]> git.lizzy.rs Git - rust.git/blob - src/librustc_resolve/lib.rs
Merge branch 'refactor-select' of https://github.com/aravind-pg/rust into update...
[rust.git] / src / librustc_resolve / lib.rs
1 // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 #![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
12       html_favicon_url = "https://doc.rust-lang.org/favicon.ico",
13       html_root_url = "https://doc.rust-lang.org/nightly/")]
14 #![deny(warnings)]
15
16 #![feature(rustc_diagnostic_macros)]
17
18 #[macro_use]
19 extern crate log;
20 #[macro_use]
21 extern crate syntax;
22 extern crate syntax_pos;
23 extern crate rustc_errors as errors;
24 extern crate arena;
25 #[macro_use]
26 extern crate rustc;
27 extern crate rustc_data_structures;
28
29 use self::Namespace::*;
30 use self::TypeParameters::*;
31 use self::RibKind::*;
32
33 use rustc::hir::map::{Definitions, DefCollector};
34 use rustc::hir::{self, PrimTy, TyBool, TyChar, TyFloat, TyInt, TyUint, TyStr};
35 use rustc::middle::cstore::{CrateStore, CrateLoader};
36 use rustc::session::Session;
37 use rustc::lint;
38 use rustc::hir::def::*;
39 use rustc::hir::def_id::{CRATE_DEF_INDEX, LOCAL_CRATE, DefId};
40 use rustc::ty;
41 use rustc::hir::{Freevar, FreevarMap, TraitCandidate, TraitMap, GlobMap};
42 use rustc::util::nodemap::{NodeMap, NodeSet, FxHashMap, FxHashSet, DefIdMap};
43
44 use syntax::codemap::{dummy_spanned, respan};
45 use syntax::ext::hygiene::{Mark, MarkKind, SyntaxContext};
46 use syntax::ast::{self, Name, NodeId, Ident, SpannedIdent, FloatTy, IntTy, UintTy};
47 use syntax::ext::base::SyntaxExtension;
48 use syntax::ext::base::Determinacy::{self, Determined, Undetermined};
49 use syntax::ext::base::MacroKind;
50 use syntax::symbol::{Symbol, keywords};
51 use syntax::util::lev_distance::find_best_match_for_name;
52
53 use syntax::visit::{self, FnKind, Visitor};
54 use syntax::attr;
55 use syntax::ast::{Arm, BindingMode, Block, Crate, Expr, ExprKind};
56 use syntax::ast::{FnDecl, ForeignItem, ForeignItemKind, GenericParam, Generics};
57 use syntax::ast::{Item, ItemKind, ImplItem, ImplItemKind};
58 use syntax::ast::{Label, Local, Mutability, Pat, PatKind, Path};
59 use syntax::ast::{QSelf, TraitItemKind, TraitRef, Ty, TyKind};
60 use syntax::feature_gate::{feature_err, emit_feature_err, GateIssue};
61 use syntax::parse::token;
62 use syntax::ptr::P;
63
64 use syntax_pos::{Span, DUMMY_SP, MultiSpan};
65 use errors::{DiagnosticBuilder, DiagnosticId};
66
67 use std::cell::{Cell, RefCell};
68 use std::cmp;
69 use std::collections::BTreeSet;
70 use std::fmt;
71 use std::iter;
72 use std::mem::replace;
73 use rustc_data_structures::sync::Lrc;
74
75 use resolve_imports::{ImportDirective, ImportDirectiveSubclass, NameResolution, ImportResolver};
76 use macros::{InvocationData, LegacyBinding, LegacyScope, MacroBinding};
77
78 // NB: This module needs to be declared first so diagnostics are
79 // registered before they are used.
80 mod diagnostics;
81
82 mod macros;
83 mod check_unused;
84 mod build_reduced_graph;
85 mod resolve_imports;
86
87 /// A free importable items suggested in case of resolution failure.
88 struct ImportSuggestion {
89     path: Path,
90 }
91
92 /// A field or associated item from self type suggested in case of resolution failure.
93 enum AssocSuggestion {
94     Field,
95     MethodWithSelf,
96     AssocItem,
97 }
98
99 #[derive(Eq)]
100 struct BindingError {
101     name: Name,
102     origin: BTreeSet<Span>,
103     target: BTreeSet<Span>,
104 }
105
106 impl PartialOrd for BindingError {
107     fn partial_cmp(&self, other: &BindingError) -> Option<cmp::Ordering> {
108         Some(self.cmp(other))
109     }
110 }
111
112 impl PartialEq for BindingError {
113     fn eq(&self, other: &BindingError) -> bool {
114         self.name == other.name
115     }
116 }
117
118 impl Ord for BindingError {
119     fn cmp(&self, other: &BindingError) -> cmp::Ordering {
120         self.name.cmp(&other.name)
121     }
122 }
123
124 enum ResolutionError<'a> {
125     /// error E0401: can't use type parameters from outer function
126     TypeParametersFromOuterFunction,
127     /// error E0403: the name is already used for a type parameter in this type parameter list
128     NameAlreadyUsedInTypeParameterList(Name, &'a Span),
129     /// error E0407: method is not a member of trait
130     MethodNotMemberOfTrait(Name, &'a str),
131     /// error E0437: type is not a member of trait
132     TypeNotMemberOfTrait(Name, &'a str),
133     /// error E0438: const is not a member of trait
134     ConstNotMemberOfTrait(Name, &'a str),
135     /// error E0408: variable `{}` is not bound in all patterns
136     VariableNotBoundInPattern(&'a BindingError),
137     /// error E0409: variable `{}` is bound in inconsistent ways within the same match arm
138     VariableBoundWithDifferentMode(Name, Span),
139     /// error E0415: identifier is bound more than once in this parameter list
140     IdentifierBoundMoreThanOnceInParameterList(&'a str),
141     /// error E0416: identifier is bound more than once in the same pattern
142     IdentifierBoundMoreThanOnceInSamePattern(&'a str),
143     /// error E0426: use of undeclared label
144     UndeclaredLabel(&'a str, Option<Name>),
145     /// error E0429: `self` imports are only allowed within a { } list
146     SelfImportsOnlyAllowedWithin,
147     /// error E0430: `self` import can only appear once in the list
148     SelfImportCanOnlyAppearOnceInTheList,
149     /// error E0431: `self` import can only appear in an import list with a non-empty prefix
150     SelfImportOnlyInImportListWithNonEmptyPrefix,
151     /// error E0432: unresolved import
152     UnresolvedImport(Option<(Span, &'a str, &'a str)>),
153     /// error E0433: failed to resolve
154     FailedToResolve(&'a str),
155     /// error E0434: can't capture dynamic environment in a fn item
156     CannotCaptureDynamicEnvironmentInFnItem,
157     /// error E0435: attempt to use a non-constant value in a constant
158     AttemptToUseNonConstantValueInConstant,
159     /// error E0530: X bindings cannot shadow Ys
160     BindingShadowsSomethingUnacceptable(&'a str, Name, &'a NameBinding<'a>),
161     /// error E0128: type parameters with a default cannot use forward declared identifiers
162     ForwardDeclaredTyParam,
163 }
164
165 fn resolve_error<'sess, 'a>(resolver: &'sess Resolver,
166                             span: Span,
167                             resolution_error: ResolutionError<'a>) {
168     resolve_struct_error(resolver, span, resolution_error).emit();
169 }
170
171 fn resolve_struct_error<'sess, 'a>(resolver: &'sess Resolver,
172                                    span: Span,
173                                    resolution_error: ResolutionError<'a>)
174                                    -> DiagnosticBuilder<'sess> {
175     match resolution_error {
176         ResolutionError::TypeParametersFromOuterFunction => {
177             let mut err = struct_span_err!(resolver.session,
178                                            span,
179                                            E0401,
180                                            "can't use type parameters from outer function; \
181                                            try using a local type parameter instead");
182             err.span_label(span, "use of type variable from outer function");
183             err
184         }
185         ResolutionError::NameAlreadyUsedInTypeParameterList(name, first_use_span) => {
186              let mut err = struct_span_err!(resolver.session,
187                                             span,
188                                             E0403,
189                                             "the name `{}` is already used for a type parameter \
190                                             in this type parameter list",
191                                             name);
192              err.span_label(span, "already used");
193              err.span_label(first_use_span.clone(), format!("first use of `{}`", name));
194              err
195         }
196         ResolutionError::MethodNotMemberOfTrait(method, trait_) => {
197             let mut err = struct_span_err!(resolver.session,
198                                            span,
199                                            E0407,
200                                            "method `{}` is not a member of trait `{}`",
201                                            method,
202                                            trait_);
203             err.span_label(span, format!("not a member of trait `{}`", trait_));
204             err
205         }
206         ResolutionError::TypeNotMemberOfTrait(type_, trait_) => {
207             let mut err = struct_span_err!(resolver.session,
208                              span,
209                              E0437,
210                              "type `{}` is not a member of trait `{}`",
211                              type_,
212                              trait_);
213             err.span_label(span, format!("not a member of trait `{}`", trait_));
214             err
215         }
216         ResolutionError::ConstNotMemberOfTrait(const_, trait_) => {
217             let mut err = struct_span_err!(resolver.session,
218                              span,
219                              E0438,
220                              "const `{}` is not a member of trait `{}`",
221                              const_,
222                              trait_);
223             err.span_label(span, format!("not a member of trait `{}`", trait_));
224             err
225         }
226         ResolutionError::VariableNotBoundInPattern(binding_error) => {
227             let target_sp = binding_error.target.iter().map(|x| *x).collect::<Vec<_>>();
228             let msp = MultiSpan::from_spans(target_sp.clone());
229             let msg = format!("variable `{}` is not bound in all patterns", binding_error.name);
230             let mut err = resolver.session.struct_span_err_with_code(
231                 msp,
232                 &msg,
233                 DiagnosticId::Error("E0408".into()),
234             );
235             for sp in target_sp {
236                 err.span_label(sp, format!("pattern doesn't bind `{}`", binding_error.name));
237             }
238             let origin_sp = binding_error.origin.iter().map(|x| *x).collect::<Vec<_>>();
239             for sp in origin_sp {
240                 err.span_label(sp, "variable not in all patterns");
241             }
242             err
243         }
244         ResolutionError::VariableBoundWithDifferentMode(variable_name,
245                                                         first_binding_span) => {
246             let mut err = struct_span_err!(resolver.session,
247                              span,
248                              E0409,
249                              "variable `{}` is bound in inconsistent \
250                              ways within the same match arm",
251                              variable_name);
252             err.span_label(span, "bound in different ways");
253             err.span_label(first_binding_span, "first binding");
254             err
255         }
256         ResolutionError::IdentifierBoundMoreThanOnceInParameterList(identifier) => {
257             let mut err = struct_span_err!(resolver.session,
258                              span,
259                              E0415,
260                              "identifier `{}` is bound more than once in this parameter list",
261                              identifier);
262             err.span_label(span, "used as parameter more than once");
263             err
264         }
265         ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(identifier) => {
266             let mut err = struct_span_err!(resolver.session,
267                              span,
268                              E0416,
269                              "identifier `{}` is bound more than once in the same pattern",
270                              identifier);
271             err.span_label(span, "used in a pattern more than once");
272             err
273         }
274         ResolutionError::UndeclaredLabel(name, lev_candidate) => {
275             let mut err = struct_span_err!(resolver.session,
276                                            span,
277                                            E0426,
278                                            "use of undeclared label `{}`",
279                                            name);
280             if let Some(lev_candidate) = lev_candidate {
281                 err.span_label(span, format!("did you mean `{}`?", lev_candidate));
282             } else {
283                 err.span_label(span, format!("undeclared label `{}`", name));
284             }
285             err
286         }
287         ResolutionError::SelfImportsOnlyAllowedWithin => {
288             struct_span_err!(resolver.session,
289                              span,
290                              E0429,
291                              "{}",
292                              "`self` imports are only allowed within a { } list")
293         }
294         ResolutionError::SelfImportCanOnlyAppearOnceInTheList => {
295             let mut err = struct_span_err!(resolver.session, span, E0430,
296                                            "`self` import can only appear once in an import list");
297             err.span_label(span, "can only appear once in an import list");
298             err
299         }
300         ResolutionError::SelfImportOnlyInImportListWithNonEmptyPrefix => {
301             let mut err = struct_span_err!(resolver.session, span, E0431,
302                                            "`self` import can only appear in an import list with \
303                                             a non-empty prefix");
304             err.span_label(span, "can only appear in an import list with a non-empty prefix");
305             err
306         }
307         ResolutionError::UnresolvedImport(name) => {
308             let (span, msg) = match name {
309                 Some((sp, n, _)) => (sp, format!("unresolved import `{}`", n)),
310                 None => (span, "unresolved import".to_owned()),
311             };
312             let mut err = struct_span_err!(resolver.session, span, E0432, "{}", msg);
313             if let Some((_, _, p)) = name {
314                 err.span_label(span, p);
315             }
316             err
317         }
318         ResolutionError::FailedToResolve(msg) => {
319             let mut err = struct_span_err!(resolver.session, span, E0433,
320                                            "failed to resolve. {}", msg);
321             err.span_label(span, msg);
322             err
323         }
324         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem => {
325             let mut err = struct_span_err!(resolver.session,
326                                            span,
327                                            E0434,
328                                            "{}",
329                                            "can't capture dynamic environment in a fn item");
330             err.help("use the `|| { ... }` closure form instead");
331             err
332         }
333         ResolutionError::AttemptToUseNonConstantValueInConstant => {
334             let mut err = struct_span_err!(resolver.session, span, E0435,
335                                            "attempt to use a non-constant value in a constant");
336             err.span_label(span, "non-constant value");
337             err
338         }
339         ResolutionError::BindingShadowsSomethingUnacceptable(what_binding, name, binding) => {
340             let shadows_what = PathResolution::new(binding.def()).kind_name();
341             let mut err = struct_span_err!(resolver.session,
342                                            span,
343                                            E0530,
344                                            "{}s cannot shadow {}s", what_binding, shadows_what);
345             err.span_label(span, format!("cannot be named the same as a {}", shadows_what));
346             let participle = if binding.is_import() { "imported" } else { "defined" };
347             let msg = format!("a {} `{}` is {} here", shadows_what, name, participle);
348             err.span_label(binding.span, msg);
349             err
350         }
351         ResolutionError::ForwardDeclaredTyParam => {
352             let mut err = struct_span_err!(resolver.session, span, E0128,
353                                            "type parameters with a default cannot use \
354                                             forward declared identifiers");
355             err.span_label(span, format!("defaulted type parameters cannot be forward declared"));
356             err
357         }
358     }
359 }
360
361 #[derive(Copy, Clone, Debug)]
362 struct BindingInfo {
363     span: Span,
364     binding_mode: BindingMode,
365 }
366
367 // Map from the name in a pattern to its binding mode.
368 type BindingMap = FxHashMap<Ident, BindingInfo>;
369
370 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
371 enum PatternSource {
372     Match,
373     IfLet,
374     WhileLet,
375     Let,
376     For,
377     FnParam,
378 }
379
380 impl PatternSource {
381     fn descr(self) -> &'static str {
382         match self {
383             PatternSource::Match => "match binding",
384             PatternSource::IfLet => "if let binding",
385             PatternSource::WhileLet => "while let binding",
386             PatternSource::Let => "let binding",
387             PatternSource::For => "for binding",
388             PatternSource::FnParam => "function parameter",
389         }
390     }
391 }
392
393 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
394 enum AliasPossibility {
395     No,
396     Maybe,
397 }
398
399 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
400 enum PathSource<'a> {
401     // Type paths `Path`.
402     Type,
403     // Trait paths in bounds or impls.
404     Trait(AliasPossibility),
405     // Expression paths `path`, with optional parent context.
406     Expr(Option<&'a Expr>),
407     // Paths in path patterns `Path`.
408     Pat,
409     // Paths in struct expressions and patterns `Path { .. }`.
410     Struct,
411     // Paths in tuple struct patterns `Path(..)`.
412     TupleStruct,
413     // `m::A::B` in `<T as m::A>::B::C`.
414     TraitItem(Namespace),
415     // Path in `pub(path)`
416     Visibility,
417     // Path in `use a::b::{...};`
418     ImportPrefix,
419 }
420
421 impl<'a> PathSource<'a> {
422     fn namespace(self) -> Namespace {
423         match self {
424             PathSource::Type | PathSource::Trait(_) | PathSource::Struct |
425             PathSource::Visibility | PathSource::ImportPrefix => TypeNS,
426             PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct => ValueNS,
427             PathSource::TraitItem(ns) => ns,
428         }
429     }
430
431     fn global_by_default(self) -> bool {
432         match self {
433             PathSource::Visibility | PathSource::ImportPrefix => true,
434             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
435             PathSource::Struct | PathSource::TupleStruct |
436             PathSource::Trait(_) | PathSource::TraitItem(..) => false,
437         }
438     }
439
440     fn defer_to_typeck(self) -> bool {
441         match self {
442             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
443             PathSource::Struct | PathSource::TupleStruct => true,
444             PathSource::Trait(_) | PathSource::TraitItem(..) |
445             PathSource::Visibility | PathSource::ImportPrefix => false,
446         }
447     }
448
449     fn descr_expected(self) -> &'static str {
450         match self {
451             PathSource::Type => "type",
452             PathSource::Trait(_) => "trait",
453             PathSource::Pat => "unit struct/variant or constant",
454             PathSource::Struct => "struct, variant or union type",
455             PathSource::TupleStruct => "tuple struct/variant",
456             PathSource::Visibility => "module",
457             PathSource::ImportPrefix => "module or enum",
458             PathSource::TraitItem(ns) => match ns {
459                 TypeNS => "associated type",
460                 ValueNS => "method or associated constant",
461                 MacroNS => bug!("associated macro"),
462             },
463             PathSource::Expr(parent) => match parent.map(|p| &p.node) {
464                 // "function" here means "anything callable" rather than `Def::Fn`,
465                 // this is not precise but usually more helpful than just "value".
466                 Some(&ExprKind::Call(..)) => "function",
467                 _ => "value",
468             },
469         }
470     }
471
472     fn is_expected(self, def: Def) -> bool {
473         match self {
474             PathSource::Type => match def {
475                 Def::Struct(..) | Def::Union(..) | Def::Enum(..) |
476                 Def::Trait(..) | Def::TyAlias(..) | Def::AssociatedTy(..) |
477                 Def::PrimTy(..) | Def::TyParam(..) | Def::SelfTy(..) |
478                 Def::TyForeign(..) => true,
479                 _ => false,
480             },
481             PathSource::Trait(AliasPossibility::No) => match def {
482                 Def::Trait(..) => true,
483                 _ => false,
484             },
485             PathSource::Trait(AliasPossibility::Maybe) => match def {
486                 Def::Trait(..) => true,
487                 Def::TraitAlias(..) => true,
488                 _ => false,
489             },
490             PathSource::Expr(..) => match def {
491                 Def::StructCtor(_, CtorKind::Const) | Def::StructCtor(_, CtorKind::Fn) |
492                 Def::VariantCtor(_, CtorKind::Const) | Def::VariantCtor(_, CtorKind::Fn) |
493                 Def::Const(..) | Def::Static(..) | Def::Local(..) | Def::Upvar(..) |
494                 Def::Fn(..) | Def::Method(..) | Def::AssociatedConst(..) => true,
495                 _ => false,
496             },
497             PathSource::Pat => match def {
498                 Def::StructCtor(_, CtorKind::Const) |
499                 Def::VariantCtor(_, CtorKind::Const) |
500                 Def::Const(..) | Def::AssociatedConst(..) => true,
501                 _ => false,
502             },
503             PathSource::TupleStruct => match def {
504                 Def::StructCtor(_, CtorKind::Fn) | Def::VariantCtor(_, CtorKind::Fn) => true,
505                 _ => false,
506             },
507             PathSource::Struct => match def {
508                 Def::Struct(..) | Def::Union(..) | Def::Variant(..) |
509                 Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => true,
510                 _ => false,
511             },
512             PathSource::TraitItem(ns) => match def {
513                 Def::AssociatedConst(..) | Def::Method(..) if ns == ValueNS => true,
514                 Def::AssociatedTy(..) if ns == TypeNS => true,
515                 _ => false,
516             },
517             PathSource::ImportPrefix => match def {
518                 Def::Mod(..) | Def::Enum(..) => true,
519                 _ => false,
520             },
521             PathSource::Visibility => match def {
522                 Def::Mod(..) => true,
523                 _ => false,
524             },
525         }
526     }
527
528     fn error_code(self, has_unexpected_resolution: bool) -> &'static str {
529         __diagnostic_used!(E0404);
530         __diagnostic_used!(E0405);
531         __diagnostic_used!(E0412);
532         __diagnostic_used!(E0422);
533         __diagnostic_used!(E0423);
534         __diagnostic_used!(E0425);
535         __diagnostic_used!(E0531);
536         __diagnostic_used!(E0532);
537         __diagnostic_used!(E0573);
538         __diagnostic_used!(E0574);
539         __diagnostic_used!(E0575);
540         __diagnostic_used!(E0576);
541         __diagnostic_used!(E0577);
542         __diagnostic_used!(E0578);
543         match (self, has_unexpected_resolution) {
544             (PathSource::Trait(_), true) => "E0404",
545             (PathSource::Trait(_), false) => "E0405",
546             (PathSource::Type, true) => "E0573",
547             (PathSource::Type, false) => "E0412",
548             (PathSource::Struct, true) => "E0574",
549             (PathSource::Struct, false) => "E0422",
550             (PathSource::Expr(..), true) => "E0423",
551             (PathSource::Expr(..), false) => "E0425",
552             (PathSource::Pat, true) | (PathSource::TupleStruct, true) => "E0532",
553             (PathSource::Pat, false) | (PathSource::TupleStruct, false) => "E0531",
554             (PathSource::TraitItem(..), true) => "E0575",
555             (PathSource::TraitItem(..), false) => "E0576",
556             (PathSource::Visibility, true) | (PathSource::ImportPrefix, true) => "E0577",
557             (PathSource::Visibility, false) | (PathSource::ImportPrefix, false) => "E0578",
558         }
559     }
560 }
561
562 #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
563 pub enum Namespace {
564     TypeNS,
565     ValueNS,
566     MacroNS,
567 }
568
569 #[derive(Clone, Default, Debug)]
570 pub struct PerNS<T> {
571     value_ns: T,
572     type_ns: T,
573     macro_ns: Option<T>,
574 }
575
576 impl<T> ::std::ops::Index<Namespace> for PerNS<T> {
577     type Output = T;
578     fn index(&self, ns: Namespace) -> &T {
579         match ns {
580             ValueNS => &self.value_ns,
581             TypeNS => &self.type_ns,
582             MacroNS => self.macro_ns.as_ref().unwrap(),
583         }
584     }
585 }
586
587 impl<T> ::std::ops::IndexMut<Namespace> for PerNS<T> {
588     fn index_mut(&mut self, ns: Namespace) -> &mut T {
589         match ns {
590             ValueNS => &mut self.value_ns,
591             TypeNS => &mut self.type_ns,
592             MacroNS => self.macro_ns.as_mut().unwrap(),
593         }
594     }
595 }
596
597 struct UsePlacementFinder {
598     target_module: NodeId,
599     span: Option<Span>,
600     found_use: bool,
601 }
602
603 impl UsePlacementFinder {
604     fn check(krate: &Crate, target_module: NodeId) -> (Option<Span>, bool) {
605         let mut finder = UsePlacementFinder {
606             target_module,
607             span: None,
608             found_use: false,
609         };
610         visit::walk_crate(&mut finder, krate);
611         (finder.span, finder.found_use)
612     }
613 }
614
615 impl<'tcx> Visitor<'tcx> for UsePlacementFinder {
616     fn visit_mod(
617         &mut self,
618         module: &'tcx ast::Mod,
619         _: Span,
620         _: &[ast::Attribute],
621         node_id: NodeId,
622     ) {
623         if self.span.is_some() {
624             return;
625         }
626         if node_id != self.target_module {
627             visit::walk_mod(self, module);
628             return;
629         }
630         // find a use statement
631         for item in &module.items {
632             match item.node {
633                 ItemKind::Use(..) => {
634                     // don't suggest placing a use before the prelude
635                     // import or other generated ones
636                     if item.span.ctxt().outer().expn_info().is_none() {
637                         self.span = Some(item.span.with_hi(item.span.lo()));
638                         self.found_use = true;
639                         return;
640                     }
641                 },
642                 // don't place use before extern crate
643                 ItemKind::ExternCrate(_) => {}
644                 // but place them before the first other item
645                 _ => if self.span.map_or(true, |span| item.span < span ) {
646                     if item.span.ctxt().outer().expn_info().is_none() {
647                         // don't insert between attributes and an item
648                         if item.attrs.is_empty() {
649                             self.span = Some(item.span.with_hi(item.span.lo()));
650                         } else {
651                             // find the first attribute on the item
652                             for attr in &item.attrs {
653                                 if self.span.map_or(true, |span| attr.span < span) {
654                                     self.span = Some(attr.span.with_hi(attr.span.lo()));
655                                 }
656                             }
657                         }
658                     }
659                 },
660             }
661         }
662     }
663 }
664
665 impl<'a, 'tcx> Visitor<'tcx> for Resolver<'a> {
666     fn visit_item(&mut self, item: &'tcx Item) {
667         self.resolve_item(item);
668     }
669     fn visit_arm(&mut self, arm: &'tcx Arm) {
670         self.resolve_arm(arm);
671     }
672     fn visit_block(&mut self, block: &'tcx Block) {
673         self.resolve_block(block);
674     }
675     fn visit_expr(&mut self, expr: &'tcx Expr) {
676         self.resolve_expr(expr, None);
677     }
678     fn visit_local(&mut self, local: &'tcx Local) {
679         self.resolve_local(local);
680     }
681     fn visit_ty(&mut self, ty: &'tcx Ty) {
682         match ty.node {
683             TyKind::Path(ref qself, ref path) => {
684                 self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
685             }
686             TyKind::ImplicitSelf => {
687                 let self_ty = keywords::SelfType.ident();
688                 let def = self.resolve_ident_in_lexical_scope(self_ty, TypeNS, true, ty.span)
689                               .map_or(Def::Err, |d| d.def());
690                 self.record_def(ty.id, PathResolution::new(def));
691             }
692             TyKind::Array(ref element, ref length) => {
693                 self.visit_ty(element);
694                 self.with_constant_rib(|this| {
695                     this.visit_expr(length);
696                 });
697                 return;
698             }
699             _ => (),
700         }
701         visit::walk_ty(self, ty);
702     }
703     fn visit_poly_trait_ref(&mut self,
704                             tref: &'tcx ast::PolyTraitRef,
705                             m: &'tcx ast::TraitBoundModifier) {
706         self.smart_resolve_path(tref.trait_ref.ref_id, None,
707                                 &tref.trait_ref.path, PathSource::Trait(AliasPossibility::Maybe));
708         visit::walk_poly_trait_ref(self, tref, m);
709     }
710     fn visit_variant(&mut self,
711                      variant: &'tcx ast::Variant,
712                      generics: &'tcx Generics,
713                      item_id: ast::NodeId) {
714         if let Some(ref dis_expr) = variant.node.disr_expr {
715             // resolve the discriminator expr as a constant
716             self.with_constant_rib(|this| {
717                 this.visit_expr(dis_expr);
718             });
719         }
720
721         // `visit::walk_variant` without the discriminant expression.
722         self.visit_variant_data(&variant.node.data,
723                                 variant.node.name,
724                                 generics,
725                                 item_id,
726                                 variant.span);
727     }
728     fn visit_foreign_item(&mut self, foreign_item: &'tcx ForeignItem) {
729         let type_parameters = match foreign_item.node {
730             ForeignItemKind::Fn(_, ref generics) => {
731                 HasTypeParameters(generics, ItemRibKind)
732             }
733             ForeignItemKind::Static(..) => NoTypeParameters,
734             ForeignItemKind::Ty => NoTypeParameters,
735         };
736         self.with_type_parameter_rib(type_parameters, |this| {
737             visit::walk_foreign_item(this, foreign_item);
738         });
739     }
740     fn visit_fn(&mut self,
741                 function_kind: FnKind<'tcx>,
742                 declaration: &'tcx FnDecl,
743                 _: Span,
744                 node_id: NodeId) {
745         let rib_kind = match function_kind {
746             FnKind::ItemFn(..) => {
747                 ItemRibKind
748             }
749             FnKind::Method(_, _, _, _) => {
750                 TraitOrImplItemRibKind
751             }
752             FnKind::Closure(_) => ClosureRibKind(node_id),
753         };
754
755         // Create a value rib for the function.
756         self.ribs[ValueNS].push(Rib::new(rib_kind));
757
758         // Create a label rib for the function.
759         self.label_ribs.push(Rib::new(rib_kind));
760
761         // Add each argument to the rib.
762         let mut bindings_list = FxHashMap();
763         for argument in &declaration.inputs {
764             self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
765
766             self.visit_ty(&argument.ty);
767
768             debug!("(resolving function) recorded argument");
769         }
770         visit::walk_fn_ret_ty(self, &declaration.output);
771
772         // Resolve the function body.
773         match function_kind {
774             FnKind::ItemFn(.., body) |
775             FnKind::Method(.., body) => {
776                 self.visit_block(body);
777             }
778             FnKind::Closure(body) => {
779                 self.visit_expr(body);
780             }
781         };
782
783         debug!("(resolving function) leaving function");
784
785         self.label_ribs.pop();
786         self.ribs[ValueNS].pop();
787     }
788     fn visit_generics(&mut self, generics: &'tcx Generics) {
789         // For type parameter defaults, we have to ban access
790         // to following type parameters, as the Substs can only
791         // provide previous type parameters as they're built.
792         let mut default_ban_rib = Rib::new(ForwardTyParamBanRibKind);
793         default_ban_rib.bindings.extend(generics.params.iter()
794             .filter_map(|p| if let GenericParam::Type(ref tp) = *p { Some(tp) } else { None })
795             .skip_while(|p| p.default.is_none())
796             .map(|p| (Ident::with_empty_ctxt(p.ident.name), Def::Err)));
797
798         for param in &generics.params {
799             match *param {
800                 GenericParam::Lifetime(_) => self.visit_generic_param(param),
801                 GenericParam::Type(ref ty_param) => {
802                     for bound in &ty_param.bounds {
803                         self.visit_ty_param_bound(bound);
804                     }
805
806                     if let Some(ref ty) = ty_param.default {
807                         self.ribs[TypeNS].push(default_ban_rib);
808                         self.visit_ty(ty);
809                         default_ban_rib = self.ribs[TypeNS].pop().unwrap();
810                     }
811
812                     // Allow all following defaults to refer to this type parameter.
813                     default_ban_rib.bindings.remove(&Ident::with_empty_ctxt(ty_param.ident.name));
814                 }
815             }
816         }
817         for p in &generics.where_clause.predicates { self.visit_where_predicate(p); }
818     }
819 }
820
821 #[derive(Copy, Clone)]
822 enum TypeParameters<'a, 'b> {
823     NoTypeParameters,
824     HasTypeParameters(// Type parameters.
825                       &'b Generics,
826
827                       // The kind of the rib used for type parameters.
828                       RibKind<'a>),
829 }
830
831 // The rib kind controls the translation of local
832 // definitions (`Def::Local`) to upvars (`Def::Upvar`).
833 #[derive(Copy, Clone, Debug)]
834 enum RibKind<'a> {
835     // No translation needs to be applied.
836     NormalRibKind,
837
838     // We passed through a closure scope at the given node ID.
839     // Translate upvars as appropriate.
840     ClosureRibKind(NodeId /* func id */),
841
842     // We passed through an impl or trait and are now in one of its
843     // methods or associated types. Allow references to ty params that impl or trait
844     // binds. Disallow any other upvars (including other ty params that are
845     // upvars).
846     TraitOrImplItemRibKind,
847
848     // We passed through an item scope. Disallow upvars.
849     ItemRibKind,
850
851     // We're in a constant item. Can't refer to dynamic stuff.
852     ConstantItemRibKind,
853
854     // We passed through a module.
855     ModuleRibKind(Module<'a>),
856
857     // We passed through a `macro_rules!` statement
858     MacroDefinition(DefId),
859
860     // All bindings in this rib are type parameters that can't be used
861     // from the default of a type parameter because they're not declared
862     // before said type parameter. Also see the `visit_generics` override.
863     ForwardTyParamBanRibKind,
864 }
865
866 /// One local scope.
867 #[derive(Debug)]
868 struct Rib<'a> {
869     bindings: FxHashMap<Ident, Def>,
870     kind: RibKind<'a>,
871 }
872
873 impl<'a> Rib<'a> {
874     fn new(kind: RibKind<'a>) -> Rib<'a> {
875         Rib {
876             bindings: FxHashMap(),
877             kind,
878         }
879     }
880 }
881
882 enum LexicalScopeBinding<'a> {
883     Item(&'a NameBinding<'a>),
884     Def(Def),
885 }
886
887 impl<'a> LexicalScopeBinding<'a> {
888     fn item(self) -> Option<&'a NameBinding<'a>> {
889         match self {
890             LexicalScopeBinding::Item(binding) => Some(binding),
891             _ => None,
892         }
893     }
894
895     fn def(self) -> Def {
896         match self {
897             LexicalScopeBinding::Item(binding) => binding.def(),
898             LexicalScopeBinding::Def(def) => def,
899         }
900     }
901 }
902
903 #[derive(Clone, Debug)]
904 enum PathResult<'a> {
905     Module(Module<'a>),
906     NonModule(PathResolution),
907     Indeterminate,
908     Failed(Span, String, bool /* is the error from the last segment? */),
909 }
910
911 enum ModuleKind {
912     Block(NodeId),
913     Def(Def, Name),
914 }
915
916 /// One node in the tree of modules.
917 pub struct ModuleData<'a> {
918     parent: Option<Module<'a>>,
919     kind: ModuleKind,
920
921     // The def id of the closest normal module (`mod`) ancestor (including this module).
922     normal_ancestor_id: DefId,
923
924     resolutions: RefCell<FxHashMap<(Ident, Namespace), &'a RefCell<NameResolution<'a>>>>,
925     legacy_macro_resolutions: RefCell<Vec<(Mark, Ident, Span, MacroKind)>>,
926     macro_resolutions: RefCell<Vec<(Box<[Ident]>, Span)>>,
927
928     // Macro invocations that can expand into items in this module.
929     unresolved_invocations: RefCell<FxHashSet<Mark>>,
930
931     no_implicit_prelude: bool,
932
933     glob_importers: RefCell<Vec<&'a ImportDirective<'a>>>,
934     globs: RefCell<Vec<&'a ImportDirective<'a>>>,
935
936     // Used to memoize the traits in this module for faster searches through all traits in scope.
937     traits: RefCell<Option<Box<[(Ident, &'a NameBinding<'a>)]>>>,
938
939     // Whether this module is populated. If not populated, any attempt to
940     // access the children must be preceded with a
941     // `populate_module_if_necessary` call.
942     populated: Cell<bool>,
943
944     /// Span of the module itself. Used for error reporting.
945     span: Span,
946
947     expansion: Mark,
948 }
949
950 type Module<'a> = &'a ModuleData<'a>;
951
952 impl<'a> ModuleData<'a> {
953     fn new(parent: Option<Module<'a>>,
954            kind: ModuleKind,
955            normal_ancestor_id: DefId,
956            expansion: Mark,
957            span: Span) -> Self {
958         ModuleData {
959             parent,
960             kind,
961             normal_ancestor_id,
962             resolutions: RefCell::new(FxHashMap()),
963             legacy_macro_resolutions: RefCell::new(Vec::new()),
964             macro_resolutions: RefCell::new(Vec::new()),
965             unresolved_invocations: RefCell::new(FxHashSet()),
966             no_implicit_prelude: false,
967             glob_importers: RefCell::new(Vec::new()),
968             globs: RefCell::new(Vec::new()),
969             traits: RefCell::new(None),
970             populated: Cell::new(normal_ancestor_id.is_local()),
971             span,
972             expansion,
973         }
974     }
975
976     fn for_each_child<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
977         for (&(ident, ns), name_resolution) in self.resolutions.borrow().iter() {
978             name_resolution.borrow().binding.map(|binding| f(ident, ns, binding));
979         }
980     }
981
982     fn for_each_child_stable<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
983         let resolutions = self.resolutions.borrow();
984         let mut resolutions = resolutions.iter().map(|(&(ident, ns), &resolution)| {
985                                                     // Pre-compute keys for sorting
986                                                     (ident.name.as_str(), ns, ident, resolution)
987                                                 })
988                                                 .collect::<Vec<_>>();
989         resolutions.sort_unstable_by_key(|&(str, ns, ..)| (str, ns));
990         for &(_, ns, ident, resolution) in resolutions.iter() {
991             resolution.borrow().binding.map(|binding| f(ident, ns, binding));
992         }
993     }
994
995     fn def(&self) -> Option<Def> {
996         match self.kind {
997             ModuleKind::Def(def, _) => Some(def),
998             _ => None,
999         }
1000     }
1001
1002     fn def_id(&self) -> Option<DefId> {
1003         self.def().as_ref().map(Def::def_id)
1004     }
1005
1006     // `self` resolves to the first module ancestor that `is_normal`.
1007     fn is_normal(&self) -> bool {
1008         match self.kind {
1009             ModuleKind::Def(Def::Mod(_), _) => true,
1010             _ => false,
1011         }
1012     }
1013
1014     fn is_trait(&self) -> bool {
1015         match self.kind {
1016             ModuleKind::Def(Def::Trait(_), _) => true,
1017             _ => false,
1018         }
1019     }
1020
1021     fn is_local(&self) -> bool {
1022         self.normal_ancestor_id.is_local()
1023     }
1024
1025     fn nearest_item_scope(&'a self) -> Module<'a> {
1026         if self.is_trait() { self.parent.unwrap() } else { self }
1027     }
1028 }
1029
1030 impl<'a> fmt::Debug for ModuleData<'a> {
1031     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1032         write!(f, "{:?}", self.def())
1033     }
1034 }
1035
1036 // Records a possibly-private value, type, or module definition.
1037 #[derive(Clone, Debug)]
1038 pub struct NameBinding<'a> {
1039     kind: NameBindingKind<'a>,
1040     expansion: Mark,
1041     span: Span,
1042     vis: ty::Visibility,
1043 }
1044
1045 pub trait ToNameBinding<'a> {
1046     fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a>;
1047 }
1048
1049 impl<'a> ToNameBinding<'a> for &'a NameBinding<'a> {
1050     fn to_name_binding(self, _: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> {
1051         self
1052     }
1053 }
1054
1055 #[derive(Clone, Debug)]
1056 enum NameBindingKind<'a> {
1057     Def(Def),
1058     Module(Module<'a>),
1059     Import {
1060         binding: &'a NameBinding<'a>,
1061         directive: &'a ImportDirective<'a>,
1062         used: Cell<bool>,
1063         legacy_self_import: bool,
1064     },
1065     Ambiguity {
1066         b1: &'a NameBinding<'a>,
1067         b2: &'a NameBinding<'a>,
1068         legacy: bool,
1069     }
1070 }
1071
1072 struct PrivacyError<'a>(Span, Name, &'a NameBinding<'a>);
1073
1074 struct UseError<'a> {
1075     err: DiagnosticBuilder<'a>,
1076     /// Attach `use` statements for these candidates
1077     candidates: Vec<ImportSuggestion>,
1078     /// The node id of the module to place the use statements in
1079     node_id: NodeId,
1080     /// Whether the diagnostic should state that it's "better"
1081     better: bool,
1082 }
1083
1084 struct AmbiguityError<'a> {
1085     span: Span,
1086     name: Name,
1087     lexical: bool,
1088     b1: &'a NameBinding<'a>,
1089     b2: &'a NameBinding<'a>,
1090     legacy: bool,
1091 }
1092
1093 impl<'a> NameBinding<'a> {
1094     fn module(&self) -> Option<Module<'a>> {
1095         match self.kind {
1096             NameBindingKind::Module(module) => Some(module),
1097             NameBindingKind::Import { binding, .. } => binding.module(),
1098             NameBindingKind::Ambiguity { legacy: true, b1, .. } => b1.module(),
1099             _ => None,
1100         }
1101     }
1102
1103     fn def(&self) -> Def {
1104         match self.kind {
1105             NameBindingKind::Def(def) => def,
1106             NameBindingKind::Module(module) => module.def().unwrap(),
1107             NameBindingKind::Import { binding, .. } => binding.def(),
1108             NameBindingKind::Ambiguity { legacy: true, b1, .. } => b1.def(),
1109             NameBindingKind::Ambiguity { .. } => Def::Err,
1110         }
1111     }
1112
1113     fn def_ignoring_ambiguity(&self) -> Def {
1114         match self.kind {
1115             NameBindingKind::Import { binding, .. } => binding.def_ignoring_ambiguity(),
1116             NameBindingKind::Ambiguity { b1, .. } => b1.def_ignoring_ambiguity(),
1117             _ => self.def(),
1118         }
1119     }
1120
1121     fn get_macro(&self, resolver: &mut Resolver<'a>) -> Lrc<SyntaxExtension> {
1122         resolver.get_macro(self.def_ignoring_ambiguity())
1123     }
1124
1125     // We sometimes need to treat variants as `pub` for backwards compatibility
1126     fn pseudo_vis(&self) -> ty::Visibility {
1127         if self.is_variant() && self.def().def_id().is_local() {
1128             ty::Visibility::Public
1129         } else {
1130             self.vis
1131         }
1132     }
1133
1134     fn is_variant(&self) -> bool {
1135         match self.kind {
1136             NameBindingKind::Def(Def::Variant(..)) |
1137             NameBindingKind::Def(Def::VariantCtor(..)) => true,
1138             _ => false,
1139         }
1140     }
1141
1142     fn is_extern_crate(&self) -> bool {
1143         match self.kind {
1144             NameBindingKind::Import {
1145                 directive: &ImportDirective {
1146                     subclass: ImportDirectiveSubclass::ExternCrate(_), ..
1147                 }, ..
1148             } => true,
1149             _ => false,
1150         }
1151     }
1152
1153     fn is_import(&self) -> bool {
1154         match self.kind {
1155             NameBindingKind::Import { .. } => true,
1156             _ => false,
1157         }
1158     }
1159
1160     fn is_renamed_extern_crate(&self) -> bool {
1161         if let NameBindingKind::Import { directive, ..} = self.kind {
1162             if let ImportDirectiveSubclass::ExternCrate(Some(_)) = directive.subclass {
1163                 return true;
1164             }
1165         }
1166         false
1167     }
1168
1169     fn is_glob_import(&self) -> bool {
1170         match self.kind {
1171             NameBindingKind::Import { directive, .. } => directive.is_glob(),
1172             NameBindingKind::Ambiguity { b1, .. } => b1.is_glob_import(),
1173             _ => false,
1174         }
1175     }
1176
1177     fn is_importable(&self) -> bool {
1178         match self.def() {
1179             Def::AssociatedConst(..) | Def::Method(..) | Def::AssociatedTy(..) => false,
1180             _ => true,
1181         }
1182     }
1183
1184     fn is_macro_def(&self) -> bool {
1185         match self.kind {
1186             NameBindingKind::Def(Def::Macro(..)) => true,
1187             _ => false,
1188         }
1189     }
1190
1191     fn descr(&self) -> &'static str {
1192         if self.is_extern_crate() { "extern crate" } else { self.def().kind_name() }
1193     }
1194 }
1195
1196 /// Interns the names of the primitive types.
1197 struct PrimitiveTypeTable {
1198     primitive_types: FxHashMap<Name, PrimTy>,
1199 }
1200
1201 impl PrimitiveTypeTable {
1202     fn new() -> PrimitiveTypeTable {
1203         let mut table = PrimitiveTypeTable { primitive_types: FxHashMap() };
1204
1205         table.intern("bool", TyBool);
1206         table.intern("char", TyChar);
1207         table.intern("f32", TyFloat(FloatTy::F32));
1208         table.intern("f64", TyFloat(FloatTy::F64));
1209         table.intern("isize", TyInt(IntTy::Isize));
1210         table.intern("i8", TyInt(IntTy::I8));
1211         table.intern("i16", TyInt(IntTy::I16));
1212         table.intern("i32", TyInt(IntTy::I32));
1213         table.intern("i64", TyInt(IntTy::I64));
1214         table.intern("i128", TyInt(IntTy::I128));
1215         table.intern("str", TyStr);
1216         table.intern("usize", TyUint(UintTy::Usize));
1217         table.intern("u8", TyUint(UintTy::U8));
1218         table.intern("u16", TyUint(UintTy::U16));
1219         table.intern("u32", TyUint(UintTy::U32));
1220         table.intern("u64", TyUint(UintTy::U64));
1221         table.intern("u128", TyUint(UintTy::U128));
1222         table
1223     }
1224
1225     fn intern(&mut self, string: &str, primitive_type: PrimTy) {
1226         self.primitive_types.insert(Symbol::intern(string), primitive_type);
1227     }
1228 }
1229
1230 /// The main resolver class.
1231 pub struct Resolver<'a> {
1232     session: &'a Session,
1233     cstore: &'a CrateStore,
1234
1235     pub definitions: Definitions,
1236
1237     graph_root: Module<'a>,
1238
1239     prelude: Option<Module<'a>>,
1240
1241     // n.b. This is used only for better diagnostics, not name resolution itself.
1242     has_self: FxHashSet<DefId>,
1243
1244     // Names of fields of an item `DefId` accessible with dot syntax.
1245     // Used for hints during error reporting.
1246     field_names: FxHashMap<DefId, Vec<Name>>,
1247
1248     // All imports known to succeed or fail.
1249     determined_imports: Vec<&'a ImportDirective<'a>>,
1250
1251     // All non-determined imports.
1252     indeterminate_imports: Vec<&'a ImportDirective<'a>>,
1253
1254     // The module that represents the current item scope.
1255     current_module: Module<'a>,
1256
1257     // The current set of local scopes for types and values.
1258     // FIXME #4948: Reuse ribs to avoid allocation.
1259     ribs: PerNS<Vec<Rib<'a>>>,
1260
1261     // The current set of local scopes, for labels.
1262     label_ribs: Vec<Rib<'a>>,
1263
1264     // The trait that the current context can refer to.
1265     current_trait_ref: Option<(Module<'a>, TraitRef)>,
1266
1267     // The current self type if inside an impl (used for better errors).
1268     current_self_type: Option<Ty>,
1269
1270     // The idents for the primitive types.
1271     primitive_type_table: PrimitiveTypeTable,
1272
1273     def_map: DefMap,
1274     pub freevars: FreevarMap,
1275     freevars_seen: NodeMap<NodeMap<usize>>,
1276     pub export_map: ExportMap,
1277     pub trait_map: TraitMap,
1278
1279     // A map from nodes to anonymous modules.
1280     // Anonymous modules are pseudo-modules that are implicitly created around items
1281     // contained within blocks.
1282     //
1283     // For example, if we have this:
1284     //
1285     //  fn f() {
1286     //      fn g() {
1287     //          ...
1288     //      }
1289     //  }
1290     //
1291     // There will be an anonymous module created around `g` with the ID of the
1292     // entry block for `f`.
1293     block_map: NodeMap<Module<'a>>,
1294     module_map: FxHashMap<DefId, Module<'a>>,
1295     extern_module_map: FxHashMap<(DefId, bool /* MacrosOnly? */), Module<'a>>,
1296
1297     pub make_glob_map: bool,
1298     /// Maps imports to the names of items actually imported (this actually maps
1299     /// all imports, but only glob imports are actually interesting).
1300     pub glob_map: GlobMap,
1301
1302     used_imports: FxHashSet<(NodeId, Namespace)>,
1303     pub maybe_unused_trait_imports: NodeSet,
1304     pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
1305
1306     /// privacy errors are delayed until the end in order to deduplicate them
1307     privacy_errors: Vec<PrivacyError<'a>>,
1308     /// ambiguity errors are delayed for deduplication
1309     ambiguity_errors: Vec<AmbiguityError<'a>>,
1310     /// `use` injections are delayed for better placement and deduplication
1311     use_injections: Vec<UseError<'a>>,
1312     /// `use` injections for proc macros wrongly imported with #[macro_use]
1313     proc_mac_errors: Vec<macros::ProcMacError>,
1314
1315     gated_errors: FxHashSet<Span>,
1316     disallowed_shadowing: Vec<&'a LegacyBinding<'a>>,
1317
1318     arenas: &'a ResolverArenas<'a>,
1319     dummy_binding: &'a NameBinding<'a>,
1320     use_extern_macros: bool, // true if `#![feature(use_extern_macros)]`
1321
1322     crate_loader: &'a mut CrateLoader,
1323     macro_names: FxHashSet<Ident>,
1324     global_macros: FxHashMap<Name, &'a NameBinding<'a>>,
1325     pub all_macros: FxHashMap<Name, Def>,
1326     lexical_macro_resolutions: Vec<(Ident, &'a Cell<LegacyScope<'a>>)>,
1327     macro_map: FxHashMap<DefId, Lrc<SyntaxExtension>>,
1328     macro_defs: FxHashMap<Mark, DefId>,
1329     local_macro_def_scopes: FxHashMap<NodeId, Module<'a>>,
1330     macro_exports: Vec<Export>,
1331     pub whitelisted_legacy_custom_derives: Vec<Name>,
1332     pub found_unresolved_macro: bool,
1333
1334     // List of crate local macros that we need to warn about as being unused.
1335     // Right now this only includes macro_rules! macros, and macros 2.0.
1336     unused_macros: FxHashSet<DefId>,
1337
1338     // Maps the `Mark` of an expansion to its containing module or block.
1339     invocations: FxHashMap<Mark, &'a InvocationData<'a>>,
1340
1341     // Avoid duplicated errors for "name already defined".
1342     name_already_seen: FxHashMap<Name, Span>,
1343
1344     // If `#![feature(proc_macro)]` is set
1345     proc_macro_enabled: bool,
1346
1347     // A set of procedural macros imported by `#[macro_use]` that have already been warned about
1348     warned_proc_macros: FxHashSet<Name>,
1349
1350     potentially_unused_imports: Vec<&'a ImportDirective<'a>>,
1351
1352     // This table maps struct IDs into struct constructor IDs,
1353     // it's not used during normal resolution, only for better error reporting.
1354     struct_constructors: DefIdMap<(Def, ty::Visibility)>,
1355
1356     // Only used for better errors on `fn(): fn()`
1357     current_type_ascription: Vec<Span>,
1358
1359     injected_crate: Option<Module<'a>>,
1360 }
1361
1362 pub struct ResolverArenas<'a> {
1363     modules: arena::TypedArena<ModuleData<'a>>,
1364     local_modules: RefCell<Vec<Module<'a>>>,
1365     name_bindings: arena::TypedArena<NameBinding<'a>>,
1366     import_directives: arena::TypedArena<ImportDirective<'a>>,
1367     name_resolutions: arena::TypedArena<RefCell<NameResolution<'a>>>,
1368     invocation_data: arena::TypedArena<InvocationData<'a>>,
1369     legacy_bindings: arena::TypedArena<LegacyBinding<'a>>,
1370 }
1371
1372 impl<'a> ResolverArenas<'a> {
1373     fn alloc_module(&'a self, module: ModuleData<'a>) -> Module<'a> {
1374         let module = self.modules.alloc(module);
1375         if module.def_id().map(|def_id| def_id.is_local()).unwrap_or(true) {
1376             self.local_modules.borrow_mut().push(module);
1377         }
1378         module
1379     }
1380     fn local_modules(&'a self) -> ::std::cell::Ref<'a, Vec<Module<'a>>> {
1381         self.local_modules.borrow()
1382     }
1383     fn alloc_name_binding(&'a self, name_binding: NameBinding<'a>) -> &'a NameBinding<'a> {
1384         self.name_bindings.alloc(name_binding)
1385     }
1386     fn alloc_import_directive(&'a self, import_directive: ImportDirective<'a>)
1387                               -> &'a ImportDirective {
1388         self.import_directives.alloc(import_directive)
1389     }
1390     fn alloc_name_resolution(&'a self) -> &'a RefCell<NameResolution<'a>> {
1391         self.name_resolutions.alloc(Default::default())
1392     }
1393     fn alloc_invocation_data(&'a self, expansion_data: InvocationData<'a>)
1394                              -> &'a InvocationData<'a> {
1395         self.invocation_data.alloc(expansion_data)
1396     }
1397     fn alloc_legacy_binding(&'a self, binding: LegacyBinding<'a>) -> &'a LegacyBinding<'a> {
1398         self.legacy_bindings.alloc(binding)
1399     }
1400 }
1401
1402 impl<'a, 'b: 'a> ty::DefIdTree for &'a Resolver<'b> {
1403     fn parent(self, id: DefId) -> Option<DefId> {
1404         match id.krate {
1405             LOCAL_CRATE => self.definitions.def_key(id.index).parent,
1406             _ => self.cstore.def_key(id).parent,
1407         }.map(|index| DefId { index: index, ..id })
1408     }
1409 }
1410
1411 impl<'a> hir::lowering::Resolver for Resolver<'a> {
1412     fn resolve_hir_path(&mut self, path: &mut hir::Path, is_value: bool) {
1413         self.resolve_hir_path_cb(path, is_value,
1414                                  |resolver, span, error| resolve_error(resolver, span, error))
1415     }
1416
1417     fn resolve_str_path(&mut self, span: Span, crate_root: Option<&str>,
1418                         components: &[&str], is_value: bool) -> hir::Path {
1419         let mut path = hir::Path {
1420             span,
1421             def: Def::Err,
1422             segments: iter::once(keywords::CrateRoot.name()).chain({
1423                 crate_root.into_iter().chain(components.iter().cloned()).map(Symbol::intern)
1424             }).map(hir::PathSegment::from_name).collect(),
1425         };
1426
1427         self.resolve_hir_path(&mut path, is_value);
1428         path
1429     }
1430
1431     fn get_resolution(&mut self, id: NodeId) -> Option<PathResolution> {
1432         self.def_map.get(&id).cloned()
1433     }
1434
1435     fn definitions(&mut self) -> &mut Definitions {
1436         &mut self.definitions
1437     }
1438 }
1439
1440 impl<'a> Resolver<'a> {
1441     /// Rustdoc uses this to resolve things in a recoverable way. ResolutionError<'a>
1442     /// isn't something that can be returned because it can't be made to live that long,
1443     /// and also it's a private type. Fortunately rustdoc doesn't need to know the error,
1444     /// just that an error occurred.
1445     pub fn resolve_str_path_error(&mut self, span: Span, path_str: &str, is_value: bool)
1446         -> Result<hir::Path, ()> {
1447         use std::iter;
1448         let mut errored = false;
1449
1450         let mut path = if path_str.starts_with("::") {
1451             hir::Path {
1452                 span,
1453                 def: Def::Err,
1454                 segments: iter::once(keywords::CrateRoot.name()).chain({
1455                     path_str.split("::").skip(1).map(Symbol::intern)
1456                 }).map(hir::PathSegment::from_name).collect(),
1457             }
1458         } else {
1459             hir::Path {
1460                 span,
1461                 def: Def::Err,
1462                 segments: path_str.split("::").map(Symbol::intern)
1463                                   .map(hir::PathSegment::from_name).collect(),
1464             }
1465         };
1466         self.resolve_hir_path_cb(&mut path, is_value, |_, _, _| errored = true);
1467         if errored || path.def == Def::Err {
1468             Err(())
1469         } else {
1470             Ok(path)
1471         }
1472     }
1473
1474     /// resolve_hir_path, but takes a callback in case there was an error
1475     fn resolve_hir_path_cb<F>(&mut self, path: &mut hir::Path, is_value: bool, error_callback: F)
1476             where F: for<'c, 'b> FnOnce(&'c mut Resolver, Span, ResolutionError<'b>)
1477         {
1478         let namespace = if is_value { ValueNS } else { TypeNS };
1479         let hir::Path { ref segments, span, ref mut def } = *path;
1480         let path: Vec<SpannedIdent> = segments.iter()
1481             .map(|seg| respan(span, Ident::with_empty_ctxt(seg.name)))
1482             .collect();
1483         match self.resolve_path(&path, Some(namespace), true, span) {
1484             PathResult::Module(module) => *def = module.def().unwrap(),
1485             PathResult::NonModule(path_res) if path_res.unresolved_segments() == 0 =>
1486                 *def = path_res.base_def(),
1487             PathResult::NonModule(..) => match self.resolve_path(&path, None, true, span) {
1488                 PathResult::Failed(span, msg, _) => {
1489                     error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1490                 }
1491                 _ => {}
1492             },
1493             PathResult::Indeterminate => unreachable!(),
1494             PathResult::Failed(span, msg, _) => {
1495                 error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1496             }
1497         }
1498     }
1499 }
1500
1501 impl<'a> Resolver<'a> {
1502     pub fn new(session: &'a Session,
1503                cstore: &'a CrateStore,
1504                krate: &Crate,
1505                crate_name: &str,
1506                make_glob_map: MakeGlobMap,
1507                crate_loader: &'a mut CrateLoader,
1508                arenas: &'a ResolverArenas<'a>)
1509                -> Resolver<'a> {
1510         let root_def_id = DefId::local(CRATE_DEF_INDEX);
1511         let root_module_kind = ModuleKind::Def(Def::Mod(root_def_id), keywords::Invalid.name());
1512         let graph_root = arenas.alloc_module(ModuleData {
1513             no_implicit_prelude: attr::contains_name(&krate.attrs, "no_implicit_prelude"),
1514             ..ModuleData::new(None, root_module_kind, root_def_id, Mark::root(), krate.span)
1515         });
1516         let mut module_map = FxHashMap();
1517         module_map.insert(DefId::local(CRATE_DEF_INDEX), graph_root);
1518
1519         let mut definitions = Definitions::new();
1520         DefCollector::new(&mut definitions, Mark::root())
1521             .collect_root(crate_name, session.local_crate_disambiguator());
1522
1523         let mut invocations = FxHashMap();
1524         invocations.insert(Mark::root(),
1525                            arenas.alloc_invocation_data(InvocationData::root(graph_root)));
1526
1527         let features = session.features_untracked();
1528
1529         let mut macro_defs = FxHashMap();
1530         macro_defs.insert(Mark::root(), root_def_id);
1531
1532         Resolver {
1533             session,
1534
1535             cstore,
1536
1537             definitions,
1538
1539             // The outermost module has def ID 0; this is not reflected in the
1540             // AST.
1541             graph_root,
1542             prelude: None,
1543
1544             has_self: FxHashSet(),
1545             field_names: FxHashMap(),
1546
1547             determined_imports: Vec::new(),
1548             indeterminate_imports: Vec::new(),
1549
1550             current_module: graph_root,
1551             ribs: PerNS {
1552                 value_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1553                 type_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1554                 macro_ns: Some(vec![Rib::new(ModuleRibKind(graph_root))]),
1555             },
1556             label_ribs: Vec::new(),
1557
1558             current_trait_ref: None,
1559             current_self_type: None,
1560
1561             primitive_type_table: PrimitiveTypeTable::new(),
1562
1563             def_map: NodeMap(),
1564             freevars: NodeMap(),
1565             freevars_seen: NodeMap(),
1566             export_map: FxHashMap(),
1567             trait_map: NodeMap(),
1568             module_map,
1569             block_map: NodeMap(),
1570             extern_module_map: FxHashMap(),
1571
1572             make_glob_map: make_glob_map == MakeGlobMap::Yes,
1573             glob_map: NodeMap(),
1574
1575             used_imports: FxHashSet(),
1576             maybe_unused_trait_imports: NodeSet(),
1577             maybe_unused_extern_crates: Vec::new(),
1578
1579             privacy_errors: Vec::new(),
1580             ambiguity_errors: Vec::new(),
1581             use_injections: Vec::new(),
1582             proc_mac_errors: Vec::new(),
1583             gated_errors: FxHashSet(),
1584             disallowed_shadowing: Vec::new(),
1585
1586             arenas,
1587             dummy_binding: arenas.alloc_name_binding(NameBinding {
1588                 kind: NameBindingKind::Def(Def::Err),
1589                 expansion: Mark::root(),
1590                 span: DUMMY_SP,
1591                 vis: ty::Visibility::Public,
1592             }),
1593
1594             // The `proc_macro` and `decl_macro` features imply `use_extern_macros`
1595             use_extern_macros:
1596                 features.use_extern_macros || features.proc_macro || features.decl_macro,
1597
1598             crate_loader,
1599             macro_names: FxHashSet(),
1600             global_macros: FxHashMap(),
1601             all_macros: FxHashMap(),
1602             lexical_macro_resolutions: Vec::new(),
1603             macro_map: FxHashMap(),
1604             macro_exports: Vec::new(),
1605             invocations,
1606             macro_defs,
1607             local_macro_def_scopes: FxHashMap(),
1608             name_already_seen: FxHashMap(),
1609             whitelisted_legacy_custom_derives: Vec::new(),
1610             proc_macro_enabled: features.proc_macro,
1611             warned_proc_macros: FxHashSet(),
1612             potentially_unused_imports: Vec::new(),
1613             struct_constructors: DefIdMap(),
1614             found_unresolved_macro: false,
1615             unused_macros: FxHashSet(),
1616             current_type_ascription: Vec::new(),
1617             injected_crate: None,
1618         }
1619     }
1620
1621     pub fn arenas() -> ResolverArenas<'a> {
1622         ResolverArenas {
1623             modules: arena::TypedArena::new(),
1624             local_modules: RefCell::new(Vec::new()),
1625             name_bindings: arena::TypedArena::new(),
1626             import_directives: arena::TypedArena::new(),
1627             name_resolutions: arena::TypedArena::new(),
1628             invocation_data: arena::TypedArena::new(),
1629             legacy_bindings: arena::TypedArena::new(),
1630         }
1631     }
1632
1633     fn per_ns<T, F: FnMut(&mut Self, Namespace) -> T>(&mut self, mut f: F) -> PerNS<T> {
1634         PerNS {
1635             type_ns: f(self, TypeNS),
1636             value_ns: f(self, ValueNS),
1637             macro_ns: match self.use_extern_macros {
1638                 true => Some(f(self, MacroNS)),
1639                 false => None,
1640             },
1641         }
1642     }
1643
1644     fn macro_def(&self, mut ctxt: SyntaxContext) -> DefId {
1645         loop {
1646             match self.macro_defs.get(&ctxt.outer()) {
1647                 Some(&def_id) => return def_id,
1648                 None => ctxt.remove_mark(),
1649             };
1650         }
1651     }
1652
1653     /// Entry point to crate resolution.
1654     pub fn resolve_crate(&mut self, krate: &Crate) {
1655         ImportResolver { resolver: self }.finalize_imports();
1656         self.current_module = self.graph_root;
1657         self.finalize_current_module_macro_resolutions();
1658
1659         visit::walk_crate(self, krate);
1660
1661         check_unused::check_crate(self, krate);
1662         self.report_errors(krate);
1663         self.crate_loader.postprocess(krate);
1664     }
1665
1666     fn new_module(
1667         &self,
1668         parent: Module<'a>,
1669         kind: ModuleKind,
1670         normal_ancestor_id: DefId,
1671         expansion: Mark,
1672         span: Span,
1673     ) -> Module<'a> {
1674         let module = ModuleData::new(Some(parent), kind, normal_ancestor_id, expansion, span);
1675         self.arenas.alloc_module(module)
1676     }
1677
1678     fn record_use(&mut self, ident: Ident, ns: Namespace, binding: &'a NameBinding<'a>, span: Span)
1679                   -> bool /* true if an error was reported */ {
1680         match binding.kind {
1681             NameBindingKind::Import { directive, binding, ref used, legacy_self_import }
1682                     if !used.get() => {
1683                 used.set(true);
1684                 directive.used.set(true);
1685                 if legacy_self_import {
1686                     self.warn_legacy_self_import(directive);
1687                     return false;
1688                 }
1689                 self.used_imports.insert((directive.id, ns));
1690                 self.add_to_glob_map(directive.id, ident);
1691                 self.record_use(ident, ns, binding, span)
1692             }
1693             NameBindingKind::Import { .. } => false,
1694             NameBindingKind::Ambiguity { b1, b2, legacy } => {
1695                 self.ambiguity_errors.push(AmbiguityError {
1696                     span: span, name: ident.name, lexical: false, b1: b1, b2: b2, legacy,
1697                 });
1698                 if legacy {
1699                     self.record_use(ident, ns, b1, span);
1700                 }
1701                 !legacy
1702             }
1703             _ => false
1704         }
1705     }
1706
1707     fn add_to_glob_map(&mut self, id: NodeId, ident: Ident) {
1708         if self.make_glob_map {
1709             self.glob_map.entry(id).or_insert_with(FxHashSet).insert(ident.name);
1710         }
1711     }
1712
1713     /// This resolves the identifier `ident` in the namespace `ns` in the current lexical scope.
1714     /// More specifically, we proceed up the hierarchy of scopes and return the binding for
1715     /// `ident` in the first scope that defines it (or None if no scopes define it).
1716     ///
1717     /// A block's items are above its local variables in the scope hierarchy, regardless of where
1718     /// the items are defined in the block. For example,
1719     /// ```rust
1720     /// fn f() {
1721     ///    g(); // Since there are no local variables in scope yet, this resolves to the item.
1722     ///    let g = || {};
1723     ///    fn g() {}
1724     ///    g(); // This resolves to the local variable `g` since it shadows the item.
1725     /// }
1726     /// ```
1727     ///
1728     /// Invariant: This must only be called during main resolution, not during
1729     /// import resolution.
1730     fn resolve_ident_in_lexical_scope(&mut self,
1731                                       mut ident: Ident,
1732                                       ns: Namespace,
1733                                       record_used: bool,
1734                                       path_span: Span)
1735                                       -> Option<LexicalScopeBinding<'a>> {
1736         if ns == TypeNS {
1737             ident.ctxt = if ident.name == keywords::SelfType.name() {
1738                 SyntaxContext::empty() // FIXME(jseyfried) improve `Self` hygiene
1739             } else {
1740                 ident.ctxt.modern()
1741             }
1742         }
1743
1744         // Walk backwards up the ribs in scope.
1745         let mut module = self.graph_root;
1746         for i in (0 .. self.ribs[ns].len()).rev() {
1747             if let Some(def) = self.ribs[ns][i].bindings.get(&ident).cloned() {
1748                 // The ident resolves to a type parameter or local variable.
1749                 return Some(LexicalScopeBinding::Def(
1750                     self.adjust_local_def(ns, i, def, record_used, path_span)
1751                 ));
1752             }
1753
1754             module = match self.ribs[ns][i].kind {
1755                 ModuleRibKind(module) => module,
1756                 MacroDefinition(def) if def == self.macro_def(ident.ctxt) => {
1757                     // If an invocation of this macro created `ident`, give up on `ident`
1758                     // and switch to `ident`'s source from the macro definition.
1759                     ident.ctxt.remove_mark();
1760                     continue
1761                 }
1762                 _ => continue,
1763             };
1764
1765             let item = self.resolve_ident_in_module_unadjusted(
1766                 module, ident, ns, false, record_used, path_span,
1767             );
1768             if let Ok(binding) = item {
1769                 // The ident resolves to an item.
1770                 return Some(LexicalScopeBinding::Item(binding));
1771             }
1772
1773             match module.kind {
1774                 ModuleKind::Block(..) => {}, // We can see through blocks
1775                 _ => break,
1776             }
1777         }
1778
1779         ident.ctxt = ident.ctxt.modern();
1780         loop {
1781             module = unwrap_or!(self.hygienic_lexical_parent(module, &mut ident.ctxt), break);
1782             let orig_current_module = self.current_module;
1783             self.current_module = module; // Lexical resolutions can never be a privacy error.
1784             let result = self.resolve_ident_in_module_unadjusted(
1785                 module, ident, ns, false, record_used, path_span,
1786             );
1787             self.current_module = orig_current_module;
1788
1789             match result {
1790                 Ok(binding) => return Some(LexicalScopeBinding::Item(binding)),
1791                 Err(Undetermined) => return None,
1792                 Err(Determined) => {}
1793             }
1794         }
1795
1796         match self.prelude {
1797             Some(prelude) if !module.no_implicit_prelude => {
1798                 self.resolve_ident_in_module_unadjusted(prelude, ident, ns, false, false, path_span)
1799                     .ok().map(LexicalScopeBinding::Item)
1800             }
1801             _ => None,
1802         }
1803     }
1804
1805     fn hygienic_lexical_parent(&mut self, mut module: Module<'a>, ctxt: &mut SyntaxContext)
1806                                -> Option<Module<'a>> {
1807         if !module.expansion.is_descendant_of(ctxt.outer()) {
1808             return Some(self.macro_def_scope(ctxt.remove_mark()));
1809         }
1810
1811         if let ModuleKind::Block(..) = module.kind {
1812             return Some(module.parent.unwrap());
1813         }
1814
1815         let mut module_expansion = module.expansion.modern(); // for backward compatibility
1816         while let Some(parent) = module.parent {
1817             let parent_expansion = parent.expansion.modern();
1818             if module_expansion.is_descendant_of(parent_expansion) &&
1819                parent_expansion != module_expansion {
1820                 return if parent_expansion.is_descendant_of(ctxt.outer()) {
1821                     Some(parent)
1822                 } else {
1823                     None
1824                 };
1825             }
1826             module = parent;
1827             module_expansion = parent_expansion;
1828         }
1829
1830         None
1831     }
1832
1833     fn resolve_ident_in_module(&mut self,
1834                                module: Module<'a>,
1835                                mut ident: Ident,
1836                                ns: Namespace,
1837                                ignore_unresolved_invocations: bool,
1838                                record_used: bool,
1839                                span: Span)
1840                                -> Result<&'a NameBinding<'a>, Determinacy> {
1841         ident.ctxt = ident.ctxt.modern();
1842         let orig_current_module = self.current_module;
1843         if let Some(def) = ident.ctxt.adjust(module.expansion) {
1844             self.current_module = self.macro_def_scope(def);
1845         }
1846         let result = self.resolve_ident_in_module_unadjusted(
1847             module, ident, ns, ignore_unresolved_invocations, record_used, span,
1848         );
1849         self.current_module = orig_current_module;
1850         result
1851     }
1852
1853     fn resolve_crate_root(&mut self, mut ctxt: SyntaxContext, legacy: bool) -> Module<'a> {
1854         let mark = if legacy {
1855             // When resolving `$crate` from a `macro_rules!` invoked in a `macro`,
1856             // we don't want to pretend that the `macro_rules!` definition is in the `macro`
1857             // as described in `SyntaxContext::apply_mark`, so we ignore prepended modern marks.
1858             ctxt.marks().into_iter().find(|&mark| mark.kind() != MarkKind::Modern)
1859         } else {
1860             ctxt = ctxt.modern();
1861             ctxt.adjust(Mark::root())
1862         };
1863         let module = match mark {
1864             Some(def) => self.macro_def_scope(def),
1865             None => return self.graph_root,
1866         };
1867         self.get_module(DefId { index: CRATE_DEF_INDEX, ..module.normal_ancestor_id })
1868     }
1869
1870     fn resolve_self(&mut self, ctxt: &mut SyntaxContext, module: Module<'a>) -> Module<'a> {
1871         let mut module = self.get_module(module.normal_ancestor_id);
1872         while module.span.ctxt().modern() != *ctxt {
1873             let parent = module.parent.unwrap_or_else(|| self.macro_def_scope(ctxt.remove_mark()));
1874             module = self.get_module(parent.normal_ancestor_id);
1875         }
1876         module
1877     }
1878
1879     // AST resolution
1880     //
1881     // We maintain a list of value ribs and type ribs.
1882     //
1883     // Simultaneously, we keep track of the current position in the module
1884     // graph in the `current_module` pointer. When we go to resolve a name in
1885     // the value or type namespaces, we first look through all the ribs and
1886     // then query the module graph. When we resolve a name in the module
1887     // namespace, we can skip all the ribs (since nested modules are not
1888     // allowed within blocks in Rust) and jump straight to the current module
1889     // graph node.
1890     //
1891     // Named implementations are handled separately. When we find a method
1892     // call, we consult the module node to find all of the implementations in
1893     // scope. This information is lazily cached in the module node. We then
1894     // generate a fake "implementation scope" containing all the
1895     // implementations thus found, for compatibility with old resolve pass.
1896
1897     pub fn with_scope<F, T>(&mut self, id: NodeId, f: F) -> T
1898         where F: FnOnce(&mut Resolver) -> T
1899     {
1900         let id = self.definitions.local_def_id(id);
1901         let module = self.module_map.get(&id).cloned(); // clones a reference
1902         if let Some(module) = module {
1903             // Move down in the graph.
1904             let orig_module = replace(&mut self.current_module, module);
1905             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(module)));
1906             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(module)));
1907
1908             self.finalize_current_module_macro_resolutions();
1909             let ret = f(self);
1910
1911             self.current_module = orig_module;
1912             self.ribs[ValueNS].pop();
1913             self.ribs[TypeNS].pop();
1914             ret
1915         } else {
1916             f(self)
1917         }
1918     }
1919
1920     /// Searches the current set of local scopes for labels. Returns the first non-None label that
1921     /// is returned by the given predicate function
1922     ///
1923     /// Stops after meeting a closure.
1924     fn search_label<P, R>(&self, mut ident: Ident, pred: P) -> Option<R>
1925         where P: Fn(&Rib, Ident) -> Option<R>
1926     {
1927         for rib in self.label_ribs.iter().rev() {
1928             match rib.kind {
1929                 NormalRibKind => {}
1930                 // If an invocation of this macro created `ident`, give up on `ident`
1931                 // and switch to `ident`'s source from the macro definition.
1932                 MacroDefinition(def) => {
1933                     if def == self.macro_def(ident.ctxt) {
1934                         ident.ctxt.remove_mark();
1935                     }
1936                 }
1937                 _ => {
1938                     // Do not resolve labels across function boundary
1939                     return None;
1940                 }
1941             }
1942             let r = pred(rib, ident);
1943             if r.is_some() {
1944                 return r;
1945             }
1946         }
1947         None
1948     }
1949
1950     fn resolve_item(&mut self, item: &Item) {
1951         let name = item.ident.name;
1952
1953         debug!("(resolving item) resolving {}", name);
1954
1955         self.check_proc_macro_attrs(&item.attrs);
1956
1957         match item.node {
1958             ItemKind::Enum(_, ref generics) |
1959             ItemKind::Ty(_, ref generics) |
1960             ItemKind::Struct(_, ref generics) |
1961             ItemKind::Union(_, ref generics) |
1962             ItemKind::Fn(.., ref generics, _) => {
1963                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind),
1964                                              |this| visit::walk_item(this, item));
1965             }
1966
1967             ItemKind::Impl(.., ref generics, ref opt_trait_ref, ref self_type, ref impl_items) =>
1968                 self.resolve_implementation(generics,
1969                                             opt_trait_ref,
1970                                             &self_type,
1971                                             item.id,
1972                                             impl_items),
1973
1974             ItemKind::Trait(.., ref generics, ref bounds, ref trait_items) => {
1975                 // Create a new rib for the trait-wide type parameters.
1976                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
1977                     let local_def_id = this.definitions.local_def_id(item.id);
1978                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
1979                         this.visit_generics(generics);
1980                         walk_list!(this, visit_ty_param_bound, bounds);
1981
1982                         for trait_item in trait_items {
1983                             this.check_proc_macro_attrs(&trait_item.attrs);
1984
1985                             let type_parameters = HasTypeParameters(&trait_item.generics,
1986                                                                     TraitOrImplItemRibKind);
1987                             this.with_type_parameter_rib(type_parameters, |this| {
1988                                 match trait_item.node {
1989                                     TraitItemKind::Const(ref ty, ref default) => {
1990                                         this.visit_ty(ty);
1991
1992                                         // Only impose the restrictions of
1993                                         // ConstRibKind for an actual constant
1994                                         // expression in a provided default.
1995                                         if let Some(ref expr) = *default{
1996                                             this.with_constant_rib(|this| {
1997                                                 this.visit_expr(expr);
1998                                             });
1999                                         }
2000                                     }
2001                                     TraitItemKind::Method(_, _) => {
2002                                         visit::walk_trait_item(this, trait_item)
2003                                     }
2004                                     TraitItemKind::Type(..) => {
2005                                         visit::walk_trait_item(this, trait_item)
2006                                     }
2007                                     TraitItemKind::Macro(_) => {
2008                                         panic!("unexpanded macro in resolve!")
2009                                     }
2010                                 };
2011                             });
2012                         }
2013                     });
2014                 });
2015             }
2016
2017             ItemKind::TraitAlias(ref generics, ref bounds) => {
2018                 // Create a new rib for the trait-wide type parameters.
2019                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2020                     let local_def_id = this.definitions.local_def_id(item.id);
2021                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2022                         this.visit_generics(generics);
2023                         walk_list!(this, visit_ty_param_bound, bounds);
2024                     });
2025                 });
2026             }
2027
2028             ItemKind::Mod(_) | ItemKind::ForeignMod(_) => {
2029                 self.with_scope(item.id, |this| {
2030                     visit::walk_item(this, item);
2031                 });
2032             }
2033
2034             ItemKind::Static(ref ty, _, ref expr) |
2035             ItemKind::Const(ref ty, ref expr) => {
2036                 self.with_item_rib(|this| {
2037                     this.visit_ty(ty);
2038                     this.with_constant_rib(|this| {
2039                         this.visit_expr(expr);
2040                     });
2041                 });
2042             }
2043
2044             ItemKind::Use(ref use_tree) => {
2045                 let path = Path {
2046                     segments: vec![],
2047                     span: use_tree.span,
2048                 };
2049                 self.resolve_use_tree(item.id, use_tree, &path);
2050             }
2051
2052             ItemKind::ExternCrate(_) | ItemKind::MacroDef(..) | ItemKind::GlobalAsm(_) => {
2053                 // do nothing, these are just around to be encoded
2054             }
2055
2056             ItemKind::Mac(_) => panic!("unexpanded macro in resolve!"),
2057         }
2058     }
2059
2060     fn resolve_use_tree(&mut self, id: NodeId, use_tree: &ast::UseTree, prefix: &Path) {
2061         match use_tree.kind {
2062             ast::UseTreeKind::Nested(ref items) => {
2063                 let path = Path {
2064                     segments: prefix.segments
2065                         .iter()
2066                         .chain(use_tree.prefix.segments.iter())
2067                         .cloned()
2068                         .collect(),
2069                     span: prefix.span.to(use_tree.prefix.span),
2070                 };
2071
2072                 if items.len() == 0 {
2073                     // Resolve prefix of an import with empty braces (issue #28388).
2074                     self.smart_resolve_path(id, None, &path, PathSource::ImportPrefix);
2075                 } else {
2076                     for &(ref tree, nested_id) in items {
2077                         self.resolve_use_tree(nested_id, tree, &path);
2078                     }
2079                 }
2080             }
2081             ast::UseTreeKind::Simple(_) => {},
2082             ast::UseTreeKind::Glob => {},
2083         }
2084     }
2085
2086     fn with_type_parameter_rib<'b, F>(&'b mut self, type_parameters: TypeParameters<'a, 'b>, f: F)
2087         where F: FnOnce(&mut Resolver)
2088     {
2089         match type_parameters {
2090             HasTypeParameters(generics, rib_kind) => {
2091                 let mut function_type_rib = Rib::new(rib_kind);
2092                 let mut seen_bindings = FxHashMap();
2093                 for param in &generics.params {
2094                     if let GenericParam::Type(ref type_parameter) = *param {
2095                         let ident = type_parameter.ident.modern();
2096                         debug!("with_type_parameter_rib: {}", type_parameter.id);
2097
2098                         if seen_bindings.contains_key(&ident) {
2099                             let span = seen_bindings.get(&ident).unwrap();
2100                             let err = ResolutionError::NameAlreadyUsedInTypeParameterList(
2101                                 ident.name,
2102                                 span,
2103                             );
2104                             resolve_error(self, type_parameter.span, err);
2105                         }
2106                         seen_bindings.entry(ident).or_insert(type_parameter.span);
2107
2108                         // plain insert (no renaming)
2109                         let def_id = self.definitions.local_def_id(type_parameter.id);
2110                         let def = Def::TyParam(def_id);
2111                         function_type_rib.bindings.insert(ident, def);
2112                         self.record_def(type_parameter.id, PathResolution::new(def));
2113                     }
2114                 }
2115                 self.ribs[TypeNS].push(function_type_rib);
2116             }
2117
2118             NoTypeParameters => {
2119                 // Nothing to do.
2120             }
2121         }
2122
2123         f(self);
2124
2125         if let HasTypeParameters(..) = type_parameters {
2126             self.ribs[TypeNS].pop();
2127         }
2128     }
2129
2130     fn with_label_rib<F>(&mut self, f: F)
2131         where F: FnOnce(&mut Resolver)
2132     {
2133         self.label_ribs.push(Rib::new(NormalRibKind));
2134         f(self);
2135         self.label_ribs.pop();
2136     }
2137
2138     fn with_item_rib<F>(&mut self, f: F)
2139         where F: FnOnce(&mut Resolver)
2140     {
2141         self.ribs[ValueNS].push(Rib::new(ItemRibKind));
2142         self.ribs[TypeNS].push(Rib::new(ItemRibKind));
2143         f(self);
2144         self.ribs[TypeNS].pop();
2145         self.ribs[ValueNS].pop();
2146     }
2147
2148     fn with_constant_rib<F>(&mut self, f: F)
2149         where F: FnOnce(&mut Resolver)
2150     {
2151         self.ribs[ValueNS].push(Rib::new(ConstantItemRibKind));
2152         f(self);
2153         self.ribs[ValueNS].pop();
2154     }
2155
2156     fn with_current_self_type<T, F>(&mut self, self_type: &Ty, f: F) -> T
2157         where F: FnOnce(&mut Resolver) -> T
2158     {
2159         // Handle nested impls (inside fn bodies)
2160         let previous_value = replace(&mut self.current_self_type, Some(self_type.clone()));
2161         let result = f(self);
2162         self.current_self_type = previous_value;
2163         result
2164     }
2165
2166     /// This is called to resolve a trait reference from an `impl` (i.e. `impl Trait for Foo`)
2167     fn with_optional_trait_ref<T, F>(&mut self, opt_trait_ref: Option<&TraitRef>, f: F) -> T
2168         where F: FnOnce(&mut Resolver, Option<DefId>) -> T
2169     {
2170         let mut new_val = None;
2171         let mut new_id = None;
2172         if let Some(trait_ref) = opt_trait_ref {
2173             let path: Vec<_> = trait_ref.path.segments.iter()
2174                 .map(|seg| respan(seg.span, seg.identifier))
2175                 .collect();
2176             let def = self.smart_resolve_path_fragment(
2177                 trait_ref.ref_id,
2178                 None,
2179                 &path,
2180                 trait_ref.path.span,
2181                 trait_ref.path.segments.last().unwrap().span,
2182                 PathSource::Trait(AliasPossibility::No)
2183             ).base_def();
2184             if def != Def::Err {
2185                 new_id = Some(def.def_id());
2186                 let span = trait_ref.path.span;
2187                 if let PathResult::Module(module) = self.resolve_path(&path, None, false, span) {
2188                     new_val = Some((module, trait_ref.clone()));
2189                 }
2190             }
2191         }
2192         let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
2193         let result = f(self, new_id);
2194         self.current_trait_ref = original_trait_ref;
2195         result
2196     }
2197
2198     fn with_self_rib<F>(&mut self, self_def: Def, f: F)
2199         where F: FnOnce(&mut Resolver)
2200     {
2201         let mut self_type_rib = Rib::new(NormalRibKind);
2202
2203         // plain insert (no renaming, types are not currently hygienic....)
2204         self_type_rib.bindings.insert(keywords::SelfType.ident(), self_def);
2205         self.ribs[TypeNS].push(self_type_rib);
2206         f(self);
2207         self.ribs[TypeNS].pop();
2208     }
2209
2210     fn resolve_implementation(&mut self,
2211                               generics: &Generics,
2212                               opt_trait_reference: &Option<TraitRef>,
2213                               self_type: &Ty,
2214                               item_id: NodeId,
2215                               impl_items: &[ImplItem]) {
2216         // If applicable, create a rib for the type parameters.
2217         self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2218             // Dummy self type for better errors if `Self` is used in the trait path.
2219             this.with_self_rib(Def::SelfTy(None, None), |this| {
2220                 // Resolve the trait reference, if necessary.
2221                 this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| {
2222                     let item_def_id = this.definitions.local_def_id(item_id);
2223                     this.with_self_rib(Def::SelfTy(trait_id, Some(item_def_id)), |this| {
2224                         if let Some(trait_ref) = opt_trait_reference.as_ref() {
2225                             // Resolve type arguments in trait path
2226                             visit::walk_trait_ref(this, trait_ref);
2227                         }
2228                         // Resolve the self type.
2229                         this.visit_ty(self_type);
2230                         // Resolve the type parameters.
2231                         this.visit_generics(generics);
2232                         this.with_current_self_type(self_type, |this| {
2233                             for impl_item in impl_items {
2234                                 this.check_proc_macro_attrs(&impl_item.attrs);
2235                                 this.resolve_visibility(&impl_item.vis);
2236
2237                                 // We also need a new scope for the impl item type parameters.
2238                                 let type_parameters = HasTypeParameters(&impl_item.generics,
2239                                                                         TraitOrImplItemRibKind);
2240                                 this.with_type_parameter_rib(type_parameters, |this| {
2241                                     use self::ResolutionError::*;
2242                                     match impl_item.node {
2243                                         ImplItemKind::Const(..) => {
2244                                             // If this is a trait impl, ensure the const
2245                                             // exists in trait
2246                                             this.check_trait_item(impl_item.ident,
2247                                                                 ValueNS,
2248                                                                 impl_item.span,
2249                                                 |n, s| ConstNotMemberOfTrait(n, s));
2250                                             this.with_constant_rib(|this|
2251                                                 visit::walk_impl_item(this, impl_item)
2252                                             );
2253                                         }
2254                                         ImplItemKind::Method(_, _) => {
2255                                             // If this is a trait impl, ensure the method
2256                                             // exists in trait
2257                                             this.check_trait_item(impl_item.ident,
2258                                                                 ValueNS,
2259                                                                 impl_item.span,
2260                                                 |n, s| MethodNotMemberOfTrait(n, s));
2261
2262                                             visit::walk_impl_item(this, impl_item);
2263                                         }
2264                                         ImplItemKind::Type(ref ty) => {
2265                                             // If this is a trait impl, ensure the type
2266                                             // exists in trait
2267                                             this.check_trait_item(impl_item.ident,
2268                                                                 TypeNS,
2269                                                                 impl_item.span,
2270                                                 |n, s| TypeNotMemberOfTrait(n, s));
2271
2272                                             this.visit_ty(ty);
2273                                         }
2274                                         ImplItemKind::Macro(_) =>
2275                                             panic!("unexpanded macro in resolve!"),
2276                                     }
2277                                 });
2278                             }
2279                         });
2280                     });
2281                 });
2282             });
2283         });
2284     }
2285
2286     fn check_trait_item<F>(&mut self, ident: Ident, ns: Namespace, span: Span, err: F)
2287         where F: FnOnce(Name, &str) -> ResolutionError
2288     {
2289         // If there is a TraitRef in scope for an impl, then the method must be in the
2290         // trait.
2291         if let Some((module, _)) = self.current_trait_ref {
2292             if self.resolve_ident_in_module(module, ident, ns, false, false, span).is_err() {
2293                 let path = &self.current_trait_ref.as_ref().unwrap().1.path;
2294                 resolve_error(self, span, err(ident.name, &path_names_to_string(path)));
2295             }
2296         }
2297     }
2298
2299     fn resolve_local(&mut self, local: &Local) {
2300         // Resolve the type.
2301         walk_list!(self, visit_ty, &local.ty);
2302
2303         // Resolve the initializer.
2304         walk_list!(self, visit_expr, &local.init);
2305
2306         // Resolve the pattern.
2307         self.resolve_pattern(&local.pat, PatternSource::Let, &mut FxHashMap());
2308     }
2309
2310     // build a map from pattern identifiers to binding-info's.
2311     // this is done hygienically. This could arise for a macro
2312     // that expands into an or-pattern where one 'x' was from the
2313     // user and one 'x' came from the macro.
2314     fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
2315         let mut binding_map = FxHashMap();
2316
2317         pat.walk(&mut |pat| {
2318             if let PatKind::Ident(binding_mode, ident, ref sub_pat) = pat.node {
2319                 if sub_pat.is_some() || match self.def_map.get(&pat.id).map(|res| res.base_def()) {
2320                     Some(Def::Local(..)) => true,
2321                     _ => false,
2322                 } {
2323                     let binding_info = BindingInfo { span: ident.span, binding_mode: binding_mode };
2324                     binding_map.insert(ident.node, binding_info);
2325                 }
2326             }
2327             true
2328         });
2329
2330         binding_map
2331     }
2332
2333     // check that all of the arms in an or-pattern have exactly the
2334     // same set of bindings, with the same binding modes for each.
2335     fn check_consistent_bindings(&mut self, pats: &[P<Pat>]) {
2336         if pats.is_empty() {
2337             return;
2338         }
2339
2340         let mut missing_vars = FxHashMap();
2341         let mut inconsistent_vars = FxHashMap();
2342         for (i, p) in pats.iter().enumerate() {
2343             let map_i = self.binding_mode_map(&p);
2344
2345             for (j, q) in pats.iter().enumerate() {
2346                 if i == j {
2347                     continue;
2348                 }
2349
2350                 let map_j = self.binding_mode_map(&q);
2351                 for (&key, &binding_i) in &map_i {
2352                     if map_j.len() == 0 {                   // Account for missing bindings when
2353                         let binding_error = missing_vars    // map_j has none.
2354                             .entry(key.name)
2355                             .or_insert(BindingError {
2356                                 name: key.name,
2357                                 origin: BTreeSet::new(),
2358                                 target: BTreeSet::new(),
2359                             });
2360                         binding_error.origin.insert(binding_i.span);
2361                         binding_error.target.insert(q.span);
2362                     }
2363                     for (&key_j, &binding_j) in &map_j {
2364                         match map_i.get(&key_j) {
2365                             None => {  // missing binding
2366                                 let binding_error = missing_vars
2367                                     .entry(key_j.name)
2368                                     .or_insert(BindingError {
2369                                         name: key_j.name,
2370                                         origin: BTreeSet::new(),
2371                                         target: BTreeSet::new(),
2372                                     });
2373                                 binding_error.origin.insert(binding_j.span);
2374                                 binding_error.target.insert(p.span);
2375                             }
2376                             Some(binding_i) => {  // check consistent binding
2377                                 if binding_i.binding_mode != binding_j.binding_mode {
2378                                     inconsistent_vars
2379                                         .entry(key.name)
2380                                         .or_insert((binding_j.span, binding_i.span));
2381                                 }
2382                             }
2383                         }
2384                     }
2385                 }
2386             }
2387         }
2388         let mut missing_vars = missing_vars.iter().collect::<Vec<_>>();
2389         missing_vars.sort();
2390         for (_, v) in missing_vars {
2391             resolve_error(self,
2392                           *v.origin.iter().next().unwrap(),
2393                           ResolutionError::VariableNotBoundInPattern(v));
2394         }
2395         let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
2396         inconsistent_vars.sort();
2397         for (name, v) in inconsistent_vars {
2398             resolve_error(self, v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
2399         }
2400     }
2401
2402     fn resolve_arm(&mut self, arm: &Arm) {
2403         self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2404
2405         let mut bindings_list = FxHashMap();
2406         for pattern in &arm.pats {
2407             self.resolve_pattern(&pattern, PatternSource::Match, &mut bindings_list);
2408         }
2409
2410         // This has to happen *after* we determine which pat_idents are variants
2411         self.check_consistent_bindings(&arm.pats);
2412
2413         walk_list!(self, visit_expr, &arm.guard);
2414         self.visit_expr(&arm.body);
2415
2416         self.ribs[ValueNS].pop();
2417     }
2418
2419     fn resolve_block(&mut self, block: &Block) {
2420         debug!("(resolving block) entering block");
2421         // Move down in the graph, if there's an anonymous module rooted here.
2422         let orig_module = self.current_module;
2423         let anonymous_module = self.block_map.get(&block.id).cloned(); // clones a reference
2424
2425         let mut num_macro_definition_ribs = 0;
2426         if let Some(anonymous_module) = anonymous_module {
2427             debug!("(resolving block) found anonymous module, moving down");
2428             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2429             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2430             self.current_module = anonymous_module;
2431             self.finalize_current_module_macro_resolutions();
2432         } else {
2433             self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2434         }
2435
2436         // Descend into the block.
2437         for stmt in &block.stmts {
2438             if let ast::StmtKind::Item(ref item) = stmt.node {
2439                 if let ast::ItemKind::MacroDef(..) = item.node {
2440                     num_macro_definition_ribs += 1;
2441                     let def = self.definitions.local_def_id(item.id);
2442                     self.ribs[ValueNS].push(Rib::new(MacroDefinition(def)));
2443                     self.label_ribs.push(Rib::new(MacroDefinition(def)));
2444                 }
2445             }
2446
2447             self.visit_stmt(stmt);
2448         }
2449
2450         // Move back up.
2451         self.current_module = orig_module;
2452         for _ in 0 .. num_macro_definition_ribs {
2453             self.ribs[ValueNS].pop();
2454             self.label_ribs.pop();
2455         }
2456         self.ribs[ValueNS].pop();
2457         if let Some(_) = anonymous_module {
2458             self.ribs[TypeNS].pop();
2459         }
2460         debug!("(resolving block) leaving block");
2461     }
2462
2463     fn fresh_binding(&mut self,
2464                      ident: &SpannedIdent,
2465                      pat_id: NodeId,
2466                      outer_pat_id: NodeId,
2467                      pat_src: PatternSource,
2468                      bindings: &mut FxHashMap<Ident, NodeId>)
2469                      -> PathResolution {
2470         // Add the binding to the local ribs, if it
2471         // doesn't already exist in the bindings map. (We
2472         // must not add it if it's in the bindings map
2473         // because that breaks the assumptions later
2474         // passes make about or-patterns.)
2475         let mut def = Def::Local(pat_id);
2476         match bindings.get(&ident.node).cloned() {
2477             Some(id) if id == outer_pat_id => {
2478                 // `Variant(a, a)`, error
2479                 resolve_error(
2480                     self,
2481                     ident.span,
2482                     ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(
2483                         &ident.node.name.as_str())
2484                 );
2485             }
2486             Some(..) if pat_src == PatternSource::FnParam => {
2487                 // `fn f(a: u8, a: u8)`, error
2488                 resolve_error(
2489                     self,
2490                     ident.span,
2491                     ResolutionError::IdentifierBoundMoreThanOnceInParameterList(
2492                         &ident.node.name.as_str())
2493                 );
2494             }
2495             Some(..) if pat_src == PatternSource::Match ||
2496                         pat_src == PatternSource::IfLet ||
2497                         pat_src == PatternSource::WhileLet => {
2498                 // `Variant1(a) | Variant2(a)`, ok
2499                 // Reuse definition from the first `a`.
2500                 def = self.ribs[ValueNS].last_mut().unwrap().bindings[&ident.node];
2501             }
2502             Some(..) => {
2503                 span_bug!(ident.span, "two bindings with the same name from \
2504                                        unexpected pattern source {:?}", pat_src);
2505             }
2506             None => {
2507                 // A completely fresh binding, add to the lists if it's valid.
2508                 if ident.node.name != keywords::Invalid.name() {
2509                     bindings.insert(ident.node, outer_pat_id);
2510                     self.ribs[ValueNS].last_mut().unwrap().bindings.insert(ident.node, def);
2511                 }
2512             }
2513         }
2514
2515         PathResolution::new(def)
2516     }
2517
2518     fn resolve_pattern(&mut self,
2519                        pat: &Pat,
2520                        pat_src: PatternSource,
2521                        // Maps idents to the node ID for the
2522                        // outermost pattern that binds them.
2523                        bindings: &mut FxHashMap<Ident, NodeId>) {
2524         // Visit all direct subpatterns of this pattern.
2525         let outer_pat_id = pat.id;
2526         pat.walk(&mut |pat| {
2527             match pat.node {
2528                 PatKind::Ident(bmode, ref ident, ref opt_pat) => {
2529                     // First try to resolve the identifier as some existing
2530                     // entity, then fall back to a fresh binding.
2531                     let binding = self.resolve_ident_in_lexical_scope(ident.node, ValueNS,
2532                                                                       false, pat.span)
2533                                       .and_then(LexicalScopeBinding::item);
2534                     let resolution = binding.map(NameBinding::def).and_then(|def| {
2535                         let is_syntactic_ambiguity = opt_pat.is_none() &&
2536                             bmode == BindingMode::ByValue(Mutability::Immutable);
2537                         match def {
2538                             Def::StructCtor(_, CtorKind::Const) |
2539                             Def::VariantCtor(_, CtorKind::Const) |
2540                             Def::Const(..) if is_syntactic_ambiguity => {
2541                                 // Disambiguate in favor of a unit struct/variant
2542                                 // or constant pattern.
2543                                 self.record_use(ident.node, ValueNS, binding.unwrap(), ident.span);
2544                                 Some(PathResolution::new(def))
2545                             }
2546                             Def::StructCtor(..) | Def::VariantCtor(..) |
2547                             Def::Const(..) | Def::Static(..) => {
2548                                 // This is unambiguously a fresh binding, either syntactically
2549                                 // (e.g. `IDENT @ PAT` or `ref IDENT`) or because `IDENT` resolves
2550                                 // to something unusable as a pattern (e.g. constructor function),
2551                                 // but we still conservatively report an error, see
2552                                 // issues/33118#issuecomment-233962221 for one reason why.
2553                                 resolve_error(
2554                                     self,
2555                                     ident.span,
2556                                     ResolutionError::BindingShadowsSomethingUnacceptable(
2557                                         pat_src.descr(), ident.node.name, binding.unwrap())
2558                                 );
2559                                 None
2560                             }
2561                             Def::Fn(..) | Def::Err => {
2562                                 // These entities are explicitly allowed
2563                                 // to be shadowed by fresh bindings.
2564                                 None
2565                             }
2566                             def => {
2567                                 span_bug!(ident.span, "unexpected definition for an \
2568                                                        identifier in pattern: {:?}", def);
2569                             }
2570                         }
2571                     }).unwrap_or_else(|| {
2572                         self.fresh_binding(ident, pat.id, outer_pat_id, pat_src, bindings)
2573                     });
2574
2575                     self.record_def(pat.id, resolution);
2576                 }
2577
2578                 PatKind::TupleStruct(ref path, ..) => {
2579                     self.smart_resolve_path(pat.id, None, path, PathSource::TupleStruct);
2580                 }
2581
2582                 PatKind::Path(ref qself, ref path) => {
2583                     self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
2584                 }
2585
2586                 PatKind::Struct(ref path, ..) => {
2587                     self.smart_resolve_path(pat.id, None, path, PathSource::Struct);
2588                 }
2589
2590                 _ => {}
2591             }
2592             true
2593         });
2594
2595         visit::walk_pat(self, pat);
2596     }
2597
2598     // High-level and context dependent path resolution routine.
2599     // Resolves the path and records the resolution into definition map.
2600     // If resolution fails tries several techniques to find likely
2601     // resolution candidates, suggest imports or other help, and report
2602     // errors in user friendly way.
2603     fn smart_resolve_path(&mut self,
2604                           id: NodeId,
2605                           qself: Option<&QSelf>,
2606                           path: &Path,
2607                           source: PathSource)
2608                           -> PathResolution {
2609         let segments = &path.segments.iter()
2610             .map(|seg| respan(seg.span, seg.identifier))
2611             .collect::<Vec<_>>();
2612         let ident_span = path.segments.last().map_or(path.span, |seg| seg.span);
2613         self.smart_resolve_path_fragment(id, qself, segments, path.span, ident_span, source)
2614     }
2615
2616     fn smart_resolve_path_fragment(&mut self,
2617                                    id: NodeId,
2618                                    qself: Option<&QSelf>,
2619                                    path: &[SpannedIdent],
2620                                    span: Span,
2621                                    ident_span: Span,
2622                                    source: PathSource)
2623                                    -> PathResolution {
2624         let ns = source.namespace();
2625         let is_expected = &|def| source.is_expected(def);
2626         let is_enum_variant = &|def| if let Def::Variant(..) = def { true } else { false };
2627
2628         // Base error is amended with one short label and possibly some longer helps/notes.
2629         let report_errors = |this: &mut Self, def: Option<Def>| {
2630             // Make the base error.
2631             let expected = source.descr_expected();
2632             let path_str = names_to_string(path);
2633             let code = source.error_code(def.is_some());
2634             let (base_msg, fallback_label, base_span) = if let Some(def) = def {
2635                 (format!("expected {}, found {} `{}`", expected, def.kind_name(), path_str),
2636                  format!("not a {}", expected),
2637                  span)
2638             } else {
2639                 let item_str = path[path.len() - 1].node;
2640                 let item_span = path[path.len() - 1].span;
2641                 let (mod_prefix, mod_str) = if path.len() == 1 {
2642                     (format!(""), format!("this scope"))
2643                 } else if path.len() == 2 && path[0].node.name == keywords::CrateRoot.name() {
2644                     (format!(""), format!("the crate root"))
2645                 } else {
2646                     let mod_path = &path[..path.len() - 1];
2647                     let mod_prefix = match this.resolve_path(mod_path, Some(TypeNS), false, span) {
2648                         PathResult::Module(module) => module.def(),
2649                         _ => None,
2650                     }.map_or(format!(""), |def| format!("{} ", def.kind_name()));
2651                     (mod_prefix, format!("`{}`", names_to_string(mod_path)))
2652                 };
2653                 (format!("cannot find {} `{}` in {}{}", expected, item_str, mod_prefix, mod_str),
2654                  format!("not found in {}", mod_str),
2655                  item_span)
2656             };
2657             let code = DiagnosticId::Error(code.into());
2658             let mut err = this.session.struct_span_err_with_code(base_span, &base_msg, code);
2659
2660             // Emit special messages for unresolved `Self` and `self`.
2661             if is_self_type(path, ns) {
2662                 __diagnostic_used!(E0411);
2663                 err.code(DiagnosticId::Error("E0411".into()));
2664                 err.span_label(span, "`Self` is only available in traits and impls");
2665                 return (err, Vec::new());
2666             }
2667             if is_self_value(path, ns) {
2668                 __diagnostic_used!(E0424);
2669                 err.code(DiagnosticId::Error("E0424".into()));
2670                 err.span_label(span, format!("`self` value is only available in \
2671                                                methods with `self` parameter"));
2672                 return (err, Vec::new());
2673             }
2674
2675             // Try to lookup the name in more relaxed fashion for better error reporting.
2676             let ident = *path.last().unwrap();
2677             let candidates = this.lookup_import_candidates(ident.node.name, ns, is_expected);
2678             if candidates.is_empty() && is_expected(Def::Enum(DefId::local(CRATE_DEF_INDEX))) {
2679                 let enum_candidates =
2680                     this.lookup_import_candidates(ident.node.name, ns, is_enum_variant);
2681                 let mut enum_candidates = enum_candidates.iter()
2682                     .map(|suggestion| import_candidate_to_paths(&suggestion)).collect::<Vec<_>>();
2683                 enum_candidates.sort();
2684                 for (sp, variant_path, enum_path) in enum_candidates {
2685                     if sp == DUMMY_SP {
2686                         let msg = format!("there is an enum variant `{}`, \
2687                                         try using `{}`?",
2688                                         variant_path,
2689                                         enum_path);
2690                         err.help(&msg);
2691                     } else {
2692                         err.span_suggestion(span, "you can try using the variant's enum",
2693                                             enum_path);
2694                     }
2695                 }
2696             }
2697             if path.len() == 1 && this.self_type_is_available(span) {
2698                 if let Some(candidate) = this.lookup_assoc_candidate(ident.node, ns, is_expected) {
2699                     let self_is_available = this.self_value_is_available(path[0].node.ctxt, span);
2700                     match candidate {
2701                         AssocSuggestion::Field => {
2702                             err.span_suggestion(span, "try",
2703                                                 format!("self.{}", path_str));
2704                             if !self_is_available {
2705                                 err.span_label(span, format!("`self` value is only available in \
2706                                                                methods with `self` parameter"));
2707                             }
2708                         }
2709                         AssocSuggestion::MethodWithSelf if self_is_available => {
2710                             err.span_suggestion(span, "try",
2711                                                 format!("self.{}", path_str));
2712                         }
2713                         AssocSuggestion::MethodWithSelf | AssocSuggestion::AssocItem => {
2714                             err.span_suggestion(span, "try",
2715                                                 format!("Self::{}", path_str));
2716                         }
2717                     }
2718                     return (err, candidates);
2719                 }
2720             }
2721
2722             let mut levenshtein_worked = false;
2723
2724             // Try Levenshtein.
2725             if let Some(candidate) = this.lookup_typo_candidate(path, ns, is_expected, span) {
2726                 err.span_label(ident_span, format!("did you mean `{}`?", candidate));
2727                 levenshtein_worked = true;
2728             }
2729
2730             // Try context dependent help if relaxed lookup didn't work.
2731             if let Some(def) = def {
2732                 match (def, source) {
2733                     (Def::Macro(..), _) => {
2734                         err.span_label(span, format!("did you mean `{}!(...)`?", path_str));
2735                         return (err, candidates);
2736                     }
2737                     (Def::TyAlias(..), PathSource::Trait(_)) => {
2738                         err.span_label(span, "type aliases cannot be used for traits");
2739                         return (err, candidates);
2740                     }
2741                     (Def::Mod(..), PathSource::Expr(Some(parent))) => match parent.node {
2742                         ExprKind::Field(_, ident) => {
2743                             err.span_label(parent.span, format!("did you mean `{}::{}`?",
2744                                                                  path_str, ident.node));
2745                             return (err, candidates);
2746                         }
2747                         ExprKind::MethodCall(ref segment, ..) => {
2748                             err.span_label(parent.span, format!("did you mean `{}::{}(...)`?",
2749                                                                  path_str, segment.identifier));
2750                             return (err, candidates);
2751                         }
2752                         _ => {}
2753                     },
2754                     (Def::Enum(..), PathSource::TupleStruct)
2755                         | (Def::Enum(..), PathSource::Expr(..))  => {
2756                         if let Some(variants) = this.collect_enum_variants(def) {
2757                             err.note(&format!("did you mean to use one \
2758                                                of the following variants?\n{}",
2759                                 variants.iter()
2760                                     .map(|suggestion| path_names_to_string(suggestion))
2761                                     .map(|suggestion| format!("- `{}`", suggestion))
2762                                     .collect::<Vec<_>>()
2763                                     .join("\n")));
2764
2765                         } else {
2766                             err.note("did you mean to use one of the enum's variants?");
2767                         }
2768                         return (err, candidates);
2769                     },
2770                     (Def::Struct(def_id), _) if ns == ValueNS => {
2771                         if let Some((ctor_def, ctor_vis))
2772                                 = this.struct_constructors.get(&def_id).cloned() {
2773                             let accessible_ctor = this.is_accessible(ctor_vis);
2774                             if is_expected(ctor_def) && !accessible_ctor {
2775                                 err.span_label(span, format!("constructor is not visible \
2776                                                               here due to private fields"));
2777                             }
2778                         } else {
2779                             err.span_label(span, format!("did you mean `{} {{ /* fields */ }}`?",
2780                                                          path_str));
2781                         }
2782                         return (err, candidates);
2783                     }
2784                     (Def::Union(..), _) |
2785                     (Def::Variant(..), _) |
2786                     (Def::VariantCtor(_, CtorKind::Fictive), _) if ns == ValueNS => {
2787                         err.span_label(span, format!("did you mean `{} {{ /* fields */ }}`?",
2788                                                      path_str));
2789                         return (err, candidates);
2790                     }
2791                     (Def::SelfTy(..), _) if ns == ValueNS => {
2792                         err.span_label(span, fallback_label);
2793                         err.note("can't use `Self` as a constructor, you must use the \
2794                                   implemented struct");
2795                         return (err, candidates);
2796                     }
2797                     (Def::TyAlias(_), _) | (Def::AssociatedTy(..), _) if ns == ValueNS => {
2798                         err.note("can't use a type alias as a constructor");
2799                         return (err, candidates);
2800                     }
2801                     _ => {}
2802                 }
2803             }
2804
2805             // Fallback label.
2806             if !levenshtein_worked {
2807                 err.span_label(base_span, fallback_label);
2808                 this.type_ascription_suggestion(&mut err, base_span);
2809             }
2810             (err, candidates)
2811         };
2812         let report_errors = |this: &mut Self, def: Option<Def>| {
2813             let (err, candidates) = report_errors(this, def);
2814             let def_id = this.current_module.normal_ancestor_id;
2815             let node_id = this.definitions.as_local_node_id(def_id).unwrap();
2816             let better = def.is_some();
2817             this.use_injections.push(UseError { err, candidates, node_id, better });
2818             err_path_resolution()
2819         };
2820
2821         let resolution = match self.resolve_qpath_anywhere(id, qself, path, ns, span,
2822                                                            source.defer_to_typeck(),
2823                                                            source.global_by_default()) {
2824             Some(resolution) if resolution.unresolved_segments() == 0 => {
2825                 if is_expected(resolution.base_def()) || resolution.base_def() == Def::Err {
2826                     resolution
2827                 } else {
2828                     // Add a temporary hack to smooth the transition to new struct ctor
2829                     // visibility rules. See #38932 for more details.
2830                     let mut res = None;
2831                     if let Def::Struct(def_id) = resolution.base_def() {
2832                         if let Some((ctor_def, ctor_vis))
2833                                 = self.struct_constructors.get(&def_id).cloned() {
2834                             if is_expected(ctor_def) && self.is_accessible(ctor_vis) {
2835                                 let lint = lint::builtin::LEGACY_CONSTRUCTOR_VISIBILITY;
2836                                 self.session.buffer_lint(lint, id, span,
2837                                     "private struct constructors are not usable through \
2838                                      re-exports in outer modules",
2839                                 );
2840                                 res = Some(PathResolution::new(ctor_def));
2841                             }
2842                         }
2843                     }
2844
2845                     res.unwrap_or_else(|| report_errors(self, Some(resolution.base_def())))
2846                 }
2847             }
2848             Some(resolution) if source.defer_to_typeck() => {
2849                 // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
2850                 // or `<T>::A::B`. If `B` should be resolved in value namespace then
2851                 // it needs to be added to the trait map.
2852                 if ns == ValueNS {
2853                     let item_name = path.last().unwrap().node;
2854                     let traits = self.get_traits_containing_item(item_name, ns);
2855                     self.trait_map.insert(id, traits);
2856                 }
2857                 resolution
2858             }
2859             _ => report_errors(self, None)
2860         };
2861
2862         if let PathSource::TraitItem(..) = source {} else {
2863             // Avoid recording definition of `A::B` in `<T as A>::B::C`.
2864             self.record_def(id, resolution);
2865         }
2866         resolution
2867     }
2868
2869     fn type_ascription_suggestion(&self,
2870                                   err: &mut DiagnosticBuilder,
2871                                   base_span: Span) {
2872         debug!("type_ascription_suggetion {:?}", base_span);
2873         let cm = self.session.codemap();
2874         debug!("self.current_type_ascription {:?}", self.current_type_ascription);
2875         if let Some(sp) = self.current_type_ascription.last() {
2876             let mut sp = *sp;
2877             loop {  // try to find the `:`, bail on first non-':'/non-whitespace
2878                 sp = cm.next_point(sp);
2879                 if let Ok(snippet) = cm.span_to_snippet(sp.to(cm.next_point(sp))) {
2880                     debug!("snippet {:?}", snippet);
2881                     let line_sp = cm.lookup_char_pos(sp.hi()).line;
2882                     let line_base_sp = cm.lookup_char_pos(base_span.lo()).line;
2883                     debug!("{:?} {:?}", line_sp, line_base_sp);
2884                     if snippet == ":" {
2885                         err.span_label(base_span,
2886                                        "expecting a type here because of type ascription");
2887                         if line_sp != line_base_sp {
2888                             err.span_suggestion_short(sp,
2889                                                       "did you mean to use `;` here instead?",
2890                                                       ";".to_string());
2891                         }
2892                         break;
2893                     } else if snippet.trim().len() != 0  {
2894                         debug!("tried to find type ascription `:` token, couldn't find it");
2895                         break;
2896                     }
2897                 } else {
2898                     break;
2899                 }
2900             }
2901         }
2902     }
2903
2904     fn self_type_is_available(&mut self, span: Span) -> bool {
2905         let binding = self.resolve_ident_in_lexical_scope(keywords::SelfType.ident(),
2906                                                           TypeNS, false, span);
2907         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
2908     }
2909
2910     fn self_value_is_available(&mut self, ctxt: SyntaxContext, span: Span) -> bool {
2911         let ident = Ident { name: keywords::SelfValue.name(), ctxt: ctxt };
2912         let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, false, span);
2913         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
2914     }
2915
2916     // Resolve in alternative namespaces if resolution in the primary namespace fails.
2917     fn resolve_qpath_anywhere(&mut self,
2918                               id: NodeId,
2919                               qself: Option<&QSelf>,
2920                               path: &[SpannedIdent],
2921                               primary_ns: Namespace,
2922                               span: Span,
2923                               defer_to_typeck: bool,
2924                               global_by_default: bool)
2925                               -> Option<PathResolution> {
2926         let mut fin_res = None;
2927         // FIXME: can't resolve paths in macro namespace yet, macros are
2928         // processed by the little special hack below.
2929         for (i, ns) in [primary_ns, TypeNS, ValueNS, /*MacroNS*/].iter().cloned().enumerate() {
2930             if i == 0 || ns != primary_ns {
2931                 match self.resolve_qpath(id, qself, path, ns, span, global_by_default) {
2932                     // If defer_to_typeck, then resolution > no resolution,
2933                     // otherwise full resolution > partial resolution > no resolution.
2934                     Some(res) if res.unresolved_segments() == 0 || defer_to_typeck =>
2935                         return Some(res),
2936                     res => if fin_res.is_none() { fin_res = res },
2937                 };
2938             }
2939         }
2940         let is_global = self.global_macros.get(&path[0].node.name).cloned()
2941             .map(|binding| binding.get_macro(self).kind() == MacroKind::Bang).unwrap_or(false);
2942         if primary_ns != MacroNS && (is_global ||
2943                                      self.macro_names.contains(&path[0].node.modern())) {
2944             // Return some dummy definition, it's enough for error reporting.
2945             return Some(
2946                 PathResolution::new(Def::Macro(DefId::local(CRATE_DEF_INDEX), MacroKind::Bang))
2947             );
2948         }
2949         fin_res
2950     }
2951
2952     /// Handles paths that may refer to associated items.
2953     fn resolve_qpath(&mut self,
2954                      id: NodeId,
2955                      qself: Option<&QSelf>,
2956                      path: &[SpannedIdent],
2957                      ns: Namespace,
2958                      span: Span,
2959                      global_by_default: bool)
2960                      -> Option<PathResolution> {
2961         if let Some(qself) = qself {
2962             if qself.position == 0 {
2963                 // FIXME: Create some fake resolution that can't possibly be a type.
2964                 return Some(PathResolution::with_unresolved_segments(
2965                     Def::Mod(DefId::local(CRATE_DEF_INDEX)), path.len()
2966                 ));
2967             }
2968             // Make sure `A::B` in `<T as A>::B::C` is a trait item.
2969             let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
2970             let res = self.smart_resolve_path_fragment(id, None, &path[..qself.position + 1],
2971                                                        span, span, PathSource::TraitItem(ns));
2972             return Some(PathResolution::with_unresolved_segments(
2973                 res.base_def(), res.unresolved_segments() + path.len() - qself.position - 1
2974             ));
2975         }
2976
2977         let result = match self.resolve_path(&path, Some(ns), true, span) {
2978             PathResult::NonModule(path_res) => path_res,
2979             PathResult::Module(module) if !module.is_normal() => {
2980                 PathResolution::new(module.def().unwrap())
2981             }
2982             // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
2983             // don't report an error right away, but try to fallback to a primitive type.
2984             // So, we are still able to successfully resolve something like
2985             //
2986             // use std::u8; // bring module u8 in scope
2987             // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
2988             //     u8::max_value() // OK, resolves to associated function <u8>::max_value,
2989             //                     // not to non-existent std::u8::max_value
2990             // }
2991             //
2992             // Such behavior is required for backward compatibility.
2993             // The same fallback is used when `a` resolves to nothing.
2994             PathResult::Module(..) | PathResult::Failed(..)
2995                     if (ns == TypeNS || path.len() > 1) &&
2996                        self.primitive_type_table.primitive_types
2997                            .contains_key(&path[0].node.name) => {
2998                 let prim = self.primitive_type_table.primitive_types[&path[0].node.name];
2999                 match prim {
3000                     TyUint(UintTy::U128) | TyInt(IntTy::I128) => {
3001                         if !self.session.features_untracked().i128_type {
3002                             emit_feature_err(&self.session.parse_sess,
3003                                                 "i128_type", span, GateIssue::Language,
3004                                                 "128-bit type is unstable");
3005
3006                         }
3007                     }
3008                     _ => {}
3009                 }
3010                 PathResolution::with_unresolved_segments(Def::PrimTy(prim), path.len() - 1)
3011             }
3012             PathResult::Module(module) => PathResolution::new(module.def().unwrap()),
3013             PathResult::Failed(span, msg, false) => {
3014                 resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
3015                 err_path_resolution()
3016             }
3017             PathResult::Failed(..) => return None,
3018             PathResult::Indeterminate => bug!("indetermined path result in resolve_qpath"),
3019         };
3020
3021         if path.len() > 1 && !global_by_default && result.base_def() != Def::Err &&
3022            path[0].node.name != keywords::CrateRoot.name() &&
3023            path[0].node.name != keywords::DollarCrate.name() {
3024             let unqualified_result = {
3025                 match self.resolve_path(&[*path.last().unwrap()], Some(ns), false, span) {
3026                     PathResult::NonModule(path_res) => path_res.base_def(),
3027                     PathResult::Module(module) => module.def().unwrap(),
3028                     _ => return Some(result),
3029                 }
3030             };
3031             if result.base_def() == unqualified_result {
3032                 let lint = lint::builtin::UNUSED_QUALIFICATIONS;
3033                 self.session.buffer_lint(lint, id, span, "unnecessary qualification")
3034             }
3035         }
3036
3037         Some(result)
3038     }
3039
3040     fn resolve_path(&mut self,
3041                     path: &[SpannedIdent],
3042                     opt_ns: Option<Namespace>, // `None` indicates a module path
3043                     record_used: bool,
3044                     path_span: Span)
3045                     -> PathResult<'a> {
3046         let mut module = None;
3047         let mut allow_super = true;
3048
3049         for (i, &ident) in path.iter().enumerate() {
3050             debug!("resolve_path ident {} {:?}", i, ident);
3051             let is_last = i == path.len() - 1;
3052             let ns = if is_last { opt_ns.unwrap_or(TypeNS) } else { TypeNS };
3053             let name = ident.node.name;
3054
3055             if i == 0 && ns == TypeNS && name == keywords::SelfValue.name() {
3056                 let mut ctxt = ident.node.ctxt.modern();
3057                 module = Some(self.resolve_self(&mut ctxt, self.current_module));
3058                 continue
3059             } else if allow_super && ns == TypeNS && name == keywords::Super.name() {
3060                 let mut ctxt = ident.node.ctxt.modern();
3061                 let self_module = match i {
3062                     0 => self.resolve_self(&mut ctxt, self.current_module),
3063                     _ => module.unwrap(),
3064                 };
3065                 if let Some(parent) = self_module.parent {
3066                     module = Some(self.resolve_self(&mut ctxt, parent));
3067                     continue
3068                 } else {
3069                     let msg = "There are too many initial `super`s.".to_string();
3070                     return PathResult::Failed(ident.span, msg, false);
3071                 }
3072             } else if i == 0 && ns == TypeNS && name == keywords::Extern.name() {
3073                 continue;
3074             }
3075             allow_super = false;
3076
3077             if ns == TypeNS {
3078                 if (i == 0 && name == keywords::CrateRoot.name()) ||
3079                    (i == 1 && name == keywords::Crate.name() &&
3080                               path[0].node.name == keywords::CrateRoot.name()) {
3081                     // `::a::b` or `::crate::a::b`
3082                     module = Some(self.resolve_crate_root(ident.node.ctxt, false));
3083                     continue
3084                 } else if i == 0 && name == keywords::DollarCrate.name() {
3085                     // `$crate::a::b`
3086                     module = Some(self.resolve_crate_root(ident.node.ctxt, true));
3087                     continue
3088                 } else if i == 1 && !token::Ident(ident.node).is_path_segment_keyword() {
3089                     let prev_name = path[0].node.name;
3090                     if prev_name == keywords::Extern.name() ||
3091                        prev_name == keywords::CrateRoot.name() &&
3092                        self.session.features_untracked().extern_absolute_paths {
3093                         // `::extern_crate::a::b`
3094                         let crate_id = self.crate_loader.resolve_crate_from_path(name, ident.span);
3095                         let crate_root =
3096                             self.get_module(DefId { krate: crate_id, index: CRATE_DEF_INDEX });
3097                         self.populate_module_if_necessary(crate_root);
3098                         module = Some(crate_root);
3099                         continue
3100                     }
3101                 }
3102             }
3103
3104             // Report special messages for path segment keywords in wrong positions.
3105             if name == keywords::CrateRoot.name() && i != 0 ||
3106                name == keywords::DollarCrate.name() && i != 0 ||
3107                name == keywords::SelfValue.name() && i != 0 ||
3108                name == keywords::SelfType.name() && i != 0 ||
3109                name == keywords::Super.name() && i != 0 ||
3110                name == keywords::Extern.name() && i != 0 ||
3111                name == keywords::Crate.name() && i != 1 &&
3112                     path[0].node.name != keywords::CrateRoot.name() {
3113                 let name_str = if name == keywords::CrateRoot.name() {
3114                     format!("crate root")
3115                 } else {
3116                     format!("`{}`", name)
3117                 };
3118                 let msg = if i == 1 && path[0].node.name == keywords::CrateRoot.name() {
3119                     format!("global paths cannot start with {}", name_str)
3120                 } else if i == 0 && name == keywords::Crate.name() {
3121                     format!("{} can only be used in absolute paths", name_str)
3122                 } else {
3123                     format!("{} in paths can only be used in start position", name_str)
3124                 };
3125                 return PathResult::Failed(ident.span, msg, false);
3126             }
3127
3128             let binding = if let Some(module) = module {
3129                 self.resolve_ident_in_module(module, ident.node, ns, false, record_used, path_span)
3130             } else if opt_ns == Some(MacroNS) {
3131                 self.resolve_lexical_macro_path_segment(ident.node, ns, record_used, path_span)
3132                     .map(MacroBinding::binding)
3133             } else {
3134                 match self.resolve_ident_in_lexical_scope(ident.node, ns, record_used, path_span) {
3135                     Some(LexicalScopeBinding::Item(binding)) => Ok(binding),
3136                     Some(LexicalScopeBinding::Def(def))
3137                             if opt_ns == Some(TypeNS) || opt_ns == Some(ValueNS) => {
3138                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3139                             def, path.len() - 1
3140                         ));
3141                     }
3142                     _ => Err(if record_used { Determined } else { Undetermined }),
3143                 }
3144             };
3145
3146             match binding {
3147                 Ok(binding) => {
3148                     let def = binding.def();
3149                     let maybe_assoc = opt_ns != Some(MacroNS) && PathSource::Type.is_expected(def);
3150                     if let Some(next_module) = binding.module() {
3151                         module = Some(next_module);
3152                     } else if def == Def::Err {
3153                         return PathResult::NonModule(err_path_resolution());
3154                     } else if opt_ns.is_some() && (is_last || maybe_assoc) {
3155                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3156                             def, path.len() - i - 1
3157                         ));
3158                     } else {
3159                         return PathResult::Failed(ident.span,
3160                                                   format!("Not a module `{}`", ident.node),
3161                                                   is_last);
3162                     }
3163                 }
3164                 Err(Undetermined) => return PathResult::Indeterminate,
3165                 Err(Determined) => {
3166                     if let Some(module) = module {
3167                         if opt_ns.is_some() && !module.is_normal() {
3168                             return PathResult::NonModule(PathResolution::with_unresolved_segments(
3169                                 module.def().unwrap(), path.len() - i
3170                             ));
3171                         }
3172                     }
3173                     let msg = if module.and_then(ModuleData::def) == self.graph_root.def() {
3174                         let is_mod = |def| match def { Def::Mod(..) => true, _ => false };
3175                         let mut candidates =
3176                             self.lookup_import_candidates(name, TypeNS, is_mod);
3177                         candidates.sort_by_key(|c| (c.path.segments.len(), c.path.to_string()));
3178                         if let Some(candidate) = candidates.get(0) {
3179                             format!("Did you mean `{}`?", candidate.path)
3180                         } else {
3181                             format!("Maybe a missing `extern crate {};`?", ident.node)
3182                         }
3183                     } else if i == 0 {
3184                         format!("Use of undeclared type or module `{}`", ident.node)
3185                     } else {
3186                         format!("Could not find `{}` in `{}`", ident.node, path[i - 1].node)
3187                     };
3188                     return PathResult::Failed(ident.span, msg, is_last);
3189                 }
3190             }
3191         }
3192
3193         PathResult::Module(module.unwrap_or(self.graph_root))
3194     }
3195
3196     // Resolve a local definition, potentially adjusting for closures.
3197     fn adjust_local_def(&mut self,
3198                         ns: Namespace,
3199                         rib_index: usize,
3200                         mut def: Def,
3201                         record_used: bool,
3202                         span: Span) -> Def {
3203         let ribs = &self.ribs[ns][rib_index + 1..];
3204
3205         // An invalid forward use of a type parameter from a previous default.
3206         if let ForwardTyParamBanRibKind = self.ribs[ns][rib_index].kind {
3207             if record_used {
3208                 resolve_error(self, span, ResolutionError::ForwardDeclaredTyParam);
3209             }
3210             assert_eq!(def, Def::Err);
3211             return Def::Err;
3212         }
3213
3214         match def {
3215             Def::Upvar(..) => {
3216                 span_bug!(span, "unexpected {:?} in bindings", def)
3217             }
3218             Def::Local(node_id) => {
3219                 for rib in ribs {
3220                     match rib.kind {
3221                         NormalRibKind | ModuleRibKind(..) | MacroDefinition(..) |
3222                         ForwardTyParamBanRibKind => {
3223                             // Nothing to do. Continue.
3224                         }
3225                         ClosureRibKind(function_id) => {
3226                             let prev_def = def;
3227
3228                             let seen = self.freevars_seen
3229                                            .entry(function_id)
3230                                            .or_insert_with(|| NodeMap());
3231                             if let Some(&index) = seen.get(&node_id) {
3232                                 def = Def::Upvar(node_id, index, function_id);
3233                                 continue;
3234                             }
3235                             let vec = self.freevars
3236                                           .entry(function_id)
3237                                           .or_insert_with(|| vec![]);
3238                             let depth = vec.len();
3239                             def = Def::Upvar(node_id, depth, function_id);
3240
3241                             if record_used {
3242                                 vec.push(Freevar {
3243                                     def: prev_def,
3244                                     span,
3245                                 });
3246                                 seen.insert(node_id, depth);
3247                             }
3248                         }
3249                         ItemRibKind | TraitOrImplItemRibKind => {
3250                             // This was an attempt to access an upvar inside a
3251                             // named function item. This is not allowed, so we
3252                             // report an error.
3253                             if record_used {
3254                                 resolve_error(self, span,
3255                                         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem);
3256                             }
3257                             return Def::Err;
3258                         }
3259                         ConstantItemRibKind => {
3260                             // Still doesn't deal with upvars
3261                             if record_used {
3262                                 resolve_error(self, span,
3263                                         ResolutionError::AttemptToUseNonConstantValueInConstant);
3264                             }
3265                             return Def::Err;
3266                         }
3267                     }
3268                 }
3269             }
3270             Def::TyParam(..) | Def::SelfTy(..) => {
3271                 for rib in ribs {
3272                     match rib.kind {
3273                         NormalRibKind | TraitOrImplItemRibKind | ClosureRibKind(..) |
3274                         ModuleRibKind(..) | MacroDefinition(..) | ForwardTyParamBanRibKind |
3275                         ConstantItemRibKind => {
3276                             // Nothing to do. Continue.
3277                         }
3278                         ItemRibKind => {
3279                             // This was an attempt to use a type parameter outside
3280                             // its scope.
3281                             if record_used {
3282                                 resolve_error(self, span,
3283                                               ResolutionError::TypeParametersFromOuterFunction);
3284                             }
3285                             return Def::Err;
3286                         }
3287                     }
3288                 }
3289             }
3290             _ => {}
3291         }
3292         return def;
3293     }
3294
3295     fn lookup_assoc_candidate<FilterFn>(&mut self,
3296                                         ident: Ident,
3297                                         ns: Namespace,
3298                                         filter_fn: FilterFn)
3299                                         -> Option<AssocSuggestion>
3300         where FilterFn: Fn(Def) -> bool
3301     {
3302         fn extract_node_id(t: &Ty) -> Option<NodeId> {
3303             match t.node {
3304                 TyKind::Path(None, _) => Some(t.id),
3305                 TyKind::Rptr(_, ref mut_ty) => extract_node_id(&mut_ty.ty),
3306                 // This doesn't handle the remaining `Ty` variants as they are not
3307                 // that commonly the self_type, it might be interesting to provide
3308                 // support for those in future.
3309                 _ => None,
3310             }
3311         }
3312
3313         // Fields are generally expected in the same contexts as locals.
3314         if filter_fn(Def::Local(ast::DUMMY_NODE_ID)) {
3315             if let Some(node_id) = self.current_self_type.as_ref().and_then(extract_node_id) {
3316                 // Look for a field with the same name in the current self_type.
3317                 if let Some(resolution) = self.def_map.get(&node_id) {
3318                     match resolution.base_def() {
3319                         Def::Struct(did) | Def::Union(did)
3320                                 if resolution.unresolved_segments() == 0 => {
3321                             if let Some(field_names) = self.field_names.get(&did) {
3322                                 if field_names.iter().any(|&field_name| ident.name == field_name) {
3323                                     return Some(AssocSuggestion::Field);
3324                                 }
3325                             }
3326                         }
3327                         _ => {}
3328                     }
3329                 }
3330             }
3331         }
3332
3333         // Look for associated items in the current trait.
3334         if let Some((module, _)) = self.current_trait_ref {
3335             if let Ok(binding) =
3336                     self.resolve_ident_in_module(module, ident, ns, false, false, module.span) {
3337                 let def = binding.def();
3338                 if filter_fn(def) {
3339                     return Some(if self.has_self.contains(&def.def_id()) {
3340                         AssocSuggestion::MethodWithSelf
3341                     } else {
3342                         AssocSuggestion::AssocItem
3343                     });
3344                 }
3345             }
3346         }
3347
3348         None
3349     }
3350
3351     fn lookup_typo_candidate<FilterFn>(&mut self,
3352                                        path: &[SpannedIdent],
3353                                        ns: Namespace,
3354                                        filter_fn: FilterFn,
3355                                        span: Span)
3356                                        -> Option<Symbol>
3357         where FilterFn: Fn(Def) -> bool
3358     {
3359         let add_module_candidates = |module: Module, names: &mut Vec<Name>| {
3360             for (&(ident, _), resolution) in module.resolutions.borrow().iter() {
3361                 if let Some(binding) = resolution.borrow().binding {
3362                     if filter_fn(binding.def()) {
3363                         names.push(ident.name);
3364                     }
3365                 }
3366             }
3367         };
3368
3369         let mut names = Vec::new();
3370         if path.len() == 1 {
3371             // Search in lexical scope.
3372             // Walk backwards up the ribs in scope and collect candidates.
3373             for rib in self.ribs[ns].iter().rev() {
3374                 // Locals and type parameters
3375                 for (ident, def) in &rib.bindings {
3376                     if filter_fn(*def) {
3377                         names.push(ident.name);
3378                     }
3379                 }
3380                 // Items in scope
3381                 if let ModuleRibKind(module) = rib.kind {
3382                     // Items from this module
3383                     add_module_candidates(module, &mut names);
3384
3385                     if let ModuleKind::Block(..) = module.kind {
3386                         // We can see through blocks
3387                     } else {
3388                         // Items from the prelude
3389                         if let Some(prelude) = self.prelude {
3390                             if !module.no_implicit_prelude {
3391                                 add_module_candidates(prelude, &mut names);
3392                             }
3393                         }
3394                         break;
3395                     }
3396                 }
3397             }
3398             // Add primitive types to the mix
3399             if filter_fn(Def::PrimTy(TyBool)) {
3400                 for (name, _) in &self.primitive_type_table.primitive_types {
3401                     names.push(*name);
3402                 }
3403             }
3404         } else {
3405             // Search in module.
3406             let mod_path = &path[..path.len() - 1];
3407             if let PathResult::Module(module) = self.resolve_path(mod_path, Some(TypeNS),
3408                                                                   false, span) {
3409                 add_module_candidates(module, &mut names);
3410             }
3411         }
3412
3413         let name = path[path.len() - 1].node.name;
3414         // Make sure error reporting is deterministic.
3415         names.sort_by_key(|name| name.as_str());
3416         match find_best_match_for_name(names.iter(), &name.as_str(), None) {
3417             Some(found) if found != name => Some(found),
3418             _ => None,
3419         }
3420     }
3421
3422     fn with_resolved_label<F>(&mut self, label: Option<Label>, id: NodeId, f: F)
3423         where F: FnOnce(&mut Resolver)
3424     {
3425         if let Some(label) = label {
3426             let def = Def::Label(id);
3427             self.with_label_rib(|this| {
3428                 this.label_ribs.last_mut().unwrap().bindings.insert(label.ident, def);
3429                 f(this);
3430             });
3431         } else {
3432             f(self);
3433         }
3434     }
3435
3436     fn resolve_labeled_block(&mut self, label: Option<Label>, id: NodeId, block: &Block) {
3437         self.with_resolved_label(label, id, |this| this.visit_block(block));
3438     }
3439
3440     fn resolve_expr(&mut self, expr: &Expr, parent: Option<&Expr>) {
3441         // First, record candidate traits for this expression if it could
3442         // result in the invocation of a method call.
3443
3444         self.record_candidate_traits_for_expr_if_necessary(expr);
3445
3446         // Next, resolve the node.
3447         match expr.node {
3448             ExprKind::Path(ref qself, ref path) => {
3449                 self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
3450                 visit::walk_expr(self, expr);
3451             }
3452
3453             ExprKind::Struct(ref path, ..) => {
3454                 self.smart_resolve_path(expr.id, None, path, PathSource::Struct);
3455                 visit::walk_expr(self, expr);
3456             }
3457
3458             ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
3459                 match self.search_label(label.ident, |rib, id| rib.bindings.get(&id).cloned()) {
3460                     None => {
3461                         // Search again for close matches...
3462                         // Picks the first label that is "close enough", which is not necessarily
3463                         // the closest match
3464                         let close_match = self.search_label(label.ident, |rib, ident| {
3465                             let names = rib.bindings.iter().map(|(id, _)| &id.name);
3466                             find_best_match_for_name(names, &*ident.name.as_str(), None)
3467                         });
3468                         self.record_def(expr.id, err_path_resolution());
3469                         resolve_error(self,
3470                                       label.span,
3471                                       ResolutionError::UndeclaredLabel(&label.ident.name.as_str(),
3472                                                                        close_match));
3473                     }
3474                     Some(def @ Def::Label(_)) => {
3475                         // Since this def is a label, it is never read.
3476                         self.record_def(expr.id, PathResolution::new(def));
3477                     }
3478                     Some(_) => {
3479                         span_bug!(expr.span, "label wasn't mapped to a label def!");
3480                     }
3481                 }
3482
3483                 // visit `break` argument if any
3484                 visit::walk_expr(self, expr);
3485             }
3486
3487             ExprKind::IfLet(ref pats, ref subexpression, ref if_block, ref optional_else) => {
3488                 self.visit_expr(subexpression);
3489
3490                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
3491                 let mut bindings_list = FxHashMap();
3492                 for pat in pats {
3493                     self.resolve_pattern(pat, PatternSource::IfLet, &mut bindings_list);
3494                 }
3495                 // This has to happen *after* we determine which pat_idents are variants
3496                 self.check_consistent_bindings(pats);
3497                 self.visit_block(if_block);
3498                 self.ribs[ValueNS].pop();
3499
3500                 optional_else.as_ref().map(|expr| self.visit_expr(expr));
3501             }
3502
3503             ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),
3504
3505             ExprKind::While(ref subexpression, ref block, label) => {
3506                 self.with_resolved_label(label, expr.id, |this| {
3507                     this.visit_expr(subexpression);
3508                     this.visit_block(block);
3509                 });
3510             }
3511
3512             ExprKind::WhileLet(ref pats, ref subexpression, ref block, label) => {
3513                 self.with_resolved_label(label, expr.id, |this| {
3514                     this.visit_expr(subexpression);
3515                     this.ribs[ValueNS].push(Rib::new(NormalRibKind));
3516                     let mut bindings_list = FxHashMap();
3517                     for pat in pats {
3518                         this.resolve_pattern(pat, PatternSource::WhileLet, &mut bindings_list);
3519                     }
3520                     // This has to happen *after* we determine which pat_idents are variants
3521                     this.check_consistent_bindings(pats);
3522                     this.visit_block(block);
3523                     this.ribs[ValueNS].pop();
3524                 });
3525             }
3526
3527             ExprKind::ForLoop(ref pattern, ref subexpression, ref block, label) => {
3528                 self.visit_expr(subexpression);
3529                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
3530                 self.resolve_pattern(pattern, PatternSource::For, &mut FxHashMap());
3531
3532                 self.resolve_labeled_block(label, expr.id, block);
3533
3534                 self.ribs[ValueNS].pop();
3535             }
3536
3537             // Equivalent to `visit::walk_expr` + passing some context to children.
3538             ExprKind::Field(ref subexpression, _) => {
3539                 self.resolve_expr(subexpression, Some(expr));
3540             }
3541             ExprKind::MethodCall(ref segment, ref arguments) => {
3542                 let mut arguments = arguments.iter();
3543                 self.resolve_expr(arguments.next().unwrap(), Some(expr));
3544                 for argument in arguments {
3545                     self.resolve_expr(argument, None);
3546                 }
3547                 self.visit_path_segment(expr.span, segment);
3548             }
3549
3550             ExprKind::Repeat(ref element, ref count) => {
3551                 self.visit_expr(element);
3552                 self.with_constant_rib(|this| {
3553                     this.visit_expr(count);
3554                 });
3555             }
3556             ExprKind::Call(ref callee, ref arguments) => {
3557                 self.resolve_expr(callee, Some(expr));
3558                 for argument in arguments {
3559                     self.resolve_expr(argument, None);
3560                 }
3561             }
3562             ExprKind::Type(ref type_expr, _) => {
3563                 self.current_type_ascription.push(type_expr.span);
3564                 visit::walk_expr(self, expr);
3565                 self.current_type_ascription.pop();
3566             }
3567             _ => {
3568                 visit::walk_expr(self, expr);
3569             }
3570         }
3571     }
3572
3573     fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &Expr) {
3574         match expr.node {
3575             ExprKind::Field(_, name) => {
3576                 // FIXME(#6890): Even though you can't treat a method like a
3577                 // field, we need to add any trait methods we find that match
3578                 // the field name so that we can do some nice error reporting
3579                 // later on in typeck.
3580                 let traits = self.get_traits_containing_item(name.node, ValueNS);
3581                 self.trait_map.insert(expr.id, traits);
3582             }
3583             ExprKind::MethodCall(ref segment, ..) => {
3584                 debug!("(recording candidate traits for expr) recording traits for {}",
3585                        expr.id);
3586                 let traits = self.get_traits_containing_item(segment.identifier, ValueNS);
3587                 self.trait_map.insert(expr.id, traits);
3588             }
3589             _ => {
3590                 // Nothing to do.
3591             }
3592         }
3593     }
3594
3595     fn get_traits_containing_item(&mut self, mut ident: Ident, ns: Namespace)
3596                                   -> Vec<TraitCandidate> {
3597         debug!("(getting traits containing item) looking for '{}'", ident.name);
3598
3599         let mut found_traits = Vec::new();
3600         // Look for the current trait.
3601         if let Some((module, _)) = self.current_trait_ref {
3602             if self.resolve_ident_in_module(module, ident, ns, false, false, module.span).is_ok() {
3603                 let def_id = module.def_id().unwrap();
3604                 found_traits.push(TraitCandidate { def_id: def_id, import_id: None });
3605             }
3606         }
3607
3608         ident.ctxt = ident.ctxt.modern();
3609         let mut search_module = self.current_module;
3610         loop {
3611             self.get_traits_in_module_containing_item(ident, ns, search_module, &mut found_traits);
3612             search_module =
3613                 unwrap_or!(self.hygienic_lexical_parent(search_module, &mut ident.ctxt), break);
3614         }
3615
3616         if let Some(prelude) = self.prelude {
3617             if !search_module.no_implicit_prelude {
3618                 self.get_traits_in_module_containing_item(ident, ns, prelude, &mut found_traits);
3619             }
3620         }
3621
3622         found_traits
3623     }
3624
3625     fn get_traits_in_module_containing_item(&mut self,
3626                                             ident: Ident,
3627                                             ns: Namespace,
3628                                             module: Module<'a>,
3629                                             found_traits: &mut Vec<TraitCandidate>) {
3630         let mut traits = module.traits.borrow_mut();
3631         if traits.is_none() {
3632             let mut collected_traits = Vec::new();
3633             module.for_each_child(|name, ns, binding| {
3634                 if ns != TypeNS { return }
3635                 if let Def::Trait(_) = binding.def() {
3636                     collected_traits.push((name, binding));
3637                 }
3638             });
3639             *traits = Some(collected_traits.into_boxed_slice());
3640         }
3641
3642         for &(trait_name, binding) in traits.as_ref().unwrap().iter() {
3643             let module = binding.module().unwrap();
3644             let mut ident = ident;
3645             if ident.ctxt.glob_adjust(module.expansion, binding.span.ctxt().modern()).is_none() {
3646                 continue
3647             }
3648             if self.resolve_ident_in_module_unadjusted(module, ident, ns, false, false, module.span)
3649                    .is_ok() {
3650                 let import_id = match binding.kind {
3651                     NameBindingKind::Import { directive, .. } => {
3652                         self.maybe_unused_trait_imports.insert(directive.id);
3653                         self.add_to_glob_map(directive.id, trait_name);
3654                         Some(directive.id)
3655                     }
3656                     _ => None,
3657                 };
3658                 let trait_def_id = module.def_id().unwrap();
3659                 found_traits.push(TraitCandidate { def_id: trait_def_id, import_id: import_id });
3660             }
3661         }
3662     }
3663
3664     /// When name resolution fails, this method can be used to look up candidate
3665     /// entities with the expected name. It allows filtering them using the
3666     /// supplied predicate (which should be used to only accept the types of
3667     /// definitions expected e.g. traits). The lookup spans across all crates.
3668     ///
3669     /// NOTE: The method does not look into imports, but this is not a problem,
3670     /// since we report the definitions (thus, the de-aliased imports).
3671     fn lookup_import_candidates<FilterFn>(&mut self,
3672                                           lookup_name: Name,
3673                                           namespace: Namespace,
3674                                           filter_fn: FilterFn)
3675                                           -> Vec<ImportSuggestion>
3676         where FilterFn: Fn(Def) -> bool
3677     {
3678         let mut candidates = Vec::new();
3679         let mut worklist = Vec::new();
3680         let mut seen_modules = FxHashSet();
3681         worklist.push((self.graph_root, Vec::new(), false));
3682
3683         while let Some((in_module,
3684                         path_segments,
3685                         in_module_is_extern)) = worklist.pop() {
3686             self.populate_module_if_necessary(in_module);
3687
3688             // We have to visit module children in deterministic order to avoid
3689             // instabilities in reported imports (#43552).
3690             in_module.for_each_child_stable(|ident, ns, name_binding| {
3691                 // avoid imports entirely
3692                 if name_binding.is_import() && !name_binding.is_extern_crate() { return; }
3693                 // avoid non-importable candidates as well
3694                 if !name_binding.is_importable() { return; }
3695
3696                 // collect results based on the filter function
3697                 if ident.name == lookup_name && ns == namespace {
3698                     if filter_fn(name_binding.def()) {
3699                         // create the path
3700                         let mut segms = path_segments.clone();
3701                         segms.push(ast::PathSegment::from_ident(ident, name_binding.span));
3702                         let path = Path {
3703                             span: name_binding.span,
3704                             segments: segms,
3705                         };
3706                         // the entity is accessible in the following cases:
3707                         // 1. if it's defined in the same crate, it's always
3708                         // accessible (since private entities can be made public)
3709                         // 2. if it's defined in another crate, it's accessible
3710                         // only if both the module is public and the entity is
3711                         // declared as public (due to pruning, we don't explore
3712                         // outside crate private modules => no need to check this)
3713                         if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
3714                             candidates.push(ImportSuggestion { path: path });
3715                         }
3716                     }
3717                 }
3718
3719                 // collect submodules to explore
3720                 if let Some(module) = name_binding.module() {
3721                     // form the path
3722                     let mut path_segments = path_segments.clone();
3723                     path_segments.push(ast::PathSegment::from_ident(ident, name_binding.span));
3724
3725                     if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
3726                         // add the module to the lookup
3727                         let is_extern = in_module_is_extern || name_binding.is_extern_crate();
3728                         if seen_modules.insert(module.def_id().unwrap()) {
3729                             worklist.push((module, path_segments, is_extern));
3730                         }
3731                     }
3732                 }
3733             })
3734         }
3735
3736         candidates
3737     }
3738
3739     fn find_module(&mut self,
3740                    module_def: Def)
3741                    -> Option<(Module<'a>, ImportSuggestion)>
3742     {
3743         let mut result = None;
3744         let mut worklist = Vec::new();
3745         let mut seen_modules = FxHashSet();
3746         worklist.push((self.graph_root, Vec::new()));
3747
3748         while let Some((in_module, path_segments)) = worklist.pop() {
3749             // abort if the module is already found
3750             if let Some(_) = result { break; }
3751
3752             self.populate_module_if_necessary(in_module);
3753
3754             in_module.for_each_child_stable(|ident, _, name_binding| {
3755                 // abort if the module is already found or if name_binding is private external
3756                 if result.is_some() || !name_binding.vis.is_visible_locally() {
3757                     return
3758                 }
3759                 if let Some(module) = name_binding.module() {
3760                     // form the path
3761                     let mut path_segments = path_segments.clone();
3762                     path_segments.push(ast::PathSegment::from_ident(ident, name_binding.span));
3763                     if module.def() == Some(module_def) {
3764                         let path = Path {
3765                             span: name_binding.span,
3766                             segments: path_segments,
3767                         };
3768                         result = Some((module, ImportSuggestion { path: path }));
3769                     } else {
3770                         // add the module to the lookup
3771                         if seen_modules.insert(module.def_id().unwrap()) {
3772                             worklist.push((module, path_segments));
3773                         }
3774                     }
3775                 }
3776             });
3777         }
3778
3779         result
3780     }
3781
3782     fn collect_enum_variants(&mut self, enum_def: Def) -> Option<Vec<Path>> {
3783         if let Def::Enum(..) = enum_def {} else {
3784             panic!("Non-enum def passed to collect_enum_variants: {:?}", enum_def)
3785         }
3786
3787         self.find_module(enum_def).map(|(enum_module, enum_import_suggestion)| {
3788             self.populate_module_if_necessary(enum_module);
3789
3790             let mut variants = Vec::new();
3791             enum_module.for_each_child_stable(|ident, _, name_binding| {
3792                 if let Def::Variant(..) = name_binding.def() {
3793                     let mut segms = enum_import_suggestion.path.segments.clone();
3794                     segms.push(ast::PathSegment::from_ident(ident, name_binding.span));
3795                     variants.push(Path {
3796                         span: name_binding.span,
3797                         segments: segms,
3798                     });
3799                 }
3800             });
3801             variants
3802         })
3803     }
3804
3805     fn record_def(&mut self, node_id: NodeId, resolution: PathResolution) {
3806         debug!("(recording def) recording {:?} for {}", resolution, node_id);
3807         if let Some(prev_res) = self.def_map.insert(node_id, resolution) {
3808             panic!("path resolved multiple times ({:?} before, {:?} now)", prev_res, resolution);
3809         }
3810     }
3811
3812     fn resolve_visibility(&mut self, vis: &ast::Visibility) -> ty::Visibility {
3813         match vis.node {
3814             ast::VisibilityKind::Public => ty::Visibility::Public,
3815             ast::VisibilityKind::Crate(..) => {
3816                 ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX))
3817             }
3818             ast::VisibilityKind::Inherited => {
3819                 ty::Visibility::Restricted(self.current_module.normal_ancestor_id)
3820             }
3821             ast::VisibilityKind::Restricted { ref path, id, .. } => {
3822                 let def = self.smart_resolve_path(id, None, path,
3823                                                   PathSource::Visibility).base_def();
3824                 if def == Def::Err {
3825                     ty::Visibility::Public
3826                 } else {
3827                     let vis = ty::Visibility::Restricted(def.def_id());
3828                     if self.is_accessible(vis) {
3829                         vis
3830                     } else {
3831                         self.session.span_err(path.span, "visibilities can only be restricted \
3832                                                           to ancestor modules");
3833                         ty::Visibility::Public
3834                     }
3835                 }
3836             }
3837         }
3838     }
3839
3840     fn is_accessible(&self, vis: ty::Visibility) -> bool {
3841         vis.is_accessible_from(self.current_module.normal_ancestor_id, self)
3842     }
3843
3844     fn is_accessible_from(&self, vis: ty::Visibility, module: Module<'a>) -> bool {
3845         vis.is_accessible_from(module.normal_ancestor_id, self)
3846     }
3847
3848     fn report_errors(&mut self, krate: &Crate) {
3849         self.report_shadowing_errors();
3850         self.report_with_use_injections(krate);
3851         self.report_proc_macro_import(krate);
3852         let mut reported_spans = FxHashSet();
3853
3854         for &AmbiguityError { span, name, b1, b2, lexical, legacy } in &self.ambiguity_errors {
3855             if !reported_spans.insert(span) { continue }
3856             let participle = |binding: &NameBinding| {
3857                 if binding.is_import() { "imported" } else { "defined" }
3858             };
3859             let msg1 = format!("`{}` could refer to the name {} here", name, participle(b1));
3860             let msg2 = format!("`{}` could also refer to the name {} here", name, participle(b2));
3861             let note = if b1.expansion == Mark::root() || !lexical && b1.is_glob_import() {
3862                 format!("consider adding an explicit import of `{}` to disambiguate", name)
3863             } else if let Def::Macro(..) = b1.def() {
3864                 format!("macro-expanded {} do not shadow",
3865                         if b1.is_import() { "macro imports" } else { "macros" })
3866             } else {
3867                 format!("macro-expanded {} do not shadow when used in a macro invocation path",
3868                         if b1.is_import() { "imports" } else { "items" })
3869             };
3870             if legacy {
3871                 let id = match b2.kind {
3872                     NameBindingKind::Import { directive, .. } => directive.id,
3873                     _ => unreachable!(),
3874                 };
3875                 let mut span = MultiSpan::from_span(span);
3876                 span.push_span_label(b1.span, msg1);
3877                 span.push_span_label(b2.span, msg2);
3878                 let msg = format!("`{}` is ambiguous", name);
3879                 self.session.buffer_lint(lint::builtin::LEGACY_IMPORTS, id, span, &msg);
3880             } else {
3881                 let mut err =
3882                     struct_span_err!(self.session, span, E0659, "`{}` is ambiguous", name);
3883                 err.span_note(b1.span, &msg1);
3884                 match b2.def() {
3885                     Def::Macro(..) if b2.span == DUMMY_SP =>
3886                         err.note(&format!("`{}` is also a builtin macro", name)),
3887                     _ => err.span_note(b2.span, &msg2),
3888                 };
3889                 err.note(&note).emit();
3890             }
3891         }
3892
3893         for &PrivacyError(span, name, binding) in &self.privacy_errors {
3894             if !reported_spans.insert(span) { continue }
3895             span_err!(self.session, span, E0603, "{} `{}` is private", binding.descr(), name);
3896         }
3897     }
3898
3899     fn report_with_use_injections(&mut self, krate: &Crate) {
3900         for UseError { mut err, candidates, node_id, better } in self.use_injections.drain(..) {
3901             let (span, found_use) = UsePlacementFinder::check(krate, node_id);
3902             if !candidates.is_empty() {
3903                 show_candidates(&mut err, span, &candidates, better, found_use);
3904             }
3905             err.emit();
3906         }
3907     }
3908
3909     fn report_shadowing_errors(&mut self) {
3910         for (ident, scope) in replace(&mut self.lexical_macro_resolutions, Vec::new()) {
3911             self.resolve_legacy_scope(scope, ident, true);
3912         }
3913
3914         let mut reported_errors = FxHashSet();
3915         for binding in replace(&mut self.disallowed_shadowing, Vec::new()) {
3916             if self.resolve_legacy_scope(&binding.parent, binding.ident, false).is_some() &&
3917                reported_errors.insert((binding.ident, binding.span)) {
3918                 let msg = format!("`{}` is already in scope", binding.ident);
3919                 self.session.struct_span_err(binding.span, &msg)
3920                     .note("macro-expanded `macro_rules!`s may not shadow \
3921                            existing macros (see RFC 1560)")
3922                     .emit();
3923             }
3924         }
3925     }
3926
3927     fn report_conflict<'b>(&mut self,
3928                        parent: Module,
3929                        ident: Ident,
3930                        ns: Namespace,
3931                        new_binding: &NameBinding<'b>,
3932                        old_binding: &NameBinding<'b>) {
3933         // Error on the second of two conflicting names
3934         if old_binding.span.lo() > new_binding.span.lo() {
3935             return self.report_conflict(parent, ident, ns, old_binding, new_binding);
3936         }
3937
3938         let container = match parent.kind {
3939             ModuleKind::Def(Def::Mod(_), _) => "module",
3940             ModuleKind::Def(Def::Trait(_), _) => "trait",
3941             ModuleKind::Block(..) => "block",
3942             _ => "enum",
3943         };
3944
3945         let old_noun = match old_binding.is_import() {
3946             true => "import",
3947             false => "definition",
3948         };
3949
3950         let new_participle = match new_binding.is_import() {
3951             true => "imported",
3952             false => "defined",
3953         };
3954
3955         let (name, span) = (ident.name, self.session.codemap().def_span(new_binding.span));
3956
3957         if let Some(s) = self.name_already_seen.get(&name) {
3958             if s == &span {
3959                 return;
3960             }
3961         }
3962
3963         let old_kind = match (ns, old_binding.module()) {
3964             (ValueNS, _) => "value",
3965             (MacroNS, _) => "macro",
3966             (TypeNS, _) if old_binding.is_extern_crate() => "extern crate",
3967             (TypeNS, Some(module)) if module.is_normal() => "module",
3968             (TypeNS, Some(module)) if module.is_trait() => "trait",
3969             (TypeNS, _) => "type",
3970         };
3971
3972         let namespace = match ns {
3973             ValueNS => "value",
3974             MacroNS => "macro",
3975             TypeNS => "type",
3976         };
3977
3978         let msg = format!("the name `{}` is defined multiple times", name);
3979
3980         let mut err = match (old_binding.is_extern_crate(), new_binding.is_extern_crate()) {
3981             (true, true) => struct_span_err!(self.session, span, E0259, "{}", msg),
3982             (true, _) | (_, true) => match new_binding.is_import() && old_binding.is_import() {
3983                 true => struct_span_err!(self.session, span, E0254, "{}", msg),
3984                 false => struct_span_err!(self.session, span, E0260, "{}", msg),
3985             },
3986             _ => match (old_binding.is_import(), new_binding.is_import()) {
3987                 (false, false) => struct_span_err!(self.session, span, E0428, "{}", msg),
3988                 (true, true) => struct_span_err!(self.session, span, E0252, "{}", msg),
3989                 _ => struct_span_err!(self.session, span, E0255, "{}", msg),
3990             },
3991         };
3992
3993         err.note(&format!("`{}` must be defined only once in the {} namespace of this {}",
3994                           name,
3995                           namespace,
3996                           container));
3997
3998         err.span_label(span, format!("`{}` re{} here", name, new_participle));
3999         if old_binding.span != DUMMY_SP {
4000             err.span_label(self.session.codemap().def_span(old_binding.span),
4001                            format!("previous {} of the {} `{}` here", old_noun, old_kind, name));
4002         }
4003
4004         // See https://github.com/rust-lang/rust/issues/32354
4005         if old_binding.is_import() || new_binding.is_import() {
4006             let binding = if new_binding.is_import() && new_binding.span != DUMMY_SP {
4007                 new_binding
4008             } else {
4009                 old_binding
4010             };
4011
4012             let cm = self.session.codemap();
4013             let rename_msg = "You can use `as` to change the binding name of the import";
4014
4015             if let (Ok(snippet), false) = (cm.span_to_snippet(binding.span),
4016                                            binding.is_renamed_extern_crate()) {
4017                 let suggested_name = if name.as_str().chars().next().unwrap().is_uppercase() {
4018                     format!("Other{}", name)
4019                 } else {
4020                     format!("other_{}", name)
4021                 };
4022
4023                 err.span_suggestion(binding.span,
4024                                     rename_msg,
4025                                     if snippet.ends_with(';') {
4026                                         format!("{} as {};",
4027                                                 &snippet[..snippet.len()-1],
4028                                                 suggested_name)
4029                                     } else {
4030                                         format!("{} as {}", snippet, suggested_name)
4031                                     });
4032             } else {
4033                 err.span_label(binding.span, rename_msg);
4034             }
4035         }
4036
4037         err.emit();
4038         self.name_already_seen.insert(name, span);
4039     }
4040
4041     fn warn_legacy_self_import(&self, directive: &'a ImportDirective<'a>) {
4042         let (id, span) = (directive.id, directive.span);
4043         let msg = "`self` no longer imports values";
4044         self.session.buffer_lint(lint::builtin::LEGACY_IMPORTS, id, span, msg);
4045     }
4046
4047     fn check_proc_macro_attrs(&mut self, attrs: &[ast::Attribute]) {
4048         if self.proc_macro_enabled { return; }
4049
4050         for attr in attrs {
4051             if attr.path.segments.len() > 1 {
4052                 continue
4053             }
4054             let ident = attr.path.segments[0].identifier;
4055             let result = self.resolve_lexical_macro_path_segment(ident,
4056                                                                  MacroNS,
4057                                                                  false,
4058                                                                  attr.path.span);
4059             if let Ok(binding) = result {
4060                 if let SyntaxExtension::AttrProcMacro(..) = *binding.binding().get_macro(self) {
4061                     attr::mark_known(attr);
4062
4063                     let msg = "attribute procedural macros are experimental";
4064                     let feature = "proc_macro";
4065
4066                     feature_err(&self.session.parse_sess, feature,
4067                                 attr.span, GateIssue::Language, msg)
4068                         .span_label(binding.span(), "procedural macro imported here")
4069                         .emit();
4070                 }
4071             }
4072         }
4073     }
4074 }
4075
4076 fn is_self_type(path: &[SpannedIdent], namespace: Namespace) -> bool {
4077     namespace == TypeNS && path.len() == 1 && path[0].node.name == keywords::SelfType.name()
4078 }
4079
4080 fn is_self_value(path: &[SpannedIdent], namespace: Namespace) -> bool {
4081     namespace == ValueNS && path.len() == 1 && path[0].node.name == keywords::SelfValue.name()
4082 }
4083
4084 fn names_to_string(idents: &[SpannedIdent]) -> String {
4085     let mut result = String::new();
4086     for (i, ident) in idents.iter()
4087                             .filter(|i| i.node.name != keywords::CrateRoot.name())
4088                             .enumerate() {
4089         if i > 0 {
4090             result.push_str("::");
4091         }
4092         result.push_str(&ident.node.name.as_str());
4093     }
4094     result
4095 }
4096
4097 fn path_names_to_string(path: &Path) -> String {
4098     names_to_string(&path.segments.iter()
4099                         .map(|seg| respan(seg.span, seg.identifier))
4100                         .collect::<Vec<_>>())
4101 }
4102
4103 /// Get the path for an enum and the variant from an `ImportSuggestion` for an enum variant.
4104 fn import_candidate_to_paths(suggestion: &ImportSuggestion) -> (Span, String, String) {
4105     let variant_path = &suggestion.path;
4106     let variant_path_string = path_names_to_string(variant_path);
4107
4108     let path_len = suggestion.path.segments.len();
4109     let enum_path = ast::Path {
4110         span: suggestion.path.span,
4111         segments: suggestion.path.segments[0..path_len - 1].to_vec(),
4112     };
4113     let enum_path_string = path_names_to_string(&enum_path);
4114
4115     (suggestion.path.span, variant_path_string, enum_path_string)
4116 }
4117
4118
4119 /// When an entity with a given name is not available in scope, we search for
4120 /// entities with that name in all crates. This method allows outputting the
4121 /// results of this search in a programmer-friendly way
4122 fn show_candidates(err: &mut DiagnosticBuilder,
4123                    // This is `None` if all placement locations are inside expansions
4124                    span: Option<Span>,
4125                    candidates: &[ImportSuggestion],
4126                    better: bool,
4127                    found_use: bool) {
4128
4129     // we want consistent results across executions, but candidates are produced
4130     // by iterating through a hash map, so make sure they are ordered:
4131     let mut path_strings: Vec<_> =
4132         candidates.into_iter().map(|c| path_names_to_string(&c.path)).collect();
4133     path_strings.sort();
4134
4135     let better = if better { "better " } else { "" };
4136     let msg_diff = match path_strings.len() {
4137         1 => " is found in another module, you can import it",
4138         _ => "s are found in other modules, you can import them",
4139     };
4140     let msg = format!("possible {}candidate{} into scope", better, msg_diff);
4141
4142     if let Some(span) = span {
4143         for candidate in &mut path_strings {
4144             // produce an additional newline to separate the new use statement
4145             // from the directly following item.
4146             let additional_newline = if found_use {
4147                 ""
4148             } else {
4149                 "\n"
4150             };
4151             *candidate = format!("use {};\n{}", candidate, additional_newline);
4152         }
4153
4154         err.span_suggestions(span, &msg, path_strings);
4155     } else {
4156         let mut msg = msg;
4157         msg.push(':');
4158         for candidate in path_strings {
4159             msg.push('\n');
4160             msg.push_str(&candidate);
4161         }
4162     }
4163 }
4164
4165 /// A somewhat inefficient routine to obtain the name of a module.
4166 fn module_to_string(module: Module) -> Option<String> {
4167     let mut names = Vec::new();
4168
4169     fn collect_mod(names: &mut Vec<Ident>, module: Module) {
4170         if let ModuleKind::Def(_, name) = module.kind {
4171             if let Some(parent) = module.parent {
4172                 names.push(Ident::with_empty_ctxt(name));
4173                 collect_mod(names, parent);
4174             }
4175         } else {
4176             // danger, shouldn't be ident?
4177             names.push(Ident::from_str("<opaque>"));
4178             collect_mod(names, module.parent.unwrap());
4179         }
4180     }
4181     collect_mod(&mut names, module);
4182
4183     if names.is_empty() {
4184         return None;
4185     }
4186     Some(names_to_string(&names.into_iter()
4187                         .rev()
4188                         .map(|n| dummy_spanned(n))
4189                         .collect::<Vec<_>>()))
4190 }
4191
4192 fn err_path_resolution() -> PathResolution {
4193     PathResolution::new(Def::Err)
4194 }
4195
4196 #[derive(PartialEq,Copy, Clone)]
4197 pub enum MakeGlobMap {
4198     Yes,
4199     No,
4200 }
4201
4202 __build_diagnostic_array! { librustc_resolve, DIAGNOSTICS }