]> git.lizzy.rs Git - rust.git/blob - src/librustc_resolve/lib.rs
Rollup merge of #48448 - nikomatsakis:default-binding-mode-issue-46688, r=cramertj
[rust.git] / src / librustc_resolve / lib.rs
1 // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 #![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
12       html_favicon_url = "https://doc.rust-lang.org/favicon.ico",
13       html_root_url = "https://doc.rust-lang.org/nightly/")]
14 #![deny(warnings)]
15
16 #![feature(rustc_diagnostic_macros)]
17
18 #[macro_use]
19 extern crate log;
20 #[macro_use]
21 extern crate syntax;
22 extern crate syntax_pos;
23 extern crate rustc_errors as errors;
24 extern crate arena;
25 #[macro_use]
26 extern crate rustc;
27 extern crate rustc_data_structures;
28
29 use self::Namespace::*;
30 use self::TypeParameters::*;
31 use self::RibKind::*;
32
33 use rustc::hir::map::{Definitions, DefCollector};
34 use rustc::hir::{self, PrimTy, TyBool, TyChar, TyFloat, TyInt, TyUint, TyStr};
35 use rustc::middle::cstore::{CrateStore, CrateLoader};
36 use rustc::session::Session;
37 use rustc::lint;
38 use rustc::hir::def::*;
39 use rustc::hir::def_id::{CRATE_DEF_INDEX, LOCAL_CRATE, DefId};
40 use rustc::ty;
41 use rustc::hir::{Freevar, FreevarMap, TraitCandidate, TraitMap, GlobMap};
42 use rustc::util::nodemap::{NodeMap, NodeSet, FxHashMap, FxHashSet, DefIdMap};
43
44 use syntax::codemap::{dummy_spanned, respan};
45 use syntax::ext::hygiene::{Mark, MarkKind, SyntaxContext};
46 use syntax::ast::{self, Name, NodeId, Ident, SpannedIdent, FloatTy, IntTy, UintTy};
47 use syntax::ext::base::SyntaxExtension;
48 use syntax::ext::base::Determinacy::{self, Determined, Undetermined};
49 use syntax::ext::base::MacroKind;
50 use syntax::symbol::{Symbol, keywords};
51 use syntax::util::lev_distance::find_best_match_for_name;
52
53 use syntax::visit::{self, FnKind, Visitor};
54 use syntax::attr;
55 use syntax::ast::{Arm, BindingMode, Block, Crate, Expr, ExprKind};
56 use syntax::ast::{FnDecl, ForeignItem, ForeignItemKind, GenericParam, Generics};
57 use syntax::ast::{Item, ItemKind, ImplItem, ImplItemKind};
58 use syntax::ast::{Label, Local, Mutability, Pat, PatKind, Path};
59 use syntax::ast::{QSelf, TraitItemKind, TraitRef, Ty, TyKind};
60 use syntax::feature_gate::{feature_err, emit_feature_err, GateIssue};
61 use syntax::parse::token;
62
63 use syntax_pos::{Span, DUMMY_SP, MultiSpan};
64 use errors::{DiagnosticBuilder, DiagnosticId};
65
66 use std::cell::{Cell, RefCell};
67 use std::cmp;
68 use std::collections::BTreeSet;
69 use std::fmt;
70 use std::iter;
71 use std::mem::replace;
72 use std::rc::Rc;
73
74 use resolve_imports::{ImportDirective, ImportDirectiveSubclass, NameResolution, ImportResolver};
75 use macros::{InvocationData, LegacyBinding, LegacyScope, MacroBinding};
76
77 // NB: This module needs to be declared first so diagnostics are
78 // registered before they are used.
79 mod diagnostics;
80
81 mod macros;
82 mod check_unused;
83 mod build_reduced_graph;
84 mod resolve_imports;
85
86 /// A free importable items suggested in case of resolution failure.
87 struct ImportSuggestion {
88     path: Path,
89 }
90
91 /// A field or associated item from self type suggested in case of resolution failure.
92 enum AssocSuggestion {
93     Field,
94     MethodWithSelf,
95     AssocItem,
96 }
97
98 #[derive(Eq)]
99 struct BindingError {
100     name: Name,
101     origin: BTreeSet<Span>,
102     target: BTreeSet<Span>,
103 }
104
105 impl PartialOrd for BindingError {
106     fn partial_cmp(&self, other: &BindingError) -> Option<cmp::Ordering> {
107         Some(self.cmp(other))
108     }
109 }
110
111 impl PartialEq for BindingError {
112     fn eq(&self, other: &BindingError) -> bool {
113         self.name == other.name
114     }
115 }
116
117 impl Ord for BindingError {
118     fn cmp(&self, other: &BindingError) -> cmp::Ordering {
119         self.name.cmp(&other.name)
120     }
121 }
122
123 enum ResolutionError<'a> {
124     /// error E0401: can't use type parameters from outer function
125     TypeParametersFromOuterFunction,
126     /// error E0403: the name is already used for a type parameter in this type parameter list
127     NameAlreadyUsedInTypeParameterList(Name, &'a Span),
128     /// error E0407: method is not a member of trait
129     MethodNotMemberOfTrait(Name, &'a str),
130     /// error E0437: type is not a member of trait
131     TypeNotMemberOfTrait(Name, &'a str),
132     /// error E0438: const is not a member of trait
133     ConstNotMemberOfTrait(Name, &'a str),
134     /// error E0408: variable `{}` is not bound in all patterns
135     VariableNotBoundInPattern(&'a BindingError),
136     /// error E0409: variable `{}` is bound in inconsistent ways within the same match arm
137     VariableBoundWithDifferentMode(Name, Span),
138     /// error E0415: identifier is bound more than once in this parameter list
139     IdentifierBoundMoreThanOnceInParameterList(&'a str),
140     /// error E0416: identifier is bound more than once in the same pattern
141     IdentifierBoundMoreThanOnceInSamePattern(&'a str),
142     /// error E0426: use of undeclared label
143     UndeclaredLabel(&'a str, Option<Name>),
144     /// error E0429: `self` imports are only allowed within a { } list
145     SelfImportsOnlyAllowedWithin,
146     /// error E0430: `self` import can only appear once in the list
147     SelfImportCanOnlyAppearOnceInTheList,
148     /// error E0431: `self` import can only appear in an import list with a non-empty prefix
149     SelfImportOnlyInImportListWithNonEmptyPrefix,
150     /// error E0432: unresolved import
151     UnresolvedImport(Option<(Span, &'a str, &'a str)>),
152     /// error E0433: failed to resolve
153     FailedToResolve(&'a str),
154     /// error E0434: can't capture dynamic environment in a fn item
155     CannotCaptureDynamicEnvironmentInFnItem,
156     /// error E0435: attempt to use a non-constant value in a constant
157     AttemptToUseNonConstantValueInConstant,
158     /// error E0530: X bindings cannot shadow Ys
159     BindingShadowsSomethingUnacceptable(&'a str, Name, &'a NameBinding<'a>),
160     /// error E0128: type parameters with a default cannot use forward declared identifiers
161     ForwardDeclaredTyParam,
162 }
163
164 fn resolve_error<'sess, 'a>(resolver: &'sess Resolver,
165                             span: Span,
166                             resolution_error: ResolutionError<'a>) {
167     resolve_struct_error(resolver, span, resolution_error).emit();
168 }
169
170 fn resolve_struct_error<'sess, 'a>(resolver: &'sess Resolver,
171                                    span: Span,
172                                    resolution_error: ResolutionError<'a>)
173                                    -> DiagnosticBuilder<'sess> {
174     match resolution_error {
175         ResolutionError::TypeParametersFromOuterFunction => {
176             let mut err = struct_span_err!(resolver.session,
177                                            span,
178                                            E0401,
179                                            "can't use type parameters from outer function; \
180                                            try using a local type parameter instead");
181             err.span_label(span, "use of type variable from outer function");
182             err
183         }
184         ResolutionError::NameAlreadyUsedInTypeParameterList(name, first_use_span) => {
185              let mut err = struct_span_err!(resolver.session,
186                                             span,
187                                             E0403,
188                                             "the name `{}` is already used for a type parameter \
189                                             in this type parameter list",
190                                             name);
191              err.span_label(span, "already used");
192              err.span_label(first_use_span.clone(), format!("first use of `{}`", name));
193              err
194         }
195         ResolutionError::MethodNotMemberOfTrait(method, trait_) => {
196             let mut err = struct_span_err!(resolver.session,
197                                            span,
198                                            E0407,
199                                            "method `{}` is not a member of trait `{}`",
200                                            method,
201                                            trait_);
202             err.span_label(span, format!("not a member of trait `{}`", trait_));
203             err
204         }
205         ResolutionError::TypeNotMemberOfTrait(type_, trait_) => {
206             let mut err = struct_span_err!(resolver.session,
207                              span,
208                              E0437,
209                              "type `{}` is not a member of trait `{}`",
210                              type_,
211                              trait_);
212             err.span_label(span, format!("not a member of trait `{}`", trait_));
213             err
214         }
215         ResolutionError::ConstNotMemberOfTrait(const_, trait_) => {
216             let mut err = struct_span_err!(resolver.session,
217                              span,
218                              E0438,
219                              "const `{}` is not a member of trait `{}`",
220                              const_,
221                              trait_);
222             err.span_label(span, format!("not a member of trait `{}`", trait_));
223             err
224         }
225         ResolutionError::VariableNotBoundInPattern(binding_error) => {
226             let target_sp = binding_error.target.iter().map(|x| *x).collect::<Vec<_>>();
227             let msp = MultiSpan::from_spans(target_sp.clone());
228             let msg = format!("variable `{}` is not bound in all patterns", binding_error.name);
229             let mut err = resolver.session.struct_span_err_with_code(
230                 msp,
231                 &msg,
232                 DiagnosticId::Error("E0408".into()),
233             );
234             for sp in target_sp {
235                 err.span_label(sp, format!("pattern doesn't bind `{}`", binding_error.name));
236             }
237             let origin_sp = binding_error.origin.iter().map(|x| *x).collect::<Vec<_>>();
238             for sp in origin_sp {
239                 err.span_label(sp, "variable not in all patterns");
240             }
241             err
242         }
243         ResolutionError::VariableBoundWithDifferentMode(variable_name,
244                                                         first_binding_span) => {
245             let mut err = struct_span_err!(resolver.session,
246                              span,
247                              E0409,
248                              "variable `{}` is bound in inconsistent \
249                              ways within the same match arm",
250                              variable_name);
251             err.span_label(span, "bound in different ways");
252             err.span_label(first_binding_span, "first binding");
253             err
254         }
255         ResolutionError::IdentifierBoundMoreThanOnceInParameterList(identifier) => {
256             let mut err = struct_span_err!(resolver.session,
257                              span,
258                              E0415,
259                              "identifier `{}` is bound more than once in this parameter list",
260                              identifier);
261             err.span_label(span, "used as parameter more than once");
262             err
263         }
264         ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(identifier) => {
265             let mut err = struct_span_err!(resolver.session,
266                              span,
267                              E0416,
268                              "identifier `{}` is bound more than once in the same pattern",
269                              identifier);
270             err.span_label(span, "used in a pattern more than once");
271             err
272         }
273         ResolutionError::UndeclaredLabel(name, lev_candidate) => {
274             let mut err = struct_span_err!(resolver.session,
275                                            span,
276                                            E0426,
277                                            "use of undeclared label `{}`",
278                                            name);
279             if let Some(lev_candidate) = lev_candidate {
280                 err.span_label(span, format!("did you mean `{}`?", lev_candidate));
281             } else {
282                 err.span_label(span, format!("undeclared label `{}`", name));
283             }
284             err
285         }
286         ResolutionError::SelfImportsOnlyAllowedWithin => {
287             struct_span_err!(resolver.session,
288                              span,
289                              E0429,
290                              "{}",
291                              "`self` imports are only allowed within a { } list")
292         }
293         ResolutionError::SelfImportCanOnlyAppearOnceInTheList => {
294             let mut err = struct_span_err!(resolver.session, span, E0430,
295                                            "`self` import can only appear once in an import list");
296             err.span_label(span, "can only appear once in an import list");
297             err
298         }
299         ResolutionError::SelfImportOnlyInImportListWithNonEmptyPrefix => {
300             let mut err = struct_span_err!(resolver.session, span, E0431,
301                                            "`self` import can only appear in an import list with \
302                                             a non-empty prefix");
303             err.span_label(span, "can only appear in an import list with a non-empty prefix");
304             err
305         }
306         ResolutionError::UnresolvedImport(name) => {
307             let (span, msg) = match name {
308                 Some((sp, n, _)) => (sp, format!("unresolved import `{}`", n)),
309                 None => (span, "unresolved import".to_owned()),
310             };
311             let mut err = struct_span_err!(resolver.session, span, E0432, "{}", msg);
312             if let Some((_, _, p)) = name {
313                 err.span_label(span, p);
314             }
315             err
316         }
317         ResolutionError::FailedToResolve(msg) => {
318             let mut err = struct_span_err!(resolver.session, span, E0433,
319                                            "failed to resolve. {}", msg);
320             err.span_label(span, msg);
321             err
322         }
323         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem => {
324             let mut err = struct_span_err!(resolver.session,
325                                            span,
326                                            E0434,
327                                            "{}",
328                                            "can't capture dynamic environment in a fn item");
329             err.help("use the `|| { ... }` closure form instead");
330             err
331         }
332         ResolutionError::AttemptToUseNonConstantValueInConstant => {
333             let mut err = struct_span_err!(resolver.session, span, E0435,
334                                            "attempt to use a non-constant value in a constant");
335             err.span_label(span, "non-constant value");
336             err
337         }
338         ResolutionError::BindingShadowsSomethingUnacceptable(what_binding, name, binding) => {
339             let shadows_what = PathResolution::new(binding.def()).kind_name();
340             let mut err = struct_span_err!(resolver.session,
341                                            span,
342                                            E0530,
343                                            "{}s cannot shadow {}s", what_binding, shadows_what);
344             err.span_label(span, format!("cannot be named the same as a {}", shadows_what));
345             let participle = if binding.is_import() { "imported" } else { "defined" };
346             let msg = format!("a {} `{}` is {} here", shadows_what, name, participle);
347             err.span_label(binding.span, msg);
348             err
349         }
350         ResolutionError::ForwardDeclaredTyParam => {
351             let mut err = struct_span_err!(resolver.session, span, E0128,
352                                            "type parameters with a default cannot use \
353                                             forward declared identifiers");
354             err.span_label(span, format!("defaulted type parameters cannot be forward declared"));
355             err
356         }
357     }
358 }
359
360 #[derive(Copy, Clone, Debug)]
361 struct BindingInfo {
362     span: Span,
363     binding_mode: BindingMode,
364 }
365
366 // Map from the name in a pattern to its binding mode.
367 type BindingMap = FxHashMap<Ident, BindingInfo>;
368
369 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
370 enum PatternSource {
371     Match,
372     IfLet,
373     WhileLet,
374     Let,
375     For,
376     FnParam,
377 }
378
379 impl PatternSource {
380     fn descr(self) -> &'static str {
381         match self {
382             PatternSource::Match => "match binding",
383             PatternSource::IfLet => "if let binding",
384             PatternSource::WhileLet => "while let binding",
385             PatternSource::Let => "let binding",
386             PatternSource::For => "for binding",
387             PatternSource::FnParam => "function parameter",
388         }
389     }
390 }
391
392 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
393 enum AliasPossibility {
394     No,
395     Maybe,
396 }
397
398 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
399 enum PathSource<'a> {
400     // Type paths `Path`.
401     Type,
402     // Trait paths in bounds or impls.
403     Trait(AliasPossibility),
404     // Expression paths `path`, with optional parent context.
405     Expr(Option<&'a Expr>),
406     // Paths in path patterns `Path`.
407     Pat,
408     // Paths in struct expressions and patterns `Path { .. }`.
409     Struct,
410     // Paths in tuple struct patterns `Path(..)`.
411     TupleStruct,
412     // `m::A::B` in `<T as m::A>::B::C`.
413     TraitItem(Namespace),
414     // Path in `pub(path)`
415     Visibility,
416     // Path in `use a::b::{...};`
417     ImportPrefix,
418 }
419
420 impl<'a> PathSource<'a> {
421     fn namespace(self) -> Namespace {
422         match self {
423             PathSource::Type | PathSource::Trait(_) | PathSource::Struct |
424             PathSource::Visibility | PathSource::ImportPrefix => TypeNS,
425             PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct => ValueNS,
426             PathSource::TraitItem(ns) => ns,
427         }
428     }
429
430     fn global_by_default(self) -> bool {
431         match self {
432             PathSource::Visibility | PathSource::ImportPrefix => true,
433             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
434             PathSource::Struct | PathSource::TupleStruct |
435             PathSource::Trait(_) | PathSource::TraitItem(..) => false,
436         }
437     }
438
439     fn defer_to_typeck(self) -> bool {
440         match self {
441             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
442             PathSource::Struct | PathSource::TupleStruct => true,
443             PathSource::Trait(_) | PathSource::TraitItem(..) |
444             PathSource::Visibility | PathSource::ImportPrefix => false,
445         }
446     }
447
448     fn descr_expected(self) -> &'static str {
449         match self {
450             PathSource::Type => "type",
451             PathSource::Trait(_) => "trait",
452             PathSource::Pat => "unit struct/variant or constant",
453             PathSource::Struct => "struct, variant or union type",
454             PathSource::TupleStruct => "tuple struct/variant",
455             PathSource::Visibility => "module",
456             PathSource::ImportPrefix => "module or enum",
457             PathSource::TraitItem(ns) => match ns {
458                 TypeNS => "associated type",
459                 ValueNS => "method or associated constant",
460                 MacroNS => bug!("associated macro"),
461             },
462             PathSource::Expr(parent) => match parent.map(|p| &p.node) {
463                 // "function" here means "anything callable" rather than `Def::Fn`,
464                 // this is not precise but usually more helpful than just "value".
465                 Some(&ExprKind::Call(..)) => "function",
466                 _ => "value",
467             },
468         }
469     }
470
471     fn is_expected(self, def: Def) -> bool {
472         match self {
473             PathSource::Type => match def {
474                 Def::Struct(..) | Def::Union(..) | Def::Enum(..) |
475                 Def::Trait(..) | Def::TyAlias(..) | Def::AssociatedTy(..) |
476                 Def::PrimTy(..) | Def::TyParam(..) | Def::SelfTy(..) |
477                 Def::TyForeign(..) => true,
478                 _ => false,
479             },
480             PathSource::Trait(AliasPossibility::No) => match def {
481                 Def::Trait(..) => true,
482                 _ => false,
483             },
484             PathSource::Trait(AliasPossibility::Maybe) => match def {
485                 Def::Trait(..) => true,
486                 Def::TraitAlias(..) => true,
487                 _ => false,
488             },
489             PathSource::Expr(..) => match def {
490                 Def::StructCtor(_, CtorKind::Const) | Def::StructCtor(_, CtorKind::Fn) |
491                 Def::VariantCtor(_, CtorKind::Const) | Def::VariantCtor(_, CtorKind::Fn) |
492                 Def::Const(..) | Def::Static(..) | Def::Local(..) | Def::Upvar(..) |
493                 Def::Fn(..) | Def::Method(..) | Def::AssociatedConst(..) => true,
494                 _ => false,
495             },
496             PathSource::Pat => match def {
497                 Def::StructCtor(_, CtorKind::Const) |
498                 Def::VariantCtor(_, CtorKind::Const) |
499                 Def::Const(..) | Def::AssociatedConst(..) => true,
500                 _ => false,
501             },
502             PathSource::TupleStruct => match def {
503                 Def::StructCtor(_, CtorKind::Fn) | Def::VariantCtor(_, CtorKind::Fn) => true,
504                 _ => false,
505             },
506             PathSource::Struct => match def {
507                 Def::Struct(..) | Def::Union(..) | Def::Variant(..) |
508                 Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => true,
509                 _ => false,
510             },
511             PathSource::TraitItem(ns) => match def {
512                 Def::AssociatedConst(..) | Def::Method(..) if ns == ValueNS => true,
513                 Def::AssociatedTy(..) if ns == TypeNS => true,
514                 _ => false,
515             },
516             PathSource::ImportPrefix => match def {
517                 Def::Mod(..) | Def::Enum(..) => true,
518                 _ => false,
519             },
520             PathSource::Visibility => match def {
521                 Def::Mod(..) => true,
522                 _ => false,
523             },
524         }
525     }
526
527     fn error_code(self, has_unexpected_resolution: bool) -> &'static str {
528         __diagnostic_used!(E0404);
529         __diagnostic_used!(E0405);
530         __diagnostic_used!(E0412);
531         __diagnostic_used!(E0422);
532         __diagnostic_used!(E0423);
533         __diagnostic_used!(E0425);
534         __diagnostic_used!(E0531);
535         __diagnostic_used!(E0532);
536         __diagnostic_used!(E0573);
537         __diagnostic_used!(E0574);
538         __diagnostic_used!(E0575);
539         __diagnostic_used!(E0576);
540         __diagnostic_used!(E0577);
541         __diagnostic_used!(E0578);
542         match (self, has_unexpected_resolution) {
543             (PathSource::Trait(_), true) => "E0404",
544             (PathSource::Trait(_), false) => "E0405",
545             (PathSource::Type, true) => "E0573",
546             (PathSource::Type, false) => "E0412",
547             (PathSource::Struct, true) => "E0574",
548             (PathSource::Struct, false) => "E0422",
549             (PathSource::Expr(..), true) => "E0423",
550             (PathSource::Expr(..), false) => "E0425",
551             (PathSource::Pat, true) | (PathSource::TupleStruct, true) => "E0532",
552             (PathSource::Pat, false) | (PathSource::TupleStruct, false) => "E0531",
553             (PathSource::TraitItem(..), true) => "E0575",
554             (PathSource::TraitItem(..), false) => "E0576",
555             (PathSource::Visibility, true) | (PathSource::ImportPrefix, true) => "E0577",
556             (PathSource::Visibility, false) | (PathSource::ImportPrefix, false) => "E0578",
557         }
558     }
559 }
560
561 #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
562 pub enum Namespace {
563     TypeNS,
564     ValueNS,
565     MacroNS,
566 }
567
568 #[derive(Clone, Default, Debug)]
569 pub struct PerNS<T> {
570     value_ns: T,
571     type_ns: T,
572     macro_ns: Option<T>,
573 }
574
575 impl<T> ::std::ops::Index<Namespace> for PerNS<T> {
576     type Output = T;
577     fn index(&self, ns: Namespace) -> &T {
578         match ns {
579             ValueNS => &self.value_ns,
580             TypeNS => &self.type_ns,
581             MacroNS => self.macro_ns.as_ref().unwrap(),
582         }
583     }
584 }
585
586 impl<T> ::std::ops::IndexMut<Namespace> for PerNS<T> {
587     fn index_mut(&mut self, ns: Namespace) -> &mut T {
588         match ns {
589             ValueNS => &mut self.value_ns,
590             TypeNS => &mut self.type_ns,
591             MacroNS => self.macro_ns.as_mut().unwrap(),
592         }
593     }
594 }
595
596 struct UsePlacementFinder {
597     target_module: NodeId,
598     span: Option<Span>,
599     found_use: bool,
600 }
601
602 impl UsePlacementFinder {
603     fn check(krate: &Crate, target_module: NodeId) -> (Option<Span>, bool) {
604         let mut finder = UsePlacementFinder {
605             target_module,
606             span: None,
607             found_use: false,
608         };
609         visit::walk_crate(&mut finder, krate);
610         (finder.span, finder.found_use)
611     }
612 }
613
614 impl<'tcx> Visitor<'tcx> for UsePlacementFinder {
615     fn visit_mod(
616         &mut self,
617         module: &'tcx ast::Mod,
618         _: Span,
619         _: &[ast::Attribute],
620         node_id: NodeId,
621     ) {
622         if self.span.is_some() {
623             return;
624         }
625         if node_id != self.target_module {
626             visit::walk_mod(self, module);
627             return;
628         }
629         // find a use statement
630         for item in &module.items {
631             match item.node {
632                 ItemKind::Use(..) => {
633                     // don't suggest placing a use before the prelude
634                     // import or other generated ones
635                     if item.span.ctxt().outer().expn_info().is_none() {
636                         self.span = Some(item.span.with_hi(item.span.lo()));
637                         self.found_use = true;
638                         return;
639                     }
640                 },
641                 // don't place use before extern crate
642                 ItemKind::ExternCrate(_) => {}
643                 // but place them before the first other item
644                 _ => if self.span.map_or(true, |span| item.span < span ) {
645                     if item.span.ctxt().outer().expn_info().is_none() {
646                         // don't insert between attributes and an item
647                         if item.attrs.is_empty() {
648                             self.span = Some(item.span.with_hi(item.span.lo()));
649                         } else {
650                             // find the first attribute on the item
651                             for attr in &item.attrs {
652                                 if self.span.map_or(true, |span| attr.span < span) {
653                                     self.span = Some(attr.span.with_hi(attr.span.lo()));
654                                 }
655                             }
656                         }
657                     }
658                 },
659             }
660         }
661     }
662 }
663
664 impl<'a, 'tcx> Visitor<'tcx> for Resolver<'a> {
665     fn visit_item(&mut self, item: &'tcx Item) {
666         self.resolve_item(item);
667     }
668     fn visit_arm(&mut self, arm: &'tcx Arm) {
669         self.resolve_arm(arm);
670     }
671     fn visit_block(&mut self, block: &'tcx Block) {
672         self.resolve_block(block);
673     }
674     fn visit_expr(&mut self, expr: &'tcx Expr) {
675         self.resolve_expr(expr, None);
676     }
677     fn visit_local(&mut self, local: &'tcx Local) {
678         self.resolve_local(local);
679     }
680     fn visit_ty(&mut self, ty: &'tcx Ty) {
681         match ty.node {
682             TyKind::Path(ref qself, ref path) => {
683                 self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
684             }
685             TyKind::ImplicitSelf => {
686                 let self_ty = keywords::SelfType.ident();
687                 let def = self.resolve_ident_in_lexical_scope(self_ty, TypeNS, true, ty.span)
688                               .map_or(Def::Err, |d| d.def());
689                 self.record_def(ty.id, PathResolution::new(def));
690             }
691             TyKind::Array(ref element, ref length) => {
692                 self.visit_ty(element);
693                 self.with_constant_rib(|this| {
694                     this.visit_expr(length);
695                 });
696                 return;
697             }
698             _ => (),
699         }
700         visit::walk_ty(self, ty);
701     }
702     fn visit_poly_trait_ref(&mut self,
703                             tref: &'tcx ast::PolyTraitRef,
704                             m: &'tcx ast::TraitBoundModifier) {
705         self.smart_resolve_path(tref.trait_ref.ref_id, None,
706                                 &tref.trait_ref.path, PathSource::Trait(AliasPossibility::Maybe));
707         visit::walk_poly_trait_ref(self, tref, m);
708     }
709     fn visit_variant(&mut self,
710                      variant: &'tcx ast::Variant,
711                      generics: &'tcx Generics,
712                      item_id: ast::NodeId) {
713         if let Some(ref dis_expr) = variant.node.disr_expr {
714             // resolve the discriminator expr as a constant
715             self.with_constant_rib(|this| {
716                 this.visit_expr(dis_expr);
717             });
718         }
719
720         // `visit::walk_variant` without the discriminant expression.
721         self.visit_variant_data(&variant.node.data,
722                                 variant.node.name,
723                                 generics,
724                                 item_id,
725                                 variant.span);
726     }
727     fn visit_foreign_item(&mut self, foreign_item: &'tcx ForeignItem) {
728         let type_parameters = match foreign_item.node {
729             ForeignItemKind::Fn(_, ref generics) => {
730                 HasTypeParameters(generics, ItemRibKind)
731             }
732             ForeignItemKind::Static(..) => NoTypeParameters,
733             ForeignItemKind::Ty => NoTypeParameters,
734         };
735         self.with_type_parameter_rib(type_parameters, |this| {
736             visit::walk_foreign_item(this, foreign_item);
737         });
738     }
739     fn visit_fn(&mut self,
740                 function_kind: FnKind<'tcx>,
741                 declaration: &'tcx FnDecl,
742                 _: Span,
743                 node_id: NodeId) {
744         let rib_kind = match function_kind {
745             FnKind::ItemFn(..) => {
746                 ItemRibKind
747             }
748             FnKind::Method(_, _, _, _) => {
749                 TraitOrImplItemRibKind
750             }
751             FnKind::Closure(_) => ClosureRibKind(node_id),
752         };
753
754         // Create a value rib for the function.
755         self.ribs[ValueNS].push(Rib::new(rib_kind));
756
757         // Create a label rib for the function.
758         self.label_ribs.push(Rib::new(rib_kind));
759
760         // Add each argument to the rib.
761         let mut bindings_list = FxHashMap();
762         for argument in &declaration.inputs {
763             self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
764
765             self.visit_ty(&argument.ty);
766
767             debug!("(resolving function) recorded argument");
768         }
769         visit::walk_fn_ret_ty(self, &declaration.output);
770
771         // Resolve the function body.
772         match function_kind {
773             FnKind::ItemFn(.., body) |
774             FnKind::Method(.., body) => {
775                 self.visit_block(body);
776             }
777             FnKind::Closure(body) => {
778                 self.visit_expr(body);
779             }
780         };
781
782         debug!("(resolving function) leaving function");
783
784         self.label_ribs.pop();
785         self.ribs[ValueNS].pop();
786     }
787     fn visit_generics(&mut self, generics: &'tcx Generics) {
788         // For type parameter defaults, we have to ban access
789         // to following type parameters, as the Substs can only
790         // provide previous type parameters as they're built.
791         let mut default_ban_rib = Rib::new(ForwardTyParamBanRibKind);
792         default_ban_rib.bindings.extend(generics.params.iter()
793             .filter_map(|p| if let GenericParam::Type(ref tp) = *p { Some(tp) } else { None })
794             .skip_while(|p| p.default.is_none())
795             .map(|p| (Ident::with_empty_ctxt(p.ident.name), Def::Err)));
796
797         for param in &generics.params {
798             match *param {
799                 GenericParam::Lifetime(_) => self.visit_generic_param(param),
800                 GenericParam::Type(ref ty_param) => {
801                     for bound in &ty_param.bounds {
802                         self.visit_ty_param_bound(bound);
803                     }
804
805                     if let Some(ref ty) = ty_param.default {
806                         self.ribs[TypeNS].push(default_ban_rib);
807                         self.visit_ty(ty);
808                         default_ban_rib = self.ribs[TypeNS].pop().unwrap();
809                     }
810
811                     // Allow all following defaults to refer to this type parameter.
812                     default_ban_rib.bindings.remove(&Ident::with_empty_ctxt(ty_param.ident.name));
813                 }
814             }
815         }
816         for p in &generics.where_clause.predicates { self.visit_where_predicate(p); }
817     }
818 }
819
820 #[derive(Copy, Clone)]
821 enum TypeParameters<'a, 'b> {
822     NoTypeParameters,
823     HasTypeParameters(// Type parameters.
824                       &'b Generics,
825
826                       // The kind of the rib used for type parameters.
827                       RibKind<'a>),
828 }
829
830 // The rib kind controls the translation of local
831 // definitions (`Def::Local`) to upvars (`Def::Upvar`).
832 #[derive(Copy, Clone, Debug)]
833 enum RibKind<'a> {
834     // No translation needs to be applied.
835     NormalRibKind,
836
837     // We passed through a closure scope at the given node ID.
838     // Translate upvars as appropriate.
839     ClosureRibKind(NodeId /* func id */),
840
841     // We passed through an impl or trait and are now in one of its
842     // methods or associated types. Allow references to ty params that impl or trait
843     // binds. Disallow any other upvars (including other ty params that are
844     // upvars).
845     TraitOrImplItemRibKind,
846
847     // We passed through an item scope. Disallow upvars.
848     ItemRibKind,
849
850     // We're in a constant item. Can't refer to dynamic stuff.
851     ConstantItemRibKind,
852
853     // We passed through a module.
854     ModuleRibKind(Module<'a>),
855
856     // We passed through a `macro_rules!` statement
857     MacroDefinition(DefId),
858
859     // All bindings in this rib are type parameters that can't be used
860     // from the default of a type parameter because they're not declared
861     // before said type parameter. Also see the `visit_generics` override.
862     ForwardTyParamBanRibKind,
863 }
864
865 /// One local scope.
866 #[derive(Debug)]
867 struct Rib<'a> {
868     bindings: FxHashMap<Ident, Def>,
869     kind: RibKind<'a>,
870 }
871
872 impl<'a> Rib<'a> {
873     fn new(kind: RibKind<'a>) -> Rib<'a> {
874         Rib {
875             bindings: FxHashMap(),
876             kind,
877         }
878     }
879 }
880
881 enum LexicalScopeBinding<'a> {
882     Item(&'a NameBinding<'a>),
883     Def(Def),
884 }
885
886 impl<'a> LexicalScopeBinding<'a> {
887     fn item(self) -> Option<&'a NameBinding<'a>> {
888         match self {
889             LexicalScopeBinding::Item(binding) => Some(binding),
890             _ => None,
891         }
892     }
893
894     fn def(self) -> Def {
895         match self {
896             LexicalScopeBinding::Item(binding) => binding.def(),
897             LexicalScopeBinding::Def(def) => def,
898         }
899     }
900 }
901
902 #[derive(Clone, Debug)]
903 enum PathResult<'a> {
904     Module(Module<'a>),
905     NonModule(PathResolution),
906     Indeterminate,
907     Failed(Span, String, bool /* is the error from the last segment? */),
908 }
909
910 enum ModuleKind {
911     Block(NodeId),
912     Def(Def, Name),
913 }
914
915 /// One node in the tree of modules.
916 pub struct ModuleData<'a> {
917     parent: Option<Module<'a>>,
918     kind: ModuleKind,
919
920     // The def id of the closest normal module (`mod`) ancestor (including this module).
921     normal_ancestor_id: DefId,
922
923     resolutions: RefCell<FxHashMap<(Ident, Namespace), &'a RefCell<NameResolution<'a>>>>,
924     legacy_macro_resolutions: RefCell<Vec<(Mark, Ident, Span, MacroKind)>>,
925     macro_resolutions: RefCell<Vec<(Box<[Ident]>, Span)>>,
926
927     // Macro invocations that can expand into items in this module.
928     unresolved_invocations: RefCell<FxHashSet<Mark>>,
929
930     no_implicit_prelude: bool,
931
932     glob_importers: RefCell<Vec<&'a ImportDirective<'a>>>,
933     globs: RefCell<Vec<&'a ImportDirective<'a>>>,
934
935     // Used to memoize the traits in this module for faster searches through all traits in scope.
936     traits: RefCell<Option<Box<[(Ident, &'a NameBinding<'a>)]>>>,
937
938     // Whether this module is populated. If not populated, any attempt to
939     // access the children must be preceded with a
940     // `populate_module_if_necessary` call.
941     populated: Cell<bool>,
942
943     /// Span of the module itself. Used for error reporting.
944     span: Span,
945
946     expansion: Mark,
947 }
948
949 type Module<'a> = &'a ModuleData<'a>;
950
951 impl<'a> ModuleData<'a> {
952     fn new(parent: Option<Module<'a>>,
953            kind: ModuleKind,
954            normal_ancestor_id: DefId,
955            expansion: Mark,
956            span: Span) -> Self {
957         ModuleData {
958             parent,
959             kind,
960             normal_ancestor_id,
961             resolutions: RefCell::new(FxHashMap()),
962             legacy_macro_resolutions: RefCell::new(Vec::new()),
963             macro_resolutions: RefCell::new(Vec::new()),
964             unresolved_invocations: RefCell::new(FxHashSet()),
965             no_implicit_prelude: false,
966             glob_importers: RefCell::new(Vec::new()),
967             globs: RefCell::new(Vec::new()),
968             traits: RefCell::new(None),
969             populated: Cell::new(normal_ancestor_id.is_local()),
970             span,
971             expansion,
972         }
973     }
974
975     fn for_each_child<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
976         for (&(ident, ns), name_resolution) in self.resolutions.borrow().iter() {
977             name_resolution.borrow().binding.map(|binding| f(ident, ns, binding));
978         }
979     }
980
981     fn for_each_child_stable<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
982         let resolutions = self.resolutions.borrow();
983         let mut resolutions = resolutions.iter().map(|(&(ident, ns), &resolution)| {
984                                                     // Pre-compute keys for sorting
985                                                     (ident.name.as_str(), ns, ident, resolution)
986                                                 })
987                                                 .collect::<Vec<_>>();
988         resolutions.sort_unstable_by_key(|&(str, ns, ..)| (str, ns));
989         for &(_, ns, ident, resolution) in resolutions.iter() {
990             resolution.borrow().binding.map(|binding| f(ident, ns, binding));
991         }
992     }
993
994     fn def(&self) -> Option<Def> {
995         match self.kind {
996             ModuleKind::Def(def, _) => Some(def),
997             _ => None,
998         }
999     }
1000
1001     fn def_id(&self) -> Option<DefId> {
1002         self.def().as_ref().map(Def::def_id)
1003     }
1004
1005     // `self` resolves to the first module ancestor that `is_normal`.
1006     fn is_normal(&self) -> bool {
1007         match self.kind {
1008             ModuleKind::Def(Def::Mod(_), _) => true,
1009             _ => false,
1010         }
1011     }
1012
1013     fn is_trait(&self) -> bool {
1014         match self.kind {
1015             ModuleKind::Def(Def::Trait(_), _) => true,
1016             _ => false,
1017         }
1018     }
1019
1020     fn is_local(&self) -> bool {
1021         self.normal_ancestor_id.is_local()
1022     }
1023
1024     fn nearest_item_scope(&'a self) -> Module<'a> {
1025         if self.is_trait() { self.parent.unwrap() } else { self }
1026     }
1027 }
1028
1029 impl<'a> fmt::Debug for ModuleData<'a> {
1030     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1031         write!(f, "{:?}", self.def())
1032     }
1033 }
1034
1035 // Records a possibly-private value, type, or module definition.
1036 #[derive(Clone, Debug)]
1037 pub struct NameBinding<'a> {
1038     kind: NameBindingKind<'a>,
1039     expansion: Mark,
1040     span: Span,
1041     vis: ty::Visibility,
1042 }
1043
1044 pub trait ToNameBinding<'a> {
1045     fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a>;
1046 }
1047
1048 impl<'a> ToNameBinding<'a> for &'a NameBinding<'a> {
1049     fn to_name_binding(self, _: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> {
1050         self
1051     }
1052 }
1053
1054 #[derive(Clone, Debug)]
1055 enum NameBindingKind<'a> {
1056     Def(Def),
1057     Module(Module<'a>),
1058     Import {
1059         binding: &'a NameBinding<'a>,
1060         directive: &'a ImportDirective<'a>,
1061         used: Cell<bool>,
1062         legacy_self_import: bool,
1063     },
1064     Ambiguity {
1065         b1: &'a NameBinding<'a>,
1066         b2: &'a NameBinding<'a>,
1067         legacy: bool,
1068     }
1069 }
1070
1071 struct PrivacyError<'a>(Span, Name, &'a NameBinding<'a>);
1072
1073 struct UseError<'a> {
1074     err: DiagnosticBuilder<'a>,
1075     /// Attach `use` statements for these candidates
1076     candidates: Vec<ImportSuggestion>,
1077     /// The node id of the module to place the use statements in
1078     node_id: NodeId,
1079     /// Whether the diagnostic should state that it's "better"
1080     better: bool,
1081 }
1082
1083 struct AmbiguityError<'a> {
1084     span: Span,
1085     name: Name,
1086     lexical: bool,
1087     b1: &'a NameBinding<'a>,
1088     b2: &'a NameBinding<'a>,
1089     legacy: bool,
1090 }
1091
1092 impl<'a> NameBinding<'a> {
1093     fn module(&self) -> Option<Module<'a>> {
1094         match self.kind {
1095             NameBindingKind::Module(module) => Some(module),
1096             NameBindingKind::Import { binding, .. } => binding.module(),
1097             NameBindingKind::Ambiguity { legacy: true, b1, .. } => b1.module(),
1098             _ => None,
1099         }
1100     }
1101
1102     fn def(&self) -> Def {
1103         match self.kind {
1104             NameBindingKind::Def(def) => def,
1105             NameBindingKind::Module(module) => module.def().unwrap(),
1106             NameBindingKind::Import { binding, .. } => binding.def(),
1107             NameBindingKind::Ambiguity { legacy: true, b1, .. } => b1.def(),
1108             NameBindingKind::Ambiguity { .. } => Def::Err,
1109         }
1110     }
1111
1112     fn def_ignoring_ambiguity(&self) -> Def {
1113         match self.kind {
1114             NameBindingKind::Import { binding, .. } => binding.def_ignoring_ambiguity(),
1115             NameBindingKind::Ambiguity { b1, .. } => b1.def_ignoring_ambiguity(),
1116             _ => self.def(),
1117         }
1118     }
1119
1120     fn get_macro(&self, resolver: &mut Resolver<'a>) -> Rc<SyntaxExtension> {
1121         resolver.get_macro(self.def_ignoring_ambiguity())
1122     }
1123
1124     // We sometimes need to treat variants as `pub` for backwards compatibility
1125     fn pseudo_vis(&self) -> ty::Visibility {
1126         if self.is_variant() && self.def().def_id().is_local() {
1127             ty::Visibility::Public
1128         } else {
1129             self.vis
1130         }
1131     }
1132
1133     fn is_variant(&self) -> bool {
1134         match self.kind {
1135             NameBindingKind::Def(Def::Variant(..)) |
1136             NameBindingKind::Def(Def::VariantCtor(..)) => true,
1137             _ => false,
1138         }
1139     }
1140
1141     fn is_extern_crate(&self) -> bool {
1142         match self.kind {
1143             NameBindingKind::Import {
1144                 directive: &ImportDirective {
1145                     subclass: ImportDirectiveSubclass::ExternCrate(_), ..
1146                 }, ..
1147             } => true,
1148             _ => false,
1149         }
1150     }
1151
1152     fn is_import(&self) -> bool {
1153         match self.kind {
1154             NameBindingKind::Import { .. } => true,
1155             _ => false,
1156         }
1157     }
1158
1159     fn is_renamed_extern_crate(&self) -> bool {
1160         if let NameBindingKind::Import { directive, ..} = self.kind {
1161             if let ImportDirectiveSubclass::ExternCrate(Some(_)) = directive.subclass {
1162                 return true;
1163             }
1164         }
1165         false
1166     }
1167
1168     fn is_glob_import(&self) -> bool {
1169         match self.kind {
1170             NameBindingKind::Import { directive, .. } => directive.is_glob(),
1171             NameBindingKind::Ambiguity { b1, .. } => b1.is_glob_import(),
1172             _ => false,
1173         }
1174     }
1175
1176     fn is_importable(&self) -> bool {
1177         match self.def() {
1178             Def::AssociatedConst(..) | Def::Method(..) | Def::AssociatedTy(..) => false,
1179             _ => true,
1180         }
1181     }
1182
1183     fn is_macro_def(&self) -> bool {
1184         match self.kind {
1185             NameBindingKind::Def(Def::Macro(..)) => true,
1186             _ => false,
1187         }
1188     }
1189
1190     fn descr(&self) -> &'static str {
1191         if self.is_extern_crate() { "extern crate" } else { self.def().kind_name() }
1192     }
1193 }
1194
1195 /// Interns the names of the primitive types.
1196 struct PrimitiveTypeTable {
1197     primitive_types: FxHashMap<Name, PrimTy>,
1198 }
1199
1200 impl PrimitiveTypeTable {
1201     fn new() -> PrimitiveTypeTable {
1202         let mut table = PrimitiveTypeTable { primitive_types: FxHashMap() };
1203
1204         table.intern("bool", TyBool);
1205         table.intern("char", TyChar);
1206         table.intern("f32", TyFloat(FloatTy::F32));
1207         table.intern("f64", TyFloat(FloatTy::F64));
1208         table.intern("isize", TyInt(IntTy::Isize));
1209         table.intern("i8", TyInt(IntTy::I8));
1210         table.intern("i16", TyInt(IntTy::I16));
1211         table.intern("i32", TyInt(IntTy::I32));
1212         table.intern("i64", TyInt(IntTy::I64));
1213         table.intern("i128", TyInt(IntTy::I128));
1214         table.intern("str", TyStr);
1215         table.intern("usize", TyUint(UintTy::Usize));
1216         table.intern("u8", TyUint(UintTy::U8));
1217         table.intern("u16", TyUint(UintTy::U16));
1218         table.intern("u32", TyUint(UintTy::U32));
1219         table.intern("u64", TyUint(UintTy::U64));
1220         table.intern("u128", TyUint(UintTy::U128));
1221         table
1222     }
1223
1224     fn intern(&mut self, string: &str, primitive_type: PrimTy) {
1225         self.primitive_types.insert(Symbol::intern(string), primitive_type);
1226     }
1227 }
1228
1229 /// The main resolver class.
1230 pub struct Resolver<'a> {
1231     session: &'a Session,
1232     cstore: &'a CrateStore,
1233
1234     pub definitions: Definitions,
1235
1236     graph_root: Module<'a>,
1237
1238     prelude: Option<Module<'a>>,
1239
1240     // n.b. This is used only for better diagnostics, not name resolution itself.
1241     has_self: FxHashSet<DefId>,
1242
1243     // Names of fields of an item `DefId` accessible with dot syntax.
1244     // Used for hints during error reporting.
1245     field_names: FxHashMap<DefId, Vec<Name>>,
1246
1247     // All imports known to succeed or fail.
1248     determined_imports: Vec<&'a ImportDirective<'a>>,
1249
1250     // All non-determined imports.
1251     indeterminate_imports: Vec<&'a ImportDirective<'a>>,
1252
1253     // The module that represents the current item scope.
1254     current_module: Module<'a>,
1255
1256     // The current set of local scopes for types and values.
1257     // FIXME #4948: Reuse ribs to avoid allocation.
1258     ribs: PerNS<Vec<Rib<'a>>>,
1259
1260     // The current set of local scopes, for labels.
1261     label_ribs: Vec<Rib<'a>>,
1262
1263     // The trait that the current context can refer to.
1264     current_trait_ref: Option<(Module<'a>, TraitRef)>,
1265
1266     // The current self type if inside an impl (used for better errors).
1267     current_self_type: Option<Ty>,
1268
1269     // The idents for the primitive types.
1270     primitive_type_table: PrimitiveTypeTable,
1271
1272     def_map: DefMap,
1273     pub freevars: FreevarMap,
1274     freevars_seen: NodeMap<NodeMap<usize>>,
1275     pub export_map: ExportMap,
1276     pub trait_map: TraitMap,
1277
1278     // A map from nodes to anonymous modules.
1279     // Anonymous modules are pseudo-modules that are implicitly created around items
1280     // contained within blocks.
1281     //
1282     // For example, if we have this:
1283     //
1284     //  fn f() {
1285     //      fn g() {
1286     //          ...
1287     //      }
1288     //  }
1289     //
1290     // There will be an anonymous module created around `g` with the ID of the
1291     // entry block for `f`.
1292     block_map: NodeMap<Module<'a>>,
1293     module_map: FxHashMap<DefId, Module<'a>>,
1294     extern_module_map: FxHashMap<(DefId, bool /* MacrosOnly? */), Module<'a>>,
1295
1296     pub make_glob_map: bool,
1297     /// Maps imports to the names of items actually imported (this actually maps
1298     /// all imports, but only glob imports are actually interesting).
1299     pub glob_map: GlobMap,
1300
1301     used_imports: FxHashSet<(NodeId, Namespace)>,
1302     pub maybe_unused_trait_imports: NodeSet,
1303     pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
1304
1305     /// privacy errors are delayed until the end in order to deduplicate them
1306     privacy_errors: Vec<PrivacyError<'a>>,
1307     /// ambiguity errors are delayed for deduplication
1308     ambiguity_errors: Vec<AmbiguityError<'a>>,
1309     /// `use` injections are delayed for better placement and deduplication
1310     use_injections: Vec<UseError<'a>>,
1311     /// `use` injections for proc macros wrongly imported with #[macro_use]
1312     proc_mac_errors: Vec<macros::ProcMacError>,
1313
1314     gated_errors: FxHashSet<Span>,
1315     disallowed_shadowing: Vec<&'a LegacyBinding<'a>>,
1316
1317     arenas: &'a ResolverArenas<'a>,
1318     dummy_binding: &'a NameBinding<'a>,
1319     use_extern_macros: bool, // true if `#![feature(use_extern_macros)]`
1320
1321     crate_loader: &'a mut CrateLoader,
1322     macro_names: FxHashSet<Ident>,
1323     global_macros: FxHashMap<Name, &'a NameBinding<'a>>,
1324     pub all_macros: FxHashMap<Name, Def>,
1325     lexical_macro_resolutions: Vec<(Ident, &'a Cell<LegacyScope<'a>>)>,
1326     macro_map: FxHashMap<DefId, Rc<SyntaxExtension>>,
1327     macro_defs: FxHashMap<Mark, DefId>,
1328     local_macro_def_scopes: FxHashMap<NodeId, Module<'a>>,
1329     macro_exports: Vec<Export>,
1330     pub whitelisted_legacy_custom_derives: Vec<Name>,
1331     pub found_unresolved_macro: bool,
1332
1333     // List of crate local macros that we need to warn about as being unused.
1334     // Right now this only includes macro_rules! macros, and macros 2.0.
1335     unused_macros: FxHashSet<DefId>,
1336
1337     // Maps the `Mark` of an expansion to its containing module or block.
1338     invocations: FxHashMap<Mark, &'a InvocationData<'a>>,
1339
1340     // Avoid duplicated errors for "name already defined".
1341     name_already_seen: FxHashMap<Name, Span>,
1342
1343     // If `#![feature(proc_macro)]` is set
1344     proc_macro_enabled: bool,
1345
1346     // A set of procedural macros imported by `#[macro_use]` that have already been warned about
1347     warned_proc_macros: FxHashSet<Name>,
1348
1349     potentially_unused_imports: Vec<&'a ImportDirective<'a>>,
1350
1351     // This table maps struct IDs into struct constructor IDs,
1352     // it's not used during normal resolution, only for better error reporting.
1353     struct_constructors: DefIdMap<(Def, ty::Visibility)>,
1354
1355     // Only used for better errors on `fn(): fn()`
1356     current_type_ascription: Vec<Span>,
1357
1358     injected_crate: Option<Module<'a>>,
1359 }
1360
1361 pub struct ResolverArenas<'a> {
1362     modules: arena::TypedArena<ModuleData<'a>>,
1363     local_modules: RefCell<Vec<Module<'a>>>,
1364     name_bindings: arena::TypedArena<NameBinding<'a>>,
1365     import_directives: arena::TypedArena<ImportDirective<'a>>,
1366     name_resolutions: arena::TypedArena<RefCell<NameResolution<'a>>>,
1367     invocation_data: arena::TypedArena<InvocationData<'a>>,
1368     legacy_bindings: arena::TypedArena<LegacyBinding<'a>>,
1369 }
1370
1371 impl<'a> ResolverArenas<'a> {
1372     fn alloc_module(&'a self, module: ModuleData<'a>) -> Module<'a> {
1373         let module = self.modules.alloc(module);
1374         if module.def_id().map(|def_id| def_id.is_local()).unwrap_or(true) {
1375             self.local_modules.borrow_mut().push(module);
1376         }
1377         module
1378     }
1379     fn local_modules(&'a self) -> ::std::cell::Ref<'a, Vec<Module<'a>>> {
1380         self.local_modules.borrow()
1381     }
1382     fn alloc_name_binding(&'a self, name_binding: NameBinding<'a>) -> &'a NameBinding<'a> {
1383         self.name_bindings.alloc(name_binding)
1384     }
1385     fn alloc_import_directive(&'a self, import_directive: ImportDirective<'a>)
1386                               -> &'a ImportDirective {
1387         self.import_directives.alloc(import_directive)
1388     }
1389     fn alloc_name_resolution(&'a self) -> &'a RefCell<NameResolution<'a>> {
1390         self.name_resolutions.alloc(Default::default())
1391     }
1392     fn alloc_invocation_data(&'a self, expansion_data: InvocationData<'a>)
1393                              -> &'a InvocationData<'a> {
1394         self.invocation_data.alloc(expansion_data)
1395     }
1396     fn alloc_legacy_binding(&'a self, binding: LegacyBinding<'a>) -> &'a LegacyBinding<'a> {
1397         self.legacy_bindings.alloc(binding)
1398     }
1399 }
1400
1401 impl<'a, 'b: 'a> ty::DefIdTree for &'a Resolver<'b> {
1402     fn parent(self, id: DefId) -> Option<DefId> {
1403         match id.krate {
1404             LOCAL_CRATE => self.definitions.def_key(id.index).parent,
1405             _ => self.cstore.def_key(id).parent,
1406         }.map(|index| DefId { index: index, ..id })
1407     }
1408 }
1409
1410 impl<'a> hir::lowering::Resolver for Resolver<'a> {
1411     fn resolve_hir_path(&mut self, path: &mut hir::Path, is_value: bool) {
1412         self.resolve_hir_path_cb(path, is_value,
1413                                  |resolver, span, error| resolve_error(resolver, span, error))
1414     }
1415
1416     fn resolve_str_path(&mut self, span: Span, crate_root: Option<&str>,
1417                         components: &[&str], is_value: bool) -> hir::Path {
1418         let mut path = hir::Path {
1419             span,
1420             def: Def::Err,
1421             segments: iter::once(keywords::CrateRoot.name()).chain({
1422                 crate_root.into_iter().chain(components.iter().cloned()).map(Symbol::intern)
1423             }).map(hir::PathSegment::from_name).collect(),
1424         };
1425
1426         self.resolve_hir_path(&mut path, is_value);
1427         path
1428     }
1429
1430     fn get_resolution(&mut self, id: NodeId) -> Option<PathResolution> {
1431         self.def_map.get(&id).cloned()
1432     }
1433
1434     fn definitions(&mut self) -> &mut Definitions {
1435         &mut self.definitions
1436     }
1437 }
1438
1439 impl<'a> Resolver<'a> {
1440     /// Rustdoc uses this to resolve things in a recoverable way. ResolutionError<'a>
1441     /// isn't something that can be returned because it can't be made to live that long,
1442     /// and also it's a private type. Fortunately rustdoc doesn't need to know the error,
1443     /// just that an error occurred.
1444     pub fn resolve_str_path_error(&mut self, span: Span, path_str: &str, is_value: bool)
1445         -> Result<hir::Path, ()> {
1446         use std::iter;
1447         let mut errored = false;
1448
1449         let mut path = if path_str.starts_with("::") {
1450             hir::Path {
1451                 span,
1452                 def: Def::Err,
1453                 segments: iter::once(keywords::CrateRoot.name()).chain({
1454                     path_str.split("::").skip(1).map(Symbol::intern)
1455                 }).map(hir::PathSegment::from_name).collect(),
1456             }
1457         } else {
1458             hir::Path {
1459                 span,
1460                 def: Def::Err,
1461                 segments: path_str.split("::").map(Symbol::intern)
1462                                   .map(hir::PathSegment::from_name).collect(),
1463             }
1464         };
1465         self.resolve_hir_path_cb(&mut path, is_value, |_, _, _| errored = true);
1466         if errored || path.def == Def::Err {
1467             Err(())
1468         } else {
1469             Ok(path)
1470         }
1471     }
1472
1473     /// resolve_hir_path, but takes a callback in case there was an error
1474     fn resolve_hir_path_cb<F>(&mut self, path: &mut hir::Path, is_value: bool, error_callback: F)
1475             where F: for<'c, 'b> FnOnce(&'c mut Resolver, Span, ResolutionError<'b>)
1476         {
1477         let namespace = if is_value { ValueNS } else { TypeNS };
1478         let hir::Path { ref segments, span, ref mut def } = *path;
1479         let path: Vec<SpannedIdent> = segments.iter()
1480             .map(|seg| respan(span, Ident::with_empty_ctxt(seg.name)))
1481             .collect();
1482         match self.resolve_path(&path, Some(namespace), true, span) {
1483             PathResult::Module(module) => *def = module.def().unwrap(),
1484             PathResult::NonModule(path_res) if path_res.unresolved_segments() == 0 =>
1485                 *def = path_res.base_def(),
1486             PathResult::NonModule(..) => match self.resolve_path(&path, None, true, span) {
1487                 PathResult::Failed(span, msg, _) => {
1488                     error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1489                 }
1490                 _ => {}
1491             },
1492             PathResult::Indeterminate => unreachable!(),
1493             PathResult::Failed(span, msg, _) => {
1494                 error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1495             }
1496         }
1497     }
1498 }
1499
1500 impl<'a> Resolver<'a> {
1501     pub fn new(session: &'a Session,
1502                cstore: &'a CrateStore,
1503                krate: &Crate,
1504                crate_name: &str,
1505                make_glob_map: MakeGlobMap,
1506                crate_loader: &'a mut CrateLoader,
1507                arenas: &'a ResolverArenas<'a>)
1508                -> Resolver<'a> {
1509         let root_def_id = DefId::local(CRATE_DEF_INDEX);
1510         let root_module_kind = ModuleKind::Def(Def::Mod(root_def_id), keywords::Invalid.name());
1511         let graph_root = arenas.alloc_module(ModuleData {
1512             no_implicit_prelude: attr::contains_name(&krate.attrs, "no_implicit_prelude"),
1513             ..ModuleData::new(None, root_module_kind, root_def_id, Mark::root(), krate.span)
1514         });
1515         let mut module_map = FxHashMap();
1516         module_map.insert(DefId::local(CRATE_DEF_INDEX), graph_root);
1517
1518         let mut definitions = Definitions::new();
1519         DefCollector::new(&mut definitions, Mark::root())
1520             .collect_root(crate_name, session.local_crate_disambiguator());
1521
1522         let mut invocations = FxHashMap();
1523         invocations.insert(Mark::root(),
1524                            arenas.alloc_invocation_data(InvocationData::root(graph_root)));
1525
1526         let features = session.features.borrow();
1527
1528         let mut macro_defs = FxHashMap();
1529         macro_defs.insert(Mark::root(), root_def_id);
1530
1531         Resolver {
1532             session,
1533
1534             cstore,
1535
1536             definitions,
1537
1538             // The outermost module has def ID 0; this is not reflected in the
1539             // AST.
1540             graph_root,
1541             prelude: None,
1542
1543             has_self: FxHashSet(),
1544             field_names: FxHashMap(),
1545
1546             determined_imports: Vec::new(),
1547             indeterminate_imports: Vec::new(),
1548
1549             current_module: graph_root,
1550             ribs: PerNS {
1551                 value_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1552                 type_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1553                 macro_ns: Some(vec![Rib::new(ModuleRibKind(graph_root))]),
1554             },
1555             label_ribs: Vec::new(),
1556
1557             current_trait_ref: None,
1558             current_self_type: None,
1559
1560             primitive_type_table: PrimitiveTypeTable::new(),
1561
1562             def_map: NodeMap(),
1563             freevars: NodeMap(),
1564             freevars_seen: NodeMap(),
1565             export_map: FxHashMap(),
1566             trait_map: NodeMap(),
1567             module_map,
1568             block_map: NodeMap(),
1569             extern_module_map: FxHashMap(),
1570
1571             make_glob_map: make_glob_map == MakeGlobMap::Yes,
1572             glob_map: NodeMap(),
1573
1574             used_imports: FxHashSet(),
1575             maybe_unused_trait_imports: NodeSet(),
1576             maybe_unused_extern_crates: Vec::new(),
1577
1578             privacy_errors: Vec::new(),
1579             ambiguity_errors: Vec::new(),
1580             use_injections: Vec::new(),
1581             proc_mac_errors: Vec::new(),
1582             gated_errors: FxHashSet(),
1583             disallowed_shadowing: Vec::new(),
1584
1585             arenas,
1586             dummy_binding: arenas.alloc_name_binding(NameBinding {
1587                 kind: NameBindingKind::Def(Def::Err),
1588                 expansion: Mark::root(),
1589                 span: DUMMY_SP,
1590                 vis: ty::Visibility::Public,
1591             }),
1592
1593             // The `proc_macro` and `decl_macro` features imply `use_extern_macros`
1594             use_extern_macros:
1595                 features.use_extern_macros || features.proc_macro || features.decl_macro,
1596
1597             crate_loader,
1598             macro_names: FxHashSet(),
1599             global_macros: FxHashMap(),
1600             all_macros: FxHashMap(),
1601             lexical_macro_resolutions: Vec::new(),
1602             macro_map: FxHashMap(),
1603             macro_exports: Vec::new(),
1604             invocations,
1605             macro_defs,
1606             local_macro_def_scopes: FxHashMap(),
1607             name_already_seen: FxHashMap(),
1608             whitelisted_legacy_custom_derives: Vec::new(),
1609             proc_macro_enabled: features.proc_macro,
1610             warned_proc_macros: FxHashSet(),
1611             potentially_unused_imports: Vec::new(),
1612             struct_constructors: DefIdMap(),
1613             found_unresolved_macro: false,
1614             unused_macros: FxHashSet(),
1615             current_type_ascription: Vec::new(),
1616             injected_crate: None,
1617         }
1618     }
1619
1620     pub fn arenas() -> ResolverArenas<'a> {
1621         ResolverArenas {
1622             modules: arena::TypedArena::new(),
1623             local_modules: RefCell::new(Vec::new()),
1624             name_bindings: arena::TypedArena::new(),
1625             import_directives: arena::TypedArena::new(),
1626             name_resolutions: arena::TypedArena::new(),
1627             invocation_data: arena::TypedArena::new(),
1628             legacy_bindings: arena::TypedArena::new(),
1629         }
1630     }
1631
1632     fn per_ns<T, F: FnMut(&mut Self, Namespace) -> T>(&mut self, mut f: F) -> PerNS<T> {
1633         PerNS {
1634             type_ns: f(self, TypeNS),
1635             value_ns: f(self, ValueNS),
1636             macro_ns: match self.use_extern_macros {
1637                 true => Some(f(self, MacroNS)),
1638                 false => None,
1639             },
1640         }
1641     }
1642
1643     fn macro_def(&self, mut ctxt: SyntaxContext) -> DefId {
1644         loop {
1645             match self.macro_defs.get(&ctxt.outer()) {
1646                 Some(&def_id) => return def_id,
1647                 None => ctxt.remove_mark(),
1648             };
1649         }
1650     }
1651
1652     /// Entry point to crate resolution.
1653     pub fn resolve_crate(&mut self, krate: &Crate) {
1654         ImportResolver { resolver: self }.finalize_imports();
1655         self.current_module = self.graph_root;
1656         self.finalize_current_module_macro_resolutions();
1657
1658         visit::walk_crate(self, krate);
1659
1660         check_unused::check_crate(self, krate);
1661         self.report_errors(krate);
1662         self.crate_loader.postprocess(krate);
1663     }
1664
1665     fn new_module(
1666         &self,
1667         parent: Module<'a>,
1668         kind: ModuleKind,
1669         normal_ancestor_id: DefId,
1670         expansion: Mark,
1671         span: Span,
1672     ) -> Module<'a> {
1673         let module = ModuleData::new(Some(parent), kind, normal_ancestor_id, expansion, span);
1674         self.arenas.alloc_module(module)
1675     }
1676
1677     fn record_use(&mut self, ident: Ident, ns: Namespace, binding: &'a NameBinding<'a>, span: Span)
1678                   -> bool /* true if an error was reported */ {
1679         match binding.kind {
1680             NameBindingKind::Import { directive, binding, ref used, legacy_self_import }
1681                     if !used.get() => {
1682                 used.set(true);
1683                 directive.used.set(true);
1684                 if legacy_self_import {
1685                     self.warn_legacy_self_import(directive);
1686                     return false;
1687                 }
1688                 self.used_imports.insert((directive.id, ns));
1689                 self.add_to_glob_map(directive.id, ident);
1690                 self.record_use(ident, ns, binding, span)
1691             }
1692             NameBindingKind::Import { .. } => false,
1693             NameBindingKind::Ambiguity { b1, b2, legacy } => {
1694                 self.ambiguity_errors.push(AmbiguityError {
1695                     span: span, name: ident.name, lexical: false, b1: b1, b2: b2, legacy,
1696                 });
1697                 if legacy {
1698                     self.record_use(ident, ns, b1, span);
1699                 }
1700                 !legacy
1701             }
1702             _ => false
1703         }
1704     }
1705
1706     fn add_to_glob_map(&mut self, id: NodeId, ident: Ident) {
1707         if self.make_glob_map {
1708             self.glob_map.entry(id).or_insert_with(FxHashSet).insert(ident.name);
1709         }
1710     }
1711
1712     /// This resolves the identifier `ident` in the namespace `ns` in the current lexical scope.
1713     /// More specifically, we proceed up the hierarchy of scopes and return the binding for
1714     /// `ident` in the first scope that defines it (or None if no scopes define it).
1715     ///
1716     /// A block's items are above its local variables in the scope hierarchy, regardless of where
1717     /// the items are defined in the block. For example,
1718     /// ```rust
1719     /// fn f() {
1720     ///    g(); // Since there are no local variables in scope yet, this resolves to the item.
1721     ///    let g = || {};
1722     ///    fn g() {}
1723     ///    g(); // This resolves to the local variable `g` since it shadows the item.
1724     /// }
1725     /// ```
1726     ///
1727     /// Invariant: This must only be called during main resolution, not during
1728     /// import resolution.
1729     fn resolve_ident_in_lexical_scope(&mut self,
1730                                       mut ident: Ident,
1731                                       ns: Namespace,
1732                                       record_used: bool,
1733                                       path_span: Span)
1734                                       -> Option<LexicalScopeBinding<'a>> {
1735         if ns == TypeNS {
1736             ident.ctxt = if ident.name == keywords::SelfType.name() {
1737                 SyntaxContext::empty() // FIXME(jseyfried) improve `Self` hygiene
1738             } else {
1739                 ident.ctxt.modern()
1740             }
1741         }
1742
1743         // Walk backwards up the ribs in scope.
1744         let mut module = self.graph_root;
1745         for i in (0 .. self.ribs[ns].len()).rev() {
1746             if let Some(def) = self.ribs[ns][i].bindings.get(&ident).cloned() {
1747                 // The ident resolves to a type parameter or local variable.
1748                 return Some(LexicalScopeBinding::Def(
1749                     self.adjust_local_def(ns, i, def, record_used, path_span)
1750                 ));
1751             }
1752
1753             module = match self.ribs[ns][i].kind {
1754                 ModuleRibKind(module) => module,
1755                 MacroDefinition(def) if def == self.macro_def(ident.ctxt) => {
1756                     // If an invocation of this macro created `ident`, give up on `ident`
1757                     // and switch to `ident`'s source from the macro definition.
1758                     ident.ctxt.remove_mark();
1759                     continue
1760                 }
1761                 _ => continue,
1762             };
1763
1764             let item = self.resolve_ident_in_module_unadjusted(
1765                 module, ident, ns, false, record_used, path_span,
1766             );
1767             if let Ok(binding) = item {
1768                 // The ident resolves to an item.
1769                 return Some(LexicalScopeBinding::Item(binding));
1770             }
1771
1772             match module.kind {
1773                 ModuleKind::Block(..) => {}, // We can see through blocks
1774                 _ => break,
1775             }
1776         }
1777
1778         ident.ctxt = ident.ctxt.modern();
1779         loop {
1780             module = unwrap_or!(self.hygienic_lexical_parent(module, &mut ident.ctxt), break);
1781             let orig_current_module = self.current_module;
1782             self.current_module = module; // Lexical resolutions can never be a privacy error.
1783             let result = self.resolve_ident_in_module_unadjusted(
1784                 module, ident, ns, false, record_used, path_span,
1785             );
1786             self.current_module = orig_current_module;
1787
1788             match result {
1789                 Ok(binding) => return Some(LexicalScopeBinding::Item(binding)),
1790                 Err(Undetermined) => return None,
1791                 Err(Determined) => {}
1792             }
1793         }
1794
1795         match self.prelude {
1796             Some(prelude) if !module.no_implicit_prelude => {
1797                 self.resolve_ident_in_module_unadjusted(prelude, ident, ns, false, false, path_span)
1798                     .ok().map(LexicalScopeBinding::Item)
1799             }
1800             _ => None,
1801         }
1802     }
1803
1804     fn hygienic_lexical_parent(&mut self, mut module: Module<'a>, ctxt: &mut SyntaxContext)
1805                                -> Option<Module<'a>> {
1806         if !module.expansion.is_descendant_of(ctxt.outer()) {
1807             return Some(self.macro_def_scope(ctxt.remove_mark()));
1808         }
1809
1810         if let ModuleKind::Block(..) = module.kind {
1811             return Some(module.parent.unwrap());
1812         }
1813
1814         let mut module_expansion = module.expansion.modern(); // for backward compatibility
1815         while let Some(parent) = module.parent {
1816             let parent_expansion = parent.expansion.modern();
1817             if module_expansion.is_descendant_of(parent_expansion) &&
1818                parent_expansion != module_expansion {
1819                 return if parent_expansion.is_descendant_of(ctxt.outer()) {
1820                     Some(parent)
1821                 } else {
1822                     None
1823                 };
1824             }
1825             module = parent;
1826             module_expansion = parent_expansion;
1827         }
1828
1829         None
1830     }
1831
1832     fn resolve_ident_in_module(&mut self,
1833                                module: Module<'a>,
1834                                mut ident: Ident,
1835                                ns: Namespace,
1836                                ignore_unresolved_invocations: bool,
1837                                record_used: bool,
1838                                span: Span)
1839                                -> Result<&'a NameBinding<'a>, Determinacy> {
1840         ident.ctxt = ident.ctxt.modern();
1841         let orig_current_module = self.current_module;
1842         if let Some(def) = ident.ctxt.adjust(module.expansion) {
1843             self.current_module = self.macro_def_scope(def);
1844         }
1845         let result = self.resolve_ident_in_module_unadjusted(
1846             module, ident, ns, ignore_unresolved_invocations, record_used, span,
1847         );
1848         self.current_module = orig_current_module;
1849         result
1850     }
1851
1852     fn resolve_crate_root(&mut self, mut ctxt: SyntaxContext, legacy: bool) -> Module<'a> {
1853         let mark = if legacy {
1854             // When resolving `$crate` from a `macro_rules!` invoked in a `macro`,
1855             // we don't want to pretend that the `macro_rules!` definition is in the `macro`
1856             // as described in `SyntaxContext::apply_mark`, so we ignore prepended modern marks.
1857             ctxt.marks().into_iter().find(|&mark| mark.kind() != MarkKind::Modern)
1858         } else {
1859             ctxt = ctxt.modern();
1860             ctxt.adjust(Mark::root())
1861         };
1862         let module = match mark {
1863             Some(def) => self.macro_def_scope(def),
1864             None => return self.graph_root,
1865         };
1866         self.get_module(DefId { index: CRATE_DEF_INDEX, ..module.normal_ancestor_id })
1867     }
1868
1869     fn resolve_self(&mut self, ctxt: &mut SyntaxContext, module: Module<'a>) -> Module<'a> {
1870         let mut module = self.get_module(module.normal_ancestor_id);
1871         while module.span.ctxt().modern() != *ctxt {
1872             let parent = module.parent.unwrap_or_else(|| self.macro_def_scope(ctxt.remove_mark()));
1873             module = self.get_module(parent.normal_ancestor_id);
1874         }
1875         module
1876     }
1877
1878     // AST resolution
1879     //
1880     // We maintain a list of value ribs and type ribs.
1881     //
1882     // Simultaneously, we keep track of the current position in the module
1883     // graph in the `current_module` pointer. When we go to resolve a name in
1884     // the value or type namespaces, we first look through all the ribs and
1885     // then query the module graph. When we resolve a name in the module
1886     // namespace, we can skip all the ribs (since nested modules are not
1887     // allowed within blocks in Rust) and jump straight to the current module
1888     // graph node.
1889     //
1890     // Named implementations are handled separately. When we find a method
1891     // call, we consult the module node to find all of the implementations in
1892     // scope. This information is lazily cached in the module node. We then
1893     // generate a fake "implementation scope" containing all the
1894     // implementations thus found, for compatibility with old resolve pass.
1895
1896     pub fn with_scope<F, T>(&mut self, id: NodeId, f: F) -> T
1897         where F: FnOnce(&mut Resolver) -> T
1898     {
1899         let id = self.definitions.local_def_id(id);
1900         let module = self.module_map.get(&id).cloned(); // clones a reference
1901         if let Some(module) = module {
1902             // Move down in the graph.
1903             let orig_module = replace(&mut self.current_module, module);
1904             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(module)));
1905             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(module)));
1906
1907             self.finalize_current_module_macro_resolutions();
1908             let ret = f(self);
1909
1910             self.current_module = orig_module;
1911             self.ribs[ValueNS].pop();
1912             self.ribs[TypeNS].pop();
1913             ret
1914         } else {
1915             f(self)
1916         }
1917     }
1918
1919     /// Searches the current set of local scopes for labels. Returns the first non-None label that
1920     /// is returned by the given predicate function
1921     ///
1922     /// Stops after meeting a closure.
1923     fn search_label<P, R>(&self, mut ident: Ident, pred: P) -> Option<R>
1924         where P: Fn(&Rib, Ident) -> Option<R>
1925     {
1926         for rib in self.label_ribs.iter().rev() {
1927             match rib.kind {
1928                 NormalRibKind => {}
1929                 // If an invocation of this macro created `ident`, give up on `ident`
1930                 // and switch to `ident`'s source from the macro definition.
1931                 MacroDefinition(def) => {
1932                     if def == self.macro_def(ident.ctxt) {
1933                         ident.ctxt.remove_mark();
1934                     }
1935                 }
1936                 _ => {
1937                     // Do not resolve labels across function boundary
1938                     return None;
1939                 }
1940             }
1941             let r = pred(rib, ident);
1942             if r.is_some() {
1943                 return r;
1944             }
1945         }
1946         None
1947     }
1948
1949     fn resolve_item(&mut self, item: &Item) {
1950         let name = item.ident.name;
1951
1952         debug!("(resolving item) resolving {}", name);
1953
1954         self.check_proc_macro_attrs(&item.attrs);
1955
1956         match item.node {
1957             ItemKind::Enum(_, ref generics) |
1958             ItemKind::Ty(_, ref generics) |
1959             ItemKind::Struct(_, ref generics) |
1960             ItemKind::Union(_, ref generics) |
1961             ItemKind::Fn(.., ref generics, _) => {
1962                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind),
1963                                              |this| visit::walk_item(this, item));
1964             }
1965
1966             ItemKind::Impl(.., ref generics, ref opt_trait_ref, ref self_type, ref impl_items) =>
1967                 self.resolve_implementation(generics,
1968                                             opt_trait_ref,
1969                                             &self_type,
1970                                             item.id,
1971                                             impl_items),
1972
1973             ItemKind::Trait(.., ref generics, ref bounds, ref trait_items) => {
1974                 // Create a new rib for the trait-wide type parameters.
1975                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
1976                     let local_def_id = this.definitions.local_def_id(item.id);
1977                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
1978                         this.visit_generics(generics);
1979                         walk_list!(this, visit_ty_param_bound, bounds);
1980
1981                         for trait_item in trait_items {
1982                             this.check_proc_macro_attrs(&trait_item.attrs);
1983
1984                             let type_parameters = HasTypeParameters(&trait_item.generics,
1985                                                                     TraitOrImplItemRibKind);
1986                             this.with_type_parameter_rib(type_parameters, |this| {
1987                                 match trait_item.node {
1988                                     TraitItemKind::Const(ref ty, ref default) => {
1989                                         this.visit_ty(ty);
1990
1991                                         // Only impose the restrictions of
1992                                         // ConstRibKind for an actual constant
1993                                         // expression in a provided default.
1994                                         if let Some(ref expr) = *default{
1995                                             this.with_constant_rib(|this| {
1996                                                 this.visit_expr(expr);
1997                                             });
1998                                         }
1999                                     }
2000                                     TraitItemKind::Method(_, _) => {
2001                                         visit::walk_trait_item(this, trait_item)
2002                                     }
2003                                     TraitItemKind::Type(..) => {
2004                                         visit::walk_trait_item(this, trait_item)
2005                                     }
2006                                     TraitItemKind::Macro(_) => {
2007                                         panic!("unexpanded macro in resolve!")
2008                                     }
2009                                 };
2010                             });
2011                         }
2012                     });
2013                 });
2014             }
2015
2016             ItemKind::TraitAlias(ref generics, ref bounds) => {
2017                 // Create a new rib for the trait-wide type parameters.
2018                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2019                     let local_def_id = this.definitions.local_def_id(item.id);
2020                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2021                         this.visit_generics(generics);
2022                         walk_list!(this, visit_ty_param_bound, bounds);
2023                     });
2024                 });
2025             }
2026
2027             ItemKind::Mod(_) | ItemKind::ForeignMod(_) => {
2028                 self.with_scope(item.id, |this| {
2029                     visit::walk_item(this, item);
2030                 });
2031             }
2032
2033             ItemKind::Static(ref ty, _, ref expr) |
2034             ItemKind::Const(ref ty, ref expr) => {
2035                 self.with_item_rib(|this| {
2036                     this.visit_ty(ty);
2037                     this.with_constant_rib(|this| {
2038                         this.visit_expr(expr);
2039                     });
2040                 });
2041             }
2042
2043             ItemKind::Use(ref use_tree) => {
2044                 let path = Path {
2045                     segments: vec![],
2046                     span: use_tree.span,
2047                 };
2048                 self.resolve_use_tree(item.id, use_tree, &path);
2049             }
2050
2051             ItemKind::ExternCrate(_) | ItemKind::MacroDef(..) | ItemKind::GlobalAsm(_) => {
2052                 // do nothing, these are just around to be encoded
2053             }
2054
2055             ItemKind::Mac(_) => panic!("unexpanded macro in resolve!"),
2056         }
2057     }
2058
2059     fn resolve_use_tree(&mut self, id: NodeId, use_tree: &ast::UseTree, prefix: &Path) {
2060         match use_tree.kind {
2061             ast::UseTreeKind::Nested(ref items) => {
2062                 let path = Path {
2063                     segments: prefix.segments
2064                         .iter()
2065                         .chain(use_tree.prefix.segments.iter())
2066                         .cloned()
2067                         .collect(),
2068                     span: prefix.span.to(use_tree.prefix.span),
2069                 };
2070
2071                 if items.len() == 0 {
2072                     // Resolve prefix of an import with empty braces (issue #28388).
2073                     self.smart_resolve_path(id, None, &path, PathSource::ImportPrefix);
2074                 } else {
2075                     for &(ref tree, nested_id) in items {
2076                         self.resolve_use_tree(nested_id, tree, &path);
2077                     }
2078                 }
2079             }
2080             ast::UseTreeKind::Simple(_) => {},
2081             ast::UseTreeKind::Glob => {},
2082         }
2083     }
2084
2085     fn with_type_parameter_rib<'b, F>(&'b mut self, type_parameters: TypeParameters<'a, 'b>, f: F)
2086         where F: FnOnce(&mut Resolver)
2087     {
2088         match type_parameters {
2089             HasTypeParameters(generics, rib_kind) => {
2090                 let mut function_type_rib = Rib::new(rib_kind);
2091                 let mut seen_bindings = FxHashMap();
2092                 for param in &generics.params {
2093                     if let GenericParam::Type(ref type_parameter) = *param {
2094                         let ident = type_parameter.ident.modern();
2095                         debug!("with_type_parameter_rib: {}", type_parameter.id);
2096
2097                         if seen_bindings.contains_key(&ident) {
2098                             let span = seen_bindings.get(&ident).unwrap();
2099                             let err = ResolutionError::NameAlreadyUsedInTypeParameterList(
2100                                 ident.name,
2101                                 span,
2102                             );
2103                             resolve_error(self, type_parameter.span, err);
2104                         }
2105                         seen_bindings.entry(ident).or_insert(type_parameter.span);
2106
2107                         // plain insert (no renaming)
2108                         let def_id = self.definitions.local_def_id(type_parameter.id);
2109                         let def = Def::TyParam(def_id);
2110                         function_type_rib.bindings.insert(ident, def);
2111                         self.record_def(type_parameter.id, PathResolution::new(def));
2112                     }
2113                 }
2114                 self.ribs[TypeNS].push(function_type_rib);
2115             }
2116
2117             NoTypeParameters => {
2118                 // Nothing to do.
2119             }
2120         }
2121
2122         f(self);
2123
2124         if let HasTypeParameters(..) = type_parameters {
2125             self.ribs[TypeNS].pop();
2126         }
2127     }
2128
2129     fn with_label_rib<F>(&mut self, f: F)
2130         where F: FnOnce(&mut Resolver)
2131     {
2132         self.label_ribs.push(Rib::new(NormalRibKind));
2133         f(self);
2134         self.label_ribs.pop();
2135     }
2136
2137     fn with_item_rib<F>(&mut self, f: F)
2138         where F: FnOnce(&mut Resolver)
2139     {
2140         self.ribs[ValueNS].push(Rib::new(ItemRibKind));
2141         self.ribs[TypeNS].push(Rib::new(ItemRibKind));
2142         f(self);
2143         self.ribs[TypeNS].pop();
2144         self.ribs[ValueNS].pop();
2145     }
2146
2147     fn with_constant_rib<F>(&mut self, f: F)
2148         where F: FnOnce(&mut Resolver)
2149     {
2150         self.ribs[ValueNS].push(Rib::new(ConstantItemRibKind));
2151         f(self);
2152         self.ribs[ValueNS].pop();
2153     }
2154
2155     fn with_current_self_type<T, F>(&mut self, self_type: &Ty, f: F) -> T
2156         where F: FnOnce(&mut Resolver) -> T
2157     {
2158         // Handle nested impls (inside fn bodies)
2159         let previous_value = replace(&mut self.current_self_type, Some(self_type.clone()));
2160         let result = f(self);
2161         self.current_self_type = previous_value;
2162         result
2163     }
2164
2165     fn with_optional_trait_ref<T, F>(&mut self, opt_trait_ref: Option<&TraitRef>, f: F) -> T
2166         where F: FnOnce(&mut Resolver, Option<DefId>) -> T
2167     {
2168         let mut new_val = None;
2169         let mut new_id = None;
2170         if let Some(trait_ref) = opt_trait_ref {
2171             let path: Vec<_> = trait_ref.path.segments.iter()
2172                 .map(|seg| respan(seg.span, seg.identifier))
2173                 .collect();
2174             let def = self.smart_resolve_path_fragment(trait_ref.ref_id,
2175                                                        None,
2176                                                        &path,
2177                                                        trait_ref.path.span,
2178                                                        trait_ref.path.segments.last().unwrap().span,
2179                                                        PathSource::Trait(AliasPossibility::No))
2180                 .base_def();
2181             if def != Def::Err {
2182                 new_id = Some(def.def_id());
2183                 let span = trait_ref.path.span;
2184                 if let PathResult::Module(module) = self.resolve_path(&path, None, false, span) {
2185                     new_val = Some((module, trait_ref.clone()));
2186                 }
2187             }
2188         }
2189         let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
2190         let result = f(self, new_id);
2191         self.current_trait_ref = original_trait_ref;
2192         result
2193     }
2194
2195     fn with_self_rib<F>(&mut self, self_def: Def, f: F)
2196         where F: FnOnce(&mut Resolver)
2197     {
2198         let mut self_type_rib = Rib::new(NormalRibKind);
2199
2200         // plain insert (no renaming, types are not currently hygienic....)
2201         self_type_rib.bindings.insert(keywords::SelfType.ident(), self_def);
2202         self.ribs[TypeNS].push(self_type_rib);
2203         f(self);
2204         self.ribs[TypeNS].pop();
2205     }
2206
2207     fn resolve_implementation(&mut self,
2208                               generics: &Generics,
2209                               opt_trait_reference: &Option<TraitRef>,
2210                               self_type: &Ty,
2211                               item_id: NodeId,
2212                               impl_items: &[ImplItem]) {
2213         // If applicable, create a rib for the type parameters.
2214         self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2215             // Dummy self type for better errors if `Self` is used in the trait path.
2216             this.with_self_rib(Def::SelfTy(None, None), |this| {
2217                 // Resolve the trait reference, if necessary.
2218                 this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| {
2219                     let item_def_id = this.definitions.local_def_id(item_id);
2220                     this.with_self_rib(Def::SelfTy(trait_id, Some(item_def_id)), |this| {
2221                         if let Some(trait_ref) = opt_trait_reference.as_ref() {
2222                             // Resolve type arguments in trait path
2223                             visit::walk_trait_ref(this, trait_ref);
2224                         }
2225                         // Resolve the self type.
2226                         this.visit_ty(self_type);
2227                         // Resolve the type parameters.
2228                         this.visit_generics(generics);
2229                         this.with_current_self_type(self_type, |this| {
2230                             for impl_item in impl_items {
2231                                 this.check_proc_macro_attrs(&impl_item.attrs);
2232                                 this.resolve_visibility(&impl_item.vis);
2233
2234                                 // We also need a new scope for the impl item type parameters.
2235                                 let type_parameters = HasTypeParameters(&impl_item.generics,
2236                                                                         TraitOrImplItemRibKind);
2237                                 this.with_type_parameter_rib(type_parameters, |this| {
2238                                     use self::ResolutionError::*;
2239                                     match impl_item.node {
2240                                         ImplItemKind::Const(..) => {
2241                                             // If this is a trait impl, ensure the const
2242                                             // exists in trait
2243                                             this.check_trait_item(impl_item.ident,
2244                                                                 ValueNS,
2245                                                                 impl_item.span,
2246                                                 |n, s| ConstNotMemberOfTrait(n, s));
2247                                             this.with_constant_rib(|this|
2248                                                 visit::walk_impl_item(this, impl_item)
2249                                             );
2250                                         }
2251                                         ImplItemKind::Method(_, _) => {
2252                                             // If this is a trait impl, ensure the method
2253                                             // exists in trait
2254                                             this.check_trait_item(impl_item.ident,
2255                                                                 ValueNS,
2256                                                                 impl_item.span,
2257                                                 |n, s| MethodNotMemberOfTrait(n, s));
2258
2259                                             visit::walk_impl_item(this, impl_item);
2260                                         }
2261                                         ImplItemKind::Type(ref ty) => {
2262                                             // If this is a trait impl, ensure the type
2263                                             // exists in trait
2264                                             this.check_trait_item(impl_item.ident,
2265                                                                 TypeNS,
2266                                                                 impl_item.span,
2267                                                 |n, s| TypeNotMemberOfTrait(n, s));
2268
2269                                             this.visit_ty(ty);
2270                                         }
2271                                         ImplItemKind::Macro(_) =>
2272                                             panic!("unexpanded macro in resolve!"),
2273                                     }
2274                                 });
2275                             }
2276                         });
2277                     });
2278                 });
2279             });
2280         });
2281     }
2282
2283     fn check_trait_item<F>(&mut self, ident: Ident, ns: Namespace, span: Span, err: F)
2284         where F: FnOnce(Name, &str) -> ResolutionError
2285     {
2286         // If there is a TraitRef in scope for an impl, then the method must be in the
2287         // trait.
2288         if let Some((module, _)) = self.current_trait_ref {
2289             if self.resolve_ident_in_module(module, ident, ns, false, false, span).is_err() {
2290                 let path = &self.current_trait_ref.as_ref().unwrap().1.path;
2291                 resolve_error(self, span, err(ident.name, &path_names_to_string(path)));
2292             }
2293         }
2294     }
2295
2296     fn resolve_local(&mut self, local: &Local) {
2297         // Resolve the type.
2298         walk_list!(self, visit_ty, &local.ty);
2299
2300         // Resolve the initializer.
2301         walk_list!(self, visit_expr, &local.init);
2302
2303         // Resolve the pattern.
2304         self.resolve_pattern(&local.pat, PatternSource::Let, &mut FxHashMap());
2305     }
2306
2307     // build a map from pattern identifiers to binding-info's.
2308     // this is done hygienically. This could arise for a macro
2309     // that expands into an or-pattern where one 'x' was from the
2310     // user and one 'x' came from the macro.
2311     fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
2312         let mut binding_map = FxHashMap();
2313
2314         pat.walk(&mut |pat| {
2315             if let PatKind::Ident(binding_mode, ident, ref sub_pat) = pat.node {
2316                 if sub_pat.is_some() || match self.def_map.get(&pat.id).map(|res| res.base_def()) {
2317                     Some(Def::Local(..)) => true,
2318                     _ => false,
2319                 } {
2320                     let binding_info = BindingInfo { span: ident.span, binding_mode: binding_mode };
2321                     binding_map.insert(ident.node, binding_info);
2322                 }
2323             }
2324             true
2325         });
2326
2327         binding_map
2328     }
2329
2330     // check that all of the arms in an or-pattern have exactly the
2331     // same set of bindings, with the same binding modes for each.
2332     fn check_consistent_bindings(&mut self, arm: &Arm) {
2333         if arm.pats.is_empty() {
2334             return;
2335         }
2336
2337         let mut missing_vars = FxHashMap();
2338         let mut inconsistent_vars = FxHashMap();
2339         for (i, p) in arm.pats.iter().enumerate() {
2340             let map_i = self.binding_mode_map(&p);
2341
2342             for (j, q) in arm.pats.iter().enumerate() {
2343                 if i == j {
2344                     continue;
2345                 }
2346
2347                 let map_j = self.binding_mode_map(&q);
2348                 for (&key, &binding_i) in &map_i {
2349                     if map_j.len() == 0 {                   // Account for missing bindings when
2350                         let binding_error = missing_vars    // map_j has none.
2351                             .entry(key.name)
2352                             .or_insert(BindingError {
2353                                 name: key.name,
2354                                 origin: BTreeSet::new(),
2355                                 target: BTreeSet::new(),
2356                             });
2357                         binding_error.origin.insert(binding_i.span);
2358                         binding_error.target.insert(q.span);
2359                     }
2360                     for (&key_j, &binding_j) in &map_j {
2361                         match map_i.get(&key_j) {
2362                             None => {  // missing binding
2363                                 let binding_error = missing_vars
2364                                     .entry(key_j.name)
2365                                     .or_insert(BindingError {
2366                                         name: key_j.name,
2367                                         origin: BTreeSet::new(),
2368                                         target: BTreeSet::new(),
2369                                     });
2370                                 binding_error.origin.insert(binding_j.span);
2371                                 binding_error.target.insert(p.span);
2372                             }
2373                             Some(binding_i) => {  // check consistent binding
2374                                 if binding_i.binding_mode != binding_j.binding_mode {
2375                                     inconsistent_vars
2376                                         .entry(key.name)
2377                                         .or_insert((binding_j.span, binding_i.span));
2378                                 }
2379                             }
2380                         }
2381                     }
2382                 }
2383             }
2384         }
2385         let mut missing_vars = missing_vars.iter().collect::<Vec<_>>();
2386         missing_vars.sort();
2387         for (_, v) in missing_vars {
2388             resolve_error(self,
2389                           *v.origin.iter().next().unwrap(),
2390                           ResolutionError::VariableNotBoundInPattern(v));
2391         }
2392         let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
2393         inconsistent_vars.sort();
2394         for (name, v) in inconsistent_vars {
2395             resolve_error(self, v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
2396         }
2397     }
2398
2399     fn resolve_arm(&mut self, arm: &Arm) {
2400         self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2401
2402         let mut bindings_list = FxHashMap();
2403         for pattern in &arm.pats {
2404             self.resolve_pattern(&pattern, PatternSource::Match, &mut bindings_list);
2405         }
2406
2407         // This has to happen *after* we determine which
2408         // pat_idents are variants
2409         self.check_consistent_bindings(arm);
2410
2411         walk_list!(self, visit_expr, &arm.guard);
2412         self.visit_expr(&arm.body);
2413
2414         self.ribs[ValueNS].pop();
2415     }
2416
2417     fn resolve_block(&mut self, block: &Block) {
2418         debug!("(resolving block) entering block");
2419         // Move down in the graph, if there's an anonymous module rooted here.
2420         let orig_module = self.current_module;
2421         let anonymous_module = self.block_map.get(&block.id).cloned(); // clones a reference
2422
2423         let mut num_macro_definition_ribs = 0;
2424         if let Some(anonymous_module) = anonymous_module {
2425             debug!("(resolving block) found anonymous module, moving down");
2426             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2427             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2428             self.current_module = anonymous_module;
2429             self.finalize_current_module_macro_resolutions();
2430         } else {
2431             self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2432         }
2433
2434         // Descend into the block.
2435         for stmt in &block.stmts {
2436             if let ast::StmtKind::Item(ref item) = stmt.node {
2437                 if let ast::ItemKind::MacroDef(..) = item.node {
2438                     num_macro_definition_ribs += 1;
2439                     let def = self.definitions.local_def_id(item.id);
2440                     self.ribs[ValueNS].push(Rib::new(MacroDefinition(def)));
2441                     self.label_ribs.push(Rib::new(MacroDefinition(def)));
2442                 }
2443             }
2444
2445             self.visit_stmt(stmt);
2446         }
2447
2448         // Move back up.
2449         self.current_module = orig_module;
2450         for _ in 0 .. num_macro_definition_ribs {
2451             self.ribs[ValueNS].pop();
2452             self.label_ribs.pop();
2453         }
2454         self.ribs[ValueNS].pop();
2455         if let Some(_) = anonymous_module {
2456             self.ribs[TypeNS].pop();
2457         }
2458         debug!("(resolving block) leaving block");
2459     }
2460
2461     fn fresh_binding(&mut self,
2462                      ident: &SpannedIdent,
2463                      pat_id: NodeId,
2464                      outer_pat_id: NodeId,
2465                      pat_src: PatternSource,
2466                      bindings: &mut FxHashMap<Ident, NodeId>)
2467                      -> PathResolution {
2468         // Add the binding to the local ribs, if it
2469         // doesn't already exist in the bindings map. (We
2470         // must not add it if it's in the bindings map
2471         // because that breaks the assumptions later
2472         // passes make about or-patterns.)
2473         let mut def = Def::Local(pat_id);
2474         match bindings.get(&ident.node).cloned() {
2475             Some(id) if id == outer_pat_id => {
2476                 // `Variant(a, a)`, error
2477                 resolve_error(
2478                     self,
2479                     ident.span,
2480                     ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(
2481                         &ident.node.name.as_str())
2482                 );
2483             }
2484             Some(..) if pat_src == PatternSource::FnParam => {
2485                 // `fn f(a: u8, a: u8)`, error
2486                 resolve_error(
2487                     self,
2488                     ident.span,
2489                     ResolutionError::IdentifierBoundMoreThanOnceInParameterList(
2490                         &ident.node.name.as_str())
2491                 );
2492             }
2493             Some(..) if pat_src == PatternSource::Match => {
2494                 // `Variant1(a) | Variant2(a)`, ok
2495                 // Reuse definition from the first `a`.
2496                 def = self.ribs[ValueNS].last_mut().unwrap().bindings[&ident.node];
2497             }
2498             Some(..) => {
2499                 span_bug!(ident.span, "two bindings with the same name from \
2500                                        unexpected pattern source {:?}", pat_src);
2501             }
2502             None => {
2503                 // A completely fresh binding, add to the lists if it's valid.
2504                 if ident.node.name != keywords::Invalid.name() {
2505                     bindings.insert(ident.node, outer_pat_id);
2506                     self.ribs[ValueNS].last_mut().unwrap().bindings.insert(ident.node, def);
2507                 }
2508             }
2509         }
2510
2511         PathResolution::new(def)
2512     }
2513
2514     fn resolve_pattern(&mut self,
2515                        pat: &Pat,
2516                        pat_src: PatternSource,
2517                        // Maps idents to the node ID for the
2518                        // outermost pattern that binds them.
2519                        bindings: &mut FxHashMap<Ident, NodeId>) {
2520         // Visit all direct subpatterns of this pattern.
2521         let outer_pat_id = pat.id;
2522         pat.walk(&mut |pat| {
2523             match pat.node {
2524                 PatKind::Ident(bmode, ref ident, ref opt_pat) => {
2525                     // First try to resolve the identifier as some existing
2526                     // entity, then fall back to a fresh binding.
2527                     let binding = self.resolve_ident_in_lexical_scope(ident.node, ValueNS,
2528                                                                       false, pat.span)
2529                                       .and_then(LexicalScopeBinding::item);
2530                     let resolution = binding.map(NameBinding::def).and_then(|def| {
2531                         let is_syntactic_ambiguity = opt_pat.is_none() &&
2532                             bmode == BindingMode::ByValue(Mutability::Immutable);
2533                         match def {
2534                             Def::StructCtor(_, CtorKind::Const) |
2535                             Def::VariantCtor(_, CtorKind::Const) |
2536                             Def::Const(..) if is_syntactic_ambiguity => {
2537                                 // Disambiguate in favor of a unit struct/variant
2538                                 // or constant pattern.
2539                                 self.record_use(ident.node, ValueNS, binding.unwrap(), ident.span);
2540                                 Some(PathResolution::new(def))
2541                             }
2542                             Def::StructCtor(..) | Def::VariantCtor(..) |
2543                             Def::Const(..) | Def::Static(..) => {
2544                                 // This is unambiguously a fresh binding, either syntactically
2545                                 // (e.g. `IDENT @ PAT` or `ref IDENT`) or because `IDENT` resolves
2546                                 // to something unusable as a pattern (e.g. constructor function),
2547                                 // but we still conservatively report an error, see
2548                                 // issues/33118#issuecomment-233962221 for one reason why.
2549                                 resolve_error(
2550                                     self,
2551                                     ident.span,
2552                                     ResolutionError::BindingShadowsSomethingUnacceptable(
2553                                         pat_src.descr(), ident.node.name, binding.unwrap())
2554                                 );
2555                                 None
2556                             }
2557                             Def::Fn(..) | Def::Err => {
2558                                 // These entities are explicitly allowed
2559                                 // to be shadowed by fresh bindings.
2560                                 None
2561                             }
2562                             def => {
2563                                 span_bug!(ident.span, "unexpected definition for an \
2564                                                        identifier in pattern: {:?}", def);
2565                             }
2566                         }
2567                     }).unwrap_or_else(|| {
2568                         self.fresh_binding(ident, pat.id, outer_pat_id, pat_src, bindings)
2569                     });
2570
2571                     self.record_def(pat.id, resolution);
2572                 }
2573
2574                 PatKind::TupleStruct(ref path, ..) => {
2575                     self.smart_resolve_path(pat.id, None, path, PathSource::TupleStruct);
2576                 }
2577
2578                 PatKind::Path(ref qself, ref path) => {
2579                     self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
2580                 }
2581
2582                 PatKind::Struct(ref path, ..) => {
2583                     self.smart_resolve_path(pat.id, None, path, PathSource::Struct);
2584                 }
2585
2586                 _ => {}
2587             }
2588             true
2589         });
2590
2591         visit::walk_pat(self, pat);
2592     }
2593
2594     // High-level and context dependent path resolution routine.
2595     // Resolves the path and records the resolution into definition map.
2596     // If resolution fails tries several techniques to find likely
2597     // resolution candidates, suggest imports or other help, and report
2598     // errors in user friendly way.
2599     fn smart_resolve_path(&mut self,
2600                           id: NodeId,
2601                           qself: Option<&QSelf>,
2602                           path: &Path,
2603                           source: PathSource)
2604                           -> PathResolution {
2605         let segments = &path.segments.iter()
2606             .map(|seg| respan(seg.span, seg.identifier))
2607             .collect::<Vec<_>>();
2608         let ident_span = path.segments.last().map_or(path.span, |seg| seg.span);
2609         self.smart_resolve_path_fragment(id, qself, segments, path.span, ident_span, source)
2610     }
2611
2612     fn smart_resolve_path_fragment(&mut self,
2613                                    id: NodeId,
2614                                    qself: Option<&QSelf>,
2615                                    path: &[SpannedIdent],
2616                                    span: Span,
2617                                    ident_span: Span,
2618                                    source: PathSource)
2619                                    -> PathResolution {
2620         let ns = source.namespace();
2621         let is_expected = &|def| source.is_expected(def);
2622         let is_enum_variant = &|def| if let Def::Variant(..) = def { true } else { false };
2623
2624         // Base error is amended with one short label and possibly some longer helps/notes.
2625         let report_errors = |this: &mut Self, def: Option<Def>| {
2626             // Make the base error.
2627             let expected = source.descr_expected();
2628             let path_str = names_to_string(path);
2629             let code = source.error_code(def.is_some());
2630             let (base_msg, fallback_label, base_span) = if let Some(def) = def {
2631                 (format!("expected {}, found {} `{}`", expected, def.kind_name(), path_str),
2632                  format!("not a {}", expected),
2633                  span)
2634             } else {
2635                 let item_str = path[path.len() - 1].node;
2636                 let item_span = path[path.len() - 1].span;
2637                 let (mod_prefix, mod_str) = if path.len() == 1 {
2638                     (format!(""), format!("this scope"))
2639                 } else if path.len() == 2 && path[0].node.name == keywords::CrateRoot.name() {
2640                     (format!(""), format!("the crate root"))
2641                 } else {
2642                     let mod_path = &path[..path.len() - 1];
2643                     let mod_prefix = match this.resolve_path(mod_path, Some(TypeNS), false, span) {
2644                         PathResult::Module(module) => module.def(),
2645                         _ => None,
2646                     }.map_or(format!(""), |def| format!("{} ", def.kind_name()));
2647                     (mod_prefix, format!("`{}`", names_to_string(mod_path)))
2648                 };
2649                 (format!("cannot find {} `{}` in {}{}", expected, item_str, mod_prefix, mod_str),
2650                  format!("not found in {}", mod_str),
2651                  item_span)
2652             };
2653             let code = DiagnosticId::Error(code.into());
2654             let mut err = this.session.struct_span_err_with_code(base_span, &base_msg, code);
2655
2656             // Emit special messages for unresolved `Self` and `self`.
2657             if is_self_type(path, ns) {
2658                 __diagnostic_used!(E0411);
2659                 err.code(DiagnosticId::Error("E0411".into()));
2660                 err.span_label(span, "`Self` is only available in traits and impls");
2661                 return (err, Vec::new());
2662             }
2663             if is_self_value(path, ns) {
2664                 __diagnostic_used!(E0424);
2665                 err.code(DiagnosticId::Error("E0424".into()));
2666                 err.span_label(span, format!("`self` value is only available in \
2667                                                methods with `self` parameter"));
2668                 return (err, Vec::new());
2669             }
2670
2671             // Try to lookup the name in more relaxed fashion for better error reporting.
2672             let ident = *path.last().unwrap();
2673             let candidates = this.lookup_import_candidates(ident.node.name, ns, is_expected);
2674             if candidates.is_empty() && is_expected(Def::Enum(DefId::local(CRATE_DEF_INDEX))) {
2675                 let enum_candidates =
2676                     this.lookup_import_candidates(ident.node.name, ns, is_enum_variant);
2677                 let mut enum_candidates = enum_candidates.iter()
2678                     .map(|suggestion| import_candidate_to_paths(&suggestion)).collect::<Vec<_>>();
2679                 enum_candidates.sort();
2680                 for (sp, variant_path, enum_path) in enum_candidates {
2681                     if sp == DUMMY_SP {
2682                         let msg = format!("there is an enum variant `{}`, \
2683                                         try using `{}`?",
2684                                         variant_path,
2685                                         enum_path);
2686                         err.help(&msg);
2687                     } else {
2688                         err.span_suggestion(span, "you can try using the variant's enum",
2689                                             enum_path);
2690                     }
2691                 }
2692             }
2693             if path.len() == 1 && this.self_type_is_available(span) {
2694                 if let Some(candidate) = this.lookup_assoc_candidate(ident.node, ns, is_expected) {
2695                     let self_is_available = this.self_value_is_available(path[0].node.ctxt, span);
2696                     match candidate {
2697                         AssocSuggestion::Field => {
2698                             err.span_suggestion(span, "try",
2699                                                 format!("self.{}", path_str));
2700                             if !self_is_available {
2701                                 err.span_label(span, format!("`self` value is only available in \
2702                                                                methods with `self` parameter"));
2703                             }
2704                         }
2705                         AssocSuggestion::MethodWithSelf if self_is_available => {
2706                             err.span_suggestion(span, "try",
2707                                                 format!("self.{}", path_str));
2708                         }
2709                         AssocSuggestion::MethodWithSelf | AssocSuggestion::AssocItem => {
2710                             err.span_suggestion(span, "try",
2711                                                 format!("Self::{}", path_str));
2712                         }
2713                     }
2714                     return (err, candidates);
2715                 }
2716             }
2717
2718             let mut levenshtein_worked = false;
2719
2720             // Try Levenshtein.
2721             if let Some(candidate) = this.lookup_typo_candidate(path, ns, is_expected, span) {
2722                 err.span_label(ident_span, format!("did you mean `{}`?", candidate));
2723                 levenshtein_worked = true;
2724             }
2725
2726             // Try context dependent help if relaxed lookup didn't work.
2727             if let Some(def) = def {
2728                 match (def, source) {
2729                     (Def::Macro(..), _) => {
2730                         err.span_label(span, format!("did you mean `{}!(...)`?", path_str));
2731                         return (err, candidates);
2732                     }
2733                     (Def::TyAlias(..), PathSource::Trait(_)) => {
2734                         err.span_label(span, "type aliases cannot be used for traits");
2735                         return (err, candidates);
2736                     }
2737                     (Def::Mod(..), PathSource::Expr(Some(parent))) => match parent.node {
2738                         ExprKind::Field(_, ident) => {
2739                             err.span_label(parent.span, format!("did you mean `{}::{}`?",
2740                                                                  path_str, ident.node));
2741                             return (err, candidates);
2742                         }
2743                         ExprKind::MethodCall(ref segment, ..) => {
2744                             err.span_label(parent.span, format!("did you mean `{}::{}(...)`?",
2745                                                                  path_str, segment.identifier));
2746                             return (err, candidates);
2747                         }
2748                         _ => {}
2749                     },
2750                     (Def::Enum(..), PathSource::TupleStruct)
2751                         | (Def::Enum(..), PathSource::Expr(..))  => {
2752                         if let Some(variants) = this.collect_enum_variants(def) {
2753                             err.note(&format!("did you mean to use one \
2754                                                of the following variants?\n{}",
2755                                 variants.iter()
2756                                     .map(|suggestion| path_names_to_string(suggestion))
2757                                     .map(|suggestion| format!("- `{}`", suggestion))
2758                                     .collect::<Vec<_>>()
2759                                     .join("\n")));
2760
2761                         } else {
2762                             err.note("did you mean to use one of the enum's variants?");
2763                         }
2764                         return (err, candidates);
2765                     },
2766                     (Def::Struct(def_id), _) if ns == ValueNS => {
2767                         if let Some((ctor_def, ctor_vis))
2768                                 = this.struct_constructors.get(&def_id).cloned() {
2769                             let accessible_ctor = this.is_accessible(ctor_vis);
2770                             if is_expected(ctor_def) && !accessible_ctor {
2771                                 err.span_label(span, format!("constructor is not visible \
2772                                                               here due to private fields"));
2773                             }
2774                         } else {
2775                             err.span_label(span, format!("did you mean `{} {{ /* fields */ }}`?",
2776                                                          path_str));
2777                         }
2778                         return (err, candidates);
2779                     }
2780                     (Def::Union(..), _) |
2781                     (Def::Variant(..), _) |
2782                     (Def::VariantCtor(_, CtorKind::Fictive), _) if ns == ValueNS => {
2783                         err.span_label(span, format!("did you mean `{} {{ /* fields */ }}`?",
2784                                                      path_str));
2785                         return (err, candidates);
2786                     }
2787                     (Def::SelfTy(..), _) if ns == ValueNS => {
2788                         err.span_label(span, fallback_label);
2789                         err.note("can't use `Self` as a constructor, you must use the \
2790                                   implemented struct");
2791                         return (err, candidates);
2792                     }
2793                     (Def::TyAlias(_), _) | (Def::AssociatedTy(..), _) if ns == ValueNS => {
2794                         err.note("can't use a type alias as a constructor");
2795                         return (err, candidates);
2796                     }
2797                     _ => {}
2798                 }
2799             }
2800
2801             // Fallback label.
2802             if !levenshtein_worked {
2803                 err.span_label(base_span, fallback_label);
2804                 this.type_ascription_suggestion(&mut err, base_span);
2805             }
2806             (err, candidates)
2807         };
2808         let report_errors = |this: &mut Self, def: Option<Def>| {
2809             let (err, candidates) = report_errors(this, def);
2810             let def_id = this.current_module.normal_ancestor_id;
2811             let node_id = this.definitions.as_local_node_id(def_id).unwrap();
2812             let better = def.is_some();
2813             this.use_injections.push(UseError { err, candidates, node_id, better });
2814             err_path_resolution()
2815         };
2816
2817         let resolution = match self.resolve_qpath_anywhere(id, qself, path, ns, span,
2818                                                            source.defer_to_typeck(),
2819                                                            source.global_by_default()) {
2820             Some(resolution) if resolution.unresolved_segments() == 0 => {
2821                 if is_expected(resolution.base_def()) || resolution.base_def() == Def::Err {
2822                     resolution
2823                 } else {
2824                     // Add a temporary hack to smooth the transition to new struct ctor
2825                     // visibility rules. See #38932 for more details.
2826                     let mut res = None;
2827                     if let Def::Struct(def_id) = resolution.base_def() {
2828                         if let Some((ctor_def, ctor_vis))
2829                                 = self.struct_constructors.get(&def_id).cloned() {
2830                             if is_expected(ctor_def) && self.is_accessible(ctor_vis) {
2831                                 let lint = lint::builtin::LEGACY_CONSTRUCTOR_VISIBILITY;
2832                                 self.session.buffer_lint(lint, id, span,
2833                                     "private struct constructors are not usable through \
2834                                      re-exports in outer modules",
2835                                 );
2836                                 res = Some(PathResolution::new(ctor_def));
2837                             }
2838                         }
2839                     }
2840
2841                     res.unwrap_or_else(|| report_errors(self, Some(resolution.base_def())))
2842                 }
2843             }
2844             Some(resolution) if source.defer_to_typeck() => {
2845                 // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
2846                 // or `<T>::A::B`. If `B` should be resolved in value namespace then
2847                 // it needs to be added to the trait map.
2848                 if ns == ValueNS {
2849                     let item_name = path.last().unwrap().node;
2850                     let traits = self.get_traits_containing_item(item_name, ns);
2851                     self.trait_map.insert(id, traits);
2852                 }
2853                 resolution
2854             }
2855             _ => report_errors(self, None)
2856         };
2857
2858         if let PathSource::TraitItem(..) = source {} else {
2859             // Avoid recording definition of `A::B` in `<T as A>::B::C`.
2860             self.record_def(id, resolution);
2861         }
2862         resolution
2863     }
2864
2865     fn type_ascription_suggestion(&self,
2866                                   err: &mut DiagnosticBuilder,
2867                                   base_span: Span) {
2868         debug!("type_ascription_suggetion {:?}", base_span);
2869         let cm = self.session.codemap();
2870         debug!("self.current_type_ascription {:?}", self.current_type_ascription);
2871         if let Some(sp) = self.current_type_ascription.last() {
2872             let mut sp = *sp;
2873             loop {  // try to find the `:`, bail on first non-':'/non-whitespace
2874                 sp = cm.next_point(sp);
2875                 if let Ok(snippet) = cm.span_to_snippet(sp.to(cm.next_point(sp))) {
2876                     debug!("snippet {:?}", snippet);
2877                     let line_sp = cm.lookup_char_pos(sp.hi()).line;
2878                     let line_base_sp = cm.lookup_char_pos(base_span.lo()).line;
2879                     debug!("{:?} {:?}", line_sp, line_base_sp);
2880                     if snippet == ":" {
2881                         err.span_label(base_span,
2882                                        "expecting a type here because of type ascription");
2883                         if line_sp != line_base_sp {
2884                             err.span_suggestion_short(sp,
2885                                                       "did you mean to use `;` here instead?",
2886                                                       ";".to_string());
2887                         }
2888                         break;
2889                     } else if snippet.trim().len() != 0  {
2890                         debug!("tried to find type ascription `:` token, couldn't find it");
2891                         break;
2892                     }
2893                 } else {
2894                     break;
2895                 }
2896             }
2897         }
2898     }
2899
2900     fn self_type_is_available(&mut self, span: Span) -> bool {
2901         let binding = self.resolve_ident_in_lexical_scope(keywords::SelfType.ident(),
2902                                                           TypeNS, false, span);
2903         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
2904     }
2905
2906     fn self_value_is_available(&mut self, ctxt: SyntaxContext, span: Span) -> bool {
2907         let ident = Ident { name: keywords::SelfValue.name(), ctxt: ctxt };
2908         let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, false, span);
2909         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
2910     }
2911
2912     // Resolve in alternative namespaces if resolution in the primary namespace fails.
2913     fn resolve_qpath_anywhere(&mut self,
2914                               id: NodeId,
2915                               qself: Option<&QSelf>,
2916                               path: &[SpannedIdent],
2917                               primary_ns: Namespace,
2918                               span: Span,
2919                               defer_to_typeck: bool,
2920                               global_by_default: bool)
2921                               -> Option<PathResolution> {
2922         let mut fin_res = None;
2923         // FIXME: can't resolve paths in macro namespace yet, macros are
2924         // processed by the little special hack below.
2925         for (i, ns) in [primary_ns, TypeNS, ValueNS, /*MacroNS*/].iter().cloned().enumerate() {
2926             if i == 0 || ns != primary_ns {
2927                 match self.resolve_qpath(id, qself, path, ns, span, global_by_default) {
2928                     // If defer_to_typeck, then resolution > no resolution,
2929                     // otherwise full resolution > partial resolution > no resolution.
2930                     Some(res) if res.unresolved_segments() == 0 || defer_to_typeck =>
2931                         return Some(res),
2932                     res => if fin_res.is_none() { fin_res = res },
2933                 };
2934             }
2935         }
2936         let is_global = self.global_macros.get(&path[0].node.name).cloned()
2937             .map(|binding| binding.get_macro(self).kind() == MacroKind::Bang).unwrap_or(false);
2938         if primary_ns != MacroNS && (is_global ||
2939                                      self.macro_names.contains(&path[0].node.modern())) {
2940             // Return some dummy definition, it's enough for error reporting.
2941             return Some(
2942                 PathResolution::new(Def::Macro(DefId::local(CRATE_DEF_INDEX), MacroKind::Bang))
2943             );
2944         }
2945         fin_res
2946     }
2947
2948     /// Handles paths that may refer to associated items.
2949     fn resolve_qpath(&mut self,
2950                      id: NodeId,
2951                      qself: Option<&QSelf>,
2952                      path: &[SpannedIdent],
2953                      ns: Namespace,
2954                      span: Span,
2955                      global_by_default: bool)
2956                      -> Option<PathResolution> {
2957         if let Some(qself) = qself {
2958             if qself.position == 0 {
2959                 // FIXME: Create some fake resolution that can't possibly be a type.
2960                 return Some(PathResolution::with_unresolved_segments(
2961                     Def::Mod(DefId::local(CRATE_DEF_INDEX)), path.len()
2962                 ));
2963             }
2964             // Make sure `A::B` in `<T as A>::B::C` is a trait item.
2965             let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
2966             let res = self.smart_resolve_path_fragment(id, None, &path[..qself.position + 1],
2967                                                        span, span, PathSource::TraitItem(ns));
2968             return Some(PathResolution::with_unresolved_segments(
2969                 res.base_def(), res.unresolved_segments() + path.len() - qself.position - 1
2970             ));
2971         }
2972
2973         let result = match self.resolve_path(&path, Some(ns), true, span) {
2974             PathResult::NonModule(path_res) => path_res,
2975             PathResult::Module(module) if !module.is_normal() => {
2976                 PathResolution::new(module.def().unwrap())
2977             }
2978             // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
2979             // don't report an error right away, but try to fallback to a primitive type.
2980             // So, we are still able to successfully resolve something like
2981             //
2982             // use std::u8; // bring module u8 in scope
2983             // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
2984             //     u8::max_value() // OK, resolves to associated function <u8>::max_value,
2985             //                     // not to non-existent std::u8::max_value
2986             // }
2987             //
2988             // Such behavior is required for backward compatibility.
2989             // The same fallback is used when `a` resolves to nothing.
2990             PathResult::Module(..) | PathResult::Failed(..)
2991                     if (ns == TypeNS || path.len() > 1) &&
2992                        self.primitive_type_table.primitive_types
2993                            .contains_key(&path[0].node.name) => {
2994                 let prim = self.primitive_type_table.primitive_types[&path[0].node.name];
2995                 match prim {
2996                     TyUint(UintTy::U128) | TyInt(IntTy::I128) => {
2997                         if !self.session.features.borrow().i128_type {
2998                             emit_feature_err(&self.session.parse_sess,
2999                                                 "i128_type", span, GateIssue::Language,
3000                                                 "128-bit type is unstable");
3001
3002                         }
3003                     }
3004                     _ => {}
3005                 }
3006                 PathResolution::with_unresolved_segments(Def::PrimTy(prim), path.len() - 1)
3007             }
3008             PathResult::Module(module) => PathResolution::new(module.def().unwrap()),
3009             PathResult::Failed(span, msg, false) => {
3010                 resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
3011                 err_path_resolution()
3012             }
3013             PathResult::Failed(..) => return None,
3014             PathResult::Indeterminate => bug!("indetermined path result in resolve_qpath"),
3015         };
3016
3017         if path.len() > 1 && !global_by_default && result.base_def() != Def::Err &&
3018            path[0].node.name != keywords::CrateRoot.name() &&
3019            path[0].node.name != keywords::DollarCrate.name() {
3020             let unqualified_result = {
3021                 match self.resolve_path(&[*path.last().unwrap()], Some(ns), false, span) {
3022                     PathResult::NonModule(path_res) => path_res.base_def(),
3023                     PathResult::Module(module) => module.def().unwrap(),
3024                     _ => return Some(result),
3025                 }
3026             };
3027             if result.base_def() == unqualified_result {
3028                 let lint = lint::builtin::UNUSED_QUALIFICATIONS;
3029                 self.session.buffer_lint(lint, id, span, "unnecessary qualification")
3030             }
3031         }
3032
3033         Some(result)
3034     }
3035
3036     fn resolve_path(&mut self,
3037                     path: &[SpannedIdent],
3038                     opt_ns: Option<Namespace>, // `None` indicates a module path
3039                     record_used: bool,
3040                     path_span: Span)
3041                     -> PathResult<'a> {
3042         let mut module = None;
3043         let mut allow_super = true;
3044
3045         for (i, &ident) in path.iter().enumerate() {
3046             debug!("resolve_path ident {} {:?}", i, ident);
3047             let is_last = i == path.len() - 1;
3048             let ns = if is_last { opt_ns.unwrap_or(TypeNS) } else { TypeNS };
3049             let name = ident.node.name;
3050
3051             if i == 0 && ns == TypeNS && name == keywords::SelfValue.name() {
3052                 let mut ctxt = ident.node.ctxt.modern();
3053                 module = Some(self.resolve_self(&mut ctxt, self.current_module));
3054                 continue
3055             } else if allow_super && ns == TypeNS && name == keywords::Super.name() {
3056                 let mut ctxt = ident.node.ctxt.modern();
3057                 let self_module = match i {
3058                     0 => self.resolve_self(&mut ctxt, self.current_module),
3059                     _ => module.unwrap(),
3060                 };
3061                 if let Some(parent) = self_module.parent {
3062                     module = Some(self.resolve_self(&mut ctxt, parent));
3063                     continue
3064                 } else {
3065                     let msg = "There are too many initial `super`s.".to_string();
3066                     return PathResult::Failed(ident.span, msg, false);
3067                 }
3068             } else if i == 0 && ns == TypeNS && name == keywords::Extern.name() {
3069                 continue;
3070             }
3071             allow_super = false;
3072
3073             if ns == TypeNS {
3074                 if (i == 0 && name == keywords::CrateRoot.name()) ||
3075                    (i == 1 && name == keywords::Crate.name() &&
3076                               path[0].node.name == keywords::CrateRoot.name()) {
3077                     // `::a::b` or `::crate::a::b`
3078                     module = Some(self.resolve_crate_root(ident.node.ctxt, false));
3079                     continue
3080                 } else if i == 0 && name == keywords::DollarCrate.name() {
3081                     // `$crate::a::b`
3082                     module = Some(self.resolve_crate_root(ident.node.ctxt, true));
3083                     continue
3084                 } else if i == 1 && !token::Ident(ident.node).is_path_segment_keyword() {
3085                     let prev_name = path[0].node.name;
3086                     if prev_name == keywords::Extern.name() ||
3087                        prev_name == keywords::CrateRoot.name() &&
3088                        self.session.features.borrow().extern_absolute_paths {
3089                         // `::extern_crate::a::b`
3090                         let crate_id = self.crate_loader.resolve_crate_from_path(name, ident.span);
3091                         let crate_root =
3092                             self.get_module(DefId { krate: crate_id, index: CRATE_DEF_INDEX });
3093                         self.populate_module_if_necessary(crate_root);
3094                         module = Some(crate_root);
3095                         continue
3096                     }
3097                 }
3098             }
3099
3100             // Report special messages for path segment keywords in wrong positions.
3101             if name == keywords::CrateRoot.name() && i != 0 ||
3102                name == keywords::DollarCrate.name() && i != 0 ||
3103                name == keywords::SelfValue.name() && i != 0 ||
3104                name == keywords::SelfType.name() && i != 0 ||
3105                name == keywords::Super.name() && i != 0 ||
3106                name == keywords::Extern.name() && i != 0 ||
3107                name == keywords::Crate.name() && i != 1 &&
3108                     path[0].node.name != keywords::CrateRoot.name() {
3109                 let name_str = if name == keywords::CrateRoot.name() {
3110                     format!("crate root")
3111                 } else {
3112                     format!("`{}`", name)
3113                 };
3114                 let msg = if i == 1 && path[0].node.name == keywords::CrateRoot.name() {
3115                     format!("global paths cannot start with {}", name_str)
3116                 } else if i == 0 && name == keywords::Crate.name() {
3117                     format!("{} can only be used in absolute paths", name_str)
3118                 } else {
3119                     format!("{} in paths can only be used in start position", name_str)
3120                 };
3121                 return PathResult::Failed(ident.span, msg, false);
3122             }
3123
3124             let binding = if let Some(module) = module {
3125                 self.resolve_ident_in_module(module, ident.node, ns, false, record_used, path_span)
3126             } else if opt_ns == Some(MacroNS) {
3127                 self.resolve_lexical_macro_path_segment(ident.node, ns, record_used, path_span)
3128                     .map(MacroBinding::binding)
3129             } else {
3130                 match self.resolve_ident_in_lexical_scope(ident.node, ns, record_used, path_span) {
3131                     Some(LexicalScopeBinding::Item(binding)) => Ok(binding),
3132                     Some(LexicalScopeBinding::Def(def))
3133                             if opt_ns == Some(TypeNS) || opt_ns == Some(ValueNS) => {
3134                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3135                             def, path.len() - 1
3136                         ));
3137                     }
3138                     _ => Err(if record_used { Determined } else { Undetermined }),
3139                 }
3140             };
3141
3142             match binding {
3143                 Ok(binding) => {
3144                     let def = binding.def();
3145                     let maybe_assoc = opt_ns != Some(MacroNS) && PathSource::Type.is_expected(def);
3146                     if let Some(next_module) = binding.module() {
3147                         module = Some(next_module);
3148                     } else if def == Def::Err {
3149                         return PathResult::NonModule(err_path_resolution());
3150                     } else if opt_ns.is_some() && (is_last || maybe_assoc) {
3151                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3152                             def, path.len() - i - 1
3153                         ));
3154                     } else {
3155                         return PathResult::Failed(ident.span,
3156                                                   format!("Not a module `{}`", ident.node),
3157                                                   is_last);
3158                     }
3159                 }
3160                 Err(Undetermined) => return PathResult::Indeterminate,
3161                 Err(Determined) => {
3162                     if let Some(module) = module {
3163                         if opt_ns.is_some() && !module.is_normal() {
3164                             return PathResult::NonModule(PathResolution::with_unresolved_segments(
3165                                 module.def().unwrap(), path.len() - i
3166                             ));
3167                         }
3168                     }
3169                     let msg = if module.and_then(ModuleData::def) == self.graph_root.def() {
3170                         let is_mod = |def| match def { Def::Mod(..) => true, _ => false };
3171                         let mut candidates =
3172                             self.lookup_import_candidates(name, TypeNS, is_mod);
3173                         candidates.sort_by_key(|c| (c.path.segments.len(), c.path.to_string()));
3174                         if let Some(candidate) = candidates.get(0) {
3175                             format!("Did you mean `{}`?", candidate.path)
3176                         } else {
3177                             format!("Maybe a missing `extern crate {};`?", ident.node)
3178                         }
3179                     } else if i == 0 {
3180                         format!("Use of undeclared type or module `{}`", ident.node)
3181                     } else {
3182                         format!("Could not find `{}` in `{}`", ident.node, path[i - 1].node)
3183                     };
3184                     return PathResult::Failed(ident.span, msg, is_last);
3185                 }
3186             }
3187         }
3188
3189         PathResult::Module(module.unwrap_or(self.graph_root))
3190     }
3191
3192     // Resolve a local definition, potentially adjusting for closures.
3193     fn adjust_local_def(&mut self,
3194                         ns: Namespace,
3195                         rib_index: usize,
3196                         mut def: Def,
3197                         record_used: bool,
3198                         span: Span) -> Def {
3199         let ribs = &self.ribs[ns][rib_index + 1..];
3200
3201         // An invalid forward use of a type parameter from a previous default.
3202         if let ForwardTyParamBanRibKind = self.ribs[ns][rib_index].kind {
3203             if record_used {
3204                 resolve_error(self, span, ResolutionError::ForwardDeclaredTyParam);
3205             }
3206             assert_eq!(def, Def::Err);
3207             return Def::Err;
3208         }
3209
3210         match def {
3211             Def::Upvar(..) => {
3212                 span_bug!(span, "unexpected {:?} in bindings", def)
3213             }
3214             Def::Local(node_id) => {
3215                 for rib in ribs {
3216                     match rib.kind {
3217                         NormalRibKind | ModuleRibKind(..) | MacroDefinition(..) |
3218                         ForwardTyParamBanRibKind => {
3219                             // Nothing to do. Continue.
3220                         }
3221                         ClosureRibKind(function_id) => {
3222                             let prev_def = def;
3223
3224                             let seen = self.freevars_seen
3225                                            .entry(function_id)
3226                                            .or_insert_with(|| NodeMap());
3227                             if let Some(&index) = seen.get(&node_id) {
3228                                 def = Def::Upvar(node_id, index, function_id);
3229                                 continue;
3230                             }
3231                             let vec = self.freevars
3232                                           .entry(function_id)
3233                                           .or_insert_with(|| vec![]);
3234                             let depth = vec.len();
3235                             def = Def::Upvar(node_id, depth, function_id);
3236
3237                             if record_used {
3238                                 vec.push(Freevar {
3239                                     def: prev_def,
3240                                     span,
3241                                 });
3242                                 seen.insert(node_id, depth);
3243                             }
3244                         }
3245                         ItemRibKind | TraitOrImplItemRibKind => {
3246                             // This was an attempt to access an upvar inside a
3247                             // named function item. This is not allowed, so we
3248                             // report an error.
3249                             if record_used {
3250                                 resolve_error(self, span,
3251                                         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem);
3252                             }
3253                             return Def::Err;
3254                         }
3255                         ConstantItemRibKind => {
3256                             // Still doesn't deal with upvars
3257                             if record_used {
3258                                 resolve_error(self, span,
3259                                         ResolutionError::AttemptToUseNonConstantValueInConstant);
3260                             }
3261                             return Def::Err;
3262                         }
3263                     }
3264                 }
3265             }
3266             Def::TyParam(..) | Def::SelfTy(..) => {
3267                 for rib in ribs {
3268                     match rib.kind {
3269                         NormalRibKind | TraitOrImplItemRibKind | ClosureRibKind(..) |
3270                         ModuleRibKind(..) | MacroDefinition(..) | ForwardTyParamBanRibKind |
3271                         ConstantItemRibKind => {
3272                             // Nothing to do. Continue.
3273                         }
3274                         ItemRibKind => {
3275                             // This was an attempt to use a type parameter outside
3276                             // its scope.
3277                             if record_used {
3278                                 resolve_error(self, span,
3279                                               ResolutionError::TypeParametersFromOuterFunction);
3280                             }
3281                             return Def::Err;
3282                         }
3283                     }
3284                 }
3285             }
3286             _ => {}
3287         }
3288         return def;
3289     }
3290
3291     fn lookup_assoc_candidate<FilterFn>(&mut self,
3292                                         ident: Ident,
3293                                         ns: Namespace,
3294                                         filter_fn: FilterFn)
3295                                         -> Option<AssocSuggestion>
3296         where FilterFn: Fn(Def) -> bool
3297     {
3298         fn extract_node_id(t: &Ty) -> Option<NodeId> {
3299             match t.node {
3300                 TyKind::Path(None, _) => Some(t.id),
3301                 TyKind::Rptr(_, ref mut_ty) => extract_node_id(&mut_ty.ty),
3302                 // This doesn't handle the remaining `Ty` variants as they are not
3303                 // that commonly the self_type, it might be interesting to provide
3304                 // support for those in future.
3305                 _ => None,
3306             }
3307         }
3308
3309         // Fields are generally expected in the same contexts as locals.
3310         if filter_fn(Def::Local(ast::DUMMY_NODE_ID)) {
3311             if let Some(node_id) = self.current_self_type.as_ref().and_then(extract_node_id) {
3312                 // Look for a field with the same name in the current self_type.
3313                 if let Some(resolution) = self.def_map.get(&node_id) {
3314                     match resolution.base_def() {
3315                         Def::Struct(did) | Def::Union(did)
3316                                 if resolution.unresolved_segments() == 0 => {
3317                             if let Some(field_names) = self.field_names.get(&did) {
3318                                 if field_names.iter().any(|&field_name| ident.name == field_name) {
3319                                     return Some(AssocSuggestion::Field);
3320                                 }
3321                             }
3322                         }
3323                         _ => {}
3324                     }
3325                 }
3326             }
3327         }
3328
3329         // Look for associated items in the current trait.
3330         if let Some((module, _)) = self.current_trait_ref {
3331             if let Ok(binding) =
3332                     self.resolve_ident_in_module(module, ident, ns, false, false, module.span) {
3333                 let def = binding.def();
3334                 if filter_fn(def) {
3335                     return Some(if self.has_self.contains(&def.def_id()) {
3336                         AssocSuggestion::MethodWithSelf
3337                     } else {
3338                         AssocSuggestion::AssocItem
3339                     });
3340                 }
3341             }
3342         }
3343
3344         None
3345     }
3346
3347     fn lookup_typo_candidate<FilterFn>(&mut self,
3348                                        path: &[SpannedIdent],
3349                                        ns: Namespace,
3350                                        filter_fn: FilterFn,
3351                                        span: Span)
3352                                        -> Option<Symbol>
3353         where FilterFn: Fn(Def) -> bool
3354     {
3355         let add_module_candidates = |module: Module, names: &mut Vec<Name>| {
3356             for (&(ident, _), resolution) in module.resolutions.borrow().iter() {
3357                 if let Some(binding) = resolution.borrow().binding {
3358                     if filter_fn(binding.def()) {
3359                         names.push(ident.name);
3360                     }
3361                 }
3362             }
3363         };
3364
3365         let mut names = Vec::new();
3366         if path.len() == 1 {
3367             // Search in lexical scope.
3368             // Walk backwards up the ribs in scope and collect candidates.
3369             for rib in self.ribs[ns].iter().rev() {
3370                 // Locals and type parameters
3371                 for (ident, def) in &rib.bindings {
3372                     if filter_fn(*def) {
3373                         names.push(ident.name);
3374                     }
3375                 }
3376                 // Items in scope
3377                 if let ModuleRibKind(module) = rib.kind {
3378                     // Items from this module
3379                     add_module_candidates(module, &mut names);
3380
3381                     if let ModuleKind::Block(..) = module.kind {
3382                         // We can see through blocks
3383                     } else {
3384                         // Items from the prelude
3385                         if let Some(prelude) = self.prelude {
3386                             if !module.no_implicit_prelude {
3387                                 add_module_candidates(prelude, &mut names);
3388                             }
3389                         }
3390                         break;
3391                     }
3392                 }
3393             }
3394             // Add primitive types to the mix
3395             if filter_fn(Def::PrimTy(TyBool)) {
3396                 for (name, _) in &self.primitive_type_table.primitive_types {
3397                     names.push(*name);
3398                 }
3399             }
3400         } else {
3401             // Search in module.
3402             let mod_path = &path[..path.len() - 1];
3403             if let PathResult::Module(module) = self.resolve_path(mod_path, Some(TypeNS),
3404                                                                   false, span) {
3405                 add_module_candidates(module, &mut names);
3406             }
3407         }
3408
3409         let name = path[path.len() - 1].node.name;
3410         // Make sure error reporting is deterministic.
3411         names.sort_by_key(|name| name.as_str());
3412         match find_best_match_for_name(names.iter(), &name.as_str(), None) {
3413             Some(found) if found != name => Some(found),
3414             _ => None,
3415         }
3416     }
3417
3418     fn with_resolved_label<F>(&mut self, label: Option<Label>, id: NodeId, f: F)
3419         where F: FnOnce(&mut Resolver)
3420     {
3421         if let Some(label) = label {
3422             let def = Def::Label(id);
3423             self.with_label_rib(|this| {
3424                 this.label_ribs.last_mut().unwrap().bindings.insert(label.ident, def);
3425                 f(this);
3426             });
3427         } else {
3428             f(self);
3429         }
3430     }
3431
3432     fn resolve_labeled_block(&mut self, label: Option<Label>, id: NodeId, block: &Block) {
3433         self.with_resolved_label(label, id, |this| this.visit_block(block));
3434     }
3435
3436     fn resolve_expr(&mut self, expr: &Expr, parent: Option<&Expr>) {
3437         // First, record candidate traits for this expression if it could
3438         // result in the invocation of a method call.
3439
3440         self.record_candidate_traits_for_expr_if_necessary(expr);
3441
3442         // Next, resolve the node.
3443         match expr.node {
3444             ExprKind::Path(ref qself, ref path) => {
3445                 self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
3446                 visit::walk_expr(self, expr);
3447             }
3448
3449             ExprKind::Struct(ref path, ..) => {
3450                 self.smart_resolve_path(expr.id, None, path, PathSource::Struct);
3451                 visit::walk_expr(self, expr);
3452             }
3453
3454             ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
3455                 match self.search_label(label.ident, |rib, id| rib.bindings.get(&id).cloned()) {
3456                     None => {
3457                         // Search again for close matches...
3458                         // Picks the first label that is "close enough", which is not necessarily
3459                         // the closest match
3460                         let close_match = self.search_label(label.ident, |rib, ident| {
3461                             let names = rib.bindings.iter().map(|(id, _)| &id.name);
3462                             find_best_match_for_name(names, &*ident.name.as_str(), None)
3463                         });
3464                         self.record_def(expr.id, err_path_resolution());
3465                         resolve_error(self,
3466                                       label.span,
3467                                       ResolutionError::UndeclaredLabel(&label.ident.name.as_str(),
3468                                                                        close_match));
3469                     }
3470                     Some(def @ Def::Label(_)) => {
3471                         // Since this def is a label, it is never read.
3472                         self.record_def(expr.id, PathResolution::new(def));
3473                     }
3474                     Some(_) => {
3475                         span_bug!(expr.span, "label wasn't mapped to a label def!");
3476                     }
3477                 }
3478
3479                 // visit `break` argument if any
3480                 visit::walk_expr(self, expr);
3481             }
3482
3483             ExprKind::IfLet(ref pattern, ref subexpression, ref if_block, ref optional_else) => {
3484                 self.visit_expr(subexpression);
3485
3486                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
3487                 self.resolve_pattern(pattern, PatternSource::IfLet, &mut FxHashMap());
3488                 self.visit_block(if_block);
3489                 self.ribs[ValueNS].pop();
3490
3491                 optional_else.as_ref().map(|expr| self.visit_expr(expr));
3492             }
3493
3494             ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),
3495
3496             ExprKind::While(ref subexpression, ref block, label) => {
3497                 self.with_resolved_label(label, expr.id, |this| {
3498                     this.visit_expr(subexpression);
3499                     this.visit_block(block);
3500                 });
3501             }
3502
3503             ExprKind::WhileLet(ref pattern, ref subexpression, ref block, label) => {
3504                 self.with_resolved_label(label, expr.id, |this| {
3505                     this.visit_expr(subexpression);
3506                     this.ribs[ValueNS].push(Rib::new(NormalRibKind));
3507                     this.resolve_pattern(pattern, PatternSource::WhileLet, &mut FxHashMap());
3508                     this.visit_block(block);
3509                     this.ribs[ValueNS].pop();
3510                 });
3511             }
3512
3513             ExprKind::ForLoop(ref pattern, ref subexpression, ref block, label) => {
3514                 self.visit_expr(subexpression);
3515                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
3516                 self.resolve_pattern(pattern, PatternSource::For, &mut FxHashMap());
3517
3518                 self.resolve_labeled_block(label, expr.id, block);
3519
3520                 self.ribs[ValueNS].pop();
3521             }
3522
3523             // Equivalent to `visit::walk_expr` + passing some context to children.
3524             ExprKind::Field(ref subexpression, _) => {
3525                 self.resolve_expr(subexpression, Some(expr));
3526             }
3527             ExprKind::MethodCall(ref segment, ref arguments) => {
3528                 let mut arguments = arguments.iter();
3529                 self.resolve_expr(arguments.next().unwrap(), Some(expr));
3530                 for argument in arguments {
3531                     self.resolve_expr(argument, None);
3532                 }
3533                 self.visit_path_segment(expr.span, segment);
3534             }
3535
3536             ExprKind::Repeat(ref element, ref count) => {
3537                 self.visit_expr(element);
3538                 self.with_constant_rib(|this| {
3539                     this.visit_expr(count);
3540                 });
3541             }
3542             ExprKind::Call(ref callee, ref arguments) => {
3543                 self.resolve_expr(callee, Some(expr));
3544                 for argument in arguments {
3545                     self.resolve_expr(argument, None);
3546                 }
3547             }
3548             ExprKind::Type(ref type_expr, _) => {
3549                 self.current_type_ascription.push(type_expr.span);
3550                 visit::walk_expr(self, expr);
3551                 self.current_type_ascription.pop();
3552             }
3553             _ => {
3554                 visit::walk_expr(self, expr);
3555             }
3556         }
3557     }
3558
3559     fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &Expr) {
3560         match expr.node {
3561             ExprKind::Field(_, name) => {
3562                 // FIXME(#6890): Even though you can't treat a method like a
3563                 // field, we need to add any trait methods we find that match
3564                 // the field name so that we can do some nice error reporting
3565                 // later on in typeck.
3566                 let traits = self.get_traits_containing_item(name.node, ValueNS);
3567                 self.trait_map.insert(expr.id, traits);
3568             }
3569             ExprKind::MethodCall(ref segment, ..) => {
3570                 debug!("(recording candidate traits for expr) recording traits for {}",
3571                        expr.id);
3572                 let traits = self.get_traits_containing_item(segment.identifier, ValueNS);
3573                 self.trait_map.insert(expr.id, traits);
3574             }
3575             _ => {
3576                 // Nothing to do.
3577             }
3578         }
3579     }
3580
3581     fn get_traits_containing_item(&mut self, mut ident: Ident, ns: Namespace)
3582                                   -> Vec<TraitCandidate> {
3583         debug!("(getting traits containing item) looking for '{}'", ident.name);
3584
3585         let mut found_traits = Vec::new();
3586         // Look for the current trait.
3587         if let Some((module, _)) = self.current_trait_ref {
3588             if self.resolve_ident_in_module(module, ident, ns, false, false, module.span).is_ok() {
3589                 let def_id = module.def_id().unwrap();
3590                 found_traits.push(TraitCandidate { def_id: def_id, import_id: None });
3591             }
3592         }
3593
3594         ident.ctxt = ident.ctxt.modern();
3595         let mut search_module = self.current_module;
3596         loop {
3597             self.get_traits_in_module_containing_item(ident, ns, search_module, &mut found_traits);
3598             search_module =
3599                 unwrap_or!(self.hygienic_lexical_parent(search_module, &mut ident.ctxt), break);
3600         }
3601
3602         if let Some(prelude) = self.prelude {
3603             if !search_module.no_implicit_prelude {
3604                 self.get_traits_in_module_containing_item(ident, ns, prelude, &mut found_traits);
3605             }
3606         }
3607
3608         found_traits
3609     }
3610
3611     fn get_traits_in_module_containing_item(&mut self,
3612                                             ident: Ident,
3613                                             ns: Namespace,
3614                                             module: Module<'a>,
3615                                             found_traits: &mut Vec<TraitCandidate>) {
3616         let mut traits = module.traits.borrow_mut();
3617         if traits.is_none() {
3618             let mut collected_traits = Vec::new();
3619             module.for_each_child(|name, ns, binding| {
3620                 if ns != TypeNS { return }
3621                 if let Def::Trait(_) = binding.def() {
3622                     collected_traits.push((name, binding));
3623                 }
3624             });
3625             *traits = Some(collected_traits.into_boxed_slice());
3626         }
3627
3628         for &(trait_name, binding) in traits.as_ref().unwrap().iter() {
3629             let module = binding.module().unwrap();
3630             let mut ident = ident;
3631             if ident.ctxt.glob_adjust(module.expansion, binding.span.ctxt().modern()).is_none() {
3632                 continue
3633             }
3634             if self.resolve_ident_in_module_unadjusted(module, ident, ns, false, false, module.span)
3635                    .is_ok() {
3636                 let import_id = match binding.kind {
3637                     NameBindingKind::Import { directive, .. } => {
3638                         self.maybe_unused_trait_imports.insert(directive.id);
3639                         self.add_to_glob_map(directive.id, trait_name);
3640                         Some(directive.id)
3641                     }
3642                     _ => None,
3643                 };
3644                 let trait_def_id = module.def_id().unwrap();
3645                 found_traits.push(TraitCandidate { def_id: trait_def_id, import_id: import_id });
3646             }
3647         }
3648     }
3649
3650     /// When name resolution fails, this method can be used to look up candidate
3651     /// entities with the expected name. It allows filtering them using the
3652     /// supplied predicate (which should be used to only accept the types of
3653     /// definitions expected e.g. traits). The lookup spans across all crates.
3654     ///
3655     /// NOTE: The method does not look into imports, but this is not a problem,
3656     /// since we report the definitions (thus, the de-aliased imports).
3657     fn lookup_import_candidates<FilterFn>(&mut self,
3658                                           lookup_name: Name,
3659                                           namespace: Namespace,
3660                                           filter_fn: FilterFn)
3661                                           -> Vec<ImportSuggestion>
3662         where FilterFn: Fn(Def) -> bool
3663     {
3664         let mut candidates = Vec::new();
3665         let mut worklist = Vec::new();
3666         let mut seen_modules = FxHashSet();
3667         worklist.push((self.graph_root, Vec::new(), false));
3668
3669         while let Some((in_module,
3670                         path_segments,
3671                         in_module_is_extern)) = worklist.pop() {
3672             self.populate_module_if_necessary(in_module);
3673
3674             // We have to visit module children in deterministic order to avoid
3675             // instabilities in reported imports (#43552).
3676             in_module.for_each_child_stable(|ident, ns, name_binding| {
3677                 // avoid imports entirely
3678                 if name_binding.is_import() && !name_binding.is_extern_crate() { return; }
3679                 // avoid non-importable candidates as well
3680                 if !name_binding.is_importable() { return; }
3681
3682                 // collect results based on the filter function
3683                 if ident.name == lookup_name && ns == namespace {
3684                     if filter_fn(name_binding.def()) {
3685                         // create the path
3686                         let mut segms = path_segments.clone();
3687                         segms.push(ast::PathSegment::from_ident(ident, name_binding.span));
3688                         let path = Path {
3689                             span: name_binding.span,
3690                             segments: segms,
3691                         };
3692                         // the entity is accessible in the following cases:
3693                         // 1. if it's defined in the same crate, it's always
3694                         // accessible (since private entities can be made public)
3695                         // 2. if it's defined in another crate, it's accessible
3696                         // only if both the module is public and the entity is
3697                         // declared as public (due to pruning, we don't explore
3698                         // outside crate private modules => no need to check this)
3699                         if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
3700                             candidates.push(ImportSuggestion { path: path });
3701                         }
3702                     }
3703                 }
3704
3705                 // collect submodules to explore
3706                 if let Some(module) = name_binding.module() {
3707                     // form the path
3708                     let mut path_segments = path_segments.clone();
3709                     path_segments.push(ast::PathSegment::from_ident(ident, name_binding.span));
3710
3711                     if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
3712                         // add the module to the lookup
3713                         let is_extern = in_module_is_extern || name_binding.is_extern_crate();
3714                         if seen_modules.insert(module.def_id().unwrap()) {
3715                             worklist.push((module, path_segments, is_extern));
3716                         }
3717                     }
3718                 }
3719             })
3720         }
3721
3722         candidates
3723     }
3724
3725     fn find_module(&mut self,
3726                    module_def: Def)
3727                    -> Option<(Module<'a>, ImportSuggestion)>
3728     {
3729         let mut result = None;
3730         let mut worklist = Vec::new();
3731         let mut seen_modules = FxHashSet();
3732         worklist.push((self.graph_root, Vec::new()));
3733
3734         while let Some((in_module, path_segments)) = worklist.pop() {
3735             // abort if the module is already found
3736             if let Some(_) = result { break; }
3737
3738             self.populate_module_if_necessary(in_module);
3739
3740             in_module.for_each_child_stable(|ident, _, name_binding| {
3741                 // abort if the module is already found or if name_binding is private external
3742                 if result.is_some() || !name_binding.vis.is_visible_locally() {
3743                     return
3744                 }
3745                 if let Some(module) = name_binding.module() {
3746                     // form the path
3747                     let mut path_segments = path_segments.clone();
3748                     path_segments.push(ast::PathSegment::from_ident(ident, name_binding.span));
3749                     if module.def() == Some(module_def) {
3750                         let path = Path {
3751                             span: name_binding.span,
3752                             segments: path_segments,
3753                         };
3754                         result = Some((module, ImportSuggestion { path: path }));
3755                     } else {
3756                         // add the module to the lookup
3757                         if seen_modules.insert(module.def_id().unwrap()) {
3758                             worklist.push((module, path_segments));
3759                         }
3760                     }
3761                 }
3762             });
3763         }
3764
3765         result
3766     }
3767
3768     fn collect_enum_variants(&mut self, enum_def: Def) -> Option<Vec<Path>> {
3769         if let Def::Enum(..) = enum_def {} else {
3770             panic!("Non-enum def passed to collect_enum_variants: {:?}", enum_def)
3771         }
3772
3773         self.find_module(enum_def).map(|(enum_module, enum_import_suggestion)| {
3774             self.populate_module_if_necessary(enum_module);
3775
3776             let mut variants = Vec::new();
3777             enum_module.for_each_child_stable(|ident, _, name_binding| {
3778                 if let Def::Variant(..) = name_binding.def() {
3779                     let mut segms = enum_import_suggestion.path.segments.clone();
3780                     segms.push(ast::PathSegment::from_ident(ident, name_binding.span));
3781                     variants.push(Path {
3782                         span: name_binding.span,
3783                         segments: segms,
3784                     });
3785                 }
3786             });
3787             variants
3788         })
3789     }
3790
3791     fn record_def(&mut self, node_id: NodeId, resolution: PathResolution) {
3792         debug!("(recording def) recording {:?} for {}", resolution, node_id);
3793         if let Some(prev_res) = self.def_map.insert(node_id, resolution) {
3794             panic!("path resolved multiple times ({:?} before, {:?} now)", prev_res, resolution);
3795         }
3796     }
3797
3798     fn resolve_visibility(&mut self, vis: &ast::Visibility) -> ty::Visibility {
3799         match vis.node {
3800             ast::VisibilityKind::Public => ty::Visibility::Public,
3801             ast::VisibilityKind::Crate(..) => {
3802                 ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX))
3803             }
3804             ast::VisibilityKind::Inherited => {
3805                 ty::Visibility::Restricted(self.current_module.normal_ancestor_id)
3806             }
3807             ast::VisibilityKind::Restricted { ref path, id, .. } => {
3808                 let def = self.smart_resolve_path(id, None, path,
3809                                                   PathSource::Visibility).base_def();
3810                 if def == Def::Err {
3811                     ty::Visibility::Public
3812                 } else {
3813                     let vis = ty::Visibility::Restricted(def.def_id());
3814                     if self.is_accessible(vis) {
3815                         vis
3816                     } else {
3817                         self.session.span_err(path.span, "visibilities can only be restricted \
3818                                                           to ancestor modules");
3819                         ty::Visibility::Public
3820                     }
3821                 }
3822             }
3823         }
3824     }
3825
3826     fn is_accessible(&self, vis: ty::Visibility) -> bool {
3827         vis.is_accessible_from(self.current_module.normal_ancestor_id, self)
3828     }
3829
3830     fn is_accessible_from(&self, vis: ty::Visibility, module: Module<'a>) -> bool {
3831         vis.is_accessible_from(module.normal_ancestor_id, self)
3832     }
3833
3834     fn report_errors(&mut self, krate: &Crate) {
3835         self.report_shadowing_errors();
3836         self.report_with_use_injections(krate);
3837         self.report_proc_macro_import(krate);
3838         let mut reported_spans = FxHashSet();
3839
3840         for &AmbiguityError { span, name, b1, b2, lexical, legacy } in &self.ambiguity_errors {
3841             if !reported_spans.insert(span) { continue }
3842             let participle = |binding: &NameBinding| {
3843                 if binding.is_import() { "imported" } else { "defined" }
3844             };
3845             let msg1 = format!("`{}` could refer to the name {} here", name, participle(b1));
3846             let msg2 = format!("`{}` could also refer to the name {} here", name, participle(b2));
3847             let note = if b1.expansion == Mark::root() || !lexical && b1.is_glob_import() {
3848                 format!("consider adding an explicit import of `{}` to disambiguate", name)
3849             } else if let Def::Macro(..) = b1.def() {
3850                 format!("macro-expanded {} do not shadow",
3851                         if b1.is_import() { "macro imports" } else { "macros" })
3852             } else {
3853                 format!("macro-expanded {} do not shadow when used in a macro invocation path",
3854                         if b1.is_import() { "imports" } else { "items" })
3855             };
3856             if legacy {
3857                 let id = match b2.kind {
3858                     NameBindingKind::Import { directive, .. } => directive.id,
3859                     _ => unreachable!(),
3860                 };
3861                 let mut span = MultiSpan::from_span(span);
3862                 span.push_span_label(b1.span, msg1);
3863                 span.push_span_label(b2.span, msg2);
3864                 let msg = format!("`{}` is ambiguous", name);
3865                 self.session.buffer_lint(lint::builtin::LEGACY_IMPORTS, id, span, &msg);
3866             } else {
3867                 let mut err =
3868                     struct_span_err!(self.session, span, E0659, "`{}` is ambiguous", name);
3869                 err.span_note(b1.span, &msg1);
3870                 match b2.def() {
3871                     Def::Macro(..) if b2.span == DUMMY_SP =>
3872                         err.note(&format!("`{}` is also a builtin macro", name)),
3873                     _ => err.span_note(b2.span, &msg2),
3874                 };
3875                 err.note(&note).emit();
3876             }
3877         }
3878
3879         for &PrivacyError(span, name, binding) in &self.privacy_errors {
3880             if !reported_spans.insert(span) { continue }
3881             span_err!(self.session, span, E0603, "{} `{}` is private", binding.descr(), name);
3882         }
3883     }
3884
3885     fn report_with_use_injections(&mut self, krate: &Crate) {
3886         for UseError { mut err, candidates, node_id, better } in self.use_injections.drain(..) {
3887             let (span, found_use) = UsePlacementFinder::check(krate, node_id);
3888             if !candidates.is_empty() {
3889                 show_candidates(&mut err, span, &candidates, better, found_use);
3890             }
3891             err.emit();
3892         }
3893     }
3894
3895     fn report_shadowing_errors(&mut self) {
3896         for (ident, scope) in replace(&mut self.lexical_macro_resolutions, Vec::new()) {
3897             self.resolve_legacy_scope(scope, ident, true);
3898         }
3899
3900         let mut reported_errors = FxHashSet();
3901         for binding in replace(&mut self.disallowed_shadowing, Vec::new()) {
3902             if self.resolve_legacy_scope(&binding.parent, binding.ident, false).is_some() &&
3903                reported_errors.insert((binding.ident, binding.span)) {
3904                 let msg = format!("`{}` is already in scope", binding.ident);
3905                 self.session.struct_span_err(binding.span, &msg)
3906                     .note("macro-expanded `macro_rules!`s may not shadow \
3907                            existing macros (see RFC 1560)")
3908                     .emit();
3909             }
3910         }
3911     }
3912
3913     fn report_conflict<'b>(&mut self,
3914                        parent: Module,
3915                        ident: Ident,
3916                        ns: Namespace,
3917                        new_binding: &NameBinding<'b>,
3918                        old_binding: &NameBinding<'b>) {
3919         // Error on the second of two conflicting names
3920         if old_binding.span.lo() > new_binding.span.lo() {
3921             return self.report_conflict(parent, ident, ns, old_binding, new_binding);
3922         }
3923
3924         let container = match parent.kind {
3925             ModuleKind::Def(Def::Mod(_), _) => "module",
3926             ModuleKind::Def(Def::Trait(_), _) => "trait",
3927             ModuleKind::Block(..) => "block",
3928             _ => "enum",
3929         };
3930
3931         let old_noun = match old_binding.is_import() {
3932             true => "import",
3933             false => "definition",
3934         };
3935
3936         let new_participle = match new_binding.is_import() {
3937             true => "imported",
3938             false => "defined",
3939         };
3940
3941         let (name, span) = (ident.name, self.session.codemap().def_span(new_binding.span));
3942
3943         if let Some(s) = self.name_already_seen.get(&name) {
3944             if s == &span {
3945                 return;
3946             }
3947         }
3948
3949         let old_kind = match (ns, old_binding.module()) {
3950             (ValueNS, _) => "value",
3951             (MacroNS, _) => "macro",
3952             (TypeNS, _) if old_binding.is_extern_crate() => "extern crate",
3953             (TypeNS, Some(module)) if module.is_normal() => "module",
3954             (TypeNS, Some(module)) if module.is_trait() => "trait",
3955             (TypeNS, _) => "type",
3956         };
3957
3958         let namespace = match ns {
3959             ValueNS => "value",
3960             MacroNS => "macro",
3961             TypeNS => "type",
3962         };
3963
3964         let msg = format!("the name `{}` is defined multiple times", name);
3965
3966         let mut err = match (old_binding.is_extern_crate(), new_binding.is_extern_crate()) {
3967             (true, true) => struct_span_err!(self.session, span, E0259, "{}", msg),
3968             (true, _) | (_, true) => match new_binding.is_import() && old_binding.is_import() {
3969                 true => struct_span_err!(self.session, span, E0254, "{}", msg),
3970                 false => struct_span_err!(self.session, span, E0260, "{}", msg),
3971             },
3972             _ => match (old_binding.is_import(), new_binding.is_import()) {
3973                 (false, false) => struct_span_err!(self.session, span, E0428, "{}", msg),
3974                 (true, true) => struct_span_err!(self.session, span, E0252, "{}", msg),
3975                 _ => struct_span_err!(self.session, span, E0255, "{}", msg),
3976             },
3977         };
3978
3979         err.note(&format!("`{}` must be defined only once in the {} namespace of this {}",
3980                           name,
3981                           namespace,
3982                           container));
3983
3984         err.span_label(span, format!("`{}` re{} here", name, new_participle));
3985         if old_binding.span != DUMMY_SP {
3986             err.span_label(self.session.codemap().def_span(old_binding.span),
3987                            format!("previous {} of the {} `{}` here", old_noun, old_kind, name));
3988         }
3989
3990         // See https://github.com/rust-lang/rust/issues/32354
3991         if old_binding.is_import() || new_binding.is_import() {
3992             let binding = if new_binding.is_import() && new_binding.span != DUMMY_SP {
3993                 new_binding
3994             } else {
3995                 old_binding
3996             };
3997
3998             let cm = self.session.codemap();
3999             let rename_msg = "You can use `as` to change the binding name of the import";
4000
4001             if let (Ok(snippet), false) = (cm.span_to_snippet(binding.span),
4002                                            binding.is_renamed_extern_crate()) {
4003                 let suggested_name = if name.as_str().chars().next().unwrap().is_uppercase() {
4004                     format!("Other{}", name)
4005                 } else {
4006                     format!("other_{}", name)
4007                 };
4008
4009                 err.span_suggestion(binding.span,
4010                                     rename_msg,
4011                                     if snippet.ends_with(';') {
4012                                         format!("{} as {};",
4013                                                 &snippet[..snippet.len()-1],
4014                                                 suggested_name)
4015                                     } else {
4016                                         format!("{} as {}", snippet, suggested_name)
4017                                     });
4018             } else {
4019                 err.span_label(binding.span, rename_msg);
4020             }
4021         }
4022
4023         err.emit();
4024         self.name_already_seen.insert(name, span);
4025     }
4026
4027     fn warn_legacy_self_import(&self, directive: &'a ImportDirective<'a>) {
4028         let (id, span) = (directive.id, directive.span);
4029         let msg = "`self` no longer imports values";
4030         self.session.buffer_lint(lint::builtin::LEGACY_IMPORTS, id, span, msg);
4031     }
4032
4033     fn check_proc_macro_attrs(&mut self, attrs: &[ast::Attribute]) {
4034         if self.proc_macro_enabled { return; }
4035
4036         for attr in attrs {
4037             if attr.path.segments.len() > 1 {
4038                 continue
4039             }
4040             let ident = attr.path.segments[0].identifier;
4041             let result = self.resolve_lexical_macro_path_segment(ident,
4042                                                                  MacroNS,
4043                                                                  false,
4044                                                                  attr.path.span);
4045             if let Ok(binding) = result {
4046                 if let SyntaxExtension::AttrProcMacro(..) = *binding.binding().get_macro(self) {
4047                     attr::mark_known(attr);
4048
4049                     let msg = "attribute procedural macros are experimental";
4050                     let feature = "proc_macro";
4051
4052                     feature_err(&self.session.parse_sess, feature,
4053                                 attr.span, GateIssue::Language, msg)
4054                         .span_label(binding.span(), "procedural macro imported here")
4055                         .emit();
4056                 }
4057             }
4058         }
4059     }
4060 }
4061
4062 fn is_self_type(path: &[SpannedIdent], namespace: Namespace) -> bool {
4063     namespace == TypeNS && path.len() == 1 && path[0].node.name == keywords::SelfType.name()
4064 }
4065
4066 fn is_self_value(path: &[SpannedIdent], namespace: Namespace) -> bool {
4067     namespace == ValueNS && path.len() == 1 && path[0].node.name == keywords::SelfValue.name()
4068 }
4069
4070 fn names_to_string(idents: &[SpannedIdent]) -> String {
4071     let mut result = String::new();
4072     for (i, ident) in idents.iter()
4073                             .filter(|i| i.node.name != keywords::CrateRoot.name())
4074                             .enumerate() {
4075         if i > 0 {
4076             result.push_str("::");
4077         }
4078         result.push_str(&ident.node.name.as_str());
4079     }
4080     result
4081 }
4082
4083 fn path_names_to_string(path: &Path) -> String {
4084     names_to_string(&path.segments.iter()
4085                         .map(|seg| respan(seg.span, seg.identifier))
4086                         .collect::<Vec<_>>())
4087 }
4088
4089 /// Get the path for an enum and the variant from an `ImportSuggestion` for an enum variant.
4090 fn import_candidate_to_paths(suggestion: &ImportSuggestion) -> (Span, String, String) {
4091     let variant_path = &suggestion.path;
4092     let variant_path_string = path_names_to_string(variant_path);
4093
4094     let path_len = suggestion.path.segments.len();
4095     let enum_path = ast::Path {
4096         span: suggestion.path.span,
4097         segments: suggestion.path.segments[0..path_len - 1].to_vec(),
4098     };
4099     let enum_path_string = path_names_to_string(&enum_path);
4100
4101     (suggestion.path.span, variant_path_string, enum_path_string)
4102 }
4103
4104
4105 /// When an entity with a given name is not available in scope, we search for
4106 /// entities with that name in all crates. This method allows outputting the
4107 /// results of this search in a programmer-friendly way
4108 fn show_candidates(err: &mut DiagnosticBuilder,
4109                    // This is `None` if all placement locations are inside expansions
4110                    span: Option<Span>,
4111                    candidates: &[ImportSuggestion],
4112                    better: bool,
4113                    found_use: bool) {
4114
4115     // we want consistent results across executions, but candidates are produced
4116     // by iterating through a hash map, so make sure they are ordered:
4117     let mut path_strings: Vec<_> =
4118         candidates.into_iter().map(|c| path_names_to_string(&c.path)).collect();
4119     path_strings.sort();
4120
4121     let better = if better { "better " } else { "" };
4122     let msg_diff = match path_strings.len() {
4123         1 => " is found in another module, you can import it",
4124         _ => "s are found in other modules, you can import them",
4125     };
4126     let msg = format!("possible {}candidate{} into scope", better, msg_diff);
4127
4128     if let Some(span) = span {
4129         for candidate in &mut path_strings {
4130             // produce an additional newline to separate the new use statement
4131             // from the directly following item.
4132             let additional_newline = if found_use {
4133                 ""
4134             } else {
4135                 "\n"
4136             };
4137             *candidate = format!("use {};\n{}", candidate, additional_newline);
4138         }
4139
4140         err.span_suggestions(span, &msg, path_strings);
4141     } else {
4142         let mut msg = msg;
4143         msg.push(':');
4144         for candidate in path_strings {
4145             msg.push('\n');
4146             msg.push_str(&candidate);
4147         }
4148     }
4149 }
4150
4151 /// A somewhat inefficient routine to obtain the name of a module.
4152 fn module_to_string(module: Module) -> Option<String> {
4153     let mut names = Vec::new();
4154
4155     fn collect_mod(names: &mut Vec<Ident>, module: Module) {
4156         if let ModuleKind::Def(_, name) = module.kind {
4157             if let Some(parent) = module.parent {
4158                 names.push(Ident::with_empty_ctxt(name));
4159                 collect_mod(names, parent);
4160             }
4161         } else {
4162             // danger, shouldn't be ident?
4163             names.push(Ident::from_str("<opaque>"));
4164             collect_mod(names, module.parent.unwrap());
4165         }
4166     }
4167     collect_mod(&mut names, module);
4168
4169     if names.is_empty() {
4170         return None;
4171     }
4172     Some(names_to_string(&names.into_iter()
4173                         .rev()
4174                         .map(|n| dummy_spanned(n))
4175                         .collect::<Vec<_>>()))
4176 }
4177
4178 fn err_path_resolution() -> PathResolution {
4179     PathResolution::new(Def::Err)
4180 }
4181
4182 #[derive(PartialEq,Copy, Clone)]
4183 pub enum MakeGlobMap {
4184     Yes,
4185     No,
4186 }
4187
4188 __build_diagnostic_array! { librustc_resolve, DIAGNOSTICS }