]> git.lizzy.rs Git - rust.git/blob - src/librustc_resolve/lib.rs
Rollup merge of #40521 - TimNN:panic-free-shift, r=alexcrichton
[rust.git] / src / librustc_resolve / lib.rs
1 // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 #![crate_name = "rustc_resolve"]
12 #![unstable(feature = "rustc_private", issue = "27812")]
13 #![crate_type = "dylib"]
14 #![crate_type = "rlib"]
15 #![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
16       html_favicon_url = "https://doc.rust-lang.org/favicon.ico",
17       html_root_url = "https://doc.rust-lang.org/nightly/")]
18 #![deny(warnings)]
19
20 #![feature(associated_consts)]
21 #![feature(rustc_diagnostic_macros)]
22 #![feature(rustc_private)]
23 #![feature(staged_api)]
24
25 #[macro_use]
26 extern crate log;
27 #[macro_use]
28 extern crate syntax;
29 extern crate syntax_pos;
30 extern crate rustc_errors as errors;
31 extern crate arena;
32 #[macro_use]
33 extern crate rustc;
34
35 use self::Namespace::*;
36 use self::TypeParameters::*;
37 use self::RibKind::*;
38
39 use rustc::hir::map::{Definitions, DefCollector};
40 use rustc::hir::{self, PrimTy, TyBool, TyChar, TyFloat, TyInt, TyUint, TyStr};
41 use rustc::middle::cstore::CrateLoader;
42 use rustc::session::Session;
43 use rustc::lint;
44 use rustc::hir::def::*;
45 use rustc::hir::def_id::{CrateNum, CRATE_DEF_INDEX, LOCAL_CRATE, DefId};
46 use rustc::ty;
47 use rustc::hir::{Freevar, FreevarMap, TraitCandidate, TraitMap, GlobMap};
48 use rustc::util::nodemap::{NodeMap, NodeSet, FxHashMap, FxHashSet, DefIdMap};
49
50 use syntax::ext::hygiene::{Mark, SyntaxContext};
51 use syntax::ast::{self, Name, NodeId, Ident, SpannedIdent, FloatTy, IntTy, UintTy};
52 use syntax::ext::base::SyntaxExtension;
53 use syntax::ext::base::Determinacy::{Determined, Undetermined};
54 use syntax::ext::base::MacroKind;
55 use syntax::symbol::{Symbol, keywords};
56 use syntax::util::lev_distance::find_best_match_for_name;
57
58 use syntax::visit::{self, FnKind, Visitor};
59 use syntax::attr;
60 use syntax::ast::{Arm, BindingMode, Block, Crate, Expr, ExprKind};
61 use syntax::ast::{FnDecl, ForeignItem, ForeignItemKind, Generics};
62 use syntax::ast::{Item, ItemKind, ImplItem, ImplItemKind};
63 use syntax::ast::{Local, Mutability, Pat, PatKind, Path};
64 use syntax::ast::{QSelf, TraitItemKind, TraitRef, Ty, TyKind};
65 use syntax::feature_gate::{feature_err, emit_feature_err, GateIssue};
66
67 use syntax_pos::{Span, DUMMY_SP, MultiSpan};
68 use errors::DiagnosticBuilder;
69
70 use std::cell::{Cell, RefCell};
71 use std::cmp;
72 use std::collections::BTreeSet;
73 use std::fmt;
74 use std::mem::replace;
75 use std::rc::Rc;
76
77 use resolve_imports::{ImportDirective, ImportDirectiveSubclass, NameResolution, ImportResolver};
78 use macros::{InvocationData, LegacyBinding, LegacyScope};
79
80 // NB: This module needs to be declared first so diagnostics are
81 // registered before they are used.
82 mod diagnostics;
83
84 mod macros;
85 mod check_unused;
86 mod build_reduced_graph;
87 mod resolve_imports;
88
89 /// A free importable items suggested in case of resolution failure.
90 struct ImportSuggestion {
91     path: Path,
92 }
93
94 /// A field or associated item from self type suggested in case of resolution failure.
95 enum AssocSuggestion {
96     Field,
97     MethodWithSelf,
98     AssocItem,
99 }
100
101 #[derive(Eq)]
102 struct BindingError {
103     name: Name,
104     origin: BTreeSet<Span>,
105     target: BTreeSet<Span>,
106 }
107
108 impl PartialOrd for BindingError {
109     fn partial_cmp(&self, other: &BindingError) -> Option<cmp::Ordering> {
110         Some(self.cmp(other))
111     }
112 }
113
114 impl PartialEq for BindingError {
115     fn eq(&self, other: &BindingError) -> bool {
116         self.name == other.name
117     }
118 }
119
120 impl Ord for BindingError {
121     fn cmp(&self, other: &BindingError) -> cmp::Ordering {
122         self.name.cmp(&other.name)
123     }
124 }
125
126 enum ResolutionError<'a> {
127     /// error E0401: can't use type parameters from outer function
128     TypeParametersFromOuterFunction,
129     /// error E0402: cannot use an outer type parameter in this context
130     OuterTypeParameterContext,
131     /// error E0403: the name is already used for a type parameter in this type parameter list
132     NameAlreadyUsedInTypeParameterList(Name, &'a Span),
133     /// error E0407: method is not a member of trait
134     MethodNotMemberOfTrait(Name, &'a str),
135     /// error E0437: type is not a member of trait
136     TypeNotMemberOfTrait(Name, &'a str),
137     /// error E0438: const is not a member of trait
138     ConstNotMemberOfTrait(Name, &'a str),
139     /// error E0408: variable `{}` is not bound in all patterns
140     VariableNotBoundInPattern(&'a BindingError),
141     /// error E0409: variable `{}` is bound in inconsistent ways within the same match arm
142     VariableBoundWithDifferentMode(Name, Span),
143     /// error E0415: identifier is bound more than once in this parameter list
144     IdentifierBoundMoreThanOnceInParameterList(&'a str),
145     /// error E0416: identifier is bound more than once in the same pattern
146     IdentifierBoundMoreThanOnceInSamePattern(&'a str),
147     /// error E0426: use of undeclared label
148     UndeclaredLabel(&'a str),
149     /// error E0429: `self` imports are only allowed within a { } list
150     SelfImportsOnlyAllowedWithin,
151     /// error E0430: `self` import can only appear once in the list
152     SelfImportCanOnlyAppearOnceInTheList,
153     /// error E0431: `self` import can only appear in an import list with a non-empty prefix
154     SelfImportOnlyInImportListWithNonEmptyPrefix,
155     /// error E0432: unresolved import
156     UnresolvedImport(Option<(&'a str, &'a str)>),
157     /// error E0433: failed to resolve
158     FailedToResolve(&'a str),
159     /// error E0434: can't capture dynamic environment in a fn item
160     CannotCaptureDynamicEnvironmentInFnItem,
161     /// error E0435: attempt to use a non-constant value in a constant
162     AttemptToUseNonConstantValueInConstant,
163     /// error E0530: X bindings cannot shadow Ys
164     BindingShadowsSomethingUnacceptable(&'a str, Name, &'a NameBinding<'a>),
165     /// error E0128: type parameters with a default cannot use forward declared identifiers
166     ForwardDeclaredTyParam,
167 }
168
169 fn resolve_error<'sess, 'a>(resolver: &'sess Resolver,
170                             span: Span,
171                             resolution_error: ResolutionError<'a>) {
172     resolve_struct_error(resolver, span, resolution_error).emit();
173 }
174
175 fn resolve_struct_error<'sess, 'a>(resolver: &'sess Resolver,
176                                    span: Span,
177                                    resolution_error: ResolutionError<'a>)
178                                    -> DiagnosticBuilder<'sess> {
179     match resolution_error {
180         ResolutionError::TypeParametersFromOuterFunction => {
181             let mut err = struct_span_err!(resolver.session,
182                                            span,
183                                            E0401,
184                                            "can't use type parameters from outer function; \
185                                            try using a local type parameter instead");
186             err.span_label(span, &format!("use of type variable from outer function"));
187             err
188         }
189         ResolutionError::OuterTypeParameterContext => {
190             struct_span_err!(resolver.session,
191                              span,
192                              E0402,
193                              "cannot use an outer type parameter in this context")
194         }
195         ResolutionError::NameAlreadyUsedInTypeParameterList(name, first_use_span) => {
196              let mut err = struct_span_err!(resolver.session,
197                                             span,
198                                             E0403,
199                                             "the name `{}` is already used for a type parameter \
200                                             in this type parameter list",
201                                             name);
202              err.span_label(span, &format!("already used"));
203              err.span_label(first_use_span.clone(), &format!("first use of `{}`", name));
204              err
205         }
206         ResolutionError::MethodNotMemberOfTrait(method, trait_) => {
207             let mut err = struct_span_err!(resolver.session,
208                                            span,
209                                            E0407,
210                                            "method `{}` is not a member of trait `{}`",
211                                            method,
212                                            trait_);
213             err.span_label(span, &format!("not a member of trait `{}`", trait_));
214             err
215         }
216         ResolutionError::TypeNotMemberOfTrait(type_, trait_) => {
217             let mut err = struct_span_err!(resolver.session,
218                              span,
219                              E0437,
220                              "type `{}` is not a member of trait `{}`",
221                              type_,
222                              trait_);
223             err.span_label(span, &format!("not a member of trait `{}`", trait_));
224             err
225         }
226         ResolutionError::ConstNotMemberOfTrait(const_, trait_) => {
227             let mut err = struct_span_err!(resolver.session,
228                              span,
229                              E0438,
230                              "const `{}` is not a member of trait `{}`",
231                              const_,
232                              trait_);
233             err.span_label(span, &format!("not a member of trait `{}`", trait_));
234             err
235         }
236         ResolutionError::VariableNotBoundInPattern(binding_error) => {
237             let target_sp = binding_error.target.iter().map(|x| *x).collect::<Vec<_>>();
238             let msp = MultiSpan::from_spans(target_sp.clone());
239             let msg = format!("variable `{}` is not bound in all patterns", binding_error.name);
240             let mut err = resolver.session.struct_span_err_with_code(msp, &msg, "E0408");
241             for sp in target_sp {
242                 err.span_label(sp, &format!("pattern doesn't bind `{}`", binding_error.name));
243             }
244             let origin_sp = binding_error.origin.iter().map(|x| *x).collect::<Vec<_>>();
245             for sp in origin_sp {
246                 err.span_label(sp, &"variable not in all patterns");
247             }
248             err
249         }
250         ResolutionError::VariableBoundWithDifferentMode(variable_name,
251                                                         first_binding_span) => {
252             let mut err = struct_span_err!(resolver.session,
253                              span,
254                              E0409,
255                              "variable `{}` is bound in inconsistent \
256                              ways within the same match arm",
257                              variable_name);
258             err.span_label(span, &format!("bound in different ways"));
259             err.span_label(first_binding_span, &format!("first binding"));
260             err
261         }
262         ResolutionError::IdentifierBoundMoreThanOnceInParameterList(identifier) => {
263             let mut err = struct_span_err!(resolver.session,
264                              span,
265                              E0415,
266                              "identifier `{}` is bound more than once in this parameter list",
267                              identifier);
268             err.span_label(span, &format!("used as parameter more than once"));
269             err
270         }
271         ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(identifier) => {
272             let mut err = struct_span_err!(resolver.session,
273                              span,
274                              E0416,
275                              "identifier `{}` is bound more than once in the same pattern",
276                              identifier);
277             err.span_label(span, &format!("used in a pattern more than once"));
278             err
279         }
280         ResolutionError::UndeclaredLabel(name) => {
281             let mut err = struct_span_err!(resolver.session,
282                                            span,
283                                            E0426,
284                                            "use of undeclared label `{}`",
285                                            name);
286             err.span_label(span, &format!("undeclared label `{}`",&name));
287             err
288         }
289         ResolutionError::SelfImportsOnlyAllowedWithin => {
290             struct_span_err!(resolver.session,
291                              span,
292                              E0429,
293                              "{}",
294                              "`self` imports are only allowed within a { } list")
295         }
296         ResolutionError::SelfImportCanOnlyAppearOnceInTheList => {
297             struct_span_err!(resolver.session,
298                              span,
299                              E0430,
300                              "`self` import can only appear once in the list")
301         }
302         ResolutionError::SelfImportOnlyInImportListWithNonEmptyPrefix => {
303             struct_span_err!(resolver.session,
304                              span,
305                              E0431,
306                              "`self` import can only appear in an import list with a \
307                               non-empty prefix")
308         }
309         ResolutionError::UnresolvedImport(name) => {
310             let msg = match name {
311                 Some((n, _)) => format!("unresolved import `{}`", n),
312                 None => "unresolved import".to_owned(),
313             };
314             let mut err = struct_span_err!(resolver.session, span, E0432, "{}", msg);
315             if let Some((_, p)) = name {
316                 err.span_label(span, &p);
317             }
318             err
319         }
320         ResolutionError::FailedToResolve(msg) => {
321             let mut err = struct_span_err!(resolver.session, span, E0433,
322                                            "failed to resolve. {}", msg);
323             err.span_label(span, &msg);
324             err
325         }
326         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem => {
327             struct_span_err!(resolver.session,
328                              span,
329                              E0434,
330                              "{}",
331                              "can't capture dynamic environment in a fn item; use the || { ... } \
332                               closure form instead")
333         }
334         ResolutionError::AttemptToUseNonConstantValueInConstant => {
335             let mut err = struct_span_err!(resolver.session,
336                              span,
337                              E0435,
338                              "attempt to use a non-constant value in a constant");
339             err.span_label(span, &format!("non-constant used with constant"));
340             err
341         }
342         ResolutionError::BindingShadowsSomethingUnacceptable(what_binding, name, binding) => {
343             let shadows_what = PathResolution::new(binding.def()).kind_name();
344             let mut err = struct_span_err!(resolver.session,
345                                            span,
346                                            E0530,
347                                            "{}s cannot shadow {}s", what_binding, shadows_what);
348             err.span_label(span, &format!("cannot be named the same as a {}", shadows_what));
349             let participle = if binding.is_import() { "imported" } else { "defined" };
350             let msg = &format!("a {} `{}` is {} here", shadows_what, name, participle);
351             err.span_label(binding.span, msg);
352             err
353         }
354         ResolutionError::ForwardDeclaredTyParam => {
355             let mut err = struct_span_err!(resolver.session, span, E0128,
356                                            "type parameters with a default cannot use \
357                                             forward declared identifiers");
358             err.span_label(span, &format!("defaulted type parameters \
359                                            cannot be forward declared"));
360             err
361         }
362     }
363 }
364
365 #[derive(Copy, Clone, Debug)]
366 struct BindingInfo {
367     span: Span,
368     binding_mode: BindingMode,
369 }
370
371 // Map from the name in a pattern to its binding mode.
372 type BindingMap = FxHashMap<Ident, BindingInfo>;
373
374 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
375 enum PatternSource {
376     Match,
377     IfLet,
378     WhileLet,
379     Let,
380     For,
381     FnParam,
382 }
383
384 impl PatternSource {
385     fn is_refutable(self) -> bool {
386         match self {
387             PatternSource::Match | PatternSource::IfLet | PatternSource::WhileLet => true,
388             PatternSource::Let | PatternSource::For | PatternSource::FnParam  => false,
389         }
390     }
391     fn descr(self) -> &'static str {
392         match self {
393             PatternSource::Match => "match binding",
394             PatternSource::IfLet => "if let binding",
395             PatternSource::WhileLet => "while let binding",
396             PatternSource::Let => "let binding",
397             PatternSource::For => "for binding",
398             PatternSource::FnParam => "function parameter",
399         }
400     }
401 }
402
403 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
404 enum PathSource<'a> {
405     // Type paths `Path`.
406     Type,
407     // Trait paths in bounds or impls.
408     Trait,
409     // Expression paths `path`, with optional parent context.
410     Expr(Option<&'a Expr>),
411     // Paths in path patterns `Path`.
412     Pat,
413     // Paths in struct expressions and patterns `Path { .. }`.
414     Struct,
415     // Paths in tuple struct patterns `Path(..)`.
416     TupleStruct,
417     // `m::A::B` in `<T as m::A>::B::C`.
418     TraitItem(Namespace),
419     // Path in `pub(path)`
420     Visibility,
421     // Path in `use a::b::{...};`
422     ImportPrefix,
423 }
424
425 impl<'a> PathSource<'a> {
426     fn namespace(self) -> Namespace {
427         match self {
428             PathSource::Type | PathSource::Trait | PathSource::Struct |
429             PathSource::Visibility | PathSource::ImportPrefix => TypeNS,
430             PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct => ValueNS,
431             PathSource::TraitItem(ns) => ns,
432         }
433     }
434
435     fn global_by_default(self) -> bool {
436         match self {
437             PathSource::Visibility | PathSource::ImportPrefix => true,
438             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
439             PathSource::Struct | PathSource::TupleStruct |
440             PathSource::Trait | PathSource::TraitItem(..) => false,
441         }
442     }
443
444     fn defer_to_typeck(self) -> bool {
445         match self {
446             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
447             PathSource::Struct | PathSource::TupleStruct => true,
448             PathSource::Trait | PathSource::TraitItem(..) |
449             PathSource::Visibility | PathSource::ImportPrefix => false,
450         }
451     }
452
453     fn descr_expected(self) -> &'static str {
454         match self {
455             PathSource::Type => "type",
456             PathSource::Trait => "trait",
457             PathSource::Pat => "unit struct/variant or constant",
458             PathSource::Struct => "struct, variant or union type",
459             PathSource::TupleStruct => "tuple struct/variant",
460             PathSource::Visibility => "module",
461             PathSource::ImportPrefix => "module or enum",
462             PathSource::TraitItem(ns) => match ns {
463                 TypeNS => "associated type",
464                 ValueNS => "method or associated constant",
465                 MacroNS => bug!("associated macro"),
466             },
467             PathSource::Expr(parent) => match parent.map(|p| &p.node) {
468                 // "function" here means "anything callable" rather than `Def::Fn`,
469                 // this is not precise but usually more helpful than just "value".
470                 Some(&ExprKind::Call(..)) => "function",
471                 _ => "value",
472             },
473         }
474     }
475
476     fn is_expected(self, def: Def) -> bool {
477         match self {
478             PathSource::Type => match def {
479                 Def::Struct(..) | Def::Union(..) | Def::Enum(..) |
480                 Def::Trait(..) | Def::TyAlias(..) | Def::AssociatedTy(..) |
481                 Def::PrimTy(..) | Def::TyParam(..) | Def::SelfTy(..) => true,
482                 _ => false,
483             },
484             PathSource::Trait => match def {
485                 Def::Trait(..) => true,
486                 _ => false,
487             },
488             PathSource::Expr(..) => match def {
489                 Def::StructCtor(_, CtorKind::Const) | Def::StructCtor(_, CtorKind::Fn) |
490                 Def::VariantCtor(_, CtorKind::Const) | Def::VariantCtor(_, CtorKind::Fn) |
491                 Def::Const(..) | Def::Static(..) | Def::Local(..) | Def::Upvar(..) |
492                 Def::Fn(..) | Def::Method(..) | Def::AssociatedConst(..) => true,
493                 _ => false,
494             },
495             PathSource::Pat => match def {
496                 Def::StructCtor(_, CtorKind::Const) |
497                 Def::VariantCtor(_, CtorKind::Const) |
498                 Def::Const(..) | Def::AssociatedConst(..) => true,
499                 _ => false,
500             },
501             PathSource::TupleStruct => match def {
502                 Def::StructCtor(_, CtorKind::Fn) | Def::VariantCtor(_, CtorKind::Fn) => true,
503                 _ => false,
504             },
505             PathSource::Struct => match def {
506                 Def::Struct(..) | Def::Union(..) | Def::Variant(..) |
507                 Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => true,
508                 _ => false,
509             },
510             PathSource::TraitItem(ns) => match def {
511                 Def::AssociatedConst(..) | Def::Method(..) if ns == ValueNS => true,
512                 Def::AssociatedTy(..) if ns == TypeNS => true,
513                 _ => false,
514             },
515             PathSource::ImportPrefix => match def {
516                 Def::Mod(..) | Def::Enum(..) => true,
517                 _ => false,
518             },
519             PathSource::Visibility => match def {
520                 Def::Mod(..) => true,
521                 _ => false,
522             },
523         }
524     }
525
526     fn error_code(self, has_unexpected_resolution: bool) -> &'static str {
527         __diagnostic_used!(E0404);
528         __diagnostic_used!(E0405);
529         __diagnostic_used!(E0412);
530         __diagnostic_used!(E0422);
531         __diagnostic_used!(E0423);
532         __diagnostic_used!(E0425);
533         __diagnostic_used!(E0531);
534         __diagnostic_used!(E0532);
535         __diagnostic_used!(E0573);
536         __diagnostic_used!(E0574);
537         __diagnostic_used!(E0575);
538         __diagnostic_used!(E0576);
539         __diagnostic_used!(E0577);
540         __diagnostic_used!(E0578);
541         match (self, has_unexpected_resolution) {
542             (PathSource::Trait, true) => "E0404",
543             (PathSource::Trait, false) => "E0405",
544             (PathSource::Type, true) => "E0573",
545             (PathSource::Type, false) => "E0412",
546             (PathSource::Struct, true) => "E0574",
547             (PathSource::Struct, false) => "E0422",
548             (PathSource::Expr(..), true) => "E0423",
549             (PathSource::Expr(..), false) => "E0425",
550             (PathSource::Pat, true) | (PathSource::TupleStruct, true) => "E0532",
551             (PathSource::Pat, false) | (PathSource::TupleStruct, false) => "E0531",
552             (PathSource::TraitItem(..), true) => "E0575",
553             (PathSource::TraitItem(..), false) => "E0576",
554             (PathSource::Visibility, true) | (PathSource::ImportPrefix, true) => "E0577",
555             (PathSource::Visibility, false) | (PathSource::ImportPrefix, false) => "E0578",
556         }
557     }
558 }
559
560 #[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
561 pub enum Namespace {
562     TypeNS,
563     ValueNS,
564     MacroNS,
565 }
566
567 #[derive(Clone, Default, Debug)]
568 pub struct PerNS<T> {
569     value_ns: T,
570     type_ns: T,
571     macro_ns: Option<T>,
572 }
573
574 impl<T> ::std::ops::Index<Namespace> for PerNS<T> {
575     type Output = T;
576     fn index(&self, ns: Namespace) -> &T {
577         match ns {
578             ValueNS => &self.value_ns,
579             TypeNS => &self.type_ns,
580             MacroNS => self.macro_ns.as_ref().unwrap(),
581         }
582     }
583 }
584
585 impl<T> ::std::ops::IndexMut<Namespace> for PerNS<T> {
586     fn index_mut(&mut self, ns: Namespace) -> &mut T {
587         match ns {
588             ValueNS => &mut self.value_ns,
589             TypeNS => &mut self.type_ns,
590             MacroNS => self.macro_ns.as_mut().unwrap(),
591         }
592     }
593 }
594
595 impl<'a, 'tcx> Visitor<'tcx> for Resolver<'a> {
596     fn visit_item(&mut self, item: &'tcx Item) {
597         self.resolve_item(item);
598     }
599     fn visit_arm(&mut self, arm: &'tcx Arm) {
600         self.resolve_arm(arm);
601     }
602     fn visit_block(&mut self, block: &'tcx Block) {
603         self.resolve_block(block);
604     }
605     fn visit_expr(&mut self, expr: &'tcx Expr) {
606         self.resolve_expr(expr, None);
607     }
608     fn visit_local(&mut self, local: &'tcx Local) {
609         self.resolve_local(local);
610     }
611     fn visit_ty(&mut self, ty: &'tcx Ty) {
612         if let TyKind::Path(ref qself, ref path) = ty.node {
613             self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
614         } else if let TyKind::ImplicitSelf = ty.node {
615             let self_ty = keywords::SelfType.ident();
616             let def = self.resolve_ident_in_lexical_scope(self_ty, TypeNS, Some(ty.span))
617                           .map_or(Def::Err, |d| d.def());
618             self.record_def(ty.id, PathResolution::new(def));
619         } else if let TyKind::Array(ref element, ref length) = ty.node {
620             self.visit_ty(element);
621             self.with_constant_rib(|this| {
622                 this.visit_expr(length);
623             });
624             return;
625         }
626         visit::walk_ty(self, ty);
627     }
628     fn visit_poly_trait_ref(&mut self,
629                             tref: &'tcx ast::PolyTraitRef,
630                             m: &'tcx ast::TraitBoundModifier) {
631         self.smart_resolve_path(tref.trait_ref.ref_id, None,
632                                 &tref.trait_ref.path, PathSource::Trait);
633         visit::walk_poly_trait_ref(self, tref, m);
634     }
635     fn visit_variant(&mut self,
636                      variant: &'tcx ast::Variant,
637                      generics: &'tcx Generics,
638                      item_id: ast::NodeId) {
639         if let Some(ref dis_expr) = variant.node.disr_expr {
640             // resolve the discriminator expr as a constant
641             self.with_constant_rib(|this| {
642                 this.visit_expr(dis_expr);
643             });
644         }
645
646         // `visit::walk_variant` without the discriminant expression.
647         self.visit_variant_data(&variant.node.data,
648                                 variant.node.name,
649                                 generics,
650                                 item_id,
651                                 variant.span);
652     }
653     fn visit_foreign_item(&mut self, foreign_item: &'tcx ForeignItem) {
654         let type_parameters = match foreign_item.node {
655             ForeignItemKind::Fn(_, ref generics) => {
656                 HasTypeParameters(generics, ItemRibKind)
657             }
658             ForeignItemKind::Static(..) => NoTypeParameters,
659         };
660         self.with_type_parameter_rib(type_parameters, |this| {
661             visit::walk_foreign_item(this, foreign_item);
662         });
663     }
664     fn visit_fn(&mut self,
665                 function_kind: FnKind<'tcx>,
666                 declaration: &'tcx FnDecl,
667                 _: Span,
668                 node_id: NodeId) {
669         let rib_kind = match function_kind {
670             FnKind::ItemFn(_, generics, ..) => {
671                 self.visit_generics(generics);
672                 ItemRibKind
673             }
674             FnKind::Method(_, sig, _, _) => {
675                 self.visit_generics(&sig.generics);
676                 MethodRibKind(!sig.decl.has_self())
677             }
678             FnKind::Closure(_) => ClosureRibKind(node_id),
679         };
680
681         // Create a value rib for the function.
682         self.ribs[ValueNS].push(Rib::new(rib_kind));
683
684         // Create a label rib for the function.
685         self.label_ribs.push(Rib::new(rib_kind));
686
687         // Add each argument to the rib.
688         let mut bindings_list = FxHashMap();
689         for argument in &declaration.inputs {
690             self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
691
692             self.visit_ty(&argument.ty);
693
694             debug!("(resolving function) recorded argument");
695         }
696         visit::walk_fn_ret_ty(self, &declaration.output);
697
698         // Resolve the function body.
699         match function_kind {
700             FnKind::ItemFn(.., body) |
701             FnKind::Method(.., body) => {
702                 self.visit_block(body);
703             }
704             FnKind::Closure(body) => {
705                 self.visit_expr(body);
706             }
707         };
708
709         debug!("(resolving function) leaving function");
710
711         self.label_ribs.pop();
712         self.ribs[ValueNS].pop();
713     }
714     fn visit_generics(&mut self, generics: &'tcx Generics) {
715         // For type parameter defaults, we have to ban access
716         // to following type parameters, as the Substs can only
717         // provide previous type parameters as they're built.
718         let mut default_ban_rib = Rib::new(ForwardTyParamBanRibKind);
719         default_ban_rib.bindings.extend(generics.ty_params.iter()
720             .skip_while(|p| p.default.is_none())
721             .map(|p| (Ident::with_empty_ctxt(p.ident.name), Def::Err)));
722
723         for param in &generics.ty_params {
724             for bound in &param.bounds {
725                 self.visit_ty_param_bound(bound);
726             }
727
728             if let Some(ref ty) = param.default {
729                 self.ribs[TypeNS].push(default_ban_rib);
730                 self.visit_ty(ty);
731                 default_ban_rib = self.ribs[TypeNS].pop().unwrap();
732             }
733
734             // Allow all following defaults to refer to this type parameter.
735             default_ban_rib.bindings.remove(&Ident::with_empty_ctxt(param.ident.name));
736         }
737         for lt in &generics.lifetimes { self.visit_lifetime_def(lt); }
738         for p in &generics.where_clause.predicates { self.visit_where_predicate(p); }
739     }
740 }
741
742 pub type ErrorMessage = Option<(Span, String)>;
743
744 #[derive(Copy, Clone)]
745 enum TypeParameters<'a, 'b> {
746     NoTypeParameters,
747     HasTypeParameters(// Type parameters.
748                       &'b Generics,
749
750                       // The kind of the rib used for type parameters.
751                       RibKind<'a>),
752 }
753
754 // The rib kind controls the translation of local
755 // definitions (`Def::Local`) to upvars (`Def::Upvar`).
756 #[derive(Copy, Clone, Debug)]
757 enum RibKind<'a> {
758     // No translation needs to be applied.
759     NormalRibKind,
760
761     // We passed through a closure scope at the given node ID.
762     // Translate upvars as appropriate.
763     ClosureRibKind(NodeId /* func id */),
764
765     // We passed through an impl or trait and are now in one of its
766     // methods. Allow references to ty params that impl or trait
767     // binds. Disallow any other upvars (including other ty params that are
768     // upvars).
769     //
770     // The boolean value represents the fact that this method is static or not.
771     MethodRibKind(bool),
772
773     // We passed through an item scope. Disallow upvars.
774     ItemRibKind,
775
776     // We're in a constant item. Can't refer to dynamic stuff.
777     ConstantItemRibKind,
778
779     // We passed through a module.
780     ModuleRibKind(Module<'a>),
781
782     // We passed through a `macro_rules!` statement
783     MacroDefinition(DefId),
784
785     // All bindings in this rib are type parameters that can't be used
786     // from the default of a type parameter because they're not declared
787     // before said type parameter. Also see the `visit_generics` override.
788     ForwardTyParamBanRibKind,
789 }
790
791 /// One local scope.
792 #[derive(Debug)]
793 struct Rib<'a> {
794     bindings: FxHashMap<Ident, Def>,
795     kind: RibKind<'a>,
796 }
797
798 impl<'a> Rib<'a> {
799     fn new(kind: RibKind<'a>) -> Rib<'a> {
800         Rib {
801             bindings: FxHashMap(),
802             kind: kind,
803         }
804     }
805 }
806
807 enum LexicalScopeBinding<'a> {
808     Item(&'a NameBinding<'a>),
809     Def(Def),
810 }
811
812 impl<'a> LexicalScopeBinding<'a> {
813     fn item(self) -> Option<&'a NameBinding<'a>> {
814         match self {
815             LexicalScopeBinding::Item(binding) => Some(binding),
816             _ => None,
817         }
818     }
819
820     fn def(self) -> Def {
821         match self {
822             LexicalScopeBinding::Item(binding) => binding.def(),
823             LexicalScopeBinding::Def(def) => def,
824         }
825     }
826 }
827
828 #[derive(Clone)]
829 enum PathResult<'a> {
830     Module(Module<'a>),
831     NonModule(PathResolution),
832     Indeterminate,
833     Failed(String, bool /* is the error from the last segment? */),
834 }
835
836 enum ModuleKind {
837     Block(NodeId),
838     Def(Def, Name),
839 }
840
841 /// One node in the tree of modules.
842 pub struct ModuleData<'a> {
843     parent: Option<Module<'a>>,
844     kind: ModuleKind,
845
846     // The def id of the closest normal module (`mod`) ancestor (including this module).
847     normal_ancestor_id: DefId,
848
849     resolutions: RefCell<FxHashMap<(Ident, Namespace), &'a RefCell<NameResolution<'a>>>>,
850     legacy_macro_resolutions: RefCell<Vec<(Mark, Ident, Span, MacroKind)>>,
851     macro_resolutions: RefCell<Vec<(Box<[Ident]>, Span)>>,
852
853     // Macro invocations that can expand into items in this module.
854     unresolved_invocations: RefCell<FxHashSet<Mark>>,
855
856     no_implicit_prelude: bool,
857
858     glob_importers: RefCell<Vec<&'a ImportDirective<'a>>>,
859     globs: RefCell<Vec<&'a ImportDirective<'a>>>,
860
861     // Used to memoize the traits in this module for faster searches through all traits in scope.
862     traits: RefCell<Option<Box<[(Ident, &'a NameBinding<'a>)]>>>,
863
864     // Whether this module is populated. If not populated, any attempt to
865     // access the children must be preceded with a
866     // `populate_module_if_necessary` call.
867     populated: Cell<bool>,
868 }
869
870 pub type Module<'a> = &'a ModuleData<'a>;
871
872 impl<'a> ModuleData<'a> {
873     fn new(parent: Option<Module<'a>>, kind: ModuleKind, normal_ancestor_id: DefId) -> Self {
874         ModuleData {
875             parent: parent,
876             kind: kind,
877             normal_ancestor_id: normal_ancestor_id,
878             resolutions: RefCell::new(FxHashMap()),
879             legacy_macro_resolutions: RefCell::new(Vec::new()),
880             macro_resolutions: RefCell::new(Vec::new()),
881             unresolved_invocations: RefCell::new(FxHashSet()),
882             no_implicit_prelude: false,
883             glob_importers: RefCell::new(Vec::new()),
884             globs: RefCell::new((Vec::new())),
885             traits: RefCell::new(None),
886             populated: Cell::new(normal_ancestor_id.is_local()),
887         }
888     }
889
890     fn for_each_child<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
891         for (&(ident, ns), name_resolution) in self.resolutions.borrow().iter() {
892             name_resolution.borrow().binding.map(|binding| f(ident, ns, binding));
893         }
894     }
895
896     fn def(&self) -> Option<Def> {
897         match self.kind {
898             ModuleKind::Def(def, _) => Some(def),
899             _ => None,
900         }
901     }
902
903     fn def_id(&self) -> Option<DefId> {
904         self.def().as_ref().map(Def::def_id)
905     }
906
907     // `self` resolves to the first module ancestor that `is_normal`.
908     fn is_normal(&self) -> bool {
909         match self.kind {
910             ModuleKind::Def(Def::Mod(_), _) => true,
911             _ => false,
912         }
913     }
914
915     fn is_trait(&self) -> bool {
916         match self.kind {
917             ModuleKind::Def(Def::Trait(_), _) => true,
918             _ => false,
919         }
920     }
921
922     fn is_local(&self) -> bool {
923         self.normal_ancestor_id.is_local()
924     }
925 }
926
927 impl<'a> fmt::Debug for ModuleData<'a> {
928     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
929         write!(f, "{:?}", self.def())
930     }
931 }
932
933 // Records a possibly-private value, type, or module definition.
934 #[derive(Clone, Debug)]
935 pub struct NameBinding<'a> {
936     kind: NameBindingKind<'a>,
937     expansion: Mark,
938     span: Span,
939     vis: ty::Visibility,
940 }
941
942 pub trait ToNameBinding<'a> {
943     fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a>;
944 }
945
946 impl<'a> ToNameBinding<'a> for &'a NameBinding<'a> {
947     fn to_name_binding(self, _: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> {
948         self
949     }
950 }
951
952 #[derive(Clone, Debug)]
953 enum NameBindingKind<'a> {
954     Def(Def),
955     Module(Module<'a>),
956     Import {
957         binding: &'a NameBinding<'a>,
958         directive: &'a ImportDirective<'a>,
959         used: Cell<bool>,
960         legacy_self_import: bool,
961     },
962     Ambiguity {
963         b1: &'a NameBinding<'a>,
964         b2: &'a NameBinding<'a>,
965         legacy: bool,
966     }
967 }
968
969 struct PrivacyError<'a>(Span, Name, &'a NameBinding<'a>);
970
971 struct AmbiguityError<'a> {
972     span: Span,
973     name: Name,
974     lexical: bool,
975     b1: &'a NameBinding<'a>,
976     b2: &'a NameBinding<'a>,
977     legacy: bool,
978 }
979
980 impl<'a> NameBinding<'a> {
981     fn module(&self) -> Option<Module<'a>> {
982         match self.kind {
983             NameBindingKind::Module(module) => Some(module),
984             NameBindingKind::Import { binding, .. } => binding.module(),
985             NameBindingKind::Ambiguity { legacy: true, b1, .. } => b1.module(),
986             _ => None,
987         }
988     }
989
990     fn def(&self) -> Def {
991         match self.kind {
992             NameBindingKind::Def(def) => def,
993             NameBindingKind::Module(module) => module.def().unwrap(),
994             NameBindingKind::Import { binding, .. } => binding.def(),
995             NameBindingKind::Ambiguity { legacy: true, b1, .. } => b1.def(),
996             NameBindingKind::Ambiguity { .. } => Def::Err,
997         }
998     }
999
1000     fn def_ignoring_ambiguity(&self) -> Def {
1001         match self.kind {
1002             NameBindingKind::Import { binding, .. } => binding.def_ignoring_ambiguity(),
1003             NameBindingKind::Ambiguity { b1, .. } => b1.def_ignoring_ambiguity(),
1004             _ => self.def(),
1005         }
1006     }
1007
1008     fn get_macro(&self, resolver: &mut Resolver<'a>) -> Rc<SyntaxExtension> {
1009         resolver.get_macro(self.def_ignoring_ambiguity())
1010     }
1011
1012     // We sometimes need to treat variants as `pub` for backwards compatibility
1013     fn pseudo_vis(&self) -> ty::Visibility {
1014         if self.is_variant() { ty::Visibility::Public } else { self.vis }
1015     }
1016
1017     fn is_variant(&self) -> bool {
1018         match self.kind {
1019             NameBindingKind::Def(Def::Variant(..)) |
1020             NameBindingKind::Def(Def::VariantCtor(..)) => true,
1021             _ => false,
1022         }
1023     }
1024
1025     fn is_extern_crate(&self) -> bool {
1026         match self.kind {
1027             NameBindingKind::Import {
1028                 directive: &ImportDirective {
1029                     subclass: ImportDirectiveSubclass::ExternCrate, ..
1030                 }, ..
1031             } => true,
1032             _ => false,
1033         }
1034     }
1035
1036     fn is_import(&self) -> bool {
1037         match self.kind {
1038             NameBindingKind::Import { .. } => true,
1039             _ => false,
1040         }
1041     }
1042
1043     fn is_glob_import(&self) -> bool {
1044         match self.kind {
1045             NameBindingKind::Import { directive, .. } => directive.is_glob(),
1046             NameBindingKind::Ambiguity { b1, .. } => b1.is_glob_import(),
1047             _ => false,
1048         }
1049     }
1050
1051     fn is_importable(&self) -> bool {
1052         match self.def() {
1053             Def::AssociatedConst(..) | Def::Method(..) | Def::AssociatedTy(..) => false,
1054             _ => true,
1055         }
1056     }
1057 }
1058
1059 /// Interns the names of the primitive types.
1060 struct PrimitiveTypeTable {
1061     primitive_types: FxHashMap<Name, PrimTy>,
1062 }
1063
1064 impl PrimitiveTypeTable {
1065     fn new() -> PrimitiveTypeTable {
1066         let mut table = PrimitiveTypeTable { primitive_types: FxHashMap() };
1067
1068         table.intern("bool", TyBool);
1069         table.intern("char", TyChar);
1070         table.intern("f32", TyFloat(FloatTy::F32));
1071         table.intern("f64", TyFloat(FloatTy::F64));
1072         table.intern("isize", TyInt(IntTy::Is));
1073         table.intern("i8", TyInt(IntTy::I8));
1074         table.intern("i16", TyInt(IntTy::I16));
1075         table.intern("i32", TyInt(IntTy::I32));
1076         table.intern("i64", TyInt(IntTy::I64));
1077         table.intern("i128", TyInt(IntTy::I128));
1078         table.intern("str", TyStr);
1079         table.intern("usize", TyUint(UintTy::Us));
1080         table.intern("u8", TyUint(UintTy::U8));
1081         table.intern("u16", TyUint(UintTy::U16));
1082         table.intern("u32", TyUint(UintTy::U32));
1083         table.intern("u64", TyUint(UintTy::U64));
1084         table.intern("u128", TyUint(UintTy::U128));
1085         table
1086     }
1087
1088     fn intern(&mut self, string: &str, primitive_type: PrimTy) {
1089         self.primitive_types.insert(Symbol::intern(string), primitive_type);
1090     }
1091 }
1092
1093 /// The main resolver class.
1094 pub struct Resolver<'a> {
1095     session: &'a Session,
1096
1097     pub definitions: Definitions,
1098
1099     graph_root: Module<'a>,
1100
1101     prelude: Option<Module<'a>>,
1102
1103     trait_item_map: FxHashMap<(DefId, Name, Namespace), (Def, bool /* has self */)>,
1104
1105     // Names of fields of an item `DefId` accessible with dot syntax.
1106     // Used for hints during error reporting.
1107     field_names: FxHashMap<DefId, Vec<Name>>,
1108
1109     // All imports known to succeed or fail.
1110     determined_imports: Vec<&'a ImportDirective<'a>>,
1111
1112     // All non-determined imports.
1113     indeterminate_imports: Vec<&'a ImportDirective<'a>>,
1114
1115     // The module that represents the current item scope.
1116     current_module: Module<'a>,
1117
1118     // The current set of local scopes for types and values.
1119     // FIXME #4948: Reuse ribs to avoid allocation.
1120     ribs: PerNS<Vec<Rib<'a>>>,
1121
1122     // The current set of local scopes, for labels.
1123     label_ribs: Vec<Rib<'a>>,
1124
1125     // The trait that the current context can refer to.
1126     current_trait_ref: Option<(DefId, TraitRef)>,
1127
1128     // The current self type if inside an impl (used for better errors).
1129     current_self_type: Option<Ty>,
1130
1131     // The idents for the primitive types.
1132     primitive_type_table: PrimitiveTypeTable,
1133
1134     def_map: DefMap,
1135     pub freevars: FreevarMap,
1136     freevars_seen: NodeMap<NodeMap<usize>>,
1137     pub export_map: ExportMap,
1138     pub trait_map: TraitMap,
1139
1140     // A map from nodes to anonymous modules.
1141     // Anonymous modules are pseudo-modules that are implicitly created around items
1142     // contained within blocks.
1143     //
1144     // For example, if we have this:
1145     //
1146     //  fn f() {
1147     //      fn g() {
1148     //          ...
1149     //      }
1150     //  }
1151     //
1152     // There will be an anonymous module created around `g` with the ID of the
1153     // entry block for `f`.
1154     block_map: NodeMap<Module<'a>>,
1155     module_map: FxHashMap<DefId, Module<'a>>,
1156     extern_crate_roots: FxHashMap<(CrateNum, bool /* MacrosOnly? */), Module<'a>>,
1157
1158     pub make_glob_map: bool,
1159     // Maps imports to the names of items actually imported (this actually maps
1160     // all imports, but only glob imports are actually interesting).
1161     pub glob_map: GlobMap,
1162
1163     used_imports: FxHashSet<(NodeId, Namespace)>,
1164     pub maybe_unused_trait_imports: NodeSet,
1165
1166     privacy_errors: Vec<PrivacyError<'a>>,
1167     ambiguity_errors: Vec<AmbiguityError<'a>>,
1168     gated_errors: FxHashSet<Span>,
1169     disallowed_shadowing: Vec<&'a LegacyBinding<'a>>,
1170
1171     arenas: &'a ResolverArenas<'a>,
1172     dummy_binding: &'a NameBinding<'a>,
1173     use_extern_macros: bool, // true if `#![feature(use_extern_macros)]`
1174
1175     crate_loader: &'a mut CrateLoader,
1176     macro_names: FxHashSet<Name>,
1177     builtin_macros: FxHashMap<Name, &'a NameBinding<'a>>,
1178     lexical_macro_resolutions: Vec<(Name, &'a Cell<LegacyScope<'a>>)>,
1179     macro_map: FxHashMap<DefId, Rc<SyntaxExtension>>,
1180     macro_defs: FxHashMap<Mark, DefId>,
1181     local_macro_def_scopes: FxHashMap<NodeId, Module<'a>>,
1182     macro_exports: Vec<Export>,
1183     pub whitelisted_legacy_custom_derives: Vec<Name>,
1184     pub found_unresolved_macro: bool,
1185
1186     // Maps the `Mark` of an expansion to its containing module or block.
1187     invocations: FxHashMap<Mark, &'a InvocationData<'a>>,
1188
1189     // Avoid duplicated errors for "name already defined".
1190     name_already_seen: FxHashMap<Name, Span>,
1191
1192     // If `#![feature(proc_macro)]` is set
1193     proc_macro_enabled: bool,
1194
1195     // A set of procedural macros imported by `#[macro_use]` that have already been warned about
1196     warned_proc_macros: FxHashSet<Name>,
1197
1198     potentially_unused_imports: Vec<&'a ImportDirective<'a>>,
1199
1200     // This table maps struct IDs into struct constructor IDs,
1201     // it's not used during normal resolution, only for better error reporting.
1202     struct_constructors: DefIdMap<(Def, ty::Visibility)>,
1203 }
1204
1205 pub struct ResolverArenas<'a> {
1206     modules: arena::TypedArena<ModuleData<'a>>,
1207     local_modules: RefCell<Vec<Module<'a>>>,
1208     name_bindings: arena::TypedArena<NameBinding<'a>>,
1209     import_directives: arena::TypedArena<ImportDirective<'a>>,
1210     name_resolutions: arena::TypedArena<RefCell<NameResolution<'a>>>,
1211     invocation_data: arena::TypedArena<InvocationData<'a>>,
1212     legacy_bindings: arena::TypedArena<LegacyBinding<'a>>,
1213 }
1214
1215 impl<'a> ResolverArenas<'a> {
1216     fn alloc_module(&'a self, module: ModuleData<'a>) -> Module<'a> {
1217         let module = self.modules.alloc(module);
1218         if module.def_id().map(|def_id| def_id.is_local()).unwrap_or(true) {
1219             self.local_modules.borrow_mut().push(module);
1220         }
1221         module
1222     }
1223     fn local_modules(&'a self) -> ::std::cell::Ref<'a, Vec<Module<'a>>> {
1224         self.local_modules.borrow()
1225     }
1226     fn alloc_name_binding(&'a self, name_binding: NameBinding<'a>) -> &'a NameBinding<'a> {
1227         self.name_bindings.alloc(name_binding)
1228     }
1229     fn alloc_import_directive(&'a self, import_directive: ImportDirective<'a>)
1230                               -> &'a ImportDirective {
1231         self.import_directives.alloc(import_directive)
1232     }
1233     fn alloc_name_resolution(&'a self) -> &'a RefCell<NameResolution<'a>> {
1234         self.name_resolutions.alloc(Default::default())
1235     }
1236     fn alloc_invocation_data(&'a self, expansion_data: InvocationData<'a>)
1237                              -> &'a InvocationData<'a> {
1238         self.invocation_data.alloc(expansion_data)
1239     }
1240     fn alloc_legacy_binding(&'a self, binding: LegacyBinding<'a>) -> &'a LegacyBinding<'a> {
1241         self.legacy_bindings.alloc(binding)
1242     }
1243 }
1244
1245 impl<'a, 'b: 'a> ty::DefIdTree for &'a Resolver<'b> {
1246     fn parent(self, id: DefId) -> Option<DefId> {
1247         match id.krate {
1248             LOCAL_CRATE => self.definitions.def_key(id.index).parent,
1249             _ => self.session.cstore.def_key(id).parent,
1250         }.map(|index| DefId { index: index, ..id })
1251     }
1252 }
1253
1254 impl<'a> hir::lowering::Resolver for Resolver<'a> {
1255     fn resolve_hir_path(&mut self, path: &mut hir::Path, is_value: bool) {
1256         let namespace = if is_value { ValueNS } else { TypeNS };
1257         let hir::Path { ref segments, span, ref mut def } = *path;
1258         let path: Vec<_> = segments.iter().map(|seg| Ident::with_empty_ctxt(seg.name)).collect();
1259         match self.resolve_path(&path, Some(namespace), Some(span)) {
1260             PathResult::Module(module) => *def = module.def().unwrap(),
1261             PathResult::NonModule(path_res) if path_res.unresolved_segments() == 0 =>
1262                 *def = path_res.base_def(),
1263             PathResult::NonModule(..) => match self.resolve_path(&path, None, Some(span)) {
1264                 PathResult::Failed(msg, _) => {
1265                     resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
1266                 }
1267                 _ => {}
1268             },
1269             PathResult::Indeterminate => unreachable!(),
1270             PathResult::Failed(msg, _) => {
1271                 resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
1272             }
1273         }
1274     }
1275
1276     fn get_resolution(&mut self, id: NodeId) -> Option<PathResolution> {
1277         self.def_map.get(&id).cloned()
1278     }
1279
1280     fn definitions(&mut self) -> &mut Definitions {
1281         &mut self.definitions
1282     }
1283 }
1284
1285 impl<'a> Resolver<'a> {
1286     pub fn new(session: &'a Session,
1287                krate: &Crate,
1288                make_glob_map: MakeGlobMap,
1289                crate_loader: &'a mut CrateLoader,
1290                arenas: &'a ResolverArenas<'a>)
1291                -> Resolver<'a> {
1292         let root_def_id = DefId::local(CRATE_DEF_INDEX);
1293         let root_module_kind = ModuleKind::Def(Def::Mod(root_def_id), keywords::Invalid.name());
1294         let graph_root = arenas.alloc_module(ModuleData {
1295             no_implicit_prelude: attr::contains_name(&krate.attrs, "no_implicit_prelude"),
1296             ..ModuleData::new(None, root_module_kind, root_def_id)
1297         });
1298         let mut module_map = FxHashMap();
1299         module_map.insert(DefId::local(CRATE_DEF_INDEX), graph_root);
1300
1301         let mut definitions = Definitions::new();
1302         DefCollector::new(&mut definitions).collect_root();
1303
1304         let mut invocations = FxHashMap();
1305         invocations.insert(Mark::root(),
1306                            arenas.alloc_invocation_data(InvocationData::root(graph_root)));
1307
1308         let features = session.features.borrow();
1309
1310         let mut macro_defs = FxHashMap();
1311         macro_defs.insert(Mark::root(), root_def_id);
1312
1313         Resolver {
1314             session: session,
1315
1316             definitions: definitions,
1317
1318             // The outermost module has def ID 0; this is not reflected in the
1319             // AST.
1320             graph_root: graph_root,
1321             prelude: None,
1322
1323             trait_item_map: FxHashMap(),
1324             field_names: FxHashMap(),
1325
1326             determined_imports: Vec::new(),
1327             indeterminate_imports: Vec::new(),
1328
1329             current_module: graph_root,
1330             ribs: PerNS {
1331                 value_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1332                 type_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1333                 macro_ns: Some(vec![Rib::new(ModuleRibKind(graph_root))]),
1334             },
1335             label_ribs: Vec::new(),
1336
1337             current_trait_ref: None,
1338             current_self_type: None,
1339
1340             primitive_type_table: PrimitiveTypeTable::new(),
1341
1342             def_map: NodeMap(),
1343             freevars: NodeMap(),
1344             freevars_seen: NodeMap(),
1345             export_map: NodeMap(),
1346             trait_map: NodeMap(),
1347             module_map: module_map,
1348             block_map: NodeMap(),
1349             extern_crate_roots: FxHashMap(),
1350
1351             make_glob_map: make_glob_map == MakeGlobMap::Yes,
1352             glob_map: NodeMap(),
1353
1354             used_imports: FxHashSet(),
1355             maybe_unused_trait_imports: NodeSet(),
1356
1357             privacy_errors: Vec::new(),
1358             ambiguity_errors: Vec::new(),
1359             gated_errors: FxHashSet(),
1360             disallowed_shadowing: Vec::new(),
1361
1362             arenas: arenas,
1363             dummy_binding: arenas.alloc_name_binding(NameBinding {
1364                 kind: NameBindingKind::Def(Def::Err),
1365                 expansion: Mark::root(),
1366                 span: DUMMY_SP,
1367                 vis: ty::Visibility::Public,
1368             }),
1369
1370             // `#![feature(proc_macro)]` implies `#[feature(extern_macros)]`
1371             use_extern_macros: features.use_extern_macros || features.proc_macro,
1372
1373             crate_loader: crate_loader,
1374             macro_names: FxHashSet(),
1375             builtin_macros: FxHashMap(),
1376             lexical_macro_resolutions: Vec::new(),
1377             macro_map: FxHashMap(),
1378             macro_exports: Vec::new(),
1379             invocations: invocations,
1380             macro_defs: macro_defs,
1381             local_macro_def_scopes: FxHashMap(),
1382             name_already_seen: FxHashMap(),
1383             whitelisted_legacy_custom_derives: Vec::new(),
1384             proc_macro_enabled: features.proc_macro,
1385             warned_proc_macros: FxHashSet(),
1386             potentially_unused_imports: Vec::new(),
1387             struct_constructors: DefIdMap(),
1388             found_unresolved_macro: false,
1389         }
1390     }
1391
1392     pub fn arenas() -> ResolverArenas<'a> {
1393         ResolverArenas {
1394             modules: arena::TypedArena::new(),
1395             local_modules: RefCell::new(Vec::new()),
1396             name_bindings: arena::TypedArena::new(),
1397             import_directives: arena::TypedArena::new(),
1398             name_resolutions: arena::TypedArena::new(),
1399             invocation_data: arena::TypedArena::new(),
1400             legacy_bindings: arena::TypedArena::new(),
1401         }
1402     }
1403
1404     fn per_ns<T, F: FnMut(&mut Self, Namespace) -> T>(&mut self, mut f: F) -> PerNS<T> {
1405         PerNS {
1406             type_ns: f(self, TypeNS),
1407             value_ns: f(self, ValueNS),
1408             macro_ns: match self.use_extern_macros {
1409                 true => Some(f(self, MacroNS)),
1410                 false => None,
1411             },
1412         }
1413     }
1414
1415     /// Entry point to crate resolution.
1416     pub fn resolve_crate(&mut self, krate: &Crate) {
1417         ImportResolver { resolver: self }.finalize_imports();
1418         self.current_module = self.graph_root;
1419         self.finalize_current_module_macro_resolutions();
1420         visit::walk_crate(self, krate);
1421
1422         check_unused::check_crate(self, krate);
1423         self.report_errors();
1424         self.crate_loader.postprocess(krate);
1425     }
1426
1427     fn new_module(&self, parent: Module<'a>, kind: ModuleKind, normal_ancestor_id: DefId)
1428                   -> Module<'a> {
1429         self.arenas.alloc_module(ModuleData::new(Some(parent), kind, normal_ancestor_id))
1430     }
1431
1432     fn record_use(&mut self, ident: Ident, ns: Namespace, binding: &'a NameBinding<'a>, span: Span)
1433                   -> bool /* true if an error was reported */ {
1434         match binding.kind {
1435             NameBindingKind::Import { directive, binding, ref used, legacy_self_import }
1436                     if !used.get() => {
1437                 used.set(true);
1438                 directive.used.set(true);
1439                 if legacy_self_import {
1440                     self.warn_legacy_self_import(directive);
1441                     return false;
1442                 }
1443                 self.used_imports.insert((directive.id, ns));
1444                 self.add_to_glob_map(directive.id, ident);
1445                 self.record_use(ident, ns, binding, span)
1446             }
1447             NameBindingKind::Import { .. } => false,
1448             NameBindingKind::Ambiguity { b1, b2, legacy } => {
1449                 self.ambiguity_errors.push(AmbiguityError {
1450                     span: span, name: ident.name, lexical: false, b1: b1, b2: b2, legacy: legacy,
1451                 });
1452                 if legacy {
1453                     self.record_use(ident, ns, b1, span);
1454                 }
1455                 !legacy
1456             }
1457             _ => false
1458         }
1459     }
1460
1461     fn add_to_glob_map(&mut self, id: NodeId, ident: Ident) {
1462         if self.make_glob_map {
1463             self.glob_map.entry(id).or_insert_with(FxHashSet).insert(ident.name);
1464         }
1465     }
1466
1467     /// This resolves the identifier `ident` in the namespace `ns` in the current lexical scope.
1468     /// More specifically, we proceed up the hierarchy of scopes and return the binding for
1469     /// `ident` in the first scope that defines it (or None if no scopes define it).
1470     ///
1471     /// A block's items are above its local variables in the scope hierarchy, regardless of where
1472     /// the items are defined in the block. For example,
1473     /// ```rust
1474     /// fn f() {
1475     ///    g(); // Since there are no local variables in scope yet, this resolves to the item.
1476     ///    let g = || {};
1477     ///    fn g() {}
1478     ///    g(); // This resolves to the local variable `g` since it shadows the item.
1479     /// }
1480     /// ```
1481     ///
1482     /// Invariant: This must only be called during main resolution, not during
1483     /// import resolution.
1484     fn resolve_ident_in_lexical_scope(&mut self,
1485                                       mut ident: Ident,
1486                                       ns: Namespace,
1487                                       record_used: Option<Span>)
1488                                       -> Option<LexicalScopeBinding<'a>> {
1489         if ns == TypeNS {
1490             ident = ident.unhygienize();
1491         }
1492
1493         // Walk backwards up the ribs in scope.
1494         for i in (0 .. self.ribs[ns].len()).rev() {
1495             if let Some(def) = self.ribs[ns][i].bindings.get(&ident).cloned() {
1496                 // The ident resolves to a type parameter or local variable.
1497                 return Some(LexicalScopeBinding::Def(
1498                     self.adjust_local_def(ns, i, def, record_used)
1499                 ));
1500             }
1501
1502             if let ModuleRibKind(module) = self.ribs[ns][i].kind {
1503                 let item = self.resolve_ident_in_module(module, ident, ns, false, record_used);
1504                 if let Ok(binding) = item {
1505                     // The ident resolves to an item.
1506                     return Some(LexicalScopeBinding::Item(binding));
1507                 }
1508
1509                 if let ModuleKind::Block(..) = module.kind { // We can see through blocks
1510                 } else if !module.no_implicit_prelude {
1511                     return self.prelude.and_then(|prelude| {
1512                         self.resolve_ident_in_module(prelude, ident, ns, false, None).ok()
1513                     }).map(LexicalScopeBinding::Item)
1514                 } else {
1515                     return None;
1516                 }
1517             }
1518
1519             if let MacroDefinition(def) = self.ribs[ns][i].kind {
1520                 // If an invocation of this macro created `ident`, give up on `ident`
1521                 // and switch to `ident`'s source from the macro definition.
1522                 let ctxt_data = ident.ctxt.data();
1523                 if def == self.macro_defs[&ctxt_data.outer_mark] {
1524                     ident.ctxt = ctxt_data.prev_ctxt;
1525                 }
1526             }
1527         }
1528
1529         None
1530     }
1531
1532     fn resolve_crate_var(&mut self, crate_var_ctxt: SyntaxContext) -> Module<'a> {
1533         let mut ctxt_data = crate_var_ctxt.data();
1534         while ctxt_data.prev_ctxt != SyntaxContext::empty() {
1535             ctxt_data = ctxt_data.prev_ctxt.data();
1536         }
1537         let module = self.macro_def_scope(ctxt_data.outer_mark);
1538         if module.is_local() { self.graph_root } else { module }
1539     }
1540
1541     // AST resolution
1542     //
1543     // We maintain a list of value ribs and type ribs.
1544     //
1545     // Simultaneously, we keep track of the current position in the module
1546     // graph in the `current_module` pointer. When we go to resolve a name in
1547     // the value or type namespaces, we first look through all the ribs and
1548     // then query the module graph. When we resolve a name in the module
1549     // namespace, we can skip all the ribs (since nested modules are not
1550     // allowed within blocks in Rust) and jump straight to the current module
1551     // graph node.
1552     //
1553     // Named implementations are handled separately. When we find a method
1554     // call, we consult the module node to find all of the implementations in
1555     // scope. This information is lazily cached in the module node. We then
1556     // generate a fake "implementation scope" containing all the
1557     // implementations thus found, for compatibility with old resolve pass.
1558
1559     fn with_scope<F>(&mut self, id: NodeId, f: F)
1560         where F: FnOnce(&mut Resolver)
1561     {
1562         let id = self.definitions.local_def_id(id);
1563         let module = self.module_map.get(&id).cloned(); // clones a reference
1564         if let Some(module) = module {
1565             // Move down in the graph.
1566             let orig_module = replace(&mut self.current_module, module);
1567             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(module)));
1568             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(module)));
1569
1570             self.finalize_current_module_macro_resolutions();
1571             f(self);
1572
1573             self.current_module = orig_module;
1574             self.ribs[ValueNS].pop();
1575             self.ribs[TypeNS].pop();
1576         } else {
1577             f(self);
1578         }
1579     }
1580
1581     /// Searches the current set of local scopes for labels.
1582     /// Stops after meeting a closure.
1583     fn search_label(&self, mut ident: Ident) -> Option<Def> {
1584         for rib in self.label_ribs.iter().rev() {
1585             match rib.kind {
1586                 NormalRibKind => {
1587                     // Continue
1588                 }
1589                 MacroDefinition(def) => {
1590                     // If an invocation of this macro created `ident`, give up on `ident`
1591                     // and switch to `ident`'s source from the macro definition.
1592                     let ctxt_data = ident.ctxt.data();
1593                     if def == self.macro_defs[&ctxt_data.outer_mark] {
1594                         ident.ctxt = ctxt_data.prev_ctxt;
1595                     }
1596                 }
1597                 _ => {
1598                     // Do not resolve labels across function boundary
1599                     return None;
1600                 }
1601             }
1602             let result = rib.bindings.get(&ident).cloned();
1603             if result.is_some() {
1604                 return result;
1605             }
1606         }
1607         None
1608     }
1609
1610     fn resolve_item(&mut self, item: &Item) {
1611         let name = item.ident.name;
1612
1613         debug!("(resolving item) resolving {}", name);
1614
1615         self.check_proc_macro_attrs(&item.attrs);
1616
1617         match item.node {
1618             ItemKind::Enum(_, ref generics) |
1619             ItemKind::Ty(_, ref generics) |
1620             ItemKind::Struct(_, ref generics) |
1621             ItemKind::Union(_, ref generics) |
1622             ItemKind::Fn(.., ref generics, _) => {
1623                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind),
1624                                              |this| visit::walk_item(this, item));
1625             }
1626
1627             ItemKind::DefaultImpl(_, ref trait_ref) => {
1628                 self.with_optional_trait_ref(Some(trait_ref), |this, _| {
1629                     // Resolve type arguments in trait path
1630                     visit::walk_trait_ref(this, trait_ref);
1631                 });
1632             }
1633             ItemKind::Impl(.., ref generics, ref opt_trait_ref, ref self_type, ref impl_items) =>
1634                 self.resolve_implementation(generics,
1635                                             opt_trait_ref,
1636                                             &self_type,
1637                                             item.id,
1638                                             impl_items),
1639
1640             ItemKind::Trait(_, ref generics, ref bounds, ref trait_items) => {
1641                 // Create a new rib for the trait-wide type parameters.
1642                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
1643                     let local_def_id = this.definitions.local_def_id(item.id);
1644                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
1645                         this.visit_generics(generics);
1646                         walk_list!(this, visit_ty_param_bound, bounds);
1647
1648                         for trait_item in trait_items {
1649                             this.check_proc_macro_attrs(&trait_item.attrs);
1650
1651                             match trait_item.node {
1652                                 TraitItemKind::Const(_, ref default) => {
1653                                     // Only impose the restrictions of
1654                                     // ConstRibKind if there's an actual constant
1655                                     // expression in a provided default.
1656                                     if default.is_some() {
1657                                         this.with_constant_rib(|this| {
1658                                             visit::walk_trait_item(this, trait_item)
1659                                         });
1660                                     } else {
1661                                         visit::walk_trait_item(this, trait_item)
1662                                     }
1663                                 }
1664                                 TraitItemKind::Method(ref sig, _) => {
1665                                     let type_parameters =
1666                                         HasTypeParameters(&sig.generics,
1667                                                           MethodRibKind(!sig.decl.has_self()));
1668                                     this.with_type_parameter_rib(type_parameters, |this| {
1669                                         visit::walk_trait_item(this, trait_item)
1670                                     });
1671                                 }
1672                                 TraitItemKind::Type(..) => {
1673                                     this.with_type_parameter_rib(NoTypeParameters, |this| {
1674                                         visit::walk_trait_item(this, trait_item)
1675                                     });
1676                                 }
1677                                 TraitItemKind::Macro(_) => panic!("unexpanded macro in resolve!"),
1678                             };
1679                         }
1680                     });
1681                 });
1682             }
1683
1684             ItemKind::Mod(_) | ItemKind::ForeignMod(_) => {
1685                 self.with_scope(item.id, |this| {
1686                     visit::walk_item(this, item);
1687                 });
1688             }
1689
1690             ItemKind::Const(..) | ItemKind::Static(..) => {
1691                 self.with_constant_rib(|this| {
1692                     visit::walk_item(this, item);
1693                 });
1694             }
1695
1696             ItemKind::Use(ref view_path) => {
1697                 match view_path.node {
1698                     ast::ViewPathList(ref prefix, ref items) if items.is_empty() => {
1699                         // Resolve prefix of an import with empty braces (issue #28388).
1700                         self.smart_resolve_path(item.id, None, prefix, PathSource::ImportPrefix);
1701                     }
1702                     _ => {}
1703                 }
1704             }
1705
1706             ItemKind::ExternCrate(_) | ItemKind::MacroDef(..) => {
1707                 // do nothing, these are just around to be encoded
1708             }
1709
1710             ItemKind::Mac(_) => panic!("unexpanded macro in resolve!"),
1711         }
1712     }
1713
1714     fn with_type_parameter_rib<'b, F>(&'b mut self, type_parameters: TypeParameters<'a, 'b>, f: F)
1715         where F: FnOnce(&mut Resolver)
1716     {
1717         match type_parameters {
1718             HasTypeParameters(generics, rib_kind) => {
1719                 let mut function_type_rib = Rib::new(rib_kind);
1720                 let mut seen_bindings = FxHashMap();
1721                 for type_parameter in &generics.ty_params {
1722                     let name = type_parameter.ident.name;
1723                     debug!("with_type_parameter_rib: {}", type_parameter.id);
1724
1725                     if seen_bindings.contains_key(&name) {
1726                         let span = seen_bindings.get(&name).unwrap();
1727                         resolve_error(self,
1728                                       type_parameter.span,
1729                                       ResolutionError::NameAlreadyUsedInTypeParameterList(name,
1730                                                                                           span));
1731                     }
1732                     seen_bindings.entry(name).or_insert(type_parameter.span);
1733
1734                     // plain insert (no renaming)
1735                     let def_id = self.definitions.local_def_id(type_parameter.id);
1736                     let def = Def::TyParam(def_id);
1737                     function_type_rib.bindings.insert(Ident::with_empty_ctxt(name), def);
1738                     self.record_def(type_parameter.id, PathResolution::new(def));
1739                 }
1740                 self.ribs[TypeNS].push(function_type_rib);
1741             }
1742
1743             NoTypeParameters => {
1744                 // Nothing to do.
1745             }
1746         }
1747
1748         f(self);
1749
1750         if let HasTypeParameters(..) = type_parameters {
1751             self.ribs[TypeNS].pop();
1752         }
1753     }
1754
1755     fn with_label_rib<F>(&mut self, f: F)
1756         where F: FnOnce(&mut Resolver)
1757     {
1758         self.label_ribs.push(Rib::new(NormalRibKind));
1759         f(self);
1760         self.label_ribs.pop();
1761     }
1762
1763     fn with_constant_rib<F>(&mut self, f: F)
1764         where F: FnOnce(&mut Resolver)
1765     {
1766         self.ribs[ValueNS].push(Rib::new(ConstantItemRibKind));
1767         self.ribs[TypeNS].push(Rib::new(ConstantItemRibKind));
1768         f(self);
1769         self.ribs[TypeNS].pop();
1770         self.ribs[ValueNS].pop();
1771     }
1772
1773     fn with_current_self_type<T, F>(&mut self, self_type: &Ty, f: F) -> T
1774         where F: FnOnce(&mut Resolver) -> T
1775     {
1776         // Handle nested impls (inside fn bodies)
1777         let previous_value = replace(&mut self.current_self_type, Some(self_type.clone()));
1778         let result = f(self);
1779         self.current_self_type = previous_value;
1780         result
1781     }
1782
1783     fn with_optional_trait_ref<T, F>(&mut self, opt_trait_ref: Option<&TraitRef>, f: F) -> T
1784         where F: FnOnce(&mut Resolver, Option<DefId>) -> T
1785     {
1786         let mut new_val = None;
1787         let mut new_id = None;
1788         if let Some(trait_ref) = opt_trait_ref {
1789             let def = self.smart_resolve_path(trait_ref.ref_id, None,
1790                                               &trait_ref.path, PathSource::Trait).base_def();
1791             if def != Def::Err {
1792                 new_val = Some((def.def_id(), trait_ref.clone()));
1793                 new_id = Some(def.def_id());
1794             }
1795         }
1796         let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
1797         let result = f(self, new_id);
1798         self.current_trait_ref = original_trait_ref;
1799         result
1800     }
1801
1802     fn with_self_rib<F>(&mut self, self_def: Def, f: F)
1803         where F: FnOnce(&mut Resolver)
1804     {
1805         let mut self_type_rib = Rib::new(NormalRibKind);
1806
1807         // plain insert (no renaming, types are not currently hygienic....)
1808         self_type_rib.bindings.insert(keywords::SelfType.ident(), self_def);
1809         self.ribs[TypeNS].push(self_type_rib);
1810         f(self);
1811         self.ribs[TypeNS].pop();
1812     }
1813
1814     fn resolve_implementation(&mut self,
1815                               generics: &Generics,
1816                               opt_trait_reference: &Option<TraitRef>,
1817                               self_type: &Ty,
1818                               item_id: NodeId,
1819                               impl_items: &[ImplItem]) {
1820         // If applicable, create a rib for the type parameters.
1821         self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
1822             // Dummy self type for better errors if `Self` is used in the trait path.
1823             this.with_self_rib(Def::SelfTy(None, None), |this| {
1824                 // Resolve the trait reference, if necessary.
1825                 this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| {
1826                     let item_def_id = this.definitions.local_def_id(item_id);
1827                     this.with_self_rib(Def::SelfTy(trait_id, Some(item_def_id)), |this| {
1828                         if let Some(trait_ref) = opt_trait_reference.as_ref() {
1829                             // Resolve type arguments in trait path
1830                             visit::walk_trait_ref(this, trait_ref);
1831                         }
1832                         // Resolve the self type.
1833                         this.visit_ty(self_type);
1834                         // Resolve the type parameters.
1835                         this.visit_generics(generics);
1836                         this.with_current_self_type(self_type, |this| {
1837                             for impl_item in impl_items {
1838                                 this.check_proc_macro_attrs(&impl_item.attrs);
1839                                 this.resolve_visibility(&impl_item.vis);
1840                                 match impl_item.node {
1841                                     ImplItemKind::Const(..) => {
1842                                         // If this is a trait impl, ensure the const
1843                                         // exists in trait
1844                                         this.check_trait_item(impl_item.ident.name,
1845                                                             ValueNS,
1846                                                             impl_item.span,
1847                                             |n, s| ResolutionError::ConstNotMemberOfTrait(n, s));
1848                                         visit::walk_impl_item(this, impl_item);
1849                                     }
1850                                     ImplItemKind::Method(ref sig, _) => {
1851                                         // If this is a trait impl, ensure the method
1852                                         // exists in trait
1853                                         this.check_trait_item(impl_item.ident.name,
1854                                                             ValueNS,
1855                                                             impl_item.span,
1856                                             |n, s| ResolutionError::MethodNotMemberOfTrait(n, s));
1857
1858                                         // We also need a new scope for the method-
1859                                         // specific type parameters.
1860                                         let type_parameters =
1861                                             HasTypeParameters(&sig.generics,
1862                                                             MethodRibKind(!sig.decl.has_self()));
1863                                         this.with_type_parameter_rib(type_parameters, |this| {
1864                                             visit::walk_impl_item(this, impl_item);
1865                                         });
1866                                     }
1867                                     ImplItemKind::Type(ref ty) => {
1868                                         // If this is a trait impl, ensure the type
1869                                         // exists in trait
1870                                         this.check_trait_item(impl_item.ident.name,
1871                                                             TypeNS,
1872                                                             impl_item.span,
1873                                             |n, s| ResolutionError::TypeNotMemberOfTrait(n, s));
1874
1875                                         this.visit_ty(ty);
1876                                     }
1877                                     ImplItemKind::Macro(_) =>
1878                                         panic!("unexpanded macro in resolve!"),
1879                                 }
1880                             }
1881                         });
1882                     });
1883                 });
1884             });
1885         });
1886     }
1887
1888     fn check_trait_item<F>(&self, name: Name, ns: Namespace, span: Span, err: F)
1889         where F: FnOnce(Name, &str) -> ResolutionError
1890     {
1891         // If there is a TraitRef in scope for an impl, then the method must be in the
1892         // trait.
1893         if let Some((did, ref trait_ref)) = self.current_trait_ref {
1894             if !self.trait_item_map.contains_key(&(did, name, ns)) {
1895                 let path_str = path_names_to_string(&trait_ref.path);
1896                 resolve_error(self, span, err(name, &path_str));
1897             }
1898         }
1899     }
1900
1901     fn resolve_local(&mut self, local: &Local) {
1902         // Resolve the type.
1903         walk_list!(self, visit_ty, &local.ty);
1904
1905         // Resolve the initializer.
1906         walk_list!(self, visit_expr, &local.init);
1907
1908         // Resolve the pattern.
1909         self.resolve_pattern(&local.pat, PatternSource::Let, &mut FxHashMap());
1910     }
1911
1912     // build a map from pattern identifiers to binding-info's.
1913     // this is done hygienically. This could arise for a macro
1914     // that expands into an or-pattern where one 'x' was from the
1915     // user and one 'x' came from the macro.
1916     fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
1917         let mut binding_map = FxHashMap();
1918
1919         pat.walk(&mut |pat| {
1920             if let PatKind::Ident(binding_mode, ident, ref sub_pat) = pat.node {
1921                 if sub_pat.is_some() || match self.def_map.get(&pat.id).map(|res| res.base_def()) {
1922                     Some(Def::Local(..)) => true,
1923                     _ => false,
1924                 } {
1925                     let binding_info = BindingInfo { span: ident.span, binding_mode: binding_mode };
1926                     binding_map.insert(ident.node, binding_info);
1927                 }
1928             }
1929             true
1930         });
1931
1932         binding_map
1933     }
1934
1935     // check that all of the arms in an or-pattern have exactly the
1936     // same set of bindings, with the same binding modes for each.
1937     fn check_consistent_bindings(&mut self, arm: &Arm) {
1938         if arm.pats.is_empty() {
1939             return;
1940         }
1941
1942         let mut missing_vars = FxHashMap();
1943         let mut inconsistent_vars = FxHashMap();
1944         for (i, p) in arm.pats.iter().enumerate() {
1945             let map_i = self.binding_mode_map(&p);
1946
1947             for (j, q) in arm.pats.iter().enumerate() {
1948                 if i == j {
1949                     continue;
1950                 }
1951
1952                 let map_j = self.binding_mode_map(&q);
1953                 for (&key, &binding_i) in &map_i {
1954                     if map_j.len() == 0 {                   // Account for missing bindings when
1955                         let binding_error = missing_vars    // map_j has none.
1956                             .entry(key.name)
1957                             .or_insert(BindingError {
1958                                 name: key.name,
1959                                 origin: BTreeSet::new(),
1960                                 target: BTreeSet::new(),
1961                             });
1962                         binding_error.origin.insert(binding_i.span);
1963                         binding_error.target.insert(q.span);
1964                     }
1965                     for (&key_j, &binding_j) in &map_j {
1966                         match map_i.get(&key_j) {
1967                             None => {  // missing binding
1968                                 let binding_error = missing_vars
1969                                     .entry(key_j.name)
1970                                     .or_insert(BindingError {
1971                                         name: key_j.name,
1972                                         origin: BTreeSet::new(),
1973                                         target: BTreeSet::new(),
1974                                     });
1975                                 binding_error.origin.insert(binding_j.span);
1976                                 binding_error.target.insert(p.span);
1977                             }
1978                             Some(binding_i) => {  // check consistent binding
1979                                 if binding_i.binding_mode != binding_j.binding_mode {
1980                                     inconsistent_vars
1981                                         .entry(key.name)
1982                                         .or_insert((binding_j.span, binding_i.span));
1983                                 }
1984                             }
1985                         }
1986                     }
1987                 }
1988             }
1989         }
1990         let mut missing_vars = missing_vars.iter().collect::<Vec<_>>();
1991         missing_vars.sort();
1992         for (_, v) in missing_vars {
1993             resolve_error(self,
1994                           *v.origin.iter().next().unwrap(),
1995                           ResolutionError::VariableNotBoundInPattern(v));
1996         }
1997         let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
1998         inconsistent_vars.sort();
1999         for (name, v) in inconsistent_vars {
2000             resolve_error(self, v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
2001         }
2002     }
2003
2004     fn resolve_arm(&mut self, arm: &Arm) {
2005         self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2006
2007         let mut bindings_list = FxHashMap();
2008         for pattern in &arm.pats {
2009             self.resolve_pattern(&pattern, PatternSource::Match, &mut bindings_list);
2010         }
2011
2012         // This has to happen *after* we determine which
2013         // pat_idents are variants
2014         self.check_consistent_bindings(arm);
2015
2016         walk_list!(self, visit_expr, &arm.guard);
2017         self.visit_expr(&arm.body);
2018
2019         self.ribs[ValueNS].pop();
2020     }
2021
2022     fn resolve_block(&mut self, block: &Block) {
2023         debug!("(resolving block) entering block");
2024         // Move down in the graph, if there's an anonymous module rooted here.
2025         let orig_module = self.current_module;
2026         let anonymous_module = self.block_map.get(&block.id).cloned(); // clones a reference
2027
2028         let mut num_macro_definition_ribs = 0;
2029         if let Some(anonymous_module) = anonymous_module {
2030             debug!("(resolving block) found anonymous module, moving down");
2031             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2032             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2033             self.current_module = anonymous_module;
2034             self.finalize_current_module_macro_resolutions();
2035         } else {
2036             self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2037         }
2038
2039         // Descend into the block.
2040         for stmt in &block.stmts {
2041             if let ast::StmtKind::Item(ref item) = stmt.node {
2042                 if let ast::ItemKind::MacroDef(..) = item.node {
2043                     num_macro_definition_ribs += 1;
2044                     let def = self.definitions.local_def_id(item.id);
2045                     self.ribs[ValueNS].push(Rib::new(MacroDefinition(def)));
2046                     self.label_ribs.push(Rib::new(MacroDefinition(def)));
2047                 }
2048             }
2049
2050             self.visit_stmt(stmt);
2051         }
2052
2053         // Move back up.
2054         self.current_module = orig_module;
2055         for _ in 0 .. num_macro_definition_ribs {
2056             self.ribs[ValueNS].pop();
2057             self.label_ribs.pop();
2058         }
2059         self.ribs[ValueNS].pop();
2060         if let Some(_) = anonymous_module {
2061             self.ribs[TypeNS].pop();
2062         }
2063         debug!("(resolving block) leaving block");
2064     }
2065
2066     fn fresh_binding(&mut self,
2067                      ident: &SpannedIdent,
2068                      pat_id: NodeId,
2069                      outer_pat_id: NodeId,
2070                      pat_src: PatternSource,
2071                      bindings: &mut FxHashMap<Ident, NodeId>)
2072                      -> PathResolution {
2073         // Add the binding to the local ribs, if it
2074         // doesn't already exist in the bindings map. (We
2075         // must not add it if it's in the bindings map
2076         // because that breaks the assumptions later
2077         // passes make about or-patterns.)
2078         let mut def = Def::Local(self.definitions.local_def_id(pat_id));
2079         match bindings.get(&ident.node).cloned() {
2080             Some(id) if id == outer_pat_id => {
2081                 // `Variant(a, a)`, error
2082                 resolve_error(
2083                     self,
2084                     ident.span,
2085                     ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(
2086                         &ident.node.name.as_str())
2087                 );
2088             }
2089             Some(..) if pat_src == PatternSource::FnParam => {
2090                 // `fn f(a: u8, a: u8)`, error
2091                 resolve_error(
2092                     self,
2093                     ident.span,
2094                     ResolutionError::IdentifierBoundMoreThanOnceInParameterList(
2095                         &ident.node.name.as_str())
2096                 );
2097             }
2098             Some(..) if pat_src == PatternSource::Match => {
2099                 // `Variant1(a) | Variant2(a)`, ok
2100                 // Reuse definition from the first `a`.
2101                 def = self.ribs[ValueNS].last_mut().unwrap().bindings[&ident.node];
2102             }
2103             Some(..) => {
2104                 span_bug!(ident.span, "two bindings with the same name from \
2105                                        unexpected pattern source {:?}", pat_src);
2106             }
2107             None => {
2108                 // A completely fresh binding, add to the lists if it's valid.
2109                 if ident.node.name != keywords::Invalid.name() {
2110                     bindings.insert(ident.node, outer_pat_id);
2111                     self.ribs[ValueNS].last_mut().unwrap().bindings.insert(ident.node, def);
2112                 }
2113             }
2114         }
2115
2116         PathResolution::new(def)
2117     }
2118
2119     fn resolve_pattern(&mut self,
2120                        pat: &Pat,
2121                        pat_src: PatternSource,
2122                        // Maps idents to the node ID for the
2123                        // outermost pattern that binds them.
2124                        bindings: &mut FxHashMap<Ident, NodeId>) {
2125         // Visit all direct subpatterns of this pattern.
2126         let outer_pat_id = pat.id;
2127         pat.walk(&mut |pat| {
2128             match pat.node {
2129                 PatKind::Ident(bmode, ref ident, ref opt_pat) => {
2130                     // First try to resolve the identifier as some existing
2131                     // entity, then fall back to a fresh binding.
2132                     let binding = self.resolve_ident_in_lexical_scope(ident.node, ValueNS, None)
2133                                       .and_then(LexicalScopeBinding::item);
2134                     let resolution = binding.map(NameBinding::def).and_then(|def| {
2135                         let always_binding = !pat_src.is_refutable() || opt_pat.is_some() ||
2136                                              bmode != BindingMode::ByValue(Mutability::Immutable);
2137                         match def {
2138                             Def::StructCtor(_, CtorKind::Const) |
2139                             Def::VariantCtor(_, CtorKind::Const) |
2140                             Def::Const(..) if !always_binding => {
2141                                 // A unit struct/variant or constant pattern.
2142                                 self.record_use(ident.node, ValueNS, binding.unwrap(), ident.span);
2143                                 Some(PathResolution::new(def))
2144                             }
2145                             Def::StructCtor(..) | Def::VariantCtor(..) |
2146                             Def::Const(..) | Def::Static(..) => {
2147                                 // A fresh binding that shadows something unacceptable.
2148                                 resolve_error(
2149                                     self,
2150                                     ident.span,
2151                                     ResolutionError::BindingShadowsSomethingUnacceptable(
2152                                         pat_src.descr(), ident.node.name, binding.unwrap())
2153                                 );
2154                                 None
2155                             }
2156                             Def::Local(..) | Def::Upvar(..) | Def::Fn(..) | Def::Err => {
2157                                 // These entities are explicitly allowed
2158                                 // to be shadowed by fresh bindings.
2159                                 None
2160                             }
2161                             def => {
2162                                 span_bug!(ident.span, "unexpected definition for an \
2163                                                        identifier in pattern: {:?}", def);
2164                             }
2165                         }
2166                     }).unwrap_or_else(|| {
2167                         self.fresh_binding(ident, pat.id, outer_pat_id, pat_src, bindings)
2168                     });
2169
2170                     self.record_def(pat.id, resolution);
2171                 }
2172
2173                 PatKind::TupleStruct(ref path, ..) => {
2174                     self.smart_resolve_path(pat.id, None, path, PathSource::TupleStruct);
2175                 }
2176
2177                 PatKind::Path(ref qself, ref path) => {
2178                     self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
2179                 }
2180
2181                 PatKind::Struct(ref path, ..) => {
2182                     self.smart_resolve_path(pat.id, None, path, PathSource::Struct);
2183                 }
2184
2185                 _ => {}
2186             }
2187             true
2188         });
2189
2190         visit::walk_pat(self, pat);
2191     }
2192
2193     // High-level and context dependent path resolution routine.
2194     // Resolves the path and records the resolution into definition map.
2195     // If resolution fails tries several techniques to find likely
2196     // resolution candidates, suggest imports or other help, and report
2197     // errors in user friendly way.
2198     fn smart_resolve_path(&mut self,
2199                           id: NodeId,
2200                           qself: Option<&QSelf>,
2201                           path: &Path,
2202                           source: PathSource)
2203                           -> PathResolution {
2204         let segments = &path.segments.iter().map(|seg| seg.identifier).collect::<Vec<_>>();
2205         let ident_span = path.segments.last().map_or(path.span, |seg| seg.span);
2206         self.smart_resolve_path_fragment(id, qself, segments, path.span, ident_span, source)
2207     }
2208
2209     fn smart_resolve_path_fragment(&mut self,
2210                                    id: NodeId,
2211                                    qself: Option<&QSelf>,
2212                                    path: &[Ident],
2213                                    span: Span,
2214                                    ident_span: Span,
2215                                    source: PathSource)
2216                                    -> PathResolution {
2217         let ns = source.namespace();
2218         let is_expected = &|def| source.is_expected(def);
2219
2220         // Base error is amended with one short label and possibly some longer helps/notes.
2221         let report_errors = |this: &mut Self, def: Option<Def>| {
2222             // Make the base error.
2223             let expected = source.descr_expected();
2224             let path_str = names_to_string(path);
2225             let code = source.error_code(def.is_some());
2226             let (base_msg, fallback_label, base_span) = if let Some(def) = def {
2227                 (format!("expected {}, found {} `{}`", expected, def.kind_name(), path_str),
2228                  format!("not a {}", expected), span)
2229             } else {
2230                 let item_str = path[path.len() - 1];
2231                 let (mod_prefix, mod_str) = if path.len() == 1 {
2232                     (format!(""), format!("this scope"))
2233                 } else if path.len() == 2 && path[0].name == keywords::CrateRoot.name() {
2234                     (format!(""), format!("the crate root"))
2235                 } else {
2236                     let mod_path = &path[..path.len() - 1];
2237                     let mod_prefix = match this.resolve_path(mod_path, Some(TypeNS), None) {
2238                         PathResult::Module(module) => module.def(),
2239                         _ => None,
2240                     }.map_or(format!(""), |def| format!("{} ", def.kind_name()));
2241                     (mod_prefix, format!("`{}`", names_to_string(mod_path)))
2242                 };
2243                 (format!("cannot find {} `{}` in {}{}", expected, item_str, mod_prefix, mod_str),
2244                  format!("not found in {}", mod_str), ident_span)
2245             };
2246             let mut err = this.session.struct_span_err_with_code(base_span, &base_msg, code);
2247
2248             // Emit special messages for unresolved `Self` and `self`.
2249             if is_self_type(path, ns) {
2250                 __diagnostic_used!(E0411);
2251                 err.code("E0411".into());
2252                 err.span_label(span, &format!("`Self` is only available in traits and impls"));
2253                 return err;
2254             }
2255             if is_self_value(path, ns) {
2256                 __diagnostic_used!(E0424);
2257                 err.code("E0424".into());
2258                 err.span_label(span, &format!("`self` value is only available in \
2259                                                methods with `self` parameter"));
2260                 return err;
2261             }
2262
2263             // Try to lookup the name in more relaxed fashion for better error reporting.
2264             let name = path.last().unwrap().name;
2265             let candidates = this.lookup_import_candidates(name, ns, is_expected);
2266             if !candidates.is_empty() {
2267                 // Report import candidates as help and proceed searching for labels.
2268                 show_candidates(&mut err, &candidates, def.is_some());
2269             }
2270             if path.len() == 1 && this.self_type_is_available() {
2271                 if let Some(candidate) = this.lookup_assoc_candidate(name, ns, is_expected) {
2272                     let self_is_available = this.self_value_is_available(path[0].ctxt);
2273                     match candidate {
2274                         AssocSuggestion::Field => {
2275                             err.span_label(span, &format!("did you mean `self.{}`?", path_str));
2276                             if !self_is_available {
2277                                 err.span_label(span, &format!("`self` value is only available in \
2278                                                                methods with `self` parameter"));
2279                             }
2280                         }
2281                         AssocSuggestion::MethodWithSelf if self_is_available => {
2282                             err.span_label(span, &format!("did you mean `self.{}(...)`?",
2283                                                            path_str));
2284                         }
2285                         AssocSuggestion::MethodWithSelf | AssocSuggestion::AssocItem => {
2286                             err.span_label(span, &format!("did you mean `Self::{}`?", path_str));
2287                         }
2288                     }
2289                     return err;
2290                 }
2291             }
2292
2293             // Try context dependent help if relaxed lookup didn't work.
2294             if let Some(def) = def {
2295                 match (def, source) {
2296                     (Def::Macro(..), _) => {
2297                         err.span_label(span, &format!("did you mean `{}!(...)`?", path_str));
2298                         return err;
2299                     }
2300                     (Def::TyAlias(..), PathSource::Trait) => {
2301                         err.span_label(span, &format!("type aliases cannot be used for traits"));
2302                         return err;
2303                     }
2304                     (Def::Mod(..), PathSource::Expr(Some(parent))) => match parent.node {
2305                         ExprKind::Field(_, ident) => {
2306                             err.span_label(parent.span, &format!("did you mean `{}::{}`?",
2307                                                                  path_str, ident.node));
2308                             return err;
2309                         }
2310                         ExprKind::MethodCall(ident, ..) => {
2311                             err.span_label(parent.span, &format!("did you mean `{}::{}(...)`?",
2312                                                                  path_str, ident.node));
2313                             return err;
2314                         }
2315                         _ => {}
2316                     },
2317                     _ if ns == ValueNS && is_struct_like(def) => {
2318                         if let Def::Struct(def_id) = def {
2319                             if let Some((ctor_def, ctor_vis))
2320                                     = this.struct_constructors.get(&def_id).cloned() {
2321                                 if is_expected(ctor_def) && !this.is_accessible(ctor_vis) {
2322                                     err.span_label(span, &format!("constructor is not visible \
2323                                                                    here due to private fields"));
2324                                 }
2325                             }
2326                         }
2327                         err.span_label(span, &format!("did you mean `{} {{ /* fields */ }}`?",
2328                                                        path_str));
2329                         return err;
2330                     }
2331                     _ => {}
2332                 }
2333             }
2334
2335             // Try Levenshtein if nothing else worked.
2336             if let Some(candidate) = this.lookup_typo_candidate(path, ns, is_expected) {
2337                 err.span_label(ident_span, &format!("did you mean `{}`?", candidate));
2338                 return err;
2339             }
2340
2341             // Fallback label.
2342             err.span_label(base_span, &fallback_label);
2343             err
2344         };
2345         let report_errors = |this: &mut Self, def: Option<Def>| {
2346             report_errors(this, def).emit();
2347             err_path_resolution()
2348         };
2349
2350         let resolution = match self.resolve_qpath_anywhere(id, qself, path, ns, span,
2351                                                            source.defer_to_typeck(),
2352                                                            source.global_by_default()) {
2353             Some(resolution) if resolution.unresolved_segments() == 0 => {
2354                 if is_expected(resolution.base_def()) || resolution.base_def() == Def::Err {
2355                     resolution
2356                 } else {
2357                     // Add a temporary hack to smooth the transition to new struct ctor
2358                     // visibility rules. See #38932 for more details.
2359                     let mut res = None;
2360                     if let Def::Struct(def_id) = resolution.base_def() {
2361                         if let Some((ctor_def, ctor_vis))
2362                                 = self.struct_constructors.get(&def_id).cloned() {
2363                             if is_expected(ctor_def) && self.is_accessible(ctor_vis) {
2364                                 let lint = lint::builtin::LEGACY_CONSTRUCTOR_VISIBILITY;
2365                                 self.session.add_lint(lint, id, span,
2366                                     "private struct constructors are not usable through \
2367                                      reexports in outer modules".to_string());
2368                                 res = Some(PathResolution::new(ctor_def));
2369                             }
2370                         }
2371                     }
2372
2373                     res.unwrap_or_else(|| report_errors(self, Some(resolution.base_def())))
2374                 }
2375             }
2376             Some(resolution) if source.defer_to_typeck() => {
2377                 // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
2378                 // or `<T>::A::B`. If `B` should be resolved in value namespace then
2379                 // it needs to be added to the trait map.
2380                 if ns == ValueNS {
2381                     let item_name = path.last().unwrap().name;
2382                     let traits = self.get_traits_containing_item(item_name, ns);
2383                     self.trait_map.insert(id, traits);
2384                 }
2385                 resolution
2386             }
2387             _ => report_errors(self, None)
2388         };
2389
2390         if let PathSource::TraitItem(..) = source {} else {
2391             // Avoid recording definition of `A::B` in `<T as A>::B::C`.
2392             self.record_def(id, resolution);
2393         }
2394         resolution
2395     }
2396
2397     fn self_type_is_available(&mut self) -> bool {
2398         let binding = self.resolve_ident_in_lexical_scope(keywords::SelfType.ident(), TypeNS, None);
2399         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
2400     }
2401
2402     fn self_value_is_available(&mut self, ctxt: SyntaxContext) -> bool {
2403         let ident = Ident { name: keywords::SelfValue.name(), ctxt: ctxt };
2404         let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, None);
2405         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
2406     }
2407
2408     // Resolve in alternative namespaces if resolution in the primary namespace fails.
2409     fn resolve_qpath_anywhere(&mut self,
2410                               id: NodeId,
2411                               qself: Option<&QSelf>,
2412                               path: &[Ident],
2413                               primary_ns: Namespace,
2414                               span: Span,
2415                               defer_to_typeck: bool,
2416                               global_by_default: bool)
2417                               -> Option<PathResolution> {
2418         let mut fin_res = None;
2419         // FIXME: can't resolve paths in macro namespace yet, macros are
2420         // processed by the little special hack below.
2421         for (i, ns) in [primary_ns, TypeNS, ValueNS, /*MacroNS*/].iter().cloned().enumerate() {
2422             if i == 0 || ns != primary_ns {
2423                 match self.resolve_qpath(id, qself, path, ns, span, global_by_default) {
2424                     // If defer_to_typeck, then resolution > no resolution,
2425                     // otherwise full resolution > partial resolution > no resolution.
2426                     Some(res) if res.unresolved_segments() == 0 || defer_to_typeck =>
2427                         return Some(res),
2428                     res => if fin_res.is_none() { fin_res = res },
2429                 };
2430             }
2431         }
2432         let is_builtin = self.builtin_macros.get(&path[0].name).cloned()
2433             .map(|binding| binding.get_macro(self).kind() == MacroKind::Bang).unwrap_or(false);
2434         if primary_ns != MacroNS && (is_builtin || self.macro_names.contains(&path[0].name)) {
2435             // Return some dummy definition, it's enough for error reporting.
2436             return Some(
2437                 PathResolution::new(Def::Macro(DefId::local(CRATE_DEF_INDEX), MacroKind::Bang))
2438             );
2439         }
2440         fin_res
2441     }
2442
2443     /// Handles paths that may refer to associated items.
2444     fn resolve_qpath(&mut self,
2445                      id: NodeId,
2446                      qself: Option<&QSelf>,
2447                      path: &[Ident],
2448                      ns: Namespace,
2449                      span: Span,
2450                      global_by_default: bool)
2451                      -> Option<PathResolution> {
2452         if let Some(qself) = qself {
2453             if qself.position == 0 {
2454                 // FIXME: Create some fake resolution that can't possibly be a type.
2455                 return Some(PathResolution::with_unresolved_segments(
2456                     Def::Mod(DefId::local(CRATE_DEF_INDEX)), path.len()
2457                 ));
2458             }
2459             // Make sure `A::B` in `<T as A>::B::C` is a trait item.
2460             let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
2461             let res = self.smart_resolve_path_fragment(id, None, &path[..qself.position + 1],
2462                                                        span, span, PathSource::TraitItem(ns));
2463             return Some(PathResolution::with_unresolved_segments(
2464                 res.base_def(), res.unresolved_segments() + path.len() - qself.position - 1
2465             ));
2466         }
2467
2468         let result = match self.resolve_path(&path, Some(ns), Some(span)) {
2469             PathResult::NonModule(path_res) => path_res,
2470             PathResult::Module(module) if !module.is_normal() => {
2471                 PathResolution::new(module.def().unwrap())
2472             }
2473             // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
2474             // don't report an error right away, but try to fallback to a primitive type.
2475             // So, we are still able to successfully resolve something like
2476             //
2477             // use std::u8; // bring module u8 in scope
2478             // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
2479             //     u8::max_value() // OK, resolves to associated function <u8>::max_value,
2480             //                     // not to non-existent std::u8::max_value
2481             // }
2482             //
2483             // Such behavior is required for backward compatibility.
2484             // The same fallback is used when `a` resolves to nothing.
2485             PathResult::Module(..) | PathResult::Failed(..)
2486                     if (ns == TypeNS || path.len() > 1) &&
2487                        self.primitive_type_table.primitive_types.contains_key(&path[0].name) => {
2488                 let prim = self.primitive_type_table.primitive_types[&path[0].name];
2489                 match prim {
2490                     TyUint(UintTy::U128) | TyInt(IntTy::I128) => {
2491                         if !self.session.features.borrow().i128_type {
2492                             emit_feature_err(&self.session.parse_sess,
2493                                                 "i128_type", span, GateIssue::Language,
2494                                                 "128-bit type is unstable");
2495
2496                         }
2497                     }
2498                     _ => {}
2499                 }
2500                 PathResolution::with_unresolved_segments(Def::PrimTy(prim), path.len() - 1)
2501             }
2502             PathResult::Module(module) => PathResolution::new(module.def().unwrap()),
2503             PathResult::Failed(msg, false) => {
2504                 resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
2505                 err_path_resolution()
2506             }
2507             PathResult::Failed(..) => return None,
2508             PathResult::Indeterminate => bug!("indetermined path result in resolve_qpath"),
2509         };
2510
2511         if path.len() > 1 && !global_by_default && result.base_def() != Def::Err &&
2512            path[0].name != keywords::CrateRoot.name() && path[0].name != "$crate" {
2513             let unqualified_result = {
2514                 match self.resolve_path(&[*path.last().unwrap()], Some(ns), None) {
2515                     PathResult::NonModule(path_res) => path_res.base_def(),
2516                     PathResult::Module(module) => module.def().unwrap(),
2517                     _ => return Some(result),
2518                 }
2519             };
2520             if result.base_def() == unqualified_result {
2521                 let lint = lint::builtin::UNUSED_QUALIFICATIONS;
2522                 self.session.add_lint(lint, id, span, "unnecessary qualification".to_string());
2523             }
2524         }
2525
2526         Some(result)
2527     }
2528
2529     fn resolve_path(&mut self,
2530                     path: &[Ident],
2531                     opt_ns: Option<Namespace>, // `None` indicates a module path
2532                     record_used: Option<Span>)
2533                     -> PathResult<'a> {
2534         let mut module = None;
2535         let mut allow_super = true;
2536
2537         for (i, &ident) in path.iter().enumerate() {
2538             let is_last = i == path.len() - 1;
2539             let ns = if is_last { opt_ns.unwrap_or(TypeNS) } else { TypeNS };
2540
2541             if i == 0 && ns == TypeNS && ident.name == keywords::SelfValue.name() {
2542                 module = Some(self.module_map[&self.current_module.normal_ancestor_id]);
2543                 continue
2544             } else if allow_super && ns == TypeNS && ident.name == keywords::Super.name() {
2545                 let current_module = if i == 0 { self.current_module } else { module.unwrap() };
2546                 let self_module = self.module_map[&current_module.normal_ancestor_id];
2547                 if let Some(parent) = self_module.parent {
2548                     module = Some(self.module_map[&parent.normal_ancestor_id]);
2549                     continue
2550                 } else {
2551                     let msg = "There are too many initial `super`s.".to_string();
2552                     return PathResult::Failed(msg, false);
2553                 }
2554             }
2555             allow_super = false;
2556
2557             if i == 0 && ns == TypeNS && ident.name == keywords::CrateRoot.name() {
2558                 module = Some(self.graph_root);
2559                 continue
2560             } else if i == 0 && ns == TypeNS && ident.name == "$crate" {
2561                 module = Some(self.resolve_crate_var(ident.ctxt));
2562                 continue
2563             }
2564
2565             let binding = if let Some(module) = module {
2566                 self.resolve_ident_in_module(module, ident, ns, false, record_used)
2567             } else if opt_ns == Some(MacroNS) {
2568                 self.resolve_lexical_macro_path_segment(ident, ns, record_used)
2569             } else {
2570                 match self.resolve_ident_in_lexical_scope(ident, ns, record_used) {
2571                     Some(LexicalScopeBinding::Item(binding)) => Ok(binding),
2572                     Some(LexicalScopeBinding::Def(def))
2573                             if opt_ns == Some(TypeNS) || opt_ns == Some(ValueNS) => {
2574                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
2575                             def, path.len() - 1
2576                         ));
2577                     }
2578                     _ => Err(if record_used.is_some() { Determined } else { Undetermined }),
2579                 }
2580             };
2581
2582             match binding {
2583                 Ok(binding) => {
2584                     let def = binding.def();
2585                     let maybe_assoc = opt_ns != Some(MacroNS) && PathSource::Type.is_expected(def);
2586                     if let Some(next_module) = binding.module() {
2587                         module = Some(next_module);
2588                     } else if def == Def::Err {
2589                         return PathResult::NonModule(err_path_resolution());
2590                     } else if opt_ns.is_some() && (is_last || maybe_assoc) {
2591                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
2592                             def, path.len() - i - 1
2593                         ));
2594                     } else {
2595                         return PathResult::Failed(format!("Not a module `{}`", ident), is_last);
2596                     }
2597                 }
2598                 Err(Undetermined) => return PathResult::Indeterminate,
2599                 Err(Determined) => {
2600                     if let Some(module) = module {
2601                         if opt_ns.is_some() && !module.is_normal() {
2602                             return PathResult::NonModule(PathResolution::with_unresolved_segments(
2603                                 module.def().unwrap(), path.len() - i
2604                             ));
2605                         }
2606                     }
2607                     let msg = if module.and_then(ModuleData::def) == self.graph_root.def() {
2608                         let is_mod = |def| match def { Def::Mod(..) => true, _ => false };
2609                         let mut candidates =
2610                             self.lookup_import_candidates(ident.name, TypeNS, is_mod);
2611                         candidates.sort_by_key(|c| (c.path.segments.len(), c.path.to_string()));
2612                         if let Some(candidate) = candidates.get(0) {
2613                             format!("Did you mean `{}`?", candidate.path)
2614                         } else {
2615                             format!("Maybe a missing `extern crate {};`?", ident)
2616                         }
2617                     } else if i == 0 {
2618                         format!("Use of undeclared type or module `{}`", ident)
2619                     } else {
2620                         format!("Could not find `{}` in `{}`", ident, path[i - 1])
2621                     };
2622                     return PathResult::Failed(msg, is_last);
2623                 }
2624             }
2625         }
2626
2627         PathResult::Module(module.unwrap_or(self.graph_root))
2628     }
2629
2630     // Resolve a local definition, potentially adjusting for closures.
2631     fn adjust_local_def(&mut self,
2632                         ns: Namespace,
2633                         rib_index: usize,
2634                         mut def: Def,
2635                         record_used: Option<Span>) -> Def {
2636         let ribs = &self.ribs[ns][rib_index + 1..];
2637
2638         // An invalid forward use of a type parameter from a previous default.
2639         if let ForwardTyParamBanRibKind = self.ribs[ns][rib_index].kind {
2640             if let Some(span) = record_used {
2641                 resolve_error(self, span,
2642                         ResolutionError::ForwardDeclaredTyParam);
2643             }
2644             assert_eq!(def, Def::Err);
2645             return Def::Err;
2646         }
2647
2648         match def {
2649             Def::Upvar(..) => {
2650                 span_bug!(record_used.unwrap_or(DUMMY_SP), "unexpected {:?} in bindings", def)
2651             }
2652             Def::Local(def_id) => {
2653                 for rib in ribs {
2654                     match rib.kind {
2655                         NormalRibKind | ModuleRibKind(..) | MacroDefinition(..) |
2656                         ForwardTyParamBanRibKind => {
2657                             // Nothing to do. Continue.
2658                         }
2659                         ClosureRibKind(function_id) => {
2660                             let prev_def = def;
2661                             let node_id = self.definitions.as_local_node_id(def_id).unwrap();
2662
2663                             let seen = self.freevars_seen
2664                                            .entry(function_id)
2665                                            .or_insert_with(|| NodeMap());
2666                             if let Some(&index) = seen.get(&node_id) {
2667                                 def = Def::Upvar(def_id, index, function_id);
2668                                 continue;
2669                             }
2670                             let vec = self.freevars
2671                                           .entry(function_id)
2672                                           .or_insert_with(|| vec![]);
2673                             let depth = vec.len();
2674                             def = Def::Upvar(def_id, depth, function_id);
2675
2676                             if let Some(span) = record_used {
2677                                 vec.push(Freevar {
2678                                     def: prev_def,
2679                                     span: span,
2680                                 });
2681                                 seen.insert(node_id, depth);
2682                             }
2683                         }
2684                         ItemRibKind | MethodRibKind(_) => {
2685                             // This was an attempt to access an upvar inside a
2686                             // named function item. This is not allowed, so we
2687                             // report an error.
2688                             if let Some(span) = record_used {
2689                                 resolve_error(self, span,
2690                                         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem);
2691                             }
2692                             return Def::Err;
2693                         }
2694                         ConstantItemRibKind => {
2695                             // Still doesn't deal with upvars
2696                             if let Some(span) = record_used {
2697                                 resolve_error(self, span,
2698                                         ResolutionError::AttemptToUseNonConstantValueInConstant);
2699                             }
2700                             return Def::Err;
2701                         }
2702                     }
2703                 }
2704             }
2705             Def::TyParam(..) | Def::SelfTy(..) => {
2706                 for rib in ribs {
2707                     match rib.kind {
2708                         NormalRibKind | MethodRibKind(_) | ClosureRibKind(..) |
2709                         ModuleRibKind(..) | MacroDefinition(..) | ForwardTyParamBanRibKind => {
2710                             // Nothing to do. Continue.
2711                         }
2712                         ItemRibKind => {
2713                             // This was an attempt to use a type parameter outside
2714                             // its scope.
2715                             if let Some(span) = record_used {
2716                                 resolve_error(self, span,
2717                                               ResolutionError::TypeParametersFromOuterFunction);
2718                             }
2719                             return Def::Err;
2720                         }
2721                         ConstantItemRibKind => {
2722                             // see #9186
2723                             if let Some(span) = record_used {
2724                                 resolve_error(self, span,
2725                                               ResolutionError::OuterTypeParameterContext);
2726                             }
2727                             return Def::Err;
2728                         }
2729                     }
2730                 }
2731             }
2732             _ => {}
2733         }
2734         return def;
2735     }
2736
2737     // Calls `f` with a `Resolver` whose current lexical scope is `module`'s lexical scope,
2738     // i.e. the module's items and the prelude (unless the module is `#[no_implicit_prelude]`).
2739     // FIXME #34673: This needs testing.
2740     pub fn with_module_lexical_scope<T, F>(&mut self, module: Module<'a>, f: F) -> T
2741         where F: FnOnce(&mut Resolver<'a>) -> T,
2742     {
2743         self.with_empty_ribs(|this| {
2744             this.ribs[ValueNS].push(Rib::new(ModuleRibKind(module)));
2745             this.ribs[TypeNS].push(Rib::new(ModuleRibKind(module)));
2746             f(this)
2747         })
2748     }
2749
2750     fn with_empty_ribs<T, F>(&mut self, f: F) -> T
2751         where F: FnOnce(&mut Resolver<'a>) -> T,
2752     {
2753         let ribs = replace(&mut self.ribs, PerNS::<Vec<Rib>>::default());
2754         let label_ribs = replace(&mut self.label_ribs, Vec::new());
2755
2756         let result = f(self);
2757         self.ribs = ribs;
2758         self.label_ribs = label_ribs;
2759         result
2760     }
2761
2762     fn lookup_assoc_candidate<FilterFn>(&mut self,
2763                                         name: Name,
2764                                         ns: Namespace,
2765                                         filter_fn: FilterFn)
2766                                         -> Option<AssocSuggestion>
2767         where FilterFn: Fn(Def) -> bool
2768     {
2769         fn extract_node_id(t: &Ty) -> Option<NodeId> {
2770             match t.node {
2771                 TyKind::Path(None, _) => Some(t.id),
2772                 TyKind::Rptr(_, ref mut_ty) => extract_node_id(&mut_ty.ty),
2773                 // This doesn't handle the remaining `Ty` variants as they are not
2774                 // that commonly the self_type, it might be interesting to provide
2775                 // support for those in future.
2776                 _ => None,
2777             }
2778         }
2779
2780         // Fields are generally expected in the same contexts as locals.
2781         if filter_fn(Def::Local(DefId::local(CRATE_DEF_INDEX))) {
2782             if let Some(node_id) = self.current_self_type.as_ref().and_then(extract_node_id) {
2783                 // Look for a field with the same name in the current self_type.
2784                 if let Some(resolution) = self.def_map.get(&node_id) {
2785                     match resolution.base_def() {
2786                         Def::Struct(did) | Def::Union(did)
2787                                 if resolution.unresolved_segments() == 0 => {
2788                             if let Some(field_names) = self.field_names.get(&did) {
2789                                 if field_names.iter().any(|&field_name| name == field_name) {
2790                                     return Some(AssocSuggestion::Field);
2791                                 }
2792                             }
2793                         }
2794                         _ => {}
2795                     }
2796                 }
2797             }
2798         }
2799
2800         // Look for associated items in the current trait.
2801         if let Some((trait_did, _)) = self.current_trait_ref {
2802             if let Some(&(def, has_self)) = self.trait_item_map.get(&(trait_did, name, ns)) {
2803                 if filter_fn(def) {
2804                     return Some(if has_self {
2805                         AssocSuggestion::MethodWithSelf
2806                     } else {
2807                         AssocSuggestion::AssocItem
2808                     });
2809                 }
2810             }
2811         }
2812
2813         None
2814     }
2815
2816     fn lookup_typo_candidate<FilterFn>(&mut self,
2817                                        path: &[Ident],
2818                                        ns: Namespace,
2819                                        filter_fn: FilterFn)
2820                                        -> Option<Symbol>
2821         where FilterFn: Fn(Def) -> bool
2822     {
2823         let add_module_candidates = |module: Module, names: &mut Vec<Name>| {
2824             for (&(ident, _), resolution) in module.resolutions.borrow().iter() {
2825                 if let Some(binding) = resolution.borrow().binding {
2826                     if filter_fn(binding.def()) {
2827                         names.push(ident.name);
2828                     }
2829                 }
2830             }
2831         };
2832
2833         let mut names = Vec::new();
2834         if path.len() == 1 {
2835             // Search in lexical scope.
2836             // Walk backwards up the ribs in scope and collect candidates.
2837             for rib in self.ribs[ns].iter().rev() {
2838                 // Locals and type parameters
2839                 for (ident, def) in &rib.bindings {
2840                     if filter_fn(*def) {
2841                         names.push(ident.name);
2842                     }
2843                 }
2844                 // Items in scope
2845                 if let ModuleRibKind(module) = rib.kind {
2846                     // Items from this module
2847                     add_module_candidates(module, &mut names);
2848
2849                     if let ModuleKind::Block(..) = module.kind {
2850                         // We can see through blocks
2851                     } else {
2852                         // Items from the prelude
2853                         if let Some(prelude) = self.prelude {
2854                             if !module.no_implicit_prelude {
2855                                 add_module_candidates(prelude, &mut names);
2856                             }
2857                         }
2858                         break;
2859                     }
2860                 }
2861             }
2862             // Add primitive types to the mix
2863             if filter_fn(Def::PrimTy(TyBool)) {
2864                 for (name, _) in &self.primitive_type_table.primitive_types {
2865                     names.push(*name);
2866                 }
2867             }
2868         } else {
2869             // Search in module.
2870             let mod_path = &path[..path.len() - 1];
2871             if let PathResult::Module(module) = self.resolve_path(mod_path, Some(TypeNS), None) {
2872                 add_module_candidates(module, &mut names);
2873             }
2874         }
2875
2876         let name = path[path.len() - 1].name;
2877         // Make sure error reporting is deterministic.
2878         names.sort_by_key(|name| name.as_str());
2879         match find_best_match_for_name(names.iter(), &name.as_str(), None) {
2880             Some(found) if found != name => Some(found),
2881             _ => None,
2882         }
2883     }
2884
2885     fn with_resolved_label<F>(&mut self, label: Option<SpannedIdent>, id: NodeId, f: F)
2886         where F: FnOnce(&mut Resolver)
2887     {
2888         if let Some(label) = label {
2889             let def = Def::Label(id);
2890             self.with_label_rib(|this| {
2891                 this.label_ribs.last_mut().unwrap().bindings.insert(label.node, def);
2892                 f(this);
2893             });
2894         } else {
2895             f(self);
2896         }
2897     }
2898
2899     fn resolve_labeled_block(&mut self, label: Option<SpannedIdent>, id: NodeId, block: &Block) {
2900         self.with_resolved_label(label, id, |this| this.visit_block(block));
2901     }
2902
2903     fn resolve_expr(&mut self, expr: &Expr, parent: Option<&Expr>) {
2904         // First, record candidate traits for this expression if it could
2905         // result in the invocation of a method call.
2906
2907         self.record_candidate_traits_for_expr_if_necessary(expr);
2908
2909         // Next, resolve the node.
2910         match expr.node {
2911             ExprKind::Path(ref qself, ref path) => {
2912                 self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
2913                 visit::walk_expr(self, expr);
2914             }
2915
2916             ExprKind::Struct(ref path, ..) => {
2917                 self.smart_resolve_path(expr.id, None, path, PathSource::Struct);
2918                 visit::walk_expr(self, expr);
2919             }
2920
2921             ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
2922                 match self.search_label(label.node) {
2923                     None => {
2924                         self.record_def(expr.id, err_path_resolution());
2925                         resolve_error(self,
2926                                       label.span,
2927                                       ResolutionError::UndeclaredLabel(&label.node.name.as_str()));
2928                     }
2929                     Some(def @ Def::Label(_)) => {
2930                         // Since this def is a label, it is never read.
2931                         self.record_def(expr.id, PathResolution::new(def));
2932                     }
2933                     Some(_) => {
2934                         span_bug!(expr.span, "label wasn't mapped to a label def!");
2935                     }
2936                 }
2937
2938                 // visit `break` argument if any
2939                 visit::walk_expr(self, expr);
2940             }
2941
2942             ExprKind::IfLet(ref pattern, ref subexpression, ref if_block, ref optional_else) => {
2943                 self.visit_expr(subexpression);
2944
2945                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2946                 self.resolve_pattern(pattern, PatternSource::IfLet, &mut FxHashMap());
2947                 self.visit_block(if_block);
2948                 self.ribs[ValueNS].pop();
2949
2950                 optional_else.as_ref().map(|expr| self.visit_expr(expr));
2951             }
2952
2953             ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),
2954
2955             ExprKind::While(ref subexpression, ref block, label) => {
2956                 self.with_resolved_label(label, expr.id, |this| {
2957                     this.visit_expr(subexpression);
2958                     this.visit_block(block);
2959                 });
2960             }
2961
2962             ExprKind::WhileLet(ref pattern, ref subexpression, ref block, label) => {
2963                 self.with_resolved_label(label, expr.id, |this| {
2964                     this.visit_expr(subexpression);
2965                     this.ribs[ValueNS].push(Rib::new(NormalRibKind));
2966                     this.resolve_pattern(pattern, PatternSource::WhileLet, &mut FxHashMap());
2967                     this.visit_block(block);
2968                     this.ribs[ValueNS].pop();
2969                 });
2970             }
2971
2972             ExprKind::ForLoop(ref pattern, ref subexpression, ref block, label) => {
2973                 self.visit_expr(subexpression);
2974                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2975                 self.resolve_pattern(pattern, PatternSource::For, &mut FxHashMap());
2976
2977                 self.resolve_labeled_block(label, expr.id, block);
2978
2979                 self.ribs[ValueNS].pop();
2980             }
2981
2982             // Equivalent to `visit::walk_expr` + passing some context to children.
2983             ExprKind::Field(ref subexpression, _) => {
2984                 self.resolve_expr(subexpression, Some(expr));
2985             }
2986             ExprKind::MethodCall(_, ref types, ref arguments) => {
2987                 let mut arguments = arguments.iter();
2988                 self.resolve_expr(arguments.next().unwrap(), Some(expr));
2989                 for argument in arguments {
2990                     self.resolve_expr(argument, None);
2991                 }
2992                 for ty in types.iter() {
2993                     self.visit_ty(ty);
2994                 }
2995             }
2996
2997             ExprKind::Repeat(ref element, ref count) => {
2998                 self.visit_expr(element);
2999                 self.with_constant_rib(|this| {
3000                     this.visit_expr(count);
3001                 });
3002             }
3003             ExprKind::Call(ref callee, ref arguments) => {
3004                 self.resolve_expr(callee, Some(expr));
3005                 for argument in arguments {
3006                     self.resolve_expr(argument, None);
3007                 }
3008             }
3009
3010             _ => {
3011                 visit::walk_expr(self, expr);
3012             }
3013         }
3014     }
3015
3016     fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &Expr) {
3017         match expr.node {
3018             ExprKind::Field(_, name) => {
3019                 // FIXME(#6890): Even though you can't treat a method like a
3020                 // field, we need to add any trait methods we find that match
3021                 // the field name so that we can do some nice error reporting
3022                 // later on in typeck.
3023                 let traits = self.get_traits_containing_item(name.node.name, ValueNS);
3024                 self.trait_map.insert(expr.id, traits);
3025             }
3026             ExprKind::MethodCall(name, ..) => {
3027                 debug!("(recording candidate traits for expr) recording traits for {}",
3028                        expr.id);
3029                 let traits = self.get_traits_containing_item(name.node.name, ValueNS);
3030                 self.trait_map.insert(expr.id, traits);
3031             }
3032             _ => {
3033                 // Nothing to do.
3034             }
3035         }
3036     }
3037
3038     fn get_traits_containing_item(&mut self, name: Name, ns: Namespace) -> Vec<TraitCandidate> {
3039         debug!("(getting traits containing item) looking for '{}'", name);
3040
3041         let mut found_traits = Vec::new();
3042         // Look for the current trait.
3043         if let Some((trait_def_id, _)) = self.current_trait_ref {
3044             if self.trait_item_map.contains_key(&(trait_def_id, name, ns)) {
3045                 found_traits.push(TraitCandidate { def_id: trait_def_id, import_id: None });
3046             }
3047         }
3048
3049         let mut search_module = self.current_module;
3050         loop {
3051             self.get_traits_in_module_containing_item(name, ns, search_module, &mut found_traits);
3052             match search_module.kind {
3053                 ModuleKind::Block(..) => search_module = search_module.parent.unwrap(),
3054                 _ => break,
3055             }
3056         }
3057
3058         if let Some(prelude) = self.prelude {
3059             if !search_module.no_implicit_prelude {
3060                 self.get_traits_in_module_containing_item(name, ns, prelude, &mut found_traits);
3061             }
3062         }
3063
3064         found_traits
3065     }
3066
3067     fn get_traits_in_module_containing_item(&mut self,
3068                                             name: Name,
3069                                             ns: Namespace,
3070                                             module: Module,
3071                                             found_traits: &mut Vec<TraitCandidate>) {
3072         let mut traits = module.traits.borrow_mut();
3073         if traits.is_none() {
3074             let mut collected_traits = Vec::new();
3075             module.for_each_child(|name, ns, binding| {
3076                 if ns != TypeNS { return }
3077                 if let Def::Trait(_) = binding.def() {
3078                     collected_traits.push((name, binding));
3079                 }
3080             });
3081             *traits = Some(collected_traits.into_boxed_slice());
3082         }
3083
3084         for &(trait_name, binding) in traits.as_ref().unwrap().iter() {
3085             let trait_def_id = binding.def().def_id();
3086             if self.trait_item_map.contains_key(&(trait_def_id, name, ns)) {
3087                 let import_id = match binding.kind {
3088                     NameBindingKind::Import { directive, .. } => {
3089                         self.maybe_unused_trait_imports.insert(directive.id);
3090                         self.add_to_glob_map(directive.id, trait_name);
3091                         Some(directive.id)
3092                     }
3093                     _ => None,
3094                 };
3095                 found_traits.push(TraitCandidate { def_id: trait_def_id, import_id: import_id });
3096             }
3097         }
3098     }
3099
3100     /// When name resolution fails, this method can be used to look up candidate
3101     /// entities with the expected name. It allows filtering them using the
3102     /// supplied predicate (which should be used to only accept the types of
3103     /// definitions expected e.g. traits). The lookup spans across all crates.
3104     ///
3105     /// NOTE: The method does not look into imports, but this is not a problem,
3106     /// since we report the definitions (thus, the de-aliased imports).
3107     fn lookup_import_candidates<FilterFn>(&mut self,
3108                                           lookup_name: Name,
3109                                           namespace: Namespace,
3110                                           filter_fn: FilterFn)
3111                                           -> Vec<ImportSuggestion>
3112         where FilterFn: Fn(Def) -> bool
3113     {
3114         let mut candidates = Vec::new();
3115         let mut worklist = Vec::new();
3116         let mut seen_modules = FxHashSet();
3117         worklist.push((self.graph_root, Vec::new(), false));
3118
3119         while let Some((in_module,
3120                         path_segments,
3121                         in_module_is_extern)) = worklist.pop() {
3122             self.populate_module_if_necessary(in_module);
3123
3124             in_module.for_each_child(|ident, ns, name_binding| {
3125
3126                 // avoid imports entirely
3127                 if name_binding.is_import() && !name_binding.is_extern_crate() { return; }
3128                 // avoid non-importable candidates as well
3129                 if !name_binding.is_importable() { return; }
3130
3131                 // collect results based on the filter function
3132                 if ident.name == lookup_name && ns == namespace {
3133                     if filter_fn(name_binding.def()) {
3134                         // create the path
3135                         let mut segms = path_segments.clone();
3136                         segms.push(ast::PathSegment::from_ident(ident, name_binding.span));
3137                         let path = Path {
3138                             span: name_binding.span,
3139                             segments: segms,
3140                         };
3141                         // the entity is accessible in the following cases:
3142                         // 1. if it's defined in the same crate, it's always
3143                         // accessible (since private entities can be made public)
3144                         // 2. if it's defined in another crate, it's accessible
3145                         // only if both the module is public and the entity is
3146                         // declared as public (due to pruning, we don't explore
3147                         // outside crate private modules => no need to check this)
3148                         if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
3149                             candidates.push(ImportSuggestion { path: path });
3150                         }
3151                     }
3152                 }
3153
3154                 // collect submodules to explore
3155                 if let Some(module) = name_binding.module() {
3156                     // form the path
3157                     let mut path_segments = path_segments.clone();
3158                     path_segments.push(ast::PathSegment::from_ident(ident, name_binding.span));
3159
3160                     if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
3161                         // add the module to the lookup
3162                         let is_extern = in_module_is_extern || name_binding.is_extern_crate();
3163                         if seen_modules.insert(module.def_id().unwrap()) {
3164                             worklist.push((module, path_segments, is_extern));
3165                         }
3166                     }
3167                 }
3168             })
3169         }
3170
3171         candidates
3172     }
3173
3174     fn record_def(&mut self, node_id: NodeId, resolution: PathResolution) {
3175         debug!("(recording def) recording {:?} for {}", resolution, node_id);
3176         if let Some(prev_res) = self.def_map.insert(node_id, resolution) {
3177             panic!("path resolved multiple times ({:?} before, {:?} now)", prev_res, resolution);
3178         }
3179     }
3180
3181     fn resolve_visibility(&mut self, vis: &ast::Visibility) -> ty::Visibility {
3182         match *vis {
3183             ast::Visibility::Public => ty::Visibility::Public,
3184             ast::Visibility::Crate(..) => ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX)),
3185             ast::Visibility::Inherited => {
3186                 ty::Visibility::Restricted(self.current_module.normal_ancestor_id)
3187             }
3188             ast::Visibility::Restricted { ref path, id } => {
3189                 let def = self.smart_resolve_path(id, None, path,
3190                                                   PathSource::Visibility).base_def();
3191                 if def == Def::Err {
3192                     ty::Visibility::Public
3193                 } else {
3194                     let vis = ty::Visibility::Restricted(def.def_id());
3195                     if self.is_accessible(vis) {
3196                         vis
3197                     } else {
3198                         self.session.span_err(path.span, "visibilities can only be restricted \
3199                                                           to ancestor modules");
3200                         ty::Visibility::Public
3201                     }
3202                 }
3203             }
3204         }
3205     }
3206
3207     fn is_accessible(&self, vis: ty::Visibility) -> bool {
3208         vis.is_accessible_from(self.current_module.normal_ancestor_id, self)
3209     }
3210
3211     fn is_accessible_from(&self, vis: ty::Visibility, module: Module<'a>) -> bool {
3212         vis.is_accessible_from(module.normal_ancestor_id, self)
3213     }
3214
3215     fn report_errors(&mut self) {
3216         self.report_shadowing_errors();
3217         let mut reported_spans = FxHashSet();
3218
3219         for &AmbiguityError { span, name, b1, b2, lexical, legacy } in &self.ambiguity_errors {
3220             if !reported_spans.insert(span) { continue }
3221             let participle = |binding: &NameBinding| {
3222                 if binding.is_import() { "imported" } else { "defined" }
3223             };
3224             let msg1 = format!("`{}` could refer to the name {} here", name, participle(b1));
3225             let msg2 = format!("`{}` could also refer to the name {} here", name, participle(b2));
3226             let note = if !lexical && b1.is_glob_import() {
3227                 format!("consider adding an explicit import of `{}` to disambiguate", name)
3228             } else if let Def::Macro(..) = b1.def() {
3229                 format!("macro-expanded {} do not shadow",
3230                         if b1.is_import() { "macro imports" } else { "macros" })
3231             } else {
3232                 format!("macro-expanded {} do not shadow when used in a macro invocation path",
3233                         if b1.is_import() { "imports" } else { "items" })
3234             };
3235             if legacy {
3236                 let id = match b2.kind {
3237                     NameBindingKind::Import { directive, .. } => directive.id,
3238                     _ => unreachable!(),
3239                 };
3240                 let mut span = MultiSpan::from_span(span);
3241                 span.push_span_label(b1.span, msg1);
3242                 span.push_span_label(b2.span, msg2);
3243                 let msg = format!("`{}` is ambiguous", name);
3244                 self.session.add_lint(lint::builtin::LEGACY_IMPORTS, id, span, msg);
3245             } else {
3246                 self.session.struct_span_err(span, &format!("`{}` is ambiguous", name))
3247                     .span_note(b1.span, &msg1)
3248                     .span_note(b2.span, &msg2)
3249                     .note(&note)
3250                     .emit();
3251             }
3252         }
3253
3254         for &PrivacyError(span, name, binding) in &self.privacy_errors {
3255             if !reported_spans.insert(span) { continue }
3256             if binding.is_extern_crate() {
3257                 // Warn when using an inaccessible extern crate.
3258                 let node_id = match binding.kind {
3259                     NameBindingKind::Import { directive, .. } => directive.id,
3260                     _ => unreachable!(),
3261                 };
3262                 let msg = format!("extern crate `{}` is private", name);
3263                 self.session.add_lint(lint::builtin::INACCESSIBLE_EXTERN_CRATE, node_id, span, msg);
3264             } else {
3265                 let def = binding.def();
3266                 self.session.span_err(span, &format!("{} `{}` is private", def.kind_name(), name));
3267             }
3268         }
3269     }
3270
3271     fn report_shadowing_errors(&mut self) {
3272         for (name, scope) in replace(&mut self.lexical_macro_resolutions, Vec::new()) {
3273             self.resolve_legacy_scope(scope, name, true);
3274         }
3275
3276         let mut reported_errors = FxHashSet();
3277         for binding in replace(&mut self.disallowed_shadowing, Vec::new()) {
3278             if self.resolve_legacy_scope(&binding.parent, binding.name, false).is_some() &&
3279                reported_errors.insert((binding.name, binding.span)) {
3280                 let msg = format!("`{}` is already in scope", binding.name);
3281                 self.session.struct_span_err(binding.span, &msg)
3282                     .note("macro-expanded `macro_rules!`s may not shadow \
3283                            existing macros (see RFC 1560)")
3284                     .emit();
3285             }
3286         }
3287     }
3288
3289     fn report_conflict(&mut self,
3290                        parent: Module,
3291                        ident: Ident,
3292                        ns: Namespace,
3293                        binding: &NameBinding,
3294                        old_binding: &NameBinding) {
3295         // Error on the second of two conflicting names
3296         if old_binding.span.lo > binding.span.lo {
3297             return self.report_conflict(parent, ident, ns, old_binding, binding);
3298         }
3299
3300         let container = match parent.kind {
3301             ModuleKind::Def(Def::Mod(_), _) => "module",
3302             ModuleKind::Def(Def::Trait(_), _) => "trait",
3303             ModuleKind::Block(..) => "block",
3304             _ => "enum",
3305         };
3306
3307         let (participle, noun) = match old_binding.is_import() {
3308             true => ("imported", "import"),
3309             false => ("defined", "definition"),
3310         };
3311
3312         let (name, span) = (ident.name, binding.span);
3313
3314         if let Some(s) = self.name_already_seen.get(&name) {
3315             if s == &span {
3316                 return;
3317             }
3318         }
3319
3320         let msg = {
3321             let kind = match (ns, old_binding.module()) {
3322                 (ValueNS, _) => "a value",
3323                 (MacroNS, _) => "a macro",
3324                 (TypeNS, _) if old_binding.is_extern_crate() => "an extern crate",
3325                 (TypeNS, Some(module)) if module.is_normal() => "a module",
3326                 (TypeNS, Some(module)) if module.is_trait() => "a trait",
3327                 (TypeNS, _) => "a type",
3328             };
3329             format!("{} named `{}` has already been {} in this {}",
3330                     kind, name, participle, container)
3331         };
3332
3333         let mut err = match (old_binding.is_extern_crate(), binding.is_extern_crate()) {
3334             (true, true) => struct_span_err!(self.session, span, E0259, "{}", msg),
3335             (true, _) | (_, true) => match binding.is_import() && old_binding.is_import() {
3336                 true => struct_span_err!(self.session, span, E0254, "{}", msg),
3337                 false => struct_span_err!(self.session, span, E0260, "{}", msg),
3338             },
3339             _ => match (old_binding.is_import(), binding.is_import()) {
3340                 (false, false) => struct_span_err!(self.session, span, E0428, "{}", msg),
3341                 (true, true) => struct_span_err!(self.session, span, E0252, "{}", msg),
3342                 _ => struct_span_err!(self.session, span, E0255, "{}", msg),
3343             },
3344         };
3345
3346         err.span_label(span, &format!("`{}` already {}", name, participle));
3347         if old_binding.span != syntax_pos::DUMMY_SP {
3348             err.span_label(old_binding.span, &format!("previous {} of `{}` here", noun, name));
3349         }
3350         err.emit();
3351         self.name_already_seen.insert(name, span);
3352     }
3353
3354     fn warn_legacy_self_import(&self, directive: &'a ImportDirective<'a>) {
3355         let (id, span) = (directive.id, directive.span);
3356         let msg = "`self` no longer imports values".to_string();
3357         self.session.add_lint(lint::builtin::LEGACY_IMPORTS, id, span, msg);
3358     }
3359
3360     fn check_proc_macro_attrs(&mut self, attrs: &[ast::Attribute]) {
3361         if self.proc_macro_enabled { return; }
3362
3363         for attr in attrs {
3364             let name = unwrap_or!(attr.name(), continue);
3365             let maybe_binding = self.builtin_macros.get(&name).cloned().or_else(|| {
3366                 let ident = Ident::with_empty_ctxt(name);
3367                 self.resolve_lexical_macro_path_segment(ident, MacroNS, None).ok()
3368             });
3369
3370             if let Some(binding) = maybe_binding {
3371                 if let SyntaxExtension::AttrProcMacro(..) = *binding.get_macro(self) {
3372                     attr::mark_known(attr);
3373
3374                     let msg = "attribute procedural macros are experimental";
3375                     let feature = "proc_macro";
3376
3377                     feature_err(&self.session.parse_sess, feature,
3378                                 attr.span, GateIssue::Language, msg)
3379                         .span_note(binding.span, "procedural macro imported here")
3380                         .emit();
3381                 }
3382             }
3383         }
3384     }
3385 }
3386
3387 fn is_struct_like(def: Def) -> bool {
3388     match def {
3389         Def::VariantCtor(_, CtorKind::Fictive) => true,
3390         _ => PathSource::Struct.is_expected(def),
3391     }
3392 }
3393
3394 fn is_self_type(path: &[Ident], namespace: Namespace) -> bool {
3395     namespace == TypeNS && path.len() == 1 && path[0].name == keywords::SelfType.name()
3396 }
3397
3398 fn is_self_value(path: &[Ident], namespace: Namespace) -> bool {
3399     namespace == ValueNS && path.len() == 1 && path[0].name == keywords::SelfValue.name()
3400 }
3401
3402 fn names_to_string(idents: &[Ident]) -> String {
3403     let mut result = String::new();
3404     for (i, ident) in idents.iter().filter(|i| i.name != keywords::CrateRoot.name()).enumerate() {
3405         if i > 0 {
3406             result.push_str("::");
3407         }
3408         result.push_str(&ident.name.as_str());
3409     }
3410     result
3411 }
3412
3413 fn path_names_to_string(path: &Path) -> String {
3414     names_to_string(&path.segments.iter().map(|seg| seg.identifier).collect::<Vec<_>>())
3415 }
3416
3417 /// When an entity with a given name is not available in scope, we search for
3418 /// entities with that name in all crates. This method allows outputting the
3419 /// results of this search in a programmer-friendly way
3420 fn show_candidates(session: &mut DiagnosticBuilder,
3421                    candidates: &[ImportSuggestion],
3422                    better: bool) {
3423     // don't show more than MAX_CANDIDATES results, so
3424     // we're consistent with the trait suggestions
3425     const MAX_CANDIDATES: usize = 4;
3426
3427     // we want consistent results across executions, but candidates are produced
3428     // by iterating through a hash map, so make sure they are ordered:
3429     let mut path_strings: Vec<_> =
3430         candidates.into_iter().map(|c| path_names_to_string(&c.path)).collect();
3431     path_strings.sort();
3432
3433     let better = if better { "better " } else { "" };
3434     let msg_diff = match path_strings.len() {
3435         1 => " is found in another module, you can import it",
3436         _ => "s are found in other modules, you can import them",
3437     };
3438
3439     let end = cmp::min(MAX_CANDIDATES, path_strings.len());
3440     session.help(&format!("possible {}candidate{} into scope:{}{}",
3441                           better,
3442                           msg_diff,
3443                           &path_strings[0..end].iter().map(|candidate| {
3444                               format!("\n  `use {};`", candidate)
3445                           }).collect::<String>(),
3446                           if path_strings.len() > MAX_CANDIDATES {
3447                               format!("\nand {} other candidates",
3448                                       path_strings.len() - MAX_CANDIDATES)
3449                           } else {
3450                               "".to_owned()
3451                           }
3452                           ));
3453 }
3454
3455 /// A somewhat inefficient routine to obtain the name of a module.
3456 fn module_to_string(module: Module) -> String {
3457     let mut names = Vec::new();
3458
3459     fn collect_mod(names: &mut Vec<Ident>, module: Module) {
3460         if let ModuleKind::Def(_, name) = module.kind {
3461             if let Some(parent) = module.parent {
3462                 names.push(Ident::with_empty_ctxt(name));
3463                 collect_mod(names, parent);
3464             }
3465         } else {
3466             // danger, shouldn't be ident?
3467             names.push(Ident::from_str("<opaque>"));
3468             collect_mod(names, module.parent.unwrap());
3469         }
3470     }
3471     collect_mod(&mut names, module);
3472
3473     if names.is_empty() {
3474         return "???".to_string();
3475     }
3476     names_to_string(&names.into_iter().rev().collect::<Vec<_>>())
3477 }
3478
3479 fn err_path_resolution() -> PathResolution {
3480     PathResolution::new(Def::Err)
3481 }
3482
3483 #[derive(PartialEq,Copy, Clone)]
3484 pub enum MakeGlobMap {
3485     Yes,
3486     No,
3487 }
3488
3489 __build_diagnostic_array! { librustc_resolve, DIAGNOSTICS }