]> git.lizzy.rs Git - rust.git/blob - src/librustc_resolve/lib.rs
Auto merge of #54624 - arielb1:evaluate-outlives, r=nikomatsakis
[rust.git] / src / librustc_resolve / lib.rs
1 // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 #![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
12        html_favicon_url = "https://doc.rust-lang.org/favicon.ico",
13        html_root_url = "https://doc.rust-lang.org/nightly/")]
14
15 #![feature(crate_visibility_modifier)]
16 #![feature(nll)]
17 #![feature(rustc_diagnostic_macros)]
18 #![feature(slice_sort_by_cached_key)]
19
20 #[macro_use]
21 extern crate log;
22 #[macro_use]
23 extern crate syntax;
24 extern crate syntax_pos;
25 extern crate rustc_errors as errors;
26 extern crate arena;
27 #[macro_use]
28 extern crate rustc;
29 extern crate rustc_data_structures;
30 extern crate rustc_metadata;
31
32 pub use rustc::hir::def::{Namespace, PerNS};
33
34 use self::TypeParameters::*;
35 use self::RibKind::*;
36
37 use rustc::hir::map::{Definitions, DefCollector};
38 use rustc::hir::{self, PrimTy, Bool, Char, Float, Int, Uint, Str};
39 use rustc::middle::cstore::CrateStore;
40 use rustc::session::Session;
41 use rustc::lint;
42 use rustc::hir::def::*;
43 use rustc::hir::def::Namespace::*;
44 use rustc::hir::def_id::{CRATE_DEF_INDEX, LOCAL_CRATE, DefId};
45 use rustc::hir::{Freevar, FreevarMap, TraitCandidate, TraitMap, GlobMap};
46 use rustc::session::config::nightly_options;
47 use rustc::ty;
48 use rustc::util::nodemap::{NodeMap, NodeSet, FxHashMap, FxHashSet, DefIdMap};
49
50 use rustc_metadata::creader::CrateLoader;
51 use rustc_metadata::cstore::CStore;
52
53 use syntax::source_map::SourceMap;
54 use syntax::ext::hygiene::{Mark, Transparency, SyntaxContext};
55 use syntax::ast::{self, Name, NodeId, Ident, FloatTy, IntTy, UintTy};
56 use syntax::ext::base::SyntaxExtension;
57 use syntax::ext::base::Determinacy::{self, Determined, Undetermined};
58 use syntax::ext::base::MacroKind;
59 use syntax::symbol::{Symbol, keywords};
60 use syntax::util::lev_distance::find_best_match_for_name;
61
62 use syntax::visit::{self, FnKind, Visitor};
63 use syntax::attr;
64 use syntax::ast::{CRATE_NODE_ID, Arm, IsAsync, BindingMode, Block, Crate, Expr, ExprKind};
65 use syntax::ast::{FnDecl, ForeignItem, ForeignItemKind, GenericParamKind, Generics};
66 use syntax::ast::{Item, ItemKind, ImplItem, ImplItemKind};
67 use syntax::ast::{Label, Local, Mutability, Pat, PatKind, Path};
68 use syntax::ast::{QSelf, TraitItemKind, TraitRef, Ty, TyKind};
69 use syntax::ptr::P;
70
71 use syntax_pos::{Span, DUMMY_SP, MultiSpan};
72 use errors::{Applicability, DiagnosticBuilder, DiagnosticId};
73
74 use std::cell::{Cell, RefCell};
75 use std::{cmp, fmt, iter, ptr};
76 use std::collections::BTreeSet;
77 use std::mem::replace;
78 use rustc_data_structures::ptr_key::PtrKey;
79 use rustc_data_structures::sync::Lrc;
80
81 use resolve_imports::{ImportDirective, ImportDirectiveSubclass, NameResolution, ImportResolver};
82 use macros::{InvocationData, LegacyBinding, ParentScope};
83
84 // NB: This module needs to be declared first so diagnostics are
85 // registered before they are used.
86 mod diagnostics;
87 mod error_reporting;
88 mod macros;
89 mod check_unused;
90 mod build_reduced_graph;
91 mod resolve_imports;
92
93 fn is_known_tool(name: Name) -> bool {
94     ["clippy", "rustfmt"].contains(&&*name.as_str())
95 }
96
97 /// A free importable items suggested in case of resolution failure.
98 struct ImportSuggestion {
99     path: Path,
100 }
101
102 /// A field or associated item from self type suggested in case of resolution failure.
103 enum AssocSuggestion {
104     Field,
105     MethodWithSelf,
106     AssocItem,
107 }
108
109 #[derive(Eq)]
110 struct BindingError {
111     name: Name,
112     origin: BTreeSet<Span>,
113     target: BTreeSet<Span>,
114 }
115
116 impl PartialOrd for BindingError {
117     fn partial_cmp(&self, other: &BindingError) -> Option<cmp::Ordering> {
118         Some(self.cmp(other))
119     }
120 }
121
122 impl PartialEq for BindingError {
123     fn eq(&self, other: &BindingError) -> bool {
124         self.name == other.name
125     }
126 }
127
128 impl Ord for BindingError {
129     fn cmp(&self, other: &BindingError) -> cmp::Ordering {
130         self.name.cmp(&other.name)
131     }
132 }
133
134 enum ResolutionError<'a> {
135     /// error E0401: can't use type parameters from outer function
136     TypeParametersFromOuterFunction(Def),
137     /// error E0403: the name is already used for a type parameter in this type parameter list
138     NameAlreadyUsedInTypeParameterList(Name, &'a Span),
139     /// error E0407: method is not a member of trait
140     MethodNotMemberOfTrait(Name, &'a str),
141     /// error E0437: type is not a member of trait
142     TypeNotMemberOfTrait(Name, &'a str),
143     /// error E0438: const is not a member of trait
144     ConstNotMemberOfTrait(Name, &'a str),
145     /// error E0408: variable `{}` is not bound in all patterns
146     VariableNotBoundInPattern(&'a BindingError),
147     /// error E0409: variable `{}` is bound in inconsistent ways within the same match arm
148     VariableBoundWithDifferentMode(Name, Span),
149     /// error E0415: identifier is bound more than once in this parameter list
150     IdentifierBoundMoreThanOnceInParameterList(&'a str),
151     /// error E0416: identifier is bound more than once in the same pattern
152     IdentifierBoundMoreThanOnceInSamePattern(&'a str),
153     /// error E0426: use of undeclared label
154     UndeclaredLabel(&'a str, Option<Name>),
155     /// error E0429: `self` imports are only allowed within a { } list
156     SelfImportsOnlyAllowedWithin,
157     /// error E0430: `self` import can only appear once in the list
158     SelfImportCanOnlyAppearOnceInTheList,
159     /// error E0431: `self` import can only appear in an import list with a non-empty prefix
160     SelfImportOnlyInImportListWithNonEmptyPrefix,
161     /// error E0433: failed to resolve
162     FailedToResolve(&'a str),
163     /// error E0434: can't capture dynamic environment in a fn item
164     CannotCaptureDynamicEnvironmentInFnItem,
165     /// error E0435: attempt to use a non-constant value in a constant
166     AttemptToUseNonConstantValueInConstant,
167     /// error E0530: X bindings cannot shadow Ys
168     BindingShadowsSomethingUnacceptable(&'a str, Name, &'a NameBinding<'a>),
169     /// error E0128: type parameters with a default cannot use forward declared identifiers
170     ForwardDeclaredTyParam,
171 }
172
173 /// Combines an error with provided span and emits it
174 ///
175 /// This takes the error provided, combines it with the span and any additional spans inside the
176 /// error and emits it.
177 fn resolve_error<'sess, 'a>(resolver: &'sess Resolver,
178                             span: Span,
179                             resolution_error: ResolutionError<'a>) {
180     resolve_struct_error(resolver, span, resolution_error).emit();
181 }
182
183 fn resolve_struct_error<'sess, 'a>(resolver: &'sess Resolver,
184                                    span: Span,
185                                    resolution_error: ResolutionError<'a>)
186                                    -> DiagnosticBuilder<'sess> {
187     match resolution_error {
188         ResolutionError::TypeParametersFromOuterFunction(outer_def) => {
189             let mut err = struct_span_err!(resolver.session,
190                                            span,
191                                            E0401,
192                                            "can't use type parameters from outer function");
193             err.span_label(span, "use of type variable from outer function");
194
195             let cm = resolver.session.source_map();
196             match outer_def {
197                 Def::SelfTy(maybe_trait_defid, maybe_impl_defid) => {
198                     if let Some(impl_span) = maybe_impl_defid.and_then(|def_id| {
199                         resolver.definitions.opt_span(def_id)
200                     }) {
201                         err.span_label(
202                             reduce_impl_span_to_impl_keyword(cm, impl_span),
203                             "`Self` type implicitly declared here, by this `impl`",
204                         );
205                     }
206                     match (maybe_trait_defid, maybe_impl_defid) {
207                         (Some(_), None) => {
208                             err.span_label(span, "can't use `Self` here");
209                         }
210                         (_, Some(_)) => {
211                             err.span_label(span, "use a type here instead");
212                         }
213                         (None, None) => bug!("`impl` without trait nor type?"),
214                     }
215                     return err;
216                 },
217                 Def::TyParam(typaram_defid) => {
218                     if let Some(typaram_span) = resolver.definitions.opt_span(typaram_defid) {
219                         err.span_label(typaram_span, "type variable from outer function");
220                     }
221                 },
222                 _ => {
223                     bug!("TypeParametersFromOuterFunction should only be used with Def::SelfTy or \
224                          Def::TyParam")
225                 }
226             }
227
228             // Try to retrieve the span of the function signature and generate a new message with
229             // a local type parameter
230             let sugg_msg = "try using a local type parameter instead";
231             if let Some((sugg_span, new_snippet)) = cm.generate_local_type_param_snippet(span) {
232                 // Suggest the modification to the user
233                 err.span_suggestion_with_applicability(
234                     sugg_span,
235                     sugg_msg,
236                     new_snippet,
237                     Applicability::MachineApplicable,
238                 );
239             } else if let Some(sp) = cm.generate_fn_name_span(span) {
240                 err.span_label(sp, "try adding a local type parameter in this method instead");
241             } else {
242                 err.help("try using a local type parameter instead");
243             }
244
245             err
246         }
247         ResolutionError::NameAlreadyUsedInTypeParameterList(name, first_use_span) => {
248              let mut err = struct_span_err!(resolver.session,
249                                             span,
250                                             E0403,
251                                             "the name `{}` is already used for a type parameter \
252                                             in this type parameter list",
253                                             name);
254              err.span_label(span, "already used");
255              err.span_label(first_use_span.clone(), format!("first use of `{}`", name));
256              err
257         }
258         ResolutionError::MethodNotMemberOfTrait(method, trait_) => {
259             let mut err = struct_span_err!(resolver.session,
260                                            span,
261                                            E0407,
262                                            "method `{}` is not a member of trait `{}`",
263                                            method,
264                                            trait_);
265             err.span_label(span, format!("not a member of trait `{}`", trait_));
266             err
267         }
268         ResolutionError::TypeNotMemberOfTrait(type_, trait_) => {
269             let mut err = struct_span_err!(resolver.session,
270                              span,
271                              E0437,
272                              "type `{}` is not a member of trait `{}`",
273                              type_,
274                              trait_);
275             err.span_label(span, format!("not a member of trait `{}`", trait_));
276             err
277         }
278         ResolutionError::ConstNotMemberOfTrait(const_, trait_) => {
279             let mut err = struct_span_err!(resolver.session,
280                              span,
281                              E0438,
282                              "const `{}` is not a member of trait `{}`",
283                              const_,
284                              trait_);
285             err.span_label(span, format!("not a member of trait `{}`", trait_));
286             err
287         }
288         ResolutionError::VariableNotBoundInPattern(binding_error) => {
289             let target_sp = binding_error.target.iter().cloned().collect::<Vec<_>>();
290             let msp = MultiSpan::from_spans(target_sp.clone());
291             let msg = format!("variable `{}` is not bound in all patterns", binding_error.name);
292             let mut err = resolver.session.struct_span_err_with_code(
293                 msp,
294                 &msg,
295                 DiagnosticId::Error("E0408".into()),
296             );
297             for sp in target_sp {
298                 err.span_label(sp, format!("pattern doesn't bind `{}`", binding_error.name));
299             }
300             let origin_sp = binding_error.origin.iter().cloned();
301             for sp in origin_sp {
302                 err.span_label(sp, "variable not in all patterns");
303             }
304             err
305         }
306         ResolutionError::VariableBoundWithDifferentMode(variable_name,
307                                                         first_binding_span) => {
308             let mut err = struct_span_err!(resolver.session,
309                              span,
310                              E0409,
311                              "variable `{}` is bound in inconsistent \
312                              ways within the same match arm",
313                              variable_name);
314             err.span_label(span, "bound in different ways");
315             err.span_label(first_binding_span, "first binding");
316             err
317         }
318         ResolutionError::IdentifierBoundMoreThanOnceInParameterList(identifier) => {
319             let mut err = struct_span_err!(resolver.session,
320                              span,
321                              E0415,
322                              "identifier `{}` is bound more than once in this parameter list",
323                              identifier);
324             err.span_label(span, "used as parameter more than once");
325             err
326         }
327         ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(identifier) => {
328             let mut err = struct_span_err!(resolver.session,
329                              span,
330                              E0416,
331                              "identifier `{}` is bound more than once in the same pattern",
332                              identifier);
333             err.span_label(span, "used in a pattern more than once");
334             err
335         }
336         ResolutionError::UndeclaredLabel(name, lev_candidate) => {
337             let mut err = struct_span_err!(resolver.session,
338                                            span,
339                                            E0426,
340                                            "use of undeclared label `{}`",
341                                            name);
342             if let Some(lev_candidate) = lev_candidate {
343                 err.span_label(span, format!("did you mean `{}`?", lev_candidate));
344             } else {
345                 err.span_label(span, format!("undeclared label `{}`", name));
346             }
347             err
348         }
349         ResolutionError::SelfImportsOnlyAllowedWithin => {
350             struct_span_err!(resolver.session,
351                              span,
352                              E0429,
353                              "{}",
354                              "`self` imports are only allowed within a { } list")
355         }
356         ResolutionError::SelfImportCanOnlyAppearOnceInTheList => {
357             let mut err = struct_span_err!(resolver.session, span, E0430,
358                                            "`self` import can only appear once in an import list");
359             err.span_label(span, "can only appear once in an import list");
360             err
361         }
362         ResolutionError::SelfImportOnlyInImportListWithNonEmptyPrefix => {
363             let mut err = struct_span_err!(resolver.session, span, E0431,
364                                            "`self` import can only appear in an import list with \
365                                             a non-empty prefix");
366             err.span_label(span, "can only appear in an import list with a non-empty prefix");
367             err
368         }
369         ResolutionError::FailedToResolve(msg) => {
370             let mut err = struct_span_err!(resolver.session, span, E0433,
371                                            "failed to resolve. {}", msg);
372             err.span_label(span, msg);
373             err
374         }
375         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem => {
376             let mut err = struct_span_err!(resolver.session,
377                                            span,
378                                            E0434,
379                                            "{}",
380                                            "can't capture dynamic environment in a fn item");
381             err.help("use the `|| { ... }` closure form instead");
382             err
383         }
384         ResolutionError::AttemptToUseNonConstantValueInConstant => {
385             let mut err = struct_span_err!(resolver.session, span, E0435,
386                                            "attempt to use a non-constant value in a constant");
387             err.span_label(span, "non-constant value");
388             err
389         }
390         ResolutionError::BindingShadowsSomethingUnacceptable(what_binding, name, binding) => {
391             let shadows_what = PathResolution::new(binding.def()).kind_name();
392             let mut err = struct_span_err!(resolver.session,
393                                            span,
394                                            E0530,
395                                            "{}s cannot shadow {}s", what_binding, shadows_what);
396             err.span_label(span, format!("cannot be named the same as a {}", shadows_what));
397             let participle = if binding.is_import() { "imported" } else { "defined" };
398             let msg = format!("a {} `{}` is {} here", shadows_what, name, participle);
399             err.span_label(binding.span, msg);
400             err
401         }
402         ResolutionError::ForwardDeclaredTyParam => {
403             let mut err = struct_span_err!(resolver.session, span, E0128,
404                                            "type parameters with a default cannot use \
405                                             forward declared identifiers");
406             err.span_label(
407                 span, "defaulted type parameters cannot be forward declared".to_string());
408             err
409         }
410     }
411 }
412
413 /// Adjust the impl span so that just the `impl` keyword is taken by removing
414 /// everything after `<` (`"impl<T> Iterator for A<T> {}" -> "impl"`) and
415 /// everything after the first whitespace (`"impl Iterator for A" -> "impl"`)
416 ///
417 /// Attention: The method used is very fragile since it essentially duplicates the work of the
418 /// parser. If you need to use this function or something similar, please consider updating the
419 /// source_map functions and this function to something more robust.
420 fn reduce_impl_span_to_impl_keyword(cm: &SourceMap, impl_span: Span) -> Span {
421     let impl_span = cm.span_until_char(impl_span, '<');
422     let impl_span = cm.span_until_whitespace(impl_span);
423     impl_span
424 }
425
426 #[derive(Copy, Clone, Debug)]
427 struct BindingInfo {
428     span: Span,
429     binding_mode: BindingMode,
430 }
431
432 /// Map from the name in a pattern to its binding mode.
433 type BindingMap = FxHashMap<Ident, BindingInfo>;
434
435 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
436 enum PatternSource {
437     Match,
438     IfLet,
439     WhileLet,
440     Let,
441     For,
442     FnParam,
443 }
444
445 impl PatternSource {
446     fn descr(self) -> &'static str {
447         match self {
448             PatternSource::Match => "match binding",
449             PatternSource::IfLet => "if let binding",
450             PatternSource::WhileLet => "while let binding",
451             PatternSource::Let => "let binding",
452             PatternSource::For => "for binding",
453             PatternSource::FnParam => "function parameter",
454         }
455     }
456 }
457
458 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
459 enum AliasPossibility {
460     No,
461     Maybe,
462 }
463
464 #[derive(Copy, Clone, Debug)]
465 enum PathSource<'a> {
466     // Type paths `Path`.
467     Type,
468     // Trait paths in bounds or impls.
469     Trait(AliasPossibility),
470     // Expression paths `path`, with optional parent context.
471     Expr(Option<&'a Expr>),
472     // Paths in path patterns `Path`.
473     Pat,
474     // Paths in struct expressions and patterns `Path { .. }`.
475     Struct,
476     // Paths in tuple struct patterns `Path(..)`.
477     TupleStruct,
478     // `m::A::B` in `<T as m::A>::B::C`.
479     TraitItem(Namespace),
480     // Path in `pub(path)`
481     Visibility,
482     // Path in `use a::b::{...};`
483     ImportPrefix,
484 }
485
486 impl<'a> PathSource<'a> {
487     fn namespace(self) -> Namespace {
488         match self {
489             PathSource::Type | PathSource::Trait(_) | PathSource::Struct |
490             PathSource::Visibility | PathSource::ImportPrefix => TypeNS,
491             PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct => ValueNS,
492             PathSource::TraitItem(ns) => ns,
493         }
494     }
495
496     fn global_by_default(self) -> bool {
497         match self {
498             PathSource::Visibility | PathSource::ImportPrefix => true,
499             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
500             PathSource::Struct | PathSource::TupleStruct |
501             PathSource::Trait(_) | PathSource::TraitItem(..) => false,
502         }
503     }
504
505     fn defer_to_typeck(self) -> bool {
506         match self {
507             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
508             PathSource::Struct | PathSource::TupleStruct => true,
509             PathSource::Trait(_) | PathSource::TraitItem(..) |
510             PathSource::Visibility | PathSource::ImportPrefix => false,
511         }
512     }
513
514     fn descr_expected(self) -> &'static str {
515         match self {
516             PathSource::Type => "type",
517             PathSource::Trait(_) => "trait",
518             PathSource::Pat => "unit struct/variant or constant",
519             PathSource::Struct => "struct, variant or union type",
520             PathSource::TupleStruct => "tuple struct/variant",
521             PathSource::Visibility => "module",
522             PathSource::ImportPrefix => "module or enum",
523             PathSource::TraitItem(ns) => match ns {
524                 TypeNS => "associated type",
525                 ValueNS => "method or associated constant",
526                 MacroNS => bug!("associated macro"),
527             },
528             PathSource::Expr(parent) => match parent.map(|p| &p.node) {
529                 // "function" here means "anything callable" rather than `Def::Fn`,
530                 // this is not precise but usually more helpful than just "value".
531                 Some(&ExprKind::Call(..)) => "function",
532                 _ => "value",
533             },
534         }
535     }
536
537     fn is_expected(self, def: Def) -> bool {
538         match self {
539             PathSource::Type => match def {
540                 Def::Struct(..) | Def::Union(..) | Def::Enum(..) |
541                 Def::Trait(..) | Def::TyAlias(..) | Def::AssociatedTy(..) |
542                 Def::PrimTy(..) | Def::TyParam(..) | Def::SelfTy(..) |
543                 Def::Existential(..) |
544                 Def::ForeignTy(..) => true,
545                 _ => false,
546             },
547             PathSource::Trait(AliasPossibility::No) => match def {
548                 Def::Trait(..) => true,
549                 _ => false,
550             },
551             PathSource::Trait(AliasPossibility::Maybe) => match def {
552                 Def::Trait(..) => true,
553                 Def::TraitAlias(..) => true,
554                 _ => false,
555             },
556             PathSource::Expr(..) => match def {
557                 Def::StructCtor(_, CtorKind::Const) | Def::StructCtor(_, CtorKind::Fn) |
558                 Def::VariantCtor(_, CtorKind::Const) | Def::VariantCtor(_, CtorKind::Fn) |
559                 Def::Const(..) | Def::Static(..) | Def::Local(..) | Def::Upvar(..) |
560                 Def::Fn(..) | Def::Method(..) | Def::AssociatedConst(..) |
561                 Def::SelfCtor(..) => true,
562                 _ => false,
563             },
564             PathSource::Pat => match def {
565                 Def::StructCtor(_, CtorKind::Const) |
566                 Def::VariantCtor(_, CtorKind::Const) |
567                 Def::Const(..) | Def::AssociatedConst(..) |
568                 Def::SelfCtor(..) => true,
569                 _ => false,
570             },
571             PathSource::TupleStruct => match def {
572                 Def::StructCtor(_, CtorKind::Fn) |
573                 Def::VariantCtor(_, CtorKind::Fn) |
574                 Def::SelfCtor(..) => true,
575                 _ => false,
576             },
577             PathSource::Struct => match def {
578                 Def::Struct(..) | Def::Union(..) | Def::Variant(..) |
579                 Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => true,
580                 _ => false,
581             },
582             PathSource::TraitItem(ns) => match def {
583                 Def::AssociatedConst(..) | Def::Method(..) if ns == ValueNS => true,
584                 Def::AssociatedTy(..) if ns == TypeNS => true,
585                 _ => false,
586             },
587             PathSource::ImportPrefix => match def {
588                 Def::Mod(..) | Def::Enum(..) => true,
589                 _ => false,
590             },
591             PathSource::Visibility => match def {
592                 Def::Mod(..) => true,
593                 _ => false,
594             },
595         }
596     }
597
598     fn error_code(self, has_unexpected_resolution: bool) -> &'static str {
599         __diagnostic_used!(E0404);
600         __diagnostic_used!(E0405);
601         __diagnostic_used!(E0412);
602         __diagnostic_used!(E0422);
603         __diagnostic_used!(E0423);
604         __diagnostic_used!(E0425);
605         __diagnostic_used!(E0531);
606         __diagnostic_used!(E0532);
607         __diagnostic_used!(E0573);
608         __diagnostic_used!(E0574);
609         __diagnostic_used!(E0575);
610         __diagnostic_used!(E0576);
611         __diagnostic_used!(E0577);
612         __diagnostic_used!(E0578);
613         match (self, has_unexpected_resolution) {
614             (PathSource::Trait(_), true) => "E0404",
615             (PathSource::Trait(_), false) => "E0405",
616             (PathSource::Type, true) => "E0573",
617             (PathSource::Type, false) => "E0412",
618             (PathSource::Struct, true) => "E0574",
619             (PathSource::Struct, false) => "E0422",
620             (PathSource::Expr(..), true) => "E0423",
621             (PathSource::Expr(..), false) => "E0425",
622             (PathSource::Pat, true) | (PathSource::TupleStruct, true) => "E0532",
623             (PathSource::Pat, false) | (PathSource::TupleStruct, false) => "E0531",
624             (PathSource::TraitItem(..), true) => "E0575",
625             (PathSource::TraitItem(..), false) => "E0576",
626             (PathSource::Visibility, true) | (PathSource::ImportPrefix, true) => "E0577",
627             (PathSource::Visibility, false) | (PathSource::ImportPrefix, false) => "E0578",
628         }
629     }
630 }
631
632 struct UsePlacementFinder {
633     target_module: NodeId,
634     span: Option<Span>,
635     found_use: bool,
636 }
637
638 impl UsePlacementFinder {
639     fn check(krate: &Crate, target_module: NodeId) -> (Option<Span>, bool) {
640         let mut finder = UsePlacementFinder {
641             target_module,
642             span: None,
643             found_use: false,
644         };
645         visit::walk_crate(&mut finder, krate);
646         (finder.span, finder.found_use)
647     }
648 }
649
650 impl<'tcx> Visitor<'tcx> for UsePlacementFinder {
651     fn visit_mod(
652         &mut self,
653         module: &'tcx ast::Mod,
654         _: Span,
655         _: &[ast::Attribute],
656         node_id: NodeId,
657     ) {
658         if self.span.is_some() {
659             return;
660         }
661         if node_id != self.target_module {
662             visit::walk_mod(self, module);
663             return;
664         }
665         // find a use statement
666         for item in &module.items {
667             match item.node {
668                 ItemKind::Use(..) => {
669                     // don't suggest placing a use before the prelude
670                     // import or other generated ones
671                     if item.span.ctxt().outer().expn_info().is_none() {
672                         self.span = Some(item.span.shrink_to_lo());
673                         self.found_use = true;
674                         return;
675                     }
676                 },
677                 // don't place use before extern crate
678                 ItemKind::ExternCrate(_) => {}
679                 // but place them before the first other item
680                 _ => if self.span.map_or(true, |span| item.span < span ) {
681                     if item.span.ctxt().outer().expn_info().is_none() {
682                         // don't insert between attributes and an item
683                         if item.attrs.is_empty() {
684                             self.span = Some(item.span.shrink_to_lo());
685                         } else {
686                             // find the first attribute on the item
687                             for attr in &item.attrs {
688                                 if self.span.map_or(true, |span| attr.span < span) {
689                                     self.span = Some(attr.span.shrink_to_lo());
690                                 }
691                             }
692                         }
693                     }
694                 },
695             }
696         }
697     }
698 }
699
700 /// This thing walks the whole crate in DFS manner, visiting each item, resolving names as it goes.
701 impl<'a, 'tcx, 'cl> Visitor<'tcx> for Resolver<'a, 'cl> {
702     fn visit_item(&mut self, item: &'tcx Item) {
703         self.resolve_item(item);
704     }
705     fn visit_arm(&mut self, arm: &'tcx Arm) {
706         self.resolve_arm(arm);
707     }
708     fn visit_block(&mut self, block: &'tcx Block) {
709         self.resolve_block(block);
710     }
711     fn visit_anon_const(&mut self, constant: &'tcx ast::AnonConst) {
712         self.with_constant_rib(|this| {
713             visit::walk_anon_const(this, constant);
714         });
715     }
716     fn visit_expr(&mut self, expr: &'tcx Expr) {
717         self.resolve_expr(expr, None);
718     }
719     fn visit_local(&mut self, local: &'tcx Local) {
720         self.resolve_local(local);
721     }
722     fn visit_ty(&mut self, ty: &'tcx Ty) {
723         match ty.node {
724             TyKind::Path(ref qself, ref path) => {
725                 self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
726             }
727             TyKind::ImplicitSelf => {
728                 let self_ty = keywords::SelfType.ident();
729                 let def = self.resolve_ident_in_lexical_scope(self_ty, TypeNS, Some(ty.id), ty.span)
730                               .map_or(Def::Err, |d| d.def());
731                 self.record_def(ty.id, PathResolution::new(def));
732             }
733             _ => (),
734         }
735         visit::walk_ty(self, ty);
736     }
737     fn visit_poly_trait_ref(&mut self,
738                             tref: &'tcx ast::PolyTraitRef,
739                             m: &'tcx ast::TraitBoundModifier) {
740         self.smart_resolve_path(tref.trait_ref.ref_id, None,
741                                 &tref.trait_ref.path, PathSource::Trait(AliasPossibility::Maybe));
742         visit::walk_poly_trait_ref(self, tref, m);
743     }
744     fn visit_foreign_item(&mut self, foreign_item: &'tcx ForeignItem) {
745         let type_parameters = match foreign_item.node {
746             ForeignItemKind::Fn(_, ref generics) => {
747                 HasTypeParameters(generics, ItemRibKind)
748             }
749             ForeignItemKind::Static(..) => NoTypeParameters,
750             ForeignItemKind::Ty => NoTypeParameters,
751             ForeignItemKind::Macro(..) => NoTypeParameters,
752         };
753         self.with_type_parameter_rib(type_parameters, |this| {
754             visit::walk_foreign_item(this, foreign_item);
755         });
756     }
757     fn visit_fn(&mut self,
758                 function_kind: FnKind<'tcx>,
759                 declaration: &'tcx FnDecl,
760                 _: Span,
761                 node_id: NodeId)
762     {
763         let (rib_kind, asyncness) = match function_kind {
764             FnKind::ItemFn(_, ref header, ..) =>
765                 (ItemRibKind, header.asyncness),
766             FnKind::Method(_, ref sig, _, _) =>
767                 (TraitOrImplItemRibKind, sig.header.asyncness),
768             FnKind::Closure(_) =>
769                 // Async closures aren't resolved through `visit_fn`-- they're
770                 // processed separately
771                 (ClosureRibKind(node_id), IsAsync::NotAsync),
772         };
773
774         // Create a value rib for the function.
775         self.ribs[ValueNS].push(Rib::new(rib_kind));
776
777         // Create a label rib for the function.
778         self.label_ribs.push(Rib::new(rib_kind));
779
780         // Add each argument to the rib.
781         let mut bindings_list = FxHashMap();
782         for argument in &declaration.inputs {
783             self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
784
785             self.visit_ty(&argument.ty);
786
787             debug!("(resolving function) recorded argument");
788         }
789         visit::walk_fn_ret_ty(self, &declaration.output);
790
791         // Resolve the function body, potentially inside the body of an async closure
792         if let IsAsync::Async { closure_id, .. } = asyncness {
793             let rib_kind = ClosureRibKind(closure_id);
794             self.ribs[ValueNS].push(Rib::new(rib_kind));
795             self.label_ribs.push(Rib::new(rib_kind));
796         }
797
798         match function_kind {
799             FnKind::ItemFn(.., body) |
800             FnKind::Method(.., body) => {
801                 self.visit_block(body);
802             }
803             FnKind::Closure(body) => {
804                 self.visit_expr(body);
805             }
806         };
807
808         // Leave the body of the async closure
809         if asyncness.is_async() {
810             self.label_ribs.pop();
811             self.ribs[ValueNS].pop();
812         }
813
814         debug!("(resolving function) leaving function");
815
816         self.label_ribs.pop();
817         self.ribs[ValueNS].pop();
818     }
819     fn visit_generics(&mut self, generics: &'tcx Generics) {
820         // For type parameter defaults, we have to ban access
821         // to following type parameters, as the Substs can only
822         // provide previous type parameters as they're built. We
823         // put all the parameters on the ban list and then remove
824         // them one by one as they are processed and become available.
825         let mut default_ban_rib = Rib::new(ForwardTyParamBanRibKind);
826         let mut found_default = false;
827         default_ban_rib.bindings.extend(generics.params.iter()
828             .filter_map(|param| match param.kind {
829                 GenericParamKind::Lifetime { .. } => None,
830                 GenericParamKind::Type { ref default, .. } => {
831                     found_default |= default.is_some();
832                     if found_default {
833                         Some((Ident::with_empty_ctxt(param.ident.name), Def::Err))
834                     } else {
835                         None
836                     }
837                 }
838             }));
839
840         for param in &generics.params {
841             match param.kind {
842                 GenericParamKind::Lifetime { .. } => self.visit_generic_param(param),
843                 GenericParamKind::Type { ref default, .. } => {
844                     for bound in &param.bounds {
845                         self.visit_param_bound(bound);
846                     }
847
848                     if let Some(ref ty) = default {
849                         self.ribs[TypeNS].push(default_ban_rib);
850                         self.visit_ty(ty);
851                         default_ban_rib = self.ribs[TypeNS].pop().unwrap();
852                     }
853
854                     // Allow all following defaults to refer to this type parameter.
855                     default_ban_rib.bindings.remove(&Ident::with_empty_ctxt(param.ident.name));
856                 }
857             }
858         }
859         for p in &generics.where_clause.predicates {
860             self.visit_where_predicate(p);
861         }
862     }
863 }
864
865 #[derive(Copy, Clone)]
866 enum TypeParameters<'a, 'b> {
867     NoTypeParameters,
868     HasTypeParameters(// Type parameters.
869                       &'b Generics,
870
871                       // The kind of the rib used for type parameters.
872                       RibKind<'a>),
873 }
874
875 /// The rib kind controls the translation of local
876 /// definitions (`Def::Local`) to upvars (`Def::Upvar`).
877 #[derive(Copy, Clone, Debug)]
878 enum RibKind<'a> {
879     /// No translation needs to be applied.
880     NormalRibKind,
881
882     /// We passed through a closure scope at the given node ID.
883     /// Translate upvars as appropriate.
884     ClosureRibKind(NodeId /* func id */),
885
886     /// We passed through an impl or trait and are now in one of its
887     /// methods or associated types. Allow references to ty params that impl or trait
888     /// binds. Disallow any other upvars (including other ty params that are
889     /// upvars).
890     TraitOrImplItemRibKind,
891
892     /// We passed through an item scope. Disallow upvars.
893     ItemRibKind,
894
895     /// We're in a constant item. Can't refer to dynamic stuff.
896     ConstantItemRibKind,
897
898     /// We passed through a module.
899     ModuleRibKind(Module<'a>),
900
901     /// We passed through a `macro_rules!` statement
902     MacroDefinition(DefId),
903
904     /// All bindings in this rib are type parameters that can't be used
905     /// from the default of a type parameter because they're not declared
906     /// before said type parameter. Also see the `visit_generics` override.
907     ForwardTyParamBanRibKind,
908 }
909
910 /// One local scope.
911 ///
912 /// A rib represents a scope names can live in. Note that these appear in many places, not just
913 /// around braces. At any place where the list of accessible names (of the given namespace)
914 /// changes or a new restrictions on the name accessibility are introduced, a new rib is put onto a
915 /// stack. This may be, for example, a `let` statement (because it introduces variables), a macro,
916 /// etc.
917 ///
918 /// Different [rib kinds](enum.RibKind) are transparent for different names.
919 ///
920 /// The resolution keeps a separate stack of ribs as it traverses the AST for each namespace. When
921 /// resolving, the name is looked up from inside out.
922 #[derive(Debug)]
923 struct Rib<'a> {
924     bindings: FxHashMap<Ident, Def>,
925     kind: RibKind<'a>,
926 }
927
928 impl<'a> Rib<'a> {
929     fn new(kind: RibKind<'a>) -> Rib<'a> {
930         Rib {
931             bindings: FxHashMap(),
932             kind,
933         }
934     }
935 }
936
937 /// An intermediate resolution result.
938 ///
939 /// This refers to the thing referred by a name. The difference between `Def` and `Item` is that
940 /// items are visible in their whole block, while defs only from the place they are defined
941 /// forward.
942 enum LexicalScopeBinding<'a> {
943     Item(&'a NameBinding<'a>),
944     Def(Def),
945 }
946
947 impl<'a> LexicalScopeBinding<'a> {
948     fn item(self) -> Option<&'a NameBinding<'a>> {
949         match self {
950             LexicalScopeBinding::Item(binding) => Some(binding),
951             _ => None,
952         }
953     }
954
955     fn def(self) -> Def {
956         match self {
957             LexicalScopeBinding::Item(binding) => binding.def(),
958             LexicalScopeBinding::Def(def) => def,
959         }
960     }
961 }
962
963 #[derive(Copy, Clone, Debug)]
964 pub enum ModuleOrUniformRoot<'a> {
965     /// Regular module.
966     Module(Module<'a>),
967
968     /// The `{{root}}` (`CrateRoot` aka "global") / `extern` initial segment
969     /// in which external crates resolve, and also `crate` (only in `{{root}}`,
970     /// but *not* `extern`), in the Rust 2018 edition.
971     UniformRoot(Name),
972 }
973
974 #[derive(Clone, Debug)]
975 enum PathResult<'a> {
976     Module(ModuleOrUniformRoot<'a>),
977     NonModule(PathResolution),
978     Indeterminate,
979     Failed(Span, String, bool /* is the error from the last segment? */),
980 }
981
982 enum ModuleKind {
983     /// An anonymous module, eg. just a block.
984     ///
985     /// ```
986     /// fn main() {
987     ///     fn f() {} // (1)
988     ///     { // This is an anonymous module
989     ///         f(); // This resolves to (2) as we are inside the block.
990     ///         fn f() {} // (2)
991     ///     }
992     ///     f(); // Resolves to (1)
993     /// }
994     /// ```
995     Block(NodeId),
996     /// Any module with a name.
997     ///
998     /// This could be:
999     ///
1000     /// * A normal module â€’ either `mod from_file;` or `mod from_block { }`.
1001     /// * A trait or an enum (it implicitly contains associated types, methods and variant
1002     ///   constructors).
1003     Def(Def, Name),
1004 }
1005
1006 /// One node in the tree of modules.
1007 pub struct ModuleData<'a> {
1008     parent: Option<Module<'a>>,
1009     kind: ModuleKind,
1010
1011     // The def id of the closest normal module (`mod`) ancestor (including this module).
1012     normal_ancestor_id: DefId,
1013
1014     resolutions: RefCell<FxHashMap<(Ident, Namespace), &'a RefCell<NameResolution<'a>>>>,
1015     legacy_macro_resolutions: RefCell<Vec<(Ident, MacroKind, ParentScope<'a>, Option<Def>)>>,
1016     macro_resolutions: RefCell<Vec<(Box<[Ident]>, Span)>>,
1017     builtin_attrs: RefCell<Vec<(Ident, ParentScope<'a>)>>,
1018
1019     // Macro invocations that can expand into items in this module.
1020     unresolved_invocations: RefCell<FxHashSet<Mark>>,
1021
1022     no_implicit_prelude: bool,
1023
1024     glob_importers: RefCell<Vec<&'a ImportDirective<'a>>>,
1025     globs: RefCell<Vec<&'a ImportDirective<'a>>>,
1026
1027     // Used to memoize the traits in this module for faster searches through all traits in scope.
1028     traits: RefCell<Option<Box<[(Ident, &'a NameBinding<'a>)]>>>,
1029
1030     // Whether this module is populated. If not populated, any attempt to
1031     // access the children must be preceded with a
1032     // `populate_module_if_necessary` call.
1033     populated: Cell<bool>,
1034
1035     /// Span of the module itself. Used for error reporting.
1036     span: Span,
1037
1038     expansion: Mark,
1039 }
1040
1041 type Module<'a> = &'a ModuleData<'a>;
1042
1043 impl<'a> ModuleData<'a> {
1044     fn new(parent: Option<Module<'a>>,
1045            kind: ModuleKind,
1046            normal_ancestor_id: DefId,
1047            expansion: Mark,
1048            span: Span) -> Self {
1049         ModuleData {
1050             parent,
1051             kind,
1052             normal_ancestor_id,
1053             resolutions: RefCell::new(FxHashMap()),
1054             legacy_macro_resolutions: RefCell::new(Vec::new()),
1055             macro_resolutions: RefCell::new(Vec::new()),
1056             builtin_attrs: RefCell::new(Vec::new()),
1057             unresolved_invocations: RefCell::new(FxHashSet()),
1058             no_implicit_prelude: false,
1059             glob_importers: RefCell::new(Vec::new()),
1060             globs: RefCell::new(Vec::new()),
1061             traits: RefCell::new(None),
1062             populated: Cell::new(normal_ancestor_id.is_local()),
1063             span,
1064             expansion,
1065         }
1066     }
1067
1068     fn for_each_child<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1069         for (&(ident, ns), name_resolution) in self.resolutions.borrow().iter() {
1070             name_resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1071         }
1072     }
1073
1074     fn for_each_child_stable<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1075         let resolutions = self.resolutions.borrow();
1076         let mut resolutions = resolutions.iter().collect::<Vec<_>>();
1077         resolutions.sort_by_cached_key(|&(&(ident, ns), _)| (ident.as_str(), ns));
1078         for &(&(ident, ns), &resolution) in resolutions.iter() {
1079             resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1080         }
1081     }
1082
1083     fn def(&self) -> Option<Def> {
1084         match self.kind {
1085             ModuleKind::Def(def, _) => Some(def),
1086             _ => None,
1087         }
1088     }
1089
1090     fn def_id(&self) -> Option<DefId> {
1091         self.def().as_ref().map(Def::def_id)
1092     }
1093
1094     // `self` resolves to the first module ancestor that `is_normal`.
1095     fn is_normal(&self) -> bool {
1096         match self.kind {
1097             ModuleKind::Def(Def::Mod(_), _) => true,
1098             _ => false,
1099         }
1100     }
1101
1102     fn is_trait(&self) -> bool {
1103         match self.kind {
1104             ModuleKind::Def(Def::Trait(_), _) => true,
1105             _ => false,
1106         }
1107     }
1108
1109     fn is_local(&self) -> bool {
1110         self.normal_ancestor_id.is_local()
1111     }
1112
1113     fn nearest_item_scope(&'a self) -> Module<'a> {
1114         if self.is_trait() { self.parent.unwrap() } else { self }
1115     }
1116
1117     fn is_ancestor_of(&self, mut other: &Self) -> bool {
1118         while !ptr::eq(self, other) {
1119             if let Some(parent) = other.parent {
1120                 other = parent;
1121             } else {
1122                 return false;
1123             }
1124         }
1125         true
1126     }
1127 }
1128
1129 impl<'a> fmt::Debug for ModuleData<'a> {
1130     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1131         write!(f, "{:?}", self.def())
1132     }
1133 }
1134
1135 /// Records a possibly-private value, type, or module definition.
1136 #[derive(Clone, Debug)]
1137 pub struct NameBinding<'a> {
1138     kind: NameBindingKind<'a>,
1139     expansion: Mark,
1140     span: Span,
1141     vis: ty::Visibility,
1142 }
1143
1144 pub trait ToNameBinding<'a> {
1145     fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a>;
1146 }
1147
1148 impl<'a> ToNameBinding<'a> for &'a NameBinding<'a> {
1149     fn to_name_binding(self, _: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> {
1150         self
1151     }
1152 }
1153
1154 #[derive(Clone, Debug)]
1155 enum NameBindingKind<'a> {
1156     Def(Def, /* is_macro_export */ bool),
1157     Module(Module<'a>),
1158     Import {
1159         binding: &'a NameBinding<'a>,
1160         directive: &'a ImportDirective<'a>,
1161         used: Cell<bool>,
1162     },
1163     Ambiguity {
1164         b1: &'a NameBinding<'a>,
1165         b2: &'a NameBinding<'a>,
1166     }
1167 }
1168
1169 struct PrivacyError<'a>(Span, Name, &'a NameBinding<'a>);
1170
1171 struct UseError<'a> {
1172     err: DiagnosticBuilder<'a>,
1173     /// Attach `use` statements for these candidates
1174     candidates: Vec<ImportSuggestion>,
1175     /// The node id of the module to place the use statements in
1176     node_id: NodeId,
1177     /// Whether the diagnostic should state that it's "better"
1178     better: bool,
1179 }
1180
1181 struct AmbiguityError<'a> {
1182     ident: Ident,
1183     b1: &'a NameBinding<'a>,
1184     b2: &'a NameBinding<'a>,
1185 }
1186
1187 impl<'a> NameBinding<'a> {
1188     fn module(&self) -> Option<Module<'a>> {
1189         match self.kind {
1190             NameBindingKind::Module(module) => Some(module),
1191             NameBindingKind::Import { binding, .. } => binding.module(),
1192             _ => None,
1193         }
1194     }
1195
1196     fn def(&self) -> Def {
1197         match self.kind {
1198             NameBindingKind::Def(def, _) => def,
1199             NameBindingKind::Module(module) => module.def().unwrap(),
1200             NameBindingKind::Import { binding, .. } => binding.def(),
1201             NameBindingKind::Ambiguity { .. } => Def::Err,
1202         }
1203     }
1204
1205     fn def_ignoring_ambiguity(&self) -> Def {
1206         match self.kind {
1207             NameBindingKind::Import { binding, .. } => binding.def_ignoring_ambiguity(),
1208             NameBindingKind::Ambiguity { b1, .. } => b1.def_ignoring_ambiguity(),
1209             _ => self.def(),
1210         }
1211     }
1212
1213     fn get_macro<'b: 'a>(&self, resolver: &mut Resolver<'a, 'b>) -> Lrc<SyntaxExtension> {
1214         resolver.get_macro(self.def_ignoring_ambiguity())
1215     }
1216
1217     // We sometimes need to treat variants as `pub` for backwards compatibility
1218     fn pseudo_vis(&self) -> ty::Visibility {
1219         if self.is_variant() && self.def().def_id().is_local() {
1220             ty::Visibility::Public
1221         } else {
1222             self.vis
1223         }
1224     }
1225
1226     fn is_variant(&self) -> bool {
1227         match self.kind {
1228             NameBindingKind::Def(Def::Variant(..), _) |
1229             NameBindingKind::Def(Def::VariantCtor(..), _) => true,
1230             _ => false,
1231         }
1232     }
1233
1234     fn is_extern_crate(&self) -> bool {
1235         match self.kind {
1236             NameBindingKind::Import {
1237                 directive: &ImportDirective {
1238                     subclass: ImportDirectiveSubclass::ExternCrate(_), ..
1239                 }, ..
1240             } => true,
1241             _ => false,
1242         }
1243     }
1244
1245     fn is_import(&self) -> bool {
1246         match self.kind {
1247             NameBindingKind::Import { .. } => true,
1248             _ => false,
1249         }
1250     }
1251
1252     fn is_renamed_extern_crate(&self) -> bool {
1253         if let NameBindingKind::Import { directive, ..} = self.kind {
1254             if let ImportDirectiveSubclass::ExternCrate(Some(_)) = directive.subclass {
1255                 return true;
1256             }
1257         }
1258         false
1259     }
1260
1261     fn is_glob_import(&self) -> bool {
1262         match self.kind {
1263             NameBindingKind::Import { directive, .. } => directive.is_glob(),
1264             NameBindingKind::Ambiguity { b1, .. } => b1.is_glob_import(),
1265             _ => false,
1266         }
1267     }
1268
1269     fn is_importable(&self) -> bool {
1270         match self.def() {
1271             Def::AssociatedConst(..) | Def::Method(..) | Def::AssociatedTy(..) => false,
1272             _ => true,
1273         }
1274     }
1275
1276     fn is_macro_def(&self) -> bool {
1277         match self.kind {
1278             NameBindingKind::Def(Def::Macro(..), _) => true,
1279             _ => false,
1280         }
1281     }
1282
1283     fn macro_kind(&self) -> Option<MacroKind> {
1284         match self.def_ignoring_ambiguity() {
1285             Def::Macro(_, kind) => Some(kind),
1286             Def::NonMacroAttr(..) => Some(MacroKind::Attr),
1287             _ => None,
1288         }
1289     }
1290
1291     fn descr(&self) -> &'static str {
1292         if self.is_extern_crate() { "extern crate" } else { self.def().kind_name() }
1293     }
1294
1295     // Suppose that we resolved macro invocation with `invoc_parent_expansion` to binding `binding`
1296     // at some expansion round `max(invoc, binding)` when they both emerged from macros.
1297     // Then this function returns `true` if `self` may emerge from a macro *after* that
1298     // in some later round and screw up our previously found resolution.
1299     // See more detailed explanation in
1300     // https://github.com/rust-lang/rust/pull/53778#issuecomment-419224049
1301     fn may_appear_after(&self, invoc_parent_expansion: Mark, binding: &NameBinding) -> bool {
1302         // self > max(invoc, binding) => !(self <= invoc || self <= binding)
1303         // Expansions are partially ordered, so "may appear after" is an inversion of
1304         // "certainly appears before or simultaneously" and includes unordered cases.
1305         let self_parent_expansion = self.expansion;
1306         let other_parent_expansion = binding.expansion;
1307         let certainly_before_other_or_simultaneously =
1308             other_parent_expansion.is_descendant_of(self_parent_expansion);
1309         let certainly_before_invoc_or_simultaneously =
1310             invoc_parent_expansion.is_descendant_of(self_parent_expansion);
1311         !(certainly_before_other_or_simultaneously || certainly_before_invoc_or_simultaneously)
1312     }
1313 }
1314
1315 /// Interns the names of the primitive types.
1316 ///
1317 /// All other types are defined somewhere and possibly imported, but the primitive ones need
1318 /// special handling, since they have no place of origin.
1319 struct PrimitiveTypeTable {
1320     primitive_types: FxHashMap<Name, PrimTy>,
1321 }
1322
1323 impl PrimitiveTypeTable {
1324     fn new() -> PrimitiveTypeTable {
1325         let mut table = PrimitiveTypeTable { primitive_types: FxHashMap() };
1326
1327         table.intern("bool", Bool);
1328         table.intern("char", Char);
1329         table.intern("f32", Float(FloatTy::F32));
1330         table.intern("f64", Float(FloatTy::F64));
1331         table.intern("isize", Int(IntTy::Isize));
1332         table.intern("i8", Int(IntTy::I8));
1333         table.intern("i16", Int(IntTy::I16));
1334         table.intern("i32", Int(IntTy::I32));
1335         table.intern("i64", Int(IntTy::I64));
1336         table.intern("i128", Int(IntTy::I128));
1337         table.intern("str", Str);
1338         table.intern("usize", Uint(UintTy::Usize));
1339         table.intern("u8", Uint(UintTy::U8));
1340         table.intern("u16", Uint(UintTy::U16));
1341         table.intern("u32", Uint(UintTy::U32));
1342         table.intern("u64", Uint(UintTy::U64));
1343         table.intern("u128", Uint(UintTy::U128));
1344         table
1345     }
1346
1347     fn intern(&mut self, string: &str, primitive_type: PrimTy) {
1348         self.primitive_types.insert(Symbol::intern(string), primitive_type);
1349     }
1350 }
1351
1352 /// The main resolver class.
1353 ///
1354 /// This is the visitor that walks the whole crate.
1355 pub struct Resolver<'a, 'b: 'a> {
1356     session: &'a Session,
1357     cstore: &'a CStore,
1358
1359     pub definitions: Definitions,
1360
1361     graph_root: Module<'a>,
1362
1363     prelude: Option<Module<'a>>,
1364
1365     /// n.b. This is used only for better diagnostics, not name resolution itself.
1366     has_self: FxHashSet<DefId>,
1367
1368     /// Names of fields of an item `DefId` accessible with dot syntax.
1369     /// Used for hints during error reporting.
1370     field_names: FxHashMap<DefId, Vec<Name>>,
1371
1372     /// All imports known to succeed or fail.
1373     determined_imports: Vec<&'a ImportDirective<'a>>,
1374
1375     /// All non-determined imports.
1376     indeterminate_imports: Vec<&'a ImportDirective<'a>>,
1377
1378     /// The module that represents the current item scope.
1379     current_module: Module<'a>,
1380
1381     /// The current set of local scopes for types and values.
1382     /// FIXME #4948: Reuse ribs to avoid allocation.
1383     ribs: PerNS<Vec<Rib<'a>>>,
1384
1385     /// The current set of local scopes, for labels.
1386     label_ribs: Vec<Rib<'a>>,
1387
1388     /// The trait that the current context can refer to.
1389     current_trait_ref: Option<(Module<'a>, TraitRef)>,
1390
1391     /// The current self type if inside an impl (used for better errors).
1392     current_self_type: Option<Ty>,
1393
1394     /// The current self item if inside an ADT (used for better errors).
1395     current_self_item: Option<NodeId>,
1396
1397     /// The idents for the primitive types.
1398     primitive_type_table: PrimitiveTypeTable,
1399
1400     def_map: DefMap,
1401     import_map: ImportMap,
1402     pub freevars: FreevarMap,
1403     freevars_seen: NodeMap<NodeMap<usize>>,
1404     pub export_map: ExportMap,
1405     pub trait_map: TraitMap,
1406
1407     /// A map from nodes to anonymous modules.
1408     /// Anonymous modules are pseudo-modules that are implicitly created around items
1409     /// contained within blocks.
1410     ///
1411     /// For example, if we have this:
1412     ///
1413     ///  fn f() {
1414     ///      fn g() {
1415     ///          ...
1416     ///      }
1417     ///  }
1418     ///
1419     /// There will be an anonymous module created around `g` with the ID of the
1420     /// entry block for `f`.
1421     block_map: NodeMap<Module<'a>>,
1422     module_map: FxHashMap<DefId, Module<'a>>,
1423     extern_module_map: FxHashMap<(DefId, bool /* MacrosOnly? */), Module<'a>>,
1424     binding_parent_modules: FxHashMap<PtrKey<'a, NameBinding<'a>>, Module<'a>>,
1425
1426     pub make_glob_map: bool,
1427     /// Maps imports to the names of items actually imported (this actually maps
1428     /// all imports, but only glob imports are actually interesting).
1429     pub glob_map: GlobMap,
1430
1431     used_imports: FxHashSet<(NodeId, Namespace)>,
1432     pub maybe_unused_trait_imports: NodeSet,
1433     pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
1434
1435     /// A list of labels as of yet unused. Labels will be removed from this map when
1436     /// they are used (in a `break` or `continue` statement)
1437     pub unused_labels: FxHashMap<NodeId, Span>,
1438
1439     /// privacy errors are delayed until the end in order to deduplicate them
1440     privacy_errors: Vec<PrivacyError<'a>>,
1441     /// ambiguity errors are delayed for deduplication
1442     ambiguity_errors: Vec<AmbiguityError<'a>>,
1443     /// `use` injections are delayed for better placement and deduplication
1444     use_injections: Vec<UseError<'a>>,
1445     /// crate-local macro expanded `macro_export` referred to by a module-relative path
1446     macro_expanded_macro_export_errors: BTreeSet<(Span, Span)>,
1447
1448     arenas: &'a ResolverArenas<'a>,
1449     dummy_binding: &'a NameBinding<'a>,
1450
1451     crate_loader: &'a mut CrateLoader<'b>,
1452     macro_names: FxHashSet<Ident>,
1453     builtin_macros: FxHashMap<Name, &'a NameBinding<'a>>,
1454     macro_use_prelude: FxHashMap<Name, &'a NameBinding<'a>>,
1455     pub all_macros: FxHashMap<Name, Def>,
1456     macro_map: FxHashMap<DefId, Lrc<SyntaxExtension>>,
1457     macro_defs: FxHashMap<Mark, DefId>,
1458     local_macro_def_scopes: FxHashMap<NodeId, Module<'a>>,
1459     pub whitelisted_legacy_custom_derives: Vec<Name>,
1460     pub found_unresolved_macro: bool,
1461
1462     /// List of crate local macros that we need to warn about as being unused.
1463     /// Right now this only includes macro_rules! macros, and macros 2.0.
1464     unused_macros: FxHashSet<DefId>,
1465
1466     /// Maps the `Mark` of an expansion to its containing module or block.
1467     invocations: FxHashMap<Mark, &'a InvocationData<'a>>,
1468
1469     /// Avoid duplicated errors for "name already defined".
1470     name_already_seen: FxHashMap<Name, Span>,
1471
1472     potentially_unused_imports: Vec<&'a ImportDirective<'a>>,
1473
1474     /// This table maps struct IDs into struct constructor IDs,
1475     /// it's not used during normal resolution, only for better error reporting.
1476     struct_constructors: DefIdMap<(Def, ty::Visibility)>,
1477
1478     /// Only used for better errors on `fn(): fn()`
1479     current_type_ascription: Vec<Span>,
1480
1481     injected_crate: Option<Module<'a>>,
1482 }
1483
1484 /// Nothing really interesting here, it just provides memory for the rest of the crate.
1485 pub struct ResolverArenas<'a> {
1486     modules: arena::TypedArena<ModuleData<'a>>,
1487     local_modules: RefCell<Vec<Module<'a>>>,
1488     name_bindings: arena::TypedArena<NameBinding<'a>>,
1489     import_directives: arena::TypedArena<ImportDirective<'a>>,
1490     name_resolutions: arena::TypedArena<RefCell<NameResolution<'a>>>,
1491     invocation_data: arena::TypedArena<InvocationData<'a>>,
1492     legacy_bindings: arena::TypedArena<LegacyBinding<'a>>,
1493 }
1494
1495 impl<'a> ResolverArenas<'a> {
1496     fn alloc_module(&'a self, module: ModuleData<'a>) -> Module<'a> {
1497         let module = self.modules.alloc(module);
1498         if module.def_id().map(|def_id| def_id.is_local()).unwrap_or(true) {
1499             self.local_modules.borrow_mut().push(module);
1500         }
1501         module
1502     }
1503     fn local_modules(&'a self) -> ::std::cell::Ref<'a, Vec<Module<'a>>> {
1504         self.local_modules.borrow()
1505     }
1506     fn alloc_name_binding(&'a self, name_binding: NameBinding<'a>) -> &'a NameBinding<'a> {
1507         self.name_bindings.alloc(name_binding)
1508     }
1509     fn alloc_import_directive(&'a self, import_directive: ImportDirective<'a>)
1510                               -> &'a ImportDirective {
1511         self.import_directives.alloc(import_directive)
1512     }
1513     fn alloc_name_resolution(&'a self) -> &'a RefCell<NameResolution<'a>> {
1514         self.name_resolutions.alloc(Default::default())
1515     }
1516     fn alloc_invocation_data(&'a self, expansion_data: InvocationData<'a>)
1517                              -> &'a InvocationData<'a> {
1518         self.invocation_data.alloc(expansion_data)
1519     }
1520     fn alloc_legacy_binding(&'a self, binding: LegacyBinding<'a>) -> &'a LegacyBinding<'a> {
1521         self.legacy_bindings.alloc(binding)
1522     }
1523 }
1524
1525 impl<'a, 'b: 'a, 'cl: 'b> ty::DefIdTree for &'a Resolver<'b, 'cl> {
1526     fn parent(self, id: DefId) -> Option<DefId> {
1527         match id.krate {
1528             LOCAL_CRATE => self.definitions.def_key(id.index).parent,
1529             _ => self.cstore.def_key(id).parent,
1530         }.map(|index| DefId { index, ..id })
1531     }
1532 }
1533
1534 /// This interface is used through the AST→HIR step, to embed full paths into the HIR. After that
1535 /// the resolver is no longer needed as all the relevant information is inline.
1536 impl<'a, 'cl> hir::lowering::Resolver for Resolver<'a, 'cl> {
1537     fn resolve_hir_path(&mut self, path: &mut hir::Path, is_value: bool) {
1538         self.resolve_hir_path_cb(path, is_value,
1539                                  |resolver, span, error| resolve_error(resolver, span, error))
1540     }
1541
1542     fn resolve_str_path(
1543         &mut self,
1544         span: Span,
1545         crate_root: Option<&str>,
1546         components: &[&str],
1547         args: Option<P<hir::GenericArgs>>,
1548         is_value: bool
1549     ) -> hir::Path {
1550         let mut segments = iter::once(keywords::CrateRoot.ident())
1551             .chain(
1552                 crate_root.into_iter()
1553                     .chain(components.iter().cloned())
1554                     .map(Ident::from_str)
1555             ).map(hir::PathSegment::from_ident).collect::<Vec<_>>();
1556
1557         if let Some(args) = args {
1558             let ident = segments.last().unwrap().ident;
1559             *segments.last_mut().unwrap() = hir::PathSegment {
1560                 ident,
1561                 args: Some(args),
1562                 infer_types: true,
1563             };
1564         }
1565
1566         let mut path = hir::Path {
1567             span,
1568             def: Def::Err,
1569             segments: segments.into(),
1570         };
1571
1572         self.resolve_hir_path(&mut path, is_value);
1573         path
1574     }
1575
1576     fn get_resolution(&mut self, id: NodeId) -> Option<PathResolution> {
1577         self.def_map.get(&id).cloned()
1578     }
1579
1580     fn get_import(&mut self, id: NodeId) -> PerNS<Option<PathResolution>> {
1581         self.import_map.get(&id).cloned().unwrap_or_default()
1582     }
1583
1584     fn definitions(&mut self) -> &mut Definitions {
1585         &mut self.definitions
1586     }
1587 }
1588
1589 impl<'a, 'crateloader> Resolver<'a, 'crateloader> {
1590     /// Rustdoc uses this to resolve things in a recoverable way. ResolutionError<'a>
1591     /// isn't something that can be returned because it can't be made to live that long,
1592     /// and also it's a private type. Fortunately rustdoc doesn't need to know the error,
1593     /// just that an error occurred.
1594     pub fn resolve_str_path_error(&mut self, span: Span, path_str: &str, is_value: bool)
1595         -> Result<hir::Path, ()> {
1596         use std::iter;
1597         let mut errored = false;
1598
1599         let mut path = if path_str.starts_with("::") {
1600             hir::Path {
1601                 span,
1602                 def: Def::Err,
1603                 segments: iter::once(keywords::CrateRoot.ident()).chain({
1604                     path_str.split("::").skip(1).map(Ident::from_str)
1605                 }).map(hir::PathSegment::from_ident).collect(),
1606             }
1607         } else {
1608             hir::Path {
1609                 span,
1610                 def: Def::Err,
1611                 segments: path_str.split("::").map(Ident::from_str)
1612                                   .map(hir::PathSegment::from_ident).collect(),
1613             }
1614         };
1615         self.resolve_hir_path_cb(&mut path, is_value, |_, _, _| errored = true);
1616         if errored || path.def == Def::Err {
1617             Err(())
1618         } else {
1619             Ok(path)
1620         }
1621     }
1622
1623     /// resolve_hir_path, but takes a callback in case there was an error
1624     fn resolve_hir_path_cb<F>(&mut self, path: &mut hir::Path, is_value: bool, error_callback: F)
1625         where F: for<'c, 'b> FnOnce(&'c mut Resolver, Span, ResolutionError<'b>)
1626     {
1627         let namespace = if is_value { ValueNS } else { TypeNS };
1628         let hir::Path { ref segments, span, ref mut def } = *path;
1629         let path: Vec<_> = segments.iter().map(|seg| seg.ident).collect();
1630         // FIXME (Manishearth): Intra doc links won't get warned of epoch changes
1631         match self.resolve_path(None, &path, Some(namespace), true, span, CrateLint::No) {
1632             PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
1633                 *def = module.def().unwrap(),
1634             PathResult::NonModule(path_res) if path_res.unresolved_segments() == 0 =>
1635                 *def = path_res.base_def(),
1636             PathResult::NonModule(..) => match self.resolve_path(
1637                 None,
1638                 &path,
1639                 None,
1640                 true,
1641                 span,
1642                 CrateLint::No,
1643             ) {
1644                 PathResult::Failed(span, msg, _) => {
1645                     error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1646                 }
1647                 _ => {}
1648             },
1649             PathResult::Module(ModuleOrUniformRoot::UniformRoot(_)) |
1650             PathResult::Indeterminate => unreachable!(),
1651             PathResult::Failed(span, msg, _) => {
1652                 error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1653             }
1654         }
1655     }
1656 }
1657
1658 impl<'a, 'crateloader: 'a> Resolver<'a, 'crateloader> {
1659     pub fn new(session: &'a Session,
1660                cstore: &'a CStore,
1661                krate: &Crate,
1662                crate_name: &str,
1663                make_glob_map: MakeGlobMap,
1664                crate_loader: &'a mut CrateLoader<'crateloader>,
1665                arenas: &'a ResolverArenas<'a>)
1666                -> Resolver<'a, 'crateloader> {
1667         let root_def_id = DefId::local(CRATE_DEF_INDEX);
1668         let root_module_kind = ModuleKind::Def(Def::Mod(root_def_id), keywords::Invalid.name());
1669         let graph_root = arenas.alloc_module(ModuleData {
1670             no_implicit_prelude: attr::contains_name(&krate.attrs, "no_implicit_prelude"),
1671             ..ModuleData::new(None, root_module_kind, root_def_id, Mark::root(), krate.span)
1672         });
1673         let mut module_map = FxHashMap();
1674         module_map.insert(DefId::local(CRATE_DEF_INDEX), graph_root);
1675
1676         let mut definitions = Definitions::new();
1677         DefCollector::new(&mut definitions, Mark::root())
1678             .collect_root(crate_name, session.local_crate_disambiguator());
1679
1680         let mut invocations = FxHashMap();
1681         invocations.insert(Mark::root(),
1682                            arenas.alloc_invocation_data(InvocationData::root(graph_root)));
1683
1684         let mut macro_defs = FxHashMap();
1685         macro_defs.insert(Mark::root(), root_def_id);
1686
1687         Resolver {
1688             session,
1689
1690             cstore,
1691
1692             definitions,
1693
1694             // The outermost module has def ID 0; this is not reflected in the
1695             // AST.
1696             graph_root,
1697             prelude: None,
1698
1699             has_self: FxHashSet(),
1700             field_names: FxHashMap(),
1701
1702             determined_imports: Vec::new(),
1703             indeterminate_imports: Vec::new(),
1704
1705             current_module: graph_root,
1706             ribs: PerNS {
1707                 value_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1708                 type_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1709                 macro_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1710             },
1711             label_ribs: Vec::new(),
1712
1713             current_trait_ref: None,
1714             current_self_type: None,
1715             current_self_item: None,
1716
1717             primitive_type_table: PrimitiveTypeTable::new(),
1718
1719             def_map: NodeMap(),
1720             import_map: NodeMap(),
1721             freevars: NodeMap(),
1722             freevars_seen: NodeMap(),
1723             export_map: FxHashMap(),
1724             trait_map: NodeMap(),
1725             module_map,
1726             block_map: NodeMap(),
1727             extern_module_map: FxHashMap(),
1728             binding_parent_modules: FxHashMap(),
1729
1730             make_glob_map: make_glob_map == MakeGlobMap::Yes,
1731             glob_map: NodeMap(),
1732
1733             used_imports: FxHashSet(),
1734             maybe_unused_trait_imports: NodeSet(),
1735             maybe_unused_extern_crates: Vec::new(),
1736
1737             unused_labels: FxHashMap(),
1738
1739             privacy_errors: Vec::new(),
1740             ambiguity_errors: Vec::new(),
1741             use_injections: Vec::new(),
1742             macro_expanded_macro_export_errors: BTreeSet::new(),
1743
1744             arenas,
1745             dummy_binding: arenas.alloc_name_binding(NameBinding {
1746                 kind: NameBindingKind::Def(Def::Err, false),
1747                 expansion: Mark::root(),
1748                 span: DUMMY_SP,
1749                 vis: ty::Visibility::Public,
1750             }),
1751
1752             crate_loader,
1753             macro_names: FxHashSet(),
1754             builtin_macros: FxHashMap(),
1755             macro_use_prelude: FxHashMap(),
1756             all_macros: FxHashMap(),
1757             macro_map: FxHashMap(),
1758             invocations,
1759             macro_defs,
1760             local_macro_def_scopes: FxHashMap(),
1761             name_already_seen: FxHashMap(),
1762             whitelisted_legacy_custom_derives: Vec::new(),
1763             potentially_unused_imports: Vec::new(),
1764             struct_constructors: DefIdMap(),
1765             found_unresolved_macro: false,
1766             unused_macros: FxHashSet(),
1767             current_type_ascription: Vec::new(),
1768             injected_crate: None,
1769         }
1770     }
1771
1772     pub fn arenas() -> ResolverArenas<'a> {
1773         ResolverArenas {
1774             modules: arena::TypedArena::new(),
1775             local_modules: RefCell::new(Vec::new()),
1776             name_bindings: arena::TypedArena::new(),
1777             import_directives: arena::TypedArena::new(),
1778             name_resolutions: arena::TypedArena::new(),
1779             invocation_data: arena::TypedArena::new(),
1780             legacy_bindings: arena::TypedArena::new(),
1781         }
1782     }
1783
1784     /// Runs the function on each namespace.
1785     fn per_ns<F: FnMut(&mut Self, Namespace)>(&mut self, mut f: F) {
1786         f(self, TypeNS);
1787         f(self, ValueNS);
1788         f(self, MacroNS);
1789     }
1790
1791     fn macro_def(&self, mut ctxt: SyntaxContext) -> DefId {
1792         loop {
1793             match self.macro_defs.get(&ctxt.outer()) {
1794                 Some(&def_id) => return def_id,
1795                 None => ctxt.remove_mark(),
1796             };
1797         }
1798     }
1799
1800     /// Entry point to crate resolution.
1801     pub fn resolve_crate(&mut self, krate: &Crate) {
1802         ImportResolver { resolver: self }.finalize_imports();
1803         self.current_module = self.graph_root;
1804         self.finalize_current_module_macro_resolutions();
1805
1806         visit::walk_crate(self, krate);
1807
1808         check_unused::check_crate(self, krate);
1809         self.report_errors(krate);
1810         self.crate_loader.postprocess(krate);
1811     }
1812
1813     fn new_module(
1814         &self,
1815         parent: Module<'a>,
1816         kind: ModuleKind,
1817         normal_ancestor_id: DefId,
1818         expansion: Mark,
1819         span: Span,
1820     ) -> Module<'a> {
1821         let module = ModuleData::new(Some(parent), kind, normal_ancestor_id, expansion, span);
1822         self.arenas.alloc_module(module)
1823     }
1824
1825     fn record_use(&mut self, ident: Ident, ns: Namespace, binding: &'a NameBinding<'a>)
1826                   -> bool /* true if an error was reported */ {
1827         match binding.kind {
1828             NameBindingKind::Import { directive, binding, ref used }
1829                     if !used.get() => {
1830                 used.set(true);
1831                 directive.used.set(true);
1832                 self.used_imports.insert((directive.id, ns));
1833                 self.add_to_glob_map(directive.id, ident);
1834                 self.record_use(ident, ns, binding)
1835             }
1836             NameBindingKind::Import { .. } => false,
1837             NameBindingKind::Ambiguity { b1, b2 } => {
1838                 self.ambiguity_errors.push(AmbiguityError { ident, b1, b2 });
1839                 true
1840             }
1841             _ => false
1842         }
1843     }
1844
1845     fn add_to_glob_map(&mut self, id: NodeId, ident: Ident) {
1846         if self.make_glob_map {
1847             self.glob_map.entry(id).or_default().insert(ident.name);
1848         }
1849     }
1850
1851     /// This resolves the identifier `ident` in the namespace `ns` in the current lexical scope.
1852     /// More specifically, we proceed up the hierarchy of scopes and return the binding for
1853     /// `ident` in the first scope that defines it (or None if no scopes define it).
1854     ///
1855     /// A block's items are above its local variables in the scope hierarchy, regardless of where
1856     /// the items are defined in the block. For example,
1857     /// ```rust
1858     /// fn f() {
1859     ///    g(); // Since there are no local variables in scope yet, this resolves to the item.
1860     ///    let g = || {};
1861     ///    fn g() {}
1862     ///    g(); // This resolves to the local variable `g` since it shadows the item.
1863     /// }
1864     /// ```
1865     ///
1866     /// Invariant: This must only be called during main resolution, not during
1867     /// import resolution.
1868     fn resolve_ident_in_lexical_scope(&mut self,
1869                                       mut ident: Ident,
1870                                       ns: Namespace,
1871                                       record_used_id: Option<NodeId>,
1872                                       path_span: Span)
1873                                       -> Option<LexicalScopeBinding<'a>> {
1874         let record_used = record_used_id.is_some();
1875         assert!(ns == TypeNS  || ns == ValueNS);
1876         if ns == TypeNS {
1877             ident.span = if ident.name == keywords::SelfType.name() {
1878                 // FIXME(jseyfried) improve `Self` hygiene
1879                 ident.span.with_ctxt(SyntaxContext::empty())
1880             } else {
1881                 ident.span.modern()
1882             }
1883         } else {
1884             ident = ident.modern_and_legacy();
1885         }
1886
1887         // Walk backwards up the ribs in scope.
1888         let mut module = self.graph_root;
1889         for i in (0 .. self.ribs[ns].len()).rev() {
1890             if let Some(def) = self.ribs[ns][i].bindings.get(&ident).cloned() {
1891                 // The ident resolves to a type parameter or local variable.
1892                 return Some(LexicalScopeBinding::Def(
1893                     self.adjust_local_def(ns, i, def, record_used, path_span)
1894                 ));
1895             }
1896
1897             module = match self.ribs[ns][i].kind {
1898                 ModuleRibKind(module) => module,
1899                 MacroDefinition(def) if def == self.macro_def(ident.span.ctxt()) => {
1900                     // If an invocation of this macro created `ident`, give up on `ident`
1901                     // and switch to `ident`'s source from the macro definition.
1902                     ident.span.remove_mark();
1903                     continue
1904                 }
1905                 _ => continue,
1906             };
1907
1908             let item = self.resolve_ident_in_module_unadjusted(
1909                 ModuleOrUniformRoot::Module(module),
1910                 ident,
1911                 ns,
1912                 false,
1913                 record_used,
1914                 path_span,
1915             );
1916             if let Ok(binding) = item {
1917                 // The ident resolves to an item.
1918                 return Some(LexicalScopeBinding::Item(binding));
1919             }
1920
1921             match module.kind {
1922                 ModuleKind::Block(..) => {}, // We can see through blocks
1923                 _ => break,
1924             }
1925         }
1926
1927         ident.span = ident.span.modern();
1928         let mut poisoned = None;
1929         loop {
1930             let opt_module = if let Some(node_id) = record_used_id {
1931                 self.hygienic_lexical_parent_with_compatibility_fallback(module, &mut ident.span,
1932                                                                          node_id, &mut poisoned)
1933             } else {
1934                 self.hygienic_lexical_parent(module, &mut ident.span)
1935             };
1936             module = unwrap_or!(opt_module, break);
1937             let orig_current_module = self.current_module;
1938             self.current_module = module; // Lexical resolutions can never be a privacy error.
1939             let result = self.resolve_ident_in_module_unadjusted(
1940                 ModuleOrUniformRoot::Module(module),
1941                 ident,
1942                 ns,
1943                 false,
1944                 record_used,
1945                 path_span,
1946             );
1947             self.current_module = orig_current_module;
1948
1949             match result {
1950                 Ok(binding) => {
1951                     if let Some(node_id) = poisoned {
1952                         self.session.buffer_lint_with_diagnostic(
1953                             lint::builtin::PROC_MACRO_DERIVE_RESOLUTION_FALLBACK,
1954                             node_id, ident.span,
1955                             &format!("cannot find {} `{}` in this scope", ns.descr(), ident),
1956                             lint::builtin::BuiltinLintDiagnostics::
1957                                 ProcMacroDeriveResolutionFallback(ident.span),
1958                         );
1959                     }
1960                     return Some(LexicalScopeBinding::Item(binding))
1961                 }
1962                 Err(Determined) => continue,
1963                 Err(Undetermined) =>
1964                     span_bug!(ident.span, "undetermined resolution during main resolution pass"),
1965             }
1966         }
1967
1968         if !module.no_implicit_prelude {
1969             // `record_used` means that we don't try to load crates during speculative resolution
1970             if record_used && ns == TypeNS && self.session.extern_prelude.contains(&ident.name) {
1971                 let crate_id = self.crate_loader.process_path_extern(ident.name, ident.span);
1972                 let crate_root = self.get_module(DefId { krate: crate_id, index: CRATE_DEF_INDEX });
1973                 self.populate_module_if_necessary(&crate_root);
1974
1975                 let binding = (crate_root, ty::Visibility::Public,
1976                                ident.span, Mark::root()).to_name_binding(self.arenas);
1977                 return Some(LexicalScopeBinding::Item(binding));
1978             }
1979             if ns == TypeNS && is_known_tool(ident.name) {
1980                 let binding = (Def::ToolMod, ty::Visibility::Public,
1981                                ident.span, Mark::root()).to_name_binding(self.arenas);
1982                 return Some(LexicalScopeBinding::Item(binding));
1983             }
1984             if let Some(prelude) = self.prelude {
1985                 if let Ok(binding) = self.resolve_ident_in_module_unadjusted(
1986                     ModuleOrUniformRoot::Module(prelude),
1987                     ident,
1988                     ns,
1989                     false,
1990                     false,
1991                     path_span,
1992                 ) {
1993                     return Some(LexicalScopeBinding::Item(binding));
1994                 }
1995             }
1996         }
1997
1998         None
1999     }
2000
2001     fn hygienic_lexical_parent(&mut self, module: Module<'a>, span: &mut Span)
2002                                -> Option<Module<'a>> {
2003         if !module.expansion.is_descendant_of(span.ctxt().outer()) {
2004             return Some(self.macro_def_scope(span.remove_mark()));
2005         }
2006
2007         if let ModuleKind::Block(..) = module.kind {
2008             return Some(module.parent.unwrap());
2009         }
2010
2011         None
2012     }
2013
2014     fn hygienic_lexical_parent_with_compatibility_fallback(&mut self, module: Module<'a>,
2015                                                            span: &mut Span, node_id: NodeId,
2016                                                            poisoned: &mut Option<NodeId>)
2017                                                            -> Option<Module<'a>> {
2018         if let module @ Some(..) = self.hygienic_lexical_parent(module, span) {
2019             return module;
2020         }
2021
2022         // We need to support the next case under a deprecation warning
2023         // ```
2024         // struct MyStruct;
2025         // ---- begin: this comes from a proc macro derive
2026         // mod implementation_details {
2027         //     // Note that `MyStruct` is not in scope here.
2028         //     impl SomeTrait for MyStruct { ... }
2029         // }
2030         // ---- end
2031         // ```
2032         // So we have to fall back to the module's parent during lexical resolution in this case.
2033         if let Some(parent) = module.parent {
2034             // Inner module is inside the macro, parent module is outside of the macro.
2035             if module.expansion != parent.expansion &&
2036             module.expansion.is_descendant_of(parent.expansion) {
2037                 // The macro is a proc macro derive
2038                 if module.expansion.looks_like_proc_macro_derive() {
2039                     if parent.expansion.is_descendant_of(span.ctxt().outer()) {
2040                         *poisoned = Some(node_id);
2041                         return module.parent;
2042                     }
2043                 }
2044             }
2045         }
2046
2047         None
2048     }
2049
2050     fn resolve_ident_in_module(&mut self,
2051                                module: ModuleOrUniformRoot<'a>,
2052                                mut ident: Ident,
2053                                ns: Namespace,
2054                                record_used: bool,
2055                                span: Span)
2056                                -> Result<&'a NameBinding<'a>, Determinacy> {
2057         ident.span = ident.span.modern();
2058         let orig_current_module = self.current_module;
2059         if let ModuleOrUniformRoot::Module(module) = module {
2060             if let Some(def) = ident.span.adjust(module.expansion) {
2061                 self.current_module = self.macro_def_scope(def);
2062             }
2063         }
2064         let result = self.resolve_ident_in_module_unadjusted(
2065             module, ident, ns, false, record_used, span,
2066         );
2067         self.current_module = orig_current_module;
2068         result
2069     }
2070
2071     fn resolve_crate_root(&mut self, ident: Ident) -> Module<'a> {
2072         let mut ctxt = ident.span.ctxt();
2073         let mark = if ident.name == keywords::DollarCrate.name() {
2074             // When resolving `$crate` from a `macro_rules!` invoked in a `macro`,
2075             // we don't want to pretend that the `macro_rules!` definition is in the `macro`
2076             // as described in `SyntaxContext::apply_mark`, so we ignore prepended modern marks.
2077             // FIXME: This is only a guess and it doesn't work correctly for `macro_rules!`
2078             // definitions actually produced by `macro` and `macro` definitions produced by
2079             // `macro_rules!`, but at least such configurations are not stable yet.
2080             ctxt = ctxt.modern_and_legacy();
2081             let mut iter = ctxt.marks().into_iter().rev().peekable();
2082             let mut result = None;
2083             // Find the last modern mark from the end if it exists.
2084             while let Some(&(mark, transparency)) = iter.peek() {
2085                 if transparency == Transparency::Opaque {
2086                     result = Some(mark);
2087                     iter.next();
2088                 } else {
2089                     break;
2090                 }
2091             }
2092             // Then find the last legacy mark from the end if it exists.
2093             for (mark, transparency) in iter {
2094                 if transparency == Transparency::SemiTransparent {
2095                     result = Some(mark);
2096                 } else {
2097                     break;
2098                 }
2099             }
2100             result
2101         } else {
2102             ctxt = ctxt.modern();
2103             ctxt.adjust(Mark::root())
2104         };
2105         let module = match mark {
2106             Some(def) => self.macro_def_scope(def),
2107             None => return self.graph_root,
2108         };
2109         self.get_module(DefId { index: CRATE_DEF_INDEX, ..module.normal_ancestor_id })
2110     }
2111
2112     fn resolve_self(&mut self, ctxt: &mut SyntaxContext, module: Module<'a>) -> Module<'a> {
2113         let mut module = self.get_module(module.normal_ancestor_id);
2114         while module.span.ctxt().modern() != *ctxt {
2115             let parent = module.parent.unwrap_or_else(|| self.macro_def_scope(ctxt.remove_mark()));
2116             module = self.get_module(parent.normal_ancestor_id);
2117         }
2118         module
2119     }
2120
2121     // AST resolution
2122     //
2123     // We maintain a list of value ribs and type ribs.
2124     //
2125     // Simultaneously, we keep track of the current position in the module
2126     // graph in the `current_module` pointer. When we go to resolve a name in
2127     // the value or type namespaces, we first look through all the ribs and
2128     // then query the module graph. When we resolve a name in the module
2129     // namespace, we can skip all the ribs (since nested modules are not
2130     // allowed within blocks in Rust) and jump straight to the current module
2131     // graph node.
2132     //
2133     // Named implementations are handled separately. When we find a method
2134     // call, we consult the module node to find all of the implementations in
2135     // scope. This information is lazily cached in the module node. We then
2136     // generate a fake "implementation scope" containing all the
2137     // implementations thus found, for compatibility with old resolve pass.
2138
2139     pub fn with_scope<F, T>(&mut self, id: NodeId, f: F) -> T
2140         where F: FnOnce(&mut Resolver) -> T
2141     {
2142         let id = self.definitions.local_def_id(id);
2143         let module = self.module_map.get(&id).cloned(); // clones a reference
2144         if let Some(module) = module {
2145             // Move down in the graph.
2146             let orig_module = replace(&mut self.current_module, module);
2147             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(module)));
2148             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(module)));
2149
2150             self.finalize_current_module_macro_resolutions();
2151             let ret = f(self);
2152
2153             self.current_module = orig_module;
2154             self.ribs[ValueNS].pop();
2155             self.ribs[TypeNS].pop();
2156             ret
2157         } else {
2158             f(self)
2159         }
2160     }
2161
2162     /// Searches the current set of local scopes for labels. Returns the first non-None label that
2163     /// is returned by the given predicate function
2164     ///
2165     /// Stops after meeting a closure.
2166     fn search_label<P, R>(&self, mut ident: Ident, pred: P) -> Option<R>
2167         where P: Fn(&Rib, Ident) -> Option<R>
2168     {
2169         for rib in self.label_ribs.iter().rev() {
2170             match rib.kind {
2171                 NormalRibKind => {}
2172                 // If an invocation of this macro created `ident`, give up on `ident`
2173                 // and switch to `ident`'s source from the macro definition.
2174                 MacroDefinition(def) => {
2175                     if def == self.macro_def(ident.span.ctxt()) {
2176                         ident.span.remove_mark();
2177                     }
2178                 }
2179                 _ => {
2180                     // Do not resolve labels across function boundary
2181                     return None;
2182                 }
2183             }
2184             let r = pred(rib, ident);
2185             if r.is_some() {
2186                 return r;
2187             }
2188         }
2189         None
2190     }
2191
2192     fn resolve_adt(&mut self, item: &Item, generics: &Generics) {
2193         self.with_current_self_item(item, |this| {
2194             this.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2195                 let item_def_id = this.definitions.local_def_id(item.id);
2196                 if this.session.features_untracked().self_in_typedefs {
2197                     this.with_self_rib(Def::SelfTy(None, Some(item_def_id)), |this| {
2198                         visit::walk_item(this, item);
2199                     });
2200                 } else {
2201                     visit::walk_item(this, item);
2202                 }
2203             });
2204         });
2205     }
2206
2207     fn resolve_item(&mut self, item: &Item) {
2208         let name = item.ident.name;
2209         debug!("(resolving item) resolving {}", name);
2210
2211         match item.node {
2212             ItemKind::Ty(_, ref generics) |
2213             ItemKind::Fn(_, _, ref generics, _) |
2214             ItemKind::Existential(_, ref generics) => {
2215                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind),
2216                                              |this| visit::walk_item(this, item));
2217             }
2218
2219             ItemKind::Enum(_, ref generics) |
2220             ItemKind::Struct(_, ref generics) |
2221             ItemKind::Union(_, ref generics) => {
2222                 self.resolve_adt(item, generics);
2223             }
2224
2225             ItemKind::Impl(.., ref generics, ref opt_trait_ref, ref self_type, ref impl_items) =>
2226                 self.resolve_implementation(generics,
2227                                             opt_trait_ref,
2228                                             &self_type,
2229                                             item.id,
2230                                             impl_items),
2231
2232             ItemKind::Trait(.., ref generics, ref bounds, ref trait_items) => {
2233                 // Create a new rib for the trait-wide type parameters.
2234                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2235                     let local_def_id = this.definitions.local_def_id(item.id);
2236                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2237                         this.visit_generics(generics);
2238                         walk_list!(this, visit_param_bound, bounds);
2239
2240                         for trait_item in trait_items {
2241                             let type_parameters = HasTypeParameters(&trait_item.generics,
2242                                                                     TraitOrImplItemRibKind);
2243                             this.with_type_parameter_rib(type_parameters, |this| {
2244                                 match trait_item.node {
2245                                     TraitItemKind::Const(ref ty, ref default) => {
2246                                         this.visit_ty(ty);
2247
2248                                         // Only impose the restrictions of
2249                                         // ConstRibKind for an actual constant
2250                                         // expression in a provided default.
2251                                         if let Some(ref expr) = *default{
2252                                             this.with_constant_rib(|this| {
2253                                                 this.visit_expr(expr);
2254                                             });
2255                                         }
2256                                     }
2257                                     TraitItemKind::Method(_, _) => {
2258                                         visit::walk_trait_item(this, trait_item)
2259                                     }
2260                                     TraitItemKind::Type(..) => {
2261                                         visit::walk_trait_item(this, trait_item)
2262                                     }
2263                                     TraitItemKind::Macro(_) => {
2264                                         panic!("unexpanded macro in resolve!")
2265                                     }
2266                                 };
2267                             });
2268                         }
2269                     });
2270                 });
2271             }
2272
2273             ItemKind::TraitAlias(ref generics, ref bounds) => {
2274                 // Create a new rib for the trait-wide type parameters.
2275                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2276                     let local_def_id = this.definitions.local_def_id(item.id);
2277                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2278                         this.visit_generics(generics);
2279                         walk_list!(this, visit_param_bound, bounds);
2280                     });
2281                 });
2282             }
2283
2284             ItemKind::Mod(_) | ItemKind::ForeignMod(_) => {
2285                 self.with_scope(item.id, |this| {
2286                     visit::walk_item(this, item);
2287                 });
2288             }
2289
2290             ItemKind::Static(ref ty, _, ref expr) |
2291             ItemKind::Const(ref ty, ref expr) => {
2292                 self.with_item_rib(|this| {
2293                     this.visit_ty(ty);
2294                     this.with_constant_rib(|this| {
2295                         this.visit_expr(expr);
2296                     });
2297                 });
2298             }
2299
2300             ItemKind::Use(ref use_tree) => {
2301                 // Imports are resolved as global by default, add starting root segment.
2302                 let path = Path {
2303                     segments: use_tree.prefix.make_root().into_iter().collect(),
2304                     span: use_tree.span,
2305                 };
2306                 self.resolve_use_tree(item.id, use_tree.span, item.id, use_tree, &path);
2307             }
2308
2309             ItemKind::ExternCrate(_) | ItemKind::MacroDef(..) | ItemKind::GlobalAsm(_) => {
2310                 // do nothing, these are just around to be encoded
2311             }
2312
2313             ItemKind::Mac(_) => panic!("unexpanded macro in resolve!"),
2314         }
2315     }
2316
2317     /// For the most part, use trees are desugared into `ImportDirective` instances
2318     /// when building the reduced graph (see `build_reduced_graph_for_use_tree`). But
2319     /// there is one special case we handle here: an empty nested import like
2320     /// `a::{b::{}}`, which desugares into...no import directives.
2321     fn resolve_use_tree(
2322         &mut self,
2323         root_id: NodeId,
2324         root_span: Span,
2325         id: NodeId,
2326         use_tree: &ast::UseTree,
2327         prefix: &Path,
2328     ) {
2329         match use_tree.kind {
2330             ast::UseTreeKind::Nested(ref items) => {
2331                 let path = Path {
2332                     segments: prefix.segments
2333                         .iter()
2334                         .chain(use_tree.prefix.segments.iter())
2335                         .cloned()
2336                         .collect(),
2337                     span: prefix.span.to(use_tree.prefix.span),
2338                 };
2339
2340                 if items.len() == 0 {
2341                     // Resolve prefix of an import with empty braces (issue #28388).
2342                     self.smart_resolve_path_with_crate_lint(
2343                         id,
2344                         None,
2345                         &path,
2346                         PathSource::ImportPrefix,
2347                         CrateLint::UsePath { root_id, root_span },
2348                     );
2349                 } else {
2350                     for &(ref tree, nested_id) in items {
2351                         self.resolve_use_tree(root_id, root_span, nested_id, tree, &path);
2352                     }
2353                 }
2354             }
2355             ast::UseTreeKind::Simple(..) => {},
2356             ast::UseTreeKind::Glob => {},
2357         }
2358     }
2359
2360     fn with_type_parameter_rib<'b, F>(&'b mut self, type_parameters: TypeParameters<'a, 'b>, f: F)
2361         where F: FnOnce(&mut Resolver)
2362     {
2363         match type_parameters {
2364             HasTypeParameters(generics, rib_kind) => {
2365                 let mut function_type_rib = Rib::new(rib_kind);
2366                 let mut seen_bindings = FxHashMap();
2367                 for param in &generics.params {
2368                     match param.kind {
2369                         GenericParamKind::Lifetime { .. } => {}
2370                         GenericParamKind::Type { .. } => {
2371                             let ident = param.ident.modern();
2372                             debug!("with_type_parameter_rib: {}", param.id);
2373
2374                             if seen_bindings.contains_key(&ident) {
2375                                 let span = seen_bindings.get(&ident).unwrap();
2376                                 let err = ResolutionError::NameAlreadyUsedInTypeParameterList(
2377                                     ident.name,
2378                                     span,
2379                                 );
2380                                 resolve_error(self, param.ident.span, err);
2381                             }
2382                             seen_bindings.entry(ident).or_insert(param.ident.span);
2383
2384                         // Plain insert (no renaming).
2385                         let def = Def::TyParam(self.definitions.local_def_id(param.id));
2386                             function_type_rib.bindings.insert(ident, def);
2387                             self.record_def(param.id, PathResolution::new(def));
2388                         }
2389                     }
2390                 }
2391                 self.ribs[TypeNS].push(function_type_rib);
2392             }
2393
2394             NoTypeParameters => {
2395                 // Nothing to do.
2396             }
2397         }
2398
2399         f(self);
2400
2401         if let HasTypeParameters(..) = type_parameters {
2402             self.ribs[TypeNS].pop();
2403         }
2404     }
2405
2406     fn with_label_rib<F>(&mut self, f: F)
2407         where F: FnOnce(&mut Resolver)
2408     {
2409         self.label_ribs.push(Rib::new(NormalRibKind));
2410         f(self);
2411         self.label_ribs.pop();
2412     }
2413
2414     fn with_item_rib<F>(&mut self, f: F)
2415         where F: FnOnce(&mut Resolver)
2416     {
2417         self.ribs[ValueNS].push(Rib::new(ItemRibKind));
2418         self.ribs[TypeNS].push(Rib::new(ItemRibKind));
2419         f(self);
2420         self.ribs[TypeNS].pop();
2421         self.ribs[ValueNS].pop();
2422     }
2423
2424     fn with_constant_rib<F>(&mut self, f: F)
2425         where F: FnOnce(&mut Resolver)
2426     {
2427         self.ribs[ValueNS].push(Rib::new(ConstantItemRibKind));
2428         self.label_ribs.push(Rib::new(ConstantItemRibKind));
2429         f(self);
2430         self.label_ribs.pop();
2431         self.ribs[ValueNS].pop();
2432     }
2433
2434     fn with_current_self_type<T, F>(&mut self, self_type: &Ty, f: F) -> T
2435         where F: FnOnce(&mut Resolver) -> T
2436     {
2437         // Handle nested impls (inside fn bodies)
2438         let previous_value = replace(&mut self.current_self_type, Some(self_type.clone()));
2439         let result = f(self);
2440         self.current_self_type = previous_value;
2441         result
2442     }
2443
2444     fn with_current_self_item<T, F>(&mut self, self_item: &Item, f: F) -> T
2445         where F: FnOnce(&mut Resolver) -> T
2446     {
2447         let previous_value = replace(&mut self.current_self_item, Some(self_item.id));
2448         let result = f(self);
2449         self.current_self_item = previous_value;
2450         result
2451     }
2452
2453     /// This is called to resolve a trait reference from an `impl` (i.e. `impl Trait for Foo`)
2454     fn with_optional_trait_ref<T, F>(&mut self, opt_trait_ref: Option<&TraitRef>, f: F) -> T
2455         where F: FnOnce(&mut Resolver, Option<DefId>) -> T
2456     {
2457         let mut new_val = None;
2458         let mut new_id = None;
2459         if let Some(trait_ref) = opt_trait_ref {
2460             let path: Vec<_> = trait_ref.path.segments.iter()
2461                 .map(|seg| seg.ident)
2462                 .collect();
2463             let def = self.smart_resolve_path_fragment(
2464                 trait_ref.ref_id,
2465                 None,
2466                 &path,
2467                 trait_ref.path.span,
2468                 PathSource::Trait(AliasPossibility::No),
2469                 CrateLint::SimplePath(trait_ref.ref_id),
2470             ).base_def();
2471             if def != Def::Err {
2472                 new_id = Some(def.def_id());
2473                 let span = trait_ref.path.span;
2474                 if let PathResult::Module(ModuleOrUniformRoot::Module(module)) =
2475                     self.resolve_path(
2476                         None,
2477                         &path,
2478                         None,
2479                         false,
2480                         span,
2481                         CrateLint::SimplePath(trait_ref.ref_id),
2482                     )
2483                 {
2484                     new_val = Some((module, trait_ref.clone()));
2485                 }
2486             }
2487         }
2488         let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
2489         let result = f(self, new_id);
2490         self.current_trait_ref = original_trait_ref;
2491         result
2492     }
2493
2494     fn with_self_rib<F>(&mut self, self_def: Def, f: F)
2495         where F: FnOnce(&mut Resolver)
2496     {
2497         let mut self_type_rib = Rib::new(NormalRibKind);
2498
2499         // plain insert (no renaming, types are not currently hygienic....)
2500         self_type_rib.bindings.insert(keywords::SelfType.ident(), self_def);
2501         self.ribs[TypeNS].push(self_type_rib);
2502         f(self);
2503         self.ribs[TypeNS].pop();
2504     }
2505
2506     fn with_self_struct_ctor_rib<F>(&mut self, impl_id: DefId, f: F)
2507         where F: FnOnce(&mut Resolver)
2508     {
2509         let self_def = Def::SelfCtor(impl_id);
2510         let mut self_type_rib = Rib::new(NormalRibKind);
2511         self_type_rib.bindings.insert(keywords::SelfType.ident(), self_def);
2512         self.ribs[ValueNS].push(self_type_rib);
2513         f(self);
2514         self.ribs[ValueNS].pop();
2515     }
2516
2517     fn resolve_implementation(&mut self,
2518                               generics: &Generics,
2519                               opt_trait_reference: &Option<TraitRef>,
2520                               self_type: &Ty,
2521                               item_id: NodeId,
2522                               impl_items: &[ImplItem]) {
2523         // If applicable, create a rib for the type parameters.
2524         self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2525             // Dummy self type for better errors if `Self` is used in the trait path.
2526             this.with_self_rib(Def::SelfTy(None, None), |this| {
2527                 // Resolve the trait reference, if necessary.
2528                 this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| {
2529                     let item_def_id = this.definitions.local_def_id(item_id);
2530                     this.with_self_rib(Def::SelfTy(trait_id, Some(item_def_id)), |this| {
2531                         if let Some(trait_ref) = opt_trait_reference.as_ref() {
2532                             // Resolve type arguments in the trait path.
2533                             visit::walk_trait_ref(this, trait_ref);
2534                         }
2535                         // Resolve the self type.
2536                         this.visit_ty(self_type);
2537                         // Resolve the type parameters.
2538                         this.visit_generics(generics);
2539                         // Resolve the items within the impl.
2540                         this.with_current_self_type(self_type, |this| {
2541                             this.with_self_struct_ctor_rib(item_def_id, |this| {
2542                                 for impl_item in impl_items {
2543                                     this.resolve_visibility(&impl_item.vis);
2544
2545                                     // We also need a new scope for the impl item type parameters.
2546                                     let type_parameters = HasTypeParameters(&impl_item.generics,
2547                                                                             TraitOrImplItemRibKind);
2548                                     this.with_type_parameter_rib(type_parameters, |this| {
2549                                         use self::ResolutionError::*;
2550                                         match impl_item.node {
2551                                             ImplItemKind::Const(..) => {
2552                                                 // If this is a trait impl, ensure the const
2553                                                 // exists in trait
2554                                                 this.check_trait_item(impl_item.ident,
2555                                                                       ValueNS,
2556                                                                       impl_item.span,
2557                                                     |n, s| ConstNotMemberOfTrait(n, s));
2558                                                 this.with_constant_rib(|this|
2559                                                     visit::walk_impl_item(this, impl_item)
2560                                                 );
2561                                             }
2562                                             ImplItemKind::Method(..) => {
2563                                                 // If this is a trait impl, ensure the method
2564                                                 // exists in trait
2565                                                 this.check_trait_item(impl_item.ident,
2566                                                                       ValueNS,
2567                                                                       impl_item.span,
2568                                                     |n, s| MethodNotMemberOfTrait(n, s));
2569
2570                                                 visit::walk_impl_item(this, impl_item);
2571                                             }
2572                                             ImplItemKind::Type(ref ty) => {
2573                                                 // If this is a trait impl, ensure the type
2574                                                 // exists in trait
2575                                                 this.check_trait_item(impl_item.ident,
2576                                                                       TypeNS,
2577                                                                       impl_item.span,
2578                                                     |n, s| TypeNotMemberOfTrait(n, s));
2579
2580                                                 this.visit_ty(ty);
2581                                             }
2582                                             ImplItemKind::Existential(ref bounds) => {
2583                                                 // If this is a trait impl, ensure the type
2584                                                 // exists in trait
2585                                                 this.check_trait_item(impl_item.ident,
2586                                                                       TypeNS,
2587                                                                       impl_item.span,
2588                                                     |n, s| TypeNotMemberOfTrait(n, s));
2589
2590                                                 for bound in bounds {
2591                                                     this.visit_param_bound(bound);
2592                                                 }
2593                                             }
2594                                             ImplItemKind::Macro(_) =>
2595                                                 panic!("unexpanded macro in resolve!"),
2596                                         }
2597                                     });
2598                                 }
2599                             });
2600                         });
2601                     });
2602                 });
2603             });
2604         });
2605     }
2606
2607     fn check_trait_item<F>(&mut self, ident: Ident, ns: Namespace, span: Span, err: F)
2608         where F: FnOnce(Name, &str) -> ResolutionError
2609     {
2610         // If there is a TraitRef in scope for an impl, then the method must be in the
2611         // trait.
2612         if let Some((module, _)) = self.current_trait_ref {
2613             if self.resolve_ident_in_module(
2614                 ModuleOrUniformRoot::Module(module),
2615                 ident,
2616                 ns,
2617                 false,
2618                 span,
2619             ).is_err() {
2620                 let path = &self.current_trait_ref.as_ref().unwrap().1.path;
2621                 resolve_error(self, span, err(ident.name, &path_names_to_string(path)));
2622             }
2623         }
2624     }
2625
2626     fn resolve_local(&mut self, local: &Local) {
2627         // Resolve the type.
2628         walk_list!(self, visit_ty, &local.ty);
2629
2630         // Resolve the initializer.
2631         walk_list!(self, visit_expr, &local.init);
2632
2633         // Resolve the pattern.
2634         self.resolve_pattern(&local.pat, PatternSource::Let, &mut FxHashMap());
2635     }
2636
2637     // build a map from pattern identifiers to binding-info's.
2638     // this is done hygienically. This could arise for a macro
2639     // that expands into an or-pattern where one 'x' was from the
2640     // user and one 'x' came from the macro.
2641     fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
2642         let mut binding_map = FxHashMap();
2643
2644         pat.walk(&mut |pat| {
2645             if let PatKind::Ident(binding_mode, ident, ref sub_pat) = pat.node {
2646                 if sub_pat.is_some() || match self.def_map.get(&pat.id).map(|res| res.base_def()) {
2647                     Some(Def::Local(..)) => true,
2648                     _ => false,
2649                 } {
2650                     let binding_info = BindingInfo { span: ident.span, binding_mode: binding_mode };
2651                     binding_map.insert(ident, binding_info);
2652                 }
2653             }
2654             true
2655         });
2656
2657         binding_map
2658     }
2659
2660     // check that all of the arms in an or-pattern have exactly the
2661     // same set of bindings, with the same binding modes for each.
2662     fn check_consistent_bindings(&mut self, pats: &[P<Pat>]) {
2663         if pats.is_empty() {
2664             return;
2665         }
2666
2667         let mut missing_vars = FxHashMap();
2668         let mut inconsistent_vars = FxHashMap();
2669         for (i, p) in pats.iter().enumerate() {
2670             let map_i = self.binding_mode_map(&p);
2671
2672             for (j, q) in pats.iter().enumerate() {
2673                 if i == j {
2674                     continue;
2675                 }
2676
2677                 let map_j = self.binding_mode_map(&q);
2678                 for (&key, &binding_i) in &map_i {
2679                     if map_j.len() == 0 {                   // Account for missing bindings when
2680                         let binding_error = missing_vars    // map_j has none.
2681                             .entry(key.name)
2682                             .or_insert(BindingError {
2683                                 name: key.name,
2684                                 origin: BTreeSet::new(),
2685                                 target: BTreeSet::new(),
2686                             });
2687                         binding_error.origin.insert(binding_i.span);
2688                         binding_error.target.insert(q.span);
2689                     }
2690                     for (&key_j, &binding_j) in &map_j {
2691                         match map_i.get(&key_j) {
2692                             None => {  // missing binding
2693                                 let binding_error = missing_vars
2694                                     .entry(key_j.name)
2695                                     .or_insert(BindingError {
2696                                         name: key_j.name,
2697                                         origin: BTreeSet::new(),
2698                                         target: BTreeSet::new(),
2699                                     });
2700                                 binding_error.origin.insert(binding_j.span);
2701                                 binding_error.target.insert(p.span);
2702                             }
2703                             Some(binding_i) => {  // check consistent binding
2704                                 if binding_i.binding_mode != binding_j.binding_mode {
2705                                     inconsistent_vars
2706                                         .entry(key.name)
2707                                         .or_insert((binding_j.span, binding_i.span));
2708                                 }
2709                             }
2710                         }
2711                     }
2712                 }
2713             }
2714         }
2715         let mut missing_vars = missing_vars.iter().collect::<Vec<_>>();
2716         missing_vars.sort();
2717         for (_, v) in missing_vars {
2718             resolve_error(self,
2719                           *v.origin.iter().next().unwrap(),
2720                           ResolutionError::VariableNotBoundInPattern(v));
2721         }
2722         let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
2723         inconsistent_vars.sort();
2724         for (name, v) in inconsistent_vars {
2725             resolve_error(self, v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
2726         }
2727     }
2728
2729     fn resolve_arm(&mut self, arm: &Arm) {
2730         self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2731
2732         let mut bindings_list = FxHashMap();
2733         for pattern in &arm.pats {
2734             self.resolve_pattern(&pattern, PatternSource::Match, &mut bindings_list);
2735         }
2736
2737         // This has to happen *after* we determine which pat_idents are variants
2738         self.check_consistent_bindings(&arm.pats);
2739
2740         match arm.guard {
2741             Some(ast::Guard::If(ref expr)) => self.visit_expr(expr),
2742             _ => {}
2743         }
2744         self.visit_expr(&arm.body);
2745
2746         self.ribs[ValueNS].pop();
2747     }
2748
2749     fn resolve_block(&mut self, block: &Block) {
2750         debug!("(resolving block) entering block");
2751         // Move down in the graph, if there's an anonymous module rooted here.
2752         let orig_module = self.current_module;
2753         let anonymous_module = self.block_map.get(&block.id).cloned(); // clones a reference
2754
2755         let mut num_macro_definition_ribs = 0;
2756         if let Some(anonymous_module) = anonymous_module {
2757             debug!("(resolving block) found anonymous module, moving down");
2758             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2759             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2760             self.current_module = anonymous_module;
2761             self.finalize_current_module_macro_resolutions();
2762         } else {
2763             self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2764         }
2765
2766         // Descend into the block.
2767         for stmt in &block.stmts {
2768             if let ast::StmtKind::Item(ref item) = stmt.node {
2769                 if let ast::ItemKind::MacroDef(..) = item.node {
2770                     num_macro_definition_ribs += 1;
2771                     let def = self.definitions.local_def_id(item.id);
2772                     self.ribs[ValueNS].push(Rib::new(MacroDefinition(def)));
2773                     self.label_ribs.push(Rib::new(MacroDefinition(def)));
2774                 }
2775             }
2776
2777             self.visit_stmt(stmt);
2778         }
2779
2780         // Move back up.
2781         self.current_module = orig_module;
2782         for _ in 0 .. num_macro_definition_ribs {
2783             self.ribs[ValueNS].pop();
2784             self.label_ribs.pop();
2785         }
2786         self.ribs[ValueNS].pop();
2787         if anonymous_module.is_some() {
2788             self.ribs[TypeNS].pop();
2789         }
2790         debug!("(resolving block) leaving block");
2791     }
2792
2793     fn fresh_binding(&mut self,
2794                      ident: Ident,
2795                      pat_id: NodeId,
2796                      outer_pat_id: NodeId,
2797                      pat_src: PatternSource,
2798                      bindings: &mut FxHashMap<Ident, NodeId>)
2799                      -> PathResolution {
2800         // Add the binding to the local ribs, if it
2801         // doesn't already exist in the bindings map. (We
2802         // must not add it if it's in the bindings map
2803         // because that breaks the assumptions later
2804         // passes make about or-patterns.)
2805         let ident = ident.modern_and_legacy();
2806         let mut def = Def::Local(pat_id);
2807         match bindings.get(&ident).cloned() {
2808             Some(id) if id == outer_pat_id => {
2809                 // `Variant(a, a)`, error
2810                 resolve_error(
2811                     self,
2812                     ident.span,
2813                     ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(
2814                         &ident.as_str())
2815                 );
2816             }
2817             Some(..) if pat_src == PatternSource::FnParam => {
2818                 // `fn f(a: u8, a: u8)`, error
2819                 resolve_error(
2820                     self,
2821                     ident.span,
2822                     ResolutionError::IdentifierBoundMoreThanOnceInParameterList(
2823                         &ident.as_str())
2824                 );
2825             }
2826             Some(..) if pat_src == PatternSource::Match ||
2827                         pat_src == PatternSource::IfLet ||
2828                         pat_src == PatternSource::WhileLet => {
2829                 // `Variant1(a) | Variant2(a)`, ok
2830                 // Reuse definition from the first `a`.
2831                 def = self.ribs[ValueNS].last_mut().unwrap().bindings[&ident];
2832             }
2833             Some(..) => {
2834                 span_bug!(ident.span, "two bindings with the same name from \
2835                                        unexpected pattern source {:?}", pat_src);
2836             }
2837             None => {
2838                 // A completely fresh binding, add to the lists if it's valid.
2839                 if ident.name != keywords::Invalid.name() {
2840                     bindings.insert(ident, outer_pat_id);
2841                     self.ribs[ValueNS].last_mut().unwrap().bindings.insert(ident, def);
2842                 }
2843             }
2844         }
2845
2846         PathResolution::new(def)
2847     }
2848
2849     fn resolve_pattern(&mut self,
2850                        pat: &Pat,
2851                        pat_src: PatternSource,
2852                        // Maps idents to the node ID for the
2853                        // outermost pattern that binds them.
2854                        bindings: &mut FxHashMap<Ident, NodeId>) {
2855         // Visit all direct subpatterns of this pattern.
2856         let outer_pat_id = pat.id;
2857         pat.walk(&mut |pat| {
2858             match pat.node {
2859                 PatKind::Ident(bmode, ident, ref opt_pat) => {
2860                     // First try to resolve the identifier as some existing
2861                     // entity, then fall back to a fresh binding.
2862                     let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS,
2863                                                                       None, pat.span)
2864                                       .and_then(LexicalScopeBinding::item);
2865                     let resolution = binding.map(NameBinding::def).and_then(|def| {
2866                         let is_syntactic_ambiguity = opt_pat.is_none() &&
2867                             bmode == BindingMode::ByValue(Mutability::Immutable);
2868                         match def {
2869                             Def::StructCtor(_, CtorKind::Const) |
2870                             Def::VariantCtor(_, CtorKind::Const) |
2871                             Def::Const(..) if is_syntactic_ambiguity => {
2872                                 // Disambiguate in favor of a unit struct/variant
2873                                 // or constant pattern.
2874                                 self.record_use(ident, ValueNS, binding.unwrap());
2875                                 Some(PathResolution::new(def))
2876                             }
2877                             Def::StructCtor(..) | Def::VariantCtor(..) |
2878                             Def::Const(..) | Def::Static(..) => {
2879                                 // This is unambiguously a fresh binding, either syntactically
2880                                 // (e.g. `IDENT @ PAT` or `ref IDENT`) or because `IDENT` resolves
2881                                 // to something unusable as a pattern (e.g. constructor function),
2882                                 // but we still conservatively report an error, see
2883                                 // issues/33118#issuecomment-233962221 for one reason why.
2884                                 resolve_error(
2885                                     self,
2886                                     ident.span,
2887                                     ResolutionError::BindingShadowsSomethingUnacceptable(
2888                                         pat_src.descr(), ident.name, binding.unwrap())
2889                                 );
2890                                 None
2891                             }
2892                             Def::Fn(..) | Def::Err => {
2893                                 // These entities are explicitly allowed
2894                                 // to be shadowed by fresh bindings.
2895                                 None
2896                             }
2897                             def => {
2898                                 span_bug!(ident.span, "unexpected definition for an \
2899                                                        identifier in pattern: {:?}", def);
2900                             }
2901                         }
2902                     }).unwrap_or_else(|| {
2903                         self.fresh_binding(ident, pat.id, outer_pat_id, pat_src, bindings)
2904                     });
2905
2906                     self.record_def(pat.id, resolution);
2907                 }
2908
2909                 PatKind::TupleStruct(ref path, ..) => {
2910                     self.smart_resolve_path(pat.id, None, path, PathSource::TupleStruct);
2911                 }
2912
2913                 PatKind::Path(ref qself, ref path) => {
2914                     self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
2915                 }
2916
2917                 PatKind::Struct(ref path, ..) => {
2918                     self.smart_resolve_path(pat.id, None, path, PathSource::Struct);
2919                 }
2920
2921                 _ => {}
2922             }
2923             true
2924         });
2925
2926         visit::walk_pat(self, pat);
2927     }
2928
2929     // High-level and context dependent path resolution routine.
2930     // Resolves the path and records the resolution into definition map.
2931     // If resolution fails tries several techniques to find likely
2932     // resolution candidates, suggest imports or other help, and report
2933     // errors in user friendly way.
2934     fn smart_resolve_path(&mut self,
2935                           id: NodeId,
2936                           qself: Option<&QSelf>,
2937                           path: &Path,
2938                           source: PathSource)
2939                           -> PathResolution {
2940         self.smart_resolve_path_with_crate_lint(id, qself, path, source, CrateLint::SimplePath(id))
2941     }
2942
2943     /// A variant of `smart_resolve_path` where you also specify extra
2944     /// information about where the path came from; this extra info is
2945     /// sometimes needed for the lint that recommends rewriting
2946     /// absolute paths to `crate`, so that it knows how to frame the
2947     /// suggestion. If you are just resolving a path like `foo::bar`
2948     /// that appears...somewhere, though, then you just want
2949     /// `CrateLint::SimplePath`, which is what `smart_resolve_path`
2950     /// already provides.
2951     fn smart_resolve_path_with_crate_lint(
2952         &mut self,
2953         id: NodeId,
2954         qself: Option<&QSelf>,
2955         path: &Path,
2956         source: PathSource,
2957         crate_lint: CrateLint
2958     ) -> PathResolution {
2959         let segments = &path.segments.iter()
2960             .map(|seg| seg.ident)
2961             .collect::<Vec<_>>();
2962         self.smart_resolve_path_fragment(id, qself, segments, path.span, source, crate_lint)
2963     }
2964
2965     fn smart_resolve_path_fragment(&mut self,
2966                                    id: NodeId,
2967                                    qself: Option<&QSelf>,
2968                                    path: &[Ident],
2969                                    span: Span,
2970                                    source: PathSource,
2971                                    crate_lint: CrateLint)
2972                                    -> PathResolution {
2973         let ident_span = path.last().map_or(span, |ident| ident.span);
2974         let ns = source.namespace();
2975         let is_expected = &|def| source.is_expected(def);
2976         let is_enum_variant = &|def| if let Def::Variant(..) = def { true } else { false };
2977
2978         // Base error is amended with one short label and possibly some longer helps/notes.
2979         let report_errors = |this: &mut Self, def: Option<Def>| {
2980             // Make the base error.
2981             let expected = source.descr_expected();
2982             let path_str = names_to_string(path);
2983             let item_str = path[path.len() - 1];
2984             let code = source.error_code(def.is_some());
2985             let (base_msg, fallback_label, base_span) = if let Some(def) = def {
2986                 (format!("expected {}, found {} `{}`", expected, def.kind_name(), path_str),
2987                  format!("not a {}", expected),
2988                  span)
2989             } else {
2990                 let item_span = path[path.len() - 1].span;
2991                 let (mod_prefix, mod_str) = if path.len() == 1 {
2992                     (String::new(), "this scope".to_string())
2993                 } else if path.len() == 2 && path[0].name == keywords::CrateRoot.name() {
2994                     (String::new(), "the crate root".to_string())
2995                 } else {
2996                     let mod_path = &path[..path.len() - 1];
2997                     let mod_prefix = match this.resolve_path(None, mod_path, Some(TypeNS),
2998                                                              false, span, CrateLint::No) {
2999                         PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3000                             module.def(),
3001                         _ => None,
3002                     }.map_or(String::new(), |def| format!("{} ", def.kind_name()));
3003                     (mod_prefix, format!("`{}`", names_to_string(mod_path)))
3004                 };
3005                 (format!("cannot find {} `{}` in {}{}", expected, item_str, mod_prefix, mod_str),
3006                  format!("not found in {}", mod_str),
3007                  item_span)
3008             };
3009             let code = DiagnosticId::Error(code.into());
3010             let mut err = this.session.struct_span_err_with_code(base_span, &base_msg, code);
3011
3012             // Emit help message for fake-self from other languages like `this`(javascript)
3013             let fake_self: Vec<Ident> = ["this", "my"].iter().map(
3014                 |s| Ident::from_str(*s)
3015             ).collect();
3016             if fake_self.contains(&item_str)
3017                 && this.self_value_is_available(path[0].span, span) {
3018                 err.span_suggestion_with_applicability(
3019                     span,
3020                     "did you mean",
3021                     "self".to_string(),
3022                     Applicability::MaybeIncorrect,
3023                 );
3024             }
3025
3026             // Emit special messages for unresolved `Self` and `self`.
3027             if is_self_type(path, ns) {
3028                 __diagnostic_used!(E0411);
3029                 err.code(DiagnosticId::Error("E0411".into()));
3030                 let available_in = if this.session.features_untracked().self_in_typedefs {
3031                     "impls, traits, and type definitions"
3032                 } else {
3033                     "traits and impls"
3034                 };
3035                 err.span_label(span, format!("`Self` is only available in {}", available_in));
3036                 if this.current_self_item.is_some() && nightly_options::is_nightly_build() {
3037                     err.help("add #![feature(self_in_typedefs)] to the crate attributes \
3038                               to enable");
3039                 }
3040                 return (err, Vec::new());
3041             }
3042             if is_self_value(path, ns) {
3043                 __diagnostic_used!(E0424);
3044                 err.code(DiagnosticId::Error("E0424".into()));
3045                 err.span_label(span, format!("`self` value is a keyword \
3046                                                only available in \
3047                                                methods with `self` parameter"));
3048                 return (err, Vec::new());
3049             }
3050
3051             // Try to lookup the name in more relaxed fashion for better error reporting.
3052             let ident = *path.last().unwrap();
3053             let candidates = this.lookup_import_candidates(ident.name, ns, is_expected);
3054             if candidates.is_empty() && is_expected(Def::Enum(DefId::local(CRATE_DEF_INDEX))) {
3055                 let enum_candidates =
3056                     this.lookup_import_candidates(ident.name, ns, is_enum_variant);
3057                 let mut enum_candidates = enum_candidates.iter()
3058                     .map(|suggestion| import_candidate_to_paths(&suggestion)).collect::<Vec<_>>();
3059                 enum_candidates.sort();
3060                 for (sp, variant_path, enum_path) in enum_candidates {
3061                     if sp.is_dummy() {
3062                         let msg = format!("there is an enum variant `{}`, \
3063                                         try using `{}`?",
3064                                         variant_path,
3065                                         enum_path);
3066                         err.help(&msg);
3067                     } else {
3068                         err.span_suggestion_with_applicability(
3069                             span,
3070                             "you can try using the variant's enum",
3071                             enum_path,
3072                             Applicability::MachineApplicable,
3073                         );
3074                     }
3075                 }
3076             }
3077             if path.len() == 1 && this.self_type_is_available(span) {
3078                 if let Some(candidate) = this.lookup_assoc_candidate(ident, ns, is_expected) {
3079                     let self_is_available = this.self_value_is_available(path[0].span, span);
3080                     match candidate {
3081                         AssocSuggestion::Field => {
3082                             err.span_suggestion_with_applicability(
3083                                 span,
3084                                 "try",
3085                                 format!("self.{}", path_str),
3086                                 Applicability::MachineApplicable,
3087                             );
3088                             if !self_is_available {
3089                                 err.span_label(span, format!("`self` value is a keyword \
3090                                                                only available in \
3091                                                                methods with `self` parameter"));
3092                             }
3093                         }
3094                         AssocSuggestion::MethodWithSelf if self_is_available => {
3095                             err.span_suggestion_with_applicability(
3096                                 span,
3097                                 "try",
3098                                 format!("self.{}", path_str),
3099                                 Applicability::MachineApplicable,
3100                             );
3101                         }
3102                         AssocSuggestion::MethodWithSelf | AssocSuggestion::AssocItem => {
3103                             err.span_suggestion_with_applicability(
3104                                 span,
3105                                 "try",
3106                                 format!("Self::{}", path_str),
3107                                 Applicability::MachineApplicable,
3108                             );
3109                         }
3110                     }
3111                     return (err, candidates);
3112                 }
3113             }
3114
3115             let mut levenshtein_worked = false;
3116
3117             // Try Levenshtein.
3118             if let Some(candidate) = this.lookup_typo_candidate(path, ns, is_expected, span) {
3119                 err.span_label(ident_span, format!("did you mean `{}`?", candidate));
3120                 levenshtein_worked = true;
3121             }
3122
3123             // Try context dependent help if relaxed lookup didn't work.
3124             if let Some(def) = def {
3125                 match (def, source) {
3126                     (Def::Macro(..), _) => {
3127                         err.span_label(span, format!("did you mean `{}!(...)`?", path_str));
3128                         return (err, candidates);
3129                     }
3130                     (Def::TyAlias(..), PathSource::Trait(_)) => {
3131                         err.span_label(span, "type aliases cannot be used for traits");
3132                         return (err, candidates);
3133                     }
3134                     (Def::Mod(..), PathSource::Expr(Some(parent))) => match parent.node {
3135                         ExprKind::Field(_, ident) => {
3136                             err.span_label(parent.span, format!("did you mean `{}::{}`?",
3137                                                                  path_str, ident));
3138                             return (err, candidates);
3139                         }
3140                         ExprKind::MethodCall(ref segment, ..) => {
3141                             err.span_label(parent.span, format!("did you mean `{}::{}(...)`?",
3142                                                                  path_str, segment.ident));
3143                             return (err, candidates);
3144                         }
3145                         _ => {}
3146                     },
3147                     (Def::Enum(..), PathSource::TupleStruct)
3148                         | (Def::Enum(..), PathSource::Expr(..))  => {
3149                         if let Some(variants) = this.collect_enum_variants(def) {
3150                             err.note(&format!("did you mean to use one \
3151                                                of the following variants?\n{}",
3152                                 variants.iter()
3153                                     .map(|suggestion| path_names_to_string(suggestion))
3154                                     .map(|suggestion| format!("- `{}`", suggestion))
3155                                     .collect::<Vec<_>>()
3156                                     .join("\n")));
3157
3158                         } else {
3159                             err.note("did you mean to use one of the enum's variants?");
3160                         }
3161                         return (err, candidates);
3162                     },
3163                     (Def::Struct(def_id), _) if ns == ValueNS => {
3164                         if let Some((ctor_def, ctor_vis))
3165                                 = this.struct_constructors.get(&def_id).cloned() {
3166                             let accessible_ctor = this.is_accessible(ctor_vis);
3167                             if is_expected(ctor_def) && !accessible_ctor {
3168                                 err.span_label(span, format!("constructor is not visible \
3169                                                               here due to private fields"));
3170                             }
3171                         } else {
3172                             // HACK(estebank): find a better way to figure out that this was a
3173                             // parser issue where a struct literal is being used on an expression
3174                             // where a brace being opened means a block is being started. Look
3175                             // ahead for the next text to see if `span` is followed by a `{`.
3176                             let sm = this.session.source_map();
3177                             let mut sp = span;
3178                             loop {
3179                                 sp = sm.next_point(sp);
3180                                 match sm.span_to_snippet(sp) {
3181                                     Ok(ref snippet) => {
3182                                         if snippet.chars().any(|c| { !c.is_whitespace() }) {
3183                                             break;
3184                                         }
3185                                     }
3186                                     _ => break,
3187                                 }
3188                             }
3189                             let followed_by_brace = match sm.span_to_snippet(sp) {
3190                                 Ok(ref snippet) if snippet == "{" => true,
3191                                 _ => false,
3192                             };
3193                             match source {
3194                                 PathSource::Expr(Some(parent)) => {
3195                                     match parent.node {
3196                                         ExprKind::MethodCall(ref path_assignment, _)  => {
3197                                             err.span_suggestion_with_applicability(
3198                                                 sm.start_point(parent.span)
3199                                                   .to(path_assignment.ident.span),
3200                                                 "use `::` to access an associated function",
3201                                                 format!("{}::{}",
3202                                                         path_str,
3203                                                         path_assignment.ident),
3204                                                 Applicability::MaybeIncorrect
3205                                             );
3206                                             return (err, candidates);
3207                                         },
3208                                         _ => {
3209                                             err.span_label(
3210                                                 span,
3211                                                 format!("did you mean `{} {{ /* fields */ }}`?",
3212                                                         path_str),
3213                                             );
3214                                             return (err, candidates);
3215                                         },
3216                                     }
3217                                 },
3218                                 PathSource::Expr(None) if followed_by_brace == true => {
3219                                     err.span_label(
3220                                         span,
3221                                         format!("did you mean `({} {{ /* fields */ }})`?",
3222                                                 path_str),
3223                                     );
3224                                     return (err, candidates);
3225                                 },
3226                                 _ => {
3227                                     err.span_label(
3228                                         span,
3229                                         format!("did you mean `{} {{ /* fields */ }}`?",
3230                                                 path_str),
3231                                     );
3232                                     return (err, candidates);
3233                                 },
3234                             }
3235                         }
3236                         return (err, candidates);
3237                     }
3238                     (Def::Union(..), _) |
3239                     (Def::Variant(..), _) |
3240                     (Def::VariantCtor(_, CtorKind::Fictive), _) if ns == ValueNS => {
3241                         err.span_label(span, format!("did you mean `{} {{ /* fields */ }}`?",
3242                                                      path_str));
3243                         return (err, candidates);
3244                     }
3245                     (Def::SelfTy(..), _) if ns == ValueNS => {
3246                         err.span_label(span, fallback_label);
3247                         err.note("can't use `Self` as a constructor, you must use the \
3248                                   implemented struct");
3249                         return (err, candidates);
3250                     }
3251                     (Def::TyAlias(_), _) | (Def::AssociatedTy(..), _) if ns == ValueNS => {
3252                         err.note("can't use a type alias as a constructor");
3253                         return (err, candidates);
3254                     }
3255                     _ => {}
3256                 }
3257             }
3258
3259             // Fallback label.
3260             if !levenshtein_worked {
3261                 err.span_label(base_span, fallback_label);
3262                 this.type_ascription_suggestion(&mut err, base_span);
3263             }
3264             (err, candidates)
3265         };
3266         let report_errors = |this: &mut Self, def: Option<Def>| {
3267             let (err, candidates) = report_errors(this, def);
3268             let def_id = this.current_module.normal_ancestor_id;
3269             let node_id = this.definitions.as_local_node_id(def_id).unwrap();
3270             let better = def.is_some();
3271             this.use_injections.push(UseError { err, candidates, node_id, better });
3272             err_path_resolution()
3273         };
3274
3275         let resolution = match self.resolve_qpath_anywhere(
3276             id,
3277             qself,
3278             path,
3279             ns,
3280             span,
3281             source.defer_to_typeck(),
3282             source.global_by_default(),
3283             crate_lint,
3284         ) {
3285             Some(resolution) if resolution.unresolved_segments() == 0 => {
3286                 if is_expected(resolution.base_def()) || resolution.base_def() == Def::Err {
3287                     resolution
3288                 } else {
3289                     // Add a temporary hack to smooth the transition to new struct ctor
3290                     // visibility rules. See #38932 for more details.
3291                     let mut res = None;
3292                     if let Def::Struct(def_id) = resolution.base_def() {
3293                         if let Some((ctor_def, ctor_vis))
3294                                 = self.struct_constructors.get(&def_id).cloned() {
3295                             if is_expected(ctor_def) && self.is_accessible(ctor_vis) {
3296                                 let lint = lint::builtin::LEGACY_CONSTRUCTOR_VISIBILITY;
3297                                 self.session.buffer_lint(lint, id, span,
3298                                     "private struct constructors are not usable through \
3299                                      re-exports in outer modules",
3300                                 );
3301                                 res = Some(PathResolution::new(ctor_def));
3302                             }
3303                         }
3304                     }
3305
3306                     res.unwrap_or_else(|| report_errors(self, Some(resolution.base_def())))
3307                 }
3308             }
3309             Some(resolution) if source.defer_to_typeck() => {
3310                 // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
3311                 // or `<T>::A::B`. If `B` should be resolved in value namespace then
3312                 // it needs to be added to the trait map.
3313                 if ns == ValueNS {
3314                     let item_name = *path.last().unwrap();
3315                     let traits = self.get_traits_containing_item(item_name, ns);
3316                     self.trait_map.insert(id, traits);
3317                 }
3318                 resolution
3319             }
3320             _ => report_errors(self, None)
3321         };
3322
3323         if let PathSource::TraitItem(..) = source {} else {
3324             // Avoid recording definition of `A::B` in `<T as A>::B::C`.
3325             self.record_def(id, resolution);
3326         }
3327         resolution
3328     }
3329
3330     fn type_ascription_suggestion(&self,
3331                                   err: &mut DiagnosticBuilder,
3332                                   base_span: Span) {
3333         debug!("type_ascription_suggetion {:?}", base_span);
3334         let cm = self.session.source_map();
3335         debug!("self.current_type_ascription {:?}", self.current_type_ascription);
3336         if let Some(sp) = self.current_type_ascription.last() {
3337             let mut sp = *sp;
3338             loop {  // try to find the `:`, bail on first non-':'/non-whitespace
3339                 sp = cm.next_point(sp);
3340                 if let Ok(snippet) = cm.span_to_snippet(sp.to(cm.next_point(sp))) {
3341                     debug!("snippet {:?}", snippet);
3342                     let line_sp = cm.lookup_char_pos(sp.hi()).line;
3343                     let line_base_sp = cm.lookup_char_pos(base_span.lo()).line;
3344                     debug!("{:?} {:?}", line_sp, line_base_sp);
3345                     if snippet == ":" {
3346                         err.span_label(base_span,
3347                                        "expecting a type here because of type ascription");
3348                         if line_sp != line_base_sp {
3349                             err.span_suggestion_short_with_applicability(
3350                                 sp,
3351                                 "did you mean to use `;` here instead?",
3352                                 ";".to_string(),
3353                                 Applicability::MaybeIncorrect,
3354                             );
3355                         }
3356                         break;
3357                     } else if snippet.trim().len() != 0  {
3358                         debug!("tried to find type ascription `:` token, couldn't find it");
3359                         break;
3360                     }
3361                 } else {
3362                     break;
3363                 }
3364             }
3365         }
3366     }
3367
3368     fn self_type_is_available(&mut self, span: Span) -> bool {
3369         let binding = self.resolve_ident_in_lexical_scope(keywords::SelfType.ident(),
3370                                                           TypeNS, None, span);
3371         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3372     }
3373
3374     fn self_value_is_available(&mut self, self_span: Span, path_span: Span) -> bool {
3375         let ident = Ident::new(keywords::SelfValue.name(), self_span);
3376         let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, None, path_span);
3377         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3378     }
3379
3380     // Resolve in alternative namespaces if resolution in the primary namespace fails.
3381     fn resolve_qpath_anywhere(&mut self,
3382                               id: NodeId,
3383                               qself: Option<&QSelf>,
3384                               path: &[Ident],
3385                               primary_ns: Namespace,
3386                               span: Span,
3387                               defer_to_typeck: bool,
3388                               global_by_default: bool,
3389                               crate_lint: CrateLint)
3390                               -> Option<PathResolution> {
3391         let mut fin_res = None;
3392         // FIXME: can't resolve paths in macro namespace yet, macros are
3393         // processed by the little special hack below.
3394         for (i, ns) in [primary_ns, TypeNS, ValueNS, /*MacroNS*/].iter().cloned().enumerate() {
3395             if i == 0 || ns != primary_ns {
3396                 match self.resolve_qpath(id, qself, path, ns, span, global_by_default, crate_lint) {
3397                     // If defer_to_typeck, then resolution > no resolution,
3398                     // otherwise full resolution > partial resolution > no resolution.
3399                     Some(res) if res.unresolved_segments() == 0 || defer_to_typeck =>
3400                         return Some(res),
3401                     res => if fin_res.is_none() { fin_res = res },
3402                 };
3403             }
3404         }
3405         if primary_ns != MacroNS &&
3406            (self.macro_names.contains(&path[0].modern()) ||
3407             self.builtin_macros.get(&path[0].name).cloned()
3408                                .and_then(NameBinding::macro_kind) == Some(MacroKind::Bang) ||
3409             self.macro_use_prelude.get(&path[0].name).cloned()
3410                                   .and_then(NameBinding::macro_kind) == Some(MacroKind::Bang)) {
3411             // Return some dummy definition, it's enough for error reporting.
3412             return Some(
3413                 PathResolution::new(Def::Macro(DefId::local(CRATE_DEF_INDEX), MacroKind::Bang))
3414             );
3415         }
3416         fin_res
3417     }
3418
3419     /// Handles paths that may refer to associated items.
3420     fn resolve_qpath(&mut self,
3421                      id: NodeId,
3422                      qself: Option<&QSelf>,
3423                      path: &[Ident],
3424                      ns: Namespace,
3425                      span: Span,
3426                      global_by_default: bool,
3427                      crate_lint: CrateLint)
3428                      -> Option<PathResolution> {
3429         debug!(
3430             "resolve_qpath(id={:?}, qself={:?}, path={:?}, \
3431              ns={:?}, span={:?}, global_by_default={:?})",
3432             id,
3433             qself,
3434             path,
3435             ns,
3436             span,
3437             global_by_default,
3438         );
3439
3440         if let Some(qself) = qself {
3441             if qself.position == 0 {
3442                 // This is a case like `<T>::B`, where there is no
3443                 // trait to resolve.  In that case, we leave the `B`
3444                 // segment to be resolved by type-check.
3445                 return Some(PathResolution::with_unresolved_segments(
3446                     Def::Mod(DefId::local(CRATE_DEF_INDEX)), path.len()
3447                 ));
3448             }
3449
3450             // Make sure `A::B` in `<T as A::B>::C` is a trait item.
3451             //
3452             // Currently, `path` names the full item (`A::B::C`, in
3453             // our example).  so we extract the prefix of that that is
3454             // the trait (the slice upto and including
3455             // `qself.position`). And then we recursively resolve that,
3456             // but with `qself` set to `None`.
3457             //
3458             // However, setting `qself` to none (but not changing the
3459             // span) loses the information about where this path
3460             // *actually* appears, so for the purposes of the crate
3461             // lint we pass along information that this is the trait
3462             // name from a fully qualified path, and this also
3463             // contains the full span (the `CrateLint::QPathTrait`).
3464             let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
3465             let res = self.smart_resolve_path_fragment(
3466                 id,
3467                 None,
3468                 &path[..qself.position + 1],
3469                 span,
3470                 PathSource::TraitItem(ns),
3471                 CrateLint::QPathTrait {
3472                     qpath_id: id,
3473                     qpath_span: qself.path_span,
3474                 },
3475             );
3476
3477             // The remaining segments (the `C` in our example) will
3478             // have to be resolved by type-check, since that requires doing
3479             // trait resolution.
3480             return Some(PathResolution::with_unresolved_segments(
3481                 res.base_def(), res.unresolved_segments() + path.len() - qself.position - 1
3482             ));
3483         }
3484
3485         let result = match self.resolve_path(
3486             None,
3487             &path,
3488             Some(ns),
3489             true,
3490             span,
3491             crate_lint,
3492         ) {
3493             PathResult::NonModule(path_res) => path_res,
3494             PathResult::Module(ModuleOrUniformRoot::Module(module)) if !module.is_normal() => {
3495                 PathResolution::new(module.def().unwrap())
3496             }
3497             // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
3498             // don't report an error right away, but try to fallback to a primitive type.
3499             // So, we are still able to successfully resolve something like
3500             //
3501             // use std::u8; // bring module u8 in scope
3502             // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
3503             //     u8::max_value() // OK, resolves to associated function <u8>::max_value,
3504             //                     // not to non-existent std::u8::max_value
3505             // }
3506             //
3507             // Such behavior is required for backward compatibility.
3508             // The same fallback is used when `a` resolves to nothing.
3509             PathResult::Module(ModuleOrUniformRoot::Module(_)) |
3510             PathResult::Failed(..)
3511                     if (ns == TypeNS || path.len() > 1) &&
3512                        self.primitive_type_table.primitive_types
3513                            .contains_key(&path[0].name) => {
3514                 let prim = self.primitive_type_table.primitive_types[&path[0].name];
3515                 PathResolution::with_unresolved_segments(Def::PrimTy(prim), path.len() - 1)
3516             }
3517             PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3518                 PathResolution::new(module.def().unwrap()),
3519             PathResult::Failed(span, msg, false) => {
3520                 resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
3521                 err_path_resolution()
3522             }
3523             PathResult::Module(ModuleOrUniformRoot::UniformRoot(_)) |
3524             PathResult::Failed(..) => return None,
3525             PathResult::Indeterminate => bug!("indetermined path result in resolve_qpath"),
3526         };
3527
3528         if path.len() > 1 && !global_by_default && result.base_def() != Def::Err &&
3529            path[0].name != keywords::CrateRoot.name() &&
3530            path[0].name != keywords::DollarCrate.name() {
3531             let unqualified_result = {
3532                 match self.resolve_path(
3533                     None,
3534                     &[*path.last().unwrap()],
3535                     Some(ns),
3536                     false,
3537                     span,
3538                     CrateLint::No,
3539                 ) {
3540                     PathResult::NonModule(path_res) => path_res.base_def(),
3541                     PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3542                         module.def().unwrap(),
3543                     _ => return Some(result),
3544                 }
3545             };
3546             if result.base_def() == unqualified_result {
3547                 let lint = lint::builtin::UNUSED_QUALIFICATIONS;
3548                 self.session.buffer_lint(lint, id, span, "unnecessary qualification")
3549             }
3550         }
3551
3552         Some(result)
3553     }
3554
3555     fn resolve_path(
3556         &mut self,
3557         base_module: Option<ModuleOrUniformRoot<'a>>,
3558         path: &[Ident],
3559         opt_ns: Option<Namespace>, // `None` indicates a module path
3560         record_used: bool,
3561         path_span: Span,
3562         crate_lint: CrateLint,
3563     ) -> PathResult<'a> {
3564         let parent_scope = ParentScope { module: self.current_module, ..self.dummy_parent_scope() };
3565         self.resolve_path_with_parent_scope(base_module, path, opt_ns, &parent_scope,
3566                                             record_used, path_span, crate_lint)
3567     }
3568
3569     fn resolve_path_with_parent_scope(
3570         &mut self,
3571         base_module: Option<ModuleOrUniformRoot<'a>>,
3572         path: &[Ident],
3573         opt_ns: Option<Namespace>, // `None` indicates a module path
3574         parent_scope: &ParentScope<'a>,
3575         record_used: bool,
3576         path_span: Span,
3577         crate_lint: CrateLint,
3578     ) -> PathResult<'a> {
3579         let mut module = base_module;
3580         let mut allow_super = true;
3581         let mut second_binding = None;
3582         self.current_module = parent_scope.module;
3583
3584         debug!(
3585             "resolve_path(path={:?}, opt_ns={:?}, record_used={:?}, \
3586              path_span={:?}, crate_lint={:?})",
3587             path,
3588             opt_ns,
3589             record_used,
3590             path_span,
3591             crate_lint,
3592         );
3593
3594         for (i, &ident) in path.iter().enumerate() {
3595             debug!("resolve_path ident {} {:?}", i, ident);
3596             let is_last = i == path.len() - 1;
3597             let ns = if is_last { opt_ns.unwrap_or(TypeNS) } else { TypeNS };
3598             let name = ident.name;
3599
3600             allow_super &= ns == TypeNS &&
3601                 (name == keywords::SelfValue.name() ||
3602                  name == keywords::Super.name());
3603
3604             if ns == TypeNS {
3605                 if allow_super && name == keywords::Super.name() {
3606                     let mut ctxt = ident.span.ctxt().modern();
3607                     let self_module = match i {
3608                         0 => Some(self.resolve_self(&mut ctxt, self.current_module)),
3609                         _ => match module {
3610                             Some(ModuleOrUniformRoot::Module(module)) => Some(module),
3611                             _ => None,
3612                         },
3613                     };
3614                     if let Some(self_module) = self_module {
3615                         if let Some(parent) = self_module.parent {
3616                             module = Some(ModuleOrUniformRoot::Module(
3617                                 self.resolve_self(&mut ctxt, parent)));
3618                             continue;
3619                         }
3620                     }
3621                     let msg = "There are too many initial `super`s.".to_string();
3622                     return PathResult::Failed(ident.span, msg, false);
3623                 }
3624                 if i == 0 {
3625                     if name == keywords::SelfValue.name() {
3626                         let mut ctxt = ident.span.ctxt().modern();
3627                         module = Some(ModuleOrUniformRoot::Module(
3628                             self.resolve_self(&mut ctxt, self.current_module)));
3629                         continue;
3630                     }
3631                     if name == keywords::Extern.name() ||
3632                        name == keywords::CrateRoot.name() &&
3633                        self.session.rust_2018() {
3634                         module = Some(ModuleOrUniformRoot::UniformRoot(name));
3635                         continue;
3636                     }
3637                     if name == keywords::CrateRoot.name() ||
3638                        name == keywords::Crate.name() ||
3639                        name == keywords::DollarCrate.name() {
3640                         // `::a::b`, `crate::a::b` or `$crate::a::b`
3641                         module = Some(ModuleOrUniformRoot::Module(
3642                             self.resolve_crate_root(ident)));
3643                         continue;
3644                     }
3645                 }
3646             }
3647
3648             // Report special messages for path segment keywords in wrong positions.
3649             if ident.is_path_segment_keyword() && i != 0 {
3650                 let name_str = if name == keywords::CrateRoot.name() {
3651                     "crate root".to_string()
3652                 } else {
3653                     format!("`{}`", name)
3654                 };
3655                 let msg = if i == 1 && path[0].name == keywords::CrateRoot.name() {
3656                     format!("global paths cannot start with {}", name_str)
3657                 } else {
3658                     format!("{} in paths can only be used in start position", name_str)
3659                 };
3660                 return PathResult::Failed(ident.span, msg, false);
3661             }
3662
3663             let binding = if let Some(module) = module {
3664                 self.resolve_ident_in_module(module, ident, ns, record_used, path_span)
3665             } else if opt_ns == Some(MacroNS) {
3666                 assert!(ns == TypeNS);
3667                 self.resolve_lexical_macro_path_segment(ident, ns, None, parent_scope, record_used,
3668                                                         record_used, path_span).map(|(b, _)| b)
3669             } else {
3670                 let record_used_id =
3671                     if record_used { crate_lint.node_id().or(Some(CRATE_NODE_ID)) } else { None };
3672                 match self.resolve_ident_in_lexical_scope(ident, ns, record_used_id, path_span) {
3673                     // we found a locally-imported or available item/module
3674                     Some(LexicalScopeBinding::Item(binding)) => Ok(binding),
3675                     // we found a local variable or type param
3676                     Some(LexicalScopeBinding::Def(def))
3677                             if opt_ns == Some(TypeNS) || opt_ns == Some(ValueNS) => {
3678                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3679                             def, path.len() - 1
3680                         ));
3681                     }
3682                     _ => Err(if record_used { Determined } else { Undetermined }),
3683                 }
3684             };
3685
3686             match binding {
3687                 Ok(binding) => {
3688                     if i == 1 {
3689                         second_binding = Some(binding);
3690                     }
3691                     let def = binding.def();
3692                     let maybe_assoc = opt_ns != Some(MacroNS) && PathSource::Type.is_expected(def);
3693                     if let Some(next_module) = binding.module() {
3694                         module = Some(ModuleOrUniformRoot::Module(next_module));
3695                     } else if def == Def::ToolMod && i + 1 != path.len() {
3696                         let def = Def::NonMacroAttr(NonMacroAttrKind::Tool);
3697                         return PathResult::NonModule(PathResolution::new(def));
3698                     } else if def == Def::Err {
3699                         return PathResult::NonModule(err_path_resolution());
3700                     } else if opt_ns.is_some() && (is_last || maybe_assoc) {
3701                         self.lint_if_path_starts_with_module(
3702                             crate_lint,
3703                             path,
3704                             path_span,
3705                             second_binding,
3706                         );
3707                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3708                             def, path.len() - i - 1
3709                         ));
3710                     } else {
3711                         return PathResult::Failed(ident.span,
3712                                                   format!("Not a module `{}`", ident),
3713                                                   is_last);
3714                     }
3715                 }
3716                 Err(Undetermined) => return PathResult::Indeterminate,
3717                 Err(Determined) => {
3718                     if let Some(ModuleOrUniformRoot::Module(module)) = module {
3719                         if opt_ns.is_some() && !module.is_normal() {
3720                             return PathResult::NonModule(PathResolution::with_unresolved_segments(
3721                                 module.def().unwrap(), path.len() - i
3722                             ));
3723                         }
3724                     }
3725                     let module_def = match module {
3726                         Some(ModuleOrUniformRoot::Module(module)) => module.def(),
3727                         _ => None,
3728                     };
3729                     let msg = if module_def == self.graph_root.def() {
3730                         let is_mod = |def| match def { Def::Mod(..) => true, _ => false };
3731                         let mut candidates =
3732                             self.lookup_import_candidates(name, TypeNS, is_mod);
3733                         candidates.sort_by_cached_key(|c| {
3734                             (c.path.segments.len(), c.path.to_string())
3735                         });
3736                         if let Some(candidate) = candidates.get(0) {
3737                             format!("Did you mean `{}`?", candidate.path)
3738                         } else {
3739                             format!("Maybe a missing `extern crate {};`?", ident)
3740                         }
3741                     } else if i == 0 {
3742                         format!("Use of undeclared type or module `{}`", ident)
3743                     } else {
3744                         format!("Could not find `{}` in `{}`", ident, path[i - 1])
3745                     };
3746                     return PathResult::Failed(ident.span, msg, is_last);
3747                 }
3748             }
3749         }
3750
3751         self.lint_if_path_starts_with_module(crate_lint, path, path_span, second_binding);
3752
3753         PathResult::Module(module.unwrap_or_else(|| {
3754             span_bug!(path_span, "resolve_path: empty(?) path {:?} has no module", path);
3755         }))
3756
3757     }
3758
3759     fn lint_if_path_starts_with_module(
3760         &self,
3761         crate_lint: CrateLint,
3762         path: &[Ident],
3763         path_span: Span,
3764         second_binding: Option<&NameBinding>,
3765     ) {
3766         // In the 2018 edition this lint is a hard error, so nothing to do
3767         if self.session.rust_2018() {
3768             return
3769         }
3770
3771         let (diag_id, diag_span) = match crate_lint {
3772             CrateLint::No => return,
3773             CrateLint::SimplePath(id) => (id, path_span),
3774             CrateLint::UsePath { root_id, root_span } => (root_id, root_span),
3775             CrateLint::QPathTrait { qpath_id, qpath_span } => (qpath_id, qpath_span),
3776         };
3777
3778         let first_name = match path.get(0) {
3779             Some(ident) => ident.name,
3780             None => return,
3781         };
3782
3783         // We're only interested in `use` paths which should start with
3784         // `{{root}}` or `extern` currently.
3785         if first_name != keywords::Extern.name() && first_name != keywords::CrateRoot.name() {
3786             return
3787         }
3788
3789         match path.get(1) {
3790             // If this import looks like `crate::...` it's already good
3791             Some(ident) if ident.name == keywords::Crate.name() => return,
3792             // Otherwise go below to see if it's an extern crate
3793             Some(_) => {}
3794             // If the path has length one (and it's `CrateRoot` most likely)
3795             // then we don't know whether we're gonna be importing a crate or an
3796             // item in our crate. Defer this lint to elsewhere
3797             None => return,
3798         }
3799
3800         // If the first element of our path was actually resolved to an
3801         // `ExternCrate` (also used for `crate::...`) then no need to issue a
3802         // warning, this looks all good!
3803         if let Some(binding) = second_binding {
3804             if let NameBindingKind::Import { directive: d, .. } = binding.kind {
3805                 // Careful: we still want to rewrite paths from
3806                 // renamed extern crates.
3807                 if let ImportDirectiveSubclass::ExternCrate(None) = d.subclass {
3808                     return
3809                 }
3810             }
3811         }
3812
3813         let diag = lint::builtin::BuiltinLintDiagnostics
3814             ::AbsPathWithModule(diag_span);
3815         self.session.buffer_lint_with_diagnostic(
3816             lint::builtin::ABSOLUTE_PATHS_NOT_STARTING_WITH_CRATE,
3817             diag_id, diag_span,
3818             "absolute paths must start with `self`, `super`, \
3819             `crate`, or an external crate name in the 2018 edition",
3820             diag);
3821     }
3822
3823     // Resolve a local definition, potentially adjusting for closures.
3824     fn adjust_local_def(&mut self,
3825                         ns: Namespace,
3826                         rib_index: usize,
3827                         mut def: Def,
3828                         record_used: bool,
3829                         span: Span) -> Def {
3830         let ribs = &self.ribs[ns][rib_index + 1..];
3831
3832         // An invalid forward use of a type parameter from a previous default.
3833         if let ForwardTyParamBanRibKind = self.ribs[ns][rib_index].kind {
3834             if record_used {
3835                 resolve_error(self, span, ResolutionError::ForwardDeclaredTyParam);
3836             }
3837             assert_eq!(def, Def::Err);
3838             return Def::Err;
3839         }
3840
3841         match def {
3842             Def::Upvar(..) => {
3843                 span_bug!(span, "unexpected {:?} in bindings", def)
3844             }
3845             Def::Local(node_id) => {
3846                 for rib in ribs {
3847                     match rib.kind {
3848                         NormalRibKind | ModuleRibKind(..) | MacroDefinition(..) |
3849                         ForwardTyParamBanRibKind => {
3850                             // Nothing to do. Continue.
3851                         }
3852                         ClosureRibKind(function_id) => {
3853                             let prev_def = def;
3854
3855                             let seen = self.freevars_seen
3856                                            .entry(function_id)
3857                                            .or_default();
3858                             if let Some(&index) = seen.get(&node_id) {
3859                                 def = Def::Upvar(node_id, index, function_id);
3860                                 continue;
3861                             }
3862                             let vec = self.freevars
3863                                           .entry(function_id)
3864                                           .or_default();
3865                             let depth = vec.len();
3866                             def = Def::Upvar(node_id, depth, function_id);
3867
3868                             if record_used {
3869                                 vec.push(Freevar {
3870                                     def: prev_def,
3871                                     span,
3872                                 });
3873                                 seen.insert(node_id, depth);
3874                             }
3875                         }
3876                         ItemRibKind | TraitOrImplItemRibKind => {
3877                             // This was an attempt to access an upvar inside a
3878                             // named function item. This is not allowed, so we
3879                             // report an error.
3880                             if record_used {
3881                                 resolve_error(self, span,
3882                                         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem);
3883                             }
3884                             return Def::Err;
3885                         }
3886                         ConstantItemRibKind => {
3887                             // Still doesn't deal with upvars
3888                             if record_used {
3889                                 resolve_error(self, span,
3890                                         ResolutionError::AttemptToUseNonConstantValueInConstant);
3891                             }
3892                             return Def::Err;
3893                         }
3894                     }
3895                 }
3896             }
3897             Def::TyParam(..) | Def::SelfTy(..) => {
3898                 for rib in ribs {
3899                     match rib.kind {
3900                         NormalRibKind | TraitOrImplItemRibKind | ClosureRibKind(..) |
3901                         ModuleRibKind(..) | MacroDefinition(..) | ForwardTyParamBanRibKind |
3902                         ConstantItemRibKind => {
3903                             // Nothing to do. Continue.
3904                         }
3905                         ItemRibKind => {
3906                             // This was an attempt to use a type parameter outside
3907                             // its scope.
3908                             if record_used {
3909                                 resolve_error(self, span,
3910                                     ResolutionError::TypeParametersFromOuterFunction(def));
3911                             }
3912                             return Def::Err;
3913                         }
3914                     }
3915                 }
3916             }
3917             _ => {}
3918         }
3919         return def;
3920     }
3921
3922     fn lookup_assoc_candidate<FilterFn>(&mut self,
3923                                         ident: Ident,
3924                                         ns: Namespace,
3925                                         filter_fn: FilterFn)
3926                                         -> Option<AssocSuggestion>
3927         where FilterFn: Fn(Def) -> bool
3928     {
3929         fn extract_node_id(t: &Ty) -> Option<NodeId> {
3930             match t.node {
3931                 TyKind::Path(None, _) => Some(t.id),
3932                 TyKind::Rptr(_, ref mut_ty) => extract_node_id(&mut_ty.ty),
3933                 // This doesn't handle the remaining `Ty` variants as they are not
3934                 // that commonly the self_type, it might be interesting to provide
3935                 // support for those in future.
3936                 _ => None,
3937             }
3938         }
3939
3940         // Fields are generally expected in the same contexts as locals.
3941         if filter_fn(Def::Local(ast::DUMMY_NODE_ID)) {
3942             if let Some(node_id) = self.current_self_type.as_ref().and_then(extract_node_id) {
3943                 // Look for a field with the same name in the current self_type.
3944                 if let Some(resolution) = self.def_map.get(&node_id) {
3945                     match resolution.base_def() {
3946                         Def::Struct(did) | Def::Union(did)
3947                                 if resolution.unresolved_segments() == 0 => {
3948                             if let Some(field_names) = self.field_names.get(&did) {
3949                                 if field_names.iter().any(|&field_name| ident.name == field_name) {
3950                                     return Some(AssocSuggestion::Field);
3951                                 }
3952                             }
3953                         }
3954                         _ => {}
3955                     }
3956                 }
3957             }
3958         }
3959
3960         // Look for associated items in the current trait.
3961         if let Some((module, _)) = self.current_trait_ref {
3962             if let Ok(binding) = self.resolve_ident_in_module(
3963                     ModuleOrUniformRoot::Module(module),
3964                     ident,
3965                     ns,
3966                     false,
3967                     module.span,
3968                 ) {
3969                 let def = binding.def();
3970                 if filter_fn(def) {
3971                     return Some(if self.has_self.contains(&def.def_id()) {
3972                         AssocSuggestion::MethodWithSelf
3973                     } else {
3974                         AssocSuggestion::AssocItem
3975                     });
3976                 }
3977             }
3978         }
3979
3980         None
3981     }
3982
3983     fn lookup_typo_candidate<FilterFn>(&mut self,
3984                                        path: &[Ident],
3985                                        ns: Namespace,
3986                                        filter_fn: FilterFn,
3987                                        span: Span)
3988                                        -> Option<Symbol>
3989         where FilterFn: Fn(Def) -> bool
3990     {
3991         let add_module_candidates = |module: Module, names: &mut Vec<Name>| {
3992             for (&(ident, _), resolution) in module.resolutions.borrow().iter() {
3993                 if let Some(binding) = resolution.borrow().binding {
3994                     if filter_fn(binding.def()) {
3995                         names.push(ident.name);
3996                     }
3997                 }
3998             }
3999         };
4000
4001         let mut names = Vec::new();
4002         if path.len() == 1 {
4003             // Search in lexical scope.
4004             // Walk backwards up the ribs in scope and collect candidates.
4005             for rib in self.ribs[ns].iter().rev() {
4006                 // Locals and type parameters
4007                 for (ident, def) in &rib.bindings {
4008                     if filter_fn(*def) {
4009                         names.push(ident.name);
4010                     }
4011                 }
4012                 // Items in scope
4013                 if let ModuleRibKind(module) = rib.kind {
4014                     // Items from this module
4015                     add_module_candidates(module, &mut names);
4016
4017                     if let ModuleKind::Block(..) = module.kind {
4018                         // We can see through blocks
4019                     } else {
4020                         // Items from the prelude
4021                         if !module.no_implicit_prelude {
4022                             names.extend(self.session.extern_prelude.iter().cloned());
4023                             if let Some(prelude) = self.prelude {
4024                                 add_module_candidates(prelude, &mut names);
4025                             }
4026                         }
4027                         break;
4028                     }
4029                 }
4030             }
4031             // Add primitive types to the mix
4032             if filter_fn(Def::PrimTy(Bool)) {
4033                 names.extend(
4034                     self.primitive_type_table.primitive_types.iter().map(|(name, _)| name)
4035                 )
4036             }
4037         } else {
4038             // Search in module.
4039             let mod_path = &path[..path.len() - 1];
4040             if let PathResult::Module(module) = self.resolve_path(None, mod_path, Some(TypeNS),
4041                                                                   false, span, CrateLint::No) {
4042                 if let ModuleOrUniformRoot::Module(module) = module {
4043                     add_module_candidates(module, &mut names);
4044                 }
4045             }
4046         }
4047
4048         let name = path[path.len() - 1].name;
4049         // Make sure error reporting is deterministic.
4050         names.sort_by_cached_key(|name| name.as_str());
4051         match find_best_match_for_name(names.iter(), &name.as_str(), None) {
4052             Some(found) if found != name => Some(found),
4053             _ => None,
4054         }
4055     }
4056
4057     fn with_resolved_label<F>(&mut self, label: Option<Label>, id: NodeId, f: F)
4058         where F: FnOnce(&mut Resolver)
4059     {
4060         if let Some(label) = label {
4061             self.unused_labels.insert(id, label.ident.span);
4062             let def = Def::Label(id);
4063             self.with_label_rib(|this| {
4064                 let ident = label.ident.modern_and_legacy();
4065                 this.label_ribs.last_mut().unwrap().bindings.insert(ident, def);
4066                 f(this);
4067             });
4068         } else {
4069             f(self);
4070         }
4071     }
4072
4073     fn resolve_labeled_block(&mut self, label: Option<Label>, id: NodeId, block: &Block) {
4074         self.with_resolved_label(label, id, |this| this.visit_block(block));
4075     }
4076
4077     fn resolve_expr(&mut self, expr: &Expr, parent: Option<&Expr>) {
4078         // First, record candidate traits for this expression if it could
4079         // result in the invocation of a method call.
4080
4081         self.record_candidate_traits_for_expr_if_necessary(expr);
4082
4083         // Next, resolve the node.
4084         match expr.node {
4085             ExprKind::Path(ref qself, ref path) => {
4086                 self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
4087                 visit::walk_expr(self, expr);
4088             }
4089
4090             ExprKind::Struct(ref path, ..) => {
4091                 self.smart_resolve_path(expr.id, None, path, PathSource::Struct);
4092                 visit::walk_expr(self, expr);
4093             }
4094
4095             ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
4096                 let def = self.search_label(label.ident, |rib, ident| {
4097                     rib.bindings.get(&ident.modern_and_legacy()).cloned()
4098                 });
4099                 match def {
4100                     None => {
4101                         // Search again for close matches...
4102                         // Picks the first label that is "close enough", which is not necessarily
4103                         // the closest match
4104                         let close_match = self.search_label(label.ident, |rib, ident| {
4105                             let names = rib.bindings.iter().map(|(id, _)| &id.name);
4106                             find_best_match_for_name(names, &*ident.as_str(), None)
4107                         });
4108                         self.record_def(expr.id, err_path_resolution());
4109                         resolve_error(self,
4110                                       label.ident.span,
4111                                       ResolutionError::UndeclaredLabel(&label.ident.as_str(),
4112                                                                        close_match));
4113                     }
4114                     Some(Def::Label(id)) => {
4115                         // Since this def is a label, it is never read.
4116                         self.record_def(expr.id, PathResolution::new(Def::Label(id)));
4117                         self.unused_labels.remove(&id);
4118                     }
4119                     Some(_) => {
4120                         span_bug!(expr.span, "label wasn't mapped to a label def!");
4121                     }
4122                 }
4123
4124                 // visit `break` argument if any
4125                 visit::walk_expr(self, expr);
4126             }
4127
4128             ExprKind::IfLet(ref pats, ref subexpression, ref if_block, ref optional_else) => {
4129                 self.visit_expr(subexpression);
4130
4131                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
4132                 let mut bindings_list = FxHashMap();
4133                 for pat in pats {
4134                     self.resolve_pattern(pat, PatternSource::IfLet, &mut bindings_list);
4135                 }
4136                 // This has to happen *after* we determine which pat_idents are variants
4137                 self.check_consistent_bindings(pats);
4138                 self.visit_block(if_block);
4139                 self.ribs[ValueNS].pop();
4140
4141                 optional_else.as_ref().map(|expr| self.visit_expr(expr));
4142             }
4143
4144             ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),
4145
4146             ExprKind::While(ref subexpression, ref block, label) => {
4147                 self.with_resolved_label(label, expr.id, |this| {
4148                     this.visit_expr(subexpression);
4149                     this.visit_block(block);
4150                 });
4151             }
4152
4153             ExprKind::WhileLet(ref pats, ref subexpression, ref block, label) => {
4154                 self.with_resolved_label(label, expr.id, |this| {
4155                     this.visit_expr(subexpression);
4156                     this.ribs[ValueNS].push(Rib::new(NormalRibKind));
4157                     let mut bindings_list = FxHashMap();
4158                     for pat in pats {
4159                         this.resolve_pattern(pat, PatternSource::WhileLet, &mut bindings_list);
4160                     }
4161                     // This has to happen *after* we determine which pat_idents are variants
4162                     this.check_consistent_bindings(pats);
4163                     this.visit_block(block);
4164                     this.ribs[ValueNS].pop();
4165                 });
4166             }
4167
4168             ExprKind::ForLoop(ref pattern, ref subexpression, ref block, label) => {
4169                 self.visit_expr(subexpression);
4170                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
4171                 self.resolve_pattern(pattern, PatternSource::For, &mut FxHashMap());
4172
4173                 self.resolve_labeled_block(label, expr.id, block);
4174
4175                 self.ribs[ValueNS].pop();
4176             }
4177
4178             ExprKind::Block(ref block, label) => self.resolve_labeled_block(label, block.id, block),
4179
4180             // Equivalent to `visit::walk_expr` + passing some context to children.
4181             ExprKind::Field(ref subexpression, _) => {
4182                 self.resolve_expr(subexpression, Some(expr));
4183             }
4184             ExprKind::MethodCall(ref segment, ref arguments) => {
4185                 let mut arguments = arguments.iter();
4186                 self.resolve_expr(arguments.next().unwrap(), Some(expr));
4187                 for argument in arguments {
4188                     self.resolve_expr(argument, None);
4189                 }
4190                 self.visit_path_segment(expr.span, segment);
4191             }
4192
4193             ExprKind::Call(ref callee, ref arguments) => {
4194                 self.resolve_expr(callee, Some(expr));
4195                 for argument in arguments {
4196                     self.resolve_expr(argument, None);
4197                 }
4198             }
4199             ExprKind::Type(ref type_expr, _) => {
4200                 self.current_type_ascription.push(type_expr.span);
4201                 visit::walk_expr(self, expr);
4202                 self.current_type_ascription.pop();
4203             }
4204             // Resolve the body of async exprs inside the async closure to which they desugar
4205             ExprKind::Async(_, async_closure_id, ref block) => {
4206                 let rib_kind = ClosureRibKind(async_closure_id);
4207                 self.ribs[ValueNS].push(Rib::new(rib_kind));
4208                 self.label_ribs.push(Rib::new(rib_kind));
4209                 self.visit_block(&block);
4210                 self.label_ribs.pop();
4211                 self.ribs[ValueNS].pop();
4212             }
4213             // `async |x| ...` gets desugared to `|x| future_from_generator(|| ...)`, so we need to
4214             // resolve the arguments within the proper scopes so that usages of them inside the
4215             // closure are detected as upvars rather than normal closure arg usages.
4216             ExprKind::Closure(
4217                 _, IsAsync::Async { closure_id: inner_closure_id, .. }, _,
4218                 ref fn_decl, ref body, _span,
4219             ) => {
4220                 let rib_kind = ClosureRibKind(expr.id);
4221                 self.ribs[ValueNS].push(Rib::new(rib_kind));
4222                 self.label_ribs.push(Rib::new(rib_kind));
4223                 // Resolve arguments:
4224                 let mut bindings_list = FxHashMap();
4225                 for argument in &fn_decl.inputs {
4226                     self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
4227                     self.visit_ty(&argument.ty);
4228                 }
4229                 // No need to resolve return type-- the outer closure return type is
4230                 // FunctionRetTy::Default
4231
4232                 // Now resolve the inner closure
4233                 {
4234                     let rib_kind = ClosureRibKind(inner_closure_id);
4235                     self.ribs[ValueNS].push(Rib::new(rib_kind));
4236                     self.label_ribs.push(Rib::new(rib_kind));
4237                     // No need to resolve arguments: the inner closure has none.
4238                     // Resolve the return type:
4239                     visit::walk_fn_ret_ty(self, &fn_decl.output);
4240                     // Resolve the body
4241                     self.visit_expr(body);
4242                     self.label_ribs.pop();
4243                     self.ribs[ValueNS].pop();
4244                 }
4245                 self.label_ribs.pop();
4246                 self.ribs[ValueNS].pop();
4247             }
4248             _ => {
4249                 visit::walk_expr(self, expr);
4250             }
4251         }
4252     }
4253
4254     fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &Expr) {
4255         match expr.node {
4256             ExprKind::Field(_, ident) => {
4257                 // FIXME(#6890): Even though you can't treat a method like a
4258                 // field, we need to add any trait methods we find that match
4259                 // the field name so that we can do some nice error reporting
4260                 // later on in typeck.
4261                 let traits = self.get_traits_containing_item(ident, ValueNS);
4262                 self.trait_map.insert(expr.id, traits);
4263             }
4264             ExprKind::MethodCall(ref segment, ..) => {
4265                 debug!("(recording candidate traits for expr) recording traits for {}",
4266                        expr.id);
4267                 let traits = self.get_traits_containing_item(segment.ident, ValueNS);
4268                 self.trait_map.insert(expr.id, traits);
4269             }
4270             _ => {
4271                 // Nothing to do.
4272             }
4273         }
4274     }
4275
4276     fn get_traits_containing_item(&mut self, mut ident: Ident, ns: Namespace)
4277                                   -> Vec<TraitCandidate> {
4278         debug!("(getting traits containing item) looking for '{}'", ident.name);
4279
4280         let mut found_traits = Vec::new();
4281         // Look for the current trait.
4282         if let Some((module, _)) = self.current_trait_ref {
4283             if self.resolve_ident_in_module(
4284                 ModuleOrUniformRoot::Module(module),
4285                 ident,
4286                 ns,
4287                 false,
4288                 module.span,
4289             ).is_ok() {
4290                 let def_id = module.def_id().unwrap();
4291                 found_traits.push(TraitCandidate { def_id: def_id, import_id: None });
4292             }
4293         }
4294
4295         ident.span = ident.span.modern();
4296         let mut search_module = self.current_module;
4297         loop {
4298             self.get_traits_in_module_containing_item(ident, ns, search_module, &mut found_traits);
4299             search_module = unwrap_or!(
4300                 self.hygienic_lexical_parent(search_module, &mut ident.span), break
4301             );
4302         }
4303
4304         if let Some(prelude) = self.prelude {
4305             if !search_module.no_implicit_prelude {
4306                 self.get_traits_in_module_containing_item(ident, ns, prelude, &mut found_traits);
4307             }
4308         }
4309
4310         found_traits
4311     }
4312
4313     fn get_traits_in_module_containing_item(&mut self,
4314                                             ident: Ident,
4315                                             ns: Namespace,
4316                                             module: Module<'a>,
4317                                             found_traits: &mut Vec<TraitCandidate>) {
4318         assert!(ns == TypeNS || ns == ValueNS);
4319         let mut traits = module.traits.borrow_mut();
4320         if traits.is_none() {
4321             let mut collected_traits = Vec::new();
4322             module.for_each_child(|name, ns, binding| {
4323                 if ns != TypeNS { return }
4324                 if let Def::Trait(_) = binding.def() {
4325                     collected_traits.push((name, binding));
4326                 }
4327             });
4328             *traits = Some(collected_traits.into_boxed_slice());
4329         }
4330
4331         for &(trait_name, binding) in traits.as_ref().unwrap().iter() {
4332             let module = binding.module().unwrap();
4333             let mut ident = ident;
4334             if ident.span.glob_adjust(module.expansion, binding.span.ctxt().modern()).is_none() {
4335                 continue
4336             }
4337             if self.resolve_ident_in_module_unadjusted(
4338                 ModuleOrUniformRoot::Module(module),
4339                 ident,
4340                 ns,
4341                 false,
4342                 false,
4343                 module.span,
4344             ).is_ok() {
4345                 let import_id = match binding.kind {
4346                     NameBindingKind::Import { directive, .. } => {
4347                         self.maybe_unused_trait_imports.insert(directive.id);
4348                         self.add_to_glob_map(directive.id, trait_name);
4349                         Some(directive.id)
4350                     }
4351                     _ => None,
4352                 };
4353                 let trait_def_id = module.def_id().unwrap();
4354                 found_traits.push(TraitCandidate { def_id: trait_def_id, import_id: import_id });
4355             }
4356         }
4357     }
4358
4359     fn lookup_import_candidates_from_module<FilterFn>(&mut self,
4360                                           lookup_name: Name,
4361                                           namespace: Namespace,
4362                                           start_module: &'a ModuleData<'a>,
4363                                           crate_name: Ident,
4364                                           filter_fn: FilterFn)
4365                                           -> Vec<ImportSuggestion>
4366         where FilterFn: Fn(Def) -> bool
4367     {
4368         let mut candidates = Vec::new();
4369         let mut worklist = Vec::new();
4370         let mut seen_modules = FxHashSet();
4371         let not_local_module = crate_name != keywords::Crate.ident();
4372         worklist.push((start_module, Vec::<ast::PathSegment>::new(), not_local_module));
4373
4374         while let Some((in_module,
4375                         path_segments,
4376                         in_module_is_extern)) = worklist.pop() {
4377             self.populate_module_if_necessary(in_module);
4378
4379             // We have to visit module children in deterministic order to avoid
4380             // instabilities in reported imports (#43552).
4381             in_module.for_each_child_stable(|ident, ns, name_binding| {
4382                 // avoid imports entirely
4383                 if name_binding.is_import() && !name_binding.is_extern_crate() { return; }
4384                 // avoid non-importable candidates as well
4385                 if !name_binding.is_importable() { return; }
4386
4387                 // collect results based on the filter function
4388                 if ident.name == lookup_name && ns == namespace {
4389                     if filter_fn(name_binding.def()) {
4390                         // create the path
4391                         let mut segms = path_segments.clone();
4392                         if self.session.rust_2018() {
4393                             // crate-local absolute paths start with `crate::` in edition 2018
4394                             // FIXME: may also be stabilized for Rust 2015 (Issues #45477, #44660)
4395                             segms.insert(
4396                                 0, ast::PathSegment::from_ident(crate_name)
4397                             );
4398                         }
4399
4400                         segms.push(ast::PathSegment::from_ident(ident));
4401                         let path = Path {
4402                             span: name_binding.span,
4403                             segments: segms,
4404                         };
4405                         // the entity is accessible in the following cases:
4406                         // 1. if it's defined in the same crate, it's always
4407                         // accessible (since private entities can be made public)
4408                         // 2. if it's defined in another crate, it's accessible
4409                         // only if both the module is public and the entity is
4410                         // declared as public (due to pruning, we don't explore
4411                         // outside crate private modules => no need to check this)
4412                         if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
4413                             candidates.push(ImportSuggestion { path: path });
4414                         }
4415                     }
4416                 }
4417
4418                 // collect submodules to explore
4419                 if let Some(module) = name_binding.module() {
4420                     // form the path
4421                     let mut path_segments = path_segments.clone();
4422                     path_segments.push(ast::PathSegment::from_ident(ident));
4423
4424                     let is_extern_crate_that_also_appears_in_prelude =
4425                         name_binding.is_extern_crate() &&
4426                         self.session.rust_2018();
4427
4428                     let is_visible_to_user =
4429                         !in_module_is_extern || name_binding.vis == ty::Visibility::Public;
4430
4431                     if !is_extern_crate_that_also_appears_in_prelude && is_visible_to_user {
4432                         // add the module to the lookup
4433                         let is_extern = in_module_is_extern || name_binding.is_extern_crate();
4434                         if seen_modules.insert(module.def_id().unwrap()) {
4435                             worklist.push((module, path_segments, is_extern));
4436                         }
4437                     }
4438                 }
4439             })
4440         }
4441
4442         candidates
4443     }
4444
4445     /// When name resolution fails, this method can be used to look up candidate
4446     /// entities with the expected name. It allows filtering them using the
4447     /// supplied predicate (which should be used to only accept the types of
4448     /// definitions expected e.g. traits). The lookup spans across all crates.
4449     ///
4450     /// NOTE: The method does not look into imports, but this is not a problem,
4451     /// since we report the definitions (thus, the de-aliased imports).
4452     fn lookup_import_candidates<FilterFn>(&mut self,
4453                                           lookup_name: Name,
4454                                           namespace: Namespace,
4455                                           filter_fn: FilterFn)
4456                                           -> Vec<ImportSuggestion>
4457         where FilterFn: Fn(Def) -> bool
4458     {
4459         let mut suggestions = vec![];
4460
4461         suggestions.extend(
4462             self.lookup_import_candidates_from_module(
4463                 lookup_name, namespace, self.graph_root, keywords::Crate.ident(), &filter_fn
4464             )
4465         );
4466
4467         if self.session.rust_2018() {
4468             for &name in &self.session.extern_prelude {
4469                 let ident = Ident::with_empty_ctxt(name);
4470                 match self.crate_loader.maybe_process_path_extern(name, ident.span) {
4471                     Some(crate_id) => {
4472                         let crate_root = self.get_module(DefId {
4473                             krate: crate_id,
4474                             index: CRATE_DEF_INDEX,
4475                         });
4476                         self.populate_module_if_necessary(&crate_root);
4477
4478                         suggestions.extend(
4479                             self.lookup_import_candidates_from_module(
4480                                 lookup_name, namespace, crate_root, ident, &filter_fn
4481                             )
4482                         );
4483                     }
4484                     None => {}
4485                 }
4486             }
4487         }
4488
4489         suggestions
4490     }
4491
4492     fn find_module(&mut self,
4493                    module_def: Def)
4494                    -> Option<(Module<'a>, ImportSuggestion)>
4495     {
4496         let mut result = None;
4497         let mut worklist = Vec::new();
4498         let mut seen_modules = FxHashSet();
4499         worklist.push((self.graph_root, Vec::new()));
4500
4501         while let Some((in_module, path_segments)) = worklist.pop() {
4502             // abort if the module is already found
4503             if result.is_some() { break; }
4504
4505             self.populate_module_if_necessary(in_module);
4506
4507             in_module.for_each_child_stable(|ident, _, name_binding| {
4508                 // abort if the module is already found or if name_binding is private external
4509                 if result.is_some() || !name_binding.vis.is_visible_locally() {
4510                     return
4511                 }
4512                 if let Some(module) = name_binding.module() {
4513                     // form the path
4514                     let mut path_segments = path_segments.clone();
4515                     path_segments.push(ast::PathSegment::from_ident(ident));
4516                     if module.def() == Some(module_def) {
4517                         let path = Path {
4518                             span: name_binding.span,
4519                             segments: path_segments,
4520                         };
4521                         result = Some((module, ImportSuggestion { path: path }));
4522                     } else {
4523                         // add the module to the lookup
4524                         if seen_modules.insert(module.def_id().unwrap()) {
4525                             worklist.push((module, path_segments));
4526                         }
4527                     }
4528                 }
4529             });
4530         }
4531
4532         result
4533     }
4534
4535     fn collect_enum_variants(&mut self, enum_def: Def) -> Option<Vec<Path>> {
4536         if let Def::Enum(..) = enum_def {} else {
4537             panic!("Non-enum def passed to collect_enum_variants: {:?}", enum_def)
4538         }
4539
4540         self.find_module(enum_def).map(|(enum_module, enum_import_suggestion)| {
4541             self.populate_module_if_necessary(enum_module);
4542
4543             let mut variants = Vec::new();
4544             enum_module.for_each_child_stable(|ident, _, name_binding| {
4545                 if let Def::Variant(..) = name_binding.def() {
4546                     let mut segms = enum_import_suggestion.path.segments.clone();
4547                     segms.push(ast::PathSegment::from_ident(ident));
4548                     variants.push(Path {
4549                         span: name_binding.span,
4550                         segments: segms,
4551                     });
4552                 }
4553             });
4554             variants
4555         })
4556     }
4557
4558     fn record_def(&mut self, node_id: NodeId, resolution: PathResolution) {
4559         debug!("(recording def) recording {:?} for {}", resolution, node_id);
4560         if let Some(prev_res) = self.def_map.insert(node_id, resolution) {
4561             panic!("path resolved multiple times ({:?} before, {:?} now)", prev_res, resolution);
4562         }
4563     }
4564
4565     fn resolve_visibility(&mut self, vis: &ast::Visibility) -> ty::Visibility {
4566         match vis.node {
4567             ast::VisibilityKind::Public => ty::Visibility::Public,
4568             ast::VisibilityKind::Crate(..) => {
4569                 ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX))
4570             }
4571             ast::VisibilityKind::Inherited => {
4572                 ty::Visibility::Restricted(self.current_module.normal_ancestor_id)
4573             }
4574             ast::VisibilityKind::Restricted { ref path, id, .. } => {
4575                 // Visibilities are resolved as global by default, add starting root segment.
4576                 let segments = path.make_root().iter().chain(path.segments.iter())
4577                     .map(|seg| seg.ident)
4578                     .collect::<Vec<_>>();
4579                 let def = self.smart_resolve_path_fragment(
4580                     id,
4581                     None,
4582                     &segments,
4583                     path.span,
4584                     PathSource::Visibility,
4585                     CrateLint::SimplePath(id),
4586                 ).base_def();
4587                 if def == Def::Err {
4588                     ty::Visibility::Public
4589                 } else {
4590                     let vis = ty::Visibility::Restricted(def.def_id());
4591                     if self.is_accessible(vis) {
4592                         vis
4593                     } else {
4594                         self.session.span_err(path.span, "visibilities can only be restricted \
4595                                                           to ancestor modules");
4596                         ty::Visibility::Public
4597                     }
4598                 }
4599             }
4600         }
4601     }
4602
4603     fn is_accessible(&self, vis: ty::Visibility) -> bool {
4604         vis.is_accessible_from(self.current_module.normal_ancestor_id, self)
4605     }
4606
4607     fn is_accessible_from(&self, vis: ty::Visibility, module: Module<'a>) -> bool {
4608         vis.is_accessible_from(module.normal_ancestor_id, self)
4609     }
4610
4611     fn set_binding_parent_module(&mut self, binding: &'a NameBinding<'a>, module: Module<'a>) {
4612         if let Some(old_module) = self.binding_parent_modules.insert(PtrKey(binding), module) {
4613             if !ptr::eq(module, old_module) {
4614                 span_bug!(binding.span, "parent module is reset for binding");
4615             }
4616         }
4617     }
4618
4619     fn disambiguate_legacy_vs_modern(
4620         &self,
4621         legacy: &'a NameBinding<'a>,
4622         modern: &'a NameBinding<'a>,
4623     ) -> bool {
4624         // Some non-controversial subset of ambiguities "modern macro name" vs "macro_rules"
4625         // is disambiguated to mitigate regressions from macro modularization.
4626         // Scoping for `macro_rules` behaves like scoping for `let` at module level, in general.
4627         match (self.binding_parent_modules.get(&PtrKey(legacy)),
4628                self.binding_parent_modules.get(&PtrKey(modern))) {
4629             (Some(legacy), Some(modern)) =>
4630                 legacy.normal_ancestor_id == modern.normal_ancestor_id &&
4631                 modern.is_ancestor_of(legacy),
4632             _ => false,
4633         }
4634     }
4635
4636     fn report_ambiguity_error(&self, ident: Ident, b1: &NameBinding, b2: &NameBinding) {
4637         let participle = |is_import: bool| if is_import { "imported" } else { "defined" };
4638         let msg1 =
4639             format!("`{}` could refer to the name {} here", ident, participle(b1.is_import()));
4640         let msg2 =
4641             format!("`{}` could also refer to the name {} here", ident, participle(b2.is_import()));
4642         let note = if b1.expansion != Mark::root() {
4643             Some(if let Def::Macro(..) = b1.def() {
4644                 format!("macro-expanded {} do not shadow",
4645                         if b1.is_import() { "macro imports" } else { "macros" })
4646             } else {
4647                 format!("macro-expanded {} do not shadow when used in a macro invocation path",
4648                         if b1.is_import() { "imports" } else { "items" })
4649             })
4650         } else if b1.is_glob_import() {
4651             Some(format!("consider adding an explicit import of `{}` to disambiguate", ident))
4652         } else {
4653             None
4654         };
4655
4656         let mut err = struct_span_err!(self.session, ident.span, E0659, "`{}` is ambiguous", ident);
4657         err.span_label(ident.span, "ambiguous name");
4658         err.span_note(b1.span, &msg1);
4659         match b2.def() {
4660             Def::Macro(..) if b2.span.is_dummy() =>
4661                 err.note(&format!("`{}` is also a builtin macro", ident)),
4662             _ => err.span_note(b2.span, &msg2),
4663         };
4664         if let Some(note) = note {
4665             err.note(&note);
4666         }
4667         err.emit();
4668     }
4669
4670     fn report_errors(&mut self, krate: &Crate) {
4671         self.report_with_use_injections(krate);
4672         let mut reported_spans = FxHashSet();
4673
4674         for &(span_use, span_def) in &self.macro_expanded_macro_export_errors {
4675             let msg = "macro-expanded `macro_export` macros from the current crate \
4676                        cannot be referred to by absolute paths";
4677             self.session.buffer_lint_with_diagnostic(
4678                 lint::builtin::MACRO_EXPANDED_MACRO_EXPORTS_ACCESSED_BY_ABSOLUTE_PATHS,
4679                 CRATE_NODE_ID, span_use, msg,
4680                 lint::builtin::BuiltinLintDiagnostics::
4681                     MacroExpandedMacroExportsAccessedByAbsolutePaths(span_def),
4682             );
4683         }
4684
4685         for &AmbiguityError { ident, b1, b2 } in &self.ambiguity_errors {
4686             if reported_spans.insert(ident.span) {
4687                 self.report_ambiguity_error(ident, b1, b2);
4688             }
4689         }
4690
4691         for &PrivacyError(span, name, binding) in &self.privacy_errors {
4692             if !reported_spans.insert(span) { continue }
4693             span_err!(self.session, span, E0603, "{} `{}` is private", binding.descr(), name);
4694         }
4695     }
4696
4697     fn report_with_use_injections(&mut self, krate: &Crate) {
4698         for UseError { mut err, candidates, node_id, better } in self.use_injections.drain(..) {
4699             let (span, found_use) = UsePlacementFinder::check(krate, node_id);
4700             if !candidates.is_empty() {
4701                 show_candidates(&mut err, span, &candidates, better, found_use);
4702             }
4703             err.emit();
4704         }
4705     }
4706
4707     fn report_conflict<'b>(&mut self,
4708                        parent: Module,
4709                        ident: Ident,
4710                        ns: Namespace,
4711                        new_binding: &NameBinding<'b>,
4712                        old_binding: &NameBinding<'b>) {
4713         // Error on the second of two conflicting names
4714         if old_binding.span.lo() > new_binding.span.lo() {
4715             return self.report_conflict(parent, ident, ns, old_binding, new_binding);
4716         }
4717
4718         let container = match parent.kind {
4719             ModuleKind::Def(Def::Mod(_), _) => "module",
4720             ModuleKind::Def(Def::Trait(_), _) => "trait",
4721             ModuleKind::Block(..) => "block",
4722             _ => "enum",
4723         };
4724
4725         let old_noun = match old_binding.is_import() {
4726             true => "import",
4727             false => "definition",
4728         };
4729
4730         let new_participle = match new_binding.is_import() {
4731             true => "imported",
4732             false => "defined",
4733         };
4734
4735         let (name, span) = (ident.name, self.session.source_map().def_span(new_binding.span));
4736
4737         if let Some(s) = self.name_already_seen.get(&name) {
4738             if s == &span {
4739                 return;
4740             }
4741         }
4742
4743         let old_kind = match (ns, old_binding.module()) {
4744             (ValueNS, _) => "value",
4745             (MacroNS, _) => "macro",
4746             (TypeNS, _) if old_binding.is_extern_crate() => "extern crate",
4747             (TypeNS, Some(module)) if module.is_normal() => "module",
4748             (TypeNS, Some(module)) if module.is_trait() => "trait",
4749             (TypeNS, _) => "type",
4750         };
4751
4752         let msg = format!("the name `{}` is defined multiple times", name);
4753
4754         let mut err = match (old_binding.is_extern_crate(), new_binding.is_extern_crate()) {
4755             (true, true) => struct_span_err!(self.session, span, E0259, "{}", msg),
4756             (true, _) | (_, true) => match new_binding.is_import() && old_binding.is_import() {
4757                 true => struct_span_err!(self.session, span, E0254, "{}", msg),
4758                 false => struct_span_err!(self.session, span, E0260, "{}", msg),
4759             },
4760             _ => match (old_binding.is_import(), new_binding.is_import()) {
4761                 (false, false) => struct_span_err!(self.session, span, E0428, "{}", msg),
4762                 (true, true) => struct_span_err!(self.session, span, E0252, "{}", msg),
4763                 _ => struct_span_err!(self.session, span, E0255, "{}", msg),
4764             },
4765         };
4766
4767         err.note(&format!("`{}` must be defined only once in the {} namespace of this {}",
4768                           name,
4769                           ns.descr(),
4770                           container));
4771
4772         err.span_label(span, format!("`{}` re{} here", name, new_participle));
4773         if !old_binding.span.is_dummy() {
4774             err.span_label(self.session.source_map().def_span(old_binding.span),
4775                            format!("previous {} of the {} `{}` here", old_noun, old_kind, name));
4776         }
4777
4778         // See https://github.com/rust-lang/rust/issues/32354
4779         if old_binding.is_import() || new_binding.is_import() {
4780             let binding = if new_binding.is_import() && !new_binding.span.is_dummy() {
4781                 new_binding
4782             } else {
4783                 old_binding
4784             };
4785
4786             let cm = self.session.source_map();
4787             let rename_msg = "You can use `as` to change the binding name of the import";
4788
4789             if let (Ok(snippet), false) = (cm.span_to_snippet(binding.span),
4790                                            binding.is_renamed_extern_crate()) {
4791                 let suggested_name = if name.as_str().chars().next().unwrap().is_uppercase() {
4792                     format!("Other{}", name)
4793                 } else {
4794                     format!("other_{}", name)
4795                 };
4796
4797                 err.span_suggestion_with_applicability(
4798                     binding.span,
4799                     rename_msg,
4800                     if snippet.ends_with(';') {
4801                         format!("{} as {};", &snippet[..snippet.len() - 1], suggested_name)
4802                     } else {
4803                         format!("{} as {}", snippet, suggested_name)
4804                     },
4805                     Applicability::MachineApplicable,
4806                 );
4807             } else {
4808                 err.span_label(binding.span, rename_msg);
4809             }
4810         }
4811
4812         err.emit();
4813         self.name_already_seen.insert(name, span);
4814     }
4815 }
4816
4817 fn is_self_type(path: &[Ident], namespace: Namespace) -> bool {
4818     namespace == TypeNS && path.len() == 1 && path[0].name == keywords::SelfType.name()
4819 }
4820
4821 fn is_self_value(path: &[Ident], namespace: Namespace) -> bool {
4822     namespace == ValueNS && path.len() == 1 && path[0].name == keywords::SelfValue.name()
4823 }
4824
4825 fn names_to_string(idents: &[Ident]) -> String {
4826     let mut result = String::new();
4827     for (i, ident) in idents.iter()
4828                             .filter(|ident| ident.name != keywords::CrateRoot.name())
4829                             .enumerate() {
4830         if i > 0 {
4831             result.push_str("::");
4832         }
4833         result.push_str(&ident.as_str());
4834     }
4835     result
4836 }
4837
4838 fn path_names_to_string(path: &Path) -> String {
4839     names_to_string(&path.segments.iter()
4840                         .map(|seg| seg.ident)
4841                         .collect::<Vec<_>>())
4842 }
4843
4844 /// Get the path for an enum and the variant from an `ImportSuggestion` for an enum variant.
4845 fn import_candidate_to_paths(suggestion: &ImportSuggestion) -> (Span, String, String) {
4846     let variant_path = &suggestion.path;
4847     let variant_path_string = path_names_to_string(variant_path);
4848
4849     let path_len = suggestion.path.segments.len();
4850     let enum_path = ast::Path {
4851         span: suggestion.path.span,
4852         segments: suggestion.path.segments[0..path_len - 1].to_vec(),
4853     };
4854     let enum_path_string = path_names_to_string(&enum_path);
4855
4856     (suggestion.path.span, variant_path_string, enum_path_string)
4857 }
4858
4859
4860 /// When an entity with a given name is not available in scope, we search for
4861 /// entities with that name in all crates. This method allows outputting the
4862 /// results of this search in a programmer-friendly way
4863 fn show_candidates(err: &mut DiagnosticBuilder,
4864                    // This is `None` if all placement locations are inside expansions
4865                    span: Option<Span>,
4866                    candidates: &[ImportSuggestion],
4867                    better: bool,
4868                    found_use: bool) {
4869
4870     // we want consistent results across executions, but candidates are produced
4871     // by iterating through a hash map, so make sure they are ordered:
4872     let mut path_strings: Vec<_> =
4873         candidates.into_iter().map(|c| path_names_to_string(&c.path)).collect();
4874     path_strings.sort();
4875
4876     let better = if better { "better " } else { "" };
4877     let msg_diff = match path_strings.len() {
4878         1 => " is found in another module, you can import it",
4879         _ => "s are found in other modules, you can import them",
4880     };
4881     let msg = format!("possible {}candidate{} into scope", better, msg_diff);
4882
4883     if let Some(span) = span {
4884         for candidate in &mut path_strings {
4885             // produce an additional newline to separate the new use statement
4886             // from the directly following item.
4887             let additional_newline = if found_use {
4888                 ""
4889             } else {
4890                 "\n"
4891             };
4892             *candidate = format!("use {};\n{}", candidate, additional_newline);
4893         }
4894
4895         err.span_suggestions_with_applicability(
4896             span,
4897             &msg,
4898             path_strings,
4899             Applicability::Unspecified,
4900         );
4901     } else {
4902         let mut msg = msg;
4903         msg.push(':');
4904         for candidate in path_strings {
4905             msg.push('\n');
4906             msg.push_str(&candidate);
4907         }
4908     }
4909 }
4910
4911 /// A somewhat inefficient routine to obtain the name of a module.
4912 fn module_to_string(module: Module) -> Option<String> {
4913     let mut names = Vec::new();
4914
4915     fn collect_mod(names: &mut Vec<Ident>, module: Module) {
4916         if let ModuleKind::Def(_, name) = module.kind {
4917             if let Some(parent) = module.parent {
4918                 names.push(Ident::with_empty_ctxt(name));
4919                 collect_mod(names, parent);
4920             }
4921         } else {
4922             // danger, shouldn't be ident?
4923             names.push(Ident::from_str("<opaque>"));
4924             collect_mod(names, module.parent.unwrap());
4925         }
4926     }
4927     collect_mod(&mut names, module);
4928
4929     if names.is_empty() {
4930         return None;
4931     }
4932     Some(names_to_string(&names.into_iter()
4933                         .rev()
4934                         .collect::<Vec<_>>()))
4935 }
4936
4937 fn err_path_resolution() -> PathResolution {
4938     PathResolution::new(Def::Err)
4939 }
4940
4941 #[derive(PartialEq,Copy, Clone)]
4942 pub enum MakeGlobMap {
4943     Yes,
4944     No,
4945 }
4946
4947 #[derive(Copy, Clone, Debug)]
4948 enum CrateLint {
4949     /// Do not issue the lint
4950     No,
4951
4952     /// This lint applies to some random path like `impl ::foo::Bar`
4953     /// or whatever. In this case, we can take the span of that path.
4954     SimplePath(NodeId),
4955
4956     /// This lint comes from a `use` statement. In this case, what we
4957     /// care about really is the *root* `use` statement; e.g., if we
4958     /// have nested things like `use a::{b, c}`, we care about the
4959     /// `use a` part.
4960     UsePath { root_id: NodeId, root_span: Span },
4961
4962     /// This is the "trait item" from a fully qualified path. For example,
4963     /// we might be resolving  `X::Y::Z` from a path like `<T as X::Y>::Z`.
4964     /// The `path_span` is the span of the to the trait itself (`X::Y`).
4965     QPathTrait { qpath_id: NodeId, qpath_span: Span },
4966 }
4967
4968 impl CrateLint {
4969     fn node_id(&self) -> Option<NodeId> {
4970         match *self {
4971             CrateLint::No => None,
4972             CrateLint::SimplePath(id) |
4973             CrateLint::UsePath { root_id: id, .. } |
4974             CrateLint::QPathTrait { qpath_id: id, .. } => Some(id),
4975         }
4976     }
4977 }
4978
4979 __build_diagnostic_array! { librustc_resolve, DIAGNOSTICS }