]> git.lizzy.rs Git - rust.git/blob - src/librustc_resolve/lib.rs
Rollup merge of #55328 - raphlinus:copysign_typo, r=joshtriplett
[rust.git] / src / librustc_resolve / lib.rs
1 // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 #![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
12        html_favicon_url = "https://doc.rust-lang.org/favicon.ico",
13        html_root_url = "https://doc.rust-lang.org/nightly/")]
14
15 #![feature(crate_visibility_modifier)]
16 #![feature(nll)]
17 #![feature(rustc_diagnostic_macros)]
18 #![feature(slice_sort_by_cached_key)]
19
20 #[macro_use]
21 extern crate bitflags;
22 #[macro_use]
23 extern crate log;
24 #[macro_use]
25 extern crate syntax;
26 extern crate syntax_pos;
27 extern crate rustc_errors as errors;
28 extern crate arena;
29 #[macro_use]
30 extern crate rustc;
31 extern crate rustc_data_structures;
32 extern crate rustc_metadata;
33
34 pub use rustc::hir::def::{Namespace, PerNS};
35
36 use self::TypeParameters::*;
37 use self::RibKind::*;
38
39 use rustc::hir::map::{Definitions, DefCollector};
40 use rustc::hir::{self, PrimTy, Bool, Char, Float, Int, Uint, Str};
41 use rustc::middle::cstore::CrateStore;
42 use rustc::session::Session;
43 use rustc::lint;
44 use rustc::hir::def::*;
45 use rustc::hir::def::Namespace::*;
46 use rustc::hir::def_id::{CRATE_DEF_INDEX, LOCAL_CRATE, DefId};
47 use rustc::hir::{Freevar, FreevarMap, TraitCandidate, TraitMap, GlobMap};
48 use rustc::session::config::nightly_options;
49 use rustc::ty;
50 use rustc::util::nodemap::{NodeMap, NodeSet, FxHashMap, FxHashSet, DefIdMap};
51
52 use rustc_metadata::creader::CrateLoader;
53 use rustc_metadata::cstore::CStore;
54
55 use syntax::source_map::SourceMap;
56 use syntax::ext::hygiene::{Mark, Transparency, SyntaxContext};
57 use syntax::ast::{self, Name, NodeId, Ident, FloatTy, IntTy, UintTy};
58 use syntax::ext::base::SyntaxExtension;
59 use syntax::ext::base::Determinacy::{self, Determined, Undetermined};
60 use syntax::ext::base::MacroKind;
61 use syntax::feature_gate::{emit_feature_err, GateIssue};
62 use syntax::symbol::{Symbol, keywords};
63 use syntax::util::lev_distance::find_best_match_for_name;
64
65 use syntax::visit::{self, FnKind, Visitor};
66 use syntax::attr;
67 use syntax::ast::{CRATE_NODE_ID, Arm, IsAsync, BindingMode, Block, Crate, Expr, ExprKind};
68 use syntax::ast::{FnDecl, ForeignItem, ForeignItemKind, GenericParamKind, Generics};
69 use syntax::ast::{Item, ItemKind, ImplItem, ImplItemKind};
70 use syntax::ast::{Label, Local, Mutability, Pat, PatKind, Path};
71 use syntax::ast::{QSelf, TraitItemKind, TraitRef, Ty, TyKind};
72 use syntax::ptr::P;
73
74 use syntax_pos::{Span, DUMMY_SP, MultiSpan};
75 use errors::{Applicability, DiagnosticBuilder, DiagnosticId};
76
77 use std::cell::{Cell, RefCell};
78 use std::{cmp, fmt, iter, ptr};
79 use std::collections::BTreeSet;
80 use std::mem::replace;
81 use rustc_data_structures::ptr_key::PtrKey;
82 use rustc_data_structures::sync::Lrc;
83
84 use resolve_imports::{ImportDirective, ImportDirectiveSubclass, NameResolution, ImportResolver};
85 use macros::{InvocationData, LegacyBinding, ParentScope};
86
87 // NB: This module needs to be declared first so diagnostics are
88 // registered before they are used.
89 mod diagnostics;
90 mod error_reporting;
91 mod macros;
92 mod check_unused;
93 mod build_reduced_graph;
94 mod resolve_imports;
95
96 fn is_known_tool(name: Name) -> bool {
97     ["clippy", "rustfmt"].contains(&&*name.as_str())
98 }
99
100 /// A free importable items suggested in case of resolution failure.
101 struct ImportSuggestion {
102     path: Path,
103 }
104
105 /// A field or associated item from self type suggested in case of resolution failure.
106 enum AssocSuggestion {
107     Field,
108     MethodWithSelf,
109     AssocItem,
110 }
111
112 #[derive(Eq)]
113 struct BindingError {
114     name: Name,
115     origin: BTreeSet<Span>,
116     target: BTreeSet<Span>,
117 }
118
119 impl PartialOrd for BindingError {
120     fn partial_cmp(&self, other: &BindingError) -> Option<cmp::Ordering> {
121         Some(self.cmp(other))
122     }
123 }
124
125 impl PartialEq for BindingError {
126     fn eq(&self, other: &BindingError) -> bool {
127         self.name == other.name
128     }
129 }
130
131 impl Ord for BindingError {
132     fn cmp(&self, other: &BindingError) -> cmp::Ordering {
133         self.name.cmp(&other.name)
134     }
135 }
136
137 enum ResolutionError<'a> {
138     /// error E0401: can't use type parameters from outer function
139     TypeParametersFromOuterFunction(Def),
140     /// error E0403: the name is already used for a type parameter in this type parameter list
141     NameAlreadyUsedInTypeParameterList(Name, &'a Span),
142     /// error E0407: method is not a member of trait
143     MethodNotMemberOfTrait(Name, &'a str),
144     /// error E0437: type is not a member of trait
145     TypeNotMemberOfTrait(Name, &'a str),
146     /// error E0438: const is not a member of trait
147     ConstNotMemberOfTrait(Name, &'a str),
148     /// error E0408: variable `{}` is not bound in all patterns
149     VariableNotBoundInPattern(&'a BindingError),
150     /// error E0409: variable `{}` is bound in inconsistent ways within the same match arm
151     VariableBoundWithDifferentMode(Name, Span),
152     /// error E0415: identifier is bound more than once in this parameter list
153     IdentifierBoundMoreThanOnceInParameterList(&'a str),
154     /// error E0416: identifier is bound more than once in the same pattern
155     IdentifierBoundMoreThanOnceInSamePattern(&'a str),
156     /// error E0426: use of undeclared label
157     UndeclaredLabel(&'a str, Option<Name>),
158     /// error E0429: `self` imports are only allowed within a { } list
159     SelfImportsOnlyAllowedWithin,
160     /// error E0430: `self` import can only appear once in the list
161     SelfImportCanOnlyAppearOnceInTheList,
162     /// error E0431: `self` import can only appear in an import list with a non-empty prefix
163     SelfImportOnlyInImportListWithNonEmptyPrefix,
164     /// error E0433: failed to resolve
165     FailedToResolve(&'a str),
166     /// error E0434: can't capture dynamic environment in a fn item
167     CannotCaptureDynamicEnvironmentInFnItem,
168     /// error E0435: attempt to use a non-constant value in a constant
169     AttemptToUseNonConstantValueInConstant,
170     /// error E0530: X bindings cannot shadow Ys
171     BindingShadowsSomethingUnacceptable(&'a str, Name, &'a NameBinding<'a>),
172     /// error E0128: type parameters with a default cannot use forward declared identifiers
173     ForwardDeclaredTyParam,
174 }
175
176 /// Combines an error with provided span and emits it
177 ///
178 /// This takes the error provided, combines it with the span and any additional spans inside the
179 /// error and emits it.
180 fn resolve_error<'sess, 'a>(resolver: &'sess Resolver,
181                             span: Span,
182                             resolution_error: ResolutionError<'a>) {
183     resolve_struct_error(resolver, span, resolution_error).emit();
184 }
185
186 fn resolve_struct_error<'sess, 'a>(resolver: &'sess Resolver,
187                                    span: Span,
188                                    resolution_error: ResolutionError<'a>)
189                                    -> DiagnosticBuilder<'sess> {
190     match resolution_error {
191         ResolutionError::TypeParametersFromOuterFunction(outer_def) => {
192             let mut err = struct_span_err!(resolver.session,
193                                            span,
194                                            E0401,
195                                            "can't use type parameters from outer function");
196             err.span_label(span, "use of type variable from outer function");
197
198             let cm = resolver.session.source_map();
199             match outer_def {
200                 Def::SelfTy(maybe_trait_defid, maybe_impl_defid) => {
201                     if let Some(impl_span) = maybe_impl_defid.and_then(|def_id| {
202                         resolver.definitions.opt_span(def_id)
203                     }) {
204                         err.span_label(
205                             reduce_impl_span_to_impl_keyword(cm, impl_span),
206                             "`Self` type implicitly declared here, by this `impl`",
207                         );
208                     }
209                     match (maybe_trait_defid, maybe_impl_defid) {
210                         (Some(_), None) => {
211                             err.span_label(span, "can't use `Self` here");
212                         }
213                         (_, Some(_)) => {
214                             err.span_label(span, "use a type here instead");
215                         }
216                         (None, None) => bug!("`impl` without trait nor type?"),
217                     }
218                     return err;
219                 },
220                 Def::TyParam(typaram_defid) => {
221                     if let Some(typaram_span) = resolver.definitions.opt_span(typaram_defid) {
222                         err.span_label(typaram_span, "type variable from outer function");
223                     }
224                 },
225                 _ => {
226                     bug!("TypeParametersFromOuterFunction should only be used with Def::SelfTy or \
227                          Def::TyParam")
228                 }
229             }
230
231             // Try to retrieve the span of the function signature and generate a new message with
232             // a local type parameter
233             let sugg_msg = "try using a local type parameter instead";
234             if let Some((sugg_span, new_snippet)) = cm.generate_local_type_param_snippet(span) {
235                 // Suggest the modification to the user
236                 err.span_suggestion_with_applicability(
237                     sugg_span,
238                     sugg_msg,
239                     new_snippet,
240                     Applicability::MachineApplicable,
241                 );
242             } else if let Some(sp) = cm.generate_fn_name_span(span) {
243                 err.span_label(sp, "try adding a local type parameter in this method instead");
244             } else {
245                 err.help("try using a local type parameter instead");
246             }
247
248             err
249         }
250         ResolutionError::NameAlreadyUsedInTypeParameterList(name, first_use_span) => {
251              let mut err = struct_span_err!(resolver.session,
252                                             span,
253                                             E0403,
254                                             "the name `{}` is already used for a type parameter \
255                                             in this type parameter list",
256                                             name);
257              err.span_label(span, "already used");
258              err.span_label(first_use_span.clone(), format!("first use of `{}`", name));
259              err
260         }
261         ResolutionError::MethodNotMemberOfTrait(method, trait_) => {
262             let mut err = struct_span_err!(resolver.session,
263                                            span,
264                                            E0407,
265                                            "method `{}` is not a member of trait `{}`",
266                                            method,
267                                            trait_);
268             err.span_label(span, format!("not a member of trait `{}`", trait_));
269             err
270         }
271         ResolutionError::TypeNotMemberOfTrait(type_, trait_) => {
272             let mut err = struct_span_err!(resolver.session,
273                              span,
274                              E0437,
275                              "type `{}` is not a member of trait `{}`",
276                              type_,
277                              trait_);
278             err.span_label(span, format!("not a member of trait `{}`", trait_));
279             err
280         }
281         ResolutionError::ConstNotMemberOfTrait(const_, trait_) => {
282             let mut err = struct_span_err!(resolver.session,
283                              span,
284                              E0438,
285                              "const `{}` is not a member of trait `{}`",
286                              const_,
287                              trait_);
288             err.span_label(span, format!("not a member of trait `{}`", trait_));
289             err
290         }
291         ResolutionError::VariableNotBoundInPattern(binding_error) => {
292             let target_sp = binding_error.target.iter().cloned().collect::<Vec<_>>();
293             let msp = MultiSpan::from_spans(target_sp.clone());
294             let msg = format!("variable `{}` is not bound in all patterns", binding_error.name);
295             let mut err = resolver.session.struct_span_err_with_code(
296                 msp,
297                 &msg,
298                 DiagnosticId::Error("E0408".into()),
299             );
300             for sp in target_sp {
301                 err.span_label(sp, format!("pattern doesn't bind `{}`", binding_error.name));
302             }
303             let origin_sp = binding_error.origin.iter().cloned();
304             for sp in origin_sp {
305                 err.span_label(sp, "variable not in all patterns");
306             }
307             err
308         }
309         ResolutionError::VariableBoundWithDifferentMode(variable_name,
310                                                         first_binding_span) => {
311             let mut err = struct_span_err!(resolver.session,
312                              span,
313                              E0409,
314                              "variable `{}` is bound in inconsistent \
315                              ways within the same match arm",
316                              variable_name);
317             err.span_label(span, "bound in different ways");
318             err.span_label(first_binding_span, "first binding");
319             err
320         }
321         ResolutionError::IdentifierBoundMoreThanOnceInParameterList(identifier) => {
322             let mut err = struct_span_err!(resolver.session,
323                              span,
324                              E0415,
325                              "identifier `{}` is bound more than once in this parameter list",
326                              identifier);
327             err.span_label(span, "used as parameter more than once");
328             err
329         }
330         ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(identifier) => {
331             let mut err = struct_span_err!(resolver.session,
332                              span,
333                              E0416,
334                              "identifier `{}` is bound more than once in the same pattern",
335                              identifier);
336             err.span_label(span, "used in a pattern more than once");
337             err
338         }
339         ResolutionError::UndeclaredLabel(name, lev_candidate) => {
340             let mut err = struct_span_err!(resolver.session,
341                                            span,
342                                            E0426,
343                                            "use of undeclared label `{}`",
344                                            name);
345             if let Some(lev_candidate) = lev_candidate {
346                 err.span_label(span, format!("did you mean `{}`?", lev_candidate));
347             } else {
348                 err.span_label(span, format!("undeclared label `{}`", name));
349             }
350             err
351         }
352         ResolutionError::SelfImportsOnlyAllowedWithin => {
353             struct_span_err!(resolver.session,
354                              span,
355                              E0429,
356                              "{}",
357                              "`self` imports are only allowed within a { } list")
358         }
359         ResolutionError::SelfImportCanOnlyAppearOnceInTheList => {
360             let mut err = struct_span_err!(resolver.session, span, E0430,
361                                            "`self` import can only appear once in an import list");
362             err.span_label(span, "can only appear once in an import list");
363             err
364         }
365         ResolutionError::SelfImportOnlyInImportListWithNonEmptyPrefix => {
366             let mut err = struct_span_err!(resolver.session, span, E0431,
367                                            "`self` import can only appear in an import list with \
368                                             a non-empty prefix");
369             err.span_label(span, "can only appear in an import list with a non-empty prefix");
370             err
371         }
372         ResolutionError::FailedToResolve(msg) => {
373             let mut err = struct_span_err!(resolver.session, span, E0433,
374                                            "failed to resolve. {}", msg);
375             err.span_label(span, msg);
376             err
377         }
378         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem => {
379             let mut err = struct_span_err!(resolver.session,
380                                            span,
381                                            E0434,
382                                            "{}",
383                                            "can't capture dynamic environment in a fn item");
384             err.help("use the `|| { ... }` closure form instead");
385             err
386         }
387         ResolutionError::AttemptToUseNonConstantValueInConstant => {
388             let mut err = struct_span_err!(resolver.session, span, E0435,
389                                            "attempt to use a non-constant value in a constant");
390             err.span_label(span, "non-constant value");
391             err
392         }
393         ResolutionError::BindingShadowsSomethingUnacceptable(what_binding, name, binding) => {
394             let shadows_what = PathResolution::new(binding.def()).kind_name();
395             let mut err = struct_span_err!(resolver.session,
396                                            span,
397                                            E0530,
398                                            "{}s cannot shadow {}s", what_binding, shadows_what);
399             err.span_label(span, format!("cannot be named the same as a {}", shadows_what));
400             let participle = if binding.is_import() { "imported" } else { "defined" };
401             let msg = format!("a {} `{}` is {} here", shadows_what, name, participle);
402             err.span_label(binding.span, msg);
403             err
404         }
405         ResolutionError::ForwardDeclaredTyParam => {
406             let mut err = struct_span_err!(resolver.session, span, E0128,
407                                            "type parameters with a default cannot use \
408                                             forward declared identifiers");
409             err.span_label(
410                 span, "defaulted type parameters cannot be forward declared".to_string());
411             err
412         }
413     }
414 }
415
416 /// Adjust the impl span so that just the `impl` keyword is taken by removing
417 /// everything after `<` (`"impl<T> Iterator for A<T> {}" -> "impl"`) and
418 /// everything after the first whitespace (`"impl Iterator for A" -> "impl"`)
419 ///
420 /// Attention: The method used is very fragile since it essentially duplicates the work of the
421 /// parser. If you need to use this function or something similar, please consider updating the
422 /// source_map functions and this function to something more robust.
423 fn reduce_impl_span_to_impl_keyword(cm: &SourceMap, impl_span: Span) -> Span {
424     let impl_span = cm.span_until_char(impl_span, '<');
425     let impl_span = cm.span_until_whitespace(impl_span);
426     impl_span
427 }
428
429 #[derive(Copy, Clone, Debug)]
430 struct BindingInfo {
431     span: Span,
432     binding_mode: BindingMode,
433 }
434
435 /// Map from the name in a pattern to its binding mode.
436 type BindingMap = FxHashMap<Ident, BindingInfo>;
437
438 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
439 enum PatternSource {
440     Match,
441     IfLet,
442     WhileLet,
443     Let,
444     For,
445     FnParam,
446 }
447
448 impl PatternSource {
449     fn descr(self) -> &'static str {
450         match self {
451             PatternSource::Match => "match binding",
452             PatternSource::IfLet => "if let binding",
453             PatternSource::WhileLet => "while let binding",
454             PatternSource::Let => "let binding",
455             PatternSource::For => "for binding",
456             PatternSource::FnParam => "function parameter",
457         }
458     }
459 }
460
461 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
462 enum AliasPossibility {
463     No,
464     Maybe,
465 }
466
467 #[derive(Copy, Clone, Debug)]
468 enum PathSource<'a> {
469     // Type paths `Path`.
470     Type,
471     // Trait paths in bounds or impls.
472     Trait(AliasPossibility),
473     // Expression paths `path`, with optional parent context.
474     Expr(Option<&'a Expr>),
475     // Paths in path patterns `Path`.
476     Pat,
477     // Paths in struct expressions and patterns `Path { .. }`.
478     Struct,
479     // Paths in tuple struct patterns `Path(..)`.
480     TupleStruct,
481     // `m::A::B` in `<T as m::A>::B::C`.
482     TraitItem(Namespace),
483     // Path in `pub(path)`
484     Visibility,
485     // Path in `use a::b::{...};`
486     ImportPrefix,
487 }
488
489 impl<'a> PathSource<'a> {
490     fn namespace(self) -> Namespace {
491         match self {
492             PathSource::Type | PathSource::Trait(_) | PathSource::Struct |
493             PathSource::Visibility | PathSource::ImportPrefix => TypeNS,
494             PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct => ValueNS,
495             PathSource::TraitItem(ns) => ns,
496         }
497     }
498
499     fn global_by_default(self) -> bool {
500         match self {
501             PathSource::Visibility | PathSource::ImportPrefix => true,
502             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
503             PathSource::Struct | PathSource::TupleStruct |
504             PathSource::Trait(_) | PathSource::TraitItem(..) => false,
505         }
506     }
507
508     fn defer_to_typeck(self) -> bool {
509         match self {
510             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
511             PathSource::Struct | PathSource::TupleStruct => true,
512             PathSource::Trait(_) | PathSource::TraitItem(..) |
513             PathSource::Visibility | PathSource::ImportPrefix => false,
514         }
515     }
516
517     fn descr_expected(self) -> &'static str {
518         match self {
519             PathSource::Type => "type",
520             PathSource::Trait(_) => "trait",
521             PathSource::Pat => "unit struct/variant or constant",
522             PathSource::Struct => "struct, variant or union type",
523             PathSource::TupleStruct => "tuple struct/variant",
524             PathSource::Visibility => "module",
525             PathSource::ImportPrefix => "module or enum",
526             PathSource::TraitItem(ns) => match ns {
527                 TypeNS => "associated type",
528                 ValueNS => "method or associated constant",
529                 MacroNS => bug!("associated macro"),
530             },
531             PathSource::Expr(parent) => match parent.map(|p| &p.node) {
532                 // "function" here means "anything callable" rather than `Def::Fn`,
533                 // this is not precise but usually more helpful than just "value".
534                 Some(&ExprKind::Call(..)) => "function",
535                 _ => "value",
536             },
537         }
538     }
539
540     fn is_expected(self, def: Def) -> bool {
541         match self {
542             PathSource::Type => match def {
543                 Def::Struct(..) | Def::Union(..) | Def::Enum(..) |
544                 Def::Trait(..) | Def::TyAlias(..) | Def::AssociatedTy(..) |
545                 Def::PrimTy(..) | Def::TyParam(..) | Def::SelfTy(..) |
546                 Def::Existential(..) |
547                 Def::ForeignTy(..) => true,
548                 _ => false,
549             },
550             PathSource::Trait(AliasPossibility::No) => match def {
551                 Def::Trait(..) => true,
552                 _ => false,
553             },
554             PathSource::Trait(AliasPossibility::Maybe) => match def {
555                 Def::Trait(..) => true,
556                 Def::TraitAlias(..) => true,
557                 _ => false,
558             },
559             PathSource::Expr(..) => match def {
560                 Def::StructCtor(_, CtorKind::Const) | Def::StructCtor(_, CtorKind::Fn) |
561                 Def::VariantCtor(_, CtorKind::Const) | Def::VariantCtor(_, CtorKind::Fn) |
562                 Def::Const(..) | Def::Static(..) | Def::Local(..) | Def::Upvar(..) |
563                 Def::Fn(..) | Def::Method(..) | Def::AssociatedConst(..) |
564                 Def::SelfCtor(..) => true,
565                 _ => false,
566             },
567             PathSource::Pat => match def {
568                 Def::StructCtor(_, CtorKind::Const) |
569                 Def::VariantCtor(_, CtorKind::Const) |
570                 Def::Const(..) | Def::AssociatedConst(..) |
571                 Def::SelfCtor(..) => true,
572                 _ => false,
573             },
574             PathSource::TupleStruct => match def {
575                 Def::StructCtor(_, CtorKind::Fn) |
576                 Def::VariantCtor(_, CtorKind::Fn) |
577                 Def::SelfCtor(..) => true,
578                 _ => false,
579             },
580             PathSource::Struct => match def {
581                 Def::Struct(..) | Def::Union(..) | Def::Variant(..) |
582                 Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => true,
583                 _ => false,
584             },
585             PathSource::TraitItem(ns) => match def {
586                 Def::AssociatedConst(..) | Def::Method(..) if ns == ValueNS => true,
587                 Def::AssociatedTy(..) if ns == TypeNS => true,
588                 _ => false,
589             },
590             PathSource::ImportPrefix => match def {
591                 Def::Mod(..) | Def::Enum(..) => true,
592                 _ => false,
593             },
594             PathSource::Visibility => match def {
595                 Def::Mod(..) => true,
596                 _ => false,
597             },
598         }
599     }
600
601     fn error_code(self, has_unexpected_resolution: bool) -> &'static str {
602         __diagnostic_used!(E0404);
603         __diagnostic_used!(E0405);
604         __diagnostic_used!(E0412);
605         __diagnostic_used!(E0422);
606         __diagnostic_used!(E0423);
607         __diagnostic_used!(E0425);
608         __diagnostic_used!(E0531);
609         __diagnostic_used!(E0532);
610         __diagnostic_used!(E0573);
611         __diagnostic_used!(E0574);
612         __diagnostic_used!(E0575);
613         __diagnostic_used!(E0576);
614         __diagnostic_used!(E0577);
615         __diagnostic_used!(E0578);
616         match (self, has_unexpected_resolution) {
617             (PathSource::Trait(_), true) => "E0404",
618             (PathSource::Trait(_), false) => "E0405",
619             (PathSource::Type, true) => "E0573",
620             (PathSource::Type, false) => "E0412",
621             (PathSource::Struct, true) => "E0574",
622             (PathSource::Struct, false) => "E0422",
623             (PathSource::Expr(..), true) => "E0423",
624             (PathSource::Expr(..), false) => "E0425",
625             (PathSource::Pat, true) | (PathSource::TupleStruct, true) => "E0532",
626             (PathSource::Pat, false) | (PathSource::TupleStruct, false) => "E0531",
627             (PathSource::TraitItem(..), true) => "E0575",
628             (PathSource::TraitItem(..), false) => "E0576",
629             (PathSource::Visibility, true) | (PathSource::ImportPrefix, true) => "E0577",
630             (PathSource::Visibility, false) | (PathSource::ImportPrefix, false) => "E0578",
631         }
632     }
633 }
634
635 struct UsePlacementFinder {
636     target_module: NodeId,
637     span: Option<Span>,
638     found_use: bool,
639 }
640
641 impl UsePlacementFinder {
642     fn check(krate: &Crate, target_module: NodeId) -> (Option<Span>, bool) {
643         let mut finder = UsePlacementFinder {
644             target_module,
645             span: None,
646             found_use: false,
647         };
648         visit::walk_crate(&mut finder, krate);
649         (finder.span, finder.found_use)
650     }
651 }
652
653 impl<'tcx> Visitor<'tcx> for UsePlacementFinder {
654     fn visit_mod(
655         &mut self,
656         module: &'tcx ast::Mod,
657         _: Span,
658         _: &[ast::Attribute],
659         node_id: NodeId,
660     ) {
661         if self.span.is_some() {
662             return;
663         }
664         if node_id != self.target_module {
665             visit::walk_mod(self, module);
666             return;
667         }
668         // find a use statement
669         for item in &module.items {
670             match item.node {
671                 ItemKind::Use(..) => {
672                     // don't suggest placing a use before the prelude
673                     // import or other generated ones
674                     if item.span.ctxt().outer().expn_info().is_none() {
675                         self.span = Some(item.span.shrink_to_lo());
676                         self.found_use = true;
677                         return;
678                     }
679                 },
680                 // don't place use before extern crate
681                 ItemKind::ExternCrate(_) => {}
682                 // but place them before the first other item
683                 _ => if self.span.map_or(true, |span| item.span < span ) {
684                     if item.span.ctxt().outer().expn_info().is_none() {
685                         // don't insert between attributes and an item
686                         if item.attrs.is_empty() {
687                             self.span = Some(item.span.shrink_to_lo());
688                         } else {
689                             // find the first attribute on the item
690                             for attr in &item.attrs {
691                                 if self.span.map_or(true, |span| attr.span < span) {
692                                     self.span = Some(attr.span.shrink_to_lo());
693                                 }
694                             }
695                         }
696                     }
697                 },
698             }
699         }
700     }
701 }
702
703 /// This thing walks the whole crate in DFS manner, visiting each item, resolving names as it goes.
704 impl<'a, 'tcx, 'cl> Visitor<'tcx> for Resolver<'a, 'cl> {
705     fn visit_item(&mut self, item: &'tcx Item) {
706         self.resolve_item(item);
707     }
708     fn visit_arm(&mut self, arm: &'tcx Arm) {
709         self.resolve_arm(arm);
710     }
711     fn visit_block(&mut self, block: &'tcx Block) {
712         self.resolve_block(block);
713     }
714     fn visit_anon_const(&mut self, constant: &'tcx ast::AnonConst) {
715         self.with_constant_rib(|this| {
716             visit::walk_anon_const(this, constant);
717         });
718     }
719     fn visit_expr(&mut self, expr: &'tcx Expr) {
720         self.resolve_expr(expr, None);
721     }
722     fn visit_local(&mut self, local: &'tcx Local) {
723         self.resolve_local(local);
724     }
725     fn visit_ty(&mut self, ty: &'tcx Ty) {
726         match ty.node {
727             TyKind::Path(ref qself, ref path) => {
728                 self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
729             }
730             TyKind::ImplicitSelf => {
731                 let self_ty = keywords::SelfType.ident();
732                 let def = self.resolve_ident_in_lexical_scope(self_ty, TypeNS, Some(ty.id), ty.span)
733                               .map_or(Def::Err, |d| d.def());
734                 self.record_def(ty.id, PathResolution::new(def));
735             }
736             _ => (),
737         }
738         visit::walk_ty(self, ty);
739     }
740     fn visit_poly_trait_ref(&mut self,
741                             tref: &'tcx ast::PolyTraitRef,
742                             m: &'tcx ast::TraitBoundModifier) {
743         self.smart_resolve_path(tref.trait_ref.ref_id, None,
744                                 &tref.trait_ref.path, PathSource::Trait(AliasPossibility::Maybe));
745         visit::walk_poly_trait_ref(self, tref, m);
746     }
747     fn visit_foreign_item(&mut self, foreign_item: &'tcx ForeignItem) {
748         let type_parameters = match foreign_item.node {
749             ForeignItemKind::Fn(_, ref generics) => {
750                 HasTypeParameters(generics, ItemRibKind)
751             }
752             ForeignItemKind::Static(..) => NoTypeParameters,
753             ForeignItemKind::Ty => NoTypeParameters,
754             ForeignItemKind::Macro(..) => NoTypeParameters,
755         };
756         self.with_type_parameter_rib(type_parameters, |this| {
757             visit::walk_foreign_item(this, foreign_item);
758         });
759     }
760     fn visit_fn(&mut self,
761                 function_kind: FnKind<'tcx>,
762                 declaration: &'tcx FnDecl,
763                 _: Span,
764                 node_id: NodeId)
765     {
766         let (rib_kind, asyncness) = match function_kind {
767             FnKind::ItemFn(_, ref header, ..) =>
768                 (ItemRibKind, header.asyncness),
769             FnKind::Method(_, ref sig, _, _) =>
770                 (TraitOrImplItemRibKind, sig.header.asyncness),
771             FnKind::Closure(_) =>
772                 // Async closures aren't resolved through `visit_fn`-- they're
773                 // processed separately
774                 (ClosureRibKind(node_id), IsAsync::NotAsync),
775         };
776
777         // Create a value rib for the function.
778         self.ribs[ValueNS].push(Rib::new(rib_kind));
779
780         // Create a label rib for the function.
781         self.label_ribs.push(Rib::new(rib_kind));
782
783         // Add each argument to the rib.
784         let mut bindings_list = FxHashMap::default();
785         for argument in &declaration.inputs {
786             self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
787
788             self.visit_ty(&argument.ty);
789
790             debug!("(resolving function) recorded argument");
791         }
792         visit::walk_fn_ret_ty(self, &declaration.output);
793
794         // Resolve the function body, potentially inside the body of an async closure
795         if let IsAsync::Async { closure_id, .. } = asyncness {
796             let rib_kind = ClosureRibKind(closure_id);
797             self.ribs[ValueNS].push(Rib::new(rib_kind));
798             self.label_ribs.push(Rib::new(rib_kind));
799         }
800
801         match function_kind {
802             FnKind::ItemFn(.., body) |
803             FnKind::Method(.., body) => {
804                 self.visit_block(body);
805             }
806             FnKind::Closure(body) => {
807                 self.visit_expr(body);
808             }
809         };
810
811         // Leave the body of the async closure
812         if asyncness.is_async() {
813             self.label_ribs.pop();
814             self.ribs[ValueNS].pop();
815         }
816
817         debug!("(resolving function) leaving function");
818
819         self.label_ribs.pop();
820         self.ribs[ValueNS].pop();
821     }
822     fn visit_generics(&mut self, generics: &'tcx Generics) {
823         // For type parameter defaults, we have to ban access
824         // to following type parameters, as the Substs can only
825         // provide previous type parameters as they're built. We
826         // put all the parameters on the ban list and then remove
827         // them one by one as they are processed and become available.
828         let mut default_ban_rib = Rib::new(ForwardTyParamBanRibKind);
829         let mut found_default = false;
830         default_ban_rib.bindings.extend(generics.params.iter()
831             .filter_map(|param| match param.kind {
832                 GenericParamKind::Lifetime { .. } => None,
833                 GenericParamKind::Type { ref default, .. } => {
834                     found_default |= default.is_some();
835                     if found_default {
836                         Some((Ident::with_empty_ctxt(param.ident.name), Def::Err))
837                     } else {
838                         None
839                     }
840                 }
841             }));
842
843         for param in &generics.params {
844             match param.kind {
845                 GenericParamKind::Lifetime { .. } => self.visit_generic_param(param),
846                 GenericParamKind::Type { ref default, .. } => {
847                     for bound in &param.bounds {
848                         self.visit_param_bound(bound);
849                     }
850
851                     if let Some(ref ty) = default {
852                         self.ribs[TypeNS].push(default_ban_rib);
853                         self.visit_ty(ty);
854                         default_ban_rib = self.ribs[TypeNS].pop().unwrap();
855                     }
856
857                     // Allow all following defaults to refer to this type parameter.
858                     default_ban_rib.bindings.remove(&Ident::with_empty_ctxt(param.ident.name));
859                 }
860             }
861         }
862         for p in &generics.where_clause.predicates {
863             self.visit_where_predicate(p);
864         }
865     }
866 }
867
868 #[derive(Copy, Clone)]
869 enum TypeParameters<'a, 'b> {
870     NoTypeParameters,
871     HasTypeParameters(// Type parameters.
872                       &'b Generics,
873
874                       // The kind of the rib used for type parameters.
875                       RibKind<'a>),
876 }
877
878 /// The rib kind controls the translation of local
879 /// definitions (`Def::Local`) to upvars (`Def::Upvar`).
880 #[derive(Copy, Clone, Debug)]
881 enum RibKind<'a> {
882     /// No translation needs to be applied.
883     NormalRibKind,
884
885     /// We passed through a closure scope at the given node ID.
886     /// Translate upvars as appropriate.
887     ClosureRibKind(NodeId /* func id */),
888
889     /// We passed through an impl or trait and are now in one of its
890     /// methods or associated types. Allow references to ty params that impl or trait
891     /// binds. Disallow any other upvars (including other ty params that are
892     /// upvars).
893     TraitOrImplItemRibKind,
894
895     /// We passed through an item scope. Disallow upvars.
896     ItemRibKind,
897
898     /// We're in a constant item. Can't refer to dynamic stuff.
899     ConstantItemRibKind,
900
901     /// We passed through a module.
902     ModuleRibKind(Module<'a>),
903
904     /// We passed through a `macro_rules!` statement
905     MacroDefinition(DefId),
906
907     /// All bindings in this rib are type parameters that can't be used
908     /// from the default of a type parameter because they're not declared
909     /// before said type parameter. Also see the `visit_generics` override.
910     ForwardTyParamBanRibKind,
911 }
912
913 /// One local scope.
914 ///
915 /// A rib represents a scope names can live in. Note that these appear in many places, not just
916 /// around braces. At any place where the list of accessible names (of the given namespace)
917 /// changes or a new restrictions on the name accessibility are introduced, a new rib is put onto a
918 /// stack. This may be, for example, a `let` statement (because it introduces variables), a macro,
919 /// etc.
920 ///
921 /// Different [rib kinds](enum.RibKind) are transparent for different names.
922 ///
923 /// The resolution keeps a separate stack of ribs as it traverses the AST for each namespace. When
924 /// resolving, the name is looked up from inside out.
925 #[derive(Debug)]
926 struct Rib<'a> {
927     bindings: FxHashMap<Ident, Def>,
928     kind: RibKind<'a>,
929 }
930
931 impl<'a> Rib<'a> {
932     fn new(kind: RibKind<'a>) -> Rib<'a> {
933         Rib {
934             bindings: Default::default(),
935             kind,
936         }
937     }
938 }
939
940 /// An intermediate resolution result.
941 ///
942 /// This refers to the thing referred by a name. The difference between `Def` and `Item` is that
943 /// items are visible in their whole block, while defs only from the place they are defined
944 /// forward.
945 enum LexicalScopeBinding<'a> {
946     Item(&'a NameBinding<'a>),
947     Def(Def),
948 }
949
950 impl<'a> LexicalScopeBinding<'a> {
951     fn item(self) -> Option<&'a NameBinding<'a>> {
952         match self {
953             LexicalScopeBinding::Item(binding) => Some(binding),
954             _ => None,
955         }
956     }
957
958     fn def(self) -> Def {
959         match self {
960             LexicalScopeBinding::Item(binding) => binding.def(),
961             LexicalScopeBinding::Def(def) => def,
962         }
963     }
964 }
965
966 #[derive(Copy, Clone, Debug)]
967 pub enum ModuleOrUniformRoot<'a> {
968     /// Regular module.
969     Module(Module<'a>),
970
971     /// The `{{root}}` (`CrateRoot` aka "global") / `extern` initial segment
972     /// in which external crates resolve, and also `crate` (only in `{{root}}`,
973     /// but *not* `extern`), in the Rust 2018 edition.
974     UniformRoot(Name),
975 }
976
977 #[derive(Clone, Debug)]
978 enum PathResult<'a> {
979     Module(ModuleOrUniformRoot<'a>),
980     NonModule(PathResolution),
981     Indeterminate,
982     Failed(Span, String, bool /* is the error from the last segment? */),
983 }
984
985 enum ModuleKind {
986     /// An anonymous module, eg. just a block.
987     ///
988     /// ```
989     /// fn main() {
990     ///     fn f() {} // (1)
991     ///     { // This is an anonymous module
992     ///         f(); // This resolves to (2) as we are inside the block.
993     ///         fn f() {} // (2)
994     ///     }
995     ///     f(); // Resolves to (1)
996     /// }
997     /// ```
998     Block(NodeId),
999     /// Any module with a name.
1000     ///
1001     /// This could be:
1002     ///
1003     /// * A normal module â€’ either `mod from_file;` or `mod from_block { }`.
1004     /// * A trait or an enum (it implicitly contains associated types, methods and variant
1005     ///   constructors).
1006     Def(Def, Name),
1007 }
1008
1009 /// One node in the tree of modules.
1010 pub struct ModuleData<'a> {
1011     parent: Option<Module<'a>>,
1012     kind: ModuleKind,
1013
1014     // The def id of the closest normal module (`mod`) ancestor (including this module).
1015     normal_ancestor_id: DefId,
1016
1017     resolutions: RefCell<FxHashMap<(Ident, Namespace), &'a RefCell<NameResolution<'a>>>>,
1018     legacy_macro_resolutions: RefCell<Vec<(Ident, MacroKind, ParentScope<'a>,
1019                                            Option<&'a NameBinding<'a>>)>>,
1020     macro_resolutions: RefCell<Vec<(Box<[Ident]>, Span)>>,
1021     builtin_attrs: RefCell<Vec<(Ident, ParentScope<'a>)>>,
1022
1023     // Macro invocations that can expand into items in this module.
1024     unresolved_invocations: RefCell<FxHashSet<Mark>>,
1025
1026     no_implicit_prelude: bool,
1027
1028     glob_importers: RefCell<Vec<&'a ImportDirective<'a>>>,
1029     globs: RefCell<Vec<&'a ImportDirective<'a>>>,
1030
1031     // Used to memoize the traits in this module for faster searches through all traits in scope.
1032     traits: RefCell<Option<Box<[(Ident, &'a NameBinding<'a>)]>>>,
1033
1034     // Whether this module is populated. If not populated, any attempt to
1035     // access the children must be preceded with a
1036     // `populate_module_if_necessary` call.
1037     populated: Cell<bool>,
1038
1039     /// Span of the module itself. Used for error reporting.
1040     span: Span,
1041
1042     expansion: Mark,
1043 }
1044
1045 type Module<'a> = &'a ModuleData<'a>;
1046
1047 impl<'a> ModuleData<'a> {
1048     fn new(parent: Option<Module<'a>>,
1049            kind: ModuleKind,
1050            normal_ancestor_id: DefId,
1051            expansion: Mark,
1052            span: Span) -> Self {
1053         ModuleData {
1054             parent,
1055             kind,
1056             normal_ancestor_id,
1057             resolutions: Default::default(),
1058             legacy_macro_resolutions: RefCell::new(Vec::new()),
1059             macro_resolutions: RefCell::new(Vec::new()),
1060             builtin_attrs: RefCell::new(Vec::new()),
1061             unresolved_invocations: Default::default(),
1062             no_implicit_prelude: false,
1063             glob_importers: RefCell::new(Vec::new()),
1064             globs: RefCell::new(Vec::new()),
1065             traits: RefCell::new(None),
1066             populated: Cell::new(normal_ancestor_id.is_local()),
1067             span,
1068             expansion,
1069         }
1070     }
1071
1072     fn for_each_child<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1073         for (&(ident, ns), name_resolution) in self.resolutions.borrow().iter() {
1074             name_resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1075         }
1076     }
1077
1078     fn for_each_child_stable<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1079         let resolutions = self.resolutions.borrow();
1080         let mut resolutions = resolutions.iter().collect::<Vec<_>>();
1081         resolutions.sort_by_cached_key(|&(&(ident, ns), _)| (ident.as_str(), ns));
1082         for &(&(ident, ns), &resolution) in resolutions.iter() {
1083             resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1084         }
1085     }
1086
1087     fn def(&self) -> Option<Def> {
1088         match self.kind {
1089             ModuleKind::Def(def, _) => Some(def),
1090             _ => None,
1091         }
1092     }
1093
1094     fn def_id(&self) -> Option<DefId> {
1095         self.def().as_ref().map(Def::def_id)
1096     }
1097
1098     // `self` resolves to the first module ancestor that `is_normal`.
1099     fn is_normal(&self) -> bool {
1100         match self.kind {
1101             ModuleKind::Def(Def::Mod(_), _) => true,
1102             _ => false,
1103         }
1104     }
1105
1106     fn is_trait(&self) -> bool {
1107         match self.kind {
1108             ModuleKind::Def(Def::Trait(_), _) => true,
1109             _ => false,
1110         }
1111     }
1112
1113     fn is_local(&self) -> bool {
1114         self.normal_ancestor_id.is_local()
1115     }
1116
1117     fn nearest_item_scope(&'a self) -> Module<'a> {
1118         if self.is_trait() { self.parent.unwrap() } else { self }
1119     }
1120
1121     fn is_ancestor_of(&self, mut other: &Self) -> bool {
1122         while !ptr::eq(self, other) {
1123             if let Some(parent) = other.parent {
1124                 other = parent;
1125             } else {
1126                 return false;
1127             }
1128         }
1129         true
1130     }
1131 }
1132
1133 impl<'a> fmt::Debug for ModuleData<'a> {
1134     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1135         write!(f, "{:?}", self.def())
1136     }
1137 }
1138
1139 /// Records a possibly-private value, type, or module definition.
1140 #[derive(Clone, Debug)]
1141 pub struct NameBinding<'a> {
1142     kind: NameBindingKind<'a>,
1143     expansion: Mark,
1144     span: Span,
1145     vis: ty::Visibility,
1146 }
1147
1148 pub trait ToNameBinding<'a> {
1149     fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a>;
1150 }
1151
1152 impl<'a> ToNameBinding<'a> for &'a NameBinding<'a> {
1153     fn to_name_binding(self, _: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> {
1154         self
1155     }
1156 }
1157
1158 #[derive(Clone, Debug)]
1159 enum NameBindingKind<'a> {
1160     Def(Def, /* is_macro_export */ bool),
1161     Module(Module<'a>),
1162     Import {
1163         binding: &'a NameBinding<'a>,
1164         directive: &'a ImportDirective<'a>,
1165         used: Cell<bool>,
1166     },
1167     Ambiguity {
1168         b1: &'a NameBinding<'a>,
1169         b2: &'a NameBinding<'a>,
1170     }
1171 }
1172
1173 struct PrivacyError<'a>(Span, Name, &'a NameBinding<'a>);
1174
1175 struct UseError<'a> {
1176     err: DiagnosticBuilder<'a>,
1177     /// Attach `use` statements for these candidates
1178     candidates: Vec<ImportSuggestion>,
1179     /// The node id of the module to place the use statements in
1180     node_id: NodeId,
1181     /// Whether the diagnostic should state that it's "better"
1182     better: bool,
1183 }
1184
1185 struct AmbiguityError<'a> {
1186     ident: Ident,
1187     b1: &'a NameBinding<'a>,
1188     b2: &'a NameBinding<'a>,
1189 }
1190
1191 impl<'a> NameBinding<'a> {
1192     fn module(&self) -> Option<Module<'a>> {
1193         match self.kind {
1194             NameBindingKind::Module(module) => Some(module),
1195             NameBindingKind::Import { binding, .. } => binding.module(),
1196             _ => None,
1197         }
1198     }
1199
1200     fn def(&self) -> Def {
1201         match self.kind {
1202             NameBindingKind::Def(def, _) => def,
1203             NameBindingKind::Module(module) => module.def().unwrap(),
1204             NameBindingKind::Import { binding, .. } => binding.def(),
1205             NameBindingKind::Ambiguity { .. } => Def::Err,
1206         }
1207     }
1208
1209     fn def_ignoring_ambiguity(&self) -> Def {
1210         match self.kind {
1211             NameBindingKind::Import { binding, .. } => binding.def_ignoring_ambiguity(),
1212             NameBindingKind::Ambiguity { b1, .. } => b1.def_ignoring_ambiguity(),
1213             _ => self.def(),
1214         }
1215     }
1216
1217     // We sometimes need to treat variants as `pub` for backwards compatibility
1218     fn pseudo_vis(&self) -> ty::Visibility {
1219         if self.is_variant() && self.def().def_id().is_local() {
1220             ty::Visibility::Public
1221         } else {
1222             self.vis
1223         }
1224     }
1225
1226     fn is_variant(&self) -> bool {
1227         match self.kind {
1228             NameBindingKind::Def(Def::Variant(..), _) |
1229             NameBindingKind::Def(Def::VariantCtor(..), _) => true,
1230             _ => false,
1231         }
1232     }
1233
1234     fn is_extern_crate(&self) -> bool {
1235         match self.kind {
1236             NameBindingKind::Import {
1237                 directive: &ImportDirective {
1238                     subclass: ImportDirectiveSubclass::ExternCrate { .. }, ..
1239                 }, ..
1240             } => true,
1241             _ => false,
1242         }
1243     }
1244
1245     fn is_import(&self) -> bool {
1246         match self.kind {
1247             NameBindingKind::Import { .. } => true,
1248             _ => false,
1249         }
1250     }
1251
1252     fn is_glob_import(&self) -> bool {
1253         match self.kind {
1254             NameBindingKind::Import { directive, .. } => directive.is_glob(),
1255             NameBindingKind::Ambiguity { b1, .. } => b1.is_glob_import(),
1256             _ => false,
1257         }
1258     }
1259
1260     fn is_importable(&self) -> bool {
1261         match self.def() {
1262             Def::AssociatedConst(..) | Def::Method(..) | Def::AssociatedTy(..) => false,
1263             _ => true,
1264         }
1265     }
1266
1267     fn is_macro_def(&self) -> bool {
1268         match self.kind {
1269             NameBindingKind::Def(Def::Macro(..), _) => true,
1270             _ => false,
1271         }
1272     }
1273
1274     fn macro_kind(&self) -> Option<MacroKind> {
1275         match self.def_ignoring_ambiguity() {
1276             Def::Macro(_, kind) => Some(kind),
1277             Def::NonMacroAttr(..) => Some(MacroKind::Attr),
1278             _ => None,
1279         }
1280     }
1281
1282     fn descr(&self) -> &'static str {
1283         if self.is_extern_crate() { "extern crate" } else { self.def().kind_name() }
1284     }
1285
1286     // Suppose that we resolved macro invocation with `invoc_parent_expansion` to binding `binding`
1287     // at some expansion round `max(invoc, binding)` when they both emerged from macros.
1288     // Then this function returns `true` if `self` may emerge from a macro *after* that
1289     // in some later round and screw up our previously found resolution.
1290     // See more detailed explanation in
1291     // https://github.com/rust-lang/rust/pull/53778#issuecomment-419224049
1292     fn may_appear_after(&self, invoc_parent_expansion: Mark, binding: &NameBinding) -> bool {
1293         // self > max(invoc, binding) => !(self <= invoc || self <= binding)
1294         // Expansions are partially ordered, so "may appear after" is an inversion of
1295         // "certainly appears before or simultaneously" and includes unordered cases.
1296         let self_parent_expansion = self.expansion;
1297         let other_parent_expansion = binding.expansion;
1298         let certainly_before_other_or_simultaneously =
1299             other_parent_expansion.is_descendant_of(self_parent_expansion);
1300         let certainly_before_invoc_or_simultaneously =
1301             invoc_parent_expansion.is_descendant_of(self_parent_expansion);
1302         !(certainly_before_other_or_simultaneously || certainly_before_invoc_or_simultaneously)
1303     }
1304 }
1305
1306 /// Interns the names of the primitive types.
1307 ///
1308 /// All other types are defined somewhere and possibly imported, but the primitive ones need
1309 /// special handling, since they have no place of origin.
1310 #[derive(Default)]
1311 struct PrimitiveTypeTable {
1312     primitive_types: FxHashMap<Name, PrimTy>,
1313 }
1314
1315 impl PrimitiveTypeTable {
1316     fn new() -> PrimitiveTypeTable {
1317         let mut table = PrimitiveTypeTable::default();
1318
1319         table.intern("bool", Bool);
1320         table.intern("char", Char);
1321         table.intern("f32", Float(FloatTy::F32));
1322         table.intern("f64", Float(FloatTy::F64));
1323         table.intern("isize", Int(IntTy::Isize));
1324         table.intern("i8", Int(IntTy::I8));
1325         table.intern("i16", Int(IntTy::I16));
1326         table.intern("i32", Int(IntTy::I32));
1327         table.intern("i64", Int(IntTy::I64));
1328         table.intern("i128", Int(IntTy::I128));
1329         table.intern("str", Str);
1330         table.intern("usize", Uint(UintTy::Usize));
1331         table.intern("u8", Uint(UintTy::U8));
1332         table.intern("u16", Uint(UintTy::U16));
1333         table.intern("u32", Uint(UintTy::U32));
1334         table.intern("u64", Uint(UintTy::U64));
1335         table.intern("u128", Uint(UintTy::U128));
1336         table
1337     }
1338
1339     fn intern(&mut self, string: &str, primitive_type: PrimTy) {
1340         self.primitive_types.insert(Symbol::intern(string), primitive_type);
1341     }
1342 }
1343
1344 #[derive(Default, Clone)]
1345 pub struct ExternPreludeEntry<'a> {
1346     extern_crate_item: Option<&'a NameBinding<'a>>,
1347     pub introduced_by_item: bool,
1348 }
1349
1350 /// The main resolver class.
1351 ///
1352 /// This is the visitor that walks the whole crate.
1353 pub struct Resolver<'a, 'b: 'a> {
1354     session: &'a Session,
1355     cstore: &'a CStore,
1356
1357     pub definitions: Definitions,
1358
1359     graph_root: Module<'a>,
1360
1361     prelude: Option<Module<'a>>,
1362     pub extern_prelude: FxHashMap<Ident, ExternPreludeEntry<'a>>,
1363
1364     /// n.b. This is used only for better diagnostics, not name resolution itself.
1365     has_self: FxHashSet<DefId>,
1366
1367     /// Names of fields of an item `DefId` accessible with dot syntax.
1368     /// Used for hints during error reporting.
1369     field_names: FxHashMap<DefId, Vec<Name>>,
1370
1371     /// All imports known to succeed or fail.
1372     determined_imports: Vec<&'a ImportDirective<'a>>,
1373
1374     /// All non-determined imports.
1375     indeterminate_imports: Vec<&'a ImportDirective<'a>>,
1376
1377     /// The module that represents the current item scope.
1378     current_module: Module<'a>,
1379
1380     /// The current set of local scopes for types and values.
1381     /// FIXME #4948: Reuse ribs to avoid allocation.
1382     ribs: PerNS<Vec<Rib<'a>>>,
1383
1384     /// The current set of local scopes, for labels.
1385     label_ribs: Vec<Rib<'a>>,
1386
1387     /// The trait that the current context can refer to.
1388     current_trait_ref: Option<(Module<'a>, TraitRef)>,
1389
1390     /// The current self type if inside an impl (used for better errors).
1391     current_self_type: Option<Ty>,
1392
1393     /// The current self item if inside an ADT (used for better errors).
1394     current_self_item: Option<NodeId>,
1395
1396     /// The idents for the primitive types.
1397     primitive_type_table: PrimitiveTypeTable,
1398
1399     def_map: DefMap,
1400     import_map: ImportMap,
1401     pub freevars: FreevarMap,
1402     freevars_seen: NodeMap<NodeMap<usize>>,
1403     pub export_map: ExportMap,
1404     pub trait_map: TraitMap,
1405
1406     /// A map from nodes to anonymous modules.
1407     /// Anonymous modules are pseudo-modules that are implicitly created around items
1408     /// contained within blocks.
1409     ///
1410     /// For example, if we have this:
1411     ///
1412     ///  fn f() {
1413     ///      fn g() {
1414     ///          ...
1415     ///      }
1416     ///  }
1417     ///
1418     /// There will be an anonymous module created around `g` with the ID of the
1419     /// entry block for `f`.
1420     block_map: NodeMap<Module<'a>>,
1421     module_map: FxHashMap<DefId, Module<'a>>,
1422     extern_module_map: FxHashMap<(DefId, bool /* MacrosOnly? */), Module<'a>>,
1423     binding_parent_modules: FxHashMap<PtrKey<'a, NameBinding<'a>>, Module<'a>>,
1424
1425     pub make_glob_map: bool,
1426     /// Maps imports to the names of items actually imported (this actually maps
1427     /// all imports, but only glob imports are actually interesting).
1428     pub glob_map: GlobMap,
1429
1430     used_imports: FxHashSet<(NodeId, Namespace)>,
1431     pub maybe_unused_trait_imports: NodeSet,
1432     pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
1433
1434     /// A list of labels as of yet unused. Labels will be removed from this map when
1435     /// they are used (in a `break` or `continue` statement)
1436     pub unused_labels: FxHashMap<NodeId, Span>,
1437
1438     /// privacy errors are delayed until the end in order to deduplicate them
1439     privacy_errors: Vec<PrivacyError<'a>>,
1440     /// ambiguity errors are delayed for deduplication
1441     ambiguity_errors: Vec<AmbiguityError<'a>>,
1442     /// `use` injections are delayed for better placement and deduplication
1443     use_injections: Vec<UseError<'a>>,
1444     /// crate-local macro expanded `macro_export` referred to by a module-relative path
1445     macro_expanded_macro_export_errors: BTreeSet<(Span, Span)>,
1446
1447     arenas: &'a ResolverArenas<'a>,
1448     dummy_binding: &'a NameBinding<'a>,
1449
1450     crate_loader: &'a mut CrateLoader<'b>,
1451     macro_names: FxHashSet<Ident>,
1452     builtin_macros: FxHashMap<Name, &'a NameBinding<'a>>,
1453     macro_use_prelude: FxHashMap<Name, &'a NameBinding<'a>>,
1454     pub all_macros: FxHashMap<Name, Def>,
1455     macro_map: FxHashMap<DefId, Lrc<SyntaxExtension>>,
1456     macro_defs: FxHashMap<Mark, DefId>,
1457     local_macro_def_scopes: FxHashMap<NodeId, Module<'a>>,
1458     pub whitelisted_legacy_custom_derives: Vec<Name>,
1459     pub found_unresolved_macro: bool,
1460
1461     /// List of crate local macros that we need to warn about as being unused.
1462     /// Right now this only includes macro_rules! macros, and macros 2.0.
1463     unused_macros: FxHashSet<DefId>,
1464
1465     /// Maps the `Mark` of an expansion to its containing module or block.
1466     invocations: FxHashMap<Mark, &'a InvocationData<'a>>,
1467
1468     /// Avoid duplicated errors for "name already defined".
1469     name_already_seen: FxHashMap<Name, Span>,
1470
1471     potentially_unused_imports: Vec<&'a ImportDirective<'a>>,
1472
1473     /// This table maps struct IDs into struct constructor IDs,
1474     /// it's not used during normal resolution, only for better error reporting.
1475     struct_constructors: DefIdMap<(Def, ty::Visibility)>,
1476
1477     /// Only used for better errors on `fn(): fn()`
1478     current_type_ascription: Vec<Span>,
1479
1480     injected_crate: Option<Module<'a>>,
1481 }
1482
1483 /// Nothing really interesting here, it just provides memory for the rest of the crate.
1484 #[derive(Default)]
1485 pub struct ResolverArenas<'a> {
1486     modules: arena::TypedArena<ModuleData<'a>>,
1487     local_modules: RefCell<Vec<Module<'a>>>,
1488     name_bindings: arena::TypedArena<NameBinding<'a>>,
1489     import_directives: arena::TypedArena<ImportDirective<'a>>,
1490     name_resolutions: arena::TypedArena<RefCell<NameResolution<'a>>>,
1491     invocation_data: arena::TypedArena<InvocationData<'a>>,
1492     legacy_bindings: arena::TypedArena<LegacyBinding<'a>>,
1493 }
1494
1495 impl<'a> ResolverArenas<'a> {
1496     fn alloc_module(&'a self, module: ModuleData<'a>) -> Module<'a> {
1497         let module = self.modules.alloc(module);
1498         if module.def_id().map(|def_id| def_id.is_local()).unwrap_or(true) {
1499             self.local_modules.borrow_mut().push(module);
1500         }
1501         module
1502     }
1503     fn local_modules(&'a self) -> ::std::cell::Ref<'a, Vec<Module<'a>>> {
1504         self.local_modules.borrow()
1505     }
1506     fn alloc_name_binding(&'a self, name_binding: NameBinding<'a>) -> &'a NameBinding<'a> {
1507         self.name_bindings.alloc(name_binding)
1508     }
1509     fn alloc_import_directive(&'a self, import_directive: ImportDirective<'a>)
1510                               -> &'a ImportDirective {
1511         self.import_directives.alloc(import_directive)
1512     }
1513     fn alloc_name_resolution(&'a self) -> &'a RefCell<NameResolution<'a>> {
1514         self.name_resolutions.alloc(Default::default())
1515     }
1516     fn alloc_invocation_data(&'a self, expansion_data: InvocationData<'a>)
1517                              -> &'a InvocationData<'a> {
1518         self.invocation_data.alloc(expansion_data)
1519     }
1520     fn alloc_legacy_binding(&'a self, binding: LegacyBinding<'a>) -> &'a LegacyBinding<'a> {
1521         self.legacy_bindings.alloc(binding)
1522     }
1523 }
1524
1525 impl<'a, 'b: 'a, 'cl: 'b> ty::DefIdTree for &'a Resolver<'b, 'cl> {
1526     fn parent(self, id: DefId) -> Option<DefId> {
1527         match id.krate {
1528             LOCAL_CRATE => self.definitions.def_key(id.index).parent,
1529             _ => self.cstore.def_key(id).parent,
1530         }.map(|index| DefId { index, ..id })
1531     }
1532 }
1533
1534 /// This interface is used through the AST→HIR step, to embed full paths into the HIR. After that
1535 /// the resolver is no longer needed as all the relevant information is inline.
1536 impl<'a, 'cl> hir::lowering::Resolver for Resolver<'a, 'cl> {
1537     fn resolve_hir_path(&mut self, path: &mut hir::Path, is_value: bool) {
1538         self.resolve_hir_path_cb(path, is_value,
1539                                  |resolver, span, error| resolve_error(resolver, span, error))
1540     }
1541
1542     fn resolve_str_path(
1543         &mut self,
1544         span: Span,
1545         crate_root: Option<&str>,
1546         components: &[&str],
1547         args: Option<P<hir::GenericArgs>>,
1548         is_value: bool
1549     ) -> hir::Path {
1550         let mut segments = iter::once(keywords::CrateRoot.ident())
1551             .chain(
1552                 crate_root.into_iter()
1553                     .chain(components.iter().cloned())
1554                     .map(Ident::from_str)
1555             ).map(hir::PathSegment::from_ident).collect::<Vec<_>>();
1556
1557         if let Some(args) = args {
1558             let ident = segments.last().unwrap().ident;
1559             *segments.last_mut().unwrap() = hir::PathSegment {
1560                 ident,
1561                 args: Some(args),
1562                 infer_types: true,
1563             };
1564         }
1565
1566         let mut path = hir::Path {
1567             span,
1568             def: Def::Err,
1569             segments: segments.into(),
1570         };
1571
1572         self.resolve_hir_path(&mut path, is_value);
1573         path
1574     }
1575
1576     fn get_resolution(&mut self, id: NodeId) -> Option<PathResolution> {
1577         self.def_map.get(&id).cloned()
1578     }
1579
1580     fn get_import(&mut self, id: NodeId) -> PerNS<Option<PathResolution>> {
1581         self.import_map.get(&id).cloned().unwrap_or_default()
1582     }
1583
1584     fn definitions(&mut self) -> &mut Definitions {
1585         &mut self.definitions
1586     }
1587 }
1588
1589 impl<'a, 'crateloader> Resolver<'a, 'crateloader> {
1590     /// Rustdoc uses this to resolve things in a recoverable way. ResolutionError<'a>
1591     /// isn't something that can be returned because it can't be made to live that long,
1592     /// and also it's a private type. Fortunately rustdoc doesn't need to know the error,
1593     /// just that an error occurred.
1594     pub fn resolve_str_path_error(&mut self, span: Span, path_str: &str, is_value: bool)
1595         -> Result<hir::Path, ()> {
1596         use std::iter;
1597         let mut errored = false;
1598
1599         let mut path = if path_str.starts_with("::") {
1600             hir::Path {
1601                 span,
1602                 def: Def::Err,
1603                 segments: iter::once(keywords::CrateRoot.ident()).chain({
1604                     path_str.split("::").skip(1).map(Ident::from_str)
1605                 }).map(hir::PathSegment::from_ident).collect(),
1606             }
1607         } else {
1608             hir::Path {
1609                 span,
1610                 def: Def::Err,
1611                 segments: path_str.split("::").map(Ident::from_str)
1612                                   .map(hir::PathSegment::from_ident).collect(),
1613             }
1614         };
1615         self.resolve_hir_path_cb(&mut path, is_value, |_, _, _| errored = true);
1616         if errored || path.def == Def::Err {
1617             Err(())
1618         } else {
1619             Ok(path)
1620         }
1621     }
1622
1623     /// resolve_hir_path, but takes a callback in case there was an error
1624     fn resolve_hir_path_cb<F>(&mut self, path: &mut hir::Path, is_value: bool, error_callback: F)
1625         where F: for<'c, 'b> FnOnce(&'c mut Resolver, Span, ResolutionError<'b>)
1626     {
1627         let namespace = if is_value { ValueNS } else { TypeNS };
1628         let hir::Path { ref segments, span, ref mut def } = *path;
1629         let path: Vec<_> = segments.iter().map(|seg| seg.ident).collect();
1630         // FIXME (Manishearth): Intra doc links won't get warned of epoch changes
1631         match self.resolve_path(None, &path, Some(namespace), true, span, CrateLint::No) {
1632             PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
1633                 *def = module.def().unwrap(),
1634             PathResult::NonModule(path_res) if path_res.unresolved_segments() == 0 =>
1635                 *def = path_res.base_def(),
1636             PathResult::NonModule(..) =>
1637                 if let PathResult::Failed(span, msg, _) = self.resolve_path(
1638                     None,
1639                     &path,
1640                     None,
1641                     true,
1642                     span,
1643                     CrateLint::No,
1644                 ) {
1645                     error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1646                 },
1647             PathResult::Module(ModuleOrUniformRoot::UniformRoot(_)) |
1648             PathResult::Indeterminate => unreachable!(),
1649             PathResult::Failed(span, msg, _) => {
1650                 error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1651             }
1652         }
1653     }
1654 }
1655
1656 impl<'a, 'crateloader: 'a> Resolver<'a, 'crateloader> {
1657     pub fn new(session: &'a Session,
1658                cstore: &'a CStore,
1659                krate: &Crate,
1660                crate_name: &str,
1661                make_glob_map: MakeGlobMap,
1662                crate_loader: &'a mut CrateLoader<'crateloader>,
1663                arenas: &'a ResolverArenas<'a>)
1664                -> Resolver<'a, 'crateloader> {
1665         let root_def_id = DefId::local(CRATE_DEF_INDEX);
1666         let root_module_kind = ModuleKind::Def(Def::Mod(root_def_id), keywords::Invalid.name());
1667         let graph_root = arenas.alloc_module(ModuleData {
1668             no_implicit_prelude: attr::contains_name(&krate.attrs, "no_implicit_prelude"),
1669             ..ModuleData::new(None, root_module_kind, root_def_id, Mark::root(), krate.span)
1670         });
1671         let mut module_map = FxHashMap::default();
1672         module_map.insert(DefId::local(CRATE_DEF_INDEX), graph_root);
1673
1674         let mut definitions = Definitions::new();
1675         DefCollector::new(&mut definitions, Mark::root())
1676             .collect_root(crate_name, session.local_crate_disambiguator());
1677
1678         let mut extern_prelude: FxHashMap<Ident, ExternPreludeEntry> =
1679             session.opts.externs.iter().map(|kv| (Ident::from_str(kv.0), Default::default()))
1680                                        .collect();
1681
1682         if !attr::contains_name(&krate.attrs, "no_core") {
1683             extern_prelude.insert(Ident::from_str("core"), Default::default());
1684             if !attr::contains_name(&krate.attrs, "no_std") {
1685                 extern_prelude.insert(Ident::from_str("std"), Default::default());
1686                 if session.rust_2018() {
1687                     extern_prelude.insert(Ident::from_str("meta"), Default::default());
1688                 }
1689             }
1690         }
1691
1692         let mut invocations = FxHashMap::default();
1693         invocations.insert(Mark::root(),
1694                            arenas.alloc_invocation_data(InvocationData::root(graph_root)));
1695
1696         let mut macro_defs = FxHashMap::default();
1697         macro_defs.insert(Mark::root(), root_def_id);
1698
1699         Resolver {
1700             session,
1701
1702             cstore,
1703
1704             definitions,
1705
1706             // The outermost module has def ID 0; this is not reflected in the
1707             // AST.
1708             graph_root,
1709             prelude: None,
1710             extern_prelude,
1711
1712             has_self: FxHashSet::default(),
1713             field_names: FxHashMap::default(),
1714
1715             determined_imports: Vec::new(),
1716             indeterminate_imports: Vec::new(),
1717
1718             current_module: graph_root,
1719             ribs: PerNS {
1720                 value_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1721                 type_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1722                 macro_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1723             },
1724             label_ribs: Vec::new(),
1725
1726             current_trait_ref: None,
1727             current_self_type: None,
1728             current_self_item: None,
1729
1730             primitive_type_table: PrimitiveTypeTable::new(),
1731
1732             def_map: NodeMap(),
1733             import_map: NodeMap(),
1734             freevars: NodeMap(),
1735             freevars_seen: NodeMap(),
1736             export_map: FxHashMap::default(),
1737             trait_map: NodeMap(),
1738             module_map,
1739             block_map: NodeMap(),
1740             extern_module_map: FxHashMap::default(),
1741             binding_parent_modules: FxHashMap::default(),
1742
1743             make_glob_map: make_glob_map == MakeGlobMap::Yes,
1744             glob_map: NodeMap(),
1745
1746             used_imports: FxHashSet::default(),
1747             maybe_unused_trait_imports: NodeSet(),
1748             maybe_unused_extern_crates: Vec::new(),
1749
1750             unused_labels: FxHashMap::default(),
1751
1752             privacy_errors: Vec::new(),
1753             ambiguity_errors: Vec::new(),
1754             use_injections: Vec::new(),
1755             macro_expanded_macro_export_errors: BTreeSet::new(),
1756
1757             arenas,
1758             dummy_binding: arenas.alloc_name_binding(NameBinding {
1759                 kind: NameBindingKind::Def(Def::Err, false),
1760                 expansion: Mark::root(),
1761                 span: DUMMY_SP,
1762                 vis: ty::Visibility::Public,
1763             }),
1764
1765             crate_loader,
1766             macro_names: FxHashSet::default(),
1767             builtin_macros: FxHashMap::default(),
1768             macro_use_prelude: FxHashMap::default(),
1769             all_macros: FxHashMap::default(),
1770             macro_map: FxHashMap::default(),
1771             invocations,
1772             macro_defs,
1773             local_macro_def_scopes: FxHashMap::default(),
1774             name_already_seen: FxHashMap::default(),
1775             whitelisted_legacy_custom_derives: Vec::new(),
1776             potentially_unused_imports: Vec::new(),
1777             struct_constructors: DefIdMap(),
1778             found_unresolved_macro: false,
1779             unused_macros: FxHashSet::default(),
1780             current_type_ascription: Vec::new(),
1781             injected_crate: None,
1782         }
1783     }
1784
1785     pub fn arenas() -> ResolverArenas<'a> {
1786         Default::default()
1787     }
1788
1789     /// Runs the function on each namespace.
1790     fn per_ns<F: FnMut(&mut Self, Namespace)>(&mut self, mut f: F) {
1791         f(self, TypeNS);
1792         f(self, ValueNS);
1793         f(self, MacroNS);
1794     }
1795
1796     fn macro_def(&self, mut ctxt: SyntaxContext) -> DefId {
1797         loop {
1798             match self.macro_defs.get(&ctxt.outer()) {
1799                 Some(&def_id) => return def_id,
1800                 None => ctxt.remove_mark(),
1801             };
1802         }
1803     }
1804
1805     /// Entry point to crate resolution.
1806     pub fn resolve_crate(&mut self, krate: &Crate) {
1807         ImportResolver { resolver: self }.finalize_imports();
1808         self.current_module = self.graph_root;
1809         self.finalize_current_module_macro_resolutions();
1810
1811         visit::walk_crate(self, krate);
1812
1813         check_unused::check_crate(self, krate);
1814         self.report_errors(krate);
1815         self.crate_loader.postprocess(krate);
1816     }
1817
1818     fn new_module(
1819         &self,
1820         parent: Module<'a>,
1821         kind: ModuleKind,
1822         normal_ancestor_id: DefId,
1823         expansion: Mark,
1824         span: Span,
1825     ) -> Module<'a> {
1826         let module = ModuleData::new(Some(parent), kind, normal_ancestor_id, expansion, span);
1827         self.arenas.alloc_module(module)
1828     }
1829
1830     fn record_use(&mut self, ident: Ident, ns: Namespace, binding: &'a NameBinding<'a>)
1831                   -> bool /* true if an error was reported */ {
1832         match binding.kind {
1833             NameBindingKind::Import { directive, binding, ref used }
1834                     if !used.get() => {
1835                 used.set(true);
1836                 directive.used.set(true);
1837                 self.used_imports.insert((directive.id, ns));
1838                 self.add_to_glob_map(directive.id, ident);
1839                 self.record_use(ident, ns, binding)
1840             }
1841             NameBindingKind::Import { .. } => false,
1842             NameBindingKind::Ambiguity { b1, b2 } => {
1843                 self.ambiguity_errors.push(AmbiguityError { ident, b1, b2 });
1844                 true
1845             }
1846             _ => false
1847         }
1848     }
1849
1850     fn add_to_glob_map(&mut self, id: NodeId, ident: Ident) {
1851         if self.make_glob_map {
1852             self.glob_map.entry(id).or_default().insert(ident.name);
1853         }
1854     }
1855
1856     /// This resolves the identifier `ident` in the namespace `ns` in the current lexical scope.
1857     /// More specifically, we proceed up the hierarchy of scopes and return the binding for
1858     /// `ident` in the first scope that defines it (or None if no scopes define it).
1859     ///
1860     /// A block's items are above its local variables in the scope hierarchy, regardless of where
1861     /// the items are defined in the block. For example,
1862     /// ```rust
1863     /// fn f() {
1864     ///    g(); // Since there are no local variables in scope yet, this resolves to the item.
1865     ///    let g = || {};
1866     ///    fn g() {}
1867     ///    g(); // This resolves to the local variable `g` since it shadows the item.
1868     /// }
1869     /// ```
1870     ///
1871     /// Invariant: This must only be called during main resolution, not during
1872     /// import resolution.
1873     fn resolve_ident_in_lexical_scope(&mut self,
1874                                       mut ident: Ident,
1875                                       ns: Namespace,
1876                                       record_used_id: Option<NodeId>,
1877                                       path_span: Span)
1878                                       -> Option<LexicalScopeBinding<'a>> {
1879         let record_used = record_used_id.is_some();
1880         assert!(ns == TypeNS  || ns == ValueNS);
1881         if ns == TypeNS {
1882             ident.span = if ident.name == keywords::SelfType.name() {
1883                 // FIXME(jseyfried) improve `Self` hygiene
1884                 ident.span.with_ctxt(SyntaxContext::empty())
1885             } else {
1886                 ident.span.modern()
1887             }
1888         } else {
1889             ident = ident.modern_and_legacy();
1890         }
1891
1892         // Walk backwards up the ribs in scope.
1893         let mut module = self.graph_root;
1894         for i in (0 .. self.ribs[ns].len()).rev() {
1895             if let Some(def) = self.ribs[ns][i].bindings.get(&ident).cloned() {
1896                 // The ident resolves to a type parameter or local variable.
1897                 return Some(LexicalScopeBinding::Def(
1898                     self.adjust_local_def(ns, i, def, record_used, path_span)
1899                 ));
1900             }
1901
1902             module = match self.ribs[ns][i].kind {
1903                 ModuleRibKind(module) => module,
1904                 MacroDefinition(def) if def == self.macro_def(ident.span.ctxt()) => {
1905                     // If an invocation of this macro created `ident`, give up on `ident`
1906                     // and switch to `ident`'s source from the macro definition.
1907                     ident.span.remove_mark();
1908                     continue
1909                 }
1910                 _ => continue,
1911             };
1912
1913             let item = self.resolve_ident_in_module_unadjusted(
1914                 ModuleOrUniformRoot::Module(module),
1915                 ident,
1916                 ns,
1917                 false,
1918                 record_used,
1919                 path_span,
1920             );
1921             if let Ok(binding) = item {
1922                 // The ident resolves to an item.
1923                 return Some(LexicalScopeBinding::Item(binding));
1924             }
1925
1926             match module.kind {
1927                 ModuleKind::Block(..) => {}, // We can see through blocks
1928                 _ => break,
1929             }
1930         }
1931
1932         ident.span = ident.span.modern();
1933         let mut poisoned = None;
1934         loop {
1935             let opt_module = if let Some(node_id) = record_used_id {
1936                 self.hygienic_lexical_parent_with_compatibility_fallback(module, &mut ident.span,
1937                                                                          node_id, &mut poisoned)
1938             } else {
1939                 self.hygienic_lexical_parent(module, &mut ident.span)
1940             };
1941             module = unwrap_or!(opt_module, break);
1942             let orig_current_module = self.current_module;
1943             self.current_module = module; // Lexical resolutions can never be a privacy error.
1944             let result = self.resolve_ident_in_module_unadjusted(
1945                 ModuleOrUniformRoot::Module(module),
1946                 ident,
1947                 ns,
1948                 false,
1949                 record_used,
1950                 path_span,
1951             );
1952             self.current_module = orig_current_module;
1953
1954             match result {
1955                 Ok(binding) => {
1956                     if let Some(node_id) = poisoned {
1957                         self.session.buffer_lint_with_diagnostic(
1958                             lint::builtin::PROC_MACRO_DERIVE_RESOLUTION_FALLBACK,
1959                             node_id, ident.span,
1960                             &format!("cannot find {} `{}` in this scope", ns.descr(), ident),
1961                             lint::builtin::BuiltinLintDiagnostics::
1962                                 ProcMacroDeriveResolutionFallback(ident.span),
1963                         );
1964                     }
1965                     return Some(LexicalScopeBinding::Item(binding))
1966                 }
1967                 Err(Determined) => continue,
1968                 Err(Undetermined) =>
1969                     span_bug!(ident.span, "undetermined resolution during main resolution pass"),
1970             }
1971         }
1972
1973         if !module.no_implicit_prelude {
1974             if ns == TypeNS {
1975                 if let Some(binding) = self.extern_prelude_get(ident, !record_used, false) {
1976                     return Some(LexicalScopeBinding::Item(binding));
1977                 }
1978             }
1979             if ns == TypeNS && is_known_tool(ident.name) {
1980                 let binding = (Def::ToolMod, ty::Visibility::Public,
1981                                ident.span, Mark::root()).to_name_binding(self.arenas);
1982                 return Some(LexicalScopeBinding::Item(binding));
1983             }
1984             if let Some(prelude) = self.prelude {
1985                 if let Ok(binding) = self.resolve_ident_in_module_unadjusted(
1986                     ModuleOrUniformRoot::Module(prelude),
1987                     ident,
1988                     ns,
1989                     false,
1990                     false,
1991                     path_span,
1992                 ) {
1993                     return Some(LexicalScopeBinding::Item(binding));
1994                 }
1995             }
1996         }
1997
1998         None
1999     }
2000
2001     fn hygienic_lexical_parent(&mut self, module: Module<'a>, span: &mut Span)
2002                                -> Option<Module<'a>> {
2003         if !module.expansion.is_descendant_of(span.ctxt().outer()) {
2004             return Some(self.macro_def_scope(span.remove_mark()));
2005         }
2006
2007         if let ModuleKind::Block(..) = module.kind {
2008             return Some(module.parent.unwrap());
2009         }
2010
2011         None
2012     }
2013
2014     fn hygienic_lexical_parent_with_compatibility_fallback(&mut self, module: Module<'a>,
2015                                                            span: &mut Span, node_id: NodeId,
2016                                                            poisoned: &mut Option<NodeId>)
2017                                                            -> Option<Module<'a>> {
2018         if let module @ Some(..) = self.hygienic_lexical_parent(module, span) {
2019             return module;
2020         }
2021
2022         // We need to support the next case under a deprecation warning
2023         // ```
2024         // struct MyStruct;
2025         // ---- begin: this comes from a proc macro derive
2026         // mod implementation_details {
2027         //     // Note that `MyStruct` is not in scope here.
2028         //     impl SomeTrait for MyStruct { ... }
2029         // }
2030         // ---- end
2031         // ```
2032         // So we have to fall back to the module's parent during lexical resolution in this case.
2033         if let Some(parent) = module.parent {
2034             // Inner module is inside the macro, parent module is outside of the macro.
2035             if module.expansion != parent.expansion &&
2036             module.expansion.is_descendant_of(parent.expansion) {
2037                 // The macro is a proc macro derive
2038                 if module.expansion.looks_like_proc_macro_derive() {
2039                     if parent.expansion.is_descendant_of(span.ctxt().outer()) {
2040                         *poisoned = Some(node_id);
2041                         return module.parent;
2042                     }
2043                 }
2044             }
2045         }
2046
2047         None
2048     }
2049
2050     fn resolve_ident_in_module(&mut self,
2051                                module: ModuleOrUniformRoot<'a>,
2052                                mut ident: Ident,
2053                                ns: Namespace,
2054                                record_used: bool,
2055                                span: Span)
2056                                -> Result<&'a NameBinding<'a>, Determinacy> {
2057         ident.span = ident.span.modern();
2058         let orig_current_module = self.current_module;
2059         if let ModuleOrUniformRoot::Module(module) = module {
2060             if let Some(def) = ident.span.adjust(module.expansion) {
2061                 self.current_module = self.macro_def_scope(def);
2062             }
2063         }
2064         let result = self.resolve_ident_in_module_unadjusted(
2065             module, ident, ns, false, record_used, span,
2066         );
2067         self.current_module = orig_current_module;
2068         result
2069     }
2070
2071     fn resolve_crate_root(&mut self, ident: Ident) -> Module<'a> {
2072         let mut ctxt = ident.span.ctxt();
2073         let mark = if ident.name == keywords::DollarCrate.name() {
2074             // When resolving `$crate` from a `macro_rules!` invoked in a `macro`,
2075             // we don't want to pretend that the `macro_rules!` definition is in the `macro`
2076             // as described in `SyntaxContext::apply_mark`, so we ignore prepended modern marks.
2077             // FIXME: This is only a guess and it doesn't work correctly for `macro_rules!`
2078             // definitions actually produced by `macro` and `macro` definitions produced by
2079             // `macro_rules!`, but at least such configurations are not stable yet.
2080             ctxt = ctxt.modern_and_legacy();
2081             let mut iter = ctxt.marks().into_iter().rev().peekable();
2082             let mut result = None;
2083             // Find the last modern mark from the end if it exists.
2084             while let Some(&(mark, transparency)) = iter.peek() {
2085                 if transparency == Transparency::Opaque {
2086                     result = Some(mark);
2087                     iter.next();
2088                 } else {
2089                     break;
2090                 }
2091             }
2092             // Then find the last legacy mark from the end if it exists.
2093             for (mark, transparency) in iter {
2094                 if transparency == Transparency::SemiTransparent {
2095                     result = Some(mark);
2096                 } else {
2097                     break;
2098                 }
2099             }
2100             result
2101         } else {
2102             ctxt = ctxt.modern();
2103             ctxt.adjust(Mark::root())
2104         };
2105         let module = match mark {
2106             Some(def) => self.macro_def_scope(def),
2107             None => return self.graph_root,
2108         };
2109         self.get_module(DefId { index: CRATE_DEF_INDEX, ..module.normal_ancestor_id })
2110     }
2111
2112     fn resolve_self(&mut self, ctxt: &mut SyntaxContext, module: Module<'a>) -> Module<'a> {
2113         let mut module = self.get_module(module.normal_ancestor_id);
2114         while module.span.ctxt().modern() != *ctxt {
2115             let parent = module.parent.unwrap_or_else(|| self.macro_def_scope(ctxt.remove_mark()));
2116             module = self.get_module(parent.normal_ancestor_id);
2117         }
2118         module
2119     }
2120
2121     // AST resolution
2122     //
2123     // We maintain a list of value ribs and type ribs.
2124     //
2125     // Simultaneously, we keep track of the current position in the module
2126     // graph in the `current_module` pointer. When we go to resolve a name in
2127     // the value or type namespaces, we first look through all the ribs and
2128     // then query the module graph. When we resolve a name in the module
2129     // namespace, we can skip all the ribs (since nested modules are not
2130     // allowed within blocks in Rust) and jump straight to the current module
2131     // graph node.
2132     //
2133     // Named implementations are handled separately. When we find a method
2134     // call, we consult the module node to find all of the implementations in
2135     // scope. This information is lazily cached in the module node. We then
2136     // generate a fake "implementation scope" containing all the
2137     // implementations thus found, for compatibility with old resolve pass.
2138
2139     pub fn with_scope<F, T>(&mut self, id: NodeId, f: F) -> T
2140         where F: FnOnce(&mut Resolver) -> T
2141     {
2142         let id = self.definitions.local_def_id(id);
2143         let module = self.module_map.get(&id).cloned(); // clones a reference
2144         if let Some(module) = module {
2145             // Move down in the graph.
2146             let orig_module = replace(&mut self.current_module, module);
2147             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(module)));
2148             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(module)));
2149
2150             self.finalize_current_module_macro_resolutions();
2151             let ret = f(self);
2152
2153             self.current_module = orig_module;
2154             self.ribs[ValueNS].pop();
2155             self.ribs[TypeNS].pop();
2156             ret
2157         } else {
2158             f(self)
2159         }
2160     }
2161
2162     /// Searches the current set of local scopes for labels. Returns the first non-None label that
2163     /// is returned by the given predicate function
2164     ///
2165     /// Stops after meeting a closure.
2166     fn search_label<P, R>(&self, mut ident: Ident, pred: P) -> Option<R>
2167         where P: Fn(&Rib, Ident) -> Option<R>
2168     {
2169         for rib in self.label_ribs.iter().rev() {
2170             match rib.kind {
2171                 NormalRibKind => {}
2172                 // If an invocation of this macro created `ident`, give up on `ident`
2173                 // and switch to `ident`'s source from the macro definition.
2174                 MacroDefinition(def) => {
2175                     if def == self.macro_def(ident.span.ctxt()) {
2176                         ident.span.remove_mark();
2177                     }
2178                 }
2179                 _ => {
2180                     // Do not resolve labels across function boundary
2181                     return None;
2182                 }
2183             }
2184             let r = pred(rib, ident);
2185             if r.is_some() {
2186                 return r;
2187             }
2188         }
2189         None
2190     }
2191
2192     fn resolve_adt(&mut self, item: &Item, generics: &Generics) {
2193         self.with_current_self_item(item, |this| {
2194             this.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2195                 let item_def_id = this.definitions.local_def_id(item.id);
2196                 if this.session.features_untracked().self_in_typedefs {
2197                     this.with_self_rib(Def::SelfTy(None, Some(item_def_id)), |this| {
2198                         visit::walk_item(this, item);
2199                     });
2200                 } else {
2201                     visit::walk_item(this, item);
2202                 }
2203             });
2204         });
2205     }
2206
2207     fn resolve_item(&mut self, item: &Item) {
2208         let name = item.ident.name;
2209         debug!("(resolving item) resolving {}", name);
2210
2211         match item.node {
2212             ItemKind::Ty(_, ref generics) |
2213             ItemKind::Fn(_, _, ref generics, _) |
2214             ItemKind::Existential(_, ref generics) => {
2215                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind),
2216                                              |this| visit::walk_item(this, item));
2217             }
2218
2219             ItemKind::Enum(_, ref generics) |
2220             ItemKind::Struct(_, ref generics) |
2221             ItemKind::Union(_, ref generics) => {
2222                 self.resolve_adt(item, generics);
2223             }
2224
2225             ItemKind::Impl(.., ref generics, ref opt_trait_ref, ref self_type, ref impl_items) =>
2226                 self.resolve_implementation(generics,
2227                                             opt_trait_ref,
2228                                             &self_type,
2229                                             item.id,
2230                                             impl_items),
2231
2232             ItemKind::Trait(.., ref generics, ref bounds, ref trait_items) => {
2233                 // Create a new rib for the trait-wide type parameters.
2234                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2235                     let local_def_id = this.definitions.local_def_id(item.id);
2236                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2237                         this.visit_generics(generics);
2238                         walk_list!(this, visit_param_bound, bounds);
2239
2240                         for trait_item in trait_items {
2241                             let type_parameters = HasTypeParameters(&trait_item.generics,
2242                                                                     TraitOrImplItemRibKind);
2243                             this.with_type_parameter_rib(type_parameters, |this| {
2244                                 match trait_item.node {
2245                                     TraitItemKind::Const(ref ty, ref default) => {
2246                                         this.visit_ty(ty);
2247
2248                                         // Only impose the restrictions of
2249                                         // ConstRibKind for an actual constant
2250                                         // expression in a provided default.
2251                                         if let Some(ref expr) = *default{
2252                                             this.with_constant_rib(|this| {
2253                                                 this.visit_expr(expr);
2254                                             });
2255                                         }
2256                                     }
2257                                     TraitItemKind::Method(_, _) => {
2258                                         visit::walk_trait_item(this, trait_item)
2259                                     }
2260                                     TraitItemKind::Type(..) => {
2261                                         visit::walk_trait_item(this, trait_item)
2262                                     }
2263                                     TraitItemKind::Macro(_) => {
2264                                         panic!("unexpanded macro in resolve!")
2265                                     }
2266                                 };
2267                             });
2268                         }
2269                     });
2270                 });
2271             }
2272
2273             ItemKind::TraitAlias(ref generics, ref bounds) => {
2274                 // Create a new rib for the trait-wide type parameters.
2275                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2276                     let local_def_id = this.definitions.local_def_id(item.id);
2277                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2278                         this.visit_generics(generics);
2279                         walk_list!(this, visit_param_bound, bounds);
2280                     });
2281                 });
2282             }
2283
2284             ItemKind::Mod(_) | ItemKind::ForeignMod(_) => {
2285                 self.with_scope(item.id, |this| {
2286                     visit::walk_item(this, item);
2287                 });
2288             }
2289
2290             ItemKind::Static(ref ty, _, ref expr) |
2291             ItemKind::Const(ref ty, ref expr) => {
2292                 self.with_item_rib(|this| {
2293                     this.visit_ty(ty);
2294                     this.with_constant_rib(|this| {
2295                         this.visit_expr(expr);
2296                     });
2297                 });
2298             }
2299
2300             ItemKind::Use(ref use_tree) => {
2301                 // Imports are resolved as global by default, add starting root segment.
2302                 let path = Path {
2303                     segments: use_tree.prefix.make_root().into_iter().collect(),
2304                     span: use_tree.span,
2305                 };
2306                 self.resolve_use_tree(item.id, use_tree.span, item.id, use_tree, &path);
2307             }
2308
2309             ItemKind::ExternCrate(_) | ItemKind::MacroDef(..) | ItemKind::GlobalAsm(_) => {
2310                 // do nothing, these are just around to be encoded
2311             }
2312
2313             ItemKind::Mac(_) => panic!("unexpanded macro in resolve!"),
2314         }
2315     }
2316
2317     /// For the most part, use trees are desugared into `ImportDirective` instances
2318     /// when building the reduced graph (see `build_reduced_graph_for_use_tree`). But
2319     /// there is one special case we handle here: an empty nested import like
2320     /// `a::{b::{}}`, which desugares into...no import directives.
2321     fn resolve_use_tree(
2322         &mut self,
2323         root_id: NodeId,
2324         root_span: Span,
2325         id: NodeId,
2326         use_tree: &ast::UseTree,
2327         prefix: &Path,
2328     ) {
2329         match use_tree.kind {
2330             ast::UseTreeKind::Nested(ref items) => {
2331                 let path = Path {
2332                     segments: prefix.segments
2333                         .iter()
2334                         .chain(use_tree.prefix.segments.iter())
2335                         .cloned()
2336                         .collect(),
2337                     span: prefix.span.to(use_tree.prefix.span),
2338                 };
2339
2340                 if items.is_empty() {
2341                     // Resolve prefix of an import with empty braces (issue #28388).
2342                     self.smart_resolve_path_with_crate_lint(
2343                         id,
2344                         None,
2345                         &path,
2346                         PathSource::ImportPrefix,
2347                         CrateLint::UsePath { root_id, root_span },
2348                     );
2349                 } else {
2350                     for &(ref tree, nested_id) in items {
2351                         self.resolve_use_tree(root_id, root_span, nested_id, tree, &path);
2352                     }
2353                 }
2354             }
2355             ast::UseTreeKind::Simple(..) => {},
2356             ast::UseTreeKind::Glob => {},
2357         }
2358     }
2359
2360     fn with_type_parameter_rib<'b, F>(&'b mut self, type_parameters: TypeParameters<'a, 'b>, f: F)
2361         where F: FnOnce(&mut Resolver)
2362     {
2363         match type_parameters {
2364             HasTypeParameters(generics, rib_kind) => {
2365                 let mut function_type_rib = Rib::new(rib_kind);
2366                 let mut seen_bindings = FxHashMap::default();
2367                 for param in &generics.params {
2368                     match param.kind {
2369                         GenericParamKind::Lifetime { .. } => {}
2370                         GenericParamKind::Type { .. } => {
2371                             let ident = param.ident.modern();
2372                             debug!("with_type_parameter_rib: {}", param.id);
2373
2374                             if seen_bindings.contains_key(&ident) {
2375                                 let span = seen_bindings.get(&ident).unwrap();
2376                                 let err = ResolutionError::NameAlreadyUsedInTypeParameterList(
2377                                     ident.name,
2378                                     span,
2379                                 );
2380                                 resolve_error(self, param.ident.span, err);
2381                             }
2382                             seen_bindings.entry(ident).or_insert(param.ident.span);
2383
2384                         // Plain insert (no renaming).
2385                         let def = Def::TyParam(self.definitions.local_def_id(param.id));
2386                             function_type_rib.bindings.insert(ident, def);
2387                             self.record_def(param.id, PathResolution::new(def));
2388                         }
2389                     }
2390                 }
2391                 self.ribs[TypeNS].push(function_type_rib);
2392             }
2393
2394             NoTypeParameters => {
2395                 // Nothing to do.
2396             }
2397         }
2398
2399         f(self);
2400
2401         if let HasTypeParameters(..) = type_parameters {
2402             self.ribs[TypeNS].pop();
2403         }
2404     }
2405
2406     fn with_label_rib<F>(&mut self, f: F)
2407         where F: FnOnce(&mut Resolver)
2408     {
2409         self.label_ribs.push(Rib::new(NormalRibKind));
2410         f(self);
2411         self.label_ribs.pop();
2412     }
2413
2414     fn with_item_rib<F>(&mut self, f: F)
2415         where F: FnOnce(&mut Resolver)
2416     {
2417         self.ribs[ValueNS].push(Rib::new(ItemRibKind));
2418         self.ribs[TypeNS].push(Rib::new(ItemRibKind));
2419         f(self);
2420         self.ribs[TypeNS].pop();
2421         self.ribs[ValueNS].pop();
2422     }
2423
2424     fn with_constant_rib<F>(&mut self, f: F)
2425         where F: FnOnce(&mut Resolver)
2426     {
2427         self.ribs[ValueNS].push(Rib::new(ConstantItemRibKind));
2428         self.label_ribs.push(Rib::new(ConstantItemRibKind));
2429         f(self);
2430         self.label_ribs.pop();
2431         self.ribs[ValueNS].pop();
2432     }
2433
2434     fn with_current_self_type<T, F>(&mut self, self_type: &Ty, f: F) -> T
2435         where F: FnOnce(&mut Resolver) -> T
2436     {
2437         // Handle nested impls (inside fn bodies)
2438         let previous_value = replace(&mut self.current_self_type, Some(self_type.clone()));
2439         let result = f(self);
2440         self.current_self_type = previous_value;
2441         result
2442     }
2443
2444     fn with_current_self_item<T, F>(&mut self, self_item: &Item, f: F) -> T
2445         where F: FnOnce(&mut Resolver) -> T
2446     {
2447         let previous_value = replace(&mut self.current_self_item, Some(self_item.id));
2448         let result = f(self);
2449         self.current_self_item = previous_value;
2450         result
2451     }
2452
2453     /// This is called to resolve a trait reference from an `impl` (i.e. `impl Trait for Foo`)
2454     fn with_optional_trait_ref<T, F>(&mut self, opt_trait_ref: Option<&TraitRef>, f: F) -> T
2455         where F: FnOnce(&mut Resolver, Option<DefId>) -> T
2456     {
2457         let mut new_val = None;
2458         let mut new_id = None;
2459         if let Some(trait_ref) = opt_trait_ref {
2460             let path: Vec<_> = trait_ref.path.segments.iter()
2461                 .map(|seg| seg.ident)
2462                 .collect();
2463             let def = self.smart_resolve_path_fragment(
2464                 trait_ref.ref_id,
2465                 None,
2466                 &path,
2467                 trait_ref.path.span,
2468                 PathSource::Trait(AliasPossibility::No),
2469                 CrateLint::SimplePath(trait_ref.ref_id),
2470             ).base_def();
2471             if def != Def::Err {
2472                 new_id = Some(def.def_id());
2473                 let span = trait_ref.path.span;
2474                 if let PathResult::Module(ModuleOrUniformRoot::Module(module)) =
2475                     self.resolve_path(
2476                         None,
2477                         &path,
2478                         None,
2479                         false,
2480                         span,
2481                         CrateLint::SimplePath(trait_ref.ref_id),
2482                     )
2483                 {
2484                     new_val = Some((module, trait_ref.clone()));
2485                 }
2486             }
2487         }
2488         let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
2489         let result = f(self, new_id);
2490         self.current_trait_ref = original_trait_ref;
2491         result
2492     }
2493
2494     fn with_self_rib<F>(&mut self, self_def: Def, f: F)
2495         where F: FnOnce(&mut Resolver)
2496     {
2497         let mut self_type_rib = Rib::new(NormalRibKind);
2498
2499         // plain insert (no renaming, types are not currently hygienic....)
2500         self_type_rib.bindings.insert(keywords::SelfType.ident(), self_def);
2501         self.ribs[TypeNS].push(self_type_rib);
2502         f(self);
2503         self.ribs[TypeNS].pop();
2504     }
2505
2506     fn with_self_struct_ctor_rib<F>(&mut self, impl_id: DefId, f: F)
2507         where F: FnOnce(&mut Resolver)
2508     {
2509         let self_def = Def::SelfCtor(impl_id);
2510         let mut self_type_rib = Rib::new(NormalRibKind);
2511         self_type_rib.bindings.insert(keywords::SelfType.ident(), self_def);
2512         self.ribs[ValueNS].push(self_type_rib);
2513         f(self);
2514         self.ribs[ValueNS].pop();
2515     }
2516
2517     fn resolve_implementation(&mut self,
2518                               generics: &Generics,
2519                               opt_trait_reference: &Option<TraitRef>,
2520                               self_type: &Ty,
2521                               item_id: NodeId,
2522                               impl_items: &[ImplItem]) {
2523         // If applicable, create a rib for the type parameters.
2524         self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2525             // Dummy self type for better errors if `Self` is used in the trait path.
2526             this.with_self_rib(Def::SelfTy(None, None), |this| {
2527                 // Resolve the trait reference, if necessary.
2528                 this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| {
2529                     let item_def_id = this.definitions.local_def_id(item_id);
2530                     this.with_self_rib(Def::SelfTy(trait_id, Some(item_def_id)), |this| {
2531                         if let Some(trait_ref) = opt_trait_reference.as_ref() {
2532                             // Resolve type arguments in the trait path.
2533                             visit::walk_trait_ref(this, trait_ref);
2534                         }
2535                         // Resolve the self type.
2536                         this.visit_ty(self_type);
2537                         // Resolve the type parameters.
2538                         this.visit_generics(generics);
2539                         // Resolve the items within the impl.
2540                         this.with_current_self_type(self_type, |this| {
2541                             this.with_self_struct_ctor_rib(item_def_id, |this| {
2542                                 for impl_item in impl_items {
2543                                     this.resolve_visibility(&impl_item.vis);
2544
2545                                     // We also need a new scope for the impl item type parameters.
2546                                     let type_parameters = HasTypeParameters(&impl_item.generics,
2547                                                                             TraitOrImplItemRibKind);
2548                                     this.with_type_parameter_rib(type_parameters, |this| {
2549                                         use self::ResolutionError::*;
2550                                         match impl_item.node {
2551                                             ImplItemKind::Const(..) => {
2552                                                 // If this is a trait impl, ensure the const
2553                                                 // exists in trait
2554                                                 this.check_trait_item(impl_item.ident,
2555                                                                       ValueNS,
2556                                                                       impl_item.span,
2557                                                     |n, s| ConstNotMemberOfTrait(n, s));
2558                                                 this.with_constant_rib(|this|
2559                                                     visit::walk_impl_item(this, impl_item)
2560                                                 );
2561                                             }
2562                                             ImplItemKind::Method(..) => {
2563                                                 // If this is a trait impl, ensure the method
2564                                                 // exists in trait
2565                                                 this.check_trait_item(impl_item.ident,
2566                                                                       ValueNS,
2567                                                                       impl_item.span,
2568                                                     |n, s| MethodNotMemberOfTrait(n, s));
2569
2570                                                 visit::walk_impl_item(this, impl_item);
2571                                             }
2572                                             ImplItemKind::Type(ref ty) => {
2573                                                 // If this is a trait impl, ensure the type
2574                                                 // exists in trait
2575                                                 this.check_trait_item(impl_item.ident,
2576                                                                       TypeNS,
2577                                                                       impl_item.span,
2578                                                     |n, s| TypeNotMemberOfTrait(n, s));
2579
2580                                                 this.visit_ty(ty);
2581                                             }
2582                                             ImplItemKind::Existential(ref bounds) => {
2583                                                 // If this is a trait impl, ensure the type
2584                                                 // exists in trait
2585                                                 this.check_trait_item(impl_item.ident,
2586                                                                       TypeNS,
2587                                                                       impl_item.span,
2588                                                     |n, s| TypeNotMemberOfTrait(n, s));
2589
2590                                                 for bound in bounds {
2591                                                     this.visit_param_bound(bound);
2592                                                 }
2593                                             }
2594                                             ImplItemKind::Macro(_) =>
2595                                                 panic!("unexpanded macro in resolve!"),
2596                                         }
2597                                     });
2598                                 }
2599                             });
2600                         });
2601                     });
2602                 });
2603             });
2604         });
2605     }
2606
2607     fn check_trait_item<F>(&mut self, ident: Ident, ns: Namespace, span: Span, err: F)
2608         where F: FnOnce(Name, &str) -> ResolutionError
2609     {
2610         // If there is a TraitRef in scope for an impl, then the method must be in the
2611         // trait.
2612         if let Some((module, _)) = self.current_trait_ref {
2613             if self.resolve_ident_in_module(
2614                 ModuleOrUniformRoot::Module(module),
2615                 ident,
2616                 ns,
2617                 false,
2618                 span,
2619             ).is_err() {
2620                 let path = &self.current_trait_ref.as_ref().unwrap().1.path;
2621                 resolve_error(self, span, err(ident.name, &path_names_to_string(path)));
2622             }
2623         }
2624     }
2625
2626     fn resolve_local(&mut self, local: &Local) {
2627         // Resolve the type.
2628         walk_list!(self, visit_ty, &local.ty);
2629
2630         // Resolve the initializer.
2631         walk_list!(self, visit_expr, &local.init);
2632
2633         // Resolve the pattern.
2634         self.resolve_pattern(&local.pat, PatternSource::Let, &mut FxHashMap::default());
2635     }
2636
2637     // build a map from pattern identifiers to binding-info's.
2638     // this is done hygienically. This could arise for a macro
2639     // that expands into an or-pattern where one 'x' was from the
2640     // user and one 'x' came from the macro.
2641     fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
2642         let mut binding_map = FxHashMap::default();
2643
2644         pat.walk(&mut |pat| {
2645             if let PatKind::Ident(binding_mode, ident, ref sub_pat) = pat.node {
2646                 if sub_pat.is_some() || match self.def_map.get(&pat.id).map(|res| res.base_def()) {
2647                     Some(Def::Local(..)) => true,
2648                     _ => false,
2649                 } {
2650                     let binding_info = BindingInfo { span: ident.span, binding_mode: binding_mode };
2651                     binding_map.insert(ident, binding_info);
2652                 }
2653             }
2654             true
2655         });
2656
2657         binding_map
2658     }
2659
2660     // check that all of the arms in an or-pattern have exactly the
2661     // same set of bindings, with the same binding modes for each.
2662     fn check_consistent_bindings(&mut self, pats: &[P<Pat>]) {
2663         if pats.is_empty() {
2664             return;
2665         }
2666
2667         let mut missing_vars = FxHashMap::default();
2668         let mut inconsistent_vars = FxHashMap::default();
2669         for (i, p) in pats.iter().enumerate() {
2670             let map_i = self.binding_mode_map(&p);
2671
2672             for (j, q) in pats.iter().enumerate() {
2673                 if i == j {
2674                     continue;
2675                 }
2676
2677                 let map_j = self.binding_mode_map(&q);
2678                 for (&key, &binding_i) in &map_i {
2679                     if map_j.is_empty() {                   // Account for missing bindings when
2680                         let binding_error = missing_vars    // map_j has none.
2681                             .entry(key.name)
2682                             .or_insert(BindingError {
2683                                 name: key.name,
2684                                 origin: BTreeSet::new(),
2685                                 target: BTreeSet::new(),
2686                             });
2687                         binding_error.origin.insert(binding_i.span);
2688                         binding_error.target.insert(q.span);
2689                     }
2690                     for (&key_j, &binding_j) in &map_j {
2691                         match map_i.get(&key_j) {
2692                             None => {  // missing binding
2693                                 let binding_error = missing_vars
2694                                     .entry(key_j.name)
2695                                     .or_insert(BindingError {
2696                                         name: key_j.name,
2697                                         origin: BTreeSet::new(),
2698                                         target: BTreeSet::new(),
2699                                     });
2700                                 binding_error.origin.insert(binding_j.span);
2701                                 binding_error.target.insert(p.span);
2702                             }
2703                             Some(binding_i) => {  // check consistent binding
2704                                 if binding_i.binding_mode != binding_j.binding_mode {
2705                                     inconsistent_vars
2706                                         .entry(key.name)
2707                                         .or_insert((binding_j.span, binding_i.span));
2708                                 }
2709                             }
2710                         }
2711                     }
2712                 }
2713             }
2714         }
2715         let mut missing_vars = missing_vars.iter().collect::<Vec<_>>();
2716         missing_vars.sort();
2717         for (_, v) in missing_vars {
2718             resolve_error(self,
2719                           *v.origin.iter().next().unwrap(),
2720                           ResolutionError::VariableNotBoundInPattern(v));
2721         }
2722         let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
2723         inconsistent_vars.sort();
2724         for (name, v) in inconsistent_vars {
2725             resolve_error(self, v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
2726         }
2727     }
2728
2729     fn resolve_arm(&mut self, arm: &Arm) {
2730         self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2731
2732         let mut bindings_list = FxHashMap::default();
2733         for pattern in &arm.pats {
2734             self.resolve_pattern(&pattern, PatternSource::Match, &mut bindings_list);
2735         }
2736
2737         // This has to happen *after* we determine which pat_idents are variants
2738         self.check_consistent_bindings(&arm.pats);
2739
2740         if let Some(ast::Guard::If(ref expr)) = arm.guard {
2741             self.visit_expr(expr)
2742         }
2743         self.visit_expr(&arm.body);
2744
2745         self.ribs[ValueNS].pop();
2746     }
2747
2748     fn resolve_block(&mut self, block: &Block) {
2749         debug!("(resolving block) entering block");
2750         // Move down in the graph, if there's an anonymous module rooted here.
2751         let orig_module = self.current_module;
2752         let anonymous_module = self.block_map.get(&block.id).cloned(); // clones a reference
2753
2754         let mut num_macro_definition_ribs = 0;
2755         if let Some(anonymous_module) = anonymous_module {
2756             debug!("(resolving block) found anonymous module, moving down");
2757             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2758             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2759             self.current_module = anonymous_module;
2760             self.finalize_current_module_macro_resolutions();
2761         } else {
2762             self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2763         }
2764
2765         // Descend into the block.
2766         for stmt in &block.stmts {
2767             if let ast::StmtKind::Item(ref item) = stmt.node {
2768                 if let ast::ItemKind::MacroDef(..) = item.node {
2769                     num_macro_definition_ribs += 1;
2770                     let def = self.definitions.local_def_id(item.id);
2771                     self.ribs[ValueNS].push(Rib::new(MacroDefinition(def)));
2772                     self.label_ribs.push(Rib::new(MacroDefinition(def)));
2773                 }
2774             }
2775
2776             self.visit_stmt(stmt);
2777         }
2778
2779         // Move back up.
2780         self.current_module = orig_module;
2781         for _ in 0 .. num_macro_definition_ribs {
2782             self.ribs[ValueNS].pop();
2783             self.label_ribs.pop();
2784         }
2785         self.ribs[ValueNS].pop();
2786         if anonymous_module.is_some() {
2787             self.ribs[TypeNS].pop();
2788         }
2789         debug!("(resolving block) leaving block");
2790     }
2791
2792     fn fresh_binding(&mut self,
2793                      ident: Ident,
2794                      pat_id: NodeId,
2795                      outer_pat_id: NodeId,
2796                      pat_src: PatternSource,
2797                      bindings: &mut FxHashMap<Ident, NodeId>)
2798                      -> PathResolution {
2799         // Add the binding to the local ribs, if it
2800         // doesn't already exist in the bindings map. (We
2801         // must not add it if it's in the bindings map
2802         // because that breaks the assumptions later
2803         // passes make about or-patterns.)
2804         let ident = ident.modern_and_legacy();
2805         let mut def = Def::Local(pat_id);
2806         match bindings.get(&ident).cloned() {
2807             Some(id) if id == outer_pat_id => {
2808                 // `Variant(a, a)`, error
2809                 resolve_error(
2810                     self,
2811                     ident.span,
2812                     ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(
2813                         &ident.as_str())
2814                 );
2815             }
2816             Some(..) if pat_src == PatternSource::FnParam => {
2817                 // `fn f(a: u8, a: u8)`, error
2818                 resolve_error(
2819                     self,
2820                     ident.span,
2821                     ResolutionError::IdentifierBoundMoreThanOnceInParameterList(
2822                         &ident.as_str())
2823                 );
2824             }
2825             Some(..) if pat_src == PatternSource::Match ||
2826                         pat_src == PatternSource::IfLet ||
2827                         pat_src == PatternSource::WhileLet => {
2828                 // `Variant1(a) | Variant2(a)`, ok
2829                 // Reuse definition from the first `a`.
2830                 def = self.ribs[ValueNS].last_mut().unwrap().bindings[&ident];
2831             }
2832             Some(..) => {
2833                 span_bug!(ident.span, "two bindings with the same name from \
2834                                        unexpected pattern source {:?}", pat_src);
2835             }
2836             None => {
2837                 // A completely fresh binding, add to the lists if it's valid.
2838                 if ident.name != keywords::Invalid.name() {
2839                     bindings.insert(ident, outer_pat_id);
2840                     self.ribs[ValueNS].last_mut().unwrap().bindings.insert(ident, def);
2841                 }
2842             }
2843         }
2844
2845         PathResolution::new(def)
2846     }
2847
2848     fn resolve_pattern(&mut self,
2849                        pat: &Pat,
2850                        pat_src: PatternSource,
2851                        // Maps idents to the node ID for the
2852                        // outermost pattern that binds them.
2853                        bindings: &mut FxHashMap<Ident, NodeId>) {
2854         // Visit all direct subpatterns of this pattern.
2855         let outer_pat_id = pat.id;
2856         pat.walk(&mut |pat| {
2857             match pat.node {
2858                 PatKind::Ident(bmode, ident, ref opt_pat) => {
2859                     // First try to resolve the identifier as some existing
2860                     // entity, then fall back to a fresh binding.
2861                     let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS,
2862                                                                       None, pat.span)
2863                                       .and_then(LexicalScopeBinding::item);
2864                     let resolution = binding.map(NameBinding::def).and_then(|def| {
2865                         let is_syntactic_ambiguity = opt_pat.is_none() &&
2866                             bmode == BindingMode::ByValue(Mutability::Immutable);
2867                         match def {
2868                             Def::StructCtor(_, CtorKind::Const) |
2869                             Def::VariantCtor(_, CtorKind::Const) |
2870                             Def::Const(..) if is_syntactic_ambiguity => {
2871                                 // Disambiguate in favor of a unit struct/variant
2872                                 // or constant pattern.
2873                                 self.record_use(ident, ValueNS, binding.unwrap());
2874                                 Some(PathResolution::new(def))
2875                             }
2876                             Def::StructCtor(..) | Def::VariantCtor(..) |
2877                             Def::Const(..) | Def::Static(..) => {
2878                                 // This is unambiguously a fresh binding, either syntactically
2879                                 // (e.g. `IDENT @ PAT` or `ref IDENT`) or because `IDENT` resolves
2880                                 // to something unusable as a pattern (e.g. constructor function),
2881                                 // but we still conservatively report an error, see
2882                                 // issues/33118#issuecomment-233962221 for one reason why.
2883                                 resolve_error(
2884                                     self,
2885                                     ident.span,
2886                                     ResolutionError::BindingShadowsSomethingUnacceptable(
2887                                         pat_src.descr(), ident.name, binding.unwrap())
2888                                 );
2889                                 None
2890                             }
2891                             Def::Fn(..) | Def::Err => {
2892                                 // These entities are explicitly allowed
2893                                 // to be shadowed by fresh bindings.
2894                                 None
2895                             }
2896                             def => {
2897                                 span_bug!(ident.span, "unexpected definition for an \
2898                                                        identifier in pattern: {:?}", def);
2899                             }
2900                         }
2901                     }).unwrap_or_else(|| {
2902                         self.fresh_binding(ident, pat.id, outer_pat_id, pat_src, bindings)
2903                     });
2904
2905                     self.record_def(pat.id, resolution);
2906                 }
2907
2908                 PatKind::TupleStruct(ref path, ..) => {
2909                     self.smart_resolve_path(pat.id, None, path, PathSource::TupleStruct);
2910                 }
2911
2912                 PatKind::Path(ref qself, ref path) => {
2913                     self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
2914                 }
2915
2916                 PatKind::Struct(ref path, ..) => {
2917                     self.smart_resolve_path(pat.id, None, path, PathSource::Struct);
2918                 }
2919
2920                 _ => {}
2921             }
2922             true
2923         });
2924
2925         visit::walk_pat(self, pat);
2926     }
2927
2928     // High-level and context dependent path resolution routine.
2929     // Resolves the path and records the resolution into definition map.
2930     // If resolution fails tries several techniques to find likely
2931     // resolution candidates, suggest imports or other help, and report
2932     // errors in user friendly way.
2933     fn smart_resolve_path(&mut self,
2934                           id: NodeId,
2935                           qself: Option<&QSelf>,
2936                           path: &Path,
2937                           source: PathSource)
2938                           -> PathResolution {
2939         self.smart_resolve_path_with_crate_lint(id, qself, path, source, CrateLint::SimplePath(id))
2940     }
2941
2942     /// A variant of `smart_resolve_path` where you also specify extra
2943     /// information about where the path came from; this extra info is
2944     /// sometimes needed for the lint that recommends rewriting
2945     /// absolute paths to `crate`, so that it knows how to frame the
2946     /// suggestion. If you are just resolving a path like `foo::bar`
2947     /// that appears...somewhere, though, then you just want
2948     /// `CrateLint::SimplePath`, which is what `smart_resolve_path`
2949     /// already provides.
2950     fn smart_resolve_path_with_crate_lint(
2951         &mut self,
2952         id: NodeId,
2953         qself: Option<&QSelf>,
2954         path: &Path,
2955         source: PathSource,
2956         crate_lint: CrateLint
2957     ) -> PathResolution {
2958         let segments = &path.segments.iter()
2959             .map(|seg| seg.ident)
2960             .collect::<Vec<_>>();
2961         self.smart_resolve_path_fragment(id, qself, segments, path.span, source, crate_lint)
2962     }
2963
2964     fn smart_resolve_path_fragment(&mut self,
2965                                    id: NodeId,
2966                                    qself: Option<&QSelf>,
2967                                    path: &[Ident],
2968                                    span: Span,
2969                                    source: PathSource,
2970                                    crate_lint: CrateLint)
2971                                    -> PathResolution {
2972         let ident_span = path.last().map_or(span, |ident| ident.span);
2973         let ns = source.namespace();
2974         let is_expected = &|def| source.is_expected(def);
2975         let is_enum_variant = &|def| if let Def::Variant(..) = def { true } else { false };
2976
2977         // Base error is amended with one short label and possibly some longer helps/notes.
2978         let report_errors = |this: &mut Self, def: Option<Def>| {
2979             // Make the base error.
2980             let expected = source.descr_expected();
2981             let path_str = names_to_string(path);
2982             let item_str = path.last().unwrap();
2983             let code = source.error_code(def.is_some());
2984             let (base_msg, fallback_label, base_span) = if let Some(def) = def {
2985                 (format!("expected {}, found {} `{}`", expected, def.kind_name(), path_str),
2986                  format!("not a {}", expected),
2987                  span)
2988             } else {
2989                 let item_span = path.last().unwrap().span;
2990                 let (mod_prefix, mod_str) = if path.len() == 1 {
2991                     (String::new(), "this scope".to_string())
2992                 } else if path.len() == 2 && path[0].name == keywords::CrateRoot.name() {
2993                     (String::new(), "the crate root".to_string())
2994                 } else {
2995                     let mod_path = &path[..path.len() - 1];
2996                     let mod_prefix = match this.resolve_path(None, mod_path, Some(TypeNS),
2997                                                              false, span, CrateLint::No) {
2998                         PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
2999                             module.def(),
3000                         _ => None,
3001                     }.map_or(String::new(), |def| format!("{} ", def.kind_name()));
3002                     (mod_prefix, format!("`{}`", names_to_string(mod_path)))
3003                 };
3004                 (format!("cannot find {} `{}` in {}{}", expected, item_str, mod_prefix, mod_str),
3005                  format!("not found in {}", mod_str),
3006                  item_span)
3007             };
3008             let code = DiagnosticId::Error(code.into());
3009             let mut err = this.session.struct_span_err_with_code(base_span, &base_msg, code);
3010
3011             // Emit help message for fake-self from other languages like `this`(javascript)
3012             if ["this", "my"].contains(&&*item_str.as_str())
3013                 && this.self_value_is_available(path[0].span, span) {
3014                 err.span_suggestion_with_applicability(
3015                     span,
3016                     "did you mean",
3017                     "self".to_string(),
3018                     Applicability::MaybeIncorrect,
3019                 );
3020             }
3021
3022             // Emit special messages for unresolved `Self` and `self`.
3023             if is_self_type(path, ns) {
3024                 __diagnostic_used!(E0411);
3025                 err.code(DiagnosticId::Error("E0411".into()));
3026                 let available_in = if this.session.features_untracked().self_in_typedefs {
3027                     "impls, traits, and type definitions"
3028                 } else {
3029                     "traits and impls"
3030                 };
3031                 err.span_label(span, format!("`Self` is only available in {}", available_in));
3032                 if this.current_self_item.is_some() && nightly_options::is_nightly_build() {
3033                     err.help("add #![feature(self_in_typedefs)] to the crate attributes \
3034                               to enable");
3035                 }
3036                 return (err, Vec::new());
3037             }
3038             if is_self_value(path, ns) {
3039                 __diagnostic_used!(E0424);
3040                 err.code(DiagnosticId::Error("E0424".into()));
3041                 err.span_label(span, format!("`self` value is a keyword \
3042                                                only available in \
3043                                                methods with `self` parameter"));
3044                 return (err, Vec::new());
3045             }
3046
3047             // Try to lookup the name in more relaxed fashion for better error reporting.
3048             let ident = *path.last().unwrap();
3049             let candidates = this.lookup_import_candidates(ident.name, ns, is_expected);
3050             if candidates.is_empty() && is_expected(Def::Enum(DefId::local(CRATE_DEF_INDEX))) {
3051                 let enum_candidates =
3052                     this.lookup_import_candidates(ident.name, ns, is_enum_variant);
3053                 let mut enum_candidates = enum_candidates.iter()
3054                     .map(|suggestion| import_candidate_to_paths(&suggestion)).collect::<Vec<_>>();
3055                 enum_candidates.sort();
3056                 for (sp, variant_path, enum_path) in enum_candidates {
3057                     if sp.is_dummy() {
3058                         let msg = format!("there is an enum variant `{}`, \
3059                                         try using `{}`?",
3060                                         variant_path,
3061                                         enum_path);
3062                         err.help(&msg);
3063                     } else {
3064                         err.span_suggestion_with_applicability(
3065                             span,
3066                             "you can try using the variant's enum",
3067                             enum_path,
3068                             Applicability::MachineApplicable,
3069                         );
3070                     }
3071                 }
3072             }
3073             if path.len() == 1 && this.self_type_is_available(span) {
3074                 if let Some(candidate) = this.lookup_assoc_candidate(ident, ns, is_expected) {
3075                     let self_is_available = this.self_value_is_available(path[0].span, span);
3076                     match candidate {
3077                         AssocSuggestion::Field => {
3078                             err.span_suggestion_with_applicability(
3079                                 span,
3080                                 "try",
3081                                 format!("self.{}", path_str),
3082                                 Applicability::MachineApplicable,
3083                             );
3084                             if !self_is_available {
3085                                 err.span_label(span, format!("`self` value is a keyword \
3086                                                                only available in \
3087                                                                methods with `self` parameter"));
3088                             }
3089                         }
3090                         AssocSuggestion::MethodWithSelf if self_is_available => {
3091                             err.span_suggestion_with_applicability(
3092                                 span,
3093                                 "try",
3094                                 format!("self.{}", path_str),
3095                                 Applicability::MachineApplicable,
3096                             );
3097                         }
3098                         AssocSuggestion::MethodWithSelf | AssocSuggestion::AssocItem => {
3099                             err.span_suggestion_with_applicability(
3100                                 span,
3101                                 "try",
3102                                 format!("Self::{}", path_str),
3103                                 Applicability::MachineApplicable,
3104                             );
3105                         }
3106                     }
3107                     return (err, candidates);
3108                 }
3109             }
3110
3111             let mut levenshtein_worked = false;
3112
3113             // Try Levenshtein.
3114             if let Some(candidate) = this.lookup_typo_candidate(path, ns, is_expected, span) {
3115                 err.span_label(ident_span, format!("did you mean `{}`?", candidate));
3116                 levenshtein_worked = true;
3117             }
3118
3119             // Try context dependent help if relaxed lookup didn't work.
3120             if let Some(def) = def {
3121                 match (def, source) {
3122                     (Def::Macro(..), _) => {
3123                         err.span_label(span, format!("did you mean `{}!(...)`?", path_str));
3124                         return (err, candidates);
3125                     }
3126                     (Def::TyAlias(..), PathSource::Trait(_)) => {
3127                         err.span_label(span, "type aliases cannot be used for traits");
3128                         return (err, candidates);
3129                     }
3130                     (Def::Mod(..), PathSource::Expr(Some(parent))) => match parent.node {
3131                         ExprKind::Field(_, ident) => {
3132                             err.span_label(parent.span, format!("did you mean `{}::{}`?",
3133                                                                  path_str, ident));
3134                             return (err, candidates);
3135                         }
3136                         ExprKind::MethodCall(ref segment, ..) => {
3137                             err.span_label(parent.span, format!("did you mean `{}::{}(...)`?",
3138                                                                  path_str, segment.ident));
3139                             return (err, candidates);
3140                         }
3141                         _ => {}
3142                     },
3143                     (Def::Enum(..), PathSource::TupleStruct)
3144                         | (Def::Enum(..), PathSource::Expr(..))  => {
3145                         if let Some(variants) = this.collect_enum_variants(def) {
3146                             err.note(&format!("did you mean to use one \
3147                                                of the following variants?\n{}",
3148                                 variants.iter()
3149                                     .map(|suggestion| path_names_to_string(suggestion))
3150                                     .map(|suggestion| format!("- `{}`", suggestion))
3151                                     .collect::<Vec<_>>()
3152                                     .join("\n")));
3153
3154                         } else {
3155                             err.note("did you mean to use one of the enum's variants?");
3156                         }
3157                         return (err, candidates);
3158                     },
3159                     (Def::Struct(def_id), _) if ns == ValueNS => {
3160                         if let Some((ctor_def, ctor_vis))
3161                                 = this.struct_constructors.get(&def_id).cloned() {
3162                             let accessible_ctor = this.is_accessible(ctor_vis);
3163                             if is_expected(ctor_def) && !accessible_ctor {
3164                                 err.span_label(span, format!("constructor is not visible \
3165                                                               here due to private fields"));
3166                             }
3167                         } else {
3168                             // HACK(estebank): find a better way to figure out that this was a
3169                             // parser issue where a struct literal is being used on an expression
3170                             // where a brace being opened means a block is being started. Look
3171                             // ahead for the next text to see if `span` is followed by a `{`.
3172                             let sm = this.session.source_map();
3173                             let mut sp = span;
3174                             loop {
3175                                 sp = sm.next_point(sp);
3176                                 match sm.span_to_snippet(sp) {
3177                                     Ok(ref snippet) => {
3178                                         if snippet.chars().any(|c| { !c.is_whitespace() }) {
3179                                             break;
3180                                         }
3181                                     }
3182                                     _ => break,
3183                                 }
3184                             }
3185                             let followed_by_brace = match sm.span_to_snippet(sp) {
3186                                 Ok(ref snippet) if snippet == "{" => true,
3187                                 _ => false,
3188                             };
3189                             match source {
3190                                 PathSource::Expr(Some(parent)) => {
3191                                     match parent.node {
3192                                         ExprKind::MethodCall(ref path_assignment, _)  => {
3193                                             err.span_suggestion_with_applicability(
3194                                                 sm.start_point(parent.span)
3195                                                   .to(path_assignment.ident.span),
3196                                                 "use `::` to access an associated function",
3197                                                 format!("{}::{}",
3198                                                         path_str,
3199                                                         path_assignment.ident),
3200                                                 Applicability::MaybeIncorrect
3201                                             );
3202                                             return (err, candidates);
3203                                         },
3204                                         _ => {
3205                                             err.span_label(
3206                                                 span,
3207                                                 format!("did you mean `{} {{ /* fields */ }}`?",
3208                                                         path_str),
3209                                             );
3210                                             return (err, candidates);
3211                                         },
3212                                     }
3213                                 },
3214                                 PathSource::Expr(None) if followed_by_brace == true => {
3215                                     err.span_label(
3216                                         span,
3217                                         format!("did you mean `({} {{ /* fields */ }})`?",
3218                                                 path_str),
3219                                     );
3220                                     return (err, candidates);
3221                                 },
3222                                 _ => {
3223                                     err.span_label(
3224                                         span,
3225                                         format!("did you mean `{} {{ /* fields */ }}`?",
3226                                                 path_str),
3227                                     );
3228                                     return (err, candidates);
3229                                 },
3230                             }
3231                         }
3232                         return (err, candidates);
3233                     }
3234                     (Def::Union(..), _) |
3235                     (Def::Variant(..), _) |
3236                     (Def::VariantCtor(_, CtorKind::Fictive), _) if ns == ValueNS => {
3237                         err.span_label(span, format!("did you mean `{} {{ /* fields */ }}`?",
3238                                                      path_str));
3239                         return (err, candidates);
3240                     }
3241                     (Def::SelfTy(..), _) if ns == ValueNS => {
3242                         err.span_label(span, fallback_label);
3243                         err.note("can't use `Self` as a constructor, you must use the \
3244                                   implemented struct");
3245                         return (err, candidates);
3246                     }
3247                     (Def::TyAlias(_), _) | (Def::AssociatedTy(..), _) if ns == ValueNS => {
3248                         err.note("can't use a type alias as a constructor");
3249                         return (err, candidates);
3250                     }
3251                     _ => {}
3252                 }
3253             }
3254
3255             // Fallback label.
3256             if !levenshtein_worked {
3257                 err.span_label(base_span, fallback_label);
3258                 this.type_ascription_suggestion(&mut err, base_span);
3259             }
3260             (err, candidates)
3261         };
3262         let report_errors = |this: &mut Self, def: Option<Def>| {
3263             let (err, candidates) = report_errors(this, def);
3264             let def_id = this.current_module.normal_ancestor_id;
3265             let node_id = this.definitions.as_local_node_id(def_id).unwrap();
3266             let better = def.is_some();
3267             this.use_injections.push(UseError { err, candidates, node_id, better });
3268             err_path_resolution()
3269         };
3270
3271         let resolution = match self.resolve_qpath_anywhere(
3272             id,
3273             qself,
3274             path,
3275             ns,
3276             span,
3277             source.defer_to_typeck(),
3278             source.global_by_default(),
3279             crate_lint,
3280         ) {
3281             Some(resolution) if resolution.unresolved_segments() == 0 => {
3282                 if is_expected(resolution.base_def()) || resolution.base_def() == Def::Err {
3283                     resolution
3284                 } else {
3285                     // Add a temporary hack to smooth the transition to new struct ctor
3286                     // visibility rules. See #38932 for more details.
3287                     let mut res = None;
3288                     if let Def::Struct(def_id) = resolution.base_def() {
3289                         if let Some((ctor_def, ctor_vis))
3290                                 = self.struct_constructors.get(&def_id).cloned() {
3291                             if is_expected(ctor_def) && self.is_accessible(ctor_vis) {
3292                                 let lint = lint::builtin::LEGACY_CONSTRUCTOR_VISIBILITY;
3293                                 self.session.buffer_lint(lint, id, span,
3294                                     "private struct constructors are not usable through \
3295                                      re-exports in outer modules",
3296                                 );
3297                                 res = Some(PathResolution::new(ctor_def));
3298                             }
3299                         }
3300                     }
3301
3302                     res.unwrap_or_else(|| report_errors(self, Some(resolution.base_def())))
3303                 }
3304             }
3305             Some(resolution) if source.defer_to_typeck() => {
3306                 // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
3307                 // or `<T>::A::B`. If `B` should be resolved in value namespace then
3308                 // it needs to be added to the trait map.
3309                 if ns == ValueNS {
3310                     let item_name = *path.last().unwrap();
3311                     let traits = self.get_traits_containing_item(item_name, ns);
3312                     self.trait_map.insert(id, traits);
3313                 }
3314                 resolution
3315             }
3316             _ => report_errors(self, None)
3317         };
3318
3319         if let PathSource::TraitItem(..) = source {} else {
3320             // Avoid recording definition of `A::B` in `<T as A>::B::C`.
3321             self.record_def(id, resolution);
3322         }
3323         resolution
3324     }
3325
3326     fn type_ascription_suggestion(&self,
3327                                   err: &mut DiagnosticBuilder,
3328                                   base_span: Span) {
3329         debug!("type_ascription_suggetion {:?}", base_span);
3330         let cm = self.session.source_map();
3331         debug!("self.current_type_ascription {:?}", self.current_type_ascription);
3332         if let Some(sp) = self.current_type_ascription.last() {
3333             let mut sp = *sp;
3334             loop {  // try to find the `:`, bail on first non-':'/non-whitespace
3335                 sp = cm.next_point(sp);
3336                 if let Ok(snippet) = cm.span_to_snippet(sp.to(cm.next_point(sp))) {
3337                     debug!("snippet {:?}", snippet);
3338                     let line_sp = cm.lookup_char_pos(sp.hi()).line;
3339                     let line_base_sp = cm.lookup_char_pos(base_span.lo()).line;
3340                     debug!("{:?} {:?}", line_sp, line_base_sp);
3341                     if snippet == ":" {
3342                         err.span_label(base_span,
3343                                        "expecting a type here because of type ascription");
3344                         if line_sp != line_base_sp {
3345                             err.span_suggestion_short_with_applicability(
3346                                 sp,
3347                                 "did you mean to use `;` here instead?",
3348                                 ";".to_string(),
3349                                 Applicability::MaybeIncorrect,
3350                             );
3351                         }
3352                         break;
3353                     } else if !snippet.trim().is_empty() {
3354                         debug!("tried to find type ascription `:` token, couldn't find it");
3355                         break;
3356                     }
3357                 } else {
3358                     break;
3359                 }
3360             }
3361         }
3362     }
3363
3364     fn self_type_is_available(&mut self, span: Span) -> bool {
3365         let binding = self.resolve_ident_in_lexical_scope(keywords::SelfType.ident(),
3366                                                           TypeNS, None, span);
3367         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3368     }
3369
3370     fn self_value_is_available(&mut self, self_span: Span, path_span: Span) -> bool {
3371         let ident = Ident::new(keywords::SelfValue.name(), self_span);
3372         let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, None, path_span);
3373         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3374     }
3375
3376     // Resolve in alternative namespaces if resolution in the primary namespace fails.
3377     fn resolve_qpath_anywhere(&mut self,
3378                               id: NodeId,
3379                               qself: Option<&QSelf>,
3380                               path: &[Ident],
3381                               primary_ns: Namespace,
3382                               span: Span,
3383                               defer_to_typeck: bool,
3384                               global_by_default: bool,
3385                               crate_lint: CrateLint)
3386                               -> Option<PathResolution> {
3387         let mut fin_res = None;
3388         // FIXME: can't resolve paths in macro namespace yet, macros are
3389         // processed by the little special hack below.
3390         for (i, ns) in [primary_ns, TypeNS, ValueNS, /*MacroNS*/].iter().cloned().enumerate() {
3391             if i == 0 || ns != primary_ns {
3392                 match self.resolve_qpath(id, qself, path, ns, span, global_by_default, crate_lint) {
3393                     // If defer_to_typeck, then resolution > no resolution,
3394                     // otherwise full resolution > partial resolution > no resolution.
3395                     Some(res) if res.unresolved_segments() == 0 || defer_to_typeck =>
3396                         return Some(res),
3397                     res => if fin_res.is_none() { fin_res = res },
3398                 };
3399             }
3400         }
3401         if primary_ns != MacroNS &&
3402            (self.macro_names.contains(&path[0].modern()) ||
3403             self.builtin_macros.get(&path[0].name).cloned()
3404                                .and_then(NameBinding::macro_kind) == Some(MacroKind::Bang) ||
3405             self.macro_use_prelude.get(&path[0].name).cloned()
3406                                   .and_then(NameBinding::macro_kind) == Some(MacroKind::Bang)) {
3407             // Return some dummy definition, it's enough for error reporting.
3408             return Some(
3409                 PathResolution::new(Def::Macro(DefId::local(CRATE_DEF_INDEX), MacroKind::Bang))
3410             );
3411         }
3412         fin_res
3413     }
3414
3415     /// Handles paths that may refer to associated items.
3416     fn resolve_qpath(&mut self,
3417                      id: NodeId,
3418                      qself: Option<&QSelf>,
3419                      path: &[Ident],
3420                      ns: Namespace,
3421                      span: Span,
3422                      global_by_default: bool,
3423                      crate_lint: CrateLint)
3424                      -> Option<PathResolution> {
3425         debug!(
3426             "resolve_qpath(id={:?}, qself={:?}, path={:?}, \
3427              ns={:?}, span={:?}, global_by_default={:?})",
3428             id,
3429             qself,
3430             path,
3431             ns,
3432             span,
3433             global_by_default,
3434         );
3435
3436         if let Some(qself) = qself {
3437             if qself.position == 0 {
3438                 // This is a case like `<T>::B`, where there is no
3439                 // trait to resolve.  In that case, we leave the `B`
3440                 // segment to be resolved by type-check.
3441                 return Some(PathResolution::with_unresolved_segments(
3442                     Def::Mod(DefId::local(CRATE_DEF_INDEX)), path.len()
3443                 ));
3444             }
3445
3446             // Make sure `A::B` in `<T as A::B>::C` is a trait item.
3447             //
3448             // Currently, `path` names the full item (`A::B::C`, in
3449             // our example).  so we extract the prefix of that that is
3450             // the trait (the slice upto and including
3451             // `qself.position`). And then we recursively resolve that,
3452             // but with `qself` set to `None`.
3453             //
3454             // However, setting `qself` to none (but not changing the
3455             // span) loses the information about where this path
3456             // *actually* appears, so for the purposes of the crate
3457             // lint we pass along information that this is the trait
3458             // name from a fully qualified path, and this also
3459             // contains the full span (the `CrateLint::QPathTrait`).
3460             let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
3461             let res = self.smart_resolve_path_fragment(
3462                 id,
3463                 None,
3464                 &path[..qself.position + 1],
3465                 span,
3466                 PathSource::TraitItem(ns),
3467                 CrateLint::QPathTrait {
3468                     qpath_id: id,
3469                     qpath_span: qself.path_span,
3470                 },
3471             );
3472
3473             // The remaining segments (the `C` in our example) will
3474             // have to be resolved by type-check, since that requires doing
3475             // trait resolution.
3476             return Some(PathResolution::with_unresolved_segments(
3477                 res.base_def(), res.unresolved_segments() + path.len() - qself.position - 1
3478             ));
3479         }
3480
3481         let result = match self.resolve_path(
3482             None,
3483             &path,
3484             Some(ns),
3485             true,
3486             span,
3487             crate_lint,
3488         ) {
3489             PathResult::NonModule(path_res) => path_res,
3490             PathResult::Module(ModuleOrUniformRoot::Module(module)) if !module.is_normal() => {
3491                 PathResolution::new(module.def().unwrap())
3492             }
3493             // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
3494             // don't report an error right away, but try to fallback to a primitive type.
3495             // So, we are still able to successfully resolve something like
3496             //
3497             // use std::u8; // bring module u8 in scope
3498             // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
3499             //     u8::max_value() // OK, resolves to associated function <u8>::max_value,
3500             //                     // not to non-existent std::u8::max_value
3501             // }
3502             //
3503             // Such behavior is required for backward compatibility.
3504             // The same fallback is used when `a` resolves to nothing.
3505             PathResult::Module(ModuleOrUniformRoot::Module(_)) |
3506             PathResult::Failed(..)
3507                     if (ns == TypeNS || path.len() > 1) &&
3508                        self.primitive_type_table.primitive_types
3509                            .contains_key(&path[0].name) => {
3510                 let prim = self.primitive_type_table.primitive_types[&path[0].name];
3511                 PathResolution::with_unresolved_segments(Def::PrimTy(prim), path.len() - 1)
3512             }
3513             PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3514                 PathResolution::new(module.def().unwrap()),
3515             PathResult::Failed(span, msg, false) => {
3516                 resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
3517                 err_path_resolution()
3518             }
3519             PathResult::Module(ModuleOrUniformRoot::UniformRoot(_)) |
3520             PathResult::Failed(..) => return None,
3521             PathResult::Indeterminate => bug!("indetermined path result in resolve_qpath"),
3522         };
3523
3524         if path.len() > 1 && !global_by_default && result.base_def() != Def::Err &&
3525            path[0].name != keywords::CrateRoot.name() &&
3526            path[0].name != keywords::DollarCrate.name() {
3527             let unqualified_result = {
3528                 match self.resolve_path(
3529                     None,
3530                     &[*path.last().unwrap()],
3531                     Some(ns),
3532                     false,
3533                     span,
3534                     CrateLint::No,
3535                 ) {
3536                     PathResult::NonModule(path_res) => path_res.base_def(),
3537                     PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3538                         module.def().unwrap(),
3539                     _ => return Some(result),
3540                 }
3541             };
3542             if result.base_def() == unqualified_result {
3543                 let lint = lint::builtin::UNUSED_QUALIFICATIONS;
3544                 self.session.buffer_lint(lint, id, span, "unnecessary qualification")
3545             }
3546         }
3547
3548         Some(result)
3549     }
3550
3551     fn resolve_path(
3552         &mut self,
3553         base_module: Option<ModuleOrUniformRoot<'a>>,
3554         path: &[Ident],
3555         opt_ns: Option<Namespace>, // `None` indicates a module path
3556         record_used: bool,
3557         path_span: Span,
3558         crate_lint: CrateLint,
3559     ) -> PathResult<'a> {
3560         let parent_scope = ParentScope { module: self.current_module, ..self.dummy_parent_scope() };
3561         self.resolve_path_with_parent_scope(base_module, path, opt_ns, &parent_scope,
3562                                             record_used, path_span, crate_lint)
3563     }
3564
3565     fn resolve_path_with_parent_scope(
3566         &mut self,
3567         base_module: Option<ModuleOrUniformRoot<'a>>,
3568         path: &[Ident],
3569         opt_ns: Option<Namespace>, // `None` indicates a module path
3570         parent_scope: &ParentScope<'a>,
3571         record_used: bool,
3572         path_span: Span,
3573         crate_lint: CrateLint,
3574     ) -> PathResult<'a> {
3575         let mut module = base_module;
3576         let mut allow_super = true;
3577         let mut second_binding = None;
3578         self.current_module = parent_scope.module;
3579
3580         debug!(
3581             "resolve_path(path={:?}, opt_ns={:?}, record_used={:?}, \
3582              path_span={:?}, crate_lint={:?})",
3583             path,
3584             opt_ns,
3585             record_used,
3586             path_span,
3587             crate_lint,
3588         );
3589
3590         for (i, &ident) in path.iter().enumerate() {
3591             debug!("resolve_path ident {} {:?}", i, ident);
3592             let is_last = i == path.len() - 1;
3593             let ns = if is_last { opt_ns.unwrap_or(TypeNS) } else { TypeNS };
3594             let name = ident.name;
3595
3596             allow_super &= ns == TypeNS &&
3597                 (name == keywords::SelfValue.name() ||
3598                  name == keywords::Super.name());
3599
3600             if ns == TypeNS {
3601                 if allow_super && name == keywords::Super.name() {
3602                     let mut ctxt = ident.span.ctxt().modern();
3603                     let self_module = match i {
3604                         0 => Some(self.resolve_self(&mut ctxt, self.current_module)),
3605                         _ => match module {
3606                             Some(ModuleOrUniformRoot::Module(module)) => Some(module),
3607                             _ => None,
3608                         },
3609                     };
3610                     if let Some(self_module) = self_module {
3611                         if let Some(parent) = self_module.parent {
3612                             module = Some(ModuleOrUniformRoot::Module(
3613                                 self.resolve_self(&mut ctxt, parent)));
3614                             continue;
3615                         }
3616                     }
3617                     let msg = "There are too many initial `super`s.".to_string();
3618                     return PathResult::Failed(ident.span, msg, false);
3619                 }
3620                 if i == 0 {
3621                     if name == keywords::SelfValue.name() {
3622                         let mut ctxt = ident.span.ctxt().modern();
3623                         module = Some(ModuleOrUniformRoot::Module(
3624                             self.resolve_self(&mut ctxt, self.current_module)));
3625                         continue;
3626                     }
3627                     if name == keywords::Extern.name() ||
3628                        name == keywords::CrateRoot.name() &&
3629                        self.session.rust_2018() {
3630                         module = Some(ModuleOrUniformRoot::UniformRoot(name));
3631                         continue;
3632                     }
3633                     if name == keywords::CrateRoot.name() ||
3634                        name == keywords::Crate.name() ||
3635                        name == keywords::DollarCrate.name() {
3636                         // `::a::b`, `crate::a::b` or `$crate::a::b`
3637                         module = Some(ModuleOrUniformRoot::Module(
3638                             self.resolve_crate_root(ident)));
3639                         continue;
3640                     }
3641                 }
3642             }
3643
3644             // Report special messages for path segment keywords in wrong positions.
3645             if ident.is_path_segment_keyword() && i != 0 {
3646                 let name_str = if name == keywords::CrateRoot.name() {
3647                     "crate root".to_string()
3648                 } else {
3649                     format!("`{}`", name)
3650                 };
3651                 let msg = if i == 1 && path[0].name == keywords::CrateRoot.name() {
3652                     format!("global paths cannot start with {}", name_str)
3653                 } else {
3654                     format!("{} in paths can only be used in start position", name_str)
3655                 };
3656                 return PathResult::Failed(ident.span, msg, false);
3657             }
3658
3659             let binding = if let Some(module) = module {
3660                 self.resolve_ident_in_module(module, ident, ns, record_used, path_span)
3661             } else if opt_ns == Some(MacroNS) {
3662                 assert!(ns == TypeNS);
3663                 self.early_resolve_ident_in_lexical_scope(ident, ns, None, parent_scope,
3664                                                           record_used, record_used, path_span)
3665             } else {
3666                 let record_used_id =
3667                     if record_used { crate_lint.node_id().or(Some(CRATE_NODE_ID)) } else { None };
3668                 match self.resolve_ident_in_lexical_scope(ident, ns, record_used_id, path_span) {
3669                     // we found a locally-imported or available item/module
3670                     Some(LexicalScopeBinding::Item(binding)) => Ok(binding),
3671                     // we found a local variable or type param
3672                     Some(LexicalScopeBinding::Def(def))
3673                             if opt_ns == Some(TypeNS) || opt_ns == Some(ValueNS) => {
3674                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3675                             def, path.len() - 1
3676                         ));
3677                     }
3678                     _ => Err(if record_used { Determined } else { Undetermined }),
3679                 }
3680             };
3681
3682             match binding {
3683                 Ok(binding) => {
3684                     if i == 1 {
3685                         second_binding = Some(binding);
3686                     }
3687                     let def = binding.def();
3688                     let maybe_assoc = opt_ns != Some(MacroNS) && PathSource::Type.is_expected(def);
3689                     if let Some(next_module) = binding.module() {
3690                         module = Some(ModuleOrUniformRoot::Module(next_module));
3691                     } else if def == Def::ToolMod && i + 1 != path.len() {
3692                         let def = Def::NonMacroAttr(NonMacroAttrKind::Tool);
3693                         return PathResult::NonModule(PathResolution::new(def));
3694                     } else if def == Def::Err {
3695                         return PathResult::NonModule(err_path_resolution());
3696                     } else if opt_ns.is_some() && (is_last || maybe_assoc) {
3697                         self.lint_if_path_starts_with_module(
3698                             crate_lint,
3699                             path,
3700                             path_span,
3701                             second_binding,
3702                         );
3703                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3704                             def, path.len() - i - 1
3705                         ));
3706                     } else {
3707                         return PathResult::Failed(ident.span,
3708                                                   format!("Not a module `{}`", ident),
3709                                                   is_last);
3710                     }
3711                 }
3712                 Err(Undetermined) => return PathResult::Indeterminate,
3713                 Err(Determined) => {
3714                     if let Some(ModuleOrUniformRoot::Module(module)) = module {
3715                         if opt_ns.is_some() && !module.is_normal() {
3716                             return PathResult::NonModule(PathResolution::with_unresolved_segments(
3717                                 module.def().unwrap(), path.len() - i
3718                             ));
3719                         }
3720                     }
3721                     let module_def = match module {
3722                         Some(ModuleOrUniformRoot::Module(module)) => module.def(),
3723                         _ => None,
3724                     };
3725                     let msg = if module_def == self.graph_root.def() {
3726                         let is_mod = |def| match def { Def::Mod(..) => true, _ => false };
3727                         let mut candidates =
3728                             self.lookup_import_candidates(name, TypeNS, is_mod);
3729                         candidates.sort_by_cached_key(|c| {
3730                             (c.path.segments.len(), c.path.to_string())
3731                         });
3732                         if let Some(candidate) = candidates.get(0) {
3733                             format!("Did you mean `{}`?", candidate.path)
3734                         } else {
3735                             format!("Maybe a missing `extern crate {};`?", ident)
3736                         }
3737                     } else if i == 0 {
3738                         format!("Use of undeclared type or module `{}`", ident)
3739                     } else {
3740                         format!("Could not find `{}` in `{}`", ident, path[i - 1])
3741                     };
3742                     return PathResult::Failed(ident.span, msg, is_last);
3743                 }
3744             }
3745         }
3746
3747         self.lint_if_path_starts_with_module(crate_lint, path, path_span, second_binding);
3748
3749         PathResult::Module(module.unwrap_or_else(|| {
3750             span_bug!(path_span, "resolve_path: empty(?) path {:?} has no module", path);
3751         }))
3752
3753     }
3754
3755     fn lint_if_path_starts_with_module(
3756         &self,
3757         crate_lint: CrateLint,
3758         path: &[Ident],
3759         path_span: Span,
3760         second_binding: Option<&NameBinding>,
3761     ) {
3762         // In the 2018 edition this lint is a hard error, so nothing to do
3763         if self.session.rust_2018() {
3764             return
3765         }
3766
3767         let (diag_id, diag_span) = match crate_lint {
3768             CrateLint::No => return,
3769             CrateLint::SimplePath(id) => (id, path_span),
3770             CrateLint::UsePath { root_id, root_span } => (root_id, root_span),
3771             CrateLint::QPathTrait { qpath_id, qpath_span } => (qpath_id, qpath_span),
3772         };
3773
3774         let first_name = match path.get(0) {
3775             Some(ident) => ident.name,
3776             None => return,
3777         };
3778
3779         // We're only interested in `use` paths which should start with
3780         // `{{root}}` or `extern` currently.
3781         if first_name != keywords::Extern.name() && first_name != keywords::CrateRoot.name() {
3782             return
3783         }
3784
3785         match path.get(1) {
3786             // If this import looks like `crate::...` it's already good
3787             Some(ident) if ident.name == keywords::Crate.name() => return,
3788             // Otherwise go below to see if it's an extern crate
3789             Some(_) => {}
3790             // If the path has length one (and it's `CrateRoot` most likely)
3791             // then we don't know whether we're gonna be importing a crate or an
3792             // item in our crate. Defer this lint to elsewhere
3793             None => return,
3794         }
3795
3796         // If the first element of our path was actually resolved to an
3797         // `ExternCrate` (also used for `crate::...`) then no need to issue a
3798         // warning, this looks all good!
3799         if let Some(binding) = second_binding {
3800             if let NameBindingKind::Import { directive: d, .. } = binding.kind {
3801                 // Careful: we still want to rewrite paths from
3802                 // renamed extern crates.
3803                 if let ImportDirectiveSubclass::ExternCrate { source: None, .. } = d.subclass {
3804                     return
3805                 }
3806             }
3807         }
3808
3809         let diag = lint::builtin::BuiltinLintDiagnostics
3810             ::AbsPathWithModule(diag_span);
3811         self.session.buffer_lint_with_diagnostic(
3812             lint::builtin::ABSOLUTE_PATHS_NOT_STARTING_WITH_CRATE,
3813             diag_id, diag_span,
3814             "absolute paths must start with `self`, `super`, \
3815             `crate`, or an external crate name in the 2018 edition",
3816             diag);
3817     }
3818
3819     // Resolve a local definition, potentially adjusting for closures.
3820     fn adjust_local_def(&mut self,
3821                         ns: Namespace,
3822                         rib_index: usize,
3823                         mut def: Def,
3824                         record_used: bool,
3825                         span: Span) -> Def {
3826         let ribs = &self.ribs[ns][rib_index + 1..];
3827
3828         // An invalid forward use of a type parameter from a previous default.
3829         if let ForwardTyParamBanRibKind = self.ribs[ns][rib_index].kind {
3830             if record_used {
3831                 resolve_error(self, span, ResolutionError::ForwardDeclaredTyParam);
3832             }
3833             assert_eq!(def, Def::Err);
3834             return Def::Err;
3835         }
3836
3837         match def {
3838             Def::Upvar(..) => {
3839                 span_bug!(span, "unexpected {:?} in bindings", def)
3840             }
3841             Def::Local(node_id) => {
3842                 for rib in ribs {
3843                     match rib.kind {
3844                         NormalRibKind | ModuleRibKind(..) | MacroDefinition(..) |
3845                         ForwardTyParamBanRibKind => {
3846                             // Nothing to do. Continue.
3847                         }
3848                         ClosureRibKind(function_id) => {
3849                             let prev_def = def;
3850
3851                             let seen = self.freevars_seen
3852                                            .entry(function_id)
3853                                            .or_default();
3854                             if let Some(&index) = seen.get(&node_id) {
3855                                 def = Def::Upvar(node_id, index, function_id);
3856                                 continue;
3857                             }
3858                             let vec = self.freevars
3859                                           .entry(function_id)
3860                                           .or_default();
3861                             let depth = vec.len();
3862                             def = Def::Upvar(node_id, depth, function_id);
3863
3864                             if record_used {
3865                                 vec.push(Freevar {
3866                                     def: prev_def,
3867                                     span,
3868                                 });
3869                                 seen.insert(node_id, depth);
3870                             }
3871                         }
3872                         ItemRibKind | TraitOrImplItemRibKind => {
3873                             // This was an attempt to access an upvar inside a
3874                             // named function item. This is not allowed, so we
3875                             // report an error.
3876                             if record_used {
3877                                 resolve_error(self, span,
3878                                         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem);
3879                             }
3880                             return Def::Err;
3881                         }
3882                         ConstantItemRibKind => {
3883                             // Still doesn't deal with upvars
3884                             if record_used {
3885                                 resolve_error(self, span,
3886                                         ResolutionError::AttemptToUseNonConstantValueInConstant);
3887                             }
3888                             return Def::Err;
3889                         }
3890                     }
3891                 }
3892             }
3893             Def::TyParam(..) | Def::SelfTy(..) => {
3894                 for rib in ribs {
3895                     match rib.kind {
3896                         NormalRibKind | TraitOrImplItemRibKind | ClosureRibKind(..) |
3897                         ModuleRibKind(..) | MacroDefinition(..) | ForwardTyParamBanRibKind |
3898                         ConstantItemRibKind => {
3899                             // Nothing to do. Continue.
3900                         }
3901                         ItemRibKind => {
3902                             // This was an attempt to use a type parameter outside
3903                             // its scope.
3904                             if record_used {
3905                                 resolve_error(self, span,
3906                                     ResolutionError::TypeParametersFromOuterFunction(def));
3907                             }
3908                             return Def::Err;
3909                         }
3910                     }
3911                 }
3912             }
3913             _ => {}
3914         }
3915         def
3916     }
3917
3918     fn lookup_assoc_candidate<FilterFn>(&mut self,
3919                                         ident: Ident,
3920                                         ns: Namespace,
3921                                         filter_fn: FilterFn)
3922                                         -> Option<AssocSuggestion>
3923         where FilterFn: Fn(Def) -> bool
3924     {
3925         fn extract_node_id(t: &Ty) -> Option<NodeId> {
3926             match t.node {
3927                 TyKind::Path(None, _) => Some(t.id),
3928                 TyKind::Rptr(_, ref mut_ty) => extract_node_id(&mut_ty.ty),
3929                 // This doesn't handle the remaining `Ty` variants as they are not
3930                 // that commonly the self_type, it might be interesting to provide
3931                 // support for those in future.
3932                 _ => None,
3933             }
3934         }
3935
3936         // Fields are generally expected in the same contexts as locals.
3937         if filter_fn(Def::Local(ast::DUMMY_NODE_ID)) {
3938             if let Some(node_id) = self.current_self_type.as_ref().and_then(extract_node_id) {
3939                 // Look for a field with the same name in the current self_type.
3940                 if let Some(resolution) = self.def_map.get(&node_id) {
3941                     match resolution.base_def() {
3942                         Def::Struct(did) | Def::Union(did)
3943                                 if resolution.unresolved_segments() == 0 => {
3944                             if let Some(field_names) = self.field_names.get(&did) {
3945                                 if field_names.iter().any(|&field_name| ident.name == field_name) {
3946                                     return Some(AssocSuggestion::Field);
3947                                 }
3948                             }
3949                         }
3950                         _ => {}
3951                     }
3952                 }
3953             }
3954         }
3955
3956         // Look for associated items in the current trait.
3957         if let Some((module, _)) = self.current_trait_ref {
3958             if let Ok(binding) = self.resolve_ident_in_module(
3959                     ModuleOrUniformRoot::Module(module),
3960                     ident,
3961                     ns,
3962                     false,
3963                     module.span,
3964                 ) {
3965                 let def = binding.def();
3966                 if filter_fn(def) {
3967                     return Some(if self.has_self.contains(&def.def_id()) {
3968                         AssocSuggestion::MethodWithSelf
3969                     } else {
3970                         AssocSuggestion::AssocItem
3971                     });
3972                 }
3973             }
3974         }
3975
3976         None
3977     }
3978
3979     fn lookup_typo_candidate<FilterFn>(&mut self,
3980                                        path: &[Ident],
3981                                        ns: Namespace,
3982                                        filter_fn: FilterFn,
3983                                        span: Span)
3984                                        -> Option<Symbol>
3985         where FilterFn: Fn(Def) -> bool
3986     {
3987         let add_module_candidates = |module: Module, names: &mut Vec<Name>| {
3988             for (&(ident, _), resolution) in module.resolutions.borrow().iter() {
3989                 if let Some(binding) = resolution.borrow().binding {
3990                     if filter_fn(binding.def()) {
3991                         names.push(ident.name);
3992                     }
3993                 }
3994             }
3995         };
3996
3997         let mut names = Vec::new();
3998         if path.len() == 1 {
3999             // Search in lexical scope.
4000             // Walk backwards up the ribs in scope and collect candidates.
4001             for rib in self.ribs[ns].iter().rev() {
4002                 // Locals and type parameters
4003                 for (ident, def) in &rib.bindings {
4004                     if filter_fn(*def) {
4005                         names.push(ident.name);
4006                     }
4007                 }
4008                 // Items in scope
4009                 if let ModuleRibKind(module) = rib.kind {
4010                     // Items from this module
4011                     add_module_candidates(module, &mut names);
4012
4013                     if let ModuleKind::Block(..) = module.kind {
4014                         // We can see through blocks
4015                     } else {
4016                         // Items from the prelude
4017                         if !module.no_implicit_prelude {
4018                             names.extend(self.extern_prelude.iter().map(|(ident, _)| ident.name));
4019                             if let Some(prelude) = self.prelude {
4020                                 add_module_candidates(prelude, &mut names);
4021                             }
4022                         }
4023                         break;
4024                     }
4025                 }
4026             }
4027             // Add primitive types to the mix
4028             if filter_fn(Def::PrimTy(Bool)) {
4029                 names.extend(
4030                     self.primitive_type_table.primitive_types.iter().map(|(name, _)| name)
4031                 )
4032             }
4033         } else {
4034             // Search in module.
4035             let mod_path = &path[..path.len() - 1];
4036             if let PathResult::Module(module) = self.resolve_path(None, mod_path, Some(TypeNS),
4037                                                                   false, span, CrateLint::No) {
4038                 if let ModuleOrUniformRoot::Module(module) = module {
4039                     add_module_candidates(module, &mut names);
4040                 }
4041             }
4042         }
4043
4044         let name = path[path.len() - 1].name;
4045         // Make sure error reporting is deterministic.
4046         names.sort_by_cached_key(|name| name.as_str());
4047         match find_best_match_for_name(names.iter(), &name.as_str(), None) {
4048             Some(found) if found != name => Some(found),
4049             _ => None,
4050         }
4051     }
4052
4053     fn with_resolved_label<F>(&mut self, label: Option<Label>, id: NodeId, f: F)
4054         where F: FnOnce(&mut Resolver)
4055     {
4056         if let Some(label) = label {
4057             self.unused_labels.insert(id, label.ident.span);
4058             let def = Def::Label(id);
4059             self.with_label_rib(|this| {
4060                 let ident = label.ident.modern_and_legacy();
4061                 this.label_ribs.last_mut().unwrap().bindings.insert(ident, def);
4062                 f(this);
4063             });
4064         } else {
4065             f(self);
4066         }
4067     }
4068
4069     fn resolve_labeled_block(&mut self, label: Option<Label>, id: NodeId, block: &Block) {
4070         self.with_resolved_label(label, id, |this| this.visit_block(block));
4071     }
4072
4073     fn resolve_expr(&mut self, expr: &Expr, parent: Option<&Expr>) {
4074         // First, record candidate traits for this expression if it could
4075         // result in the invocation of a method call.
4076
4077         self.record_candidate_traits_for_expr_if_necessary(expr);
4078
4079         // Next, resolve the node.
4080         match expr.node {
4081             ExprKind::Path(ref qself, ref path) => {
4082                 self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
4083                 visit::walk_expr(self, expr);
4084             }
4085
4086             ExprKind::Struct(ref path, ..) => {
4087                 self.smart_resolve_path(expr.id, None, path, PathSource::Struct);
4088                 visit::walk_expr(self, expr);
4089             }
4090
4091             ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
4092                 let def = self.search_label(label.ident, |rib, ident| {
4093                     rib.bindings.get(&ident.modern_and_legacy()).cloned()
4094                 });
4095                 match def {
4096                     None => {
4097                         // Search again for close matches...
4098                         // Picks the first label that is "close enough", which is not necessarily
4099                         // the closest match
4100                         let close_match = self.search_label(label.ident, |rib, ident| {
4101                             let names = rib.bindings.iter().map(|(id, _)| &id.name);
4102                             find_best_match_for_name(names, &*ident.as_str(), None)
4103                         });
4104                         self.record_def(expr.id, err_path_resolution());
4105                         resolve_error(self,
4106                                       label.ident.span,
4107                                       ResolutionError::UndeclaredLabel(&label.ident.as_str(),
4108                                                                        close_match));
4109                     }
4110                     Some(Def::Label(id)) => {
4111                         // Since this def is a label, it is never read.
4112                         self.record_def(expr.id, PathResolution::new(Def::Label(id)));
4113                         self.unused_labels.remove(&id);
4114                     }
4115                     Some(_) => {
4116                         span_bug!(expr.span, "label wasn't mapped to a label def!");
4117                     }
4118                 }
4119
4120                 // visit `break` argument if any
4121                 visit::walk_expr(self, expr);
4122             }
4123
4124             ExprKind::IfLet(ref pats, ref subexpression, ref if_block, ref optional_else) => {
4125                 self.visit_expr(subexpression);
4126
4127                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
4128                 let mut bindings_list = FxHashMap::default();
4129                 for pat in pats {
4130                     self.resolve_pattern(pat, PatternSource::IfLet, &mut bindings_list);
4131                 }
4132                 // This has to happen *after* we determine which pat_idents are variants
4133                 self.check_consistent_bindings(pats);
4134                 self.visit_block(if_block);
4135                 self.ribs[ValueNS].pop();
4136
4137                 optional_else.as_ref().map(|expr| self.visit_expr(expr));
4138             }
4139
4140             ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),
4141
4142             ExprKind::While(ref subexpression, ref block, label) => {
4143                 self.with_resolved_label(label, expr.id, |this| {
4144                     this.visit_expr(subexpression);
4145                     this.visit_block(block);
4146                 });
4147             }
4148
4149             ExprKind::WhileLet(ref pats, ref subexpression, ref block, label) => {
4150                 self.with_resolved_label(label, expr.id, |this| {
4151                     this.visit_expr(subexpression);
4152                     this.ribs[ValueNS].push(Rib::new(NormalRibKind));
4153                     let mut bindings_list = FxHashMap::default();
4154                     for pat in pats {
4155                         this.resolve_pattern(pat, PatternSource::WhileLet, &mut bindings_list);
4156                     }
4157                     // This has to happen *after* we determine which pat_idents are variants
4158                     this.check_consistent_bindings(pats);
4159                     this.visit_block(block);
4160                     this.ribs[ValueNS].pop();
4161                 });
4162             }
4163
4164             ExprKind::ForLoop(ref pattern, ref subexpression, ref block, label) => {
4165                 self.visit_expr(subexpression);
4166                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
4167                 self.resolve_pattern(pattern, PatternSource::For, &mut FxHashMap::default());
4168
4169                 self.resolve_labeled_block(label, expr.id, block);
4170
4171                 self.ribs[ValueNS].pop();
4172             }
4173
4174             ExprKind::Block(ref block, label) => self.resolve_labeled_block(label, block.id, block),
4175
4176             // Equivalent to `visit::walk_expr` + passing some context to children.
4177             ExprKind::Field(ref subexpression, _) => {
4178                 self.resolve_expr(subexpression, Some(expr));
4179             }
4180             ExprKind::MethodCall(ref segment, ref arguments) => {
4181                 let mut arguments = arguments.iter();
4182                 self.resolve_expr(arguments.next().unwrap(), Some(expr));
4183                 for argument in arguments {
4184                     self.resolve_expr(argument, None);
4185                 }
4186                 self.visit_path_segment(expr.span, segment);
4187             }
4188
4189             ExprKind::Call(ref callee, ref arguments) => {
4190                 self.resolve_expr(callee, Some(expr));
4191                 for argument in arguments {
4192                     self.resolve_expr(argument, None);
4193                 }
4194             }
4195             ExprKind::Type(ref type_expr, _) => {
4196                 self.current_type_ascription.push(type_expr.span);
4197                 visit::walk_expr(self, expr);
4198                 self.current_type_ascription.pop();
4199             }
4200             // Resolve the body of async exprs inside the async closure to which they desugar
4201             ExprKind::Async(_, async_closure_id, ref block) => {
4202                 let rib_kind = ClosureRibKind(async_closure_id);
4203                 self.ribs[ValueNS].push(Rib::new(rib_kind));
4204                 self.label_ribs.push(Rib::new(rib_kind));
4205                 self.visit_block(&block);
4206                 self.label_ribs.pop();
4207                 self.ribs[ValueNS].pop();
4208             }
4209             // `async |x| ...` gets desugared to `|x| future_from_generator(|| ...)`, so we need to
4210             // resolve the arguments within the proper scopes so that usages of them inside the
4211             // closure are detected as upvars rather than normal closure arg usages.
4212             ExprKind::Closure(
4213                 _, IsAsync::Async { closure_id: inner_closure_id, .. }, _,
4214                 ref fn_decl, ref body, _span,
4215             ) => {
4216                 let rib_kind = ClosureRibKind(expr.id);
4217                 self.ribs[ValueNS].push(Rib::new(rib_kind));
4218                 self.label_ribs.push(Rib::new(rib_kind));
4219                 // Resolve arguments:
4220                 let mut bindings_list = FxHashMap::default();
4221                 for argument in &fn_decl.inputs {
4222                     self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
4223                     self.visit_ty(&argument.ty);
4224                 }
4225                 // No need to resolve return type-- the outer closure return type is
4226                 // FunctionRetTy::Default
4227
4228                 // Now resolve the inner closure
4229                 {
4230                     let rib_kind = ClosureRibKind(inner_closure_id);
4231                     self.ribs[ValueNS].push(Rib::new(rib_kind));
4232                     self.label_ribs.push(Rib::new(rib_kind));
4233                     // No need to resolve arguments: the inner closure has none.
4234                     // Resolve the return type:
4235                     visit::walk_fn_ret_ty(self, &fn_decl.output);
4236                     // Resolve the body
4237                     self.visit_expr(body);
4238                     self.label_ribs.pop();
4239                     self.ribs[ValueNS].pop();
4240                 }
4241                 self.label_ribs.pop();
4242                 self.ribs[ValueNS].pop();
4243             }
4244             _ => {
4245                 visit::walk_expr(self, expr);
4246             }
4247         }
4248     }
4249
4250     fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &Expr) {
4251         match expr.node {
4252             ExprKind::Field(_, ident) => {
4253                 // FIXME(#6890): Even though you can't treat a method like a
4254                 // field, we need to add any trait methods we find that match
4255                 // the field name so that we can do some nice error reporting
4256                 // later on in typeck.
4257                 let traits = self.get_traits_containing_item(ident, ValueNS);
4258                 self.trait_map.insert(expr.id, traits);
4259             }
4260             ExprKind::MethodCall(ref segment, ..) => {
4261                 debug!("(recording candidate traits for expr) recording traits for {}",
4262                        expr.id);
4263                 let traits = self.get_traits_containing_item(segment.ident, ValueNS);
4264                 self.trait_map.insert(expr.id, traits);
4265             }
4266             _ => {
4267                 // Nothing to do.
4268             }
4269         }
4270     }
4271
4272     fn get_traits_containing_item(&mut self, mut ident: Ident, ns: Namespace)
4273                                   -> Vec<TraitCandidate> {
4274         debug!("(getting traits containing item) looking for '{}'", ident.name);
4275
4276         let mut found_traits = Vec::new();
4277         // Look for the current trait.
4278         if let Some((module, _)) = self.current_trait_ref {
4279             if self.resolve_ident_in_module(
4280                 ModuleOrUniformRoot::Module(module),
4281                 ident,
4282                 ns,
4283                 false,
4284                 module.span,
4285             ).is_ok() {
4286                 let def_id = module.def_id().unwrap();
4287                 found_traits.push(TraitCandidate { def_id: def_id, import_id: None });
4288             }
4289         }
4290
4291         ident.span = ident.span.modern();
4292         let mut search_module = self.current_module;
4293         loop {
4294             self.get_traits_in_module_containing_item(ident, ns, search_module, &mut found_traits);
4295             search_module = unwrap_or!(
4296                 self.hygienic_lexical_parent(search_module, &mut ident.span), break
4297             );
4298         }
4299
4300         if let Some(prelude) = self.prelude {
4301             if !search_module.no_implicit_prelude {
4302                 self.get_traits_in_module_containing_item(ident, ns, prelude, &mut found_traits);
4303             }
4304         }
4305
4306         found_traits
4307     }
4308
4309     fn get_traits_in_module_containing_item(&mut self,
4310                                             ident: Ident,
4311                                             ns: Namespace,
4312                                             module: Module<'a>,
4313                                             found_traits: &mut Vec<TraitCandidate>) {
4314         assert!(ns == TypeNS || ns == ValueNS);
4315         let mut traits = module.traits.borrow_mut();
4316         if traits.is_none() {
4317             let mut collected_traits = Vec::new();
4318             module.for_each_child(|name, ns, binding| {
4319                 if ns != TypeNS { return }
4320                 if let Def::Trait(_) = binding.def() {
4321                     collected_traits.push((name, binding));
4322                 }
4323             });
4324             *traits = Some(collected_traits.into_boxed_slice());
4325         }
4326
4327         for &(trait_name, binding) in traits.as_ref().unwrap().iter() {
4328             let module = binding.module().unwrap();
4329             let mut ident = ident;
4330             if ident.span.glob_adjust(module.expansion, binding.span.ctxt().modern()).is_none() {
4331                 continue
4332             }
4333             if self.resolve_ident_in_module_unadjusted(
4334                 ModuleOrUniformRoot::Module(module),
4335                 ident,
4336                 ns,
4337                 false,
4338                 false,
4339                 module.span,
4340             ).is_ok() {
4341                 let import_id = match binding.kind {
4342                     NameBindingKind::Import { directive, .. } => {
4343                         self.maybe_unused_trait_imports.insert(directive.id);
4344                         self.add_to_glob_map(directive.id, trait_name);
4345                         Some(directive.id)
4346                     }
4347                     _ => None,
4348                 };
4349                 let trait_def_id = module.def_id().unwrap();
4350                 found_traits.push(TraitCandidate { def_id: trait_def_id, import_id: import_id });
4351             }
4352         }
4353     }
4354
4355     fn lookup_import_candidates_from_module<FilterFn>(&mut self,
4356                                           lookup_name: Name,
4357                                           namespace: Namespace,
4358                                           start_module: &'a ModuleData<'a>,
4359                                           crate_name: Ident,
4360                                           filter_fn: FilterFn)
4361                                           -> Vec<ImportSuggestion>
4362         where FilterFn: Fn(Def) -> bool
4363     {
4364         let mut candidates = Vec::new();
4365         let mut seen_modules = FxHashSet::default();
4366         let not_local_module = crate_name != keywords::Crate.ident();
4367         let mut worklist = vec![(start_module, Vec::<ast::PathSegment>::new(), not_local_module)];
4368
4369         while let Some((in_module,
4370                         path_segments,
4371                         in_module_is_extern)) = worklist.pop() {
4372             self.populate_module_if_necessary(in_module);
4373
4374             // We have to visit module children in deterministic order to avoid
4375             // instabilities in reported imports (#43552).
4376             in_module.for_each_child_stable(|ident, ns, name_binding| {
4377                 // avoid imports entirely
4378                 if name_binding.is_import() && !name_binding.is_extern_crate() { return; }
4379                 // avoid non-importable candidates as well
4380                 if !name_binding.is_importable() { return; }
4381
4382                 // collect results based on the filter function
4383                 if ident.name == lookup_name && ns == namespace {
4384                     if filter_fn(name_binding.def()) {
4385                         // create the path
4386                         let mut segms = path_segments.clone();
4387                         if self.session.rust_2018() {
4388                             // crate-local absolute paths start with `crate::` in edition 2018
4389                             // FIXME: may also be stabilized for Rust 2015 (Issues #45477, #44660)
4390                             segms.insert(
4391                                 0, ast::PathSegment::from_ident(crate_name)
4392                             );
4393                         }
4394
4395                         segms.push(ast::PathSegment::from_ident(ident));
4396                         let path = Path {
4397                             span: name_binding.span,
4398                             segments: segms,
4399                         };
4400                         // the entity is accessible in the following cases:
4401                         // 1. if it's defined in the same crate, it's always
4402                         // accessible (since private entities can be made public)
4403                         // 2. if it's defined in another crate, it's accessible
4404                         // only if both the module is public and the entity is
4405                         // declared as public (due to pruning, we don't explore
4406                         // outside crate private modules => no need to check this)
4407                         if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
4408                             candidates.push(ImportSuggestion { path: path });
4409                         }
4410                     }
4411                 }
4412
4413                 // collect submodules to explore
4414                 if let Some(module) = name_binding.module() {
4415                     // form the path
4416                     let mut path_segments = path_segments.clone();
4417                     path_segments.push(ast::PathSegment::from_ident(ident));
4418
4419                     let is_extern_crate_that_also_appears_in_prelude =
4420                         name_binding.is_extern_crate() &&
4421                         self.session.rust_2018();
4422
4423                     let is_visible_to_user =
4424                         !in_module_is_extern || name_binding.vis == ty::Visibility::Public;
4425
4426                     if !is_extern_crate_that_also_appears_in_prelude && is_visible_to_user {
4427                         // add the module to the lookup
4428                         let is_extern = in_module_is_extern || name_binding.is_extern_crate();
4429                         if seen_modules.insert(module.def_id().unwrap()) {
4430                             worklist.push((module, path_segments, is_extern));
4431                         }
4432                     }
4433                 }
4434             })
4435         }
4436
4437         candidates
4438     }
4439
4440     /// When name resolution fails, this method can be used to look up candidate
4441     /// entities with the expected name. It allows filtering them using the
4442     /// supplied predicate (which should be used to only accept the types of
4443     /// definitions expected e.g. traits). The lookup spans across all crates.
4444     ///
4445     /// NOTE: The method does not look into imports, but this is not a problem,
4446     /// since we report the definitions (thus, the de-aliased imports).
4447     fn lookup_import_candidates<FilterFn>(&mut self,
4448                                           lookup_name: Name,
4449                                           namespace: Namespace,
4450                                           filter_fn: FilterFn)
4451                                           -> Vec<ImportSuggestion>
4452         where FilterFn: Fn(Def) -> bool
4453     {
4454         let mut suggestions = self.lookup_import_candidates_from_module(
4455             lookup_name, namespace, self.graph_root, keywords::Crate.ident(), &filter_fn);
4456
4457         if self.session.rust_2018() {
4458             let extern_prelude_names = self.extern_prelude.clone();
4459             for (ident, _) in extern_prelude_names.into_iter() {
4460                 if let Some(crate_id) = self.crate_loader.maybe_process_path_extern(ident.name,
4461                                                                                     ident.span) {
4462                     let crate_root = self.get_module(DefId {
4463                         krate: crate_id,
4464                         index: CRATE_DEF_INDEX,
4465                     });
4466                     self.populate_module_if_necessary(&crate_root);
4467
4468                     suggestions.extend(self.lookup_import_candidates_from_module(
4469                         lookup_name, namespace, crate_root, ident, &filter_fn));
4470                 }
4471             }
4472         }
4473
4474         suggestions
4475     }
4476
4477     fn find_module(&mut self,
4478                    module_def: Def)
4479                    -> Option<(Module<'a>, ImportSuggestion)>
4480     {
4481         let mut result = None;
4482         let mut seen_modules = FxHashSet::default();
4483         let mut worklist = vec![(self.graph_root, Vec::new())];
4484
4485         while let Some((in_module, path_segments)) = worklist.pop() {
4486             // abort if the module is already found
4487             if result.is_some() { break; }
4488
4489             self.populate_module_if_necessary(in_module);
4490
4491             in_module.for_each_child_stable(|ident, _, name_binding| {
4492                 // abort if the module is already found or if name_binding is private external
4493                 if result.is_some() || !name_binding.vis.is_visible_locally() {
4494                     return
4495                 }
4496                 if let Some(module) = name_binding.module() {
4497                     // form the path
4498                     let mut path_segments = path_segments.clone();
4499                     path_segments.push(ast::PathSegment::from_ident(ident));
4500                     if module.def() == Some(module_def) {
4501                         let path = Path {
4502                             span: name_binding.span,
4503                             segments: path_segments,
4504                         };
4505                         result = Some((module, ImportSuggestion { path: path }));
4506                     } else {
4507                         // add the module to the lookup
4508                         if seen_modules.insert(module.def_id().unwrap()) {
4509                             worklist.push((module, path_segments));
4510                         }
4511                     }
4512                 }
4513             });
4514         }
4515
4516         result
4517     }
4518
4519     fn collect_enum_variants(&mut self, enum_def: Def) -> Option<Vec<Path>> {
4520         if let Def::Enum(..) = enum_def {} else {
4521             panic!("Non-enum def passed to collect_enum_variants: {:?}", enum_def)
4522         }
4523
4524         self.find_module(enum_def).map(|(enum_module, enum_import_suggestion)| {
4525             self.populate_module_if_necessary(enum_module);
4526
4527             let mut variants = Vec::new();
4528             enum_module.for_each_child_stable(|ident, _, name_binding| {
4529                 if let Def::Variant(..) = name_binding.def() {
4530                     let mut segms = enum_import_suggestion.path.segments.clone();
4531                     segms.push(ast::PathSegment::from_ident(ident));
4532                     variants.push(Path {
4533                         span: name_binding.span,
4534                         segments: segms,
4535                     });
4536                 }
4537             });
4538             variants
4539         })
4540     }
4541
4542     fn record_def(&mut self, node_id: NodeId, resolution: PathResolution) {
4543         debug!("(recording def) recording {:?} for {}", resolution, node_id);
4544         if let Some(prev_res) = self.def_map.insert(node_id, resolution) {
4545             panic!("path resolved multiple times ({:?} before, {:?} now)", prev_res, resolution);
4546         }
4547     }
4548
4549     fn resolve_visibility(&mut self, vis: &ast::Visibility) -> ty::Visibility {
4550         match vis.node {
4551             ast::VisibilityKind::Public => ty::Visibility::Public,
4552             ast::VisibilityKind::Crate(..) => {
4553                 ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX))
4554             }
4555             ast::VisibilityKind::Inherited => {
4556                 ty::Visibility::Restricted(self.current_module.normal_ancestor_id)
4557             }
4558             ast::VisibilityKind::Restricted { ref path, id, .. } => {
4559                 // Visibilities are resolved as global by default, add starting root segment.
4560                 let segments = path.make_root().iter().chain(path.segments.iter())
4561                     .map(|seg| seg.ident)
4562                     .collect::<Vec<_>>();
4563                 let def = self.smart_resolve_path_fragment(
4564                     id,
4565                     None,
4566                     &segments,
4567                     path.span,
4568                     PathSource::Visibility,
4569                     CrateLint::SimplePath(id),
4570                 ).base_def();
4571                 if def == Def::Err {
4572                     ty::Visibility::Public
4573                 } else {
4574                     let vis = ty::Visibility::Restricted(def.def_id());
4575                     if self.is_accessible(vis) {
4576                         vis
4577                     } else {
4578                         self.session.span_err(path.span, "visibilities can only be restricted \
4579                                                           to ancestor modules");
4580                         ty::Visibility::Public
4581                     }
4582                 }
4583             }
4584         }
4585     }
4586
4587     fn is_accessible(&self, vis: ty::Visibility) -> bool {
4588         vis.is_accessible_from(self.current_module.normal_ancestor_id, self)
4589     }
4590
4591     fn is_accessible_from(&self, vis: ty::Visibility, module: Module<'a>) -> bool {
4592         vis.is_accessible_from(module.normal_ancestor_id, self)
4593     }
4594
4595     fn set_binding_parent_module(&mut self, binding: &'a NameBinding<'a>, module: Module<'a>) {
4596         if let Some(old_module) = self.binding_parent_modules.insert(PtrKey(binding), module) {
4597             if !ptr::eq(module, old_module) {
4598                 span_bug!(binding.span, "parent module is reset for binding");
4599             }
4600         }
4601     }
4602
4603     fn disambiguate_legacy_vs_modern(
4604         &self,
4605         legacy: &'a NameBinding<'a>,
4606         modern: &'a NameBinding<'a>,
4607     ) -> bool {
4608         // Some non-controversial subset of ambiguities "modern macro name" vs "macro_rules"
4609         // is disambiguated to mitigate regressions from macro modularization.
4610         // Scoping for `macro_rules` behaves like scoping for `let` at module level, in general.
4611         match (self.binding_parent_modules.get(&PtrKey(legacy)),
4612                self.binding_parent_modules.get(&PtrKey(modern))) {
4613             (Some(legacy), Some(modern)) =>
4614                 legacy.normal_ancestor_id == modern.normal_ancestor_id &&
4615                 modern.is_ancestor_of(legacy),
4616             _ => false,
4617         }
4618     }
4619
4620     fn report_ambiguity_error(&self, ident: Ident, b1: &NameBinding, b2: &NameBinding) {
4621         let participle = |is_import: bool| if is_import { "imported" } else { "defined" };
4622         let msg1 =
4623             format!("`{}` could refer to the name {} here", ident, participle(b1.is_import()));
4624         let msg2 =
4625             format!("`{}` could also refer to the name {} here", ident, participle(b2.is_import()));
4626         let note = if b1.expansion != Mark::root() {
4627             Some(if let Def::Macro(..) = b1.def() {
4628                 format!("macro-expanded {} do not shadow",
4629                         if b1.is_import() { "macro imports" } else { "macros" })
4630             } else {
4631                 format!("macro-expanded {} do not shadow when used in a macro invocation path",
4632                         if b1.is_import() { "imports" } else { "items" })
4633             })
4634         } else if b1.is_glob_import() {
4635             Some(format!("consider adding an explicit import of `{}` to disambiguate", ident))
4636         } else {
4637             None
4638         };
4639
4640         let mut err = struct_span_err!(self.session, ident.span, E0659, "`{}` is ambiguous", ident);
4641         err.span_label(ident.span, "ambiguous name");
4642         err.span_note(b1.span, &msg1);
4643         match b2.def() {
4644             Def::Macro(..) if b2.span.is_dummy() =>
4645                 err.note(&format!("`{}` is also a builtin macro", ident)),
4646             _ => err.span_note(b2.span, &msg2),
4647         };
4648         if let Some(note) = note {
4649             err.note(&note);
4650         }
4651         err.emit();
4652     }
4653
4654     fn report_errors(&mut self, krate: &Crate) {
4655         self.report_with_use_injections(krate);
4656         let mut reported_spans = FxHashSet::default();
4657
4658         for &(span_use, span_def) in &self.macro_expanded_macro_export_errors {
4659             let msg = "macro-expanded `macro_export` macros from the current crate \
4660                        cannot be referred to by absolute paths";
4661             self.session.buffer_lint_with_diagnostic(
4662                 lint::builtin::MACRO_EXPANDED_MACRO_EXPORTS_ACCESSED_BY_ABSOLUTE_PATHS,
4663                 CRATE_NODE_ID, span_use, msg,
4664                 lint::builtin::BuiltinLintDiagnostics::
4665                     MacroExpandedMacroExportsAccessedByAbsolutePaths(span_def),
4666             );
4667         }
4668
4669         for &AmbiguityError { ident, b1, b2 } in &self.ambiguity_errors {
4670             if reported_spans.insert(ident.span) {
4671                 self.report_ambiguity_error(ident, b1, b2);
4672             }
4673         }
4674
4675         for &PrivacyError(span, name, binding) in &self.privacy_errors {
4676             if !reported_spans.insert(span) { continue }
4677             span_err!(self.session, span, E0603, "{} `{}` is private", binding.descr(), name);
4678         }
4679     }
4680
4681     fn report_with_use_injections(&mut self, krate: &Crate) {
4682         for UseError { mut err, candidates, node_id, better } in self.use_injections.drain(..) {
4683             let (span, found_use) = UsePlacementFinder::check(krate, node_id);
4684             if !candidates.is_empty() {
4685                 show_candidates(&mut err, span, &candidates, better, found_use);
4686             }
4687             err.emit();
4688         }
4689     }
4690
4691     fn report_conflict<'b>(&mut self,
4692                        parent: Module,
4693                        ident: Ident,
4694                        ns: Namespace,
4695                        new_binding: &NameBinding<'b>,
4696                        old_binding: &NameBinding<'b>) {
4697         // Error on the second of two conflicting names
4698         if old_binding.span.lo() > new_binding.span.lo() {
4699             return self.report_conflict(parent, ident, ns, old_binding, new_binding);
4700         }
4701
4702         let container = match parent.kind {
4703             ModuleKind::Def(Def::Mod(_), _) => "module",
4704             ModuleKind::Def(Def::Trait(_), _) => "trait",
4705             ModuleKind::Block(..) => "block",
4706             _ => "enum",
4707         };
4708
4709         let old_noun = match old_binding.is_import() {
4710             true => "import",
4711             false => "definition",
4712         };
4713
4714         let new_participle = match new_binding.is_import() {
4715             true => "imported",
4716             false => "defined",
4717         };
4718
4719         let (name, span) = (ident.name, self.session.source_map().def_span(new_binding.span));
4720
4721         if let Some(s) = self.name_already_seen.get(&name) {
4722             if s == &span {
4723                 return;
4724             }
4725         }
4726
4727         let old_kind = match (ns, old_binding.module()) {
4728             (ValueNS, _) => "value",
4729             (MacroNS, _) => "macro",
4730             (TypeNS, _) if old_binding.is_extern_crate() => "extern crate",
4731             (TypeNS, Some(module)) if module.is_normal() => "module",
4732             (TypeNS, Some(module)) if module.is_trait() => "trait",
4733             (TypeNS, _) => "type",
4734         };
4735
4736         let msg = format!("the name `{}` is defined multiple times", name);
4737
4738         let mut err = match (old_binding.is_extern_crate(), new_binding.is_extern_crate()) {
4739             (true, true) => struct_span_err!(self.session, span, E0259, "{}", msg),
4740             (true, _) | (_, true) => match new_binding.is_import() && old_binding.is_import() {
4741                 true => struct_span_err!(self.session, span, E0254, "{}", msg),
4742                 false => struct_span_err!(self.session, span, E0260, "{}", msg),
4743             },
4744             _ => match (old_binding.is_import(), new_binding.is_import()) {
4745                 (false, false) => struct_span_err!(self.session, span, E0428, "{}", msg),
4746                 (true, true) => struct_span_err!(self.session, span, E0252, "{}", msg),
4747                 _ => struct_span_err!(self.session, span, E0255, "{}", msg),
4748             },
4749         };
4750
4751         err.note(&format!("`{}` must be defined only once in the {} namespace of this {}",
4752                           name,
4753                           ns.descr(),
4754                           container));
4755
4756         err.span_label(span, format!("`{}` re{} here", name, new_participle));
4757         if !old_binding.span.is_dummy() {
4758             err.span_label(self.session.source_map().def_span(old_binding.span),
4759                            format!("previous {} of the {} `{}` here", old_noun, old_kind, name));
4760         }
4761
4762         // See https://github.com/rust-lang/rust/issues/32354
4763         if old_binding.is_import() || new_binding.is_import() {
4764             let binding = if new_binding.is_import() && !new_binding.span.is_dummy() {
4765                 new_binding
4766             } else {
4767                 old_binding
4768             };
4769
4770             let cm = self.session.source_map();
4771             let rename_msg = "you can use `as` to change the binding name of the import";
4772
4773             if let (
4774                 Ok(snippet),
4775                 NameBindingKind::Import { directive, ..},
4776                 _dummy @ false,
4777             ) = (
4778                 cm.span_to_snippet(binding.span),
4779                 binding.kind.clone(),
4780                 binding.span.is_dummy(),
4781             ) {
4782                 let suggested_name = if name.as_str().chars().next().unwrap().is_uppercase() {
4783                     format!("Other{}", name)
4784                 } else {
4785                     format!("other_{}", name)
4786                 };
4787
4788                 err.span_suggestion_with_applicability(
4789                     binding.span,
4790                     &rename_msg,
4791                     match (&directive.subclass, snippet.as_ref()) {
4792                         (ImportDirectiveSubclass::SingleImport { .. }, "self") =>
4793                             format!("self as {}", suggested_name),
4794                         (ImportDirectiveSubclass::SingleImport { source, .. }, _) =>
4795                             format!(
4796                                 "{} as {}{}",
4797                                 &snippet[..((source.span.hi().0 - binding.span.lo().0) as usize)],
4798                                 suggested_name,
4799                                 if snippet.ends_with(";") {
4800                                     ";"
4801                                 } else {
4802                                     ""
4803                                 }
4804                             ),
4805                         (ImportDirectiveSubclass::ExternCrate { source, target, .. }, _) =>
4806                             format!(
4807                                 "extern crate {} as {};",
4808                                 source.unwrap_or(target.name),
4809                                 suggested_name,
4810                             ),
4811                         (_, _) => unreachable!(),
4812                     },
4813                     Applicability::MaybeIncorrect,
4814                 );
4815             } else {
4816                 err.span_label(binding.span, rename_msg);
4817             }
4818         }
4819
4820         err.emit();
4821         self.name_already_seen.insert(name, span);
4822     }
4823
4824     fn extern_prelude_get(&mut self, ident: Ident, speculative: bool, skip_feature_gate: bool)
4825                           -> Option<&'a NameBinding<'a>> {
4826         self.extern_prelude.get(&ident.modern()).cloned().and_then(|entry| {
4827             if let Some(binding) = entry.extern_crate_item {
4828                 if !speculative && !skip_feature_gate && entry.introduced_by_item &&
4829                    !self.session.features_untracked().extern_crate_item_prelude {
4830                     emit_feature_err(&self.session.parse_sess, "extern_crate_item_prelude",
4831                                      ident.span, GateIssue::Language,
4832                                      "use of extern prelude names introduced \
4833                                       with `extern crate` items is unstable");
4834                 }
4835                 Some(binding)
4836             } else {
4837                 let crate_id = if !speculative {
4838                     self.crate_loader.process_path_extern(ident.name, ident.span)
4839                 } else if let Some(crate_id) =
4840                         self.crate_loader.maybe_process_path_extern(ident.name, ident.span) {
4841                     crate_id
4842                 } else {
4843                     return None;
4844                 };
4845                 let crate_root = self.get_module(DefId { krate: crate_id, index: CRATE_DEF_INDEX });
4846                 self.populate_module_if_necessary(&crate_root);
4847                 Some((crate_root, ty::Visibility::Public, ident.span, Mark::root())
4848                     .to_name_binding(self.arenas))
4849             }
4850         })
4851     }
4852 }
4853
4854 fn is_self_type(path: &[Ident], namespace: Namespace) -> bool {
4855     namespace == TypeNS && path.len() == 1 && path[0].name == keywords::SelfType.name()
4856 }
4857
4858 fn is_self_value(path: &[Ident], namespace: Namespace) -> bool {
4859     namespace == ValueNS && path.len() == 1 && path[0].name == keywords::SelfValue.name()
4860 }
4861
4862 fn names_to_string(idents: &[Ident]) -> String {
4863     let mut result = String::new();
4864     for (i, ident) in idents.iter()
4865                             .filter(|ident| ident.name != keywords::CrateRoot.name())
4866                             .enumerate() {
4867         if i > 0 {
4868             result.push_str("::");
4869         }
4870         result.push_str(&ident.as_str());
4871     }
4872     result
4873 }
4874
4875 fn path_names_to_string(path: &Path) -> String {
4876     names_to_string(&path.segments.iter()
4877                         .map(|seg| seg.ident)
4878                         .collect::<Vec<_>>())
4879 }
4880
4881 /// Get the path for an enum and the variant from an `ImportSuggestion` for an enum variant.
4882 fn import_candidate_to_paths(suggestion: &ImportSuggestion) -> (Span, String, String) {
4883     let variant_path = &suggestion.path;
4884     let variant_path_string = path_names_to_string(variant_path);
4885
4886     let path_len = suggestion.path.segments.len();
4887     let enum_path = ast::Path {
4888         span: suggestion.path.span,
4889         segments: suggestion.path.segments[0..path_len - 1].to_vec(),
4890     };
4891     let enum_path_string = path_names_to_string(&enum_path);
4892
4893     (suggestion.path.span, variant_path_string, enum_path_string)
4894 }
4895
4896
4897 /// When an entity with a given name is not available in scope, we search for
4898 /// entities with that name in all crates. This method allows outputting the
4899 /// results of this search in a programmer-friendly way
4900 fn show_candidates(err: &mut DiagnosticBuilder,
4901                    // This is `None` if all placement locations are inside expansions
4902                    span: Option<Span>,
4903                    candidates: &[ImportSuggestion],
4904                    better: bool,
4905                    found_use: bool) {
4906
4907     // we want consistent results across executions, but candidates are produced
4908     // by iterating through a hash map, so make sure they are ordered:
4909     let mut path_strings: Vec<_> =
4910         candidates.into_iter().map(|c| path_names_to_string(&c.path)).collect();
4911     path_strings.sort();
4912
4913     let better = if better { "better " } else { "" };
4914     let msg_diff = match path_strings.len() {
4915         1 => " is found in another module, you can import it",
4916         _ => "s are found in other modules, you can import them",
4917     };
4918     let msg = format!("possible {}candidate{} into scope", better, msg_diff);
4919
4920     if let Some(span) = span {
4921         for candidate in &mut path_strings {
4922             // produce an additional newline to separate the new use statement
4923             // from the directly following item.
4924             let additional_newline = if found_use {
4925                 ""
4926             } else {
4927                 "\n"
4928             };
4929             *candidate = format!("use {};\n{}", candidate, additional_newline);
4930         }
4931
4932         err.span_suggestions_with_applicability(
4933             span,
4934             &msg,
4935             path_strings,
4936             Applicability::Unspecified,
4937         );
4938     } else {
4939         let mut msg = msg;
4940         msg.push(':');
4941         for candidate in path_strings {
4942             msg.push('\n');
4943             msg.push_str(&candidate);
4944         }
4945     }
4946 }
4947
4948 /// A somewhat inefficient routine to obtain the name of a module.
4949 fn module_to_string(module: Module) -> Option<String> {
4950     let mut names = Vec::new();
4951
4952     fn collect_mod(names: &mut Vec<Ident>, module: Module) {
4953         if let ModuleKind::Def(_, name) = module.kind {
4954             if let Some(parent) = module.parent {
4955                 names.push(Ident::with_empty_ctxt(name));
4956                 collect_mod(names, parent);
4957             }
4958         } else {
4959             // danger, shouldn't be ident?
4960             names.push(Ident::from_str("<opaque>"));
4961             collect_mod(names, module.parent.unwrap());
4962         }
4963     }
4964     collect_mod(&mut names, module);
4965
4966     if names.is_empty() {
4967         return None;
4968     }
4969     Some(names_to_string(&names.into_iter()
4970                         .rev()
4971                         .collect::<Vec<_>>()))
4972 }
4973
4974 fn err_path_resolution() -> PathResolution {
4975     PathResolution::new(Def::Err)
4976 }
4977
4978 #[derive(PartialEq,Copy, Clone)]
4979 pub enum MakeGlobMap {
4980     Yes,
4981     No,
4982 }
4983
4984 #[derive(Copy, Clone, Debug)]
4985 enum CrateLint {
4986     /// Do not issue the lint
4987     No,
4988
4989     /// This lint applies to some random path like `impl ::foo::Bar`
4990     /// or whatever. In this case, we can take the span of that path.
4991     SimplePath(NodeId),
4992
4993     /// This lint comes from a `use` statement. In this case, what we
4994     /// care about really is the *root* `use` statement; e.g., if we
4995     /// have nested things like `use a::{b, c}`, we care about the
4996     /// `use a` part.
4997     UsePath { root_id: NodeId, root_span: Span },
4998
4999     /// This is the "trait item" from a fully qualified path. For example,
5000     /// we might be resolving  `X::Y::Z` from a path like `<T as X::Y>::Z`.
5001     /// The `path_span` is the span of the to the trait itself (`X::Y`).
5002     QPathTrait { qpath_id: NodeId, qpath_span: Span },
5003 }
5004
5005 impl CrateLint {
5006     fn node_id(&self) -> Option<NodeId> {
5007         match *self {
5008             CrateLint::No => None,
5009             CrateLint::SimplePath(id) |
5010             CrateLint::UsePath { root_id: id, .. } |
5011             CrateLint::QPathTrait { qpath_id: id, .. } => Some(id),
5012         }
5013     }
5014 }
5015
5016 __build_diagnostic_array! { librustc_resolve, DIAGNOSTICS }