]> git.lizzy.rs Git - rust.git/blob - src/librustc_resolve/lib.rs
Auto merge of #54813 - petrochenkov:uilocale, r=alexcrichton
[rust.git] / src / librustc_resolve / lib.rs
1 // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 #![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
12        html_favicon_url = "https://doc.rust-lang.org/favicon.ico",
13        html_root_url = "https://doc.rust-lang.org/nightly/")]
14
15 #![feature(crate_visibility_modifier)]
16 #![feature(nll)]
17 #![feature(rustc_diagnostic_macros)]
18 #![feature(slice_sort_by_cached_key)]
19
20 #[macro_use]
21 extern crate bitflags;
22 #[macro_use]
23 extern crate log;
24 #[macro_use]
25 extern crate syntax;
26 extern crate syntax_pos;
27 extern crate rustc_errors as errors;
28 extern crate arena;
29 #[macro_use]
30 extern crate rustc;
31 extern crate rustc_data_structures;
32 extern crate rustc_metadata;
33
34 pub use rustc::hir::def::{Namespace, PerNS};
35
36 use self::TypeParameters::*;
37 use self::RibKind::*;
38
39 use rustc::hir::map::{Definitions, DefCollector};
40 use rustc::hir::{self, PrimTy, Bool, Char, Float, Int, Uint, Str};
41 use rustc::middle::cstore::CrateStore;
42 use rustc::session::Session;
43 use rustc::lint;
44 use rustc::hir::def::*;
45 use rustc::hir::def::Namespace::*;
46 use rustc::hir::def_id::{CRATE_DEF_INDEX, LOCAL_CRATE, DefId};
47 use rustc::hir::{Freevar, FreevarMap, TraitCandidate, TraitMap, GlobMap};
48 use rustc::session::config::nightly_options;
49 use rustc::ty;
50 use rustc::util::nodemap::{NodeMap, NodeSet, FxHashMap, FxHashSet, DefIdMap};
51
52 use rustc_metadata::creader::CrateLoader;
53 use rustc_metadata::cstore::CStore;
54
55 use syntax::source_map::SourceMap;
56 use syntax::ext::hygiene::{Mark, Transparency, SyntaxContext};
57 use syntax::ast::{self, Name, NodeId, Ident, FloatTy, IntTy, UintTy};
58 use syntax::ext::base::SyntaxExtension;
59 use syntax::ext::base::Determinacy::{self, Determined, Undetermined};
60 use syntax::ext::base::MacroKind;
61 use syntax::symbol::{Symbol, keywords};
62 use syntax::util::lev_distance::find_best_match_for_name;
63
64 use syntax::visit::{self, FnKind, Visitor};
65 use syntax::attr;
66 use syntax::ast::{CRATE_NODE_ID, Arm, IsAsync, BindingMode, Block, Crate, Expr, ExprKind};
67 use syntax::ast::{FnDecl, ForeignItem, ForeignItemKind, GenericParamKind, Generics};
68 use syntax::ast::{Item, ItemKind, ImplItem, ImplItemKind};
69 use syntax::ast::{Label, Local, Mutability, Pat, PatKind, Path};
70 use syntax::ast::{QSelf, TraitItemKind, TraitRef, Ty, TyKind};
71 use syntax::ptr::P;
72
73 use syntax_pos::{Span, DUMMY_SP, MultiSpan};
74 use errors::{Applicability, DiagnosticBuilder, DiagnosticId};
75
76 use std::cell::{Cell, RefCell};
77 use std::{cmp, fmt, iter, ptr};
78 use std::collections::BTreeSet;
79 use std::mem::replace;
80 use rustc_data_structures::ptr_key::PtrKey;
81 use rustc_data_structures::sync::Lrc;
82
83 use resolve_imports::{ImportDirective, ImportDirectiveSubclass, NameResolution, ImportResolver};
84 use macros::{InvocationData, LegacyBinding, ParentScope};
85
86 // NB: This module needs to be declared first so diagnostics are
87 // registered before they are used.
88 mod diagnostics;
89 mod error_reporting;
90 mod macros;
91 mod check_unused;
92 mod build_reduced_graph;
93 mod resolve_imports;
94
95 fn is_known_tool(name: Name) -> bool {
96     ["clippy", "rustfmt"].contains(&&*name.as_str())
97 }
98
99 /// A free importable items suggested in case of resolution failure.
100 struct ImportSuggestion {
101     path: Path,
102 }
103
104 /// A field or associated item from self type suggested in case of resolution failure.
105 enum AssocSuggestion {
106     Field,
107     MethodWithSelf,
108     AssocItem,
109 }
110
111 #[derive(Eq)]
112 struct BindingError {
113     name: Name,
114     origin: BTreeSet<Span>,
115     target: BTreeSet<Span>,
116 }
117
118 impl PartialOrd for BindingError {
119     fn partial_cmp(&self, other: &BindingError) -> Option<cmp::Ordering> {
120         Some(self.cmp(other))
121     }
122 }
123
124 impl PartialEq for BindingError {
125     fn eq(&self, other: &BindingError) -> bool {
126         self.name == other.name
127     }
128 }
129
130 impl Ord for BindingError {
131     fn cmp(&self, other: &BindingError) -> cmp::Ordering {
132         self.name.cmp(&other.name)
133     }
134 }
135
136 enum ResolutionError<'a> {
137     /// error E0401: can't use type parameters from outer function
138     TypeParametersFromOuterFunction(Def),
139     /// error E0403: the name is already used for a type parameter in this type parameter list
140     NameAlreadyUsedInTypeParameterList(Name, &'a Span),
141     /// error E0407: method is not a member of trait
142     MethodNotMemberOfTrait(Name, &'a str),
143     /// error E0437: type is not a member of trait
144     TypeNotMemberOfTrait(Name, &'a str),
145     /// error E0438: const is not a member of trait
146     ConstNotMemberOfTrait(Name, &'a str),
147     /// error E0408: variable `{}` is not bound in all patterns
148     VariableNotBoundInPattern(&'a BindingError),
149     /// error E0409: variable `{}` is bound in inconsistent ways within the same match arm
150     VariableBoundWithDifferentMode(Name, Span),
151     /// error E0415: identifier is bound more than once in this parameter list
152     IdentifierBoundMoreThanOnceInParameterList(&'a str),
153     /// error E0416: identifier is bound more than once in the same pattern
154     IdentifierBoundMoreThanOnceInSamePattern(&'a str),
155     /// error E0426: use of undeclared label
156     UndeclaredLabel(&'a str, Option<Name>),
157     /// error E0429: `self` imports are only allowed within a { } list
158     SelfImportsOnlyAllowedWithin,
159     /// error E0430: `self` import can only appear once in the list
160     SelfImportCanOnlyAppearOnceInTheList,
161     /// error E0431: `self` import can only appear in an import list with a non-empty prefix
162     SelfImportOnlyInImportListWithNonEmptyPrefix,
163     /// error E0433: failed to resolve
164     FailedToResolve(&'a str),
165     /// error E0434: can't capture dynamic environment in a fn item
166     CannotCaptureDynamicEnvironmentInFnItem,
167     /// error E0435: attempt to use a non-constant value in a constant
168     AttemptToUseNonConstantValueInConstant,
169     /// error E0530: X bindings cannot shadow Ys
170     BindingShadowsSomethingUnacceptable(&'a str, Name, &'a NameBinding<'a>),
171     /// error E0128: type parameters with a default cannot use forward declared identifiers
172     ForwardDeclaredTyParam,
173 }
174
175 /// Combines an error with provided span and emits it
176 ///
177 /// This takes the error provided, combines it with the span and any additional spans inside the
178 /// error and emits it.
179 fn resolve_error<'sess, 'a>(resolver: &'sess Resolver,
180                             span: Span,
181                             resolution_error: ResolutionError<'a>) {
182     resolve_struct_error(resolver, span, resolution_error).emit();
183 }
184
185 fn resolve_struct_error<'sess, 'a>(resolver: &'sess Resolver,
186                                    span: Span,
187                                    resolution_error: ResolutionError<'a>)
188                                    -> DiagnosticBuilder<'sess> {
189     match resolution_error {
190         ResolutionError::TypeParametersFromOuterFunction(outer_def) => {
191             let mut err = struct_span_err!(resolver.session,
192                                            span,
193                                            E0401,
194                                            "can't use type parameters from outer function");
195             err.span_label(span, "use of type variable from outer function");
196
197             let cm = resolver.session.source_map();
198             match outer_def {
199                 Def::SelfTy(maybe_trait_defid, maybe_impl_defid) => {
200                     if let Some(impl_span) = maybe_impl_defid.and_then(|def_id| {
201                         resolver.definitions.opt_span(def_id)
202                     }) {
203                         err.span_label(
204                             reduce_impl_span_to_impl_keyword(cm, impl_span),
205                             "`Self` type implicitly declared here, by this `impl`",
206                         );
207                     }
208                     match (maybe_trait_defid, maybe_impl_defid) {
209                         (Some(_), None) => {
210                             err.span_label(span, "can't use `Self` here");
211                         }
212                         (_, Some(_)) => {
213                             err.span_label(span, "use a type here instead");
214                         }
215                         (None, None) => bug!("`impl` without trait nor type?"),
216                     }
217                     return err;
218                 },
219                 Def::TyParam(typaram_defid) => {
220                     if let Some(typaram_span) = resolver.definitions.opt_span(typaram_defid) {
221                         err.span_label(typaram_span, "type variable from outer function");
222                     }
223                 },
224                 _ => {
225                     bug!("TypeParametersFromOuterFunction should only be used with Def::SelfTy or \
226                          Def::TyParam")
227                 }
228             }
229
230             // Try to retrieve the span of the function signature and generate a new message with
231             // a local type parameter
232             let sugg_msg = "try using a local type parameter instead";
233             if let Some((sugg_span, new_snippet)) = cm.generate_local_type_param_snippet(span) {
234                 // Suggest the modification to the user
235                 err.span_suggestion_with_applicability(
236                     sugg_span,
237                     sugg_msg,
238                     new_snippet,
239                     Applicability::MachineApplicable,
240                 );
241             } else if let Some(sp) = cm.generate_fn_name_span(span) {
242                 err.span_label(sp, "try adding a local type parameter in this method instead");
243             } else {
244                 err.help("try using a local type parameter instead");
245             }
246
247             err
248         }
249         ResolutionError::NameAlreadyUsedInTypeParameterList(name, first_use_span) => {
250              let mut err = struct_span_err!(resolver.session,
251                                             span,
252                                             E0403,
253                                             "the name `{}` is already used for a type parameter \
254                                             in this type parameter list",
255                                             name);
256              err.span_label(span, "already used");
257              err.span_label(first_use_span.clone(), format!("first use of `{}`", name));
258              err
259         }
260         ResolutionError::MethodNotMemberOfTrait(method, trait_) => {
261             let mut err = struct_span_err!(resolver.session,
262                                            span,
263                                            E0407,
264                                            "method `{}` is not a member of trait `{}`",
265                                            method,
266                                            trait_);
267             err.span_label(span, format!("not a member of trait `{}`", trait_));
268             err
269         }
270         ResolutionError::TypeNotMemberOfTrait(type_, trait_) => {
271             let mut err = struct_span_err!(resolver.session,
272                              span,
273                              E0437,
274                              "type `{}` is not a member of trait `{}`",
275                              type_,
276                              trait_);
277             err.span_label(span, format!("not a member of trait `{}`", trait_));
278             err
279         }
280         ResolutionError::ConstNotMemberOfTrait(const_, trait_) => {
281             let mut err = struct_span_err!(resolver.session,
282                              span,
283                              E0438,
284                              "const `{}` is not a member of trait `{}`",
285                              const_,
286                              trait_);
287             err.span_label(span, format!("not a member of trait `{}`", trait_));
288             err
289         }
290         ResolutionError::VariableNotBoundInPattern(binding_error) => {
291             let target_sp = binding_error.target.iter().cloned().collect::<Vec<_>>();
292             let msp = MultiSpan::from_spans(target_sp.clone());
293             let msg = format!("variable `{}` is not bound in all patterns", binding_error.name);
294             let mut err = resolver.session.struct_span_err_with_code(
295                 msp,
296                 &msg,
297                 DiagnosticId::Error("E0408".into()),
298             );
299             for sp in target_sp {
300                 err.span_label(sp, format!("pattern doesn't bind `{}`", binding_error.name));
301             }
302             let origin_sp = binding_error.origin.iter().cloned();
303             for sp in origin_sp {
304                 err.span_label(sp, "variable not in all patterns");
305             }
306             err
307         }
308         ResolutionError::VariableBoundWithDifferentMode(variable_name,
309                                                         first_binding_span) => {
310             let mut err = struct_span_err!(resolver.session,
311                              span,
312                              E0409,
313                              "variable `{}` is bound in inconsistent \
314                              ways within the same match arm",
315                              variable_name);
316             err.span_label(span, "bound in different ways");
317             err.span_label(first_binding_span, "first binding");
318             err
319         }
320         ResolutionError::IdentifierBoundMoreThanOnceInParameterList(identifier) => {
321             let mut err = struct_span_err!(resolver.session,
322                              span,
323                              E0415,
324                              "identifier `{}` is bound more than once in this parameter list",
325                              identifier);
326             err.span_label(span, "used as parameter more than once");
327             err
328         }
329         ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(identifier) => {
330             let mut err = struct_span_err!(resolver.session,
331                              span,
332                              E0416,
333                              "identifier `{}` is bound more than once in the same pattern",
334                              identifier);
335             err.span_label(span, "used in a pattern more than once");
336             err
337         }
338         ResolutionError::UndeclaredLabel(name, lev_candidate) => {
339             let mut err = struct_span_err!(resolver.session,
340                                            span,
341                                            E0426,
342                                            "use of undeclared label `{}`",
343                                            name);
344             if let Some(lev_candidate) = lev_candidate {
345                 err.span_label(span, format!("did you mean `{}`?", lev_candidate));
346             } else {
347                 err.span_label(span, format!("undeclared label `{}`", name));
348             }
349             err
350         }
351         ResolutionError::SelfImportsOnlyAllowedWithin => {
352             struct_span_err!(resolver.session,
353                              span,
354                              E0429,
355                              "{}",
356                              "`self` imports are only allowed within a { } list")
357         }
358         ResolutionError::SelfImportCanOnlyAppearOnceInTheList => {
359             let mut err = struct_span_err!(resolver.session, span, E0430,
360                                            "`self` import can only appear once in an import list");
361             err.span_label(span, "can only appear once in an import list");
362             err
363         }
364         ResolutionError::SelfImportOnlyInImportListWithNonEmptyPrefix => {
365             let mut err = struct_span_err!(resolver.session, span, E0431,
366                                            "`self` import can only appear in an import list with \
367                                             a non-empty prefix");
368             err.span_label(span, "can only appear in an import list with a non-empty prefix");
369             err
370         }
371         ResolutionError::FailedToResolve(msg) => {
372             let mut err = struct_span_err!(resolver.session, span, E0433,
373                                            "failed to resolve. {}", msg);
374             err.span_label(span, msg);
375             err
376         }
377         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem => {
378             let mut err = struct_span_err!(resolver.session,
379                                            span,
380                                            E0434,
381                                            "{}",
382                                            "can't capture dynamic environment in a fn item");
383             err.help("use the `|| { ... }` closure form instead");
384             err
385         }
386         ResolutionError::AttemptToUseNonConstantValueInConstant => {
387             let mut err = struct_span_err!(resolver.session, span, E0435,
388                                            "attempt to use a non-constant value in a constant");
389             err.span_label(span, "non-constant value");
390             err
391         }
392         ResolutionError::BindingShadowsSomethingUnacceptable(what_binding, name, binding) => {
393             let shadows_what = PathResolution::new(binding.def()).kind_name();
394             let mut err = struct_span_err!(resolver.session,
395                                            span,
396                                            E0530,
397                                            "{}s cannot shadow {}s", what_binding, shadows_what);
398             err.span_label(span, format!("cannot be named the same as a {}", shadows_what));
399             let participle = if binding.is_import() { "imported" } else { "defined" };
400             let msg = format!("a {} `{}` is {} here", shadows_what, name, participle);
401             err.span_label(binding.span, msg);
402             err
403         }
404         ResolutionError::ForwardDeclaredTyParam => {
405             let mut err = struct_span_err!(resolver.session, span, E0128,
406                                            "type parameters with a default cannot use \
407                                             forward declared identifiers");
408             err.span_label(
409                 span, "defaulted type parameters cannot be forward declared".to_string());
410             err
411         }
412     }
413 }
414
415 /// Adjust the impl span so that just the `impl` keyword is taken by removing
416 /// everything after `<` (`"impl<T> Iterator for A<T> {}" -> "impl"`) and
417 /// everything after the first whitespace (`"impl Iterator for A" -> "impl"`)
418 ///
419 /// Attention: The method used is very fragile since it essentially duplicates the work of the
420 /// parser. If you need to use this function or something similar, please consider updating the
421 /// source_map functions and this function to something more robust.
422 fn reduce_impl_span_to_impl_keyword(cm: &SourceMap, impl_span: Span) -> Span {
423     let impl_span = cm.span_until_char(impl_span, '<');
424     let impl_span = cm.span_until_whitespace(impl_span);
425     impl_span
426 }
427
428 #[derive(Copy, Clone, Debug)]
429 struct BindingInfo {
430     span: Span,
431     binding_mode: BindingMode,
432 }
433
434 /// Map from the name in a pattern to its binding mode.
435 type BindingMap = FxHashMap<Ident, BindingInfo>;
436
437 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
438 enum PatternSource {
439     Match,
440     IfLet,
441     WhileLet,
442     Let,
443     For,
444     FnParam,
445 }
446
447 impl PatternSource {
448     fn descr(self) -> &'static str {
449         match self {
450             PatternSource::Match => "match binding",
451             PatternSource::IfLet => "if let binding",
452             PatternSource::WhileLet => "while let binding",
453             PatternSource::Let => "let binding",
454             PatternSource::For => "for binding",
455             PatternSource::FnParam => "function parameter",
456         }
457     }
458 }
459
460 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
461 enum AliasPossibility {
462     No,
463     Maybe,
464 }
465
466 #[derive(Copy, Clone, Debug)]
467 enum PathSource<'a> {
468     // Type paths `Path`.
469     Type,
470     // Trait paths in bounds or impls.
471     Trait(AliasPossibility),
472     // Expression paths `path`, with optional parent context.
473     Expr(Option<&'a Expr>),
474     // Paths in path patterns `Path`.
475     Pat,
476     // Paths in struct expressions and patterns `Path { .. }`.
477     Struct,
478     // Paths in tuple struct patterns `Path(..)`.
479     TupleStruct,
480     // `m::A::B` in `<T as m::A>::B::C`.
481     TraitItem(Namespace),
482     // Path in `pub(path)`
483     Visibility,
484     // Path in `use a::b::{...};`
485     ImportPrefix,
486 }
487
488 impl<'a> PathSource<'a> {
489     fn namespace(self) -> Namespace {
490         match self {
491             PathSource::Type | PathSource::Trait(_) | PathSource::Struct |
492             PathSource::Visibility | PathSource::ImportPrefix => TypeNS,
493             PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct => ValueNS,
494             PathSource::TraitItem(ns) => ns,
495         }
496     }
497
498     fn global_by_default(self) -> bool {
499         match self {
500             PathSource::Visibility | PathSource::ImportPrefix => true,
501             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
502             PathSource::Struct | PathSource::TupleStruct |
503             PathSource::Trait(_) | PathSource::TraitItem(..) => false,
504         }
505     }
506
507     fn defer_to_typeck(self) -> bool {
508         match self {
509             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
510             PathSource::Struct | PathSource::TupleStruct => true,
511             PathSource::Trait(_) | PathSource::TraitItem(..) |
512             PathSource::Visibility | PathSource::ImportPrefix => false,
513         }
514     }
515
516     fn descr_expected(self) -> &'static str {
517         match self {
518             PathSource::Type => "type",
519             PathSource::Trait(_) => "trait",
520             PathSource::Pat => "unit struct/variant or constant",
521             PathSource::Struct => "struct, variant or union type",
522             PathSource::TupleStruct => "tuple struct/variant",
523             PathSource::Visibility => "module",
524             PathSource::ImportPrefix => "module or enum",
525             PathSource::TraitItem(ns) => match ns {
526                 TypeNS => "associated type",
527                 ValueNS => "method or associated constant",
528                 MacroNS => bug!("associated macro"),
529             },
530             PathSource::Expr(parent) => match parent.map(|p| &p.node) {
531                 // "function" here means "anything callable" rather than `Def::Fn`,
532                 // this is not precise but usually more helpful than just "value".
533                 Some(&ExprKind::Call(..)) => "function",
534                 _ => "value",
535             },
536         }
537     }
538
539     fn is_expected(self, def: Def) -> bool {
540         match self {
541             PathSource::Type => match def {
542                 Def::Struct(..) | Def::Union(..) | Def::Enum(..) |
543                 Def::Trait(..) | Def::TyAlias(..) | Def::AssociatedTy(..) |
544                 Def::PrimTy(..) | Def::TyParam(..) | Def::SelfTy(..) |
545                 Def::Existential(..) |
546                 Def::ForeignTy(..) => true,
547                 _ => false,
548             },
549             PathSource::Trait(AliasPossibility::No) => match def {
550                 Def::Trait(..) => true,
551                 _ => false,
552             },
553             PathSource::Trait(AliasPossibility::Maybe) => match def {
554                 Def::Trait(..) => true,
555                 Def::TraitAlias(..) => true,
556                 _ => false,
557             },
558             PathSource::Expr(..) => match def {
559                 Def::StructCtor(_, CtorKind::Const) | Def::StructCtor(_, CtorKind::Fn) |
560                 Def::VariantCtor(_, CtorKind::Const) | Def::VariantCtor(_, CtorKind::Fn) |
561                 Def::Const(..) | Def::Static(..) | Def::Local(..) | Def::Upvar(..) |
562                 Def::Fn(..) | Def::Method(..) | Def::AssociatedConst(..) |
563                 Def::SelfCtor(..) => true,
564                 _ => false,
565             },
566             PathSource::Pat => match def {
567                 Def::StructCtor(_, CtorKind::Const) |
568                 Def::VariantCtor(_, CtorKind::Const) |
569                 Def::Const(..) | Def::AssociatedConst(..) |
570                 Def::SelfCtor(..) => true,
571                 _ => false,
572             },
573             PathSource::TupleStruct => match def {
574                 Def::StructCtor(_, CtorKind::Fn) |
575                 Def::VariantCtor(_, CtorKind::Fn) |
576                 Def::SelfCtor(..) => true,
577                 _ => false,
578             },
579             PathSource::Struct => match def {
580                 Def::Struct(..) | Def::Union(..) | Def::Variant(..) |
581                 Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => true,
582                 _ => false,
583             },
584             PathSource::TraitItem(ns) => match def {
585                 Def::AssociatedConst(..) | Def::Method(..) if ns == ValueNS => true,
586                 Def::AssociatedTy(..) if ns == TypeNS => true,
587                 _ => false,
588             },
589             PathSource::ImportPrefix => match def {
590                 Def::Mod(..) | Def::Enum(..) => true,
591                 _ => false,
592             },
593             PathSource::Visibility => match def {
594                 Def::Mod(..) => true,
595                 _ => false,
596             },
597         }
598     }
599
600     fn error_code(self, has_unexpected_resolution: bool) -> &'static str {
601         __diagnostic_used!(E0404);
602         __diagnostic_used!(E0405);
603         __diagnostic_used!(E0412);
604         __diagnostic_used!(E0422);
605         __diagnostic_used!(E0423);
606         __diagnostic_used!(E0425);
607         __diagnostic_used!(E0531);
608         __diagnostic_used!(E0532);
609         __diagnostic_used!(E0573);
610         __diagnostic_used!(E0574);
611         __diagnostic_used!(E0575);
612         __diagnostic_used!(E0576);
613         __diagnostic_used!(E0577);
614         __diagnostic_used!(E0578);
615         match (self, has_unexpected_resolution) {
616             (PathSource::Trait(_), true) => "E0404",
617             (PathSource::Trait(_), false) => "E0405",
618             (PathSource::Type, true) => "E0573",
619             (PathSource::Type, false) => "E0412",
620             (PathSource::Struct, true) => "E0574",
621             (PathSource::Struct, false) => "E0422",
622             (PathSource::Expr(..), true) => "E0423",
623             (PathSource::Expr(..), false) => "E0425",
624             (PathSource::Pat, true) | (PathSource::TupleStruct, true) => "E0532",
625             (PathSource::Pat, false) | (PathSource::TupleStruct, false) => "E0531",
626             (PathSource::TraitItem(..), true) => "E0575",
627             (PathSource::TraitItem(..), false) => "E0576",
628             (PathSource::Visibility, true) | (PathSource::ImportPrefix, true) => "E0577",
629             (PathSource::Visibility, false) | (PathSource::ImportPrefix, false) => "E0578",
630         }
631     }
632 }
633
634 struct UsePlacementFinder {
635     target_module: NodeId,
636     span: Option<Span>,
637     found_use: bool,
638 }
639
640 impl UsePlacementFinder {
641     fn check(krate: &Crate, target_module: NodeId) -> (Option<Span>, bool) {
642         let mut finder = UsePlacementFinder {
643             target_module,
644             span: None,
645             found_use: false,
646         };
647         visit::walk_crate(&mut finder, krate);
648         (finder.span, finder.found_use)
649     }
650 }
651
652 impl<'tcx> Visitor<'tcx> for UsePlacementFinder {
653     fn visit_mod(
654         &mut self,
655         module: &'tcx ast::Mod,
656         _: Span,
657         _: &[ast::Attribute],
658         node_id: NodeId,
659     ) {
660         if self.span.is_some() {
661             return;
662         }
663         if node_id != self.target_module {
664             visit::walk_mod(self, module);
665             return;
666         }
667         // find a use statement
668         for item in &module.items {
669             match item.node {
670                 ItemKind::Use(..) => {
671                     // don't suggest placing a use before the prelude
672                     // import or other generated ones
673                     if item.span.ctxt().outer().expn_info().is_none() {
674                         self.span = Some(item.span.shrink_to_lo());
675                         self.found_use = true;
676                         return;
677                     }
678                 },
679                 // don't place use before extern crate
680                 ItemKind::ExternCrate(_) => {}
681                 // but place them before the first other item
682                 _ => if self.span.map_or(true, |span| item.span < span ) {
683                     if item.span.ctxt().outer().expn_info().is_none() {
684                         // don't insert between attributes and an item
685                         if item.attrs.is_empty() {
686                             self.span = Some(item.span.shrink_to_lo());
687                         } else {
688                             // find the first attribute on the item
689                             for attr in &item.attrs {
690                                 if self.span.map_or(true, |span| attr.span < span) {
691                                     self.span = Some(attr.span.shrink_to_lo());
692                                 }
693                             }
694                         }
695                     }
696                 },
697             }
698         }
699     }
700 }
701
702 /// This thing walks the whole crate in DFS manner, visiting each item, resolving names as it goes.
703 impl<'a, 'tcx, 'cl> Visitor<'tcx> for Resolver<'a, 'cl> {
704     fn visit_item(&mut self, item: &'tcx Item) {
705         self.resolve_item(item);
706     }
707     fn visit_arm(&mut self, arm: &'tcx Arm) {
708         self.resolve_arm(arm);
709     }
710     fn visit_block(&mut self, block: &'tcx Block) {
711         self.resolve_block(block);
712     }
713     fn visit_anon_const(&mut self, constant: &'tcx ast::AnonConst) {
714         self.with_constant_rib(|this| {
715             visit::walk_anon_const(this, constant);
716         });
717     }
718     fn visit_expr(&mut self, expr: &'tcx Expr) {
719         self.resolve_expr(expr, None);
720     }
721     fn visit_local(&mut self, local: &'tcx Local) {
722         self.resolve_local(local);
723     }
724     fn visit_ty(&mut self, ty: &'tcx Ty) {
725         match ty.node {
726             TyKind::Path(ref qself, ref path) => {
727                 self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
728             }
729             TyKind::ImplicitSelf => {
730                 let self_ty = keywords::SelfType.ident();
731                 let def = self.resolve_ident_in_lexical_scope(self_ty, TypeNS, Some(ty.id), ty.span)
732                               .map_or(Def::Err, |d| d.def());
733                 self.record_def(ty.id, PathResolution::new(def));
734             }
735             _ => (),
736         }
737         visit::walk_ty(self, ty);
738     }
739     fn visit_poly_trait_ref(&mut self,
740                             tref: &'tcx ast::PolyTraitRef,
741                             m: &'tcx ast::TraitBoundModifier) {
742         self.smart_resolve_path(tref.trait_ref.ref_id, None,
743                                 &tref.trait_ref.path, PathSource::Trait(AliasPossibility::Maybe));
744         visit::walk_poly_trait_ref(self, tref, m);
745     }
746     fn visit_foreign_item(&mut self, foreign_item: &'tcx ForeignItem) {
747         let type_parameters = match foreign_item.node {
748             ForeignItemKind::Fn(_, ref generics) => {
749                 HasTypeParameters(generics, ItemRibKind)
750             }
751             ForeignItemKind::Static(..) => NoTypeParameters,
752             ForeignItemKind::Ty => NoTypeParameters,
753             ForeignItemKind::Macro(..) => NoTypeParameters,
754         };
755         self.with_type_parameter_rib(type_parameters, |this| {
756             visit::walk_foreign_item(this, foreign_item);
757         });
758     }
759     fn visit_fn(&mut self,
760                 function_kind: FnKind<'tcx>,
761                 declaration: &'tcx FnDecl,
762                 _: Span,
763                 node_id: NodeId)
764     {
765         let (rib_kind, asyncness) = match function_kind {
766             FnKind::ItemFn(_, ref header, ..) =>
767                 (ItemRibKind, header.asyncness),
768             FnKind::Method(_, ref sig, _, _) =>
769                 (TraitOrImplItemRibKind, sig.header.asyncness),
770             FnKind::Closure(_) =>
771                 // Async closures aren't resolved through `visit_fn`-- they're
772                 // processed separately
773                 (ClosureRibKind(node_id), IsAsync::NotAsync),
774         };
775
776         // Create a value rib for the function.
777         self.ribs[ValueNS].push(Rib::new(rib_kind));
778
779         // Create a label rib for the function.
780         self.label_ribs.push(Rib::new(rib_kind));
781
782         // Add each argument to the rib.
783         let mut bindings_list = FxHashMap();
784         for argument in &declaration.inputs {
785             self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
786
787             self.visit_ty(&argument.ty);
788
789             debug!("(resolving function) recorded argument");
790         }
791         visit::walk_fn_ret_ty(self, &declaration.output);
792
793         // Resolve the function body, potentially inside the body of an async closure
794         if let IsAsync::Async { closure_id, .. } = asyncness {
795             let rib_kind = ClosureRibKind(closure_id);
796             self.ribs[ValueNS].push(Rib::new(rib_kind));
797             self.label_ribs.push(Rib::new(rib_kind));
798         }
799
800         match function_kind {
801             FnKind::ItemFn(.., body) |
802             FnKind::Method(.., body) => {
803                 self.visit_block(body);
804             }
805             FnKind::Closure(body) => {
806                 self.visit_expr(body);
807             }
808         };
809
810         // Leave the body of the async closure
811         if asyncness.is_async() {
812             self.label_ribs.pop();
813             self.ribs[ValueNS].pop();
814         }
815
816         debug!("(resolving function) leaving function");
817
818         self.label_ribs.pop();
819         self.ribs[ValueNS].pop();
820     }
821     fn visit_generics(&mut self, generics: &'tcx Generics) {
822         // For type parameter defaults, we have to ban access
823         // to following type parameters, as the Substs can only
824         // provide previous type parameters as they're built. We
825         // put all the parameters on the ban list and then remove
826         // them one by one as they are processed and become available.
827         let mut default_ban_rib = Rib::new(ForwardTyParamBanRibKind);
828         let mut found_default = false;
829         default_ban_rib.bindings.extend(generics.params.iter()
830             .filter_map(|param| match param.kind {
831                 GenericParamKind::Lifetime { .. } => None,
832                 GenericParamKind::Type { ref default, .. } => {
833                     found_default |= default.is_some();
834                     if found_default {
835                         Some((Ident::with_empty_ctxt(param.ident.name), Def::Err))
836                     } else {
837                         None
838                     }
839                 }
840             }));
841
842         for param in &generics.params {
843             match param.kind {
844                 GenericParamKind::Lifetime { .. } => self.visit_generic_param(param),
845                 GenericParamKind::Type { ref default, .. } => {
846                     for bound in &param.bounds {
847                         self.visit_param_bound(bound);
848                     }
849
850                     if let Some(ref ty) = default {
851                         self.ribs[TypeNS].push(default_ban_rib);
852                         self.visit_ty(ty);
853                         default_ban_rib = self.ribs[TypeNS].pop().unwrap();
854                     }
855
856                     // Allow all following defaults to refer to this type parameter.
857                     default_ban_rib.bindings.remove(&Ident::with_empty_ctxt(param.ident.name));
858                 }
859             }
860         }
861         for p in &generics.where_clause.predicates {
862             self.visit_where_predicate(p);
863         }
864     }
865 }
866
867 #[derive(Copy, Clone)]
868 enum TypeParameters<'a, 'b> {
869     NoTypeParameters,
870     HasTypeParameters(// Type parameters.
871                       &'b Generics,
872
873                       // The kind of the rib used for type parameters.
874                       RibKind<'a>),
875 }
876
877 /// The rib kind controls the translation of local
878 /// definitions (`Def::Local`) to upvars (`Def::Upvar`).
879 #[derive(Copy, Clone, Debug)]
880 enum RibKind<'a> {
881     /// No translation needs to be applied.
882     NormalRibKind,
883
884     /// We passed through a closure scope at the given node ID.
885     /// Translate upvars as appropriate.
886     ClosureRibKind(NodeId /* func id */),
887
888     /// We passed through an impl or trait and are now in one of its
889     /// methods or associated types. Allow references to ty params that impl or trait
890     /// binds. Disallow any other upvars (including other ty params that are
891     /// upvars).
892     TraitOrImplItemRibKind,
893
894     /// We passed through an item scope. Disallow upvars.
895     ItemRibKind,
896
897     /// We're in a constant item. Can't refer to dynamic stuff.
898     ConstantItemRibKind,
899
900     /// We passed through a module.
901     ModuleRibKind(Module<'a>),
902
903     /// We passed through a `macro_rules!` statement
904     MacroDefinition(DefId),
905
906     /// All bindings in this rib are type parameters that can't be used
907     /// from the default of a type parameter because they're not declared
908     /// before said type parameter. Also see the `visit_generics` override.
909     ForwardTyParamBanRibKind,
910 }
911
912 /// One local scope.
913 ///
914 /// A rib represents a scope names can live in. Note that these appear in many places, not just
915 /// around braces. At any place where the list of accessible names (of the given namespace)
916 /// changes or a new restrictions on the name accessibility are introduced, a new rib is put onto a
917 /// stack. This may be, for example, a `let` statement (because it introduces variables), a macro,
918 /// etc.
919 ///
920 /// Different [rib kinds](enum.RibKind) are transparent for different names.
921 ///
922 /// The resolution keeps a separate stack of ribs as it traverses the AST for each namespace. When
923 /// resolving, the name is looked up from inside out.
924 #[derive(Debug)]
925 struct Rib<'a> {
926     bindings: FxHashMap<Ident, Def>,
927     kind: RibKind<'a>,
928 }
929
930 impl<'a> Rib<'a> {
931     fn new(kind: RibKind<'a>) -> Rib<'a> {
932         Rib {
933             bindings: FxHashMap(),
934             kind,
935         }
936     }
937 }
938
939 /// An intermediate resolution result.
940 ///
941 /// This refers to the thing referred by a name. The difference between `Def` and `Item` is that
942 /// items are visible in their whole block, while defs only from the place they are defined
943 /// forward.
944 enum LexicalScopeBinding<'a> {
945     Item(&'a NameBinding<'a>),
946     Def(Def),
947 }
948
949 impl<'a> LexicalScopeBinding<'a> {
950     fn item(self) -> Option<&'a NameBinding<'a>> {
951         match self {
952             LexicalScopeBinding::Item(binding) => Some(binding),
953             _ => None,
954         }
955     }
956
957     fn def(self) -> Def {
958         match self {
959             LexicalScopeBinding::Item(binding) => binding.def(),
960             LexicalScopeBinding::Def(def) => def,
961         }
962     }
963 }
964
965 #[derive(Copy, Clone, Debug)]
966 pub enum ModuleOrUniformRoot<'a> {
967     /// Regular module.
968     Module(Module<'a>),
969
970     /// The `{{root}}` (`CrateRoot` aka "global") / `extern` initial segment
971     /// in which external crates resolve, and also `crate` (only in `{{root}}`,
972     /// but *not* `extern`), in the Rust 2018 edition.
973     UniformRoot(Name),
974 }
975
976 #[derive(Clone, Debug)]
977 enum PathResult<'a> {
978     Module(ModuleOrUniformRoot<'a>),
979     NonModule(PathResolution),
980     Indeterminate,
981     Failed(Span, String, bool /* is the error from the last segment? */),
982 }
983
984 enum ModuleKind {
985     /// An anonymous module, eg. just a block.
986     ///
987     /// ```
988     /// fn main() {
989     ///     fn f() {} // (1)
990     ///     { // This is an anonymous module
991     ///         f(); // This resolves to (2) as we are inside the block.
992     ///         fn f() {} // (2)
993     ///     }
994     ///     f(); // Resolves to (1)
995     /// }
996     /// ```
997     Block(NodeId),
998     /// Any module with a name.
999     ///
1000     /// This could be:
1001     ///
1002     /// * A normal module â€’ either `mod from_file;` or `mod from_block { }`.
1003     /// * A trait or an enum (it implicitly contains associated types, methods and variant
1004     ///   constructors).
1005     Def(Def, Name),
1006 }
1007
1008 /// One node in the tree of modules.
1009 pub struct ModuleData<'a> {
1010     parent: Option<Module<'a>>,
1011     kind: ModuleKind,
1012
1013     // The def id of the closest normal module (`mod`) ancestor (including this module).
1014     normal_ancestor_id: DefId,
1015
1016     resolutions: RefCell<FxHashMap<(Ident, Namespace), &'a RefCell<NameResolution<'a>>>>,
1017     legacy_macro_resolutions: RefCell<Vec<(Ident, MacroKind, ParentScope<'a>,
1018                                            Option<&'a NameBinding<'a>>)>>,
1019     macro_resolutions: RefCell<Vec<(Box<[Ident]>, Span)>>,
1020     builtin_attrs: RefCell<Vec<(Ident, ParentScope<'a>)>>,
1021
1022     // Macro invocations that can expand into items in this module.
1023     unresolved_invocations: RefCell<FxHashSet<Mark>>,
1024
1025     no_implicit_prelude: bool,
1026
1027     glob_importers: RefCell<Vec<&'a ImportDirective<'a>>>,
1028     globs: RefCell<Vec<&'a ImportDirective<'a>>>,
1029
1030     // Used to memoize the traits in this module for faster searches through all traits in scope.
1031     traits: RefCell<Option<Box<[(Ident, &'a NameBinding<'a>)]>>>,
1032
1033     // Whether this module is populated. If not populated, any attempt to
1034     // access the children must be preceded with a
1035     // `populate_module_if_necessary` call.
1036     populated: Cell<bool>,
1037
1038     /// Span of the module itself. Used for error reporting.
1039     span: Span,
1040
1041     expansion: Mark,
1042 }
1043
1044 type Module<'a> = &'a ModuleData<'a>;
1045
1046 impl<'a> ModuleData<'a> {
1047     fn new(parent: Option<Module<'a>>,
1048            kind: ModuleKind,
1049            normal_ancestor_id: DefId,
1050            expansion: Mark,
1051            span: Span) -> Self {
1052         ModuleData {
1053             parent,
1054             kind,
1055             normal_ancestor_id,
1056             resolutions: RefCell::new(FxHashMap()),
1057             legacy_macro_resolutions: RefCell::new(Vec::new()),
1058             macro_resolutions: RefCell::new(Vec::new()),
1059             builtin_attrs: RefCell::new(Vec::new()),
1060             unresolved_invocations: RefCell::new(FxHashSet()),
1061             no_implicit_prelude: false,
1062             glob_importers: RefCell::new(Vec::new()),
1063             globs: RefCell::new(Vec::new()),
1064             traits: RefCell::new(None),
1065             populated: Cell::new(normal_ancestor_id.is_local()),
1066             span,
1067             expansion,
1068         }
1069     }
1070
1071     fn for_each_child<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1072         for (&(ident, ns), name_resolution) in self.resolutions.borrow().iter() {
1073             name_resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1074         }
1075     }
1076
1077     fn for_each_child_stable<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1078         let resolutions = self.resolutions.borrow();
1079         let mut resolutions = resolutions.iter().collect::<Vec<_>>();
1080         resolutions.sort_by_cached_key(|&(&(ident, ns), _)| (ident.as_str(), ns));
1081         for &(&(ident, ns), &resolution) in resolutions.iter() {
1082             resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1083         }
1084     }
1085
1086     fn def(&self) -> Option<Def> {
1087         match self.kind {
1088             ModuleKind::Def(def, _) => Some(def),
1089             _ => None,
1090         }
1091     }
1092
1093     fn def_id(&self) -> Option<DefId> {
1094         self.def().as_ref().map(Def::def_id)
1095     }
1096
1097     // `self` resolves to the first module ancestor that `is_normal`.
1098     fn is_normal(&self) -> bool {
1099         match self.kind {
1100             ModuleKind::Def(Def::Mod(_), _) => true,
1101             _ => false,
1102         }
1103     }
1104
1105     fn is_trait(&self) -> bool {
1106         match self.kind {
1107             ModuleKind::Def(Def::Trait(_), _) => true,
1108             _ => false,
1109         }
1110     }
1111
1112     fn is_local(&self) -> bool {
1113         self.normal_ancestor_id.is_local()
1114     }
1115
1116     fn nearest_item_scope(&'a self) -> Module<'a> {
1117         if self.is_trait() { self.parent.unwrap() } else { self }
1118     }
1119
1120     fn is_ancestor_of(&self, mut other: &Self) -> bool {
1121         while !ptr::eq(self, other) {
1122             if let Some(parent) = other.parent {
1123                 other = parent;
1124             } else {
1125                 return false;
1126             }
1127         }
1128         true
1129     }
1130 }
1131
1132 impl<'a> fmt::Debug for ModuleData<'a> {
1133     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1134         write!(f, "{:?}", self.def())
1135     }
1136 }
1137
1138 /// Records a possibly-private value, type, or module definition.
1139 #[derive(Clone, Debug)]
1140 pub struct NameBinding<'a> {
1141     kind: NameBindingKind<'a>,
1142     expansion: Mark,
1143     span: Span,
1144     vis: ty::Visibility,
1145 }
1146
1147 pub trait ToNameBinding<'a> {
1148     fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a>;
1149 }
1150
1151 impl<'a> ToNameBinding<'a> for &'a NameBinding<'a> {
1152     fn to_name_binding(self, _: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> {
1153         self
1154     }
1155 }
1156
1157 #[derive(Clone, Debug)]
1158 enum NameBindingKind<'a> {
1159     Def(Def, /* is_macro_export */ bool),
1160     Module(Module<'a>),
1161     Import {
1162         binding: &'a NameBinding<'a>,
1163         directive: &'a ImportDirective<'a>,
1164         used: Cell<bool>,
1165     },
1166     Ambiguity {
1167         b1: &'a NameBinding<'a>,
1168         b2: &'a NameBinding<'a>,
1169     }
1170 }
1171
1172 struct PrivacyError<'a>(Span, Name, &'a NameBinding<'a>);
1173
1174 struct UseError<'a> {
1175     err: DiagnosticBuilder<'a>,
1176     /// Attach `use` statements for these candidates
1177     candidates: Vec<ImportSuggestion>,
1178     /// The node id of the module to place the use statements in
1179     node_id: NodeId,
1180     /// Whether the diagnostic should state that it's "better"
1181     better: bool,
1182 }
1183
1184 struct AmbiguityError<'a> {
1185     ident: Ident,
1186     b1: &'a NameBinding<'a>,
1187     b2: &'a NameBinding<'a>,
1188 }
1189
1190 impl<'a> NameBinding<'a> {
1191     fn module(&self) -> Option<Module<'a>> {
1192         match self.kind {
1193             NameBindingKind::Module(module) => Some(module),
1194             NameBindingKind::Import { binding, .. } => binding.module(),
1195             _ => None,
1196         }
1197     }
1198
1199     fn def(&self) -> Def {
1200         match self.kind {
1201             NameBindingKind::Def(def, _) => def,
1202             NameBindingKind::Module(module) => module.def().unwrap(),
1203             NameBindingKind::Import { binding, .. } => binding.def(),
1204             NameBindingKind::Ambiguity { .. } => Def::Err,
1205         }
1206     }
1207
1208     fn def_ignoring_ambiguity(&self) -> Def {
1209         match self.kind {
1210             NameBindingKind::Import { binding, .. } => binding.def_ignoring_ambiguity(),
1211             NameBindingKind::Ambiguity { b1, .. } => b1.def_ignoring_ambiguity(),
1212             _ => self.def(),
1213         }
1214     }
1215
1216     // We sometimes need to treat variants as `pub` for backwards compatibility
1217     fn pseudo_vis(&self) -> ty::Visibility {
1218         if self.is_variant() && self.def().def_id().is_local() {
1219             ty::Visibility::Public
1220         } else {
1221             self.vis
1222         }
1223     }
1224
1225     fn is_variant(&self) -> bool {
1226         match self.kind {
1227             NameBindingKind::Def(Def::Variant(..), _) |
1228             NameBindingKind::Def(Def::VariantCtor(..), _) => true,
1229             _ => false,
1230         }
1231     }
1232
1233     fn is_extern_crate(&self) -> bool {
1234         match self.kind {
1235             NameBindingKind::Import {
1236                 directive: &ImportDirective {
1237                     subclass: ImportDirectiveSubclass::ExternCrate(_), ..
1238                 }, ..
1239             } => true,
1240             _ => false,
1241         }
1242     }
1243
1244     fn is_import(&self) -> bool {
1245         match self.kind {
1246             NameBindingKind::Import { .. } => true,
1247             _ => false,
1248         }
1249     }
1250
1251     fn is_renamed_extern_crate(&self) -> bool {
1252         if let NameBindingKind::Import { directive, ..} = self.kind {
1253             if let ImportDirectiveSubclass::ExternCrate(Some(_)) = directive.subclass {
1254                 return true;
1255             }
1256         }
1257         false
1258     }
1259
1260     fn is_glob_import(&self) -> bool {
1261         match self.kind {
1262             NameBindingKind::Import { directive, .. } => directive.is_glob(),
1263             NameBindingKind::Ambiguity { b1, .. } => b1.is_glob_import(),
1264             _ => false,
1265         }
1266     }
1267
1268     fn is_importable(&self) -> bool {
1269         match self.def() {
1270             Def::AssociatedConst(..) | Def::Method(..) | Def::AssociatedTy(..) => false,
1271             _ => true,
1272         }
1273     }
1274
1275     fn is_macro_def(&self) -> bool {
1276         match self.kind {
1277             NameBindingKind::Def(Def::Macro(..), _) => true,
1278             _ => false,
1279         }
1280     }
1281
1282     fn macro_kind(&self) -> Option<MacroKind> {
1283         match self.def_ignoring_ambiguity() {
1284             Def::Macro(_, kind) => Some(kind),
1285             Def::NonMacroAttr(..) => Some(MacroKind::Attr),
1286             _ => None,
1287         }
1288     }
1289
1290     fn descr(&self) -> &'static str {
1291         if self.is_extern_crate() { "extern crate" } else { self.def().kind_name() }
1292     }
1293
1294     // Suppose that we resolved macro invocation with `invoc_parent_expansion` to binding `binding`
1295     // at some expansion round `max(invoc, binding)` when they both emerged from macros.
1296     // Then this function returns `true` if `self` may emerge from a macro *after* that
1297     // in some later round and screw up our previously found resolution.
1298     // See more detailed explanation in
1299     // https://github.com/rust-lang/rust/pull/53778#issuecomment-419224049
1300     fn may_appear_after(&self, invoc_parent_expansion: Mark, binding: &NameBinding) -> bool {
1301         // self > max(invoc, binding) => !(self <= invoc || self <= binding)
1302         // Expansions are partially ordered, so "may appear after" is an inversion of
1303         // "certainly appears before or simultaneously" and includes unordered cases.
1304         let self_parent_expansion = self.expansion;
1305         let other_parent_expansion = binding.expansion;
1306         let certainly_before_other_or_simultaneously =
1307             other_parent_expansion.is_descendant_of(self_parent_expansion);
1308         let certainly_before_invoc_or_simultaneously =
1309             invoc_parent_expansion.is_descendant_of(self_parent_expansion);
1310         !(certainly_before_other_or_simultaneously || certainly_before_invoc_or_simultaneously)
1311     }
1312 }
1313
1314 /// Interns the names of the primitive types.
1315 ///
1316 /// All other types are defined somewhere and possibly imported, but the primitive ones need
1317 /// special handling, since they have no place of origin.
1318 struct PrimitiveTypeTable {
1319     primitive_types: FxHashMap<Name, PrimTy>,
1320 }
1321
1322 impl PrimitiveTypeTable {
1323     fn new() -> PrimitiveTypeTable {
1324         let mut table = PrimitiveTypeTable { primitive_types: FxHashMap() };
1325
1326         table.intern("bool", Bool);
1327         table.intern("char", Char);
1328         table.intern("f32", Float(FloatTy::F32));
1329         table.intern("f64", Float(FloatTy::F64));
1330         table.intern("isize", Int(IntTy::Isize));
1331         table.intern("i8", Int(IntTy::I8));
1332         table.intern("i16", Int(IntTy::I16));
1333         table.intern("i32", Int(IntTy::I32));
1334         table.intern("i64", Int(IntTy::I64));
1335         table.intern("i128", Int(IntTy::I128));
1336         table.intern("str", Str);
1337         table.intern("usize", Uint(UintTy::Usize));
1338         table.intern("u8", Uint(UintTy::U8));
1339         table.intern("u16", Uint(UintTy::U16));
1340         table.intern("u32", Uint(UintTy::U32));
1341         table.intern("u64", Uint(UintTy::U64));
1342         table.intern("u128", Uint(UintTy::U128));
1343         table
1344     }
1345
1346     fn intern(&mut self, string: &str, primitive_type: PrimTy) {
1347         self.primitive_types.insert(Symbol::intern(string), primitive_type);
1348     }
1349 }
1350
1351 /// The main resolver class.
1352 ///
1353 /// This is the visitor that walks the whole crate.
1354 pub struct Resolver<'a, 'b: 'a> {
1355     session: &'a Session,
1356     cstore: &'a CStore,
1357
1358     pub definitions: Definitions,
1359
1360     graph_root: Module<'a>,
1361
1362     prelude: Option<Module<'a>>,
1363
1364     /// n.b. This is used only for better diagnostics, not name resolution itself.
1365     has_self: FxHashSet<DefId>,
1366
1367     /// Names of fields of an item `DefId` accessible with dot syntax.
1368     /// Used for hints during error reporting.
1369     field_names: FxHashMap<DefId, Vec<Name>>,
1370
1371     /// All imports known to succeed or fail.
1372     determined_imports: Vec<&'a ImportDirective<'a>>,
1373
1374     /// All non-determined imports.
1375     indeterminate_imports: Vec<&'a ImportDirective<'a>>,
1376
1377     /// The module that represents the current item scope.
1378     current_module: Module<'a>,
1379
1380     /// The current set of local scopes for types and values.
1381     /// FIXME #4948: Reuse ribs to avoid allocation.
1382     ribs: PerNS<Vec<Rib<'a>>>,
1383
1384     /// The current set of local scopes, for labels.
1385     label_ribs: Vec<Rib<'a>>,
1386
1387     /// The trait that the current context can refer to.
1388     current_trait_ref: Option<(Module<'a>, TraitRef)>,
1389
1390     /// The current self type if inside an impl (used for better errors).
1391     current_self_type: Option<Ty>,
1392
1393     /// The current self item if inside an ADT (used for better errors).
1394     current_self_item: Option<NodeId>,
1395
1396     /// The idents for the primitive types.
1397     primitive_type_table: PrimitiveTypeTable,
1398
1399     def_map: DefMap,
1400     import_map: ImportMap,
1401     pub freevars: FreevarMap,
1402     freevars_seen: NodeMap<NodeMap<usize>>,
1403     pub export_map: ExportMap,
1404     pub trait_map: TraitMap,
1405
1406     /// A map from nodes to anonymous modules.
1407     /// Anonymous modules are pseudo-modules that are implicitly created around items
1408     /// contained within blocks.
1409     ///
1410     /// For example, if we have this:
1411     ///
1412     ///  fn f() {
1413     ///      fn g() {
1414     ///          ...
1415     ///      }
1416     ///  }
1417     ///
1418     /// There will be an anonymous module created around `g` with the ID of the
1419     /// entry block for `f`.
1420     block_map: NodeMap<Module<'a>>,
1421     module_map: FxHashMap<DefId, Module<'a>>,
1422     extern_module_map: FxHashMap<(DefId, bool /* MacrosOnly? */), Module<'a>>,
1423     binding_parent_modules: FxHashMap<PtrKey<'a, NameBinding<'a>>, Module<'a>>,
1424
1425     pub make_glob_map: bool,
1426     /// Maps imports to the names of items actually imported (this actually maps
1427     /// all imports, but only glob imports are actually interesting).
1428     pub glob_map: GlobMap,
1429
1430     used_imports: FxHashSet<(NodeId, Namespace)>,
1431     pub maybe_unused_trait_imports: NodeSet,
1432     pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
1433
1434     /// A list of labels as of yet unused. Labels will be removed from this map when
1435     /// they are used (in a `break` or `continue` statement)
1436     pub unused_labels: FxHashMap<NodeId, Span>,
1437
1438     /// privacy errors are delayed until the end in order to deduplicate them
1439     privacy_errors: Vec<PrivacyError<'a>>,
1440     /// ambiguity errors are delayed for deduplication
1441     ambiguity_errors: Vec<AmbiguityError<'a>>,
1442     /// `use` injections are delayed for better placement and deduplication
1443     use_injections: Vec<UseError<'a>>,
1444     /// crate-local macro expanded `macro_export` referred to by a module-relative path
1445     macro_expanded_macro_export_errors: BTreeSet<(Span, Span)>,
1446
1447     arenas: &'a ResolverArenas<'a>,
1448     dummy_binding: &'a NameBinding<'a>,
1449
1450     crate_loader: &'a mut CrateLoader<'b>,
1451     macro_names: FxHashSet<Ident>,
1452     builtin_macros: FxHashMap<Name, &'a NameBinding<'a>>,
1453     macro_use_prelude: FxHashMap<Name, &'a NameBinding<'a>>,
1454     pub all_macros: FxHashMap<Name, Def>,
1455     macro_map: FxHashMap<DefId, Lrc<SyntaxExtension>>,
1456     macro_defs: FxHashMap<Mark, DefId>,
1457     local_macro_def_scopes: FxHashMap<NodeId, Module<'a>>,
1458     pub whitelisted_legacy_custom_derives: Vec<Name>,
1459     pub found_unresolved_macro: bool,
1460
1461     /// List of crate local macros that we need to warn about as being unused.
1462     /// Right now this only includes macro_rules! macros, and macros 2.0.
1463     unused_macros: FxHashSet<DefId>,
1464
1465     /// Maps the `Mark` of an expansion to its containing module or block.
1466     invocations: FxHashMap<Mark, &'a InvocationData<'a>>,
1467
1468     /// Avoid duplicated errors for "name already defined".
1469     name_already_seen: FxHashMap<Name, Span>,
1470
1471     potentially_unused_imports: Vec<&'a ImportDirective<'a>>,
1472
1473     /// This table maps struct IDs into struct constructor IDs,
1474     /// it's not used during normal resolution, only for better error reporting.
1475     struct_constructors: DefIdMap<(Def, ty::Visibility)>,
1476
1477     /// Only used for better errors on `fn(): fn()`
1478     current_type_ascription: Vec<Span>,
1479
1480     injected_crate: Option<Module<'a>>,
1481 }
1482
1483 /// Nothing really interesting here, it just provides memory for the rest of the crate.
1484 pub struct ResolverArenas<'a> {
1485     modules: arena::TypedArena<ModuleData<'a>>,
1486     local_modules: RefCell<Vec<Module<'a>>>,
1487     name_bindings: arena::TypedArena<NameBinding<'a>>,
1488     import_directives: arena::TypedArena<ImportDirective<'a>>,
1489     name_resolutions: arena::TypedArena<RefCell<NameResolution<'a>>>,
1490     invocation_data: arena::TypedArena<InvocationData<'a>>,
1491     legacy_bindings: arena::TypedArena<LegacyBinding<'a>>,
1492 }
1493
1494 impl<'a> ResolverArenas<'a> {
1495     fn alloc_module(&'a self, module: ModuleData<'a>) -> Module<'a> {
1496         let module = self.modules.alloc(module);
1497         if module.def_id().map(|def_id| def_id.is_local()).unwrap_or(true) {
1498             self.local_modules.borrow_mut().push(module);
1499         }
1500         module
1501     }
1502     fn local_modules(&'a self) -> ::std::cell::Ref<'a, Vec<Module<'a>>> {
1503         self.local_modules.borrow()
1504     }
1505     fn alloc_name_binding(&'a self, name_binding: NameBinding<'a>) -> &'a NameBinding<'a> {
1506         self.name_bindings.alloc(name_binding)
1507     }
1508     fn alloc_import_directive(&'a self, import_directive: ImportDirective<'a>)
1509                               -> &'a ImportDirective {
1510         self.import_directives.alloc(import_directive)
1511     }
1512     fn alloc_name_resolution(&'a self) -> &'a RefCell<NameResolution<'a>> {
1513         self.name_resolutions.alloc(Default::default())
1514     }
1515     fn alloc_invocation_data(&'a self, expansion_data: InvocationData<'a>)
1516                              -> &'a InvocationData<'a> {
1517         self.invocation_data.alloc(expansion_data)
1518     }
1519     fn alloc_legacy_binding(&'a self, binding: LegacyBinding<'a>) -> &'a LegacyBinding<'a> {
1520         self.legacy_bindings.alloc(binding)
1521     }
1522 }
1523
1524 impl<'a, 'b: 'a, 'cl: 'b> ty::DefIdTree for &'a Resolver<'b, 'cl> {
1525     fn parent(self, id: DefId) -> Option<DefId> {
1526         match id.krate {
1527             LOCAL_CRATE => self.definitions.def_key(id.index).parent,
1528             _ => self.cstore.def_key(id).parent,
1529         }.map(|index| DefId { index, ..id })
1530     }
1531 }
1532
1533 /// This interface is used through the AST→HIR step, to embed full paths into the HIR. After that
1534 /// the resolver is no longer needed as all the relevant information is inline.
1535 impl<'a, 'cl> hir::lowering::Resolver for Resolver<'a, 'cl> {
1536     fn resolve_hir_path(&mut self, path: &mut hir::Path, is_value: bool) {
1537         self.resolve_hir_path_cb(path, is_value,
1538                                  |resolver, span, error| resolve_error(resolver, span, error))
1539     }
1540
1541     fn resolve_str_path(
1542         &mut self,
1543         span: Span,
1544         crate_root: Option<&str>,
1545         components: &[&str],
1546         args: Option<P<hir::GenericArgs>>,
1547         is_value: bool
1548     ) -> hir::Path {
1549         let mut segments = iter::once(keywords::CrateRoot.ident())
1550             .chain(
1551                 crate_root.into_iter()
1552                     .chain(components.iter().cloned())
1553                     .map(Ident::from_str)
1554             ).map(hir::PathSegment::from_ident).collect::<Vec<_>>();
1555
1556         if let Some(args) = args {
1557             let ident = segments.last().unwrap().ident;
1558             *segments.last_mut().unwrap() = hir::PathSegment {
1559                 ident,
1560                 args: Some(args),
1561                 infer_types: true,
1562             };
1563         }
1564
1565         let mut path = hir::Path {
1566             span,
1567             def: Def::Err,
1568             segments: segments.into(),
1569         };
1570
1571         self.resolve_hir_path(&mut path, is_value);
1572         path
1573     }
1574
1575     fn get_resolution(&mut self, id: NodeId) -> Option<PathResolution> {
1576         self.def_map.get(&id).cloned()
1577     }
1578
1579     fn get_import(&mut self, id: NodeId) -> PerNS<Option<PathResolution>> {
1580         self.import_map.get(&id).cloned().unwrap_or_default()
1581     }
1582
1583     fn definitions(&mut self) -> &mut Definitions {
1584         &mut self.definitions
1585     }
1586 }
1587
1588 impl<'a, 'crateloader> Resolver<'a, 'crateloader> {
1589     /// Rustdoc uses this to resolve things in a recoverable way. ResolutionError<'a>
1590     /// isn't something that can be returned because it can't be made to live that long,
1591     /// and also it's a private type. Fortunately rustdoc doesn't need to know the error,
1592     /// just that an error occurred.
1593     pub fn resolve_str_path_error(&mut self, span: Span, path_str: &str, is_value: bool)
1594         -> Result<hir::Path, ()> {
1595         use std::iter;
1596         let mut errored = false;
1597
1598         let mut path = if path_str.starts_with("::") {
1599             hir::Path {
1600                 span,
1601                 def: Def::Err,
1602                 segments: iter::once(keywords::CrateRoot.ident()).chain({
1603                     path_str.split("::").skip(1).map(Ident::from_str)
1604                 }).map(hir::PathSegment::from_ident).collect(),
1605             }
1606         } else {
1607             hir::Path {
1608                 span,
1609                 def: Def::Err,
1610                 segments: path_str.split("::").map(Ident::from_str)
1611                                   .map(hir::PathSegment::from_ident).collect(),
1612             }
1613         };
1614         self.resolve_hir_path_cb(&mut path, is_value, |_, _, _| errored = true);
1615         if errored || path.def == Def::Err {
1616             Err(())
1617         } else {
1618             Ok(path)
1619         }
1620     }
1621
1622     /// resolve_hir_path, but takes a callback in case there was an error
1623     fn resolve_hir_path_cb<F>(&mut self, path: &mut hir::Path, is_value: bool, error_callback: F)
1624         where F: for<'c, 'b> FnOnce(&'c mut Resolver, Span, ResolutionError<'b>)
1625     {
1626         let namespace = if is_value { ValueNS } else { TypeNS };
1627         let hir::Path { ref segments, span, ref mut def } = *path;
1628         let path: Vec<_> = segments.iter().map(|seg| seg.ident).collect();
1629         // FIXME (Manishearth): Intra doc links won't get warned of epoch changes
1630         match self.resolve_path(None, &path, Some(namespace), true, span, CrateLint::No) {
1631             PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
1632                 *def = module.def().unwrap(),
1633             PathResult::NonModule(path_res) if path_res.unresolved_segments() == 0 =>
1634                 *def = path_res.base_def(),
1635             PathResult::NonModule(..) => match self.resolve_path(
1636                 None,
1637                 &path,
1638                 None,
1639                 true,
1640                 span,
1641                 CrateLint::No,
1642             ) {
1643                 PathResult::Failed(span, msg, _) => {
1644                     error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1645                 }
1646                 _ => {}
1647             },
1648             PathResult::Module(ModuleOrUniformRoot::UniformRoot(_)) |
1649             PathResult::Indeterminate => unreachable!(),
1650             PathResult::Failed(span, msg, _) => {
1651                 error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1652             }
1653         }
1654     }
1655 }
1656
1657 impl<'a, 'crateloader: 'a> Resolver<'a, 'crateloader> {
1658     pub fn new(session: &'a Session,
1659                cstore: &'a CStore,
1660                krate: &Crate,
1661                crate_name: &str,
1662                make_glob_map: MakeGlobMap,
1663                crate_loader: &'a mut CrateLoader<'crateloader>,
1664                arenas: &'a ResolverArenas<'a>)
1665                -> Resolver<'a, 'crateloader> {
1666         let root_def_id = DefId::local(CRATE_DEF_INDEX);
1667         let root_module_kind = ModuleKind::Def(Def::Mod(root_def_id), keywords::Invalid.name());
1668         let graph_root = arenas.alloc_module(ModuleData {
1669             no_implicit_prelude: attr::contains_name(&krate.attrs, "no_implicit_prelude"),
1670             ..ModuleData::new(None, root_module_kind, root_def_id, Mark::root(), krate.span)
1671         });
1672         let mut module_map = FxHashMap();
1673         module_map.insert(DefId::local(CRATE_DEF_INDEX), graph_root);
1674
1675         let mut definitions = Definitions::new();
1676         DefCollector::new(&mut definitions, Mark::root())
1677             .collect_root(crate_name, session.local_crate_disambiguator());
1678
1679         let mut invocations = FxHashMap();
1680         invocations.insert(Mark::root(),
1681                            arenas.alloc_invocation_data(InvocationData::root(graph_root)));
1682
1683         let mut macro_defs = FxHashMap();
1684         macro_defs.insert(Mark::root(), root_def_id);
1685
1686         Resolver {
1687             session,
1688
1689             cstore,
1690
1691             definitions,
1692
1693             // The outermost module has def ID 0; this is not reflected in the
1694             // AST.
1695             graph_root,
1696             prelude: None,
1697
1698             has_self: FxHashSet(),
1699             field_names: FxHashMap(),
1700
1701             determined_imports: Vec::new(),
1702             indeterminate_imports: Vec::new(),
1703
1704             current_module: graph_root,
1705             ribs: PerNS {
1706                 value_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1707                 type_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1708                 macro_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1709             },
1710             label_ribs: Vec::new(),
1711
1712             current_trait_ref: None,
1713             current_self_type: None,
1714             current_self_item: None,
1715
1716             primitive_type_table: PrimitiveTypeTable::new(),
1717
1718             def_map: NodeMap(),
1719             import_map: NodeMap(),
1720             freevars: NodeMap(),
1721             freevars_seen: NodeMap(),
1722             export_map: FxHashMap(),
1723             trait_map: NodeMap(),
1724             module_map,
1725             block_map: NodeMap(),
1726             extern_module_map: FxHashMap(),
1727             binding_parent_modules: FxHashMap(),
1728
1729             make_glob_map: make_glob_map == MakeGlobMap::Yes,
1730             glob_map: NodeMap(),
1731
1732             used_imports: FxHashSet(),
1733             maybe_unused_trait_imports: NodeSet(),
1734             maybe_unused_extern_crates: Vec::new(),
1735
1736             unused_labels: FxHashMap(),
1737
1738             privacy_errors: Vec::new(),
1739             ambiguity_errors: Vec::new(),
1740             use_injections: Vec::new(),
1741             macro_expanded_macro_export_errors: BTreeSet::new(),
1742
1743             arenas,
1744             dummy_binding: arenas.alloc_name_binding(NameBinding {
1745                 kind: NameBindingKind::Def(Def::Err, false),
1746                 expansion: Mark::root(),
1747                 span: DUMMY_SP,
1748                 vis: ty::Visibility::Public,
1749             }),
1750
1751             crate_loader,
1752             macro_names: FxHashSet(),
1753             builtin_macros: FxHashMap(),
1754             macro_use_prelude: FxHashMap(),
1755             all_macros: FxHashMap(),
1756             macro_map: FxHashMap(),
1757             invocations,
1758             macro_defs,
1759             local_macro_def_scopes: FxHashMap(),
1760             name_already_seen: FxHashMap(),
1761             whitelisted_legacy_custom_derives: Vec::new(),
1762             potentially_unused_imports: Vec::new(),
1763             struct_constructors: DefIdMap(),
1764             found_unresolved_macro: false,
1765             unused_macros: FxHashSet(),
1766             current_type_ascription: Vec::new(),
1767             injected_crate: None,
1768         }
1769     }
1770
1771     pub fn arenas() -> ResolverArenas<'a> {
1772         ResolverArenas {
1773             modules: arena::TypedArena::new(),
1774             local_modules: RefCell::new(Vec::new()),
1775             name_bindings: arena::TypedArena::new(),
1776             import_directives: arena::TypedArena::new(),
1777             name_resolutions: arena::TypedArena::new(),
1778             invocation_data: arena::TypedArena::new(),
1779             legacy_bindings: arena::TypedArena::new(),
1780         }
1781     }
1782
1783     /// Runs the function on each namespace.
1784     fn per_ns<F: FnMut(&mut Self, Namespace)>(&mut self, mut f: F) {
1785         f(self, TypeNS);
1786         f(self, ValueNS);
1787         f(self, MacroNS);
1788     }
1789
1790     fn macro_def(&self, mut ctxt: SyntaxContext) -> DefId {
1791         loop {
1792             match self.macro_defs.get(&ctxt.outer()) {
1793                 Some(&def_id) => return def_id,
1794                 None => ctxt.remove_mark(),
1795             };
1796         }
1797     }
1798
1799     /// Entry point to crate resolution.
1800     pub fn resolve_crate(&mut self, krate: &Crate) {
1801         ImportResolver { resolver: self }.finalize_imports();
1802         self.current_module = self.graph_root;
1803         self.finalize_current_module_macro_resolutions();
1804
1805         visit::walk_crate(self, krate);
1806
1807         check_unused::check_crate(self, krate);
1808         self.report_errors(krate);
1809         self.crate_loader.postprocess(krate);
1810     }
1811
1812     fn new_module(
1813         &self,
1814         parent: Module<'a>,
1815         kind: ModuleKind,
1816         normal_ancestor_id: DefId,
1817         expansion: Mark,
1818         span: Span,
1819     ) -> Module<'a> {
1820         let module = ModuleData::new(Some(parent), kind, normal_ancestor_id, expansion, span);
1821         self.arenas.alloc_module(module)
1822     }
1823
1824     fn record_use(&mut self, ident: Ident, ns: Namespace, binding: &'a NameBinding<'a>)
1825                   -> bool /* true if an error was reported */ {
1826         match binding.kind {
1827             NameBindingKind::Import { directive, binding, ref used }
1828                     if !used.get() => {
1829                 used.set(true);
1830                 directive.used.set(true);
1831                 self.used_imports.insert((directive.id, ns));
1832                 self.add_to_glob_map(directive.id, ident);
1833                 self.record_use(ident, ns, binding)
1834             }
1835             NameBindingKind::Import { .. } => false,
1836             NameBindingKind::Ambiguity { b1, b2 } => {
1837                 self.ambiguity_errors.push(AmbiguityError { ident, b1, b2 });
1838                 true
1839             }
1840             _ => false
1841         }
1842     }
1843
1844     fn add_to_glob_map(&mut self, id: NodeId, ident: Ident) {
1845         if self.make_glob_map {
1846             self.glob_map.entry(id).or_default().insert(ident.name);
1847         }
1848     }
1849
1850     /// This resolves the identifier `ident` in the namespace `ns` in the current lexical scope.
1851     /// More specifically, we proceed up the hierarchy of scopes and return the binding for
1852     /// `ident` in the first scope that defines it (or None if no scopes define it).
1853     ///
1854     /// A block's items are above its local variables in the scope hierarchy, regardless of where
1855     /// the items are defined in the block. For example,
1856     /// ```rust
1857     /// fn f() {
1858     ///    g(); // Since there are no local variables in scope yet, this resolves to the item.
1859     ///    let g = || {};
1860     ///    fn g() {}
1861     ///    g(); // This resolves to the local variable `g` since it shadows the item.
1862     /// }
1863     /// ```
1864     ///
1865     /// Invariant: This must only be called during main resolution, not during
1866     /// import resolution.
1867     fn resolve_ident_in_lexical_scope(&mut self,
1868                                       mut ident: Ident,
1869                                       ns: Namespace,
1870                                       record_used_id: Option<NodeId>,
1871                                       path_span: Span)
1872                                       -> Option<LexicalScopeBinding<'a>> {
1873         let record_used = record_used_id.is_some();
1874         assert!(ns == TypeNS  || ns == ValueNS);
1875         if ns == TypeNS {
1876             ident.span = if ident.name == keywords::SelfType.name() {
1877                 // FIXME(jseyfried) improve `Self` hygiene
1878                 ident.span.with_ctxt(SyntaxContext::empty())
1879             } else {
1880                 ident.span.modern()
1881             }
1882         } else {
1883             ident = ident.modern_and_legacy();
1884         }
1885
1886         // Walk backwards up the ribs in scope.
1887         let mut module = self.graph_root;
1888         for i in (0 .. self.ribs[ns].len()).rev() {
1889             if let Some(def) = self.ribs[ns][i].bindings.get(&ident).cloned() {
1890                 // The ident resolves to a type parameter or local variable.
1891                 return Some(LexicalScopeBinding::Def(
1892                     self.adjust_local_def(ns, i, def, record_used, path_span)
1893                 ));
1894             }
1895
1896             module = match self.ribs[ns][i].kind {
1897                 ModuleRibKind(module) => module,
1898                 MacroDefinition(def) if def == self.macro_def(ident.span.ctxt()) => {
1899                     // If an invocation of this macro created `ident`, give up on `ident`
1900                     // and switch to `ident`'s source from the macro definition.
1901                     ident.span.remove_mark();
1902                     continue
1903                 }
1904                 _ => continue,
1905             };
1906
1907             let item = self.resolve_ident_in_module_unadjusted(
1908                 ModuleOrUniformRoot::Module(module),
1909                 ident,
1910                 ns,
1911                 false,
1912                 record_used,
1913                 path_span,
1914             );
1915             if let Ok(binding) = item {
1916                 // The ident resolves to an item.
1917                 return Some(LexicalScopeBinding::Item(binding));
1918             }
1919
1920             match module.kind {
1921                 ModuleKind::Block(..) => {}, // We can see through blocks
1922                 _ => break,
1923             }
1924         }
1925
1926         ident.span = ident.span.modern();
1927         let mut poisoned = None;
1928         loop {
1929             let opt_module = if let Some(node_id) = record_used_id {
1930                 self.hygienic_lexical_parent_with_compatibility_fallback(module, &mut ident.span,
1931                                                                          node_id, &mut poisoned)
1932             } else {
1933                 self.hygienic_lexical_parent(module, &mut ident.span)
1934             };
1935             module = unwrap_or!(opt_module, break);
1936             let orig_current_module = self.current_module;
1937             self.current_module = module; // Lexical resolutions can never be a privacy error.
1938             let result = self.resolve_ident_in_module_unadjusted(
1939                 ModuleOrUniformRoot::Module(module),
1940                 ident,
1941                 ns,
1942                 false,
1943                 record_used,
1944                 path_span,
1945             );
1946             self.current_module = orig_current_module;
1947
1948             match result {
1949                 Ok(binding) => {
1950                     if let Some(node_id) = poisoned {
1951                         self.session.buffer_lint_with_diagnostic(
1952                             lint::builtin::PROC_MACRO_DERIVE_RESOLUTION_FALLBACK,
1953                             node_id, ident.span,
1954                             &format!("cannot find {} `{}` in this scope", ns.descr(), ident),
1955                             lint::builtin::BuiltinLintDiagnostics::
1956                                 ProcMacroDeriveResolutionFallback(ident.span),
1957                         );
1958                     }
1959                     return Some(LexicalScopeBinding::Item(binding))
1960                 }
1961                 Err(Determined) => continue,
1962                 Err(Undetermined) =>
1963                     span_bug!(ident.span, "undetermined resolution during main resolution pass"),
1964             }
1965         }
1966
1967         if !module.no_implicit_prelude {
1968             // `record_used` means that we don't try to load crates during speculative resolution
1969             if record_used && ns == TypeNS && self.session.extern_prelude.contains(&ident.name) {
1970                 let crate_id = self.crate_loader.process_path_extern(ident.name, ident.span);
1971                 let crate_root = self.get_module(DefId { krate: crate_id, index: CRATE_DEF_INDEX });
1972                 self.populate_module_if_necessary(&crate_root);
1973
1974                 let binding = (crate_root, ty::Visibility::Public,
1975                                ident.span, Mark::root()).to_name_binding(self.arenas);
1976                 return Some(LexicalScopeBinding::Item(binding));
1977             }
1978             if ns == TypeNS && is_known_tool(ident.name) {
1979                 let binding = (Def::ToolMod, ty::Visibility::Public,
1980                                ident.span, Mark::root()).to_name_binding(self.arenas);
1981                 return Some(LexicalScopeBinding::Item(binding));
1982             }
1983             if let Some(prelude) = self.prelude {
1984                 if let Ok(binding) = self.resolve_ident_in_module_unadjusted(
1985                     ModuleOrUniformRoot::Module(prelude),
1986                     ident,
1987                     ns,
1988                     false,
1989                     false,
1990                     path_span,
1991                 ) {
1992                     return Some(LexicalScopeBinding::Item(binding));
1993                 }
1994             }
1995         }
1996
1997         None
1998     }
1999
2000     fn hygienic_lexical_parent(&mut self, module: Module<'a>, span: &mut Span)
2001                                -> Option<Module<'a>> {
2002         if !module.expansion.is_descendant_of(span.ctxt().outer()) {
2003             return Some(self.macro_def_scope(span.remove_mark()));
2004         }
2005
2006         if let ModuleKind::Block(..) = module.kind {
2007             return Some(module.parent.unwrap());
2008         }
2009
2010         None
2011     }
2012
2013     fn hygienic_lexical_parent_with_compatibility_fallback(&mut self, module: Module<'a>,
2014                                                            span: &mut Span, node_id: NodeId,
2015                                                            poisoned: &mut Option<NodeId>)
2016                                                            -> Option<Module<'a>> {
2017         if let module @ Some(..) = self.hygienic_lexical_parent(module, span) {
2018             return module;
2019         }
2020
2021         // We need to support the next case under a deprecation warning
2022         // ```
2023         // struct MyStruct;
2024         // ---- begin: this comes from a proc macro derive
2025         // mod implementation_details {
2026         //     // Note that `MyStruct` is not in scope here.
2027         //     impl SomeTrait for MyStruct { ... }
2028         // }
2029         // ---- end
2030         // ```
2031         // So we have to fall back to the module's parent during lexical resolution in this case.
2032         if let Some(parent) = module.parent {
2033             // Inner module is inside the macro, parent module is outside of the macro.
2034             if module.expansion != parent.expansion &&
2035             module.expansion.is_descendant_of(parent.expansion) {
2036                 // The macro is a proc macro derive
2037                 if module.expansion.looks_like_proc_macro_derive() {
2038                     if parent.expansion.is_descendant_of(span.ctxt().outer()) {
2039                         *poisoned = Some(node_id);
2040                         return module.parent;
2041                     }
2042                 }
2043             }
2044         }
2045
2046         None
2047     }
2048
2049     fn resolve_ident_in_module(&mut self,
2050                                module: ModuleOrUniformRoot<'a>,
2051                                mut ident: Ident,
2052                                ns: Namespace,
2053                                record_used: bool,
2054                                span: Span)
2055                                -> Result<&'a NameBinding<'a>, Determinacy> {
2056         ident.span = ident.span.modern();
2057         let orig_current_module = self.current_module;
2058         if let ModuleOrUniformRoot::Module(module) = module {
2059             if let Some(def) = ident.span.adjust(module.expansion) {
2060                 self.current_module = self.macro_def_scope(def);
2061             }
2062         }
2063         let result = self.resolve_ident_in_module_unadjusted(
2064             module, ident, ns, false, record_used, span,
2065         );
2066         self.current_module = orig_current_module;
2067         result
2068     }
2069
2070     fn resolve_crate_root(&mut self, ident: Ident) -> Module<'a> {
2071         let mut ctxt = ident.span.ctxt();
2072         let mark = if ident.name == keywords::DollarCrate.name() {
2073             // When resolving `$crate` from a `macro_rules!` invoked in a `macro`,
2074             // we don't want to pretend that the `macro_rules!` definition is in the `macro`
2075             // as described in `SyntaxContext::apply_mark`, so we ignore prepended modern marks.
2076             // FIXME: This is only a guess and it doesn't work correctly for `macro_rules!`
2077             // definitions actually produced by `macro` and `macro` definitions produced by
2078             // `macro_rules!`, but at least such configurations are not stable yet.
2079             ctxt = ctxt.modern_and_legacy();
2080             let mut iter = ctxt.marks().into_iter().rev().peekable();
2081             let mut result = None;
2082             // Find the last modern mark from the end if it exists.
2083             while let Some(&(mark, transparency)) = iter.peek() {
2084                 if transparency == Transparency::Opaque {
2085                     result = Some(mark);
2086                     iter.next();
2087                 } else {
2088                     break;
2089                 }
2090             }
2091             // Then find the last legacy mark from the end if it exists.
2092             for (mark, transparency) in iter {
2093                 if transparency == Transparency::SemiTransparent {
2094                     result = Some(mark);
2095                 } else {
2096                     break;
2097                 }
2098             }
2099             result
2100         } else {
2101             ctxt = ctxt.modern();
2102             ctxt.adjust(Mark::root())
2103         };
2104         let module = match mark {
2105             Some(def) => self.macro_def_scope(def),
2106             None => return self.graph_root,
2107         };
2108         self.get_module(DefId { index: CRATE_DEF_INDEX, ..module.normal_ancestor_id })
2109     }
2110
2111     fn resolve_self(&mut self, ctxt: &mut SyntaxContext, module: Module<'a>) -> Module<'a> {
2112         let mut module = self.get_module(module.normal_ancestor_id);
2113         while module.span.ctxt().modern() != *ctxt {
2114             let parent = module.parent.unwrap_or_else(|| self.macro_def_scope(ctxt.remove_mark()));
2115             module = self.get_module(parent.normal_ancestor_id);
2116         }
2117         module
2118     }
2119
2120     // AST resolution
2121     //
2122     // We maintain a list of value ribs and type ribs.
2123     //
2124     // Simultaneously, we keep track of the current position in the module
2125     // graph in the `current_module` pointer. When we go to resolve a name in
2126     // the value or type namespaces, we first look through all the ribs and
2127     // then query the module graph. When we resolve a name in the module
2128     // namespace, we can skip all the ribs (since nested modules are not
2129     // allowed within blocks in Rust) and jump straight to the current module
2130     // graph node.
2131     //
2132     // Named implementations are handled separately. When we find a method
2133     // call, we consult the module node to find all of the implementations in
2134     // scope. This information is lazily cached in the module node. We then
2135     // generate a fake "implementation scope" containing all the
2136     // implementations thus found, for compatibility with old resolve pass.
2137
2138     pub fn with_scope<F, T>(&mut self, id: NodeId, f: F) -> T
2139         where F: FnOnce(&mut Resolver) -> T
2140     {
2141         let id = self.definitions.local_def_id(id);
2142         let module = self.module_map.get(&id).cloned(); // clones a reference
2143         if let Some(module) = module {
2144             // Move down in the graph.
2145             let orig_module = replace(&mut self.current_module, module);
2146             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(module)));
2147             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(module)));
2148
2149             self.finalize_current_module_macro_resolutions();
2150             let ret = f(self);
2151
2152             self.current_module = orig_module;
2153             self.ribs[ValueNS].pop();
2154             self.ribs[TypeNS].pop();
2155             ret
2156         } else {
2157             f(self)
2158         }
2159     }
2160
2161     /// Searches the current set of local scopes for labels. Returns the first non-None label that
2162     /// is returned by the given predicate function
2163     ///
2164     /// Stops after meeting a closure.
2165     fn search_label<P, R>(&self, mut ident: Ident, pred: P) -> Option<R>
2166         where P: Fn(&Rib, Ident) -> Option<R>
2167     {
2168         for rib in self.label_ribs.iter().rev() {
2169             match rib.kind {
2170                 NormalRibKind => {}
2171                 // If an invocation of this macro created `ident`, give up on `ident`
2172                 // and switch to `ident`'s source from the macro definition.
2173                 MacroDefinition(def) => {
2174                     if def == self.macro_def(ident.span.ctxt()) {
2175                         ident.span.remove_mark();
2176                     }
2177                 }
2178                 _ => {
2179                     // Do not resolve labels across function boundary
2180                     return None;
2181                 }
2182             }
2183             let r = pred(rib, ident);
2184             if r.is_some() {
2185                 return r;
2186             }
2187         }
2188         None
2189     }
2190
2191     fn resolve_adt(&mut self, item: &Item, generics: &Generics) {
2192         self.with_current_self_item(item, |this| {
2193             this.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2194                 let item_def_id = this.definitions.local_def_id(item.id);
2195                 if this.session.features_untracked().self_in_typedefs {
2196                     this.with_self_rib(Def::SelfTy(None, Some(item_def_id)), |this| {
2197                         visit::walk_item(this, item);
2198                     });
2199                 } else {
2200                     visit::walk_item(this, item);
2201                 }
2202             });
2203         });
2204     }
2205
2206     fn resolve_item(&mut self, item: &Item) {
2207         let name = item.ident.name;
2208         debug!("(resolving item) resolving {}", name);
2209
2210         match item.node {
2211             ItemKind::Ty(_, ref generics) |
2212             ItemKind::Fn(_, _, ref generics, _) |
2213             ItemKind::Existential(_, ref generics) => {
2214                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind),
2215                                              |this| visit::walk_item(this, item));
2216             }
2217
2218             ItemKind::Enum(_, ref generics) |
2219             ItemKind::Struct(_, ref generics) |
2220             ItemKind::Union(_, ref generics) => {
2221                 self.resolve_adt(item, generics);
2222             }
2223
2224             ItemKind::Impl(.., ref generics, ref opt_trait_ref, ref self_type, ref impl_items) =>
2225                 self.resolve_implementation(generics,
2226                                             opt_trait_ref,
2227                                             &self_type,
2228                                             item.id,
2229                                             impl_items),
2230
2231             ItemKind::Trait(.., ref generics, ref bounds, ref trait_items) => {
2232                 // Create a new rib for the trait-wide type parameters.
2233                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2234                     let local_def_id = this.definitions.local_def_id(item.id);
2235                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2236                         this.visit_generics(generics);
2237                         walk_list!(this, visit_param_bound, bounds);
2238
2239                         for trait_item in trait_items {
2240                             let type_parameters = HasTypeParameters(&trait_item.generics,
2241                                                                     TraitOrImplItemRibKind);
2242                             this.with_type_parameter_rib(type_parameters, |this| {
2243                                 match trait_item.node {
2244                                     TraitItemKind::Const(ref ty, ref default) => {
2245                                         this.visit_ty(ty);
2246
2247                                         // Only impose the restrictions of
2248                                         // ConstRibKind for an actual constant
2249                                         // expression in a provided default.
2250                                         if let Some(ref expr) = *default{
2251                                             this.with_constant_rib(|this| {
2252                                                 this.visit_expr(expr);
2253                                             });
2254                                         }
2255                                     }
2256                                     TraitItemKind::Method(_, _) => {
2257                                         visit::walk_trait_item(this, trait_item)
2258                                     }
2259                                     TraitItemKind::Type(..) => {
2260                                         visit::walk_trait_item(this, trait_item)
2261                                     }
2262                                     TraitItemKind::Macro(_) => {
2263                                         panic!("unexpanded macro in resolve!")
2264                                     }
2265                                 };
2266                             });
2267                         }
2268                     });
2269                 });
2270             }
2271
2272             ItemKind::TraitAlias(ref generics, ref bounds) => {
2273                 // Create a new rib for the trait-wide type parameters.
2274                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2275                     let local_def_id = this.definitions.local_def_id(item.id);
2276                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2277                         this.visit_generics(generics);
2278                         walk_list!(this, visit_param_bound, bounds);
2279                     });
2280                 });
2281             }
2282
2283             ItemKind::Mod(_) | ItemKind::ForeignMod(_) => {
2284                 self.with_scope(item.id, |this| {
2285                     visit::walk_item(this, item);
2286                 });
2287             }
2288
2289             ItemKind::Static(ref ty, _, ref expr) |
2290             ItemKind::Const(ref ty, ref expr) => {
2291                 self.with_item_rib(|this| {
2292                     this.visit_ty(ty);
2293                     this.with_constant_rib(|this| {
2294                         this.visit_expr(expr);
2295                     });
2296                 });
2297             }
2298
2299             ItemKind::Use(ref use_tree) => {
2300                 // Imports are resolved as global by default, add starting root segment.
2301                 let path = Path {
2302                     segments: use_tree.prefix.make_root().into_iter().collect(),
2303                     span: use_tree.span,
2304                 };
2305                 self.resolve_use_tree(item.id, use_tree.span, item.id, use_tree, &path);
2306             }
2307
2308             ItemKind::ExternCrate(_) | ItemKind::MacroDef(..) | ItemKind::GlobalAsm(_) => {
2309                 // do nothing, these are just around to be encoded
2310             }
2311
2312             ItemKind::Mac(_) => panic!("unexpanded macro in resolve!"),
2313         }
2314     }
2315
2316     /// For the most part, use trees are desugared into `ImportDirective` instances
2317     /// when building the reduced graph (see `build_reduced_graph_for_use_tree`). But
2318     /// there is one special case we handle here: an empty nested import like
2319     /// `a::{b::{}}`, which desugares into...no import directives.
2320     fn resolve_use_tree(
2321         &mut self,
2322         root_id: NodeId,
2323         root_span: Span,
2324         id: NodeId,
2325         use_tree: &ast::UseTree,
2326         prefix: &Path,
2327     ) {
2328         match use_tree.kind {
2329             ast::UseTreeKind::Nested(ref items) => {
2330                 let path = Path {
2331                     segments: prefix.segments
2332                         .iter()
2333                         .chain(use_tree.prefix.segments.iter())
2334                         .cloned()
2335                         .collect(),
2336                     span: prefix.span.to(use_tree.prefix.span),
2337                 };
2338
2339                 if items.len() == 0 {
2340                     // Resolve prefix of an import with empty braces (issue #28388).
2341                     self.smart_resolve_path_with_crate_lint(
2342                         id,
2343                         None,
2344                         &path,
2345                         PathSource::ImportPrefix,
2346                         CrateLint::UsePath { root_id, root_span },
2347                     );
2348                 } else {
2349                     for &(ref tree, nested_id) in items {
2350                         self.resolve_use_tree(root_id, root_span, nested_id, tree, &path);
2351                     }
2352                 }
2353             }
2354             ast::UseTreeKind::Simple(..) => {},
2355             ast::UseTreeKind::Glob => {},
2356         }
2357     }
2358
2359     fn with_type_parameter_rib<'b, F>(&'b mut self, type_parameters: TypeParameters<'a, 'b>, f: F)
2360         where F: FnOnce(&mut Resolver)
2361     {
2362         match type_parameters {
2363             HasTypeParameters(generics, rib_kind) => {
2364                 let mut function_type_rib = Rib::new(rib_kind);
2365                 let mut seen_bindings = FxHashMap();
2366                 for param in &generics.params {
2367                     match param.kind {
2368                         GenericParamKind::Lifetime { .. } => {}
2369                         GenericParamKind::Type { .. } => {
2370                             let ident = param.ident.modern();
2371                             debug!("with_type_parameter_rib: {}", param.id);
2372
2373                             if seen_bindings.contains_key(&ident) {
2374                                 let span = seen_bindings.get(&ident).unwrap();
2375                                 let err = ResolutionError::NameAlreadyUsedInTypeParameterList(
2376                                     ident.name,
2377                                     span,
2378                                 );
2379                                 resolve_error(self, param.ident.span, err);
2380                             }
2381                             seen_bindings.entry(ident).or_insert(param.ident.span);
2382
2383                         // Plain insert (no renaming).
2384                         let def = Def::TyParam(self.definitions.local_def_id(param.id));
2385                             function_type_rib.bindings.insert(ident, def);
2386                             self.record_def(param.id, PathResolution::new(def));
2387                         }
2388                     }
2389                 }
2390                 self.ribs[TypeNS].push(function_type_rib);
2391             }
2392
2393             NoTypeParameters => {
2394                 // Nothing to do.
2395             }
2396         }
2397
2398         f(self);
2399
2400         if let HasTypeParameters(..) = type_parameters {
2401             self.ribs[TypeNS].pop();
2402         }
2403     }
2404
2405     fn with_label_rib<F>(&mut self, f: F)
2406         where F: FnOnce(&mut Resolver)
2407     {
2408         self.label_ribs.push(Rib::new(NormalRibKind));
2409         f(self);
2410         self.label_ribs.pop();
2411     }
2412
2413     fn with_item_rib<F>(&mut self, f: F)
2414         where F: FnOnce(&mut Resolver)
2415     {
2416         self.ribs[ValueNS].push(Rib::new(ItemRibKind));
2417         self.ribs[TypeNS].push(Rib::new(ItemRibKind));
2418         f(self);
2419         self.ribs[TypeNS].pop();
2420         self.ribs[ValueNS].pop();
2421     }
2422
2423     fn with_constant_rib<F>(&mut self, f: F)
2424         where F: FnOnce(&mut Resolver)
2425     {
2426         self.ribs[ValueNS].push(Rib::new(ConstantItemRibKind));
2427         self.label_ribs.push(Rib::new(ConstantItemRibKind));
2428         f(self);
2429         self.label_ribs.pop();
2430         self.ribs[ValueNS].pop();
2431     }
2432
2433     fn with_current_self_type<T, F>(&mut self, self_type: &Ty, f: F) -> T
2434         where F: FnOnce(&mut Resolver) -> T
2435     {
2436         // Handle nested impls (inside fn bodies)
2437         let previous_value = replace(&mut self.current_self_type, Some(self_type.clone()));
2438         let result = f(self);
2439         self.current_self_type = previous_value;
2440         result
2441     }
2442
2443     fn with_current_self_item<T, F>(&mut self, self_item: &Item, f: F) -> T
2444         where F: FnOnce(&mut Resolver) -> T
2445     {
2446         let previous_value = replace(&mut self.current_self_item, Some(self_item.id));
2447         let result = f(self);
2448         self.current_self_item = previous_value;
2449         result
2450     }
2451
2452     /// This is called to resolve a trait reference from an `impl` (i.e. `impl Trait for Foo`)
2453     fn with_optional_trait_ref<T, F>(&mut self, opt_trait_ref: Option<&TraitRef>, f: F) -> T
2454         where F: FnOnce(&mut Resolver, Option<DefId>) -> T
2455     {
2456         let mut new_val = None;
2457         let mut new_id = None;
2458         if let Some(trait_ref) = opt_trait_ref {
2459             let path: Vec<_> = trait_ref.path.segments.iter()
2460                 .map(|seg| seg.ident)
2461                 .collect();
2462             let def = self.smart_resolve_path_fragment(
2463                 trait_ref.ref_id,
2464                 None,
2465                 &path,
2466                 trait_ref.path.span,
2467                 PathSource::Trait(AliasPossibility::No),
2468                 CrateLint::SimplePath(trait_ref.ref_id),
2469             ).base_def();
2470             if def != Def::Err {
2471                 new_id = Some(def.def_id());
2472                 let span = trait_ref.path.span;
2473                 if let PathResult::Module(ModuleOrUniformRoot::Module(module)) =
2474                     self.resolve_path(
2475                         None,
2476                         &path,
2477                         None,
2478                         false,
2479                         span,
2480                         CrateLint::SimplePath(trait_ref.ref_id),
2481                     )
2482                 {
2483                     new_val = Some((module, trait_ref.clone()));
2484                 }
2485             }
2486         }
2487         let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
2488         let result = f(self, new_id);
2489         self.current_trait_ref = original_trait_ref;
2490         result
2491     }
2492
2493     fn with_self_rib<F>(&mut self, self_def: Def, f: F)
2494         where F: FnOnce(&mut Resolver)
2495     {
2496         let mut self_type_rib = Rib::new(NormalRibKind);
2497
2498         // plain insert (no renaming, types are not currently hygienic....)
2499         self_type_rib.bindings.insert(keywords::SelfType.ident(), self_def);
2500         self.ribs[TypeNS].push(self_type_rib);
2501         f(self);
2502         self.ribs[TypeNS].pop();
2503     }
2504
2505     fn with_self_struct_ctor_rib<F>(&mut self, impl_id: DefId, f: F)
2506         where F: FnOnce(&mut Resolver)
2507     {
2508         let self_def = Def::SelfCtor(impl_id);
2509         let mut self_type_rib = Rib::new(NormalRibKind);
2510         self_type_rib.bindings.insert(keywords::SelfType.ident(), self_def);
2511         self.ribs[ValueNS].push(self_type_rib);
2512         f(self);
2513         self.ribs[ValueNS].pop();
2514     }
2515
2516     fn resolve_implementation(&mut self,
2517                               generics: &Generics,
2518                               opt_trait_reference: &Option<TraitRef>,
2519                               self_type: &Ty,
2520                               item_id: NodeId,
2521                               impl_items: &[ImplItem]) {
2522         // If applicable, create a rib for the type parameters.
2523         self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2524             // Dummy self type for better errors if `Self` is used in the trait path.
2525             this.with_self_rib(Def::SelfTy(None, None), |this| {
2526                 // Resolve the trait reference, if necessary.
2527                 this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| {
2528                     let item_def_id = this.definitions.local_def_id(item_id);
2529                     this.with_self_rib(Def::SelfTy(trait_id, Some(item_def_id)), |this| {
2530                         if let Some(trait_ref) = opt_trait_reference.as_ref() {
2531                             // Resolve type arguments in the trait path.
2532                             visit::walk_trait_ref(this, trait_ref);
2533                         }
2534                         // Resolve the self type.
2535                         this.visit_ty(self_type);
2536                         // Resolve the type parameters.
2537                         this.visit_generics(generics);
2538                         // Resolve the items within the impl.
2539                         this.with_current_self_type(self_type, |this| {
2540                             this.with_self_struct_ctor_rib(item_def_id, |this| {
2541                                 for impl_item in impl_items {
2542                                     this.resolve_visibility(&impl_item.vis);
2543
2544                                     // We also need a new scope for the impl item type parameters.
2545                                     let type_parameters = HasTypeParameters(&impl_item.generics,
2546                                                                             TraitOrImplItemRibKind);
2547                                     this.with_type_parameter_rib(type_parameters, |this| {
2548                                         use self::ResolutionError::*;
2549                                         match impl_item.node {
2550                                             ImplItemKind::Const(..) => {
2551                                                 // If this is a trait impl, ensure the const
2552                                                 // exists in trait
2553                                                 this.check_trait_item(impl_item.ident,
2554                                                                       ValueNS,
2555                                                                       impl_item.span,
2556                                                     |n, s| ConstNotMemberOfTrait(n, s));
2557                                                 this.with_constant_rib(|this|
2558                                                     visit::walk_impl_item(this, impl_item)
2559                                                 );
2560                                             }
2561                                             ImplItemKind::Method(..) => {
2562                                                 // If this is a trait impl, ensure the method
2563                                                 // exists in trait
2564                                                 this.check_trait_item(impl_item.ident,
2565                                                                       ValueNS,
2566                                                                       impl_item.span,
2567                                                     |n, s| MethodNotMemberOfTrait(n, s));
2568
2569                                                 visit::walk_impl_item(this, impl_item);
2570                                             }
2571                                             ImplItemKind::Type(ref ty) => {
2572                                                 // If this is a trait impl, ensure the type
2573                                                 // exists in trait
2574                                                 this.check_trait_item(impl_item.ident,
2575                                                                       TypeNS,
2576                                                                       impl_item.span,
2577                                                     |n, s| TypeNotMemberOfTrait(n, s));
2578
2579                                                 this.visit_ty(ty);
2580                                             }
2581                                             ImplItemKind::Existential(ref bounds) => {
2582                                                 // If this is a trait impl, ensure the type
2583                                                 // exists in trait
2584                                                 this.check_trait_item(impl_item.ident,
2585                                                                       TypeNS,
2586                                                                       impl_item.span,
2587                                                     |n, s| TypeNotMemberOfTrait(n, s));
2588
2589                                                 for bound in bounds {
2590                                                     this.visit_param_bound(bound);
2591                                                 }
2592                                             }
2593                                             ImplItemKind::Macro(_) =>
2594                                                 panic!("unexpanded macro in resolve!"),
2595                                         }
2596                                     });
2597                                 }
2598                             });
2599                         });
2600                     });
2601                 });
2602             });
2603         });
2604     }
2605
2606     fn check_trait_item<F>(&mut self, ident: Ident, ns: Namespace, span: Span, err: F)
2607         where F: FnOnce(Name, &str) -> ResolutionError
2608     {
2609         // If there is a TraitRef in scope for an impl, then the method must be in the
2610         // trait.
2611         if let Some((module, _)) = self.current_trait_ref {
2612             if self.resolve_ident_in_module(
2613                 ModuleOrUniformRoot::Module(module),
2614                 ident,
2615                 ns,
2616                 false,
2617                 span,
2618             ).is_err() {
2619                 let path = &self.current_trait_ref.as_ref().unwrap().1.path;
2620                 resolve_error(self, span, err(ident.name, &path_names_to_string(path)));
2621             }
2622         }
2623     }
2624
2625     fn resolve_local(&mut self, local: &Local) {
2626         // Resolve the type.
2627         walk_list!(self, visit_ty, &local.ty);
2628
2629         // Resolve the initializer.
2630         walk_list!(self, visit_expr, &local.init);
2631
2632         // Resolve the pattern.
2633         self.resolve_pattern(&local.pat, PatternSource::Let, &mut FxHashMap());
2634     }
2635
2636     // build a map from pattern identifiers to binding-info's.
2637     // this is done hygienically. This could arise for a macro
2638     // that expands into an or-pattern where one 'x' was from the
2639     // user and one 'x' came from the macro.
2640     fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
2641         let mut binding_map = FxHashMap();
2642
2643         pat.walk(&mut |pat| {
2644             if let PatKind::Ident(binding_mode, ident, ref sub_pat) = pat.node {
2645                 if sub_pat.is_some() || match self.def_map.get(&pat.id).map(|res| res.base_def()) {
2646                     Some(Def::Local(..)) => true,
2647                     _ => false,
2648                 } {
2649                     let binding_info = BindingInfo { span: ident.span, binding_mode: binding_mode };
2650                     binding_map.insert(ident, binding_info);
2651                 }
2652             }
2653             true
2654         });
2655
2656         binding_map
2657     }
2658
2659     // check that all of the arms in an or-pattern have exactly the
2660     // same set of bindings, with the same binding modes for each.
2661     fn check_consistent_bindings(&mut self, pats: &[P<Pat>]) {
2662         if pats.is_empty() {
2663             return;
2664         }
2665
2666         let mut missing_vars = FxHashMap();
2667         let mut inconsistent_vars = FxHashMap();
2668         for (i, p) in pats.iter().enumerate() {
2669             let map_i = self.binding_mode_map(&p);
2670
2671             for (j, q) in pats.iter().enumerate() {
2672                 if i == j {
2673                     continue;
2674                 }
2675
2676                 let map_j = self.binding_mode_map(&q);
2677                 for (&key, &binding_i) in &map_i {
2678                     if map_j.len() == 0 {                   // Account for missing bindings when
2679                         let binding_error = missing_vars    // map_j has none.
2680                             .entry(key.name)
2681                             .or_insert(BindingError {
2682                                 name: key.name,
2683                                 origin: BTreeSet::new(),
2684                                 target: BTreeSet::new(),
2685                             });
2686                         binding_error.origin.insert(binding_i.span);
2687                         binding_error.target.insert(q.span);
2688                     }
2689                     for (&key_j, &binding_j) in &map_j {
2690                         match map_i.get(&key_j) {
2691                             None => {  // missing binding
2692                                 let binding_error = missing_vars
2693                                     .entry(key_j.name)
2694                                     .or_insert(BindingError {
2695                                         name: key_j.name,
2696                                         origin: BTreeSet::new(),
2697                                         target: BTreeSet::new(),
2698                                     });
2699                                 binding_error.origin.insert(binding_j.span);
2700                                 binding_error.target.insert(p.span);
2701                             }
2702                             Some(binding_i) => {  // check consistent binding
2703                                 if binding_i.binding_mode != binding_j.binding_mode {
2704                                     inconsistent_vars
2705                                         .entry(key.name)
2706                                         .or_insert((binding_j.span, binding_i.span));
2707                                 }
2708                             }
2709                         }
2710                     }
2711                 }
2712             }
2713         }
2714         let mut missing_vars = missing_vars.iter().collect::<Vec<_>>();
2715         missing_vars.sort();
2716         for (_, v) in missing_vars {
2717             resolve_error(self,
2718                           *v.origin.iter().next().unwrap(),
2719                           ResolutionError::VariableNotBoundInPattern(v));
2720         }
2721         let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
2722         inconsistent_vars.sort();
2723         for (name, v) in inconsistent_vars {
2724             resolve_error(self, v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
2725         }
2726     }
2727
2728     fn resolve_arm(&mut self, arm: &Arm) {
2729         self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2730
2731         let mut bindings_list = FxHashMap();
2732         for pattern in &arm.pats {
2733             self.resolve_pattern(&pattern, PatternSource::Match, &mut bindings_list);
2734         }
2735
2736         // This has to happen *after* we determine which pat_idents are variants
2737         self.check_consistent_bindings(&arm.pats);
2738
2739         match arm.guard {
2740             Some(ast::Guard::If(ref expr)) => self.visit_expr(expr),
2741             _ => {}
2742         }
2743         self.visit_expr(&arm.body);
2744
2745         self.ribs[ValueNS].pop();
2746     }
2747
2748     fn resolve_block(&mut self, block: &Block) {
2749         debug!("(resolving block) entering block");
2750         // Move down in the graph, if there's an anonymous module rooted here.
2751         let orig_module = self.current_module;
2752         let anonymous_module = self.block_map.get(&block.id).cloned(); // clones a reference
2753
2754         let mut num_macro_definition_ribs = 0;
2755         if let Some(anonymous_module) = anonymous_module {
2756             debug!("(resolving block) found anonymous module, moving down");
2757             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2758             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2759             self.current_module = anonymous_module;
2760             self.finalize_current_module_macro_resolutions();
2761         } else {
2762             self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2763         }
2764
2765         // Descend into the block.
2766         for stmt in &block.stmts {
2767             if let ast::StmtKind::Item(ref item) = stmt.node {
2768                 if let ast::ItemKind::MacroDef(..) = item.node {
2769                     num_macro_definition_ribs += 1;
2770                     let def = self.definitions.local_def_id(item.id);
2771                     self.ribs[ValueNS].push(Rib::new(MacroDefinition(def)));
2772                     self.label_ribs.push(Rib::new(MacroDefinition(def)));
2773                 }
2774             }
2775
2776             self.visit_stmt(stmt);
2777         }
2778
2779         // Move back up.
2780         self.current_module = orig_module;
2781         for _ in 0 .. num_macro_definition_ribs {
2782             self.ribs[ValueNS].pop();
2783             self.label_ribs.pop();
2784         }
2785         self.ribs[ValueNS].pop();
2786         if anonymous_module.is_some() {
2787             self.ribs[TypeNS].pop();
2788         }
2789         debug!("(resolving block) leaving block");
2790     }
2791
2792     fn fresh_binding(&mut self,
2793                      ident: Ident,
2794                      pat_id: NodeId,
2795                      outer_pat_id: NodeId,
2796                      pat_src: PatternSource,
2797                      bindings: &mut FxHashMap<Ident, NodeId>)
2798                      -> PathResolution {
2799         // Add the binding to the local ribs, if it
2800         // doesn't already exist in the bindings map. (We
2801         // must not add it if it's in the bindings map
2802         // because that breaks the assumptions later
2803         // passes make about or-patterns.)
2804         let ident = ident.modern_and_legacy();
2805         let mut def = Def::Local(pat_id);
2806         match bindings.get(&ident).cloned() {
2807             Some(id) if id == outer_pat_id => {
2808                 // `Variant(a, a)`, error
2809                 resolve_error(
2810                     self,
2811                     ident.span,
2812                     ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(
2813                         &ident.as_str())
2814                 );
2815             }
2816             Some(..) if pat_src == PatternSource::FnParam => {
2817                 // `fn f(a: u8, a: u8)`, error
2818                 resolve_error(
2819                     self,
2820                     ident.span,
2821                     ResolutionError::IdentifierBoundMoreThanOnceInParameterList(
2822                         &ident.as_str())
2823                 );
2824             }
2825             Some(..) if pat_src == PatternSource::Match ||
2826                         pat_src == PatternSource::IfLet ||
2827                         pat_src == PatternSource::WhileLet => {
2828                 // `Variant1(a) | Variant2(a)`, ok
2829                 // Reuse definition from the first `a`.
2830                 def = self.ribs[ValueNS].last_mut().unwrap().bindings[&ident];
2831             }
2832             Some(..) => {
2833                 span_bug!(ident.span, "two bindings with the same name from \
2834                                        unexpected pattern source {:?}", pat_src);
2835             }
2836             None => {
2837                 // A completely fresh binding, add to the lists if it's valid.
2838                 if ident.name != keywords::Invalid.name() {
2839                     bindings.insert(ident, outer_pat_id);
2840                     self.ribs[ValueNS].last_mut().unwrap().bindings.insert(ident, def);
2841                 }
2842             }
2843         }
2844
2845         PathResolution::new(def)
2846     }
2847
2848     fn resolve_pattern(&mut self,
2849                        pat: &Pat,
2850                        pat_src: PatternSource,
2851                        // Maps idents to the node ID for the
2852                        // outermost pattern that binds them.
2853                        bindings: &mut FxHashMap<Ident, NodeId>) {
2854         // Visit all direct subpatterns of this pattern.
2855         let outer_pat_id = pat.id;
2856         pat.walk(&mut |pat| {
2857             match pat.node {
2858                 PatKind::Ident(bmode, ident, ref opt_pat) => {
2859                     // First try to resolve the identifier as some existing
2860                     // entity, then fall back to a fresh binding.
2861                     let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS,
2862                                                                       None, pat.span)
2863                                       .and_then(LexicalScopeBinding::item);
2864                     let resolution = binding.map(NameBinding::def).and_then(|def| {
2865                         let is_syntactic_ambiguity = opt_pat.is_none() &&
2866                             bmode == BindingMode::ByValue(Mutability::Immutable);
2867                         match def {
2868                             Def::StructCtor(_, CtorKind::Const) |
2869                             Def::VariantCtor(_, CtorKind::Const) |
2870                             Def::Const(..) if is_syntactic_ambiguity => {
2871                                 // Disambiguate in favor of a unit struct/variant
2872                                 // or constant pattern.
2873                                 self.record_use(ident, ValueNS, binding.unwrap());
2874                                 Some(PathResolution::new(def))
2875                             }
2876                             Def::StructCtor(..) | Def::VariantCtor(..) |
2877                             Def::Const(..) | Def::Static(..) => {
2878                                 // This is unambiguously a fresh binding, either syntactically
2879                                 // (e.g. `IDENT @ PAT` or `ref IDENT`) or because `IDENT` resolves
2880                                 // to something unusable as a pattern (e.g. constructor function),
2881                                 // but we still conservatively report an error, see
2882                                 // issues/33118#issuecomment-233962221 for one reason why.
2883                                 resolve_error(
2884                                     self,
2885                                     ident.span,
2886                                     ResolutionError::BindingShadowsSomethingUnacceptable(
2887                                         pat_src.descr(), ident.name, binding.unwrap())
2888                                 );
2889                                 None
2890                             }
2891                             Def::Fn(..) | Def::Err => {
2892                                 // These entities are explicitly allowed
2893                                 // to be shadowed by fresh bindings.
2894                                 None
2895                             }
2896                             def => {
2897                                 span_bug!(ident.span, "unexpected definition for an \
2898                                                        identifier in pattern: {:?}", def);
2899                             }
2900                         }
2901                     }).unwrap_or_else(|| {
2902                         self.fresh_binding(ident, pat.id, outer_pat_id, pat_src, bindings)
2903                     });
2904
2905                     self.record_def(pat.id, resolution);
2906                 }
2907
2908                 PatKind::TupleStruct(ref path, ..) => {
2909                     self.smart_resolve_path(pat.id, None, path, PathSource::TupleStruct);
2910                 }
2911
2912                 PatKind::Path(ref qself, ref path) => {
2913                     self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
2914                 }
2915
2916                 PatKind::Struct(ref path, ..) => {
2917                     self.smart_resolve_path(pat.id, None, path, PathSource::Struct);
2918                 }
2919
2920                 _ => {}
2921             }
2922             true
2923         });
2924
2925         visit::walk_pat(self, pat);
2926     }
2927
2928     // High-level and context dependent path resolution routine.
2929     // Resolves the path and records the resolution into definition map.
2930     // If resolution fails tries several techniques to find likely
2931     // resolution candidates, suggest imports or other help, and report
2932     // errors in user friendly way.
2933     fn smart_resolve_path(&mut self,
2934                           id: NodeId,
2935                           qself: Option<&QSelf>,
2936                           path: &Path,
2937                           source: PathSource)
2938                           -> PathResolution {
2939         self.smart_resolve_path_with_crate_lint(id, qself, path, source, CrateLint::SimplePath(id))
2940     }
2941
2942     /// A variant of `smart_resolve_path` where you also specify extra
2943     /// information about where the path came from; this extra info is
2944     /// sometimes needed for the lint that recommends rewriting
2945     /// absolute paths to `crate`, so that it knows how to frame the
2946     /// suggestion. If you are just resolving a path like `foo::bar`
2947     /// that appears...somewhere, though, then you just want
2948     /// `CrateLint::SimplePath`, which is what `smart_resolve_path`
2949     /// already provides.
2950     fn smart_resolve_path_with_crate_lint(
2951         &mut self,
2952         id: NodeId,
2953         qself: Option<&QSelf>,
2954         path: &Path,
2955         source: PathSource,
2956         crate_lint: CrateLint
2957     ) -> PathResolution {
2958         let segments = &path.segments.iter()
2959             .map(|seg| seg.ident)
2960             .collect::<Vec<_>>();
2961         self.smart_resolve_path_fragment(id, qself, segments, path.span, source, crate_lint)
2962     }
2963
2964     fn smart_resolve_path_fragment(&mut self,
2965                                    id: NodeId,
2966                                    qself: Option<&QSelf>,
2967                                    path: &[Ident],
2968                                    span: Span,
2969                                    source: PathSource,
2970                                    crate_lint: CrateLint)
2971                                    -> PathResolution {
2972         let ident_span = path.last().map_or(span, |ident| ident.span);
2973         let ns = source.namespace();
2974         let is_expected = &|def| source.is_expected(def);
2975         let is_enum_variant = &|def| if let Def::Variant(..) = def { true } else { false };
2976
2977         // Base error is amended with one short label and possibly some longer helps/notes.
2978         let report_errors = |this: &mut Self, def: Option<Def>| {
2979             // Make the base error.
2980             let expected = source.descr_expected();
2981             let path_str = names_to_string(path);
2982             let item_str = path[path.len() - 1];
2983             let code = source.error_code(def.is_some());
2984             let (base_msg, fallback_label, base_span) = if let Some(def) = def {
2985                 (format!("expected {}, found {} `{}`", expected, def.kind_name(), path_str),
2986                  format!("not a {}", expected),
2987                  span)
2988             } else {
2989                 let item_span = path[path.len() - 1].span;
2990                 let (mod_prefix, mod_str) = if path.len() == 1 {
2991                     (String::new(), "this scope".to_string())
2992                 } else if path.len() == 2 && path[0].name == keywords::CrateRoot.name() {
2993                     (String::new(), "the crate root".to_string())
2994                 } else {
2995                     let mod_path = &path[..path.len() - 1];
2996                     let mod_prefix = match this.resolve_path(None, mod_path, Some(TypeNS),
2997                                                              false, span, CrateLint::No) {
2998                         PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
2999                             module.def(),
3000                         _ => None,
3001                     }.map_or(String::new(), |def| format!("{} ", def.kind_name()));
3002                     (mod_prefix, format!("`{}`", names_to_string(mod_path)))
3003                 };
3004                 (format!("cannot find {} `{}` in {}{}", expected, item_str, mod_prefix, mod_str),
3005                  format!("not found in {}", mod_str),
3006                  item_span)
3007             };
3008             let code = DiagnosticId::Error(code.into());
3009             let mut err = this.session.struct_span_err_with_code(base_span, &base_msg, code);
3010
3011             // Emit help message for fake-self from other languages like `this`(javascript)
3012             let fake_self: Vec<Ident> = ["this", "my"].iter().map(
3013                 |s| Ident::from_str(*s)
3014             ).collect();
3015             if fake_self.contains(&item_str)
3016                 && this.self_value_is_available(path[0].span, span) {
3017                 err.span_suggestion_with_applicability(
3018                     span,
3019                     "did you mean",
3020                     "self".to_string(),
3021                     Applicability::MaybeIncorrect,
3022                 );
3023             }
3024
3025             // Emit special messages for unresolved `Self` and `self`.
3026             if is_self_type(path, ns) {
3027                 __diagnostic_used!(E0411);
3028                 err.code(DiagnosticId::Error("E0411".into()));
3029                 let available_in = if this.session.features_untracked().self_in_typedefs {
3030                     "impls, traits, and type definitions"
3031                 } else {
3032                     "traits and impls"
3033                 };
3034                 err.span_label(span, format!("`Self` is only available in {}", available_in));
3035                 if this.current_self_item.is_some() && nightly_options::is_nightly_build() {
3036                     err.help("add #![feature(self_in_typedefs)] to the crate attributes \
3037                               to enable");
3038                 }
3039                 return (err, Vec::new());
3040             }
3041             if is_self_value(path, ns) {
3042                 __diagnostic_used!(E0424);
3043                 err.code(DiagnosticId::Error("E0424".into()));
3044                 err.span_label(span, format!("`self` value is a keyword \
3045                                                only available in \
3046                                                methods with `self` parameter"));
3047                 return (err, Vec::new());
3048             }
3049
3050             // Try to lookup the name in more relaxed fashion for better error reporting.
3051             let ident = *path.last().unwrap();
3052             let candidates = this.lookup_import_candidates(ident.name, ns, is_expected);
3053             if candidates.is_empty() && is_expected(Def::Enum(DefId::local(CRATE_DEF_INDEX))) {
3054                 let enum_candidates =
3055                     this.lookup_import_candidates(ident.name, ns, is_enum_variant);
3056                 let mut enum_candidates = enum_candidates.iter()
3057                     .map(|suggestion| import_candidate_to_paths(&suggestion)).collect::<Vec<_>>();
3058                 enum_candidates.sort();
3059                 for (sp, variant_path, enum_path) in enum_candidates {
3060                     if sp.is_dummy() {
3061                         let msg = format!("there is an enum variant `{}`, \
3062                                         try using `{}`?",
3063                                         variant_path,
3064                                         enum_path);
3065                         err.help(&msg);
3066                     } else {
3067                         err.span_suggestion_with_applicability(
3068                             span,
3069                             "you can try using the variant's enum",
3070                             enum_path,
3071                             Applicability::MachineApplicable,
3072                         );
3073                     }
3074                 }
3075             }
3076             if path.len() == 1 && this.self_type_is_available(span) {
3077                 if let Some(candidate) = this.lookup_assoc_candidate(ident, ns, is_expected) {
3078                     let self_is_available = this.self_value_is_available(path[0].span, span);
3079                     match candidate {
3080                         AssocSuggestion::Field => {
3081                             err.span_suggestion_with_applicability(
3082                                 span,
3083                                 "try",
3084                                 format!("self.{}", path_str),
3085                                 Applicability::MachineApplicable,
3086                             );
3087                             if !self_is_available {
3088                                 err.span_label(span, format!("`self` value is a keyword \
3089                                                                only available in \
3090                                                                methods with `self` parameter"));
3091                             }
3092                         }
3093                         AssocSuggestion::MethodWithSelf if self_is_available => {
3094                             err.span_suggestion_with_applicability(
3095                                 span,
3096                                 "try",
3097                                 format!("self.{}", path_str),
3098                                 Applicability::MachineApplicable,
3099                             );
3100                         }
3101                         AssocSuggestion::MethodWithSelf | AssocSuggestion::AssocItem => {
3102                             err.span_suggestion_with_applicability(
3103                                 span,
3104                                 "try",
3105                                 format!("Self::{}", path_str),
3106                                 Applicability::MachineApplicable,
3107                             );
3108                         }
3109                     }
3110                     return (err, candidates);
3111                 }
3112             }
3113
3114             let mut levenshtein_worked = false;
3115
3116             // Try Levenshtein.
3117             if let Some(candidate) = this.lookup_typo_candidate(path, ns, is_expected, span) {
3118                 err.span_label(ident_span, format!("did you mean `{}`?", candidate));
3119                 levenshtein_worked = true;
3120             }
3121
3122             // Try context dependent help if relaxed lookup didn't work.
3123             if let Some(def) = def {
3124                 match (def, source) {
3125                     (Def::Macro(..), _) => {
3126                         err.span_label(span, format!("did you mean `{}!(...)`?", path_str));
3127                         return (err, candidates);
3128                     }
3129                     (Def::TyAlias(..), PathSource::Trait(_)) => {
3130                         err.span_label(span, "type aliases cannot be used for traits");
3131                         return (err, candidates);
3132                     }
3133                     (Def::Mod(..), PathSource::Expr(Some(parent))) => match parent.node {
3134                         ExprKind::Field(_, ident) => {
3135                             err.span_label(parent.span, format!("did you mean `{}::{}`?",
3136                                                                  path_str, ident));
3137                             return (err, candidates);
3138                         }
3139                         ExprKind::MethodCall(ref segment, ..) => {
3140                             err.span_label(parent.span, format!("did you mean `{}::{}(...)`?",
3141                                                                  path_str, segment.ident));
3142                             return (err, candidates);
3143                         }
3144                         _ => {}
3145                     },
3146                     (Def::Enum(..), PathSource::TupleStruct)
3147                         | (Def::Enum(..), PathSource::Expr(..))  => {
3148                         if let Some(variants) = this.collect_enum_variants(def) {
3149                             err.note(&format!("did you mean to use one \
3150                                                of the following variants?\n{}",
3151                                 variants.iter()
3152                                     .map(|suggestion| path_names_to_string(suggestion))
3153                                     .map(|suggestion| format!("- `{}`", suggestion))
3154                                     .collect::<Vec<_>>()
3155                                     .join("\n")));
3156
3157                         } else {
3158                             err.note("did you mean to use one of the enum's variants?");
3159                         }
3160                         return (err, candidates);
3161                     },
3162                     (Def::Struct(def_id), _) if ns == ValueNS => {
3163                         if let Some((ctor_def, ctor_vis))
3164                                 = this.struct_constructors.get(&def_id).cloned() {
3165                             let accessible_ctor = this.is_accessible(ctor_vis);
3166                             if is_expected(ctor_def) && !accessible_ctor {
3167                                 err.span_label(span, format!("constructor is not visible \
3168                                                               here due to private fields"));
3169                             }
3170                         } else {
3171                             // HACK(estebank): find a better way to figure out that this was a
3172                             // parser issue where a struct literal is being used on an expression
3173                             // where a brace being opened means a block is being started. Look
3174                             // ahead for the next text to see if `span` is followed by a `{`.
3175                             let sm = this.session.source_map();
3176                             let mut sp = span;
3177                             loop {
3178                                 sp = sm.next_point(sp);
3179                                 match sm.span_to_snippet(sp) {
3180                                     Ok(ref snippet) => {
3181                                         if snippet.chars().any(|c| { !c.is_whitespace() }) {
3182                                             break;
3183                                         }
3184                                     }
3185                                     _ => break,
3186                                 }
3187                             }
3188                             let followed_by_brace = match sm.span_to_snippet(sp) {
3189                                 Ok(ref snippet) if snippet == "{" => true,
3190                                 _ => false,
3191                             };
3192                             match source {
3193                                 PathSource::Expr(Some(parent)) => {
3194                                     match parent.node {
3195                                         ExprKind::MethodCall(ref path_assignment, _)  => {
3196                                             err.span_suggestion_with_applicability(
3197                                                 sm.start_point(parent.span)
3198                                                   .to(path_assignment.ident.span),
3199                                                 "use `::` to access an associated function",
3200                                                 format!("{}::{}",
3201                                                         path_str,
3202                                                         path_assignment.ident),
3203                                                 Applicability::MaybeIncorrect
3204                                             );
3205                                             return (err, candidates);
3206                                         },
3207                                         _ => {
3208                                             err.span_label(
3209                                                 span,
3210                                                 format!("did you mean `{} {{ /* fields */ }}`?",
3211                                                         path_str),
3212                                             );
3213                                             return (err, candidates);
3214                                         },
3215                                     }
3216                                 },
3217                                 PathSource::Expr(None) if followed_by_brace == true => {
3218                                     err.span_label(
3219                                         span,
3220                                         format!("did you mean `({} {{ /* fields */ }})`?",
3221                                                 path_str),
3222                                     );
3223                                     return (err, candidates);
3224                                 },
3225                                 _ => {
3226                                     err.span_label(
3227                                         span,
3228                                         format!("did you mean `{} {{ /* fields */ }}`?",
3229                                                 path_str),
3230                                     );
3231                                     return (err, candidates);
3232                                 },
3233                             }
3234                         }
3235                         return (err, candidates);
3236                     }
3237                     (Def::Union(..), _) |
3238                     (Def::Variant(..), _) |
3239                     (Def::VariantCtor(_, CtorKind::Fictive), _) if ns == ValueNS => {
3240                         err.span_label(span, format!("did you mean `{} {{ /* fields */ }}`?",
3241                                                      path_str));
3242                         return (err, candidates);
3243                     }
3244                     (Def::SelfTy(..), _) if ns == ValueNS => {
3245                         err.span_label(span, fallback_label);
3246                         err.note("can't use `Self` as a constructor, you must use the \
3247                                   implemented struct");
3248                         return (err, candidates);
3249                     }
3250                     (Def::TyAlias(_), _) | (Def::AssociatedTy(..), _) if ns == ValueNS => {
3251                         err.note("can't use a type alias as a constructor");
3252                         return (err, candidates);
3253                     }
3254                     _ => {}
3255                 }
3256             }
3257
3258             // Fallback label.
3259             if !levenshtein_worked {
3260                 err.span_label(base_span, fallback_label);
3261                 this.type_ascription_suggestion(&mut err, base_span);
3262             }
3263             (err, candidates)
3264         };
3265         let report_errors = |this: &mut Self, def: Option<Def>| {
3266             let (err, candidates) = report_errors(this, def);
3267             let def_id = this.current_module.normal_ancestor_id;
3268             let node_id = this.definitions.as_local_node_id(def_id).unwrap();
3269             let better = def.is_some();
3270             this.use_injections.push(UseError { err, candidates, node_id, better });
3271             err_path_resolution()
3272         };
3273
3274         let resolution = match self.resolve_qpath_anywhere(
3275             id,
3276             qself,
3277             path,
3278             ns,
3279             span,
3280             source.defer_to_typeck(),
3281             source.global_by_default(),
3282             crate_lint,
3283         ) {
3284             Some(resolution) if resolution.unresolved_segments() == 0 => {
3285                 if is_expected(resolution.base_def()) || resolution.base_def() == Def::Err {
3286                     resolution
3287                 } else {
3288                     // Add a temporary hack to smooth the transition to new struct ctor
3289                     // visibility rules. See #38932 for more details.
3290                     let mut res = None;
3291                     if let Def::Struct(def_id) = resolution.base_def() {
3292                         if let Some((ctor_def, ctor_vis))
3293                                 = self.struct_constructors.get(&def_id).cloned() {
3294                             if is_expected(ctor_def) && self.is_accessible(ctor_vis) {
3295                                 let lint = lint::builtin::LEGACY_CONSTRUCTOR_VISIBILITY;
3296                                 self.session.buffer_lint(lint, id, span,
3297                                     "private struct constructors are not usable through \
3298                                      re-exports in outer modules",
3299                                 );
3300                                 res = Some(PathResolution::new(ctor_def));
3301                             }
3302                         }
3303                     }
3304
3305                     res.unwrap_or_else(|| report_errors(self, Some(resolution.base_def())))
3306                 }
3307             }
3308             Some(resolution) if source.defer_to_typeck() => {
3309                 // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
3310                 // or `<T>::A::B`. If `B` should be resolved in value namespace then
3311                 // it needs to be added to the trait map.
3312                 if ns == ValueNS {
3313                     let item_name = *path.last().unwrap();
3314                     let traits = self.get_traits_containing_item(item_name, ns);
3315                     self.trait_map.insert(id, traits);
3316                 }
3317                 resolution
3318             }
3319             _ => report_errors(self, None)
3320         };
3321
3322         if let PathSource::TraitItem(..) = source {} else {
3323             // Avoid recording definition of `A::B` in `<T as A>::B::C`.
3324             self.record_def(id, resolution);
3325         }
3326         resolution
3327     }
3328
3329     fn type_ascription_suggestion(&self,
3330                                   err: &mut DiagnosticBuilder,
3331                                   base_span: Span) {
3332         debug!("type_ascription_suggetion {:?}", base_span);
3333         let cm = self.session.source_map();
3334         debug!("self.current_type_ascription {:?}", self.current_type_ascription);
3335         if let Some(sp) = self.current_type_ascription.last() {
3336             let mut sp = *sp;
3337             loop {  // try to find the `:`, bail on first non-':'/non-whitespace
3338                 sp = cm.next_point(sp);
3339                 if let Ok(snippet) = cm.span_to_snippet(sp.to(cm.next_point(sp))) {
3340                     debug!("snippet {:?}", snippet);
3341                     let line_sp = cm.lookup_char_pos(sp.hi()).line;
3342                     let line_base_sp = cm.lookup_char_pos(base_span.lo()).line;
3343                     debug!("{:?} {:?}", line_sp, line_base_sp);
3344                     if snippet == ":" {
3345                         err.span_label(base_span,
3346                                        "expecting a type here because of type ascription");
3347                         if line_sp != line_base_sp {
3348                             err.span_suggestion_short_with_applicability(
3349                                 sp,
3350                                 "did you mean to use `;` here instead?",
3351                                 ";".to_string(),
3352                                 Applicability::MaybeIncorrect,
3353                             );
3354                         }
3355                         break;
3356                     } else if snippet.trim().len() != 0  {
3357                         debug!("tried to find type ascription `:` token, couldn't find it");
3358                         break;
3359                     }
3360                 } else {
3361                     break;
3362                 }
3363             }
3364         }
3365     }
3366
3367     fn self_type_is_available(&mut self, span: Span) -> bool {
3368         let binding = self.resolve_ident_in_lexical_scope(keywords::SelfType.ident(),
3369                                                           TypeNS, None, span);
3370         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3371     }
3372
3373     fn self_value_is_available(&mut self, self_span: Span, path_span: Span) -> bool {
3374         let ident = Ident::new(keywords::SelfValue.name(), self_span);
3375         let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, None, path_span);
3376         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3377     }
3378
3379     // Resolve in alternative namespaces if resolution in the primary namespace fails.
3380     fn resolve_qpath_anywhere(&mut self,
3381                               id: NodeId,
3382                               qself: Option<&QSelf>,
3383                               path: &[Ident],
3384                               primary_ns: Namespace,
3385                               span: Span,
3386                               defer_to_typeck: bool,
3387                               global_by_default: bool,
3388                               crate_lint: CrateLint)
3389                               -> Option<PathResolution> {
3390         let mut fin_res = None;
3391         // FIXME: can't resolve paths in macro namespace yet, macros are
3392         // processed by the little special hack below.
3393         for (i, ns) in [primary_ns, TypeNS, ValueNS, /*MacroNS*/].iter().cloned().enumerate() {
3394             if i == 0 || ns != primary_ns {
3395                 match self.resolve_qpath(id, qself, path, ns, span, global_by_default, crate_lint) {
3396                     // If defer_to_typeck, then resolution > no resolution,
3397                     // otherwise full resolution > partial resolution > no resolution.
3398                     Some(res) if res.unresolved_segments() == 0 || defer_to_typeck =>
3399                         return Some(res),
3400                     res => if fin_res.is_none() { fin_res = res },
3401                 };
3402             }
3403         }
3404         if primary_ns != MacroNS &&
3405            (self.macro_names.contains(&path[0].modern()) ||
3406             self.builtin_macros.get(&path[0].name).cloned()
3407                                .and_then(NameBinding::macro_kind) == Some(MacroKind::Bang) ||
3408             self.macro_use_prelude.get(&path[0].name).cloned()
3409                                   .and_then(NameBinding::macro_kind) == Some(MacroKind::Bang)) {
3410             // Return some dummy definition, it's enough for error reporting.
3411             return Some(
3412                 PathResolution::new(Def::Macro(DefId::local(CRATE_DEF_INDEX), MacroKind::Bang))
3413             );
3414         }
3415         fin_res
3416     }
3417
3418     /// Handles paths that may refer to associated items.
3419     fn resolve_qpath(&mut self,
3420                      id: NodeId,
3421                      qself: Option<&QSelf>,
3422                      path: &[Ident],
3423                      ns: Namespace,
3424                      span: Span,
3425                      global_by_default: bool,
3426                      crate_lint: CrateLint)
3427                      -> Option<PathResolution> {
3428         debug!(
3429             "resolve_qpath(id={:?}, qself={:?}, path={:?}, \
3430              ns={:?}, span={:?}, global_by_default={:?})",
3431             id,
3432             qself,
3433             path,
3434             ns,
3435             span,
3436             global_by_default,
3437         );
3438
3439         if let Some(qself) = qself {
3440             if qself.position == 0 {
3441                 // This is a case like `<T>::B`, where there is no
3442                 // trait to resolve.  In that case, we leave the `B`
3443                 // segment to be resolved by type-check.
3444                 return Some(PathResolution::with_unresolved_segments(
3445                     Def::Mod(DefId::local(CRATE_DEF_INDEX)), path.len()
3446                 ));
3447             }
3448
3449             // Make sure `A::B` in `<T as A::B>::C` is a trait item.
3450             //
3451             // Currently, `path` names the full item (`A::B::C`, in
3452             // our example).  so we extract the prefix of that that is
3453             // the trait (the slice upto and including
3454             // `qself.position`). And then we recursively resolve that,
3455             // but with `qself` set to `None`.
3456             //
3457             // However, setting `qself` to none (but not changing the
3458             // span) loses the information about where this path
3459             // *actually* appears, so for the purposes of the crate
3460             // lint we pass along information that this is the trait
3461             // name from a fully qualified path, and this also
3462             // contains the full span (the `CrateLint::QPathTrait`).
3463             let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
3464             let res = self.smart_resolve_path_fragment(
3465                 id,
3466                 None,
3467                 &path[..qself.position + 1],
3468                 span,
3469                 PathSource::TraitItem(ns),
3470                 CrateLint::QPathTrait {
3471                     qpath_id: id,
3472                     qpath_span: qself.path_span,
3473                 },
3474             );
3475
3476             // The remaining segments (the `C` in our example) will
3477             // have to be resolved by type-check, since that requires doing
3478             // trait resolution.
3479             return Some(PathResolution::with_unresolved_segments(
3480                 res.base_def(), res.unresolved_segments() + path.len() - qself.position - 1
3481             ));
3482         }
3483
3484         let result = match self.resolve_path(
3485             None,
3486             &path,
3487             Some(ns),
3488             true,
3489             span,
3490             crate_lint,
3491         ) {
3492             PathResult::NonModule(path_res) => path_res,
3493             PathResult::Module(ModuleOrUniformRoot::Module(module)) if !module.is_normal() => {
3494                 PathResolution::new(module.def().unwrap())
3495             }
3496             // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
3497             // don't report an error right away, but try to fallback to a primitive type.
3498             // So, we are still able to successfully resolve something like
3499             //
3500             // use std::u8; // bring module u8 in scope
3501             // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
3502             //     u8::max_value() // OK, resolves to associated function <u8>::max_value,
3503             //                     // not to non-existent std::u8::max_value
3504             // }
3505             //
3506             // Such behavior is required for backward compatibility.
3507             // The same fallback is used when `a` resolves to nothing.
3508             PathResult::Module(ModuleOrUniformRoot::Module(_)) |
3509             PathResult::Failed(..)
3510                     if (ns == TypeNS || path.len() > 1) &&
3511                        self.primitive_type_table.primitive_types
3512                            .contains_key(&path[0].name) => {
3513                 let prim = self.primitive_type_table.primitive_types[&path[0].name];
3514                 PathResolution::with_unresolved_segments(Def::PrimTy(prim), path.len() - 1)
3515             }
3516             PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3517                 PathResolution::new(module.def().unwrap()),
3518             PathResult::Failed(span, msg, false) => {
3519                 resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
3520                 err_path_resolution()
3521             }
3522             PathResult::Module(ModuleOrUniformRoot::UniformRoot(_)) |
3523             PathResult::Failed(..) => return None,
3524             PathResult::Indeterminate => bug!("indetermined path result in resolve_qpath"),
3525         };
3526
3527         if path.len() > 1 && !global_by_default && result.base_def() != Def::Err &&
3528            path[0].name != keywords::CrateRoot.name() &&
3529            path[0].name != keywords::DollarCrate.name() {
3530             let unqualified_result = {
3531                 match self.resolve_path(
3532                     None,
3533                     &[*path.last().unwrap()],
3534                     Some(ns),
3535                     false,
3536                     span,
3537                     CrateLint::No,
3538                 ) {
3539                     PathResult::NonModule(path_res) => path_res.base_def(),
3540                     PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3541                         module.def().unwrap(),
3542                     _ => return Some(result),
3543                 }
3544             };
3545             if result.base_def() == unqualified_result {
3546                 let lint = lint::builtin::UNUSED_QUALIFICATIONS;
3547                 self.session.buffer_lint(lint, id, span, "unnecessary qualification")
3548             }
3549         }
3550
3551         Some(result)
3552     }
3553
3554     fn resolve_path(
3555         &mut self,
3556         base_module: Option<ModuleOrUniformRoot<'a>>,
3557         path: &[Ident],
3558         opt_ns: Option<Namespace>, // `None` indicates a module path
3559         record_used: bool,
3560         path_span: Span,
3561         crate_lint: CrateLint,
3562     ) -> PathResult<'a> {
3563         let parent_scope = ParentScope { module: self.current_module, ..self.dummy_parent_scope() };
3564         self.resolve_path_with_parent_scope(base_module, path, opt_ns, &parent_scope,
3565                                             record_used, path_span, crate_lint)
3566     }
3567
3568     fn resolve_path_with_parent_scope(
3569         &mut self,
3570         base_module: Option<ModuleOrUniformRoot<'a>>,
3571         path: &[Ident],
3572         opt_ns: Option<Namespace>, // `None` indicates a module path
3573         parent_scope: &ParentScope<'a>,
3574         record_used: bool,
3575         path_span: Span,
3576         crate_lint: CrateLint,
3577     ) -> PathResult<'a> {
3578         let mut module = base_module;
3579         let mut allow_super = true;
3580         let mut second_binding = None;
3581         self.current_module = parent_scope.module;
3582
3583         debug!(
3584             "resolve_path(path={:?}, opt_ns={:?}, record_used={:?}, \
3585              path_span={:?}, crate_lint={:?})",
3586             path,
3587             opt_ns,
3588             record_used,
3589             path_span,
3590             crate_lint,
3591         );
3592
3593         for (i, &ident) in path.iter().enumerate() {
3594             debug!("resolve_path ident {} {:?}", i, ident);
3595             let is_last = i == path.len() - 1;
3596             let ns = if is_last { opt_ns.unwrap_or(TypeNS) } else { TypeNS };
3597             let name = ident.name;
3598
3599             allow_super &= ns == TypeNS &&
3600                 (name == keywords::SelfValue.name() ||
3601                  name == keywords::Super.name());
3602
3603             if ns == TypeNS {
3604                 if allow_super && name == keywords::Super.name() {
3605                     let mut ctxt = ident.span.ctxt().modern();
3606                     let self_module = match i {
3607                         0 => Some(self.resolve_self(&mut ctxt, self.current_module)),
3608                         _ => match module {
3609                             Some(ModuleOrUniformRoot::Module(module)) => Some(module),
3610                             _ => None,
3611                         },
3612                     };
3613                     if let Some(self_module) = self_module {
3614                         if let Some(parent) = self_module.parent {
3615                             module = Some(ModuleOrUniformRoot::Module(
3616                                 self.resolve_self(&mut ctxt, parent)));
3617                             continue;
3618                         }
3619                     }
3620                     let msg = "There are too many initial `super`s.".to_string();
3621                     return PathResult::Failed(ident.span, msg, false);
3622                 }
3623                 if i == 0 {
3624                     if name == keywords::SelfValue.name() {
3625                         let mut ctxt = ident.span.ctxt().modern();
3626                         module = Some(ModuleOrUniformRoot::Module(
3627                             self.resolve_self(&mut ctxt, self.current_module)));
3628                         continue;
3629                     }
3630                     if name == keywords::Extern.name() ||
3631                        name == keywords::CrateRoot.name() &&
3632                        self.session.rust_2018() {
3633                         module = Some(ModuleOrUniformRoot::UniformRoot(name));
3634                         continue;
3635                     }
3636                     if name == keywords::CrateRoot.name() ||
3637                        name == keywords::Crate.name() ||
3638                        name == keywords::DollarCrate.name() {
3639                         // `::a::b`, `crate::a::b` or `$crate::a::b`
3640                         module = Some(ModuleOrUniformRoot::Module(
3641                             self.resolve_crate_root(ident)));
3642                         continue;
3643                     }
3644                 }
3645             }
3646
3647             // Report special messages for path segment keywords in wrong positions.
3648             if ident.is_path_segment_keyword() && i != 0 {
3649                 let name_str = if name == keywords::CrateRoot.name() {
3650                     "crate root".to_string()
3651                 } else {
3652                     format!("`{}`", name)
3653                 };
3654                 let msg = if i == 1 && path[0].name == keywords::CrateRoot.name() {
3655                     format!("global paths cannot start with {}", name_str)
3656                 } else {
3657                     format!("{} in paths can only be used in start position", name_str)
3658                 };
3659                 return PathResult::Failed(ident.span, msg, false);
3660             }
3661
3662             let binding = if let Some(module) = module {
3663                 self.resolve_ident_in_module(module, ident, ns, record_used, path_span)
3664             } else if opt_ns == Some(MacroNS) {
3665                 assert!(ns == TypeNS);
3666                 self.early_resolve_ident_in_lexical_scope(ident, ns, None, parent_scope,
3667                                                           record_used, record_used, path_span)
3668             } else {
3669                 let record_used_id =
3670                     if record_used { crate_lint.node_id().or(Some(CRATE_NODE_ID)) } else { None };
3671                 match self.resolve_ident_in_lexical_scope(ident, ns, record_used_id, path_span) {
3672                     // we found a locally-imported or available item/module
3673                     Some(LexicalScopeBinding::Item(binding)) => Ok(binding),
3674                     // we found a local variable or type param
3675                     Some(LexicalScopeBinding::Def(def))
3676                             if opt_ns == Some(TypeNS) || opt_ns == Some(ValueNS) => {
3677                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3678                             def, path.len() - 1
3679                         ));
3680                     }
3681                     _ => Err(if record_used { Determined } else { Undetermined }),
3682                 }
3683             };
3684
3685             match binding {
3686                 Ok(binding) => {
3687                     if i == 1 {
3688                         second_binding = Some(binding);
3689                     }
3690                     let def = binding.def();
3691                     let maybe_assoc = opt_ns != Some(MacroNS) && PathSource::Type.is_expected(def);
3692                     if let Some(next_module) = binding.module() {
3693                         module = Some(ModuleOrUniformRoot::Module(next_module));
3694                     } else if def == Def::ToolMod && i + 1 != path.len() {
3695                         let def = Def::NonMacroAttr(NonMacroAttrKind::Tool);
3696                         return PathResult::NonModule(PathResolution::new(def));
3697                     } else if def == Def::Err {
3698                         return PathResult::NonModule(err_path_resolution());
3699                     } else if opt_ns.is_some() && (is_last || maybe_assoc) {
3700                         self.lint_if_path_starts_with_module(
3701                             crate_lint,
3702                             path,
3703                             path_span,
3704                             second_binding,
3705                         );
3706                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3707                             def, path.len() - i - 1
3708                         ));
3709                     } else {
3710                         return PathResult::Failed(ident.span,
3711                                                   format!("Not a module `{}`", ident),
3712                                                   is_last);
3713                     }
3714                 }
3715                 Err(Undetermined) => return PathResult::Indeterminate,
3716                 Err(Determined) => {
3717                     if let Some(ModuleOrUniformRoot::Module(module)) = module {
3718                         if opt_ns.is_some() && !module.is_normal() {
3719                             return PathResult::NonModule(PathResolution::with_unresolved_segments(
3720                                 module.def().unwrap(), path.len() - i
3721                             ));
3722                         }
3723                     }
3724                     let module_def = match module {
3725                         Some(ModuleOrUniformRoot::Module(module)) => module.def(),
3726                         _ => None,
3727                     };
3728                     let msg = if module_def == self.graph_root.def() {
3729                         let is_mod = |def| match def { Def::Mod(..) => true, _ => false };
3730                         let mut candidates =
3731                             self.lookup_import_candidates(name, TypeNS, is_mod);
3732                         candidates.sort_by_cached_key(|c| {
3733                             (c.path.segments.len(), c.path.to_string())
3734                         });
3735                         if let Some(candidate) = candidates.get(0) {
3736                             format!("Did you mean `{}`?", candidate.path)
3737                         } else {
3738                             format!("Maybe a missing `extern crate {};`?", ident)
3739                         }
3740                     } else if i == 0 {
3741                         format!("Use of undeclared type or module `{}`", ident)
3742                     } else {
3743                         format!("Could not find `{}` in `{}`", ident, path[i - 1])
3744                     };
3745                     return PathResult::Failed(ident.span, msg, is_last);
3746                 }
3747             }
3748         }
3749
3750         self.lint_if_path_starts_with_module(crate_lint, path, path_span, second_binding);
3751
3752         PathResult::Module(module.unwrap_or_else(|| {
3753             span_bug!(path_span, "resolve_path: empty(?) path {:?} has no module", path);
3754         }))
3755
3756     }
3757
3758     fn lint_if_path_starts_with_module(
3759         &self,
3760         crate_lint: CrateLint,
3761         path: &[Ident],
3762         path_span: Span,
3763         second_binding: Option<&NameBinding>,
3764     ) {
3765         // In the 2018 edition this lint is a hard error, so nothing to do
3766         if self.session.rust_2018() {
3767             return
3768         }
3769
3770         let (diag_id, diag_span) = match crate_lint {
3771             CrateLint::No => return,
3772             CrateLint::SimplePath(id) => (id, path_span),
3773             CrateLint::UsePath { root_id, root_span } => (root_id, root_span),
3774             CrateLint::QPathTrait { qpath_id, qpath_span } => (qpath_id, qpath_span),
3775         };
3776
3777         let first_name = match path.get(0) {
3778             Some(ident) => ident.name,
3779             None => return,
3780         };
3781
3782         // We're only interested in `use` paths which should start with
3783         // `{{root}}` or `extern` currently.
3784         if first_name != keywords::Extern.name() && first_name != keywords::CrateRoot.name() {
3785             return
3786         }
3787
3788         match path.get(1) {
3789             // If this import looks like `crate::...` it's already good
3790             Some(ident) if ident.name == keywords::Crate.name() => return,
3791             // Otherwise go below to see if it's an extern crate
3792             Some(_) => {}
3793             // If the path has length one (and it's `CrateRoot` most likely)
3794             // then we don't know whether we're gonna be importing a crate or an
3795             // item in our crate. Defer this lint to elsewhere
3796             None => return,
3797         }
3798
3799         // If the first element of our path was actually resolved to an
3800         // `ExternCrate` (also used for `crate::...`) then no need to issue a
3801         // warning, this looks all good!
3802         if let Some(binding) = second_binding {
3803             if let NameBindingKind::Import { directive: d, .. } = binding.kind {
3804                 // Careful: we still want to rewrite paths from
3805                 // renamed extern crates.
3806                 if let ImportDirectiveSubclass::ExternCrate(None) = d.subclass {
3807                     return
3808                 }
3809             }
3810         }
3811
3812         let diag = lint::builtin::BuiltinLintDiagnostics
3813             ::AbsPathWithModule(diag_span);
3814         self.session.buffer_lint_with_diagnostic(
3815             lint::builtin::ABSOLUTE_PATHS_NOT_STARTING_WITH_CRATE,
3816             diag_id, diag_span,
3817             "absolute paths must start with `self`, `super`, \
3818             `crate`, or an external crate name in the 2018 edition",
3819             diag);
3820     }
3821
3822     // Resolve a local definition, potentially adjusting for closures.
3823     fn adjust_local_def(&mut self,
3824                         ns: Namespace,
3825                         rib_index: usize,
3826                         mut def: Def,
3827                         record_used: bool,
3828                         span: Span) -> Def {
3829         let ribs = &self.ribs[ns][rib_index + 1..];
3830
3831         // An invalid forward use of a type parameter from a previous default.
3832         if let ForwardTyParamBanRibKind = self.ribs[ns][rib_index].kind {
3833             if record_used {
3834                 resolve_error(self, span, ResolutionError::ForwardDeclaredTyParam);
3835             }
3836             assert_eq!(def, Def::Err);
3837             return Def::Err;
3838         }
3839
3840         match def {
3841             Def::Upvar(..) => {
3842                 span_bug!(span, "unexpected {:?} in bindings", def)
3843             }
3844             Def::Local(node_id) => {
3845                 for rib in ribs {
3846                     match rib.kind {
3847                         NormalRibKind | ModuleRibKind(..) | MacroDefinition(..) |
3848                         ForwardTyParamBanRibKind => {
3849                             // Nothing to do. Continue.
3850                         }
3851                         ClosureRibKind(function_id) => {
3852                             let prev_def = def;
3853
3854                             let seen = self.freevars_seen
3855                                            .entry(function_id)
3856                                            .or_default();
3857                             if let Some(&index) = seen.get(&node_id) {
3858                                 def = Def::Upvar(node_id, index, function_id);
3859                                 continue;
3860                             }
3861                             let vec = self.freevars
3862                                           .entry(function_id)
3863                                           .or_default();
3864                             let depth = vec.len();
3865                             def = Def::Upvar(node_id, depth, function_id);
3866
3867                             if record_used {
3868                                 vec.push(Freevar {
3869                                     def: prev_def,
3870                                     span,
3871                                 });
3872                                 seen.insert(node_id, depth);
3873                             }
3874                         }
3875                         ItemRibKind | TraitOrImplItemRibKind => {
3876                             // This was an attempt to access an upvar inside a
3877                             // named function item. This is not allowed, so we
3878                             // report an error.
3879                             if record_used {
3880                                 resolve_error(self, span,
3881                                         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem);
3882                             }
3883                             return Def::Err;
3884                         }
3885                         ConstantItemRibKind => {
3886                             // Still doesn't deal with upvars
3887                             if record_used {
3888                                 resolve_error(self, span,
3889                                         ResolutionError::AttemptToUseNonConstantValueInConstant);
3890                             }
3891                             return Def::Err;
3892                         }
3893                     }
3894                 }
3895             }
3896             Def::TyParam(..) | Def::SelfTy(..) => {
3897                 for rib in ribs {
3898                     match rib.kind {
3899                         NormalRibKind | TraitOrImplItemRibKind | ClosureRibKind(..) |
3900                         ModuleRibKind(..) | MacroDefinition(..) | ForwardTyParamBanRibKind |
3901                         ConstantItemRibKind => {
3902                             // Nothing to do. Continue.
3903                         }
3904                         ItemRibKind => {
3905                             // This was an attempt to use a type parameter outside
3906                             // its scope.
3907                             if record_used {
3908                                 resolve_error(self, span,
3909                                     ResolutionError::TypeParametersFromOuterFunction(def));
3910                             }
3911                             return Def::Err;
3912                         }
3913                     }
3914                 }
3915             }
3916             _ => {}
3917         }
3918         return def;
3919     }
3920
3921     fn lookup_assoc_candidate<FilterFn>(&mut self,
3922                                         ident: Ident,
3923                                         ns: Namespace,
3924                                         filter_fn: FilterFn)
3925                                         -> Option<AssocSuggestion>
3926         where FilterFn: Fn(Def) -> bool
3927     {
3928         fn extract_node_id(t: &Ty) -> Option<NodeId> {
3929             match t.node {
3930                 TyKind::Path(None, _) => Some(t.id),
3931                 TyKind::Rptr(_, ref mut_ty) => extract_node_id(&mut_ty.ty),
3932                 // This doesn't handle the remaining `Ty` variants as they are not
3933                 // that commonly the self_type, it might be interesting to provide
3934                 // support for those in future.
3935                 _ => None,
3936             }
3937         }
3938
3939         // Fields are generally expected in the same contexts as locals.
3940         if filter_fn(Def::Local(ast::DUMMY_NODE_ID)) {
3941             if let Some(node_id) = self.current_self_type.as_ref().and_then(extract_node_id) {
3942                 // Look for a field with the same name in the current self_type.
3943                 if let Some(resolution) = self.def_map.get(&node_id) {
3944                     match resolution.base_def() {
3945                         Def::Struct(did) | Def::Union(did)
3946                                 if resolution.unresolved_segments() == 0 => {
3947                             if let Some(field_names) = self.field_names.get(&did) {
3948                                 if field_names.iter().any(|&field_name| ident.name == field_name) {
3949                                     return Some(AssocSuggestion::Field);
3950                                 }
3951                             }
3952                         }
3953                         _ => {}
3954                     }
3955                 }
3956             }
3957         }
3958
3959         // Look for associated items in the current trait.
3960         if let Some((module, _)) = self.current_trait_ref {
3961             if let Ok(binding) = self.resolve_ident_in_module(
3962                     ModuleOrUniformRoot::Module(module),
3963                     ident,
3964                     ns,
3965                     false,
3966                     module.span,
3967                 ) {
3968                 let def = binding.def();
3969                 if filter_fn(def) {
3970                     return Some(if self.has_self.contains(&def.def_id()) {
3971                         AssocSuggestion::MethodWithSelf
3972                     } else {
3973                         AssocSuggestion::AssocItem
3974                     });
3975                 }
3976             }
3977         }
3978
3979         None
3980     }
3981
3982     fn lookup_typo_candidate<FilterFn>(&mut self,
3983                                        path: &[Ident],
3984                                        ns: Namespace,
3985                                        filter_fn: FilterFn,
3986                                        span: Span)
3987                                        -> Option<Symbol>
3988         where FilterFn: Fn(Def) -> bool
3989     {
3990         let add_module_candidates = |module: Module, names: &mut Vec<Name>| {
3991             for (&(ident, _), resolution) in module.resolutions.borrow().iter() {
3992                 if let Some(binding) = resolution.borrow().binding {
3993                     if filter_fn(binding.def()) {
3994                         names.push(ident.name);
3995                     }
3996                 }
3997             }
3998         };
3999
4000         let mut names = Vec::new();
4001         if path.len() == 1 {
4002             // Search in lexical scope.
4003             // Walk backwards up the ribs in scope and collect candidates.
4004             for rib in self.ribs[ns].iter().rev() {
4005                 // Locals and type parameters
4006                 for (ident, def) in &rib.bindings {
4007                     if filter_fn(*def) {
4008                         names.push(ident.name);
4009                     }
4010                 }
4011                 // Items in scope
4012                 if let ModuleRibKind(module) = rib.kind {
4013                     // Items from this module
4014                     add_module_candidates(module, &mut names);
4015
4016                     if let ModuleKind::Block(..) = module.kind {
4017                         // We can see through blocks
4018                     } else {
4019                         // Items from the prelude
4020                         if !module.no_implicit_prelude {
4021                             names.extend(self.session.extern_prelude.iter().cloned());
4022                             if let Some(prelude) = self.prelude {
4023                                 add_module_candidates(prelude, &mut names);
4024                             }
4025                         }
4026                         break;
4027                     }
4028                 }
4029             }
4030             // Add primitive types to the mix
4031             if filter_fn(Def::PrimTy(Bool)) {
4032                 names.extend(
4033                     self.primitive_type_table.primitive_types.iter().map(|(name, _)| name)
4034                 )
4035             }
4036         } else {
4037             // Search in module.
4038             let mod_path = &path[..path.len() - 1];
4039             if let PathResult::Module(module) = self.resolve_path(None, mod_path, Some(TypeNS),
4040                                                                   false, span, CrateLint::No) {
4041                 if let ModuleOrUniformRoot::Module(module) = module {
4042                     add_module_candidates(module, &mut names);
4043                 }
4044             }
4045         }
4046
4047         let name = path[path.len() - 1].name;
4048         // Make sure error reporting is deterministic.
4049         names.sort_by_cached_key(|name| name.as_str());
4050         match find_best_match_for_name(names.iter(), &name.as_str(), None) {
4051             Some(found) if found != name => Some(found),
4052             _ => None,
4053         }
4054     }
4055
4056     fn with_resolved_label<F>(&mut self, label: Option<Label>, id: NodeId, f: F)
4057         where F: FnOnce(&mut Resolver)
4058     {
4059         if let Some(label) = label {
4060             self.unused_labels.insert(id, label.ident.span);
4061             let def = Def::Label(id);
4062             self.with_label_rib(|this| {
4063                 let ident = label.ident.modern_and_legacy();
4064                 this.label_ribs.last_mut().unwrap().bindings.insert(ident, def);
4065                 f(this);
4066             });
4067         } else {
4068             f(self);
4069         }
4070     }
4071
4072     fn resolve_labeled_block(&mut self, label: Option<Label>, id: NodeId, block: &Block) {
4073         self.with_resolved_label(label, id, |this| this.visit_block(block));
4074     }
4075
4076     fn resolve_expr(&mut self, expr: &Expr, parent: Option<&Expr>) {
4077         // First, record candidate traits for this expression if it could
4078         // result in the invocation of a method call.
4079
4080         self.record_candidate_traits_for_expr_if_necessary(expr);
4081
4082         // Next, resolve the node.
4083         match expr.node {
4084             ExprKind::Path(ref qself, ref path) => {
4085                 self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
4086                 visit::walk_expr(self, expr);
4087             }
4088
4089             ExprKind::Struct(ref path, ..) => {
4090                 self.smart_resolve_path(expr.id, None, path, PathSource::Struct);
4091                 visit::walk_expr(self, expr);
4092             }
4093
4094             ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
4095                 let def = self.search_label(label.ident, |rib, ident| {
4096                     rib.bindings.get(&ident.modern_and_legacy()).cloned()
4097                 });
4098                 match def {
4099                     None => {
4100                         // Search again for close matches...
4101                         // Picks the first label that is "close enough", which is not necessarily
4102                         // the closest match
4103                         let close_match = self.search_label(label.ident, |rib, ident| {
4104                             let names = rib.bindings.iter().map(|(id, _)| &id.name);
4105                             find_best_match_for_name(names, &*ident.as_str(), None)
4106                         });
4107                         self.record_def(expr.id, err_path_resolution());
4108                         resolve_error(self,
4109                                       label.ident.span,
4110                                       ResolutionError::UndeclaredLabel(&label.ident.as_str(),
4111                                                                        close_match));
4112                     }
4113                     Some(Def::Label(id)) => {
4114                         // Since this def is a label, it is never read.
4115                         self.record_def(expr.id, PathResolution::new(Def::Label(id)));
4116                         self.unused_labels.remove(&id);
4117                     }
4118                     Some(_) => {
4119                         span_bug!(expr.span, "label wasn't mapped to a label def!");
4120                     }
4121                 }
4122
4123                 // visit `break` argument if any
4124                 visit::walk_expr(self, expr);
4125             }
4126
4127             ExprKind::IfLet(ref pats, ref subexpression, ref if_block, ref optional_else) => {
4128                 self.visit_expr(subexpression);
4129
4130                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
4131                 let mut bindings_list = FxHashMap();
4132                 for pat in pats {
4133                     self.resolve_pattern(pat, PatternSource::IfLet, &mut bindings_list);
4134                 }
4135                 // This has to happen *after* we determine which pat_idents are variants
4136                 self.check_consistent_bindings(pats);
4137                 self.visit_block(if_block);
4138                 self.ribs[ValueNS].pop();
4139
4140                 optional_else.as_ref().map(|expr| self.visit_expr(expr));
4141             }
4142
4143             ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),
4144
4145             ExprKind::While(ref subexpression, ref block, label) => {
4146                 self.with_resolved_label(label, expr.id, |this| {
4147                     this.visit_expr(subexpression);
4148                     this.visit_block(block);
4149                 });
4150             }
4151
4152             ExprKind::WhileLet(ref pats, ref subexpression, ref block, label) => {
4153                 self.with_resolved_label(label, expr.id, |this| {
4154                     this.visit_expr(subexpression);
4155                     this.ribs[ValueNS].push(Rib::new(NormalRibKind));
4156                     let mut bindings_list = FxHashMap();
4157                     for pat in pats {
4158                         this.resolve_pattern(pat, PatternSource::WhileLet, &mut bindings_list);
4159                     }
4160                     // This has to happen *after* we determine which pat_idents are variants
4161                     this.check_consistent_bindings(pats);
4162                     this.visit_block(block);
4163                     this.ribs[ValueNS].pop();
4164                 });
4165             }
4166
4167             ExprKind::ForLoop(ref pattern, ref subexpression, ref block, label) => {
4168                 self.visit_expr(subexpression);
4169                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
4170                 self.resolve_pattern(pattern, PatternSource::For, &mut FxHashMap());
4171
4172                 self.resolve_labeled_block(label, expr.id, block);
4173
4174                 self.ribs[ValueNS].pop();
4175             }
4176
4177             ExprKind::Block(ref block, label) => self.resolve_labeled_block(label, block.id, block),
4178
4179             // Equivalent to `visit::walk_expr` + passing some context to children.
4180             ExprKind::Field(ref subexpression, _) => {
4181                 self.resolve_expr(subexpression, Some(expr));
4182             }
4183             ExprKind::MethodCall(ref segment, ref arguments) => {
4184                 let mut arguments = arguments.iter();
4185                 self.resolve_expr(arguments.next().unwrap(), Some(expr));
4186                 for argument in arguments {
4187                     self.resolve_expr(argument, None);
4188                 }
4189                 self.visit_path_segment(expr.span, segment);
4190             }
4191
4192             ExprKind::Call(ref callee, ref arguments) => {
4193                 self.resolve_expr(callee, Some(expr));
4194                 for argument in arguments {
4195                     self.resolve_expr(argument, None);
4196                 }
4197             }
4198             ExprKind::Type(ref type_expr, _) => {
4199                 self.current_type_ascription.push(type_expr.span);
4200                 visit::walk_expr(self, expr);
4201                 self.current_type_ascription.pop();
4202             }
4203             // Resolve the body of async exprs inside the async closure to which they desugar
4204             ExprKind::Async(_, async_closure_id, ref block) => {
4205                 let rib_kind = ClosureRibKind(async_closure_id);
4206                 self.ribs[ValueNS].push(Rib::new(rib_kind));
4207                 self.label_ribs.push(Rib::new(rib_kind));
4208                 self.visit_block(&block);
4209                 self.label_ribs.pop();
4210                 self.ribs[ValueNS].pop();
4211             }
4212             // `async |x| ...` gets desugared to `|x| future_from_generator(|| ...)`, so we need to
4213             // resolve the arguments within the proper scopes so that usages of them inside the
4214             // closure are detected as upvars rather than normal closure arg usages.
4215             ExprKind::Closure(
4216                 _, IsAsync::Async { closure_id: inner_closure_id, .. }, _,
4217                 ref fn_decl, ref body, _span,
4218             ) => {
4219                 let rib_kind = ClosureRibKind(expr.id);
4220                 self.ribs[ValueNS].push(Rib::new(rib_kind));
4221                 self.label_ribs.push(Rib::new(rib_kind));
4222                 // Resolve arguments:
4223                 let mut bindings_list = FxHashMap();
4224                 for argument in &fn_decl.inputs {
4225                     self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
4226                     self.visit_ty(&argument.ty);
4227                 }
4228                 // No need to resolve return type-- the outer closure return type is
4229                 // FunctionRetTy::Default
4230
4231                 // Now resolve the inner closure
4232                 {
4233                     let rib_kind = ClosureRibKind(inner_closure_id);
4234                     self.ribs[ValueNS].push(Rib::new(rib_kind));
4235                     self.label_ribs.push(Rib::new(rib_kind));
4236                     // No need to resolve arguments: the inner closure has none.
4237                     // Resolve the return type:
4238                     visit::walk_fn_ret_ty(self, &fn_decl.output);
4239                     // Resolve the body
4240                     self.visit_expr(body);
4241                     self.label_ribs.pop();
4242                     self.ribs[ValueNS].pop();
4243                 }
4244                 self.label_ribs.pop();
4245                 self.ribs[ValueNS].pop();
4246             }
4247             _ => {
4248                 visit::walk_expr(self, expr);
4249             }
4250         }
4251     }
4252
4253     fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &Expr) {
4254         match expr.node {
4255             ExprKind::Field(_, ident) => {
4256                 // FIXME(#6890): Even though you can't treat a method like a
4257                 // field, we need to add any trait methods we find that match
4258                 // the field name so that we can do some nice error reporting
4259                 // later on in typeck.
4260                 let traits = self.get_traits_containing_item(ident, ValueNS);
4261                 self.trait_map.insert(expr.id, traits);
4262             }
4263             ExprKind::MethodCall(ref segment, ..) => {
4264                 debug!("(recording candidate traits for expr) recording traits for {}",
4265                        expr.id);
4266                 let traits = self.get_traits_containing_item(segment.ident, ValueNS);
4267                 self.trait_map.insert(expr.id, traits);
4268             }
4269             _ => {
4270                 // Nothing to do.
4271             }
4272         }
4273     }
4274
4275     fn get_traits_containing_item(&mut self, mut ident: Ident, ns: Namespace)
4276                                   -> Vec<TraitCandidate> {
4277         debug!("(getting traits containing item) looking for '{}'", ident.name);
4278
4279         let mut found_traits = Vec::new();
4280         // Look for the current trait.
4281         if let Some((module, _)) = self.current_trait_ref {
4282             if self.resolve_ident_in_module(
4283                 ModuleOrUniformRoot::Module(module),
4284                 ident,
4285                 ns,
4286                 false,
4287                 module.span,
4288             ).is_ok() {
4289                 let def_id = module.def_id().unwrap();
4290                 found_traits.push(TraitCandidate { def_id: def_id, import_id: None });
4291             }
4292         }
4293
4294         ident.span = ident.span.modern();
4295         let mut search_module = self.current_module;
4296         loop {
4297             self.get_traits_in_module_containing_item(ident, ns, search_module, &mut found_traits);
4298             search_module = unwrap_or!(
4299                 self.hygienic_lexical_parent(search_module, &mut ident.span), break
4300             );
4301         }
4302
4303         if let Some(prelude) = self.prelude {
4304             if !search_module.no_implicit_prelude {
4305                 self.get_traits_in_module_containing_item(ident, ns, prelude, &mut found_traits);
4306             }
4307         }
4308
4309         found_traits
4310     }
4311
4312     fn get_traits_in_module_containing_item(&mut self,
4313                                             ident: Ident,
4314                                             ns: Namespace,
4315                                             module: Module<'a>,
4316                                             found_traits: &mut Vec<TraitCandidate>) {
4317         assert!(ns == TypeNS || ns == ValueNS);
4318         let mut traits = module.traits.borrow_mut();
4319         if traits.is_none() {
4320             let mut collected_traits = Vec::new();
4321             module.for_each_child(|name, ns, binding| {
4322                 if ns != TypeNS { return }
4323                 if let Def::Trait(_) = binding.def() {
4324                     collected_traits.push((name, binding));
4325                 }
4326             });
4327             *traits = Some(collected_traits.into_boxed_slice());
4328         }
4329
4330         for &(trait_name, binding) in traits.as_ref().unwrap().iter() {
4331             let module = binding.module().unwrap();
4332             let mut ident = ident;
4333             if ident.span.glob_adjust(module.expansion, binding.span.ctxt().modern()).is_none() {
4334                 continue
4335             }
4336             if self.resolve_ident_in_module_unadjusted(
4337                 ModuleOrUniformRoot::Module(module),
4338                 ident,
4339                 ns,
4340                 false,
4341                 false,
4342                 module.span,
4343             ).is_ok() {
4344                 let import_id = match binding.kind {
4345                     NameBindingKind::Import { directive, .. } => {
4346                         self.maybe_unused_trait_imports.insert(directive.id);
4347                         self.add_to_glob_map(directive.id, trait_name);
4348                         Some(directive.id)
4349                     }
4350                     _ => None,
4351                 };
4352                 let trait_def_id = module.def_id().unwrap();
4353                 found_traits.push(TraitCandidate { def_id: trait_def_id, import_id: import_id });
4354             }
4355         }
4356     }
4357
4358     fn lookup_import_candidates_from_module<FilterFn>(&mut self,
4359                                           lookup_name: Name,
4360                                           namespace: Namespace,
4361                                           start_module: &'a ModuleData<'a>,
4362                                           crate_name: Ident,
4363                                           filter_fn: FilterFn)
4364                                           -> Vec<ImportSuggestion>
4365         where FilterFn: Fn(Def) -> bool
4366     {
4367         let mut candidates = Vec::new();
4368         let mut worklist = Vec::new();
4369         let mut seen_modules = FxHashSet();
4370         let not_local_module = crate_name != keywords::Crate.ident();
4371         worklist.push((start_module, Vec::<ast::PathSegment>::new(), not_local_module));
4372
4373         while let Some((in_module,
4374                         path_segments,
4375                         in_module_is_extern)) = worklist.pop() {
4376             self.populate_module_if_necessary(in_module);
4377
4378             // We have to visit module children in deterministic order to avoid
4379             // instabilities in reported imports (#43552).
4380             in_module.for_each_child_stable(|ident, ns, name_binding| {
4381                 // avoid imports entirely
4382                 if name_binding.is_import() && !name_binding.is_extern_crate() { return; }
4383                 // avoid non-importable candidates as well
4384                 if !name_binding.is_importable() { return; }
4385
4386                 // collect results based on the filter function
4387                 if ident.name == lookup_name && ns == namespace {
4388                     if filter_fn(name_binding.def()) {
4389                         // create the path
4390                         let mut segms = path_segments.clone();
4391                         if self.session.rust_2018() {
4392                             // crate-local absolute paths start with `crate::` in edition 2018
4393                             // FIXME: may also be stabilized for Rust 2015 (Issues #45477, #44660)
4394                             segms.insert(
4395                                 0, ast::PathSegment::from_ident(crate_name)
4396                             );
4397                         }
4398
4399                         segms.push(ast::PathSegment::from_ident(ident));
4400                         let path = Path {
4401                             span: name_binding.span,
4402                             segments: segms,
4403                         };
4404                         // the entity is accessible in the following cases:
4405                         // 1. if it's defined in the same crate, it's always
4406                         // accessible (since private entities can be made public)
4407                         // 2. if it's defined in another crate, it's accessible
4408                         // only if both the module is public and the entity is
4409                         // declared as public (due to pruning, we don't explore
4410                         // outside crate private modules => no need to check this)
4411                         if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
4412                             candidates.push(ImportSuggestion { path: path });
4413                         }
4414                     }
4415                 }
4416
4417                 // collect submodules to explore
4418                 if let Some(module) = name_binding.module() {
4419                     // form the path
4420                     let mut path_segments = path_segments.clone();
4421                     path_segments.push(ast::PathSegment::from_ident(ident));
4422
4423                     let is_extern_crate_that_also_appears_in_prelude =
4424                         name_binding.is_extern_crate() &&
4425                         self.session.rust_2018();
4426
4427                     let is_visible_to_user =
4428                         !in_module_is_extern || name_binding.vis == ty::Visibility::Public;
4429
4430                     if !is_extern_crate_that_also_appears_in_prelude && is_visible_to_user {
4431                         // add the module to the lookup
4432                         let is_extern = in_module_is_extern || name_binding.is_extern_crate();
4433                         if seen_modules.insert(module.def_id().unwrap()) {
4434                             worklist.push((module, path_segments, is_extern));
4435                         }
4436                     }
4437                 }
4438             })
4439         }
4440
4441         candidates
4442     }
4443
4444     /// When name resolution fails, this method can be used to look up candidate
4445     /// entities with the expected name. It allows filtering them using the
4446     /// supplied predicate (which should be used to only accept the types of
4447     /// definitions expected e.g. traits). The lookup spans across all crates.
4448     ///
4449     /// NOTE: The method does not look into imports, but this is not a problem,
4450     /// since we report the definitions (thus, the de-aliased imports).
4451     fn lookup_import_candidates<FilterFn>(&mut self,
4452                                           lookup_name: Name,
4453                                           namespace: Namespace,
4454                                           filter_fn: FilterFn)
4455                                           -> Vec<ImportSuggestion>
4456         where FilterFn: Fn(Def) -> bool
4457     {
4458         let mut suggestions = vec![];
4459
4460         suggestions.extend(
4461             self.lookup_import_candidates_from_module(
4462                 lookup_name, namespace, self.graph_root, keywords::Crate.ident(), &filter_fn
4463             )
4464         );
4465
4466         if self.session.rust_2018() {
4467             for &name in &self.session.extern_prelude {
4468                 let ident = Ident::with_empty_ctxt(name);
4469                 match self.crate_loader.maybe_process_path_extern(name, ident.span) {
4470                     Some(crate_id) => {
4471                         let crate_root = self.get_module(DefId {
4472                             krate: crate_id,
4473                             index: CRATE_DEF_INDEX,
4474                         });
4475                         self.populate_module_if_necessary(&crate_root);
4476
4477                         suggestions.extend(
4478                             self.lookup_import_candidates_from_module(
4479                                 lookup_name, namespace, crate_root, ident, &filter_fn
4480                             )
4481                         );
4482                     }
4483                     None => {}
4484                 }
4485             }
4486         }
4487
4488         suggestions
4489     }
4490
4491     fn find_module(&mut self,
4492                    module_def: Def)
4493                    -> Option<(Module<'a>, ImportSuggestion)>
4494     {
4495         let mut result = None;
4496         let mut worklist = Vec::new();
4497         let mut seen_modules = FxHashSet();
4498         worklist.push((self.graph_root, Vec::new()));
4499
4500         while let Some((in_module, path_segments)) = worklist.pop() {
4501             // abort if the module is already found
4502             if result.is_some() { break; }
4503
4504             self.populate_module_if_necessary(in_module);
4505
4506             in_module.for_each_child_stable(|ident, _, name_binding| {
4507                 // abort if the module is already found or if name_binding is private external
4508                 if result.is_some() || !name_binding.vis.is_visible_locally() {
4509                     return
4510                 }
4511                 if let Some(module) = name_binding.module() {
4512                     // form the path
4513                     let mut path_segments = path_segments.clone();
4514                     path_segments.push(ast::PathSegment::from_ident(ident));
4515                     if module.def() == Some(module_def) {
4516                         let path = Path {
4517                             span: name_binding.span,
4518                             segments: path_segments,
4519                         };
4520                         result = Some((module, ImportSuggestion { path: path }));
4521                     } else {
4522                         // add the module to the lookup
4523                         if seen_modules.insert(module.def_id().unwrap()) {
4524                             worklist.push((module, path_segments));
4525                         }
4526                     }
4527                 }
4528             });
4529         }
4530
4531         result
4532     }
4533
4534     fn collect_enum_variants(&mut self, enum_def: Def) -> Option<Vec<Path>> {
4535         if let Def::Enum(..) = enum_def {} else {
4536             panic!("Non-enum def passed to collect_enum_variants: {:?}", enum_def)
4537         }
4538
4539         self.find_module(enum_def).map(|(enum_module, enum_import_suggestion)| {
4540             self.populate_module_if_necessary(enum_module);
4541
4542             let mut variants = Vec::new();
4543             enum_module.for_each_child_stable(|ident, _, name_binding| {
4544                 if let Def::Variant(..) = name_binding.def() {
4545                     let mut segms = enum_import_suggestion.path.segments.clone();
4546                     segms.push(ast::PathSegment::from_ident(ident));
4547                     variants.push(Path {
4548                         span: name_binding.span,
4549                         segments: segms,
4550                     });
4551                 }
4552             });
4553             variants
4554         })
4555     }
4556
4557     fn record_def(&mut self, node_id: NodeId, resolution: PathResolution) {
4558         debug!("(recording def) recording {:?} for {}", resolution, node_id);
4559         if let Some(prev_res) = self.def_map.insert(node_id, resolution) {
4560             panic!("path resolved multiple times ({:?} before, {:?} now)", prev_res, resolution);
4561         }
4562     }
4563
4564     fn resolve_visibility(&mut self, vis: &ast::Visibility) -> ty::Visibility {
4565         match vis.node {
4566             ast::VisibilityKind::Public => ty::Visibility::Public,
4567             ast::VisibilityKind::Crate(..) => {
4568                 ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX))
4569             }
4570             ast::VisibilityKind::Inherited => {
4571                 ty::Visibility::Restricted(self.current_module.normal_ancestor_id)
4572             }
4573             ast::VisibilityKind::Restricted { ref path, id, .. } => {
4574                 // Visibilities are resolved as global by default, add starting root segment.
4575                 let segments = path.make_root().iter().chain(path.segments.iter())
4576                     .map(|seg| seg.ident)
4577                     .collect::<Vec<_>>();
4578                 let def = self.smart_resolve_path_fragment(
4579                     id,
4580                     None,
4581                     &segments,
4582                     path.span,
4583                     PathSource::Visibility,
4584                     CrateLint::SimplePath(id),
4585                 ).base_def();
4586                 if def == Def::Err {
4587                     ty::Visibility::Public
4588                 } else {
4589                     let vis = ty::Visibility::Restricted(def.def_id());
4590                     if self.is_accessible(vis) {
4591                         vis
4592                     } else {
4593                         self.session.span_err(path.span, "visibilities can only be restricted \
4594                                                           to ancestor modules");
4595                         ty::Visibility::Public
4596                     }
4597                 }
4598             }
4599         }
4600     }
4601
4602     fn is_accessible(&self, vis: ty::Visibility) -> bool {
4603         vis.is_accessible_from(self.current_module.normal_ancestor_id, self)
4604     }
4605
4606     fn is_accessible_from(&self, vis: ty::Visibility, module: Module<'a>) -> bool {
4607         vis.is_accessible_from(module.normal_ancestor_id, self)
4608     }
4609
4610     fn set_binding_parent_module(&mut self, binding: &'a NameBinding<'a>, module: Module<'a>) {
4611         if let Some(old_module) = self.binding_parent_modules.insert(PtrKey(binding), module) {
4612             if !ptr::eq(module, old_module) {
4613                 span_bug!(binding.span, "parent module is reset for binding");
4614             }
4615         }
4616     }
4617
4618     fn disambiguate_legacy_vs_modern(
4619         &self,
4620         legacy: &'a NameBinding<'a>,
4621         modern: &'a NameBinding<'a>,
4622     ) -> bool {
4623         // Some non-controversial subset of ambiguities "modern macro name" vs "macro_rules"
4624         // is disambiguated to mitigate regressions from macro modularization.
4625         // Scoping for `macro_rules` behaves like scoping for `let` at module level, in general.
4626         match (self.binding_parent_modules.get(&PtrKey(legacy)),
4627                self.binding_parent_modules.get(&PtrKey(modern))) {
4628             (Some(legacy), Some(modern)) =>
4629                 legacy.normal_ancestor_id == modern.normal_ancestor_id &&
4630                 modern.is_ancestor_of(legacy),
4631             _ => false,
4632         }
4633     }
4634
4635     fn report_ambiguity_error(&self, ident: Ident, b1: &NameBinding, b2: &NameBinding) {
4636         let participle = |is_import: bool| if is_import { "imported" } else { "defined" };
4637         let msg1 =
4638             format!("`{}` could refer to the name {} here", ident, participle(b1.is_import()));
4639         let msg2 =
4640             format!("`{}` could also refer to the name {} here", ident, participle(b2.is_import()));
4641         let note = if b1.expansion != Mark::root() {
4642             Some(if let Def::Macro(..) = b1.def() {
4643                 format!("macro-expanded {} do not shadow",
4644                         if b1.is_import() { "macro imports" } else { "macros" })
4645             } else {
4646                 format!("macro-expanded {} do not shadow when used in a macro invocation path",
4647                         if b1.is_import() { "imports" } else { "items" })
4648             })
4649         } else if b1.is_glob_import() {
4650             Some(format!("consider adding an explicit import of `{}` to disambiguate", ident))
4651         } else {
4652             None
4653         };
4654
4655         let mut err = struct_span_err!(self.session, ident.span, E0659, "`{}` is ambiguous", ident);
4656         err.span_label(ident.span, "ambiguous name");
4657         err.span_note(b1.span, &msg1);
4658         match b2.def() {
4659             Def::Macro(..) if b2.span.is_dummy() =>
4660                 err.note(&format!("`{}` is also a builtin macro", ident)),
4661             _ => err.span_note(b2.span, &msg2),
4662         };
4663         if let Some(note) = note {
4664             err.note(&note);
4665         }
4666         err.emit();
4667     }
4668
4669     fn report_errors(&mut self, krate: &Crate) {
4670         self.report_with_use_injections(krate);
4671         let mut reported_spans = FxHashSet();
4672
4673         for &(span_use, span_def) in &self.macro_expanded_macro_export_errors {
4674             let msg = "macro-expanded `macro_export` macros from the current crate \
4675                        cannot be referred to by absolute paths";
4676             self.session.buffer_lint_with_diagnostic(
4677                 lint::builtin::MACRO_EXPANDED_MACRO_EXPORTS_ACCESSED_BY_ABSOLUTE_PATHS,
4678                 CRATE_NODE_ID, span_use, msg,
4679                 lint::builtin::BuiltinLintDiagnostics::
4680                     MacroExpandedMacroExportsAccessedByAbsolutePaths(span_def),
4681             );
4682         }
4683
4684         for &AmbiguityError { ident, b1, b2 } in &self.ambiguity_errors {
4685             if reported_spans.insert(ident.span) {
4686                 self.report_ambiguity_error(ident, b1, b2);
4687             }
4688         }
4689
4690         for &PrivacyError(span, name, binding) in &self.privacy_errors {
4691             if !reported_spans.insert(span) { continue }
4692             span_err!(self.session, span, E0603, "{} `{}` is private", binding.descr(), name);
4693         }
4694     }
4695
4696     fn report_with_use_injections(&mut self, krate: &Crate) {
4697         for UseError { mut err, candidates, node_id, better } in self.use_injections.drain(..) {
4698             let (span, found_use) = UsePlacementFinder::check(krate, node_id);
4699             if !candidates.is_empty() {
4700                 show_candidates(&mut err, span, &candidates, better, found_use);
4701             }
4702             err.emit();
4703         }
4704     }
4705
4706     fn report_conflict<'b>(&mut self,
4707                        parent: Module,
4708                        ident: Ident,
4709                        ns: Namespace,
4710                        new_binding: &NameBinding<'b>,
4711                        old_binding: &NameBinding<'b>) {
4712         // Error on the second of two conflicting names
4713         if old_binding.span.lo() > new_binding.span.lo() {
4714             return self.report_conflict(parent, ident, ns, old_binding, new_binding);
4715         }
4716
4717         let container = match parent.kind {
4718             ModuleKind::Def(Def::Mod(_), _) => "module",
4719             ModuleKind::Def(Def::Trait(_), _) => "trait",
4720             ModuleKind::Block(..) => "block",
4721             _ => "enum",
4722         };
4723
4724         let old_noun = match old_binding.is_import() {
4725             true => "import",
4726             false => "definition",
4727         };
4728
4729         let new_participle = match new_binding.is_import() {
4730             true => "imported",
4731             false => "defined",
4732         };
4733
4734         let (name, span) = (ident.name, self.session.source_map().def_span(new_binding.span));
4735
4736         if let Some(s) = self.name_already_seen.get(&name) {
4737             if s == &span {
4738                 return;
4739             }
4740         }
4741
4742         let old_kind = match (ns, old_binding.module()) {
4743             (ValueNS, _) => "value",
4744             (MacroNS, _) => "macro",
4745             (TypeNS, _) if old_binding.is_extern_crate() => "extern crate",
4746             (TypeNS, Some(module)) if module.is_normal() => "module",
4747             (TypeNS, Some(module)) if module.is_trait() => "trait",
4748             (TypeNS, _) => "type",
4749         };
4750
4751         let msg = format!("the name `{}` is defined multiple times", name);
4752
4753         let mut err = match (old_binding.is_extern_crate(), new_binding.is_extern_crate()) {
4754             (true, true) => struct_span_err!(self.session, span, E0259, "{}", msg),
4755             (true, _) | (_, true) => match new_binding.is_import() && old_binding.is_import() {
4756                 true => struct_span_err!(self.session, span, E0254, "{}", msg),
4757                 false => struct_span_err!(self.session, span, E0260, "{}", msg),
4758             },
4759             _ => match (old_binding.is_import(), new_binding.is_import()) {
4760                 (false, false) => struct_span_err!(self.session, span, E0428, "{}", msg),
4761                 (true, true) => struct_span_err!(self.session, span, E0252, "{}", msg),
4762                 _ => struct_span_err!(self.session, span, E0255, "{}", msg),
4763             },
4764         };
4765
4766         err.note(&format!("`{}` must be defined only once in the {} namespace of this {}",
4767                           name,
4768                           ns.descr(),
4769                           container));
4770
4771         err.span_label(span, format!("`{}` re{} here", name, new_participle));
4772         if !old_binding.span.is_dummy() {
4773             err.span_label(self.session.source_map().def_span(old_binding.span),
4774                            format!("previous {} of the {} `{}` here", old_noun, old_kind, name));
4775         }
4776
4777         // See https://github.com/rust-lang/rust/issues/32354
4778         if old_binding.is_import() || new_binding.is_import() {
4779             let binding = if new_binding.is_import() && !new_binding.span.is_dummy() {
4780                 new_binding
4781             } else {
4782                 old_binding
4783             };
4784
4785             let cm = self.session.source_map();
4786             let rename_msg = "You can use `as` to change the binding name of the import";
4787
4788             if let (Ok(snippet), false) = (cm.span_to_snippet(binding.span),
4789                                            binding.is_renamed_extern_crate()) {
4790                 let suggested_name = if name.as_str().chars().next().unwrap().is_uppercase() {
4791                     format!("Other{}", name)
4792                 } else {
4793                     format!("other_{}", name)
4794                 };
4795
4796                 err.span_suggestion_with_applicability(
4797                     binding.span,
4798                     rename_msg,
4799                     if snippet.ends_with(';') {
4800                         format!("{} as {};", &snippet[..snippet.len() - 1], suggested_name)
4801                     } else {
4802                         format!("{} as {}", snippet, suggested_name)
4803                     },
4804                     Applicability::MachineApplicable,
4805                 );
4806             } else {
4807                 err.span_label(binding.span, rename_msg);
4808             }
4809         }
4810
4811         err.emit();
4812         self.name_already_seen.insert(name, span);
4813     }
4814 }
4815
4816 fn is_self_type(path: &[Ident], namespace: Namespace) -> bool {
4817     namespace == TypeNS && path.len() == 1 && path[0].name == keywords::SelfType.name()
4818 }
4819
4820 fn is_self_value(path: &[Ident], namespace: Namespace) -> bool {
4821     namespace == ValueNS && path.len() == 1 && path[0].name == keywords::SelfValue.name()
4822 }
4823
4824 fn names_to_string(idents: &[Ident]) -> String {
4825     let mut result = String::new();
4826     for (i, ident) in idents.iter()
4827                             .filter(|ident| ident.name != keywords::CrateRoot.name())
4828                             .enumerate() {
4829         if i > 0 {
4830             result.push_str("::");
4831         }
4832         result.push_str(&ident.as_str());
4833     }
4834     result
4835 }
4836
4837 fn path_names_to_string(path: &Path) -> String {
4838     names_to_string(&path.segments.iter()
4839                         .map(|seg| seg.ident)
4840                         .collect::<Vec<_>>())
4841 }
4842
4843 /// Get the path for an enum and the variant from an `ImportSuggestion` for an enum variant.
4844 fn import_candidate_to_paths(suggestion: &ImportSuggestion) -> (Span, String, String) {
4845     let variant_path = &suggestion.path;
4846     let variant_path_string = path_names_to_string(variant_path);
4847
4848     let path_len = suggestion.path.segments.len();
4849     let enum_path = ast::Path {
4850         span: suggestion.path.span,
4851         segments: suggestion.path.segments[0..path_len - 1].to_vec(),
4852     };
4853     let enum_path_string = path_names_to_string(&enum_path);
4854
4855     (suggestion.path.span, variant_path_string, enum_path_string)
4856 }
4857
4858
4859 /// When an entity with a given name is not available in scope, we search for
4860 /// entities with that name in all crates. This method allows outputting the
4861 /// results of this search in a programmer-friendly way
4862 fn show_candidates(err: &mut DiagnosticBuilder,
4863                    // This is `None` if all placement locations are inside expansions
4864                    span: Option<Span>,
4865                    candidates: &[ImportSuggestion],
4866                    better: bool,
4867                    found_use: bool) {
4868
4869     // we want consistent results across executions, but candidates are produced
4870     // by iterating through a hash map, so make sure they are ordered:
4871     let mut path_strings: Vec<_> =
4872         candidates.into_iter().map(|c| path_names_to_string(&c.path)).collect();
4873     path_strings.sort();
4874
4875     let better = if better { "better " } else { "" };
4876     let msg_diff = match path_strings.len() {
4877         1 => " is found in another module, you can import it",
4878         _ => "s are found in other modules, you can import them",
4879     };
4880     let msg = format!("possible {}candidate{} into scope", better, msg_diff);
4881
4882     if let Some(span) = span {
4883         for candidate in &mut path_strings {
4884             // produce an additional newline to separate the new use statement
4885             // from the directly following item.
4886             let additional_newline = if found_use {
4887                 ""
4888             } else {
4889                 "\n"
4890             };
4891             *candidate = format!("use {};\n{}", candidate, additional_newline);
4892         }
4893
4894         err.span_suggestions_with_applicability(
4895             span,
4896             &msg,
4897             path_strings,
4898             Applicability::Unspecified,
4899         );
4900     } else {
4901         let mut msg = msg;
4902         msg.push(':');
4903         for candidate in path_strings {
4904             msg.push('\n');
4905             msg.push_str(&candidate);
4906         }
4907     }
4908 }
4909
4910 /// A somewhat inefficient routine to obtain the name of a module.
4911 fn module_to_string(module: Module) -> Option<String> {
4912     let mut names = Vec::new();
4913
4914     fn collect_mod(names: &mut Vec<Ident>, module: Module) {
4915         if let ModuleKind::Def(_, name) = module.kind {
4916             if let Some(parent) = module.parent {
4917                 names.push(Ident::with_empty_ctxt(name));
4918                 collect_mod(names, parent);
4919             }
4920         } else {
4921             // danger, shouldn't be ident?
4922             names.push(Ident::from_str("<opaque>"));
4923             collect_mod(names, module.parent.unwrap());
4924         }
4925     }
4926     collect_mod(&mut names, module);
4927
4928     if names.is_empty() {
4929         return None;
4930     }
4931     Some(names_to_string(&names.into_iter()
4932                         .rev()
4933                         .collect::<Vec<_>>()))
4934 }
4935
4936 fn err_path_resolution() -> PathResolution {
4937     PathResolution::new(Def::Err)
4938 }
4939
4940 #[derive(PartialEq,Copy, Clone)]
4941 pub enum MakeGlobMap {
4942     Yes,
4943     No,
4944 }
4945
4946 #[derive(Copy, Clone, Debug)]
4947 enum CrateLint {
4948     /// Do not issue the lint
4949     No,
4950
4951     /// This lint applies to some random path like `impl ::foo::Bar`
4952     /// or whatever. In this case, we can take the span of that path.
4953     SimplePath(NodeId),
4954
4955     /// This lint comes from a `use` statement. In this case, what we
4956     /// care about really is the *root* `use` statement; e.g., if we
4957     /// have nested things like `use a::{b, c}`, we care about the
4958     /// `use a` part.
4959     UsePath { root_id: NodeId, root_span: Span },
4960
4961     /// This is the "trait item" from a fully qualified path. For example,
4962     /// we might be resolving  `X::Y::Z` from a path like `<T as X::Y>::Z`.
4963     /// The `path_span` is the span of the to the trait itself (`X::Y`).
4964     QPathTrait { qpath_id: NodeId, qpath_span: Span },
4965 }
4966
4967 impl CrateLint {
4968     fn node_id(&self) -> Option<NodeId> {
4969         match *self {
4970             CrateLint::No => None,
4971             CrateLint::SimplePath(id) |
4972             CrateLint::UsePath { root_id: id, .. } |
4973             CrateLint::QPathTrait { qpath_id: id, .. } => Some(id),
4974         }
4975     }
4976 }
4977
4978 __build_diagnostic_array! { librustc_resolve, DIAGNOSTICS }