, container)
3386         };
3387
3388         let mut err = match (old_binding.is_extern_crate(), binding.is_extern_crate()) {
3389             (true, true) => struct_span_err!(self.session, span, E0259, "{}", msg),
3390             (true, _) | (_, true) => match binding.is_import() && old_binding.is_import() {
3391                 true => struct_span_err!(self.session, span, E0254, "{}", msg),
3392                 false => struct_span_err!(self.session, span, E0260, "{}", msg),
3393             },
3394             _ => match (old_binding.is_import(), binding.is_import()) {
3395                 (false, false) => struct_span_err!(self.session, span, E0428, "{}", msg),
3396                 (true, true) => struct_span_err!(self.session, span, E0252, "{}", msg),
3397                 _ => struct_span_err!(self.session, span, E0255, "{}", msg),
3398             },
3399         };
3400
3401         err.span_label(span, format!("`{}` already {}", name, participle));
3402         if old_binding.span != syntax_pos::DUMMY_SP {
3403             err.span_label(old_binding.span, format!("previous {} of `{}` here", noun, name));
3404         }
3405         err.emit();
3406         self.name_already_seen.insert(name, span);
3407     }
3408
3409     fn warn_legacy_self_import(&self, directive: &'a ImportDirective<'a>) {
3410         let (id, span) = (directive.id, directive.span);
3411         let msg = "`self` no longer imports values".to_string();
3412         self.session.add_lint(lint::builtin::LEGACY_IMPORTS, id, span, msg);
3413     }
3414
3415     fn check_proc_macro_attrs(&mut self, attrs: &[ast::Attribute]) {
3416         if self.proc_macro_enabled { return; }
3417
3418         for attr in attrs {
3419             if attr.path.segments.len() > 1 {
3420                 continue
3421             }
3422             let ident = attr.path.segments[0].identifier;
3423             let result = self.resolve_lexical_macro_path_segment(ident,
3424                                                                  MacroNS,
3425                                                                  false,
3426                                                                  attr.path.span);
3427             if let Ok(binding) = result {
3428                 if let SyntaxExtension::AttrProcMacro(..) = *binding.binding().get_macro(self) {
3429                     attr::mark_known(attr);
3430
3431                     let msg = "attribute procedural macros are experimental";
3432                     let feature = "proc_macro";
3433
3434                     feature_err(&self.session.parse_sess, feature,
3435                                 attr.span, GateIssue::Language, msg)
3436                         .span_note(binding.span(), "procedural macro imported here")
3437                         .emit();
3438                 }
3439             }
3440         }
3441     }
3442 }
3443
3444 fn is_struct_like(def: Def) -> bool {
3445     match def {
3446         Def::VariantCtor(_, CtorKind::Fictive) => true,
3447         _ => PathSource::Struct.is_expected(def),
3448     }
3449 }
3450
3451 fn is_self_type(path: &[Ident], namespace: Namespace) -> bool {
3452     namespace == TypeNS && path.len() == 1 && path[0].name == keywords::SelfType.name()
3453 }
3454
3455 fn is_self_value(path: &[Ident], namespace: Namespace) -> bool {
3456     namespace == ValueNS && path.len() == 1 && path[0].name == keywords::SelfValue.name()
3457 }
3458
3459 fn names_to_string(idents: &[Ident]) -> String {
3460     let mut result = String::new();
3461     for (i, ident) in idents.iter().filter(|i| i.name != keywords::CrateRoot.name()).enumerate() {
3462         if i > 0 {
3463             result.push_str("::");
3464         }
3465         result.push_str(&ident.name.as_str());
3466     }
3467     result
3468 }
3469
3470 fn path_names_to_string(path: &Path) -> String {
3471     names_to_string(&path.segments.iter().map(|seg| seg.identifier).collect::<Vec<_>>())
3472 }
3473
3474 /// Get the path for an enum and the variant from an `ImportSuggestion` for an enum variant.
3475 fn import_candidate_to_paths(suggestion: &ImportSuggestion) -> (Span, String, String) {
3476     let variant_path = &suggestion.path;
3477     let variant_path_string = path_names_to_string(variant_path);
3478
3479     let path_len = suggestion.path.segments.len();
3480     let enum_path = ast::Path {
3481         span: suggestion.path.span,
3482         segments: suggestion.path.segments[0..path_len - 1].to_vec(),
3483     };
3484     let enum_path_string = path_names_to_string(&enum_path);
3485
3486     (suggestion.path.span, variant_path_string, enum_path_string)
3487 }
3488
3489
3490 /// When an entity with a given name is not available in scope, we search for
3491 /// entities with that name in all crates. This method allows outputting the
3492 /// results of this search in a programmer-friendly way
3493 fn show_candidates(err: &mut DiagnosticBuilder,
3494                    span: Span,
3495                    candidates: &[ImportSuggestion],
3496                    better: bool) {
3497
3498     // we want consistent results across executions, but candidates are produced
3499     // by iterating through a hash map, so make sure they are ordered:
3500     let mut path_strings: Vec<_> =
3501         candidates.into_iter().map(|c| path_names_to_string(&c.path)).collect();
3502     path_strings.sort();
3503
3504     let better = if better { "better " } else { "" };
3505     let msg_diff = match path_strings.len() {
3506         1 => " is found in another module, you can import it",
3507         _ => "s are found in other modules, you can import them",
3508     };
3509     let msg = format!("possible {}candidate{} into scope", better, msg_diff);
3510
3511     for candidate in &mut path_strings {
3512         *candidate = format!("use {};\n", candidate);
3513     }
3514
3515     err.span_suggestions(span, &msg, path_strings);
3516 }
3517
3518 /// A somewhat inefficient routine to obtain the name of a module.
3519 fn module_to_string(module: Module) -> String {
3520     let mut names = Vec::new();
3521
3522     fn collect_mod(names: &mut Vec<Ident>, module: Module) {
3523         if let ModuleKind::Def(_, name) = module.kind {
3524             if let Some(parent) = module.parent {
3525                 names.push(Ident::with_empty_ctxt(name));
3526                 collect_mod(names, parent);
3527             }
3528         } else {
3529             // danger, shouldn't be ident?
3530             names.push(Ident::from_str("<opaque>"));
3531             collect_mod(names, module.parent.unwrap());
3532         }
3533     }
3534     collect_mod(&mut names, module);
3535
3536     if names.is_empty() {
3537         return "???".to_string();
3538     }
3539     names_to_string(&names.into_iter().rev().collect::<Vec<_>>())
3540 }
3541
3542 fn err_path_resolution() -> PathResolution {
3543     PathResolution::new(Def::Err)
3544 }
3545
3546 #[derive(PartialEq,Copy, Clone)]
3547 pub enum MakeGlobMap {
3548     Yes,
3549     No,
3550 }
3551
3552 __build_diagnostic_array! { librustc_resolve, DIAGNOSTICS }