]> git.lizzy.rs Git - rust.git/blob - src/librustc_resolve/lib.rs
Rollup merge of #53113 - kpp:more_docs_for_cow, r=GuillaumeGomez
[rust.git] / src / librustc_resolve / lib.rs
1 // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 #![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
12        html_favicon_url = "https://doc.rust-lang.org/favicon.ico",
13        html_root_url = "https://doc.rust-lang.org/nightly/")]
14
15 #![feature(crate_visibility_modifier)]
16 #![cfg_attr(not(stage0), feature(nll))]
17 #![cfg_attr(not(stage0), feature(infer_outlives_requirements))]
18 #![feature(rustc_diagnostic_macros)]
19 #![feature(slice_sort_by_cached_key)]
20
21 #[macro_use]
22 extern crate log;
23 #[macro_use]
24 extern crate syntax;
25 extern crate syntax_pos;
26 extern crate rustc_errors as errors;
27 extern crate arena;
28 #[macro_use]
29 extern crate rustc;
30 extern crate rustc_data_structures;
31 extern crate rustc_metadata;
32
33 pub use rustc::hir::def::{Namespace, PerNS};
34
35 use self::TypeParameters::*;
36 use self::RibKind::*;
37
38 use rustc::hir::map::{Definitions, DefCollector};
39 use rustc::hir::{self, PrimTy, Bool, Char, Float, Int, Uint, Str};
40 use rustc::middle::cstore::CrateStore;
41 use rustc::session::Session;
42 use rustc::lint;
43 use rustc::hir::def::*;
44 use rustc::hir::def::Namespace::*;
45 use rustc::hir::def_id::{CRATE_DEF_INDEX, LOCAL_CRATE, DefId};
46 use rustc::ty;
47 use rustc::hir::{Freevar, FreevarMap, TraitCandidate, TraitMap, GlobMap};
48 use rustc::util::nodemap::{NodeMap, NodeSet, FxHashMap, FxHashSet, DefIdMap};
49
50 use rustc_metadata::creader::CrateLoader;
51 use rustc_metadata::cstore::CStore;
52
53 use syntax::source_map::SourceMap;
54 use syntax::ext::hygiene::{Mark, Transparency, SyntaxContext};
55 use syntax::ast::{self, Name, NodeId, Ident, FloatTy, IntTy, UintTy};
56 use syntax::ext::base::SyntaxExtension;
57 use syntax::ext::base::Determinacy::{self, Determined, Undetermined};
58 use syntax::ext::base::MacroKind;
59 use syntax::symbol::{Symbol, keywords};
60 use syntax::util::lev_distance::find_best_match_for_name;
61
62 use syntax::visit::{self, FnKind, Visitor};
63 use syntax::attr;
64 use syntax::ast::{CRATE_NODE_ID, Arm, IsAsync, BindingMode, Block, Crate, Expr, ExprKind};
65 use syntax::ast::{FnDecl, ForeignItem, ForeignItemKind, GenericParamKind, Generics};
66 use syntax::ast::{Item, ItemKind, ImplItem, ImplItemKind};
67 use syntax::ast::{Label, Local, Mutability, Pat, PatKind, Path};
68 use syntax::ast::{QSelf, TraitItemKind, TraitRef, Ty, TyKind};
69 use syntax::feature_gate::{feature_err, GateIssue};
70 use syntax::ptr::P;
71
72 use syntax_pos::{Span, DUMMY_SP, MultiSpan};
73 use errors::{DiagnosticBuilder, DiagnosticId};
74
75 use std::cell::{Cell, RefCell};
76 use std::cmp;
77 use std::collections::BTreeSet;
78 use std::fmt;
79 use std::iter;
80 use std::mem::replace;
81 use rustc_data_structures::sync::Lrc;
82
83 use resolve_imports::{ImportDirective, ImportDirectiveSubclass, NameResolution, ImportResolver};
84 use macros::{InvocationData, LegacyBinding};
85
86 // NB: This module needs to be declared first so diagnostics are
87 // registered before they are used.
88 mod diagnostics;
89
90 mod macros;
91 mod check_unused;
92 mod build_reduced_graph;
93 mod resolve_imports;
94
95 fn is_known_tool(name: Name) -> bool {
96     ["clippy", "rustfmt"].contains(&&*name.as_str())
97 }
98
99 /// A free importable items suggested in case of resolution failure.
100 struct ImportSuggestion {
101     path: Path,
102 }
103
104 /// A field or associated item from self type suggested in case of resolution failure.
105 enum AssocSuggestion {
106     Field,
107     MethodWithSelf,
108     AssocItem,
109 }
110
111 #[derive(Eq)]
112 struct BindingError {
113     name: Name,
114     origin: BTreeSet<Span>,
115     target: BTreeSet<Span>,
116 }
117
118 impl PartialOrd for BindingError {
119     fn partial_cmp(&self, other: &BindingError) -> Option<cmp::Ordering> {
120         Some(self.cmp(other))
121     }
122 }
123
124 impl PartialEq for BindingError {
125     fn eq(&self, other: &BindingError) -> bool {
126         self.name == other.name
127     }
128 }
129
130 impl Ord for BindingError {
131     fn cmp(&self, other: &BindingError) -> cmp::Ordering {
132         self.name.cmp(&other.name)
133     }
134 }
135
136 enum ResolutionError<'a> {
137     /// error E0401: can't use type parameters from outer function
138     TypeParametersFromOuterFunction(Def),
139     /// error E0403: the name is already used for a type parameter in this type parameter list
140     NameAlreadyUsedInTypeParameterList(Name, &'a Span),
141     /// error E0407: method is not a member of trait
142     MethodNotMemberOfTrait(Name, &'a str),
143     /// error E0437: type is not a member of trait
144     TypeNotMemberOfTrait(Name, &'a str),
145     /// error E0438: const is not a member of trait
146     ConstNotMemberOfTrait(Name, &'a str),
147     /// error E0408: variable `{}` is not bound in all patterns
148     VariableNotBoundInPattern(&'a BindingError),
149     /// error E0409: variable `{}` is bound in inconsistent ways within the same match arm
150     VariableBoundWithDifferentMode(Name, Span),
151     /// error E0415: identifier is bound more than once in this parameter list
152     IdentifierBoundMoreThanOnceInParameterList(&'a str),
153     /// error E0416: identifier is bound more than once in the same pattern
154     IdentifierBoundMoreThanOnceInSamePattern(&'a str),
155     /// error E0426: use of undeclared label
156     UndeclaredLabel(&'a str, Option<Name>),
157     /// error E0429: `self` imports are only allowed within a { } list
158     SelfImportsOnlyAllowedWithin,
159     /// error E0430: `self` import can only appear once in the list
160     SelfImportCanOnlyAppearOnceInTheList,
161     /// error E0431: `self` import can only appear in an import list with a non-empty prefix
162     SelfImportOnlyInImportListWithNonEmptyPrefix,
163     /// error E0432: unresolved import
164     UnresolvedImport(Option<(Span, &'a str, &'a str)>),
165     /// error E0433: failed to resolve
166     FailedToResolve(&'a str),
167     /// error E0434: can't capture dynamic environment in a fn item
168     CannotCaptureDynamicEnvironmentInFnItem,
169     /// error E0435: attempt to use a non-constant value in a constant
170     AttemptToUseNonConstantValueInConstant,
171     /// error E0530: X bindings cannot shadow Ys
172     BindingShadowsSomethingUnacceptable(&'a str, Name, &'a NameBinding<'a>),
173     /// error E0128: type parameters with a default cannot use forward declared identifiers
174     ForwardDeclaredTyParam,
175 }
176
177 /// Combines an error with provided span and emits it
178 ///
179 /// This takes the error provided, combines it with the span and any additional spans inside the
180 /// error and emits it.
181 fn resolve_error<'sess, 'a>(resolver: &'sess Resolver,
182                             span: Span,
183                             resolution_error: ResolutionError<'a>) {
184     resolve_struct_error(resolver, span, resolution_error).emit();
185 }
186
187 fn resolve_struct_error<'sess, 'a>(resolver: &'sess Resolver,
188                                    span: Span,
189                                    resolution_error: ResolutionError<'a>)
190                                    -> DiagnosticBuilder<'sess> {
191     match resolution_error {
192         ResolutionError::TypeParametersFromOuterFunction(outer_def) => {
193             let mut err = struct_span_err!(resolver.session,
194                                            span,
195                                            E0401,
196                                            "can't use type parameters from outer function");
197             err.span_label(span, "use of type variable from outer function");
198
199             let cm = resolver.session.source_map();
200             match outer_def {
201                 Def::SelfTy(_, maybe_impl_defid) => {
202                     if let Some(impl_span) = maybe_impl_defid.map_or(None,
203                             |def_id| resolver.definitions.opt_span(def_id)) {
204                         err.span_label(reduce_impl_span_to_impl_keyword(cm, impl_span),
205                                     "`Self` type implicitly declared here, on the `impl`");
206                     }
207                 },
208                 Def::TyParam(typaram_defid) => {
209                     if let Some(typaram_span) = resolver.definitions.opt_span(typaram_defid) {
210                         err.span_label(typaram_span, "type variable from outer function");
211                     }
212                 },
213                 _ => {
214                     bug!("TypeParametersFromOuterFunction should only be used with Def::SelfTy or \
215                          Def::TyParam")
216                 }
217             }
218
219             // Try to retrieve the span of the function signature and generate a new message with
220             // a local type parameter
221             let sugg_msg = "try using a local type parameter instead";
222             if let Some((sugg_span, new_snippet)) = cm.generate_local_type_param_snippet(span) {
223                 // Suggest the modification to the user
224                 err.span_suggestion(sugg_span,
225                                     sugg_msg,
226                                     new_snippet);
227             } else if let Some(sp) = cm.generate_fn_name_span(span) {
228                 err.span_label(sp, "try adding a local type parameter in this method instead");
229             } else {
230                 err.help("try using a local type parameter instead");
231             }
232
233             err
234         }
235         ResolutionError::NameAlreadyUsedInTypeParameterList(name, first_use_span) => {
236              let mut err = struct_span_err!(resolver.session,
237                                             span,
238                                             E0403,
239                                             "the name `{}` is already used for a type parameter \
240                                             in this type parameter list",
241                                             name);
242              err.span_label(span, "already used");
243              err.span_label(first_use_span.clone(), format!("first use of `{}`", name));
244              err
245         }
246         ResolutionError::MethodNotMemberOfTrait(method, trait_) => {
247             let mut err = struct_span_err!(resolver.session,
248                                            span,
249                                            E0407,
250                                            "method `{}` is not a member of trait `{}`",
251                                            method,
252                                            trait_);
253             err.span_label(span, format!("not a member of trait `{}`", trait_));
254             err
255         }
256         ResolutionError::TypeNotMemberOfTrait(type_, trait_) => {
257             let mut err = struct_span_err!(resolver.session,
258                              span,
259                              E0437,
260                              "type `{}` is not a member of trait `{}`",
261                              type_,
262                              trait_);
263             err.span_label(span, format!("not a member of trait `{}`", trait_));
264             err
265         }
266         ResolutionError::ConstNotMemberOfTrait(const_, trait_) => {
267             let mut err = struct_span_err!(resolver.session,
268                              span,
269                              E0438,
270                              "const `{}` is not a member of trait `{}`",
271                              const_,
272                              trait_);
273             err.span_label(span, format!("not a member of trait `{}`", trait_));
274             err
275         }
276         ResolutionError::VariableNotBoundInPattern(binding_error) => {
277             let target_sp = binding_error.target.iter().cloned().collect::<Vec<_>>();
278             let msp = MultiSpan::from_spans(target_sp.clone());
279             let msg = format!("variable `{}` is not bound in all patterns", binding_error.name);
280             let mut err = resolver.session.struct_span_err_with_code(
281                 msp,
282                 &msg,
283                 DiagnosticId::Error("E0408".into()),
284             );
285             for sp in target_sp {
286                 err.span_label(sp, format!("pattern doesn't bind `{}`", binding_error.name));
287             }
288             let origin_sp = binding_error.origin.iter().cloned();
289             for sp in origin_sp {
290                 err.span_label(sp, "variable not in all patterns");
291             }
292             err
293         }
294         ResolutionError::VariableBoundWithDifferentMode(variable_name,
295                                                         first_binding_span) => {
296             let mut err = struct_span_err!(resolver.session,
297                              span,
298                              E0409,
299                              "variable `{}` is bound in inconsistent \
300                              ways within the same match arm",
301                              variable_name);
302             err.span_label(span, "bound in different ways");
303             err.span_label(first_binding_span, "first binding");
304             err
305         }
306         ResolutionError::IdentifierBoundMoreThanOnceInParameterList(identifier) => {
307             let mut err = struct_span_err!(resolver.session,
308                              span,
309                              E0415,
310                              "identifier `{}` is bound more than once in this parameter list",
311                              identifier);
312             err.span_label(span, "used as parameter more than once");
313             err
314         }
315         ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(identifier) => {
316             let mut err = struct_span_err!(resolver.session,
317                              span,
318                              E0416,
319                              "identifier `{}` is bound more than once in the same pattern",
320                              identifier);
321             err.span_label(span, "used in a pattern more than once");
322             err
323         }
324         ResolutionError::UndeclaredLabel(name, lev_candidate) => {
325             let mut err = struct_span_err!(resolver.session,
326                                            span,
327                                            E0426,
328                                            "use of undeclared label `{}`",
329                                            name);
330             if let Some(lev_candidate) = lev_candidate {
331                 err.span_label(span, format!("did you mean `{}`?", lev_candidate));
332             } else {
333                 err.span_label(span, format!("undeclared label `{}`", name));
334             }
335             err
336         }
337         ResolutionError::SelfImportsOnlyAllowedWithin => {
338             struct_span_err!(resolver.session,
339                              span,
340                              E0429,
341                              "{}",
342                              "`self` imports are only allowed within a { } list")
343         }
344         ResolutionError::SelfImportCanOnlyAppearOnceInTheList => {
345             let mut err = struct_span_err!(resolver.session, span, E0430,
346                                            "`self` import can only appear once in an import list");
347             err.span_label(span, "can only appear once in an import list");
348             err
349         }
350         ResolutionError::SelfImportOnlyInImportListWithNonEmptyPrefix => {
351             let mut err = struct_span_err!(resolver.session, span, E0431,
352                                            "`self` import can only appear in an import list with \
353                                             a non-empty prefix");
354             err.span_label(span, "can only appear in an import list with a non-empty prefix");
355             err
356         }
357         ResolutionError::UnresolvedImport(name) => {
358             let (span, msg) = match name {
359                 Some((sp, n, _)) => (sp, format!("unresolved import `{}`", n)),
360                 None => (span, "unresolved import".to_owned()),
361             };
362             let mut err = struct_span_err!(resolver.session, span, E0432, "{}", msg);
363             if let Some((_, _, p)) = name {
364                 err.span_label(span, p);
365             }
366             err
367         }
368         ResolutionError::FailedToResolve(msg) => {
369             let mut err = struct_span_err!(resolver.session, span, E0433,
370                                            "failed to resolve. {}", msg);
371             err.span_label(span, msg);
372             err
373         }
374         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem => {
375             let mut err = struct_span_err!(resolver.session,
376                                            span,
377                                            E0434,
378                                            "{}",
379                                            "can't capture dynamic environment in a fn item");
380             err.help("use the `|| { ... }` closure form instead");
381             err
382         }
383         ResolutionError::AttemptToUseNonConstantValueInConstant => {
384             let mut err = struct_span_err!(resolver.session, span, E0435,
385                                            "attempt to use a non-constant value in a constant");
386             err.span_label(span, "non-constant value");
387             err
388         }
389         ResolutionError::BindingShadowsSomethingUnacceptable(what_binding, name, binding) => {
390             let shadows_what = PathResolution::new(binding.def()).kind_name();
391             let mut err = struct_span_err!(resolver.session,
392                                            span,
393                                            E0530,
394                                            "{}s cannot shadow {}s", what_binding, shadows_what);
395             err.span_label(span, format!("cannot be named the same as a {}", shadows_what));
396             let participle = if binding.is_import() { "imported" } else { "defined" };
397             let msg = format!("a {} `{}` is {} here", shadows_what, name, participle);
398             err.span_label(binding.span, msg);
399             err
400         }
401         ResolutionError::ForwardDeclaredTyParam => {
402             let mut err = struct_span_err!(resolver.session, span, E0128,
403                                            "type parameters with a default cannot use \
404                                             forward declared identifiers");
405             err.span_label(
406                 span, "defaulted type parameters cannot be forward declared".to_string());
407             err
408         }
409     }
410 }
411
412 /// Adjust the impl span so that just the `impl` keyword is taken by removing
413 /// everything after `<` (`"impl<T> Iterator for A<T> {}" -> "impl"`) and
414 /// everything after the first whitespace (`"impl Iterator for A" -> "impl"`)
415 ///
416 /// Attention: The method used is very fragile since it essentially duplicates the work of the
417 /// parser. If you need to use this function or something similar, please consider updating the
418 /// source_map functions and this function to something more robust.
419 fn reduce_impl_span_to_impl_keyword(cm: &SourceMap, impl_span: Span) -> Span {
420     let impl_span = cm.span_until_char(impl_span, '<');
421     let impl_span = cm.span_until_whitespace(impl_span);
422     impl_span
423 }
424
425 #[derive(Copy, Clone, Debug)]
426 struct BindingInfo {
427     span: Span,
428     binding_mode: BindingMode,
429 }
430
431 /// Map from the name in a pattern to its binding mode.
432 type BindingMap = FxHashMap<Ident, BindingInfo>;
433
434 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
435 enum PatternSource {
436     Match,
437     IfLet,
438     WhileLet,
439     Let,
440     For,
441     FnParam,
442 }
443
444 impl PatternSource {
445     fn descr(self) -> &'static str {
446         match self {
447             PatternSource::Match => "match binding",
448             PatternSource::IfLet => "if let binding",
449             PatternSource::WhileLet => "while let binding",
450             PatternSource::Let => "let binding",
451             PatternSource::For => "for binding",
452             PatternSource::FnParam => "function parameter",
453         }
454     }
455 }
456
457 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
458 enum AliasPossibility {
459     No,
460     Maybe,
461 }
462
463 #[derive(Copy, Clone, Debug)]
464 enum PathSource<'a> {
465     // Type paths `Path`.
466     Type,
467     // Trait paths in bounds or impls.
468     Trait(AliasPossibility),
469     // Expression paths `path`, with optional parent context.
470     Expr(Option<&'a Expr>),
471     // Paths in path patterns `Path`.
472     Pat,
473     // Paths in struct expressions and patterns `Path { .. }`.
474     Struct,
475     // Paths in tuple struct patterns `Path(..)`.
476     TupleStruct,
477     // `m::A::B` in `<T as m::A>::B::C`.
478     TraitItem(Namespace),
479     // Path in `pub(path)`
480     Visibility,
481     // Path in `use a::b::{...};`
482     ImportPrefix,
483 }
484
485 impl<'a> PathSource<'a> {
486     fn namespace(self) -> Namespace {
487         match self {
488             PathSource::Type | PathSource::Trait(_) | PathSource::Struct |
489             PathSource::Visibility | PathSource::ImportPrefix => TypeNS,
490             PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct => ValueNS,
491             PathSource::TraitItem(ns) => ns,
492         }
493     }
494
495     fn global_by_default(self) -> bool {
496         match self {
497             PathSource::Visibility | PathSource::ImportPrefix => true,
498             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
499             PathSource::Struct | PathSource::TupleStruct |
500             PathSource::Trait(_) | PathSource::TraitItem(..) => false,
501         }
502     }
503
504     fn defer_to_typeck(self) -> bool {
505         match self {
506             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
507             PathSource::Struct | PathSource::TupleStruct => true,
508             PathSource::Trait(_) | PathSource::TraitItem(..) |
509             PathSource::Visibility | PathSource::ImportPrefix => false,
510         }
511     }
512
513     fn descr_expected(self) -> &'static str {
514         match self {
515             PathSource::Type => "type",
516             PathSource::Trait(_) => "trait",
517             PathSource::Pat => "unit struct/variant or constant",
518             PathSource::Struct => "struct, variant or union type",
519             PathSource::TupleStruct => "tuple struct/variant",
520             PathSource::Visibility => "module",
521             PathSource::ImportPrefix => "module or enum",
522             PathSource::TraitItem(ns) => match ns {
523                 TypeNS => "associated type",
524                 ValueNS => "method or associated constant",
525                 MacroNS => bug!("associated macro"),
526             },
527             PathSource::Expr(parent) => match parent.map(|p| &p.node) {
528                 // "function" here means "anything callable" rather than `Def::Fn`,
529                 // this is not precise but usually more helpful than just "value".
530                 Some(&ExprKind::Call(..)) => "function",
531                 _ => "value",
532             },
533         }
534     }
535
536     fn is_expected(self, def: Def) -> bool {
537         match self {
538             PathSource::Type => match def {
539                 Def::Struct(..) | Def::Union(..) | Def::Enum(..) |
540                 Def::Trait(..) | Def::TyAlias(..) | Def::AssociatedTy(..) |
541                 Def::PrimTy(..) | Def::TyParam(..) | Def::SelfTy(..) |
542                 Def::Existential(..) |
543                 Def::ForeignTy(..) => true,
544                 _ => false,
545             },
546             PathSource::Trait(AliasPossibility::No) => match def {
547                 Def::Trait(..) => true,
548                 _ => false,
549             },
550             PathSource::Trait(AliasPossibility::Maybe) => match def {
551                 Def::Trait(..) => true,
552                 Def::TraitAlias(..) => true,
553                 _ => false,
554             },
555             PathSource::Expr(..) => match def {
556                 Def::StructCtor(_, CtorKind::Const) | Def::StructCtor(_, CtorKind::Fn) |
557                 Def::VariantCtor(_, CtorKind::Const) | Def::VariantCtor(_, CtorKind::Fn) |
558                 Def::Const(..) | Def::Static(..) | Def::Local(..) | Def::Upvar(..) |
559                 Def::Fn(..) | Def::Method(..) | Def::AssociatedConst(..) => true,
560                 _ => false,
561             },
562             PathSource::Pat => match def {
563                 Def::StructCtor(_, CtorKind::Const) |
564                 Def::VariantCtor(_, CtorKind::Const) |
565                 Def::Const(..) | Def::AssociatedConst(..) => true,
566                 _ => false,
567             },
568             PathSource::TupleStruct => match def {
569                 Def::StructCtor(_, CtorKind::Fn) | Def::VariantCtor(_, CtorKind::Fn) => true,
570                 _ => false,
571             },
572             PathSource::Struct => match def {
573                 Def::Struct(..) | Def::Union(..) | Def::Variant(..) |
574                 Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => true,
575                 _ => false,
576             },
577             PathSource::TraitItem(ns) => match def {
578                 Def::AssociatedConst(..) | Def::Method(..) if ns == ValueNS => true,
579                 Def::AssociatedTy(..) if ns == TypeNS => true,
580                 _ => false,
581             },
582             PathSource::ImportPrefix => match def {
583                 Def::Mod(..) | Def::Enum(..) => true,
584                 _ => false,
585             },
586             PathSource::Visibility => match def {
587                 Def::Mod(..) => true,
588                 _ => false,
589             },
590         }
591     }
592
593     fn error_code(self, has_unexpected_resolution: bool) -> &'static str {
594         __diagnostic_used!(E0404);
595         __diagnostic_used!(E0405);
596         __diagnostic_used!(E0412);
597         __diagnostic_used!(E0422);
598         __diagnostic_used!(E0423);
599         __diagnostic_used!(E0425);
600         __diagnostic_used!(E0531);
601         __diagnostic_used!(E0532);
602         __diagnostic_used!(E0573);
603         __diagnostic_used!(E0574);
604         __diagnostic_used!(E0575);
605         __diagnostic_used!(E0576);
606         __diagnostic_used!(E0577);
607         __diagnostic_used!(E0578);
608         match (self, has_unexpected_resolution) {
609             (PathSource::Trait(_), true) => "E0404",
610             (PathSource::Trait(_), false) => "E0405",
611             (PathSource::Type, true) => "E0573",
612             (PathSource::Type, false) => "E0412",
613             (PathSource::Struct, true) => "E0574",
614             (PathSource::Struct, false) => "E0422",
615             (PathSource::Expr(..), true) => "E0423",
616             (PathSource::Expr(..), false) => "E0425",
617             (PathSource::Pat, true) | (PathSource::TupleStruct, true) => "E0532",
618             (PathSource::Pat, false) | (PathSource::TupleStruct, false) => "E0531",
619             (PathSource::TraitItem(..), true) => "E0575",
620             (PathSource::TraitItem(..), false) => "E0576",
621             (PathSource::Visibility, true) | (PathSource::ImportPrefix, true) => "E0577",
622             (PathSource::Visibility, false) | (PathSource::ImportPrefix, false) => "E0578",
623         }
624     }
625 }
626
627 struct UsePlacementFinder {
628     target_module: NodeId,
629     span: Option<Span>,
630     found_use: bool,
631 }
632
633 impl UsePlacementFinder {
634     fn check(krate: &Crate, target_module: NodeId) -> (Option<Span>, bool) {
635         let mut finder = UsePlacementFinder {
636             target_module,
637             span: None,
638             found_use: false,
639         };
640         visit::walk_crate(&mut finder, krate);
641         (finder.span, finder.found_use)
642     }
643 }
644
645 impl<'tcx> Visitor<'tcx> for UsePlacementFinder {
646     fn visit_mod(
647         &mut self,
648         module: &'tcx ast::Mod,
649         _: Span,
650         _: &[ast::Attribute],
651         node_id: NodeId,
652     ) {
653         if self.span.is_some() {
654             return;
655         }
656         if node_id != self.target_module {
657             visit::walk_mod(self, module);
658             return;
659         }
660         // find a use statement
661         for item in &module.items {
662             match item.node {
663                 ItemKind::Use(..) => {
664                     // don't suggest placing a use before the prelude
665                     // import or other generated ones
666                     if item.span.ctxt().outer().expn_info().is_none() {
667                         self.span = Some(item.span.shrink_to_lo());
668                         self.found_use = true;
669                         return;
670                     }
671                 },
672                 // don't place use before extern crate
673                 ItemKind::ExternCrate(_) => {}
674                 // but place them before the first other item
675                 _ => if self.span.map_or(true, |span| item.span < span ) {
676                     if item.span.ctxt().outer().expn_info().is_none() {
677                         // don't insert between attributes and an item
678                         if item.attrs.is_empty() {
679                             self.span = Some(item.span.shrink_to_lo());
680                         } else {
681                             // find the first attribute on the item
682                             for attr in &item.attrs {
683                                 if self.span.map_or(true, |span| attr.span < span) {
684                                     self.span = Some(attr.span.shrink_to_lo());
685                                 }
686                             }
687                         }
688                     }
689                 },
690             }
691         }
692     }
693 }
694
695 /// This thing walks the whole crate in DFS manner, visiting each item, resolving names as it goes.
696 impl<'a, 'tcx, 'cl> Visitor<'tcx> for Resolver<'a, 'cl> {
697     fn visit_item(&mut self, item: &'tcx Item) {
698         self.resolve_item(item);
699     }
700     fn visit_arm(&mut self, arm: &'tcx Arm) {
701         self.resolve_arm(arm);
702     }
703     fn visit_block(&mut self, block: &'tcx Block) {
704         self.resolve_block(block);
705     }
706     fn visit_anon_const(&mut self, constant: &'tcx ast::AnonConst) {
707         self.with_constant_rib(|this| {
708             visit::walk_anon_const(this, constant);
709         });
710     }
711     fn visit_expr(&mut self, expr: &'tcx Expr) {
712         self.resolve_expr(expr, None);
713     }
714     fn visit_local(&mut self, local: &'tcx Local) {
715         self.resolve_local(local);
716     }
717     fn visit_ty(&mut self, ty: &'tcx Ty) {
718         match ty.node {
719             TyKind::Path(ref qself, ref path) => {
720                 self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
721             }
722             TyKind::ImplicitSelf => {
723                 let self_ty = keywords::SelfType.ident();
724                 let def = self.resolve_ident_in_lexical_scope(self_ty, TypeNS, Some(ty.id), ty.span)
725                               .map_or(Def::Err, |d| d.def());
726                 self.record_def(ty.id, PathResolution::new(def));
727             }
728             _ => (),
729         }
730         visit::walk_ty(self, ty);
731     }
732     fn visit_poly_trait_ref(&mut self,
733                             tref: &'tcx ast::PolyTraitRef,
734                             m: &'tcx ast::TraitBoundModifier) {
735         self.smart_resolve_path(tref.trait_ref.ref_id, None,
736                                 &tref.trait_ref.path, PathSource::Trait(AliasPossibility::Maybe));
737         visit::walk_poly_trait_ref(self, tref, m);
738     }
739     fn visit_foreign_item(&mut self, foreign_item: &'tcx ForeignItem) {
740         let type_parameters = match foreign_item.node {
741             ForeignItemKind::Fn(_, ref generics) => {
742                 HasTypeParameters(generics, ItemRibKind)
743             }
744             ForeignItemKind::Static(..) => NoTypeParameters,
745             ForeignItemKind::Ty => NoTypeParameters,
746             ForeignItemKind::Macro(..) => NoTypeParameters,
747         };
748         self.with_type_parameter_rib(type_parameters, |this| {
749             visit::walk_foreign_item(this, foreign_item);
750         });
751     }
752     fn visit_fn(&mut self,
753                 function_kind: FnKind<'tcx>,
754                 declaration: &'tcx FnDecl,
755                 _: Span,
756                 node_id: NodeId)
757     {
758         let (rib_kind, asyncness) = match function_kind {
759             FnKind::ItemFn(_, ref header, ..) =>
760                 (ItemRibKind, header.asyncness),
761             FnKind::Method(_, ref sig, _, _) =>
762                 (TraitOrImplItemRibKind, sig.header.asyncness),
763             FnKind::Closure(_) =>
764                 // Async closures aren't resolved through `visit_fn`-- they're
765                 // processed separately
766                 (ClosureRibKind(node_id), IsAsync::NotAsync),
767         };
768
769         // Create a value rib for the function.
770         self.ribs[ValueNS].push(Rib::new(rib_kind));
771
772         // Create a label rib for the function.
773         self.label_ribs.push(Rib::new(rib_kind));
774
775         // Add each argument to the rib.
776         let mut bindings_list = FxHashMap();
777         for argument in &declaration.inputs {
778             self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
779
780             self.visit_ty(&argument.ty);
781
782             debug!("(resolving function) recorded argument");
783         }
784         visit::walk_fn_ret_ty(self, &declaration.output);
785
786         // Resolve the function body, potentially inside the body of an async closure
787         if let IsAsync::Async { closure_id, .. } = asyncness {
788             let rib_kind = ClosureRibKind(closure_id);
789             self.ribs[ValueNS].push(Rib::new(rib_kind));
790             self.label_ribs.push(Rib::new(rib_kind));
791         }
792
793         match function_kind {
794             FnKind::ItemFn(.., body) |
795             FnKind::Method(.., body) => {
796                 self.visit_block(body);
797             }
798             FnKind::Closure(body) => {
799                 self.visit_expr(body);
800             }
801         };
802
803         // Leave the body of the async closure
804         if asyncness.is_async() {
805             self.label_ribs.pop();
806             self.ribs[ValueNS].pop();
807         }
808
809         debug!("(resolving function) leaving function");
810
811         self.label_ribs.pop();
812         self.ribs[ValueNS].pop();
813     }
814     fn visit_generics(&mut self, generics: &'tcx Generics) {
815         // For type parameter defaults, we have to ban access
816         // to following type parameters, as the Substs can only
817         // provide previous type parameters as they're built. We
818         // put all the parameters on the ban list and then remove
819         // them one by one as they are processed and become available.
820         let mut default_ban_rib = Rib::new(ForwardTyParamBanRibKind);
821         let mut found_default = false;
822         default_ban_rib.bindings.extend(generics.params.iter()
823             .filter_map(|param| match param.kind {
824                 GenericParamKind::Lifetime { .. } => None,
825                 GenericParamKind::Type { ref default, .. } => {
826                     found_default |= default.is_some();
827                     if found_default {
828                         Some((Ident::with_empty_ctxt(param.ident.name), Def::Err))
829                     } else {
830                         None
831                     }
832                 }
833             }));
834
835         for param in &generics.params {
836             match param.kind {
837                 GenericParamKind::Lifetime { .. } => self.visit_generic_param(param),
838                 GenericParamKind::Type { ref default, .. } => {
839                     for bound in &param.bounds {
840                         self.visit_param_bound(bound);
841                     }
842
843                     if let Some(ref ty) = default {
844                         self.ribs[TypeNS].push(default_ban_rib);
845                         self.visit_ty(ty);
846                         default_ban_rib = self.ribs[TypeNS].pop().unwrap();
847                     }
848
849                     // Allow all following defaults to refer to this type parameter.
850                     default_ban_rib.bindings.remove(&Ident::with_empty_ctxt(param.ident.name));
851                 }
852             }
853         }
854         for p in &generics.where_clause.predicates {
855             self.visit_where_predicate(p);
856         }
857     }
858 }
859
860 #[derive(Copy, Clone)]
861 enum TypeParameters<'a, 'b> {
862     NoTypeParameters,
863     HasTypeParameters(// Type parameters.
864                       &'b Generics,
865
866                       // The kind of the rib used for type parameters.
867                       RibKind<'a>),
868 }
869
870 /// The rib kind controls the translation of local
871 /// definitions (`Def::Local`) to upvars (`Def::Upvar`).
872 #[derive(Copy, Clone, Debug)]
873 enum RibKind<'a> {
874     /// No translation needs to be applied.
875     NormalRibKind,
876
877     /// We passed through a closure scope at the given node ID.
878     /// Translate upvars as appropriate.
879     ClosureRibKind(NodeId /* func id */),
880
881     /// We passed through an impl or trait and are now in one of its
882     /// methods or associated types. Allow references to ty params that impl or trait
883     /// binds. Disallow any other upvars (including other ty params that are
884     /// upvars).
885     TraitOrImplItemRibKind,
886
887     /// We passed through an item scope. Disallow upvars.
888     ItemRibKind,
889
890     /// We're in a constant item. Can't refer to dynamic stuff.
891     ConstantItemRibKind,
892
893     /// We passed through a module.
894     ModuleRibKind(Module<'a>),
895
896     /// We passed through a `macro_rules!` statement
897     MacroDefinition(DefId),
898
899     /// All bindings in this rib are type parameters that can't be used
900     /// from the default of a type parameter because they're not declared
901     /// before said type parameter. Also see the `visit_generics` override.
902     ForwardTyParamBanRibKind,
903 }
904
905 /// One local scope.
906 ///
907 /// A rib represents a scope names can live in. Note that these appear in many places, not just
908 /// around braces. At any place where the list of accessible names (of the given namespace)
909 /// changes or a new restrictions on the name accessibility are introduced, a new rib is put onto a
910 /// stack. This may be, for example, a `let` statement (because it introduces variables), a macro,
911 /// etc.
912 ///
913 /// Different [rib kinds](enum.RibKind) are transparent for different names.
914 ///
915 /// The resolution keeps a separate stack of ribs as it traverses the AST for each namespace. When
916 /// resolving, the name is looked up from inside out.
917 #[derive(Debug)]
918 struct Rib<'a> {
919     bindings: FxHashMap<Ident, Def>,
920     kind: RibKind<'a>,
921 }
922
923 impl<'a> Rib<'a> {
924     fn new(kind: RibKind<'a>) -> Rib<'a> {
925         Rib {
926             bindings: FxHashMap(),
927             kind,
928         }
929     }
930 }
931
932 /// An intermediate resolution result.
933 ///
934 /// This refers to the thing referred by a name. The difference between `Def` and `Item` is that
935 /// items are visible in their whole block, while defs only from the place they are defined
936 /// forward.
937 enum LexicalScopeBinding<'a> {
938     Item(&'a NameBinding<'a>),
939     Def(Def),
940 }
941
942 impl<'a> LexicalScopeBinding<'a> {
943     fn item(self) -> Option<&'a NameBinding<'a>> {
944         match self {
945             LexicalScopeBinding::Item(binding) => Some(binding),
946             _ => None,
947         }
948     }
949
950     fn def(self) -> Def {
951         match self {
952             LexicalScopeBinding::Item(binding) => binding.def(),
953             LexicalScopeBinding::Def(def) => def,
954         }
955     }
956 }
957
958 #[derive(Copy, Clone, Debug)]
959 pub enum ModuleOrUniformRoot<'a> {
960     /// Regular module.
961     Module(Module<'a>),
962
963     /// The `{{root}}` (`CrateRoot` aka "global") / `extern` initial segment
964     /// in which external crates resolve, and also `crate` (only in `{{root}}`,
965     /// but *not* `extern`), in the Rust 2018 edition.
966     UniformRoot(Name),
967 }
968
969 #[derive(Clone, Debug)]
970 enum PathResult<'a> {
971     Module(ModuleOrUniformRoot<'a>),
972     NonModule(PathResolution),
973     Indeterminate,
974     Failed(Span, String, bool /* is the error from the last segment? */),
975 }
976
977 enum ModuleKind {
978     /// An anonymous module, eg. just a block.
979     ///
980     /// ```
981     /// fn main() {
982     ///     fn f() {} // (1)
983     ///     { // This is an anonymous module
984     ///         f(); // This resolves to (2) as we are inside the block.
985     ///         fn f() {} // (2)
986     ///     }
987     ///     f(); // Resolves to (1)
988     /// }
989     /// ```
990     Block(NodeId),
991     /// Any module with a name.
992     ///
993     /// This could be:
994     ///
995     /// * A normal module â€’ either `mod from_file;` or `mod from_block { }`.
996     /// * A trait or an enum (it implicitly contains associated types, methods and variant
997     ///   constructors).
998     Def(Def, Name),
999 }
1000
1001 /// One node in the tree of modules.
1002 pub struct ModuleData<'a> {
1003     parent: Option<Module<'a>>,
1004     kind: ModuleKind,
1005
1006     // The def id of the closest normal module (`mod`) ancestor (including this module).
1007     normal_ancestor_id: DefId,
1008
1009     resolutions: RefCell<FxHashMap<(Ident, Namespace), &'a RefCell<NameResolution<'a>>>>,
1010     legacy_macro_resolutions: RefCell<Vec<(Mark, Ident, MacroKind, Option<Def>)>>,
1011     macro_resolutions: RefCell<Vec<(Box<[Ident]>, Span)>>,
1012
1013     // Macro invocations that can expand into items in this module.
1014     unresolved_invocations: RefCell<FxHashSet<Mark>>,
1015
1016     no_implicit_prelude: bool,
1017
1018     glob_importers: RefCell<Vec<&'a ImportDirective<'a>>>,
1019     globs: RefCell<Vec<&'a ImportDirective<'a>>>,
1020
1021     // Used to memoize the traits in this module for faster searches through all traits in scope.
1022     traits: RefCell<Option<Box<[(Ident, &'a NameBinding<'a>)]>>>,
1023
1024     // Whether this module is populated. If not populated, any attempt to
1025     // access the children must be preceded with a
1026     // `populate_module_if_necessary` call.
1027     populated: Cell<bool>,
1028
1029     /// Span of the module itself. Used for error reporting.
1030     span: Span,
1031
1032     expansion: Mark,
1033 }
1034
1035 type Module<'a> = &'a ModuleData<'a>;
1036
1037 impl<'a> ModuleData<'a> {
1038     fn new(parent: Option<Module<'a>>,
1039            kind: ModuleKind,
1040            normal_ancestor_id: DefId,
1041            expansion: Mark,
1042            span: Span) -> Self {
1043         ModuleData {
1044             parent,
1045             kind,
1046             normal_ancestor_id,
1047             resolutions: RefCell::new(FxHashMap()),
1048             legacy_macro_resolutions: RefCell::new(Vec::new()),
1049             macro_resolutions: RefCell::new(Vec::new()),
1050             unresolved_invocations: RefCell::new(FxHashSet()),
1051             no_implicit_prelude: false,
1052             glob_importers: RefCell::new(Vec::new()),
1053             globs: RefCell::new(Vec::new()),
1054             traits: RefCell::new(None),
1055             populated: Cell::new(normal_ancestor_id.is_local()),
1056             span,
1057             expansion,
1058         }
1059     }
1060
1061     fn for_each_child<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1062         for (&(ident, ns), name_resolution) in self.resolutions.borrow().iter() {
1063             name_resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1064         }
1065     }
1066
1067     fn for_each_child_stable<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1068         let resolutions = self.resolutions.borrow();
1069         let mut resolutions = resolutions.iter().collect::<Vec<_>>();
1070         resolutions.sort_by_cached_key(|&(&(ident, ns), _)| (ident.as_str(), ns));
1071         for &(&(ident, ns), &resolution) in resolutions.iter() {
1072             resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1073         }
1074     }
1075
1076     fn def(&self) -> Option<Def> {
1077         match self.kind {
1078             ModuleKind::Def(def, _) => Some(def),
1079             _ => None,
1080         }
1081     }
1082
1083     fn def_id(&self) -> Option<DefId> {
1084         self.def().as_ref().map(Def::def_id)
1085     }
1086
1087     // `self` resolves to the first module ancestor that `is_normal`.
1088     fn is_normal(&self) -> bool {
1089         match self.kind {
1090             ModuleKind::Def(Def::Mod(_), _) => true,
1091             _ => false,
1092         }
1093     }
1094
1095     fn is_trait(&self) -> bool {
1096         match self.kind {
1097             ModuleKind::Def(Def::Trait(_), _) => true,
1098             _ => false,
1099         }
1100     }
1101
1102     fn is_local(&self) -> bool {
1103         self.normal_ancestor_id.is_local()
1104     }
1105
1106     fn nearest_item_scope(&'a self) -> Module<'a> {
1107         if self.is_trait() { self.parent.unwrap() } else { self }
1108     }
1109 }
1110
1111 impl<'a> fmt::Debug for ModuleData<'a> {
1112     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1113         write!(f, "{:?}", self.def())
1114     }
1115 }
1116
1117 /// Records a possibly-private value, type, or module definition.
1118 #[derive(Clone, Debug)]
1119 pub struct NameBinding<'a> {
1120     kind: NameBindingKind<'a>,
1121     expansion: Mark,
1122     span: Span,
1123     vis: ty::Visibility,
1124 }
1125
1126 pub trait ToNameBinding<'a> {
1127     fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a>;
1128 }
1129
1130 impl<'a> ToNameBinding<'a> for &'a NameBinding<'a> {
1131     fn to_name_binding(self, _: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> {
1132         self
1133     }
1134 }
1135
1136 #[derive(Clone, Debug)]
1137 enum NameBindingKind<'a> {
1138     Def(Def, /* is_macro_export */ bool),
1139     Module(Module<'a>),
1140     Import {
1141         binding: &'a NameBinding<'a>,
1142         directive: &'a ImportDirective<'a>,
1143         used: Cell<bool>,
1144     },
1145     Ambiguity {
1146         b1: &'a NameBinding<'a>,
1147         b2: &'a NameBinding<'a>,
1148     }
1149 }
1150
1151 struct PrivacyError<'a>(Span, Name, &'a NameBinding<'a>);
1152
1153 struct UseError<'a> {
1154     err: DiagnosticBuilder<'a>,
1155     /// Attach `use` statements for these candidates
1156     candidates: Vec<ImportSuggestion>,
1157     /// The node id of the module to place the use statements in
1158     node_id: NodeId,
1159     /// Whether the diagnostic should state that it's "better"
1160     better: bool,
1161 }
1162
1163 struct AmbiguityError<'a> {
1164     span: Span,
1165     name: Name,
1166     lexical: bool,
1167     b1: &'a NameBinding<'a>,
1168     b2: &'a NameBinding<'a>,
1169 }
1170
1171 impl<'a> NameBinding<'a> {
1172     fn module(&self) -> Option<Module<'a>> {
1173         match self.kind {
1174             NameBindingKind::Module(module) => Some(module),
1175             NameBindingKind::Import { binding, .. } => binding.module(),
1176             _ => None,
1177         }
1178     }
1179
1180     fn def(&self) -> Def {
1181         match self.kind {
1182             NameBindingKind::Def(def, _) => def,
1183             NameBindingKind::Module(module) => module.def().unwrap(),
1184             NameBindingKind::Import { binding, .. } => binding.def(),
1185             NameBindingKind::Ambiguity { .. } => Def::Err,
1186         }
1187     }
1188
1189     fn def_ignoring_ambiguity(&self) -> Def {
1190         match self.kind {
1191             NameBindingKind::Import { binding, .. } => binding.def_ignoring_ambiguity(),
1192             NameBindingKind::Ambiguity { b1, .. } => b1.def_ignoring_ambiguity(),
1193             _ => self.def(),
1194         }
1195     }
1196
1197     fn get_macro<'b: 'a>(&self, resolver: &mut Resolver<'a, 'b>) -> Lrc<SyntaxExtension> {
1198         resolver.get_macro(self.def_ignoring_ambiguity())
1199     }
1200
1201     // We sometimes need to treat variants as `pub` for backwards compatibility
1202     fn pseudo_vis(&self) -> ty::Visibility {
1203         if self.is_variant() && self.def().def_id().is_local() {
1204             ty::Visibility::Public
1205         } else {
1206             self.vis
1207         }
1208     }
1209
1210     fn is_variant(&self) -> bool {
1211         match self.kind {
1212             NameBindingKind::Def(Def::Variant(..), _) |
1213             NameBindingKind::Def(Def::VariantCtor(..), _) => true,
1214             _ => false,
1215         }
1216     }
1217
1218     fn is_extern_crate(&self) -> bool {
1219         match self.kind {
1220             NameBindingKind::Import {
1221                 directive: &ImportDirective {
1222                     subclass: ImportDirectiveSubclass::ExternCrate(_), ..
1223                 }, ..
1224             } => true,
1225             _ => false,
1226         }
1227     }
1228
1229     fn is_import(&self) -> bool {
1230         match self.kind {
1231             NameBindingKind::Import { .. } => true,
1232             _ => false,
1233         }
1234     }
1235
1236     fn is_renamed_extern_crate(&self) -> bool {
1237         if let NameBindingKind::Import { directive, ..} = self.kind {
1238             if let ImportDirectiveSubclass::ExternCrate(Some(_)) = directive.subclass {
1239                 return true;
1240             }
1241         }
1242         false
1243     }
1244
1245     fn is_glob_import(&self) -> bool {
1246         match self.kind {
1247             NameBindingKind::Import { directive, .. } => directive.is_glob(),
1248             NameBindingKind::Ambiguity { b1, .. } => b1.is_glob_import(),
1249             _ => false,
1250         }
1251     }
1252
1253     fn is_importable(&self) -> bool {
1254         match self.def() {
1255             Def::AssociatedConst(..) | Def::Method(..) | Def::AssociatedTy(..) => false,
1256             _ => true,
1257         }
1258     }
1259
1260     fn is_macro_def(&self) -> bool {
1261         match self.kind {
1262             NameBindingKind::Def(Def::Macro(..), _) => true,
1263             _ => false,
1264         }
1265     }
1266
1267     fn descr(&self) -> &'static str {
1268         if self.is_extern_crate() { "extern crate" } else { self.def().kind_name() }
1269     }
1270 }
1271
1272 /// Interns the names of the primitive types.
1273 ///
1274 /// All other types are defined somewhere and possibly imported, but the primitive ones need
1275 /// special handling, since they have no place of origin.
1276 struct PrimitiveTypeTable {
1277     primitive_types: FxHashMap<Name, PrimTy>,
1278 }
1279
1280 impl PrimitiveTypeTable {
1281     fn new() -> PrimitiveTypeTable {
1282         let mut table = PrimitiveTypeTable { primitive_types: FxHashMap() };
1283
1284         table.intern("bool", Bool);
1285         table.intern("char", Char);
1286         table.intern("f32", Float(FloatTy::F32));
1287         table.intern("f64", Float(FloatTy::F64));
1288         table.intern("isize", Int(IntTy::Isize));
1289         table.intern("i8", Int(IntTy::I8));
1290         table.intern("i16", Int(IntTy::I16));
1291         table.intern("i32", Int(IntTy::I32));
1292         table.intern("i64", Int(IntTy::I64));
1293         table.intern("i128", Int(IntTy::I128));
1294         table.intern("str", Str);
1295         table.intern("usize", Uint(UintTy::Usize));
1296         table.intern("u8", Uint(UintTy::U8));
1297         table.intern("u16", Uint(UintTy::U16));
1298         table.intern("u32", Uint(UintTy::U32));
1299         table.intern("u64", Uint(UintTy::U64));
1300         table.intern("u128", Uint(UintTy::U128));
1301         table
1302     }
1303
1304     fn intern(&mut self, string: &str, primitive_type: PrimTy) {
1305         self.primitive_types.insert(Symbol::intern(string), primitive_type);
1306     }
1307 }
1308
1309 /// The main resolver class.
1310 ///
1311 /// This is the visitor that walks the whole crate.
1312 pub struct Resolver<'a, 'b: 'a> {
1313     session: &'a Session,
1314     cstore: &'a CStore,
1315
1316     pub definitions: Definitions,
1317
1318     graph_root: Module<'a>,
1319
1320     prelude: Option<Module<'a>>,
1321     extern_prelude: FxHashSet<Name>,
1322
1323     /// n.b. This is used only for better diagnostics, not name resolution itself.
1324     has_self: FxHashSet<DefId>,
1325
1326     /// Names of fields of an item `DefId` accessible with dot syntax.
1327     /// Used for hints during error reporting.
1328     field_names: FxHashMap<DefId, Vec<Name>>,
1329
1330     /// All imports known to succeed or fail.
1331     determined_imports: Vec<&'a ImportDirective<'a>>,
1332
1333     /// All non-determined imports.
1334     indeterminate_imports: Vec<&'a ImportDirective<'a>>,
1335
1336     /// The module that represents the current item scope.
1337     current_module: Module<'a>,
1338
1339     /// The current set of local scopes for types and values.
1340     /// FIXME #4948: Reuse ribs to avoid allocation.
1341     ribs: PerNS<Vec<Rib<'a>>>,
1342
1343     /// The current set of local scopes, for labels.
1344     label_ribs: Vec<Rib<'a>>,
1345
1346     /// The trait that the current context can refer to.
1347     current_trait_ref: Option<(Module<'a>, TraitRef)>,
1348
1349     /// The current self type if inside an impl (used for better errors).
1350     current_self_type: Option<Ty>,
1351
1352     /// The idents for the primitive types.
1353     primitive_type_table: PrimitiveTypeTable,
1354
1355     def_map: DefMap,
1356     import_map: ImportMap,
1357     pub freevars: FreevarMap,
1358     freevars_seen: NodeMap<NodeMap<usize>>,
1359     pub export_map: ExportMap,
1360     pub trait_map: TraitMap,
1361
1362     /// A map from nodes to anonymous modules.
1363     /// Anonymous modules are pseudo-modules that are implicitly created around items
1364     /// contained within blocks.
1365     ///
1366     /// For example, if we have this:
1367     ///
1368     ///  fn f() {
1369     ///      fn g() {
1370     ///          ...
1371     ///      }
1372     ///  }
1373     ///
1374     /// There will be an anonymous module created around `g` with the ID of the
1375     /// entry block for `f`.
1376     block_map: NodeMap<Module<'a>>,
1377     module_map: FxHashMap<DefId, Module<'a>>,
1378     extern_module_map: FxHashMap<(DefId, bool /* MacrosOnly? */), Module<'a>>,
1379
1380     pub make_glob_map: bool,
1381     /// Maps imports to the names of items actually imported (this actually maps
1382     /// all imports, but only glob imports are actually interesting).
1383     pub glob_map: GlobMap,
1384
1385     used_imports: FxHashSet<(NodeId, Namespace)>,
1386     pub maybe_unused_trait_imports: NodeSet,
1387     pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
1388
1389     /// A list of labels as of yet unused. Labels will be removed from this map when
1390     /// they are used (in a `break` or `continue` statement)
1391     pub unused_labels: FxHashMap<NodeId, Span>,
1392
1393     /// privacy errors are delayed until the end in order to deduplicate them
1394     privacy_errors: Vec<PrivacyError<'a>>,
1395     /// ambiguity errors are delayed for deduplication
1396     ambiguity_errors: Vec<AmbiguityError<'a>>,
1397     /// `use` injections are delayed for better placement and deduplication
1398     use_injections: Vec<UseError<'a>>,
1399     /// `use` injections for proc macros wrongly imported with #[macro_use]
1400     proc_mac_errors: Vec<macros::ProcMacError>,
1401     /// crate-local macro expanded `macro_export` referred to by a module-relative path
1402     macro_expanded_macro_export_errors: BTreeSet<(Span, Span)>,
1403     /// macro-expanded `macro_rules` shadowing existing macros
1404     disallowed_shadowing: Vec<&'a LegacyBinding<'a>>,
1405
1406     arenas: &'a ResolverArenas<'a>,
1407     dummy_binding: &'a NameBinding<'a>,
1408
1409     crate_loader: &'a mut CrateLoader<'b>,
1410     macro_names: FxHashSet<Ident>,
1411     macro_prelude: FxHashMap<Name, &'a NameBinding<'a>>,
1412     pub all_macros: FxHashMap<Name, Def>,
1413     macro_map: FxHashMap<DefId, Lrc<SyntaxExtension>>,
1414     macro_defs: FxHashMap<Mark, DefId>,
1415     local_macro_def_scopes: FxHashMap<NodeId, Module<'a>>,
1416     pub whitelisted_legacy_custom_derives: Vec<Name>,
1417     pub found_unresolved_macro: bool,
1418
1419     /// List of crate local macros that we need to warn about as being unused.
1420     /// Right now this only includes macro_rules! macros, and macros 2.0.
1421     unused_macros: FxHashSet<DefId>,
1422
1423     /// Maps the `Mark` of an expansion to its containing module or block.
1424     invocations: FxHashMap<Mark, &'a InvocationData<'a>>,
1425
1426     /// Avoid duplicated errors for "name already defined".
1427     name_already_seen: FxHashMap<Name, Span>,
1428
1429     /// A set of procedural macros imported by `#[macro_use]` that have already been warned about
1430     warned_proc_macros: FxHashSet<Name>,
1431
1432     potentially_unused_imports: Vec<&'a ImportDirective<'a>>,
1433
1434     /// This table maps struct IDs into struct constructor IDs,
1435     /// it's not used during normal resolution, only for better error reporting.
1436     struct_constructors: DefIdMap<(Def, ty::Visibility)>,
1437
1438     /// Only used for better errors on `fn(): fn()`
1439     current_type_ascription: Vec<Span>,
1440
1441     injected_crate: Option<Module<'a>>,
1442
1443     /// Only supposed to be used by rustdoc, otherwise should be false.
1444     pub ignore_extern_prelude_feature: bool,
1445 }
1446
1447 /// Nothing really interesting here, it just provides memory for the rest of the crate.
1448 pub struct ResolverArenas<'a> {
1449     modules: arena::TypedArena<ModuleData<'a>>,
1450     local_modules: RefCell<Vec<Module<'a>>>,
1451     name_bindings: arena::TypedArena<NameBinding<'a>>,
1452     import_directives: arena::TypedArena<ImportDirective<'a>>,
1453     name_resolutions: arena::TypedArena<RefCell<NameResolution<'a>>>,
1454     invocation_data: arena::TypedArena<InvocationData<'a>>,
1455     legacy_bindings: arena::TypedArena<LegacyBinding<'a>>,
1456 }
1457
1458 impl<'a> ResolverArenas<'a> {
1459     fn alloc_module(&'a self, module: ModuleData<'a>) -> Module<'a> {
1460         let module = self.modules.alloc(module);
1461         if module.def_id().map(|def_id| def_id.is_local()).unwrap_or(true) {
1462             self.local_modules.borrow_mut().push(module);
1463         }
1464         module
1465     }
1466     fn local_modules(&'a self) -> ::std::cell::Ref<'a, Vec<Module<'a>>> {
1467         self.local_modules.borrow()
1468     }
1469     fn alloc_name_binding(&'a self, name_binding: NameBinding<'a>) -> &'a NameBinding<'a> {
1470         self.name_bindings.alloc(name_binding)
1471     }
1472     fn alloc_import_directive(&'a self, import_directive: ImportDirective<'a>)
1473                               -> &'a ImportDirective {
1474         self.import_directives.alloc(import_directive)
1475     }
1476     fn alloc_name_resolution(&'a self) -> &'a RefCell<NameResolution<'a>> {
1477         self.name_resolutions.alloc(Default::default())
1478     }
1479     fn alloc_invocation_data(&'a self, expansion_data: InvocationData<'a>)
1480                              -> &'a InvocationData<'a> {
1481         self.invocation_data.alloc(expansion_data)
1482     }
1483     fn alloc_legacy_binding(&'a self, binding: LegacyBinding<'a>) -> &'a LegacyBinding<'a> {
1484         self.legacy_bindings.alloc(binding)
1485     }
1486 }
1487
1488 impl<'a, 'b: 'a, 'cl: 'b> ty::DefIdTree for &'a Resolver<'b, 'cl> {
1489     fn parent(self, id: DefId) -> Option<DefId> {
1490         match id.krate {
1491             LOCAL_CRATE => self.definitions.def_key(id.index).parent,
1492             _ => self.cstore.def_key(id).parent,
1493         }.map(|index| DefId { index, ..id })
1494     }
1495 }
1496
1497 /// This interface is used through the AST→HIR step, to embed full paths into the HIR. After that
1498 /// the resolver is no longer needed as all the relevant information is inline.
1499 impl<'a, 'cl> hir::lowering::Resolver for Resolver<'a, 'cl> {
1500     fn resolve_hir_path(&mut self, path: &mut hir::Path, is_value: bool) {
1501         self.resolve_hir_path_cb(path, is_value,
1502                                  |resolver, span, error| resolve_error(resolver, span, error))
1503     }
1504
1505     fn resolve_str_path(
1506         &mut self,
1507         span: Span,
1508         crate_root: Option<&str>,
1509         components: &[&str],
1510         args: Option<P<hir::GenericArgs>>,
1511         is_value: bool
1512     ) -> hir::Path {
1513         let mut segments = iter::once(keywords::CrateRoot.ident())
1514             .chain(
1515                 crate_root.into_iter()
1516                     .chain(components.iter().cloned())
1517                     .map(Ident::from_str)
1518             ).map(hir::PathSegment::from_ident).collect::<Vec<_>>();
1519
1520         if let Some(args) = args {
1521             let ident = segments.last().unwrap().ident;
1522             *segments.last_mut().unwrap() = hir::PathSegment {
1523                 ident,
1524                 args: Some(args),
1525                 infer_types: true,
1526             };
1527         }
1528
1529         let mut path = hir::Path {
1530             span,
1531             def: Def::Err,
1532             segments: segments.into(),
1533         };
1534
1535         self.resolve_hir_path(&mut path, is_value);
1536         path
1537     }
1538
1539     fn get_resolution(&mut self, id: NodeId) -> Option<PathResolution> {
1540         self.def_map.get(&id).cloned()
1541     }
1542
1543     fn get_import(&mut self, id: NodeId) -> PerNS<Option<PathResolution>> {
1544         self.import_map.get(&id).cloned().unwrap_or_default()
1545     }
1546
1547     fn definitions(&mut self) -> &mut Definitions {
1548         &mut self.definitions
1549     }
1550 }
1551
1552 impl<'a, 'crateloader> Resolver<'a, 'crateloader> {
1553     /// Rustdoc uses this to resolve things in a recoverable way. ResolutionError<'a>
1554     /// isn't something that can be returned because it can't be made to live that long,
1555     /// and also it's a private type. Fortunately rustdoc doesn't need to know the error,
1556     /// just that an error occurred.
1557     pub fn resolve_str_path_error(&mut self, span: Span, path_str: &str, is_value: bool)
1558         -> Result<hir::Path, ()> {
1559         use std::iter;
1560         let mut errored = false;
1561
1562         let mut path = if path_str.starts_with("::") {
1563             hir::Path {
1564                 span,
1565                 def: Def::Err,
1566                 segments: iter::once(keywords::CrateRoot.ident()).chain({
1567                     path_str.split("::").skip(1).map(Ident::from_str)
1568                 }).map(hir::PathSegment::from_ident).collect(),
1569             }
1570         } else {
1571             hir::Path {
1572                 span,
1573                 def: Def::Err,
1574                 segments: path_str.split("::").map(Ident::from_str)
1575                                   .map(hir::PathSegment::from_ident).collect(),
1576             }
1577         };
1578         self.resolve_hir_path_cb(&mut path, is_value, |_, _, _| errored = true);
1579         if errored || path.def == Def::Err {
1580             Err(())
1581         } else {
1582             Ok(path)
1583         }
1584     }
1585
1586     /// resolve_hir_path, but takes a callback in case there was an error
1587     fn resolve_hir_path_cb<F>(&mut self, path: &mut hir::Path, is_value: bool, error_callback: F)
1588         where F: for<'c, 'b> FnOnce(&'c mut Resolver, Span, ResolutionError<'b>)
1589     {
1590         let namespace = if is_value { ValueNS } else { TypeNS };
1591         let hir::Path { ref segments, span, ref mut def } = *path;
1592         let path: Vec<_> = segments.iter().map(|seg| seg.ident).collect();
1593         // FIXME (Manishearth): Intra doc links won't get warned of epoch changes
1594         match self.resolve_path(None, &path, Some(namespace), true, span, CrateLint::No) {
1595             PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
1596                 *def = module.def().unwrap(),
1597             PathResult::NonModule(path_res) if path_res.unresolved_segments() == 0 =>
1598                 *def = path_res.base_def(),
1599             PathResult::NonModule(..) => match self.resolve_path(
1600                 None,
1601                 &path,
1602                 None,
1603                 true,
1604                 span,
1605                 CrateLint::No,
1606             ) {
1607                 PathResult::Failed(span, msg, _) => {
1608                     error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1609                 }
1610                 _ => {}
1611             },
1612             PathResult::Module(ModuleOrUniformRoot::UniformRoot(_)) |
1613             PathResult::Indeterminate => unreachable!(),
1614             PathResult::Failed(span, msg, _) => {
1615                 error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1616             }
1617         }
1618     }
1619 }
1620
1621 impl<'a, 'crateloader: 'a> Resolver<'a, 'crateloader> {
1622     pub fn new(session: &'a Session,
1623                cstore: &'a CStore,
1624                krate: &Crate,
1625                crate_name: &str,
1626                make_glob_map: MakeGlobMap,
1627                crate_loader: &'a mut CrateLoader<'crateloader>,
1628                arenas: &'a ResolverArenas<'a>)
1629                -> Resolver<'a, 'crateloader> {
1630         let root_def_id = DefId::local(CRATE_DEF_INDEX);
1631         let root_module_kind = ModuleKind::Def(Def::Mod(root_def_id), keywords::Invalid.name());
1632         let graph_root = arenas.alloc_module(ModuleData {
1633             no_implicit_prelude: attr::contains_name(&krate.attrs, "no_implicit_prelude"),
1634             ..ModuleData::new(None, root_module_kind, root_def_id, Mark::root(), krate.span)
1635         });
1636         let mut module_map = FxHashMap();
1637         module_map.insert(DefId::local(CRATE_DEF_INDEX), graph_root);
1638
1639         let mut definitions = Definitions::new();
1640         DefCollector::new(&mut definitions, Mark::root())
1641             .collect_root(crate_name, session.local_crate_disambiguator());
1642
1643         let mut extern_prelude: FxHashSet<Name> =
1644             session.opts.externs.iter().map(|kv| Symbol::intern(kv.0)).collect();
1645         if !attr::contains_name(&krate.attrs, "no_core") {
1646             if !attr::contains_name(&krate.attrs, "no_std") {
1647                 extern_prelude.insert(Symbol::intern("std"));
1648             } else {
1649                 extern_prelude.insert(Symbol::intern("core"));
1650             }
1651         }
1652
1653         let mut invocations = FxHashMap();
1654         invocations.insert(Mark::root(),
1655                            arenas.alloc_invocation_data(InvocationData::root(graph_root)));
1656
1657         let mut macro_defs = FxHashMap();
1658         macro_defs.insert(Mark::root(), root_def_id);
1659
1660         Resolver {
1661             session,
1662
1663             cstore,
1664
1665             definitions,
1666
1667             // The outermost module has def ID 0; this is not reflected in the
1668             // AST.
1669             graph_root,
1670             prelude: None,
1671             extern_prelude,
1672
1673             has_self: FxHashSet(),
1674             field_names: FxHashMap(),
1675
1676             determined_imports: Vec::new(),
1677             indeterminate_imports: Vec::new(),
1678
1679             current_module: graph_root,
1680             ribs: PerNS {
1681                 value_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1682                 type_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1683                 macro_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1684             },
1685             label_ribs: Vec::new(),
1686
1687             current_trait_ref: None,
1688             current_self_type: None,
1689
1690             primitive_type_table: PrimitiveTypeTable::new(),
1691
1692             def_map: NodeMap(),
1693             import_map: NodeMap(),
1694             freevars: NodeMap(),
1695             freevars_seen: NodeMap(),
1696             export_map: FxHashMap(),
1697             trait_map: NodeMap(),
1698             module_map,
1699             block_map: NodeMap(),
1700             extern_module_map: FxHashMap(),
1701
1702             make_glob_map: make_glob_map == MakeGlobMap::Yes,
1703             glob_map: NodeMap(),
1704
1705             used_imports: FxHashSet(),
1706             maybe_unused_trait_imports: NodeSet(),
1707             maybe_unused_extern_crates: Vec::new(),
1708
1709             unused_labels: FxHashMap(),
1710
1711             privacy_errors: Vec::new(),
1712             ambiguity_errors: Vec::new(),
1713             use_injections: Vec::new(),
1714             proc_mac_errors: Vec::new(),
1715             disallowed_shadowing: Vec::new(),
1716             macro_expanded_macro_export_errors: BTreeSet::new(),
1717
1718             arenas,
1719             dummy_binding: arenas.alloc_name_binding(NameBinding {
1720                 kind: NameBindingKind::Def(Def::Err, false),
1721                 expansion: Mark::root(),
1722                 span: DUMMY_SP,
1723                 vis: ty::Visibility::Public,
1724             }),
1725
1726             crate_loader,
1727             macro_names: FxHashSet(),
1728             macro_prelude: FxHashMap(),
1729             all_macros: FxHashMap(),
1730             macro_map: FxHashMap(),
1731             invocations,
1732             macro_defs,
1733             local_macro_def_scopes: FxHashMap(),
1734             name_already_seen: FxHashMap(),
1735             whitelisted_legacy_custom_derives: Vec::new(),
1736             warned_proc_macros: FxHashSet(),
1737             potentially_unused_imports: Vec::new(),
1738             struct_constructors: DefIdMap(),
1739             found_unresolved_macro: false,
1740             unused_macros: FxHashSet(),
1741             current_type_ascription: Vec::new(),
1742             injected_crate: None,
1743             ignore_extern_prelude_feature: false,
1744         }
1745     }
1746
1747     pub fn arenas() -> ResolverArenas<'a> {
1748         ResolverArenas {
1749             modules: arena::TypedArena::new(),
1750             local_modules: RefCell::new(Vec::new()),
1751             name_bindings: arena::TypedArena::new(),
1752             import_directives: arena::TypedArena::new(),
1753             name_resolutions: arena::TypedArena::new(),
1754             invocation_data: arena::TypedArena::new(),
1755             legacy_bindings: arena::TypedArena::new(),
1756         }
1757     }
1758
1759     /// Runs the function on each namespace.
1760     fn per_ns<F: FnMut(&mut Self, Namespace)>(&mut self, mut f: F) {
1761         f(self, TypeNS);
1762         f(self, ValueNS);
1763         f(self, MacroNS);
1764     }
1765
1766     fn macro_def(&self, mut ctxt: SyntaxContext) -> DefId {
1767         loop {
1768             match self.macro_defs.get(&ctxt.outer()) {
1769                 Some(&def_id) => return def_id,
1770                 None => ctxt.remove_mark(),
1771             };
1772         }
1773     }
1774
1775     /// Entry point to crate resolution.
1776     pub fn resolve_crate(&mut self, krate: &Crate) {
1777         ImportResolver { resolver: self }.finalize_imports();
1778         self.current_module = self.graph_root;
1779         self.finalize_current_module_macro_resolutions();
1780
1781         visit::walk_crate(self, krate);
1782
1783         check_unused::check_crate(self, krate);
1784         self.report_errors(krate);
1785         self.crate_loader.postprocess(krate);
1786     }
1787
1788     fn new_module(
1789         &self,
1790         parent: Module<'a>,
1791         kind: ModuleKind,
1792         normal_ancestor_id: DefId,
1793         expansion: Mark,
1794         span: Span,
1795     ) -> Module<'a> {
1796         let module = ModuleData::new(Some(parent), kind, normal_ancestor_id, expansion, span);
1797         self.arenas.alloc_module(module)
1798     }
1799
1800     fn record_use(&mut self, ident: Ident, ns: Namespace, binding: &'a NameBinding<'a>, span: Span)
1801                   -> bool /* true if an error was reported */ {
1802         match binding.kind {
1803             NameBindingKind::Import { directive, binding, ref used }
1804                     if !used.get() => {
1805                 used.set(true);
1806                 directive.used.set(true);
1807                 self.used_imports.insert((directive.id, ns));
1808                 self.add_to_glob_map(directive.id, ident);
1809                 self.record_use(ident, ns, binding, span)
1810             }
1811             NameBindingKind::Import { .. } => false,
1812             NameBindingKind::Ambiguity { b1, b2 } => {
1813                 self.ambiguity_errors.push(AmbiguityError {
1814                     span, name: ident.name, lexical: false, b1, b2,
1815                 });
1816                 true
1817             }
1818             _ => false
1819         }
1820     }
1821
1822     fn add_to_glob_map(&mut self, id: NodeId, ident: Ident) {
1823         if self.make_glob_map {
1824             self.glob_map.entry(id).or_default().insert(ident.name);
1825         }
1826     }
1827
1828     /// This resolves the identifier `ident` in the namespace `ns` in the current lexical scope.
1829     /// More specifically, we proceed up the hierarchy of scopes and return the binding for
1830     /// `ident` in the first scope that defines it (or None if no scopes define it).
1831     ///
1832     /// A block's items are above its local variables in the scope hierarchy, regardless of where
1833     /// the items are defined in the block. For example,
1834     /// ```rust
1835     /// fn f() {
1836     ///    g(); // Since there are no local variables in scope yet, this resolves to the item.
1837     ///    let g = || {};
1838     ///    fn g() {}
1839     ///    g(); // This resolves to the local variable `g` since it shadows the item.
1840     /// }
1841     /// ```
1842     ///
1843     /// Invariant: This must only be called during main resolution, not during
1844     /// import resolution.
1845     fn resolve_ident_in_lexical_scope(&mut self,
1846                                       mut ident: Ident,
1847                                       ns: Namespace,
1848                                       record_used_id: Option<NodeId>,
1849                                       path_span: Span)
1850                                       -> Option<LexicalScopeBinding<'a>> {
1851         let record_used = record_used_id.is_some();
1852         assert!(ns == TypeNS  || ns == ValueNS);
1853         if ns == TypeNS {
1854             ident.span = if ident.name == keywords::SelfType.name() {
1855                 // FIXME(jseyfried) improve `Self` hygiene
1856                 ident.span.with_ctxt(SyntaxContext::empty())
1857             } else {
1858                 ident.span.modern()
1859             }
1860         } else {
1861             ident = ident.modern_and_legacy();
1862         }
1863
1864         // Walk backwards up the ribs in scope.
1865         let mut module = self.graph_root;
1866         for i in (0 .. self.ribs[ns].len()).rev() {
1867             if let Some(def) = self.ribs[ns][i].bindings.get(&ident).cloned() {
1868                 // The ident resolves to a type parameter or local variable.
1869                 return Some(LexicalScopeBinding::Def(
1870                     self.adjust_local_def(ns, i, def, record_used, path_span)
1871                 ));
1872             }
1873
1874             module = match self.ribs[ns][i].kind {
1875                 ModuleRibKind(module) => module,
1876                 MacroDefinition(def) if def == self.macro_def(ident.span.ctxt()) => {
1877                     // If an invocation of this macro created `ident`, give up on `ident`
1878                     // and switch to `ident`'s source from the macro definition.
1879                     ident.span.remove_mark();
1880                     continue
1881                 }
1882                 _ => continue,
1883             };
1884
1885             let item = self.resolve_ident_in_module_unadjusted(
1886                 ModuleOrUniformRoot::Module(module),
1887                 ident,
1888                 ns,
1889                 false,
1890                 record_used,
1891                 path_span,
1892             );
1893             if let Ok(binding) = item {
1894                 // The ident resolves to an item.
1895                 return Some(LexicalScopeBinding::Item(binding));
1896             }
1897
1898             match module.kind {
1899                 ModuleKind::Block(..) => {}, // We can see through blocks
1900                 _ => break,
1901             }
1902         }
1903
1904         ident.span = ident.span.modern();
1905         let mut poisoned = None;
1906         loop {
1907             let opt_module = if let Some(node_id) = record_used_id {
1908                 self.hygienic_lexical_parent_with_compatibility_fallback(module, &mut ident.span,
1909                                                                          node_id, &mut poisoned)
1910             } else {
1911                 self.hygienic_lexical_parent(module, &mut ident.span)
1912             };
1913             module = unwrap_or!(opt_module, break);
1914             let orig_current_module = self.current_module;
1915             self.current_module = module; // Lexical resolutions can never be a privacy error.
1916             let result = self.resolve_ident_in_module_unadjusted(
1917                 ModuleOrUniformRoot::Module(module),
1918                 ident,
1919                 ns,
1920                 false,
1921                 record_used,
1922                 path_span,
1923             );
1924             self.current_module = orig_current_module;
1925
1926             match result {
1927                 Ok(binding) => {
1928                     if let Some(node_id) = poisoned {
1929                         self.session.buffer_lint_with_diagnostic(
1930                             lint::builtin::PROC_MACRO_DERIVE_RESOLUTION_FALLBACK,
1931                             node_id, ident.span,
1932                             &format!("cannot find {} `{}` in this scope", ns.descr(), ident),
1933                             lint::builtin::BuiltinLintDiagnostics::
1934                                 ProcMacroDeriveResolutionFallback(ident.span),
1935                         );
1936                     }
1937                     return Some(LexicalScopeBinding::Item(binding))
1938                 }
1939                 Err(Determined) => continue,
1940                 Err(Undetermined) =>
1941                     span_bug!(ident.span, "undetermined resolution during main resolution pass"),
1942             }
1943         }
1944
1945         if !module.no_implicit_prelude {
1946             // `record_used` means that we don't try to load crates during speculative resolution
1947             if record_used && ns == TypeNS && self.extern_prelude.contains(&ident.name) {
1948                 if !self.session.features_untracked().extern_prelude &&
1949                    !self.ignore_extern_prelude_feature {
1950                     feature_err(&self.session.parse_sess, "extern_prelude",
1951                                 ident.span, GateIssue::Language,
1952                                 "access to extern crates through prelude is experimental").emit();
1953                 }
1954
1955                 let crate_root = self.load_extern_prelude_crate_if_needed(ident);
1956
1957                 let binding = (crate_root, ty::Visibility::Public,
1958                                ident.span, Mark::root()).to_name_binding(self.arenas);
1959                 return Some(LexicalScopeBinding::Item(binding));
1960             }
1961             if ns == TypeNS && is_known_tool(ident.name) {
1962                 let binding = (Def::ToolMod, ty::Visibility::Public,
1963                                ident.span, Mark::root()).to_name_binding(self.arenas);
1964                 return Some(LexicalScopeBinding::Item(binding));
1965             }
1966             if let Some(prelude) = self.prelude {
1967                 if let Ok(binding) = self.resolve_ident_in_module_unadjusted(
1968                     ModuleOrUniformRoot::Module(prelude),
1969                     ident,
1970                     ns,
1971                     false,
1972                     false,
1973                     path_span,
1974                 ) {
1975                     return Some(LexicalScopeBinding::Item(binding));
1976                 }
1977             }
1978         }
1979
1980         None
1981     }
1982
1983     fn load_extern_prelude_crate_if_needed(&mut self, ident: Ident) -> Module<'a> {
1984         let crate_id = self.crate_loader.process_path_extern(ident.name, ident.span);
1985         let crate_root = self.get_module(DefId { krate: crate_id, index: CRATE_DEF_INDEX });
1986         self.populate_module_if_necessary(&crate_root);
1987         crate_root
1988     }
1989
1990     fn hygienic_lexical_parent(&mut self, module: Module<'a>, span: &mut Span)
1991                                -> Option<Module<'a>> {
1992         if !module.expansion.is_descendant_of(span.ctxt().outer()) {
1993             return Some(self.macro_def_scope(span.remove_mark()));
1994         }
1995
1996         if let ModuleKind::Block(..) = module.kind {
1997             return Some(module.parent.unwrap());
1998         }
1999
2000         None
2001     }
2002
2003     fn hygienic_lexical_parent_with_compatibility_fallback(&mut self, module: Module<'a>,
2004                                                            span: &mut Span, node_id: NodeId,
2005                                                            poisoned: &mut Option<NodeId>)
2006                                                            -> Option<Module<'a>> {
2007         if let module @ Some(..) = self.hygienic_lexical_parent(module, span) {
2008             return module;
2009         }
2010
2011         // We need to support the next case under a deprecation warning
2012         // ```
2013         // struct MyStruct;
2014         // ---- begin: this comes from a proc macro derive
2015         // mod implementation_details {
2016         //     // Note that `MyStruct` is not in scope here.
2017         //     impl SomeTrait for MyStruct { ... }
2018         // }
2019         // ---- end
2020         // ```
2021         // So we have to fall back to the module's parent during lexical resolution in this case.
2022         if let Some(parent) = module.parent {
2023             // Inner module is inside the macro, parent module is outside of the macro.
2024             if module.expansion != parent.expansion &&
2025             module.expansion.is_descendant_of(parent.expansion) {
2026                 // The macro is a proc macro derive
2027                 if module.expansion.looks_like_proc_macro_derive() {
2028                     if parent.expansion.is_descendant_of(span.ctxt().outer()) {
2029                         *poisoned = Some(node_id);
2030                         return module.parent;
2031                     }
2032                 }
2033             }
2034         }
2035
2036         None
2037     }
2038
2039     fn resolve_ident_in_module(&mut self,
2040                                module: ModuleOrUniformRoot<'a>,
2041                                mut ident: Ident,
2042                                ns: Namespace,
2043                                record_used: bool,
2044                                span: Span)
2045                                -> Result<&'a NameBinding<'a>, Determinacy> {
2046         ident.span = ident.span.modern();
2047         let orig_current_module = self.current_module;
2048         if let ModuleOrUniformRoot::Module(module) = module {
2049             if let Some(def) = ident.span.adjust(module.expansion) {
2050                 self.current_module = self.macro_def_scope(def);
2051             }
2052         }
2053         let result = self.resolve_ident_in_module_unadjusted(
2054             module, ident, ns, false, record_used, span,
2055         );
2056         self.current_module = orig_current_module;
2057         result
2058     }
2059
2060     fn resolve_crate_root(&mut self, ident: Ident) -> Module<'a> {
2061         let mut ctxt = ident.span.ctxt();
2062         let mark = if ident.name == keywords::DollarCrate.name() {
2063             // When resolving `$crate` from a `macro_rules!` invoked in a `macro`,
2064             // we don't want to pretend that the `macro_rules!` definition is in the `macro`
2065             // as described in `SyntaxContext::apply_mark`, so we ignore prepended modern marks.
2066             // FIXME: This is only a guess and it doesn't work correctly for `macro_rules!`
2067             // definitions actually produced by `macro` and `macro` definitions produced by
2068             // `macro_rules!`, but at least such configurations are not stable yet.
2069             ctxt = ctxt.modern_and_legacy();
2070             let mut iter = ctxt.marks().into_iter().rev().peekable();
2071             let mut result = None;
2072             // Find the last modern mark from the end if it exists.
2073             while let Some(&(mark, transparency)) = iter.peek() {
2074                 if transparency == Transparency::Opaque {
2075                     result = Some(mark);
2076                     iter.next();
2077                 } else {
2078                     break;
2079                 }
2080             }
2081             // Then find the last legacy mark from the end if it exists.
2082             for (mark, transparency) in iter {
2083                 if transparency == Transparency::SemiTransparent {
2084                     result = Some(mark);
2085                 } else {
2086                     break;
2087                 }
2088             }
2089             result
2090         } else {
2091             ctxt = ctxt.modern();
2092             ctxt.adjust(Mark::root())
2093         };
2094         let module = match mark {
2095             Some(def) => self.macro_def_scope(def),
2096             None => return self.graph_root,
2097         };
2098         self.get_module(DefId { index: CRATE_DEF_INDEX, ..module.normal_ancestor_id })
2099     }
2100
2101     fn resolve_self(&mut self, ctxt: &mut SyntaxContext, module: Module<'a>) -> Module<'a> {
2102         let mut module = self.get_module(module.normal_ancestor_id);
2103         while module.span.ctxt().modern() != *ctxt {
2104             let parent = module.parent.unwrap_or_else(|| self.macro_def_scope(ctxt.remove_mark()));
2105             module = self.get_module(parent.normal_ancestor_id);
2106         }
2107         module
2108     }
2109
2110     // AST resolution
2111     //
2112     // We maintain a list of value ribs and type ribs.
2113     //
2114     // Simultaneously, we keep track of the current position in the module
2115     // graph in the `current_module` pointer. When we go to resolve a name in
2116     // the value or type namespaces, we first look through all the ribs and
2117     // then query the module graph. When we resolve a name in the module
2118     // namespace, we can skip all the ribs (since nested modules are not
2119     // allowed within blocks in Rust) and jump straight to the current module
2120     // graph node.
2121     //
2122     // Named implementations are handled separately. When we find a method
2123     // call, we consult the module node to find all of the implementations in
2124     // scope. This information is lazily cached in the module node. We then
2125     // generate a fake "implementation scope" containing all the
2126     // implementations thus found, for compatibility with old resolve pass.
2127
2128     pub fn with_scope<F, T>(&mut self, id: NodeId, f: F) -> T
2129         where F: FnOnce(&mut Resolver) -> T
2130     {
2131         let id = self.definitions.local_def_id(id);
2132         let module = self.module_map.get(&id).cloned(); // clones a reference
2133         if let Some(module) = module {
2134             // Move down in the graph.
2135             let orig_module = replace(&mut self.current_module, module);
2136             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(module)));
2137             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(module)));
2138
2139             self.finalize_current_module_macro_resolutions();
2140             let ret = f(self);
2141
2142             self.current_module = orig_module;
2143             self.ribs[ValueNS].pop();
2144             self.ribs[TypeNS].pop();
2145             ret
2146         } else {
2147             f(self)
2148         }
2149     }
2150
2151     /// Searches the current set of local scopes for labels. Returns the first non-None label that
2152     /// is returned by the given predicate function
2153     ///
2154     /// Stops after meeting a closure.
2155     fn search_label<P, R>(&self, mut ident: Ident, pred: P) -> Option<R>
2156         where P: Fn(&Rib, Ident) -> Option<R>
2157     {
2158         for rib in self.label_ribs.iter().rev() {
2159             match rib.kind {
2160                 NormalRibKind => {}
2161                 // If an invocation of this macro created `ident`, give up on `ident`
2162                 // and switch to `ident`'s source from the macro definition.
2163                 MacroDefinition(def) => {
2164                     if def == self.macro_def(ident.span.ctxt()) {
2165                         ident.span.remove_mark();
2166                     }
2167                 }
2168                 _ => {
2169                     // Do not resolve labels across function boundary
2170                     return None;
2171                 }
2172             }
2173             let r = pred(rib, ident);
2174             if r.is_some() {
2175                 return r;
2176             }
2177         }
2178         None
2179     }
2180
2181     fn resolve_item(&mut self, item: &Item) {
2182         let name = item.ident.name;
2183         debug!("(resolving item) resolving {}", name);
2184
2185         match item.node {
2186             ItemKind::Ty(_, ref generics) |
2187             ItemKind::Fn(_, _, ref generics, _) |
2188             ItemKind::Existential(_, ref generics) => {
2189                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind),
2190                                              |this| visit::walk_item(this, item));
2191             }
2192
2193             ItemKind::Enum(_, ref generics) |
2194             ItemKind::Struct(_, ref generics) |
2195             ItemKind::Union(_, ref generics) => {
2196                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2197                     let item_def_id = this.definitions.local_def_id(item.id);
2198                     if this.session.features_untracked().self_in_typedefs {
2199                         this.with_self_rib(Def::SelfTy(None, Some(item_def_id)), |this| {
2200                             visit::walk_item(this, item);
2201                         });
2202                     } else {
2203                         visit::walk_item(this, item);
2204                     }
2205                 });
2206             }
2207
2208             ItemKind::Impl(.., ref generics, ref opt_trait_ref, ref self_type, ref impl_items) =>
2209                 self.resolve_implementation(generics,
2210                                             opt_trait_ref,
2211                                             &self_type,
2212                                             item.id,
2213                                             impl_items),
2214
2215             ItemKind::Trait(.., ref generics, ref bounds, ref trait_items) => {
2216                 // Create a new rib for the trait-wide type parameters.
2217                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2218                     let local_def_id = this.definitions.local_def_id(item.id);
2219                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2220                         this.visit_generics(generics);
2221                         walk_list!(this, visit_param_bound, bounds);
2222
2223                         for trait_item in trait_items {
2224                             let type_parameters = HasTypeParameters(&trait_item.generics,
2225                                                                     TraitOrImplItemRibKind);
2226                             this.with_type_parameter_rib(type_parameters, |this| {
2227                                 match trait_item.node {
2228                                     TraitItemKind::Const(ref ty, ref default) => {
2229                                         this.visit_ty(ty);
2230
2231                                         // Only impose the restrictions of
2232                                         // ConstRibKind for an actual constant
2233                                         // expression in a provided default.
2234                                         if let Some(ref expr) = *default{
2235                                             this.with_constant_rib(|this| {
2236                                                 this.visit_expr(expr);
2237                                             });
2238                                         }
2239                                     }
2240                                     TraitItemKind::Method(_, _) => {
2241                                         visit::walk_trait_item(this, trait_item)
2242                                     }
2243                                     TraitItemKind::Type(..) => {
2244                                         visit::walk_trait_item(this, trait_item)
2245                                     }
2246                                     TraitItemKind::Macro(_) => {
2247                                         panic!("unexpanded macro in resolve!")
2248                                     }
2249                                 };
2250                             });
2251                         }
2252                     });
2253                 });
2254             }
2255
2256             ItemKind::TraitAlias(ref generics, ref bounds) => {
2257                 // Create a new rib for the trait-wide type parameters.
2258                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2259                     let local_def_id = this.definitions.local_def_id(item.id);
2260                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2261                         this.visit_generics(generics);
2262                         walk_list!(this, visit_param_bound, bounds);
2263                     });
2264                 });
2265             }
2266
2267             ItemKind::Mod(_) | ItemKind::ForeignMod(_) => {
2268                 self.with_scope(item.id, |this| {
2269                     visit::walk_item(this, item);
2270                 });
2271             }
2272
2273             ItemKind::Static(ref ty, _, ref expr) |
2274             ItemKind::Const(ref ty, ref expr) => {
2275                 self.with_item_rib(|this| {
2276                     this.visit_ty(ty);
2277                     this.with_constant_rib(|this| {
2278                         this.visit_expr(expr);
2279                     });
2280                 });
2281             }
2282
2283             ItemKind::Use(ref use_tree) => {
2284                 // Imports are resolved as global by default, add starting root segment.
2285                 let path = Path {
2286                     segments: use_tree.prefix.make_root().into_iter().collect(),
2287                     span: use_tree.span,
2288                 };
2289                 self.resolve_use_tree(item.id, use_tree.span, item.id, use_tree, &path);
2290             }
2291
2292             ItemKind::ExternCrate(_) | ItemKind::MacroDef(..) | ItemKind::GlobalAsm(_) => {
2293                 // do nothing, these are just around to be encoded
2294             }
2295
2296             ItemKind::Mac(_) => panic!("unexpanded macro in resolve!"),
2297         }
2298     }
2299
2300     /// For the most part, use trees are desugared into `ImportDirective` instances
2301     /// when building the reduced graph (see `build_reduced_graph_for_use_tree`). But
2302     /// there is one special case we handle here: an empty nested import like
2303     /// `a::{b::{}}`, which desugares into...no import directives.
2304     fn resolve_use_tree(
2305         &mut self,
2306         root_id: NodeId,
2307         root_span: Span,
2308         id: NodeId,
2309         use_tree: &ast::UseTree,
2310         prefix: &Path,
2311     ) {
2312         match use_tree.kind {
2313             ast::UseTreeKind::Nested(ref items) => {
2314                 let path = Path {
2315                     segments: prefix.segments
2316                         .iter()
2317                         .chain(use_tree.prefix.segments.iter())
2318                         .cloned()
2319                         .collect(),
2320                     span: prefix.span.to(use_tree.prefix.span),
2321                 };
2322
2323                 if items.len() == 0 {
2324                     // Resolve prefix of an import with empty braces (issue #28388).
2325                     self.smart_resolve_path_with_crate_lint(
2326                         id,
2327                         None,
2328                         &path,
2329                         PathSource::ImportPrefix,
2330                         CrateLint::UsePath { root_id, root_span },
2331                     );
2332                 } else {
2333                     for &(ref tree, nested_id) in items {
2334                         self.resolve_use_tree(root_id, root_span, nested_id, tree, &path);
2335                     }
2336                 }
2337             }
2338             ast::UseTreeKind::Simple(..) => {},
2339             ast::UseTreeKind::Glob => {},
2340         }
2341     }
2342
2343     fn with_type_parameter_rib<'b, F>(&'b mut self, type_parameters: TypeParameters<'a, 'b>, f: F)
2344         where F: FnOnce(&mut Resolver)
2345     {
2346         match type_parameters {
2347             HasTypeParameters(generics, rib_kind) => {
2348                 let mut function_type_rib = Rib::new(rib_kind);
2349                 let mut seen_bindings = FxHashMap();
2350                 for param in &generics.params {
2351                     match param.kind {
2352                         GenericParamKind::Lifetime { .. } => {}
2353                         GenericParamKind::Type { .. } => {
2354                             let ident = param.ident.modern();
2355                             debug!("with_type_parameter_rib: {}", param.id);
2356
2357                             if seen_bindings.contains_key(&ident) {
2358                                 let span = seen_bindings.get(&ident).unwrap();
2359                                 let err = ResolutionError::NameAlreadyUsedInTypeParameterList(
2360                                     ident.name,
2361                                     span,
2362                                 );
2363                                 resolve_error(self, param.ident.span, err);
2364                             }
2365                             seen_bindings.entry(ident).or_insert(param.ident.span);
2366
2367                         // Plain insert (no renaming).
2368                         let def = Def::TyParam(self.definitions.local_def_id(param.id));
2369                             function_type_rib.bindings.insert(ident, def);
2370                             self.record_def(param.id, PathResolution::new(def));
2371                         }
2372                     }
2373                 }
2374                 self.ribs[TypeNS].push(function_type_rib);
2375             }
2376
2377             NoTypeParameters => {
2378                 // Nothing to do.
2379             }
2380         }
2381
2382         f(self);
2383
2384         if let HasTypeParameters(..) = type_parameters {
2385             self.ribs[TypeNS].pop();
2386         }
2387     }
2388
2389     fn with_label_rib<F>(&mut self, f: F)
2390         where F: FnOnce(&mut Resolver)
2391     {
2392         self.label_ribs.push(Rib::new(NormalRibKind));
2393         f(self);
2394         self.label_ribs.pop();
2395     }
2396
2397     fn with_item_rib<F>(&mut self, f: F)
2398         where F: FnOnce(&mut Resolver)
2399     {
2400         self.ribs[ValueNS].push(Rib::new(ItemRibKind));
2401         self.ribs[TypeNS].push(Rib::new(ItemRibKind));
2402         f(self);
2403         self.ribs[TypeNS].pop();
2404         self.ribs[ValueNS].pop();
2405     }
2406
2407     fn with_constant_rib<F>(&mut self, f: F)
2408         where F: FnOnce(&mut Resolver)
2409     {
2410         self.ribs[ValueNS].push(Rib::new(ConstantItemRibKind));
2411         self.label_ribs.push(Rib::new(ConstantItemRibKind));
2412         f(self);
2413         self.label_ribs.pop();
2414         self.ribs[ValueNS].pop();
2415     }
2416
2417     fn with_current_self_type<T, F>(&mut self, self_type: &Ty, f: F) -> T
2418         where F: FnOnce(&mut Resolver) -> T
2419     {
2420         // Handle nested impls (inside fn bodies)
2421         let previous_value = replace(&mut self.current_self_type, Some(self_type.clone()));
2422         let result = f(self);
2423         self.current_self_type = previous_value;
2424         result
2425     }
2426
2427     /// This is called to resolve a trait reference from an `impl` (i.e. `impl Trait for Foo`)
2428     fn with_optional_trait_ref<T, F>(&mut self, opt_trait_ref: Option<&TraitRef>, f: F) -> T
2429         where F: FnOnce(&mut Resolver, Option<DefId>) -> T
2430     {
2431         let mut new_val = None;
2432         let mut new_id = None;
2433         if let Some(trait_ref) = opt_trait_ref {
2434             let path: Vec<_> = trait_ref.path.segments.iter()
2435                 .map(|seg| seg.ident)
2436                 .collect();
2437             let def = self.smart_resolve_path_fragment(
2438                 trait_ref.ref_id,
2439                 None,
2440                 &path,
2441                 trait_ref.path.span,
2442                 PathSource::Trait(AliasPossibility::No),
2443                 CrateLint::SimplePath(trait_ref.ref_id),
2444             ).base_def();
2445             if def != Def::Err {
2446                 new_id = Some(def.def_id());
2447                 let span = trait_ref.path.span;
2448                 if let PathResult::Module(ModuleOrUniformRoot::Module(module)) =
2449                     self.resolve_path(
2450                         None,
2451                         &path,
2452                         None,
2453                         false,
2454                         span,
2455                         CrateLint::SimplePath(trait_ref.ref_id),
2456                     )
2457                 {
2458                     new_val = Some((module, trait_ref.clone()));
2459                 }
2460             }
2461         }
2462         let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
2463         let result = f(self, new_id);
2464         self.current_trait_ref = original_trait_ref;
2465         result
2466     }
2467
2468     fn with_self_rib<F>(&mut self, self_def: Def, f: F)
2469         where F: FnOnce(&mut Resolver)
2470     {
2471         let mut self_type_rib = Rib::new(NormalRibKind);
2472
2473         // plain insert (no renaming, types are not currently hygienic....)
2474         self_type_rib.bindings.insert(keywords::SelfType.ident(), self_def);
2475         self.ribs[TypeNS].push(self_type_rib);
2476         f(self);
2477         self.ribs[TypeNS].pop();
2478     }
2479
2480     fn resolve_implementation(&mut self,
2481                               generics: &Generics,
2482                               opt_trait_reference: &Option<TraitRef>,
2483                               self_type: &Ty,
2484                               item_id: NodeId,
2485                               impl_items: &[ImplItem]) {
2486         // If applicable, create a rib for the type parameters.
2487         self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2488             // Dummy self type for better errors if `Self` is used in the trait path.
2489             this.with_self_rib(Def::SelfTy(None, None), |this| {
2490                 // Resolve the trait reference, if necessary.
2491                 this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| {
2492                     let item_def_id = this.definitions.local_def_id(item_id);
2493                     this.with_self_rib(Def::SelfTy(trait_id, Some(item_def_id)), |this| {
2494                         if let Some(trait_ref) = opt_trait_reference.as_ref() {
2495                             // Resolve type arguments in the trait path.
2496                             visit::walk_trait_ref(this, trait_ref);
2497                         }
2498                         // Resolve the self type.
2499                         this.visit_ty(self_type);
2500                         // Resolve the type parameters.
2501                         this.visit_generics(generics);
2502                         // Resolve the items within the impl.
2503                         this.with_current_self_type(self_type, |this| {
2504                             for impl_item in impl_items {
2505                                 this.resolve_visibility(&impl_item.vis);
2506
2507                                 // We also need a new scope for the impl item type parameters.
2508                                 let type_parameters = HasTypeParameters(&impl_item.generics,
2509                                                                         TraitOrImplItemRibKind);
2510                                 this.with_type_parameter_rib(type_parameters, |this| {
2511                                     use self::ResolutionError::*;
2512                                     match impl_item.node {
2513                                         ImplItemKind::Const(..) => {
2514                                             // If this is a trait impl, ensure the const
2515                                             // exists in trait
2516                                             this.check_trait_item(impl_item.ident,
2517                                                                   ValueNS,
2518                                                                   impl_item.span,
2519                                                 |n, s| ConstNotMemberOfTrait(n, s));
2520                                             this.with_constant_rib(|this|
2521                                                 visit::walk_impl_item(this, impl_item)
2522                                             );
2523                                         }
2524                                         ImplItemKind::Method(..) => {
2525                                             // If this is a trait impl, ensure the method
2526                                             // exists in trait
2527                                             this.check_trait_item(impl_item.ident,
2528                                                                   ValueNS,
2529                                                                   impl_item.span,
2530                                                 |n, s| MethodNotMemberOfTrait(n, s));
2531
2532                                             visit::walk_impl_item(this, impl_item);
2533                                         }
2534                                         ImplItemKind::Type(ref ty) => {
2535                                             // If this is a trait impl, ensure the type
2536                                             // exists in trait
2537                                             this.check_trait_item(impl_item.ident,
2538                                                                   TypeNS,
2539                                                                   impl_item.span,
2540                                                 |n, s| TypeNotMemberOfTrait(n, s));
2541
2542                                             this.visit_ty(ty);
2543                                         }
2544                                         ImplItemKind::Existential(ref bounds) => {
2545                                             // If this is a trait impl, ensure the type
2546                                             // exists in trait
2547                                             this.check_trait_item(impl_item.ident,
2548                                                                   TypeNS,
2549                                                                   impl_item.span,
2550                                                 |n, s| TypeNotMemberOfTrait(n, s));
2551
2552                                             for bound in bounds {
2553                                                 this.visit_param_bound(bound);
2554                                             }
2555                                         }
2556                                         ImplItemKind::Macro(_) =>
2557                                             panic!("unexpanded macro in resolve!"),
2558                                     }
2559                                 });
2560                             }
2561                         });
2562                     });
2563                 });
2564             });
2565         });
2566     }
2567
2568     fn check_trait_item<F>(&mut self, ident: Ident, ns: Namespace, span: Span, err: F)
2569         where F: FnOnce(Name, &str) -> ResolutionError
2570     {
2571         // If there is a TraitRef in scope for an impl, then the method must be in the
2572         // trait.
2573         if let Some((module, _)) = self.current_trait_ref {
2574             if self.resolve_ident_in_module(
2575                 ModuleOrUniformRoot::Module(module),
2576                 ident,
2577                 ns,
2578                 false,
2579                 span,
2580             ).is_err() {
2581                 let path = &self.current_trait_ref.as_ref().unwrap().1.path;
2582                 resolve_error(self, span, err(ident.name, &path_names_to_string(path)));
2583             }
2584         }
2585     }
2586
2587     fn resolve_local(&mut self, local: &Local) {
2588         // Resolve the type.
2589         walk_list!(self, visit_ty, &local.ty);
2590
2591         // Resolve the initializer.
2592         walk_list!(self, visit_expr, &local.init);
2593
2594         // Resolve the pattern.
2595         self.resolve_pattern(&local.pat, PatternSource::Let, &mut FxHashMap());
2596     }
2597
2598     // build a map from pattern identifiers to binding-info's.
2599     // this is done hygienically. This could arise for a macro
2600     // that expands into an or-pattern where one 'x' was from the
2601     // user and one 'x' came from the macro.
2602     fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
2603         let mut binding_map = FxHashMap();
2604
2605         pat.walk(&mut |pat| {
2606             if let PatKind::Ident(binding_mode, ident, ref sub_pat) = pat.node {
2607                 if sub_pat.is_some() || match self.def_map.get(&pat.id).map(|res| res.base_def()) {
2608                     Some(Def::Local(..)) => true,
2609                     _ => false,
2610                 } {
2611                     let binding_info = BindingInfo { span: ident.span, binding_mode: binding_mode };
2612                     binding_map.insert(ident, binding_info);
2613                 }
2614             }
2615             true
2616         });
2617
2618         binding_map
2619     }
2620
2621     // check that all of the arms in an or-pattern have exactly the
2622     // same set of bindings, with the same binding modes for each.
2623     fn check_consistent_bindings(&mut self, pats: &[P<Pat>]) {
2624         if pats.is_empty() {
2625             return;
2626         }
2627
2628         let mut missing_vars = FxHashMap();
2629         let mut inconsistent_vars = FxHashMap();
2630         for (i, p) in pats.iter().enumerate() {
2631             let map_i = self.binding_mode_map(&p);
2632
2633             for (j, q) in pats.iter().enumerate() {
2634                 if i == j {
2635                     continue;
2636                 }
2637
2638                 let map_j = self.binding_mode_map(&q);
2639                 for (&key, &binding_i) in &map_i {
2640                     if map_j.len() == 0 {                   // Account for missing bindings when
2641                         let binding_error = missing_vars    // map_j has none.
2642                             .entry(key.name)
2643                             .or_insert(BindingError {
2644                                 name: key.name,
2645                                 origin: BTreeSet::new(),
2646                                 target: BTreeSet::new(),
2647                             });
2648                         binding_error.origin.insert(binding_i.span);
2649                         binding_error.target.insert(q.span);
2650                     }
2651                     for (&key_j, &binding_j) in &map_j {
2652                         match map_i.get(&key_j) {
2653                             None => {  // missing binding
2654                                 let binding_error = missing_vars
2655                                     .entry(key_j.name)
2656                                     .or_insert(BindingError {
2657                                         name: key_j.name,
2658                                         origin: BTreeSet::new(),
2659                                         target: BTreeSet::new(),
2660                                     });
2661                                 binding_error.origin.insert(binding_j.span);
2662                                 binding_error.target.insert(p.span);
2663                             }
2664                             Some(binding_i) => {  // check consistent binding
2665                                 if binding_i.binding_mode != binding_j.binding_mode {
2666                                     inconsistent_vars
2667                                         .entry(key.name)
2668                                         .or_insert((binding_j.span, binding_i.span));
2669                                 }
2670                             }
2671                         }
2672                     }
2673                 }
2674             }
2675         }
2676         let mut missing_vars = missing_vars.iter().collect::<Vec<_>>();
2677         missing_vars.sort();
2678         for (_, v) in missing_vars {
2679             resolve_error(self,
2680                           *v.origin.iter().next().unwrap(),
2681                           ResolutionError::VariableNotBoundInPattern(v));
2682         }
2683         let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
2684         inconsistent_vars.sort();
2685         for (name, v) in inconsistent_vars {
2686             resolve_error(self, v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
2687         }
2688     }
2689
2690     fn resolve_arm(&mut self, arm: &Arm) {
2691         self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2692
2693         let mut bindings_list = FxHashMap();
2694         for pattern in &arm.pats {
2695             self.resolve_pattern(&pattern, PatternSource::Match, &mut bindings_list);
2696         }
2697
2698         // This has to happen *after* we determine which pat_idents are variants
2699         self.check_consistent_bindings(&arm.pats);
2700
2701         walk_list!(self, visit_expr, &arm.guard);
2702         self.visit_expr(&arm.body);
2703
2704         self.ribs[ValueNS].pop();
2705     }
2706
2707     fn resolve_block(&mut self, block: &Block) {
2708         debug!("(resolving block) entering block");
2709         // Move down in the graph, if there's an anonymous module rooted here.
2710         let orig_module = self.current_module;
2711         let anonymous_module = self.block_map.get(&block.id).cloned(); // clones a reference
2712
2713         let mut num_macro_definition_ribs = 0;
2714         if let Some(anonymous_module) = anonymous_module {
2715             debug!("(resolving block) found anonymous module, moving down");
2716             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2717             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2718             self.current_module = anonymous_module;
2719             self.finalize_current_module_macro_resolutions();
2720         } else {
2721             self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2722         }
2723
2724         // Descend into the block.
2725         for stmt in &block.stmts {
2726             if let ast::StmtKind::Item(ref item) = stmt.node {
2727                 if let ast::ItemKind::MacroDef(..) = item.node {
2728                     num_macro_definition_ribs += 1;
2729                     let def = self.definitions.local_def_id(item.id);
2730                     self.ribs[ValueNS].push(Rib::new(MacroDefinition(def)));
2731                     self.label_ribs.push(Rib::new(MacroDefinition(def)));
2732                 }
2733             }
2734
2735             self.visit_stmt(stmt);
2736         }
2737
2738         // Move back up.
2739         self.current_module = orig_module;
2740         for _ in 0 .. num_macro_definition_ribs {
2741             self.ribs[ValueNS].pop();
2742             self.label_ribs.pop();
2743         }
2744         self.ribs[ValueNS].pop();
2745         if anonymous_module.is_some() {
2746             self.ribs[TypeNS].pop();
2747         }
2748         debug!("(resolving block) leaving block");
2749     }
2750
2751     fn fresh_binding(&mut self,
2752                      ident: Ident,
2753                      pat_id: NodeId,
2754                      outer_pat_id: NodeId,
2755                      pat_src: PatternSource,
2756                      bindings: &mut FxHashMap<Ident, NodeId>)
2757                      -> PathResolution {
2758         // Add the binding to the local ribs, if it
2759         // doesn't already exist in the bindings map. (We
2760         // must not add it if it's in the bindings map
2761         // because that breaks the assumptions later
2762         // passes make about or-patterns.)
2763         let ident = ident.modern_and_legacy();
2764         let mut def = Def::Local(pat_id);
2765         match bindings.get(&ident).cloned() {
2766             Some(id) if id == outer_pat_id => {
2767                 // `Variant(a, a)`, error
2768                 resolve_error(
2769                     self,
2770                     ident.span,
2771                     ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(
2772                         &ident.as_str())
2773                 );
2774             }
2775             Some(..) if pat_src == PatternSource::FnParam => {
2776                 // `fn f(a: u8, a: u8)`, error
2777                 resolve_error(
2778                     self,
2779                     ident.span,
2780                     ResolutionError::IdentifierBoundMoreThanOnceInParameterList(
2781                         &ident.as_str())
2782                 );
2783             }
2784             Some(..) if pat_src == PatternSource::Match ||
2785                         pat_src == PatternSource::IfLet ||
2786                         pat_src == PatternSource::WhileLet => {
2787                 // `Variant1(a) | Variant2(a)`, ok
2788                 // Reuse definition from the first `a`.
2789                 def = self.ribs[ValueNS].last_mut().unwrap().bindings[&ident];
2790             }
2791             Some(..) => {
2792                 span_bug!(ident.span, "two bindings with the same name from \
2793                                        unexpected pattern source {:?}", pat_src);
2794             }
2795             None => {
2796                 // A completely fresh binding, add to the lists if it's valid.
2797                 if ident.name != keywords::Invalid.name() {
2798                     bindings.insert(ident, outer_pat_id);
2799                     self.ribs[ValueNS].last_mut().unwrap().bindings.insert(ident, def);
2800                 }
2801             }
2802         }
2803
2804         PathResolution::new(def)
2805     }
2806
2807     fn resolve_pattern(&mut self,
2808                        pat: &Pat,
2809                        pat_src: PatternSource,
2810                        // Maps idents to the node ID for the
2811                        // outermost pattern that binds them.
2812                        bindings: &mut FxHashMap<Ident, NodeId>) {
2813         // Visit all direct subpatterns of this pattern.
2814         let outer_pat_id = pat.id;
2815         pat.walk(&mut |pat| {
2816             match pat.node {
2817                 PatKind::Ident(bmode, ident, ref opt_pat) => {
2818                     // First try to resolve the identifier as some existing
2819                     // entity, then fall back to a fresh binding.
2820                     let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS,
2821                                                                       None, pat.span)
2822                                       .and_then(LexicalScopeBinding::item);
2823                     let resolution = binding.map(NameBinding::def).and_then(|def| {
2824                         let is_syntactic_ambiguity = opt_pat.is_none() &&
2825                             bmode == BindingMode::ByValue(Mutability::Immutable);
2826                         match def {
2827                             Def::StructCtor(_, CtorKind::Const) |
2828                             Def::VariantCtor(_, CtorKind::Const) |
2829                             Def::Const(..) if is_syntactic_ambiguity => {
2830                                 // Disambiguate in favor of a unit struct/variant
2831                                 // or constant pattern.
2832                                 self.record_use(ident, ValueNS, binding.unwrap(), ident.span);
2833                                 Some(PathResolution::new(def))
2834                             }
2835                             Def::StructCtor(..) | Def::VariantCtor(..) |
2836                             Def::Const(..) | Def::Static(..) => {
2837                                 // This is unambiguously a fresh binding, either syntactically
2838                                 // (e.g. `IDENT @ PAT` or `ref IDENT`) or because `IDENT` resolves
2839                                 // to something unusable as a pattern (e.g. constructor function),
2840                                 // but we still conservatively report an error, see
2841                                 // issues/33118#issuecomment-233962221 for one reason why.
2842                                 resolve_error(
2843                                     self,
2844                                     ident.span,
2845                                     ResolutionError::BindingShadowsSomethingUnacceptable(
2846                                         pat_src.descr(), ident.name, binding.unwrap())
2847                                 );
2848                                 None
2849                             }
2850                             Def::Fn(..) | Def::Err => {
2851                                 // These entities are explicitly allowed
2852                                 // to be shadowed by fresh bindings.
2853                                 None
2854                             }
2855                             def => {
2856                                 span_bug!(ident.span, "unexpected definition for an \
2857                                                        identifier in pattern: {:?}", def);
2858                             }
2859                         }
2860                     }).unwrap_or_else(|| {
2861                         self.fresh_binding(ident, pat.id, outer_pat_id, pat_src, bindings)
2862                     });
2863
2864                     self.record_def(pat.id, resolution);
2865                 }
2866
2867                 PatKind::TupleStruct(ref path, ..) => {
2868                     self.smart_resolve_path(pat.id, None, path, PathSource::TupleStruct);
2869                 }
2870
2871                 PatKind::Path(ref qself, ref path) => {
2872                     self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
2873                 }
2874
2875                 PatKind::Struct(ref path, ..) => {
2876                     self.smart_resolve_path(pat.id, None, path, PathSource::Struct);
2877                 }
2878
2879                 _ => {}
2880             }
2881             true
2882         });
2883
2884         visit::walk_pat(self, pat);
2885     }
2886
2887     // High-level and context dependent path resolution routine.
2888     // Resolves the path and records the resolution into definition map.
2889     // If resolution fails tries several techniques to find likely
2890     // resolution candidates, suggest imports or other help, and report
2891     // errors in user friendly way.
2892     fn smart_resolve_path(&mut self,
2893                           id: NodeId,
2894                           qself: Option<&QSelf>,
2895                           path: &Path,
2896                           source: PathSource)
2897                           -> PathResolution {
2898         self.smart_resolve_path_with_crate_lint(id, qself, path, source, CrateLint::SimplePath(id))
2899     }
2900
2901     /// A variant of `smart_resolve_path` where you also specify extra
2902     /// information about where the path came from; this extra info is
2903     /// sometimes needed for the lint that recommends rewriting
2904     /// absolute paths to `crate`, so that it knows how to frame the
2905     /// suggestion. If you are just resolving a path like `foo::bar`
2906     /// that appears...somewhere, though, then you just want
2907     /// `CrateLint::SimplePath`, which is what `smart_resolve_path`
2908     /// already provides.
2909     fn smart_resolve_path_with_crate_lint(
2910         &mut self,
2911         id: NodeId,
2912         qself: Option<&QSelf>,
2913         path: &Path,
2914         source: PathSource,
2915         crate_lint: CrateLint
2916     ) -> PathResolution {
2917         let segments = &path.segments.iter()
2918             .map(|seg| seg.ident)
2919             .collect::<Vec<_>>();
2920         self.smart_resolve_path_fragment(id, qself, segments, path.span, source, crate_lint)
2921     }
2922
2923     fn smart_resolve_path_fragment(&mut self,
2924                                    id: NodeId,
2925                                    qself: Option<&QSelf>,
2926                                    path: &[Ident],
2927                                    span: Span,
2928                                    source: PathSource,
2929                                    crate_lint: CrateLint)
2930                                    -> PathResolution {
2931         let ident_span = path.last().map_or(span, |ident| ident.span);
2932         let ns = source.namespace();
2933         let is_expected = &|def| source.is_expected(def);
2934         let is_enum_variant = &|def| if let Def::Variant(..) = def { true } else { false };
2935
2936         // Base error is amended with one short label and possibly some longer helps/notes.
2937         let report_errors = |this: &mut Self, def: Option<Def>| {
2938             // Make the base error.
2939             let expected = source.descr_expected();
2940             let path_str = names_to_string(path);
2941             let code = source.error_code(def.is_some());
2942             let (base_msg, fallback_label, base_span) = if let Some(def) = def {
2943                 (format!("expected {}, found {} `{}`", expected, def.kind_name(), path_str),
2944                  format!("not a {}", expected),
2945                  span)
2946             } else {
2947                 let item_str = path[path.len() - 1];
2948                 let item_span = path[path.len() - 1].span;
2949                 let (mod_prefix, mod_str) = if path.len() == 1 {
2950                     (String::new(), "this scope".to_string())
2951                 } else if path.len() == 2 && path[0].name == keywords::CrateRoot.name() {
2952                     (String::new(), "the crate root".to_string())
2953                 } else {
2954                     let mod_path = &path[..path.len() - 1];
2955                     let mod_prefix = match this.resolve_path(None, mod_path, Some(TypeNS),
2956                                                              false, span, CrateLint::No) {
2957                         PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
2958                             module.def(),
2959                         _ => None,
2960                     }.map_or(String::new(), |def| format!("{} ", def.kind_name()));
2961                     (mod_prefix, format!("`{}`", names_to_string(mod_path)))
2962                 };
2963                 (format!("cannot find {} `{}` in {}{}", expected, item_str, mod_prefix, mod_str),
2964                  format!("not found in {}", mod_str),
2965                  item_span)
2966             };
2967             let code = DiagnosticId::Error(code.into());
2968             let mut err = this.session.struct_span_err_with_code(base_span, &base_msg, code);
2969
2970             // Emit special messages for unresolved `Self` and `self`.
2971             if is_self_type(path, ns) {
2972                 __diagnostic_used!(E0411);
2973                 err.code(DiagnosticId::Error("E0411".into()));
2974                 let available_in = if this.session.features_untracked().self_in_typedefs {
2975                     "impls, traits, and type definitions"
2976                 } else {
2977                     "traits and impls"
2978                 };
2979                 err.span_label(span, format!("`Self` is only available in {}", available_in));
2980                 return (err, Vec::new());
2981             }
2982             if is_self_value(path, ns) {
2983                 __diagnostic_used!(E0424);
2984                 err.code(DiagnosticId::Error("E0424".into()));
2985                 err.span_label(span, format!("`self` value is only available in \
2986                                                methods with `self` parameter"));
2987                 return (err, Vec::new());
2988             }
2989
2990             // Try to lookup the name in more relaxed fashion for better error reporting.
2991             let ident = *path.last().unwrap();
2992             let candidates = this.lookup_import_candidates(ident.name, ns, is_expected);
2993             if candidates.is_empty() && is_expected(Def::Enum(DefId::local(CRATE_DEF_INDEX))) {
2994                 let enum_candidates =
2995                     this.lookup_import_candidates(ident.name, ns, is_enum_variant);
2996                 let mut enum_candidates = enum_candidates.iter()
2997                     .map(|suggestion| import_candidate_to_paths(&suggestion)).collect::<Vec<_>>();
2998                 enum_candidates.sort();
2999                 for (sp, variant_path, enum_path) in enum_candidates {
3000                     if sp.is_dummy() {
3001                         let msg = format!("there is an enum variant `{}`, \
3002                                         try using `{}`?",
3003                                         variant_path,
3004                                         enum_path);
3005                         err.help(&msg);
3006                     } else {
3007                         err.span_suggestion(span, "you can try using the variant's enum",
3008                                             enum_path);
3009                     }
3010                 }
3011             }
3012             if path.len() == 1 && this.self_type_is_available(span) {
3013                 if let Some(candidate) = this.lookup_assoc_candidate(ident, ns, is_expected) {
3014                     let self_is_available = this.self_value_is_available(path[0].span, span);
3015                     match candidate {
3016                         AssocSuggestion::Field => {
3017                             err.span_suggestion(span, "try",
3018                                                 format!("self.{}", path_str));
3019                             if !self_is_available {
3020                                 err.span_label(span, format!("`self` value is only available in \
3021                                                                methods with `self` parameter"));
3022                             }
3023                         }
3024                         AssocSuggestion::MethodWithSelf if self_is_available => {
3025                             err.span_suggestion(span, "try",
3026                                                 format!("self.{}", path_str));
3027                         }
3028                         AssocSuggestion::MethodWithSelf | AssocSuggestion::AssocItem => {
3029                             err.span_suggestion(span, "try",
3030                                                 format!("Self::{}", path_str));
3031                         }
3032                     }
3033                     return (err, candidates);
3034                 }
3035             }
3036
3037             let mut levenshtein_worked = false;
3038
3039             // Try Levenshtein.
3040             if let Some(candidate) = this.lookup_typo_candidate(path, ns, is_expected, span) {
3041                 err.span_label(ident_span, format!("did you mean `{}`?", candidate));
3042                 levenshtein_worked = true;
3043             }
3044
3045             // Try context dependent help if relaxed lookup didn't work.
3046             if let Some(def) = def {
3047                 match (def, source) {
3048                     (Def::Macro(..), _) => {
3049                         err.span_label(span, format!("did you mean `{}!(...)`?", path_str));
3050                         return (err, candidates);
3051                     }
3052                     (Def::TyAlias(..), PathSource::Trait(_)) => {
3053                         err.span_label(span, "type aliases cannot be used for traits");
3054                         return (err, candidates);
3055                     }
3056                     (Def::Mod(..), PathSource::Expr(Some(parent))) => match parent.node {
3057                         ExprKind::Field(_, ident) => {
3058                             err.span_label(parent.span, format!("did you mean `{}::{}`?",
3059                                                                  path_str, ident));
3060                             return (err, candidates);
3061                         }
3062                         ExprKind::MethodCall(ref segment, ..) => {
3063                             err.span_label(parent.span, format!("did you mean `{}::{}(...)`?",
3064                                                                  path_str, segment.ident));
3065                             return (err, candidates);
3066                         }
3067                         _ => {}
3068                     },
3069                     (Def::Enum(..), PathSource::TupleStruct)
3070                         | (Def::Enum(..), PathSource::Expr(..))  => {
3071                         if let Some(variants) = this.collect_enum_variants(def) {
3072                             err.note(&format!("did you mean to use one \
3073                                                of the following variants?\n{}",
3074                                 variants.iter()
3075                                     .map(|suggestion| path_names_to_string(suggestion))
3076                                     .map(|suggestion| format!("- `{}`", suggestion))
3077                                     .collect::<Vec<_>>()
3078                                     .join("\n")));
3079
3080                         } else {
3081                             err.note("did you mean to use one of the enum's variants?");
3082                         }
3083                         return (err, candidates);
3084                     },
3085                     (Def::Struct(def_id), _) if ns == ValueNS => {
3086                         if let Some((ctor_def, ctor_vis))
3087                                 = this.struct_constructors.get(&def_id).cloned() {
3088                             let accessible_ctor = this.is_accessible(ctor_vis);
3089                             if is_expected(ctor_def) && !accessible_ctor {
3090                                 err.span_label(span, format!("constructor is not visible \
3091                                                               here due to private fields"));
3092                             }
3093                         } else {
3094                             // HACK(estebank): find a better way to figure out that this was a
3095                             // parser issue where a struct literal is being used on an expression
3096                             // where a brace being opened means a block is being started. Look
3097                             // ahead for the next text to see if `span` is followed by a `{`.
3098                             let cm = this.session.source_map();
3099                             let mut sp = span;
3100                             loop {
3101                                 sp = cm.next_point(sp);
3102                                 match cm.span_to_snippet(sp) {
3103                                     Ok(ref snippet) => {
3104                                         if snippet.chars().any(|c| { !c.is_whitespace() }) {
3105                                             break;
3106                                         }
3107                                     }
3108                                     _ => break,
3109                                 }
3110                             }
3111                             let followed_by_brace = match cm.span_to_snippet(sp) {
3112                                 Ok(ref snippet) if snippet == "{" => true,
3113                                 _ => false,
3114                             };
3115                             if let (PathSource::Expr(None), true) = (source, followed_by_brace) {
3116                                 err.span_label(
3117                                     span,
3118                                     format!("did you mean `({} {{ /* fields */ }})`?", path_str),
3119                                 );
3120                             } else {
3121                                 err.span_label(
3122                                     span,
3123                                     format!("did you mean `{} {{ /* fields */ }}`?", path_str),
3124                                 );
3125                             }
3126                         }
3127                         return (err, candidates);
3128                     }
3129                     (Def::Union(..), _) |
3130                     (Def::Variant(..), _) |
3131                     (Def::VariantCtor(_, CtorKind::Fictive), _) if ns == ValueNS => {
3132                         err.span_label(span, format!("did you mean `{} {{ /* fields */ }}`?",
3133                                                      path_str));
3134                         return (err, candidates);
3135                     }
3136                     (Def::SelfTy(..), _) if ns == ValueNS => {
3137                         err.span_label(span, fallback_label);
3138                         err.note("can't use `Self` as a constructor, you must use the \
3139                                   implemented struct");
3140                         return (err, candidates);
3141                     }
3142                     (Def::TyAlias(_), _) | (Def::AssociatedTy(..), _) if ns == ValueNS => {
3143                         err.note("can't use a type alias as a constructor");
3144                         return (err, candidates);
3145                     }
3146                     _ => {}
3147                 }
3148             }
3149
3150             // Fallback label.
3151             if !levenshtein_worked {
3152                 err.span_label(base_span, fallback_label);
3153                 this.type_ascription_suggestion(&mut err, base_span);
3154             }
3155             (err, candidates)
3156         };
3157         let report_errors = |this: &mut Self, def: Option<Def>| {
3158             let (err, candidates) = report_errors(this, def);
3159             let def_id = this.current_module.normal_ancestor_id;
3160             let node_id = this.definitions.as_local_node_id(def_id).unwrap();
3161             let better = def.is_some();
3162             this.use_injections.push(UseError { err, candidates, node_id, better });
3163             err_path_resolution()
3164         };
3165
3166         let resolution = match self.resolve_qpath_anywhere(
3167             id,
3168             qself,
3169             path,
3170             ns,
3171             span,
3172             source.defer_to_typeck(),
3173             source.global_by_default(),
3174             crate_lint,
3175         ) {
3176             Some(resolution) if resolution.unresolved_segments() == 0 => {
3177                 if is_expected(resolution.base_def()) || resolution.base_def() == Def::Err {
3178                     resolution
3179                 } else {
3180                     // Add a temporary hack to smooth the transition to new struct ctor
3181                     // visibility rules. See #38932 for more details.
3182                     let mut res = None;
3183                     if let Def::Struct(def_id) = resolution.base_def() {
3184                         if let Some((ctor_def, ctor_vis))
3185                                 = self.struct_constructors.get(&def_id).cloned() {
3186                             if is_expected(ctor_def) && self.is_accessible(ctor_vis) {
3187                                 let lint = lint::builtin::LEGACY_CONSTRUCTOR_VISIBILITY;
3188                                 self.session.buffer_lint(lint, id, span,
3189                                     "private struct constructors are not usable through \
3190                                      re-exports in outer modules",
3191                                 );
3192                                 res = Some(PathResolution::new(ctor_def));
3193                             }
3194                         }
3195                     }
3196
3197                     res.unwrap_or_else(|| report_errors(self, Some(resolution.base_def())))
3198                 }
3199             }
3200             Some(resolution) if source.defer_to_typeck() => {
3201                 // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
3202                 // or `<T>::A::B`. If `B` should be resolved in value namespace then
3203                 // it needs to be added to the trait map.
3204                 if ns == ValueNS {
3205                     let item_name = *path.last().unwrap();
3206                     let traits = self.get_traits_containing_item(item_name, ns);
3207                     self.trait_map.insert(id, traits);
3208                 }
3209                 resolution
3210             }
3211             _ => report_errors(self, None)
3212         };
3213
3214         if let PathSource::TraitItem(..) = source {} else {
3215             // Avoid recording definition of `A::B` in `<T as A>::B::C`.
3216             self.record_def(id, resolution);
3217         }
3218         resolution
3219     }
3220
3221     fn type_ascription_suggestion(&self,
3222                                   err: &mut DiagnosticBuilder,
3223                                   base_span: Span) {
3224         debug!("type_ascription_suggetion {:?}", base_span);
3225         let cm = self.session.source_map();
3226         debug!("self.current_type_ascription {:?}", self.current_type_ascription);
3227         if let Some(sp) = self.current_type_ascription.last() {
3228             let mut sp = *sp;
3229             loop {  // try to find the `:`, bail on first non-':'/non-whitespace
3230                 sp = cm.next_point(sp);
3231                 if let Ok(snippet) = cm.span_to_snippet(sp.to(cm.next_point(sp))) {
3232                     debug!("snippet {:?}", snippet);
3233                     let line_sp = cm.lookup_char_pos(sp.hi()).line;
3234                     let line_base_sp = cm.lookup_char_pos(base_span.lo()).line;
3235                     debug!("{:?} {:?}", line_sp, line_base_sp);
3236                     if snippet == ":" {
3237                         err.span_label(base_span,
3238                                        "expecting a type here because of type ascription");
3239                         if line_sp != line_base_sp {
3240                             err.span_suggestion_short(sp,
3241                                                       "did you mean to use `;` here instead?",
3242                                                       ";".to_string());
3243                         }
3244                         break;
3245                     } else if snippet.trim().len() != 0  {
3246                         debug!("tried to find type ascription `:` token, couldn't find it");
3247                         break;
3248                     }
3249                 } else {
3250                     break;
3251                 }
3252             }
3253         }
3254     }
3255
3256     fn self_type_is_available(&mut self, span: Span) -> bool {
3257         let binding = self.resolve_ident_in_lexical_scope(keywords::SelfType.ident(),
3258                                                           TypeNS, None, span);
3259         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3260     }
3261
3262     fn self_value_is_available(&mut self, self_span: Span, path_span: Span) -> bool {
3263         let ident = Ident::new(keywords::SelfValue.name(), self_span);
3264         let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, None, path_span);
3265         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3266     }
3267
3268     // Resolve in alternative namespaces if resolution in the primary namespace fails.
3269     fn resolve_qpath_anywhere(&mut self,
3270                               id: NodeId,
3271                               qself: Option<&QSelf>,
3272                               path: &[Ident],
3273                               primary_ns: Namespace,
3274                               span: Span,
3275                               defer_to_typeck: bool,
3276                               global_by_default: bool,
3277                               crate_lint: CrateLint)
3278                               -> Option<PathResolution> {
3279         let mut fin_res = None;
3280         // FIXME: can't resolve paths in macro namespace yet, macros are
3281         // processed by the little special hack below.
3282         for (i, ns) in [primary_ns, TypeNS, ValueNS, /*MacroNS*/].iter().cloned().enumerate() {
3283             if i == 0 || ns != primary_ns {
3284                 match self.resolve_qpath(id, qself, path, ns, span, global_by_default, crate_lint) {
3285                     // If defer_to_typeck, then resolution > no resolution,
3286                     // otherwise full resolution > partial resolution > no resolution.
3287                     Some(res) if res.unresolved_segments() == 0 || defer_to_typeck =>
3288                         return Some(res),
3289                     res => if fin_res.is_none() { fin_res = res },
3290                 };
3291             }
3292         }
3293         let is_global = self.macro_prelude.get(&path[0].name).cloned()
3294             .map(|binding| binding.get_macro(self).kind() == MacroKind::Bang).unwrap_or(false);
3295         if primary_ns != MacroNS && (is_global ||
3296                                      self.macro_names.contains(&path[0].modern())) {
3297             // Return some dummy definition, it's enough for error reporting.
3298             return Some(
3299                 PathResolution::new(Def::Macro(DefId::local(CRATE_DEF_INDEX), MacroKind::Bang))
3300             );
3301         }
3302         fin_res
3303     }
3304
3305     /// Handles paths that may refer to associated items.
3306     fn resolve_qpath(&mut self,
3307                      id: NodeId,
3308                      qself: Option<&QSelf>,
3309                      path: &[Ident],
3310                      ns: Namespace,
3311                      span: Span,
3312                      global_by_default: bool,
3313                      crate_lint: CrateLint)
3314                      -> Option<PathResolution> {
3315         debug!(
3316             "resolve_qpath(id={:?}, qself={:?}, path={:?}, \
3317              ns={:?}, span={:?}, global_by_default={:?})",
3318             id,
3319             qself,
3320             path,
3321             ns,
3322             span,
3323             global_by_default,
3324         );
3325
3326         if let Some(qself) = qself {
3327             if qself.position == 0 {
3328                 // This is a case like `<T>::B`, where there is no
3329                 // trait to resolve.  In that case, we leave the `B`
3330                 // segment to be resolved by type-check.
3331                 return Some(PathResolution::with_unresolved_segments(
3332                     Def::Mod(DefId::local(CRATE_DEF_INDEX)), path.len()
3333                 ));
3334             }
3335
3336             // Make sure `A::B` in `<T as A::B>::C` is a trait item.
3337             //
3338             // Currently, `path` names the full item (`A::B::C`, in
3339             // our example).  so we extract the prefix of that that is
3340             // the trait (the slice upto and including
3341             // `qself.position`). And then we recursively resolve that,
3342             // but with `qself` set to `None`.
3343             //
3344             // However, setting `qself` to none (but not changing the
3345             // span) loses the information about where this path
3346             // *actually* appears, so for the purposes of the crate
3347             // lint we pass along information that this is the trait
3348             // name from a fully qualified path, and this also
3349             // contains the full span (the `CrateLint::QPathTrait`).
3350             let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
3351             let res = self.smart_resolve_path_fragment(
3352                 id,
3353                 None,
3354                 &path[..qself.position + 1],
3355                 span,
3356                 PathSource::TraitItem(ns),
3357                 CrateLint::QPathTrait {
3358                     qpath_id: id,
3359                     qpath_span: qself.path_span,
3360                 },
3361             );
3362
3363             // The remaining segments (the `C` in our example) will
3364             // have to be resolved by type-check, since that requires doing
3365             // trait resolution.
3366             return Some(PathResolution::with_unresolved_segments(
3367                 res.base_def(), res.unresolved_segments() + path.len() - qself.position - 1
3368             ));
3369         }
3370
3371         let result = match self.resolve_path(
3372             None,
3373             &path,
3374             Some(ns),
3375             true,
3376             span,
3377             crate_lint,
3378         ) {
3379             PathResult::NonModule(path_res) => path_res,
3380             PathResult::Module(ModuleOrUniformRoot::Module(module)) if !module.is_normal() => {
3381                 PathResolution::new(module.def().unwrap())
3382             }
3383             // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
3384             // don't report an error right away, but try to fallback to a primitive type.
3385             // So, we are still able to successfully resolve something like
3386             //
3387             // use std::u8; // bring module u8 in scope
3388             // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
3389             //     u8::max_value() // OK, resolves to associated function <u8>::max_value,
3390             //                     // not to non-existent std::u8::max_value
3391             // }
3392             //
3393             // Such behavior is required for backward compatibility.
3394             // The same fallback is used when `a` resolves to nothing.
3395             PathResult::Module(ModuleOrUniformRoot::Module(_)) |
3396             PathResult::Failed(..)
3397                     if (ns == TypeNS || path.len() > 1) &&
3398                        self.primitive_type_table.primitive_types
3399                            .contains_key(&path[0].name) => {
3400                 let prim = self.primitive_type_table.primitive_types[&path[0].name];
3401                 PathResolution::with_unresolved_segments(Def::PrimTy(prim), path.len() - 1)
3402             }
3403             PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3404                 PathResolution::new(module.def().unwrap()),
3405             PathResult::Failed(span, msg, false) => {
3406                 resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
3407                 err_path_resolution()
3408             }
3409             PathResult::Module(ModuleOrUniformRoot::UniformRoot(_)) |
3410             PathResult::Failed(..) => return None,
3411             PathResult::Indeterminate => bug!("indetermined path result in resolve_qpath"),
3412         };
3413
3414         if path.len() > 1 && !global_by_default && result.base_def() != Def::Err &&
3415            path[0].name != keywords::CrateRoot.name() &&
3416            path[0].name != keywords::DollarCrate.name() {
3417             let unqualified_result = {
3418                 match self.resolve_path(
3419                     None,
3420                     &[*path.last().unwrap()],
3421                     Some(ns),
3422                     false,
3423                     span,
3424                     CrateLint::No,
3425                 ) {
3426                     PathResult::NonModule(path_res) => path_res.base_def(),
3427                     PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3428                         module.def().unwrap(),
3429                     _ => return Some(result),
3430                 }
3431             };
3432             if result.base_def() == unqualified_result {
3433                 let lint = lint::builtin::UNUSED_QUALIFICATIONS;
3434                 self.session.buffer_lint(lint, id, span, "unnecessary qualification")
3435             }
3436         }
3437
3438         Some(result)
3439     }
3440
3441     fn resolve_path(
3442         &mut self,
3443         base_module: Option<ModuleOrUniformRoot<'a>>,
3444         path: &[Ident],
3445         opt_ns: Option<Namespace>, // `None` indicates a module path
3446         record_used: bool,
3447         path_span: Span,
3448         crate_lint: CrateLint,
3449     ) -> PathResult<'a> {
3450         let mut module = base_module;
3451         let mut allow_super = true;
3452         let mut second_binding = None;
3453
3454         debug!(
3455             "resolve_path(path={:?}, opt_ns={:?}, record_used={:?}, \
3456              path_span={:?}, crate_lint={:?})",
3457             path,
3458             opt_ns,
3459             record_used,
3460             path_span,
3461             crate_lint,
3462         );
3463
3464         for (i, &ident) in path.iter().enumerate() {
3465             debug!("resolve_path ident {} {:?}", i, ident);
3466             let is_last = i == path.len() - 1;
3467             let ns = if is_last { opt_ns.unwrap_or(TypeNS) } else { TypeNS };
3468             let name = ident.name;
3469
3470             allow_super &= ns == TypeNS &&
3471                 (name == keywords::SelfValue.name() ||
3472                  name == keywords::Super.name());
3473
3474             if ns == TypeNS {
3475                 if allow_super && name == keywords::Super.name() {
3476                     let mut ctxt = ident.span.ctxt().modern();
3477                     let self_module = match i {
3478                         0 => Some(self.resolve_self(&mut ctxt, self.current_module)),
3479                         _ => match module {
3480                             Some(ModuleOrUniformRoot::Module(module)) => Some(module),
3481                             _ => None,
3482                         },
3483                     };
3484                     if let Some(self_module) = self_module {
3485                         if let Some(parent) = self_module.parent {
3486                             module = Some(ModuleOrUniformRoot::Module(
3487                                 self.resolve_self(&mut ctxt, parent)));
3488                             continue;
3489                         }
3490                     }
3491                     let msg = "There are too many initial `super`s.".to_string();
3492                     return PathResult::Failed(ident.span, msg, false);
3493                 }
3494                 if i == 0 {
3495                     if name == keywords::SelfValue.name() {
3496                         let mut ctxt = ident.span.ctxt().modern();
3497                         module = Some(ModuleOrUniformRoot::Module(
3498                             self.resolve_self(&mut ctxt, self.current_module)));
3499                         continue;
3500                     }
3501                     if name == keywords::Extern.name() ||
3502                        name == keywords::CrateRoot.name() &&
3503                        self.session.features_untracked().extern_absolute_paths &&
3504                        self.session.rust_2018() {
3505                         module = Some(ModuleOrUniformRoot::UniformRoot(name));
3506                         continue;
3507                     }
3508                     if name == keywords::CrateRoot.name() ||
3509                        name == keywords::Crate.name() ||
3510                        name == keywords::DollarCrate.name() {
3511                         // `::a::b`, `crate::a::b` or `$crate::a::b`
3512                         module = Some(ModuleOrUniformRoot::Module(
3513                             self.resolve_crate_root(ident)));
3514                         continue;
3515                     }
3516                 }
3517             }
3518
3519             // Report special messages for path segment keywords in wrong positions.
3520             if ident.is_path_segment_keyword() && i != 0 {
3521                 let name_str = if name == keywords::CrateRoot.name() {
3522                     "crate root".to_string()
3523                 } else {
3524                     format!("`{}`", name)
3525                 };
3526                 let msg = if i == 1 && path[0].name == keywords::CrateRoot.name() {
3527                     format!("global paths cannot start with {}", name_str)
3528                 } else {
3529                     format!("{} in paths can only be used in start position", name_str)
3530                 };
3531                 return PathResult::Failed(ident.span, msg, false);
3532             }
3533
3534             let binding = if let Some(module) = module {
3535                 self.resolve_ident_in_module(module, ident, ns, record_used, path_span)
3536             } else if opt_ns == Some(MacroNS) {
3537                 assert!(ns == TypeNS);
3538                 self.resolve_lexical_macro_path_segment(ident, ns, record_used, record_used,
3539                                                         false, path_span).map(|(b, _)| b)
3540             } else {
3541                 let record_used_id =
3542                     if record_used { crate_lint.node_id().or(Some(CRATE_NODE_ID)) } else { None };
3543                 match self.resolve_ident_in_lexical_scope(ident, ns, record_used_id, path_span) {
3544                     // we found a locally-imported or available item/module
3545                     Some(LexicalScopeBinding::Item(binding)) => Ok(binding),
3546                     // we found a local variable or type param
3547                     Some(LexicalScopeBinding::Def(def))
3548                             if opt_ns == Some(TypeNS) || opt_ns == Some(ValueNS) => {
3549                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3550                             def, path.len() - 1
3551                         ));
3552                     }
3553                     _ => Err(if record_used { Determined } else { Undetermined }),
3554                 }
3555             };
3556
3557             match binding {
3558                 Ok(binding) => {
3559                     if i == 1 {
3560                         second_binding = Some(binding);
3561                     }
3562                     let def = binding.def();
3563                     let maybe_assoc = opt_ns != Some(MacroNS) && PathSource::Type.is_expected(def);
3564                     if let Some(next_module) = binding.module() {
3565                         module = Some(ModuleOrUniformRoot::Module(next_module));
3566                     } else if def == Def::ToolMod && i + 1 != path.len() {
3567                         let def = Def::NonMacroAttr(NonMacroAttrKind::Tool);
3568                         return PathResult::NonModule(PathResolution::new(def));
3569                     } else if def == Def::Err {
3570                         return PathResult::NonModule(err_path_resolution());
3571                     } else if opt_ns.is_some() && (is_last || maybe_assoc) {
3572                         self.lint_if_path_starts_with_module(
3573                             crate_lint,
3574                             path,
3575                             path_span,
3576                             second_binding,
3577                         );
3578                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3579                             def, path.len() - i - 1
3580                         ));
3581                     } else {
3582                         return PathResult::Failed(ident.span,
3583                                                   format!("Not a module `{}`", ident),
3584                                                   is_last);
3585                     }
3586                 }
3587                 Err(Undetermined) => return PathResult::Indeterminate,
3588                 Err(Determined) => {
3589                     if let Some(ModuleOrUniformRoot::Module(module)) = module {
3590                         if opt_ns.is_some() && !module.is_normal() {
3591                             return PathResult::NonModule(PathResolution::with_unresolved_segments(
3592                                 module.def().unwrap(), path.len() - i
3593                             ));
3594                         }
3595                     }
3596                     let module_def = match module {
3597                         Some(ModuleOrUniformRoot::Module(module)) => module.def(),
3598                         _ => None,
3599                     };
3600                     let msg = if module_def == self.graph_root.def() {
3601                         let is_mod = |def| match def { Def::Mod(..) => true, _ => false };
3602                         let mut candidates =
3603                             self.lookup_import_candidates(name, TypeNS, is_mod);
3604                         candidates.sort_by_cached_key(|c| {
3605                             (c.path.segments.len(), c.path.to_string())
3606                         });
3607                         if let Some(candidate) = candidates.get(0) {
3608                             format!("Did you mean `{}`?", candidate.path)
3609                         } else {
3610                             format!("Maybe a missing `extern crate {};`?", ident)
3611                         }
3612                     } else if i == 0 {
3613                         format!("Use of undeclared type or module `{}`", ident)
3614                     } else {
3615                         format!("Could not find `{}` in `{}`", ident, path[i - 1])
3616                     };
3617                     return PathResult::Failed(ident.span, msg, is_last);
3618                 }
3619             }
3620         }
3621
3622         self.lint_if_path_starts_with_module(crate_lint, path, path_span, second_binding);
3623
3624         PathResult::Module(module.unwrap_or_else(|| {
3625             span_bug!(path_span, "resolve_path: empty(?) path {:?} has no module", path);
3626         }))
3627
3628     }
3629
3630     fn lint_if_path_starts_with_module(
3631         &self,
3632         crate_lint: CrateLint,
3633         path: &[Ident],
3634         path_span: Span,
3635         second_binding: Option<&NameBinding>,
3636     ) {
3637         // In the 2018 edition this lint is a hard error, so nothing to do
3638         if self.session.rust_2018() {
3639             return
3640         }
3641
3642         // In the 2015 edition there's no use in emitting lints unless the
3643         // crate's already enabled the feature that we're going to suggest
3644         if !self.session.features_untracked().crate_in_paths {
3645             return
3646         }
3647
3648         let (diag_id, diag_span) = match crate_lint {
3649             CrateLint::No => return,
3650             CrateLint::SimplePath(id) => (id, path_span),
3651             CrateLint::UsePath { root_id, root_span } => (root_id, root_span),
3652             CrateLint::QPathTrait { qpath_id, qpath_span } => (qpath_id, qpath_span),
3653         };
3654
3655         let first_name = match path.get(0) {
3656             Some(ident) => ident.name,
3657             None => return,
3658         };
3659
3660         // We're only interested in `use` paths which should start with
3661         // `{{root}}` or `extern` currently.
3662         if first_name != keywords::Extern.name() && first_name != keywords::CrateRoot.name() {
3663             return
3664         }
3665
3666         match path.get(1) {
3667             // If this import looks like `crate::...` it's already good
3668             Some(ident) if ident.name == keywords::Crate.name() => return,
3669             // Otherwise go below to see if it's an extern crate
3670             Some(_) => {}
3671             // If the path has length one (and it's `CrateRoot` most likely)
3672             // then we don't know whether we're gonna be importing a crate or an
3673             // item in our crate. Defer this lint to elsewhere
3674             None => return,
3675         }
3676
3677         // If the first element of our path was actually resolved to an
3678         // `ExternCrate` (also used for `crate::...`) then no need to issue a
3679         // warning, this looks all good!
3680         if let Some(binding) = second_binding {
3681             if let NameBindingKind::Import { directive: d, .. } = binding.kind {
3682                 // Careful: we still want to rewrite paths from
3683                 // renamed extern crates.
3684                 if let ImportDirectiveSubclass::ExternCrate(None) = d.subclass {
3685                     return
3686                 }
3687             }
3688         }
3689
3690         let diag = lint::builtin::BuiltinLintDiagnostics
3691             ::AbsPathWithModule(diag_span);
3692         self.session.buffer_lint_with_diagnostic(
3693             lint::builtin::ABSOLUTE_PATHS_NOT_STARTING_WITH_CRATE,
3694             diag_id, diag_span,
3695             "absolute paths must start with `self`, `super`, \
3696             `crate`, or an external crate name in the 2018 edition",
3697             diag);
3698     }
3699
3700     // Resolve a local definition, potentially adjusting for closures.
3701     fn adjust_local_def(&mut self,
3702                         ns: Namespace,
3703                         rib_index: usize,
3704                         mut def: Def,
3705                         record_used: bool,
3706                         span: Span) -> Def {
3707         let ribs = &self.ribs[ns][rib_index + 1..];
3708
3709         // An invalid forward use of a type parameter from a previous default.
3710         if let ForwardTyParamBanRibKind = self.ribs[ns][rib_index].kind {
3711             if record_used {
3712                 resolve_error(self, span, ResolutionError::ForwardDeclaredTyParam);
3713             }
3714             assert_eq!(def, Def::Err);
3715             return Def::Err;
3716         }
3717
3718         match def {
3719             Def::Upvar(..) => {
3720                 span_bug!(span, "unexpected {:?} in bindings", def)
3721             }
3722             Def::Local(node_id) => {
3723                 for rib in ribs {
3724                     match rib.kind {
3725                         NormalRibKind | ModuleRibKind(..) | MacroDefinition(..) |
3726                         ForwardTyParamBanRibKind => {
3727                             // Nothing to do. Continue.
3728                         }
3729                         ClosureRibKind(function_id) => {
3730                             let prev_def = def;
3731
3732                             let seen = self.freevars_seen
3733                                            .entry(function_id)
3734                                            .or_default();
3735                             if let Some(&index) = seen.get(&node_id) {
3736                                 def = Def::Upvar(node_id, index, function_id);
3737                                 continue;
3738                             }
3739                             let vec = self.freevars
3740                                           .entry(function_id)
3741                                           .or_default();
3742                             let depth = vec.len();
3743                             def = Def::Upvar(node_id, depth, function_id);
3744
3745                             if record_used {
3746                                 vec.push(Freevar {
3747                                     def: prev_def,
3748                                     span,
3749                                 });
3750                                 seen.insert(node_id, depth);
3751                             }
3752                         }
3753                         ItemRibKind | TraitOrImplItemRibKind => {
3754                             // This was an attempt to access an upvar inside a
3755                             // named function item. This is not allowed, so we
3756                             // report an error.
3757                             if record_used {
3758                                 resolve_error(self, span,
3759                                         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem);
3760                             }
3761                             return Def::Err;
3762                         }
3763                         ConstantItemRibKind => {
3764                             // Still doesn't deal with upvars
3765                             if record_used {
3766                                 resolve_error(self, span,
3767                                         ResolutionError::AttemptToUseNonConstantValueInConstant);
3768                             }
3769                             return Def::Err;
3770                         }
3771                     }
3772                 }
3773             }
3774             Def::TyParam(..) | Def::SelfTy(..) => {
3775                 for rib in ribs {
3776                     match rib.kind {
3777                         NormalRibKind | TraitOrImplItemRibKind | ClosureRibKind(..) |
3778                         ModuleRibKind(..) | MacroDefinition(..) | ForwardTyParamBanRibKind |
3779                         ConstantItemRibKind => {
3780                             // Nothing to do. Continue.
3781                         }
3782                         ItemRibKind => {
3783                             // This was an attempt to use a type parameter outside
3784                             // its scope.
3785                             if record_used {
3786                                 resolve_error(self, span,
3787                                     ResolutionError::TypeParametersFromOuterFunction(def));
3788                             }
3789                             return Def::Err;
3790                         }
3791                     }
3792                 }
3793             }
3794             _ => {}
3795         }
3796         return def;
3797     }
3798
3799     fn lookup_assoc_candidate<FilterFn>(&mut self,
3800                                         ident: Ident,
3801                                         ns: Namespace,
3802                                         filter_fn: FilterFn)
3803                                         -> Option<AssocSuggestion>
3804         where FilterFn: Fn(Def) -> bool
3805     {
3806         fn extract_node_id(t: &Ty) -> Option<NodeId> {
3807             match t.node {
3808                 TyKind::Path(None, _) => Some(t.id),
3809                 TyKind::Rptr(_, ref mut_ty) => extract_node_id(&mut_ty.ty),
3810                 // This doesn't handle the remaining `Ty` variants as they are not
3811                 // that commonly the self_type, it might be interesting to provide
3812                 // support for those in future.
3813                 _ => None,
3814             }
3815         }
3816
3817         // Fields are generally expected in the same contexts as locals.
3818         if filter_fn(Def::Local(ast::DUMMY_NODE_ID)) {
3819             if let Some(node_id) = self.current_self_type.as_ref().and_then(extract_node_id) {
3820                 // Look for a field with the same name in the current self_type.
3821                 if let Some(resolution) = self.def_map.get(&node_id) {
3822                     match resolution.base_def() {
3823                         Def::Struct(did) | Def::Union(did)
3824                                 if resolution.unresolved_segments() == 0 => {
3825                             if let Some(field_names) = self.field_names.get(&did) {
3826                                 if field_names.iter().any(|&field_name| ident.name == field_name) {
3827                                     return Some(AssocSuggestion::Field);
3828                                 }
3829                             }
3830                         }
3831                         _ => {}
3832                     }
3833                 }
3834             }
3835         }
3836
3837         // Look for associated items in the current trait.
3838         if let Some((module, _)) = self.current_trait_ref {
3839             if let Ok(binding) = self.resolve_ident_in_module(
3840                     ModuleOrUniformRoot::Module(module),
3841                     ident,
3842                     ns,
3843                     false,
3844                     module.span,
3845                 ) {
3846                 let def = binding.def();
3847                 if filter_fn(def) {
3848                     return Some(if self.has_self.contains(&def.def_id()) {
3849                         AssocSuggestion::MethodWithSelf
3850                     } else {
3851                         AssocSuggestion::AssocItem
3852                     });
3853                 }
3854             }
3855         }
3856
3857         None
3858     }
3859
3860     fn lookup_typo_candidate<FilterFn>(&mut self,
3861                                        path: &[Ident],
3862                                        ns: Namespace,
3863                                        filter_fn: FilterFn,
3864                                        span: Span)
3865                                        -> Option<Symbol>
3866         where FilterFn: Fn(Def) -> bool
3867     {
3868         let add_module_candidates = |module: Module, names: &mut Vec<Name>| {
3869             for (&(ident, _), resolution) in module.resolutions.borrow().iter() {
3870                 if let Some(binding) = resolution.borrow().binding {
3871                     if filter_fn(binding.def()) {
3872                         names.push(ident.name);
3873                     }
3874                 }
3875             }
3876         };
3877
3878         let mut names = Vec::new();
3879         if path.len() == 1 {
3880             // Search in lexical scope.
3881             // Walk backwards up the ribs in scope and collect candidates.
3882             for rib in self.ribs[ns].iter().rev() {
3883                 // Locals and type parameters
3884                 for (ident, def) in &rib.bindings {
3885                     if filter_fn(*def) {
3886                         names.push(ident.name);
3887                     }
3888                 }
3889                 // Items in scope
3890                 if let ModuleRibKind(module) = rib.kind {
3891                     // Items from this module
3892                     add_module_candidates(module, &mut names);
3893
3894                     if let ModuleKind::Block(..) = module.kind {
3895                         // We can see through blocks
3896                     } else {
3897                         // Items from the prelude
3898                         if !module.no_implicit_prelude {
3899                             names.extend(self.extern_prelude.iter().cloned());
3900                             if let Some(prelude) = self.prelude {
3901                                 add_module_candidates(prelude, &mut names);
3902                             }
3903                         }
3904                         break;
3905                     }
3906                 }
3907             }
3908             // Add primitive types to the mix
3909             if filter_fn(Def::PrimTy(Bool)) {
3910                 names.extend(
3911                     self.primitive_type_table.primitive_types.iter().map(|(name, _)| name)
3912                 )
3913             }
3914         } else {
3915             // Search in module.
3916             let mod_path = &path[..path.len() - 1];
3917             if let PathResult::Module(module) = self.resolve_path(None, mod_path, Some(TypeNS),
3918                                                                   false, span, CrateLint::No) {
3919                 if let ModuleOrUniformRoot::Module(module) = module {
3920                     add_module_candidates(module, &mut names);
3921                 }
3922             }
3923         }
3924
3925         let name = path[path.len() - 1].name;
3926         // Make sure error reporting is deterministic.
3927         names.sort_by_cached_key(|name| name.as_str());
3928         match find_best_match_for_name(names.iter(), &name.as_str(), None) {
3929             Some(found) if found != name => Some(found),
3930             _ => None,
3931         }
3932     }
3933
3934     fn with_resolved_label<F>(&mut self, label: Option<Label>, id: NodeId, f: F)
3935         where F: FnOnce(&mut Resolver)
3936     {
3937         if let Some(label) = label {
3938             self.unused_labels.insert(id, label.ident.span);
3939             let def = Def::Label(id);
3940             self.with_label_rib(|this| {
3941                 let ident = label.ident.modern_and_legacy();
3942                 this.label_ribs.last_mut().unwrap().bindings.insert(ident, def);
3943                 f(this);
3944             });
3945         } else {
3946             f(self);
3947         }
3948     }
3949
3950     fn resolve_labeled_block(&mut self, label: Option<Label>, id: NodeId, block: &Block) {
3951         self.with_resolved_label(label, id, |this| this.visit_block(block));
3952     }
3953
3954     fn resolve_expr(&mut self, expr: &Expr, parent: Option<&Expr>) {
3955         // First, record candidate traits for this expression if it could
3956         // result in the invocation of a method call.
3957
3958         self.record_candidate_traits_for_expr_if_necessary(expr);
3959
3960         // Next, resolve the node.
3961         match expr.node {
3962             ExprKind::Path(ref qself, ref path) => {
3963                 self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
3964                 visit::walk_expr(self, expr);
3965             }
3966
3967             ExprKind::Struct(ref path, ..) => {
3968                 self.smart_resolve_path(expr.id, None, path, PathSource::Struct);
3969                 visit::walk_expr(self, expr);
3970             }
3971
3972             ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
3973                 let def = self.search_label(label.ident, |rib, ident| {
3974                     rib.bindings.get(&ident.modern_and_legacy()).cloned()
3975                 });
3976                 match def {
3977                     None => {
3978                         // Search again for close matches...
3979                         // Picks the first label that is "close enough", which is not necessarily
3980                         // the closest match
3981                         let close_match = self.search_label(label.ident, |rib, ident| {
3982                             let names = rib.bindings.iter().map(|(id, _)| &id.name);
3983                             find_best_match_for_name(names, &*ident.as_str(), None)
3984                         });
3985                         self.record_def(expr.id, err_path_resolution());
3986                         resolve_error(self,
3987                                       label.ident.span,
3988                                       ResolutionError::UndeclaredLabel(&label.ident.as_str(),
3989                                                                        close_match));
3990                     }
3991                     Some(Def::Label(id)) => {
3992                         // Since this def is a label, it is never read.
3993                         self.record_def(expr.id, PathResolution::new(Def::Label(id)));
3994                         self.unused_labels.remove(&id);
3995                     }
3996                     Some(_) => {
3997                         span_bug!(expr.span, "label wasn't mapped to a label def!");
3998                     }
3999                 }
4000
4001                 // visit `break` argument if any
4002                 visit::walk_expr(self, expr);
4003             }
4004
4005             ExprKind::IfLet(ref pats, ref subexpression, ref if_block, ref optional_else) => {
4006                 self.visit_expr(subexpression);
4007
4008                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
4009                 let mut bindings_list = FxHashMap();
4010                 for pat in pats {
4011                     self.resolve_pattern(pat, PatternSource::IfLet, &mut bindings_list);
4012                 }
4013                 // This has to happen *after* we determine which pat_idents are variants
4014                 self.check_consistent_bindings(pats);
4015                 self.visit_block(if_block);
4016                 self.ribs[ValueNS].pop();
4017
4018                 optional_else.as_ref().map(|expr| self.visit_expr(expr));
4019             }
4020
4021             ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),
4022
4023             ExprKind::While(ref subexpression, ref block, label) => {
4024                 self.with_resolved_label(label, expr.id, |this| {
4025                     this.visit_expr(subexpression);
4026                     this.visit_block(block);
4027                 });
4028             }
4029
4030             ExprKind::WhileLet(ref pats, ref subexpression, ref block, label) => {
4031                 self.with_resolved_label(label, expr.id, |this| {
4032                     this.visit_expr(subexpression);
4033                     this.ribs[ValueNS].push(Rib::new(NormalRibKind));
4034                     let mut bindings_list = FxHashMap();
4035                     for pat in pats {
4036                         this.resolve_pattern(pat, PatternSource::WhileLet, &mut bindings_list);
4037                     }
4038                     // This has to happen *after* we determine which pat_idents are variants
4039                     this.check_consistent_bindings(pats);
4040                     this.visit_block(block);
4041                     this.ribs[ValueNS].pop();
4042                 });
4043             }
4044
4045             ExprKind::ForLoop(ref pattern, ref subexpression, ref block, label) => {
4046                 self.visit_expr(subexpression);
4047                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
4048                 self.resolve_pattern(pattern, PatternSource::For, &mut FxHashMap());
4049
4050                 self.resolve_labeled_block(label, expr.id, block);
4051
4052                 self.ribs[ValueNS].pop();
4053             }
4054
4055             ExprKind::Block(ref block, label) => self.resolve_labeled_block(label, block.id, block),
4056
4057             // Equivalent to `visit::walk_expr` + passing some context to children.
4058             ExprKind::Field(ref subexpression, _) => {
4059                 self.resolve_expr(subexpression, Some(expr));
4060             }
4061             ExprKind::MethodCall(ref segment, ref arguments) => {
4062                 let mut arguments = arguments.iter();
4063                 self.resolve_expr(arguments.next().unwrap(), Some(expr));
4064                 for argument in arguments {
4065                     self.resolve_expr(argument, None);
4066                 }
4067                 self.visit_path_segment(expr.span, segment);
4068             }
4069
4070             ExprKind::Call(ref callee, ref arguments) => {
4071                 self.resolve_expr(callee, Some(expr));
4072                 for argument in arguments {
4073                     self.resolve_expr(argument, None);
4074                 }
4075             }
4076             ExprKind::Type(ref type_expr, _) => {
4077                 self.current_type_ascription.push(type_expr.span);
4078                 visit::walk_expr(self, expr);
4079                 self.current_type_ascription.pop();
4080             }
4081             // Resolve the body of async exprs inside the async closure to which they desugar
4082             ExprKind::Async(_, async_closure_id, ref block) => {
4083                 let rib_kind = ClosureRibKind(async_closure_id);
4084                 self.ribs[ValueNS].push(Rib::new(rib_kind));
4085                 self.label_ribs.push(Rib::new(rib_kind));
4086                 self.visit_block(&block);
4087                 self.label_ribs.pop();
4088                 self.ribs[ValueNS].pop();
4089             }
4090             // `async |x| ...` gets desugared to `|x| future_from_generator(|| ...)`, so we need to
4091             // resolve the arguments within the proper scopes so that usages of them inside the
4092             // closure are detected as upvars rather than normal closure arg usages.
4093             ExprKind::Closure(
4094                 _, IsAsync::Async { closure_id: inner_closure_id, .. }, _,
4095                 ref fn_decl, ref body, _span,
4096             ) => {
4097                 let rib_kind = ClosureRibKind(expr.id);
4098                 self.ribs[ValueNS].push(Rib::new(rib_kind));
4099                 self.label_ribs.push(Rib::new(rib_kind));
4100                 // Resolve arguments:
4101                 let mut bindings_list = FxHashMap();
4102                 for argument in &fn_decl.inputs {
4103                     self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
4104                     self.visit_ty(&argument.ty);
4105                 }
4106                 // No need to resolve return type-- the outer closure return type is
4107                 // FunctionRetTy::Default
4108
4109                 // Now resolve the inner closure
4110                 {
4111                     let rib_kind = ClosureRibKind(inner_closure_id);
4112                     self.ribs[ValueNS].push(Rib::new(rib_kind));
4113                     self.label_ribs.push(Rib::new(rib_kind));
4114                     // No need to resolve arguments: the inner closure has none.
4115                     // Resolve the return type:
4116                     visit::walk_fn_ret_ty(self, &fn_decl.output);
4117                     // Resolve the body
4118                     self.visit_expr(body);
4119                     self.label_ribs.pop();
4120                     self.ribs[ValueNS].pop();
4121                 }
4122                 self.label_ribs.pop();
4123                 self.ribs[ValueNS].pop();
4124             }
4125             _ => {
4126                 visit::walk_expr(self, expr);
4127             }
4128         }
4129     }
4130
4131     fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &Expr) {
4132         match expr.node {
4133             ExprKind::Field(_, ident) => {
4134                 // FIXME(#6890): Even though you can't treat a method like a
4135                 // field, we need to add any trait methods we find that match
4136                 // the field name so that we can do some nice error reporting
4137                 // later on in typeck.
4138                 let traits = self.get_traits_containing_item(ident, ValueNS);
4139                 self.trait_map.insert(expr.id, traits);
4140             }
4141             ExprKind::MethodCall(ref segment, ..) => {
4142                 debug!("(recording candidate traits for expr) recording traits for {}",
4143                        expr.id);
4144                 let traits = self.get_traits_containing_item(segment.ident, ValueNS);
4145                 self.trait_map.insert(expr.id, traits);
4146             }
4147             _ => {
4148                 // Nothing to do.
4149             }
4150         }
4151     }
4152
4153     fn get_traits_containing_item(&mut self, mut ident: Ident, ns: Namespace)
4154                                   -> Vec<TraitCandidate> {
4155         debug!("(getting traits containing item) looking for '{}'", ident.name);
4156
4157         let mut found_traits = Vec::new();
4158         // Look for the current trait.
4159         if let Some((module, _)) = self.current_trait_ref {
4160             if self.resolve_ident_in_module(
4161                 ModuleOrUniformRoot::Module(module),
4162                 ident,
4163                 ns,
4164                 false,
4165                 module.span,
4166             ).is_ok() {
4167                 let def_id = module.def_id().unwrap();
4168                 found_traits.push(TraitCandidate { def_id: def_id, import_id: None });
4169             }
4170         }
4171
4172         ident.span = ident.span.modern();
4173         let mut search_module = self.current_module;
4174         loop {
4175             self.get_traits_in_module_containing_item(ident, ns, search_module, &mut found_traits);
4176             search_module = unwrap_or!(
4177                 self.hygienic_lexical_parent(search_module, &mut ident.span), break
4178             );
4179         }
4180
4181         if let Some(prelude) = self.prelude {
4182             if !search_module.no_implicit_prelude {
4183                 self.get_traits_in_module_containing_item(ident, ns, prelude, &mut found_traits);
4184             }
4185         }
4186
4187         found_traits
4188     }
4189
4190     fn get_traits_in_module_containing_item(&mut self,
4191                                             ident: Ident,
4192                                             ns: Namespace,
4193                                             module: Module<'a>,
4194                                             found_traits: &mut Vec<TraitCandidate>) {
4195         assert!(ns == TypeNS || ns == ValueNS);
4196         let mut traits = module.traits.borrow_mut();
4197         if traits.is_none() {
4198             let mut collected_traits = Vec::new();
4199             module.for_each_child(|name, ns, binding| {
4200                 if ns != TypeNS { return }
4201                 if let Def::Trait(_) = binding.def() {
4202                     collected_traits.push((name, binding));
4203                 }
4204             });
4205             *traits = Some(collected_traits.into_boxed_slice());
4206         }
4207
4208         for &(trait_name, binding) in traits.as_ref().unwrap().iter() {
4209             let module = binding.module().unwrap();
4210             let mut ident = ident;
4211             if ident.span.glob_adjust(module.expansion, binding.span.ctxt().modern()).is_none() {
4212                 continue
4213             }
4214             if self.resolve_ident_in_module_unadjusted(
4215                 ModuleOrUniformRoot::Module(module),
4216                 ident,
4217                 ns,
4218                 false,
4219                 false,
4220                 module.span,
4221             ).is_ok() {
4222                 let import_id = match binding.kind {
4223                     NameBindingKind::Import { directive, .. } => {
4224                         self.maybe_unused_trait_imports.insert(directive.id);
4225                         self.add_to_glob_map(directive.id, trait_name);
4226                         Some(directive.id)
4227                     }
4228                     _ => None,
4229                 };
4230                 let trait_def_id = module.def_id().unwrap();
4231                 found_traits.push(TraitCandidate { def_id: trait_def_id, import_id: import_id });
4232             }
4233         }
4234     }
4235
4236     fn lookup_import_candidates_from_module<FilterFn>(&mut self,
4237                                           lookup_name: Name,
4238                                           namespace: Namespace,
4239                                           start_module: &'a ModuleData<'a>,
4240                                           crate_name: Ident,
4241                                           filter_fn: FilterFn)
4242                                           -> Vec<ImportSuggestion>
4243         where FilterFn: Fn(Def) -> bool
4244     {
4245         let mut candidates = Vec::new();
4246         let mut worklist = Vec::new();
4247         let mut seen_modules = FxHashSet();
4248         let not_local_module = crate_name != keywords::Crate.ident();
4249         worklist.push((start_module, Vec::<ast::PathSegment>::new(), not_local_module));
4250
4251         while let Some((in_module,
4252                         path_segments,
4253                         in_module_is_extern)) = worklist.pop() {
4254             self.populate_module_if_necessary(in_module);
4255
4256             // We have to visit module children in deterministic order to avoid
4257             // instabilities in reported imports (#43552).
4258             in_module.for_each_child_stable(|ident, ns, name_binding| {
4259                 // avoid imports entirely
4260                 if name_binding.is_import() && !name_binding.is_extern_crate() { return; }
4261                 // avoid non-importable candidates as well
4262                 if !name_binding.is_importable() { return; }
4263
4264                 // collect results based on the filter function
4265                 if ident.name == lookup_name && ns == namespace {
4266                     if filter_fn(name_binding.def()) {
4267                         // create the path
4268                         let mut segms = path_segments.clone();
4269                         if self.session.rust_2018() {
4270                             // crate-local absolute paths start with `crate::` in edition 2018
4271                             // FIXME: may also be stabilized for Rust 2015 (Issues #45477, #44660)
4272                             segms.insert(
4273                                 0, ast::PathSegment::from_ident(crate_name)
4274                             );
4275                         }
4276
4277                         segms.push(ast::PathSegment::from_ident(ident));
4278                         let path = Path {
4279                             span: name_binding.span,
4280                             segments: segms,
4281                         };
4282                         // the entity is accessible in the following cases:
4283                         // 1. if it's defined in the same crate, it's always
4284                         // accessible (since private entities can be made public)
4285                         // 2. if it's defined in another crate, it's accessible
4286                         // only if both the module is public and the entity is
4287                         // declared as public (due to pruning, we don't explore
4288                         // outside crate private modules => no need to check this)
4289                         if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
4290                             candidates.push(ImportSuggestion { path: path });
4291                         }
4292                     }
4293                 }
4294
4295                 // collect submodules to explore
4296                 if let Some(module) = name_binding.module() {
4297                     // form the path
4298                     let mut path_segments = path_segments.clone();
4299                     path_segments.push(ast::PathSegment::from_ident(ident));
4300
4301                     let is_extern_crate_that_also_appears_in_prelude =
4302                         name_binding.is_extern_crate() &&
4303                         self.session.rust_2018();
4304
4305                     let is_visible_to_user =
4306                         !in_module_is_extern || name_binding.vis == ty::Visibility::Public;
4307
4308                     if !is_extern_crate_that_also_appears_in_prelude && is_visible_to_user {
4309                         // add the module to the lookup
4310                         let is_extern = in_module_is_extern || name_binding.is_extern_crate();
4311                         if seen_modules.insert(module.def_id().unwrap()) {
4312                             worklist.push((module, path_segments, is_extern));
4313                         }
4314                     }
4315                 }
4316             })
4317         }
4318
4319         candidates
4320     }
4321
4322     /// When name resolution fails, this method can be used to look up candidate
4323     /// entities with the expected name. It allows filtering them using the
4324     /// supplied predicate (which should be used to only accept the types of
4325     /// definitions expected e.g. traits). The lookup spans across all crates.
4326     ///
4327     /// NOTE: The method does not look into imports, but this is not a problem,
4328     /// since we report the definitions (thus, the de-aliased imports).
4329     fn lookup_import_candidates<FilterFn>(&mut self,
4330                                           lookup_name: Name,
4331                                           namespace: Namespace,
4332                                           filter_fn: FilterFn)
4333                                           -> Vec<ImportSuggestion>
4334         where FilterFn: Fn(Def) -> bool
4335     {
4336         let mut suggestions = vec![];
4337
4338         suggestions.extend(
4339             self.lookup_import_candidates_from_module(
4340                 lookup_name, namespace, self.graph_root, keywords::Crate.ident(), &filter_fn
4341             )
4342         );
4343
4344         if self.session.features_untracked().extern_prelude {
4345             let extern_prelude_names = self.extern_prelude.clone();
4346             for &krate_name in extern_prelude_names.iter() {
4347                 let krate_ident = Ident::with_empty_ctxt(krate_name);
4348                 let external_prelude_module = self.load_extern_prelude_crate_if_needed(krate_ident);
4349
4350                 suggestions.extend(
4351                     self.lookup_import_candidates_from_module(
4352                         lookup_name, namespace, external_prelude_module, krate_ident, &filter_fn
4353                     )
4354                 );
4355             }
4356         }
4357
4358         suggestions
4359     }
4360
4361     fn find_module(&mut self,
4362                    module_def: Def)
4363                    -> Option<(Module<'a>, ImportSuggestion)>
4364     {
4365         let mut result = None;
4366         let mut worklist = Vec::new();
4367         let mut seen_modules = FxHashSet();
4368         worklist.push((self.graph_root, Vec::new()));
4369
4370         while let Some((in_module, path_segments)) = worklist.pop() {
4371             // abort if the module is already found
4372             if result.is_some() { break; }
4373
4374             self.populate_module_if_necessary(in_module);
4375
4376             in_module.for_each_child_stable(|ident, _, name_binding| {
4377                 // abort if the module is already found or if name_binding is private external
4378                 if result.is_some() || !name_binding.vis.is_visible_locally() {
4379                     return
4380                 }
4381                 if let Some(module) = name_binding.module() {
4382                     // form the path
4383                     let mut path_segments = path_segments.clone();
4384                     path_segments.push(ast::PathSegment::from_ident(ident));
4385                     if module.def() == Some(module_def) {
4386                         let path = Path {
4387                             span: name_binding.span,
4388                             segments: path_segments,
4389                         };
4390                         result = Some((module, ImportSuggestion { path: path }));
4391                     } else {
4392                         // add the module to the lookup
4393                         if seen_modules.insert(module.def_id().unwrap()) {
4394                             worklist.push((module, path_segments));
4395                         }
4396                     }
4397                 }
4398             });
4399         }
4400
4401         result
4402     }
4403
4404     fn collect_enum_variants(&mut self, enum_def: Def) -> Option<Vec<Path>> {
4405         if let Def::Enum(..) = enum_def {} else {
4406             panic!("Non-enum def passed to collect_enum_variants: {:?}", enum_def)
4407         }
4408
4409         self.find_module(enum_def).map(|(enum_module, enum_import_suggestion)| {
4410             self.populate_module_if_necessary(enum_module);
4411
4412             let mut variants = Vec::new();
4413             enum_module.for_each_child_stable(|ident, _, name_binding| {
4414                 if let Def::Variant(..) = name_binding.def() {
4415                     let mut segms = enum_import_suggestion.path.segments.clone();
4416                     segms.push(ast::PathSegment::from_ident(ident));
4417                     variants.push(Path {
4418                         span: name_binding.span,
4419                         segments: segms,
4420                     });
4421                 }
4422             });
4423             variants
4424         })
4425     }
4426
4427     fn record_def(&mut self, node_id: NodeId, resolution: PathResolution) {
4428         debug!("(recording def) recording {:?} for {}", resolution, node_id);
4429         if let Some(prev_res) = self.def_map.insert(node_id, resolution) {
4430             panic!("path resolved multiple times ({:?} before, {:?} now)", prev_res, resolution);
4431         }
4432     }
4433
4434     fn resolve_visibility(&mut self, vis: &ast::Visibility) -> ty::Visibility {
4435         match vis.node {
4436             ast::VisibilityKind::Public => ty::Visibility::Public,
4437             ast::VisibilityKind::Crate(..) => {
4438                 ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX))
4439             }
4440             ast::VisibilityKind::Inherited => {
4441                 ty::Visibility::Restricted(self.current_module.normal_ancestor_id)
4442             }
4443             ast::VisibilityKind::Restricted { ref path, id, .. } => {
4444                 // Visibilities are resolved as global by default, add starting root segment.
4445                 let segments = path.make_root().iter().chain(path.segments.iter())
4446                     .map(|seg| seg.ident)
4447                     .collect::<Vec<_>>();
4448                 let def = self.smart_resolve_path_fragment(
4449                     id,
4450                     None,
4451                     &segments,
4452                     path.span,
4453                     PathSource::Visibility,
4454                     CrateLint::SimplePath(id),
4455                 ).base_def();
4456                 if def == Def::Err {
4457                     ty::Visibility::Public
4458                 } else {
4459                     let vis = ty::Visibility::Restricted(def.def_id());
4460                     if self.is_accessible(vis) {
4461                         vis
4462                     } else {
4463                         self.session.span_err(path.span, "visibilities can only be restricted \
4464                                                           to ancestor modules");
4465                         ty::Visibility::Public
4466                     }
4467                 }
4468             }
4469         }
4470     }
4471
4472     fn is_accessible(&self, vis: ty::Visibility) -> bool {
4473         vis.is_accessible_from(self.current_module.normal_ancestor_id, self)
4474     }
4475
4476     fn is_accessible_from(&self, vis: ty::Visibility, module: Module<'a>) -> bool {
4477         vis.is_accessible_from(module.normal_ancestor_id, self)
4478     }
4479
4480     fn report_ambiguity_error(
4481         &self, name: Name, span: Span, _lexical: bool,
4482         def1: Def, is_import1: bool, is_glob1: bool, from_expansion1: bool, span1: Span,
4483         def2: Def, is_import2: bool, _is_glob2: bool, _from_expansion2: bool, span2: Span,
4484     ) {
4485         let participle = |is_import: bool| if is_import { "imported" } else { "defined" };
4486         let msg1 = format!("`{}` could refer to the name {} here", name, participle(is_import1));
4487         let msg2 =
4488             format!("`{}` could also refer to the name {} here", name, participle(is_import2));
4489         let note = if from_expansion1 {
4490             Some(if let Def::Macro(..) = def1 {
4491                 format!("macro-expanded {} do not shadow",
4492                         if is_import1 { "macro imports" } else { "macros" })
4493             } else {
4494                 format!("macro-expanded {} do not shadow when used in a macro invocation path",
4495                         if is_import1 { "imports" } else { "items" })
4496             })
4497         } else if is_glob1 {
4498             Some(format!("consider adding an explicit import of `{}` to disambiguate", name))
4499         } else {
4500             None
4501         };
4502
4503         let mut err = struct_span_err!(self.session, span, E0659, "`{}` is ambiguous", name);
4504         err.span_note(span1, &msg1);
4505         match def2 {
4506             Def::Macro(..) if span2.is_dummy() =>
4507                 err.note(&format!("`{}` is also a builtin macro", name)),
4508             _ => err.span_note(span2, &msg2),
4509         };
4510         if let Some(note) = note {
4511             err.note(&note);
4512         }
4513         err.emit();
4514     }
4515
4516     fn report_errors(&mut self, krate: &Crate) {
4517         self.report_shadowing_errors();
4518         self.report_with_use_injections(krate);
4519         self.report_proc_macro_import(krate);
4520         let mut reported_spans = FxHashSet();
4521
4522         for &(span_use, span_def) in &self.macro_expanded_macro_export_errors {
4523             let msg = "macro-expanded `macro_export` macros from the current crate \
4524                        cannot be referred to by absolute paths";
4525             self.session.buffer_lint_with_diagnostic(
4526                 lint::builtin::MACRO_EXPANDED_MACRO_EXPORTS_ACCESSED_BY_ABSOLUTE_PATHS,
4527                 CRATE_NODE_ID, span_use, msg,
4528                 lint::builtin::BuiltinLintDiagnostics::
4529                     MacroExpandedMacroExportsAccessedByAbsolutePaths(span_def),
4530             );
4531         }
4532
4533         for &AmbiguityError { span, name, b1, b2, lexical } in &self.ambiguity_errors {
4534             if reported_spans.insert(span) {
4535                 self.report_ambiguity_error(
4536                     name, span, lexical,
4537                     b1.def(), b1.is_import(), b1.is_glob_import(),
4538                     b1.expansion != Mark::root(), b1.span,
4539                     b2.def(), b2.is_import(), b2.is_glob_import(),
4540                     b2.expansion != Mark::root(), b2.span,
4541                 );
4542             }
4543         }
4544
4545         for &PrivacyError(span, name, binding) in &self.privacy_errors {
4546             if !reported_spans.insert(span) { continue }
4547             span_err!(self.session, span, E0603, "{} `{}` is private", binding.descr(), name);
4548         }
4549     }
4550
4551     fn report_with_use_injections(&mut self, krate: &Crate) {
4552         for UseError { mut err, candidates, node_id, better } in self.use_injections.drain(..) {
4553             let (span, found_use) = UsePlacementFinder::check(krate, node_id);
4554             if !candidates.is_empty() {
4555                 show_candidates(&mut err, span, &candidates, better, found_use);
4556             }
4557             err.emit();
4558         }
4559     }
4560
4561     fn report_shadowing_errors(&mut self) {
4562         let mut reported_errors = FxHashSet();
4563         for binding in replace(&mut self.disallowed_shadowing, Vec::new()) {
4564             if self.resolve_legacy_scope(&binding.parent, binding.ident, false).is_some() &&
4565                reported_errors.insert((binding.ident, binding.span)) {
4566                 let msg = format!("`{}` is already in scope", binding.ident);
4567                 self.session.struct_span_err(binding.span, &msg)
4568                     .note("macro-expanded `macro_rules!`s may not shadow \
4569                            existing macros (see RFC 1560)")
4570                     .emit();
4571             }
4572         }
4573     }
4574
4575     fn report_conflict<'b>(&mut self,
4576                        parent: Module,
4577                        ident: Ident,
4578                        ns: Namespace,
4579                        new_binding: &NameBinding<'b>,
4580                        old_binding: &NameBinding<'b>) {
4581         // Error on the second of two conflicting names
4582         if old_binding.span.lo() > new_binding.span.lo() {
4583             return self.report_conflict(parent, ident, ns, old_binding, new_binding);
4584         }
4585
4586         let container = match parent.kind {
4587             ModuleKind::Def(Def::Mod(_), _) => "module",
4588             ModuleKind::Def(Def::Trait(_), _) => "trait",
4589             ModuleKind::Block(..) => "block",
4590             _ => "enum",
4591         };
4592
4593         let old_noun = match old_binding.is_import() {
4594             true => "import",
4595             false => "definition",
4596         };
4597
4598         let new_participle = match new_binding.is_import() {
4599             true => "imported",
4600             false => "defined",
4601         };
4602
4603         let (name, span) = (ident.name, self.session.source_map().def_span(new_binding.span));
4604
4605         if let Some(s) = self.name_already_seen.get(&name) {
4606             if s == &span {
4607                 return;
4608             }
4609         }
4610
4611         let old_kind = match (ns, old_binding.module()) {
4612             (ValueNS, _) => "value",
4613             (MacroNS, _) => "macro",
4614             (TypeNS, _) if old_binding.is_extern_crate() => "extern crate",
4615             (TypeNS, Some(module)) if module.is_normal() => "module",
4616             (TypeNS, Some(module)) if module.is_trait() => "trait",
4617             (TypeNS, _) => "type",
4618         };
4619
4620         let msg = format!("the name `{}` is defined multiple times", name);
4621
4622         let mut err = match (old_binding.is_extern_crate(), new_binding.is_extern_crate()) {
4623             (true, true) => struct_span_err!(self.session, span, E0259, "{}", msg),
4624             (true, _) | (_, true) => match new_binding.is_import() && old_binding.is_import() {
4625                 true => struct_span_err!(self.session, span, E0254, "{}", msg),
4626                 false => struct_span_err!(self.session, span, E0260, "{}", msg),
4627             },
4628             _ => match (old_binding.is_import(), new_binding.is_import()) {
4629                 (false, false) => struct_span_err!(self.session, span, E0428, "{}", msg),
4630                 (true, true) => struct_span_err!(self.session, span, E0252, "{}", msg),
4631                 _ => struct_span_err!(self.session, span, E0255, "{}", msg),
4632             },
4633         };
4634
4635         err.note(&format!("`{}` must be defined only once in the {} namespace of this {}",
4636                           name,
4637                           ns.descr(),
4638                           container));
4639
4640         err.span_label(span, format!("`{}` re{} here", name, new_participle));
4641         if !old_binding.span.is_dummy() {
4642             err.span_label(self.session.source_map().def_span(old_binding.span),
4643                            format!("previous {} of the {} `{}` here", old_noun, old_kind, name));
4644         }
4645
4646         // See https://github.com/rust-lang/rust/issues/32354
4647         if old_binding.is_import() || new_binding.is_import() {
4648             let binding = if new_binding.is_import() && !new_binding.span.is_dummy() {
4649                 new_binding
4650             } else {
4651                 old_binding
4652             };
4653
4654             let cm = self.session.source_map();
4655             let rename_msg = "You can use `as` to change the binding name of the import";
4656
4657             if let (Ok(snippet), false) = (cm.span_to_snippet(binding.span),
4658                                            binding.is_renamed_extern_crate()) {
4659                 let suggested_name = if name.as_str().chars().next().unwrap().is_uppercase() {
4660                     format!("Other{}", name)
4661                 } else {
4662                     format!("other_{}", name)
4663                 };
4664
4665                 err.span_suggestion(binding.span,
4666                                     rename_msg,
4667                                     if snippet.ends_with(';') {
4668                                         format!("{} as {};",
4669                                                 &snippet[..snippet.len()-1],
4670                                                 suggested_name)
4671                                     } else {
4672                                         format!("{} as {}", snippet, suggested_name)
4673                                     });
4674             } else {
4675                 err.span_label(binding.span, rename_msg);
4676             }
4677         }
4678
4679         err.emit();
4680         self.name_already_seen.insert(name, span);
4681     }
4682 }
4683
4684 fn is_self_type(path: &[Ident], namespace: Namespace) -> bool {
4685     namespace == TypeNS && path.len() == 1 && path[0].name == keywords::SelfType.name()
4686 }
4687
4688 fn is_self_value(path: &[Ident], namespace: Namespace) -> bool {
4689     namespace == ValueNS && path.len() == 1 && path[0].name == keywords::SelfValue.name()
4690 }
4691
4692 fn names_to_string(idents: &[Ident]) -> String {
4693     let mut result = String::new();
4694     for (i, ident) in idents.iter()
4695                             .filter(|ident| ident.name != keywords::CrateRoot.name())
4696                             .enumerate() {
4697         if i > 0 {
4698             result.push_str("::");
4699         }
4700         result.push_str(&ident.as_str());
4701     }
4702     result
4703 }
4704
4705 fn path_names_to_string(path: &Path) -> String {
4706     names_to_string(&path.segments.iter()
4707                         .map(|seg| seg.ident)
4708                         .collect::<Vec<_>>())
4709 }
4710
4711 /// Get the path for an enum and the variant from an `ImportSuggestion` for an enum variant.
4712 fn import_candidate_to_paths(suggestion: &ImportSuggestion) -> (Span, String, String) {
4713     let variant_path = &suggestion.path;
4714     let variant_path_string = path_names_to_string(variant_path);
4715
4716     let path_len = suggestion.path.segments.len();
4717     let enum_path = ast::Path {
4718         span: suggestion.path.span,
4719         segments: suggestion.path.segments[0..path_len - 1].to_vec(),
4720     };
4721     let enum_path_string = path_names_to_string(&enum_path);
4722
4723     (suggestion.path.span, variant_path_string, enum_path_string)
4724 }
4725
4726
4727 /// When an entity with a given name is not available in scope, we search for
4728 /// entities with that name in all crates. This method allows outputting the
4729 /// results of this search in a programmer-friendly way
4730 fn show_candidates(err: &mut DiagnosticBuilder,
4731                    // This is `None` if all placement locations are inside expansions
4732                    span: Option<Span>,
4733                    candidates: &[ImportSuggestion],
4734                    better: bool,
4735                    found_use: bool) {
4736
4737     // we want consistent results across executions, but candidates are produced
4738     // by iterating through a hash map, so make sure they are ordered:
4739     let mut path_strings: Vec<_> =
4740         candidates.into_iter().map(|c| path_names_to_string(&c.path)).collect();
4741     path_strings.sort();
4742
4743     let better = if better { "better " } else { "" };
4744     let msg_diff = match path_strings.len() {
4745         1 => " is found in another module, you can import it",
4746         _ => "s are found in other modules, you can import them",
4747     };
4748     let msg = format!("possible {}candidate{} into scope", better, msg_diff);
4749
4750     if let Some(span) = span {
4751         for candidate in &mut path_strings {
4752             // produce an additional newline to separate the new use statement
4753             // from the directly following item.
4754             let additional_newline = if found_use {
4755                 ""
4756             } else {
4757                 "\n"
4758             };
4759             *candidate = format!("use {};\n{}", candidate, additional_newline);
4760         }
4761
4762         err.span_suggestions(span, &msg, path_strings);
4763     } else {
4764         let mut msg = msg;
4765         msg.push(':');
4766         for candidate in path_strings {
4767             msg.push('\n');
4768             msg.push_str(&candidate);
4769         }
4770     }
4771 }
4772
4773 /// A somewhat inefficient routine to obtain the name of a module.
4774 fn module_to_string(module: Module) -> Option<String> {
4775     let mut names = Vec::new();
4776
4777     fn collect_mod(names: &mut Vec<Ident>, module: Module) {
4778         if let ModuleKind::Def(_, name) = module.kind {
4779             if let Some(parent) = module.parent {
4780                 names.push(Ident::with_empty_ctxt(name));
4781                 collect_mod(names, parent);
4782             }
4783         } else {
4784             // danger, shouldn't be ident?
4785             names.push(Ident::from_str("<opaque>"));
4786             collect_mod(names, module.parent.unwrap());
4787         }
4788     }
4789     collect_mod(&mut names, module);
4790
4791     if names.is_empty() {
4792         return None;
4793     }
4794     Some(names_to_string(&names.into_iter()
4795                         .rev()
4796                         .collect::<Vec<_>>()))
4797 }
4798
4799 fn err_path_resolution() -> PathResolution {
4800     PathResolution::new(Def::Err)
4801 }
4802
4803 #[derive(PartialEq,Copy, Clone)]
4804 pub enum MakeGlobMap {
4805     Yes,
4806     No,
4807 }
4808
4809 #[derive(Copy, Clone, Debug)]
4810 enum CrateLint {
4811     /// Do not issue the lint
4812     No,
4813
4814     /// This lint applies to some random path like `impl ::foo::Bar`
4815     /// or whatever. In this case, we can take the span of that path.
4816     SimplePath(NodeId),
4817
4818     /// This lint comes from a `use` statement. In this case, what we
4819     /// care about really is the *root* `use` statement; e.g., if we
4820     /// have nested things like `use a::{b, c}`, we care about the
4821     /// `use a` part.
4822     UsePath { root_id: NodeId, root_span: Span },
4823
4824     /// This is the "trait item" from a fully qualified path. For example,
4825     /// we might be resolving  `X::Y::Z` from a path like `<T as X::Y>::Z`.
4826     /// The `path_span` is the span of the to the trait itself (`X::Y`).
4827     QPathTrait { qpath_id: NodeId, qpath_span: Span },
4828 }
4829
4830 impl CrateLint {
4831     fn node_id(&self) -> Option<NodeId> {
4832         match *self {
4833             CrateLint::No => None,
4834             CrateLint::SimplePath(id) |
4835             CrateLint::UsePath { root_id: id, .. } |
4836             CrateLint::QPathTrait { qpath_id: id, .. } => Some(id),
4837         }
4838     }
4839 }
4840
4841 __build_diagnostic_array! { librustc_resolve, DIAGNOSTICS }