]> git.lizzy.rs Git - rust.git/blob - src/librustc_resolve/lib.rs
f2d46c0510c756801481e79d612145ac44d5c80a
[rust.git] / src / librustc_resolve / lib.rs
1 // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 #![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
12        html_favicon_url = "https://doc.rust-lang.org/favicon.ico",
13        html_root_url = "https://doc.rust-lang.org/nightly/")]
14
15 #![feature(crate_visibility_modifier)]
16 #![cfg_attr(not(stage0), feature(nll))]
17 #![feature(rustc_diagnostic_macros)]
18 #![feature(slice_sort_by_cached_key)]
19
20 #[macro_use]
21 extern crate log;
22 #[macro_use]
23 extern crate syntax;
24 extern crate syntax_pos;
25 extern crate rustc_errors as errors;
26 extern crate arena;
27 #[macro_use]
28 extern crate rustc;
29 extern crate rustc_data_structures;
30 extern crate rustc_metadata;
31
32 pub use rustc::hir::def::{Namespace, PerNS};
33
34 use self::TypeParameters::*;
35 use self::RibKind::*;
36
37 use rustc::hir::map::{Definitions, DefCollector};
38 use rustc::hir::{self, PrimTy, Bool, Char, Float, Int, Uint, Str};
39 use rustc::middle::cstore::CrateStore;
40 use rustc::session::Session;
41 use rustc::lint;
42 use rustc::hir::def::*;
43 use rustc::hir::def::Namespace::*;
44 use rustc::hir::def_id::{CRATE_DEF_INDEX, LOCAL_CRATE, DefId};
45 use rustc::ty;
46 use rustc::hir::{Freevar, FreevarMap, TraitCandidate, TraitMap, GlobMap};
47 use rustc::util::nodemap::{NodeMap, NodeSet, FxHashMap, FxHashSet, DefIdMap};
48
49 use rustc_metadata::creader::CrateLoader;
50 use rustc_metadata::cstore::CStore;
51
52 use syntax::source_map::SourceMap;
53 use syntax::ext::hygiene::{Mark, Transparency, SyntaxContext};
54 use syntax::ast::{self, Name, NodeId, Ident, FloatTy, IntTy, UintTy};
55 use syntax::ext::base::SyntaxExtension;
56 use syntax::ext::base::Determinacy::{self, Determined, Undetermined};
57 use syntax::ext::base::MacroKind;
58 use syntax::symbol::{Symbol, keywords};
59 use syntax::util::lev_distance::find_best_match_for_name;
60
61 use syntax::visit::{self, FnKind, Visitor};
62 use syntax::attr;
63 use syntax::ast::{CRATE_NODE_ID, Arm, IsAsync, BindingMode, Block, Crate, Expr, ExprKind};
64 use syntax::ast::{FnDecl, ForeignItem, ForeignItemKind, GenericParamKind, Generics};
65 use syntax::ast::{Item, ItemKind, ImplItem, ImplItemKind};
66 use syntax::ast::{Label, Local, Mutability, Pat, PatKind, Path};
67 use syntax::ast::{QSelf, TraitItemKind, TraitRef, Ty, TyKind};
68 use syntax::feature_gate::{feature_err, GateIssue};
69 use syntax::ptr::P;
70
71 use syntax_pos::{Span, DUMMY_SP, MultiSpan};
72 use errors::{Applicability, DiagnosticBuilder, DiagnosticId};
73
74 use std::cell::{Cell, RefCell};
75 use std::cmp;
76 use std::collections::BTreeSet;
77 use std::fmt;
78 use std::iter;
79 use std::mem::replace;
80 use rustc_data_structures::sync::Lrc;
81
82 use resolve_imports::{ImportDirective, ImportDirectiveSubclass, NameResolution, ImportResolver};
83 use macros::{InvocationData, LegacyBinding, LegacyScope};
84
85 // NB: This module needs to be declared first so diagnostics are
86 // registered before they are used.
87 mod diagnostics;
88
89 mod macros;
90 mod check_unused;
91 mod build_reduced_graph;
92 mod resolve_imports;
93
94 fn is_known_tool(name: Name) -> bool {
95     ["clippy", "rustfmt"].contains(&&*name.as_str())
96 }
97
98 /// A free importable items suggested in case of resolution failure.
99 struct ImportSuggestion {
100     path: Path,
101 }
102
103 /// A field or associated item from self type suggested in case of resolution failure.
104 enum AssocSuggestion {
105     Field,
106     MethodWithSelf,
107     AssocItem,
108 }
109
110 #[derive(Eq)]
111 struct BindingError {
112     name: Name,
113     origin: BTreeSet<Span>,
114     target: BTreeSet<Span>,
115 }
116
117 impl PartialOrd for BindingError {
118     fn partial_cmp(&self, other: &BindingError) -> Option<cmp::Ordering> {
119         Some(self.cmp(other))
120     }
121 }
122
123 impl PartialEq for BindingError {
124     fn eq(&self, other: &BindingError) -> bool {
125         self.name == other.name
126     }
127 }
128
129 impl Ord for BindingError {
130     fn cmp(&self, other: &BindingError) -> cmp::Ordering {
131         self.name.cmp(&other.name)
132     }
133 }
134
135 enum ResolutionError<'a> {
136     /// error E0401: can't use type parameters from outer function
137     TypeParametersFromOuterFunction(Def),
138     /// error E0403: the name is already used for a type parameter in this type parameter list
139     NameAlreadyUsedInTypeParameterList(Name, &'a Span),
140     /// error E0407: method is not a member of trait
141     MethodNotMemberOfTrait(Name, &'a str),
142     /// error E0437: type is not a member of trait
143     TypeNotMemberOfTrait(Name, &'a str),
144     /// error E0438: const is not a member of trait
145     ConstNotMemberOfTrait(Name, &'a str),
146     /// error E0408: variable `{}` is not bound in all patterns
147     VariableNotBoundInPattern(&'a BindingError),
148     /// error E0409: variable `{}` is bound in inconsistent ways within the same match arm
149     VariableBoundWithDifferentMode(Name, Span),
150     /// error E0415: identifier is bound more than once in this parameter list
151     IdentifierBoundMoreThanOnceInParameterList(&'a str),
152     /// error E0416: identifier is bound more than once in the same pattern
153     IdentifierBoundMoreThanOnceInSamePattern(&'a str),
154     /// error E0426: use of undeclared label
155     UndeclaredLabel(&'a str, Option<Name>),
156     /// error E0429: `self` imports are only allowed within a { } list
157     SelfImportsOnlyAllowedWithin,
158     /// error E0430: `self` import can only appear once in the list
159     SelfImportCanOnlyAppearOnceInTheList,
160     /// error E0431: `self` import can only appear in an import list with a non-empty prefix
161     SelfImportOnlyInImportListWithNonEmptyPrefix,
162     /// error E0433: failed to resolve
163     FailedToResolve(&'a str),
164     /// error E0434: can't capture dynamic environment in a fn item
165     CannotCaptureDynamicEnvironmentInFnItem,
166     /// error E0435: attempt to use a non-constant value in a constant
167     AttemptToUseNonConstantValueInConstant,
168     /// error E0530: X bindings cannot shadow Ys
169     BindingShadowsSomethingUnacceptable(&'a str, Name, &'a NameBinding<'a>),
170     /// error E0128: type parameters with a default cannot use forward declared identifiers
171     ForwardDeclaredTyParam,
172 }
173
174 /// Combines an error with provided span and emits it
175 ///
176 /// This takes the error provided, combines it with the span and any additional spans inside the
177 /// error and emits it.
178 fn resolve_error<'sess, 'a>(resolver: &'sess Resolver,
179                             span: Span,
180                             resolution_error: ResolutionError<'a>) {
181     resolve_struct_error(resolver, span, resolution_error).emit();
182 }
183
184 fn resolve_struct_error<'sess, 'a>(resolver: &'sess Resolver,
185                                    span: Span,
186                                    resolution_error: ResolutionError<'a>)
187                                    -> DiagnosticBuilder<'sess> {
188     match resolution_error {
189         ResolutionError::TypeParametersFromOuterFunction(outer_def) => {
190             let mut err = struct_span_err!(resolver.session,
191                                            span,
192                                            E0401,
193                                            "can't use type parameters from outer function");
194             err.span_label(span, "use of type variable from outer function");
195
196             let cm = resolver.session.source_map();
197             match outer_def {
198                 Def::SelfTy(maybe_trait_defid, maybe_impl_defid) => {
199                     if let Some(impl_span) = maybe_impl_defid.and_then(|def_id| {
200                         resolver.definitions.opt_span(def_id)
201                     }) {
202                         err.span_label(
203                             reduce_impl_span_to_impl_keyword(cm, impl_span),
204                             "`Self` type implicitly declared here, by this `impl`",
205                         );
206                     }
207                     match (maybe_trait_defid, maybe_impl_defid) {
208                         (Some(_), None) => {
209                             err.span_label(span, "can't use `Self` here");
210                         }
211                         (_, Some(_)) => {
212                             err.span_label(span, "use a type here instead");
213                         }
214                         (None, None) => bug!("`impl` without trait nor type?"),
215                     }
216                     return err;
217                 },
218                 Def::TyParam(typaram_defid) => {
219                     if let Some(typaram_span) = resolver.definitions.opt_span(typaram_defid) {
220                         err.span_label(typaram_span, "type variable from outer function");
221                     }
222                 },
223                 _ => {
224                     bug!("TypeParametersFromOuterFunction should only be used with Def::SelfTy or \
225                          Def::TyParam")
226                 }
227             }
228
229             // Try to retrieve the span of the function signature and generate a new message with
230             // a local type parameter
231             let sugg_msg = "try using a local type parameter instead";
232             if let Some((sugg_span, new_snippet)) = cm.generate_local_type_param_snippet(span) {
233                 // Suggest the modification to the user
234                 err.span_suggestion_with_applicability(
235                     sugg_span,
236                     sugg_msg,
237                     new_snippet,
238                     Applicability::MachineApplicable,
239                 );
240             } else if let Some(sp) = cm.generate_fn_name_span(span) {
241                 err.span_label(sp, "try adding a local type parameter in this method instead");
242             } else {
243                 err.help("try using a local type parameter instead");
244             }
245
246             err
247         }
248         ResolutionError::NameAlreadyUsedInTypeParameterList(name, first_use_span) => {
249              let mut err = struct_span_err!(resolver.session,
250                                             span,
251                                             E0403,
252                                             "the name `{}` is already used for a type parameter \
253                                             in this type parameter list",
254                                             name);
255              err.span_label(span, "already used");
256              err.span_label(first_use_span.clone(), format!("first use of `{}`", name));
257              err
258         }
259         ResolutionError::MethodNotMemberOfTrait(method, trait_) => {
260             let mut err = struct_span_err!(resolver.session,
261                                            span,
262                                            E0407,
263                                            "method `{}` is not a member of trait `{}`",
264                                            method,
265                                            trait_);
266             err.span_label(span, format!("not a member of trait `{}`", trait_));
267             err
268         }
269         ResolutionError::TypeNotMemberOfTrait(type_, trait_) => {
270             let mut err = struct_span_err!(resolver.session,
271                              span,
272                              E0437,
273                              "type `{}` is not a member of trait `{}`",
274                              type_,
275                              trait_);
276             err.span_label(span, format!("not a member of trait `{}`", trait_));
277             err
278         }
279         ResolutionError::ConstNotMemberOfTrait(const_, trait_) => {
280             let mut err = struct_span_err!(resolver.session,
281                              span,
282                              E0438,
283                              "const `{}` is not a member of trait `{}`",
284                              const_,
285                              trait_);
286             err.span_label(span, format!("not a member of trait `{}`", trait_));
287             err
288         }
289         ResolutionError::VariableNotBoundInPattern(binding_error) => {
290             let target_sp = binding_error.target.iter().cloned().collect::<Vec<_>>();
291             let msp = MultiSpan::from_spans(target_sp.clone());
292             let msg = format!("variable `{}` is not bound in all patterns", binding_error.name);
293             let mut err = resolver.session.struct_span_err_with_code(
294                 msp,
295                 &msg,
296                 DiagnosticId::Error("E0408".into()),
297             );
298             for sp in target_sp {
299                 err.span_label(sp, format!("pattern doesn't bind `{}`", binding_error.name));
300             }
301             let origin_sp = binding_error.origin.iter().cloned();
302             for sp in origin_sp {
303                 err.span_label(sp, "variable not in all patterns");
304             }
305             err
306         }
307         ResolutionError::VariableBoundWithDifferentMode(variable_name,
308                                                         first_binding_span) => {
309             let mut err = struct_span_err!(resolver.session,
310                              span,
311                              E0409,
312                              "variable `{}` is bound in inconsistent \
313                              ways within the same match arm",
314                              variable_name);
315             err.span_label(span, "bound in different ways");
316             err.span_label(first_binding_span, "first binding");
317             err
318         }
319         ResolutionError::IdentifierBoundMoreThanOnceInParameterList(identifier) => {
320             let mut err = struct_span_err!(resolver.session,
321                              span,
322                              E0415,
323                              "identifier `{}` is bound more than once in this parameter list",
324                              identifier);
325             err.span_label(span, "used as parameter more than once");
326             err
327         }
328         ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(identifier) => {
329             let mut err = struct_span_err!(resolver.session,
330                              span,
331                              E0416,
332                              "identifier `{}` is bound more than once in the same pattern",
333                              identifier);
334             err.span_label(span, "used in a pattern more than once");
335             err
336         }
337         ResolutionError::UndeclaredLabel(name, lev_candidate) => {
338             let mut err = struct_span_err!(resolver.session,
339                                            span,
340                                            E0426,
341                                            "use of undeclared label `{}`",
342                                            name);
343             if let Some(lev_candidate) = lev_candidate {
344                 err.span_label(span, format!("did you mean `{}`?", lev_candidate));
345             } else {
346                 err.span_label(span, format!("undeclared label `{}`", name));
347             }
348             err
349         }
350         ResolutionError::SelfImportsOnlyAllowedWithin => {
351             struct_span_err!(resolver.session,
352                              span,
353                              E0429,
354                              "{}",
355                              "`self` imports are only allowed within a { } list")
356         }
357         ResolutionError::SelfImportCanOnlyAppearOnceInTheList => {
358             let mut err = struct_span_err!(resolver.session, span, E0430,
359                                            "`self` import can only appear once in an import list");
360             err.span_label(span, "can only appear once in an import list");
361             err
362         }
363         ResolutionError::SelfImportOnlyInImportListWithNonEmptyPrefix => {
364             let mut err = struct_span_err!(resolver.session, span, E0431,
365                                            "`self` import can only appear in an import list with \
366                                             a non-empty prefix");
367             err.span_label(span, "can only appear in an import list with a non-empty prefix");
368             err
369         }
370         ResolutionError::FailedToResolve(msg) => {
371             let mut err = struct_span_err!(resolver.session, span, E0433,
372                                            "failed to resolve. {}", msg);
373             err.span_label(span, msg);
374             err
375         }
376         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem => {
377             let mut err = struct_span_err!(resolver.session,
378                                            span,
379                                            E0434,
380                                            "{}",
381                                            "can't capture dynamic environment in a fn item");
382             err.help("use the `|| { ... }` closure form instead");
383             err
384         }
385         ResolutionError::AttemptToUseNonConstantValueInConstant => {
386             let mut err = struct_span_err!(resolver.session, span, E0435,
387                                            "attempt to use a non-constant value in a constant");
388             err.span_label(span, "non-constant value");
389             err
390         }
391         ResolutionError::BindingShadowsSomethingUnacceptable(what_binding, name, binding) => {
392             let shadows_what = PathResolution::new(binding.def()).kind_name();
393             let mut err = struct_span_err!(resolver.session,
394                                            span,
395                                            E0530,
396                                            "{}s cannot shadow {}s", what_binding, shadows_what);
397             err.span_label(span, format!("cannot be named the same as a {}", shadows_what));
398             let participle = if binding.is_import() { "imported" } else { "defined" };
399             let msg = format!("a {} `{}` is {} here", shadows_what, name, participle);
400             err.span_label(binding.span, msg);
401             err
402         }
403         ResolutionError::ForwardDeclaredTyParam => {
404             let mut err = struct_span_err!(resolver.session, span, E0128,
405                                            "type parameters with a default cannot use \
406                                             forward declared identifiers");
407             err.span_label(
408                 span, "defaulted type parameters cannot be forward declared".to_string());
409             err
410         }
411     }
412 }
413
414 /// Adjust the impl span so that just the `impl` keyword is taken by removing
415 /// everything after `<` (`"impl<T> Iterator for A<T> {}" -> "impl"`) and
416 /// everything after the first whitespace (`"impl Iterator for A" -> "impl"`)
417 ///
418 /// Attention: The method used is very fragile since it essentially duplicates the work of the
419 /// parser. If you need to use this function or something similar, please consider updating the
420 /// source_map functions and this function to something more robust.
421 fn reduce_impl_span_to_impl_keyword(cm: &SourceMap, impl_span: Span) -> Span {
422     let impl_span = cm.span_until_char(impl_span, '<');
423     let impl_span = cm.span_until_whitespace(impl_span);
424     impl_span
425 }
426
427 #[derive(Copy, Clone, Debug)]
428 struct BindingInfo {
429     span: Span,
430     binding_mode: BindingMode,
431 }
432
433 /// Map from the name in a pattern to its binding mode.
434 type BindingMap = FxHashMap<Ident, BindingInfo>;
435
436 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
437 enum PatternSource {
438     Match,
439     IfLet,
440     WhileLet,
441     Let,
442     For,
443     FnParam,
444 }
445
446 impl PatternSource {
447     fn descr(self) -> &'static str {
448         match self {
449             PatternSource::Match => "match binding",
450             PatternSource::IfLet => "if let binding",
451             PatternSource::WhileLet => "while let binding",
452             PatternSource::Let => "let binding",
453             PatternSource::For => "for binding",
454             PatternSource::FnParam => "function parameter",
455         }
456     }
457 }
458
459 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
460 enum AliasPossibility {
461     No,
462     Maybe,
463 }
464
465 #[derive(Copy, Clone, Debug)]
466 enum PathSource<'a> {
467     // Type paths `Path`.
468     Type,
469     // Trait paths in bounds or impls.
470     Trait(AliasPossibility),
471     // Expression paths `path`, with optional parent context.
472     Expr(Option<&'a Expr>),
473     // Paths in path patterns `Path`.
474     Pat,
475     // Paths in struct expressions and patterns `Path { .. }`.
476     Struct,
477     // Paths in tuple struct patterns `Path(..)`.
478     TupleStruct,
479     // `m::A::B` in `<T as m::A>::B::C`.
480     TraitItem(Namespace),
481     // Path in `pub(path)`
482     Visibility,
483     // Path in `use a::b::{...};`
484     ImportPrefix,
485 }
486
487 impl<'a> PathSource<'a> {
488     fn namespace(self) -> Namespace {
489         match self {
490             PathSource::Type | PathSource::Trait(_) | PathSource::Struct |
491             PathSource::Visibility | PathSource::ImportPrefix => TypeNS,
492             PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct => ValueNS,
493             PathSource::TraitItem(ns) => ns,
494         }
495     }
496
497     fn global_by_default(self) -> bool {
498         match self {
499             PathSource::Visibility | PathSource::ImportPrefix => true,
500             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
501             PathSource::Struct | PathSource::TupleStruct |
502             PathSource::Trait(_) | PathSource::TraitItem(..) => false,
503         }
504     }
505
506     fn defer_to_typeck(self) -> bool {
507         match self {
508             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
509             PathSource::Struct | PathSource::TupleStruct => true,
510             PathSource::Trait(_) | PathSource::TraitItem(..) |
511             PathSource::Visibility | PathSource::ImportPrefix => false,
512         }
513     }
514
515     fn descr_expected(self) -> &'static str {
516         match self {
517             PathSource::Type => "type",
518             PathSource::Trait(_) => "trait",
519             PathSource::Pat => "unit struct/variant or constant",
520             PathSource::Struct => "struct, variant or union type",
521             PathSource::TupleStruct => "tuple struct/variant",
522             PathSource::Visibility => "module",
523             PathSource::ImportPrefix => "module or enum",
524             PathSource::TraitItem(ns) => match ns {
525                 TypeNS => "associated type",
526                 ValueNS => "method or associated constant",
527                 MacroNS => bug!("associated macro"),
528             },
529             PathSource::Expr(parent) => match parent.map(|p| &p.node) {
530                 // "function" here means "anything callable" rather than `Def::Fn`,
531                 // this is not precise but usually more helpful than just "value".
532                 Some(&ExprKind::Call(..)) => "function",
533                 _ => "value",
534             },
535         }
536     }
537
538     fn is_expected(self, def: Def) -> bool {
539         match self {
540             PathSource::Type => match def {
541                 Def::Struct(..) | Def::Union(..) | Def::Enum(..) |
542                 Def::Trait(..) | Def::TyAlias(..) | Def::AssociatedTy(..) |
543                 Def::PrimTy(..) | Def::TyParam(..) | Def::SelfTy(..) |
544                 Def::Existential(..) |
545                 Def::ForeignTy(..) => true,
546                 _ => false,
547             },
548             PathSource::Trait(AliasPossibility::No) => match def {
549                 Def::Trait(..) => true,
550                 _ => false,
551             },
552             PathSource::Trait(AliasPossibility::Maybe) => match def {
553                 Def::Trait(..) => true,
554                 Def::TraitAlias(..) => true,
555                 _ => false,
556             },
557             PathSource::Expr(..) => match def {
558                 Def::StructCtor(_, CtorKind::Const) | Def::StructCtor(_, CtorKind::Fn) |
559                 Def::VariantCtor(_, CtorKind::Const) | Def::VariantCtor(_, CtorKind::Fn) |
560                 Def::Const(..) | Def::Static(..) | Def::Local(..) | Def::Upvar(..) |
561                 Def::Fn(..) | Def::Method(..) | Def::AssociatedConst(..) => true,
562                 _ => false,
563             },
564             PathSource::Pat => match def {
565                 Def::StructCtor(_, CtorKind::Const) |
566                 Def::VariantCtor(_, CtorKind::Const) |
567                 Def::Const(..) | Def::AssociatedConst(..) => true,
568                 _ => false,
569             },
570             PathSource::TupleStruct => match def {
571                 Def::StructCtor(_, CtorKind::Fn) | Def::VariantCtor(_, CtorKind::Fn) => true,
572                 _ => false,
573             },
574             PathSource::Struct => match def {
575                 Def::Struct(..) | Def::Union(..) | Def::Variant(..) |
576                 Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => true,
577                 _ => false,
578             },
579             PathSource::TraitItem(ns) => match def {
580                 Def::AssociatedConst(..) | Def::Method(..) if ns == ValueNS => true,
581                 Def::AssociatedTy(..) if ns == TypeNS => true,
582                 _ => false,
583             },
584             PathSource::ImportPrefix => match def {
585                 Def::Mod(..) | Def::Enum(..) => true,
586                 _ => false,
587             },
588             PathSource::Visibility => match def {
589                 Def::Mod(..) => true,
590                 _ => false,
591             },
592         }
593     }
594
595     fn error_code(self, has_unexpected_resolution: bool) -> &'static str {
596         __diagnostic_used!(E0404);
597         __diagnostic_used!(E0405);
598         __diagnostic_used!(E0412);
599         __diagnostic_used!(E0422);
600         __diagnostic_used!(E0423);
601         __diagnostic_used!(E0425);
602         __diagnostic_used!(E0531);
603         __diagnostic_used!(E0532);
604         __diagnostic_used!(E0573);
605         __diagnostic_used!(E0574);
606         __diagnostic_used!(E0575);
607         __diagnostic_used!(E0576);
608         __diagnostic_used!(E0577);
609         __diagnostic_used!(E0578);
610         match (self, has_unexpected_resolution) {
611             (PathSource::Trait(_), true) => "E0404",
612             (PathSource::Trait(_), false) => "E0405",
613             (PathSource::Type, true) => "E0573",
614             (PathSource::Type, false) => "E0412",
615             (PathSource::Struct, true) => "E0574",
616             (PathSource::Struct, false) => "E0422",
617             (PathSource::Expr(..), true) => "E0423",
618             (PathSource::Expr(..), false) => "E0425",
619             (PathSource::Pat, true) | (PathSource::TupleStruct, true) => "E0532",
620             (PathSource::Pat, false) | (PathSource::TupleStruct, false) => "E0531",
621             (PathSource::TraitItem(..), true) => "E0575",
622             (PathSource::TraitItem(..), false) => "E0576",
623             (PathSource::Visibility, true) | (PathSource::ImportPrefix, true) => "E0577",
624             (PathSource::Visibility, false) | (PathSource::ImportPrefix, false) => "E0578",
625         }
626     }
627 }
628
629 struct UsePlacementFinder {
630     target_module: NodeId,
631     span: Option<Span>,
632     found_use: bool,
633 }
634
635 impl UsePlacementFinder {
636     fn check(krate: &Crate, target_module: NodeId) -> (Option<Span>, bool) {
637         let mut finder = UsePlacementFinder {
638             target_module,
639             span: None,
640             found_use: false,
641         };
642         visit::walk_crate(&mut finder, krate);
643         (finder.span, finder.found_use)
644     }
645 }
646
647 impl<'tcx> Visitor<'tcx> for UsePlacementFinder {
648     fn visit_mod(
649         &mut self,
650         module: &'tcx ast::Mod,
651         _: Span,
652         _: &[ast::Attribute],
653         node_id: NodeId,
654     ) {
655         if self.span.is_some() {
656             return;
657         }
658         if node_id != self.target_module {
659             visit::walk_mod(self, module);
660             return;
661         }
662         // find a use statement
663         for item in &module.items {
664             match item.node {
665                 ItemKind::Use(..) => {
666                     // don't suggest placing a use before the prelude
667                     // import or other generated ones
668                     if item.span.ctxt().outer().expn_info().is_none() {
669                         self.span = Some(item.span.shrink_to_lo());
670                         self.found_use = true;
671                         return;
672                     }
673                 },
674                 // don't place use before extern crate
675                 ItemKind::ExternCrate(_) => {}
676                 // but place them before the first other item
677                 _ => if self.span.map_or(true, |span| item.span < span ) {
678                     if item.span.ctxt().outer().expn_info().is_none() {
679                         // don't insert between attributes and an item
680                         if item.attrs.is_empty() {
681                             self.span = Some(item.span.shrink_to_lo());
682                         } else {
683                             // find the first attribute on the item
684                             for attr in &item.attrs {
685                                 if self.span.map_or(true, |span| attr.span < span) {
686                                     self.span = Some(attr.span.shrink_to_lo());
687                                 }
688                             }
689                         }
690                     }
691                 },
692             }
693         }
694     }
695 }
696
697 /// This thing walks the whole crate in DFS manner, visiting each item, resolving names as it goes.
698 impl<'a, 'tcx, 'cl> Visitor<'tcx> for Resolver<'a, 'cl> {
699     fn visit_item(&mut self, item: &'tcx Item) {
700         self.resolve_item(item);
701     }
702     fn visit_arm(&mut self, arm: &'tcx Arm) {
703         self.resolve_arm(arm);
704     }
705     fn visit_block(&mut self, block: &'tcx Block) {
706         self.resolve_block(block);
707     }
708     fn visit_anon_const(&mut self, constant: &'tcx ast::AnonConst) {
709         self.with_constant_rib(|this| {
710             visit::walk_anon_const(this, constant);
711         });
712     }
713     fn visit_expr(&mut self, expr: &'tcx Expr) {
714         self.resolve_expr(expr, None);
715     }
716     fn visit_local(&mut self, local: &'tcx Local) {
717         self.resolve_local(local);
718     }
719     fn visit_ty(&mut self, ty: &'tcx Ty) {
720         match ty.node {
721             TyKind::Path(ref qself, ref path) => {
722                 self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
723             }
724             TyKind::ImplicitSelf => {
725                 let self_ty = keywords::SelfType.ident();
726                 let def = self.resolve_ident_in_lexical_scope(self_ty, TypeNS, Some(ty.id), ty.span)
727                               .map_or(Def::Err, |d| d.def());
728                 self.record_def(ty.id, PathResolution::new(def));
729             }
730             _ => (),
731         }
732         visit::walk_ty(self, ty);
733     }
734     fn visit_poly_trait_ref(&mut self,
735                             tref: &'tcx ast::PolyTraitRef,
736                             m: &'tcx ast::TraitBoundModifier) {
737         self.smart_resolve_path(tref.trait_ref.ref_id, None,
738                                 &tref.trait_ref.path, PathSource::Trait(AliasPossibility::Maybe));
739         visit::walk_poly_trait_ref(self, tref, m);
740     }
741     fn visit_foreign_item(&mut self, foreign_item: &'tcx ForeignItem) {
742         let type_parameters = match foreign_item.node {
743             ForeignItemKind::Fn(_, ref generics) => {
744                 HasTypeParameters(generics, ItemRibKind)
745             }
746             ForeignItemKind::Static(..) => NoTypeParameters,
747             ForeignItemKind::Ty => NoTypeParameters,
748             ForeignItemKind::Macro(..) => NoTypeParameters,
749         };
750         self.with_type_parameter_rib(type_parameters, |this| {
751             visit::walk_foreign_item(this, foreign_item);
752         });
753     }
754     fn visit_fn(&mut self,
755                 function_kind: FnKind<'tcx>,
756                 declaration: &'tcx FnDecl,
757                 _: Span,
758                 node_id: NodeId)
759     {
760         let (rib_kind, asyncness) = match function_kind {
761             FnKind::ItemFn(_, ref header, ..) =>
762                 (ItemRibKind, header.asyncness),
763             FnKind::Method(_, ref sig, _, _) =>
764                 (TraitOrImplItemRibKind, sig.header.asyncness),
765             FnKind::Closure(_) =>
766                 // Async closures aren't resolved through `visit_fn`-- they're
767                 // processed separately
768                 (ClosureRibKind(node_id), IsAsync::NotAsync),
769         };
770
771         // Create a value rib for the function.
772         self.ribs[ValueNS].push(Rib::new(rib_kind));
773
774         // Create a label rib for the function.
775         self.label_ribs.push(Rib::new(rib_kind));
776
777         // Add each argument to the rib.
778         let mut bindings_list = FxHashMap();
779         for argument in &declaration.inputs {
780             self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
781
782             self.visit_ty(&argument.ty);
783
784             debug!("(resolving function) recorded argument");
785         }
786         visit::walk_fn_ret_ty(self, &declaration.output);
787
788         // Resolve the function body, potentially inside the body of an async closure
789         if let IsAsync::Async { closure_id, .. } = asyncness {
790             let rib_kind = ClosureRibKind(closure_id);
791             self.ribs[ValueNS].push(Rib::new(rib_kind));
792             self.label_ribs.push(Rib::new(rib_kind));
793         }
794
795         match function_kind {
796             FnKind::ItemFn(.., body) |
797             FnKind::Method(.., body) => {
798                 self.visit_block(body);
799             }
800             FnKind::Closure(body) => {
801                 self.visit_expr(body);
802             }
803         };
804
805         // Leave the body of the async closure
806         if asyncness.is_async() {
807             self.label_ribs.pop();
808             self.ribs[ValueNS].pop();
809         }
810
811         debug!("(resolving function) leaving function");
812
813         self.label_ribs.pop();
814         self.ribs[ValueNS].pop();
815     }
816     fn visit_generics(&mut self, generics: &'tcx Generics) {
817         // For type parameter defaults, we have to ban access
818         // to following type parameters, as the Substs can only
819         // provide previous type parameters as they're built. We
820         // put all the parameters on the ban list and then remove
821         // them one by one as they are processed and become available.
822         let mut default_ban_rib = Rib::new(ForwardTyParamBanRibKind);
823         let mut found_default = false;
824         default_ban_rib.bindings.extend(generics.params.iter()
825             .filter_map(|param| match param.kind {
826                 GenericParamKind::Lifetime { .. } => None,
827                 GenericParamKind::Type { ref default, .. } => {
828                     found_default |= default.is_some();
829                     if found_default {
830                         Some((Ident::with_empty_ctxt(param.ident.name), Def::Err))
831                     } else {
832                         None
833                     }
834                 }
835             }));
836
837         for param in &generics.params {
838             match param.kind {
839                 GenericParamKind::Lifetime { .. } => self.visit_generic_param(param),
840                 GenericParamKind::Type { ref default, .. } => {
841                     for bound in &param.bounds {
842                         self.visit_param_bound(bound);
843                     }
844
845                     if let Some(ref ty) = default {
846                         self.ribs[TypeNS].push(default_ban_rib);
847                         self.visit_ty(ty);
848                         default_ban_rib = self.ribs[TypeNS].pop().unwrap();
849                     }
850
851                     // Allow all following defaults to refer to this type parameter.
852                     default_ban_rib.bindings.remove(&Ident::with_empty_ctxt(param.ident.name));
853                 }
854             }
855         }
856         for p in &generics.where_clause.predicates {
857             self.visit_where_predicate(p);
858         }
859     }
860 }
861
862 #[derive(Copy, Clone)]
863 enum TypeParameters<'a, 'b> {
864     NoTypeParameters,
865     HasTypeParameters(// Type parameters.
866                       &'b Generics,
867
868                       // The kind of the rib used for type parameters.
869                       RibKind<'a>),
870 }
871
872 /// The rib kind controls the translation of local
873 /// definitions (`Def::Local`) to upvars (`Def::Upvar`).
874 #[derive(Copy, Clone, Debug)]
875 enum RibKind<'a> {
876     /// No translation needs to be applied.
877     NormalRibKind,
878
879     /// We passed through a closure scope at the given node ID.
880     /// Translate upvars as appropriate.
881     ClosureRibKind(NodeId /* func id */),
882
883     /// We passed through an impl or trait and are now in one of its
884     /// methods or associated types. Allow references to ty params that impl or trait
885     /// binds. Disallow any other upvars (including other ty params that are
886     /// upvars).
887     TraitOrImplItemRibKind,
888
889     /// We passed through an item scope. Disallow upvars.
890     ItemRibKind,
891
892     /// We're in a constant item. Can't refer to dynamic stuff.
893     ConstantItemRibKind,
894
895     /// We passed through a module.
896     ModuleRibKind(Module<'a>),
897
898     /// We passed through a `macro_rules!` statement
899     MacroDefinition(DefId),
900
901     /// All bindings in this rib are type parameters that can't be used
902     /// from the default of a type parameter because they're not declared
903     /// before said type parameter. Also see the `visit_generics` override.
904     ForwardTyParamBanRibKind,
905 }
906
907 /// One local scope.
908 ///
909 /// A rib represents a scope names can live in. Note that these appear in many places, not just
910 /// around braces. At any place where the list of accessible names (of the given namespace)
911 /// changes or a new restrictions on the name accessibility are introduced, a new rib is put onto a
912 /// stack. This may be, for example, a `let` statement (because it introduces variables), a macro,
913 /// etc.
914 ///
915 /// Different [rib kinds](enum.RibKind) are transparent for different names.
916 ///
917 /// The resolution keeps a separate stack of ribs as it traverses the AST for each namespace. When
918 /// resolving, the name is looked up from inside out.
919 #[derive(Debug)]
920 struct Rib<'a> {
921     bindings: FxHashMap<Ident, Def>,
922     kind: RibKind<'a>,
923 }
924
925 impl<'a> Rib<'a> {
926     fn new(kind: RibKind<'a>) -> Rib<'a> {
927         Rib {
928             bindings: FxHashMap(),
929             kind,
930         }
931     }
932 }
933
934 /// An intermediate resolution result.
935 ///
936 /// This refers to the thing referred by a name. The difference between `Def` and `Item` is that
937 /// items are visible in their whole block, while defs only from the place they are defined
938 /// forward.
939 enum LexicalScopeBinding<'a> {
940     Item(&'a NameBinding<'a>),
941     Def(Def),
942 }
943
944 impl<'a> LexicalScopeBinding<'a> {
945     fn item(self) -> Option<&'a NameBinding<'a>> {
946         match self {
947             LexicalScopeBinding::Item(binding) => Some(binding),
948             _ => None,
949         }
950     }
951
952     fn def(self) -> Def {
953         match self {
954             LexicalScopeBinding::Item(binding) => binding.def(),
955             LexicalScopeBinding::Def(def) => def,
956         }
957     }
958 }
959
960 #[derive(Copy, Clone, Debug)]
961 pub enum ModuleOrUniformRoot<'a> {
962     /// Regular module.
963     Module(Module<'a>),
964
965     /// The `{{root}}` (`CrateRoot` aka "global") / `extern` initial segment
966     /// in which external crates resolve, and also `crate` (only in `{{root}}`,
967     /// but *not* `extern`), in the Rust 2018 edition.
968     UniformRoot(Name),
969 }
970
971 #[derive(Clone, Debug)]
972 enum PathResult<'a> {
973     Module(ModuleOrUniformRoot<'a>),
974     NonModule(PathResolution),
975     Indeterminate,
976     Failed(Span, String, bool /* is the error from the last segment? */),
977 }
978
979 enum ModuleKind {
980     /// An anonymous module, eg. just a block.
981     ///
982     /// ```
983     /// fn main() {
984     ///     fn f() {} // (1)
985     ///     { // This is an anonymous module
986     ///         f(); // This resolves to (2) as we are inside the block.
987     ///         fn f() {} // (2)
988     ///     }
989     ///     f(); // Resolves to (1)
990     /// }
991     /// ```
992     Block(NodeId),
993     /// Any module with a name.
994     ///
995     /// This could be:
996     ///
997     /// * A normal module â€’ either `mod from_file;` or `mod from_block { }`.
998     /// * A trait or an enum (it implicitly contains associated types, methods and variant
999     ///   constructors).
1000     Def(Def, Name),
1001 }
1002
1003 /// One node in the tree of modules.
1004 pub struct ModuleData<'a> {
1005     parent: Option<Module<'a>>,
1006     kind: ModuleKind,
1007
1008     // The def id of the closest normal module (`mod`) ancestor (including this module).
1009     normal_ancestor_id: DefId,
1010
1011     resolutions: RefCell<FxHashMap<(Ident, Namespace), &'a RefCell<NameResolution<'a>>>>,
1012     legacy_macro_resolutions: RefCell<Vec<(Ident, MacroKind, Mark, LegacyScope<'a>, Option<Def>)>>,
1013     macro_resolutions: RefCell<Vec<(Box<[Ident]>, Span)>>,
1014     builtin_attrs: RefCell<Vec<(Ident, Mark, LegacyScope<'a>)>>,
1015
1016     // Macro invocations that can expand into items in this module.
1017     unresolved_invocations: RefCell<FxHashSet<Mark>>,
1018
1019     no_implicit_prelude: bool,
1020
1021     glob_importers: RefCell<Vec<&'a ImportDirective<'a>>>,
1022     globs: RefCell<Vec<&'a ImportDirective<'a>>>,
1023
1024     // Used to memoize the traits in this module for faster searches through all traits in scope.
1025     traits: RefCell<Option<Box<[(Ident, &'a NameBinding<'a>)]>>>,
1026
1027     // Whether this module is populated. If not populated, any attempt to
1028     // access the children must be preceded with a
1029     // `populate_module_if_necessary` call.
1030     populated: Cell<bool>,
1031
1032     /// Span of the module itself. Used for error reporting.
1033     span: Span,
1034
1035     expansion: Mark,
1036 }
1037
1038 type Module<'a> = &'a ModuleData<'a>;
1039
1040 impl<'a> ModuleData<'a> {
1041     fn new(parent: Option<Module<'a>>,
1042            kind: ModuleKind,
1043            normal_ancestor_id: DefId,
1044            expansion: Mark,
1045            span: Span) -> Self {
1046         ModuleData {
1047             parent,
1048             kind,
1049             normal_ancestor_id,
1050             resolutions: RefCell::new(FxHashMap()),
1051             legacy_macro_resolutions: RefCell::new(Vec::new()),
1052             macro_resolutions: RefCell::new(Vec::new()),
1053             builtin_attrs: RefCell::new(Vec::new()),
1054             unresolved_invocations: RefCell::new(FxHashSet()),
1055             no_implicit_prelude: false,
1056             glob_importers: RefCell::new(Vec::new()),
1057             globs: RefCell::new(Vec::new()),
1058             traits: RefCell::new(None),
1059             populated: Cell::new(normal_ancestor_id.is_local()),
1060             span,
1061             expansion,
1062         }
1063     }
1064
1065     fn for_each_child<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1066         for (&(ident, ns), name_resolution) in self.resolutions.borrow().iter() {
1067             name_resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1068         }
1069     }
1070
1071     fn for_each_child_stable<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1072         let resolutions = self.resolutions.borrow();
1073         let mut resolutions = resolutions.iter().collect::<Vec<_>>();
1074         resolutions.sort_by_cached_key(|&(&(ident, ns), _)| (ident.as_str(), ns));
1075         for &(&(ident, ns), &resolution) in resolutions.iter() {
1076             resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1077         }
1078     }
1079
1080     fn def(&self) -> Option<Def> {
1081         match self.kind {
1082             ModuleKind::Def(def, _) => Some(def),
1083             _ => None,
1084         }
1085     }
1086
1087     fn def_id(&self) -> Option<DefId> {
1088         self.def().as_ref().map(Def::def_id)
1089     }
1090
1091     // `self` resolves to the first module ancestor that `is_normal`.
1092     fn is_normal(&self) -> bool {
1093         match self.kind {
1094             ModuleKind::Def(Def::Mod(_), _) => true,
1095             _ => false,
1096         }
1097     }
1098
1099     fn is_trait(&self) -> bool {
1100         match self.kind {
1101             ModuleKind::Def(Def::Trait(_), _) => true,
1102             _ => false,
1103         }
1104     }
1105
1106     fn is_local(&self) -> bool {
1107         self.normal_ancestor_id.is_local()
1108     }
1109
1110     fn nearest_item_scope(&'a self) -> Module<'a> {
1111         if self.is_trait() { self.parent.unwrap() } else { self }
1112     }
1113 }
1114
1115 impl<'a> fmt::Debug for ModuleData<'a> {
1116     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1117         write!(f, "{:?}", self.def())
1118     }
1119 }
1120
1121 /// Records a possibly-private value, type, or module definition.
1122 #[derive(Clone, Debug)]
1123 pub struct NameBinding<'a> {
1124     kind: NameBindingKind<'a>,
1125     expansion: Mark,
1126     span: Span,
1127     vis: ty::Visibility,
1128 }
1129
1130 pub trait ToNameBinding<'a> {
1131     fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a>;
1132 }
1133
1134 impl<'a> ToNameBinding<'a> for &'a NameBinding<'a> {
1135     fn to_name_binding(self, _: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> {
1136         self
1137     }
1138 }
1139
1140 #[derive(Clone, Debug)]
1141 enum NameBindingKind<'a> {
1142     Def(Def, /* is_macro_export */ bool),
1143     Module(Module<'a>),
1144     Import {
1145         binding: &'a NameBinding<'a>,
1146         directive: &'a ImportDirective<'a>,
1147         used: Cell<bool>,
1148     },
1149     Ambiguity {
1150         b1: &'a NameBinding<'a>,
1151         b2: &'a NameBinding<'a>,
1152     }
1153 }
1154
1155 struct PrivacyError<'a>(Span, Name, &'a NameBinding<'a>);
1156
1157 struct UseError<'a> {
1158     err: DiagnosticBuilder<'a>,
1159     /// Attach `use` statements for these candidates
1160     candidates: Vec<ImportSuggestion>,
1161     /// The node id of the module to place the use statements in
1162     node_id: NodeId,
1163     /// Whether the diagnostic should state that it's "better"
1164     better: bool,
1165 }
1166
1167 struct AmbiguityError<'a> {
1168     ident: Ident,
1169     b1: &'a NameBinding<'a>,
1170     b2: &'a NameBinding<'a>,
1171 }
1172
1173 impl<'a> NameBinding<'a> {
1174     fn module(&self) -> Option<Module<'a>> {
1175         match self.kind {
1176             NameBindingKind::Module(module) => Some(module),
1177             NameBindingKind::Import { binding, .. } => binding.module(),
1178             _ => None,
1179         }
1180     }
1181
1182     fn def(&self) -> Def {
1183         match self.kind {
1184             NameBindingKind::Def(def, _) => def,
1185             NameBindingKind::Module(module) => module.def().unwrap(),
1186             NameBindingKind::Import { binding, .. } => binding.def(),
1187             NameBindingKind::Ambiguity { .. } => Def::Err,
1188         }
1189     }
1190
1191     fn def_ignoring_ambiguity(&self) -> Def {
1192         match self.kind {
1193             NameBindingKind::Import { binding, .. } => binding.def_ignoring_ambiguity(),
1194             NameBindingKind::Ambiguity { b1, .. } => b1.def_ignoring_ambiguity(),
1195             _ => self.def(),
1196         }
1197     }
1198
1199     fn get_macro<'b: 'a>(&self, resolver: &mut Resolver<'a, 'b>) -> Lrc<SyntaxExtension> {
1200         resolver.get_macro(self.def_ignoring_ambiguity())
1201     }
1202
1203     // We sometimes need to treat variants as `pub` for backwards compatibility
1204     fn pseudo_vis(&self) -> ty::Visibility {
1205         if self.is_variant() && self.def().def_id().is_local() {
1206             ty::Visibility::Public
1207         } else {
1208             self.vis
1209         }
1210     }
1211
1212     fn is_variant(&self) -> bool {
1213         match self.kind {
1214             NameBindingKind::Def(Def::Variant(..), _) |
1215             NameBindingKind::Def(Def::VariantCtor(..), _) => true,
1216             _ => false,
1217         }
1218     }
1219
1220     fn is_extern_crate(&self) -> bool {
1221         match self.kind {
1222             NameBindingKind::Import {
1223                 directive: &ImportDirective {
1224                     subclass: ImportDirectiveSubclass::ExternCrate(_), ..
1225                 }, ..
1226             } => true,
1227             _ => false,
1228         }
1229     }
1230
1231     fn is_import(&self) -> bool {
1232         match self.kind {
1233             NameBindingKind::Import { .. } => true,
1234             _ => false,
1235         }
1236     }
1237
1238     fn is_renamed_extern_crate(&self) -> bool {
1239         if let NameBindingKind::Import { directive, ..} = self.kind {
1240             if let ImportDirectiveSubclass::ExternCrate(Some(_)) = directive.subclass {
1241                 return true;
1242             }
1243         }
1244         false
1245     }
1246
1247     fn is_glob_import(&self) -> bool {
1248         match self.kind {
1249             NameBindingKind::Import { directive, .. } => directive.is_glob(),
1250             NameBindingKind::Ambiguity { b1, .. } => b1.is_glob_import(),
1251             _ => false,
1252         }
1253     }
1254
1255     fn is_importable(&self) -> bool {
1256         match self.def() {
1257             Def::AssociatedConst(..) | Def::Method(..) | Def::AssociatedTy(..) => false,
1258             _ => true,
1259         }
1260     }
1261
1262     fn is_macro_def(&self) -> bool {
1263         match self.kind {
1264             NameBindingKind::Def(Def::Macro(..), _) => true,
1265             _ => false,
1266         }
1267     }
1268
1269     fn macro_kind(&self) -> Option<MacroKind> {
1270         match self.def_ignoring_ambiguity() {
1271             Def::Macro(_, kind) => Some(kind),
1272             Def::NonMacroAttr(..) => Some(MacroKind::Attr),
1273             _ => None,
1274         }
1275     }
1276
1277     fn descr(&self) -> &'static str {
1278         if self.is_extern_crate() { "extern crate" } else { self.def().kind_name() }
1279     }
1280
1281     // Suppose that we resolved macro invocation with `invoc_parent_expansion` to binding `binding`
1282     // at some expansion round `max(invoc, binding)` when they both emerged from macros.
1283     // Then this function returns `true` if `self` may emerge from a macro *after* that
1284     // in some later round and screw up our previously found resolution.
1285     // See more detailed explanation in
1286     // https://github.com/rust-lang/rust/pull/53778#issuecomment-419224049
1287     fn may_appear_after(&self, invoc_parent_expansion: Mark, binding: &NameBinding) -> bool {
1288         // self > max(invoc, binding) => !(self <= invoc || self <= binding)
1289         // Expansions are partially ordered, so "may appear after" is an inversion of
1290         // "certainly appears before or simultaneously" and includes unordered cases.
1291         let self_parent_expansion = self.expansion;
1292         let other_parent_expansion = binding.expansion;
1293         let certainly_before_other_or_simultaneously =
1294             other_parent_expansion.is_descendant_of(self_parent_expansion);
1295         let certainly_before_invoc_or_simultaneously =
1296             invoc_parent_expansion.is_descendant_of(self_parent_expansion);
1297         !(certainly_before_other_or_simultaneously || certainly_before_invoc_or_simultaneously)
1298     }
1299 }
1300
1301 /// Interns the names of the primitive types.
1302 ///
1303 /// All other types are defined somewhere and possibly imported, but the primitive ones need
1304 /// special handling, since they have no place of origin.
1305 struct PrimitiveTypeTable {
1306     primitive_types: FxHashMap<Name, PrimTy>,
1307 }
1308
1309 impl PrimitiveTypeTable {
1310     fn new() -> PrimitiveTypeTable {
1311         let mut table = PrimitiveTypeTable { primitive_types: FxHashMap() };
1312
1313         table.intern("bool", Bool);
1314         table.intern("char", Char);
1315         table.intern("f32", Float(FloatTy::F32));
1316         table.intern("f64", Float(FloatTy::F64));
1317         table.intern("isize", Int(IntTy::Isize));
1318         table.intern("i8", Int(IntTy::I8));
1319         table.intern("i16", Int(IntTy::I16));
1320         table.intern("i32", Int(IntTy::I32));
1321         table.intern("i64", Int(IntTy::I64));
1322         table.intern("i128", Int(IntTy::I128));
1323         table.intern("str", Str);
1324         table.intern("usize", Uint(UintTy::Usize));
1325         table.intern("u8", Uint(UintTy::U8));
1326         table.intern("u16", Uint(UintTy::U16));
1327         table.intern("u32", Uint(UintTy::U32));
1328         table.intern("u64", Uint(UintTy::U64));
1329         table.intern("u128", Uint(UintTy::U128));
1330         table
1331     }
1332
1333     fn intern(&mut self, string: &str, primitive_type: PrimTy) {
1334         self.primitive_types.insert(Symbol::intern(string), primitive_type);
1335     }
1336 }
1337
1338 /// The main resolver class.
1339 ///
1340 /// This is the visitor that walks the whole crate.
1341 pub struct Resolver<'a, 'b: 'a> {
1342     session: &'a Session,
1343     cstore: &'a CStore,
1344
1345     pub definitions: Definitions,
1346
1347     graph_root: Module<'a>,
1348
1349     prelude: Option<Module<'a>>,
1350     extern_prelude: FxHashSet<Name>,
1351
1352     /// n.b. This is used only for better diagnostics, not name resolution itself.
1353     has_self: FxHashSet<DefId>,
1354
1355     /// Names of fields of an item `DefId` accessible with dot syntax.
1356     /// Used for hints during error reporting.
1357     field_names: FxHashMap<DefId, Vec<Name>>,
1358
1359     /// All imports known to succeed or fail.
1360     determined_imports: Vec<&'a ImportDirective<'a>>,
1361
1362     /// All non-determined imports.
1363     indeterminate_imports: Vec<&'a ImportDirective<'a>>,
1364
1365     /// The module that represents the current item scope.
1366     current_module: Module<'a>,
1367
1368     /// The current set of local scopes for types and values.
1369     /// FIXME #4948: Reuse ribs to avoid allocation.
1370     ribs: PerNS<Vec<Rib<'a>>>,
1371
1372     /// The current set of local scopes, for labels.
1373     label_ribs: Vec<Rib<'a>>,
1374
1375     /// The trait that the current context can refer to.
1376     current_trait_ref: Option<(Module<'a>, TraitRef)>,
1377
1378     /// The current self type if inside an impl (used for better errors).
1379     current_self_type: Option<Ty>,
1380
1381     /// The idents for the primitive types.
1382     primitive_type_table: PrimitiveTypeTable,
1383
1384     def_map: DefMap,
1385     import_map: ImportMap,
1386     pub freevars: FreevarMap,
1387     freevars_seen: NodeMap<NodeMap<usize>>,
1388     pub export_map: ExportMap,
1389     pub trait_map: TraitMap,
1390
1391     /// A map from nodes to anonymous modules.
1392     /// Anonymous modules are pseudo-modules that are implicitly created around items
1393     /// contained within blocks.
1394     ///
1395     /// For example, if we have this:
1396     ///
1397     ///  fn f() {
1398     ///      fn g() {
1399     ///          ...
1400     ///      }
1401     ///  }
1402     ///
1403     /// There will be an anonymous module created around `g` with the ID of the
1404     /// entry block for `f`.
1405     block_map: NodeMap<Module<'a>>,
1406     module_map: FxHashMap<DefId, Module<'a>>,
1407     extern_module_map: FxHashMap<(DefId, bool /* MacrosOnly? */), Module<'a>>,
1408
1409     pub make_glob_map: bool,
1410     /// Maps imports to the names of items actually imported (this actually maps
1411     /// all imports, but only glob imports are actually interesting).
1412     pub glob_map: GlobMap,
1413
1414     used_imports: FxHashSet<(NodeId, Namespace)>,
1415     pub maybe_unused_trait_imports: NodeSet,
1416     pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
1417
1418     /// A list of labels as of yet unused. Labels will be removed from this map when
1419     /// they are used (in a `break` or `continue` statement)
1420     pub unused_labels: FxHashMap<NodeId, Span>,
1421
1422     /// privacy errors are delayed until the end in order to deduplicate them
1423     privacy_errors: Vec<PrivacyError<'a>>,
1424     /// ambiguity errors are delayed for deduplication
1425     ambiguity_errors: Vec<AmbiguityError<'a>>,
1426     /// `use` injections are delayed for better placement and deduplication
1427     use_injections: Vec<UseError<'a>>,
1428     /// `use` injections for proc macros wrongly imported with #[macro_use]
1429     proc_mac_errors: Vec<macros::ProcMacError>,
1430     /// crate-local macro expanded `macro_export` referred to by a module-relative path
1431     macro_expanded_macro_export_errors: BTreeSet<(Span, Span)>,
1432
1433     arenas: &'a ResolverArenas<'a>,
1434     dummy_binding: &'a NameBinding<'a>,
1435
1436     crate_loader: &'a mut CrateLoader<'b>,
1437     macro_names: FxHashSet<Ident>,
1438     builtin_macros: FxHashMap<Name, &'a NameBinding<'a>>,
1439     macro_use_prelude: FxHashMap<Name, &'a NameBinding<'a>>,
1440     pub all_macros: FxHashMap<Name, Def>,
1441     macro_map: FxHashMap<DefId, Lrc<SyntaxExtension>>,
1442     macro_defs: FxHashMap<Mark, DefId>,
1443     local_macro_def_scopes: FxHashMap<NodeId, Module<'a>>,
1444     pub whitelisted_legacy_custom_derives: Vec<Name>,
1445     pub found_unresolved_macro: bool,
1446
1447     /// List of crate local macros that we need to warn about as being unused.
1448     /// Right now this only includes macro_rules! macros, and macros 2.0.
1449     unused_macros: FxHashSet<DefId>,
1450
1451     /// Maps the `Mark` of an expansion to its containing module or block.
1452     invocations: FxHashMap<Mark, &'a InvocationData<'a>>,
1453
1454     /// Avoid duplicated errors for "name already defined".
1455     name_already_seen: FxHashMap<Name, Span>,
1456
1457     /// A set of procedural macros imported by `#[macro_use]` that have already been warned about
1458     warned_proc_macros: FxHashSet<Name>,
1459
1460     potentially_unused_imports: Vec<&'a ImportDirective<'a>>,
1461
1462     /// This table maps struct IDs into struct constructor IDs,
1463     /// it's not used during normal resolution, only for better error reporting.
1464     struct_constructors: DefIdMap<(Def, ty::Visibility)>,
1465
1466     /// Map from tuple struct's DefId to VariantData's Def
1467     tuple_structs: DefIdMap<Def>,
1468
1469     /// Only used for better errors on `fn(): fn()`
1470     current_type_ascription: Vec<Span>,
1471
1472     injected_crate: Option<Module<'a>>,
1473
1474     /// Only supposed to be used by rustdoc, otherwise should be false.
1475     pub ignore_extern_prelude_feature: bool,
1476 }
1477
1478 /// Nothing really interesting here, it just provides memory for the rest of the crate.
1479 pub struct ResolverArenas<'a> {
1480     modules: arena::TypedArena<ModuleData<'a>>,
1481     local_modules: RefCell<Vec<Module<'a>>>,
1482     name_bindings: arena::TypedArena<NameBinding<'a>>,
1483     import_directives: arena::TypedArena<ImportDirective<'a>>,
1484     name_resolutions: arena::TypedArena<RefCell<NameResolution<'a>>>,
1485     invocation_data: arena::TypedArena<InvocationData<'a>>,
1486     legacy_bindings: arena::TypedArena<LegacyBinding<'a>>,
1487 }
1488
1489 impl<'a> ResolverArenas<'a> {
1490     fn alloc_module(&'a self, module: ModuleData<'a>) -> Module<'a> {
1491         let module = self.modules.alloc(module);
1492         if module.def_id().map(|def_id| def_id.is_local()).unwrap_or(true) {
1493             self.local_modules.borrow_mut().push(module);
1494         }
1495         module
1496     }
1497     fn local_modules(&'a self) -> ::std::cell::Ref<'a, Vec<Module<'a>>> {
1498         self.local_modules.borrow()
1499     }
1500     fn alloc_name_binding(&'a self, name_binding: NameBinding<'a>) -> &'a NameBinding<'a> {
1501         self.name_bindings.alloc(name_binding)
1502     }
1503     fn alloc_import_directive(&'a self, import_directive: ImportDirective<'a>)
1504                               -> &'a ImportDirective {
1505         self.import_directives.alloc(import_directive)
1506     }
1507     fn alloc_name_resolution(&'a self) -> &'a RefCell<NameResolution<'a>> {
1508         self.name_resolutions.alloc(Default::default())
1509     }
1510     fn alloc_invocation_data(&'a self, expansion_data: InvocationData<'a>)
1511                              -> &'a InvocationData<'a> {
1512         self.invocation_data.alloc(expansion_data)
1513     }
1514     fn alloc_legacy_binding(&'a self, binding: LegacyBinding<'a>) -> &'a LegacyBinding<'a> {
1515         self.legacy_bindings.alloc(binding)
1516     }
1517 }
1518
1519 impl<'a, 'b: 'a, 'cl: 'b> ty::DefIdTree for &'a Resolver<'b, 'cl> {
1520     fn parent(self, id: DefId) -> Option<DefId> {
1521         match id.krate {
1522             LOCAL_CRATE => self.definitions.def_key(id.index).parent,
1523             _ => self.cstore.def_key(id).parent,
1524         }.map(|index| DefId { index, ..id })
1525     }
1526 }
1527
1528 /// This interface is used through the AST→HIR step, to embed full paths into the HIR. After that
1529 /// the resolver is no longer needed as all the relevant information is inline.
1530 impl<'a, 'cl> hir::lowering::Resolver for Resolver<'a, 'cl> {
1531     fn resolve_hir_path(&mut self, path: &mut hir::Path, is_value: bool) {
1532         self.resolve_hir_path_cb(path, is_value,
1533                                  |resolver, span, error| resolve_error(resolver, span, error))
1534     }
1535
1536     fn resolve_str_path(
1537         &mut self,
1538         span: Span,
1539         crate_root: Option<&str>,
1540         components: &[&str],
1541         args: Option<P<hir::GenericArgs>>,
1542         is_value: bool
1543     ) -> hir::Path {
1544         let mut segments = iter::once(keywords::CrateRoot.ident())
1545             .chain(
1546                 crate_root.into_iter()
1547                     .chain(components.iter().cloned())
1548                     .map(Ident::from_str)
1549             ).map(hir::PathSegment::from_ident).collect::<Vec<_>>();
1550
1551         if let Some(args) = args {
1552             let ident = segments.last().unwrap().ident;
1553             *segments.last_mut().unwrap() = hir::PathSegment {
1554                 ident,
1555                 args: Some(args),
1556                 infer_types: true,
1557             };
1558         }
1559
1560         let mut path = hir::Path {
1561             span,
1562             def: Def::Err,
1563             segments: segments.into(),
1564         };
1565
1566         self.resolve_hir_path(&mut path, is_value);
1567         path
1568     }
1569
1570     fn get_resolution(&mut self, id: NodeId) -> Option<PathResolution> {
1571         self.def_map.get(&id).cloned()
1572     }
1573
1574     fn get_import(&mut self, id: NodeId) -> PerNS<Option<PathResolution>> {
1575         self.import_map.get(&id).cloned().unwrap_or_default()
1576     }
1577
1578     fn definitions(&mut self) -> &mut Definitions {
1579         &mut self.definitions
1580     }
1581 }
1582
1583 impl<'a, 'crateloader> Resolver<'a, 'crateloader> {
1584     /// Rustdoc uses this to resolve things in a recoverable way. ResolutionError<'a>
1585     /// isn't something that can be returned because it can't be made to live that long,
1586     /// and also it's a private type. Fortunately rustdoc doesn't need to know the error,
1587     /// just that an error occurred.
1588     pub fn resolve_str_path_error(&mut self, span: Span, path_str: &str, is_value: bool)
1589         -> Result<hir::Path, ()> {
1590         use std::iter;
1591         let mut errored = false;
1592
1593         let mut path = if path_str.starts_with("::") {
1594             hir::Path {
1595                 span,
1596                 def: Def::Err,
1597                 segments: iter::once(keywords::CrateRoot.ident()).chain({
1598                     path_str.split("::").skip(1).map(Ident::from_str)
1599                 }).map(hir::PathSegment::from_ident).collect(),
1600             }
1601         } else {
1602             hir::Path {
1603                 span,
1604                 def: Def::Err,
1605                 segments: path_str.split("::").map(Ident::from_str)
1606                                   .map(hir::PathSegment::from_ident).collect(),
1607             }
1608         };
1609         self.resolve_hir_path_cb(&mut path, is_value, |_, _, _| errored = true);
1610         if errored || path.def == Def::Err {
1611             Err(())
1612         } else {
1613             Ok(path)
1614         }
1615     }
1616
1617     /// resolve_hir_path, but takes a callback in case there was an error
1618     fn resolve_hir_path_cb<F>(&mut self, path: &mut hir::Path, is_value: bool, error_callback: F)
1619         where F: for<'c, 'b> FnOnce(&'c mut Resolver, Span, ResolutionError<'b>)
1620     {
1621         let namespace = if is_value { ValueNS } else { TypeNS };
1622         let hir::Path { ref segments, span, ref mut def } = *path;
1623         let path: Vec<_> = segments.iter().map(|seg| seg.ident).collect();
1624         // FIXME (Manishearth): Intra doc links won't get warned of epoch changes
1625         match self.resolve_path(None, &path, Some(namespace), true, span, CrateLint::No) {
1626             PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
1627                 *def = module.def().unwrap(),
1628             PathResult::NonModule(path_res) if path_res.unresolved_segments() == 0 =>
1629                 *def = path_res.base_def(),
1630             PathResult::NonModule(..) => match self.resolve_path(
1631                 None,
1632                 &path,
1633                 None,
1634                 true,
1635                 span,
1636                 CrateLint::No,
1637             ) {
1638                 PathResult::Failed(span, msg, _) => {
1639                     error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1640                 }
1641                 _ => {}
1642             },
1643             PathResult::Module(ModuleOrUniformRoot::UniformRoot(_)) |
1644             PathResult::Indeterminate => unreachable!(),
1645             PathResult::Failed(span, msg, _) => {
1646                 error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1647             }
1648         }
1649     }
1650 }
1651
1652 impl<'a, 'crateloader: 'a> Resolver<'a, 'crateloader> {
1653     pub fn new(session: &'a Session,
1654                cstore: &'a CStore,
1655                krate: &Crate,
1656                crate_name: &str,
1657                make_glob_map: MakeGlobMap,
1658                crate_loader: &'a mut CrateLoader<'crateloader>,
1659                arenas: &'a ResolverArenas<'a>)
1660                -> Resolver<'a, 'crateloader> {
1661         let root_def_id = DefId::local(CRATE_DEF_INDEX);
1662         let root_module_kind = ModuleKind::Def(Def::Mod(root_def_id), keywords::Invalid.name());
1663         let graph_root = arenas.alloc_module(ModuleData {
1664             no_implicit_prelude: attr::contains_name(&krate.attrs, "no_implicit_prelude"),
1665             ..ModuleData::new(None, root_module_kind, root_def_id, Mark::root(), krate.span)
1666         });
1667         let mut module_map = FxHashMap();
1668         module_map.insert(DefId::local(CRATE_DEF_INDEX), graph_root);
1669
1670         let mut definitions = Definitions::new();
1671         DefCollector::new(&mut definitions, Mark::root())
1672             .collect_root(crate_name, session.local_crate_disambiguator());
1673
1674         let mut extern_prelude: FxHashSet<Name> =
1675             session.opts.externs.iter().map(|kv| Symbol::intern(kv.0)).collect();
1676         if !attr::contains_name(&krate.attrs, "no_core") {
1677             if !attr::contains_name(&krate.attrs, "no_std") {
1678                 extern_prelude.insert(Symbol::intern("std"));
1679             } else {
1680                 extern_prelude.insert(Symbol::intern("core"));
1681             }
1682         }
1683
1684         let mut invocations = FxHashMap();
1685         invocations.insert(Mark::root(),
1686                            arenas.alloc_invocation_data(InvocationData::root(graph_root)));
1687
1688         let mut macro_defs = FxHashMap();
1689         macro_defs.insert(Mark::root(), root_def_id);
1690
1691         Resolver {
1692             session,
1693
1694             cstore,
1695
1696             definitions,
1697
1698             // The outermost module has def ID 0; this is not reflected in the
1699             // AST.
1700             graph_root,
1701             prelude: None,
1702             extern_prelude,
1703
1704             has_self: FxHashSet(),
1705             field_names: FxHashMap(),
1706
1707             determined_imports: Vec::new(),
1708             indeterminate_imports: Vec::new(),
1709
1710             current_module: graph_root,
1711             ribs: PerNS {
1712                 value_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1713                 type_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1714                 macro_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1715             },
1716             label_ribs: Vec::new(),
1717
1718             current_trait_ref: None,
1719             current_self_type: None,
1720
1721             primitive_type_table: PrimitiveTypeTable::new(),
1722
1723             def_map: NodeMap(),
1724             import_map: NodeMap(),
1725             freevars: NodeMap(),
1726             freevars_seen: NodeMap(),
1727             export_map: FxHashMap(),
1728             trait_map: NodeMap(),
1729             module_map,
1730             block_map: NodeMap(),
1731             extern_module_map: FxHashMap(),
1732
1733             make_glob_map: make_glob_map == MakeGlobMap::Yes,
1734             glob_map: NodeMap(),
1735
1736             used_imports: FxHashSet(),
1737             maybe_unused_trait_imports: NodeSet(),
1738             maybe_unused_extern_crates: Vec::new(),
1739
1740             unused_labels: FxHashMap(),
1741
1742             privacy_errors: Vec::new(),
1743             ambiguity_errors: Vec::new(),
1744             use_injections: Vec::new(),
1745             proc_mac_errors: Vec::new(),
1746             macro_expanded_macro_export_errors: BTreeSet::new(),
1747
1748             arenas,
1749             dummy_binding: arenas.alloc_name_binding(NameBinding {
1750                 kind: NameBindingKind::Def(Def::Err, false),
1751                 expansion: Mark::root(),
1752                 span: DUMMY_SP,
1753                 vis: ty::Visibility::Public,
1754             }),
1755
1756             crate_loader,
1757             macro_names: FxHashSet(),
1758             builtin_macros: FxHashMap(),
1759             macro_use_prelude: FxHashMap(),
1760             all_macros: FxHashMap(),
1761             macro_map: FxHashMap(),
1762             invocations,
1763             macro_defs,
1764             local_macro_def_scopes: FxHashMap(),
1765             name_already_seen: FxHashMap(),
1766             whitelisted_legacy_custom_derives: Vec::new(),
1767             warned_proc_macros: FxHashSet(),
1768             potentially_unused_imports: Vec::new(),
1769             struct_constructors: DefIdMap(),
1770             tuple_structs: DefIdMap(),
1771             found_unresolved_macro: false,
1772             unused_macros: FxHashSet(),
1773             current_type_ascription: Vec::new(),
1774             injected_crate: None,
1775             ignore_extern_prelude_feature: false,
1776         }
1777     }
1778
1779     pub fn arenas() -> ResolverArenas<'a> {
1780         ResolverArenas {
1781             modules: arena::TypedArena::new(),
1782             local_modules: RefCell::new(Vec::new()),
1783             name_bindings: arena::TypedArena::new(),
1784             import_directives: arena::TypedArena::new(),
1785             name_resolutions: arena::TypedArena::new(),
1786             invocation_data: arena::TypedArena::new(),
1787             legacy_bindings: arena::TypedArena::new(),
1788         }
1789     }
1790
1791     /// Runs the function on each namespace.
1792     fn per_ns<F: FnMut(&mut Self, Namespace)>(&mut self, mut f: F) {
1793         f(self, TypeNS);
1794         f(self, ValueNS);
1795         f(self, MacroNS);
1796     }
1797
1798     fn macro_def(&self, mut ctxt: SyntaxContext) -> DefId {
1799         loop {
1800             match self.macro_defs.get(&ctxt.outer()) {
1801                 Some(&def_id) => return def_id,
1802                 None => ctxt.remove_mark(),
1803             };
1804         }
1805     }
1806
1807     /// Entry point to crate resolution.
1808     pub fn resolve_crate(&mut self, krate: &Crate) {
1809         ImportResolver { resolver: self }.finalize_imports();
1810         self.current_module = self.graph_root;
1811         self.finalize_current_module_macro_resolutions();
1812
1813         visit::walk_crate(self, krate);
1814
1815         check_unused::check_crate(self, krate);
1816         self.report_errors(krate);
1817         self.crate_loader.postprocess(krate);
1818     }
1819
1820     fn new_module(
1821         &self,
1822         parent: Module<'a>,
1823         kind: ModuleKind,
1824         normal_ancestor_id: DefId,
1825         expansion: Mark,
1826         span: Span,
1827     ) -> Module<'a> {
1828         let module = ModuleData::new(Some(parent), kind, normal_ancestor_id, expansion, span);
1829         self.arenas.alloc_module(module)
1830     }
1831
1832     fn record_use(&mut self, ident: Ident, ns: Namespace, binding: &'a NameBinding<'a>)
1833                   -> bool /* true if an error was reported */ {
1834         match binding.kind {
1835             NameBindingKind::Import { directive, binding, ref used }
1836                     if !used.get() => {
1837                 used.set(true);
1838                 directive.used.set(true);
1839                 self.used_imports.insert((directive.id, ns));
1840                 self.add_to_glob_map(directive.id, ident);
1841                 self.record_use(ident, ns, binding)
1842             }
1843             NameBindingKind::Import { .. } => false,
1844             NameBindingKind::Ambiguity { b1, b2 } => {
1845                 self.ambiguity_errors.push(AmbiguityError { ident, b1, b2 });
1846                 true
1847             }
1848             _ => false
1849         }
1850     }
1851
1852     fn add_to_glob_map(&mut self, id: NodeId, ident: Ident) {
1853         if self.make_glob_map {
1854             self.glob_map.entry(id).or_default().insert(ident.name);
1855         }
1856     }
1857
1858     /// This resolves the identifier `ident` in the namespace `ns` in the current lexical scope.
1859     /// More specifically, we proceed up the hierarchy of scopes and return the binding for
1860     /// `ident` in the first scope that defines it (or None if no scopes define it).
1861     ///
1862     /// A block's items are above its local variables in the scope hierarchy, regardless of where
1863     /// the items are defined in the block. For example,
1864     /// ```rust
1865     /// fn f() {
1866     ///    g(); // Since there are no local variables in scope yet, this resolves to the item.
1867     ///    let g = || {};
1868     ///    fn g() {}
1869     ///    g(); // This resolves to the local variable `g` since it shadows the item.
1870     /// }
1871     /// ```
1872     ///
1873     /// Invariant: This must only be called during main resolution, not during
1874     /// import resolution.
1875     fn resolve_ident_in_lexical_scope(&mut self,
1876                                       mut ident: Ident,
1877                                       ns: Namespace,
1878                                       record_used_id: Option<NodeId>,
1879                                       path_span: Span)
1880                                       -> Option<LexicalScopeBinding<'a>> {
1881         let record_used = record_used_id.is_some();
1882         assert!(ns == TypeNS  || ns == ValueNS);
1883         if ns == TypeNS {
1884             ident.span = if ident.name == keywords::SelfType.name() {
1885                 // FIXME(jseyfried) improve `Self` hygiene
1886                 ident.span.with_ctxt(SyntaxContext::empty())
1887             } else {
1888                 ident.span.modern()
1889             }
1890         } else {
1891             ident = ident.modern_and_legacy();
1892         }
1893
1894         // Walk backwards up the ribs in scope.
1895         let mut module = self.graph_root;
1896         for i in (0 .. self.ribs[ns].len()).rev() {
1897             if let Some(def) = self.ribs[ns][i].bindings.get(&ident).cloned() {
1898                 // The ident resolves to a type parameter or local variable.
1899                 return Some(LexicalScopeBinding::Def(
1900                     self.adjust_local_def(ns, i, def, record_used, path_span)
1901                 ));
1902             }
1903
1904             module = match self.ribs[ns][i].kind {
1905                 ModuleRibKind(module) => module,
1906                 MacroDefinition(def) if def == self.macro_def(ident.span.ctxt()) => {
1907                     // If an invocation of this macro created `ident`, give up on `ident`
1908                     // and switch to `ident`'s source from the macro definition.
1909                     ident.span.remove_mark();
1910                     continue
1911                 }
1912                 _ => continue,
1913             };
1914
1915             let item = self.resolve_ident_in_module_unadjusted(
1916                 ModuleOrUniformRoot::Module(module),
1917                 ident,
1918                 ns,
1919                 false,
1920                 record_used,
1921                 path_span,
1922             );
1923             if let Ok(binding) = item {
1924                 // The ident resolves to an item.
1925                 return Some(LexicalScopeBinding::Item(binding));
1926             }
1927
1928             match module.kind {
1929                 ModuleKind::Block(..) => {}, // We can see through blocks
1930                 _ => break,
1931             }
1932         }
1933
1934         ident.span = ident.span.modern();
1935         let mut poisoned = None;
1936         loop {
1937             let opt_module = if let Some(node_id) = record_used_id {
1938                 self.hygienic_lexical_parent_with_compatibility_fallback(module, &mut ident.span,
1939                                                                          node_id, &mut poisoned)
1940             } else {
1941                 self.hygienic_lexical_parent(module, &mut ident.span)
1942             };
1943             module = unwrap_or!(opt_module, break);
1944             let orig_current_module = self.current_module;
1945             self.current_module = module; // Lexical resolutions can never be a privacy error.
1946             let result = self.resolve_ident_in_module_unadjusted(
1947                 ModuleOrUniformRoot::Module(module),
1948                 ident,
1949                 ns,
1950                 false,
1951                 record_used,
1952                 path_span,
1953             );
1954             self.current_module = orig_current_module;
1955
1956             match result {
1957                 Ok(binding) => {
1958                     if let Some(node_id) = poisoned {
1959                         self.session.buffer_lint_with_diagnostic(
1960                             lint::builtin::PROC_MACRO_DERIVE_RESOLUTION_FALLBACK,
1961                             node_id, ident.span,
1962                             &format!("cannot find {} `{}` in this scope", ns.descr(), ident),
1963                             lint::builtin::BuiltinLintDiagnostics::
1964                                 ProcMacroDeriveResolutionFallback(ident.span),
1965                         );
1966                     }
1967                     return Some(LexicalScopeBinding::Item(binding))
1968                 }
1969                 Err(Determined) => continue,
1970                 Err(Undetermined) =>
1971                     span_bug!(ident.span, "undetermined resolution during main resolution pass"),
1972             }
1973         }
1974
1975         if !module.no_implicit_prelude {
1976             // `record_used` means that we don't try to load crates during speculative resolution
1977             if record_used && ns == TypeNS && self.extern_prelude.contains(&ident.name) {
1978                 if !self.session.features_untracked().extern_prelude &&
1979                    !self.ignore_extern_prelude_feature {
1980                     feature_err(&self.session.parse_sess, "extern_prelude",
1981                                 ident.span, GateIssue::Language,
1982                                 "access to extern crates through prelude is experimental").emit();
1983                 }
1984
1985                 let crate_root = self.load_extern_prelude_crate_if_needed(ident);
1986
1987                 let binding = (crate_root, ty::Visibility::Public,
1988                                ident.span, Mark::root()).to_name_binding(self.arenas);
1989                 return Some(LexicalScopeBinding::Item(binding));
1990             }
1991             if ns == TypeNS && is_known_tool(ident.name) {
1992                 let binding = (Def::ToolMod, ty::Visibility::Public,
1993                                ident.span, Mark::root()).to_name_binding(self.arenas);
1994                 return Some(LexicalScopeBinding::Item(binding));
1995             }
1996             if let Some(prelude) = self.prelude {
1997                 if let Ok(binding) = self.resolve_ident_in_module_unadjusted(
1998                     ModuleOrUniformRoot::Module(prelude),
1999                     ident,
2000                     ns,
2001                     false,
2002                     false,
2003                     path_span,
2004                 ) {
2005                     return Some(LexicalScopeBinding::Item(binding));
2006                 }
2007             }
2008         }
2009
2010         None
2011     }
2012
2013     fn load_extern_prelude_crate_if_needed(&mut self, ident: Ident) -> Module<'a> {
2014         let crate_id = self.crate_loader.process_path_extern(ident.name, ident.span);
2015         let crate_root = self.get_module(DefId { krate: crate_id, index: CRATE_DEF_INDEX });
2016         self.populate_module_if_necessary(&crate_root);
2017         crate_root
2018     }
2019
2020     fn hygienic_lexical_parent(&mut self, module: Module<'a>, span: &mut Span)
2021                                -> Option<Module<'a>> {
2022         if !module.expansion.is_descendant_of(span.ctxt().outer()) {
2023             return Some(self.macro_def_scope(span.remove_mark()));
2024         }
2025
2026         if let ModuleKind::Block(..) = module.kind {
2027             return Some(module.parent.unwrap());
2028         }
2029
2030         None
2031     }
2032
2033     fn hygienic_lexical_parent_with_compatibility_fallback(&mut self, module: Module<'a>,
2034                                                            span: &mut Span, node_id: NodeId,
2035                                                            poisoned: &mut Option<NodeId>)
2036                                                            -> Option<Module<'a>> {
2037         if let module @ Some(..) = self.hygienic_lexical_parent(module, span) {
2038             return module;
2039         }
2040
2041         // We need to support the next case under a deprecation warning
2042         // ```
2043         // struct MyStruct;
2044         // ---- begin: this comes from a proc macro derive
2045         // mod implementation_details {
2046         //     // Note that `MyStruct` is not in scope here.
2047         //     impl SomeTrait for MyStruct { ... }
2048         // }
2049         // ---- end
2050         // ```
2051         // So we have to fall back to the module's parent during lexical resolution in this case.
2052         if let Some(parent) = module.parent {
2053             // Inner module is inside the macro, parent module is outside of the macro.
2054             if module.expansion != parent.expansion &&
2055             module.expansion.is_descendant_of(parent.expansion) {
2056                 // The macro is a proc macro derive
2057                 if module.expansion.looks_like_proc_macro_derive() {
2058                     if parent.expansion.is_descendant_of(span.ctxt().outer()) {
2059                         *poisoned = Some(node_id);
2060                         return module.parent;
2061                     }
2062                 }
2063             }
2064         }
2065
2066         None
2067     }
2068
2069     fn resolve_ident_in_module(&mut self,
2070                                module: ModuleOrUniformRoot<'a>,
2071                                mut ident: Ident,
2072                                ns: Namespace,
2073                                record_used: bool,
2074                                span: Span)
2075                                -> Result<&'a NameBinding<'a>, Determinacy> {
2076         ident.span = ident.span.modern();
2077         let orig_current_module = self.current_module;
2078         if let ModuleOrUniformRoot::Module(module) = module {
2079             if let Some(def) = ident.span.adjust(module.expansion) {
2080                 self.current_module = self.macro_def_scope(def);
2081             }
2082         }
2083         let result = self.resolve_ident_in_module_unadjusted(
2084             module, ident, ns, false, record_used, span,
2085         );
2086         self.current_module = orig_current_module;
2087         result
2088     }
2089
2090     fn resolve_crate_root(&mut self, ident: Ident) -> Module<'a> {
2091         let mut ctxt = ident.span.ctxt();
2092         let mark = if ident.name == keywords::DollarCrate.name() {
2093             // When resolving `$crate` from a `macro_rules!` invoked in a `macro`,
2094             // we don't want to pretend that the `macro_rules!` definition is in the `macro`
2095             // as described in `SyntaxContext::apply_mark`, so we ignore prepended modern marks.
2096             // FIXME: This is only a guess and it doesn't work correctly for `macro_rules!`
2097             // definitions actually produced by `macro` and `macro` definitions produced by
2098             // `macro_rules!`, but at least such configurations are not stable yet.
2099             ctxt = ctxt.modern_and_legacy();
2100             let mut iter = ctxt.marks().into_iter().rev().peekable();
2101             let mut result = None;
2102             // Find the last modern mark from the end if it exists.
2103             while let Some(&(mark, transparency)) = iter.peek() {
2104                 if transparency == Transparency::Opaque {
2105                     result = Some(mark);
2106                     iter.next();
2107                 } else {
2108                     break;
2109                 }
2110             }
2111             // Then find the last legacy mark from the end if it exists.
2112             for (mark, transparency) in iter {
2113                 if transparency == Transparency::SemiTransparent {
2114                     result = Some(mark);
2115                 } else {
2116                     break;
2117                 }
2118             }
2119             result
2120         } else {
2121             ctxt = ctxt.modern();
2122             ctxt.adjust(Mark::root())
2123         };
2124         let module = match mark {
2125             Some(def) => self.macro_def_scope(def),
2126             None => return self.graph_root,
2127         };
2128         self.get_module(DefId { index: CRATE_DEF_INDEX, ..module.normal_ancestor_id })
2129     }
2130
2131     fn resolve_self(&mut self, ctxt: &mut SyntaxContext, module: Module<'a>) -> Module<'a> {
2132         let mut module = self.get_module(module.normal_ancestor_id);
2133         while module.span.ctxt().modern() != *ctxt {
2134             let parent = module.parent.unwrap_or_else(|| self.macro_def_scope(ctxt.remove_mark()));
2135             module = self.get_module(parent.normal_ancestor_id);
2136         }
2137         module
2138     }
2139
2140     // AST resolution
2141     //
2142     // We maintain a list of value ribs and type ribs.
2143     //
2144     // Simultaneously, we keep track of the current position in the module
2145     // graph in the `current_module` pointer. When we go to resolve a name in
2146     // the value or type namespaces, we first look through all the ribs and
2147     // then query the module graph. When we resolve a name in the module
2148     // namespace, we can skip all the ribs (since nested modules are not
2149     // allowed within blocks in Rust) and jump straight to the current module
2150     // graph node.
2151     //
2152     // Named implementations are handled separately. When we find a method
2153     // call, we consult the module node to find all of the implementations in
2154     // scope. This information is lazily cached in the module node. We then
2155     // generate a fake "implementation scope" containing all the
2156     // implementations thus found, for compatibility with old resolve pass.
2157
2158     pub fn with_scope<F, T>(&mut self, id: NodeId, f: F) -> T
2159         where F: FnOnce(&mut Resolver) -> T
2160     {
2161         let id = self.definitions.local_def_id(id);
2162         let module = self.module_map.get(&id).cloned(); // clones a reference
2163         if let Some(module) = module {
2164             // Move down in the graph.
2165             let orig_module = replace(&mut self.current_module, module);
2166             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(module)));
2167             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(module)));
2168
2169             self.finalize_current_module_macro_resolutions();
2170             let ret = f(self);
2171
2172             self.current_module = orig_module;
2173             self.ribs[ValueNS].pop();
2174             self.ribs[TypeNS].pop();
2175             ret
2176         } else {
2177             f(self)
2178         }
2179     }
2180
2181     /// Searches the current set of local scopes for labels. Returns the first non-None label that
2182     /// is returned by the given predicate function
2183     ///
2184     /// Stops after meeting a closure.
2185     fn search_label<P, R>(&self, mut ident: Ident, pred: P) -> Option<R>
2186         where P: Fn(&Rib, Ident) -> Option<R>
2187     {
2188         for rib in self.label_ribs.iter().rev() {
2189             match rib.kind {
2190                 NormalRibKind => {}
2191                 // If an invocation of this macro created `ident`, give up on `ident`
2192                 // and switch to `ident`'s source from the macro definition.
2193                 MacroDefinition(def) => {
2194                     if def == self.macro_def(ident.span.ctxt()) {
2195                         ident.span.remove_mark();
2196                     }
2197                 }
2198                 _ => {
2199                     // Do not resolve labels across function boundary
2200                     return None;
2201                 }
2202             }
2203             let r = pred(rib, ident);
2204             if r.is_some() {
2205                 return r;
2206             }
2207         }
2208         None
2209     }
2210
2211     fn resolve_adt(&mut self, item: &Item, generics: &Generics) {
2212         self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2213             let item_def_id = this.definitions.local_def_id(item.id);
2214             if this.session.features_untracked().self_in_typedefs {
2215                 this.with_self_rib(Def::SelfTy(None, Some(item_def_id)), |this| {
2216                     visit::walk_item(this, item);
2217                 });
2218             } else {
2219                 visit::walk_item(this, item);
2220             }
2221         });
2222     }
2223
2224     fn resolve_item(&mut self, item: &Item) {
2225         let name = item.ident.name;
2226         debug!("(resolving item) resolving {}", name);
2227
2228         match item.node {
2229             ItemKind::Ty(_, ref generics) |
2230             ItemKind::Fn(_, _, ref generics, _) |
2231             ItemKind::Existential(_, ref generics) => {
2232                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind),
2233                                              |this| visit::walk_item(this, item));
2234             }
2235
2236             ItemKind::Struct(ref variant, ref generics) => {
2237                 if variant.is_tuple() || variant.is_unit() {
2238                     if let Some(def_id) = self.definitions.opt_local_def_id(item.id) {
2239                         if let Some(variant_id) = self.definitions.opt_local_def_id(variant.id()) {
2240                             let variant_def = if variant.is_tuple() {
2241                                 Def::StructCtor(variant_id, CtorKind::Fn)
2242                             } else {
2243                                 Def::StructCtor(variant_id, CtorKind::Const)
2244                             };
2245                             self.tuple_structs.insert(def_id, variant_def);
2246                         }
2247                     }
2248                 }
2249                 self.resolve_adt(item, generics);
2250             }
2251
2252             ItemKind::Enum(_, ref generics) |
2253             ItemKind::Union(_, ref generics) => {
2254                 self.resolve_adt(item, generics);
2255             }
2256
2257             ItemKind::Impl(.., ref generics, ref opt_trait_ref, ref self_type, ref impl_items) =>
2258                 self.resolve_implementation(generics,
2259                                             opt_trait_ref,
2260                                             &self_type,
2261                                             item.id,
2262                                             impl_items),
2263
2264             ItemKind::Trait(.., ref generics, ref bounds, ref trait_items) => {
2265                 // Create a new rib for the trait-wide type parameters.
2266                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2267                     let local_def_id = this.definitions.local_def_id(item.id);
2268                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2269                         this.visit_generics(generics);
2270                         walk_list!(this, visit_param_bound, bounds);
2271
2272                         for trait_item in trait_items {
2273                             let type_parameters = HasTypeParameters(&trait_item.generics,
2274                                                                     TraitOrImplItemRibKind);
2275                             this.with_type_parameter_rib(type_parameters, |this| {
2276                                 match trait_item.node {
2277                                     TraitItemKind::Const(ref ty, ref default) => {
2278                                         this.visit_ty(ty);
2279
2280                                         // Only impose the restrictions of
2281                                         // ConstRibKind for an actual constant
2282                                         // expression in a provided default.
2283                                         if let Some(ref expr) = *default{
2284                                             this.with_constant_rib(|this| {
2285                                                 this.visit_expr(expr);
2286                                             });
2287                                         }
2288                                     }
2289                                     TraitItemKind::Method(_, _) => {
2290                                         visit::walk_trait_item(this, trait_item)
2291                                     }
2292                                     TraitItemKind::Type(..) => {
2293                                         visit::walk_trait_item(this, trait_item)
2294                                     }
2295                                     TraitItemKind::Macro(_) => {
2296                                         panic!("unexpanded macro in resolve!")
2297                                     }
2298                                 };
2299                             });
2300                         }
2301                     });
2302                 });
2303             }
2304
2305             ItemKind::TraitAlias(ref generics, ref bounds) => {
2306                 // Create a new rib for the trait-wide type parameters.
2307                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2308                     let local_def_id = this.definitions.local_def_id(item.id);
2309                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2310                         this.visit_generics(generics);
2311                         walk_list!(this, visit_param_bound, bounds);
2312                     });
2313                 });
2314             }
2315
2316             ItemKind::Mod(_) | ItemKind::ForeignMod(_) => {
2317                 self.with_scope(item.id, |this| {
2318                     visit::walk_item(this, item);
2319                 });
2320             }
2321
2322             ItemKind::Static(ref ty, _, ref expr) |
2323             ItemKind::Const(ref ty, ref expr) => {
2324                 self.with_item_rib(|this| {
2325                     this.visit_ty(ty);
2326                     this.with_constant_rib(|this| {
2327                         this.visit_expr(expr);
2328                     });
2329                 });
2330             }
2331
2332             ItemKind::Use(ref use_tree) => {
2333                 // Imports are resolved as global by default, add starting root segment.
2334                 let path = Path {
2335                     segments: use_tree.prefix.make_root().into_iter().collect(),
2336                     span: use_tree.span,
2337                 };
2338                 self.resolve_use_tree(item.id, use_tree.span, item.id, use_tree, &path);
2339             }
2340
2341             ItemKind::ExternCrate(_) | ItemKind::MacroDef(..) | ItemKind::GlobalAsm(_) => {
2342                 // do nothing, these are just around to be encoded
2343             }
2344
2345             ItemKind::Mac(_) => panic!("unexpanded macro in resolve!"),
2346         }
2347     }
2348
2349     /// For the most part, use trees are desugared into `ImportDirective` instances
2350     /// when building the reduced graph (see `build_reduced_graph_for_use_tree`). But
2351     /// there is one special case we handle here: an empty nested import like
2352     /// `a::{b::{}}`, which desugares into...no import directives.
2353     fn resolve_use_tree(
2354         &mut self,
2355         root_id: NodeId,
2356         root_span: Span,
2357         id: NodeId,
2358         use_tree: &ast::UseTree,
2359         prefix: &Path,
2360     ) {
2361         match use_tree.kind {
2362             ast::UseTreeKind::Nested(ref items) => {
2363                 let path = Path {
2364                     segments: prefix.segments
2365                         .iter()
2366                         .chain(use_tree.prefix.segments.iter())
2367                         .cloned()
2368                         .collect(),
2369                     span: prefix.span.to(use_tree.prefix.span),
2370                 };
2371
2372                 if items.len() == 0 {
2373                     // Resolve prefix of an import with empty braces (issue #28388).
2374                     self.smart_resolve_path_with_crate_lint(
2375                         id,
2376                         None,
2377                         &path,
2378                         PathSource::ImportPrefix,
2379                         CrateLint::UsePath { root_id, root_span },
2380                     );
2381                 } else {
2382                     for &(ref tree, nested_id) in items {
2383                         self.resolve_use_tree(root_id, root_span, nested_id, tree, &path);
2384                     }
2385                 }
2386             }
2387             ast::UseTreeKind::Simple(..) => {},
2388             ast::UseTreeKind::Glob => {},
2389         }
2390     }
2391
2392     fn with_type_parameter_rib<'b, F>(&'b mut self, type_parameters: TypeParameters<'a, 'b>, f: F)
2393         where F: FnOnce(&mut Resolver)
2394     {
2395         match type_parameters {
2396             HasTypeParameters(generics, rib_kind) => {
2397                 let mut function_type_rib = Rib::new(rib_kind);
2398                 let mut seen_bindings = FxHashMap();
2399                 for param in &generics.params {
2400                     match param.kind {
2401                         GenericParamKind::Lifetime { .. } => {}
2402                         GenericParamKind::Type { .. } => {
2403                             let ident = param.ident.modern();
2404                             debug!("with_type_parameter_rib: {}", param.id);
2405
2406                             if seen_bindings.contains_key(&ident) {
2407                                 let span = seen_bindings.get(&ident).unwrap();
2408                                 let err = ResolutionError::NameAlreadyUsedInTypeParameterList(
2409                                     ident.name,
2410                                     span,
2411                                 );
2412                                 resolve_error(self, param.ident.span, err);
2413                             }
2414                             seen_bindings.entry(ident).or_insert(param.ident.span);
2415
2416                         // Plain insert (no renaming).
2417                         let def = Def::TyParam(self.definitions.local_def_id(param.id));
2418                             function_type_rib.bindings.insert(ident, def);
2419                             self.record_def(param.id, PathResolution::new(def));
2420                         }
2421                     }
2422                 }
2423                 self.ribs[TypeNS].push(function_type_rib);
2424             }
2425
2426             NoTypeParameters => {
2427                 // Nothing to do.
2428             }
2429         }
2430
2431         f(self);
2432
2433         if let HasTypeParameters(..) = type_parameters {
2434             self.ribs[TypeNS].pop();
2435         }
2436     }
2437
2438     fn with_label_rib<F>(&mut self, f: F)
2439         where F: FnOnce(&mut Resolver)
2440     {
2441         self.label_ribs.push(Rib::new(NormalRibKind));
2442         f(self);
2443         self.label_ribs.pop();
2444     }
2445
2446     fn with_item_rib<F>(&mut self, f: F)
2447         where F: FnOnce(&mut Resolver)
2448     {
2449         self.ribs[ValueNS].push(Rib::new(ItemRibKind));
2450         self.ribs[TypeNS].push(Rib::new(ItemRibKind));
2451         f(self);
2452         self.ribs[TypeNS].pop();
2453         self.ribs[ValueNS].pop();
2454     }
2455
2456     fn with_constant_rib<F>(&mut self, f: F)
2457         where F: FnOnce(&mut Resolver)
2458     {
2459         self.ribs[ValueNS].push(Rib::new(ConstantItemRibKind));
2460         self.label_ribs.push(Rib::new(ConstantItemRibKind));
2461         f(self);
2462         self.label_ribs.pop();
2463         self.ribs[ValueNS].pop();
2464     }
2465
2466     fn with_current_self_type<T, F>(&mut self, self_type: &Ty, f: F) -> T
2467         where F: FnOnce(&mut Resolver) -> T
2468     {
2469         // Handle nested impls (inside fn bodies)
2470         let previous_value = replace(&mut self.current_self_type, Some(self_type.clone()));
2471         let result = f(self);
2472         self.current_self_type = previous_value;
2473         result
2474     }
2475
2476     /// This is called to resolve a trait reference from an `impl` (i.e. `impl Trait for Foo`)
2477     fn with_optional_trait_ref<T, F>(&mut self, opt_trait_ref: Option<&TraitRef>, f: F) -> T
2478         where F: FnOnce(&mut Resolver, Option<DefId>) -> T
2479     {
2480         let mut new_val = None;
2481         let mut new_id = None;
2482         if let Some(trait_ref) = opt_trait_ref {
2483             let path: Vec<_> = trait_ref.path.segments.iter()
2484                 .map(|seg| seg.ident)
2485                 .collect();
2486             let def = self.smart_resolve_path_fragment(
2487                 trait_ref.ref_id,
2488                 None,
2489                 &path,
2490                 trait_ref.path.span,
2491                 PathSource::Trait(AliasPossibility::No),
2492                 CrateLint::SimplePath(trait_ref.ref_id),
2493             ).base_def();
2494             if def != Def::Err {
2495                 new_id = Some(def.def_id());
2496                 let span = trait_ref.path.span;
2497                 if let PathResult::Module(ModuleOrUniformRoot::Module(module)) =
2498                     self.resolve_path(
2499                         None,
2500                         &path,
2501                         None,
2502                         false,
2503                         span,
2504                         CrateLint::SimplePath(trait_ref.ref_id),
2505                     )
2506                 {
2507                     new_val = Some((module, trait_ref.clone()));
2508                 }
2509             }
2510         }
2511         let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
2512         let result = f(self, new_id);
2513         self.current_trait_ref = original_trait_ref;
2514         result
2515     }
2516
2517     fn with_self_rib<F>(&mut self, self_def: Def, f: F)
2518         where F: FnOnce(&mut Resolver)
2519     {
2520         let mut self_type_rib = Rib::new(NormalRibKind);
2521
2522         // plain insert (no renaming, types are not currently hygienic....)
2523         self_type_rib.bindings.insert(keywords::SelfType.ident(), self_def);
2524         self.ribs[TypeNS].push(self_type_rib);
2525         f(self);
2526         self.ribs[TypeNS].pop();
2527     }
2528
2529     fn with_tuple_struct_self_ctor_rib<F>(&mut self, self_ty: &Ty, f: F)
2530         where F: FnOnce(&mut Resolver)
2531     {
2532         let variant_def = if self.session.features_untracked().tuple_struct_self_ctor {
2533             let base_def = self.def_map.get(&self_ty.id).map(|r| r.base_def());
2534             if let Some(Def::Struct(ref def_id)) = base_def {
2535                 self.tuple_structs.get(def_id).cloned()
2536             } else {
2537                 None
2538             }
2539         } else {
2540             None
2541         };
2542
2543         // when feature gate is enabled and `Self` is a tuple struct
2544         if let Some(variant_def) = variant_def {
2545             let mut self_type_rib = Rib::new(NormalRibKind);
2546             self_type_rib.bindings.insert(keywords::SelfType.ident(), variant_def);
2547             self.ribs[ValueNS].push(self_type_rib);
2548             f(self);
2549             self.ribs[ValueNS].pop();
2550         } else {
2551             f(self);
2552         }
2553     }
2554
2555     fn resolve_implementation(&mut self,
2556                               generics: &Generics,
2557                               opt_trait_reference: &Option<TraitRef>,
2558                               self_type: &Ty,
2559                               item_id: NodeId,
2560                               impl_items: &[ImplItem]) {
2561         // If applicable, create a rib for the type parameters.
2562         self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2563             // Dummy self type for better errors if `Self` is used in the trait path.
2564             this.with_self_rib(Def::SelfTy(None, None), |this| {
2565                 // Resolve the trait reference, if necessary.
2566                 this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| {
2567                     let item_def_id = this.definitions.local_def_id(item_id);
2568                     this.with_self_rib(Def::SelfTy(trait_id, Some(item_def_id)), |this| {
2569                         if let Some(trait_ref) = opt_trait_reference.as_ref() {
2570                             // Resolve type arguments in the trait path.
2571                             visit::walk_trait_ref(this, trait_ref);
2572                         }
2573                         // Resolve the self type.
2574                         this.visit_ty(self_type);
2575                         // Resolve the type parameters.
2576                         this.visit_generics(generics);
2577                         // Resolve the items within the impl.
2578                         this.with_current_self_type(self_type, |this| {
2579                             for impl_item in impl_items {
2580                                 this.resolve_visibility(&impl_item.vis);
2581
2582                                 // We also need a new scope for the impl item type parameters.
2583                                 let type_parameters = HasTypeParameters(&impl_item.generics,
2584                                                                         TraitOrImplItemRibKind);
2585                                 this.with_type_parameter_rib(type_parameters, |this| {
2586                                     use self::ResolutionError::*;
2587                                     match impl_item.node {
2588                                         ImplItemKind::Const(..) => {
2589                                             // If this is a trait impl, ensure the const
2590                                             // exists in trait
2591                                             this.check_trait_item(impl_item.ident,
2592                                                                   ValueNS,
2593                                                                   impl_item.span,
2594                                                 |n, s| ConstNotMemberOfTrait(n, s));
2595                                             this.with_constant_rib(|this|
2596                                                 visit::walk_impl_item(this, impl_item)
2597                                             );
2598                                         }
2599                                         ImplItemKind::Method(..) => {
2600                                             // If this is a trait impl, ensure the method
2601                                             // exists in trait
2602                                             this.check_trait_item(impl_item.ident,
2603                                                                   ValueNS,
2604                                                                   impl_item.span,
2605                                                 |n, s| MethodNotMemberOfTrait(n, s));
2606                                             this.with_tuple_struct_self_ctor_rib(self_type, |this| {
2607                                                 visit::walk_impl_item(this, impl_item);
2608                                             });
2609                                         }
2610                                         ImplItemKind::Type(ref ty) => {
2611                                             // If this is a trait impl, ensure the type
2612                                             // exists in trait
2613                                             this.check_trait_item(impl_item.ident,
2614                                                                   TypeNS,
2615                                                                   impl_item.span,
2616                                                 |n, s| TypeNotMemberOfTrait(n, s));
2617
2618                                             this.visit_ty(ty);
2619                                         }
2620                                         ImplItemKind::Existential(ref bounds) => {
2621                                             // If this is a trait impl, ensure the type
2622                                             // exists in trait
2623                                             this.check_trait_item(impl_item.ident,
2624                                                                   TypeNS,
2625                                                                   impl_item.span,
2626                                                 |n, s| TypeNotMemberOfTrait(n, s));
2627
2628                                             for bound in bounds {
2629                                                 this.visit_param_bound(bound);
2630                                             }
2631                                         }
2632                                         ImplItemKind::Macro(_) =>
2633                                             panic!("unexpanded macro in resolve!"),
2634                                     }
2635                                 });
2636                             }
2637                         });
2638                     });
2639                 });
2640             });
2641         });
2642     }
2643
2644     fn check_trait_item<F>(&mut self, ident: Ident, ns: Namespace, span: Span, err: F)
2645         where F: FnOnce(Name, &str) -> ResolutionError
2646     {
2647         // If there is a TraitRef in scope for an impl, then the method must be in the
2648         // trait.
2649         if let Some((module, _)) = self.current_trait_ref {
2650             if self.resolve_ident_in_module(
2651                 ModuleOrUniformRoot::Module(module),
2652                 ident,
2653                 ns,
2654                 false,
2655                 span,
2656             ).is_err() {
2657                 let path = &self.current_trait_ref.as_ref().unwrap().1.path;
2658                 resolve_error(self, span, err(ident.name, &path_names_to_string(path)));
2659             }
2660         }
2661     }
2662
2663     fn resolve_local(&mut self, local: &Local) {
2664         // Resolve the type.
2665         walk_list!(self, visit_ty, &local.ty);
2666
2667         // Resolve the initializer.
2668         walk_list!(self, visit_expr, &local.init);
2669
2670         // Resolve the pattern.
2671         self.resolve_pattern(&local.pat, PatternSource::Let, &mut FxHashMap());
2672     }
2673
2674     // build a map from pattern identifiers to binding-info's.
2675     // this is done hygienically. This could arise for a macro
2676     // that expands into an or-pattern where one 'x' was from the
2677     // user and one 'x' came from the macro.
2678     fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
2679         let mut binding_map = FxHashMap();
2680
2681         pat.walk(&mut |pat| {
2682             if let PatKind::Ident(binding_mode, ident, ref sub_pat) = pat.node {
2683                 if sub_pat.is_some() || match self.def_map.get(&pat.id).map(|res| res.base_def()) {
2684                     Some(Def::Local(..)) => true,
2685                     _ => false,
2686                 } {
2687                     let binding_info = BindingInfo { span: ident.span, binding_mode: binding_mode };
2688                     binding_map.insert(ident, binding_info);
2689                 }
2690             }
2691             true
2692         });
2693
2694         binding_map
2695     }
2696
2697     // check that all of the arms in an or-pattern have exactly the
2698     // same set of bindings, with the same binding modes for each.
2699     fn check_consistent_bindings(&mut self, pats: &[P<Pat>]) {
2700         if pats.is_empty() {
2701             return;
2702         }
2703
2704         let mut missing_vars = FxHashMap();
2705         let mut inconsistent_vars = FxHashMap();
2706         for (i, p) in pats.iter().enumerate() {
2707             let map_i = self.binding_mode_map(&p);
2708
2709             for (j, q) in pats.iter().enumerate() {
2710                 if i == j {
2711                     continue;
2712                 }
2713
2714                 let map_j = self.binding_mode_map(&q);
2715                 for (&key, &binding_i) in &map_i {
2716                     if map_j.len() == 0 {                   // Account for missing bindings when
2717                         let binding_error = missing_vars    // map_j has none.
2718                             .entry(key.name)
2719                             .or_insert(BindingError {
2720                                 name: key.name,
2721                                 origin: BTreeSet::new(),
2722                                 target: BTreeSet::new(),
2723                             });
2724                         binding_error.origin.insert(binding_i.span);
2725                         binding_error.target.insert(q.span);
2726                     }
2727                     for (&key_j, &binding_j) in &map_j {
2728                         match map_i.get(&key_j) {
2729                             None => {  // missing binding
2730                                 let binding_error = missing_vars
2731                                     .entry(key_j.name)
2732                                     .or_insert(BindingError {
2733                                         name: key_j.name,
2734                                         origin: BTreeSet::new(),
2735                                         target: BTreeSet::new(),
2736                                     });
2737                                 binding_error.origin.insert(binding_j.span);
2738                                 binding_error.target.insert(p.span);
2739                             }
2740                             Some(binding_i) => {  // check consistent binding
2741                                 if binding_i.binding_mode != binding_j.binding_mode {
2742                                     inconsistent_vars
2743                                         .entry(key.name)
2744                                         .or_insert((binding_j.span, binding_i.span));
2745                                 }
2746                             }
2747                         }
2748                     }
2749                 }
2750             }
2751         }
2752         let mut missing_vars = missing_vars.iter().collect::<Vec<_>>();
2753         missing_vars.sort();
2754         for (_, v) in missing_vars {
2755             resolve_error(self,
2756                           *v.origin.iter().next().unwrap(),
2757                           ResolutionError::VariableNotBoundInPattern(v));
2758         }
2759         let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
2760         inconsistent_vars.sort();
2761         for (name, v) in inconsistent_vars {
2762             resolve_error(self, v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
2763         }
2764     }
2765
2766     fn resolve_arm(&mut self, arm: &Arm) {
2767         self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2768
2769         let mut bindings_list = FxHashMap();
2770         for pattern in &arm.pats {
2771             self.resolve_pattern(&pattern, PatternSource::Match, &mut bindings_list);
2772         }
2773
2774         // This has to happen *after* we determine which pat_idents are variants
2775         self.check_consistent_bindings(&arm.pats);
2776
2777         match arm.guard {
2778             Some(ast::Guard::If(ref expr)) => self.visit_expr(expr),
2779             _ => {}
2780         }
2781         self.visit_expr(&arm.body);
2782
2783         self.ribs[ValueNS].pop();
2784     }
2785
2786     fn resolve_block(&mut self, block: &Block) {
2787         debug!("(resolving block) entering block");
2788         // Move down in the graph, if there's an anonymous module rooted here.
2789         let orig_module = self.current_module;
2790         let anonymous_module = self.block_map.get(&block.id).cloned(); // clones a reference
2791
2792         let mut num_macro_definition_ribs = 0;
2793         if let Some(anonymous_module) = anonymous_module {
2794             debug!("(resolving block) found anonymous module, moving down");
2795             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2796             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2797             self.current_module = anonymous_module;
2798             self.finalize_current_module_macro_resolutions();
2799         } else {
2800             self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2801         }
2802
2803         // Descend into the block.
2804         for stmt in &block.stmts {
2805             if let ast::StmtKind::Item(ref item) = stmt.node {
2806                 if let ast::ItemKind::MacroDef(..) = item.node {
2807                     num_macro_definition_ribs += 1;
2808                     let def = self.definitions.local_def_id(item.id);
2809                     self.ribs[ValueNS].push(Rib::new(MacroDefinition(def)));
2810                     self.label_ribs.push(Rib::new(MacroDefinition(def)));
2811                 }
2812             }
2813
2814             self.visit_stmt(stmt);
2815         }
2816
2817         // Move back up.
2818         self.current_module = orig_module;
2819         for _ in 0 .. num_macro_definition_ribs {
2820             self.ribs[ValueNS].pop();
2821             self.label_ribs.pop();
2822         }
2823         self.ribs[ValueNS].pop();
2824         if anonymous_module.is_some() {
2825             self.ribs[TypeNS].pop();
2826         }
2827         debug!("(resolving block) leaving block");
2828     }
2829
2830     fn fresh_binding(&mut self,
2831                      ident: Ident,
2832                      pat_id: NodeId,
2833                      outer_pat_id: NodeId,
2834                      pat_src: PatternSource,
2835                      bindings: &mut FxHashMap<Ident, NodeId>)
2836                      -> PathResolution {
2837         // Add the binding to the local ribs, if it
2838         // doesn't already exist in the bindings map. (We
2839         // must not add it if it's in the bindings map
2840         // because that breaks the assumptions later
2841         // passes make about or-patterns.)
2842         let ident = ident.modern_and_legacy();
2843         let mut def = Def::Local(pat_id);
2844         match bindings.get(&ident).cloned() {
2845             Some(id) if id == outer_pat_id => {
2846                 // `Variant(a, a)`, error
2847                 resolve_error(
2848                     self,
2849                     ident.span,
2850                     ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(
2851                         &ident.as_str())
2852                 );
2853             }
2854             Some(..) if pat_src == PatternSource::FnParam => {
2855                 // `fn f(a: u8, a: u8)`, error
2856                 resolve_error(
2857                     self,
2858                     ident.span,
2859                     ResolutionError::IdentifierBoundMoreThanOnceInParameterList(
2860                         &ident.as_str())
2861                 );
2862             }
2863             Some(..) if pat_src == PatternSource::Match ||
2864                         pat_src == PatternSource::IfLet ||
2865                         pat_src == PatternSource::WhileLet => {
2866                 // `Variant1(a) | Variant2(a)`, ok
2867                 // Reuse definition from the first `a`.
2868                 def = self.ribs[ValueNS].last_mut().unwrap().bindings[&ident];
2869             }
2870             Some(..) => {
2871                 span_bug!(ident.span, "two bindings with the same name from \
2872                                        unexpected pattern source {:?}", pat_src);
2873             }
2874             None => {
2875                 // A completely fresh binding, add to the lists if it's valid.
2876                 if ident.name != keywords::Invalid.name() {
2877                     bindings.insert(ident, outer_pat_id);
2878                     self.ribs[ValueNS].last_mut().unwrap().bindings.insert(ident, def);
2879                 }
2880             }
2881         }
2882
2883         PathResolution::new(def)
2884     }
2885
2886     fn resolve_pattern(&mut self,
2887                        pat: &Pat,
2888                        pat_src: PatternSource,
2889                        // Maps idents to the node ID for the
2890                        // outermost pattern that binds them.
2891                        bindings: &mut FxHashMap<Ident, NodeId>) {
2892         // Visit all direct subpatterns of this pattern.
2893         let outer_pat_id = pat.id;
2894         pat.walk(&mut |pat| {
2895             match pat.node {
2896                 PatKind::Ident(bmode, ident, ref opt_pat) => {
2897                     // First try to resolve the identifier as some existing
2898                     // entity, then fall back to a fresh binding.
2899                     let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS,
2900                                                                       None, pat.span)
2901                                       .and_then(LexicalScopeBinding::item);
2902                     let resolution = binding.map(NameBinding::def).and_then(|def| {
2903                         let is_syntactic_ambiguity = opt_pat.is_none() &&
2904                             bmode == BindingMode::ByValue(Mutability::Immutable);
2905                         match def {
2906                             Def::StructCtor(_, CtorKind::Const) |
2907                             Def::VariantCtor(_, CtorKind::Const) |
2908                             Def::Const(..) if is_syntactic_ambiguity => {
2909                                 // Disambiguate in favor of a unit struct/variant
2910                                 // or constant pattern.
2911                                 self.record_use(ident, ValueNS, binding.unwrap());
2912                                 Some(PathResolution::new(def))
2913                             }
2914                             Def::StructCtor(..) | Def::VariantCtor(..) |
2915                             Def::Const(..) | Def::Static(..) => {
2916                                 // This is unambiguously a fresh binding, either syntactically
2917                                 // (e.g. `IDENT @ PAT` or `ref IDENT`) or because `IDENT` resolves
2918                                 // to something unusable as a pattern (e.g. constructor function),
2919                                 // but we still conservatively report an error, see
2920                                 // issues/33118#issuecomment-233962221 for one reason why.
2921                                 resolve_error(
2922                                     self,
2923                                     ident.span,
2924                                     ResolutionError::BindingShadowsSomethingUnacceptable(
2925                                         pat_src.descr(), ident.name, binding.unwrap())
2926                                 );
2927                                 None
2928                             }
2929                             Def::Fn(..) | Def::Err => {
2930                                 // These entities are explicitly allowed
2931                                 // to be shadowed by fresh bindings.
2932                                 None
2933                             }
2934                             def => {
2935                                 span_bug!(ident.span, "unexpected definition for an \
2936                                                        identifier in pattern: {:?}", def);
2937                             }
2938                         }
2939                     }).unwrap_or_else(|| {
2940                         self.fresh_binding(ident, pat.id, outer_pat_id, pat_src, bindings)
2941                     });
2942
2943                     self.record_def(pat.id, resolution);
2944                 }
2945
2946                 PatKind::TupleStruct(ref path, ..) => {
2947                     self.smart_resolve_path(pat.id, None, path, PathSource::TupleStruct);
2948                 }
2949
2950                 PatKind::Path(ref qself, ref path) => {
2951                     self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
2952                 }
2953
2954                 PatKind::Struct(ref path, ..) => {
2955                     self.smart_resolve_path(pat.id, None, path, PathSource::Struct);
2956                 }
2957
2958                 _ => {}
2959             }
2960             true
2961         });
2962
2963         visit::walk_pat(self, pat);
2964     }
2965
2966     // High-level and context dependent path resolution routine.
2967     // Resolves the path and records the resolution into definition map.
2968     // If resolution fails tries several techniques to find likely
2969     // resolution candidates, suggest imports or other help, and report
2970     // errors in user friendly way.
2971     fn smart_resolve_path(&mut self,
2972                           id: NodeId,
2973                           qself: Option<&QSelf>,
2974                           path: &Path,
2975                           source: PathSource)
2976                           -> PathResolution {
2977         self.smart_resolve_path_with_crate_lint(id, qself, path, source, CrateLint::SimplePath(id))
2978     }
2979
2980     /// A variant of `smart_resolve_path` where you also specify extra
2981     /// information about where the path came from; this extra info is
2982     /// sometimes needed for the lint that recommends rewriting
2983     /// absolute paths to `crate`, so that it knows how to frame the
2984     /// suggestion. If you are just resolving a path like `foo::bar`
2985     /// that appears...somewhere, though, then you just want
2986     /// `CrateLint::SimplePath`, which is what `smart_resolve_path`
2987     /// already provides.
2988     fn smart_resolve_path_with_crate_lint(
2989         &mut self,
2990         id: NodeId,
2991         qself: Option<&QSelf>,
2992         path: &Path,
2993         source: PathSource,
2994         crate_lint: CrateLint
2995     ) -> PathResolution {
2996         let segments = &path.segments.iter()
2997             .map(|seg| seg.ident)
2998             .collect::<Vec<_>>();
2999         self.smart_resolve_path_fragment(id, qself, segments, path.span, source, crate_lint)
3000     }
3001
3002     fn smart_resolve_path_fragment(&mut self,
3003                                    id: NodeId,
3004                                    qself: Option<&QSelf>,
3005                                    path: &[Ident],
3006                                    span: Span,
3007                                    source: PathSource,
3008                                    crate_lint: CrateLint)
3009                                    -> PathResolution {
3010         let ident_span = path.last().map_or(span, |ident| ident.span);
3011         let ns = source.namespace();
3012         let is_expected = &|def| source.is_expected(def);
3013         let is_enum_variant = &|def| if let Def::Variant(..) = def { true } else { false };
3014
3015         // Base error is amended with one short label and possibly some longer helps/notes.
3016         let report_errors = |this: &mut Self, def: Option<Def>| {
3017             // Make the base error.
3018             let expected = source.descr_expected();
3019             let path_str = names_to_string(path);
3020             let code = source.error_code(def.is_some());
3021             let (base_msg, fallback_label, base_span) = if let Some(def) = def {
3022                 (format!("expected {}, found {} `{}`", expected, def.kind_name(), path_str),
3023                  format!("not a {}", expected),
3024                  span)
3025             } else {
3026                 let item_str = path[path.len() - 1];
3027                 let item_span = path[path.len() - 1].span;
3028                 let (mod_prefix, mod_str) = if path.len() == 1 {
3029                     (String::new(), "this scope".to_string())
3030                 } else if path.len() == 2 && path[0].name == keywords::CrateRoot.name() {
3031                     (String::new(), "the crate root".to_string())
3032                 } else {
3033                     let mod_path = &path[..path.len() - 1];
3034                     let mod_prefix = match this.resolve_path(None, mod_path, Some(TypeNS),
3035                                                              false, span, CrateLint::No) {
3036                         PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3037                             module.def(),
3038                         _ => None,
3039                     }.map_or(String::new(), |def| format!("{} ", def.kind_name()));
3040                     (mod_prefix, format!("`{}`", names_to_string(mod_path)))
3041                 };
3042                 (format!("cannot find {} `{}` in {}{}", expected, item_str, mod_prefix, mod_str),
3043                  format!("not found in {}", mod_str),
3044                  item_span)
3045             };
3046             let code = DiagnosticId::Error(code.into());
3047             let mut err = this.session.struct_span_err_with_code(base_span, &base_msg, code);
3048
3049             // Emit special messages for unresolved `Self` and `self`.
3050             if is_self_type(path, ns) {
3051                 __diagnostic_used!(E0411);
3052                 err.code(DiagnosticId::Error("E0411".into()));
3053                 let available_in = if this.session.features_untracked().self_in_typedefs {
3054                     "impls, traits, and type definitions"
3055                 } else {
3056                     "traits and impls"
3057                 };
3058                 err.span_label(span, format!("`Self` is only available in {}", available_in));
3059                 return (err, Vec::new());
3060             }
3061             if is_self_value(path, ns) {
3062                 __diagnostic_used!(E0424);
3063                 err.code(DiagnosticId::Error("E0424".into()));
3064                 err.span_label(span, format!("`self` value is only available in \
3065                                                methods with `self` parameter"));
3066                 return (err, Vec::new());
3067             }
3068
3069             // Try to lookup the name in more relaxed fashion for better error reporting.
3070             let ident = *path.last().unwrap();
3071             let candidates = this.lookup_import_candidates(ident.name, ns, is_expected);
3072             if candidates.is_empty() && is_expected(Def::Enum(DefId::local(CRATE_DEF_INDEX))) {
3073                 let enum_candidates =
3074                     this.lookup_import_candidates(ident.name, ns, is_enum_variant);
3075                 let mut enum_candidates = enum_candidates.iter()
3076                     .map(|suggestion| import_candidate_to_paths(&suggestion)).collect::<Vec<_>>();
3077                 enum_candidates.sort();
3078                 for (sp, variant_path, enum_path) in enum_candidates {
3079                     if sp.is_dummy() {
3080                         let msg = format!("there is an enum variant `{}`, \
3081                                         try using `{}`?",
3082                                         variant_path,
3083                                         enum_path);
3084                         err.help(&msg);
3085                     } else {
3086                         err.span_suggestion_with_applicability(
3087                             span,
3088                             "you can try using the variant's enum",
3089                             enum_path,
3090                             Applicability::MachineApplicable,
3091                         );
3092                     }
3093                 }
3094             }
3095             if path.len() == 1 && this.self_type_is_available(span) {
3096                 if let Some(candidate) = this.lookup_assoc_candidate(ident, ns, is_expected) {
3097                     let self_is_available = this.self_value_is_available(path[0].span, span);
3098                     match candidate {
3099                         AssocSuggestion::Field => {
3100                             err.span_suggestion_with_applicability(
3101                                 span,
3102                                 "try",
3103                                 format!("self.{}", path_str),
3104                                 Applicability::MachineApplicable,
3105                             );
3106                             if !self_is_available {
3107                                 err.span_label(span, format!("`self` value is only available in \
3108                                                                methods with `self` parameter"));
3109                             }
3110                         }
3111                         AssocSuggestion::MethodWithSelf if self_is_available => {
3112                             err.span_suggestion_with_applicability(
3113                                 span,
3114                                 "try",
3115                                 format!("self.{}", path_str),
3116                                 Applicability::MachineApplicable,
3117                             );
3118                         }
3119                         AssocSuggestion::MethodWithSelf | AssocSuggestion::AssocItem => {
3120                             err.span_suggestion_with_applicability(
3121                                 span,
3122                                 "try",
3123                                 format!("Self::{}", path_str),
3124                                 Applicability::MachineApplicable,
3125                             );
3126                         }
3127                     }
3128                     return (err, candidates);
3129                 }
3130             }
3131
3132             let mut levenshtein_worked = false;
3133
3134             // Try Levenshtein.
3135             if let Some(candidate) = this.lookup_typo_candidate(path, ns, is_expected, span) {
3136                 err.span_label(ident_span, format!("did you mean `{}`?", candidate));
3137                 levenshtein_worked = true;
3138             }
3139
3140             // Try context dependent help if relaxed lookup didn't work.
3141             if let Some(def) = def {
3142                 match (def, source) {
3143                     (Def::Macro(..), _) => {
3144                         err.span_label(span, format!("did you mean `{}!(...)`?", path_str));
3145                         return (err, candidates);
3146                     }
3147                     (Def::TyAlias(..), PathSource::Trait(_)) => {
3148                         err.span_label(span, "type aliases cannot be used for traits");
3149                         return (err, candidates);
3150                     }
3151                     (Def::Mod(..), PathSource::Expr(Some(parent))) => match parent.node {
3152                         ExprKind::Field(_, ident) => {
3153                             err.span_label(parent.span, format!("did you mean `{}::{}`?",
3154                                                                  path_str, ident));
3155                             return (err, candidates);
3156                         }
3157                         ExprKind::MethodCall(ref segment, ..) => {
3158                             err.span_label(parent.span, format!("did you mean `{}::{}(...)`?",
3159                                                                  path_str, segment.ident));
3160                             return (err, candidates);
3161                         }
3162                         _ => {}
3163                     },
3164                     (Def::Enum(..), PathSource::TupleStruct)
3165                         | (Def::Enum(..), PathSource::Expr(..))  => {
3166                         if let Some(variants) = this.collect_enum_variants(def) {
3167                             err.note(&format!("did you mean to use one \
3168                                                of the following variants?\n{}",
3169                                 variants.iter()
3170                                     .map(|suggestion| path_names_to_string(suggestion))
3171                                     .map(|suggestion| format!("- `{}`", suggestion))
3172                                     .collect::<Vec<_>>()
3173                                     .join("\n")));
3174
3175                         } else {
3176                             err.note("did you mean to use one of the enum's variants?");
3177                         }
3178                         return (err, candidates);
3179                     },
3180                     (Def::Struct(def_id), _) if ns == ValueNS => {
3181                         if let Some((ctor_def, ctor_vis))
3182                                 = this.struct_constructors.get(&def_id).cloned() {
3183                             let accessible_ctor = this.is_accessible(ctor_vis);
3184                             if is_expected(ctor_def) && !accessible_ctor {
3185                                 err.span_label(span, format!("constructor is not visible \
3186                                                               here due to private fields"));
3187                             }
3188                         } else {
3189                             // HACK(estebank): find a better way to figure out that this was a
3190                             // parser issue where a struct literal is being used on an expression
3191                             // where a brace being opened means a block is being started. Look
3192                             // ahead for the next text to see if `span` is followed by a `{`.
3193                             let cm = this.session.source_map();
3194                             let mut sp = span;
3195                             loop {
3196                                 sp = cm.next_point(sp);
3197                                 match cm.span_to_snippet(sp) {
3198                                     Ok(ref snippet) => {
3199                                         if snippet.chars().any(|c| { !c.is_whitespace() }) {
3200                                             break;
3201                                         }
3202                                     }
3203                                     _ => break,
3204                                 }
3205                             }
3206                             let followed_by_brace = match cm.span_to_snippet(sp) {
3207                                 Ok(ref snippet) if snippet == "{" => true,
3208                                 _ => false,
3209                             };
3210                             if let (PathSource::Expr(None), true) = (source, followed_by_brace) {
3211                                 err.span_label(
3212                                     span,
3213                                     format!("did you mean `({} {{ /* fields */ }})`?", path_str),
3214                                 );
3215                             } else {
3216                                 err.span_label(
3217                                     span,
3218                                     format!("did you mean `{} {{ /* fields */ }}`?", path_str),
3219                                 );
3220                             }
3221                         }
3222                         return (err, candidates);
3223                     }
3224                     (Def::Union(..), _) |
3225                     (Def::Variant(..), _) |
3226                     (Def::VariantCtor(_, CtorKind::Fictive), _) if ns == ValueNS => {
3227                         err.span_label(span, format!("did you mean `{} {{ /* fields */ }}`?",
3228                                                      path_str));
3229                         return (err, candidates);
3230                     }
3231                     (Def::SelfTy(..), _) if ns == ValueNS => {
3232                         err.span_label(span, fallback_label);
3233                         err.note("can't use `Self` as a constructor, you must use the \
3234                                   implemented struct");
3235                         return (err, candidates);
3236                     }
3237                     (Def::TyAlias(_), _) | (Def::AssociatedTy(..), _) if ns == ValueNS => {
3238                         err.note("can't use a type alias as a constructor");
3239                         return (err, candidates);
3240                     }
3241                     _ => {}
3242                 }
3243             }
3244
3245             // Fallback label.
3246             if !levenshtein_worked {
3247                 err.span_label(base_span, fallback_label);
3248                 this.type_ascription_suggestion(&mut err, base_span);
3249             }
3250             (err, candidates)
3251         };
3252         let report_errors = |this: &mut Self, def: Option<Def>| {
3253             let (err, candidates) = report_errors(this, def);
3254             let def_id = this.current_module.normal_ancestor_id;
3255             let node_id = this.definitions.as_local_node_id(def_id).unwrap();
3256             let better = def.is_some();
3257             this.use_injections.push(UseError { err, candidates, node_id, better });
3258             err_path_resolution()
3259         };
3260
3261         let resolution = match self.resolve_qpath_anywhere(
3262             id,
3263             qself,
3264             path,
3265             ns,
3266             span,
3267             source.defer_to_typeck(),
3268             source.global_by_default(),
3269             crate_lint,
3270         ) {
3271             Some(resolution) if resolution.unresolved_segments() == 0 => {
3272                 if is_expected(resolution.base_def()) || resolution.base_def() == Def::Err {
3273                     resolution
3274                 } else {
3275                     // Add a temporary hack to smooth the transition to new struct ctor
3276                     // visibility rules. See #38932 for more details.
3277                     let mut res = None;
3278                     if let Def::Struct(def_id) = resolution.base_def() {
3279                         if let Some((ctor_def, ctor_vis))
3280                                 = self.struct_constructors.get(&def_id).cloned() {
3281                             if is_expected(ctor_def) && self.is_accessible(ctor_vis) {
3282                                 let lint = lint::builtin::LEGACY_CONSTRUCTOR_VISIBILITY;
3283                                 self.session.buffer_lint(lint, id, span,
3284                                     "private struct constructors are not usable through \
3285                                      re-exports in outer modules",
3286                                 );
3287                                 res = Some(PathResolution::new(ctor_def));
3288                             }
3289                         }
3290                     }
3291
3292                     res.unwrap_or_else(|| report_errors(self, Some(resolution.base_def())))
3293                 }
3294             }
3295             Some(resolution) if source.defer_to_typeck() => {
3296                 // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
3297                 // or `<T>::A::B`. If `B` should be resolved in value namespace then
3298                 // it needs to be added to the trait map.
3299                 if ns == ValueNS {
3300                     let item_name = *path.last().unwrap();
3301                     let traits = self.get_traits_containing_item(item_name, ns);
3302                     self.trait_map.insert(id, traits);
3303                 }
3304                 resolution
3305             }
3306             _ => report_errors(self, None)
3307         };
3308
3309         if let PathSource::TraitItem(..) = source {} else {
3310             // Avoid recording definition of `A::B` in `<T as A>::B::C`.
3311             self.record_def(id, resolution);
3312         }
3313         resolution
3314     }
3315
3316     fn type_ascription_suggestion(&self,
3317                                   err: &mut DiagnosticBuilder,
3318                                   base_span: Span) {
3319         debug!("type_ascription_suggetion {:?}", base_span);
3320         let cm = self.session.source_map();
3321         debug!("self.current_type_ascription {:?}", self.current_type_ascription);
3322         if let Some(sp) = self.current_type_ascription.last() {
3323             let mut sp = *sp;
3324             loop {  // try to find the `:`, bail on first non-':'/non-whitespace
3325                 sp = cm.next_point(sp);
3326                 if let Ok(snippet) = cm.span_to_snippet(sp.to(cm.next_point(sp))) {
3327                     debug!("snippet {:?}", snippet);
3328                     let line_sp = cm.lookup_char_pos(sp.hi()).line;
3329                     let line_base_sp = cm.lookup_char_pos(base_span.lo()).line;
3330                     debug!("{:?} {:?}", line_sp, line_base_sp);
3331                     if snippet == ":" {
3332                         err.span_label(base_span,
3333                                        "expecting a type here because of type ascription");
3334                         if line_sp != line_base_sp {
3335                             err.span_suggestion_short(sp,
3336                                                       "did you mean to use `;` here instead?",
3337                                                       ";".to_string());
3338                         }
3339                         break;
3340                     } else if snippet.trim().len() != 0  {
3341                         debug!("tried to find type ascription `:` token, couldn't find it");
3342                         break;
3343                     }
3344                 } else {
3345                     break;
3346                 }
3347             }
3348         }
3349     }
3350
3351     fn self_type_is_available(&mut self, span: Span) -> bool {
3352         let binding = self.resolve_ident_in_lexical_scope(keywords::SelfType.ident(),
3353                                                           TypeNS, None, span);
3354         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3355     }
3356
3357     fn self_value_is_available(&mut self, self_span: Span, path_span: Span) -> bool {
3358         let ident = Ident::new(keywords::SelfValue.name(), self_span);
3359         let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, None, path_span);
3360         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3361     }
3362
3363     // Resolve in alternative namespaces if resolution in the primary namespace fails.
3364     fn resolve_qpath_anywhere(&mut self,
3365                               id: NodeId,
3366                               qself: Option<&QSelf>,
3367                               path: &[Ident],
3368                               primary_ns: Namespace,
3369                               span: Span,
3370                               defer_to_typeck: bool,
3371                               global_by_default: bool,
3372                               crate_lint: CrateLint)
3373                               -> Option<PathResolution> {
3374         let mut fin_res = None;
3375         // FIXME: can't resolve paths in macro namespace yet, macros are
3376         // processed by the little special hack below.
3377         for (i, ns) in [primary_ns, TypeNS, ValueNS, /*MacroNS*/].iter().cloned().enumerate() {
3378             if i == 0 || ns != primary_ns {
3379                 match self.resolve_qpath(id, qself, path, ns, span, global_by_default, crate_lint) {
3380                     // If defer_to_typeck, then resolution > no resolution,
3381                     // otherwise full resolution > partial resolution > no resolution.
3382                     Some(res) if res.unresolved_segments() == 0 || defer_to_typeck =>
3383                         return Some(res),
3384                     res => if fin_res.is_none() { fin_res = res },
3385                 };
3386             }
3387         }
3388         if primary_ns != MacroNS &&
3389            (self.macro_names.contains(&path[0].modern()) ||
3390             self.builtin_macros.get(&path[0].name).cloned()
3391                                .and_then(NameBinding::macro_kind) == Some(MacroKind::Bang) ||
3392             self.macro_use_prelude.get(&path[0].name).cloned()
3393                                   .and_then(NameBinding::macro_kind) == Some(MacroKind::Bang)) {
3394             // Return some dummy definition, it's enough for error reporting.
3395             return Some(
3396                 PathResolution::new(Def::Macro(DefId::local(CRATE_DEF_INDEX), MacroKind::Bang))
3397             );
3398         }
3399         fin_res
3400     }
3401
3402     /// Handles paths that may refer to associated items.
3403     fn resolve_qpath(&mut self,
3404                      id: NodeId,
3405                      qself: Option<&QSelf>,
3406                      path: &[Ident],
3407                      ns: Namespace,
3408                      span: Span,
3409                      global_by_default: bool,
3410                      crate_lint: CrateLint)
3411                      -> Option<PathResolution> {
3412         debug!(
3413             "resolve_qpath(id={:?}, qself={:?}, path={:?}, \
3414              ns={:?}, span={:?}, global_by_default={:?})",
3415             id,
3416             qself,
3417             path,
3418             ns,
3419             span,
3420             global_by_default,
3421         );
3422
3423         if let Some(qself) = qself {
3424             if qself.position == 0 {
3425                 // This is a case like `<T>::B`, where there is no
3426                 // trait to resolve.  In that case, we leave the `B`
3427                 // segment to be resolved by type-check.
3428                 return Some(PathResolution::with_unresolved_segments(
3429                     Def::Mod(DefId::local(CRATE_DEF_INDEX)), path.len()
3430                 ));
3431             }
3432
3433             // Make sure `A::B` in `<T as A::B>::C` is a trait item.
3434             //
3435             // Currently, `path` names the full item (`A::B::C`, in
3436             // our example).  so we extract the prefix of that that is
3437             // the trait (the slice upto and including
3438             // `qself.position`). And then we recursively resolve that,
3439             // but with `qself` set to `None`.
3440             //
3441             // However, setting `qself` to none (but not changing the
3442             // span) loses the information about where this path
3443             // *actually* appears, so for the purposes of the crate
3444             // lint we pass along information that this is the trait
3445             // name from a fully qualified path, and this also
3446             // contains the full span (the `CrateLint::QPathTrait`).
3447             let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
3448             let res = self.smart_resolve_path_fragment(
3449                 id,
3450                 None,
3451                 &path[..qself.position + 1],
3452                 span,
3453                 PathSource::TraitItem(ns),
3454                 CrateLint::QPathTrait {
3455                     qpath_id: id,
3456                     qpath_span: qself.path_span,
3457                 },
3458             );
3459
3460             // The remaining segments (the `C` in our example) will
3461             // have to be resolved by type-check, since that requires doing
3462             // trait resolution.
3463             return Some(PathResolution::with_unresolved_segments(
3464                 res.base_def(), res.unresolved_segments() + path.len() - qself.position - 1
3465             ));
3466         }
3467
3468         let result = match self.resolve_path(
3469             None,
3470             &path,
3471             Some(ns),
3472             true,
3473             span,
3474             crate_lint,
3475         ) {
3476             PathResult::NonModule(path_res) => path_res,
3477             PathResult::Module(ModuleOrUniformRoot::Module(module)) if !module.is_normal() => {
3478                 PathResolution::new(module.def().unwrap())
3479             }
3480             // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
3481             // don't report an error right away, but try to fallback to a primitive type.
3482             // So, we are still able to successfully resolve something like
3483             //
3484             // use std::u8; // bring module u8 in scope
3485             // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
3486             //     u8::max_value() // OK, resolves to associated function <u8>::max_value,
3487             //                     // not to non-existent std::u8::max_value
3488             // }
3489             //
3490             // Such behavior is required for backward compatibility.
3491             // The same fallback is used when `a` resolves to nothing.
3492             PathResult::Module(ModuleOrUniformRoot::Module(_)) |
3493             PathResult::Failed(..)
3494                     if (ns == TypeNS || path.len() > 1) &&
3495                        self.primitive_type_table.primitive_types
3496                            .contains_key(&path[0].name) => {
3497                 let prim = self.primitive_type_table.primitive_types[&path[0].name];
3498                 PathResolution::with_unresolved_segments(Def::PrimTy(prim), path.len() - 1)
3499             }
3500             PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3501                 PathResolution::new(module.def().unwrap()),
3502             PathResult::Failed(span, msg, false) => {
3503                 resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
3504                 err_path_resolution()
3505             }
3506             PathResult::Module(ModuleOrUniformRoot::UniformRoot(_)) |
3507             PathResult::Failed(..) => return None,
3508             PathResult::Indeterminate => bug!("indetermined path result in resolve_qpath"),
3509         };
3510
3511         if path.len() > 1 && !global_by_default && result.base_def() != Def::Err &&
3512            path[0].name != keywords::CrateRoot.name() &&
3513            path[0].name != keywords::DollarCrate.name() {
3514             let unqualified_result = {
3515                 match self.resolve_path(
3516                     None,
3517                     &[*path.last().unwrap()],
3518                     Some(ns),
3519                     false,
3520                     span,
3521                     CrateLint::No,
3522                 ) {
3523                     PathResult::NonModule(path_res) => path_res.base_def(),
3524                     PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3525                         module.def().unwrap(),
3526                     _ => return Some(result),
3527                 }
3528             };
3529             if result.base_def() == unqualified_result {
3530                 let lint = lint::builtin::UNUSED_QUALIFICATIONS;
3531                 self.session.buffer_lint(lint, id, span, "unnecessary qualification")
3532             }
3533         }
3534
3535         Some(result)
3536     }
3537
3538     fn resolve_path(
3539         &mut self,
3540         base_module: Option<ModuleOrUniformRoot<'a>>,
3541         path: &[Ident],
3542         opt_ns: Option<Namespace>, // `None` indicates a module path
3543         record_used: bool,
3544         path_span: Span,
3545         crate_lint: CrateLint,
3546     ) -> PathResult<'a> {
3547         self.resolve_path_with_parent_expansion(base_module, path, opt_ns, Mark::root(),
3548                                                 record_used, path_span, crate_lint)
3549     }
3550
3551     fn resolve_path_with_parent_expansion(
3552         &mut self,
3553         base_module: Option<ModuleOrUniformRoot<'a>>,
3554         path: &[Ident],
3555         opt_ns: Option<Namespace>, // `None` indicates a module path
3556         parent_expansion: Mark,
3557         record_used: bool,
3558         path_span: Span,
3559         crate_lint: CrateLint,
3560     ) -> PathResult<'a> {
3561         let mut module = base_module;
3562         let mut allow_super = true;
3563         let mut second_binding = None;
3564
3565         debug!(
3566             "resolve_path(path={:?}, opt_ns={:?}, record_used={:?}, \
3567              path_span={:?}, crate_lint={:?})",
3568             path,
3569             opt_ns,
3570             record_used,
3571             path_span,
3572             crate_lint,
3573         );
3574
3575         for (i, &ident) in path.iter().enumerate() {
3576             debug!("resolve_path ident {} {:?}", i, ident);
3577             let is_last = i == path.len() - 1;
3578             let ns = if is_last { opt_ns.unwrap_or(TypeNS) } else { TypeNS };
3579             let name = ident.name;
3580
3581             allow_super &= ns == TypeNS &&
3582                 (name == keywords::SelfValue.name() ||
3583                  name == keywords::Super.name());
3584
3585             if ns == TypeNS {
3586                 if allow_super && name == keywords::Super.name() {
3587                     let mut ctxt = ident.span.ctxt().modern();
3588                     let self_module = match i {
3589                         0 => Some(self.resolve_self(&mut ctxt, self.current_module)),
3590                         _ => match module {
3591                             Some(ModuleOrUniformRoot::Module(module)) => Some(module),
3592                             _ => None,
3593                         },
3594                     };
3595                     if let Some(self_module) = self_module {
3596                         if let Some(parent) = self_module.parent {
3597                             module = Some(ModuleOrUniformRoot::Module(
3598                                 self.resolve_self(&mut ctxt, parent)));
3599                             continue;
3600                         }
3601                     }
3602                     let msg = "There are too many initial `super`s.".to_string();
3603                     return PathResult::Failed(ident.span, msg, false);
3604                 }
3605                 if i == 0 {
3606                     if name == keywords::SelfValue.name() {
3607                         let mut ctxt = ident.span.ctxt().modern();
3608                         module = Some(ModuleOrUniformRoot::Module(
3609                             self.resolve_self(&mut ctxt, self.current_module)));
3610                         continue;
3611                     }
3612                     if name == keywords::Extern.name() ||
3613                        name == keywords::CrateRoot.name() &&
3614                        self.session.features_untracked().extern_absolute_paths &&
3615                        self.session.rust_2018() {
3616                         module = Some(ModuleOrUniformRoot::UniformRoot(name));
3617                         continue;
3618                     }
3619                     if name == keywords::CrateRoot.name() ||
3620                        name == keywords::Crate.name() ||
3621                        name == keywords::DollarCrate.name() {
3622                         // `::a::b`, `crate::a::b` or `$crate::a::b`
3623                         module = Some(ModuleOrUniformRoot::Module(
3624                             self.resolve_crate_root(ident)));
3625                         continue;
3626                     }
3627                 }
3628             }
3629
3630             // Report special messages for path segment keywords in wrong positions.
3631             if ident.is_path_segment_keyword() && i != 0 {
3632                 let name_str = if name == keywords::CrateRoot.name() {
3633                     "crate root".to_string()
3634                 } else {
3635                     format!("`{}`", name)
3636                 };
3637                 let msg = if i == 1 && path[0].name == keywords::CrateRoot.name() {
3638                     format!("global paths cannot start with {}", name_str)
3639                 } else {
3640                     format!("{} in paths can only be used in start position", name_str)
3641                 };
3642                 return PathResult::Failed(ident.span, msg, false);
3643             }
3644
3645             let binding = if let Some(module) = module {
3646                 self.resolve_ident_in_module(module, ident, ns, record_used, path_span)
3647             } else if opt_ns == Some(MacroNS) {
3648                 assert!(ns == TypeNS);
3649                 self.resolve_lexical_macro_path_segment(ident, ns, None, parent_expansion,
3650                                                         record_used, record_used, path_span)
3651                                                         .map(|(binding, _)| binding)
3652             } else {
3653                 let record_used_id =
3654                     if record_used { crate_lint.node_id().or(Some(CRATE_NODE_ID)) } else { None };
3655                 match self.resolve_ident_in_lexical_scope(ident, ns, record_used_id, path_span) {
3656                     // we found a locally-imported or available item/module
3657                     Some(LexicalScopeBinding::Item(binding)) => Ok(binding),
3658                     // we found a local variable or type param
3659                     Some(LexicalScopeBinding::Def(def))
3660                             if opt_ns == Some(TypeNS) || opt_ns == Some(ValueNS) => {
3661                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3662                             def, path.len() - 1
3663                         ));
3664                     }
3665                     _ => Err(if record_used { Determined } else { Undetermined }),
3666                 }
3667             };
3668
3669             match binding {
3670                 Ok(binding) => {
3671                     if i == 1 {
3672                         second_binding = Some(binding);
3673                     }
3674                     let def = binding.def();
3675                     let maybe_assoc = opt_ns != Some(MacroNS) && PathSource::Type.is_expected(def);
3676                     if let Some(next_module) = binding.module() {
3677                         module = Some(ModuleOrUniformRoot::Module(next_module));
3678                     } else if def == Def::ToolMod && i + 1 != path.len() {
3679                         let def = Def::NonMacroAttr(NonMacroAttrKind::Tool);
3680                         return PathResult::NonModule(PathResolution::new(def));
3681                     } else if def == Def::Err {
3682                         return PathResult::NonModule(err_path_resolution());
3683                     } else if opt_ns.is_some() && (is_last || maybe_assoc) {
3684                         self.lint_if_path_starts_with_module(
3685                             crate_lint,
3686                             path,
3687                             path_span,
3688                             second_binding,
3689                         );
3690                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3691                             def, path.len() - i - 1
3692                         ));
3693                     } else {
3694                         return PathResult::Failed(ident.span,
3695                                                   format!("Not a module `{}`", ident),
3696                                                   is_last);
3697                     }
3698                 }
3699                 Err(Undetermined) => return PathResult::Indeterminate,
3700                 Err(Determined) => {
3701                     if let Some(ModuleOrUniformRoot::Module(module)) = module {
3702                         if opt_ns.is_some() && !module.is_normal() {
3703                             return PathResult::NonModule(PathResolution::with_unresolved_segments(
3704                                 module.def().unwrap(), path.len() - i
3705                             ));
3706                         }
3707                     }
3708                     let module_def = match module {
3709                         Some(ModuleOrUniformRoot::Module(module)) => module.def(),
3710                         _ => None,
3711                     };
3712                     let msg = if module_def == self.graph_root.def() {
3713                         let is_mod = |def| match def { Def::Mod(..) => true, _ => false };
3714                         let mut candidates =
3715                             self.lookup_import_candidates(name, TypeNS, is_mod);
3716                         candidates.sort_by_cached_key(|c| {
3717                             (c.path.segments.len(), c.path.to_string())
3718                         });
3719                         if let Some(candidate) = candidates.get(0) {
3720                             format!("Did you mean `{}`?", candidate.path)
3721                         } else {
3722                             format!("Maybe a missing `extern crate {};`?", ident)
3723                         }
3724                     } else if i == 0 {
3725                         format!("Use of undeclared type or module `{}`", ident)
3726                     } else {
3727                         format!("Could not find `{}` in `{}`", ident, path[i - 1])
3728                     };
3729                     return PathResult::Failed(ident.span, msg, is_last);
3730                 }
3731             }
3732         }
3733
3734         self.lint_if_path_starts_with_module(crate_lint, path, path_span, second_binding);
3735
3736         PathResult::Module(module.unwrap_or_else(|| {
3737             span_bug!(path_span, "resolve_path: empty(?) path {:?} has no module", path);
3738         }))
3739
3740     }
3741
3742     fn lint_if_path_starts_with_module(
3743         &self,
3744         crate_lint: CrateLint,
3745         path: &[Ident],
3746         path_span: Span,
3747         second_binding: Option<&NameBinding>,
3748     ) {
3749         // In the 2018 edition this lint is a hard error, so nothing to do
3750         if self.session.rust_2018() {
3751             return
3752         }
3753
3754         // In the 2015 edition there's no use in emitting lints unless the
3755         // crate's already enabled the feature that we're going to suggest
3756         if !self.session.features_untracked().crate_in_paths {
3757             return
3758         }
3759
3760         let (diag_id, diag_span) = match crate_lint {
3761             CrateLint::No => return,
3762             CrateLint::SimplePath(id) => (id, path_span),
3763             CrateLint::UsePath { root_id, root_span } => (root_id, root_span),
3764             CrateLint::QPathTrait { qpath_id, qpath_span } => (qpath_id, qpath_span),
3765         };
3766
3767         let first_name = match path.get(0) {
3768             Some(ident) => ident.name,
3769             None => return,
3770         };
3771
3772         // We're only interested in `use` paths which should start with
3773         // `{{root}}` or `extern` currently.
3774         if first_name != keywords::Extern.name() && first_name != keywords::CrateRoot.name() {
3775             return
3776         }
3777
3778         match path.get(1) {
3779             // If this import looks like `crate::...` it's already good
3780             Some(ident) if ident.name == keywords::Crate.name() => return,
3781             // Otherwise go below to see if it's an extern crate
3782             Some(_) => {}
3783             // If the path has length one (and it's `CrateRoot` most likely)
3784             // then we don't know whether we're gonna be importing a crate or an
3785             // item in our crate. Defer this lint to elsewhere
3786             None => return,
3787         }
3788
3789         // If the first element of our path was actually resolved to an
3790         // `ExternCrate` (also used for `crate::...`) then no need to issue a
3791         // warning, this looks all good!
3792         if let Some(binding) = second_binding {
3793             if let NameBindingKind::Import { directive: d, .. } = binding.kind {
3794                 // Careful: we still want to rewrite paths from
3795                 // renamed extern crates.
3796                 if let ImportDirectiveSubclass::ExternCrate(None) = d.subclass {
3797                     return
3798                 }
3799             }
3800         }
3801
3802         let diag = lint::builtin::BuiltinLintDiagnostics
3803             ::AbsPathWithModule(diag_span);
3804         self.session.buffer_lint_with_diagnostic(
3805             lint::builtin::ABSOLUTE_PATHS_NOT_STARTING_WITH_CRATE,
3806             diag_id, diag_span,
3807             "absolute paths must start with `self`, `super`, \
3808             `crate`, or an external crate name in the 2018 edition",
3809             diag);
3810     }
3811
3812     // Resolve a local definition, potentially adjusting for closures.
3813     fn adjust_local_def(&mut self,
3814                         ns: Namespace,
3815                         rib_index: usize,
3816                         mut def: Def,
3817                         record_used: bool,
3818                         span: Span) -> Def {
3819         let ribs = &self.ribs[ns][rib_index + 1..];
3820
3821         // An invalid forward use of a type parameter from a previous default.
3822         if let ForwardTyParamBanRibKind = self.ribs[ns][rib_index].kind {
3823             if record_used {
3824                 resolve_error(self, span, ResolutionError::ForwardDeclaredTyParam);
3825             }
3826             assert_eq!(def, Def::Err);
3827             return Def::Err;
3828         }
3829
3830         match def {
3831             Def::Upvar(..) => {
3832                 span_bug!(span, "unexpected {:?} in bindings", def)
3833             }
3834             Def::Local(node_id) => {
3835                 for rib in ribs {
3836                     match rib.kind {
3837                         NormalRibKind | ModuleRibKind(..) | MacroDefinition(..) |
3838                         ForwardTyParamBanRibKind => {
3839                             // Nothing to do. Continue.
3840                         }
3841                         ClosureRibKind(function_id) => {
3842                             let prev_def = def;
3843
3844                             let seen = self.freevars_seen
3845                                            .entry(function_id)
3846                                            .or_default();
3847                             if let Some(&index) = seen.get(&node_id) {
3848                                 def = Def::Upvar(node_id, index, function_id);
3849                                 continue;
3850                             }
3851                             let vec = self.freevars
3852                                           .entry(function_id)
3853                                           .or_default();
3854                             let depth = vec.len();
3855                             def = Def::Upvar(node_id, depth, function_id);
3856
3857                             if record_used {
3858                                 vec.push(Freevar {
3859                                     def: prev_def,
3860                                     span,
3861                                 });
3862                                 seen.insert(node_id, depth);
3863                             }
3864                         }
3865                         ItemRibKind | TraitOrImplItemRibKind => {
3866                             // This was an attempt to access an upvar inside a
3867                             // named function item. This is not allowed, so we
3868                             // report an error.
3869                             if record_used {
3870                                 resolve_error(self, span,
3871                                         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem);
3872                             }
3873                             return Def::Err;
3874                         }
3875                         ConstantItemRibKind => {
3876                             // Still doesn't deal with upvars
3877                             if record_used {
3878                                 resolve_error(self, span,
3879                                         ResolutionError::AttemptToUseNonConstantValueInConstant);
3880                             }
3881                             return Def::Err;
3882                         }
3883                     }
3884                 }
3885             }
3886             Def::TyParam(..) | Def::SelfTy(..) => {
3887                 for rib in ribs {
3888                     match rib.kind {
3889                         NormalRibKind | TraitOrImplItemRibKind | ClosureRibKind(..) |
3890                         ModuleRibKind(..) | MacroDefinition(..) | ForwardTyParamBanRibKind |
3891                         ConstantItemRibKind => {
3892                             // Nothing to do. Continue.
3893                         }
3894                         ItemRibKind => {
3895                             // This was an attempt to use a type parameter outside
3896                             // its scope.
3897                             if record_used {
3898                                 resolve_error(self, span,
3899                                     ResolutionError::TypeParametersFromOuterFunction(def));
3900                             }
3901                             return Def::Err;
3902                         }
3903                     }
3904                 }
3905             }
3906             _ => {}
3907         }
3908         return def;
3909     }
3910
3911     fn lookup_assoc_candidate<FilterFn>(&mut self,
3912                                         ident: Ident,
3913                                         ns: Namespace,
3914                                         filter_fn: FilterFn)
3915                                         -> Option<AssocSuggestion>
3916         where FilterFn: Fn(Def) -> bool
3917     {
3918         fn extract_node_id(t: &Ty) -> Option<NodeId> {
3919             match t.node {
3920                 TyKind::Path(None, _) => Some(t.id),
3921                 TyKind::Rptr(_, ref mut_ty) => extract_node_id(&mut_ty.ty),
3922                 // This doesn't handle the remaining `Ty` variants as they are not
3923                 // that commonly the self_type, it might be interesting to provide
3924                 // support for those in future.
3925                 _ => None,
3926             }
3927         }
3928
3929         // Fields are generally expected in the same contexts as locals.
3930         if filter_fn(Def::Local(ast::DUMMY_NODE_ID)) {
3931             if let Some(node_id) = self.current_self_type.as_ref().and_then(extract_node_id) {
3932                 // Look for a field with the same name in the current self_type.
3933                 if let Some(resolution) = self.def_map.get(&node_id) {
3934                     match resolution.base_def() {
3935                         Def::Struct(did) | Def::Union(did)
3936                                 if resolution.unresolved_segments() == 0 => {
3937                             if let Some(field_names) = self.field_names.get(&did) {
3938                                 if field_names.iter().any(|&field_name| ident.name == field_name) {
3939                                     return Some(AssocSuggestion::Field);
3940                                 }
3941                             }
3942                         }
3943                         _ => {}
3944                     }
3945                 }
3946             }
3947         }
3948
3949         // Look for associated items in the current trait.
3950         if let Some((module, _)) = self.current_trait_ref {
3951             if let Ok(binding) = self.resolve_ident_in_module(
3952                     ModuleOrUniformRoot::Module(module),
3953                     ident,
3954                     ns,
3955                     false,
3956                     module.span,
3957                 ) {
3958                 let def = binding.def();
3959                 if filter_fn(def) {
3960                     return Some(if self.has_self.contains(&def.def_id()) {
3961                         AssocSuggestion::MethodWithSelf
3962                     } else {
3963                         AssocSuggestion::AssocItem
3964                     });
3965                 }
3966             }
3967         }
3968
3969         None
3970     }
3971
3972     fn lookup_typo_candidate<FilterFn>(&mut self,
3973                                        path: &[Ident],
3974                                        ns: Namespace,
3975                                        filter_fn: FilterFn,
3976                                        span: Span)
3977                                        -> Option<Symbol>
3978         where FilterFn: Fn(Def) -> bool
3979     {
3980         let add_module_candidates = |module: Module, names: &mut Vec<Name>| {
3981             for (&(ident, _), resolution) in module.resolutions.borrow().iter() {
3982                 if let Some(binding) = resolution.borrow().binding {
3983                     if filter_fn(binding.def()) {
3984                         names.push(ident.name);
3985                     }
3986                 }
3987             }
3988         };
3989
3990         let mut names = Vec::new();
3991         if path.len() == 1 {
3992             // Search in lexical scope.
3993             // Walk backwards up the ribs in scope and collect candidates.
3994             for rib in self.ribs[ns].iter().rev() {
3995                 // Locals and type parameters
3996                 for (ident, def) in &rib.bindings {
3997                     if filter_fn(*def) {
3998                         names.push(ident.name);
3999                     }
4000                 }
4001                 // Items in scope
4002                 if let ModuleRibKind(module) = rib.kind {
4003                     // Items from this module
4004                     add_module_candidates(module, &mut names);
4005
4006                     if let ModuleKind::Block(..) = module.kind {
4007                         // We can see through blocks
4008                     } else {
4009                         // Items from the prelude
4010                         if !module.no_implicit_prelude {
4011                             names.extend(self.extern_prelude.iter().cloned());
4012                             if let Some(prelude) = self.prelude {
4013                                 add_module_candidates(prelude, &mut names);
4014                             }
4015                         }
4016                         break;
4017                     }
4018                 }
4019             }
4020             // Add primitive types to the mix
4021             if filter_fn(Def::PrimTy(Bool)) {
4022                 names.extend(
4023                     self.primitive_type_table.primitive_types.iter().map(|(name, _)| name)
4024                 )
4025             }
4026         } else {
4027             // Search in module.
4028             let mod_path = &path[..path.len() - 1];
4029             if let PathResult::Module(module) = self.resolve_path(None, mod_path, Some(TypeNS),
4030                                                                   false, span, CrateLint::No) {
4031                 if let ModuleOrUniformRoot::Module(module) = module {
4032                     add_module_candidates(module, &mut names);
4033                 }
4034             }
4035         }
4036
4037         let name = path[path.len() - 1].name;
4038         // Make sure error reporting is deterministic.
4039         names.sort_by_cached_key(|name| name.as_str());
4040         match find_best_match_for_name(names.iter(), &name.as_str(), None) {
4041             Some(found) if found != name => Some(found),
4042             _ => None,
4043         }
4044     }
4045
4046     fn with_resolved_label<F>(&mut self, label: Option<Label>, id: NodeId, f: F)
4047         where F: FnOnce(&mut Resolver)
4048     {
4049         if let Some(label) = label {
4050             self.unused_labels.insert(id, label.ident.span);
4051             let def = Def::Label(id);
4052             self.with_label_rib(|this| {
4053                 let ident = label.ident.modern_and_legacy();
4054                 this.label_ribs.last_mut().unwrap().bindings.insert(ident, def);
4055                 f(this);
4056             });
4057         } else {
4058             f(self);
4059         }
4060     }
4061
4062     fn resolve_labeled_block(&mut self, label: Option<Label>, id: NodeId, block: &Block) {
4063         self.with_resolved_label(label, id, |this| this.visit_block(block));
4064     }
4065
4066     fn resolve_expr(&mut self, expr: &Expr, parent: Option<&Expr>) {
4067         // First, record candidate traits for this expression if it could
4068         // result in the invocation of a method call.
4069
4070         self.record_candidate_traits_for_expr_if_necessary(expr);
4071
4072         // Next, resolve the node.
4073         match expr.node {
4074             ExprKind::Path(ref qself, ref path) => {
4075                 self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
4076                 visit::walk_expr(self, expr);
4077             }
4078
4079             ExprKind::Struct(ref path, ..) => {
4080                 self.smart_resolve_path(expr.id, None, path, PathSource::Struct);
4081                 visit::walk_expr(self, expr);
4082             }
4083
4084             ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
4085                 let def = self.search_label(label.ident, |rib, ident| {
4086                     rib.bindings.get(&ident.modern_and_legacy()).cloned()
4087                 });
4088                 match def {
4089                     None => {
4090                         // Search again for close matches...
4091                         // Picks the first label that is "close enough", which is not necessarily
4092                         // the closest match
4093                         let close_match = self.search_label(label.ident, |rib, ident| {
4094                             let names = rib.bindings.iter().map(|(id, _)| &id.name);
4095                             find_best_match_for_name(names, &*ident.as_str(), None)
4096                         });
4097                         self.record_def(expr.id, err_path_resolution());
4098                         resolve_error(self,
4099                                       label.ident.span,
4100                                       ResolutionError::UndeclaredLabel(&label.ident.as_str(),
4101                                                                        close_match));
4102                     }
4103                     Some(Def::Label(id)) => {
4104                         // Since this def is a label, it is never read.
4105                         self.record_def(expr.id, PathResolution::new(Def::Label(id)));
4106                         self.unused_labels.remove(&id);
4107                     }
4108                     Some(_) => {
4109                         span_bug!(expr.span, "label wasn't mapped to a label def!");
4110                     }
4111                 }
4112
4113                 // visit `break` argument if any
4114                 visit::walk_expr(self, expr);
4115             }
4116
4117             ExprKind::IfLet(ref pats, ref subexpression, ref if_block, ref optional_else) => {
4118                 self.visit_expr(subexpression);
4119
4120                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
4121                 let mut bindings_list = FxHashMap();
4122                 for pat in pats {
4123                     self.resolve_pattern(pat, PatternSource::IfLet, &mut bindings_list);
4124                 }
4125                 // This has to happen *after* we determine which pat_idents are variants
4126                 self.check_consistent_bindings(pats);
4127                 self.visit_block(if_block);
4128                 self.ribs[ValueNS].pop();
4129
4130                 optional_else.as_ref().map(|expr| self.visit_expr(expr));
4131             }
4132
4133             ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),
4134
4135             ExprKind::While(ref subexpression, ref block, label) => {
4136                 self.with_resolved_label(label, expr.id, |this| {
4137                     this.visit_expr(subexpression);
4138                     this.visit_block(block);
4139                 });
4140             }
4141
4142             ExprKind::WhileLet(ref pats, ref subexpression, ref block, label) => {
4143                 self.with_resolved_label(label, expr.id, |this| {
4144                     this.visit_expr(subexpression);
4145                     this.ribs[ValueNS].push(Rib::new(NormalRibKind));
4146                     let mut bindings_list = FxHashMap();
4147                     for pat in pats {
4148                         this.resolve_pattern(pat, PatternSource::WhileLet, &mut bindings_list);
4149                     }
4150                     // This has to happen *after* we determine which pat_idents are variants
4151                     this.check_consistent_bindings(pats);
4152                     this.visit_block(block);
4153                     this.ribs[ValueNS].pop();
4154                 });
4155             }
4156
4157             ExprKind::ForLoop(ref pattern, ref subexpression, ref block, label) => {
4158                 self.visit_expr(subexpression);
4159                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
4160                 self.resolve_pattern(pattern, PatternSource::For, &mut FxHashMap());
4161
4162                 self.resolve_labeled_block(label, expr.id, block);
4163
4164                 self.ribs[ValueNS].pop();
4165             }
4166
4167             ExprKind::Block(ref block, label) => self.resolve_labeled_block(label, block.id, block),
4168
4169             // Equivalent to `visit::walk_expr` + passing some context to children.
4170             ExprKind::Field(ref subexpression, _) => {
4171                 self.resolve_expr(subexpression, Some(expr));
4172             }
4173             ExprKind::MethodCall(ref segment, ref arguments) => {
4174                 let mut arguments = arguments.iter();
4175                 self.resolve_expr(arguments.next().unwrap(), Some(expr));
4176                 for argument in arguments {
4177                     self.resolve_expr(argument, None);
4178                 }
4179                 self.visit_path_segment(expr.span, segment);
4180             }
4181
4182             ExprKind::Call(ref callee, ref arguments) => {
4183                 self.resolve_expr(callee, Some(expr));
4184                 for argument in arguments {
4185                     self.resolve_expr(argument, None);
4186                 }
4187             }
4188             ExprKind::Type(ref type_expr, _) => {
4189                 self.current_type_ascription.push(type_expr.span);
4190                 visit::walk_expr(self, expr);
4191                 self.current_type_ascription.pop();
4192             }
4193             // Resolve the body of async exprs inside the async closure to which they desugar
4194             ExprKind::Async(_, async_closure_id, ref block) => {
4195                 let rib_kind = ClosureRibKind(async_closure_id);
4196                 self.ribs[ValueNS].push(Rib::new(rib_kind));
4197                 self.label_ribs.push(Rib::new(rib_kind));
4198                 self.visit_block(&block);
4199                 self.label_ribs.pop();
4200                 self.ribs[ValueNS].pop();
4201             }
4202             // `async |x| ...` gets desugared to `|x| future_from_generator(|| ...)`, so we need to
4203             // resolve the arguments within the proper scopes so that usages of them inside the
4204             // closure are detected as upvars rather than normal closure arg usages.
4205             ExprKind::Closure(
4206                 _, IsAsync::Async { closure_id: inner_closure_id, .. }, _,
4207                 ref fn_decl, ref body, _span,
4208             ) => {
4209                 let rib_kind = ClosureRibKind(expr.id);
4210                 self.ribs[ValueNS].push(Rib::new(rib_kind));
4211                 self.label_ribs.push(Rib::new(rib_kind));
4212                 // Resolve arguments:
4213                 let mut bindings_list = FxHashMap();
4214                 for argument in &fn_decl.inputs {
4215                     self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
4216                     self.visit_ty(&argument.ty);
4217                 }
4218                 // No need to resolve return type-- the outer closure return type is
4219                 // FunctionRetTy::Default
4220
4221                 // Now resolve the inner closure
4222                 {
4223                     let rib_kind = ClosureRibKind(inner_closure_id);
4224                     self.ribs[ValueNS].push(Rib::new(rib_kind));
4225                     self.label_ribs.push(Rib::new(rib_kind));
4226                     // No need to resolve arguments: the inner closure has none.
4227                     // Resolve the return type:
4228                     visit::walk_fn_ret_ty(self, &fn_decl.output);
4229                     // Resolve the body
4230                     self.visit_expr(body);
4231                     self.label_ribs.pop();
4232                     self.ribs[ValueNS].pop();
4233                 }
4234                 self.label_ribs.pop();
4235                 self.ribs[ValueNS].pop();
4236             }
4237             _ => {
4238                 visit::walk_expr(self, expr);
4239             }
4240         }
4241     }
4242
4243     fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &Expr) {
4244         match expr.node {
4245             ExprKind::Field(_, ident) => {
4246                 // FIXME(#6890): Even though you can't treat a method like a
4247                 // field, we need to add any trait methods we find that match
4248                 // the field name so that we can do some nice error reporting
4249                 // later on in typeck.
4250                 let traits = self.get_traits_containing_item(ident, ValueNS);
4251                 self.trait_map.insert(expr.id, traits);
4252             }
4253             ExprKind::MethodCall(ref segment, ..) => {
4254                 debug!("(recording candidate traits for expr) recording traits for {}",
4255                        expr.id);
4256                 let traits = self.get_traits_containing_item(segment.ident, ValueNS);
4257                 self.trait_map.insert(expr.id, traits);
4258             }
4259             _ => {
4260                 // Nothing to do.
4261             }
4262         }
4263     }
4264
4265     fn get_traits_containing_item(&mut self, mut ident: Ident, ns: Namespace)
4266                                   -> Vec<TraitCandidate> {
4267         debug!("(getting traits containing item) looking for '{}'", ident.name);
4268
4269         let mut found_traits = Vec::new();
4270         // Look for the current trait.
4271         if let Some((module, _)) = self.current_trait_ref {
4272             if self.resolve_ident_in_module(
4273                 ModuleOrUniformRoot::Module(module),
4274                 ident,
4275                 ns,
4276                 false,
4277                 module.span,
4278             ).is_ok() {
4279                 let def_id = module.def_id().unwrap();
4280                 found_traits.push(TraitCandidate { def_id: def_id, import_id: None });
4281             }
4282         }
4283
4284         ident.span = ident.span.modern();
4285         let mut search_module = self.current_module;
4286         loop {
4287             self.get_traits_in_module_containing_item(ident, ns, search_module, &mut found_traits);
4288             search_module = unwrap_or!(
4289                 self.hygienic_lexical_parent(search_module, &mut ident.span), break
4290             );
4291         }
4292
4293         if let Some(prelude) = self.prelude {
4294             if !search_module.no_implicit_prelude {
4295                 self.get_traits_in_module_containing_item(ident, ns, prelude, &mut found_traits);
4296             }
4297         }
4298
4299         found_traits
4300     }
4301
4302     fn get_traits_in_module_containing_item(&mut self,
4303                                             ident: Ident,
4304                                             ns: Namespace,
4305                                             module: Module<'a>,
4306                                             found_traits: &mut Vec<TraitCandidate>) {
4307         assert!(ns == TypeNS || ns == ValueNS);
4308         let mut traits = module.traits.borrow_mut();
4309         if traits.is_none() {
4310             let mut collected_traits = Vec::new();
4311             module.for_each_child(|name, ns, binding| {
4312                 if ns != TypeNS { return }
4313                 if let Def::Trait(_) = binding.def() {
4314                     collected_traits.push((name, binding));
4315                 }
4316             });
4317             *traits = Some(collected_traits.into_boxed_slice());
4318         }
4319
4320         for &(trait_name, binding) in traits.as_ref().unwrap().iter() {
4321             let module = binding.module().unwrap();
4322             let mut ident = ident;
4323             if ident.span.glob_adjust(module.expansion, binding.span.ctxt().modern()).is_none() {
4324                 continue
4325             }
4326             if self.resolve_ident_in_module_unadjusted(
4327                 ModuleOrUniformRoot::Module(module),
4328                 ident,
4329                 ns,
4330                 false,
4331                 false,
4332                 module.span,
4333             ).is_ok() {
4334                 let import_id = match binding.kind {
4335                     NameBindingKind::Import { directive, .. } => {
4336                         self.maybe_unused_trait_imports.insert(directive.id);
4337                         self.add_to_glob_map(directive.id, trait_name);
4338                         Some(directive.id)
4339                     }
4340                     _ => None,
4341                 };
4342                 let trait_def_id = module.def_id().unwrap();
4343                 found_traits.push(TraitCandidate { def_id: trait_def_id, import_id: import_id });
4344             }
4345         }
4346     }
4347
4348     fn lookup_import_candidates_from_module<FilterFn>(&mut self,
4349                                           lookup_name: Name,
4350                                           namespace: Namespace,
4351                                           start_module: &'a ModuleData<'a>,
4352                                           crate_name: Ident,
4353                                           filter_fn: FilterFn)
4354                                           -> Vec<ImportSuggestion>
4355         where FilterFn: Fn(Def) -> bool
4356     {
4357         let mut candidates = Vec::new();
4358         let mut worklist = Vec::new();
4359         let mut seen_modules = FxHashSet();
4360         let not_local_module = crate_name != keywords::Crate.ident();
4361         worklist.push((start_module, Vec::<ast::PathSegment>::new(), not_local_module));
4362
4363         while let Some((in_module,
4364                         path_segments,
4365                         in_module_is_extern)) = worklist.pop() {
4366             self.populate_module_if_necessary(in_module);
4367
4368             // We have to visit module children in deterministic order to avoid
4369             // instabilities in reported imports (#43552).
4370             in_module.for_each_child_stable(|ident, ns, name_binding| {
4371                 // avoid imports entirely
4372                 if name_binding.is_import() && !name_binding.is_extern_crate() { return; }
4373                 // avoid non-importable candidates as well
4374                 if !name_binding.is_importable() { return; }
4375
4376                 // collect results based on the filter function
4377                 if ident.name == lookup_name && ns == namespace {
4378                     if filter_fn(name_binding.def()) {
4379                         // create the path
4380                         let mut segms = path_segments.clone();
4381                         if self.session.rust_2018() {
4382                             // crate-local absolute paths start with `crate::` in edition 2018
4383                             // FIXME: may also be stabilized for Rust 2015 (Issues #45477, #44660)
4384                             segms.insert(
4385                                 0, ast::PathSegment::from_ident(crate_name)
4386                             );
4387                         }
4388
4389                         segms.push(ast::PathSegment::from_ident(ident));
4390                         let path = Path {
4391                             span: name_binding.span,
4392                             segments: segms,
4393                         };
4394                         // the entity is accessible in the following cases:
4395                         // 1. if it's defined in the same crate, it's always
4396                         // accessible (since private entities can be made public)
4397                         // 2. if it's defined in another crate, it's accessible
4398                         // only if both the module is public and the entity is
4399                         // declared as public (due to pruning, we don't explore
4400                         // outside crate private modules => no need to check this)
4401                         if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
4402                             candidates.push(ImportSuggestion { path: path });
4403                         }
4404                     }
4405                 }
4406
4407                 // collect submodules to explore
4408                 if let Some(module) = name_binding.module() {
4409                     // form the path
4410                     let mut path_segments = path_segments.clone();
4411                     path_segments.push(ast::PathSegment::from_ident(ident));
4412
4413                     let is_extern_crate_that_also_appears_in_prelude =
4414                         name_binding.is_extern_crate() &&
4415                         self.session.rust_2018();
4416
4417                     let is_visible_to_user =
4418                         !in_module_is_extern || name_binding.vis == ty::Visibility::Public;
4419
4420                     if !is_extern_crate_that_also_appears_in_prelude && is_visible_to_user {
4421                         // add the module to the lookup
4422                         let is_extern = in_module_is_extern || name_binding.is_extern_crate();
4423                         if seen_modules.insert(module.def_id().unwrap()) {
4424                             worklist.push((module, path_segments, is_extern));
4425                         }
4426                     }
4427                 }
4428             })
4429         }
4430
4431         candidates
4432     }
4433
4434     /// When name resolution fails, this method can be used to look up candidate
4435     /// entities with the expected name. It allows filtering them using the
4436     /// supplied predicate (which should be used to only accept the types of
4437     /// definitions expected e.g. traits). The lookup spans across all crates.
4438     ///
4439     /// NOTE: The method does not look into imports, but this is not a problem,
4440     /// since we report the definitions (thus, the de-aliased imports).
4441     fn lookup_import_candidates<FilterFn>(&mut self,
4442                                           lookup_name: Name,
4443                                           namespace: Namespace,
4444                                           filter_fn: FilterFn)
4445                                           -> Vec<ImportSuggestion>
4446         where FilterFn: Fn(Def) -> bool
4447     {
4448         let mut suggestions = vec![];
4449
4450         suggestions.extend(
4451             self.lookup_import_candidates_from_module(
4452                 lookup_name, namespace, self.graph_root, keywords::Crate.ident(), &filter_fn
4453             )
4454         );
4455
4456         if self.session.features_untracked().extern_prelude {
4457             let extern_prelude_names = self.extern_prelude.clone();
4458             for &krate_name in extern_prelude_names.iter() {
4459                 let krate_ident = Ident::with_empty_ctxt(krate_name);
4460                 let external_prelude_module = self.load_extern_prelude_crate_if_needed(krate_ident);
4461
4462                 suggestions.extend(
4463                     self.lookup_import_candidates_from_module(
4464                         lookup_name, namespace, external_prelude_module, krate_ident, &filter_fn
4465                     )
4466                 );
4467             }
4468         }
4469
4470         suggestions
4471     }
4472
4473     fn find_module(&mut self,
4474                    module_def: Def)
4475                    -> Option<(Module<'a>, ImportSuggestion)>
4476     {
4477         let mut result = None;
4478         let mut worklist = Vec::new();
4479         let mut seen_modules = FxHashSet();
4480         worklist.push((self.graph_root, Vec::new()));
4481
4482         while let Some((in_module, path_segments)) = worklist.pop() {
4483             // abort if the module is already found
4484             if result.is_some() { break; }
4485
4486             self.populate_module_if_necessary(in_module);
4487
4488             in_module.for_each_child_stable(|ident, _, name_binding| {
4489                 // abort if the module is already found or if name_binding is private external
4490                 if result.is_some() || !name_binding.vis.is_visible_locally() {
4491                     return
4492                 }
4493                 if let Some(module) = name_binding.module() {
4494                     // form the path
4495                     let mut path_segments = path_segments.clone();
4496                     path_segments.push(ast::PathSegment::from_ident(ident));
4497                     if module.def() == Some(module_def) {
4498                         let path = Path {
4499                             span: name_binding.span,
4500                             segments: path_segments,
4501                         };
4502                         result = Some((module, ImportSuggestion { path: path }));
4503                     } else {
4504                         // add the module to the lookup
4505                         if seen_modules.insert(module.def_id().unwrap()) {
4506                             worklist.push((module, path_segments));
4507                         }
4508                     }
4509                 }
4510             });
4511         }
4512
4513         result
4514     }
4515
4516     fn collect_enum_variants(&mut self, enum_def: Def) -> Option<Vec<Path>> {
4517         if let Def::Enum(..) = enum_def {} else {
4518             panic!("Non-enum def passed to collect_enum_variants: {:?}", enum_def)
4519         }
4520
4521         self.find_module(enum_def).map(|(enum_module, enum_import_suggestion)| {
4522             self.populate_module_if_necessary(enum_module);
4523
4524             let mut variants = Vec::new();
4525             enum_module.for_each_child_stable(|ident, _, name_binding| {
4526                 if let Def::Variant(..) = name_binding.def() {
4527                     let mut segms = enum_import_suggestion.path.segments.clone();
4528                     segms.push(ast::PathSegment::from_ident(ident));
4529                     variants.push(Path {
4530                         span: name_binding.span,
4531                         segments: segms,
4532                     });
4533                 }
4534             });
4535             variants
4536         })
4537     }
4538
4539     fn record_def(&mut self, node_id: NodeId, resolution: PathResolution) {
4540         debug!("(recording def) recording {:?} for {}", resolution, node_id);
4541         if let Some(prev_res) = self.def_map.insert(node_id, resolution) {
4542             panic!("path resolved multiple times ({:?} before, {:?} now)", prev_res, resolution);
4543         }
4544     }
4545
4546     fn resolve_visibility(&mut self, vis: &ast::Visibility) -> ty::Visibility {
4547         match vis.node {
4548             ast::VisibilityKind::Public => ty::Visibility::Public,
4549             ast::VisibilityKind::Crate(..) => {
4550                 ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX))
4551             }
4552             ast::VisibilityKind::Inherited => {
4553                 ty::Visibility::Restricted(self.current_module.normal_ancestor_id)
4554             }
4555             ast::VisibilityKind::Restricted { ref path, id, .. } => {
4556                 // Visibilities are resolved as global by default, add starting root segment.
4557                 let segments = path.make_root().iter().chain(path.segments.iter())
4558                     .map(|seg| seg.ident)
4559                     .collect::<Vec<_>>();
4560                 let def = self.smart_resolve_path_fragment(
4561                     id,
4562                     None,
4563                     &segments,
4564                     path.span,
4565                     PathSource::Visibility,
4566                     CrateLint::SimplePath(id),
4567                 ).base_def();
4568                 if def == Def::Err {
4569                     ty::Visibility::Public
4570                 } else {
4571                     let vis = ty::Visibility::Restricted(def.def_id());
4572                     if self.is_accessible(vis) {
4573                         vis
4574                     } else {
4575                         self.session.span_err(path.span, "visibilities can only be restricted \
4576                                                           to ancestor modules");
4577                         ty::Visibility::Public
4578                     }
4579                 }
4580             }
4581         }
4582     }
4583
4584     fn is_accessible(&self, vis: ty::Visibility) -> bool {
4585         vis.is_accessible_from(self.current_module.normal_ancestor_id, self)
4586     }
4587
4588     fn is_accessible_from(&self, vis: ty::Visibility, module: Module<'a>) -> bool {
4589         vis.is_accessible_from(module.normal_ancestor_id, self)
4590     }
4591
4592     fn report_ambiguity_error(&self, ident: Ident, b1: &NameBinding, b2: &NameBinding) {
4593         let participle = |is_import: bool| if is_import { "imported" } else { "defined" };
4594         let msg1 =
4595             format!("`{}` could refer to the name {} here", ident, participle(b1.is_import()));
4596         let msg2 =
4597             format!("`{}` could also refer to the name {} here", ident, participle(b2.is_import()));
4598         let note = if b1.expansion != Mark::root() {
4599             Some(if let Def::Macro(..) = b1.def() {
4600                 format!("macro-expanded {} do not shadow",
4601                         if b1.is_import() { "macro imports" } else { "macros" })
4602             } else {
4603                 format!("macro-expanded {} do not shadow when used in a macro invocation path",
4604                         if b1.is_import() { "imports" } else { "items" })
4605             })
4606         } else if b1.is_glob_import() {
4607             Some(format!("consider adding an explicit import of `{}` to disambiguate", ident))
4608         } else {
4609             None
4610         };
4611
4612         let mut err = struct_span_err!(self.session, ident.span, E0659, "`{}` is ambiguous", ident);
4613         err.span_label(ident.span, "ambiguous name");
4614         err.span_note(b1.span, &msg1);
4615         match b2.def() {
4616             Def::Macro(..) if b2.span.is_dummy() =>
4617                 err.note(&format!("`{}` is also a builtin macro", ident)),
4618             _ => err.span_note(b2.span, &msg2),
4619         };
4620         if let Some(note) = note {
4621             err.note(&note);
4622         }
4623         err.emit();
4624     }
4625
4626     fn report_errors(&mut self, krate: &Crate) {
4627         self.report_with_use_injections(krate);
4628         self.report_proc_macro_import(krate);
4629         let mut reported_spans = FxHashSet();
4630
4631         for &(span_use, span_def) in &self.macro_expanded_macro_export_errors {
4632             let msg = "macro-expanded `macro_export` macros from the current crate \
4633                        cannot be referred to by absolute paths";
4634             self.session.buffer_lint_with_diagnostic(
4635                 lint::builtin::MACRO_EXPANDED_MACRO_EXPORTS_ACCESSED_BY_ABSOLUTE_PATHS,
4636                 CRATE_NODE_ID, span_use, msg,
4637                 lint::builtin::BuiltinLintDiagnostics::
4638                     MacroExpandedMacroExportsAccessedByAbsolutePaths(span_def),
4639             );
4640         }
4641
4642         for &AmbiguityError { ident, b1, b2 } in &self.ambiguity_errors {
4643             if reported_spans.insert(ident.span) {
4644                 self.report_ambiguity_error(ident, b1, b2);
4645             }
4646         }
4647
4648         for &PrivacyError(span, name, binding) in &self.privacy_errors {
4649             if !reported_spans.insert(span) { continue }
4650             span_err!(self.session, span, E0603, "{} `{}` is private", binding.descr(), name);
4651         }
4652     }
4653
4654     fn report_with_use_injections(&mut self, krate: &Crate) {
4655         for UseError { mut err, candidates, node_id, better } in self.use_injections.drain(..) {
4656             let (span, found_use) = UsePlacementFinder::check(krate, node_id);
4657             if !candidates.is_empty() {
4658                 show_candidates(&mut err, span, &candidates, better, found_use);
4659             }
4660             err.emit();
4661         }
4662     }
4663
4664     fn report_conflict<'b>(&mut self,
4665                        parent: Module,
4666                        ident: Ident,
4667                        ns: Namespace,
4668                        new_binding: &NameBinding<'b>,
4669                        old_binding: &NameBinding<'b>) {
4670         // Error on the second of two conflicting names
4671         if old_binding.span.lo() > new_binding.span.lo() {
4672             return self.report_conflict(parent, ident, ns, old_binding, new_binding);
4673         }
4674
4675         let container = match parent.kind {
4676             ModuleKind::Def(Def::Mod(_), _) => "module",
4677             ModuleKind::Def(Def::Trait(_), _) => "trait",
4678             ModuleKind::Block(..) => "block",
4679             _ => "enum",
4680         };
4681
4682         let old_noun = match old_binding.is_import() {
4683             true => "import",
4684             false => "definition",
4685         };
4686
4687         let new_participle = match new_binding.is_import() {
4688             true => "imported",
4689             false => "defined",
4690         };
4691
4692         let (name, span) = (ident.name, self.session.source_map().def_span(new_binding.span));
4693
4694         if let Some(s) = self.name_already_seen.get(&name) {
4695             if s == &span {
4696                 return;
4697             }
4698         }
4699
4700         let old_kind = match (ns, old_binding.module()) {
4701             (ValueNS, _) => "value",
4702             (MacroNS, _) => "macro",
4703             (TypeNS, _) if old_binding.is_extern_crate() => "extern crate",
4704             (TypeNS, Some(module)) if module.is_normal() => "module",
4705             (TypeNS, Some(module)) if module.is_trait() => "trait",
4706             (TypeNS, _) => "type",
4707         };
4708
4709         let msg = format!("the name `{}` is defined multiple times", name);
4710
4711         let mut err = match (old_binding.is_extern_crate(), new_binding.is_extern_crate()) {
4712             (true, true) => struct_span_err!(self.session, span, E0259, "{}", msg),
4713             (true, _) | (_, true) => match new_binding.is_import() && old_binding.is_import() {
4714                 true => struct_span_err!(self.session, span, E0254, "{}", msg),
4715                 false => struct_span_err!(self.session, span, E0260, "{}", msg),
4716             },
4717             _ => match (old_binding.is_import(), new_binding.is_import()) {
4718                 (false, false) => struct_span_err!(self.session, span, E0428, "{}", msg),
4719                 (true, true) => struct_span_err!(self.session, span, E0252, "{}", msg),
4720                 _ => struct_span_err!(self.session, span, E0255, "{}", msg),
4721             },
4722         };
4723
4724         err.note(&format!("`{}` must be defined only once in the {} namespace of this {}",
4725                           name,
4726                           ns.descr(),
4727                           container));
4728
4729         err.span_label(span, format!("`{}` re{} here", name, new_participle));
4730         if !old_binding.span.is_dummy() {
4731             err.span_label(self.session.source_map().def_span(old_binding.span),
4732                            format!("previous {} of the {} `{}` here", old_noun, old_kind, name));
4733         }
4734
4735         // See https://github.com/rust-lang/rust/issues/32354
4736         if old_binding.is_import() || new_binding.is_import() {
4737             let binding = if new_binding.is_import() && !new_binding.span.is_dummy() {
4738                 new_binding
4739             } else {
4740                 old_binding
4741             };
4742
4743             let cm = self.session.source_map();
4744             let rename_msg = "You can use `as` to change the binding name of the import";
4745
4746             if let (Ok(snippet), false) = (cm.span_to_snippet(binding.span),
4747                                            binding.is_renamed_extern_crate()) {
4748                 let suggested_name = if name.as_str().chars().next().unwrap().is_uppercase() {
4749                     format!("Other{}", name)
4750                 } else {
4751                     format!("other_{}", name)
4752                 };
4753
4754                 err.span_suggestion_with_applicability(
4755                     binding.span,
4756                     rename_msg,
4757                     if snippet.ends_with(';') {
4758                         format!("{} as {};", &snippet[..snippet.len() - 1], suggested_name)
4759                     } else {
4760                         format!("{} as {}", snippet, suggested_name)
4761                     },
4762                     Applicability::MachineApplicable,
4763                 );
4764             } else {
4765                 err.span_label(binding.span, rename_msg);
4766             }
4767         }
4768
4769         err.emit();
4770         self.name_already_seen.insert(name, span);
4771     }
4772 }
4773
4774 fn is_self_type(path: &[Ident], namespace: Namespace) -> bool {
4775     namespace == TypeNS && path.len() == 1 && path[0].name == keywords::SelfType.name()
4776 }
4777
4778 fn is_self_value(path: &[Ident], namespace: Namespace) -> bool {
4779     namespace == ValueNS && path.len() == 1 && path[0].name == keywords::SelfValue.name()
4780 }
4781
4782 fn names_to_string(idents: &[Ident]) -> String {
4783     let mut result = String::new();
4784     for (i, ident) in idents.iter()
4785                             .filter(|ident| ident.name != keywords::CrateRoot.name())
4786                             .enumerate() {
4787         if i > 0 {
4788             result.push_str("::");
4789         }
4790         result.push_str(&ident.as_str());
4791     }
4792     result
4793 }
4794
4795 fn path_names_to_string(path: &Path) -> String {
4796     names_to_string(&path.segments.iter()
4797                         .map(|seg| seg.ident)
4798                         .collect::<Vec<_>>())
4799 }
4800
4801 /// Get the path for an enum and the variant from an `ImportSuggestion` for an enum variant.
4802 fn import_candidate_to_paths(suggestion: &ImportSuggestion) -> (Span, String, String) {
4803     let variant_path = &suggestion.path;
4804     let variant_path_string = path_names_to_string(variant_path);
4805
4806     let path_len = suggestion.path.segments.len();
4807     let enum_path = ast::Path {
4808         span: suggestion.path.span,
4809         segments: suggestion.path.segments[0..path_len - 1].to_vec(),
4810     };
4811     let enum_path_string = path_names_to_string(&enum_path);
4812
4813     (suggestion.path.span, variant_path_string, enum_path_string)
4814 }
4815
4816
4817 /// When an entity with a given name is not available in scope, we search for
4818 /// entities with that name in all crates. This method allows outputting the
4819 /// results of this search in a programmer-friendly way
4820 fn show_candidates(err: &mut DiagnosticBuilder,
4821                    // This is `None` if all placement locations are inside expansions
4822                    span: Option<Span>,
4823                    candidates: &[ImportSuggestion],
4824                    better: bool,
4825                    found_use: bool) {
4826
4827     // we want consistent results across executions, but candidates are produced
4828     // by iterating through a hash map, so make sure they are ordered:
4829     let mut path_strings: Vec<_> =
4830         candidates.into_iter().map(|c| path_names_to_string(&c.path)).collect();
4831     path_strings.sort();
4832
4833     let better = if better { "better " } else { "" };
4834     let msg_diff = match path_strings.len() {
4835         1 => " is found in another module, you can import it",
4836         _ => "s are found in other modules, you can import them",
4837     };
4838     let msg = format!("possible {}candidate{} into scope", better, msg_diff);
4839
4840     if let Some(span) = span {
4841         for candidate in &mut path_strings {
4842             // produce an additional newline to separate the new use statement
4843             // from the directly following item.
4844             let additional_newline = if found_use {
4845                 ""
4846             } else {
4847                 "\n"
4848             };
4849             *candidate = format!("use {};\n{}", candidate, additional_newline);
4850         }
4851
4852         err.span_suggestions(span, &msg, path_strings);
4853     } else {
4854         let mut msg = msg;
4855         msg.push(':');
4856         for candidate in path_strings {
4857             msg.push('\n');
4858             msg.push_str(&candidate);
4859         }
4860     }
4861 }
4862
4863 /// A somewhat inefficient routine to obtain the name of a module.
4864 fn module_to_string(module: Module) -> Option<String> {
4865     let mut names = Vec::new();
4866
4867     fn collect_mod(names: &mut Vec<Ident>, module: Module) {
4868         if let ModuleKind::Def(_, name) = module.kind {
4869             if let Some(parent) = module.parent {
4870                 names.push(Ident::with_empty_ctxt(name));
4871                 collect_mod(names, parent);
4872             }
4873         } else {
4874             // danger, shouldn't be ident?
4875             names.push(Ident::from_str("<opaque>"));
4876             collect_mod(names, module.parent.unwrap());
4877         }
4878     }
4879     collect_mod(&mut names, module);
4880
4881     if names.is_empty() {
4882         return None;
4883     }
4884     Some(names_to_string(&names.into_iter()
4885                         .rev()
4886                         .collect::<Vec<_>>()))
4887 }
4888
4889 fn err_path_resolution() -> PathResolution {
4890     PathResolution::new(Def::Err)
4891 }
4892
4893 #[derive(PartialEq,Copy, Clone)]
4894 pub enum MakeGlobMap {
4895     Yes,
4896     No,
4897 }
4898
4899 #[derive(Copy, Clone, Debug)]
4900 enum CrateLint {
4901     /// Do not issue the lint
4902     No,
4903
4904     /// This lint applies to some random path like `impl ::foo::Bar`
4905     /// or whatever. In this case, we can take the span of that path.
4906     SimplePath(NodeId),
4907
4908     /// This lint comes from a `use` statement. In this case, what we
4909     /// care about really is the *root* `use` statement; e.g., if we
4910     /// have nested things like `use a::{b, c}`, we care about the
4911     /// `use a` part.
4912     UsePath { root_id: NodeId, root_span: Span },
4913
4914     /// This is the "trait item" from a fully qualified path. For example,
4915     /// we might be resolving  `X::Y::Z` from a path like `<T as X::Y>::Z`.
4916     /// The `path_span` is the span of the to the trait itself (`X::Y`).
4917     QPathTrait { qpath_id: NodeId, qpath_span: Span },
4918 }
4919
4920 impl CrateLint {
4921     fn node_id(&self) -> Option<NodeId> {
4922         match *self {
4923             CrateLint::No => None,
4924             CrateLint::SimplePath(id) |
4925             CrateLint::UsePath { root_id: id, .. } |
4926             CrateLint::QPathTrait { qpath_id: id, .. } => Some(id),
4927         }
4928     }
4929 }
4930
4931 __build_diagnostic_array! { librustc_resolve, DIAGNOSTICS }