]> git.lizzy.rs Git - rust.git/blob - src/librustc_resolve/lib.rs
Rollup merge of #54409 - estebank:remove-in, r=pnkfelix
[rust.git] / src / librustc_resolve / lib.rs
1 // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 #![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
12        html_favicon_url = "https://doc.rust-lang.org/favicon.ico",
13        html_root_url = "https://doc.rust-lang.org/nightly/")]
14
15 #![feature(crate_visibility_modifier)]
16 #![cfg_attr(not(stage0), feature(nll))]
17 #![feature(rustc_diagnostic_macros)]
18 #![feature(slice_sort_by_cached_key)]
19
20 #[macro_use]
21 extern crate log;
22 #[macro_use]
23 extern crate syntax;
24 extern crate syntax_pos;
25 extern crate rustc_errors as errors;
26 extern crate arena;
27 #[macro_use]
28 extern crate rustc;
29 extern crate rustc_data_structures;
30 extern crate rustc_metadata;
31
32 pub use rustc::hir::def::{Namespace, PerNS};
33
34 use self::TypeParameters::*;
35 use self::RibKind::*;
36
37 use rustc::hir::map::{Definitions, DefCollector};
38 use rustc::hir::{self, PrimTy, Bool, Char, Float, Int, Uint, Str};
39 use rustc::middle::cstore::CrateStore;
40 use rustc::session::Session;
41 use rustc::lint;
42 use rustc::hir::def::*;
43 use rustc::hir::def::Namespace::*;
44 use rustc::hir::def_id::{CRATE_DEF_INDEX, LOCAL_CRATE, DefId};
45 use rustc::ty;
46 use rustc::hir::{Freevar, FreevarMap, TraitCandidate, TraitMap, GlobMap};
47 use rustc::util::nodemap::{NodeMap, NodeSet, FxHashMap, FxHashSet, DefIdMap};
48
49 use rustc_metadata::creader::CrateLoader;
50 use rustc_metadata::cstore::CStore;
51
52 use syntax::source_map::SourceMap;
53 use syntax::ext::hygiene::{Mark, Transparency, SyntaxContext};
54 use syntax::ast::{self, Name, NodeId, Ident, FloatTy, IntTy, UintTy};
55 use syntax::ext::base::SyntaxExtension;
56 use syntax::ext::base::Determinacy::{self, Determined, Undetermined};
57 use syntax::ext::base::MacroKind;
58 use syntax::symbol::{Symbol, keywords};
59 use syntax::util::lev_distance::find_best_match_for_name;
60
61 use syntax::visit::{self, FnKind, Visitor};
62 use syntax::attr;
63 use syntax::ast::{CRATE_NODE_ID, Arm, IsAsync, BindingMode, Block, Crate, Expr, ExprKind};
64 use syntax::ast::{FnDecl, ForeignItem, ForeignItemKind, GenericParamKind, Generics};
65 use syntax::ast::{Item, ItemKind, ImplItem, ImplItemKind};
66 use syntax::ast::{Label, Local, Mutability, Pat, PatKind, Path};
67 use syntax::ast::{QSelf, TraitItemKind, TraitRef, Ty, TyKind};
68 use syntax::feature_gate::{feature_err, GateIssue};
69 use syntax::ptr::P;
70
71 use syntax_pos::{Span, DUMMY_SP, MultiSpan};
72 use errors::{Applicability, DiagnosticBuilder, DiagnosticId};
73
74 use std::cell::{Cell, RefCell};
75 use std::cmp;
76 use std::collections::BTreeSet;
77 use std::fmt;
78 use std::iter;
79 use std::mem::replace;
80 use rustc_data_structures::sync::Lrc;
81
82 use resolve_imports::{ImportDirective, ImportDirectiveSubclass, NameResolution, ImportResolver};
83 use macros::{InvocationData, LegacyBinding, ParentScope};
84
85 // NB: This module needs to be declared first so diagnostics are
86 // registered before they are used.
87 mod diagnostics;
88
89 mod macros;
90 mod check_unused;
91 mod build_reduced_graph;
92 mod resolve_imports;
93
94 fn is_known_tool(name: Name) -> bool {
95     ["clippy", "rustfmt"].contains(&&*name.as_str())
96 }
97
98 /// A free importable items suggested in case of resolution failure.
99 struct ImportSuggestion {
100     path: Path,
101 }
102
103 /// A field or associated item from self type suggested in case of resolution failure.
104 enum AssocSuggestion {
105     Field,
106     MethodWithSelf,
107     AssocItem,
108 }
109
110 #[derive(Eq)]
111 struct BindingError {
112     name: Name,
113     origin: BTreeSet<Span>,
114     target: BTreeSet<Span>,
115 }
116
117 impl PartialOrd for BindingError {
118     fn partial_cmp(&self, other: &BindingError) -> Option<cmp::Ordering> {
119         Some(self.cmp(other))
120     }
121 }
122
123 impl PartialEq for BindingError {
124     fn eq(&self, other: &BindingError) -> bool {
125         self.name == other.name
126     }
127 }
128
129 impl Ord for BindingError {
130     fn cmp(&self, other: &BindingError) -> cmp::Ordering {
131         self.name.cmp(&other.name)
132     }
133 }
134
135 enum ResolutionError<'a> {
136     /// error E0401: can't use type parameters from outer function
137     TypeParametersFromOuterFunction(Def),
138     /// error E0403: the name is already used for a type parameter in this type parameter list
139     NameAlreadyUsedInTypeParameterList(Name, &'a Span),
140     /// error E0407: method is not a member of trait
141     MethodNotMemberOfTrait(Name, &'a str),
142     /// error E0437: type is not a member of trait
143     TypeNotMemberOfTrait(Name, &'a str),
144     /// error E0438: const is not a member of trait
145     ConstNotMemberOfTrait(Name, &'a str),
146     /// error E0408: variable `{}` is not bound in all patterns
147     VariableNotBoundInPattern(&'a BindingError),
148     /// error E0409: variable `{}` is bound in inconsistent ways within the same match arm
149     VariableBoundWithDifferentMode(Name, Span),
150     /// error E0415: identifier is bound more than once in this parameter list
151     IdentifierBoundMoreThanOnceInParameterList(&'a str),
152     /// error E0416: identifier is bound more than once in the same pattern
153     IdentifierBoundMoreThanOnceInSamePattern(&'a str),
154     /// error E0426: use of undeclared label
155     UndeclaredLabel(&'a str, Option<Name>),
156     /// error E0429: `self` imports are only allowed within a { } list
157     SelfImportsOnlyAllowedWithin,
158     /// error E0430: `self` import can only appear once in the list
159     SelfImportCanOnlyAppearOnceInTheList,
160     /// error E0431: `self` import can only appear in an import list with a non-empty prefix
161     SelfImportOnlyInImportListWithNonEmptyPrefix,
162     /// error E0433: failed to resolve
163     FailedToResolve(&'a str),
164     /// error E0434: can't capture dynamic environment in a fn item
165     CannotCaptureDynamicEnvironmentInFnItem,
166     /// error E0435: attempt to use a non-constant value in a constant
167     AttemptToUseNonConstantValueInConstant,
168     /// error E0530: X bindings cannot shadow Ys
169     BindingShadowsSomethingUnacceptable(&'a str, Name, &'a NameBinding<'a>),
170     /// error E0128: type parameters with a default cannot use forward declared identifiers
171     ForwardDeclaredTyParam,
172 }
173
174 /// Combines an error with provided span and emits it
175 ///
176 /// This takes the error provided, combines it with the span and any additional spans inside the
177 /// error and emits it.
178 fn resolve_error<'sess, 'a>(resolver: &'sess Resolver,
179                             span: Span,
180                             resolution_error: ResolutionError<'a>) {
181     resolve_struct_error(resolver, span, resolution_error).emit();
182 }
183
184 fn resolve_struct_error<'sess, 'a>(resolver: &'sess Resolver,
185                                    span: Span,
186                                    resolution_error: ResolutionError<'a>)
187                                    -> DiagnosticBuilder<'sess> {
188     match resolution_error {
189         ResolutionError::TypeParametersFromOuterFunction(outer_def) => {
190             let mut err = struct_span_err!(resolver.session,
191                                            span,
192                                            E0401,
193                                            "can't use type parameters from outer function");
194             err.span_label(span, "use of type variable from outer function");
195
196             let cm = resolver.session.source_map();
197             match outer_def {
198                 Def::SelfTy(maybe_trait_defid, maybe_impl_defid) => {
199                     if let Some(impl_span) = maybe_impl_defid.and_then(|def_id| {
200                         resolver.definitions.opt_span(def_id)
201                     }) {
202                         err.span_label(
203                             reduce_impl_span_to_impl_keyword(cm, impl_span),
204                             "`Self` type implicitly declared here, by this `impl`",
205                         );
206                     }
207                     match (maybe_trait_defid, maybe_impl_defid) {
208                         (Some(_), None) => {
209                             err.span_label(span, "can't use `Self` here");
210                         }
211                         (_, Some(_)) => {
212                             err.span_label(span, "use a type here instead");
213                         }
214                         (None, None) => bug!("`impl` without trait nor type?"),
215                     }
216                     return err;
217                 },
218                 Def::TyParam(typaram_defid) => {
219                     if let Some(typaram_span) = resolver.definitions.opt_span(typaram_defid) {
220                         err.span_label(typaram_span, "type variable from outer function");
221                     }
222                 },
223                 _ => {
224                     bug!("TypeParametersFromOuterFunction should only be used with Def::SelfTy or \
225                          Def::TyParam")
226                 }
227             }
228
229             // Try to retrieve the span of the function signature and generate a new message with
230             // a local type parameter
231             let sugg_msg = "try using a local type parameter instead";
232             if let Some((sugg_span, new_snippet)) = cm.generate_local_type_param_snippet(span) {
233                 // Suggest the modification to the user
234                 err.span_suggestion_with_applicability(
235                     sugg_span,
236                     sugg_msg,
237                     new_snippet,
238                     Applicability::MachineApplicable,
239                 );
240             } else if let Some(sp) = cm.generate_fn_name_span(span) {
241                 err.span_label(sp, "try adding a local type parameter in this method instead");
242             } else {
243                 err.help("try using a local type parameter instead");
244             }
245
246             err
247         }
248         ResolutionError::NameAlreadyUsedInTypeParameterList(name, first_use_span) => {
249              let mut err = struct_span_err!(resolver.session,
250                                             span,
251                                             E0403,
252                                             "the name `{}` is already used for a type parameter \
253                                             in this type parameter list",
254                                             name);
255              err.span_label(span, "already used");
256              err.span_label(first_use_span.clone(), format!("first use of `{}`", name));
257              err
258         }
259         ResolutionError::MethodNotMemberOfTrait(method, trait_) => {
260             let mut err = struct_span_err!(resolver.session,
261                                            span,
262                                            E0407,
263                                            "method `{}` is not a member of trait `{}`",
264                                            method,
265                                            trait_);
266             err.span_label(span, format!("not a member of trait `{}`", trait_));
267             err
268         }
269         ResolutionError::TypeNotMemberOfTrait(type_, trait_) => {
270             let mut err = struct_span_err!(resolver.session,
271                              span,
272                              E0437,
273                              "type `{}` is not a member of trait `{}`",
274                              type_,
275                              trait_);
276             err.span_label(span, format!("not a member of trait `{}`", trait_));
277             err
278         }
279         ResolutionError::ConstNotMemberOfTrait(const_, trait_) => {
280             let mut err = struct_span_err!(resolver.session,
281                              span,
282                              E0438,
283                              "const `{}` is not a member of trait `{}`",
284                              const_,
285                              trait_);
286             err.span_label(span, format!("not a member of trait `{}`", trait_));
287             err
288         }
289         ResolutionError::VariableNotBoundInPattern(binding_error) => {
290             let target_sp = binding_error.target.iter().cloned().collect::<Vec<_>>();
291             let msp = MultiSpan::from_spans(target_sp.clone());
292             let msg = format!("variable `{}` is not bound in all patterns", binding_error.name);
293             let mut err = resolver.session.struct_span_err_with_code(
294                 msp,
295                 &msg,
296                 DiagnosticId::Error("E0408".into()),
297             );
298             for sp in target_sp {
299                 err.span_label(sp, format!("pattern doesn't bind `{}`", binding_error.name));
300             }
301             let origin_sp = binding_error.origin.iter().cloned();
302             for sp in origin_sp {
303                 err.span_label(sp, "variable not in all patterns");
304             }
305             err
306         }
307         ResolutionError::VariableBoundWithDifferentMode(variable_name,
308                                                         first_binding_span) => {
309             let mut err = struct_span_err!(resolver.session,
310                              span,
311                              E0409,
312                              "variable `{}` is bound in inconsistent \
313                              ways within the same match arm",
314                              variable_name);
315             err.span_label(span, "bound in different ways");
316             err.span_label(first_binding_span, "first binding");
317             err
318         }
319         ResolutionError::IdentifierBoundMoreThanOnceInParameterList(identifier) => {
320             let mut err = struct_span_err!(resolver.session,
321                              span,
322                              E0415,
323                              "identifier `{}` is bound more than once in this parameter list",
324                              identifier);
325             err.span_label(span, "used as parameter more than once");
326             err
327         }
328         ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(identifier) => {
329             let mut err = struct_span_err!(resolver.session,
330                              span,
331                              E0416,
332                              "identifier `{}` is bound more than once in the same pattern",
333                              identifier);
334             err.span_label(span, "used in a pattern more than once");
335             err
336         }
337         ResolutionError::UndeclaredLabel(name, lev_candidate) => {
338             let mut err = struct_span_err!(resolver.session,
339                                            span,
340                                            E0426,
341                                            "use of undeclared label `{}`",
342                                            name);
343             if let Some(lev_candidate) = lev_candidate {
344                 err.span_label(span, format!("did you mean `{}`?", lev_candidate));
345             } else {
346                 err.span_label(span, format!("undeclared label `{}`", name));
347             }
348             err
349         }
350         ResolutionError::SelfImportsOnlyAllowedWithin => {
351             struct_span_err!(resolver.session,
352                              span,
353                              E0429,
354                              "{}",
355                              "`self` imports are only allowed within a { } list")
356         }
357         ResolutionError::SelfImportCanOnlyAppearOnceInTheList => {
358             let mut err = struct_span_err!(resolver.session, span, E0430,
359                                            "`self` import can only appear once in an import list");
360             err.span_label(span, "can only appear once in an import list");
361             err
362         }
363         ResolutionError::SelfImportOnlyInImportListWithNonEmptyPrefix => {
364             let mut err = struct_span_err!(resolver.session, span, E0431,
365                                            "`self` import can only appear in an import list with \
366                                             a non-empty prefix");
367             err.span_label(span, "can only appear in an import list with a non-empty prefix");
368             err
369         }
370         ResolutionError::FailedToResolve(msg) => {
371             let mut err = struct_span_err!(resolver.session, span, E0433,
372                                            "failed to resolve. {}", msg);
373             err.span_label(span, msg);
374             err
375         }
376         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem => {
377             let mut err = struct_span_err!(resolver.session,
378                                            span,
379                                            E0434,
380                                            "{}",
381                                            "can't capture dynamic environment in a fn item");
382             err.help("use the `|| { ... }` closure form instead");
383             err
384         }
385         ResolutionError::AttemptToUseNonConstantValueInConstant => {
386             let mut err = struct_span_err!(resolver.session, span, E0435,
387                                            "attempt to use a non-constant value in a constant");
388             err.span_label(span, "non-constant value");
389             err
390         }
391         ResolutionError::BindingShadowsSomethingUnacceptable(what_binding, name, binding) => {
392             let shadows_what = PathResolution::new(binding.def()).kind_name();
393             let mut err = struct_span_err!(resolver.session,
394                                            span,
395                                            E0530,
396                                            "{}s cannot shadow {}s", what_binding, shadows_what);
397             err.span_label(span, format!("cannot be named the same as a {}", shadows_what));
398             let participle = if binding.is_import() { "imported" } else { "defined" };
399             let msg = format!("a {} `{}` is {} here", shadows_what, name, participle);
400             err.span_label(binding.span, msg);
401             err
402         }
403         ResolutionError::ForwardDeclaredTyParam => {
404             let mut err = struct_span_err!(resolver.session, span, E0128,
405                                            "type parameters with a default cannot use \
406                                             forward declared identifiers");
407             err.span_label(
408                 span, "defaulted type parameters cannot be forward declared".to_string());
409             err
410         }
411     }
412 }
413
414 /// Adjust the impl span so that just the `impl` keyword is taken by removing
415 /// everything after `<` (`"impl<T> Iterator for A<T> {}" -> "impl"`) and
416 /// everything after the first whitespace (`"impl Iterator for A" -> "impl"`)
417 ///
418 /// Attention: The method used is very fragile since it essentially duplicates the work of the
419 /// parser. If you need to use this function or something similar, please consider updating the
420 /// source_map functions and this function to something more robust.
421 fn reduce_impl_span_to_impl_keyword(cm: &SourceMap, impl_span: Span) -> Span {
422     let impl_span = cm.span_until_char(impl_span, '<');
423     let impl_span = cm.span_until_whitespace(impl_span);
424     impl_span
425 }
426
427 #[derive(Copy, Clone, Debug)]
428 struct BindingInfo {
429     span: Span,
430     binding_mode: BindingMode,
431 }
432
433 /// Map from the name in a pattern to its binding mode.
434 type BindingMap = FxHashMap<Ident, BindingInfo>;
435
436 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
437 enum PatternSource {
438     Match,
439     IfLet,
440     WhileLet,
441     Let,
442     For,
443     FnParam,
444 }
445
446 impl PatternSource {
447     fn descr(self) -> &'static str {
448         match self {
449             PatternSource::Match => "match binding",
450             PatternSource::IfLet => "if let binding",
451             PatternSource::WhileLet => "while let binding",
452             PatternSource::Let => "let binding",
453             PatternSource::For => "for binding",
454             PatternSource::FnParam => "function parameter",
455         }
456     }
457 }
458
459 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
460 enum AliasPossibility {
461     No,
462     Maybe,
463 }
464
465 #[derive(Copy, Clone, Debug)]
466 enum PathSource<'a> {
467     // Type paths `Path`.
468     Type,
469     // Trait paths in bounds or impls.
470     Trait(AliasPossibility),
471     // Expression paths `path`, with optional parent context.
472     Expr(Option<&'a Expr>),
473     // Paths in path patterns `Path`.
474     Pat,
475     // Paths in struct expressions and patterns `Path { .. }`.
476     Struct,
477     // Paths in tuple struct patterns `Path(..)`.
478     TupleStruct,
479     // `m::A::B` in `<T as m::A>::B::C`.
480     TraitItem(Namespace),
481     // Path in `pub(path)`
482     Visibility,
483     // Path in `use a::b::{...};`
484     ImportPrefix,
485 }
486
487 impl<'a> PathSource<'a> {
488     fn namespace(self) -> Namespace {
489         match self {
490             PathSource::Type | PathSource::Trait(_) | PathSource::Struct |
491             PathSource::Visibility | PathSource::ImportPrefix => TypeNS,
492             PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct => ValueNS,
493             PathSource::TraitItem(ns) => ns,
494         }
495     }
496
497     fn global_by_default(self) -> bool {
498         match self {
499             PathSource::Visibility | PathSource::ImportPrefix => true,
500             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
501             PathSource::Struct | PathSource::TupleStruct |
502             PathSource::Trait(_) | PathSource::TraitItem(..) => false,
503         }
504     }
505
506     fn defer_to_typeck(self) -> bool {
507         match self {
508             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
509             PathSource::Struct | PathSource::TupleStruct => true,
510             PathSource::Trait(_) | PathSource::TraitItem(..) |
511             PathSource::Visibility | PathSource::ImportPrefix => false,
512         }
513     }
514
515     fn descr_expected(self) -> &'static str {
516         match self {
517             PathSource::Type => "type",
518             PathSource::Trait(_) => "trait",
519             PathSource::Pat => "unit struct/variant or constant",
520             PathSource::Struct => "struct, variant or union type",
521             PathSource::TupleStruct => "tuple struct/variant",
522             PathSource::Visibility => "module",
523             PathSource::ImportPrefix => "module or enum",
524             PathSource::TraitItem(ns) => match ns {
525                 TypeNS => "associated type",
526                 ValueNS => "method or associated constant",
527                 MacroNS => bug!("associated macro"),
528             },
529             PathSource::Expr(parent) => match parent.map(|p| &p.node) {
530                 // "function" here means "anything callable" rather than `Def::Fn`,
531                 // this is not precise but usually more helpful than just "value".
532                 Some(&ExprKind::Call(..)) => "function",
533                 _ => "value",
534             },
535         }
536     }
537
538     fn is_expected(self, def: Def) -> bool {
539         match self {
540             PathSource::Type => match def {
541                 Def::Struct(..) | Def::Union(..) | Def::Enum(..) |
542                 Def::Trait(..) | Def::TyAlias(..) | Def::AssociatedTy(..) |
543                 Def::PrimTy(..) | Def::TyParam(..) | Def::SelfTy(..) |
544                 Def::Existential(..) |
545                 Def::ForeignTy(..) => true,
546                 _ => false,
547             },
548             PathSource::Trait(AliasPossibility::No) => match def {
549                 Def::Trait(..) => true,
550                 _ => false,
551             },
552             PathSource::Trait(AliasPossibility::Maybe) => match def {
553                 Def::Trait(..) => true,
554                 Def::TraitAlias(..) => true,
555                 _ => false,
556             },
557             PathSource::Expr(..) => match def {
558                 Def::StructCtor(_, CtorKind::Const) | Def::StructCtor(_, CtorKind::Fn) |
559                 Def::VariantCtor(_, CtorKind::Const) | Def::VariantCtor(_, CtorKind::Fn) |
560                 Def::Const(..) | Def::Static(..) | Def::Local(..) | Def::Upvar(..) |
561                 Def::Fn(..) | Def::Method(..) | Def::AssociatedConst(..) |
562                 Def::SelfCtor(..) => true,
563                 _ => false,
564             },
565             PathSource::Pat => match def {
566                 Def::StructCtor(_, CtorKind::Const) |
567                 Def::VariantCtor(_, CtorKind::Const) |
568                 Def::Const(..) | Def::AssociatedConst(..) |
569                 Def::SelfCtor(..) => true,
570                 _ => false,
571             },
572             PathSource::TupleStruct => match def {
573                 Def::StructCtor(_, CtorKind::Fn) |
574                 Def::VariantCtor(_, CtorKind::Fn) |
575                 Def::SelfCtor(..) => true,
576                 _ => false,
577             },
578             PathSource::Struct => match def {
579                 Def::Struct(..) | Def::Union(..) | Def::Variant(..) |
580                 Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => true,
581                 _ => false,
582             },
583             PathSource::TraitItem(ns) => match def {
584                 Def::AssociatedConst(..) | Def::Method(..) if ns == ValueNS => true,
585                 Def::AssociatedTy(..) if ns == TypeNS => true,
586                 _ => false,
587             },
588             PathSource::ImportPrefix => match def {
589                 Def::Mod(..) | Def::Enum(..) => true,
590                 _ => false,
591             },
592             PathSource::Visibility => match def {
593                 Def::Mod(..) => true,
594                 _ => false,
595             },
596         }
597     }
598
599     fn error_code(self, has_unexpected_resolution: bool) -> &'static str {
600         __diagnostic_used!(E0404);
601         __diagnostic_used!(E0405);
602         __diagnostic_used!(E0412);
603         __diagnostic_used!(E0422);
604         __diagnostic_used!(E0423);
605         __diagnostic_used!(E0425);
606         __diagnostic_used!(E0531);
607         __diagnostic_used!(E0532);
608         __diagnostic_used!(E0573);
609         __diagnostic_used!(E0574);
610         __diagnostic_used!(E0575);
611         __diagnostic_used!(E0576);
612         __diagnostic_used!(E0577);
613         __diagnostic_used!(E0578);
614         match (self, has_unexpected_resolution) {
615             (PathSource::Trait(_), true) => "E0404",
616             (PathSource::Trait(_), false) => "E0405",
617             (PathSource::Type, true) => "E0573",
618             (PathSource::Type, false) => "E0412",
619             (PathSource::Struct, true) => "E0574",
620             (PathSource::Struct, false) => "E0422",
621             (PathSource::Expr(..), true) => "E0423",
622             (PathSource::Expr(..), false) => "E0425",
623             (PathSource::Pat, true) | (PathSource::TupleStruct, true) => "E0532",
624             (PathSource::Pat, false) | (PathSource::TupleStruct, false) => "E0531",
625             (PathSource::TraitItem(..), true) => "E0575",
626             (PathSource::TraitItem(..), false) => "E0576",
627             (PathSource::Visibility, true) | (PathSource::ImportPrefix, true) => "E0577",
628             (PathSource::Visibility, false) | (PathSource::ImportPrefix, false) => "E0578",
629         }
630     }
631 }
632
633 struct UsePlacementFinder {
634     target_module: NodeId,
635     span: Option<Span>,
636     found_use: bool,
637 }
638
639 impl UsePlacementFinder {
640     fn check(krate: &Crate, target_module: NodeId) -> (Option<Span>, bool) {
641         let mut finder = UsePlacementFinder {
642             target_module,
643             span: None,
644             found_use: false,
645         };
646         visit::walk_crate(&mut finder, krate);
647         (finder.span, finder.found_use)
648     }
649 }
650
651 impl<'tcx> Visitor<'tcx> for UsePlacementFinder {
652     fn visit_mod(
653         &mut self,
654         module: &'tcx ast::Mod,
655         _: Span,
656         _: &[ast::Attribute],
657         node_id: NodeId,
658     ) {
659         if self.span.is_some() {
660             return;
661         }
662         if node_id != self.target_module {
663             visit::walk_mod(self, module);
664             return;
665         }
666         // find a use statement
667         for item in &module.items {
668             match item.node {
669                 ItemKind::Use(..) => {
670                     // don't suggest placing a use before the prelude
671                     // import or other generated ones
672                     if item.span.ctxt().outer().expn_info().is_none() {
673                         self.span = Some(item.span.shrink_to_lo());
674                         self.found_use = true;
675                         return;
676                     }
677                 },
678                 // don't place use before extern crate
679                 ItemKind::ExternCrate(_) => {}
680                 // but place them before the first other item
681                 _ => if self.span.map_or(true, |span| item.span < span ) {
682                     if item.span.ctxt().outer().expn_info().is_none() {
683                         // don't insert between attributes and an item
684                         if item.attrs.is_empty() {
685                             self.span = Some(item.span.shrink_to_lo());
686                         } else {
687                             // find the first attribute on the item
688                             for attr in &item.attrs {
689                                 if self.span.map_or(true, |span| attr.span < span) {
690                                     self.span = Some(attr.span.shrink_to_lo());
691                                 }
692                             }
693                         }
694                     }
695                 },
696             }
697         }
698     }
699 }
700
701 /// This thing walks the whole crate in DFS manner, visiting each item, resolving names as it goes.
702 impl<'a, 'tcx, 'cl> Visitor<'tcx> for Resolver<'a, 'cl> {
703     fn visit_item(&mut self, item: &'tcx Item) {
704         self.resolve_item(item);
705     }
706     fn visit_arm(&mut self, arm: &'tcx Arm) {
707         self.resolve_arm(arm);
708     }
709     fn visit_block(&mut self, block: &'tcx Block) {
710         self.resolve_block(block);
711     }
712     fn visit_anon_const(&mut self, constant: &'tcx ast::AnonConst) {
713         self.with_constant_rib(|this| {
714             visit::walk_anon_const(this, constant);
715         });
716     }
717     fn visit_expr(&mut self, expr: &'tcx Expr) {
718         self.resolve_expr(expr, None);
719     }
720     fn visit_local(&mut self, local: &'tcx Local) {
721         self.resolve_local(local);
722     }
723     fn visit_ty(&mut self, ty: &'tcx Ty) {
724         match ty.node {
725             TyKind::Path(ref qself, ref path) => {
726                 self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
727             }
728             TyKind::ImplicitSelf => {
729                 let self_ty = keywords::SelfType.ident();
730                 let def = self.resolve_ident_in_lexical_scope(self_ty, TypeNS, Some(ty.id), ty.span)
731                               .map_or(Def::Err, |d| d.def());
732                 self.record_def(ty.id, PathResolution::new(def));
733             }
734             _ => (),
735         }
736         visit::walk_ty(self, ty);
737     }
738     fn visit_poly_trait_ref(&mut self,
739                             tref: &'tcx ast::PolyTraitRef,
740                             m: &'tcx ast::TraitBoundModifier) {
741         self.smart_resolve_path(tref.trait_ref.ref_id, None,
742                                 &tref.trait_ref.path, PathSource::Trait(AliasPossibility::Maybe));
743         visit::walk_poly_trait_ref(self, tref, m);
744     }
745     fn visit_foreign_item(&mut self, foreign_item: &'tcx ForeignItem) {
746         let type_parameters = match foreign_item.node {
747             ForeignItemKind::Fn(_, ref generics) => {
748                 HasTypeParameters(generics, ItemRibKind)
749             }
750             ForeignItemKind::Static(..) => NoTypeParameters,
751             ForeignItemKind::Ty => NoTypeParameters,
752             ForeignItemKind::Macro(..) => NoTypeParameters,
753         };
754         self.with_type_parameter_rib(type_parameters, |this| {
755             visit::walk_foreign_item(this, foreign_item);
756         });
757     }
758     fn visit_fn(&mut self,
759                 function_kind: FnKind<'tcx>,
760                 declaration: &'tcx FnDecl,
761                 _: Span,
762                 node_id: NodeId)
763     {
764         let (rib_kind, asyncness) = match function_kind {
765             FnKind::ItemFn(_, ref header, ..) =>
766                 (ItemRibKind, header.asyncness),
767             FnKind::Method(_, ref sig, _, _) =>
768                 (TraitOrImplItemRibKind, sig.header.asyncness),
769             FnKind::Closure(_) =>
770                 // Async closures aren't resolved through `visit_fn`-- they're
771                 // processed separately
772                 (ClosureRibKind(node_id), IsAsync::NotAsync),
773         };
774
775         // Create a value rib for the function.
776         self.ribs[ValueNS].push(Rib::new(rib_kind));
777
778         // Create a label rib for the function.
779         self.label_ribs.push(Rib::new(rib_kind));
780
781         // Add each argument to the rib.
782         let mut bindings_list = FxHashMap();
783         for argument in &declaration.inputs {
784             self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
785
786             self.visit_ty(&argument.ty);
787
788             debug!("(resolving function) recorded argument");
789         }
790         visit::walk_fn_ret_ty(self, &declaration.output);
791
792         // Resolve the function body, potentially inside the body of an async closure
793         if let IsAsync::Async { closure_id, .. } = asyncness {
794             let rib_kind = ClosureRibKind(closure_id);
795             self.ribs[ValueNS].push(Rib::new(rib_kind));
796             self.label_ribs.push(Rib::new(rib_kind));
797         }
798
799         match function_kind {
800             FnKind::ItemFn(.., body) |
801             FnKind::Method(.., body) => {
802                 self.visit_block(body);
803             }
804             FnKind::Closure(body) => {
805                 self.visit_expr(body);
806             }
807         };
808
809         // Leave the body of the async closure
810         if asyncness.is_async() {
811             self.label_ribs.pop();
812             self.ribs[ValueNS].pop();
813         }
814
815         debug!("(resolving function) leaving function");
816
817         self.label_ribs.pop();
818         self.ribs[ValueNS].pop();
819     }
820     fn visit_generics(&mut self, generics: &'tcx Generics) {
821         // For type parameter defaults, we have to ban access
822         // to following type parameters, as the Substs can only
823         // provide previous type parameters as they're built. We
824         // put all the parameters on the ban list and then remove
825         // them one by one as they are processed and become available.
826         let mut default_ban_rib = Rib::new(ForwardTyParamBanRibKind);
827         let mut found_default = false;
828         default_ban_rib.bindings.extend(generics.params.iter()
829             .filter_map(|param| match param.kind {
830                 GenericParamKind::Lifetime { .. } => None,
831                 GenericParamKind::Type { ref default, .. } => {
832                     found_default |= default.is_some();
833                     if found_default {
834                         Some((Ident::with_empty_ctxt(param.ident.name), Def::Err))
835                     } else {
836                         None
837                     }
838                 }
839             }));
840
841         for param in &generics.params {
842             match param.kind {
843                 GenericParamKind::Lifetime { .. } => self.visit_generic_param(param),
844                 GenericParamKind::Type { ref default, .. } => {
845                     for bound in &param.bounds {
846                         self.visit_param_bound(bound);
847                     }
848
849                     if let Some(ref ty) = default {
850                         self.ribs[TypeNS].push(default_ban_rib);
851                         self.visit_ty(ty);
852                         default_ban_rib = self.ribs[TypeNS].pop().unwrap();
853                     }
854
855                     // Allow all following defaults to refer to this type parameter.
856                     default_ban_rib.bindings.remove(&Ident::with_empty_ctxt(param.ident.name));
857                 }
858             }
859         }
860         for p in &generics.where_clause.predicates {
861             self.visit_where_predicate(p);
862         }
863     }
864 }
865
866 #[derive(Copy, Clone)]
867 enum TypeParameters<'a, 'b> {
868     NoTypeParameters,
869     HasTypeParameters(// Type parameters.
870                       &'b Generics,
871
872                       // The kind of the rib used for type parameters.
873                       RibKind<'a>),
874 }
875
876 /// The rib kind controls the translation of local
877 /// definitions (`Def::Local`) to upvars (`Def::Upvar`).
878 #[derive(Copy, Clone, Debug)]
879 enum RibKind<'a> {
880     /// No translation needs to be applied.
881     NormalRibKind,
882
883     /// We passed through a closure scope at the given node ID.
884     /// Translate upvars as appropriate.
885     ClosureRibKind(NodeId /* func id */),
886
887     /// We passed through an impl or trait and are now in one of its
888     /// methods or associated types. Allow references to ty params that impl or trait
889     /// binds. Disallow any other upvars (including other ty params that are
890     /// upvars).
891     TraitOrImplItemRibKind,
892
893     /// We passed through an item scope. Disallow upvars.
894     ItemRibKind,
895
896     /// We're in a constant item. Can't refer to dynamic stuff.
897     ConstantItemRibKind,
898
899     /// We passed through a module.
900     ModuleRibKind(Module<'a>),
901
902     /// We passed through a `macro_rules!` statement
903     MacroDefinition(DefId),
904
905     /// All bindings in this rib are type parameters that can't be used
906     /// from the default of a type parameter because they're not declared
907     /// before said type parameter. Also see the `visit_generics` override.
908     ForwardTyParamBanRibKind,
909 }
910
911 /// One local scope.
912 ///
913 /// A rib represents a scope names can live in. Note that these appear in many places, not just
914 /// around braces. At any place where the list of accessible names (of the given namespace)
915 /// changes or a new restrictions on the name accessibility are introduced, a new rib is put onto a
916 /// stack. This may be, for example, a `let` statement (because it introduces variables), a macro,
917 /// etc.
918 ///
919 /// Different [rib kinds](enum.RibKind) are transparent for different names.
920 ///
921 /// The resolution keeps a separate stack of ribs as it traverses the AST for each namespace. When
922 /// resolving, the name is looked up from inside out.
923 #[derive(Debug)]
924 struct Rib<'a> {
925     bindings: FxHashMap<Ident, Def>,
926     kind: RibKind<'a>,
927 }
928
929 impl<'a> Rib<'a> {
930     fn new(kind: RibKind<'a>) -> Rib<'a> {
931         Rib {
932             bindings: FxHashMap(),
933             kind,
934         }
935     }
936 }
937
938 /// An intermediate resolution result.
939 ///
940 /// This refers to the thing referred by a name. The difference between `Def` and `Item` is that
941 /// items are visible in their whole block, while defs only from the place they are defined
942 /// forward.
943 enum LexicalScopeBinding<'a> {
944     Item(&'a NameBinding<'a>),
945     Def(Def),
946 }
947
948 impl<'a> LexicalScopeBinding<'a> {
949     fn item(self) -> Option<&'a NameBinding<'a>> {
950         match self {
951             LexicalScopeBinding::Item(binding) => Some(binding),
952             _ => None,
953         }
954     }
955
956     fn def(self) -> Def {
957         match self {
958             LexicalScopeBinding::Item(binding) => binding.def(),
959             LexicalScopeBinding::Def(def) => def,
960         }
961     }
962 }
963
964 #[derive(Copy, Clone, Debug)]
965 pub enum ModuleOrUniformRoot<'a> {
966     /// Regular module.
967     Module(Module<'a>),
968
969     /// The `{{root}}` (`CrateRoot` aka "global") / `extern` initial segment
970     /// in which external crates resolve, and also `crate` (only in `{{root}}`,
971     /// but *not* `extern`), in the Rust 2018 edition.
972     UniformRoot(Name),
973 }
974
975 #[derive(Clone, Debug)]
976 enum PathResult<'a> {
977     Module(ModuleOrUniformRoot<'a>),
978     NonModule(PathResolution),
979     Indeterminate,
980     Failed(Span, String, bool /* is the error from the last segment? */),
981 }
982
983 enum ModuleKind {
984     /// An anonymous module, eg. just a block.
985     ///
986     /// ```
987     /// fn main() {
988     ///     fn f() {} // (1)
989     ///     { // This is an anonymous module
990     ///         f(); // This resolves to (2) as we are inside the block.
991     ///         fn f() {} // (2)
992     ///     }
993     ///     f(); // Resolves to (1)
994     /// }
995     /// ```
996     Block(NodeId),
997     /// Any module with a name.
998     ///
999     /// This could be:
1000     ///
1001     /// * A normal module â€’ either `mod from_file;` or `mod from_block { }`.
1002     /// * A trait or an enum (it implicitly contains associated types, methods and variant
1003     ///   constructors).
1004     Def(Def, Name),
1005 }
1006
1007 /// One node in the tree of modules.
1008 pub struct ModuleData<'a> {
1009     parent: Option<Module<'a>>,
1010     kind: ModuleKind,
1011
1012     // The def id of the closest normal module (`mod`) ancestor (including this module).
1013     normal_ancestor_id: DefId,
1014
1015     resolutions: RefCell<FxHashMap<(Ident, Namespace), &'a RefCell<NameResolution<'a>>>>,
1016     legacy_macro_resolutions: RefCell<Vec<(Ident, MacroKind, ParentScope<'a>, Option<Def>)>>,
1017     macro_resolutions: RefCell<Vec<(Box<[Ident]>, Span)>>,
1018     builtin_attrs: RefCell<Vec<(Ident, ParentScope<'a>)>>,
1019
1020     // Macro invocations that can expand into items in this module.
1021     unresolved_invocations: RefCell<FxHashSet<Mark>>,
1022
1023     no_implicit_prelude: bool,
1024
1025     glob_importers: RefCell<Vec<&'a ImportDirective<'a>>>,
1026     globs: RefCell<Vec<&'a ImportDirective<'a>>>,
1027
1028     // Used to memoize the traits in this module for faster searches through all traits in scope.
1029     traits: RefCell<Option<Box<[(Ident, &'a NameBinding<'a>)]>>>,
1030
1031     // Whether this module is populated. If not populated, any attempt to
1032     // access the children must be preceded with a
1033     // `populate_module_if_necessary` call.
1034     populated: Cell<bool>,
1035
1036     /// Span of the module itself. Used for error reporting.
1037     span: Span,
1038
1039     expansion: Mark,
1040 }
1041
1042 type Module<'a> = &'a ModuleData<'a>;
1043
1044 impl<'a> ModuleData<'a> {
1045     fn new(parent: Option<Module<'a>>,
1046            kind: ModuleKind,
1047            normal_ancestor_id: DefId,
1048            expansion: Mark,
1049            span: Span) -> Self {
1050         ModuleData {
1051             parent,
1052             kind,
1053             normal_ancestor_id,
1054             resolutions: RefCell::new(FxHashMap()),
1055             legacy_macro_resolutions: RefCell::new(Vec::new()),
1056             macro_resolutions: RefCell::new(Vec::new()),
1057             builtin_attrs: RefCell::new(Vec::new()),
1058             unresolved_invocations: RefCell::new(FxHashSet()),
1059             no_implicit_prelude: false,
1060             glob_importers: RefCell::new(Vec::new()),
1061             globs: RefCell::new(Vec::new()),
1062             traits: RefCell::new(None),
1063             populated: Cell::new(normal_ancestor_id.is_local()),
1064             span,
1065             expansion,
1066         }
1067     }
1068
1069     fn for_each_child<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1070         for (&(ident, ns), name_resolution) in self.resolutions.borrow().iter() {
1071             name_resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1072         }
1073     }
1074
1075     fn for_each_child_stable<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1076         let resolutions = self.resolutions.borrow();
1077         let mut resolutions = resolutions.iter().collect::<Vec<_>>();
1078         resolutions.sort_by_cached_key(|&(&(ident, ns), _)| (ident.as_str(), ns));
1079         for &(&(ident, ns), &resolution) in resolutions.iter() {
1080             resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1081         }
1082     }
1083
1084     fn def(&self) -> Option<Def> {
1085         match self.kind {
1086             ModuleKind::Def(def, _) => Some(def),
1087             _ => None,
1088         }
1089     }
1090
1091     fn def_id(&self) -> Option<DefId> {
1092         self.def().as_ref().map(Def::def_id)
1093     }
1094
1095     // `self` resolves to the first module ancestor that `is_normal`.
1096     fn is_normal(&self) -> bool {
1097         match self.kind {
1098             ModuleKind::Def(Def::Mod(_), _) => true,
1099             _ => false,
1100         }
1101     }
1102
1103     fn is_trait(&self) -> bool {
1104         match self.kind {
1105             ModuleKind::Def(Def::Trait(_), _) => true,
1106             _ => false,
1107         }
1108     }
1109
1110     fn is_local(&self) -> bool {
1111         self.normal_ancestor_id.is_local()
1112     }
1113
1114     fn nearest_item_scope(&'a self) -> Module<'a> {
1115         if self.is_trait() { self.parent.unwrap() } else { self }
1116     }
1117 }
1118
1119 impl<'a> fmt::Debug for ModuleData<'a> {
1120     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1121         write!(f, "{:?}", self.def())
1122     }
1123 }
1124
1125 /// Records a possibly-private value, type, or module definition.
1126 #[derive(Clone, Debug)]
1127 pub struct NameBinding<'a> {
1128     kind: NameBindingKind<'a>,
1129     expansion: Mark,
1130     span: Span,
1131     vis: ty::Visibility,
1132 }
1133
1134 pub trait ToNameBinding<'a> {
1135     fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a>;
1136 }
1137
1138 impl<'a> ToNameBinding<'a> for &'a NameBinding<'a> {
1139     fn to_name_binding(self, _: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> {
1140         self
1141     }
1142 }
1143
1144 #[derive(Clone, Debug)]
1145 enum NameBindingKind<'a> {
1146     Def(Def, /* is_macro_export */ bool),
1147     Module(Module<'a>),
1148     Import {
1149         binding: &'a NameBinding<'a>,
1150         directive: &'a ImportDirective<'a>,
1151         used: Cell<bool>,
1152     },
1153     Ambiguity {
1154         b1: &'a NameBinding<'a>,
1155         b2: &'a NameBinding<'a>,
1156     }
1157 }
1158
1159 struct PrivacyError<'a>(Span, Name, &'a NameBinding<'a>);
1160
1161 struct UseError<'a> {
1162     err: DiagnosticBuilder<'a>,
1163     /// Attach `use` statements for these candidates
1164     candidates: Vec<ImportSuggestion>,
1165     /// The node id of the module to place the use statements in
1166     node_id: NodeId,
1167     /// Whether the diagnostic should state that it's "better"
1168     better: bool,
1169 }
1170
1171 struct AmbiguityError<'a> {
1172     ident: Ident,
1173     b1: &'a NameBinding<'a>,
1174     b2: &'a NameBinding<'a>,
1175 }
1176
1177 impl<'a> NameBinding<'a> {
1178     fn module(&self) -> Option<Module<'a>> {
1179         match self.kind {
1180             NameBindingKind::Module(module) => Some(module),
1181             NameBindingKind::Import { binding, .. } => binding.module(),
1182             _ => None,
1183         }
1184     }
1185
1186     fn def(&self) -> Def {
1187         match self.kind {
1188             NameBindingKind::Def(def, _) => def,
1189             NameBindingKind::Module(module) => module.def().unwrap(),
1190             NameBindingKind::Import { binding, .. } => binding.def(),
1191             NameBindingKind::Ambiguity { .. } => Def::Err,
1192         }
1193     }
1194
1195     fn def_ignoring_ambiguity(&self) -> Def {
1196         match self.kind {
1197             NameBindingKind::Import { binding, .. } => binding.def_ignoring_ambiguity(),
1198             NameBindingKind::Ambiguity { b1, .. } => b1.def_ignoring_ambiguity(),
1199             _ => self.def(),
1200         }
1201     }
1202
1203     fn get_macro<'b: 'a>(&self, resolver: &mut Resolver<'a, 'b>) -> Lrc<SyntaxExtension> {
1204         resolver.get_macro(self.def_ignoring_ambiguity())
1205     }
1206
1207     // We sometimes need to treat variants as `pub` for backwards compatibility
1208     fn pseudo_vis(&self) -> ty::Visibility {
1209         if self.is_variant() && self.def().def_id().is_local() {
1210             ty::Visibility::Public
1211         } else {
1212             self.vis
1213         }
1214     }
1215
1216     fn is_variant(&self) -> bool {
1217         match self.kind {
1218             NameBindingKind::Def(Def::Variant(..), _) |
1219             NameBindingKind::Def(Def::VariantCtor(..), _) => true,
1220             _ => false,
1221         }
1222     }
1223
1224     fn is_extern_crate(&self) -> bool {
1225         match self.kind {
1226             NameBindingKind::Import {
1227                 directive: &ImportDirective {
1228                     subclass: ImportDirectiveSubclass::ExternCrate(_), ..
1229                 }, ..
1230             } => true,
1231             _ => false,
1232         }
1233     }
1234
1235     fn is_import(&self) -> bool {
1236         match self.kind {
1237             NameBindingKind::Import { .. } => true,
1238             _ => false,
1239         }
1240     }
1241
1242     fn is_renamed_extern_crate(&self) -> bool {
1243         if let NameBindingKind::Import { directive, ..} = self.kind {
1244             if let ImportDirectiveSubclass::ExternCrate(Some(_)) = directive.subclass {
1245                 return true;
1246             }
1247         }
1248         false
1249     }
1250
1251     fn is_glob_import(&self) -> bool {
1252         match self.kind {
1253             NameBindingKind::Import { directive, .. } => directive.is_glob(),
1254             NameBindingKind::Ambiguity { b1, .. } => b1.is_glob_import(),
1255             _ => false,
1256         }
1257     }
1258
1259     fn is_importable(&self) -> bool {
1260         match self.def() {
1261             Def::AssociatedConst(..) | Def::Method(..) | Def::AssociatedTy(..) => false,
1262             _ => true,
1263         }
1264     }
1265
1266     fn is_macro_def(&self) -> bool {
1267         match self.kind {
1268             NameBindingKind::Def(Def::Macro(..), _) => true,
1269             _ => false,
1270         }
1271     }
1272
1273     fn macro_kind(&self) -> Option<MacroKind> {
1274         match self.def_ignoring_ambiguity() {
1275             Def::Macro(_, kind) => Some(kind),
1276             Def::NonMacroAttr(..) => Some(MacroKind::Attr),
1277             _ => None,
1278         }
1279     }
1280
1281     fn descr(&self) -> &'static str {
1282         if self.is_extern_crate() { "extern crate" } else { self.def().kind_name() }
1283     }
1284
1285     // Suppose that we resolved macro invocation with `invoc_parent_expansion` to binding `binding`
1286     // at some expansion round `max(invoc, binding)` when they both emerged from macros.
1287     // Then this function returns `true` if `self` may emerge from a macro *after* that
1288     // in some later round and screw up our previously found resolution.
1289     // See more detailed explanation in
1290     // https://github.com/rust-lang/rust/pull/53778#issuecomment-419224049
1291     fn may_appear_after(&self, invoc_parent_expansion: Mark, binding: &NameBinding) -> bool {
1292         // self > max(invoc, binding) => !(self <= invoc || self <= binding)
1293         // Expansions are partially ordered, so "may appear after" is an inversion of
1294         // "certainly appears before or simultaneously" and includes unordered cases.
1295         let self_parent_expansion = self.expansion;
1296         let other_parent_expansion = binding.expansion;
1297         let certainly_before_other_or_simultaneously =
1298             other_parent_expansion.is_descendant_of(self_parent_expansion);
1299         let certainly_before_invoc_or_simultaneously =
1300             invoc_parent_expansion.is_descendant_of(self_parent_expansion);
1301         !(certainly_before_other_or_simultaneously || certainly_before_invoc_or_simultaneously)
1302     }
1303 }
1304
1305 /// Interns the names of the primitive types.
1306 ///
1307 /// All other types are defined somewhere and possibly imported, but the primitive ones need
1308 /// special handling, since they have no place of origin.
1309 struct PrimitiveTypeTable {
1310     primitive_types: FxHashMap<Name, PrimTy>,
1311 }
1312
1313 impl PrimitiveTypeTable {
1314     fn new() -> PrimitiveTypeTable {
1315         let mut table = PrimitiveTypeTable { primitive_types: FxHashMap() };
1316
1317         table.intern("bool", Bool);
1318         table.intern("char", Char);
1319         table.intern("f32", Float(FloatTy::F32));
1320         table.intern("f64", Float(FloatTy::F64));
1321         table.intern("isize", Int(IntTy::Isize));
1322         table.intern("i8", Int(IntTy::I8));
1323         table.intern("i16", Int(IntTy::I16));
1324         table.intern("i32", Int(IntTy::I32));
1325         table.intern("i64", Int(IntTy::I64));
1326         table.intern("i128", Int(IntTy::I128));
1327         table.intern("str", Str);
1328         table.intern("usize", Uint(UintTy::Usize));
1329         table.intern("u8", Uint(UintTy::U8));
1330         table.intern("u16", Uint(UintTy::U16));
1331         table.intern("u32", Uint(UintTy::U32));
1332         table.intern("u64", Uint(UintTy::U64));
1333         table.intern("u128", Uint(UintTy::U128));
1334         table
1335     }
1336
1337     fn intern(&mut self, string: &str, primitive_type: PrimTy) {
1338         self.primitive_types.insert(Symbol::intern(string), primitive_type);
1339     }
1340 }
1341
1342 /// The main resolver class.
1343 ///
1344 /// This is the visitor that walks the whole crate.
1345 pub struct Resolver<'a, 'b: 'a> {
1346     session: &'a Session,
1347     cstore: &'a CStore,
1348
1349     pub definitions: Definitions,
1350
1351     graph_root: Module<'a>,
1352
1353     prelude: Option<Module<'a>>,
1354     extern_prelude: FxHashSet<Name>,
1355
1356     /// n.b. This is used only for better diagnostics, not name resolution itself.
1357     has_self: FxHashSet<DefId>,
1358
1359     /// Names of fields of an item `DefId` accessible with dot syntax.
1360     /// Used for hints during error reporting.
1361     field_names: FxHashMap<DefId, Vec<Name>>,
1362
1363     /// All imports known to succeed or fail.
1364     determined_imports: Vec<&'a ImportDirective<'a>>,
1365
1366     /// All non-determined imports.
1367     indeterminate_imports: Vec<&'a ImportDirective<'a>>,
1368
1369     /// The module that represents the current item scope.
1370     current_module: Module<'a>,
1371
1372     /// The current set of local scopes for types and values.
1373     /// FIXME #4948: Reuse ribs to avoid allocation.
1374     ribs: PerNS<Vec<Rib<'a>>>,
1375
1376     /// The current set of local scopes, for labels.
1377     label_ribs: Vec<Rib<'a>>,
1378
1379     /// The trait that the current context can refer to.
1380     current_trait_ref: Option<(Module<'a>, TraitRef)>,
1381
1382     /// The current self type if inside an impl (used for better errors).
1383     current_self_type: Option<Ty>,
1384
1385     /// The idents for the primitive types.
1386     primitive_type_table: PrimitiveTypeTable,
1387
1388     def_map: DefMap,
1389     import_map: ImportMap,
1390     pub freevars: FreevarMap,
1391     freevars_seen: NodeMap<NodeMap<usize>>,
1392     pub export_map: ExportMap,
1393     pub trait_map: TraitMap,
1394
1395     /// A map from nodes to anonymous modules.
1396     /// Anonymous modules are pseudo-modules that are implicitly created around items
1397     /// contained within blocks.
1398     ///
1399     /// For example, if we have this:
1400     ///
1401     ///  fn f() {
1402     ///      fn g() {
1403     ///          ...
1404     ///      }
1405     ///  }
1406     ///
1407     /// There will be an anonymous module created around `g` with the ID of the
1408     /// entry block for `f`.
1409     block_map: NodeMap<Module<'a>>,
1410     module_map: FxHashMap<DefId, Module<'a>>,
1411     extern_module_map: FxHashMap<(DefId, bool /* MacrosOnly? */), Module<'a>>,
1412
1413     pub make_glob_map: bool,
1414     /// Maps imports to the names of items actually imported (this actually maps
1415     /// all imports, but only glob imports are actually interesting).
1416     pub glob_map: GlobMap,
1417
1418     used_imports: FxHashSet<(NodeId, Namespace)>,
1419     pub maybe_unused_trait_imports: NodeSet,
1420     pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
1421
1422     /// A list of labels as of yet unused. Labels will be removed from this map when
1423     /// they are used (in a `break` or `continue` statement)
1424     pub unused_labels: FxHashMap<NodeId, Span>,
1425
1426     /// privacy errors are delayed until the end in order to deduplicate them
1427     privacy_errors: Vec<PrivacyError<'a>>,
1428     /// ambiguity errors are delayed for deduplication
1429     ambiguity_errors: Vec<AmbiguityError<'a>>,
1430     /// `use` injections are delayed for better placement and deduplication
1431     use_injections: Vec<UseError<'a>>,
1432     /// crate-local macro expanded `macro_export` referred to by a module-relative path
1433     macro_expanded_macro_export_errors: BTreeSet<(Span, Span)>,
1434
1435     arenas: &'a ResolverArenas<'a>,
1436     dummy_binding: &'a NameBinding<'a>,
1437
1438     crate_loader: &'a mut CrateLoader<'b>,
1439     macro_names: FxHashSet<Ident>,
1440     builtin_macros: FxHashMap<Name, &'a NameBinding<'a>>,
1441     macro_use_prelude: FxHashMap<Name, &'a NameBinding<'a>>,
1442     pub all_macros: FxHashMap<Name, Def>,
1443     macro_map: FxHashMap<DefId, Lrc<SyntaxExtension>>,
1444     macro_defs: FxHashMap<Mark, DefId>,
1445     local_macro_def_scopes: FxHashMap<NodeId, Module<'a>>,
1446     pub whitelisted_legacy_custom_derives: Vec<Name>,
1447     pub found_unresolved_macro: bool,
1448
1449     /// List of crate local macros that we need to warn about as being unused.
1450     /// Right now this only includes macro_rules! macros, and macros 2.0.
1451     unused_macros: FxHashSet<DefId>,
1452
1453     /// Maps the `Mark` of an expansion to its containing module or block.
1454     invocations: FxHashMap<Mark, &'a InvocationData<'a>>,
1455
1456     /// Avoid duplicated errors for "name already defined".
1457     name_already_seen: FxHashMap<Name, Span>,
1458
1459     potentially_unused_imports: Vec<&'a ImportDirective<'a>>,
1460
1461     /// This table maps struct IDs into struct constructor IDs,
1462     /// it's not used during normal resolution, only for better error reporting.
1463     struct_constructors: DefIdMap<(Def, ty::Visibility)>,
1464
1465     /// Only used for better errors on `fn(): fn()`
1466     current_type_ascription: Vec<Span>,
1467
1468     injected_crate: Option<Module<'a>>,
1469
1470     /// Only supposed to be used by rustdoc, otherwise should be false.
1471     pub ignore_extern_prelude_feature: bool,
1472 }
1473
1474 /// Nothing really interesting here, it just provides memory for the rest of the crate.
1475 pub struct ResolverArenas<'a> {
1476     modules: arena::TypedArena<ModuleData<'a>>,
1477     local_modules: RefCell<Vec<Module<'a>>>,
1478     name_bindings: arena::TypedArena<NameBinding<'a>>,
1479     import_directives: arena::TypedArena<ImportDirective<'a>>,
1480     name_resolutions: arena::TypedArena<RefCell<NameResolution<'a>>>,
1481     invocation_data: arena::TypedArena<InvocationData<'a>>,
1482     legacy_bindings: arena::TypedArena<LegacyBinding<'a>>,
1483 }
1484
1485 impl<'a> ResolverArenas<'a> {
1486     fn alloc_module(&'a self, module: ModuleData<'a>) -> Module<'a> {
1487         let module = self.modules.alloc(module);
1488         if module.def_id().map(|def_id| def_id.is_local()).unwrap_or(true) {
1489             self.local_modules.borrow_mut().push(module);
1490         }
1491         module
1492     }
1493     fn local_modules(&'a self) -> ::std::cell::Ref<'a, Vec<Module<'a>>> {
1494         self.local_modules.borrow()
1495     }
1496     fn alloc_name_binding(&'a self, name_binding: NameBinding<'a>) -> &'a NameBinding<'a> {
1497         self.name_bindings.alloc(name_binding)
1498     }
1499     fn alloc_import_directive(&'a self, import_directive: ImportDirective<'a>)
1500                               -> &'a ImportDirective {
1501         self.import_directives.alloc(import_directive)
1502     }
1503     fn alloc_name_resolution(&'a self) -> &'a RefCell<NameResolution<'a>> {
1504         self.name_resolutions.alloc(Default::default())
1505     }
1506     fn alloc_invocation_data(&'a self, expansion_data: InvocationData<'a>)
1507                              -> &'a InvocationData<'a> {
1508         self.invocation_data.alloc(expansion_data)
1509     }
1510     fn alloc_legacy_binding(&'a self, binding: LegacyBinding<'a>) -> &'a LegacyBinding<'a> {
1511         self.legacy_bindings.alloc(binding)
1512     }
1513 }
1514
1515 impl<'a, 'b: 'a, 'cl: 'b> ty::DefIdTree for &'a Resolver<'b, 'cl> {
1516     fn parent(self, id: DefId) -> Option<DefId> {
1517         match id.krate {
1518             LOCAL_CRATE => self.definitions.def_key(id.index).parent,
1519             _ => self.cstore.def_key(id).parent,
1520         }.map(|index| DefId { index, ..id })
1521     }
1522 }
1523
1524 /// This interface is used through the AST→HIR step, to embed full paths into the HIR. After that
1525 /// the resolver is no longer needed as all the relevant information is inline.
1526 impl<'a, 'cl> hir::lowering::Resolver for Resolver<'a, 'cl> {
1527     fn resolve_hir_path(&mut self, path: &mut hir::Path, is_value: bool) {
1528         self.resolve_hir_path_cb(path, is_value,
1529                                  |resolver, span, error| resolve_error(resolver, span, error))
1530     }
1531
1532     fn resolve_str_path(
1533         &mut self,
1534         span: Span,
1535         crate_root: Option<&str>,
1536         components: &[&str],
1537         args: Option<P<hir::GenericArgs>>,
1538         is_value: bool
1539     ) -> hir::Path {
1540         let mut segments = iter::once(keywords::CrateRoot.ident())
1541             .chain(
1542                 crate_root.into_iter()
1543                     .chain(components.iter().cloned())
1544                     .map(Ident::from_str)
1545             ).map(hir::PathSegment::from_ident).collect::<Vec<_>>();
1546
1547         if let Some(args) = args {
1548             let ident = segments.last().unwrap().ident;
1549             *segments.last_mut().unwrap() = hir::PathSegment {
1550                 ident,
1551                 args: Some(args),
1552                 infer_types: true,
1553             };
1554         }
1555
1556         let mut path = hir::Path {
1557             span,
1558             def: Def::Err,
1559             segments: segments.into(),
1560         };
1561
1562         self.resolve_hir_path(&mut path, is_value);
1563         path
1564     }
1565
1566     fn get_resolution(&mut self, id: NodeId) -> Option<PathResolution> {
1567         self.def_map.get(&id).cloned()
1568     }
1569
1570     fn get_import(&mut self, id: NodeId) -> PerNS<Option<PathResolution>> {
1571         self.import_map.get(&id).cloned().unwrap_or_default()
1572     }
1573
1574     fn definitions(&mut self) -> &mut Definitions {
1575         &mut self.definitions
1576     }
1577 }
1578
1579 impl<'a, 'crateloader> Resolver<'a, 'crateloader> {
1580     /// Rustdoc uses this to resolve things in a recoverable way. ResolutionError<'a>
1581     /// isn't something that can be returned because it can't be made to live that long,
1582     /// and also it's a private type. Fortunately rustdoc doesn't need to know the error,
1583     /// just that an error occurred.
1584     pub fn resolve_str_path_error(&mut self, span: Span, path_str: &str, is_value: bool)
1585         -> Result<hir::Path, ()> {
1586         use std::iter;
1587         let mut errored = false;
1588
1589         let mut path = if path_str.starts_with("::") {
1590             hir::Path {
1591                 span,
1592                 def: Def::Err,
1593                 segments: iter::once(keywords::CrateRoot.ident()).chain({
1594                     path_str.split("::").skip(1).map(Ident::from_str)
1595                 }).map(hir::PathSegment::from_ident).collect(),
1596             }
1597         } else {
1598             hir::Path {
1599                 span,
1600                 def: Def::Err,
1601                 segments: path_str.split("::").map(Ident::from_str)
1602                                   .map(hir::PathSegment::from_ident).collect(),
1603             }
1604         };
1605         self.resolve_hir_path_cb(&mut path, is_value, |_, _, _| errored = true);
1606         if errored || path.def == Def::Err {
1607             Err(())
1608         } else {
1609             Ok(path)
1610         }
1611     }
1612
1613     /// resolve_hir_path, but takes a callback in case there was an error
1614     fn resolve_hir_path_cb<F>(&mut self, path: &mut hir::Path, is_value: bool, error_callback: F)
1615         where F: for<'c, 'b> FnOnce(&'c mut Resolver, Span, ResolutionError<'b>)
1616     {
1617         let namespace = if is_value { ValueNS } else { TypeNS };
1618         let hir::Path { ref segments, span, ref mut def } = *path;
1619         let path: Vec<_> = segments.iter().map(|seg| seg.ident).collect();
1620         // FIXME (Manishearth): Intra doc links won't get warned of epoch changes
1621         match self.resolve_path(None, &path, Some(namespace), true, span, CrateLint::No) {
1622             PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
1623                 *def = module.def().unwrap(),
1624             PathResult::NonModule(path_res) if path_res.unresolved_segments() == 0 =>
1625                 *def = path_res.base_def(),
1626             PathResult::NonModule(..) => match self.resolve_path(
1627                 None,
1628                 &path,
1629                 None,
1630                 true,
1631                 span,
1632                 CrateLint::No,
1633             ) {
1634                 PathResult::Failed(span, msg, _) => {
1635                     error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1636                 }
1637                 _ => {}
1638             },
1639             PathResult::Module(ModuleOrUniformRoot::UniformRoot(_)) |
1640             PathResult::Indeterminate => unreachable!(),
1641             PathResult::Failed(span, msg, _) => {
1642                 error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1643             }
1644         }
1645     }
1646 }
1647
1648 impl<'a, 'crateloader: 'a> Resolver<'a, 'crateloader> {
1649     pub fn new(session: &'a Session,
1650                cstore: &'a CStore,
1651                krate: &Crate,
1652                crate_name: &str,
1653                make_glob_map: MakeGlobMap,
1654                crate_loader: &'a mut CrateLoader<'crateloader>,
1655                arenas: &'a ResolverArenas<'a>)
1656                -> Resolver<'a, 'crateloader> {
1657         let root_def_id = DefId::local(CRATE_DEF_INDEX);
1658         let root_module_kind = ModuleKind::Def(Def::Mod(root_def_id), keywords::Invalid.name());
1659         let graph_root = arenas.alloc_module(ModuleData {
1660             no_implicit_prelude: attr::contains_name(&krate.attrs, "no_implicit_prelude"),
1661             ..ModuleData::new(None, root_module_kind, root_def_id, Mark::root(), krate.span)
1662         });
1663         let mut module_map = FxHashMap();
1664         module_map.insert(DefId::local(CRATE_DEF_INDEX), graph_root);
1665
1666         let mut definitions = Definitions::new();
1667         DefCollector::new(&mut definitions, Mark::root())
1668             .collect_root(crate_name, session.local_crate_disambiguator());
1669
1670         let mut extern_prelude: FxHashSet<Name> =
1671             session.opts.externs.iter().map(|kv| Symbol::intern(kv.0)).collect();
1672
1673         // HACK(eddyb) this ignore the `no_{core,std}` attributes.
1674         // FIXME(eddyb) warn (elsewhere) if core/std is used with `no_{core,std}`.
1675         // if !attr::contains_name(&krate.attrs, "no_core") {
1676         // if !attr::contains_name(&krate.attrs, "no_std") {
1677         extern_prelude.insert(Symbol::intern("core"));
1678         extern_prelude.insert(Symbol::intern("std"));
1679         extern_prelude.insert(Symbol::intern("meta"));
1680
1681         let mut invocations = FxHashMap();
1682         invocations.insert(Mark::root(),
1683                            arenas.alloc_invocation_data(InvocationData::root(graph_root)));
1684
1685         let mut macro_defs = FxHashMap();
1686         macro_defs.insert(Mark::root(), root_def_id);
1687
1688         Resolver {
1689             session,
1690
1691             cstore,
1692
1693             definitions,
1694
1695             // The outermost module has def ID 0; this is not reflected in the
1696             // AST.
1697             graph_root,
1698             prelude: None,
1699             extern_prelude,
1700
1701             has_self: FxHashSet(),
1702             field_names: FxHashMap(),
1703
1704             determined_imports: Vec::new(),
1705             indeterminate_imports: Vec::new(),
1706
1707             current_module: graph_root,
1708             ribs: PerNS {
1709                 value_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1710                 type_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1711                 macro_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1712             },
1713             label_ribs: Vec::new(),
1714
1715             current_trait_ref: None,
1716             current_self_type: None,
1717
1718             primitive_type_table: PrimitiveTypeTable::new(),
1719
1720             def_map: NodeMap(),
1721             import_map: NodeMap(),
1722             freevars: NodeMap(),
1723             freevars_seen: NodeMap(),
1724             export_map: FxHashMap(),
1725             trait_map: NodeMap(),
1726             module_map,
1727             block_map: NodeMap(),
1728             extern_module_map: FxHashMap(),
1729
1730             make_glob_map: make_glob_map == MakeGlobMap::Yes,
1731             glob_map: NodeMap(),
1732
1733             used_imports: FxHashSet(),
1734             maybe_unused_trait_imports: NodeSet(),
1735             maybe_unused_extern_crates: Vec::new(),
1736
1737             unused_labels: FxHashMap(),
1738
1739             privacy_errors: Vec::new(),
1740             ambiguity_errors: Vec::new(),
1741             use_injections: Vec::new(),
1742             macro_expanded_macro_export_errors: BTreeSet::new(),
1743
1744             arenas,
1745             dummy_binding: arenas.alloc_name_binding(NameBinding {
1746                 kind: NameBindingKind::Def(Def::Err, false),
1747                 expansion: Mark::root(),
1748                 span: DUMMY_SP,
1749                 vis: ty::Visibility::Public,
1750             }),
1751
1752             crate_loader,
1753             macro_names: FxHashSet(),
1754             builtin_macros: FxHashMap(),
1755             macro_use_prelude: FxHashMap(),
1756             all_macros: FxHashMap(),
1757             macro_map: FxHashMap(),
1758             invocations,
1759             macro_defs,
1760             local_macro_def_scopes: FxHashMap(),
1761             name_already_seen: FxHashMap(),
1762             whitelisted_legacy_custom_derives: Vec::new(),
1763             potentially_unused_imports: Vec::new(),
1764             struct_constructors: DefIdMap(),
1765             found_unresolved_macro: false,
1766             unused_macros: FxHashSet(),
1767             current_type_ascription: Vec::new(),
1768             injected_crate: None,
1769             ignore_extern_prelude_feature: false,
1770         }
1771     }
1772
1773     pub fn arenas() -> ResolverArenas<'a> {
1774         ResolverArenas {
1775             modules: arena::TypedArena::new(),
1776             local_modules: RefCell::new(Vec::new()),
1777             name_bindings: arena::TypedArena::new(),
1778             import_directives: arena::TypedArena::new(),
1779             name_resolutions: arena::TypedArena::new(),
1780             invocation_data: arena::TypedArena::new(),
1781             legacy_bindings: arena::TypedArena::new(),
1782         }
1783     }
1784
1785     /// Runs the function on each namespace.
1786     fn per_ns<F: FnMut(&mut Self, Namespace)>(&mut self, mut f: F) {
1787         f(self, TypeNS);
1788         f(self, ValueNS);
1789         f(self, MacroNS);
1790     }
1791
1792     fn macro_def(&self, mut ctxt: SyntaxContext) -> DefId {
1793         loop {
1794             match self.macro_defs.get(&ctxt.outer()) {
1795                 Some(&def_id) => return def_id,
1796                 None => ctxt.remove_mark(),
1797             };
1798         }
1799     }
1800
1801     /// Entry point to crate resolution.
1802     pub fn resolve_crate(&mut self, krate: &Crate) {
1803         ImportResolver { resolver: self }.finalize_imports();
1804         self.current_module = self.graph_root;
1805         self.finalize_current_module_macro_resolutions();
1806
1807         visit::walk_crate(self, krate);
1808
1809         check_unused::check_crate(self, krate);
1810         self.report_errors(krate);
1811         self.crate_loader.postprocess(krate);
1812     }
1813
1814     fn new_module(
1815         &self,
1816         parent: Module<'a>,
1817         kind: ModuleKind,
1818         normal_ancestor_id: DefId,
1819         expansion: Mark,
1820         span: Span,
1821     ) -> Module<'a> {
1822         let module = ModuleData::new(Some(parent), kind, normal_ancestor_id, expansion, span);
1823         self.arenas.alloc_module(module)
1824     }
1825
1826     fn record_use(&mut self, ident: Ident, ns: Namespace, binding: &'a NameBinding<'a>)
1827                   -> bool /* true if an error was reported */ {
1828         match binding.kind {
1829             NameBindingKind::Import { directive, binding, ref used }
1830                     if !used.get() => {
1831                 used.set(true);
1832                 directive.used.set(true);
1833                 self.used_imports.insert((directive.id, ns));
1834                 self.add_to_glob_map(directive.id, ident);
1835                 self.record_use(ident, ns, binding)
1836             }
1837             NameBindingKind::Import { .. } => false,
1838             NameBindingKind::Ambiguity { b1, b2 } => {
1839                 self.ambiguity_errors.push(AmbiguityError { ident, b1, b2 });
1840                 true
1841             }
1842             _ => false
1843         }
1844     }
1845
1846     fn add_to_glob_map(&mut self, id: NodeId, ident: Ident) {
1847         if self.make_glob_map {
1848             self.glob_map.entry(id).or_default().insert(ident.name);
1849         }
1850     }
1851
1852     /// This resolves the identifier `ident` in the namespace `ns` in the current lexical scope.
1853     /// More specifically, we proceed up the hierarchy of scopes and return the binding for
1854     /// `ident` in the first scope that defines it (or None if no scopes define it).
1855     ///
1856     /// A block's items are above its local variables in the scope hierarchy, regardless of where
1857     /// the items are defined in the block. For example,
1858     /// ```rust
1859     /// fn f() {
1860     ///    g(); // Since there are no local variables in scope yet, this resolves to the item.
1861     ///    let g = || {};
1862     ///    fn g() {}
1863     ///    g(); // This resolves to the local variable `g` since it shadows the item.
1864     /// }
1865     /// ```
1866     ///
1867     /// Invariant: This must only be called during main resolution, not during
1868     /// import resolution.
1869     fn resolve_ident_in_lexical_scope(&mut self,
1870                                       mut ident: Ident,
1871                                       ns: Namespace,
1872                                       record_used_id: Option<NodeId>,
1873                                       path_span: Span)
1874                                       -> Option<LexicalScopeBinding<'a>> {
1875         let record_used = record_used_id.is_some();
1876         assert!(ns == TypeNS  || ns == ValueNS);
1877         if ns == TypeNS {
1878             ident.span = if ident.name == keywords::SelfType.name() {
1879                 // FIXME(jseyfried) improve `Self` hygiene
1880                 ident.span.with_ctxt(SyntaxContext::empty())
1881             } else {
1882                 ident.span.modern()
1883             }
1884         } else {
1885             ident = ident.modern_and_legacy();
1886         }
1887
1888         // Walk backwards up the ribs in scope.
1889         let mut module = self.graph_root;
1890         for i in (0 .. self.ribs[ns].len()).rev() {
1891             if let Some(def) = self.ribs[ns][i].bindings.get(&ident).cloned() {
1892                 // The ident resolves to a type parameter or local variable.
1893                 return Some(LexicalScopeBinding::Def(
1894                     self.adjust_local_def(ns, i, def, record_used, path_span)
1895                 ));
1896             }
1897
1898             module = match self.ribs[ns][i].kind {
1899                 ModuleRibKind(module) => module,
1900                 MacroDefinition(def) if def == self.macro_def(ident.span.ctxt()) => {
1901                     // If an invocation of this macro created `ident`, give up on `ident`
1902                     // and switch to `ident`'s source from the macro definition.
1903                     ident.span.remove_mark();
1904                     continue
1905                 }
1906                 _ => continue,
1907             };
1908
1909             let item = self.resolve_ident_in_module_unadjusted(
1910                 ModuleOrUniformRoot::Module(module),
1911                 ident,
1912                 ns,
1913                 false,
1914                 record_used,
1915                 path_span,
1916             );
1917             if let Ok(binding) = item {
1918                 // The ident resolves to an item.
1919                 return Some(LexicalScopeBinding::Item(binding));
1920             }
1921
1922             match module.kind {
1923                 ModuleKind::Block(..) => {}, // We can see through blocks
1924                 _ => break,
1925             }
1926         }
1927
1928         ident.span = ident.span.modern();
1929         let mut poisoned = None;
1930         loop {
1931             let opt_module = if let Some(node_id) = record_used_id {
1932                 self.hygienic_lexical_parent_with_compatibility_fallback(module, &mut ident.span,
1933                                                                          node_id, &mut poisoned)
1934             } else {
1935                 self.hygienic_lexical_parent(module, &mut ident.span)
1936             };
1937             module = unwrap_or!(opt_module, break);
1938             let orig_current_module = self.current_module;
1939             self.current_module = module; // Lexical resolutions can never be a privacy error.
1940             let result = self.resolve_ident_in_module_unadjusted(
1941                 ModuleOrUniformRoot::Module(module),
1942                 ident,
1943                 ns,
1944                 false,
1945                 record_used,
1946                 path_span,
1947             );
1948             self.current_module = orig_current_module;
1949
1950             match result {
1951                 Ok(binding) => {
1952                     if let Some(node_id) = poisoned {
1953                         self.session.buffer_lint_with_diagnostic(
1954                             lint::builtin::PROC_MACRO_DERIVE_RESOLUTION_FALLBACK,
1955                             node_id, ident.span,
1956                             &format!("cannot find {} `{}` in this scope", ns.descr(), ident),
1957                             lint::builtin::BuiltinLintDiagnostics::
1958                                 ProcMacroDeriveResolutionFallback(ident.span),
1959                         );
1960                     }
1961                     return Some(LexicalScopeBinding::Item(binding))
1962                 }
1963                 Err(Determined) => continue,
1964                 Err(Undetermined) =>
1965                     span_bug!(ident.span, "undetermined resolution during main resolution pass"),
1966             }
1967         }
1968
1969         if !module.no_implicit_prelude {
1970             // `record_used` means that we don't try to load crates during speculative resolution
1971             if record_used && ns == TypeNS && self.extern_prelude.contains(&ident.name) {
1972                 if !self.session.features_untracked().extern_prelude &&
1973                    !self.ignore_extern_prelude_feature {
1974                     feature_err(&self.session.parse_sess, "extern_prelude",
1975                                 ident.span, GateIssue::Language,
1976                                 "access to extern crates through prelude is experimental").emit();
1977                 }
1978
1979                 let crate_id = self.crate_loader.process_path_extern(ident.name, ident.span);
1980                 let crate_root = self.get_module(DefId { krate: crate_id, index: CRATE_DEF_INDEX });
1981                 self.populate_module_if_necessary(&crate_root);
1982
1983                 let binding = (crate_root, ty::Visibility::Public,
1984                                ident.span, Mark::root()).to_name_binding(self.arenas);
1985                 return Some(LexicalScopeBinding::Item(binding));
1986             }
1987             if ns == TypeNS && is_known_tool(ident.name) {
1988                 let binding = (Def::ToolMod, ty::Visibility::Public,
1989                                ident.span, Mark::root()).to_name_binding(self.arenas);
1990                 return Some(LexicalScopeBinding::Item(binding));
1991             }
1992             if let Some(prelude) = self.prelude {
1993                 if let Ok(binding) = self.resolve_ident_in_module_unadjusted(
1994                     ModuleOrUniformRoot::Module(prelude),
1995                     ident,
1996                     ns,
1997                     false,
1998                     false,
1999                     path_span,
2000                 ) {
2001                     return Some(LexicalScopeBinding::Item(binding));
2002                 }
2003             }
2004         }
2005
2006         None
2007     }
2008
2009     fn hygienic_lexical_parent(&mut self, module: Module<'a>, span: &mut Span)
2010                                -> Option<Module<'a>> {
2011         if !module.expansion.is_descendant_of(span.ctxt().outer()) {
2012             return Some(self.macro_def_scope(span.remove_mark()));
2013         }
2014
2015         if let ModuleKind::Block(..) = module.kind {
2016             return Some(module.parent.unwrap());
2017         }
2018
2019         None
2020     }
2021
2022     fn hygienic_lexical_parent_with_compatibility_fallback(&mut self, module: Module<'a>,
2023                                                            span: &mut Span, node_id: NodeId,
2024                                                            poisoned: &mut Option<NodeId>)
2025                                                            -> Option<Module<'a>> {
2026         if let module @ Some(..) = self.hygienic_lexical_parent(module, span) {
2027             return module;
2028         }
2029
2030         // We need to support the next case under a deprecation warning
2031         // ```
2032         // struct MyStruct;
2033         // ---- begin: this comes from a proc macro derive
2034         // mod implementation_details {
2035         //     // Note that `MyStruct` is not in scope here.
2036         //     impl SomeTrait for MyStruct { ... }
2037         // }
2038         // ---- end
2039         // ```
2040         // So we have to fall back to the module's parent during lexical resolution in this case.
2041         if let Some(parent) = module.parent {
2042             // Inner module is inside the macro, parent module is outside of the macro.
2043             if module.expansion != parent.expansion &&
2044             module.expansion.is_descendant_of(parent.expansion) {
2045                 // The macro is a proc macro derive
2046                 if module.expansion.looks_like_proc_macro_derive() {
2047                     if parent.expansion.is_descendant_of(span.ctxt().outer()) {
2048                         *poisoned = Some(node_id);
2049                         return module.parent;
2050                     }
2051                 }
2052             }
2053         }
2054
2055         None
2056     }
2057
2058     fn resolve_ident_in_module(&mut self,
2059                                module: ModuleOrUniformRoot<'a>,
2060                                mut ident: Ident,
2061                                ns: Namespace,
2062                                record_used: bool,
2063                                span: Span)
2064                                -> Result<&'a NameBinding<'a>, Determinacy> {
2065         ident.span = ident.span.modern();
2066         let orig_current_module = self.current_module;
2067         if let ModuleOrUniformRoot::Module(module) = module {
2068             if let Some(def) = ident.span.adjust(module.expansion) {
2069                 self.current_module = self.macro_def_scope(def);
2070             }
2071         }
2072         let result = self.resolve_ident_in_module_unadjusted(
2073             module, ident, ns, false, record_used, span,
2074         );
2075         self.current_module = orig_current_module;
2076         result
2077     }
2078
2079     fn resolve_crate_root(&mut self, ident: Ident) -> Module<'a> {
2080         let mut ctxt = ident.span.ctxt();
2081         let mark = if ident.name == keywords::DollarCrate.name() {
2082             // When resolving `$crate` from a `macro_rules!` invoked in a `macro`,
2083             // we don't want to pretend that the `macro_rules!` definition is in the `macro`
2084             // as described in `SyntaxContext::apply_mark`, so we ignore prepended modern marks.
2085             // FIXME: This is only a guess and it doesn't work correctly for `macro_rules!`
2086             // definitions actually produced by `macro` and `macro` definitions produced by
2087             // `macro_rules!`, but at least such configurations are not stable yet.
2088             ctxt = ctxt.modern_and_legacy();
2089             let mut iter = ctxt.marks().into_iter().rev().peekable();
2090             let mut result = None;
2091             // Find the last modern mark from the end if it exists.
2092             while let Some(&(mark, transparency)) = iter.peek() {
2093                 if transparency == Transparency::Opaque {
2094                     result = Some(mark);
2095                     iter.next();
2096                 } else {
2097                     break;
2098                 }
2099             }
2100             // Then find the last legacy mark from the end if it exists.
2101             for (mark, transparency) in iter {
2102                 if transparency == Transparency::SemiTransparent {
2103                     result = Some(mark);
2104                 } else {
2105                     break;
2106                 }
2107             }
2108             result
2109         } else {
2110             ctxt = ctxt.modern();
2111             ctxt.adjust(Mark::root())
2112         };
2113         let module = match mark {
2114             Some(def) => self.macro_def_scope(def),
2115             None => return self.graph_root,
2116         };
2117         self.get_module(DefId { index: CRATE_DEF_INDEX, ..module.normal_ancestor_id })
2118     }
2119
2120     fn resolve_self(&mut self, ctxt: &mut SyntaxContext, module: Module<'a>) -> Module<'a> {
2121         let mut module = self.get_module(module.normal_ancestor_id);
2122         while module.span.ctxt().modern() != *ctxt {
2123             let parent = module.parent.unwrap_or_else(|| self.macro_def_scope(ctxt.remove_mark()));
2124             module = self.get_module(parent.normal_ancestor_id);
2125         }
2126         module
2127     }
2128
2129     // AST resolution
2130     //
2131     // We maintain a list of value ribs and type ribs.
2132     //
2133     // Simultaneously, we keep track of the current position in the module
2134     // graph in the `current_module` pointer. When we go to resolve a name in
2135     // the value or type namespaces, we first look through all the ribs and
2136     // then query the module graph. When we resolve a name in the module
2137     // namespace, we can skip all the ribs (since nested modules are not
2138     // allowed within blocks in Rust) and jump straight to the current module
2139     // graph node.
2140     //
2141     // Named implementations are handled separately. When we find a method
2142     // call, we consult the module node to find all of the implementations in
2143     // scope. This information is lazily cached in the module node. We then
2144     // generate a fake "implementation scope" containing all the
2145     // implementations thus found, for compatibility with old resolve pass.
2146
2147     pub fn with_scope<F, T>(&mut self, id: NodeId, f: F) -> T
2148         where F: FnOnce(&mut Resolver) -> T
2149     {
2150         let id = self.definitions.local_def_id(id);
2151         let module = self.module_map.get(&id).cloned(); // clones a reference
2152         if let Some(module) = module {
2153             // Move down in the graph.
2154             let orig_module = replace(&mut self.current_module, module);
2155             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(module)));
2156             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(module)));
2157
2158             self.finalize_current_module_macro_resolutions();
2159             let ret = f(self);
2160
2161             self.current_module = orig_module;
2162             self.ribs[ValueNS].pop();
2163             self.ribs[TypeNS].pop();
2164             ret
2165         } else {
2166             f(self)
2167         }
2168     }
2169
2170     /// Searches the current set of local scopes for labels. Returns the first non-None label that
2171     /// is returned by the given predicate function
2172     ///
2173     /// Stops after meeting a closure.
2174     fn search_label<P, R>(&self, mut ident: Ident, pred: P) -> Option<R>
2175         where P: Fn(&Rib, Ident) -> Option<R>
2176     {
2177         for rib in self.label_ribs.iter().rev() {
2178             match rib.kind {
2179                 NormalRibKind => {}
2180                 // If an invocation of this macro created `ident`, give up on `ident`
2181                 // and switch to `ident`'s source from the macro definition.
2182                 MacroDefinition(def) => {
2183                     if def == self.macro_def(ident.span.ctxt()) {
2184                         ident.span.remove_mark();
2185                     }
2186                 }
2187                 _ => {
2188                     // Do not resolve labels across function boundary
2189                     return None;
2190                 }
2191             }
2192             let r = pred(rib, ident);
2193             if r.is_some() {
2194                 return r;
2195             }
2196         }
2197         None
2198     }
2199
2200     fn resolve_adt(&mut self, item: &Item, generics: &Generics) {
2201         self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2202             let item_def_id = this.definitions.local_def_id(item.id);
2203             if this.session.features_untracked().self_in_typedefs {
2204                 this.with_self_rib(Def::SelfTy(None, Some(item_def_id)), |this| {
2205                     visit::walk_item(this, item);
2206                 });
2207             } else {
2208                 visit::walk_item(this, item);
2209             }
2210         });
2211     }
2212
2213     fn resolve_item(&mut self, item: &Item) {
2214         let name = item.ident.name;
2215         debug!("(resolving item) resolving {}", name);
2216
2217         match item.node {
2218             ItemKind::Ty(_, ref generics) |
2219             ItemKind::Fn(_, _, ref generics, _) |
2220             ItemKind::Existential(_, ref generics) => {
2221                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind),
2222                                              |this| visit::walk_item(this, item));
2223             }
2224
2225             ItemKind::Enum(_, ref generics) |
2226             ItemKind::Struct(_, ref generics) |
2227             ItemKind::Union(_, ref generics) => {
2228                 self.resolve_adt(item, generics);
2229             }
2230
2231             ItemKind::Impl(.., ref generics, ref opt_trait_ref, ref self_type, ref impl_items) =>
2232                 self.resolve_implementation(generics,
2233                                             opt_trait_ref,
2234                                             &self_type,
2235                                             item.id,
2236                                             impl_items),
2237
2238             ItemKind::Trait(.., ref generics, ref bounds, ref trait_items) => {
2239                 // Create a new rib for the trait-wide type parameters.
2240                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2241                     let local_def_id = this.definitions.local_def_id(item.id);
2242                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2243                         this.visit_generics(generics);
2244                         walk_list!(this, visit_param_bound, bounds);
2245
2246                         for trait_item in trait_items {
2247                             let type_parameters = HasTypeParameters(&trait_item.generics,
2248                                                                     TraitOrImplItemRibKind);
2249                             this.with_type_parameter_rib(type_parameters, |this| {
2250                                 match trait_item.node {
2251                                     TraitItemKind::Const(ref ty, ref default) => {
2252                                         this.visit_ty(ty);
2253
2254                                         // Only impose the restrictions of
2255                                         // ConstRibKind for an actual constant
2256                                         // expression in a provided default.
2257                                         if let Some(ref expr) = *default{
2258                                             this.with_constant_rib(|this| {
2259                                                 this.visit_expr(expr);
2260                                             });
2261                                         }
2262                                     }
2263                                     TraitItemKind::Method(_, _) => {
2264                                         visit::walk_trait_item(this, trait_item)
2265                                     }
2266                                     TraitItemKind::Type(..) => {
2267                                         visit::walk_trait_item(this, trait_item)
2268                                     }
2269                                     TraitItemKind::Macro(_) => {
2270                                         panic!("unexpanded macro in resolve!")
2271                                     }
2272                                 };
2273                             });
2274                         }
2275                     });
2276                 });
2277             }
2278
2279             ItemKind::TraitAlias(ref generics, ref bounds) => {
2280                 // Create a new rib for the trait-wide type parameters.
2281                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2282                     let local_def_id = this.definitions.local_def_id(item.id);
2283                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2284                         this.visit_generics(generics);
2285                         walk_list!(this, visit_param_bound, bounds);
2286                     });
2287                 });
2288             }
2289
2290             ItemKind::Mod(_) | ItemKind::ForeignMod(_) => {
2291                 self.with_scope(item.id, |this| {
2292                     visit::walk_item(this, item);
2293                 });
2294             }
2295
2296             ItemKind::Static(ref ty, _, ref expr) |
2297             ItemKind::Const(ref ty, ref expr) => {
2298                 self.with_item_rib(|this| {
2299                     this.visit_ty(ty);
2300                     this.with_constant_rib(|this| {
2301                         this.visit_expr(expr);
2302                     });
2303                 });
2304             }
2305
2306             ItemKind::Use(ref use_tree) => {
2307                 // Imports are resolved as global by default, add starting root segment.
2308                 let path = Path {
2309                     segments: use_tree.prefix.make_root().into_iter().collect(),
2310                     span: use_tree.span,
2311                 };
2312                 self.resolve_use_tree(item.id, use_tree.span, item.id, use_tree, &path);
2313             }
2314
2315             ItemKind::ExternCrate(_) | ItemKind::MacroDef(..) | ItemKind::GlobalAsm(_) => {
2316                 // do nothing, these are just around to be encoded
2317             }
2318
2319             ItemKind::Mac(_) => panic!("unexpanded macro in resolve!"),
2320         }
2321     }
2322
2323     /// For the most part, use trees are desugared into `ImportDirective` instances
2324     /// when building the reduced graph (see `build_reduced_graph_for_use_tree`). But
2325     /// there is one special case we handle here: an empty nested import like
2326     /// `a::{b::{}}`, which desugares into...no import directives.
2327     fn resolve_use_tree(
2328         &mut self,
2329         root_id: NodeId,
2330         root_span: Span,
2331         id: NodeId,
2332         use_tree: &ast::UseTree,
2333         prefix: &Path,
2334     ) {
2335         match use_tree.kind {
2336             ast::UseTreeKind::Nested(ref items) => {
2337                 let path = Path {
2338                     segments: prefix.segments
2339                         .iter()
2340                         .chain(use_tree.prefix.segments.iter())
2341                         .cloned()
2342                         .collect(),
2343                     span: prefix.span.to(use_tree.prefix.span),
2344                 };
2345
2346                 if items.len() == 0 {
2347                     // Resolve prefix of an import with empty braces (issue #28388).
2348                     self.smart_resolve_path_with_crate_lint(
2349                         id,
2350                         None,
2351                         &path,
2352                         PathSource::ImportPrefix,
2353                         CrateLint::UsePath { root_id, root_span },
2354                     );
2355                 } else {
2356                     for &(ref tree, nested_id) in items {
2357                         self.resolve_use_tree(root_id, root_span, nested_id, tree, &path);
2358                     }
2359                 }
2360             }
2361             ast::UseTreeKind::Simple(..) => {},
2362             ast::UseTreeKind::Glob => {},
2363         }
2364     }
2365
2366     fn with_type_parameter_rib<'b, F>(&'b mut self, type_parameters: TypeParameters<'a, 'b>, f: F)
2367         where F: FnOnce(&mut Resolver)
2368     {
2369         match type_parameters {
2370             HasTypeParameters(generics, rib_kind) => {
2371                 let mut function_type_rib = Rib::new(rib_kind);
2372                 let mut seen_bindings = FxHashMap();
2373                 for param in &generics.params {
2374                     match param.kind {
2375                         GenericParamKind::Lifetime { .. } => {}
2376                         GenericParamKind::Type { .. } => {
2377                             let ident = param.ident.modern();
2378                             debug!("with_type_parameter_rib: {}", param.id);
2379
2380                             if seen_bindings.contains_key(&ident) {
2381                                 let span = seen_bindings.get(&ident).unwrap();
2382                                 let err = ResolutionError::NameAlreadyUsedInTypeParameterList(
2383                                     ident.name,
2384                                     span,
2385                                 );
2386                                 resolve_error(self, param.ident.span, err);
2387                             }
2388                             seen_bindings.entry(ident).or_insert(param.ident.span);
2389
2390                         // Plain insert (no renaming).
2391                         let def = Def::TyParam(self.definitions.local_def_id(param.id));
2392                             function_type_rib.bindings.insert(ident, def);
2393                             self.record_def(param.id, PathResolution::new(def));
2394                         }
2395                     }
2396                 }
2397                 self.ribs[TypeNS].push(function_type_rib);
2398             }
2399
2400             NoTypeParameters => {
2401                 // Nothing to do.
2402             }
2403         }
2404
2405         f(self);
2406
2407         if let HasTypeParameters(..) = type_parameters {
2408             self.ribs[TypeNS].pop();
2409         }
2410     }
2411
2412     fn with_label_rib<F>(&mut self, f: F)
2413         where F: FnOnce(&mut Resolver)
2414     {
2415         self.label_ribs.push(Rib::new(NormalRibKind));
2416         f(self);
2417         self.label_ribs.pop();
2418     }
2419
2420     fn with_item_rib<F>(&mut self, f: F)
2421         where F: FnOnce(&mut Resolver)
2422     {
2423         self.ribs[ValueNS].push(Rib::new(ItemRibKind));
2424         self.ribs[TypeNS].push(Rib::new(ItemRibKind));
2425         f(self);
2426         self.ribs[TypeNS].pop();
2427         self.ribs[ValueNS].pop();
2428     }
2429
2430     fn with_constant_rib<F>(&mut self, f: F)
2431         where F: FnOnce(&mut Resolver)
2432     {
2433         self.ribs[ValueNS].push(Rib::new(ConstantItemRibKind));
2434         self.label_ribs.push(Rib::new(ConstantItemRibKind));
2435         f(self);
2436         self.label_ribs.pop();
2437         self.ribs[ValueNS].pop();
2438     }
2439
2440     fn with_current_self_type<T, F>(&mut self, self_type: &Ty, f: F) -> T
2441         where F: FnOnce(&mut Resolver) -> T
2442     {
2443         // Handle nested impls (inside fn bodies)
2444         let previous_value = replace(&mut self.current_self_type, Some(self_type.clone()));
2445         let result = f(self);
2446         self.current_self_type = previous_value;
2447         result
2448     }
2449
2450     /// This is called to resolve a trait reference from an `impl` (i.e. `impl Trait for Foo`)
2451     fn with_optional_trait_ref<T, F>(&mut self, opt_trait_ref: Option<&TraitRef>, f: F) -> T
2452         where F: FnOnce(&mut Resolver, Option<DefId>) -> T
2453     {
2454         let mut new_val = None;
2455         let mut new_id = None;
2456         if let Some(trait_ref) = opt_trait_ref {
2457             let path: Vec<_> = trait_ref.path.segments.iter()
2458                 .map(|seg| seg.ident)
2459                 .collect();
2460             let def = self.smart_resolve_path_fragment(
2461                 trait_ref.ref_id,
2462                 None,
2463                 &path,
2464                 trait_ref.path.span,
2465                 PathSource::Trait(AliasPossibility::No),
2466                 CrateLint::SimplePath(trait_ref.ref_id),
2467             ).base_def();
2468             if def != Def::Err {
2469                 new_id = Some(def.def_id());
2470                 let span = trait_ref.path.span;
2471                 if let PathResult::Module(ModuleOrUniformRoot::Module(module)) =
2472                     self.resolve_path(
2473                         None,
2474                         &path,
2475                         None,
2476                         false,
2477                         span,
2478                         CrateLint::SimplePath(trait_ref.ref_id),
2479                     )
2480                 {
2481                     new_val = Some((module, trait_ref.clone()));
2482                 }
2483             }
2484         }
2485         let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
2486         let result = f(self, new_id);
2487         self.current_trait_ref = original_trait_ref;
2488         result
2489     }
2490
2491     fn with_self_rib<F>(&mut self, self_def: Def, f: F)
2492         where F: FnOnce(&mut Resolver)
2493     {
2494         let mut self_type_rib = Rib::new(NormalRibKind);
2495
2496         // plain insert (no renaming, types are not currently hygienic....)
2497         self_type_rib.bindings.insert(keywords::SelfType.ident(), self_def);
2498         self.ribs[TypeNS].push(self_type_rib);
2499         f(self);
2500         self.ribs[TypeNS].pop();
2501     }
2502
2503     fn with_self_struct_ctor_rib<F>(&mut self, impl_id: DefId, f: F)
2504         where F: FnOnce(&mut Resolver)
2505     {
2506         let self_def = Def::SelfCtor(impl_id);
2507         let mut self_type_rib = Rib::new(NormalRibKind);
2508         self_type_rib.bindings.insert(keywords::SelfType.ident(), self_def);
2509         self.ribs[ValueNS].push(self_type_rib);
2510         f(self);
2511         self.ribs[ValueNS].pop();
2512     }
2513
2514     fn resolve_implementation(&mut self,
2515                               generics: &Generics,
2516                               opt_trait_reference: &Option<TraitRef>,
2517                               self_type: &Ty,
2518                               item_id: NodeId,
2519                               impl_items: &[ImplItem]) {
2520         // If applicable, create a rib for the type parameters.
2521         self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2522             // Dummy self type for better errors if `Self` is used in the trait path.
2523             this.with_self_rib(Def::SelfTy(None, None), |this| {
2524                 // Resolve the trait reference, if necessary.
2525                 this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| {
2526                     let item_def_id = this.definitions.local_def_id(item_id);
2527                     this.with_self_rib(Def::SelfTy(trait_id, Some(item_def_id)), |this| {
2528                         if let Some(trait_ref) = opt_trait_reference.as_ref() {
2529                             // Resolve type arguments in the trait path.
2530                             visit::walk_trait_ref(this, trait_ref);
2531                         }
2532                         // Resolve the self type.
2533                         this.visit_ty(self_type);
2534                         // Resolve the type parameters.
2535                         this.visit_generics(generics);
2536                         // Resolve the items within the impl.
2537                         this.with_current_self_type(self_type, |this| {
2538                             this.with_self_struct_ctor_rib(item_def_id, |this| {
2539                                 for impl_item in impl_items {
2540                                     this.resolve_visibility(&impl_item.vis);
2541
2542                                     // We also need a new scope for the impl item type parameters.
2543                                     let type_parameters = HasTypeParameters(&impl_item.generics,
2544                                                                             TraitOrImplItemRibKind);
2545                                     this.with_type_parameter_rib(type_parameters, |this| {
2546                                         use self::ResolutionError::*;
2547                                         match impl_item.node {
2548                                             ImplItemKind::Const(..) => {
2549                                                 // If this is a trait impl, ensure the const
2550                                                 // exists in trait
2551                                                 this.check_trait_item(impl_item.ident,
2552                                                                       ValueNS,
2553                                                                       impl_item.span,
2554                                                     |n, s| ConstNotMemberOfTrait(n, s));
2555                                                 this.with_constant_rib(|this|
2556                                                     visit::walk_impl_item(this, impl_item)
2557                                                 );
2558                                             }
2559                                             ImplItemKind::Method(..) => {
2560                                                 // If this is a trait impl, ensure the method
2561                                                 // exists in trait
2562                                                 this.check_trait_item(impl_item.ident,
2563                                                                       ValueNS,
2564                                                                       impl_item.span,
2565                                                     |n, s| MethodNotMemberOfTrait(n, s));
2566
2567                                                 visit::walk_impl_item(this, impl_item);
2568                                             }
2569                                             ImplItemKind::Type(ref ty) => {
2570                                                 // If this is a trait impl, ensure the type
2571                                                 // exists in trait
2572                                                 this.check_trait_item(impl_item.ident,
2573                                                                       TypeNS,
2574                                                                       impl_item.span,
2575                                                     |n, s| TypeNotMemberOfTrait(n, s));
2576
2577                                                 this.visit_ty(ty);
2578                                             }
2579                                             ImplItemKind::Existential(ref bounds) => {
2580                                                 // If this is a trait impl, ensure the type
2581                                                 // exists in trait
2582                                                 this.check_trait_item(impl_item.ident,
2583                                                                       TypeNS,
2584                                                                       impl_item.span,
2585                                                     |n, s| TypeNotMemberOfTrait(n, s));
2586
2587                                                 for bound in bounds {
2588                                                     this.visit_param_bound(bound);
2589                                                 }
2590                                             }
2591                                             ImplItemKind::Macro(_) =>
2592                                                 panic!("unexpanded macro in resolve!"),
2593                                         }
2594                                     });
2595                                 }
2596                             });
2597                         });
2598                     });
2599                 });
2600             });
2601         });
2602     }
2603
2604     fn check_trait_item<F>(&mut self, ident: Ident, ns: Namespace, span: Span, err: F)
2605         where F: FnOnce(Name, &str) -> ResolutionError
2606     {
2607         // If there is a TraitRef in scope for an impl, then the method must be in the
2608         // trait.
2609         if let Some((module, _)) = self.current_trait_ref {
2610             if self.resolve_ident_in_module(
2611                 ModuleOrUniformRoot::Module(module),
2612                 ident,
2613                 ns,
2614                 false,
2615                 span,
2616             ).is_err() {
2617                 let path = &self.current_trait_ref.as_ref().unwrap().1.path;
2618                 resolve_error(self, span, err(ident.name, &path_names_to_string(path)));
2619             }
2620         }
2621     }
2622
2623     fn resolve_local(&mut self, local: &Local) {
2624         // Resolve the type.
2625         walk_list!(self, visit_ty, &local.ty);
2626
2627         // Resolve the initializer.
2628         walk_list!(self, visit_expr, &local.init);
2629
2630         // Resolve the pattern.
2631         self.resolve_pattern(&local.pat, PatternSource::Let, &mut FxHashMap());
2632     }
2633
2634     // build a map from pattern identifiers to binding-info's.
2635     // this is done hygienically. This could arise for a macro
2636     // that expands into an or-pattern where one 'x' was from the
2637     // user and one 'x' came from the macro.
2638     fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
2639         let mut binding_map = FxHashMap();
2640
2641         pat.walk(&mut |pat| {
2642             if let PatKind::Ident(binding_mode, ident, ref sub_pat) = pat.node {
2643                 if sub_pat.is_some() || match self.def_map.get(&pat.id).map(|res| res.base_def()) {
2644                     Some(Def::Local(..)) => true,
2645                     _ => false,
2646                 } {
2647                     let binding_info = BindingInfo { span: ident.span, binding_mode: binding_mode };
2648                     binding_map.insert(ident, binding_info);
2649                 }
2650             }
2651             true
2652         });
2653
2654         binding_map
2655     }
2656
2657     // check that all of the arms in an or-pattern have exactly the
2658     // same set of bindings, with the same binding modes for each.
2659     fn check_consistent_bindings(&mut self, pats: &[P<Pat>]) {
2660         if pats.is_empty() {
2661             return;
2662         }
2663
2664         let mut missing_vars = FxHashMap();
2665         let mut inconsistent_vars = FxHashMap();
2666         for (i, p) in pats.iter().enumerate() {
2667             let map_i = self.binding_mode_map(&p);
2668
2669             for (j, q) in pats.iter().enumerate() {
2670                 if i == j {
2671                     continue;
2672                 }
2673
2674                 let map_j = self.binding_mode_map(&q);
2675                 for (&key, &binding_i) in &map_i {
2676                     if map_j.len() == 0 {                   // Account for missing bindings when
2677                         let binding_error = missing_vars    // map_j has none.
2678                             .entry(key.name)
2679                             .or_insert(BindingError {
2680                                 name: key.name,
2681                                 origin: BTreeSet::new(),
2682                                 target: BTreeSet::new(),
2683                             });
2684                         binding_error.origin.insert(binding_i.span);
2685                         binding_error.target.insert(q.span);
2686                     }
2687                     for (&key_j, &binding_j) in &map_j {
2688                         match map_i.get(&key_j) {
2689                             None => {  // missing binding
2690                                 let binding_error = missing_vars
2691                                     .entry(key_j.name)
2692                                     .or_insert(BindingError {
2693                                         name: key_j.name,
2694                                         origin: BTreeSet::new(),
2695                                         target: BTreeSet::new(),
2696                                     });
2697                                 binding_error.origin.insert(binding_j.span);
2698                                 binding_error.target.insert(p.span);
2699                             }
2700                             Some(binding_i) => {  // check consistent binding
2701                                 if binding_i.binding_mode != binding_j.binding_mode {
2702                                     inconsistent_vars
2703                                         .entry(key.name)
2704                                         .or_insert((binding_j.span, binding_i.span));
2705                                 }
2706                             }
2707                         }
2708                     }
2709                 }
2710             }
2711         }
2712         let mut missing_vars = missing_vars.iter().collect::<Vec<_>>();
2713         missing_vars.sort();
2714         for (_, v) in missing_vars {
2715             resolve_error(self,
2716                           *v.origin.iter().next().unwrap(),
2717                           ResolutionError::VariableNotBoundInPattern(v));
2718         }
2719         let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
2720         inconsistent_vars.sort();
2721         for (name, v) in inconsistent_vars {
2722             resolve_error(self, v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
2723         }
2724     }
2725
2726     fn resolve_arm(&mut self, arm: &Arm) {
2727         self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2728
2729         let mut bindings_list = FxHashMap();
2730         for pattern in &arm.pats {
2731             self.resolve_pattern(&pattern, PatternSource::Match, &mut bindings_list);
2732         }
2733
2734         // This has to happen *after* we determine which pat_idents are variants
2735         self.check_consistent_bindings(&arm.pats);
2736
2737         match arm.guard {
2738             Some(ast::Guard::If(ref expr)) => self.visit_expr(expr),
2739             _ => {}
2740         }
2741         self.visit_expr(&arm.body);
2742
2743         self.ribs[ValueNS].pop();
2744     }
2745
2746     fn resolve_block(&mut self, block: &Block) {
2747         debug!("(resolving block) entering block");
2748         // Move down in the graph, if there's an anonymous module rooted here.
2749         let orig_module = self.current_module;
2750         let anonymous_module = self.block_map.get(&block.id).cloned(); // clones a reference
2751
2752         let mut num_macro_definition_ribs = 0;
2753         if let Some(anonymous_module) = anonymous_module {
2754             debug!("(resolving block) found anonymous module, moving down");
2755             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2756             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2757             self.current_module = anonymous_module;
2758             self.finalize_current_module_macro_resolutions();
2759         } else {
2760             self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2761         }
2762
2763         // Descend into the block.
2764         for stmt in &block.stmts {
2765             if let ast::StmtKind::Item(ref item) = stmt.node {
2766                 if let ast::ItemKind::MacroDef(..) = item.node {
2767                     num_macro_definition_ribs += 1;
2768                     let def = self.definitions.local_def_id(item.id);
2769                     self.ribs[ValueNS].push(Rib::new(MacroDefinition(def)));
2770                     self.label_ribs.push(Rib::new(MacroDefinition(def)));
2771                 }
2772             }
2773
2774             self.visit_stmt(stmt);
2775         }
2776
2777         // Move back up.
2778         self.current_module = orig_module;
2779         for _ in 0 .. num_macro_definition_ribs {
2780             self.ribs[ValueNS].pop();
2781             self.label_ribs.pop();
2782         }
2783         self.ribs[ValueNS].pop();
2784         if anonymous_module.is_some() {
2785             self.ribs[TypeNS].pop();
2786         }
2787         debug!("(resolving block) leaving block");
2788     }
2789
2790     fn fresh_binding(&mut self,
2791                      ident: Ident,
2792                      pat_id: NodeId,
2793                      outer_pat_id: NodeId,
2794                      pat_src: PatternSource,
2795                      bindings: &mut FxHashMap<Ident, NodeId>)
2796                      -> PathResolution {
2797         // Add the binding to the local ribs, if it
2798         // doesn't already exist in the bindings map. (We
2799         // must not add it if it's in the bindings map
2800         // because that breaks the assumptions later
2801         // passes make about or-patterns.)
2802         let ident = ident.modern_and_legacy();
2803         let mut def = Def::Local(pat_id);
2804         match bindings.get(&ident).cloned() {
2805             Some(id) if id == outer_pat_id => {
2806                 // `Variant(a, a)`, error
2807                 resolve_error(
2808                     self,
2809                     ident.span,
2810                     ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(
2811                         &ident.as_str())
2812                 );
2813             }
2814             Some(..) if pat_src == PatternSource::FnParam => {
2815                 // `fn f(a: u8, a: u8)`, error
2816                 resolve_error(
2817                     self,
2818                     ident.span,
2819                     ResolutionError::IdentifierBoundMoreThanOnceInParameterList(
2820                         &ident.as_str())
2821                 );
2822             }
2823             Some(..) if pat_src == PatternSource::Match ||
2824                         pat_src == PatternSource::IfLet ||
2825                         pat_src == PatternSource::WhileLet => {
2826                 // `Variant1(a) | Variant2(a)`, ok
2827                 // Reuse definition from the first `a`.
2828                 def = self.ribs[ValueNS].last_mut().unwrap().bindings[&ident];
2829             }
2830             Some(..) => {
2831                 span_bug!(ident.span, "two bindings with the same name from \
2832                                        unexpected pattern source {:?}", pat_src);
2833             }
2834             None => {
2835                 // A completely fresh binding, add to the lists if it's valid.
2836                 if ident.name != keywords::Invalid.name() {
2837                     bindings.insert(ident, outer_pat_id);
2838                     self.ribs[ValueNS].last_mut().unwrap().bindings.insert(ident, def);
2839                 }
2840             }
2841         }
2842
2843         PathResolution::new(def)
2844     }
2845
2846     fn resolve_pattern(&mut self,
2847                        pat: &Pat,
2848                        pat_src: PatternSource,
2849                        // Maps idents to the node ID for the
2850                        // outermost pattern that binds them.
2851                        bindings: &mut FxHashMap<Ident, NodeId>) {
2852         // Visit all direct subpatterns of this pattern.
2853         let outer_pat_id = pat.id;
2854         pat.walk(&mut |pat| {
2855             match pat.node {
2856                 PatKind::Ident(bmode, ident, ref opt_pat) => {
2857                     // First try to resolve the identifier as some existing
2858                     // entity, then fall back to a fresh binding.
2859                     let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS,
2860                                                                       None, pat.span)
2861                                       .and_then(LexicalScopeBinding::item);
2862                     let resolution = binding.map(NameBinding::def).and_then(|def| {
2863                         let is_syntactic_ambiguity = opt_pat.is_none() &&
2864                             bmode == BindingMode::ByValue(Mutability::Immutable);
2865                         match def {
2866                             Def::StructCtor(_, CtorKind::Const) |
2867                             Def::VariantCtor(_, CtorKind::Const) |
2868                             Def::Const(..) if is_syntactic_ambiguity => {
2869                                 // Disambiguate in favor of a unit struct/variant
2870                                 // or constant pattern.
2871                                 self.record_use(ident, ValueNS, binding.unwrap());
2872                                 Some(PathResolution::new(def))
2873                             }
2874                             Def::StructCtor(..) | Def::VariantCtor(..) |
2875                             Def::Const(..) | Def::Static(..) => {
2876                                 // This is unambiguously a fresh binding, either syntactically
2877                                 // (e.g. `IDENT @ PAT` or `ref IDENT`) or because `IDENT` resolves
2878                                 // to something unusable as a pattern (e.g. constructor function),
2879                                 // but we still conservatively report an error, see
2880                                 // issues/33118#issuecomment-233962221 for one reason why.
2881                                 resolve_error(
2882                                     self,
2883                                     ident.span,
2884                                     ResolutionError::BindingShadowsSomethingUnacceptable(
2885                                         pat_src.descr(), ident.name, binding.unwrap())
2886                                 );
2887                                 None
2888                             }
2889                             Def::Fn(..) | Def::Err => {
2890                                 // These entities are explicitly allowed
2891                                 // to be shadowed by fresh bindings.
2892                                 None
2893                             }
2894                             def => {
2895                                 span_bug!(ident.span, "unexpected definition for an \
2896                                                        identifier in pattern: {:?}", def);
2897                             }
2898                         }
2899                     }).unwrap_or_else(|| {
2900                         self.fresh_binding(ident, pat.id, outer_pat_id, pat_src, bindings)
2901                     });
2902
2903                     self.record_def(pat.id, resolution);
2904                 }
2905
2906                 PatKind::TupleStruct(ref path, ..) => {
2907                     self.smart_resolve_path(pat.id, None, path, PathSource::TupleStruct);
2908                 }
2909
2910                 PatKind::Path(ref qself, ref path) => {
2911                     self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
2912                 }
2913
2914                 PatKind::Struct(ref path, ..) => {
2915                     self.smart_resolve_path(pat.id, None, path, PathSource::Struct);
2916                 }
2917
2918                 _ => {}
2919             }
2920             true
2921         });
2922
2923         visit::walk_pat(self, pat);
2924     }
2925
2926     // High-level and context dependent path resolution routine.
2927     // Resolves the path and records the resolution into definition map.
2928     // If resolution fails tries several techniques to find likely
2929     // resolution candidates, suggest imports or other help, and report
2930     // errors in user friendly way.
2931     fn smart_resolve_path(&mut self,
2932                           id: NodeId,
2933                           qself: Option<&QSelf>,
2934                           path: &Path,
2935                           source: PathSource)
2936                           -> PathResolution {
2937         self.smart_resolve_path_with_crate_lint(id, qself, path, source, CrateLint::SimplePath(id))
2938     }
2939
2940     /// A variant of `smart_resolve_path` where you also specify extra
2941     /// information about where the path came from; this extra info is
2942     /// sometimes needed for the lint that recommends rewriting
2943     /// absolute paths to `crate`, so that it knows how to frame the
2944     /// suggestion. If you are just resolving a path like `foo::bar`
2945     /// that appears...somewhere, though, then you just want
2946     /// `CrateLint::SimplePath`, which is what `smart_resolve_path`
2947     /// already provides.
2948     fn smart_resolve_path_with_crate_lint(
2949         &mut self,
2950         id: NodeId,
2951         qself: Option<&QSelf>,
2952         path: &Path,
2953         source: PathSource,
2954         crate_lint: CrateLint
2955     ) -> PathResolution {
2956         let segments = &path.segments.iter()
2957             .map(|seg| seg.ident)
2958             .collect::<Vec<_>>();
2959         self.smart_resolve_path_fragment(id, qself, segments, path.span, source, crate_lint)
2960     }
2961
2962     fn smart_resolve_path_fragment(&mut self,
2963                                    id: NodeId,
2964                                    qself: Option<&QSelf>,
2965                                    path: &[Ident],
2966                                    span: Span,
2967                                    source: PathSource,
2968                                    crate_lint: CrateLint)
2969                                    -> PathResolution {
2970         let ident_span = path.last().map_or(span, |ident| ident.span);
2971         let ns = source.namespace();
2972         let is_expected = &|def| source.is_expected(def);
2973         let is_enum_variant = &|def| if let Def::Variant(..) = def { true } else { false };
2974
2975         // Base error is amended with one short label and possibly some longer helps/notes.
2976         let report_errors = |this: &mut Self, def: Option<Def>| {
2977             // Make the base error.
2978             let expected = source.descr_expected();
2979             let path_str = names_to_string(path);
2980             let code = source.error_code(def.is_some());
2981             let (base_msg, fallback_label, base_span) = if let Some(def) = def {
2982                 (format!("expected {}, found {} `{}`", expected, def.kind_name(), path_str),
2983                  format!("not a {}", expected),
2984                  span)
2985             } else {
2986                 let item_str = path[path.len() - 1];
2987                 let item_span = path[path.len() - 1].span;
2988                 let (mod_prefix, mod_str) = if path.len() == 1 {
2989                     (String::new(), "this scope".to_string())
2990                 } else if path.len() == 2 && path[0].name == keywords::CrateRoot.name() {
2991                     (String::new(), "the crate root".to_string())
2992                 } else {
2993                     let mod_path = &path[..path.len() - 1];
2994                     let mod_prefix = match this.resolve_path(None, mod_path, Some(TypeNS),
2995                                                              false, span, CrateLint::No) {
2996                         PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
2997                             module.def(),
2998                         _ => None,
2999                     }.map_or(String::new(), |def| format!("{} ", def.kind_name()));
3000                     (mod_prefix, format!("`{}`", names_to_string(mod_path)))
3001                 };
3002                 (format!("cannot find {} `{}` in {}{}", expected, item_str, mod_prefix, mod_str),
3003                  format!("not found in {}", mod_str),
3004                  item_span)
3005             };
3006             let code = DiagnosticId::Error(code.into());
3007             let mut err = this.session.struct_span_err_with_code(base_span, &base_msg, code);
3008
3009             // Emit special messages for unresolved `Self` and `self`.
3010             if is_self_type(path, ns) {
3011                 __diagnostic_used!(E0411);
3012                 err.code(DiagnosticId::Error("E0411".into()));
3013                 let available_in = if this.session.features_untracked().self_in_typedefs {
3014                     "impls, traits, and type definitions"
3015                 } else {
3016                     "traits and impls"
3017                 };
3018                 err.span_label(span, format!("`Self` is only available in {}", available_in));
3019                 return (err, Vec::new());
3020             }
3021             if is_self_value(path, ns) {
3022                 __diagnostic_used!(E0424);
3023                 err.code(DiagnosticId::Error("E0424".into()));
3024                 err.span_label(span, format!("`self` value is only available in \
3025                                                methods with `self` parameter"));
3026                 return (err, Vec::new());
3027             }
3028
3029             // Try to lookup the name in more relaxed fashion for better error reporting.
3030             let ident = *path.last().unwrap();
3031             let candidates = this.lookup_import_candidates(ident.name, ns, is_expected);
3032             if candidates.is_empty() && is_expected(Def::Enum(DefId::local(CRATE_DEF_INDEX))) {
3033                 let enum_candidates =
3034                     this.lookup_import_candidates(ident.name, ns, is_enum_variant);
3035                 let mut enum_candidates = enum_candidates.iter()
3036                     .map(|suggestion| import_candidate_to_paths(&suggestion)).collect::<Vec<_>>();
3037                 enum_candidates.sort();
3038                 for (sp, variant_path, enum_path) in enum_candidates {
3039                     if sp.is_dummy() {
3040                         let msg = format!("there is an enum variant `{}`, \
3041                                         try using `{}`?",
3042                                         variant_path,
3043                                         enum_path);
3044                         err.help(&msg);
3045                     } else {
3046                         err.span_suggestion_with_applicability(
3047                             span,
3048                             "you can try using the variant's enum",
3049                             enum_path,
3050                             Applicability::MachineApplicable,
3051                         );
3052                     }
3053                 }
3054             }
3055             if path.len() == 1 && this.self_type_is_available(span) {
3056                 if let Some(candidate) = this.lookup_assoc_candidate(ident, ns, is_expected) {
3057                     let self_is_available = this.self_value_is_available(path[0].span, span);
3058                     match candidate {
3059                         AssocSuggestion::Field => {
3060                             err.span_suggestion_with_applicability(
3061                                 span,
3062                                 "try",
3063                                 format!("self.{}", path_str),
3064                                 Applicability::MachineApplicable,
3065                             );
3066                             if !self_is_available {
3067                                 err.span_label(span, format!("`self` value is only available in \
3068                                                                methods with `self` parameter"));
3069                             }
3070                         }
3071                         AssocSuggestion::MethodWithSelf if self_is_available => {
3072                             err.span_suggestion_with_applicability(
3073                                 span,
3074                                 "try",
3075                                 format!("self.{}", path_str),
3076                                 Applicability::MachineApplicable,
3077                             );
3078                         }
3079                         AssocSuggestion::MethodWithSelf | AssocSuggestion::AssocItem => {
3080                             err.span_suggestion_with_applicability(
3081                                 span,
3082                                 "try",
3083                                 format!("Self::{}", path_str),
3084                                 Applicability::MachineApplicable,
3085                             );
3086                         }
3087                     }
3088                     return (err, candidates);
3089                 }
3090             }
3091
3092             let mut levenshtein_worked = false;
3093
3094             // Try Levenshtein.
3095             if let Some(candidate) = this.lookup_typo_candidate(path, ns, is_expected, span) {
3096                 err.span_label(ident_span, format!("did you mean `{}`?", candidate));
3097                 levenshtein_worked = true;
3098             }
3099
3100             // Try context dependent help if relaxed lookup didn't work.
3101             if let Some(def) = def {
3102                 match (def, source) {
3103                     (Def::Macro(..), _) => {
3104                         err.span_label(span, format!("did you mean `{}!(...)`?", path_str));
3105                         return (err, candidates);
3106                     }
3107                     (Def::TyAlias(..), PathSource::Trait(_)) => {
3108                         err.span_label(span, "type aliases cannot be used for traits");
3109                         return (err, candidates);
3110                     }
3111                     (Def::Mod(..), PathSource::Expr(Some(parent))) => match parent.node {
3112                         ExprKind::Field(_, ident) => {
3113                             err.span_label(parent.span, format!("did you mean `{}::{}`?",
3114                                                                  path_str, ident));
3115                             return (err, candidates);
3116                         }
3117                         ExprKind::MethodCall(ref segment, ..) => {
3118                             err.span_label(parent.span, format!("did you mean `{}::{}(...)`?",
3119                                                                  path_str, segment.ident));
3120                             return (err, candidates);
3121                         }
3122                         _ => {}
3123                     },
3124                     (Def::Enum(..), PathSource::TupleStruct)
3125                         | (Def::Enum(..), PathSource::Expr(..))  => {
3126                         if let Some(variants) = this.collect_enum_variants(def) {
3127                             err.note(&format!("did you mean to use one \
3128                                                of the following variants?\n{}",
3129                                 variants.iter()
3130                                     .map(|suggestion| path_names_to_string(suggestion))
3131                                     .map(|suggestion| format!("- `{}`", suggestion))
3132                                     .collect::<Vec<_>>()
3133                                     .join("\n")));
3134
3135                         } else {
3136                             err.note("did you mean to use one of the enum's variants?");
3137                         }
3138                         return (err, candidates);
3139                     },
3140                     (Def::Struct(def_id), _) if ns == ValueNS => {
3141                         if let Some((ctor_def, ctor_vis))
3142                                 = this.struct_constructors.get(&def_id).cloned() {
3143                             let accessible_ctor = this.is_accessible(ctor_vis);
3144                             if is_expected(ctor_def) && !accessible_ctor {
3145                                 err.span_label(span, format!("constructor is not visible \
3146                                                               here due to private fields"));
3147                             }
3148                         } else {
3149                             // HACK(estebank): find a better way to figure out that this was a
3150                             // parser issue where a struct literal is being used on an expression
3151                             // where a brace being opened means a block is being started. Look
3152                             // ahead for the next text to see if `span` is followed by a `{`.
3153                             let cm = this.session.source_map();
3154                             let mut sp = span;
3155                             loop {
3156                                 sp = cm.next_point(sp);
3157                                 match cm.span_to_snippet(sp) {
3158                                     Ok(ref snippet) => {
3159                                         if snippet.chars().any(|c| { !c.is_whitespace() }) {
3160                                             break;
3161                                         }
3162                                     }
3163                                     _ => break,
3164                                 }
3165                             }
3166                             let followed_by_brace = match cm.span_to_snippet(sp) {
3167                                 Ok(ref snippet) if snippet == "{" => true,
3168                                 _ => false,
3169                             };
3170                             if let (PathSource::Expr(None), true) = (source, followed_by_brace) {
3171                                 err.span_label(
3172                                     span,
3173                                     format!("did you mean `({} {{ /* fields */ }})`?", path_str),
3174                                 );
3175                             } else {
3176                                 err.span_label(
3177                                     span,
3178                                     format!("did you mean `{} {{ /* fields */ }}`?", path_str),
3179                                 );
3180                             }
3181                         }
3182                         return (err, candidates);
3183                     }
3184                     (Def::Union(..), _) |
3185                     (Def::Variant(..), _) |
3186                     (Def::VariantCtor(_, CtorKind::Fictive), _) if ns == ValueNS => {
3187                         err.span_label(span, format!("did you mean `{} {{ /* fields */ }}`?",
3188                                                      path_str));
3189                         return (err, candidates);
3190                     }
3191                     (Def::SelfTy(..), _) if ns == ValueNS => {
3192                         err.span_label(span, fallback_label);
3193                         err.note("can't use `Self` as a constructor, you must use the \
3194                                   implemented struct");
3195                         return (err, candidates);
3196                     }
3197                     (Def::TyAlias(_), _) | (Def::AssociatedTy(..), _) if ns == ValueNS => {
3198                         err.note("can't use a type alias as a constructor");
3199                         return (err, candidates);
3200                     }
3201                     _ => {}
3202                 }
3203             }
3204
3205             // Fallback label.
3206             if !levenshtein_worked {
3207                 err.span_label(base_span, fallback_label);
3208                 this.type_ascription_suggestion(&mut err, base_span);
3209             }
3210             (err, candidates)
3211         };
3212         let report_errors = |this: &mut Self, def: Option<Def>| {
3213             let (err, candidates) = report_errors(this, def);
3214             let def_id = this.current_module.normal_ancestor_id;
3215             let node_id = this.definitions.as_local_node_id(def_id).unwrap();
3216             let better = def.is_some();
3217             this.use_injections.push(UseError { err, candidates, node_id, better });
3218             err_path_resolution()
3219         };
3220
3221         let resolution = match self.resolve_qpath_anywhere(
3222             id,
3223             qself,
3224             path,
3225             ns,
3226             span,
3227             source.defer_to_typeck(),
3228             source.global_by_default(),
3229             crate_lint,
3230         ) {
3231             Some(resolution) if resolution.unresolved_segments() == 0 => {
3232                 if is_expected(resolution.base_def()) || resolution.base_def() == Def::Err {
3233                     resolution
3234                 } else {
3235                     // Add a temporary hack to smooth the transition to new struct ctor
3236                     // visibility rules. See #38932 for more details.
3237                     let mut res = None;
3238                     if let Def::Struct(def_id) = resolution.base_def() {
3239                         if let Some((ctor_def, ctor_vis))
3240                                 = self.struct_constructors.get(&def_id).cloned() {
3241                             if is_expected(ctor_def) && self.is_accessible(ctor_vis) {
3242                                 let lint = lint::builtin::LEGACY_CONSTRUCTOR_VISIBILITY;
3243                                 self.session.buffer_lint(lint, id, span,
3244                                     "private struct constructors are not usable through \
3245                                      re-exports in outer modules",
3246                                 );
3247                                 res = Some(PathResolution::new(ctor_def));
3248                             }
3249                         }
3250                     }
3251
3252                     res.unwrap_or_else(|| report_errors(self, Some(resolution.base_def())))
3253                 }
3254             }
3255             Some(resolution) if source.defer_to_typeck() => {
3256                 // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
3257                 // or `<T>::A::B`. If `B` should be resolved in value namespace then
3258                 // it needs to be added to the trait map.
3259                 if ns == ValueNS {
3260                     let item_name = *path.last().unwrap();
3261                     let traits = self.get_traits_containing_item(item_name, ns);
3262                     self.trait_map.insert(id, traits);
3263                 }
3264                 resolution
3265             }
3266             _ => report_errors(self, None)
3267         };
3268
3269         if let PathSource::TraitItem(..) = source {} else {
3270             // Avoid recording definition of `A::B` in `<T as A>::B::C`.
3271             self.record_def(id, resolution);
3272         }
3273         resolution
3274     }
3275
3276     fn type_ascription_suggestion(&self,
3277                                   err: &mut DiagnosticBuilder,
3278                                   base_span: Span) {
3279         debug!("type_ascription_suggetion {:?}", base_span);
3280         let cm = self.session.source_map();
3281         debug!("self.current_type_ascription {:?}", self.current_type_ascription);
3282         if let Some(sp) = self.current_type_ascription.last() {
3283             let mut sp = *sp;
3284             loop {  // try to find the `:`, bail on first non-':'/non-whitespace
3285                 sp = cm.next_point(sp);
3286                 if let Ok(snippet) = cm.span_to_snippet(sp.to(cm.next_point(sp))) {
3287                     debug!("snippet {:?}", snippet);
3288                     let line_sp = cm.lookup_char_pos(sp.hi()).line;
3289                     let line_base_sp = cm.lookup_char_pos(base_span.lo()).line;
3290                     debug!("{:?} {:?}", line_sp, line_base_sp);
3291                     if snippet == ":" {
3292                         err.span_label(base_span,
3293                                        "expecting a type here because of type ascription");
3294                         if line_sp != line_base_sp {
3295                             err.span_suggestion_short_with_applicability(
3296                                 sp,
3297                                 "did you mean to use `;` here instead?",
3298                                 ";".to_string(),
3299                                 Applicability::MaybeIncorrect,
3300                             );
3301                         }
3302                         break;
3303                     } else if snippet.trim().len() != 0  {
3304                         debug!("tried to find type ascription `:` token, couldn't find it");
3305                         break;
3306                     }
3307                 } else {
3308                     break;
3309                 }
3310             }
3311         }
3312     }
3313
3314     fn self_type_is_available(&mut self, span: Span) -> bool {
3315         let binding = self.resolve_ident_in_lexical_scope(keywords::SelfType.ident(),
3316                                                           TypeNS, None, span);
3317         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3318     }
3319
3320     fn self_value_is_available(&mut self, self_span: Span, path_span: Span) -> bool {
3321         let ident = Ident::new(keywords::SelfValue.name(), self_span);
3322         let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, None, path_span);
3323         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3324     }
3325
3326     // Resolve in alternative namespaces if resolution in the primary namespace fails.
3327     fn resolve_qpath_anywhere(&mut self,
3328                               id: NodeId,
3329                               qself: Option<&QSelf>,
3330                               path: &[Ident],
3331                               primary_ns: Namespace,
3332                               span: Span,
3333                               defer_to_typeck: bool,
3334                               global_by_default: bool,
3335                               crate_lint: CrateLint)
3336                               -> Option<PathResolution> {
3337         let mut fin_res = None;
3338         // FIXME: can't resolve paths in macro namespace yet, macros are
3339         // processed by the little special hack below.
3340         for (i, ns) in [primary_ns, TypeNS, ValueNS, /*MacroNS*/].iter().cloned().enumerate() {
3341             if i == 0 || ns != primary_ns {
3342                 match self.resolve_qpath(id, qself, path, ns, span, global_by_default, crate_lint) {
3343                     // If defer_to_typeck, then resolution > no resolution,
3344                     // otherwise full resolution > partial resolution > no resolution.
3345                     Some(res) if res.unresolved_segments() == 0 || defer_to_typeck =>
3346                         return Some(res),
3347                     res => if fin_res.is_none() { fin_res = res },
3348                 };
3349             }
3350         }
3351         if primary_ns != MacroNS &&
3352            (self.macro_names.contains(&path[0].modern()) ||
3353             self.builtin_macros.get(&path[0].name).cloned()
3354                                .and_then(NameBinding::macro_kind) == Some(MacroKind::Bang) ||
3355             self.macro_use_prelude.get(&path[0].name).cloned()
3356                                   .and_then(NameBinding::macro_kind) == Some(MacroKind::Bang)) {
3357             // Return some dummy definition, it's enough for error reporting.
3358             return Some(
3359                 PathResolution::new(Def::Macro(DefId::local(CRATE_DEF_INDEX), MacroKind::Bang))
3360             );
3361         }
3362         fin_res
3363     }
3364
3365     /// Handles paths that may refer to associated items.
3366     fn resolve_qpath(&mut self,
3367                      id: NodeId,
3368                      qself: Option<&QSelf>,
3369                      path: &[Ident],
3370                      ns: Namespace,
3371                      span: Span,
3372                      global_by_default: bool,
3373                      crate_lint: CrateLint)
3374                      -> Option<PathResolution> {
3375         debug!(
3376             "resolve_qpath(id={:?}, qself={:?}, path={:?}, \
3377              ns={:?}, span={:?}, global_by_default={:?})",
3378             id,
3379             qself,
3380             path,
3381             ns,
3382             span,
3383             global_by_default,
3384         );
3385
3386         if let Some(qself) = qself {
3387             if qself.position == 0 {
3388                 // This is a case like `<T>::B`, where there is no
3389                 // trait to resolve.  In that case, we leave the `B`
3390                 // segment to be resolved by type-check.
3391                 return Some(PathResolution::with_unresolved_segments(
3392                     Def::Mod(DefId::local(CRATE_DEF_INDEX)), path.len()
3393                 ));
3394             }
3395
3396             // Make sure `A::B` in `<T as A::B>::C` is a trait item.
3397             //
3398             // Currently, `path` names the full item (`A::B::C`, in
3399             // our example).  so we extract the prefix of that that is
3400             // the trait (the slice upto and including
3401             // `qself.position`). And then we recursively resolve that,
3402             // but with `qself` set to `None`.
3403             //
3404             // However, setting `qself` to none (but not changing the
3405             // span) loses the information about where this path
3406             // *actually* appears, so for the purposes of the crate
3407             // lint we pass along information that this is the trait
3408             // name from a fully qualified path, and this also
3409             // contains the full span (the `CrateLint::QPathTrait`).
3410             let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
3411             let res = self.smart_resolve_path_fragment(
3412                 id,
3413                 None,
3414                 &path[..qself.position + 1],
3415                 span,
3416                 PathSource::TraitItem(ns),
3417                 CrateLint::QPathTrait {
3418                     qpath_id: id,
3419                     qpath_span: qself.path_span,
3420                 },
3421             );
3422
3423             // The remaining segments (the `C` in our example) will
3424             // have to be resolved by type-check, since that requires doing
3425             // trait resolution.
3426             return Some(PathResolution::with_unresolved_segments(
3427                 res.base_def(), res.unresolved_segments() + path.len() - qself.position - 1
3428             ));
3429         }
3430
3431         let result = match self.resolve_path(
3432             None,
3433             &path,
3434             Some(ns),
3435             true,
3436             span,
3437             crate_lint,
3438         ) {
3439             PathResult::NonModule(path_res) => path_res,
3440             PathResult::Module(ModuleOrUniformRoot::Module(module)) if !module.is_normal() => {
3441                 PathResolution::new(module.def().unwrap())
3442             }
3443             // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
3444             // don't report an error right away, but try to fallback to a primitive type.
3445             // So, we are still able to successfully resolve something like
3446             //
3447             // use std::u8; // bring module u8 in scope
3448             // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
3449             //     u8::max_value() // OK, resolves to associated function <u8>::max_value,
3450             //                     // not to non-existent std::u8::max_value
3451             // }
3452             //
3453             // Such behavior is required for backward compatibility.
3454             // The same fallback is used when `a` resolves to nothing.
3455             PathResult::Module(ModuleOrUniformRoot::Module(_)) |
3456             PathResult::Failed(..)
3457                     if (ns == TypeNS || path.len() > 1) &&
3458                        self.primitive_type_table.primitive_types
3459                            .contains_key(&path[0].name) => {
3460                 let prim = self.primitive_type_table.primitive_types[&path[0].name];
3461                 PathResolution::with_unresolved_segments(Def::PrimTy(prim), path.len() - 1)
3462             }
3463             PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3464                 PathResolution::new(module.def().unwrap()),
3465             PathResult::Failed(span, msg, false) => {
3466                 resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
3467                 err_path_resolution()
3468             }
3469             PathResult::Module(ModuleOrUniformRoot::UniformRoot(_)) |
3470             PathResult::Failed(..) => return None,
3471             PathResult::Indeterminate => bug!("indetermined path result in resolve_qpath"),
3472         };
3473
3474         if path.len() > 1 && !global_by_default && result.base_def() != Def::Err &&
3475            path[0].name != keywords::CrateRoot.name() &&
3476            path[0].name != keywords::DollarCrate.name() {
3477             let unqualified_result = {
3478                 match self.resolve_path(
3479                     None,
3480                     &[*path.last().unwrap()],
3481                     Some(ns),
3482                     false,
3483                     span,
3484                     CrateLint::No,
3485                 ) {
3486                     PathResult::NonModule(path_res) => path_res.base_def(),
3487                     PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3488                         module.def().unwrap(),
3489                     _ => return Some(result),
3490                 }
3491             };
3492             if result.base_def() == unqualified_result {
3493                 let lint = lint::builtin::UNUSED_QUALIFICATIONS;
3494                 self.session.buffer_lint(lint, id, span, "unnecessary qualification")
3495             }
3496         }
3497
3498         Some(result)
3499     }
3500
3501     fn resolve_path(
3502         &mut self,
3503         base_module: Option<ModuleOrUniformRoot<'a>>,
3504         path: &[Ident],
3505         opt_ns: Option<Namespace>, // `None` indicates a module path
3506         record_used: bool,
3507         path_span: Span,
3508         crate_lint: CrateLint,
3509     ) -> PathResult<'a> {
3510         let parent_scope = ParentScope { module: self.current_module, ..self.dummy_parent_scope() };
3511         self.resolve_path_with_parent_scope(base_module, path, opt_ns, &parent_scope,
3512                                             record_used, path_span, crate_lint)
3513     }
3514
3515     fn resolve_path_with_parent_scope(
3516         &mut self,
3517         base_module: Option<ModuleOrUniformRoot<'a>>,
3518         path: &[Ident],
3519         opt_ns: Option<Namespace>, // `None` indicates a module path
3520         parent_scope: &ParentScope<'a>,
3521         record_used: bool,
3522         path_span: Span,
3523         crate_lint: CrateLint,
3524     ) -> PathResult<'a> {
3525         let mut module = base_module;
3526         let mut allow_super = true;
3527         let mut second_binding = None;
3528         self.current_module = parent_scope.module;
3529
3530         debug!(
3531             "resolve_path(path={:?}, opt_ns={:?}, record_used={:?}, \
3532              path_span={:?}, crate_lint={:?})",
3533             path,
3534             opt_ns,
3535             record_used,
3536             path_span,
3537             crate_lint,
3538         );
3539
3540         for (i, &ident) in path.iter().enumerate() {
3541             debug!("resolve_path ident {} {:?}", i, ident);
3542             let is_last = i == path.len() - 1;
3543             let ns = if is_last { opt_ns.unwrap_or(TypeNS) } else { TypeNS };
3544             let name = ident.name;
3545
3546             allow_super &= ns == TypeNS &&
3547                 (name == keywords::SelfValue.name() ||
3548                  name == keywords::Super.name());
3549
3550             if ns == TypeNS {
3551                 if allow_super && name == keywords::Super.name() {
3552                     let mut ctxt = ident.span.ctxt().modern();
3553                     let self_module = match i {
3554                         0 => Some(self.resolve_self(&mut ctxt, self.current_module)),
3555                         _ => match module {
3556                             Some(ModuleOrUniformRoot::Module(module)) => Some(module),
3557                             _ => None,
3558                         },
3559                     };
3560                     if let Some(self_module) = self_module {
3561                         if let Some(parent) = self_module.parent {
3562                             module = Some(ModuleOrUniformRoot::Module(
3563                                 self.resolve_self(&mut ctxt, parent)));
3564                             continue;
3565                         }
3566                     }
3567                     let msg = "There are too many initial `super`s.".to_string();
3568                     return PathResult::Failed(ident.span, msg, false);
3569                 }
3570                 if i == 0 {
3571                     if name == keywords::SelfValue.name() {
3572                         let mut ctxt = ident.span.ctxt().modern();
3573                         module = Some(ModuleOrUniformRoot::Module(
3574                             self.resolve_self(&mut ctxt, self.current_module)));
3575                         continue;
3576                     }
3577                     if name == keywords::Extern.name() ||
3578                        name == keywords::CrateRoot.name() &&
3579                        self.session.features_untracked().extern_absolute_paths &&
3580                        self.session.rust_2018() {
3581                         module = Some(ModuleOrUniformRoot::UniformRoot(name));
3582                         continue;
3583                     }
3584                     if name == keywords::CrateRoot.name() ||
3585                        name == keywords::Crate.name() ||
3586                        name == keywords::DollarCrate.name() {
3587                         // `::a::b`, `crate::a::b` or `$crate::a::b`
3588                         module = Some(ModuleOrUniformRoot::Module(
3589                             self.resolve_crate_root(ident)));
3590                         continue;
3591                     }
3592                 }
3593             }
3594
3595             // Report special messages for path segment keywords in wrong positions.
3596             if ident.is_path_segment_keyword() && i != 0 {
3597                 let name_str = if name == keywords::CrateRoot.name() {
3598                     "crate root".to_string()
3599                 } else {
3600                     format!("`{}`", name)
3601                 };
3602                 let msg = if i == 1 && path[0].name == keywords::CrateRoot.name() {
3603                     format!("global paths cannot start with {}", name_str)
3604                 } else {
3605                     format!("{} in paths can only be used in start position", name_str)
3606                 };
3607                 return PathResult::Failed(ident.span, msg, false);
3608             }
3609
3610             let binding = if let Some(module) = module {
3611                 self.resolve_ident_in_module(module, ident, ns, record_used, path_span)
3612             } else if opt_ns == Some(MacroNS) {
3613                 assert!(ns == TypeNS);
3614                 self.resolve_lexical_macro_path_segment(ident, ns, None, parent_scope, record_used,
3615                                                         record_used, path_span).map(|(b, _)| b)
3616             } else {
3617                 let record_used_id =
3618                     if record_used { crate_lint.node_id().or(Some(CRATE_NODE_ID)) } else { None };
3619                 match self.resolve_ident_in_lexical_scope(ident, ns, record_used_id, path_span) {
3620                     // we found a locally-imported or available item/module
3621                     Some(LexicalScopeBinding::Item(binding)) => Ok(binding),
3622                     // we found a local variable or type param
3623                     Some(LexicalScopeBinding::Def(def))
3624                             if opt_ns == Some(TypeNS) || opt_ns == Some(ValueNS) => {
3625                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3626                             def, path.len() - 1
3627                         ));
3628                     }
3629                     _ => Err(if record_used { Determined } else { Undetermined }),
3630                 }
3631             };
3632
3633             match binding {
3634                 Ok(binding) => {
3635                     if i == 1 {
3636                         second_binding = Some(binding);
3637                     }
3638                     let def = binding.def();
3639                     let maybe_assoc = opt_ns != Some(MacroNS) && PathSource::Type.is_expected(def);
3640                     if let Some(next_module) = binding.module() {
3641                         module = Some(ModuleOrUniformRoot::Module(next_module));
3642                     } else if def == Def::ToolMod && i + 1 != path.len() {
3643                         let def = Def::NonMacroAttr(NonMacroAttrKind::Tool);
3644                         return PathResult::NonModule(PathResolution::new(def));
3645                     } else if def == Def::Err {
3646                         return PathResult::NonModule(err_path_resolution());
3647                     } else if opt_ns.is_some() && (is_last || maybe_assoc) {
3648                         self.lint_if_path_starts_with_module(
3649                             crate_lint,
3650                             path,
3651                             path_span,
3652                             second_binding,
3653                         );
3654                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3655                             def, path.len() - i - 1
3656                         ));
3657                     } else {
3658                         return PathResult::Failed(ident.span,
3659                                                   format!("Not a module `{}`", ident),
3660                                                   is_last);
3661                     }
3662                 }
3663                 Err(Undetermined) => return PathResult::Indeterminate,
3664                 Err(Determined) => {
3665                     if let Some(ModuleOrUniformRoot::Module(module)) = module {
3666                         if opt_ns.is_some() && !module.is_normal() {
3667                             return PathResult::NonModule(PathResolution::with_unresolved_segments(
3668                                 module.def().unwrap(), path.len() - i
3669                             ));
3670                         }
3671                     }
3672                     let module_def = match module {
3673                         Some(ModuleOrUniformRoot::Module(module)) => module.def(),
3674                         _ => None,
3675                     };
3676                     let msg = if module_def == self.graph_root.def() {
3677                         let is_mod = |def| match def { Def::Mod(..) => true, _ => false };
3678                         let mut candidates =
3679                             self.lookup_import_candidates(name, TypeNS, is_mod);
3680                         candidates.sort_by_cached_key(|c| {
3681                             (c.path.segments.len(), c.path.to_string())
3682                         });
3683                         if let Some(candidate) = candidates.get(0) {
3684                             format!("Did you mean `{}`?", candidate.path)
3685                         } else {
3686                             format!("Maybe a missing `extern crate {};`?", ident)
3687                         }
3688                     } else if i == 0 {
3689                         format!("Use of undeclared type or module `{}`", ident)
3690                     } else {
3691                         format!("Could not find `{}` in `{}`", ident, path[i - 1])
3692                     };
3693                     return PathResult::Failed(ident.span, msg, is_last);
3694                 }
3695             }
3696         }
3697
3698         self.lint_if_path_starts_with_module(crate_lint, path, path_span, second_binding);
3699
3700         PathResult::Module(module.unwrap_or_else(|| {
3701             span_bug!(path_span, "resolve_path: empty(?) path {:?} has no module", path);
3702         }))
3703
3704     }
3705
3706     fn lint_if_path_starts_with_module(
3707         &self,
3708         crate_lint: CrateLint,
3709         path: &[Ident],
3710         path_span: Span,
3711         second_binding: Option<&NameBinding>,
3712     ) {
3713         // In the 2018 edition this lint is a hard error, so nothing to do
3714         if self.session.rust_2018() {
3715             return
3716         }
3717
3718         // In the 2015 edition there's no use in emitting lints unless the
3719         // crate's already enabled the feature that we're going to suggest
3720         if !self.session.features_untracked().crate_in_paths {
3721             return
3722         }
3723
3724         let (diag_id, diag_span) = match crate_lint {
3725             CrateLint::No => return,
3726             CrateLint::SimplePath(id) => (id, path_span),
3727             CrateLint::UsePath { root_id, root_span } => (root_id, root_span),
3728             CrateLint::QPathTrait { qpath_id, qpath_span } => (qpath_id, qpath_span),
3729         };
3730
3731         let first_name = match path.get(0) {
3732             Some(ident) => ident.name,
3733             None => return,
3734         };
3735
3736         // We're only interested in `use` paths which should start with
3737         // `{{root}}` or `extern` currently.
3738         if first_name != keywords::Extern.name() && first_name != keywords::CrateRoot.name() {
3739             return
3740         }
3741
3742         match path.get(1) {
3743             // If this import looks like `crate::...` it's already good
3744             Some(ident) if ident.name == keywords::Crate.name() => return,
3745             // Otherwise go below to see if it's an extern crate
3746             Some(_) => {}
3747             // If the path has length one (and it's `CrateRoot` most likely)
3748             // then we don't know whether we're gonna be importing a crate or an
3749             // item in our crate. Defer this lint to elsewhere
3750             None => return,
3751         }
3752
3753         // If the first element of our path was actually resolved to an
3754         // `ExternCrate` (also used for `crate::...`) then no need to issue a
3755         // warning, this looks all good!
3756         if let Some(binding) = second_binding {
3757             if let NameBindingKind::Import { directive: d, .. } = binding.kind {
3758                 // Careful: we still want to rewrite paths from
3759                 // renamed extern crates.
3760                 if let ImportDirectiveSubclass::ExternCrate(None) = d.subclass {
3761                     return
3762                 }
3763             }
3764         }
3765
3766         let diag = lint::builtin::BuiltinLintDiagnostics
3767             ::AbsPathWithModule(diag_span);
3768         self.session.buffer_lint_with_diagnostic(
3769             lint::builtin::ABSOLUTE_PATHS_NOT_STARTING_WITH_CRATE,
3770             diag_id, diag_span,
3771             "absolute paths must start with `self`, `super`, \
3772             `crate`, or an external crate name in the 2018 edition",
3773             diag);
3774     }
3775
3776     // Resolve a local definition, potentially adjusting for closures.
3777     fn adjust_local_def(&mut self,
3778                         ns: Namespace,
3779                         rib_index: usize,
3780                         mut def: Def,
3781                         record_used: bool,
3782                         span: Span) -> Def {
3783         let ribs = &self.ribs[ns][rib_index + 1..];
3784
3785         // An invalid forward use of a type parameter from a previous default.
3786         if let ForwardTyParamBanRibKind = self.ribs[ns][rib_index].kind {
3787             if record_used {
3788                 resolve_error(self, span, ResolutionError::ForwardDeclaredTyParam);
3789             }
3790             assert_eq!(def, Def::Err);
3791             return Def::Err;
3792         }
3793
3794         match def {
3795             Def::Upvar(..) => {
3796                 span_bug!(span, "unexpected {:?} in bindings", def)
3797             }
3798             Def::Local(node_id) => {
3799                 for rib in ribs {
3800                     match rib.kind {
3801                         NormalRibKind | ModuleRibKind(..) | MacroDefinition(..) |
3802                         ForwardTyParamBanRibKind => {
3803                             // Nothing to do. Continue.
3804                         }
3805                         ClosureRibKind(function_id) => {
3806                             let prev_def = def;
3807
3808                             let seen = self.freevars_seen
3809                                            .entry(function_id)
3810                                            .or_default();
3811                             if let Some(&index) = seen.get(&node_id) {
3812                                 def = Def::Upvar(node_id, index, function_id);
3813                                 continue;
3814                             }
3815                             let vec = self.freevars
3816                                           .entry(function_id)
3817                                           .or_default();
3818                             let depth = vec.len();
3819                             def = Def::Upvar(node_id, depth, function_id);
3820
3821                             if record_used {
3822                                 vec.push(Freevar {
3823                                     def: prev_def,
3824                                     span,
3825                                 });
3826                                 seen.insert(node_id, depth);
3827                             }
3828                         }
3829                         ItemRibKind | TraitOrImplItemRibKind => {
3830                             // This was an attempt to access an upvar inside a
3831                             // named function item. This is not allowed, so we
3832                             // report an error.
3833                             if record_used {
3834                                 resolve_error(self, span,
3835                                         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem);
3836                             }
3837                             return Def::Err;
3838                         }
3839                         ConstantItemRibKind => {
3840                             // Still doesn't deal with upvars
3841                             if record_used {
3842                                 resolve_error(self, span,
3843                                         ResolutionError::AttemptToUseNonConstantValueInConstant);
3844                             }
3845                             return Def::Err;
3846                         }
3847                     }
3848                 }
3849             }
3850             Def::TyParam(..) | Def::SelfTy(..) => {
3851                 for rib in ribs {
3852                     match rib.kind {
3853                         NormalRibKind | TraitOrImplItemRibKind | ClosureRibKind(..) |
3854                         ModuleRibKind(..) | MacroDefinition(..) | ForwardTyParamBanRibKind |
3855                         ConstantItemRibKind => {
3856                             // Nothing to do. Continue.
3857                         }
3858                         ItemRibKind => {
3859                             // This was an attempt to use a type parameter outside
3860                             // its scope.
3861                             if record_used {
3862                                 resolve_error(self, span,
3863                                     ResolutionError::TypeParametersFromOuterFunction(def));
3864                             }
3865                             return Def::Err;
3866                         }
3867                     }
3868                 }
3869             }
3870             _ => {}
3871         }
3872         return def;
3873     }
3874
3875     fn lookup_assoc_candidate<FilterFn>(&mut self,
3876                                         ident: Ident,
3877                                         ns: Namespace,
3878                                         filter_fn: FilterFn)
3879                                         -> Option<AssocSuggestion>
3880         where FilterFn: Fn(Def) -> bool
3881     {
3882         fn extract_node_id(t: &Ty) -> Option<NodeId> {
3883             match t.node {
3884                 TyKind::Path(None, _) => Some(t.id),
3885                 TyKind::Rptr(_, ref mut_ty) => extract_node_id(&mut_ty.ty),
3886                 // This doesn't handle the remaining `Ty` variants as they are not
3887                 // that commonly the self_type, it might be interesting to provide
3888                 // support for those in future.
3889                 _ => None,
3890             }
3891         }
3892
3893         // Fields are generally expected in the same contexts as locals.
3894         if filter_fn(Def::Local(ast::DUMMY_NODE_ID)) {
3895             if let Some(node_id) = self.current_self_type.as_ref().and_then(extract_node_id) {
3896                 // Look for a field with the same name in the current self_type.
3897                 if let Some(resolution) = self.def_map.get(&node_id) {
3898                     match resolution.base_def() {
3899                         Def::Struct(did) | Def::Union(did)
3900                                 if resolution.unresolved_segments() == 0 => {
3901                             if let Some(field_names) = self.field_names.get(&did) {
3902                                 if field_names.iter().any(|&field_name| ident.name == field_name) {
3903                                     return Some(AssocSuggestion::Field);
3904                                 }
3905                             }
3906                         }
3907                         _ => {}
3908                     }
3909                 }
3910             }
3911         }
3912
3913         // Look for associated items in the current trait.
3914         if let Some((module, _)) = self.current_trait_ref {
3915             if let Ok(binding) = self.resolve_ident_in_module(
3916                     ModuleOrUniformRoot::Module(module),
3917                     ident,
3918                     ns,
3919                     false,
3920                     module.span,
3921                 ) {
3922                 let def = binding.def();
3923                 if filter_fn(def) {
3924                     return Some(if self.has_self.contains(&def.def_id()) {
3925                         AssocSuggestion::MethodWithSelf
3926                     } else {
3927                         AssocSuggestion::AssocItem
3928                     });
3929                 }
3930             }
3931         }
3932
3933         None
3934     }
3935
3936     fn lookup_typo_candidate<FilterFn>(&mut self,
3937                                        path: &[Ident],
3938                                        ns: Namespace,
3939                                        filter_fn: FilterFn,
3940                                        span: Span)
3941                                        -> Option<Symbol>
3942         where FilterFn: Fn(Def) -> bool
3943     {
3944         let add_module_candidates = |module: Module, names: &mut Vec<Name>| {
3945             for (&(ident, _), resolution) in module.resolutions.borrow().iter() {
3946                 if let Some(binding) = resolution.borrow().binding {
3947                     if filter_fn(binding.def()) {
3948                         names.push(ident.name);
3949                     }
3950                 }
3951             }
3952         };
3953
3954         let mut names = Vec::new();
3955         if path.len() == 1 {
3956             // Search in lexical scope.
3957             // Walk backwards up the ribs in scope and collect candidates.
3958             for rib in self.ribs[ns].iter().rev() {
3959                 // Locals and type parameters
3960                 for (ident, def) in &rib.bindings {
3961                     if filter_fn(*def) {
3962                         names.push(ident.name);
3963                     }
3964                 }
3965                 // Items in scope
3966                 if let ModuleRibKind(module) = rib.kind {
3967                     // Items from this module
3968                     add_module_candidates(module, &mut names);
3969
3970                     if let ModuleKind::Block(..) = module.kind {
3971                         // We can see through blocks
3972                     } else {
3973                         // Items from the prelude
3974                         if !module.no_implicit_prelude {
3975                             names.extend(self.extern_prelude.iter().cloned());
3976                             if let Some(prelude) = self.prelude {
3977                                 add_module_candidates(prelude, &mut names);
3978                             }
3979                         }
3980                         break;
3981                     }
3982                 }
3983             }
3984             // Add primitive types to the mix
3985             if filter_fn(Def::PrimTy(Bool)) {
3986                 names.extend(
3987                     self.primitive_type_table.primitive_types.iter().map(|(name, _)| name)
3988                 )
3989             }
3990         } else {
3991             // Search in module.
3992             let mod_path = &path[..path.len() - 1];
3993             if let PathResult::Module(module) = self.resolve_path(None, mod_path, Some(TypeNS),
3994                                                                   false, span, CrateLint::No) {
3995                 if let ModuleOrUniformRoot::Module(module) = module {
3996                     add_module_candidates(module, &mut names);
3997                 }
3998             }
3999         }
4000
4001         let name = path[path.len() - 1].name;
4002         // Make sure error reporting is deterministic.
4003         names.sort_by_cached_key(|name| name.as_str());
4004         match find_best_match_for_name(names.iter(), &name.as_str(), None) {
4005             Some(found) if found != name => Some(found),
4006             _ => None,
4007         }
4008     }
4009
4010     fn with_resolved_label<F>(&mut self, label: Option<Label>, id: NodeId, f: F)
4011         where F: FnOnce(&mut Resolver)
4012     {
4013         if let Some(label) = label {
4014             self.unused_labels.insert(id, label.ident.span);
4015             let def = Def::Label(id);
4016             self.with_label_rib(|this| {
4017                 let ident = label.ident.modern_and_legacy();
4018                 this.label_ribs.last_mut().unwrap().bindings.insert(ident, def);
4019                 f(this);
4020             });
4021         } else {
4022             f(self);
4023         }
4024     }
4025
4026     fn resolve_labeled_block(&mut self, label: Option<Label>, id: NodeId, block: &Block) {
4027         self.with_resolved_label(label, id, |this| this.visit_block(block));
4028     }
4029
4030     fn resolve_expr(&mut self, expr: &Expr, parent: Option<&Expr>) {
4031         // First, record candidate traits for this expression if it could
4032         // result in the invocation of a method call.
4033
4034         self.record_candidate_traits_for_expr_if_necessary(expr);
4035
4036         // Next, resolve the node.
4037         match expr.node {
4038             ExprKind::Path(ref qself, ref path) => {
4039                 self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
4040                 visit::walk_expr(self, expr);
4041             }
4042
4043             ExprKind::Struct(ref path, ..) => {
4044                 self.smart_resolve_path(expr.id, None, path, PathSource::Struct);
4045                 visit::walk_expr(self, expr);
4046             }
4047
4048             ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
4049                 let def = self.search_label(label.ident, |rib, ident| {
4050                     rib.bindings.get(&ident.modern_and_legacy()).cloned()
4051                 });
4052                 match def {
4053                     None => {
4054                         // Search again for close matches...
4055                         // Picks the first label that is "close enough", which is not necessarily
4056                         // the closest match
4057                         let close_match = self.search_label(label.ident, |rib, ident| {
4058                             let names = rib.bindings.iter().map(|(id, _)| &id.name);
4059                             find_best_match_for_name(names, &*ident.as_str(), None)
4060                         });
4061                         self.record_def(expr.id, err_path_resolution());
4062                         resolve_error(self,
4063                                       label.ident.span,
4064                                       ResolutionError::UndeclaredLabel(&label.ident.as_str(),
4065                                                                        close_match));
4066                     }
4067                     Some(Def::Label(id)) => {
4068                         // Since this def is a label, it is never read.
4069                         self.record_def(expr.id, PathResolution::new(Def::Label(id)));
4070                         self.unused_labels.remove(&id);
4071                     }
4072                     Some(_) => {
4073                         span_bug!(expr.span, "label wasn't mapped to a label def!");
4074                     }
4075                 }
4076
4077                 // visit `break` argument if any
4078                 visit::walk_expr(self, expr);
4079             }
4080
4081             ExprKind::IfLet(ref pats, ref subexpression, ref if_block, ref optional_else) => {
4082                 self.visit_expr(subexpression);
4083
4084                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
4085                 let mut bindings_list = FxHashMap();
4086                 for pat in pats {
4087                     self.resolve_pattern(pat, PatternSource::IfLet, &mut bindings_list);
4088                 }
4089                 // This has to happen *after* we determine which pat_idents are variants
4090                 self.check_consistent_bindings(pats);
4091                 self.visit_block(if_block);
4092                 self.ribs[ValueNS].pop();
4093
4094                 optional_else.as_ref().map(|expr| self.visit_expr(expr));
4095             }
4096
4097             ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),
4098
4099             ExprKind::While(ref subexpression, ref block, label) => {
4100                 self.with_resolved_label(label, expr.id, |this| {
4101                     this.visit_expr(subexpression);
4102                     this.visit_block(block);
4103                 });
4104             }
4105
4106             ExprKind::WhileLet(ref pats, ref subexpression, ref block, label) => {
4107                 self.with_resolved_label(label, expr.id, |this| {
4108                     this.visit_expr(subexpression);
4109                     this.ribs[ValueNS].push(Rib::new(NormalRibKind));
4110                     let mut bindings_list = FxHashMap();
4111                     for pat in pats {
4112                         this.resolve_pattern(pat, PatternSource::WhileLet, &mut bindings_list);
4113                     }
4114                     // This has to happen *after* we determine which pat_idents are variants
4115                     this.check_consistent_bindings(pats);
4116                     this.visit_block(block);
4117                     this.ribs[ValueNS].pop();
4118                 });
4119             }
4120
4121             ExprKind::ForLoop(ref pattern, ref subexpression, ref block, label) => {
4122                 self.visit_expr(subexpression);
4123                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
4124                 self.resolve_pattern(pattern, PatternSource::For, &mut FxHashMap());
4125
4126                 self.resolve_labeled_block(label, expr.id, block);
4127
4128                 self.ribs[ValueNS].pop();
4129             }
4130
4131             ExprKind::Block(ref block, label) => self.resolve_labeled_block(label, block.id, block),
4132
4133             // Equivalent to `visit::walk_expr` + passing some context to children.
4134             ExprKind::Field(ref subexpression, _) => {
4135                 self.resolve_expr(subexpression, Some(expr));
4136             }
4137             ExprKind::MethodCall(ref segment, ref arguments) => {
4138                 let mut arguments = arguments.iter();
4139                 self.resolve_expr(arguments.next().unwrap(), Some(expr));
4140                 for argument in arguments {
4141                     self.resolve_expr(argument, None);
4142                 }
4143                 self.visit_path_segment(expr.span, segment);
4144             }
4145
4146             ExprKind::Call(ref callee, ref arguments) => {
4147                 self.resolve_expr(callee, Some(expr));
4148                 for argument in arguments {
4149                     self.resolve_expr(argument, None);
4150                 }
4151             }
4152             ExprKind::Type(ref type_expr, _) => {
4153                 self.current_type_ascription.push(type_expr.span);
4154                 visit::walk_expr(self, expr);
4155                 self.current_type_ascription.pop();
4156             }
4157             // Resolve the body of async exprs inside the async closure to which they desugar
4158             ExprKind::Async(_, async_closure_id, ref block) => {
4159                 let rib_kind = ClosureRibKind(async_closure_id);
4160                 self.ribs[ValueNS].push(Rib::new(rib_kind));
4161                 self.label_ribs.push(Rib::new(rib_kind));
4162                 self.visit_block(&block);
4163                 self.label_ribs.pop();
4164                 self.ribs[ValueNS].pop();
4165             }
4166             // `async |x| ...` gets desugared to `|x| future_from_generator(|| ...)`, so we need to
4167             // resolve the arguments within the proper scopes so that usages of them inside the
4168             // closure are detected as upvars rather than normal closure arg usages.
4169             ExprKind::Closure(
4170                 _, IsAsync::Async { closure_id: inner_closure_id, .. }, _,
4171                 ref fn_decl, ref body, _span,
4172             ) => {
4173                 let rib_kind = ClosureRibKind(expr.id);
4174                 self.ribs[ValueNS].push(Rib::new(rib_kind));
4175                 self.label_ribs.push(Rib::new(rib_kind));
4176                 // Resolve arguments:
4177                 let mut bindings_list = FxHashMap();
4178                 for argument in &fn_decl.inputs {
4179                     self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
4180                     self.visit_ty(&argument.ty);
4181                 }
4182                 // No need to resolve return type-- the outer closure return type is
4183                 // FunctionRetTy::Default
4184
4185                 // Now resolve the inner closure
4186                 {
4187                     let rib_kind = ClosureRibKind(inner_closure_id);
4188                     self.ribs[ValueNS].push(Rib::new(rib_kind));
4189                     self.label_ribs.push(Rib::new(rib_kind));
4190                     // No need to resolve arguments: the inner closure has none.
4191                     // Resolve the return type:
4192                     visit::walk_fn_ret_ty(self, &fn_decl.output);
4193                     // Resolve the body
4194                     self.visit_expr(body);
4195                     self.label_ribs.pop();
4196                     self.ribs[ValueNS].pop();
4197                 }
4198                 self.label_ribs.pop();
4199                 self.ribs[ValueNS].pop();
4200             }
4201             _ => {
4202                 visit::walk_expr(self, expr);
4203             }
4204         }
4205     }
4206
4207     fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &Expr) {
4208         match expr.node {
4209             ExprKind::Field(_, ident) => {
4210                 // FIXME(#6890): Even though you can't treat a method like a
4211                 // field, we need to add any trait methods we find that match
4212                 // the field name so that we can do some nice error reporting
4213                 // later on in typeck.
4214                 let traits = self.get_traits_containing_item(ident, ValueNS);
4215                 self.trait_map.insert(expr.id, traits);
4216             }
4217             ExprKind::MethodCall(ref segment, ..) => {
4218                 debug!("(recording candidate traits for expr) recording traits for {}",
4219                        expr.id);
4220                 let traits = self.get_traits_containing_item(segment.ident, ValueNS);
4221                 self.trait_map.insert(expr.id, traits);
4222             }
4223             _ => {
4224                 // Nothing to do.
4225             }
4226         }
4227     }
4228
4229     fn get_traits_containing_item(&mut self, mut ident: Ident, ns: Namespace)
4230                                   -> Vec<TraitCandidate> {
4231         debug!("(getting traits containing item) looking for '{}'", ident.name);
4232
4233         let mut found_traits = Vec::new();
4234         // Look for the current trait.
4235         if let Some((module, _)) = self.current_trait_ref {
4236             if self.resolve_ident_in_module(
4237                 ModuleOrUniformRoot::Module(module),
4238                 ident,
4239                 ns,
4240                 false,
4241                 module.span,
4242             ).is_ok() {
4243                 let def_id = module.def_id().unwrap();
4244                 found_traits.push(TraitCandidate { def_id: def_id, import_id: None });
4245             }
4246         }
4247
4248         ident.span = ident.span.modern();
4249         let mut search_module = self.current_module;
4250         loop {
4251             self.get_traits_in_module_containing_item(ident, ns, search_module, &mut found_traits);
4252             search_module = unwrap_or!(
4253                 self.hygienic_lexical_parent(search_module, &mut ident.span), break
4254             );
4255         }
4256
4257         if let Some(prelude) = self.prelude {
4258             if !search_module.no_implicit_prelude {
4259                 self.get_traits_in_module_containing_item(ident, ns, prelude, &mut found_traits);
4260             }
4261         }
4262
4263         found_traits
4264     }
4265
4266     fn get_traits_in_module_containing_item(&mut self,
4267                                             ident: Ident,
4268                                             ns: Namespace,
4269                                             module: Module<'a>,
4270                                             found_traits: &mut Vec<TraitCandidate>) {
4271         assert!(ns == TypeNS || ns == ValueNS);
4272         let mut traits = module.traits.borrow_mut();
4273         if traits.is_none() {
4274             let mut collected_traits = Vec::new();
4275             module.for_each_child(|name, ns, binding| {
4276                 if ns != TypeNS { return }
4277                 if let Def::Trait(_) = binding.def() {
4278                     collected_traits.push((name, binding));
4279                 }
4280             });
4281             *traits = Some(collected_traits.into_boxed_slice());
4282         }
4283
4284         for &(trait_name, binding) in traits.as_ref().unwrap().iter() {
4285             let module = binding.module().unwrap();
4286             let mut ident = ident;
4287             if ident.span.glob_adjust(module.expansion, binding.span.ctxt().modern()).is_none() {
4288                 continue
4289             }
4290             if self.resolve_ident_in_module_unadjusted(
4291                 ModuleOrUniformRoot::Module(module),
4292                 ident,
4293                 ns,
4294                 false,
4295                 false,
4296                 module.span,
4297             ).is_ok() {
4298                 let import_id = match binding.kind {
4299                     NameBindingKind::Import { directive, .. } => {
4300                         self.maybe_unused_trait_imports.insert(directive.id);
4301                         self.add_to_glob_map(directive.id, trait_name);
4302                         Some(directive.id)
4303                     }
4304                     _ => None,
4305                 };
4306                 let trait_def_id = module.def_id().unwrap();
4307                 found_traits.push(TraitCandidate { def_id: trait_def_id, import_id: import_id });
4308             }
4309         }
4310     }
4311
4312     fn lookup_import_candidates_from_module<FilterFn>(&mut self,
4313                                           lookup_name: Name,
4314                                           namespace: Namespace,
4315                                           start_module: &'a ModuleData<'a>,
4316                                           crate_name: Ident,
4317                                           filter_fn: FilterFn)
4318                                           -> Vec<ImportSuggestion>
4319         where FilterFn: Fn(Def) -> bool
4320     {
4321         let mut candidates = Vec::new();
4322         let mut worklist = Vec::new();
4323         let mut seen_modules = FxHashSet();
4324         let not_local_module = crate_name != keywords::Crate.ident();
4325         worklist.push((start_module, Vec::<ast::PathSegment>::new(), not_local_module));
4326
4327         while let Some((in_module,
4328                         path_segments,
4329                         in_module_is_extern)) = worklist.pop() {
4330             self.populate_module_if_necessary(in_module);
4331
4332             // We have to visit module children in deterministic order to avoid
4333             // instabilities in reported imports (#43552).
4334             in_module.for_each_child_stable(|ident, ns, name_binding| {
4335                 // avoid imports entirely
4336                 if name_binding.is_import() && !name_binding.is_extern_crate() { return; }
4337                 // avoid non-importable candidates as well
4338                 if !name_binding.is_importable() { return; }
4339
4340                 // collect results based on the filter function
4341                 if ident.name == lookup_name && ns == namespace {
4342                     if filter_fn(name_binding.def()) {
4343                         // create the path
4344                         let mut segms = path_segments.clone();
4345                         if self.session.rust_2018() {
4346                             // crate-local absolute paths start with `crate::` in edition 2018
4347                             // FIXME: may also be stabilized for Rust 2015 (Issues #45477, #44660)
4348                             segms.insert(
4349                                 0, ast::PathSegment::from_ident(crate_name)
4350                             );
4351                         }
4352
4353                         segms.push(ast::PathSegment::from_ident(ident));
4354                         let path = Path {
4355                             span: name_binding.span,
4356                             segments: segms,
4357                         };
4358                         // the entity is accessible in the following cases:
4359                         // 1. if it's defined in the same crate, it's always
4360                         // accessible (since private entities can be made public)
4361                         // 2. if it's defined in another crate, it's accessible
4362                         // only if both the module is public and the entity is
4363                         // declared as public (due to pruning, we don't explore
4364                         // outside crate private modules => no need to check this)
4365                         if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
4366                             candidates.push(ImportSuggestion { path: path });
4367                         }
4368                     }
4369                 }
4370
4371                 // collect submodules to explore
4372                 if let Some(module) = name_binding.module() {
4373                     // form the path
4374                     let mut path_segments = path_segments.clone();
4375                     path_segments.push(ast::PathSegment::from_ident(ident));
4376
4377                     let is_extern_crate_that_also_appears_in_prelude =
4378                         name_binding.is_extern_crate() &&
4379                         self.session.rust_2018();
4380
4381                     let is_visible_to_user =
4382                         !in_module_is_extern || name_binding.vis == ty::Visibility::Public;
4383
4384                     if !is_extern_crate_that_also_appears_in_prelude && is_visible_to_user {
4385                         // add the module to the lookup
4386                         let is_extern = in_module_is_extern || name_binding.is_extern_crate();
4387                         if seen_modules.insert(module.def_id().unwrap()) {
4388                             worklist.push((module, path_segments, is_extern));
4389                         }
4390                     }
4391                 }
4392             })
4393         }
4394
4395         candidates
4396     }
4397
4398     /// When name resolution fails, this method can be used to look up candidate
4399     /// entities with the expected name. It allows filtering them using the
4400     /// supplied predicate (which should be used to only accept the types of
4401     /// definitions expected e.g. traits). The lookup spans across all crates.
4402     ///
4403     /// NOTE: The method does not look into imports, but this is not a problem,
4404     /// since we report the definitions (thus, the de-aliased imports).
4405     fn lookup_import_candidates<FilterFn>(&mut self,
4406                                           lookup_name: Name,
4407                                           namespace: Namespace,
4408                                           filter_fn: FilterFn)
4409                                           -> Vec<ImportSuggestion>
4410         where FilterFn: Fn(Def) -> bool
4411     {
4412         let mut suggestions = vec![];
4413
4414         suggestions.extend(
4415             self.lookup_import_candidates_from_module(
4416                 lookup_name, namespace, self.graph_root, keywords::Crate.ident(), &filter_fn
4417             )
4418         );
4419
4420         if self.session.features_untracked().extern_prelude {
4421             let extern_prelude_names = self.extern_prelude.clone();
4422             for &name in extern_prelude_names.iter() {
4423                 let ident = Ident::with_empty_ctxt(name);
4424                 match self.crate_loader.maybe_process_path_extern(name, ident.span) {
4425                     Some(crate_id) => {
4426                         let crate_root = self.get_module(DefId {
4427                             krate: crate_id,
4428                             index: CRATE_DEF_INDEX,
4429                         });
4430                         self.populate_module_if_necessary(&crate_root);
4431
4432                         suggestions.extend(
4433                             self.lookup_import_candidates_from_module(
4434                                 lookup_name, namespace, crate_root, ident, &filter_fn
4435                             )
4436                         );
4437                     }
4438                     None => {}
4439                 }
4440             }
4441         }
4442
4443         suggestions
4444     }
4445
4446     fn find_module(&mut self,
4447                    module_def: Def)
4448                    -> Option<(Module<'a>, ImportSuggestion)>
4449     {
4450         let mut result = None;
4451         let mut worklist = Vec::new();
4452         let mut seen_modules = FxHashSet();
4453         worklist.push((self.graph_root, Vec::new()));
4454
4455         while let Some((in_module, path_segments)) = worklist.pop() {
4456             // abort if the module is already found
4457             if result.is_some() { break; }
4458
4459             self.populate_module_if_necessary(in_module);
4460
4461             in_module.for_each_child_stable(|ident, _, name_binding| {
4462                 // abort if the module is already found or if name_binding is private external
4463                 if result.is_some() || !name_binding.vis.is_visible_locally() {
4464                     return
4465                 }
4466                 if let Some(module) = name_binding.module() {
4467                     // form the path
4468                     let mut path_segments = path_segments.clone();
4469                     path_segments.push(ast::PathSegment::from_ident(ident));
4470                     if module.def() == Some(module_def) {
4471                         let path = Path {
4472                             span: name_binding.span,
4473                             segments: path_segments,
4474                         };
4475                         result = Some((module, ImportSuggestion { path: path }));
4476                     } else {
4477                         // add the module to the lookup
4478                         if seen_modules.insert(module.def_id().unwrap()) {
4479                             worklist.push((module, path_segments));
4480                         }
4481                     }
4482                 }
4483             });
4484         }
4485
4486         result
4487     }
4488
4489     fn collect_enum_variants(&mut self, enum_def: Def) -> Option<Vec<Path>> {
4490         if let Def::Enum(..) = enum_def {} else {
4491             panic!("Non-enum def passed to collect_enum_variants: {:?}", enum_def)
4492         }
4493
4494         self.find_module(enum_def).map(|(enum_module, enum_import_suggestion)| {
4495             self.populate_module_if_necessary(enum_module);
4496
4497             let mut variants = Vec::new();
4498             enum_module.for_each_child_stable(|ident, _, name_binding| {
4499                 if let Def::Variant(..) = name_binding.def() {
4500                     let mut segms = enum_import_suggestion.path.segments.clone();
4501                     segms.push(ast::PathSegment::from_ident(ident));
4502                     variants.push(Path {
4503                         span: name_binding.span,
4504                         segments: segms,
4505                     });
4506                 }
4507             });
4508             variants
4509         })
4510     }
4511
4512     fn record_def(&mut self, node_id: NodeId, resolution: PathResolution) {
4513         debug!("(recording def) recording {:?} for {}", resolution, node_id);
4514         if let Some(prev_res) = self.def_map.insert(node_id, resolution) {
4515             panic!("path resolved multiple times ({:?} before, {:?} now)", prev_res, resolution);
4516         }
4517     }
4518
4519     fn resolve_visibility(&mut self, vis: &ast::Visibility) -> ty::Visibility {
4520         match vis.node {
4521             ast::VisibilityKind::Public => ty::Visibility::Public,
4522             ast::VisibilityKind::Crate(..) => {
4523                 ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX))
4524             }
4525             ast::VisibilityKind::Inherited => {
4526                 ty::Visibility::Restricted(self.current_module.normal_ancestor_id)
4527             }
4528             ast::VisibilityKind::Restricted { ref path, id, .. } => {
4529                 // Visibilities are resolved as global by default, add starting root segment.
4530                 let segments = path.make_root().iter().chain(path.segments.iter())
4531                     .map(|seg| seg.ident)
4532                     .collect::<Vec<_>>();
4533                 let def = self.smart_resolve_path_fragment(
4534                     id,
4535                     None,
4536                     &segments,
4537                     path.span,
4538                     PathSource::Visibility,
4539                     CrateLint::SimplePath(id),
4540                 ).base_def();
4541                 if def == Def::Err {
4542                     ty::Visibility::Public
4543                 } else {
4544                     let vis = ty::Visibility::Restricted(def.def_id());
4545                     if self.is_accessible(vis) {
4546                         vis
4547                     } else {
4548                         self.session.span_err(path.span, "visibilities can only be restricted \
4549                                                           to ancestor modules");
4550                         ty::Visibility::Public
4551                     }
4552                 }
4553             }
4554         }
4555     }
4556
4557     fn is_accessible(&self, vis: ty::Visibility) -> bool {
4558         vis.is_accessible_from(self.current_module.normal_ancestor_id, self)
4559     }
4560
4561     fn is_accessible_from(&self, vis: ty::Visibility, module: Module<'a>) -> bool {
4562         vis.is_accessible_from(module.normal_ancestor_id, self)
4563     }
4564
4565     fn report_ambiguity_error(&self, ident: Ident, b1: &NameBinding, b2: &NameBinding) {
4566         let participle = |is_import: bool| if is_import { "imported" } else { "defined" };
4567         let msg1 =
4568             format!("`{}` could refer to the name {} here", ident, participle(b1.is_import()));
4569         let msg2 =
4570             format!("`{}` could also refer to the name {} here", ident, participle(b2.is_import()));
4571         let note = if b1.expansion != Mark::root() {
4572             Some(if let Def::Macro(..) = b1.def() {
4573                 format!("macro-expanded {} do not shadow",
4574                         if b1.is_import() { "macro imports" } else { "macros" })
4575             } else {
4576                 format!("macro-expanded {} do not shadow when used in a macro invocation path",
4577                         if b1.is_import() { "imports" } else { "items" })
4578             })
4579         } else if b1.is_glob_import() {
4580             Some(format!("consider adding an explicit import of `{}` to disambiguate", ident))
4581         } else {
4582             None
4583         };
4584
4585         let mut err = struct_span_err!(self.session, ident.span, E0659, "`{}` is ambiguous", ident);
4586         err.span_label(ident.span, "ambiguous name");
4587         err.span_note(b1.span, &msg1);
4588         match b2.def() {
4589             Def::Macro(..) if b2.span.is_dummy() =>
4590                 err.note(&format!("`{}` is also a builtin macro", ident)),
4591             _ => err.span_note(b2.span, &msg2),
4592         };
4593         if let Some(note) = note {
4594             err.note(&note);
4595         }
4596         err.emit();
4597     }
4598
4599     fn report_errors(&mut self, krate: &Crate) {
4600         self.report_with_use_injections(krate);
4601         let mut reported_spans = FxHashSet();
4602
4603         for &(span_use, span_def) in &self.macro_expanded_macro_export_errors {
4604             let msg = "macro-expanded `macro_export` macros from the current crate \
4605                        cannot be referred to by absolute paths";
4606             self.session.buffer_lint_with_diagnostic(
4607                 lint::builtin::MACRO_EXPANDED_MACRO_EXPORTS_ACCESSED_BY_ABSOLUTE_PATHS,
4608                 CRATE_NODE_ID, span_use, msg,
4609                 lint::builtin::BuiltinLintDiagnostics::
4610                     MacroExpandedMacroExportsAccessedByAbsolutePaths(span_def),
4611             );
4612         }
4613
4614         for &AmbiguityError { ident, b1, b2 } in &self.ambiguity_errors {
4615             if reported_spans.insert(ident.span) {
4616                 self.report_ambiguity_error(ident, b1, b2);
4617             }
4618         }
4619
4620         for &PrivacyError(span, name, binding) in &self.privacy_errors {
4621             if !reported_spans.insert(span) { continue }
4622             span_err!(self.session, span, E0603, "{} `{}` is private", binding.descr(), name);
4623         }
4624     }
4625
4626     fn report_with_use_injections(&mut self, krate: &Crate) {
4627         for UseError { mut err, candidates, node_id, better } in self.use_injections.drain(..) {
4628             let (span, found_use) = UsePlacementFinder::check(krate, node_id);
4629             if !candidates.is_empty() {
4630                 show_candidates(&mut err, span, &candidates, better, found_use);
4631             }
4632             err.emit();
4633         }
4634     }
4635
4636     fn report_conflict<'b>(&mut self,
4637                        parent: Module,
4638                        ident: Ident,
4639                        ns: Namespace,
4640                        new_binding: &NameBinding<'b>,
4641                        old_binding: &NameBinding<'b>) {
4642         // Error on the second of two conflicting names
4643         if old_binding.span.lo() > new_binding.span.lo() {
4644             return self.report_conflict(parent, ident, ns, old_binding, new_binding);
4645         }
4646
4647         let container = match parent.kind {
4648             ModuleKind::Def(Def::Mod(_), _) => "module",
4649             ModuleKind::Def(Def::Trait(_), _) => "trait",
4650             ModuleKind::Block(..) => "block",
4651             _ => "enum",
4652         };
4653
4654         let old_noun = match old_binding.is_import() {
4655             true => "import",
4656             false => "definition",
4657         };
4658
4659         let new_participle = match new_binding.is_import() {
4660             true => "imported",
4661             false => "defined",
4662         };
4663
4664         let (name, span) = (ident.name, self.session.source_map().def_span(new_binding.span));
4665
4666         if let Some(s) = self.name_already_seen.get(&name) {
4667             if s == &span {
4668                 return;
4669             }
4670         }
4671
4672         let old_kind = match (ns, old_binding.module()) {
4673             (ValueNS, _) => "value",
4674             (MacroNS, _) => "macro",
4675             (TypeNS, _) if old_binding.is_extern_crate() => "extern crate",
4676             (TypeNS, Some(module)) if module.is_normal() => "module",
4677             (TypeNS, Some(module)) if module.is_trait() => "trait",
4678             (TypeNS, _) => "type",
4679         };
4680
4681         let msg = format!("the name `{}` is defined multiple times", name);
4682
4683         let mut err = match (old_binding.is_extern_crate(), new_binding.is_extern_crate()) {
4684             (true, true) => struct_span_err!(self.session, span, E0259, "{}", msg),
4685             (true, _) | (_, true) => match new_binding.is_import() && old_binding.is_import() {
4686                 true => struct_span_err!(self.session, span, E0254, "{}", msg),
4687                 false => struct_span_err!(self.session, span, E0260, "{}", msg),
4688             },
4689             _ => match (old_binding.is_import(), new_binding.is_import()) {
4690                 (false, false) => struct_span_err!(self.session, span, E0428, "{}", msg),
4691                 (true, true) => struct_span_err!(self.session, span, E0252, "{}", msg),
4692                 _ => struct_span_err!(self.session, span, E0255, "{}", msg),
4693             },
4694         };
4695
4696         err.note(&format!("`{}` must be defined only once in the {} namespace of this {}",
4697                           name,
4698                           ns.descr(),
4699                           container));
4700
4701         err.span_label(span, format!("`{}` re{} here", name, new_participle));
4702         if !old_binding.span.is_dummy() {
4703             err.span_label(self.session.source_map().def_span(old_binding.span),
4704                            format!("previous {} of the {} `{}` here", old_noun, old_kind, name));
4705         }
4706
4707         // See https://github.com/rust-lang/rust/issues/32354
4708         if old_binding.is_import() || new_binding.is_import() {
4709             let binding = if new_binding.is_import() && !new_binding.span.is_dummy() {
4710                 new_binding
4711             } else {
4712                 old_binding
4713             };
4714
4715             let cm = self.session.source_map();
4716             let rename_msg = "You can use `as` to change the binding name of the import";
4717
4718             if let (Ok(snippet), false) = (cm.span_to_snippet(binding.span),
4719                                            binding.is_renamed_extern_crate()) {
4720                 let suggested_name = if name.as_str().chars().next().unwrap().is_uppercase() {
4721                     format!("Other{}", name)
4722                 } else {
4723                     format!("other_{}", name)
4724                 };
4725
4726                 err.span_suggestion_with_applicability(
4727                     binding.span,
4728                     rename_msg,
4729                     if snippet.ends_with(';') {
4730                         format!("{} as {};", &snippet[..snippet.len() - 1], suggested_name)
4731                     } else {
4732                         format!("{} as {}", snippet, suggested_name)
4733                     },
4734                     Applicability::MachineApplicable,
4735                 );
4736             } else {
4737                 err.span_label(binding.span, rename_msg);
4738             }
4739         }
4740
4741         err.emit();
4742         self.name_already_seen.insert(name, span);
4743     }
4744 }
4745
4746 fn is_self_type(path: &[Ident], namespace: Namespace) -> bool {
4747     namespace == TypeNS && path.len() == 1 && path[0].name == keywords::SelfType.name()
4748 }
4749
4750 fn is_self_value(path: &[Ident], namespace: Namespace) -> bool {
4751     namespace == ValueNS && path.len() == 1 && path[0].name == keywords::SelfValue.name()
4752 }
4753
4754 fn names_to_string(idents: &[Ident]) -> String {
4755     let mut result = String::new();
4756     for (i, ident) in idents.iter()
4757                             .filter(|ident| ident.name != keywords::CrateRoot.name())
4758                             .enumerate() {
4759         if i > 0 {
4760             result.push_str("::");
4761         }
4762         result.push_str(&ident.as_str());
4763     }
4764     result
4765 }
4766
4767 fn path_names_to_string(path: &Path) -> String {
4768     names_to_string(&path.segments.iter()
4769                         .map(|seg| seg.ident)
4770                         .collect::<Vec<_>>())
4771 }
4772
4773 /// Get the path for an enum and the variant from an `ImportSuggestion` for an enum variant.
4774 fn import_candidate_to_paths(suggestion: &ImportSuggestion) -> (Span, String, String) {
4775     let variant_path = &suggestion.path;
4776     let variant_path_string = path_names_to_string(variant_path);
4777
4778     let path_len = suggestion.path.segments.len();
4779     let enum_path = ast::Path {
4780         span: suggestion.path.span,
4781         segments: suggestion.path.segments[0..path_len - 1].to_vec(),
4782     };
4783     let enum_path_string = path_names_to_string(&enum_path);
4784
4785     (suggestion.path.span, variant_path_string, enum_path_string)
4786 }
4787
4788
4789 /// When an entity with a given name is not available in scope, we search for
4790 /// entities with that name in all crates. This method allows outputting the
4791 /// results of this search in a programmer-friendly way
4792 fn show_candidates(err: &mut DiagnosticBuilder,
4793                    // This is `None` if all placement locations are inside expansions
4794                    span: Option<Span>,
4795                    candidates: &[ImportSuggestion],
4796                    better: bool,
4797                    found_use: bool) {
4798
4799     // we want consistent results across executions, but candidates are produced
4800     // by iterating through a hash map, so make sure they are ordered:
4801     let mut path_strings: Vec<_> =
4802         candidates.into_iter().map(|c| path_names_to_string(&c.path)).collect();
4803     path_strings.sort();
4804
4805     let better = if better { "better " } else { "" };
4806     let msg_diff = match path_strings.len() {
4807         1 => " is found in another module, you can import it",
4808         _ => "s are found in other modules, you can import them",
4809     };
4810     let msg = format!("possible {}candidate{} into scope", better, msg_diff);
4811
4812     if let Some(span) = span {
4813         for candidate in &mut path_strings {
4814             // produce an additional newline to separate the new use statement
4815             // from the directly following item.
4816             let additional_newline = if found_use {
4817                 ""
4818             } else {
4819                 "\n"
4820             };
4821             *candidate = format!("use {};\n{}", candidate, additional_newline);
4822         }
4823
4824         err.span_suggestions_with_applicability(
4825             span,
4826             &msg,
4827             path_strings,
4828             Applicability::Unspecified,
4829         );
4830     } else {
4831         let mut msg = msg;
4832         msg.push(':');
4833         for candidate in path_strings {
4834             msg.push('\n');
4835             msg.push_str(&candidate);
4836         }
4837     }
4838 }
4839
4840 /// A somewhat inefficient routine to obtain the name of a module.
4841 fn module_to_string(module: Module) -> Option<String> {
4842     let mut names = Vec::new();
4843
4844     fn collect_mod(names: &mut Vec<Ident>, module: Module) {
4845         if let ModuleKind::Def(_, name) = module.kind {
4846             if let Some(parent) = module.parent {
4847                 names.push(Ident::with_empty_ctxt(name));
4848                 collect_mod(names, parent);
4849             }
4850         } else {
4851             // danger, shouldn't be ident?
4852             names.push(Ident::from_str("<opaque>"));
4853             collect_mod(names, module.parent.unwrap());
4854         }
4855     }
4856     collect_mod(&mut names, module);
4857
4858     if names.is_empty() {
4859         return None;
4860     }
4861     Some(names_to_string(&names.into_iter()
4862                         .rev()
4863                         .collect::<Vec<_>>()))
4864 }
4865
4866 fn err_path_resolution() -> PathResolution {
4867     PathResolution::new(Def::Err)
4868 }
4869
4870 #[derive(PartialEq,Copy, Clone)]
4871 pub enum MakeGlobMap {
4872     Yes,
4873     No,
4874 }
4875
4876 #[derive(Copy, Clone, Debug)]
4877 enum CrateLint {
4878     /// Do not issue the lint
4879     No,
4880
4881     /// This lint applies to some random path like `impl ::foo::Bar`
4882     /// or whatever. In this case, we can take the span of that path.
4883     SimplePath(NodeId),
4884
4885     /// This lint comes from a `use` statement. In this case, what we
4886     /// care about really is the *root* `use` statement; e.g., if we
4887     /// have nested things like `use a::{b, c}`, we care about the
4888     /// `use a` part.
4889     UsePath { root_id: NodeId, root_span: Span },
4890
4891     /// This is the "trait item" from a fully qualified path. For example,
4892     /// we might be resolving  `X::Y::Z` from a path like `<T as X::Y>::Z`.
4893     /// The `path_span` is the span of the to the trait itself (`X::Y`).
4894     QPathTrait { qpath_id: NodeId, qpath_span: Span },
4895 }
4896
4897 impl CrateLint {
4898     fn node_id(&self) -> Option<NodeId> {
4899         match *self {
4900             CrateLint::No => None,
4901             CrateLint::SimplePath(id) |
4902             CrateLint::UsePath { root_id: id, .. } |
4903             CrateLint::QPathTrait { qpath_id: id, .. } => Some(id),
4904         }
4905     }
4906 }
4907
4908 __build_diagnostic_array! { librustc_resolve, DIAGNOSTICS }