]> git.lizzy.rs Git - rust.git/blob - src/librustc_resolve/lib.rs
better dummy span detection and remove redundant branch
[rust.git] / src / librustc_resolve / lib.rs
1 // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 #![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
12        html_favicon_url = "https://doc.rust-lang.org/favicon.ico",
13        html_root_url = "https://doc.rust-lang.org/nightly/")]
14
15 #![feature(crate_visibility_modifier)]
16 #![feature(nll)]
17 #![feature(rustc_diagnostic_macros)]
18 #![feature(slice_sort_by_cached_key)]
19
20 #[macro_use]
21 extern crate bitflags;
22 #[macro_use]
23 extern crate log;
24 #[macro_use]
25 extern crate syntax;
26 extern crate syntax_pos;
27 extern crate rustc_errors as errors;
28 extern crate arena;
29 #[macro_use]
30 extern crate rustc;
31 extern crate rustc_data_structures;
32 extern crate rustc_metadata;
33
34 pub use rustc::hir::def::{Namespace, PerNS};
35
36 use self::TypeParameters::*;
37 use self::RibKind::*;
38
39 use rustc::hir::map::{Definitions, DefCollector};
40 use rustc::hir::{self, PrimTy, Bool, Char, Float, Int, Uint, Str};
41 use rustc::middle::cstore::CrateStore;
42 use rustc::session::Session;
43 use rustc::lint;
44 use rustc::hir::def::*;
45 use rustc::hir::def::Namespace::*;
46 use rustc::hir::def_id::{CRATE_DEF_INDEX, LOCAL_CRATE, DefId};
47 use rustc::hir::{Freevar, FreevarMap, TraitCandidate, TraitMap, GlobMap};
48 use rustc::session::config::nightly_options;
49 use rustc::ty;
50 use rustc::util::nodemap::{NodeMap, NodeSet, FxHashMap, FxHashSet, DefIdMap};
51
52 use rustc_metadata::creader::CrateLoader;
53 use rustc_metadata::cstore::CStore;
54
55 use syntax::source_map::SourceMap;
56 use syntax::ext::hygiene::{Mark, Transparency, SyntaxContext};
57 use syntax::ast::{self, Name, NodeId, Ident, FloatTy, IntTy, UintTy};
58 use syntax::ext::base::SyntaxExtension;
59 use syntax::ext::base::Determinacy::{self, Determined, Undetermined};
60 use syntax::ext::base::MacroKind;
61 use syntax::symbol::{Symbol, keywords};
62 use syntax::util::lev_distance::find_best_match_for_name;
63
64 use syntax::visit::{self, FnKind, Visitor};
65 use syntax::attr;
66 use syntax::ast::{CRATE_NODE_ID, Arm, IsAsync, BindingMode, Block, Crate, Expr, ExprKind};
67 use syntax::ast::{FnDecl, ForeignItem, ForeignItemKind, GenericParamKind, Generics};
68 use syntax::ast::{Item, ItemKind, ImplItem, ImplItemKind};
69 use syntax::ast::{Label, Local, Mutability, Pat, PatKind, Path};
70 use syntax::ast::{QSelf, TraitItemKind, TraitRef, Ty, TyKind};
71 use syntax::ptr::P;
72
73 use syntax_pos::{Span, DUMMY_SP, MultiSpan};
74 use errors::{Applicability, DiagnosticBuilder, DiagnosticId};
75
76 use std::cell::{Cell, RefCell};
77 use std::{cmp, fmt, iter, ptr};
78 use std::collections::BTreeSet;
79 use std::mem::replace;
80 use rustc_data_structures::ptr_key::PtrKey;
81 use rustc_data_structures::sync::Lrc;
82
83 use resolve_imports::{ImportDirective, ImportDirectiveSubclass, NameResolution, ImportResolver};
84 use macros::{InvocationData, LegacyBinding, ParentScope};
85
86 // NB: This module needs to be declared first so diagnostics are
87 // registered before they are used.
88 mod diagnostics;
89 mod error_reporting;
90 mod macros;
91 mod check_unused;
92 mod build_reduced_graph;
93 mod resolve_imports;
94
95 fn is_known_tool(name: Name) -> bool {
96     ["clippy", "rustfmt"].contains(&&*name.as_str())
97 }
98
99 /// A free importable items suggested in case of resolution failure.
100 struct ImportSuggestion {
101     path: Path,
102 }
103
104 /// A field or associated item from self type suggested in case of resolution failure.
105 enum AssocSuggestion {
106     Field,
107     MethodWithSelf,
108     AssocItem,
109 }
110
111 #[derive(Eq)]
112 struct BindingError {
113     name: Name,
114     origin: BTreeSet<Span>,
115     target: BTreeSet<Span>,
116 }
117
118 impl PartialOrd for BindingError {
119     fn partial_cmp(&self, other: &BindingError) -> Option<cmp::Ordering> {
120         Some(self.cmp(other))
121     }
122 }
123
124 impl PartialEq for BindingError {
125     fn eq(&self, other: &BindingError) -> bool {
126         self.name == other.name
127     }
128 }
129
130 impl Ord for BindingError {
131     fn cmp(&self, other: &BindingError) -> cmp::Ordering {
132         self.name.cmp(&other.name)
133     }
134 }
135
136 enum ResolutionError<'a> {
137     /// error E0401: can't use type parameters from outer function
138     TypeParametersFromOuterFunction(Def),
139     /// error E0403: the name is already used for a type parameter in this type parameter list
140     NameAlreadyUsedInTypeParameterList(Name, &'a Span),
141     /// error E0407: method is not a member of trait
142     MethodNotMemberOfTrait(Name, &'a str),
143     /// error E0437: type is not a member of trait
144     TypeNotMemberOfTrait(Name, &'a str),
145     /// error E0438: const is not a member of trait
146     ConstNotMemberOfTrait(Name, &'a str),
147     /// error E0408: variable `{}` is not bound in all patterns
148     VariableNotBoundInPattern(&'a BindingError),
149     /// error E0409: variable `{}` is bound in inconsistent ways within the same match arm
150     VariableBoundWithDifferentMode(Name, Span),
151     /// error E0415: identifier is bound more than once in this parameter list
152     IdentifierBoundMoreThanOnceInParameterList(&'a str),
153     /// error E0416: identifier is bound more than once in the same pattern
154     IdentifierBoundMoreThanOnceInSamePattern(&'a str),
155     /// error E0426: use of undeclared label
156     UndeclaredLabel(&'a str, Option<Name>),
157     /// error E0429: `self` imports are only allowed within a { } list
158     SelfImportsOnlyAllowedWithin,
159     /// error E0430: `self` import can only appear once in the list
160     SelfImportCanOnlyAppearOnceInTheList,
161     /// error E0431: `self` import can only appear in an import list with a non-empty prefix
162     SelfImportOnlyInImportListWithNonEmptyPrefix,
163     /// error E0433: failed to resolve
164     FailedToResolve(&'a str),
165     /// error E0434: can't capture dynamic environment in a fn item
166     CannotCaptureDynamicEnvironmentInFnItem,
167     /// error E0435: attempt to use a non-constant value in a constant
168     AttemptToUseNonConstantValueInConstant,
169     /// error E0530: X bindings cannot shadow Ys
170     BindingShadowsSomethingUnacceptable(&'a str, Name, &'a NameBinding<'a>),
171     /// error E0128: type parameters with a default cannot use forward declared identifiers
172     ForwardDeclaredTyParam,
173 }
174
175 /// Combines an error with provided span and emits it
176 ///
177 /// This takes the error provided, combines it with the span and any additional spans inside the
178 /// error and emits it.
179 fn resolve_error<'sess, 'a>(resolver: &'sess Resolver,
180                             span: Span,
181                             resolution_error: ResolutionError<'a>) {
182     resolve_struct_error(resolver, span, resolution_error).emit();
183 }
184
185 fn resolve_struct_error<'sess, 'a>(resolver: &'sess Resolver,
186                                    span: Span,
187                                    resolution_error: ResolutionError<'a>)
188                                    -> DiagnosticBuilder<'sess> {
189     match resolution_error {
190         ResolutionError::TypeParametersFromOuterFunction(outer_def) => {
191             let mut err = struct_span_err!(resolver.session,
192                                            span,
193                                            E0401,
194                                            "can't use type parameters from outer function");
195             err.span_label(span, "use of type variable from outer function");
196
197             let cm = resolver.session.source_map();
198             match outer_def {
199                 Def::SelfTy(maybe_trait_defid, maybe_impl_defid) => {
200                     if let Some(impl_span) = maybe_impl_defid.and_then(|def_id| {
201                         resolver.definitions.opt_span(def_id)
202                     }) {
203                         err.span_label(
204                             reduce_impl_span_to_impl_keyword(cm, impl_span),
205                             "`Self` type implicitly declared here, by this `impl`",
206                         );
207                     }
208                     match (maybe_trait_defid, maybe_impl_defid) {
209                         (Some(_), None) => {
210                             err.span_label(span, "can't use `Self` here");
211                         }
212                         (_, Some(_)) => {
213                             err.span_label(span, "use a type here instead");
214                         }
215                         (None, None) => bug!("`impl` without trait nor type?"),
216                     }
217                     return err;
218                 },
219                 Def::TyParam(typaram_defid) => {
220                     if let Some(typaram_span) = resolver.definitions.opt_span(typaram_defid) {
221                         err.span_label(typaram_span, "type variable from outer function");
222                     }
223                 },
224                 _ => {
225                     bug!("TypeParametersFromOuterFunction should only be used with Def::SelfTy or \
226                          Def::TyParam")
227                 }
228             }
229
230             // Try to retrieve the span of the function signature and generate a new message with
231             // a local type parameter
232             let sugg_msg = "try using a local type parameter instead";
233             if let Some((sugg_span, new_snippet)) = cm.generate_local_type_param_snippet(span) {
234                 // Suggest the modification to the user
235                 err.span_suggestion_with_applicability(
236                     sugg_span,
237                     sugg_msg,
238                     new_snippet,
239                     Applicability::MachineApplicable,
240                 );
241             } else if let Some(sp) = cm.generate_fn_name_span(span) {
242                 err.span_label(sp, "try adding a local type parameter in this method instead");
243             } else {
244                 err.help("try using a local type parameter instead");
245             }
246
247             err
248         }
249         ResolutionError::NameAlreadyUsedInTypeParameterList(name, first_use_span) => {
250              let mut err = struct_span_err!(resolver.session,
251                                             span,
252                                             E0403,
253                                             "the name `{}` is already used for a type parameter \
254                                             in this type parameter list",
255                                             name);
256              err.span_label(span, "already used");
257              err.span_label(first_use_span.clone(), format!("first use of `{}`", name));
258              err
259         }
260         ResolutionError::MethodNotMemberOfTrait(method, trait_) => {
261             let mut err = struct_span_err!(resolver.session,
262                                            span,
263                                            E0407,
264                                            "method `{}` is not a member of trait `{}`",
265                                            method,
266                                            trait_);
267             err.span_label(span, format!("not a member of trait `{}`", trait_));
268             err
269         }
270         ResolutionError::TypeNotMemberOfTrait(type_, trait_) => {
271             let mut err = struct_span_err!(resolver.session,
272                              span,
273                              E0437,
274                              "type `{}` is not a member of trait `{}`",
275                              type_,
276                              trait_);
277             err.span_label(span, format!("not a member of trait `{}`", trait_));
278             err
279         }
280         ResolutionError::ConstNotMemberOfTrait(const_, trait_) => {
281             let mut err = struct_span_err!(resolver.session,
282                              span,
283                              E0438,
284                              "const `{}` is not a member of trait `{}`",
285                              const_,
286                              trait_);
287             err.span_label(span, format!("not a member of trait `{}`", trait_));
288             err
289         }
290         ResolutionError::VariableNotBoundInPattern(binding_error) => {
291             let target_sp = binding_error.target.iter().cloned().collect::<Vec<_>>();
292             let msp = MultiSpan::from_spans(target_sp.clone());
293             let msg = format!("variable `{}` is not bound in all patterns", binding_error.name);
294             let mut err = resolver.session.struct_span_err_with_code(
295                 msp,
296                 &msg,
297                 DiagnosticId::Error("E0408".into()),
298             );
299             for sp in target_sp {
300                 err.span_label(sp, format!("pattern doesn't bind `{}`", binding_error.name));
301             }
302             let origin_sp = binding_error.origin.iter().cloned();
303             for sp in origin_sp {
304                 err.span_label(sp, "variable not in all patterns");
305             }
306             err
307         }
308         ResolutionError::VariableBoundWithDifferentMode(variable_name,
309                                                         first_binding_span) => {
310             let mut err = struct_span_err!(resolver.session,
311                              span,
312                              E0409,
313                              "variable `{}` is bound in inconsistent \
314                              ways within the same match arm",
315                              variable_name);
316             err.span_label(span, "bound in different ways");
317             err.span_label(first_binding_span, "first binding");
318             err
319         }
320         ResolutionError::IdentifierBoundMoreThanOnceInParameterList(identifier) => {
321             let mut err = struct_span_err!(resolver.session,
322                              span,
323                              E0415,
324                              "identifier `{}` is bound more than once in this parameter list",
325                              identifier);
326             err.span_label(span, "used as parameter more than once");
327             err
328         }
329         ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(identifier) => {
330             let mut err = struct_span_err!(resolver.session,
331                              span,
332                              E0416,
333                              "identifier `{}` is bound more than once in the same pattern",
334                              identifier);
335             err.span_label(span, "used in a pattern more than once");
336             err
337         }
338         ResolutionError::UndeclaredLabel(name, lev_candidate) => {
339             let mut err = struct_span_err!(resolver.session,
340                                            span,
341                                            E0426,
342                                            "use of undeclared label `{}`",
343                                            name);
344             if let Some(lev_candidate) = lev_candidate {
345                 err.span_label(span, format!("did you mean `{}`?", lev_candidate));
346             } else {
347                 err.span_label(span, format!("undeclared label `{}`", name));
348             }
349             err
350         }
351         ResolutionError::SelfImportsOnlyAllowedWithin => {
352             struct_span_err!(resolver.session,
353                              span,
354                              E0429,
355                              "{}",
356                              "`self` imports are only allowed within a { } list")
357         }
358         ResolutionError::SelfImportCanOnlyAppearOnceInTheList => {
359             let mut err = struct_span_err!(resolver.session, span, E0430,
360                                            "`self` import can only appear once in an import list");
361             err.span_label(span, "can only appear once in an import list");
362             err
363         }
364         ResolutionError::SelfImportOnlyInImportListWithNonEmptyPrefix => {
365             let mut err = struct_span_err!(resolver.session, span, E0431,
366                                            "`self` import can only appear in an import list with \
367                                             a non-empty prefix");
368             err.span_label(span, "can only appear in an import list with a non-empty prefix");
369             err
370         }
371         ResolutionError::FailedToResolve(msg) => {
372             let mut err = struct_span_err!(resolver.session, span, E0433,
373                                            "failed to resolve. {}", msg);
374             err.span_label(span, msg);
375             err
376         }
377         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem => {
378             let mut err = struct_span_err!(resolver.session,
379                                            span,
380                                            E0434,
381                                            "{}",
382                                            "can't capture dynamic environment in a fn item");
383             err.help("use the `|| { ... }` closure form instead");
384             err
385         }
386         ResolutionError::AttemptToUseNonConstantValueInConstant => {
387             let mut err = struct_span_err!(resolver.session, span, E0435,
388                                            "attempt to use a non-constant value in a constant");
389             err.span_label(span, "non-constant value");
390             err
391         }
392         ResolutionError::BindingShadowsSomethingUnacceptable(what_binding, name, binding) => {
393             let shadows_what = PathResolution::new(binding.def()).kind_name();
394             let mut err = struct_span_err!(resolver.session,
395                                            span,
396                                            E0530,
397                                            "{}s cannot shadow {}s", what_binding, shadows_what);
398             err.span_label(span, format!("cannot be named the same as a {}", shadows_what));
399             let participle = if binding.is_import() { "imported" } else { "defined" };
400             let msg = format!("a {} `{}` is {} here", shadows_what, name, participle);
401             err.span_label(binding.span, msg);
402             err
403         }
404         ResolutionError::ForwardDeclaredTyParam => {
405             let mut err = struct_span_err!(resolver.session, span, E0128,
406                                            "type parameters with a default cannot use \
407                                             forward declared identifiers");
408             err.span_label(
409                 span, "defaulted type parameters cannot be forward declared".to_string());
410             err
411         }
412     }
413 }
414
415 /// Adjust the impl span so that just the `impl` keyword is taken by removing
416 /// everything after `<` (`"impl<T> Iterator for A<T> {}" -> "impl"`) and
417 /// everything after the first whitespace (`"impl Iterator for A" -> "impl"`)
418 ///
419 /// Attention: The method used is very fragile since it essentially duplicates the work of the
420 /// parser. If you need to use this function or something similar, please consider updating the
421 /// source_map functions and this function to something more robust.
422 fn reduce_impl_span_to_impl_keyword(cm: &SourceMap, impl_span: Span) -> Span {
423     let impl_span = cm.span_until_char(impl_span, '<');
424     let impl_span = cm.span_until_whitespace(impl_span);
425     impl_span
426 }
427
428 #[derive(Copy, Clone, Debug)]
429 struct BindingInfo {
430     span: Span,
431     binding_mode: BindingMode,
432 }
433
434 /// Map from the name in a pattern to its binding mode.
435 type BindingMap = FxHashMap<Ident, BindingInfo>;
436
437 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
438 enum PatternSource {
439     Match,
440     IfLet,
441     WhileLet,
442     Let,
443     For,
444     FnParam,
445 }
446
447 impl PatternSource {
448     fn descr(self) -> &'static str {
449         match self {
450             PatternSource::Match => "match binding",
451             PatternSource::IfLet => "if let binding",
452             PatternSource::WhileLet => "while let binding",
453             PatternSource::Let => "let binding",
454             PatternSource::For => "for binding",
455             PatternSource::FnParam => "function parameter",
456         }
457     }
458 }
459
460 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
461 enum AliasPossibility {
462     No,
463     Maybe,
464 }
465
466 #[derive(Copy, Clone, Debug)]
467 enum PathSource<'a> {
468     // Type paths `Path`.
469     Type,
470     // Trait paths in bounds or impls.
471     Trait(AliasPossibility),
472     // Expression paths `path`, with optional parent context.
473     Expr(Option<&'a Expr>),
474     // Paths in path patterns `Path`.
475     Pat,
476     // Paths in struct expressions and patterns `Path { .. }`.
477     Struct,
478     // Paths in tuple struct patterns `Path(..)`.
479     TupleStruct,
480     // `m::A::B` in `<T as m::A>::B::C`.
481     TraitItem(Namespace),
482     // Path in `pub(path)`
483     Visibility,
484     // Path in `use a::b::{...};`
485     ImportPrefix,
486 }
487
488 impl<'a> PathSource<'a> {
489     fn namespace(self) -> Namespace {
490         match self {
491             PathSource::Type | PathSource::Trait(_) | PathSource::Struct |
492             PathSource::Visibility | PathSource::ImportPrefix => TypeNS,
493             PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct => ValueNS,
494             PathSource::TraitItem(ns) => ns,
495         }
496     }
497
498     fn global_by_default(self) -> bool {
499         match self {
500             PathSource::Visibility | PathSource::ImportPrefix => true,
501             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
502             PathSource::Struct | PathSource::TupleStruct |
503             PathSource::Trait(_) | PathSource::TraitItem(..) => false,
504         }
505     }
506
507     fn defer_to_typeck(self) -> bool {
508         match self {
509             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
510             PathSource::Struct | PathSource::TupleStruct => true,
511             PathSource::Trait(_) | PathSource::TraitItem(..) |
512             PathSource::Visibility | PathSource::ImportPrefix => false,
513         }
514     }
515
516     fn descr_expected(self) -> &'static str {
517         match self {
518             PathSource::Type => "type",
519             PathSource::Trait(_) => "trait",
520             PathSource::Pat => "unit struct/variant or constant",
521             PathSource::Struct => "struct, variant or union type",
522             PathSource::TupleStruct => "tuple struct/variant",
523             PathSource::Visibility => "module",
524             PathSource::ImportPrefix => "module or enum",
525             PathSource::TraitItem(ns) => match ns {
526                 TypeNS => "associated type",
527                 ValueNS => "method or associated constant",
528                 MacroNS => bug!("associated macro"),
529             },
530             PathSource::Expr(parent) => match parent.map(|p| &p.node) {
531                 // "function" here means "anything callable" rather than `Def::Fn`,
532                 // this is not precise but usually more helpful than just "value".
533                 Some(&ExprKind::Call(..)) => "function",
534                 _ => "value",
535             },
536         }
537     }
538
539     fn is_expected(self, def: Def) -> bool {
540         match self {
541             PathSource::Type => match def {
542                 Def::Struct(..) | Def::Union(..) | Def::Enum(..) |
543                 Def::Trait(..) | Def::TyAlias(..) | Def::AssociatedTy(..) |
544                 Def::PrimTy(..) | Def::TyParam(..) | Def::SelfTy(..) |
545                 Def::Existential(..) |
546                 Def::ForeignTy(..) => true,
547                 _ => false,
548             },
549             PathSource::Trait(AliasPossibility::No) => match def {
550                 Def::Trait(..) => true,
551                 _ => false,
552             },
553             PathSource::Trait(AliasPossibility::Maybe) => match def {
554                 Def::Trait(..) => true,
555                 Def::TraitAlias(..) => true,
556                 _ => false,
557             },
558             PathSource::Expr(..) => match def {
559                 Def::StructCtor(_, CtorKind::Const) | Def::StructCtor(_, CtorKind::Fn) |
560                 Def::VariantCtor(_, CtorKind::Const) | Def::VariantCtor(_, CtorKind::Fn) |
561                 Def::Const(..) | Def::Static(..) | Def::Local(..) | Def::Upvar(..) |
562                 Def::Fn(..) | Def::Method(..) | Def::AssociatedConst(..) |
563                 Def::SelfCtor(..) => true,
564                 _ => false,
565             },
566             PathSource::Pat => match def {
567                 Def::StructCtor(_, CtorKind::Const) |
568                 Def::VariantCtor(_, CtorKind::Const) |
569                 Def::Const(..) | Def::AssociatedConst(..) |
570                 Def::SelfCtor(..) => true,
571                 _ => false,
572             },
573             PathSource::TupleStruct => match def {
574                 Def::StructCtor(_, CtorKind::Fn) |
575                 Def::VariantCtor(_, CtorKind::Fn) |
576                 Def::SelfCtor(..) => true,
577                 _ => false,
578             },
579             PathSource::Struct => match def {
580                 Def::Struct(..) | Def::Union(..) | Def::Variant(..) |
581                 Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => true,
582                 _ => false,
583             },
584             PathSource::TraitItem(ns) => match def {
585                 Def::AssociatedConst(..) | Def::Method(..) if ns == ValueNS => true,
586                 Def::AssociatedTy(..) if ns == TypeNS => true,
587                 _ => false,
588             },
589             PathSource::ImportPrefix => match def {
590                 Def::Mod(..) | Def::Enum(..) => true,
591                 _ => false,
592             },
593             PathSource::Visibility => match def {
594                 Def::Mod(..) => true,
595                 _ => false,
596             },
597         }
598     }
599
600     fn error_code(self, has_unexpected_resolution: bool) -> &'static str {
601         __diagnostic_used!(E0404);
602         __diagnostic_used!(E0405);
603         __diagnostic_used!(E0412);
604         __diagnostic_used!(E0422);
605         __diagnostic_used!(E0423);
606         __diagnostic_used!(E0425);
607         __diagnostic_used!(E0531);
608         __diagnostic_used!(E0532);
609         __diagnostic_used!(E0573);
610         __diagnostic_used!(E0574);
611         __diagnostic_used!(E0575);
612         __diagnostic_used!(E0576);
613         __diagnostic_used!(E0577);
614         __diagnostic_used!(E0578);
615         match (self, has_unexpected_resolution) {
616             (PathSource::Trait(_), true) => "E0404",
617             (PathSource::Trait(_), false) => "E0405",
618             (PathSource::Type, true) => "E0573",
619             (PathSource::Type, false) => "E0412",
620             (PathSource::Struct, true) => "E0574",
621             (PathSource::Struct, false) => "E0422",
622             (PathSource::Expr(..), true) => "E0423",
623             (PathSource::Expr(..), false) => "E0425",
624             (PathSource::Pat, true) | (PathSource::TupleStruct, true) => "E0532",
625             (PathSource::Pat, false) | (PathSource::TupleStruct, false) => "E0531",
626             (PathSource::TraitItem(..), true) => "E0575",
627             (PathSource::TraitItem(..), false) => "E0576",
628             (PathSource::Visibility, true) | (PathSource::ImportPrefix, true) => "E0577",
629             (PathSource::Visibility, false) | (PathSource::ImportPrefix, false) => "E0578",
630         }
631     }
632 }
633
634 struct UsePlacementFinder {
635     target_module: NodeId,
636     span: Option<Span>,
637     found_use: bool,
638 }
639
640 impl UsePlacementFinder {
641     fn check(krate: &Crate, target_module: NodeId) -> (Option<Span>, bool) {
642         let mut finder = UsePlacementFinder {
643             target_module,
644             span: None,
645             found_use: false,
646         };
647         visit::walk_crate(&mut finder, krate);
648         (finder.span, finder.found_use)
649     }
650 }
651
652 impl<'tcx> Visitor<'tcx> for UsePlacementFinder {
653     fn visit_mod(
654         &mut self,
655         module: &'tcx ast::Mod,
656         _: Span,
657         _: &[ast::Attribute],
658         node_id: NodeId,
659     ) {
660         if self.span.is_some() {
661             return;
662         }
663         if node_id != self.target_module {
664             visit::walk_mod(self, module);
665             return;
666         }
667         // find a use statement
668         for item in &module.items {
669             match item.node {
670                 ItemKind::Use(..) => {
671                     // don't suggest placing a use before the prelude
672                     // import or other generated ones
673                     if item.span.ctxt().outer().expn_info().is_none() {
674                         self.span = Some(item.span.shrink_to_lo());
675                         self.found_use = true;
676                         return;
677                     }
678                 },
679                 // don't place use before extern crate
680                 ItemKind::ExternCrate(_) => {}
681                 // but place them before the first other item
682                 _ => if self.span.map_or(true, |span| item.span < span ) {
683                     if item.span.ctxt().outer().expn_info().is_none() {
684                         // don't insert between attributes and an item
685                         if item.attrs.is_empty() {
686                             self.span = Some(item.span.shrink_to_lo());
687                         } else {
688                             // find the first attribute on the item
689                             for attr in &item.attrs {
690                                 if self.span.map_or(true, |span| attr.span < span) {
691                                     self.span = Some(attr.span.shrink_to_lo());
692                                 }
693                             }
694                         }
695                     }
696                 },
697             }
698         }
699     }
700 }
701
702 /// This thing walks the whole crate in DFS manner, visiting each item, resolving names as it goes.
703 impl<'a, 'tcx, 'cl> Visitor<'tcx> for Resolver<'a, 'cl> {
704     fn visit_item(&mut self, item: &'tcx Item) {
705         self.resolve_item(item);
706     }
707     fn visit_arm(&mut self, arm: &'tcx Arm) {
708         self.resolve_arm(arm);
709     }
710     fn visit_block(&mut self, block: &'tcx Block) {
711         self.resolve_block(block);
712     }
713     fn visit_anon_const(&mut self, constant: &'tcx ast::AnonConst) {
714         self.with_constant_rib(|this| {
715             visit::walk_anon_const(this, constant);
716         });
717     }
718     fn visit_expr(&mut self, expr: &'tcx Expr) {
719         self.resolve_expr(expr, None);
720     }
721     fn visit_local(&mut self, local: &'tcx Local) {
722         self.resolve_local(local);
723     }
724     fn visit_ty(&mut self, ty: &'tcx Ty) {
725         match ty.node {
726             TyKind::Path(ref qself, ref path) => {
727                 self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
728             }
729             TyKind::ImplicitSelf => {
730                 let self_ty = keywords::SelfType.ident();
731                 let def = self.resolve_ident_in_lexical_scope(self_ty, TypeNS, Some(ty.id), ty.span)
732                               .map_or(Def::Err, |d| d.def());
733                 self.record_def(ty.id, PathResolution::new(def));
734             }
735             _ => (),
736         }
737         visit::walk_ty(self, ty);
738     }
739     fn visit_poly_trait_ref(&mut self,
740                             tref: &'tcx ast::PolyTraitRef,
741                             m: &'tcx ast::TraitBoundModifier) {
742         self.smart_resolve_path(tref.trait_ref.ref_id, None,
743                                 &tref.trait_ref.path, PathSource::Trait(AliasPossibility::Maybe));
744         visit::walk_poly_trait_ref(self, tref, m);
745     }
746     fn visit_foreign_item(&mut self, foreign_item: &'tcx ForeignItem) {
747         let type_parameters = match foreign_item.node {
748             ForeignItemKind::Fn(_, ref generics) => {
749                 HasTypeParameters(generics, ItemRibKind)
750             }
751             ForeignItemKind::Static(..) => NoTypeParameters,
752             ForeignItemKind::Ty => NoTypeParameters,
753             ForeignItemKind::Macro(..) => NoTypeParameters,
754         };
755         self.with_type_parameter_rib(type_parameters, |this| {
756             visit::walk_foreign_item(this, foreign_item);
757         });
758     }
759     fn visit_fn(&mut self,
760                 function_kind: FnKind<'tcx>,
761                 declaration: &'tcx FnDecl,
762                 _: Span,
763                 node_id: NodeId)
764     {
765         let (rib_kind, asyncness) = match function_kind {
766             FnKind::ItemFn(_, ref header, ..) =>
767                 (ItemRibKind, header.asyncness),
768             FnKind::Method(_, ref sig, _, _) =>
769                 (TraitOrImplItemRibKind, sig.header.asyncness),
770             FnKind::Closure(_) =>
771                 // Async closures aren't resolved through `visit_fn`-- they're
772                 // processed separately
773                 (ClosureRibKind(node_id), IsAsync::NotAsync),
774         };
775
776         // Create a value rib for the function.
777         self.ribs[ValueNS].push(Rib::new(rib_kind));
778
779         // Create a label rib for the function.
780         self.label_ribs.push(Rib::new(rib_kind));
781
782         // Add each argument to the rib.
783         let mut bindings_list = FxHashMap();
784         for argument in &declaration.inputs {
785             self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
786
787             self.visit_ty(&argument.ty);
788
789             debug!("(resolving function) recorded argument");
790         }
791         visit::walk_fn_ret_ty(self, &declaration.output);
792
793         // Resolve the function body, potentially inside the body of an async closure
794         if let IsAsync::Async { closure_id, .. } = asyncness {
795             let rib_kind = ClosureRibKind(closure_id);
796             self.ribs[ValueNS].push(Rib::new(rib_kind));
797             self.label_ribs.push(Rib::new(rib_kind));
798         }
799
800         match function_kind {
801             FnKind::ItemFn(.., body) |
802             FnKind::Method(.., body) => {
803                 self.visit_block(body);
804             }
805             FnKind::Closure(body) => {
806                 self.visit_expr(body);
807             }
808         };
809
810         // Leave the body of the async closure
811         if asyncness.is_async() {
812             self.label_ribs.pop();
813             self.ribs[ValueNS].pop();
814         }
815
816         debug!("(resolving function) leaving function");
817
818         self.label_ribs.pop();
819         self.ribs[ValueNS].pop();
820     }
821     fn visit_generics(&mut self, generics: &'tcx Generics) {
822         // For type parameter defaults, we have to ban access
823         // to following type parameters, as the Substs can only
824         // provide previous type parameters as they're built. We
825         // put all the parameters on the ban list and then remove
826         // them one by one as they are processed and become available.
827         let mut default_ban_rib = Rib::new(ForwardTyParamBanRibKind);
828         let mut found_default = false;
829         default_ban_rib.bindings.extend(generics.params.iter()
830             .filter_map(|param| match param.kind {
831                 GenericParamKind::Lifetime { .. } => None,
832                 GenericParamKind::Type { ref default, .. } => {
833                     found_default |= default.is_some();
834                     if found_default {
835                         Some((Ident::with_empty_ctxt(param.ident.name), Def::Err))
836                     } else {
837                         None
838                     }
839                 }
840             }));
841
842         for param in &generics.params {
843             match param.kind {
844                 GenericParamKind::Lifetime { .. } => self.visit_generic_param(param),
845                 GenericParamKind::Type { ref default, .. } => {
846                     for bound in &param.bounds {
847                         self.visit_param_bound(bound);
848                     }
849
850                     if let Some(ref ty) = default {
851                         self.ribs[TypeNS].push(default_ban_rib);
852                         self.visit_ty(ty);
853                         default_ban_rib = self.ribs[TypeNS].pop().unwrap();
854                     }
855
856                     // Allow all following defaults to refer to this type parameter.
857                     default_ban_rib.bindings.remove(&Ident::with_empty_ctxt(param.ident.name));
858                 }
859             }
860         }
861         for p in &generics.where_clause.predicates {
862             self.visit_where_predicate(p);
863         }
864     }
865 }
866
867 #[derive(Copy, Clone)]
868 enum TypeParameters<'a, 'b> {
869     NoTypeParameters,
870     HasTypeParameters(// Type parameters.
871                       &'b Generics,
872
873                       // The kind of the rib used for type parameters.
874                       RibKind<'a>),
875 }
876
877 /// The rib kind controls the translation of local
878 /// definitions (`Def::Local`) to upvars (`Def::Upvar`).
879 #[derive(Copy, Clone, Debug)]
880 enum RibKind<'a> {
881     /// No translation needs to be applied.
882     NormalRibKind,
883
884     /// We passed through a closure scope at the given node ID.
885     /// Translate upvars as appropriate.
886     ClosureRibKind(NodeId /* func id */),
887
888     /// We passed through an impl or trait and are now in one of its
889     /// methods or associated types. Allow references to ty params that impl or trait
890     /// binds. Disallow any other upvars (including other ty params that are
891     /// upvars).
892     TraitOrImplItemRibKind,
893
894     /// We passed through an item scope. Disallow upvars.
895     ItemRibKind,
896
897     /// We're in a constant item. Can't refer to dynamic stuff.
898     ConstantItemRibKind,
899
900     /// We passed through a module.
901     ModuleRibKind(Module<'a>),
902
903     /// We passed through a `macro_rules!` statement
904     MacroDefinition(DefId),
905
906     /// All bindings in this rib are type parameters that can't be used
907     /// from the default of a type parameter because they're not declared
908     /// before said type parameter. Also see the `visit_generics` override.
909     ForwardTyParamBanRibKind,
910 }
911
912 /// One local scope.
913 ///
914 /// A rib represents a scope names can live in. Note that these appear in many places, not just
915 /// around braces. At any place where the list of accessible names (of the given namespace)
916 /// changes or a new restrictions on the name accessibility are introduced, a new rib is put onto a
917 /// stack. This may be, for example, a `let` statement (because it introduces variables), a macro,
918 /// etc.
919 ///
920 /// Different [rib kinds](enum.RibKind) are transparent for different names.
921 ///
922 /// The resolution keeps a separate stack of ribs as it traverses the AST for each namespace. When
923 /// resolving, the name is looked up from inside out.
924 #[derive(Debug)]
925 struct Rib<'a> {
926     bindings: FxHashMap<Ident, Def>,
927     kind: RibKind<'a>,
928 }
929
930 impl<'a> Rib<'a> {
931     fn new(kind: RibKind<'a>) -> Rib<'a> {
932         Rib {
933             bindings: FxHashMap(),
934             kind,
935         }
936     }
937 }
938
939 /// An intermediate resolution result.
940 ///
941 /// This refers to the thing referred by a name. The difference between `Def` and `Item` is that
942 /// items are visible in their whole block, while defs only from the place they are defined
943 /// forward.
944 enum LexicalScopeBinding<'a> {
945     Item(&'a NameBinding<'a>),
946     Def(Def),
947 }
948
949 impl<'a> LexicalScopeBinding<'a> {
950     fn item(self) -> Option<&'a NameBinding<'a>> {
951         match self {
952             LexicalScopeBinding::Item(binding) => Some(binding),
953             _ => None,
954         }
955     }
956
957     fn def(self) -> Def {
958         match self {
959             LexicalScopeBinding::Item(binding) => binding.def(),
960             LexicalScopeBinding::Def(def) => def,
961         }
962     }
963 }
964
965 #[derive(Copy, Clone, Debug)]
966 pub enum ModuleOrUniformRoot<'a> {
967     /// Regular module.
968     Module(Module<'a>),
969
970     /// The `{{root}}` (`CrateRoot` aka "global") / `extern` initial segment
971     /// in which external crates resolve, and also `crate` (only in `{{root}}`,
972     /// but *not* `extern`), in the Rust 2018 edition.
973     UniformRoot(Name),
974 }
975
976 #[derive(Clone, Debug)]
977 enum PathResult<'a> {
978     Module(ModuleOrUniformRoot<'a>),
979     NonModule(PathResolution),
980     Indeterminate,
981     Failed(Span, String, bool /* is the error from the last segment? */),
982 }
983
984 enum ModuleKind {
985     /// An anonymous module, eg. just a block.
986     ///
987     /// ```
988     /// fn main() {
989     ///     fn f() {} // (1)
990     ///     { // This is an anonymous module
991     ///         f(); // This resolves to (2) as we are inside the block.
992     ///         fn f() {} // (2)
993     ///     }
994     ///     f(); // Resolves to (1)
995     /// }
996     /// ```
997     Block(NodeId),
998     /// Any module with a name.
999     ///
1000     /// This could be:
1001     ///
1002     /// * A normal module â€’ either `mod from_file;` or `mod from_block { }`.
1003     /// * A trait or an enum (it implicitly contains associated types, methods and variant
1004     ///   constructors).
1005     Def(Def, Name),
1006 }
1007
1008 /// One node in the tree of modules.
1009 pub struct ModuleData<'a> {
1010     parent: Option<Module<'a>>,
1011     kind: ModuleKind,
1012
1013     // The def id of the closest normal module (`mod`) ancestor (including this module).
1014     normal_ancestor_id: DefId,
1015
1016     resolutions: RefCell<FxHashMap<(Ident, Namespace), &'a RefCell<NameResolution<'a>>>>,
1017     legacy_macro_resolutions: RefCell<Vec<(Ident, MacroKind, ParentScope<'a>,
1018                                            Option<&'a NameBinding<'a>>)>>,
1019     macro_resolutions: RefCell<Vec<(Box<[Ident]>, Span)>>,
1020     builtin_attrs: RefCell<Vec<(Ident, ParentScope<'a>)>>,
1021
1022     // Macro invocations that can expand into items in this module.
1023     unresolved_invocations: RefCell<FxHashSet<Mark>>,
1024
1025     no_implicit_prelude: bool,
1026
1027     glob_importers: RefCell<Vec<&'a ImportDirective<'a>>>,
1028     globs: RefCell<Vec<&'a ImportDirective<'a>>>,
1029
1030     // Used to memoize the traits in this module for faster searches through all traits in scope.
1031     traits: RefCell<Option<Box<[(Ident, &'a NameBinding<'a>)]>>>,
1032
1033     // Whether this module is populated. If not populated, any attempt to
1034     // access the children must be preceded with a
1035     // `populate_module_if_necessary` call.
1036     populated: Cell<bool>,
1037
1038     /// Span of the module itself. Used for error reporting.
1039     span: Span,
1040
1041     expansion: Mark,
1042 }
1043
1044 type Module<'a> = &'a ModuleData<'a>;
1045
1046 impl<'a> ModuleData<'a> {
1047     fn new(parent: Option<Module<'a>>,
1048            kind: ModuleKind,
1049            normal_ancestor_id: DefId,
1050            expansion: Mark,
1051            span: Span) -> Self {
1052         ModuleData {
1053             parent,
1054             kind,
1055             normal_ancestor_id,
1056             resolutions: RefCell::new(FxHashMap()),
1057             legacy_macro_resolutions: RefCell::new(Vec::new()),
1058             macro_resolutions: RefCell::new(Vec::new()),
1059             builtin_attrs: RefCell::new(Vec::new()),
1060             unresolved_invocations: RefCell::new(FxHashSet()),
1061             no_implicit_prelude: false,
1062             glob_importers: RefCell::new(Vec::new()),
1063             globs: RefCell::new(Vec::new()),
1064             traits: RefCell::new(None),
1065             populated: Cell::new(normal_ancestor_id.is_local()),
1066             span,
1067             expansion,
1068         }
1069     }
1070
1071     fn for_each_child<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1072         for (&(ident, ns), name_resolution) in self.resolutions.borrow().iter() {
1073             name_resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1074         }
1075     }
1076
1077     fn for_each_child_stable<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1078         let resolutions = self.resolutions.borrow();
1079         let mut resolutions = resolutions.iter().collect::<Vec<_>>();
1080         resolutions.sort_by_cached_key(|&(&(ident, ns), _)| (ident.as_str(), ns));
1081         for &(&(ident, ns), &resolution) in resolutions.iter() {
1082             resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1083         }
1084     }
1085
1086     fn def(&self) -> Option<Def> {
1087         match self.kind {
1088             ModuleKind::Def(def, _) => Some(def),
1089             _ => None,
1090         }
1091     }
1092
1093     fn def_id(&self) -> Option<DefId> {
1094         self.def().as_ref().map(Def::def_id)
1095     }
1096
1097     // `self` resolves to the first module ancestor that `is_normal`.
1098     fn is_normal(&self) -> bool {
1099         match self.kind {
1100             ModuleKind::Def(Def::Mod(_), _) => true,
1101             _ => false,
1102         }
1103     }
1104
1105     fn is_trait(&self) -> bool {
1106         match self.kind {
1107             ModuleKind::Def(Def::Trait(_), _) => true,
1108             _ => false,
1109         }
1110     }
1111
1112     fn is_local(&self) -> bool {
1113         self.normal_ancestor_id.is_local()
1114     }
1115
1116     fn nearest_item_scope(&'a self) -> Module<'a> {
1117         if self.is_trait() { self.parent.unwrap() } else { self }
1118     }
1119
1120     fn is_ancestor_of(&self, mut other: &Self) -> bool {
1121         while !ptr::eq(self, other) {
1122             if let Some(parent) = other.parent {
1123                 other = parent;
1124             } else {
1125                 return false;
1126             }
1127         }
1128         true
1129     }
1130 }
1131
1132 impl<'a> fmt::Debug for ModuleData<'a> {
1133     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1134         write!(f, "{:?}", self.def())
1135     }
1136 }
1137
1138 /// Records a possibly-private value, type, or module definition.
1139 #[derive(Clone, Debug)]
1140 pub struct NameBinding<'a> {
1141     kind: NameBindingKind<'a>,
1142     expansion: Mark,
1143     span: Span,
1144     vis: ty::Visibility,
1145 }
1146
1147 pub trait ToNameBinding<'a> {
1148     fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a>;
1149 }
1150
1151 impl<'a> ToNameBinding<'a> for &'a NameBinding<'a> {
1152     fn to_name_binding(self, _: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> {
1153         self
1154     }
1155 }
1156
1157 #[derive(Clone, Debug)]
1158 enum NameBindingKind<'a> {
1159     Def(Def, /* is_macro_export */ bool),
1160     Module(Module<'a>),
1161     Import {
1162         binding: &'a NameBinding<'a>,
1163         directive: &'a ImportDirective<'a>,
1164         used: Cell<bool>,
1165     },
1166     Ambiguity {
1167         b1: &'a NameBinding<'a>,
1168         b2: &'a NameBinding<'a>,
1169     }
1170 }
1171
1172 struct PrivacyError<'a>(Span, Name, &'a NameBinding<'a>);
1173
1174 struct UseError<'a> {
1175     err: DiagnosticBuilder<'a>,
1176     /// Attach `use` statements for these candidates
1177     candidates: Vec<ImportSuggestion>,
1178     /// The node id of the module to place the use statements in
1179     node_id: NodeId,
1180     /// Whether the diagnostic should state that it's "better"
1181     better: bool,
1182 }
1183
1184 struct AmbiguityError<'a> {
1185     ident: Ident,
1186     b1: &'a NameBinding<'a>,
1187     b2: &'a NameBinding<'a>,
1188 }
1189
1190 impl<'a> NameBinding<'a> {
1191     fn module(&self) -> Option<Module<'a>> {
1192         match self.kind {
1193             NameBindingKind::Module(module) => Some(module),
1194             NameBindingKind::Import { binding, .. } => binding.module(),
1195             _ => None,
1196         }
1197     }
1198
1199     fn def(&self) -> Def {
1200         match self.kind {
1201             NameBindingKind::Def(def, _) => def,
1202             NameBindingKind::Module(module) => module.def().unwrap(),
1203             NameBindingKind::Import { binding, .. } => binding.def(),
1204             NameBindingKind::Ambiguity { .. } => Def::Err,
1205         }
1206     }
1207
1208     fn def_ignoring_ambiguity(&self) -> Def {
1209         match self.kind {
1210             NameBindingKind::Import { binding, .. } => binding.def_ignoring_ambiguity(),
1211             NameBindingKind::Ambiguity { b1, .. } => b1.def_ignoring_ambiguity(),
1212             _ => self.def(),
1213         }
1214     }
1215
1216     // We sometimes need to treat variants as `pub` for backwards compatibility
1217     fn pseudo_vis(&self) -> ty::Visibility {
1218         if self.is_variant() && self.def().def_id().is_local() {
1219             ty::Visibility::Public
1220         } else {
1221             self.vis
1222         }
1223     }
1224
1225     fn is_variant(&self) -> bool {
1226         match self.kind {
1227             NameBindingKind::Def(Def::Variant(..), _) |
1228             NameBindingKind::Def(Def::VariantCtor(..), _) => true,
1229             _ => false,
1230         }
1231     }
1232
1233     fn is_extern_crate(&self) -> bool {
1234         match self.kind {
1235             NameBindingKind::Import {
1236                 directive: &ImportDirective {
1237                     subclass: ImportDirectiveSubclass::ExternCrate { .. }, ..
1238                 }, ..
1239             } => true,
1240             _ => false,
1241         }
1242     }
1243
1244     fn is_import(&self) -> bool {
1245         match self.kind {
1246             NameBindingKind::Import { .. } => true,
1247             _ => false,
1248         }
1249     }
1250
1251     fn is_glob_import(&self) -> bool {
1252         match self.kind {
1253             NameBindingKind::Import { directive, .. } => directive.is_glob(),
1254             NameBindingKind::Ambiguity { b1, .. } => b1.is_glob_import(),
1255             _ => false,
1256         }
1257     }
1258
1259     fn is_importable(&self) -> bool {
1260         match self.def() {
1261             Def::AssociatedConst(..) | Def::Method(..) | Def::AssociatedTy(..) => false,
1262             _ => true,
1263         }
1264     }
1265
1266     fn is_macro_def(&self) -> bool {
1267         match self.kind {
1268             NameBindingKind::Def(Def::Macro(..), _) => true,
1269             _ => false,
1270         }
1271     }
1272
1273     fn macro_kind(&self) -> Option<MacroKind> {
1274         match self.def_ignoring_ambiguity() {
1275             Def::Macro(_, kind) => Some(kind),
1276             Def::NonMacroAttr(..) => Some(MacroKind::Attr),
1277             _ => None,
1278         }
1279     }
1280
1281     fn descr(&self) -> &'static str {
1282         if self.is_extern_crate() { "extern crate" } else { self.def().kind_name() }
1283     }
1284
1285     // Suppose that we resolved macro invocation with `invoc_parent_expansion` to binding `binding`
1286     // at some expansion round `max(invoc, binding)` when they both emerged from macros.
1287     // Then this function returns `true` if `self` may emerge from a macro *after* that
1288     // in some later round and screw up our previously found resolution.
1289     // See more detailed explanation in
1290     // https://github.com/rust-lang/rust/pull/53778#issuecomment-419224049
1291     fn may_appear_after(&self, invoc_parent_expansion: Mark, binding: &NameBinding) -> bool {
1292         // self > max(invoc, binding) => !(self <= invoc || self <= binding)
1293         // Expansions are partially ordered, so "may appear after" is an inversion of
1294         // "certainly appears before or simultaneously" and includes unordered cases.
1295         let self_parent_expansion = self.expansion;
1296         let other_parent_expansion = binding.expansion;
1297         let certainly_before_other_or_simultaneously =
1298             other_parent_expansion.is_descendant_of(self_parent_expansion);
1299         let certainly_before_invoc_or_simultaneously =
1300             invoc_parent_expansion.is_descendant_of(self_parent_expansion);
1301         !(certainly_before_other_or_simultaneously || certainly_before_invoc_or_simultaneously)
1302     }
1303 }
1304
1305 /// Interns the names of the primitive types.
1306 ///
1307 /// All other types are defined somewhere and possibly imported, but the primitive ones need
1308 /// special handling, since they have no place of origin.
1309 struct PrimitiveTypeTable {
1310     primitive_types: FxHashMap<Name, PrimTy>,
1311 }
1312
1313 impl PrimitiveTypeTable {
1314     fn new() -> PrimitiveTypeTable {
1315         let mut table = PrimitiveTypeTable { primitive_types: FxHashMap() };
1316
1317         table.intern("bool", Bool);
1318         table.intern("char", Char);
1319         table.intern("f32", Float(FloatTy::F32));
1320         table.intern("f64", Float(FloatTy::F64));
1321         table.intern("isize", Int(IntTy::Isize));
1322         table.intern("i8", Int(IntTy::I8));
1323         table.intern("i16", Int(IntTy::I16));
1324         table.intern("i32", Int(IntTy::I32));
1325         table.intern("i64", Int(IntTy::I64));
1326         table.intern("i128", Int(IntTy::I128));
1327         table.intern("str", Str);
1328         table.intern("usize", Uint(UintTy::Usize));
1329         table.intern("u8", Uint(UintTy::U8));
1330         table.intern("u16", Uint(UintTy::U16));
1331         table.intern("u32", Uint(UintTy::U32));
1332         table.intern("u64", Uint(UintTy::U64));
1333         table.intern("u128", Uint(UintTy::U128));
1334         table
1335     }
1336
1337     fn intern(&mut self, string: &str, primitive_type: PrimTy) {
1338         self.primitive_types.insert(Symbol::intern(string), primitive_type);
1339     }
1340 }
1341
1342 /// The main resolver class.
1343 ///
1344 /// This is the visitor that walks the whole crate.
1345 pub struct Resolver<'a, 'b: 'a> {
1346     session: &'a Session,
1347     cstore: &'a CStore,
1348
1349     pub definitions: Definitions,
1350
1351     graph_root: Module<'a>,
1352
1353     prelude: Option<Module<'a>>,
1354
1355     /// n.b. This is used only for better diagnostics, not name resolution itself.
1356     has_self: FxHashSet<DefId>,
1357
1358     /// Names of fields of an item `DefId` accessible with dot syntax.
1359     /// Used for hints during error reporting.
1360     field_names: FxHashMap<DefId, Vec<Name>>,
1361
1362     /// All imports known to succeed or fail.
1363     determined_imports: Vec<&'a ImportDirective<'a>>,
1364
1365     /// All non-determined imports.
1366     indeterminate_imports: Vec<&'a ImportDirective<'a>>,
1367
1368     /// The module that represents the current item scope.
1369     current_module: Module<'a>,
1370
1371     /// The current set of local scopes for types and values.
1372     /// FIXME #4948: Reuse ribs to avoid allocation.
1373     ribs: PerNS<Vec<Rib<'a>>>,
1374
1375     /// The current set of local scopes, for labels.
1376     label_ribs: Vec<Rib<'a>>,
1377
1378     /// The trait that the current context can refer to.
1379     current_trait_ref: Option<(Module<'a>, TraitRef)>,
1380
1381     /// The current self type if inside an impl (used for better errors).
1382     current_self_type: Option<Ty>,
1383
1384     /// The current self item if inside an ADT (used for better errors).
1385     current_self_item: Option<NodeId>,
1386
1387     /// The idents for the primitive types.
1388     primitive_type_table: PrimitiveTypeTable,
1389
1390     def_map: DefMap,
1391     import_map: ImportMap,
1392     pub freevars: FreevarMap,
1393     freevars_seen: NodeMap<NodeMap<usize>>,
1394     pub export_map: ExportMap,
1395     pub trait_map: TraitMap,
1396
1397     /// A map from nodes to anonymous modules.
1398     /// Anonymous modules are pseudo-modules that are implicitly created around items
1399     /// contained within blocks.
1400     ///
1401     /// For example, if we have this:
1402     ///
1403     ///  fn f() {
1404     ///      fn g() {
1405     ///          ...
1406     ///      }
1407     ///  }
1408     ///
1409     /// There will be an anonymous module created around `g` with the ID of the
1410     /// entry block for `f`.
1411     block_map: NodeMap<Module<'a>>,
1412     module_map: FxHashMap<DefId, Module<'a>>,
1413     extern_module_map: FxHashMap<(DefId, bool /* MacrosOnly? */), Module<'a>>,
1414     binding_parent_modules: FxHashMap<PtrKey<'a, NameBinding<'a>>, Module<'a>>,
1415
1416     pub make_glob_map: bool,
1417     /// Maps imports to the names of items actually imported (this actually maps
1418     /// all imports, but only glob imports are actually interesting).
1419     pub glob_map: GlobMap,
1420
1421     used_imports: FxHashSet<(NodeId, Namespace)>,
1422     pub maybe_unused_trait_imports: NodeSet,
1423     pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
1424
1425     /// A list of labels as of yet unused. Labels will be removed from this map when
1426     /// they are used (in a `break` or `continue` statement)
1427     pub unused_labels: FxHashMap<NodeId, Span>,
1428
1429     /// privacy errors are delayed until the end in order to deduplicate them
1430     privacy_errors: Vec<PrivacyError<'a>>,
1431     /// ambiguity errors are delayed for deduplication
1432     ambiguity_errors: Vec<AmbiguityError<'a>>,
1433     /// `use` injections are delayed for better placement and deduplication
1434     use_injections: Vec<UseError<'a>>,
1435     /// crate-local macro expanded `macro_export` referred to by a module-relative path
1436     macro_expanded_macro_export_errors: BTreeSet<(Span, Span)>,
1437
1438     arenas: &'a ResolverArenas<'a>,
1439     dummy_binding: &'a NameBinding<'a>,
1440
1441     crate_loader: &'a mut CrateLoader<'b>,
1442     macro_names: FxHashSet<Ident>,
1443     builtin_macros: FxHashMap<Name, &'a NameBinding<'a>>,
1444     macro_use_prelude: FxHashMap<Name, &'a NameBinding<'a>>,
1445     pub all_macros: FxHashMap<Name, Def>,
1446     macro_map: FxHashMap<DefId, Lrc<SyntaxExtension>>,
1447     macro_defs: FxHashMap<Mark, DefId>,
1448     local_macro_def_scopes: FxHashMap<NodeId, Module<'a>>,
1449     pub whitelisted_legacy_custom_derives: Vec<Name>,
1450     pub found_unresolved_macro: bool,
1451
1452     /// List of crate local macros that we need to warn about as being unused.
1453     /// Right now this only includes macro_rules! macros, and macros 2.0.
1454     unused_macros: FxHashSet<DefId>,
1455
1456     /// Maps the `Mark` of an expansion to its containing module or block.
1457     invocations: FxHashMap<Mark, &'a InvocationData<'a>>,
1458
1459     /// Avoid duplicated errors for "name already defined".
1460     name_already_seen: FxHashMap<Name, Span>,
1461
1462     potentially_unused_imports: Vec<&'a ImportDirective<'a>>,
1463
1464     /// This table maps struct IDs into struct constructor IDs,
1465     /// it's not used during normal resolution, only for better error reporting.
1466     struct_constructors: DefIdMap<(Def, ty::Visibility)>,
1467
1468     /// Only used for better errors on `fn(): fn()`
1469     current_type_ascription: Vec<Span>,
1470
1471     injected_crate: Option<Module<'a>>,
1472 }
1473
1474 /// Nothing really interesting here, it just provides memory for the rest of the crate.
1475 pub struct ResolverArenas<'a> {
1476     modules: arena::TypedArena<ModuleData<'a>>,
1477     local_modules: RefCell<Vec<Module<'a>>>,
1478     name_bindings: arena::TypedArena<NameBinding<'a>>,
1479     import_directives: arena::TypedArena<ImportDirective<'a>>,
1480     name_resolutions: arena::TypedArena<RefCell<NameResolution<'a>>>,
1481     invocation_data: arena::TypedArena<InvocationData<'a>>,
1482     legacy_bindings: arena::TypedArena<LegacyBinding<'a>>,
1483 }
1484
1485 impl<'a> ResolverArenas<'a> {
1486     fn alloc_module(&'a self, module: ModuleData<'a>) -> Module<'a> {
1487         let module = self.modules.alloc(module);
1488         if module.def_id().map(|def_id| def_id.is_local()).unwrap_or(true) {
1489             self.local_modules.borrow_mut().push(module);
1490         }
1491         module
1492     }
1493     fn local_modules(&'a self) -> ::std::cell::Ref<'a, Vec<Module<'a>>> {
1494         self.local_modules.borrow()
1495     }
1496     fn alloc_name_binding(&'a self, name_binding: NameBinding<'a>) -> &'a NameBinding<'a> {
1497         self.name_bindings.alloc(name_binding)
1498     }
1499     fn alloc_import_directive(&'a self, import_directive: ImportDirective<'a>)
1500                               -> &'a ImportDirective {
1501         self.import_directives.alloc(import_directive)
1502     }
1503     fn alloc_name_resolution(&'a self) -> &'a RefCell<NameResolution<'a>> {
1504         self.name_resolutions.alloc(Default::default())
1505     }
1506     fn alloc_invocation_data(&'a self, expansion_data: InvocationData<'a>)
1507                              -> &'a InvocationData<'a> {
1508         self.invocation_data.alloc(expansion_data)
1509     }
1510     fn alloc_legacy_binding(&'a self, binding: LegacyBinding<'a>) -> &'a LegacyBinding<'a> {
1511         self.legacy_bindings.alloc(binding)
1512     }
1513 }
1514
1515 impl<'a, 'b: 'a, 'cl: 'b> ty::DefIdTree for &'a Resolver<'b, 'cl> {
1516     fn parent(self, id: DefId) -> Option<DefId> {
1517         match id.krate {
1518             LOCAL_CRATE => self.definitions.def_key(id.index).parent,
1519             _ => self.cstore.def_key(id).parent,
1520         }.map(|index| DefId { index, ..id })
1521     }
1522 }
1523
1524 /// This interface is used through the AST→HIR step, to embed full paths into the HIR. After that
1525 /// the resolver is no longer needed as all the relevant information is inline.
1526 impl<'a, 'cl> hir::lowering::Resolver for Resolver<'a, 'cl> {
1527     fn resolve_hir_path(&mut self, path: &mut hir::Path, is_value: bool) {
1528         self.resolve_hir_path_cb(path, is_value,
1529                                  |resolver, span, error| resolve_error(resolver, span, error))
1530     }
1531
1532     fn resolve_str_path(
1533         &mut self,
1534         span: Span,
1535         crate_root: Option<&str>,
1536         components: &[&str],
1537         args: Option<P<hir::GenericArgs>>,
1538         is_value: bool
1539     ) -> hir::Path {
1540         let mut segments = iter::once(keywords::CrateRoot.ident())
1541             .chain(
1542                 crate_root.into_iter()
1543                     .chain(components.iter().cloned())
1544                     .map(Ident::from_str)
1545             ).map(hir::PathSegment::from_ident).collect::<Vec<_>>();
1546
1547         if let Some(args) = args {
1548             let ident = segments.last().unwrap().ident;
1549             *segments.last_mut().unwrap() = hir::PathSegment {
1550                 ident,
1551                 args: Some(args),
1552                 infer_types: true,
1553             };
1554         }
1555
1556         let mut path = hir::Path {
1557             span,
1558             def: Def::Err,
1559             segments: segments.into(),
1560         };
1561
1562         self.resolve_hir_path(&mut path, is_value);
1563         path
1564     }
1565
1566     fn get_resolution(&mut self, id: NodeId) -> Option<PathResolution> {
1567         self.def_map.get(&id).cloned()
1568     }
1569
1570     fn get_import(&mut self, id: NodeId) -> PerNS<Option<PathResolution>> {
1571         self.import_map.get(&id).cloned().unwrap_or_default()
1572     }
1573
1574     fn definitions(&mut self) -> &mut Definitions {
1575         &mut self.definitions
1576     }
1577 }
1578
1579 impl<'a, 'crateloader> Resolver<'a, 'crateloader> {
1580     /// Rustdoc uses this to resolve things in a recoverable way. ResolutionError<'a>
1581     /// isn't something that can be returned because it can't be made to live that long,
1582     /// and also it's a private type. Fortunately rustdoc doesn't need to know the error,
1583     /// just that an error occurred.
1584     pub fn resolve_str_path_error(&mut self, span: Span, path_str: &str, is_value: bool)
1585         -> Result<hir::Path, ()> {
1586         use std::iter;
1587         let mut errored = false;
1588
1589         let mut path = if path_str.starts_with("::") {
1590             hir::Path {
1591                 span,
1592                 def: Def::Err,
1593                 segments: iter::once(keywords::CrateRoot.ident()).chain({
1594                     path_str.split("::").skip(1).map(Ident::from_str)
1595                 }).map(hir::PathSegment::from_ident).collect(),
1596             }
1597         } else {
1598             hir::Path {
1599                 span,
1600                 def: Def::Err,
1601                 segments: path_str.split("::").map(Ident::from_str)
1602                                   .map(hir::PathSegment::from_ident).collect(),
1603             }
1604         };
1605         self.resolve_hir_path_cb(&mut path, is_value, |_, _, _| errored = true);
1606         if errored || path.def == Def::Err {
1607             Err(())
1608         } else {
1609             Ok(path)
1610         }
1611     }
1612
1613     /// resolve_hir_path, but takes a callback in case there was an error
1614     fn resolve_hir_path_cb<F>(&mut self, path: &mut hir::Path, is_value: bool, error_callback: F)
1615         where F: for<'c, 'b> FnOnce(&'c mut Resolver, Span, ResolutionError<'b>)
1616     {
1617         let namespace = if is_value { ValueNS } else { TypeNS };
1618         let hir::Path { ref segments, span, ref mut def } = *path;
1619         let path: Vec<_> = segments.iter().map(|seg| seg.ident).collect();
1620         // FIXME (Manishearth): Intra doc links won't get warned of epoch changes
1621         match self.resolve_path(None, &path, Some(namespace), true, span, CrateLint::No) {
1622             PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
1623                 *def = module.def().unwrap(),
1624             PathResult::NonModule(path_res) if path_res.unresolved_segments() == 0 =>
1625                 *def = path_res.base_def(),
1626             PathResult::NonModule(..) => match self.resolve_path(
1627                 None,
1628                 &path,
1629                 None,
1630                 true,
1631                 span,
1632                 CrateLint::No,
1633             ) {
1634                 PathResult::Failed(span, msg, _) => {
1635                     error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1636                 }
1637                 _ => {}
1638             },
1639             PathResult::Module(ModuleOrUniformRoot::UniformRoot(_)) |
1640             PathResult::Indeterminate => unreachable!(),
1641             PathResult::Failed(span, msg, _) => {
1642                 error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1643             }
1644         }
1645     }
1646 }
1647
1648 impl<'a, 'crateloader: 'a> Resolver<'a, 'crateloader> {
1649     pub fn new(session: &'a Session,
1650                cstore: &'a CStore,
1651                krate: &Crate,
1652                crate_name: &str,
1653                make_glob_map: MakeGlobMap,
1654                crate_loader: &'a mut CrateLoader<'crateloader>,
1655                arenas: &'a ResolverArenas<'a>)
1656                -> Resolver<'a, 'crateloader> {
1657         let root_def_id = DefId::local(CRATE_DEF_INDEX);
1658         let root_module_kind = ModuleKind::Def(Def::Mod(root_def_id), keywords::Invalid.name());
1659         let graph_root = arenas.alloc_module(ModuleData {
1660             no_implicit_prelude: attr::contains_name(&krate.attrs, "no_implicit_prelude"),
1661             ..ModuleData::new(None, root_module_kind, root_def_id, Mark::root(), krate.span)
1662         });
1663         let mut module_map = FxHashMap();
1664         module_map.insert(DefId::local(CRATE_DEF_INDEX), graph_root);
1665
1666         let mut definitions = Definitions::new();
1667         DefCollector::new(&mut definitions, Mark::root())
1668             .collect_root(crate_name, session.local_crate_disambiguator());
1669
1670         let mut invocations = FxHashMap();
1671         invocations.insert(Mark::root(),
1672                            arenas.alloc_invocation_data(InvocationData::root(graph_root)));
1673
1674         let mut macro_defs = FxHashMap();
1675         macro_defs.insert(Mark::root(), root_def_id);
1676
1677         Resolver {
1678             session,
1679
1680             cstore,
1681
1682             definitions,
1683
1684             // The outermost module has def ID 0; this is not reflected in the
1685             // AST.
1686             graph_root,
1687             prelude: None,
1688
1689             has_self: FxHashSet(),
1690             field_names: FxHashMap(),
1691
1692             determined_imports: Vec::new(),
1693             indeterminate_imports: Vec::new(),
1694
1695             current_module: graph_root,
1696             ribs: PerNS {
1697                 value_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1698                 type_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1699                 macro_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1700             },
1701             label_ribs: Vec::new(),
1702
1703             current_trait_ref: None,
1704             current_self_type: None,
1705             current_self_item: None,
1706
1707             primitive_type_table: PrimitiveTypeTable::new(),
1708
1709             def_map: NodeMap(),
1710             import_map: NodeMap(),
1711             freevars: NodeMap(),
1712             freevars_seen: NodeMap(),
1713             export_map: FxHashMap(),
1714             trait_map: NodeMap(),
1715             module_map,
1716             block_map: NodeMap(),
1717             extern_module_map: FxHashMap(),
1718             binding_parent_modules: FxHashMap(),
1719
1720             make_glob_map: make_glob_map == MakeGlobMap::Yes,
1721             glob_map: NodeMap(),
1722
1723             used_imports: FxHashSet(),
1724             maybe_unused_trait_imports: NodeSet(),
1725             maybe_unused_extern_crates: Vec::new(),
1726
1727             unused_labels: FxHashMap(),
1728
1729             privacy_errors: Vec::new(),
1730             ambiguity_errors: Vec::new(),
1731             use_injections: Vec::new(),
1732             macro_expanded_macro_export_errors: BTreeSet::new(),
1733
1734             arenas,
1735             dummy_binding: arenas.alloc_name_binding(NameBinding {
1736                 kind: NameBindingKind::Def(Def::Err, false),
1737                 expansion: Mark::root(),
1738                 span: DUMMY_SP,
1739                 vis: ty::Visibility::Public,
1740             }),
1741
1742             crate_loader,
1743             macro_names: FxHashSet(),
1744             builtin_macros: FxHashMap(),
1745             macro_use_prelude: FxHashMap(),
1746             all_macros: FxHashMap(),
1747             macro_map: FxHashMap(),
1748             invocations,
1749             macro_defs,
1750             local_macro_def_scopes: FxHashMap(),
1751             name_already_seen: FxHashMap(),
1752             whitelisted_legacy_custom_derives: Vec::new(),
1753             potentially_unused_imports: Vec::new(),
1754             struct_constructors: DefIdMap(),
1755             found_unresolved_macro: false,
1756             unused_macros: FxHashSet(),
1757             current_type_ascription: Vec::new(),
1758             injected_crate: None,
1759         }
1760     }
1761
1762     pub fn arenas() -> ResolverArenas<'a> {
1763         ResolverArenas {
1764             modules: arena::TypedArena::new(),
1765             local_modules: RefCell::new(Vec::new()),
1766             name_bindings: arena::TypedArena::new(),
1767             import_directives: arena::TypedArena::new(),
1768             name_resolutions: arena::TypedArena::new(),
1769             invocation_data: arena::TypedArena::new(),
1770             legacy_bindings: arena::TypedArena::new(),
1771         }
1772     }
1773
1774     /// Runs the function on each namespace.
1775     fn per_ns<F: FnMut(&mut Self, Namespace)>(&mut self, mut f: F) {
1776         f(self, TypeNS);
1777         f(self, ValueNS);
1778         f(self, MacroNS);
1779     }
1780
1781     fn macro_def(&self, mut ctxt: SyntaxContext) -> DefId {
1782         loop {
1783             match self.macro_defs.get(&ctxt.outer()) {
1784                 Some(&def_id) => return def_id,
1785                 None => ctxt.remove_mark(),
1786             };
1787         }
1788     }
1789
1790     /// Entry point to crate resolution.
1791     pub fn resolve_crate(&mut self, krate: &Crate) {
1792         ImportResolver { resolver: self }.finalize_imports();
1793         self.current_module = self.graph_root;
1794         self.finalize_current_module_macro_resolutions();
1795
1796         visit::walk_crate(self, krate);
1797
1798         check_unused::check_crate(self, krate);
1799         self.report_errors(krate);
1800         self.crate_loader.postprocess(krate);
1801     }
1802
1803     fn new_module(
1804         &self,
1805         parent: Module<'a>,
1806         kind: ModuleKind,
1807         normal_ancestor_id: DefId,
1808         expansion: Mark,
1809         span: Span,
1810     ) -> Module<'a> {
1811         let module = ModuleData::new(Some(parent), kind, normal_ancestor_id, expansion, span);
1812         self.arenas.alloc_module(module)
1813     }
1814
1815     fn record_use(&mut self, ident: Ident, ns: Namespace, binding: &'a NameBinding<'a>)
1816                   -> bool /* true if an error was reported */ {
1817         match binding.kind {
1818             NameBindingKind::Import { directive, binding, ref used }
1819                     if !used.get() => {
1820                 used.set(true);
1821                 directive.used.set(true);
1822                 self.used_imports.insert((directive.id, ns));
1823                 self.add_to_glob_map(directive.id, ident);
1824                 self.record_use(ident, ns, binding)
1825             }
1826             NameBindingKind::Import { .. } => false,
1827             NameBindingKind::Ambiguity { b1, b2 } => {
1828                 self.ambiguity_errors.push(AmbiguityError { ident, b1, b2 });
1829                 true
1830             }
1831             _ => false
1832         }
1833     }
1834
1835     fn add_to_glob_map(&mut self, id: NodeId, ident: Ident) {
1836         if self.make_glob_map {
1837             self.glob_map.entry(id).or_default().insert(ident.name);
1838         }
1839     }
1840
1841     /// This resolves the identifier `ident` in the namespace `ns` in the current lexical scope.
1842     /// More specifically, we proceed up the hierarchy of scopes and return the binding for
1843     /// `ident` in the first scope that defines it (or None if no scopes define it).
1844     ///
1845     /// A block's items are above its local variables in the scope hierarchy, regardless of where
1846     /// the items are defined in the block. For example,
1847     /// ```rust
1848     /// fn f() {
1849     ///    g(); // Since there are no local variables in scope yet, this resolves to the item.
1850     ///    let g = || {};
1851     ///    fn g() {}
1852     ///    g(); // This resolves to the local variable `g` since it shadows the item.
1853     /// }
1854     /// ```
1855     ///
1856     /// Invariant: This must only be called during main resolution, not during
1857     /// import resolution.
1858     fn resolve_ident_in_lexical_scope(&mut self,
1859                                       mut ident: Ident,
1860                                       ns: Namespace,
1861                                       record_used_id: Option<NodeId>,
1862                                       path_span: Span)
1863                                       -> Option<LexicalScopeBinding<'a>> {
1864         let record_used = record_used_id.is_some();
1865         assert!(ns == TypeNS  || ns == ValueNS);
1866         if ns == TypeNS {
1867             ident.span = if ident.name == keywords::SelfType.name() {
1868                 // FIXME(jseyfried) improve `Self` hygiene
1869                 ident.span.with_ctxt(SyntaxContext::empty())
1870             } else {
1871                 ident.span.modern()
1872             }
1873         } else {
1874             ident = ident.modern_and_legacy();
1875         }
1876
1877         // Walk backwards up the ribs in scope.
1878         let mut module = self.graph_root;
1879         for i in (0 .. self.ribs[ns].len()).rev() {
1880             if let Some(def) = self.ribs[ns][i].bindings.get(&ident).cloned() {
1881                 // The ident resolves to a type parameter or local variable.
1882                 return Some(LexicalScopeBinding::Def(
1883                     self.adjust_local_def(ns, i, def, record_used, path_span)
1884                 ));
1885             }
1886
1887             module = match self.ribs[ns][i].kind {
1888                 ModuleRibKind(module) => module,
1889                 MacroDefinition(def) if def == self.macro_def(ident.span.ctxt()) => {
1890                     // If an invocation of this macro created `ident`, give up on `ident`
1891                     // and switch to `ident`'s source from the macro definition.
1892                     ident.span.remove_mark();
1893                     continue
1894                 }
1895                 _ => continue,
1896             };
1897
1898             let item = self.resolve_ident_in_module_unadjusted(
1899                 ModuleOrUniformRoot::Module(module),
1900                 ident,
1901                 ns,
1902                 false,
1903                 record_used,
1904                 path_span,
1905             );
1906             if let Ok(binding) = item {
1907                 // The ident resolves to an item.
1908                 return Some(LexicalScopeBinding::Item(binding));
1909             }
1910
1911             match module.kind {
1912                 ModuleKind::Block(..) => {}, // We can see through blocks
1913                 _ => break,
1914             }
1915         }
1916
1917         ident.span = ident.span.modern();
1918         let mut poisoned = None;
1919         loop {
1920             let opt_module = if let Some(node_id) = record_used_id {
1921                 self.hygienic_lexical_parent_with_compatibility_fallback(module, &mut ident.span,
1922                                                                          node_id, &mut poisoned)
1923             } else {
1924                 self.hygienic_lexical_parent(module, &mut ident.span)
1925             };
1926             module = unwrap_or!(opt_module, break);
1927             let orig_current_module = self.current_module;
1928             self.current_module = module; // Lexical resolutions can never be a privacy error.
1929             let result = self.resolve_ident_in_module_unadjusted(
1930                 ModuleOrUniformRoot::Module(module),
1931                 ident,
1932                 ns,
1933                 false,
1934                 record_used,
1935                 path_span,
1936             );
1937             self.current_module = orig_current_module;
1938
1939             match result {
1940                 Ok(binding) => {
1941                     if let Some(node_id) = poisoned {
1942                         self.session.buffer_lint_with_diagnostic(
1943                             lint::builtin::PROC_MACRO_DERIVE_RESOLUTION_FALLBACK,
1944                             node_id, ident.span,
1945                             &format!("cannot find {} `{}` in this scope", ns.descr(), ident),
1946                             lint::builtin::BuiltinLintDiagnostics::
1947                                 ProcMacroDeriveResolutionFallback(ident.span),
1948                         );
1949                     }
1950                     return Some(LexicalScopeBinding::Item(binding))
1951                 }
1952                 Err(Determined) => continue,
1953                 Err(Undetermined) =>
1954                     span_bug!(ident.span, "undetermined resolution during main resolution pass"),
1955             }
1956         }
1957
1958         if !module.no_implicit_prelude {
1959             // `record_used` means that we don't try to load crates during speculative resolution
1960             if record_used && ns == TypeNS && self.session.extern_prelude.contains(&ident.name) {
1961                 let crate_id = self.crate_loader.process_path_extern(ident.name, ident.span);
1962                 let crate_root = self.get_module(DefId { krate: crate_id, index: CRATE_DEF_INDEX });
1963                 self.populate_module_if_necessary(&crate_root);
1964
1965                 let binding = (crate_root, ty::Visibility::Public,
1966                                ident.span, Mark::root()).to_name_binding(self.arenas);
1967                 return Some(LexicalScopeBinding::Item(binding));
1968             }
1969             if ns == TypeNS && is_known_tool(ident.name) {
1970                 let binding = (Def::ToolMod, ty::Visibility::Public,
1971                                ident.span, Mark::root()).to_name_binding(self.arenas);
1972                 return Some(LexicalScopeBinding::Item(binding));
1973             }
1974             if let Some(prelude) = self.prelude {
1975                 if let Ok(binding) = self.resolve_ident_in_module_unadjusted(
1976                     ModuleOrUniformRoot::Module(prelude),
1977                     ident,
1978                     ns,
1979                     false,
1980                     false,
1981                     path_span,
1982                 ) {
1983                     return Some(LexicalScopeBinding::Item(binding));
1984                 }
1985             }
1986         }
1987
1988         None
1989     }
1990
1991     fn hygienic_lexical_parent(&mut self, module: Module<'a>, span: &mut Span)
1992                                -> Option<Module<'a>> {
1993         if !module.expansion.is_descendant_of(span.ctxt().outer()) {
1994             return Some(self.macro_def_scope(span.remove_mark()));
1995         }
1996
1997         if let ModuleKind::Block(..) = module.kind {
1998             return Some(module.parent.unwrap());
1999         }
2000
2001         None
2002     }
2003
2004     fn hygienic_lexical_parent_with_compatibility_fallback(&mut self, module: Module<'a>,
2005                                                            span: &mut Span, node_id: NodeId,
2006                                                            poisoned: &mut Option<NodeId>)
2007                                                            -> Option<Module<'a>> {
2008         if let module @ Some(..) = self.hygienic_lexical_parent(module, span) {
2009             return module;
2010         }
2011
2012         // We need to support the next case under a deprecation warning
2013         // ```
2014         // struct MyStruct;
2015         // ---- begin: this comes from a proc macro derive
2016         // mod implementation_details {
2017         //     // Note that `MyStruct` is not in scope here.
2018         //     impl SomeTrait for MyStruct { ... }
2019         // }
2020         // ---- end
2021         // ```
2022         // So we have to fall back to the module's parent during lexical resolution in this case.
2023         if let Some(parent) = module.parent {
2024             // Inner module is inside the macro, parent module is outside of the macro.
2025             if module.expansion != parent.expansion &&
2026             module.expansion.is_descendant_of(parent.expansion) {
2027                 // The macro is a proc macro derive
2028                 if module.expansion.looks_like_proc_macro_derive() {
2029                     if parent.expansion.is_descendant_of(span.ctxt().outer()) {
2030                         *poisoned = Some(node_id);
2031                         return module.parent;
2032                     }
2033                 }
2034             }
2035         }
2036
2037         None
2038     }
2039
2040     fn resolve_ident_in_module(&mut self,
2041                                module: ModuleOrUniformRoot<'a>,
2042                                mut ident: Ident,
2043                                ns: Namespace,
2044                                record_used: bool,
2045                                span: Span)
2046                                -> Result<&'a NameBinding<'a>, Determinacy> {
2047         ident.span = ident.span.modern();
2048         let orig_current_module = self.current_module;
2049         if let ModuleOrUniformRoot::Module(module) = module {
2050             if let Some(def) = ident.span.adjust(module.expansion) {
2051                 self.current_module = self.macro_def_scope(def);
2052             }
2053         }
2054         let result = self.resolve_ident_in_module_unadjusted(
2055             module, ident, ns, false, record_used, span,
2056         );
2057         self.current_module = orig_current_module;
2058         result
2059     }
2060
2061     fn resolve_crate_root(&mut self, ident: Ident) -> Module<'a> {
2062         let mut ctxt = ident.span.ctxt();
2063         let mark = if ident.name == keywords::DollarCrate.name() {
2064             // When resolving `$crate` from a `macro_rules!` invoked in a `macro`,
2065             // we don't want to pretend that the `macro_rules!` definition is in the `macro`
2066             // as described in `SyntaxContext::apply_mark`, so we ignore prepended modern marks.
2067             // FIXME: This is only a guess and it doesn't work correctly for `macro_rules!`
2068             // definitions actually produced by `macro` and `macro` definitions produced by
2069             // `macro_rules!`, but at least such configurations are not stable yet.
2070             ctxt = ctxt.modern_and_legacy();
2071             let mut iter = ctxt.marks().into_iter().rev().peekable();
2072             let mut result = None;
2073             // Find the last modern mark from the end if it exists.
2074             while let Some(&(mark, transparency)) = iter.peek() {
2075                 if transparency == Transparency::Opaque {
2076                     result = Some(mark);
2077                     iter.next();
2078                 } else {
2079                     break;
2080                 }
2081             }
2082             // Then find the last legacy mark from the end if it exists.
2083             for (mark, transparency) in iter {
2084                 if transparency == Transparency::SemiTransparent {
2085                     result = Some(mark);
2086                 } else {
2087                     break;
2088                 }
2089             }
2090             result
2091         } else {
2092             ctxt = ctxt.modern();
2093             ctxt.adjust(Mark::root())
2094         };
2095         let module = match mark {
2096             Some(def) => self.macro_def_scope(def),
2097             None => return self.graph_root,
2098         };
2099         self.get_module(DefId { index: CRATE_DEF_INDEX, ..module.normal_ancestor_id })
2100     }
2101
2102     fn resolve_self(&mut self, ctxt: &mut SyntaxContext, module: Module<'a>) -> Module<'a> {
2103         let mut module = self.get_module(module.normal_ancestor_id);
2104         while module.span.ctxt().modern() != *ctxt {
2105             let parent = module.parent.unwrap_or_else(|| self.macro_def_scope(ctxt.remove_mark()));
2106             module = self.get_module(parent.normal_ancestor_id);
2107         }
2108         module
2109     }
2110
2111     // AST resolution
2112     //
2113     // We maintain a list of value ribs and type ribs.
2114     //
2115     // Simultaneously, we keep track of the current position in the module
2116     // graph in the `current_module` pointer. When we go to resolve a name in
2117     // the value or type namespaces, we first look through all the ribs and
2118     // then query the module graph. When we resolve a name in the module
2119     // namespace, we can skip all the ribs (since nested modules are not
2120     // allowed within blocks in Rust) and jump straight to the current module
2121     // graph node.
2122     //
2123     // Named implementations are handled separately. When we find a method
2124     // call, we consult the module node to find all of the implementations in
2125     // scope. This information is lazily cached in the module node. We then
2126     // generate a fake "implementation scope" containing all the
2127     // implementations thus found, for compatibility with old resolve pass.
2128
2129     pub fn with_scope<F, T>(&mut self, id: NodeId, f: F) -> T
2130         where F: FnOnce(&mut Resolver) -> T
2131     {
2132         let id = self.definitions.local_def_id(id);
2133         let module = self.module_map.get(&id).cloned(); // clones a reference
2134         if let Some(module) = module {
2135             // Move down in the graph.
2136             let orig_module = replace(&mut self.current_module, module);
2137             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(module)));
2138             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(module)));
2139
2140             self.finalize_current_module_macro_resolutions();
2141             let ret = f(self);
2142
2143             self.current_module = orig_module;
2144             self.ribs[ValueNS].pop();
2145             self.ribs[TypeNS].pop();
2146             ret
2147         } else {
2148             f(self)
2149         }
2150     }
2151
2152     /// Searches the current set of local scopes for labels. Returns the first non-None label that
2153     /// is returned by the given predicate function
2154     ///
2155     /// Stops after meeting a closure.
2156     fn search_label<P, R>(&self, mut ident: Ident, pred: P) -> Option<R>
2157         where P: Fn(&Rib, Ident) -> Option<R>
2158     {
2159         for rib in self.label_ribs.iter().rev() {
2160             match rib.kind {
2161                 NormalRibKind => {}
2162                 // If an invocation of this macro created `ident`, give up on `ident`
2163                 // and switch to `ident`'s source from the macro definition.
2164                 MacroDefinition(def) => {
2165                     if def == self.macro_def(ident.span.ctxt()) {
2166                         ident.span.remove_mark();
2167                     }
2168                 }
2169                 _ => {
2170                     // Do not resolve labels across function boundary
2171                     return None;
2172                 }
2173             }
2174             let r = pred(rib, ident);
2175             if r.is_some() {
2176                 return r;
2177             }
2178         }
2179         None
2180     }
2181
2182     fn resolve_adt(&mut self, item: &Item, generics: &Generics) {
2183         self.with_current_self_item(item, |this| {
2184             this.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2185                 let item_def_id = this.definitions.local_def_id(item.id);
2186                 if this.session.features_untracked().self_in_typedefs {
2187                     this.with_self_rib(Def::SelfTy(None, Some(item_def_id)), |this| {
2188                         visit::walk_item(this, item);
2189                     });
2190                 } else {
2191                     visit::walk_item(this, item);
2192                 }
2193             });
2194         });
2195     }
2196
2197     fn resolve_item(&mut self, item: &Item) {
2198         let name = item.ident.name;
2199         debug!("(resolving item) resolving {}", name);
2200
2201         match item.node {
2202             ItemKind::Ty(_, ref generics) |
2203             ItemKind::Fn(_, _, ref generics, _) |
2204             ItemKind::Existential(_, ref generics) => {
2205                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind),
2206                                              |this| visit::walk_item(this, item));
2207             }
2208
2209             ItemKind::Enum(_, ref generics) |
2210             ItemKind::Struct(_, ref generics) |
2211             ItemKind::Union(_, ref generics) => {
2212                 self.resolve_adt(item, generics);
2213             }
2214
2215             ItemKind::Impl(.., ref generics, ref opt_trait_ref, ref self_type, ref impl_items) =>
2216                 self.resolve_implementation(generics,
2217                                             opt_trait_ref,
2218                                             &self_type,
2219                                             item.id,
2220                                             impl_items),
2221
2222             ItemKind::Trait(.., ref generics, ref bounds, ref trait_items) => {
2223                 // Create a new rib for the trait-wide type parameters.
2224                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2225                     let local_def_id = this.definitions.local_def_id(item.id);
2226                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2227                         this.visit_generics(generics);
2228                         walk_list!(this, visit_param_bound, bounds);
2229
2230                         for trait_item in trait_items {
2231                             let type_parameters = HasTypeParameters(&trait_item.generics,
2232                                                                     TraitOrImplItemRibKind);
2233                             this.with_type_parameter_rib(type_parameters, |this| {
2234                                 match trait_item.node {
2235                                     TraitItemKind::Const(ref ty, ref default) => {
2236                                         this.visit_ty(ty);
2237
2238                                         // Only impose the restrictions of
2239                                         // ConstRibKind for an actual constant
2240                                         // expression in a provided default.
2241                                         if let Some(ref expr) = *default{
2242                                             this.with_constant_rib(|this| {
2243                                                 this.visit_expr(expr);
2244                                             });
2245                                         }
2246                                     }
2247                                     TraitItemKind::Method(_, _) => {
2248                                         visit::walk_trait_item(this, trait_item)
2249                                     }
2250                                     TraitItemKind::Type(..) => {
2251                                         visit::walk_trait_item(this, trait_item)
2252                                     }
2253                                     TraitItemKind::Macro(_) => {
2254                                         panic!("unexpanded macro in resolve!")
2255                                     }
2256                                 };
2257                             });
2258                         }
2259                     });
2260                 });
2261             }
2262
2263             ItemKind::TraitAlias(ref generics, ref bounds) => {
2264                 // Create a new rib for the trait-wide type parameters.
2265                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2266                     let local_def_id = this.definitions.local_def_id(item.id);
2267                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2268                         this.visit_generics(generics);
2269                         walk_list!(this, visit_param_bound, bounds);
2270                     });
2271                 });
2272             }
2273
2274             ItemKind::Mod(_) | ItemKind::ForeignMod(_) => {
2275                 self.with_scope(item.id, |this| {
2276                     visit::walk_item(this, item);
2277                 });
2278             }
2279
2280             ItemKind::Static(ref ty, _, ref expr) |
2281             ItemKind::Const(ref ty, ref expr) => {
2282                 self.with_item_rib(|this| {
2283                     this.visit_ty(ty);
2284                     this.with_constant_rib(|this| {
2285                         this.visit_expr(expr);
2286                     });
2287                 });
2288             }
2289
2290             ItemKind::Use(ref use_tree) => {
2291                 // Imports are resolved as global by default, add starting root segment.
2292                 let path = Path {
2293                     segments: use_tree.prefix.make_root().into_iter().collect(),
2294                     span: use_tree.span,
2295                 };
2296                 self.resolve_use_tree(item.id, use_tree.span, item.id, use_tree, &path);
2297             }
2298
2299             ItemKind::ExternCrate(_) | ItemKind::MacroDef(..) | ItemKind::GlobalAsm(_) => {
2300                 // do nothing, these are just around to be encoded
2301             }
2302
2303             ItemKind::Mac(_) => panic!("unexpanded macro in resolve!"),
2304         }
2305     }
2306
2307     /// For the most part, use trees are desugared into `ImportDirective` instances
2308     /// when building the reduced graph (see `build_reduced_graph_for_use_tree`). But
2309     /// there is one special case we handle here: an empty nested import like
2310     /// `a::{b::{}}`, which desugares into...no import directives.
2311     fn resolve_use_tree(
2312         &mut self,
2313         root_id: NodeId,
2314         root_span: Span,
2315         id: NodeId,
2316         use_tree: &ast::UseTree,
2317         prefix: &Path,
2318     ) {
2319         match use_tree.kind {
2320             ast::UseTreeKind::Nested(ref items) => {
2321                 let path = Path {
2322                     segments: prefix.segments
2323                         .iter()
2324                         .chain(use_tree.prefix.segments.iter())
2325                         .cloned()
2326                         .collect(),
2327                     span: prefix.span.to(use_tree.prefix.span),
2328                 };
2329
2330                 if items.len() == 0 {
2331                     // Resolve prefix of an import with empty braces (issue #28388).
2332                     self.smart_resolve_path_with_crate_lint(
2333                         id,
2334                         None,
2335                         &path,
2336                         PathSource::ImportPrefix,
2337                         CrateLint::UsePath { root_id, root_span },
2338                     );
2339                 } else {
2340                     for &(ref tree, nested_id) in items {
2341                         self.resolve_use_tree(root_id, root_span, nested_id, tree, &path);
2342                     }
2343                 }
2344             }
2345             ast::UseTreeKind::Simple(..) => {},
2346             ast::UseTreeKind::Glob => {},
2347         }
2348     }
2349
2350     fn with_type_parameter_rib<'b, F>(&'b mut self, type_parameters: TypeParameters<'a, 'b>, f: F)
2351         where F: FnOnce(&mut Resolver)
2352     {
2353         match type_parameters {
2354             HasTypeParameters(generics, rib_kind) => {
2355                 let mut function_type_rib = Rib::new(rib_kind);
2356                 let mut seen_bindings = FxHashMap();
2357                 for param in &generics.params {
2358                     match param.kind {
2359                         GenericParamKind::Lifetime { .. } => {}
2360                         GenericParamKind::Type { .. } => {
2361                             let ident = param.ident.modern();
2362                             debug!("with_type_parameter_rib: {}", param.id);
2363
2364                             if seen_bindings.contains_key(&ident) {
2365                                 let span = seen_bindings.get(&ident).unwrap();
2366                                 let err = ResolutionError::NameAlreadyUsedInTypeParameterList(
2367                                     ident.name,
2368                                     span,
2369                                 );
2370                                 resolve_error(self, param.ident.span, err);
2371                             }
2372                             seen_bindings.entry(ident).or_insert(param.ident.span);
2373
2374                         // Plain insert (no renaming).
2375                         let def = Def::TyParam(self.definitions.local_def_id(param.id));
2376                             function_type_rib.bindings.insert(ident, def);
2377                             self.record_def(param.id, PathResolution::new(def));
2378                         }
2379                     }
2380                 }
2381                 self.ribs[TypeNS].push(function_type_rib);
2382             }
2383
2384             NoTypeParameters => {
2385                 // Nothing to do.
2386             }
2387         }
2388
2389         f(self);
2390
2391         if let HasTypeParameters(..) = type_parameters {
2392             self.ribs[TypeNS].pop();
2393         }
2394     }
2395
2396     fn with_label_rib<F>(&mut self, f: F)
2397         where F: FnOnce(&mut Resolver)
2398     {
2399         self.label_ribs.push(Rib::new(NormalRibKind));
2400         f(self);
2401         self.label_ribs.pop();
2402     }
2403
2404     fn with_item_rib<F>(&mut self, f: F)
2405         where F: FnOnce(&mut Resolver)
2406     {
2407         self.ribs[ValueNS].push(Rib::new(ItemRibKind));
2408         self.ribs[TypeNS].push(Rib::new(ItemRibKind));
2409         f(self);
2410         self.ribs[TypeNS].pop();
2411         self.ribs[ValueNS].pop();
2412     }
2413
2414     fn with_constant_rib<F>(&mut self, f: F)
2415         where F: FnOnce(&mut Resolver)
2416     {
2417         self.ribs[ValueNS].push(Rib::new(ConstantItemRibKind));
2418         self.label_ribs.push(Rib::new(ConstantItemRibKind));
2419         f(self);
2420         self.label_ribs.pop();
2421         self.ribs[ValueNS].pop();
2422     }
2423
2424     fn with_current_self_type<T, F>(&mut self, self_type: &Ty, f: F) -> T
2425         where F: FnOnce(&mut Resolver) -> T
2426     {
2427         // Handle nested impls (inside fn bodies)
2428         let previous_value = replace(&mut self.current_self_type, Some(self_type.clone()));
2429         let result = f(self);
2430         self.current_self_type = previous_value;
2431         result
2432     }
2433
2434     fn with_current_self_item<T, F>(&mut self, self_item: &Item, f: F) -> T
2435         where F: FnOnce(&mut Resolver) -> T
2436     {
2437         let previous_value = replace(&mut self.current_self_item, Some(self_item.id));
2438         let result = f(self);
2439         self.current_self_item = previous_value;
2440         result
2441     }
2442
2443     /// This is called to resolve a trait reference from an `impl` (i.e. `impl Trait for Foo`)
2444     fn with_optional_trait_ref<T, F>(&mut self, opt_trait_ref: Option<&TraitRef>, f: F) -> T
2445         where F: FnOnce(&mut Resolver, Option<DefId>) -> T
2446     {
2447         let mut new_val = None;
2448         let mut new_id = None;
2449         if let Some(trait_ref) = opt_trait_ref {
2450             let path: Vec<_> = trait_ref.path.segments.iter()
2451                 .map(|seg| seg.ident)
2452                 .collect();
2453             let def = self.smart_resolve_path_fragment(
2454                 trait_ref.ref_id,
2455                 None,
2456                 &path,
2457                 trait_ref.path.span,
2458                 PathSource::Trait(AliasPossibility::No),
2459                 CrateLint::SimplePath(trait_ref.ref_id),
2460             ).base_def();
2461             if def != Def::Err {
2462                 new_id = Some(def.def_id());
2463                 let span = trait_ref.path.span;
2464                 if let PathResult::Module(ModuleOrUniformRoot::Module(module)) =
2465                     self.resolve_path(
2466                         None,
2467                         &path,
2468                         None,
2469                         false,
2470                         span,
2471                         CrateLint::SimplePath(trait_ref.ref_id),
2472                     )
2473                 {
2474                     new_val = Some((module, trait_ref.clone()));
2475                 }
2476             }
2477         }
2478         let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
2479         let result = f(self, new_id);
2480         self.current_trait_ref = original_trait_ref;
2481         result
2482     }
2483
2484     fn with_self_rib<F>(&mut self, self_def: Def, f: F)
2485         where F: FnOnce(&mut Resolver)
2486     {
2487         let mut self_type_rib = Rib::new(NormalRibKind);
2488
2489         // plain insert (no renaming, types are not currently hygienic....)
2490         self_type_rib.bindings.insert(keywords::SelfType.ident(), self_def);
2491         self.ribs[TypeNS].push(self_type_rib);
2492         f(self);
2493         self.ribs[TypeNS].pop();
2494     }
2495
2496     fn with_self_struct_ctor_rib<F>(&mut self, impl_id: DefId, f: F)
2497         where F: FnOnce(&mut Resolver)
2498     {
2499         let self_def = Def::SelfCtor(impl_id);
2500         let mut self_type_rib = Rib::new(NormalRibKind);
2501         self_type_rib.bindings.insert(keywords::SelfType.ident(), self_def);
2502         self.ribs[ValueNS].push(self_type_rib);
2503         f(self);
2504         self.ribs[ValueNS].pop();
2505     }
2506
2507     fn resolve_implementation(&mut self,
2508                               generics: &Generics,
2509                               opt_trait_reference: &Option<TraitRef>,
2510                               self_type: &Ty,
2511                               item_id: NodeId,
2512                               impl_items: &[ImplItem]) {
2513         // If applicable, create a rib for the type parameters.
2514         self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2515             // Dummy self type for better errors if `Self` is used in the trait path.
2516             this.with_self_rib(Def::SelfTy(None, None), |this| {
2517                 // Resolve the trait reference, if necessary.
2518                 this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| {
2519                     let item_def_id = this.definitions.local_def_id(item_id);
2520                     this.with_self_rib(Def::SelfTy(trait_id, Some(item_def_id)), |this| {
2521                         if let Some(trait_ref) = opt_trait_reference.as_ref() {
2522                             // Resolve type arguments in the trait path.
2523                             visit::walk_trait_ref(this, trait_ref);
2524                         }
2525                         // Resolve the self type.
2526                         this.visit_ty(self_type);
2527                         // Resolve the type parameters.
2528                         this.visit_generics(generics);
2529                         // Resolve the items within the impl.
2530                         this.with_current_self_type(self_type, |this| {
2531                             this.with_self_struct_ctor_rib(item_def_id, |this| {
2532                                 for impl_item in impl_items {
2533                                     this.resolve_visibility(&impl_item.vis);
2534
2535                                     // We also need a new scope for the impl item type parameters.
2536                                     let type_parameters = HasTypeParameters(&impl_item.generics,
2537                                                                             TraitOrImplItemRibKind);
2538                                     this.with_type_parameter_rib(type_parameters, |this| {
2539                                         use self::ResolutionError::*;
2540                                         match impl_item.node {
2541                                             ImplItemKind::Const(..) => {
2542                                                 // If this is a trait impl, ensure the const
2543                                                 // exists in trait
2544                                                 this.check_trait_item(impl_item.ident,
2545                                                                       ValueNS,
2546                                                                       impl_item.span,
2547                                                     |n, s| ConstNotMemberOfTrait(n, s));
2548                                                 this.with_constant_rib(|this|
2549                                                     visit::walk_impl_item(this, impl_item)
2550                                                 );
2551                                             }
2552                                             ImplItemKind::Method(..) => {
2553                                                 // If this is a trait impl, ensure the method
2554                                                 // exists in trait
2555                                                 this.check_trait_item(impl_item.ident,
2556                                                                       ValueNS,
2557                                                                       impl_item.span,
2558                                                     |n, s| MethodNotMemberOfTrait(n, s));
2559
2560                                                 visit::walk_impl_item(this, impl_item);
2561                                             }
2562                                             ImplItemKind::Type(ref ty) => {
2563                                                 // If this is a trait impl, ensure the type
2564                                                 // exists in trait
2565                                                 this.check_trait_item(impl_item.ident,
2566                                                                       TypeNS,
2567                                                                       impl_item.span,
2568                                                     |n, s| TypeNotMemberOfTrait(n, s));
2569
2570                                                 this.visit_ty(ty);
2571                                             }
2572                                             ImplItemKind::Existential(ref bounds) => {
2573                                                 // If this is a trait impl, ensure the type
2574                                                 // exists in trait
2575                                                 this.check_trait_item(impl_item.ident,
2576                                                                       TypeNS,
2577                                                                       impl_item.span,
2578                                                     |n, s| TypeNotMemberOfTrait(n, s));
2579
2580                                                 for bound in bounds {
2581                                                     this.visit_param_bound(bound);
2582                                                 }
2583                                             }
2584                                             ImplItemKind::Macro(_) =>
2585                                                 panic!("unexpanded macro in resolve!"),
2586                                         }
2587                                     });
2588                                 }
2589                             });
2590                         });
2591                     });
2592                 });
2593             });
2594         });
2595     }
2596
2597     fn check_trait_item<F>(&mut self, ident: Ident, ns: Namespace, span: Span, err: F)
2598         where F: FnOnce(Name, &str) -> ResolutionError
2599     {
2600         // If there is a TraitRef in scope for an impl, then the method must be in the
2601         // trait.
2602         if let Some((module, _)) = self.current_trait_ref {
2603             if self.resolve_ident_in_module(
2604                 ModuleOrUniformRoot::Module(module),
2605                 ident,
2606                 ns,
2607                 false,
2608                 span,
2609             ).is_err() {
2610                 let path = &self.current_trait_ref.as_ref().unwrap().1.path;
2611                 resolve_error(self, span, err(ident.name, &path_names_to_string(path)));
2612             }
2613         }
2614     }
2615
2616     fn resolve_local(&mut self, local: &Local) {
2617         // Resolve the type.
2618         walk_list!(self, visit_ty, &local.ty);
2619
2620         // Resolve the initializer.
2621         walk_list!(self, visit_expr, &local.init);
2622
2623         // Resolve the pattern.
2624         self.resolve_pattern(&local.pat, PatternSource::Let, &mut FxHashMap());
2625     }
2626
2627     // build a map from pattern identifiers to binding-info's.
2628     // this is done hygienically. This could arise for a macro
2629     // that expands into an or-pattern where one 'x' was from the
2630     // user and one 'x' came from the macro.
2631     fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
2632         let mut binding_map = FxHashMap();
2633
2634         pat.walk(&mut |pat| {
2635             if let PatKind::Ident(binding_mode, ident, ref sub_pat) = pat.node {
2636                 if sub_pat.is_some() || match self.def_map.get(&pat.id).map(|res| res.base_def()) {
2637                     Some(Def::Local(..)) => true,
2638                     _ => false,
2639                 } {
2640                     let binding_info = BindingInfo { span: ident.span, binding_mode: binding_mode };
2641                     binding_map.insert(ident, binding_info);
2642                 }
2643             }
2644             true
2645         });
2646
2647         binding_map
2648     }
2649
2650     // check that all of the arms in an or-pattern have exactly the
2651     // same set of bindings, with the same binding modes for each.
2652     fn check_consistent_bindings(&mut self, pats: &[P<Pat>]) {
2653         if pats.is_empty() {
2654             return;
2655         }
2656
2657         let mut missing_vars = FxHashMap();
2658         let mut inconsistent_vars = FxHashMap();
2659         for (i, p) in pats.iter().enumerate() {
2660             let map_i = self.binding_mode_map(&p);
2661
2662             for (j, q) in pats.iter().enumerate() {
2663                 if i == j {
2664                     continue;
2665                 }
2666
2667                 let map_j = self.binding_mode_map(&q);
2668                 for (&key, &binding_i) in &map_i {
2669                     if map_j.len() == 0 {                   // Account for missing bindings when
2670                         let binding_error = missing_vars    // map_j has none.
2671                             .entry(key.name)
2672                             .or_insert(BindingError {
2673                                 name: key.name,
2674                                 origin: BTreeSet::new(),
2675                                 target: BTreeSet::new(),
2676                             });
2677                         binding_error.origin.insert(binding_i.span);
2678                         binding_error.target.insert(q.span);
2679                     }
2680                     for (&key_j, &binding_j) in &map_j {
2681                         match map_i.get(&key_j) {
2682                             None => {  // missing binding
2683                                 let binding_error = missing_vars
2684                                     .entry(key_j.name)
2685                                     .or_insert(BindingError {
2686                                         name: key_j.name,
2687                                         origin: BTreeSet::new(),
2688                                         target: BTreeSet::new(),
2689                                     });
2690                                 binding_error.origin.insert(binding_j.span);
2691                                 binding_error.target.insert(p.span);
2692                             }
2693                             Some(binding_i) => {  // check consistent binding
2694                                 if binding_i.binding_mode != binding_j.binding_mode {
2695                                     inconsistent_vars
2696                                         .entry(key.name)
2697                                         .or_insert((binding_j.span, binding_i.span));
2698                                 }
2699                             }
2700                         }
2701                     }
2702                 }
2703             }
2704         }
2705         let mut missing_vars = missing_vars.iter().collect::<Vec<_>>();
2706         missing_vars.sort();
2707         for (_, v) in missing_vars {
2708             resolve_error(self,
2709                           *v.origin.iter().next().unwrap(),
2710                           ResolutionError::VariableNotBoundInPattern(v));
2711         }
2712         let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
2713         inconsistent_vars.sort();
2714         for (name, v) in inconsistent_vars {
2715             resolve_error(self, v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
2716         }
2717     }
2718
2719     fn resolve_arm(&mut self, arm: &Arm) {
2720         self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2721
2722         let mut bindings_list = FxHashMap();
2723         for pattern in &arm.pats {
2724             self.resolve_pattern(&pattern, PatternSource::Match, &mut bindings_list);
2725         }
2726
2727         // This has to happen *after* we determine which pat_idents are variants
2728         self.check_consistent_bindings(&arm.pats);
2729
2730         match arm.guard {
2731             Some(ast::Guard::If(ref expr)) => self.visit_expr(expr),
2732             _ => {}
2733         }
2734         self.visit_expr(&arm.body);
2735
2736         self.ribs[ValueNS].pop();
2737     }
2738
2739     fn resolve_block(&mut self, block: &Block) {
2740         debug!("(resolving block) entering block");
2741         // Move down in the graph, if there's an anonymous module rooted here.
2742         let orig_module = self.current_module;
2743         let anonymous_module = self.block_map.get(&block.id).cloned(); // clones a reference
2744
2745         let mut num_macro_definition_ribs = 0;
2746         if let Some(anonymous_module) = anonymous_module {
2747             debug!("(resolving block) found anonymous module, moving down");
2748             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2749             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2750             self.current_module = anonymous_module;
2751             self.finalize_current_module_macro_resolutions();
2752         } else {
2753             self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2754         }
2755
2756         // Descend into the block.
2757         for stmt in &block.stmts {
2758             if let ast::StmtKind::Item(ref item) = stmt.node {
2759                 if let ast::ItemKind::MacroDef(..) = item.node {
2760                     num_macro_definition_ribs += 1;
2761                     let def = self.definitions.local_def_id(item.id);
2762                     self.ribs[ValueNS].push(Rib::new(MacroDefinition(def)));
2763                     self.label_ribs.push(Rib::new(MacroDefinition(def)));
2764                 }
2765             }
2766
2767             self.visit_stmt(stmt);
2768         }
2769
2770         // Move back up.
2771         self.current_module = orig_module;
2772         for _ in 0 .. num_macro_definition_ribs {
2773             self.ribs[ValueNS].pop();
2774             self.label_ribs.pop();
2775         }
2776         self.ribs[ValueNS].pop();
2777         if anonymous_module.is_some() {
2778             self.ribs[TypeNS].pop();
2779         }
2780         debug!("(resolving block) leaving block");
2781     }
2782
2783     fn fresh_binding(&mut self,
2784                      ident: Ident,
2785                      pat_id: NodeId,
2786                      outer_pat_id: NodeId,
2787                      pat_src: PatternSource,
2788                      bindings: &mut FxHashMap<Ident, NodeId>)
2789                      -> PathResolution {
2790         // Add the binding to the local ribs, if it
2791         // doesn't already exist in the bindings map. (We
2792         // must not add it if it's in the bindings map
2793         // because that breaks the assumptions later
2794         // passes make about or-patterns.)
2795         let ident = ident.modern_and_legacy();
2796         let mut def = Def::Local(pat_id);
2797         match bindings.get(&ident).cloned() {
2798             Some(id) if id == outer_pat_id => {
2799                 // `Variant(a, a)`, error
2800                 resolve_error(
2801                     self,
2802                     ident.span,
2803                     ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(
2804                         &ident.as_str())
2805                 );
2806             }
2807             Some(..) if pat_src == PatternSource::FnParam => {
2808                 // `fn f(a: u8, a: u8)`, error
2809                 resolve_error(
2810                     self,
2811                     ident.span,
2812                     ResolutionError::IdentifierBoundMoreThanOnceInParameterList(
2813                         &ident.as_str())
2814                 );
2815             }
2816             Some(..) if pat_src == PatternSource::Match ||
2817                         pat_src == PatternSource::IfLet ||
2818                         pat_src == PatternSource::WhileLet => {
2819                 // `Variant1(a) | Variant2(a)`, ok
2820                 // Reuse definition from the first `a`.
2821                 def = self.ribs[ValueNS].last_mut().unwrap().bindings[&ident];
2822             }
2823             Some(..) => {
2824                 span_bug!(ident.span, "two bindings with the same name from \
2825                                        unexpected pattern source {:?}", pat_src);
2826             }
2827             None => {
2828                 // A completely fresh binding, add to the lists if it's valid.
2829                 if ident.name != keywords::Invalid.name() {
2830                     bindings.insert(ident, outer_pat_id);
2831                     self.ribs[ValueNS].last_mut().unwrap().bindings.insert(ident, def);
2832                 }
2833             }
2834         }
2835
2836         PathResolution::new(def)
2837     }
2838
2839     fn resolve_pattern(&mut self,
2840                        pat: &Pat,
2841                        pat_src: PatternSource,
2842                        // Maps idents to the node ID for the
2843                        // outermost pattern that binds them.
2844                        bindings: &mut FxHashMap<Ident, NodeId>) {
2845         // Visit all direct subpatterns of this pattern.
2846         let outer_pat_id = pat.id;
2847         pat.walk(&mut |pat| {
2848             match pat.node {
2849                 PatKind::Ident(bmode, ident, ref opt_pat) => {
2850                     // First try to resolve the identifier as some existing
2851                     // entity, then fall back to a fresh binding.
2852                     let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS,
2853                                                                       None, pat.span)
2854                                       .and_then(LexicalScopeBinding::item);
2855                     let resolution = binding.map(NameBinding::def).and_then(|def| {
2856                         let is_syntactic_ambiguity = opt_pat.is_none() &&
2857                             bmode == BindingMode::ByValue(Mutability::Immutable);
2858                         match def {
2859                             Def::StructCtor(_, CtorKind::Const) |
2860                             Def::VariantCtor(_, CtorKind::Const) |
2861                             Def::Const(..) if is_syntactic_ambiguity => {
2862                                 // Disambiguate in favor of a unit struct/variant
2863                                 // or constant pattern.
2864                                 self.record_use(ident, ValueNS, binding.unwrap());
2865                                 Some(PathResolution::new(def))
2866                             }
2867                             Def::StructCtor(..) | Def::VariantCtor(..) |
2868                             Def::Const(..) | Def::Static(..) => {
2869                                 // This is unambiguously a fresh binding, either syntactically
2870                                 // (e.g. `IDENT @ PAT` or `ref IDENT`) or because `IDENT` resolves
2871                                 // to something unusable as a pattern (e.g. constructor function),
2872                                 // but we still conservatively report an error, see
2873                                 // issues/33118#issuecomment-233962221 for one reason why.
2874                                 resolve_error(
2875                                     self,
2876                                     ident.span,
2877                                     ResolutionError::BindingShadowsSomethingUnacceptable(
2878                                         pat_src.descr(), ident.name, binding.unwrap())
2879                                 );
2880                                 None
2881                             }
2882                             Def::Fn(..) | Def::Err => {
2883                                 // These entities are explicitly allowed
2884                                 // to be shadowed by fresh bindings.
2885                                 None
2886                             }
2887                             def => {
2888                                 span_bug!(ident.span, "unexpected definition for an \
2889                                                        identifier in pattern: {:?}", def);
2890                             }
2891                         }
2892                     }).unwrap_or_else(|| {
2893                         self.fresh_binding(ident, pat.id, outer_pat_id, pat_src, bindings)
2894                     });
2895
2896                     self.record_def(pat.id, resolution);
2897                 }
2898
2899                 PatKind::TupleStruct(ref path, ..) => {
2900                     self.smart_resolve_path(pat.id, None, path, PathSource::TupleStruct);
2901                 }
2902
2903                 PatKind::Path(ref qself, ref path) => {
2904                     self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
2905                 }
2906
2907                 PatKind::Struct(ref path, ..) => {
2908                     self.smart_resolve_path(pat.id, None, path, PathSource::Struct);
2909                 }
2910
2911                 _ => {}
2912             }
2913             true
2914         });
2915
2916         visit::walk_pat(self, pat);
2917     }
2918
2919     // High-level and context dependent path resolution routine.
2920     // Resolves the path and records the resolution into definition map.
2921     // If resolution fails tries several techniques to find likely
2922     // resolution candidates, suggest imports or other help, and report
2923     // errors in user friendly way.
2924     fn smart_resolve_path(&mut self,
2925                           id: NodeId,
2926                           qself: Option<&QSelf>,
2927                           path: &Path,
2928                           source: PathSource)
2929                           -> PathResolution {
2930         self.smart_resolve_path_with_crate_lint(id, qself, path, source, CrateLint::SimplePath(id))
2931     }
2932
2933     /// A variant of `smart_resolve_path` where you also specify extra
2934     /// information about where the path came from; this extra info is
2935     /// sometimes needed for the lint that recommends rewriting
2936     /// absolute paths to `crate`, so that it knows how to frame the
2937     /// suggestion. If you are just resolving a path like `foo::bar`
2938     /// that appears...somewhere, though, then you just want
2939     /// `CrateLint::SimplePath`, which is what `smart_resolve_path`
2940     /// already provides.
2941     fn smart_resolve_path_with_crate_lint(
2942         &mut self,
2943         id: NodeId,
2944         qself: Option<&QSelf>,
2945         path: &Path,
2946         source: PathSource,
2947         crate_lint: CrateLint
2948     ) -> PathResolution {
2949         let segments = &path.segments.iter()
2950             .map(|seg| seg.ident)
2951             .collect::<Vec<_>>();
2952         self.smart_resolve_path_fragment(id, qself, segments, path.span, source, crate_lint)
2953     }
2954
2955     fn smart_resolve_path_fragment(&mut self,
2956                                    id: NodeId,
2957                                    qself: Option<&QSelf>,
2958                                    path: &[Ident],
2959                                    span: Span,
2960                                    source: PathSource,
2961                                    crate_lint: CrateLint)
2962                                    -> PathResolution {
2963         let ident_span = path.last().map_or(span, |ident| ident.span);
2964         let ns = source.namespace();
2965         let is_expected = &|def| source.is_expected(def);
2966         let is_enum_variant = &|def| if let Def::Variant(..) = def { true } else { false };
2967
2968         // Base error is amended with one short label and possibly some longer helps/notes.
2969         let report_errors = |this: &mut Self, def: Option<Def>| {
2970             // Make the base error.
2971             let expected = source.descr_expected();
2972             let path_str = names_to_string(path);
2973             let item_str = path[path.len() - 1];
2974             let code = source.error_code(def.is_some());
2975             let (base_msg, fallback_label, base_span) = if let Some(def) = def {
2976                 (format!("expected {}, found {} `{}`", expected, def.kind_name(), path_str),
2977                  format!("not a {}", expected),
2978                  span)
2979             } else {
2980                 let item_span = path[path.len() - 1].span;
2981                 let (mod_prefix, mod_str) = if path.len() == 1 {
2982                     (String::new(), "this scope".to_string())
2983                 } else if path.len() == 2 && path[0].name == keywords::CrateRoot.name() {
2984                     (String::new(), "the crate root".to_string())
2985                 } else {
2986                     let mod_path = &path[..path.len() - 1];
2987                     let mod_prefix = match this.resolve_path(None, mod_path, Some(TypeNS),
2988                                                              false, span, CrateLint::No) {
2989                         PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
2990                             module.def(),
2991                         _ => None,
2992                     }.map_or(String::new(), |def| format!("{} ", def.kind_name()));
2993                     (mod_prefix, format!("`{}`", names_to_string(mod_path)))
2994                 };
2995                 (format!("cannot find {} `{}` in {}{}", expected, item_str, mod_prefix, mod_str),
2996                  format!("not found in {}", mod_str),
2997                  item_span)
2998             };
2999             let code = DiagnosticId::Error(code.into());
3000             let mut err = this.session.struct_span_err_with_code(base_span, &base_msg, code);
3001
3002             // Emit help message for fake-self from other languages like `this`(javascript)
3003             let fake_self: Vec<Ident> = ["this", "my"].iter().map(
3004                 |s| Ident::from_str(*s)
3005             ).collect();
3006             if fake_self.contains(&item_str)
3007                 && this.self_value_is_available(path[0].span, span) {
3008                 err.span_suggestion_with_applicability(
3009                     span,
3010                     "did you mean",
3011                     "self".to_string(),
3012                     Applicability::MaybeIncorrect,
3013                 );
3014             }
3015
3016             // Emit special messages for unresolved `Self` and `self`.
3017             if is_self_type(path, ns) {
3018                 __diagnostic_used!(E0411);
3019                 err.code(DiagnosticId::Error("E0411".into()));
3020                 let available_in = if this.session.features_untracked().self_in_typedefs {
3021                     "impls, traits, and type definitions"
3022                 } else {
3023                     "traits and impls"
3024                 };
3025                 err.span_label(span, format!("`Self` is only available in {}", available_in));
3026                 if this.current_self_item.is_some() && nightly_options::is_nightly_build() {
3027                     err.help("add #![feature(self_in_typedefs)] to the crate attributes \
3028                               to enable");
3029                 }
3030                 return (err, Vec::new());
3031             }
3032             if is_self_value(path, ns) {
3033                 __diagnostic_used!(E0424);
3034                 err.code(DiagnosticId::Error("E0424".into()));
3035                 err.span_label(span, format!("`self` value is a keyword \
3036                                                only available in \
3037                                                methods with `self` parameter"));
3038                 return (err, Vec::new());
3039             }
3040
3041             // Try to lookup the name in more relaxed fashion for better error reporting.
3042             let ident = *path.last().unwrap();
3043             let candidates = this.lookup_import_candidates(ident.name, ns, is_expected);
3044             if candidates.is_empty() && is_expected(Def::Enum(DefId::local(CRATE_DEF_INDEX))) {
3045                 let enum_candidates =
3046                     this.lookup_import_candidates(ident.name, ns, is_enum_variant);
3047                 let mut enum_candidates = enum_candidates.iter()
3048                     .map(|suggestion| import_candidate_to_paths(&suggestion)).collect::<Vec<_>>();
3049                 enum_candidates.sort();
3050                 for (sp, variant_path, enum_path) in enum_candidates {
3051                     if sp.is_dummy() {
3052                         let msg = format!("there is an enum variant `{}`, \
3053                                         try using `{}`?",
3054                                         variant_path,
3055                                         enum_path);
3056                         err.help(&msg);
3057                     } else {
3058                         err.span_suggestion_with_applicability(
3059                             span,
3060                             "you can try using the variant's enum",
3061                             enum_path,
3062                             Applicability::MachineApplicable,
3063                         );
3064                     }
3065                 }
3066             }
3067             if path.len() == 1 && this.self_type_is_available(span) {
3068                 if let Some(candidate) = this.lookup_assoc_candidate(ident, ns, is_expected) {
3069                     let self_is_available = this.self_value_is_available(path[0].span, span);
3070                     match candidate {
3071                         AssocSuggestion::Field => {
3072                             err.span_suggestion_with_applicability(
3073                                 span,
3074                                 "try",
3075                                 format!("self.{}", path_str),
3076                                 Applicability::MachineApplicable,
3077                             );
3078                             if !self_is_available {
3079                                 err.span_label(span, format!("`self` value is a keyword \
3080                                                                only available in \
3081                                                                methods with `self` parameter"));
3082                             }
3083                         }
3084                         AssocSuggestion::MethodWithSelf if self_is_available => {
3085                             err.span_suggestion_with_applicability(
3086                                 span,
3087                                 "try",
3088                                 format!("self.{}", path_str),
3089                                 Applicability::MachineApplicable,
3090                             );
3091                         }
3092                         AssocSuggestion::MethodWithSelf | AssocSuggestion::AssocItem => {
3093                             err.span_suggestion_with_applicability(
3094                                 span,
3095                                 "try",
3096                                 format!("Self::{}", path_str),
3097                                 Applicability::MachineApplicable,
3098                             );
3099                         }
3100                     }
3101                     return (err, candidates);
3102                 }
3103             }
3104
3105             let mut levenshtein_worked = false;
3106
3107             // Try Levenshtein.
3108             if let Some(candidate) = this.lookup_typo_candidate(path, ns, is_expected, span) {
3109                 err.span_label(ident_span, format!("did you mean `{}`?", candidate));
3110                 levenshtein_worked = true;
3111             }
3112
3113             // Try context dependent help if relaxed lookup didn't work.
3114             if let Some(def) = def {
3115                 match (def, source) {
3116                     (Def::Macro(..), _) => {
3117                         err.span_label(span, format!("did you mean `{}!(...)`?", path_str));
3118                         return (err, candidates);
3119                     }
3120                     (Def::TyAlias(..), PathSource::Trait(_)) => {
3121                         err.span_label(span, "type aliases cannot be used for traits");
3122                         return (err, candidates);
3123                     }
3124                     (Def::Mod(..), PathSource::Expr(Some(parent))) => match parent.node {
3125                         ExprKind::Field(_, ident) => {
3126                             err.span_label(parent.span, format!("did you mean `{}::{}`?",
3127                                                                  path_str, ident));
3128                             return (err, candidates);
3129                         }
3130                         ExprKind::MethodCall(ref segment, ..) => {
3131                             err.span_label(parent.span, format!("did you mean `{}::{}(...)`?",
3132                                                                  path_str, segment.ident));
3133                             return (err, candidates);
3134                         }
3135                         _ => {}
3136                     },
3137                     (Def::Enum(..), PathSource::TupleStruct)
3138                         | (Def::Enum(..), PathSource::Expr(..))  => {
3139                         if let Some(variants) = this.collect_enum_variants(def) {
3140                             err.note(&format!("did you mean to use one \
3141                                                of the following variants?\n{}",
3142                                 variants.iter()
3143                                     .map(|suggestion| path_names_to_string(suggestion))
3144                                     .map(|suggestion| format!("- `{}`", suggestion))
3145                                     .collect::<Vec<_>>()
3146                                     .join("\n")));
3147
3148                         } else {
3149                             err.note("did you mean to use one of the enum's variants?");
3150                         }
3151                         return (err, candidates);
3152                     },
3153                     (Def::Struct(def_id), _) if ns == ValueNS => {
3154                         if let Some((ctor_def, ctor_vis))
3155                                 = this.struct_constructors.get(&def_id).cloned() {
3156                             let accessible_ctor = this.is_accessible(ctor_vis);
3157                             if is_expected(ctor_def) && !accessible_ctor {
3158                                 err.span_label(span, format!("constructor is not visible \
3159                                                               here due to private fields"));
3160                             }
3161                         } else {
3162                             // HACK(estebank): find a better way to figure out that this was a
3163                             // parser issue where a struct literal is being used on an expression
3164                             // where a brace being opened means a block is being started. Look
3165                             // ahead for the next text to see if `span` is followed by a `{`.
3166                             let sm = this.session.source_map();
3167                             let mut sp = span;
3168                             loop {
3169                                 sp = sm.next_point(sp);
3170                                 match sm.span_to_snippet(sp) {
3171                                     Ok(ref snippet) => {
3172                                         if snippet.chars().any(|c| { !c.is_whitespace() }) {
3173                                             break;
3174                                         }
3175                                     }
3176                                     _ => break,
3177                                 }
3178                             }
3179                             let followed_by_brace = match sm.span_to_snippet(sp) {
3180                                 Ok(ref snippet) if snippet == "{" => true,
3181                                 _ => false,
3182                             };
3183                             match source {
3184                                 PathSource::Expr(Some(parent)) => {
3185                                     match parent.node {
3186                                         ExprKind::MethodCall(ref path_assignment, _)  => {
3187                                             err.span_suggestion_with_applicability(
3188                                                 sm.start_point(parent.span)
3189                                                   .to(path_assignment.ident.span),
3190                                                 "use `::` to access an associated function",
3191                                                 format!("{}::{}",
3192                                                         path_str,
3193                                                         path_assignment.ident),
3194                                                 Applicability::MaybeIncorrect
3195                                             );
3196                                             return (err, candidates);
3197                                         },
3198                                         _ => {
3199                                             err.span_label(
3200                                                 span,
3201                                                 format!("did you mean `{} {{ /* fields */ }}`?",
3202                                                         path_str),
3203                                             );
3204                                             return (err, candidates);
3205                                         },
3206                                     }
3207                                 },
3208                                 PathSource::Expr(None) if followed_by_brace == true => {
3209                                     err.span_label(
3210                                         span,
3211                                         format!("did you mean `({} {{ /* fields */ }})`?",
3212                                                 path_str),
3213                                     );
3214                                     return (err, candidates);
3215                                 },
3216                                 _ => {
3217                                     err.span_label(
3218                                         span,
3219                                         format!("did you mean `{} {{ /* fields */ }}`?",
3220                                                 path_str),
3221                                     );
3222                                     return (err, candidates);
3223                                 },
3224                             }
3225                         }
3226                         return (err, candidates);
3227                     }
3228                     (Def::Union(..), _) |
3229                     (Def::Variant(..), _) |
3230                     (Def::VariantCtor(_, CtorKind::Fictive), _) if ns == ValueNS => {
3231                         err.span_label(span, format!("did you mean `{} {{ /* fields */ }}`?",
3232                                                      path_str));
3233                         return (err, candidates);
3234                     }
3235                     (Def::SelfTy(..), _) if ns == ValueNS => {
3236                         err.span_label(span, fallback_label);
3237                         err.note("can't use `Self` as a constructor, you must use the \
3238                                   implemented struct");
3239                         return (err, candidates);
3240                     }
3241                     (Def::TyAlias(_), _) | (Def::AssociatedTy(..), _) if ns == ValueNS => {
3242                         err.note("can't use a type alias as a constructor");
3243                         return (err, candidates);
3244                     }
3245                     _ => {}
3246                 }
3247             }
3248
3249             // Fallback label.
3250             if !levenshtein_worked {
3251                 err.span_label(base_span, fallback_label);
3252                 this.type_ascription_suggestion(&mut err, base_span);
3253             }
3254             (err, candidates)
3255         };
3256         let report_errors = |this: &mut Self, def: Option<Def>| {
3257             let (err, candidates) = report_errors(this, def);
3258             let def_id = this.current_module.normal_ancestor_id;
3259             let node_id = this.definitions.as_local_node_id(def_id).unwrap();
3260             let better = def.is_some();
3261             this.use_injections.push(UseError { err, candidates, node_id, better });
3262             err_path_resolution()
3263         };
3264
3265         let resolution = match self.resolve_qpath_anywhere(
3266             id,
3267             qself,
3268             path,
3269             ns,
3270             span,
3271             source.defer_to_typeck(),
3272             source.global_by_default(),
3273             crate_lint,
3274         ) {
3275             Some(resolution) if resolution.unresolved_segments() == 0 => {
3276                 if is_expected(resolution.base_def()) || resolution.base_def() == Def::Err {
3277                     resolution
3278                 } else {
3279                     // Add a temporary hack to smooth the transition to new struct ctor
3280                     // visibility rules. See #38932 for more details.
3281                     let mut res = None;
3282                     if let Def::Struct(def_id) = resolution.base_def() {
3283                         if let Some((ctor_def, ctor_vis))
3284                                 = self.struct_constructors.get(&def_id).cloned() {
3285                             if is_expected(ctor_def) && self.is_accessible(ctor_vis) {
3286                                 let lint = lint::builtin::LEGACY_CONSTRUCTOR_VISIBILITY;
3287                                 self.session.buffer_lint(lint, id, span,
3288                                     "private struct constructors are not usable through \
3289                                      re-exports in outer modules",
3290                                 );
3291                                 res = Some(PathResolution::new(ctor_def));
3292                             }
3293                         }
3294                     }
3295
3296                     res.unwrap_or_else(|| report_errors(self, Some(resolution.base_def())))
3297                 }
3298             }
3299             Some(resolution) if source.defer_to_typeck() => {
3300                 // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
3301                 // or `<T>::A::B`. If `B` should be resolved in value namespace then
3302                 // it needs to be added to the trait map.
3303                 if ns == ValueNS {
3304                     let item_name = *path.last().unwrap();
3305                     let traits = self.get_traits_containing_item(item_name, ns);
3306                     self.trait_map.insert(id, traits);
3307                 }
3308                 resolution
3309             }
3310             _ => report_errors(self, None)
3311         };
3312
3313         if let PathSource::TraitItem(..) = source {} else {
3314             // Avoid recording definition of `A::B` in `<T as A>::B::C`.
3315             self.record_def(id, resolution);
3316         }
3317         resolution
3318     }
3319
3320     fn type_ascription_suggestion(&self,
3321                                   err: &mut DiagnosticBuilder,
3322                                   base_span: Span) {
3323         debug!("type_ascription_suggetion {:?}", base_span);
3324         let cm = self.session.source_map();
3325         debug!("self.current_type_ascription {:?}", self.current_type_ascription);
3326         if let Some(sp) = self.current_type_ascription.last() {
3327             let mut sp = *sp;
3328             loop {  // try to find the `:`, bail on first non-':'/non-whitespace
3329                 sp = cm.next_point(sp);
3330                 if let Ok(snippet) = cm.span_to_snippet(sp.to(cm.next_point(sp))) {
3331                     debug!("snippet {:?}", snippet);
3332                     let line_sp = cm.lookup_char_pos(sp.hi()).line;
3333                     let line_base_sp = cm.lookup_char_pos(base_span.lo()).line;
3334                     debug!("{:?} {:?}", line_sp, line_base_sp);
3335                     if snippet == ":" {
3336                         err.span_label(base_span,
3337                                        "expecting a type here because of type ascription");
3338                         if line_sp != line_base_sp {
3339                             err.span_suggestion_short_with_applicability(
3340                                 sp,
3341                                 "did you mean to use `;` here instead?",
3342                                 ";".to_string(),
3343                                 Applicability::MaybeIncorrect,
3344                             );
3345                         }
3346                         break;
3347                     } else if snippet.trim().len() != 0  {
3348                         debug!("tried to find type ascription `:` token, couldn't find it");
3349                         break;
3350                     }
3351                 } else {
3352                     break;
3353                 }
3354             }
3355         }
3356     }
3357
3358     fn self_type_is_available(&mut self, span: Span) -> bool {
3359         let binding = self.resolve_ident_in_lexical_scope(keywords::SelfType.ident(),
3360                                                           TypeNS, None, span);
3361         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3362     }
3363
3364     fn self_value_is_available(&mut self, self_span: Span, path_span: Span) -> bool {
3365         let ident = Ident::new(keywords::SelfValue.name(), self_span);
3366         let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, None, path_span);
3367         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3368     }
3369
3370     // Resolve in alternative namespaces if resolution in the primary namespace fails.
3371     fn resolve_qpath_anywhere(&mut self,
3372                               id: NodeId,
3373                               qself: Option<&QSelf>,
3374                               path: &[Ident],
3375                               primary_ns: Namespace,
3376                               span: Span,
3377                               defer_to_typeck: bool,
3378                               global_by_default: bool,
3379                               crate_lint: CrateLint)
3380                               -> Option<PathResolution> {
3381         let mut fin_res = None;
3382         // FIXME: can't resolve paths in macro namespace yet, macros are
3383         // processed by the little special hack below.
3384         for (i, ns) in [primary_ns, TypeNS, ValueNS, /*MacroNS*/].iter().cloned().enumerate() {
3385             if i == 0 || ns != primary_ns {
3386                 match self.resolve_qpath(id, qself, path, ns, span, global_by_default, crate_lint) {
3387                     // If defer_to_typeck, then resolution > no resolution,
3388                     // otherwise full resolution > partial resolution > no resolution.
3389                     Some(res) if res.unresolved_segments() == 0 || defer_to_typeck =>
3390                         return Some(res),
3391                     res => if fin_res.is_none() { fin_res = res },
3392                 };
3393             }
3394         }
3395         if primary_ns != MacroNS &&
3396            (self.macro_names.contains(&path[0].modern()) ||
3397             self.builtin_macros.get(&path[0].name).cloned()
3398                                .and_then(NameBinding::macro_kind) == Some(MacroKind::Bang) ||
3399             self.macro_use_prelude.get(&path[0].name).cloned()
3400                                   .and_then(NameBinding::macro_kind) == Some(MacroKind::Bang)) {
3401             // Return some dummy definition, it's enough for error reporting.
3402             return Some(
3403                 PathResolution::new(Def::Macro(DefId::local(CRATE_DEF_INDEX), MacroKind::Bang))
3404             );
3405         }
3406         fin_res
3407     }
3408
3409     /// Handles paths that may refer to associated items.
3410     fn resolve_qpath(&mut self,
3411                      id: NodeId,
3412                      qself: Option<&QSelf>,
3413                      path: &[Ident],
3414                      ns: Namespace,
3415                      span: Span,
3416                      global_by_default: bool,
3417                      crate_lint: CrateLint)
3418                      -> Option<PathResolution> {
3419         debug!(
3420             "resolve_qpath(id={:?}, qself={:?}, path={:?}, \
3421              ns={:?}, span={:?}, global_by_default={:?})",
3422             id,
3423             qself,
3424             path,
3425             ns,
3426             span,
3427             global_by_default,
3428         );
3429
3430         if let Some(qself) = qself {
3431             if qself.position == 0 {
3432                 // This is a case like `<T>::B`, where there is no
3433                 // trait to resolve.  In that case, we leave the `B`
3434                 // segment to be resolved by type-check.
3435                 return Some(PathResolution::with_unresolved_segments(
3436                     Def::Mod(DefId::local(CRATE_DEF_INDEX)), path.len()
3437                 ));
3438             }
3439
3440             // Make sure `A::B` in `<T as A::B>::C` is a trait item.
3441             //
3442             // Currently, `path` names the full item (`A::B::C`, in
3443             // our example).  so we extract the prefix of that that is
3444             // the trait (the slice upto and including
3445             // `qself.position`). And then we recursively resolve that,
3446             // but with `qself` set to `None`.
3447             //
3448             // However, setting `qself` to none (but not changing the
3449             // span) loses the information about where this path
3450             // *actually* appears, so for the purposes of the crate
3451             // lint we pass along information that this is the trait
3452             // name from a fully qualified path, and this also
3453             // contains the full span (the `CrateLint::QPathTrait`).
3454             let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
3455             let res = self.smart_resolve_path_fragment(
3456                 id,
3457                 None,
3458                 &path[..qself.position + 1],
3459                 span,
3460                 PathSource::TraitItem(ns),
3461                 CrateLint::QPathTrait {
3462                     qpath_id: id,
3463                     qpath_span: qself.path_span,
3464                 },
3465             );
3466
3467             // The remaining segments (the `C` in our example) will
3468             // have to be resolved by type-check, since that requires doing
3469             // trait resolution.
3470             return Some(PathResolution::with_unresolved_segments(
3471                 res.base_def(), res.unresolved_segments() + path.len() - qself.position - 1
3472             ));
3473         }
3474
3475         let result = match self.resolve_path(
3476             None,
3477             &path,
3478             Some(ns),
3479             true,
3480             span,
3481             crate_lint,
3482         ) {
3483             PathResult::NonModule(path_res) => path_res,
3484             PathResult::Module(ModuleOrUniformRoot::Module(module)) if !module.is_normal() => {
3485                 PathResolution::new(module.def().unwrap())
3486             }
3487             // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
3488             // don't report an error right away, but try to fallback to a primitive type.
3489             // So, we are still able to successfully resolve something like
3490             //
3491             // use std::u8; // bring module u8 in scope
3492             // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
3493             //     u8::max_value() // OK, resolves to associated function <u8>::max_value,
3494             //                     // not to non-existent std::u8::max_value
3495             // }
3496             //
3497             // Such behavior is required for backward compatibility.
3498             // The same fallback is used when `a` resolves to nothing.
3499             PathResult::Module(ModuleOrUniformRoot::Module(_)) |
3500             PathResult::Failed(..)
3501                     if (ns == TypeNS || path.len() > 1) &&
3502                        self.primitive_type_table.primitive_types
3503                            .contains_key(&path[0].name) => {
3504                 let prim = self.primitive_type_table.primitive_types[&path[0].name];
3505                 PathResolution::with_unresolved_segments(Def::PrimTy(prim), path.len() - 1)
3506             }
3507             PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3508                 PathResolution::new(module.def().unwrap()),
3509             PathResult::Failed(span, msg, false) => {
3510                 resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
3511                 err_path_resolution()
3512             }
3513             PathResult::Module(ModuleOrUniformRoot::UniformRoot(_)) |
3514             PathResult::Failed(..) => return None,
3515             PathResult::Indeterminate => bug!("indetermined path result in resolve_qpath"),
3516         };
3517
3518         if path.len() > 1 && !global_by_default && result.base_def() != Def::Err &&
3519            path[0].name != keywords::CrateRoot.name() &&
3520            path[0].name != keywords::DollarCrate.name() {
3521             let unqualified_result = {
3522                 match self.resolve_path(
3523                     None,
3524                     &[*path.last().unwrap()],
3525                     Some(ns),
3526                     false,
3527                     span,
3528                     CrateLint::No,
3529                 ) {
3530                     PathResult::NonModule(path_res) => path_res.base_def(),
3531                     PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3532                         module.def().unwrap(),
3533                     _ => return Some(result),
3534                 }
3535             };
3536             if result.base_def() == unqualified_result {
3537                 let lint = lint::builtin::UNUSED_QUALIFICATIONS;
3538                 self.session.buffer_lint(lint, id, span, "unnecessary qualification")
3539             }
3540         }
3541
3542         Some(result)
3543     }
3544
3545     fn resolve_path(
3546         &mut self,
3547         base_module: Option<ModuleOrUniformRoot<'a>>,
3548         path: &[Ident],
3549         opt_ns: Option<Namespace>, // `None` indicates a module path
3550         record_used: bool,
3551         path_span: Span,
3552         crate_lint: CrateLint,
3553     ) -> PathResult<'a> {
3554         let parent_scope = ParentScope { module: self.current_module, ..self.dummy_parent_scope() };
3555         self.resolve_path_with_parent_scope(base_module, path, opt_ns, &parent_scope,
3556                                             record_used, path_span, crate_lint)
3557     }
3558
3559     fn resolve_path_with_parent_scope(
3560         &mut self,
3561         base_module: Option<ModuleOrUniformRoot<'a>>,
3562         path: &[Ident],
3563         opt_ns: Option<Namespace>, // `None` indicates a module path
3564         parent_scope: &ParentScope<'a>,
3565         record_used: bool,
3566         path_span: Span,
3567         crate_lint: CrateLint,
3568     ) -> PathResult<'a> {
3569         let mut module = base_module;
3570         let mut allow_super = true;
3571         let mut second_binding = None;
3572         self.current_module = parent_scope.module;
3573
3574         debug!(
3575             "resolve_path(path={:?}, opt_ns={:?}, record_used={:?}, \
3576              path_span={:?}, crate_lint={:?})",
3577             path,
3578             opt_ns,
3579             record_used,
3580             path_span,
3581             crate_lint,
3582         );
3583
3584         for (i, &ident) in path.iter().enumerate() {
3585             debug!("resolve_path ident {} {:?}", i, ident);
3586             let is_last = i == path.len() - 1;
3587             let ns = if is_last { opt_ns.unwrap_or(TypeNS) } else { TypeNS };
3588             let name = ident.name;
3589
3590             allow_super &= ns == TypeNS &&
3591                 (name == keywords::SelfValue.name() ||
3592                  name == keywords::Super.name());
3593
3594             if ns == TypeNS {
3595                 if allow_super && name == keywords::Super.name() {
3596                     let mut ctxt = ident.span.ctxt().modern();
3597                     let self_module = match i {
3598                         0 => Some(self.resolve_self(&mut ctxt, self.current_module)),
3599                         _ => match module {
3600                             Some(ModuleOrUniformRoot::Module(module)) => Some(module),
3601                             _ => None,
3602                         },
3603                     };
3604                     if let Some(self_module) = self_module {
3605                         if let Some(parent) = self_module.parent {
3606                             module = Some(ModuleOrUniformRoot::Module(
3607                                 self.resolve_self(&mut ctxt, parent)));
3608                             continue;
3609                         }
3610                     }
3611                     let msg = "There are too many initial `super`s.".to_string();
3612                     return PathResult::Failed(ident.span, msg, false);
3613                 }
3614                 if i == 0 {
3615                     if name == keywords::SelfValue.name() {
3616                         let mut ctxt = ident.span.ctxt().modern();
3617                         module = Some(ModuleOrUniformRoot::Module(
3618                             self.resolve_self(&mut ctxt, self.current_module)));
3619                         continue;
3620                     }
3621                     if name == keywords::Extern.name() ||
3622                        name == keywords::CrateRoot.name() &&
3623                        self.session.rust_2018() {
3624                         module = Some(ModuleOrUniformRoot::UniformRoot(name));
3625                         continue;
3626                     }
3627                     if name == keywords::CrateRoot.name() ||
3628                        name == keywords::Crate.name() ||
3629                        name == keywords::DollarCrate.name() {
3630                         // `::a::b`, `crate::a::b` or `$crate::a::b`
3631                         module = Some(ModuleOrUniformRoot::Module(
3632                             self.resolve_crate_root(ident)));
3633                         continue;
3634                     }
3635                 }
3636             }
3637
3638             // Report special messages for path segment keywords in wrong positions.
3639             if ident.is_path_segment_keyword() && i != 0 {
3640                 let name_str = if name == keywords::CrateRoot.name() {
3641                     "crate root".to_string()
3642                 } else {
3643                     format!("`{}`", name)
3644                 };
3645                 let msg = if i == 1 && path[0].name == keywords::CrateRoot.name() {
3646                     format!("global paths cannot start with {}", name_str)
3647                 } else {
3648                     format!("{} in paths can only be used in start position", name_str)
3649                 };
3650                 return PathResult::Failed(ident.span, msg, false);
3651             }
3652
3653             let binding = if let Some(module) = module {
3654                 self.resolve_ident_in_module(module, ident, ns, record_used, path_span)
3655             } else if opt_ns == Some(MacroNS) {
3656                 assert!(ns == TypeNS);
3657                 self.early_resolve_ident_in_lexical_scope(ident, ns, None, parent_scope,
3658                                                           record_used, record_used, path_span)
3659             } else {
3660                 let record_used_id =
3661                     if record_used { crate_lint.node_id().or(Some(CRATE_NODE_ID)) } else { None };
3662                 match self.resolve_ident_in_lexical_scope(ident, ns, record_used_id, path_span) {
3663                     // we found a locally-imported or available item/module
3664                     Some(LexicalScopeBinding::Item(binding)) => Ok(binding),
3665                     // we found a local variable or type param
3666                     Some(LexicalScopeBinding::Def(def))
3667                             if opt_ns == Some(TypeNS) || opt_ns == Some(ValueNS) => {
3668                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3669                             def, path.len() - 1
3670                         ));
3671                     }
3672                     _ => Err(if record_used { Determined } else { Undetermined }),
3673                 }
3674             };
3675
3676             match binding {
3677                 Ok(binding) => {
3678                     if i == 1 {
3679                         second_binding = Some(binding);
3680                     }
3681                     let def = binding.def();
3682                     let maybe_assoc = opt_ns != Some(MacroNS) && PathSource::Type.is_expected(def);
3683                     if let Some(next_module) = binding.module() {
3684                         module = Some(ModuleOrUniformRoot::Module(next_module));
3685                     } else if def == Def::ToolMod && i + 1 != path.len() {
3686                         let def = Def::NonMacroAttr(NonMacroAttrKind::Tool);
3687                         return PathResult::NonModule(PathResolution::new(def));
3688                     } else if def == Def::Err {
3689                         return PathResult::NonModule(err_path_resolution());
3690                     } else if opt_ns.is_some() && (is_last || maybe_assoc) {
3691                         self.lint_if_path_starts_with_module(
3692                             crate_lint,
3693                             path,
3694                             path_span,
3695                             second_binding,
3696                         );
3697                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3698                             def, path.len() - i - 1
3699                         ));
3700                     } else {
3701                         return PathResult::Failed(ident.span,
3702                                                   format!("Not a module `{}`", ident),
3703                                                   is_last);
3704                     }
3705                 }
3706                 Err(Undetermined) => return PathResult::Indeterminate,
3707                 Err(Determined) => {
3708                     if let Some(ModuleOrUniformRoot::Module(module)) = module {
3709                         if opt_ns.is_some() && !module.is_normal() {
3710                             return PathResult::NonModule(PathResolution::with_unresolved_segments(
3711                                 module.def().unwrap(), path.len() - i
3712                             ));
3713                         }
3714                     }
3715                     let module_def = match module {
3716                         Some(ModuleOrUniformRoot::Module(module)) => module.def(),
3717                         _ => None,
3718                     };
3719                     let msg = if module_def == self.graph_root.def() {
3720                         let is_mod = |def| match def { Def::Mod(..) => true, _ => false };
3721                         let mut candidates =
3722                             self.lookup_import_candidates(name, TypeNS, is_mod);
3723                         candidates.sort_by_cached_key(|c| {
3724                             (c.path.segments.len(), c.path.to_string())
3725                         });
3726                         if let Some(candidate) = candidates.get(0) {
3727                             format!("Did you mean `{}`?", candidate.path)
3728                         } else {
3729                             format!("Maybe a missing `extern crate {};`?", ident)
3730                         }
3731                     } else if i == 0 {
3732                         format!("Use of undeclared type or module `{}`", ident)
3733                     } else {
3734                         format!("Could not find `{}` in `{}`", ident, path[i - 1])
3735                     };
3736                     return PathResult::Failed(ident.span, msg, is_last);
3737                 }
3738             }
3739         }
3740
3741         self.lint_if_path_starts_with_module(crate_lint, path, path_span, second_binding);
3742
3743         PathResult::Module(module.unwrap_or_else(|| {
3744             span_bug!(path_span, "resolve_path: empty(?) path {:?} has no module", path);
3745         }))
3746
3747     }
3748
3749     fn lint_if_path_starts_with_module(
3750         &self,
3751         crate_lint: CrateLint,
3752         path: &[Ident],
3753         path_span: Span,
3754         second_binding: Option<&NameBinding>,
3755     ) {
3756         // In the 2018 edition this lint is a hard error, so nothing to do
3757         if self.session.rust_2018() {
3758             return
3759         }
3760
3761         let (diag_id, diag_span) = match crate_lint {
3762             CrateLint::No => return,
3763             CrateLint::SimplePath(id) => (id, path_span),
3764             CrateLint::UsePath { root_id, root_span } => (root_id, root_span),
3765             CrateLint::QPathTrait { qpath_id, qpath_span } => (qpath_id, qpath_span),
3766         };
3767
3768         let first_name = match path.get(0) {
3769             Some(ident) => ident.name,
3770             None => return,
3771         };
3772
3773         // We're only interested in `use` paths which should start with
3774         // `{{root}}` or `extern` currently.
3775         if first_name != keywords::Extern.name() && first_name != keywords::CrateRoot.name() {
3776             return
3777         }
3778
3779         match path.get(1) {
3780             // If this import looks like `crate::...` it's already good
3781             Some(ident) if ident.name == keywords::Crate.name() => return,
3782             // Otherwise go below to see if it's an extern crate
3783             Some(_) => {}
3784             // If the path has length one (and it's `CrateRoot` most likely)
3785             // then we don't know whether we're gonna be importing a crate or an
3786             // item in our crate. Defer this lint to elsewhere
3787             None => return,
3788         }
3789
3790         // If the first element of our path was actually resolved to an
3791         // `ExternCrate` (also used for `crate::...`) then no need to issue a
3792         // warning, this looks all good!
3793         if let Some(binding) = second_binding {
3794             if let NameBindingKind::Import { directive: d, .. } = binding.kind {
3795                 // Careful: we still want to rewrite paths from
3796                 // renamed extern crates.
3797                 if let ImportDirectiveSubclass::ExternCrate { source: None, .. } = d.subclass {
3798                     return
3799                 }
3800             }
3801         }
3802
3803         let diag = lint::builtin::BuiltinLintDiagnostics
3804             ::AbsPathWithModule(diag_span);
3805         self.session.buffer_lint_with_diagnostic(
3806             lint::builtin::ABSOLUTE_PATHS_NOT_STARTING_WITH_CRATE,
3807             diag_id, diag_span,
3808             "absolute paths must start with `self`, `super`, \
3809             `crate`, or an external crate name in the 2018 edition",
3810             diag);
3811     }
3812
3813     // Resolve a local definition, potentially adjusting for closures.
3814     fn adjust_local_def(&mut self,
3815                         ns: Namespace,
3816                         rib_index: usize,
3817                         mut def: Def,
3818                         record_used: bool,
3819                         span: Span) -> Def {
3820         let ribs = &self.ribs[ns][rib_index + 1..];
3821
3822         // An invalid forward use of a type parameter from a previous default.
3823         if let ForwardTyParamBanRibKind = self.ribs[ns][rib_index].kind {
3824             if record_used {
3825                 resolve_error(self, span, ResolutionError::ForwardDeclaredTyParam);
3826             }
3827             assert_eq!(def, Def::Err);
3828             return Def::Err;
3829         }
3830
3831         match def {
3832             Def::Upvar(..) => {
3833                 span_bug!(span, "unexpected {:?} in bindings", def)
3834             }
3835             Def::Local(node_id) => {
3836                 for rib in ribs {
3837                     match rib.kind {
3838                         NormalRibKind | ModuleRibKind(..) | MacroDefinition(..) |
3839                         ForwardTyParamBanRibKind => {
3840                             // Nothing to do. Continue.
3841                         }
3842                         ClosureRibKind(function_id) => {
3843                             let prev_def = def;
3844
3845                             let seen = self.freevars_seen
3846                                            .entry(function_id)
3847                                            .or_default();
3848                             if let Some(&index) = seen.get(&node_id) {
3849                                 def = Def::Upvar(node_id, index, function_id);
3850                                 continue;
3851                             }
3852                             let vec = self.freevars
3853                                           .entry(function_id)
3854                                           .or_default();
3855                             let depth = vec.len();
3856                             def = Def::Upvar(node_id, depth, function_id);
3857
3858                             if record_used {
3859                                 vec.push(Freevar {
3860                                     def: prev_def,
3861                                     span,
3862                                 });
3863                                 seen.insert(node_id, depth);
3864                             }
3865                         }
3866                         ItemRibKind | TraitOrImplItemRibKind => {
3867                             // This was an attempt to access an upvar inside a
3868                             // named function item. This is not allowed, so we
3869                             // report an error.
3870                             if record_used {
3871                                 resolve_error(self, span,
3872                                         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem);
3873                             }
3874                             return Def::Err;
3875                         }
3876                         ConstantItemRibKind => {
3877                             // Still doesn't deal with upvars
3878                             if record_used {
3879                                 resolve_error(self, span,
3880                                         ResolutionError::AttemptToUseNonConstantValueInConstant);
3881                             }
3882                             return Def::Err;
3883                         }
3884                     }
3885                 }
3886             }
3887             Def::TyParam(..) | Def::SelfTy(..) => {
3888                 for rib in ribs {
3889                     match rib.kind {
3890                         NormalRibKind | TraitOrImplItemRibKind | ClosureRibKind(..) |
3891                         ModuleRibKind(..) | MacroDefinition(..) | ForwardTyParamBanRibKind |
3892                         ConstantItemRibKind => {
3893                             // Nothing to do. Continue.
3894                         }
3895                         ItemRibKind => {
3896                             // This was an attempt to use a type parameter outside
3897                             // its scope.
3898                             if record_used {
3899                                 resolve_error(self, span,
3900                                     ResolutionError::TypeParametersFromOuterFunction(def));
3901                             }
3902                             return Def::Err;
3903                         }
3904                     }
3905                 }
3906             }
3907             _ => {}
3908         }
3909         return def;
3910     }
3911
3912     fn lookup_assoc_candidate<FilterFn>(&mut self,
3913                                         ident: Ident,
3914                                         ns: Namespace,
3915                                         filter_fn: FilterFn)
3916                                         -> Option<AssocSuggestion>
3917         where FilterFn: Fn(Def) -> bool
3918     {
3919         fn extract_node_id(t: &Ty) -> Option<NodeId> {
3920             match t.node {
3921                 TyKind::Path(None, _) => Some(t.id),
3922                 TyKind::Rptr(_, ref mut_ty) => extract_node_id(&mut_ty.ty),
3923                 // This doesn't handle the remaining `Ty` variants as they are not
3924                 // that commonly the self_type, it might be interesting to provide
3925                 // support for those in future.
3926                 _ => None,
3927             }
3928         }
3929
3930         // Fields are generally expected in the same contexts as locals.
3931         if filter_fn(Def::Local(ast::DUMMY_NODE_ID)) {
3932             if let Some(node_id) = self.current_self_type.as_ref().and_then(extract_node_id) {
3933                 // Look for a field with the same name in the current self_type.
3934                 if let Some(resolution) = self.def_map.get(&node_id) {
3935                     match resolution.base_def() {
3936                         Def::Struct(did) | Def::Union(did)
3937                                 if resolution.unresolved_segments() == 0 => {
3938                             if let Some(field_names) = self.field_names.get(&did) {
3939                                 if field_names.iter().any(|&field_name| ident.name == field_name) {
3940                                     return Some(AssocSuggestion::Field);
3941                                 }
3942                             }
3943                         }
3944                         _ => {}
3945                     }
3946                 }
3947             }
3948         }
3949
3950         // Look for associated items in the current trait.
3951         if let Some((module, _)) = self.current_trait_ref {
3952             if let Ok(binding) = self.resolve_ident_in_module(
3953                     ModuleOrUniformRoot::Module(module),
3954                     ident,
3955                     ns,
3956                     false,
3957                     module.span,
3958                 ) {
3959                 let def = binding.def();
3960                 if filter_fn(def) {
3961                     return Some(if self.has_self.contains(&def.def_id()) {
3962                         AssocSuggestion::MethodWithSelf
3963                     } else {
3964                         AssocSuggestion::AssocItem
3965                     });
3966                 }
3967             }
3968         }
3969
3970         None
3971     }
3972
3973     fn lookup_typo_candidate<FilterFn>(&mut self,
3974                                        path: &[Ident],
3975                                        ns: Namespace,
3976                                        filter_fn: FilterFn,
3977                                        span: Span)
3978                                        -> Option<Symbol>
3979         where FilterFn: Fn(Def) -> bool
3980     {
3981         let add_module_candidates = |module: Module, names: &mut Vec<Name>| {
3982             for (&(ident, _), resolution) in module.resolutions.borrow().iter() {
3983                 if let Some(binding) = resolution.borrow().binding {
3984                     if filter_fn(binding.def()) {
3985                         names.push(ident.name);
3986                     }
3987                 }
3988             }
3989         };
3990
3991         let mut names = Vec::new();
3992         if path.len() == 1 {
3993             // Search in lexical scope.
3994             // Walk backwards up the ribs in scope and collect candidates.
3995             for rib in self.ribs[ns].iter().rev() {
3996                 // Locals and type parameters
3997                 for (ident, def) in &rib.bindings {
3998                     if filter_fn(*def) {
3999                         names.push(ident.name);
4000                     }
4001                 }
4002                 // Items in scope
4003                 if let ModuleRibKind(module) = rib.kind {
4004                     // Items from this module
4005                     add_module_candidates(module, &mut names);
4006
4007                     if let ModuleKind::Block(..) = module.kind {
4008                         // We can see through blocks
4009                     } else {
4010                         // Items from the prelude
4011                         if !module.no_implicit_prelude {
4012                             names.extend(self.session.extern_prelude.iter().cloned());
4013                             if let Some(prelude) = self.prelude {
4014                                 add_module_candidates(prelude, &mut names);
4015                             }
4016                         }
4017                         break;
4018                     }
4019                 }
4020             }
4021             // Add primitive types to the mix
4022             if filter_fn(Def::PrimTy(Bool)) {
4023                 names.extend(
4024                     self.primitive_type_table.primitive_types.iter().map(|(name, _)| name)
4025                 )
4026             }
4027         } else {
4028             // Search in module.
4029             let mod_path = &path[..path.len() - 1];
4030             if let PathResult::Module(module) = self.resolve_path(None, mod_path, Some(TypeNS),
4031                                                                   false, span, CrateLint::No) {
4032                 if let ModuleOrUniformRoot::Module(module) = module {
4033                     add_module_candidates(module, &mut names);
4034                 }
4035             }
4036         }
4037
4038         let name = path[path.len() - 1].name;
4039         // Make sure error reporting is deterministic.
4040         names.sort_by_cached_key(|name| name.as_str());
4041         match find_best_match_for_name(names.iter(), &name.as_str(), None) {
4042             Some(found) if found != name => Some(found),
4043             _ => None,
4044         }
4045     }
4046
4047     fn with_resolved_label<F>(&mut self, label: Option<Label>, id: NodeId, f: F)
4048         where F: FnOnce(&mut Resolver)
4049     {
4050         if let Some(label) = label {
4051             self.unused_labels.insert(id, label.ident.span);
4052             let def = Def::Label(id);
4053             self.with_label_rib(|this| {
4054                 let ident = label.ident.modern_and_legacy();
4055                 this.label_ribs.last_mut().unwrap().bindings.insert(ident, def);
4056                 f(this);
4057             });
4058         } else {
4059             f(self);
4060         }
4061     }
4062
4063     fn resolve_labeled_block(&mut self, label: Option<Label>, id: NodeId, block: &Block) {
4064         self.with_resolved_label(label, id, |this| this.visit_block(block));
4065     }
4066
4067     fn resolve_expr(&mut self, expr: &Expr, parent: Option<&Expr>) {
4068         // First, record candidate traits for this expression if it could
4069         // result in the invocation of a method call.
4070
4071         self.record_candidate_traits_for_expr_if_necessary(expr);
4072
4073         // Next, resolve the node.
4074         match expr.node {
4075             ExprKind::Path(ref qself, ref path) => {
4076                 self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
4077                 visit::walk_expr(self, expr);
4078             }
4079
4080             ExprKind::Struct(ref path, ..) => {
4081                 self.smart_resolve_path(expr.id, None, path, PathSource::Struct);
4082                 visit::walk_expr(self, expr);
4083             }
4084
4085             ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
4086                 let def = self.search_label(label.ident, |rib, ident| {
4087                     rib.bindings.get(&ident.modern_and_legacy()).cloned()
4088                 });
4089                 match def {
4090                     None => {
4091                         // Search again for close matches...
4092                         // Picks the first label that is "close enough", which is not necessarily
4093                         // the closest match
4094                         let close_match = self.search_label(label.ident, |rib, ident| {
4095                             let names = rib.bindings.iter().map(|(id, _)| &id.name);
4096                             find_best_match_for_name(names, &*ident.as_str(), None)
4097                         });
4098                         self.record_def(expr.id, err_path_resolution());
4099                         resolve_error(self,
4100                                       label.ident.span,
4101                                       ResolutionError::UndeclaredLabel(&label.ident.as_str(),
4102                                                                        close_match));
4103                     }
4104                     Some(Def::Label(id)) => {
4105                         // Since this def is a label, it is never read.
4106                         self.record_def(expr.id, PathResolution::new(Def::Label(id)));
4107                         self.unused_labels.remove(&id);
4108                     }
4109                     Some(_) => {
4110                         span_bug!(expr.span, "label wasn't mapped to a label def!");
4111                     }
4112                 }
4113
4114                 // visit `break` argument if any
4115                 visit::walk_expr(self, expr);
4116             }
4117
4118             ExprKind::IfLet(ref pats, ref subexpression, ref if_block, ref optional_else) => {
4119                 self.visit_expr(subexpression);
4120
4121                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
4122                 let mut bindings_list = FxHashMap();
4123                 for pat in pats {
4124                     self.resolve_pattern(pat, PatternSource::IfLet, &mut bindings_list);
4125                 }
4126                 // This has to happen *after* we determine which pat_idents are variants
4127                 self.check_consistent_bindings(pats);
4128                 self.visit_block(if_block);
4129                 self.ribs[ValueNS].pop();
4130
4131                 optional_else.as_ref().map(|expr| self.visit_expr(expr));
4132             }
4133
4134             ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),
4135
4136             ExprKind::While(ref subexpression, ref block, label) => {
4137                 self.with_resolved_label(label, expr.id, |this| {
4138                     this.visit_expr(subexpression);
4139                     this.visit_block(block);
4140                 });
4141             }
4142
4143             ExprKind::WhileLet(ref pats, ref subexpression, ref block, label) => {
4144                 self.with_resolved_label(label, expr.id, |this| {
4145                     this.visit_expr(subexpression);
4146                     this.ribs[ValueNS].push(Rib::new(NormalRibKind));
4147                     let mut bindings_list = FxHashMap();
4148                     for pat in pats {
4149                         this.resolve_pattern(pat, PatternSource::WhileLet, &mut bindings_list);
4150                     }
4151                     // This has to happen *after* we determine which pat_idents are variants
4152                     this.check_consistent_bindings(pats);
4153                     this.visit_block(block);
4154                     this.ribs[ValueNS].pop();
4155                 });
4156             }
4157
4158             ExprKind::ForLoop(ref pattern, ref subexpression, ref block, label) => {
4159                 self.visit_expr(subexpression);
4160                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
4161                 self.resolve_pattern(pattern, PatternSource::For, &mut FxHashMap());
4162
4163                 self.resolve_labeled_block(label, expr.id, block);
4164
4165                 self.ribs[ValueNS].pop();
4166             }
4167
4168             ExprKind::Block(ref block, label) => self.resolve_labeled_block(label, block.id, block),
4169
4170             // Equivalent to `visit::walk_expr` + passing some context to children.
4171             ExprKind::Field(ref subexpression, _) => {
4172                 self.resolve_expr(subexpression, Some(expr));
4173             }
4174             ExprKind::MethodCall(ref segment, ref arguments) => {
4175                 let mut arguments = arguments.iter();
4176                 self.resolve_expr(arguments.next().unwrap(), Some(expr));
4177                 for argument in arguments {
4178                     self.resolve_expr(argument, None);
4179                 }
4180                 self.visit_path_segment(expr.span, segment);
4181             }
4182
4183             ExprKind::Call(ref callee, ref arguments) => {
4184                 self.resolve_expr(callee, Some(expr));
4185                 for argument in arguments {
4186                     self.resolve_expr(argument, None);
4187                 }
4188             }
4189             ExprKind::Type(ref type_expr, _) => {
4190                 self.current_type_ascription.push(type_expr.span);
4191                 visit::walk_expr(self, expr);
4192                 self.current_type_ascription.pop();
4193             }
4194             // Resolve the body of async exprs inside the async closure to which they desugar
4195             ExprKind::Async(_, async_closure_id, ref block) => {
4196                 let rib_kind = ClosureRibKind(async_closure_id);
4197                 self.ribs[ValueNS].push(Rib::new(rib_kind));
4198                 self.label_ribs.push(Rib::new(rib_kind));
4199                 self.visit_block(&block);
4200                 self.label_ribs.pop();
4201                 self.ribs[ValueNS].pop();
4202             }
4203             // `async |x| ...` gets desugared to `|x| future_from_generator(|| ...)`, so we need to
4204             // resolve the arguments within the proper scopes so that usages of them inside the
4205             // closure are detected as upvars rather than normal closure arg usages.
4206             ExprKind::Closure(
4207                 _, IsAsync::Async { closure_id: inner_closure_id, .. }, _,
4208                 ref fn_decl, ref body, _span,
4209             ) => {
4210                 let rib_kind = ClosureRibKind(expr.id);
4211                 self.ribs[ValueNS].push(Rib::new(rib_kind));
4212                 self.label_ribs.push(Rib::new(rib_kind));
4213                 // Resolve arguments:
4214                 let mut bindings_list = FxHashMap();
4215                 for argument in &fn_decl.inputs {
4216                     self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
4217                     self.visit_ty(&argument.ty);
4218                 }
4219                 // No need to resolve return type-- the outer closure return type is
4220                 // FunctionRetTy::Default
4221
4222                 // Now resolve the inner closure
4223                 {
4224                     let rib_kind = ClosureRibKind(inner_closure_id);
4225                     self.ribs[ValueNS].push(Rib::new(rib_kind));
4226                     self.label_ribs.push(Rib::new(rib_kind));
4227                     // No need to resolve arguments: the inner closure has none.
4228                     // Resolve the return type:
4229                     visit::walk_fn_ret_ty(self, &fn_decl.output);
4230                     // Resolve the body
4231                     self.visit_expr(body);
4232                     self.label_ribs.pop();
4233                     self.ribs[ValueNS].pop();
4234                 }
4235                 self.label_ribs.pop();
4236                 self.ribs[ValueNS].pop();
4237             }
4238             _ => {
4239                 visit::walk_expr(self, expr);
4240             }
4241         }
4242     }
4243
4244     fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &Expr) {
4245         match expr.node {
4246             ExprKind::Field(_, ident) => {
4247                 // FIXME(#6890): Even though you can't treat a method like a
4248                 // field, we need to add any trait methods we find that match
4249                 // the field name so that we can do some nice error reporting
4250                 // later on in typeck.
4251                 let traits = self.get_traits_containing_item(ident, ValueNS);
4252                 self.trait_map.insert(expr.id, traits);
4253             }
4254             ExprKind::MethodCall(ref segment, ..) => {
4255                 debug!("(recording candidate traits for expr) recording traits for {}",
4256                        expr.id);
4257                 let traits = self.get_traits_containing_item(segment.ident, ValueNS);
4258                 self.trait_map.insert(expr.id, traits);
4259             }
4260             _ => {
4261                 // Nothing to do.
4262             }
4263         }
4264     }
4265
4266     fn get_traits_containing_item(&mut self, mut ident: Ident, ns: Namespace)
4267                                   -> Vec<TraitCandidate> {
4268         debug!("(getting traits containing item) looking for '{}'", ident.name);
4269
4270         let mut found_traits = Vec::new();
4271         // Look for the current trait.
4272         if let Some((module, _)) = self.current_trait_ref {
4273             if self.resolve_ident_in_module(
4274                 ModuleOrUniformRoot::Module(module),
4275                 ident,
4276                 ns,
4277                 false,
4278                 module.span,
4279             ).is_ok() {
4280                 let def_id = module.def_id().unwrap();
4281                 found_traits.push(TraitCandidate { def_id: def_id, import_id: None });
4282             }
4283         }
4284
4285         ident.span = ident.span.modern();
4286         let mut search_module = self.current_module;
4287         loop {
4288             self.get_traits_in_module_containing_item(ident, ns, search_module, &mut found_traits);
4289             search_module = unwrap_or!(
4290                 self.hygienic_lexical_parent(search_module, &mut ident.span), break
4291             );
4292         }
4293
4294         if let Some(prelude) = self.prelude {
4295             if !search_module.no_implicit_prelude {
4296                 self.get_traits_in_module_containing_item(ident, ns, prelude, &mut found_traits);
4297             }
4298         }
4299
4300         found_traits
4301     }
4302
4303     fn get_traits_in_module_containing_item(&mut self,
4304                                             ident: Ident,
4305                                             ns: Namespace,
4306                                             module: Module<'a>,
4307                                             found_traits: &mut Vec<TraitCandidate>) {
4308         assert!(ns == TypeNS || ns == ValueNS);
4309         let mut traits = module.traits.borrow_mut();
4310         if traits.is_none() {
4311             let mut collected_traits = Vec::new();
4312             module.for_each_child(|name, ns, binding| {
4313                 if ns != TypeNS { return }
4314                 if let Def::Trait(_) = binding.def() {
4315                     collected_traits.push((name, binding));
4316                 }
4317             });
4318             *traits = Some(collected_traits.into_boxed_slice());
4319         }
4320
4321         for &(trait_name, binding) in traits.as_ref().unwrap().iter() {
4322             let module = binding.module().unwrap();
4323             let mut ident = ident;
4324             if ident.span.glob_adjust(module.expansion, binding.span.ctxt().modern()).is_none() {
4325                 continue
4326             }
4327             if self.resolve_ident_in_module_unadjusted(
4328                 ModuleOrUniformRoot::Module(module),
4329                 ident,
4330                 ns,
4331                 false,
4332                 false,
4333                 module.span,
4334             ).is_ok() {
4335                 let import_id = match binding.kind {
4336                     NameBindingKind::Import { directive, .. } => {
4337                         self.maybe_unused_trait_imports.insert(directive.id);
4338                         self.add_to_glob_map(directive.id, trait_name);
4339                         Some(directive.id)
4340                     }
4341                     _ => None,
4342                 };
4343                 let trait_def_id = module.def_id().unwrap();
4344                 found_traits.push(TraitCandidate { def_id: trait_def_id, import_id: import_id });
4345             }
4346         }
4347     }
4348
4349     fn lookup_import_candidates_from_module<FilterFn>(&mut self,
4350                                           lookup_name: Name,
4351                                           namespace: Namespace,
4352                                           start_module: &'a ModuleData<'a>,
4353                                           crate_name: Ident,
4354                                           filter_fn: FilterFn)
4355                                           -> Vec<ImportSuggestion>
4356         where FilterFn: Fn(Def) -> bool
4357     {
4358         let mut candidates = Vec::new();
4359         let mut worklist = Vec::new();
4360         let mut seen_modules = FxHashSet();
4361         let not_local_module = crate_name != keywords::Crate.ident();
4362         worklist.push((start_module, Vec::<ast::PathSegment>::new(), not_local_module));
4363
4364         while let Some((in_module,
4365                         path_segments,
4366                         in_module_is_extern)) = worklist.pop() {
4367             self.populate_module_if_necessary(in_module);
4368
4369             // We have to visit module children in deterministic order to avoid
4370             // instabilities in reported imports (#43552).
4371             in_module.for_each_child_stable(|ident, ns, name_binding| {
4372                 // avoid imports entirely
4373                 if name_binding.is_import() && !name_binding.is_extern_crate() { return; }
4374                 // avoid non-importable candidates as well
4375                 if !name_binding.is_importable() { return; }
4376
4377                 // collect results based on the filter function
4378                 if ident.name == lookup_name && ns == namespace {
4379                     if filter_fn(name_binding.def()) {
4380                         // create the path
4381                         let mut segms = path_segments.clone();
4382                         if self.session.rust_2018() {
4383                             // crate-local absolute paths start with `crate::` in edition 2018
4384                             // FIXME: may also be stabilized for Rust 2015 (Issues #45477, #44660)
4385                             segms.insert(
4386                                 0, ast::PathSegment::from_ident(crate_name)
4387                             );
4388                         }
4389
4390                         segms.push(ast::PathSegment::from_ident(ident));
4391                         let path = Path {
4392                             span: name_binding.span,
4393                             segments: segms,
4394                         };
4395                         // the entity is accessible in the following cases:
4396                         // 1. if it's defined in the same crate, it's always
4397                         // accessible (since private entities can be made public)
4398                         // 2. if it's defined in another crate, it's accessible
4399                         // only if both the module is public and the entity is
4400                         // declared as public (due to pruning, we don't explore
4401                         // outside crate private modules => no need to check this)
4402                         if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
4403                             candidates.push(ImportSuggestion { path: path });
4404                         }
4405                     }
4406                 }
4407
4408                 // collect submodules to explore
4409                 if let Some(module) = name_binding.module() {
4410                     // form the path
4411                     let mut path_segments = path_segments.clone();
4412                     path_segments.push(ast::PathSegment::from_ident(ident));
4413
4414                     let is_extern_crate_that_also_appears_in_prelude =
4415                         name_binding.is_extern_crate() &&
4416                         self.session.rust_2018();
4417
4418                     let is_visible_to_user =
4419                         !in_module_is_extern || name_binding.vis == ty::Visibility::Public;
4420
4421                     if !is_extern_crate_that_also_appears_in_prelude && is_visible_to_user {
4422                         // add the module to the lookup
4423                         let is_extern = in_module_is_extern || name_binding.is_extern_crate();
4424                         if seen_modules.insert(module.def_id().unwrap()) {
4425                             worklist.push((module, path_segments, is_extern));
4426                         }
4427                     }
4428                 }
4429             })
4430         }
4431
4432         candidates
4433     }
4434
4435     /// When name resolution fails, this method can be used to look up candidate
4436     /// entities with the expected name. It allows filtering them using the
4437     /// supplied predicate (which should be used to only accept the types of
4438     /// definitions expected e.g. traits). The lookup spans across all crates.
4439     ///
4440     /// NOTE: The method does not look into imports, but this is not a problem,
4441     /// since we report the definitions (thus, the de-aliased imports).
4442     fn lookup_import_candidates<FilterFn>(&mut self,
4443                                           lookup_name: Name,
4444                                           namespace: Namespace,
4445                                           filter_fn: FilterFn)
4446                                           -> Vec<ImportSuggestion>
4447         where FilterFn: Fn(Def) -> bool
4448     {
4449         let mut suggestions = vec![];
4450
4451         suggestions.extend(
4452             self.lookup_import_candidates_from_module(
4453                 lookup_name, namespace, self.graph_root, keywords::Crate.ident(), &filter_fn
4454             )
4455         );
4456
4457         if self.session.rust_2018() {
4458             for &name in &self.session.extern_prelude {
4459                 let ident = Ident::with_empty_ctxt(name);
4460                 match self.crate_loader.maybe_process_path_extern(name, ident.span) {
4461                     Some(crate_id) => {
4462                         let crate_root = self.get_module(DefId {
4463                             krate: crate_id,
4464                             index: CRATE_DEF_INDEX,
4465                         });
4466                         self.populate_module_if_necessary(&crate_root);
4467
4468                         suggestions.extend(
4469                             self.lookup_import_candidates_from_module(
4470                                 lookup_name, namespace, crate_root, ident, &filter_fn
4471                             )
4472                         );
4473                     }
4474                     None => {}
4475                 }
4476             }
4477         }
4478
4479         suggestions
4480     }
4481
4482     fn find_module(&mut self,
4483                    module_def: Def)
4484                    -> Option<(Module<'a>, ImportSuggestion)>
4485     {
4486         let mut result = None;
4487         let mut worklist = Vec::new();
4488         let mut seen_modules = FxHashSet();
4489         worklist.push((self.graph_root, Vec::new()));
4490
4491         while let Some((in_module, path_segments)) = worklist.pop() {
4492             // abort if the module is already found
4493             if result.is_some() { break; }
4494
4495             self.populate_module_if_necessary(in_module);
4496
4497             in_module.for_each_child_stable(|ident, _, name_binding| {
4498                 // abort if the module is already found or if name_binding is private external
4499                 if result.is_some() || !name_binding.vis.is_visible_locally() {
4500                     return
4501                 }
4502                 if let Some(module) = name_binding.module() {
4503                     // form the path
4504                     let mut path_segments = path_segments.clone();
4505                     path_segments.push(ast::PathSegment::from_ident(ident));
4506                     if module.def() == Some(module_def) {
4507                         let path = Path {
4508                             span: name_binding.span,
4509                             segments: path_segments,
4510                         };
4511                         result = Some((module, ImportSuggestion { path: path }));
4512                     } else {
4513                         // add the module to the lookup
4514                         if seen_modules.insert(module.def_id().unwrap()) {
4515                             worklist.push((module, path_segments));
4516                         }
4517                     }
4518                 }
4519             });
4520         }
4521
4522         result
4523     }
4524
4525     fn collect_enum_variants(&mut self, enum_def: Def) -> Option<Vec<Path>> {
4526         if let Def::Enum(..) = enum_def {} else {
4527             panic!("Non-enum def passed to collect_enum_variants: {:?}", enum_def)
4528         }
4529
4530         self.find_module(enum_def).map(|(enum_module, enum_import_suggestion)| {
4531             self.populate_module_if_necessary(enum_module);
4532
4533             let mut variants = Vec::new();
4534             enum_module.for_each_child_stable(|ident, _, name_binding| {
4535                 if let Def::Variant(..) = name_binding.def() {
4536                     let mut segms = enum_import_suggestion.path.segments.clone();
4537                     segms.push(ast::PathSegment::from_ident(ident));
4538                     variants.push(Path {
4539                         span: name_binding.span,
4540                         segments: segms,
4541                     });
4542                 }
4543             });
4544             variants
4545         })
4546     }
4547
4548     fn record_def(&mut self, node_id: NodeId, resolution: PathResolution) {
4549         debug!("(recording def) recording {:?} for {}", resolution, node_id);
4550         if let Some(prev_res) = self.def_map.insert(node_id, resolution) {
4551             panic!("path resolved multiple times ({:?} before, {:?} now)", prev_res, resolution);
4552         }
4553     }
4554
4555     fn resolve_visibility(&mut self, vis: &ast::Visibility) -> ty::Visibility {
4556         match vis.node {
4557             ast::VisibilityKind::Public => ty::Visibility::Public,
4558             ast::VisibilityKind::Crate(..) => {
4559                 ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX))
4560             }
4561             ast::VisibilityKind::Inherited => {
4562                 ty::Visibility::Restricted(self.current_module.normal_ancestor_id)
4563             }
4564             ast::VisibilityKind::Restricted { ref path, id, .. } => {
4565                 // Visibilities are resolved as global by default, add starting root segment.
4566                 let segments = path.make_root().iter().chain(path.segments.iter())
4567                     .map(|seg| seg.ident)
4568                     .collect::<Vec<_>>();
4569                 let def = self.smart_resolve_path_fragment(
4570                     id,
4571                     None,
4572                     &segments,
4573                     path.span,
4574                     PathSource::Visibility,
4575                     CrateLint::SimplePath(id),
4576                 ).base_def();
4577                 if def == Def::Err {
4578                     ty::Visibility::Public
4579                 } else {
4580                     let vis = ty::Visibility::Restricted(def.def_id());
4581                     if self.is_accessible(vis) {
4582                         vis
4583                     } else {
4584                         self.session.span_err(path.span, "visibilities can only be restricted \
4585                                                           to ancestor modules");
4586                         ty::Visibility::Public
4587                     }
4588                 }
4589             }
4590         }
4591     }
4592
4593     fn is_accessible(&self, vis: ty::Visibility) -> bool {
4594         vis.is_accessible_from(self.current_module.normal_ancestor_id, self)
4595     }
4596
4597     fn is_accessible_from(&self, vis: ty::Visibility, module: Module<'a>) -> bool {
4598         vis.is_accessible_from(module.normal_ancestor_id, self)
4599     }
4600
4601     fn set_binding_parent_module(&mut self, binding: &'a NameBinding<'a>, module: Module<'a>) {
4602         if let Some(old_module) = self.binding_parent_modules.insert(PtrKey(binding), module) {
4603             if !ptr::eq(module, old_module) {
4604                 span_bug!(binding.span, "parent module is reset for binding");
4605             }
4606         }
4607     }
4608
4609     fn disambiguate_legacy_vs_modern(
4610         &self,
4611         legacy: &'a NameBinding<'a>,
4612         modern: &'a NameBinding<'a>,
4613     ) -> bool {
4614         // Some non-controversial subset of ambiguities "modern macro name" vs "macro_rules"
4615         // is disambiguated to mitigate regressions from macro modularization.
4616         // Scoping for `macro_rules` behaves like scoping for `let` at module level, in general.
4617         match (self.binding_parent_modules.get(&PtrKey(legacy)),
4618                self.binding_parent_modules.get(&PtrKey(modern))) {
4619             (Some(legacy), Some(modern)) =>
4620                 legacy.normal_ancestor_id == modern.normal_ancestor_id &&
4621                 modern.is_ancestor_of(legacy),
4622             _ => false,
4623         }
4624     }
4625
4626     fn report_ambiguity_error(&self, ident: Ident, b1: &NameBinding, b2: &NameBinding) {
4627         let participle = |is_import: bool| if is_import { "imported" } else { "defined" };
4628         let msg1 =
4629             format!("`{}` could refer to the name {} here", ident, participle(b1.is_import()));
4630         let msg2 =
4631             format!("`{}` could also refer to the name {} here", ident, participle(b2.is_import()));
4632         let note = if b1.expansion != Mark::root() {
4633             Some(if let Def::Macro(..) = b1.def() {
4634                 format!("macro-expanded {} do not shadow",
4635                         if b1.is_import() { "macro imports" } else { "macros" })
4636             } else {
4637                 format!("macro-expanded {} do not shadow when used in a macro invocation path",
4638                         if b1.is_import() { "imports" } else { "items" })
4639             })
4640         } else if b1.is_glob_import() {
4641             Some(format!("consider adding an explicit import of `{}` to disambiguate", ident))
4642         } else {
4643             None
4644         };
4645
4646         let mut err = struct_span_err!(self.session, ident.span, E0659, "`{}` is ambiguous", ident);
4647         err.span_label(ident.span, "ambiguous name");
4648         err.span_note(b1.span, &msg1);
4649         match b2.def() {
4650             Def::Macro(..) if b2.span.is_dummy() =>
4651                 err.note(&format!("`{}` is also a builtin macro", ident)),
4652             _ => err.span_note(b2.span, &msg2),
4653         };
4654         if let Some(note) = note {
4655             err.note(&note);
4656         }
4657         err.emit();
4658     }
4659
4660     fn report_errors(&mut self, krate: &Crate) {
4661         self.report_with_use_injections(krate);
4662         let mut reported_spans = FxHashSet();
4663
4664         for &(span_use, span_def) in &self.macro_expanded_macro_export_errors {
4665             let msg = "macro-expanded `macro_export` macros from the current crate \
4666                        cannot be referred to by absolute paths";
4667             self.session.buffer_lint_with_diagnostic(
4668                 lint::builtin::MACRO_EXPANDED_MACRO_EXPORTS_ACCESSED_BY_ABSOLUTE_PATHS,
4669                 CRATE_NODE_ID, span_use, msg,
4670                 lint::builtin::BuiltinLintDiagnostics::
4671                     MacroExpandedMacroExportsAccessedByAbsolutePaths(span_def),
4672             );
4673         }
4674
4675         for &AmbiguityError { ident, b1, b2 } in &self.ambiguity_errors {
4676             if reported_spans.insert(ident.span) {
4677                 self.report_ambiguity_error(ident, b1, b2);
4678             }
4679         }
4680
4681         for &PrivacyError(span, name, binding) in &self.privacy_errors {
4682             if !reported_spans.insert(span) { continue }
4683             span_err!(self.session, span, E0603, "{} `{}` is private", binding.descr(), name);
4684         }
4685     }
4686
4687     fn report_with_use_injections(&mut self, krate: &Crate) {
4688         for UseError { mut err, candidates, node_id, better } in self.use_injections.drain(..) {
4689             let (span, found_use) = UsePlacementFinder::check(krate, node_id);
4690             if !candidates.is_empty() {
4691                 show_candidates(&mut err, span, &candidates, better, found_use);
4692             }
4693             err.emit();
4694         }
4695     }
4696
4697     fn report_conflict<'b>(&mut self,
4698                        parent: Module,
4699                        ident: Ident,
4700                        ns: Namespace,
4701                        new_binding: &NameBinding<'b>,
4702                        old_binding: &NameBinding<'b>) {
4703         // Error on the second of two conflicting names
4704         if old_binding.span.lo() > new_binding.span.lo() {
4705             return self.report_conflict(parent, ident, ns, old_binding, new_binding);
4706         }
4707
4708         let container = match parent.kind {
4709             ModuleKind::Def(Def::Mod(_), _) => "module",
4710             ModuleKind::Def(Def::Trait(_), _) => "trait",
4711             ModuleKind::Block(..) => "block",
4712             _ => "enum",
4713         };
4714
4715         let old_noun = match old_binding.is_import() {
4716             true => "import",
4717             false => "definition",
4718         };
4719
4720         let new_participle = match new_binding.is_import() {
4721             true => "imported",
4722             false => "defined",
4723         };
4724
4725         let (name, span) = (ident.name, self.session.source_map().def_span(new_binding.span));
4726
4727         if let Some(s) = self.name_already_seen.get(&name) {
4728             if s == &span {
4729                 return;
4730             }
4731         }
4732
4733         let old_kind = match (ns, old_binding.module()) {
4734             (ValueNS, _) => "value",
4735             (MacroNS, _) => "macro",
4736             (TypeNS, _) if old_binding.is_extern_crate() => "extern crate",
4737             (TypeNS, Some(module)) if module.is_normal() => "module",
4738             (TypeNS, Some(module)) if module.is_trait() => "trait",
4739             (TypeNS, _) => "type",
4740         };
4741
4742         let msg = format!("the name `{}` is defined multiple times", name);
4743
4744         let mut err = match (old_binding.is_extern_crate(), new_binding.is_extern_crate()) {
4745             (true, true) => struct_span_err!(self.session, span, E0259, "{}", msg),
4746             (true, _) | (_, true) => match new_binding.is_import() && old_binding.is_import() {
4747                 true => struct_span_err!(self.session, span, E0254, "{}", msg),
4748                 false => struct_span_err!(self.session, span, E0260, "{}", msg),
4749             },
4750             _ => match (old_binding.is_import(), new_binding.is_import()) {
4751                 (false, false) => struct_span_err!(self.session, span, E0428, "{}", msg),
4752                 (true, true) => struct_span_err!(self.session, span, E0252, "{}", msg),
4753                 _ => struct_span_err!(self.session, span, E0255, "{}", msg),
4754             },
4755         };
4756
4757         err.note(&format!("`{}` must be defined only once in the {} namespace of this {}",
4758                           name,
4759                           ns.descr(),
4760                           container));
4761
4762         err.span_label(span, format!("`{}` re{} here", name, new_participle));
4763         if !old_binding.span.is_dummy() {
4764             err.span_label(self.session.source_map().def_span(old_binding.span),
4765                            format!("previous {} of the {} `{}` here", old_noun, old_kind, name));
4766         }
4767
4768         // See https://github.com/rust-lang/rust/issues/32354
4769         if old_binding.is_import() || new_binding.is_import() {
4770             let binding = if new_binding.is_import() && !new_binding.span.is_dummy() {
4771                 new_binding
4772             } else {
4773                 old_binding
4774             };
4775
4776             let cm = self.session.source_map();
4777             let rename_msg = "you can use `as` to change the binding name of the import";
4778
4779             if let (
4780                 Ok(snippet),
4781                 NameBindingKind::Import { directive, ..},
4782                 _dummy @ false,
4783             ) = (
4784                 cm.span_to_snippet(binding.span),
4785                 binding.kind.clone(),
4786                 binding.span.is_dummy(),
4787             ) {
4788                 let suggested_name = if name.as_str().chars().next().unwrap().is_uppercase() {
4789                     format!("Other{}", name)
4790                 } else {
4791                     format!("other_{}", name)
4792                 };
4793
4794                 err.span_suggestion_with_applicability(
4795                     binding.span,
4796                     &rename_msg,
4797                     match (&directive.subclass, snippet.as_ref()) {
4798                         (ImportDirectiveSubclass::SingleImport { .. }, "self") =>
4799                             format!("self as {}", suggested_name),
4800                         (ImportDirectiveSubclass::SingleImport { source, .. }, _) =>
4801                             format!(
4802                                 "{} as {}{}",
4803                                 &snippet[..((source.span.hi().0 - binding.span.lo().0) as usize)],
4804                                 suggested_name,
4805                                 if snippet.ends_with(";") {
4806                                     ";"
4807                                 } else {
4808                                     ""
4809                                 }
4810                             ),
4811                         (ImportDirectiveSubclass::ExternCrate { source, target, .. }, _) =>
4812                             format!(
4813                                 "extern crate {} as {};",
4814                                 source.unwrap_or(target.name),
4815                                 suggested_name,
4816                             ),
4817                         (_, _) => unreachable!(),
4818                     },
4819                     Applicability::MaybeIncorrect,
4820                 );
4821             } else {
4822                 err.span_label(binding.span, rename_msg);
4823             }
4824         }
4825
4826         err.emit();
4827         self.name_already_seen.insert(name, span);
4828     }
4829 }
4830
4831 fn is_self_type(path: &[Ident], namespace: Namespace) -> bool {
4832     namespace == TypeNS && path.len() == 1 && path[0].name == keywords::SelfType.name()
4833 }
4834
4835 fn is_self_value(path: &[Ident], namespace: Namespace) -> bool {
4836     namespace == ValueNS && path.len() == 1 && path[0].name == keywords::SelfValue.name()
4837 }
4838
4839 fn names_to_string(idents: &[Ident]) -> String {
4840     let mut result = String::new();
4841     for (i, ident) in idents.iter()
4842                             .filter(|ident| ident.name != keywords::CrateRoot.name())
4843                             .enumerate() {
4844         if i > 0 {
4845             result.push_str("::");
4846         }
4847         result.push_str(&ident.as_str());
4848     }
4849     result
4850 }
4851
4852 fn path_names_to_string(path: &Path) -> String {
4853     names_to_string(&path.segments.iter()
4854                         .map(|seg| seg.ident)
4855                         .collect::<Vec<_>>())
4856 }
4857
4858 /// Get the path for an enum and the variant from an `ImportSuggestion` for an enum variant.
4859 fn import_candidate_to_paths(suggestion: &ImportSuggestion) -> (Span, String, String) {
4860     let variant_path = &suggestion.path;
4861     let variant_path_string = path_names_to_string(variant_path);
4862
4863     let path_len = suggestion.path.segments.len();
4864     let enum_path = ast::Path {
4865         span: suggestion.path.span,
4866         segments: suggestion.path.segments[0..path_len - 1].to_vec(),
4867     };
4868     let enum_path_string = path_names_to_string(&enum_path);
4869
4870     (suggestion.path.span, variant_path_string, enum_path_string)
4871 }
4872
4873
4874 /// When an entity with a given name is not available in scope, we search for
4875 /// entities with that name in all crates. This method allows outputting the
4876 /// results of this search in a programmer-friendly way
4877 fn show_candidates(err: &mut DiagnosticBuilder,
4878                    // This is `None` if all placement locations are inside expansions
4879                    span: Option<Span>,
4880                    candidates: &[ImportSuggestion],
4881                    better: bool,
4882                    found_use: bool) {
4883
4884     // we want consistent results across executions, but candidates are produced
4885     // by iterating through a hash map, so make sure they are ordered:
4886     let mut path_strings: Vec<_> =
4887         candidates.into_iter().map(|c| path_names_to_string(&c.path)).collect();
4888     path_strings.sort();
4889
4890     let better = if better { "better " } else { "" };
4891     let msg_diff = match path_strings.len() {
4892         1 => " is found in another module, you can import it",
4893         _ => "s are found in other modules, you can import them",
4894     };
4895     let msg = format!("possible {}candidate{} into scope", better, msg_diff);
4896
4897     if let Some(span) = span {
4898         for candidate in &mut path_strings {
4899             // produce an additional newline to separate the new use statement
4900             // from the directly following item.
4901             let additional_newline = if found_use {
4902                 ""
4903             } else {
4904                 "\n"
4905             };
4906             *candidate = format!("use {};\n{}", candidate, additional_newline);
4907         }
4908
4909         err.span_suggestions_with_applicability(
4910             span,
4911             &msg,
4912             path_strings,
4913             Applicability::Unspecified,
4914         );
4915     } else {
4916         let mut msg = msg;
4917         msg.push(':');
4918         for candidate in path_strings {
4919             msg.push('\n');
4920             msg.push_str(&candidate);
4921         }
4922     }
4923 }
4924
4925 /// A somewhat inefficient routine to obtain the name of a module.
4926 fn module_to_string(module: Module) -> Option<String> {
4927     let mut names = Vec::new();
4928
4929     fn collect_mod(names: &mut Vec<Ident>, module: Module) {
4930         if let ModuleKind::Def(_, name) = module.kind {
4931             if let Some(parent) = module.parent {
4932                 names.push(Ident::with_empty_ctxt(name));
4933                 collect_mod(names, parent);
4934             }
4935         } else {
4936             // danger, shouldn't be ident?
4937             names.push(Ident::from_str("<opaque>"));
4938             collect_mod(names, module.parent.unwrap());
4939         }
4940     }
4941     collect_mod(&mut names, module);
4942
4943     if names.is_empty() {
4944         return None;
4945     }
4946     Some(names_to_string(&names.into_iter()
4947                         .rev()
4948                         .collect::<Vec<_>>()))
4949 }
4950
4951 fn err_path_resolution() -> PathResolution {
4952     PathResolution::new(Def::Err)
4953 }
4954
4955 #[derive(PartialEq,Copy, Clone)]
4956 pub enum MakeGlobMap {
4957     Yes,
4958     No,
4959 }
4960
4961 #[derive(Copy, Clone, Debug)]
4962 enum CrateLint {
4963     /// Do not issue the lint
4964     No,
4965
4966     /// This lint applies to some random path like `impl ::foo::Bar`
4967     /// or whatever. In this case, we can take the span of that path.
4968     SimplePath(NodeId),
4969
4970     /// This lint comes from a `use` statement. In this case, what we
4971     /// care about really is the *root* `use` statement; e.g., if we
4972     /// have nested things like `use a::{b, c}`, we care about the
4973     /// `use a` part.
4974     UsePath { root_id: NodeId, root_span: Span },
4975
4976     /// This is the "trait item" from a fully qualified path. For example,
4977     /// we might be resolving  `X::Y::Z` from a path like `<T as X::Y>::Z`.
4978     /// The `path_span` is the span of the to the trait itself (`X::Y`).
4979     QPathTrait { qpath_id: NodeId, qpath_span: Span },
4980 }
4981
4982 impl CrateLint {
4983     fn node_id(&self) -> Option<NodeId> {
4984         match *self {
4985             CrateLint::No => None,
4986             CrateLint::SimplePath(id) |
4987             CrateLint::UsePath { root_id: id, .. } |
4988             CrateLint::QPathTrait { qpath_id: id, .. } => Some(id),
4989         }
4990     }
4991 }
4992
4993 __build_diagnostic_array! { librustc_resolve, DIAGNOSTICS }