]> git.lizzy.rs Git - rust.git/blob - src/librustc_resolve/lib.rs
d3c1929159414a8f19e73ee38458954926c22d30
[rust.git] / src / librustc_resolve / lib.rs
1 // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 #![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
12       html_favicon_url = "https://doc.rust-lang.org/favicon.ico",
13       html_root_url = "https://doc.rust-lang.org/nightly/")]
14
15 #![feature(crate_visibility_modifier)]
16 #![feature(rustc_diagnostic_macros)]
17 #![feature(slice_sort_by_cached_key)]
18
19 #[macro_use]
20 extern crate log;
21 #[macro_use]
22 extern crate syntax;
23 extern crate syntax_pos;
24 extern crate rustc_errors as errors;
25 extern crate arena;
26 #[macro_use]
27 extern crate rustc;
28 extern crate rustc_data_structures;
29
30 pub use rustc::hir::def::{Namespace, PerNS};
31
32 use self::TypeParameters::*;
33 use self::RibKind::*;
34
35 use rustc::hir::map::{Definitions, DefCollector};
36 use rustc::hir::{self, PrimTy, TyBool, TyChar, TyFloat, TyInt, TyUint, TyStr};
37 use rustc::middle::cstore::{CrateStore, CrateLoader};
38 use rustc::session::Session;
39 use rustc::lint;
40 use rustc::hir::def::*;
41 use rustc::hir::def::Namespace::*;
42 use rustc::hir::def_id::{CRATE_DEF_INDEX, LOCAL_CRATE, DefId};
43 use rustc::ty;
44 use rustc::hir::{Freevar, FreevarMap, TraitCandidate, TraitMap, GlobMap};
45 use rustc::util::nodemap::{NodeMap, NodeSet, FxHashMap, FxHashSet, DefIdMap};
46
47 use syntax::codemap::CodeMap;
48 use syntax::ext::hygiene::{Mark, MarkKind, SyntaxContext};
49 use syntax::ast::{self, Name, NodeId, Ident, FloatTy, IntTy, UintTy};
50 use syntax::ext::base::SyntaxExtension;
51 use syntax::ext::base::Determinacy::{self, Determined, Undetermined};
52 use syntax::ext::base::MacroKind;
53 use syntax::symbol::{Symbol, keywords};
54 use syntax::util::lev_distance::find_best_match_for_name;
55
56 use syntax::visit::{self, FnKind, Visitor};
57 use syntax::attr;
58 use syntax::ast::{Arm, IsAsync, BindingMode, Block, Crate, Expr, ExprKind, FnHeader};
59 use syntax::ast::{FnDecl, ForeignItem, ForeignItemKind, GenericParamKind, Generics};
60 use syntax::ast::{Item, ItemKind, ImplItem, ImplItemKind};
61 use syntax::ast::{Label, Local, Mutability, Pat, PatKind, Path};
62 use syntax::ast::{QSelf, TraitItemKind, TraitRef, Ty, TyKind};
63 use syntax::feature_gate::{feature_err, GateIssue};
64 use syntax::ptr::P;
65
66 use syntax_pos::{Span, DUMMY_SP, MultiSpan};
67 use errors::{DiagnosticBuilder, DiagnosticId};
68
69 use std::cell::{Cell, RefCell};
70 use std::cmp;
71 use std::collections::BTreeSet;
72 use std::fmt;
73 use std::iter;
74 use std::mem::replace;
75 use rustc_data_structures::sync::Lrc;
76
77 use resolve_imports::{ImportDirective, ImportDirectiveSubclass, NameResolution, ImportResolver};
78 use macros::{InvocationData, LegacyBinding, LegacyScope, MacroBinding};
79
80 // NB: This module needs to be declared first so diagnostics are
81 // registered before they are used.
82 mod diagnostics;
83
84 mod macros;
85 mod check_unused;
86 mod build_reduced_graph;
87 mod resolve_imports;
88
89 /// A free importable items suggested in case of resolution failure.
90 struct ImportSuggestion {
91     path: Path,
92 }
93
94 /// A field or associated item from self type suggested in case of resolution failure.
95 enum AssocSuggestion {
96     Field,
97     MethodWithSelf,
98     AssocItem,
99 }
100
101 #[derive(Eq)]
102 struct BindingError {
103     name: Name,
104     origin: BTreeSet<Span>,
105     target: BTreeSet<Span>,
106 }
107
108 impl PartialOrd for BindingError {
109     fn partial_cmp(&self, other: &BindingError) -> Option<cmp::Ordering> {
110         Some(self.cmp(other))
111     }
112 }
113
114 impl PartialEq for BindingError {
115     fn eq(&self, other: &BindingError) -> bool {
116         self.name == other.name
117     }
118 }
119
120 impl Ord for BindingError {
121     fn cmp(&self, other: &BindingError) -> cmp::Ordering {
122         self.name.cmp(&other.name)
123     }
124 }
125
126 enum ResolutionError<'a> {
127     /// error E0401: can't use type parameters from outer function
128     TypeParametersFromOuterFunction(Def),
129     /// error E0403: the name is already used for a type parameter in this type parameter list
130     NameAlreadyUsedInTypeParameterList(Name, &'a Span),
131     /// error E0407: method is not a member of trait
132     MethodNotMemberOfTrait(Name, &'a str),
133     /// error E0437: type is not a member of trait
134     TypeNotMemberOfTrait(Name, &'a str),
135     /// error E0438: const is not a member of trait
136     ConstNotMemberOfTrait(Name, &'a str),
137     /// error E0408: variable `{}` is not bound in all patterns
138     VariableNotBoundInPattern(&'a BindingError),
139     /// error E0409: variable `{}` is bound in inconsistent ways within the same match arm
140     VariableBoundWithDifferentMode(Name, Span),
141     /// error E0415: identifier is bound more than once in this parameter list
142     IdentifierBoundMoreThanOnceInParameterList(&'a str),
143     /// error E0416: identifier is bound more than once in the same pattern
144     IdentifierBoundMoreThanOnceInSamePattern(&'a str),
145     /// error E0426: use of undeclared label
146     UndeclaredLabel(&'a str, Option<Name>),
147     /// error E0429: `self` imports are only allowed within a { } list
148     SelfImportsOnlyAllowedWithin,
149     /// error E0430: `self` import can only appear once in the list
150     SelfImportCanOnlyAppearOnceInTheList,
151     /// error E0431: `self` import can only appear in an import list with a non-empty prefix
152     SelfImportOnlyInImportListWithNonEmptyPrefix,
153     /// error E0432: unresolved import
154     UnresolvedImport(Option<(Span, &'a str, &'a str)>),
155     /// error E0433: failed to resolve
156     FailedToResolve(&'a str),
157     /// error E0434: can't capture dynamic environment in a fn item
158     CannotCaptureDynamicEnvironmentInFnItem,
159     /// error E0435: attempt to use a non-constant value in a constant
160     AttemptToUseNonConstantValueInConstant,
161     /// error E0530: X bindings cannot shadow Ys
162     BindingShadowsSomethingUnacceptable(&'a str, Name, &'a NameBinding<'a>),
163     /// error E0128: type parameters with a default cannot use forward declared identifiers
164     ForwardDeclaredTyParam,
165 }
166
167 /// Combines an error with provided span and emits it
168 ///
169 /// This takes the error provided, combines it with the span and any additional spans inside the
170 /// error and emits it.
171 fn resolve_error<'sess, 'a>(resolver: &'sess Resolver,
172                             span: Span,
173                             resolution_error: ResolutionError<'a>) {
174     resolve_struct_error(resolver, span, resolution_error).emit();
175 }
176
177 fn resolve_struct_error<'sess, 'a>(resolver: &'sess Resolver,
178                                    span: Span,
179                                    resolution_error: ResolutionError<'a>)
180                                    -> DiagnosticBuilder<'sess> {
181     match resolution_error {
182         ResolutionError::TypeParametersFromOuterFunction(outer_def) => {
183             let mut err = struct_span_err!(resolver.session,
184                                            span,
185                                            E0401,
186                                            "can't use type parameters from outer function");
187             err.span_label(span, "use of type variable from outer function");
188
189             let cm = resolver.session.codemap();
190             match outer_def {
191                 Def::SelfTy(_, maybe_impl_defid) => {
192                     if let Some(impl_span) = maybe_impl_defid.map_or(None,
193                             |def_id| resolver.definitions.opt_span(def_id)) {
194                         err.span_label(reduce_impl_span_to_impl_keyword(cm, impl_span),
195                                     "`Self` type implicitely declared here, on the `impl`");
196                     }
197                 },
198                 Def::TyParam(typaram_defid) => {
199                     if let Some(typaram_span) = resolver.definitions.opt_span(typaram_defid) {
200                         err.span_label(typaram_span, "type variable from outer function");
201                     }
202                 },
203                 Def::Mod(..) | Def::Struct(..) | Def::Union(..) | Def::Enum(..) | Def::Variant(..) |
204                 Def::Trait(..) | Def::TyAlias(..) | Def::TyForeign(..) | Def::TraitAlias(..) |
205                 Def::AssociatedTy(..) | Def::PrimTy(..) | Def::Fn(..) | Def::Const(..) |
206                 Def::Static(..) | Def::StructCtor(..) | Def::VariantCtor(..) | Def::Method(..) |
207                 Def::AssociatedConst(..) | Def::Local(..) | Def::Upvar(..) | Def::Label(..) |
208                 Def::Existential(..) |
209                 Def::Macro(..) | Def::GlobalAsm(..) | Def::Err =>
210                     bug!("TypeParametersFromOuterFunction should only be used with Def::SelfTy or \
211                          Def::TyParam")
212             }
213
214             // Try to retrieve the span of the function signature and generate a new message with
215             // a local type parameter
216             let sugg_msg = "try using a local type parameter instead";
217             if let Some((sugg_span, new_snippet)) = cm.generate_local_type_param_snippet(span) {
218                 // Suggest the modification to the user
219                 err.span_suggestion(sugg_span,
220                                     sugg_msg,
221                                     new_snippet);
222             } else if let Some(sp) = cm.generate_fn_name_span(span) {
223                 err.span_label(sp, "try adding a local type parameter in this method instead");
224             } else {
225                 err.help("try using a local type parameter instead");
226             }
227
228             err
229         }
230         ResolutionError::NameAlreadyUsedInTypeParameterList(name, first_use_span) => {
231              let mut err = struct_span_err!(resolver.session,
232                                             span,
233                                             E0403,
234                                             "the name `{}` is already used for a type parameter \
235                                             in this type parameter list",
236                                             name);
237              err.span_label(span, "already used");
238              err.span_label(first_use_span.clone(), format!("first use of `{}`", name));
239              err
240         }
241         ResolutionError::MethodNotMemberOfTrait(method, trait_) => {
242             let mut err = struct_span_err!(resolver.session,
243                                            span,
244                                            E0407,
245                                            "method `{}` is not a member of trait `{}`",
246                                            method,
247                                            trait_);
248             err.span_label(span, format!("not a member of trait `{}`", trait_));
249             err
250         }
251         ResolutionError::TypeNotMemberOfTrait(type_, trait_) => {
252             let mut err = struct_span_err!(resolver.session,
253                              span,
254                              E0437,
255                              "type `{}` is not a member of trait `{}`",
256                              type_,
257                              trait_);
258             err.span_label(span, format!("not a member of trait `{}`", trait_));
259             err
260         }
261         ResolutionError::ConstNotMemberOfTrait(const_, trait_) => {
262             let mut err = struct_span_err!(resolver.session,
263                              span,
264                              E0438,
265                              "const `{}` is not a member of trait `{}`",
266                              const_,
267                              trait_);
268             err.span_label(span, format!("not a member of trait `{}`", trait_));
269             err
270         }
271         ResolutionError::VariableNotBoundInPattern(binding_error) => {
272             let target_sp = binding_error.target.iter().map(|x| *x).collect::<Vec<_>>();
273             let msp = MultiSpan::from_spans(target_sp.clone());
274             let msg = format!("variable `{}` is not bound in all patterns", binding_error.name);
275             let mut err = resolver.session.struct_span_err_with_code(
276                 msp,
277                 &msg,
278                 DiagnosticId::Error("E0408".into()),
279             );
280             for sp in target_sp {
281                 err.span_label(sp, format!("pattern doesn't bind `{}`", binding_error.name));
282             }
283             let origin_sp = binding_error.origin.iter().map(|x| *x).collect::<Vec<_>>();
284             for sp in origin_sp {
285                 err.span_label(sp, "variable not in all patterns");
286             }
287             err
288         }
289         ResolutionError::VariableBoundWithDifferentMode(variable_name,
290                                                         first_binding_span) => {
291             let mut err = struct_span_err!(resolver.session,
292                              span,
293                              E0409,
294                              "variable `{}` is bound in inconsistent \
295                              ways within the same match arm",
296                              variable_name);
297             err.span_label(span, "bound in different ways");
298             err.span_label(first_binding_span, "first binding");
299             err
300         }
301         ResolutionError::IdentifierBoundMoreThanOnceInParameterList(identifier) => {
302             let mut err = struct_span_err!(resolver.session,
303                              span,
304                              E0415,
305                              "identifier `{}` is bound more than once in this parameter list",
306                              identifier);
307             err.span_label(span, "used as parameter more than once");
308             err
309         }
310         ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(identifier) => {
311             let mut err = struct_span_err!(resolver.session,
312                              span,
313                              E0416,
314                              "identifier `{}` is bound more than once in the same pattern",
315                              identifier);
316             err.span_label(span, "used in a pattern more than once");
317             err
318         }
319         ResolutionError::UndeclaredLabel(name, lev_candidate) => {
320             let mut err = struct_span_err!(resolver.session,
321                                            span,
322                                            E0426,
323                                            "use of undeclared label `{}`",
324                                            name);
325             if let Some(lev_candidate) = lev_candidate {
326                 err.span_label(span, format!("did you mean `{}`?", lev_candidate));
327             } else {
328                 err.span_label(span, format!("undeclared label `{}`", name));
329             }
330             err
331         }
332         ResolutionError::SelfImportsOnlyAllowedWithin => {
333             struct_span_err!(resolver.session,
334                              span,
335                              E0429,
336                              "{}",
337                              "`self` imports are only allowed within a { } list")
338         }
339         ResolutionError::SelfImportCanOnlyAppearOnceInTheList => {
340             let mut err = struct_span_err!(resolver.session, span, E0430,
341                                            "`self` import can only appear once in an import list");
342             err.span_label(span, "can only appear once in an import list");
343             err
344         }
345         ResolutionError::SelfImportOnlyInImportListWithNonEmptyPrefix => {
346             let mut err = struct_span_err!(resolver.session, span, E0431,
347                                            "`self` import can only appear in an import list with \
348                                             a non-empty prefix");
349             err.span_label(span, "can only appear in an import list with a non-empty prefix");
350             err
351         }
352         ResolutionError::UnresolvedImport(name) => {
353             let (span, msg) = match name {
354                 Some((sp, n, _)) => (sp, format!("unresolved import `{}`", n)),
355                 None => (span, "unresolved import".to_owned()),
356             };
357             let mut err = struct_span_err!(resolver.session, span, E0432, "{}", msg);
358             if let Some((_, _, p)) = name {
359                 err.span_label(span, p);
360             }
361             err
362         }
363         ResolutionError::FailedToResolve(msg) => {
364             let mut err = struct_span_err!(resolver.session, span, E0433,
365                                            "failed to resolve. {}", msg);
366             err.span_label(span, msg);
367             err
368         }
369         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem => {
370             let mut err = struct_span_err!(resolver.session,
371                                            span,
372                                            E0434,
373                                            "{}",
374                                            "can't capture dynamic environment in a fn item");
375             err.help("use the `|| { ... }` closure form instead");
376             err
377         }
378         ResolutionError::AttemptToUseNonConstantValueInConstant => {
379             let mut err = struct_span_err!(resolver.session, span, E0435,
380                                            "attempt to use a non-constant value in a constant");
381             err.span_label(span, "non-constant value");
382             err
383         }
384         ResolutionError::BindingShadowsSomethingUnacceptable(what_binding, name, binding) => {
385             let shadows_what = PathResolution::new(binding.def()).kind_name();
386             let mut err = struct_span_err!(resolver.session,
387                                            span,
388                                            E0530,
389                                            "{}s cannot shadow {}s", what_binding, shadows_what);
390             err.span_label(span, format!("cannot be named the same as a {}", shadows_what));
391             let participle = if binding.is_import() { "imported" } else { "defined" };
392             let msg = format!("a {} `{}` is {} here", shadows_what, name, participle);
393             err.span_label(binding.span, msg);
394             err
395         }
396         ResolutionError::ForwardDeclaredTyParam => {
397             let mut err = struct_span_err!(resolver.session, span, E0128,
398                                            "type parameters with a default cannot use \
399                                             forward declared identifiers");
400             err.span_label(span, format!("defaulted type parameters cannot be forward declared"));
401             err
402         }
403     }
404 }
405
406 /// Adjust the impl span so that just the `impl` keyword is taken by removing
407 /// everything after `<` (`"impl<T> Iterator for A<T> {}" -> "impl"`) and
408 /// everything after the first whitespace (`"impl Iterator for A" -> "impl"`)
409 ///
410 /// Attention: The method used is very fragile since it essentially duplicates the work of the
411 /// parser. If you need to use this function or something similar, please consider updating the
412 /// codemap functions and this function to something more robust.
413 fn reduce_impl_span_to_impl_keyword(cm: &CodeMap, impl_span: Span) -> Span {
414     let impl_span = cm.span_until_char(impl_span, '<');
415     let impl_span = cm.span_until_whitespace(impl_span);
416     impl_span
417 }
418
419 #[derive(Copy, Clone, Debug)]
420 struct BindingInfo {
421     span: Span,
422     binding_mode: BindingMode,
423 }
424
425 /// Map from the name in a pattern to its binding mode.
426 type BindingMap = FxHashMap<Ident, BindingInfo>;
427
428 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
429 enum PatternSource {
430     Match,
431     IfLet,
432     WhileLet,
433     Let,
434     For,
435     FnParam,
436 }
437
438 impl PatternSource {
439     fn descr(self) -> &'static str {
440         match self {
441             PatternSource::Match => "match binding",
442             PatternSource::IfLet => "if let binding",
443             PatternSource::WhileLet => "while let binding",
444             PatternSource::Let => "let binding",
445             PatternSource::For => "for binding",
446             PatternSource::FnParam => "function parameter",
447         }
448     }
449 }
450
451 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
452 enum AliasPossibility {
453     No,
454     Maybe,
455 }
456
457 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
458 enum PathSource<'a> {
459     // Type paths `Path`.
460     Type,
461     // Trait paths in bounds or impls.
462     Trait(AliasPossibility),
463     // Expression paths `path`, with optional parent context.
464     Expr(Option<&'a Expr>),
465     // Paths in path patterns `Path`.
466     Pat,
467     // Paths in struct expressions and patterns `Path { .. }`.
468     Struct,
469     // Paths in tuple struct patterns `Path(..)`.
470     TupleStruct,
471     // `m::A::B` in `<T as m::A>::B::C`.
472     TraitItem(Namespace),
473     // Path in `pub(path)`
474     Visibility,
475     // Path in `use a::b::{...};`
476     ImportPrefix,
477 }
478
479 impl<'a> PathSource<'a> {
480     fn namespace(self) -> Namespace {
481         match self {
482             PathSource::Type | PathSource::Trait(_) | PathSource::Struct |
483             PathSource::Visibility | PathSource::ImportPrefix => TypeNS,
484             PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct => ValueNS,
485             PathSource::TraitItem(ns) => ns,
486         }
487     }
488
489     fn global_by_default(self) -> bool {
490         match self {
491             PathSource::Visibility | PathSource::ImportPrefix => true,
492             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
493             PathSource::Struct | PathSource::TupleStruct |
494             PathSource::Trait(_) | PathSource::TraitItem(..) => false,
495         }
496     }
497
498     fn defer_to_typeck(self) -> bool {
499         match self {
500             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
501             PathSource::Struct | PathSource::TupleStruct => true,
502             PathSource::Trait(_) | PathSource::TraitItem(..) |
503             PathSource::Visibility | PathSource::ImportPrefix => false,
504         }
505     }
506
507     fn descr_expected(self) -> &'static str {
508         match self {
509             PathSource::Type => "type",
510             PathSource::Trait(_) => "trait",
511             PathSource::Pat => "unit struct/variant or constant",
512             PathSource::Struct => "struct, variant or union type",
513             PathSource::TupleStruct => "tuple struct/variant",
514             PathSource::Visibility => "module",
515             PathSource::ImportPrefix => "module or enum",
516             PathSource::TraitItem(ns) => match ns {
517                 TypeNS => "associated type",
518                 ValueNS => "method or associated constant",
519                 MacroNS => bug!("associated macro"),
520             },
521             PathSource::Expr(parent) => match parent.map(|p| &p.node) {
522                 // "function" here means "anything callable" rather than `Def::Fn`,
523                 // this is not precise but usually more helpful than just "value".
524                 Some(&ExprKind::Call(..)) => "function",
525                 _ => "value",
526             },
527         }
528     }
529
530     fn is_expected(self, def: Def) -> bool {
531         match self {
532             PathSource::Type => match def {
533                 Def::Struct(..) | Def::Union(..) | Def::Enum(..) |
534                 Def::Trait(..) | Def::TyAlias(..) | Def::AssociatedTy(..) |
535                 Def::PrimTy(..) | Def::TyParam(..) | Def::SelfTy(..) |
536                 Def::TyForeign(..) => true,
537                 _ => false,
538             },
539             PathSource::Trait(AliasPossibility::No) => match def {
540                 Def::Trait(..) => true,
541                 _ => false,
542             },
543             PathSource::Trait(AliasPossibility::Maybe) => match def {
544                 Def::Trait(..) => true,
545                 Def::TraitAlias(..) => true,
546                 _ => false,
547             },
548             PathSource::Expr(..) => match def {
549                 Def::StructCtor(_, CtorKind::Const) | Def::StructCtor(_, CtorKind::Fn) |
550                 Def::VariantCtor(_, CtorKind::Const) | Def::VariantCtor(_, CtorKind::Fn) |
551                 Def::Const(..) | Def::Static(..) | Def::Local(..) | Def::Upvar(..) |
552                 Def::Fn(..) | Def::Method(..) | Def::AssociatedConst(..) => true,
553                 _ => false,
554             },
555             PathSource::Pat => match def {
556                 Def::StructCtor(_, CtorKind::Const) |
557                 Def::VariantCtor(_, CtorKind::Const) |
558                 Def::Const(..) | Def::AssociatedConst(..) => true,
559                 _ => false,
560             },
561             PathSource::TupleStruct => match def {
562                 Def::StructCtor(_, CtorKind::Fn) | Def::VariantCtor(_, CtorKind::Fn) => true,
563                 _ => false,
564             },
565             PathSource::Struct => match def {
566                 Def::Struct(..) | Def::Union(..) | Def::Variant(..) |
567                 Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => true,
568                 _ => false,
569             },
570             PathSource::TraitItem(ns) => match def {
571                 Def::AssociatedConst(..) | Def::Method(..) if ns == ValueNS => true,
572                 Def::AssociatedTy(..) if ns == TypeNS => true,
573                 _ => false,
574             },
575             PathSource::ImportPrefix => match def {
576                 Def::Mod(..) | Def::Enum(..) => true,
577                 _ => false,
578             },
579             PathSource::Visibility => match def {
580                 Def::Mod(..) => true,
581                 _ => false,
582             },
583         }
584     }
585
586     fn error_code(self, has_unexpected_resolution: bool) -> &'static str {
587         __diagnostic_used!(E0404);
588         __diagnostic_used!(E0405);
589         __diagnostic_used!(E0412);
590         __diagnostic_used!(E0422);
591         __diagnostic_used!(E0423);
592         __diagnostic_used!(E0425);
593         __diagnostic_used!(E0531);
594         __diagnostic_used!(E0532);
595         __diagnostic_used!(E0573);
596         __diagnostic_used!(E0574);
597         __diagnostic_used!(E0575);
598         __diagnostic_used!(E0576);
599         __diagnostic_used!(E0577);
600         __diagnostic_used!(E0578);
601         match (self, has_unexpected_resolution) {
602             (PathSource::Trait(_), true) => "E0404",
603             (PathSource::Trait(_), false) => "E0405",
604             (PathSource::Type, true) => "E0573",
605             (PathSource::Type, false) => "E0412",
606             (PathSource::Struct, true) => "E0574",
607             (PathSource::Struct, false) => "E0422",
608             (PathSource::Expr(..), true) => "E0423",
609             (PathSource::Expr(..), false) => "E0425",
610             (PathSource::Pat, true) | (PathSource::TupleStruct, true) => "E0532",
611             (PathSource::Pat, false) | (PathSource::TupleStruct, false) => "E0531",
612             (PathSource::TraitItem(..), true) => "E0575",
613             (PathSource::TraitItem(..), false) => "E0576",
614             (PathSource::Visibility, true) | (PathSource::ImportPrefix, true) => "E0577",
615             (PathSource::Visibility, false) | (PathSource::ImportPrefix, false) => "E0578",
616         }
617     }
618 }
619
620 struct UsePlacementFinder {
621     target_module: NodeId,
622     span: Option<Span>,
623     found_use: bool,
624 }
625
626 impl UsePlacementFinder {
627     fn check(krate: &Crate, target_module: NodeId) -> (Option<Span>, bool) {
628         let mut finder = UsePlacementFinder {
629             target_module,
630             span: None,
631             found_use: false,
632         };
633         visit::walk_crate(&mut finder, krate);
634         (finder.span, finder.found_use)
635     }
636 }
637
638 impl<'tcx> Visitor<'tcx> for UsePlacementFinder {
639     fn visit_mod(
640         &mut self,
641         module: &'tcx ast::Mod,
642         _: Span,
643         _: &[ast::Attribute],
644         node_id: NodeId,
645     ) {
646         if self.span.is_some() {
647             return;
648         }
649         if node_id != self.target_module {
650             visit::walk_mod(self, module);
651             return;
652         }
653         // find a use statement
654         for item in &module.items {
655             match item.node {
656                 ItemKind::Use(..) => {
657                     // don't suggest placing a use before the prelude
658                     // import or other generated ones
659                     if item.span.ctxt().outer().expn_info().is_none() {
660                         self.span = Some(item.span.shrink_to_lo());
661                         self.found_use = true;
662                         return;
663                     }
664                 },
665                 // don't place use before extern crate
666                 ItemKind::ExternCrate(_) => {}
667                 // but place them before the first other item
668                 _ => if self.span.map_or(true, |span| item.span < span ) {
669                     if item.span.ctxt().outer().expn_info().is_none() {
670                         // don't insert between attributes and an item
671                         if item.attrs.is_empty() {
672                             self.span = Some(item.span.shrink_to_lo());
673                         } else {
674                             // find the first attribute on the item
675                             for attr in &item.attrs {
676                                 if self.span.map_or(true, |span| attr.span < span) {
677                                     self.span = Some(attr.span.shrink_to_lo());
678                                 }
679                             }
680                         }
681                     }
682                 },
683             }
684         }
685     }
686 }
687
688 /// This thing walks the whole crate in DFS manner, visiting each item, resolving names as it goes.
689 impl<'a, 'tcx> Visitor<'tcx> for Resolver<'a> {
690     fn visit_item(&mut self, item: &'tcx Item) {
691         self.resolve_item(item);
692     }
693     fn visit_arm(&mut self, arm: &'tcx Arm) {
694         self.resolve_arm(arm);
695     }
696     fn visit_block(&mut self, block: &'tcx Block) {
697         self.resolve_block(block);
698     }
699     fn visit_anon_const(&mut self, constant: &'tcx ast::AnonConst) {
700         self.with_constant_rib(|this| {
701             visit::walk_anon_const(this, constant);
702         });
703     }
704     fn visit_expr(&mut self, expr: &'tcx Expr) {
705         self.resolve_expr(expr, None);
706     }
707     fn visit_local(&mut self, local: &'tcx Local) {
708         self.resolve_local(local);
709     }
710     fn visit_ty(&mut self, ty: &'tcx Ty) {
711         match ty.node {
712             TyKind::Path(ref qself, ref path) => {
713                 self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
714             }
715             TyKind::ImplicitSelf => {
716                 let self_ty = keywords::SelfType.ident();
717                 let def = self.resolve_ident_in_lexical_scope(self_ty, TypeNS, true, ty.span)
718                               .map_or(Def::Err, |d| d.def());
719                 self.record_def(ty.id, PathResolution::new(def));
720             }
721             _ => (),
722         }
723         visit::walk_ty(self, ty);
724     }
725     fn visit_poly_trait_ref(&mut self,
726                             tref: &'tcx ast::PolyTraitRef,
727                             m: &'tcx ast::TraitBoundModifier) {
728         self.smart_resolve_path(tref.trait_ref.ref_id, None,
729                                 &tref.trait_ref.path, PathSource::Trait(AliasPossibility::Maybe));
730         visit::walk_poly_trait_ref(self, tref, m);
731     }
732     fn visit_foreign_item(&mut self, foreign_item: &'tcx ForeignItem) {
733         let type_parameters = match foreign_item.node {
734             ForeignItemKind::Fn(_, ref generics) => {
735                 HasTypeParameters(generics, ItemRibKind)
736             }
737             ForeignItemKind::Static(..) => NoTypeParameters,
738             ForeignItemKind::Ty => NoTypeParameters,
739             ForeignItemKind::Macro(..) => NoTypeParameters,
740         };
741         self.with_type_parameter_rib(type_parameters, |this| {
742             visit::walk_foreign_item(this, foreign_item);
743         });
744     }
745     fn visit_fn(&mut self,
746                 function_kind: FnKind<'tcx>,
747                 declaration: &'tcx FnDecl,
748                 _: Span,
749                 node_id: NodeId) {
750         let rib_kind = match function_kind {
751             FnKind::ItemFn(..) => {
752                 ItemRibKind
753             }
754             FnKind::Method(_, _, _, _) => {
755                 TraitOrImplItemRibKind
756             }
757             FnKind::Closure(_) => ClosureRibKind(node_id),
758         };
759
760         // Create a value rib for the function.
761         self.ribs[ValueNS].push(Rib::new(rib_kind));
762
763         // Create a label rib for the function.
764         self.label_ribs.push(Rib::new(rib_kind));
765
766         // Add each argument to the rib.
767         let mut bindings_list = FxHashMap();
768         for argument in &declaration.inputs {
769             self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
770
771             self.visit_ty(&argument.ty);
772
773             debug!("(resolving function) recorded argument");
774         }
775         visit::walk_fn_ret_ty(self, &declaration.output);
776
777         // Resolve the function body.
778         match function_kind {
779             FnKind::ItemFn(.., body) |
780             FnKind::Method(.., body) => {
781                 self.visit_block(body);
782             }
783             FnKind::Closure(body) => {
784                 self.visit_expr(body);
785             }
786         };
787
788         debug!("(resolving function) leaving function");
789
790         self.label_ribs.pop();
791         self.ribs[ValueNS].pop();
792     }
793     fn visit_generics(&mut self, generics: &'tcx Generics) {
794         // For type parameter defaults, we have to ban access
795         // to following type parameters, as the Substs can only
796         // provide previous type parameters as they're built. We
797         // put all the parameters on the ban list and then remove
798         // them one by one as they are processed and become available.
799         let mut default_ban_rib = Rib::new(ForwardTyParamBanRibKind);
800         let mut found_default = false;
801         default_ban_rib.bindings.extend(generics.params.iter()
802             .filter_map(|param| match param.kind {
803                 GenericParamKind::Lifetime { .. } => None,
804                 GenericParamKind::Type { ref default, .. } => {
805                     if found_default || default.is_some() {
806                         found_default = true;
807                         return Some((Ident::with_empty_ctxt(param.ident.name), Def::Err));
808                     }
809                     None
810                 }
811             }));
812
813         for param in &generics.params {
814             match param.kind {
815                 GenericParamKind::Lifetime { .. } => self.visit_generic_param(param),
816                 GenericParamKind::Type { ref default, .. } => {
817                     for bound in &param.bounds {
818                         self.visit_param_bound(bound);
819                     }
820
821                     if let Some(ref ty) = default {
822                         self.ribs[TypeNS].push(default_ban_rib);
823                         self.visit_ty(ty);
824                         default_ban_rib = self.ribs[TypeNS].pop().unwrap();
825                     }
826
827                     // Allow all following defaults to refer to this type parameter.
828                     default_ban_rib.bindings.remove(&Ident::with_empty_ctxt(param.ident.name));
829                 }
830             }
831         }
832         for p in &generics.where_clause.predicates {
833             self.visit_where_predicate(p);
834         }
835     }
836 }
837
838 #[derive(Copy, Clone)]
839 enum TypeParameters<'a, 'b> {
840     NoTypeParameters,
841     HasTypeParameters(// Type parameters.
842                       &'b Generics,
843
844                       // The kind of the rib used for type parameters.
845                       RibKind<'a>),
846 }
847
848 /// The rib kind controls the translation of local
849 /// definitions (`Def::Local`) to upvars (`Def::Upvar`).
850 #[derive(Copy, Clone, Debug)]
851 enum RibKind<'a> {
852     /// No translation needs to be applied.
853     NormalRibKind,
854
855     /// We passed through a closure scope at the given node ID.
856     /// Translate upvars as appropriate.
857     ClosureRibKind(NodeId /* func id */),
858
859     /// We passed through an impl or trait and are now in one of its
860     /// methods or associated types. Allow references to ty params that impl or trait
861     /// binds. Disallow any other upvars (including other ty params that are
862     /// upvars).
863     TraitOrImplItemRibKind,
864
865     /// We passed through an item scope. Disallow upvars.
866     ItemRibKind,
867
868     /// We're in a constant item. Can't refer to dynamic stuff.
869     ConstantItemRibKind,
870
871     /// We passed through a module.
872     ModuleRibKind(Module<'a>),
873
874     /// We passed through a `macro_rules!` statement
875     MacroDefinition(DefId),
876
877     /// All bindings in this rib are type parameters that can't be used
878     /// from the default of a type parameter because they're not declared
879     /// before said type parameter. Also see the `visit_generics` override.
880     ForwardTyParamBanRibKind,
881 }
882
883 /// One local scope.
884 ///
885 /// A rib represents a scope names can live in. Note that these appear in many places, not just
886 /// around braces. At any place where the list of accessible names (of the given namespace)
887 /// changes or a new restrictions on the name accessibility are introduced, a new rib is put onto a
888 /// stack. This may be, for example, a `let` statement (because it introduces variables), a macro,
889 /// etc.
890 ///
891 /// Different [rib kinds](enum.RibKind) are transparent for different names.
892 ///
893 /// The resolution keeps a separate stack of ribs as it traverses the AST for each namespace. When
894 /// resolving, the name is looked up from inside out.
895 #[derive(Debug)]
896 struct Rib<'a> {
897     bindings: FxHashMap<Ident, Def>,
898     kind: RibKind<'a>,
899 }
900
901 impl<'a> Rib<'a> {
902     fn new(kind: RibKind<'a>) -> Rib<'a> {
903         Rib {
904             bindings: FxHashMap(),
905             kind,
906         }
907     }
908 }
909
910 /// An intermediate resolution result.
911 ///
912 /// This refers to the thing referred by a name. The difference between `Def` and `Item` is that
913 /// items are visible in their whole block, while defs only from the place they are defined
914 /// forward.
915 enum LexicalScopeBinding<'a> {
916     Item(&'a NameBinding<'a>),
917     Def(Def),
918 }
919
920 impl<'a> LexicalScopeBinding<'a> {
921     fn item(self) -> Option<&'a NameBinding<'a>> {
922         match self {
923             LexicalScopeBinding::Item(binding) => Some(binding),
924             _ => None,
925         }
926     }
927
928     fn def(self) -> Def {
929         match self {
930             LexicalScopeBinding::Item(binding) => binding.def(),
931             LexicalScopeBinding::Def(def) => def,
932         }
933     }
934 }
935
936 #[derive(Clone, Debug)]
937 enum PathResult<'a> {
938     Module(Module<'a>),
939     NonModule(PathResolution),
940     Indeterminate,
941     Failed(Span, String, bool /* is the error from the last segment? */),
942 }
943
944 enum ModuleKind {
945     /// An anonymous module, eg. just a block.
946     ///
947     /// ```
948     /// fn main() {
949     ///     fn f() {} // (1)
950     ///     { // This is an anonymous module
951     ///         f(); // This resolves to (2) as we are inside the block.
952     ///         fn f() {} // (2)
953     ///     }
954     ///     f(); // Resolves to (1)
955     /// }
956     /// ```
957     Block(NodeId),
958     /// Any module with a name.
959     ///
960     /// This could be:
961     ///
962     /// * A normal module â€’ either `mod from_file;` or `mod from_block { }`.
963     /// * A trait or an enum (it implicitly contains associated types, methods and variant
964     ///   constructors).
965     Def(Def, Name),
966 }
967
968 /// One node in the tree of modules.
969 pub struct ModuleData<'a> {
970     parent: Option<Module<'a>>,
971     kind: ModuleKind,
972
973     // The def id of the closest normal module (`mod`) ancestor (including this module).
974     normal_ancestor_id: DefId,
975
976     resolutions: RefCell<FxHashMap<(Ident, Namespace), &'a RefCell<NameResolution<'a>>>>,
977     legacy_macro_resolutions: RefCell<Vec<(Mark, Ident, MacroKind, Option<Def>)>>,
978     macro_resolutions: RefCell<Vec<(Box<[Ident]>, Span)>>,
979
980     // Macro invocations that can expand into items in this module.
981     unresolved_invocations: RefCell<FxHashSet<Mark>>,
982
983     no_implicit_prelude: bool,
984
985     glob_importers: RefCell<Vec<&'a ImportDirective<'a>>>,
986     globs: RefCell<Vec<&'a ImportDirective<'a>>>,
987
988     // Used to memoize the traits in this module for faster searches through all traits in scope.
989     traits: RefCell<Option<Box<[(Ident, &'a NameBinding<'a>)]>>>,
990
991     // Whether this module is populated. If not populated, any attempt to
992     // access the children must be preceded with a
993     // `populate_module_if_necessary` call.
994     populated: Cell<bool>,
995
996     /// Span of the module itself. Used for error reporting.
997     span: Span,
998
999     expansion: Mark,
1000 }
1001
1002 type Module<'a> = &'a ModuleData<'a>;
1003
1004 impl<'a> ModuleData<'a> {
1005     fn new(parent: Option<Module<'a>>,
1006            kind: ModuleKind,
1007            normal_ancestor_id: DefId,
1008            expansion: Mark,
1009            span: Span) -> Self {
1010         ModuleData {
1011             parent,
1012             kind,
1013             normal_ancestor_id,
1014             resolutions: RefCell::new(FxHashMap()),
1015             legacy_macro_resolutions: RefCell::new(Vec::new()),
1016             macro_resolutions: RefCell::new(Vec::new()),
1017             unresolved_invocations: RefCell::new(FxHashSet()),
1018             no_implicit_prelude: false,
1019             glob_importers: RefCell::new(Vec::new()),
1020             globs: RefCell::new(Vec::new()),
1021             traits: RefCell::new(None),
1022             populated: Cell::new(normal_ancestor_id.is_local()),
1023             span,
1024             expansion,
1025         }
1026     }
1027
1028     fn for_each_child<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1029         for (&(ident, ns), name_resolution) in self.resolutions.borrow().iter() {
1030             name_resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1031         }
1032     }
1033
1034     fn for_each_child_stable<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1035         let resolutions = self.resolutions.borrow();
1036         let mut resolutions = resolutions.iter().collect::<Vec<_>>();
1037         resolutions.sort_by_cached_key(|&(&(ident, ns), _)| (ident.as_str(), ns));
1038         for &(&(ident, ns), &resolution) in resolutions.iter() {
1039             resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1040         }
1041     }
1042
1043     fn def(&self) -> Option<Def> {
1044         match self.kind {
1045             ModuleKind::Def(def, _) => Some(def),
1046             _ => None,
1047         }
1048     }
1049
1050     fn def_id(&self) -> Option<DefId> {
1051         self.def().as_ref().map(Def::def_id)
1052     }
1053
1054     // `self` resolves to the first module ancestor that `is_normal`.
1055     fn is_normal(&self) -> bool {
1056         match self.kind {
1057             ModuleKind::Def(Def::Mod(_), _) => true,
1058             _ => false,
1059         }
1060     }
1061
1062     fn is_trait(&self) -> bool {
1063         match self.kind {
1064             ModuleKind::Def(Def::Trait(_), _) => true,
1065             _ => false,
1066         }
1067     }
1068
1069     fn is_local(&self) -> bool {
1070         self.normal_ancestor_id.is_local()
1071     }
1072
1073     fn nearest_item_scope(&'a self) -> Module<'a> {
1074         if self.is_trait() { self.parent.unwrap() } else { self }
1075     }
1076 }
1077
1078 impl<'a> fmt::Debug for ModuleData<'a> {
1079     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1080         write!(f, "{:?}", self.def())
1081     }
1082 }
1083
1084 /// Records a possibly-private value, type, or module definition.
1085 #[derive(Clone, Debug)]
1086 pub struct NameBinding<'a> {
1087     kind: NameBindingKind<'a>,
1088     expansion: Mark,
1089     span: Span,
1090     vis: ty::Visibility,
1091 }
1092
1093 pub trait ToNameBinding<'a> {
1094     fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a>;
1095 }
1096
1097 impl<'a> ToNameBinding<'a> for &'a NameBinding<'a> {
1098     fn to_name_binding(self, _: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> {
1099         self
1100     }
1101 }
1102
1103 #[derive(Clone, Debug)]
1104 enum NameBindingKind<'a> {
1105     Def(Def),
1106     Module(Module<'a>),
1107     Import {
1108         binding: &'a NameBinding<'a>,
1109         directive: &'a ImportDirective<'a>,
1110         used: Cell<bool>,
1111     },
1112     Ambiguity {
1113         b1: &'a NameBinding<'a>,
1114         b2: &'a NameBinding<'a>,
1115     }
1116 }
1117
1118 struct PrivacyError<'a>(Span, Name, &'a NameBinding<'a>);
1119
1120 struct UseError<'a> {
1121     err: DiagnosticBuilder<'a>,
1122     /// Attach `use` statements for these candidates
1123     candidates: Vec<ImportSuggestion>,
1124     /// The node id of the module to place the use statements in
1125     node_id: NodeId,
1126     /// Whether the diagnostic should state that it's "better"
1127     better: bool,
1128 }
1129
1130 struct AmbiguityError<'a> {
1131     span: Span,
1132     name: Name,
1133     lexical: bool,
1134     b1: &'a NameBinding<'a>,
1135     b2: &'a NameBinding<'a>,
1136 }
1137
1138 impl<'a> NameBinding<'a> {
1139     fn module(&self) -> Option<Module<'a>> {
1140         match self.kind {
1141             NameBindingKind::Module(module) => Some(module),
1142             NameBindingKind::Import { binding, .. } => binding.module(),
1143             _ => None,
1144         }
1145     }
1146
1147     fn def(&self) -> Def {
1148         match self.kind {
1149             NameBindingKind::Def(def) => def,
1150             NameBindingKind::Module(module) => module.def().unwrap(),
1151             NameBindingKind::Import { binding, .. } => binding.def(),
1152             NameBindingKind::Ambiguity { .. } => Def::Err,
1153         }
1154     }
1155
1156     fn def_ignoring_ambiguity(&self) -> Def {
1157         match self.kind {
1158             NameBindingKind::Import { binding, .. } => binding.def_ignoring_ambiguity(),
1159             NameBindingKind::Ambiguity { b1, .. } => b1.def_ignoring_ambiguity(),
1160             _ => self.def(),
1161         }
1162     }
1163
1164     fn get_macro(&self, resolver: &mut Resolver<'a>) -> Lrc<SyntaxExtension> {
1165         resolver.get_macro(self.def_ignoring_ambiguity())
1166     }
1167
1168     // We sometimes need to treat variants as `pub` for backwards compatibility
1169     fn pseudo_vis(&self) -> ty::Visibility {
1170         if self.is_variant() && self.def().def_id().is_local() {
1171             ty::Visibility::Public
1172         } else {
1173             self.vis
1174         }
1175     }
1176
1177     fn is_variant(&self) -> bool {
1178         match self.kind {
1179             NameBindingKind::Def(Def::Variant(..)) |
1180             NameBindingKind::Def(Def::VariantCtor(..)) => true,
1181             _ => false,
1182         }
1183     }
1184
1185     fn is_extern_crate(&self) -> bool {
1186         match self.kind {
1187             NameBindingKind::Import {
1188                 directive: &ImportDirective {
1189                     subclass: ImportDirectiveSubclass::ExternCrate(_), ..
1190                 }, ..
1191             } => true,
1192             _ => false,
1193         }
1194     }
1195
1196     fn is_import(&self) -> bool {
1197         match self.kind {
1198             NameBindingKind::Import { .. } => true,
1199             _ => false,
1200         }
1201     }
1202
1203     fn is_renamed_extern_crate(&self) -> bool {
1204         if let NameBindingKind::Import { directive, ..} = self.kind {
1205             if let ImportDirectiveSubclass::ExternCrate(Some(_)) = directive.subclass {
1206                 return true;
1207             }
1208         }
1209         false
1210     }
1211
1212     fn is_glob_import(&self) -> bool {
1213         match self.kind {
1214             NameBindingKind::Import { directive, .. } => directive.is_glob(),
1215             NameBindingKind::Ambiguity { b1, .. } => b1.is_glob_import(),
1216             _ => false,
1217         }
1218     }
1219
1220     fn is_importable(&self) -> bool {
1221         match self.def() {
1222             Def::AssociatedConst(..) | Def::Method(..) | Def::AssociatedTy(..) => false,
1223             _ => true,
1224         }
1225     }
1226
1227     fn is_macro_def(&self) -> bool {
1228         match self.kind {
1229             NameBindingKind::Def(Def::Macro(..)) => true,
1230             _ => false,
1231         }
1232     }
1233
1234     fn descr(&self) -> &'static str {
1235         if self.is_extern_crate() { "extern crate" } else { self.def().kind_name() }
1236     }
1237 }
1238
1239 /// Interns the names of the primitive types.
1240 ///
1241 /// All other types are defined somewhere and possibly imported, but the primitive ones need
1242 /// special handling, since they have no place of origin.
1243 struct PrimitiveTypeTable {
1244     primitive_types: FxHashMap<Name, PrimTy>,
1245 }
1246
1247 impl PrimitiveTypeTable {
1248     fn new() -> PrimitiveTypeTable {
1249         let mut table = PrimitiveTypeTable { primitive_types: FxHashMap() };
1250
1251         table.intern("bool", TyBool);
1252         table.intern("char", TyChar);
1253         table.intern("f32", TyFloat(FloatTy::F32));
1254         table.intern("f64", TyFloat(FloatTy::F64));
1255         table.intern("isize", TyInt(IntTy::Isize));
1256         table.intern("i8", TyInt(IntTy::I8));
1257         table.intern("i16", TyInt(IntTy::I16));
1258         table.intern("i32", TyInt(IntTy::I32));
1259         table.intern("i64", TyInt(IntTy::I64));
1260         table.intern("i128", TyInt(IntTy::I128));
1261         table.intern("str", TyStr);
1262         table.intern("usize", TyUint(UintTy::Usize));
1263         table.intern("u8", TyUint(UintTy::U8));
1264         table.intern("u16", TyUint(UintTy::U16));
1265         table.intern("u32", TyUint(UintTy::U32));
1266         table.intern("u64", TyUint(UintTy::U64));
1267         table.intern("u128", TyUint(UintTy::U128));
1268         table
1269     }
1270
1271     fn intern(&mut self, string: &str, primitive_type: PrimTy) {
1272         self.primitive_types.insert(Symbol::intern(string), primitive_type);
1273     }
1274 }
1275
1276 /// The main resolver class.
1277 ///
1278 /// This is the visitor that walks the whole crate.
1279 pub struct Resolver<'a> {
1280     session: &'a Session,
1281     cstore: &'a CrateStore,
1282
1283     pub definitions: Definitions,
1284
1285     graph_root: Module<'a>,
1286
1287     prelude: Option<Module<'a>>,
1288     extern_prelude: FxHashSet<Name>,
1289
1290     /// n.b. This is used only for better diagnostics, not name resolution itself.
1291     has_self: FxHashSet<DefId>,
1292
1293     /// Names of fields of an item `DefId` accessible with dot syntax.
1294     /// Used for hints during error reporting.
1295     field_names: FxHashMap<DefId, Vec<Name>>,
1296
1297     /// All imports known to succeed or fail.
1298     determined_imports: Vec<&'a ImportDirective<'a>>,
1299
1300     /// All non-determined imports.
1301     indeterminate_imports: Vec<&'a ImportDirective<'a>>,
1302
1303     /// The module that represents the current item scope.
1304     current_module: Module<'a>,
1305
1306     /// The current set of local scopes for types and values.
1307     /// FIXME #4948: Reuse ribs to avoid allocation.
1308     ribs: PerNS<Vec<Rib<'a>>>,
1309
1310     /// The current set of local scopes, for labels.
1311     label_ribs: Vec<Rib<'a>>,
1312
1313     /// The trait that the current context can refer to.
1314     current_trait_ref: Option<(Module<'a>, TraitRef)>,
1315
1316     /// The current self type if inside an impl (used for better errors).
1317     current_self_type: Option<Ty>,
1318
1319     /// The idents for the primitive types.
1320     primitive_type_table: PrimitiveTypeTable,
1321
1322     def_map: DefMap,
1323     import_map: ImportMap,
1324     pub freevars: FreevarMap,
1325     freevars_seen: NodeMap<NodeMap<usize>>,
1326     pub export_map: ExportMap,
1327     pub trait_map: TraitMap,
1328
1329     /// A map from nodes to anonymous modules.
1330     /// Anonymous modules are pseudo-modules that are implicitly created around items
1331     /// contained within blocks.
1332     ///
1333     /// For example, if we have this:
1334     ///
1335     ///  fn f() {
1336     ///      fn g() {
1337     ///          ...
1338     ///      }
1339     ///  }
1340     ///
1341     /// There will be an anonymous module created around `g` with the ID of the
1342     /// entry block for `f`.
1343     block_map: NodeMap<Module<'a>>,
1344     module_map: FxHashMap<DefId, Module<'a>>,
1345     extern_module_map: FxHashMap<(DefId, bool /* MacrosOnly? */), Module<'a>>,
1346
1347     pub make_glob_map: bool,
1348     /// Maps imports to the names of items actually imported (this actually maps
1349     /// all imports, but only glob imports are actually interesting).
1350     pub glob_map: GlobMap,
1351
1352     used_imports: FxHashSet<(NodeId, Namespace)>,
1353     pub maybe_unused_trait_imports: NodeSet,
1354     pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
1355
1356     /// A list of labels as of yet unused. Labels will be removed from this map when
1357     /// they are used (in a `break` or `continue` statement)
1358     pub unused_labels: FxHashMap<NodeId, Span>,
1359
1360     /// privacy errors are delayed until the end in order to deduplicate them
1361     privacy_errors: Vec<PrivacyError<'a>>,
1362     /// ambiguity errors are delayed for deduplication
1363     ambiguity_errors: Vec<AmbiguityError<'a>>,
1364     /// `use` injections are delayed for better placement and deduplication
1365     use_injections: Vec<UseError<'a>>,
1366     /// `use` injections for proc macros wrongly imported with #[macro_use]
1367     proc_mac_errors: Vec<macros::ProcMacError>,
1368
1369     gated_errors: FxHashSet<Span>,
1370     disallowed_shadowing: Vec<&'a LegacyBinding<'a>>,
1371
1372     arenas: &'a ResolverArenas<'a>,
1373     dummy_binding: &'a NameBinding<'a>,
1374     /// true if `#![feature(use_extern_macros)]`
1375     use_extern_macros: bool,
1376
1377     crate_loader: &'a mut CrateLoader,
1378     macro_names: FxHashSet<Ident>,
1379     global_macros: FxHashMap<Name, &'a NameBinding<'a>>,
1380     pub all_macros: FxHashMap<Name, Def>,
1381     lexical_macro_resolutions: Vec<(Ident, &'a Cell<LegacyScope<'a>>)>,
1382     macro_map: FxHashMap<DefId, Lrc<SyntaxExtension>>,
1383     macro_defs: FxHashMap<Mark, DefId>,
1384     local_macro_def_scopes: FxHashMap<NodeId, Module<'a>>,
1385     macro_exports: Vec<Export>,
1386     pub whitelisted_legacy_custom_derives: Vec<Name>,
1387     pub found_unresolved_macro: bool,
1388
1389     /// List of crate local macros that we need to warn about as being unused.
1390     /// Right now this only includes macro_rules! macros, and macros 2.0.
1391     unused_macros: FxHashSet<DefId>,
1392
1393     /// Maps the `Mark` of an expansion to its containing module or block.
1394     invocations: FxHashMap<Mark, &'a InvocationData<'a>>,
1395
1396     /// Avoid duplicated errors for "name already defined".
1397     name_already_seen: FxHashMap<Name, Span>,
1398
1399     /// If `#![feature(proc_macro)]` is set
1400     proc_macro_enabled: bool,
1401
1402     /// A set of procedural macros imported by `#[macro_use]` that have already been warned about
1403     warned_proc_macros: FxHashSet<Name>,
1404
1405     potentially_unused_imports: Vec<&'a ImportDirective<'a>>,
1406
1407     /// This table maps struct IDs into struct constructor IDs,
1408     /// it's not used during normal resolution, only for better error reporting.
1409     struct_constructors: DefIdMap<(Def, ty::Visibility)>,
1410
1411     /// Only used for better errors on `fn(): fn()`
1412     current_type_ascription: Vec<Span>,
1413
1414     injected_crate: Option<Module<'a>>,
1415
1416     /// Only supposed to be used by rustdoc, otherwise should be false.
1417     pub ignore_extern_prelude_feature: bool,
1418 }
1419
1420 /// Nothing really interesting here, it just provides memory for the rest of the crate.
1421 pub struct ResolverArenas<'a> {
1422     modules: arena::TypedArena<ModuleData<'a>>,
1423     local_modules: RefCell<Vec<Module<'a>>>,
1424     name_bindings: arena::TypedArena<NameBinding<'a>>,
1425     import_directives: arena::TypedArena<ImportDirective<'a>>,
1426     name_resolutions: arena::TypedArena<RefCell<NameResolution<'a>>>,
1427     invocation_data: arena::TypedArena<InvocationData<'a>>,
1428     legacy_bindings: arena::TypedArena<LegacyBinding<'a>>,
1429 }
1430
1431 impl<'a> ResolverArenas<'a> {
1432     fn alloc_module(&'a self, module: ModuleData<'a>) -> Module<'a> {
1433         let module = self.modules.alloc(module);
1434         if module.def_id().map(|def_id| def_id.is_local()).unwrap_or(true) {
1435             self.local_modules.borrow_mut().push(module);
1436         }
1437         module
1438     }
1439     fn local_modules(&'a self) -> ::std::cell::Ref<'a, Vec<Module<'a>>> {
1440         self.local_modules.borrow()
1441     }
1442     fn alloc_name_binding(&'a self, name_binding: NameBinding<'a>) -> &'a NameBinding<'a> {
1443         self.name_bindings.alloc(name_binding)
1444     }
1445     fn alloc_import_directive(&'a self, import_directive: ImportDirective<'a>)
1446                               -> &'a ImportDirective {
1447         self.import_directives.alloc(import_directive)
1448     }
1449     fn alloc_name_resolution(&'a self) -> &'a RefCell<NameResolution<'a>> {
1450         self.name_resolutions.alloc(Default::default())
1451     }
1452     fn alloc_invocation_data(&'a self, expansion_data: InvocationData<'a>)
1453                              -> &'a InvocationData<'a> {
1454         self.invocation_data.alloc(expansion_data)
1455     }
1456     fn alloc_legacy_binding(&'a self, binding: LegacyBinding<'a>) -> &'a LegacyBinding<'a> {
1457         self.legacy_bindings.alloc(binding)
1458     }
1459 }
1460
1461 impl<'a, 'b: 'a> ty::DefIdTree for &'a Resolver<'b> {
1462     fn parent(self, id: DefId) -> Option<DefId> {
1463         match id.krate {
1464             LOCAL_CRATE => self.definitions.def_key(id.index).parent,
1465             _ => self.cstore.def_key(id).parent,
1466         }.map(|index| DefId { index, ..id })
1467     }
1468 }
1469
1470 /// This interface is used through the AST→HIR step, to embed full paths into the HIR. After that
1471 /// the resolver is no longer needed as all the relevant information is inline.
1472 impl<'a> hir::lowering::Resolver for Resolver<'a> {
1473     fn resolve_hir_path(&mut self, path: &mut hir::Path, is_value: bool) {
1474         self.resolve_hir_path_cb(path, is_value,
1475                                  |resolver, span, error| resolve_error(resolver, span, error))
1476     }
1477
1478     fn resolve_str_path(&mut self, span: Span, crate_root: Option<&str>,
1479                         components: &[&str], is_value: bool) -> hir::Path {
1480         let mut path = hir::Path {
1481             span,
1482             def: Def::Err,
1483             segments: iter::once(keywords::CrateRoot.name()).chain({
1484                 crate_root.into_iter().chain(components.iter().cloned()).map(Symbol::intern)
1485             }).map(hir::PathSegment::from_name).collect(),
1486         };
1487
1488         self.resolve_hir_path(&mut path, is_value);
1489         path
1490     }
1491
1492     fn get_resolution(&mut self, id: NodeId) -> Option<PathResolution> {
1493         self.def_map.get(&id).cloned()
1494     }
1495
1496     fn get_import(&mut self, id: NodeId) -> PerNS<Option<PathResolution>> {
1497         self.import_map.get(&id).cloned().unwrap_or_default()
1498     }
1499
1500     fn definitions(&mut self) -> &mut Definitions {
1501         &mut self.definitions
1502     }
1503 }
1504
1505 impl<'a> Resolver<'a> {
1506     /// Rustdoc uses this to resolve things in a recoverable way. ResolutionError<'a>
1507     /// isn't something that can be returned because it can't be made to live that long,
1508     /// and also it's a private type. Fortunately rustdoc doesn't need to know the error,
1509     /// just that an error occurred.
1510     pub fn resolve_str_path_error(&mut self, span: Span, path_str: &str, is_value: bool)
1511         -> Result<hir::Path, ()> {
1512         use std::iter;
1513         let mut errored = false;
1514
1515         let mut path = if path_str.starts_with("::") {
1516             hir::Path {
1517                 span,
1518                 def: Def::Err,
1519                 segments: iter::once(keywords::CrateRoot.name()).chain({
1520                     path_str.split("::").skip(1).map(Symbol::intern)
1521                 }).map(hir::PathSegment::from_name).collect(),
1522             }
1523         } else {
1524             hir::Path {
1525                 span,
1526                 def: Def::Err,
1527                 segments: path_str.split("::").map(Symbol::intern)
1528                                   .map(hir::PathSegment::from_name).collect(),
1529             }
1530         };
1531         self.resolve_hir_path_cb(&mut path, is_value, |_, _, _| errored = true);
1532         if errored || path.def == Def::Err {
1533             Err(())
1534         } else {
1535             Ok(path)
1536         }
1537     }
1538
1539     /// resolve_hir_path, but takes a callback in case there was an error
1540     fn resolve_hir_path_cb<F>(&mut self, path: &mut hir::Path, is_value: bool, error_callback: F)
1541             where F: for<'c, 'b> FnOnce(&'c mut Resolver, Span, ResolutionError<'b>)
1542         {
1543         let namespace = if is_value { ValueNS } else { TypeNS };
1544         let hir::Path { ref segments, span, ref mut def } = *path;
1545         let path: Vec<Ident> = segments.iter()
1546             .map(|seg| Ident::new(seg.name, span))
1547             .collect();
1548         // FIXME (Manishearth): Intra doc links won't get warned of epoch changes
1549         match self.resolve_path(&path, Some(namespace), true, span, CrateLint::No) {
1550             PathResult::Module(module) => *def = module.def().unwrap(),
1551             PathResult::NonModule(path_res) if path_res.unresolved_segments() == 0 =>
1552                 *def = path_res.base_def(),
1553             PathResult::NonModule(..) => match self.resolve_path(
1554                 &path,
1555                 None,
1556                 true,
1557                 span,
1558                 CrateLint::No,
1559             ) {
1560                 PathResult::Failed(span, msg, _) => {
1561                     error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1562                 }
1563                 _ => {}
1564             },
1565             PathResult::Indeterminate => unreachable!(),
1566             PathResult::Failed(span, msg, _) => {
1567                 error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1568             }
1569         }
1570     }
1571 }
1572
1573 impl<'a> Resolver<'a> {
1574     pub fn new(session: &'a Session,
1575                cstore: &'a CrateStore,
1576                krate: &Crate,
1577                crate_name: &str,
1578                make_glob_map: MakeGlobMap,
1579                crate_loader: &'a mut CrateLoader,
1580                arenas: &'a ResolverArenas<'a>)
1581                -> Resolver<'a> {
1582         let root_def_id = DefId::local(CRATE_DEF_INDEX);
1583         let root_module_kind = ModuleKind::Def(Def::Mod(root_def_id), keywords::Invalid.name());
1584         let graph_root = arenas.alloc_module(ModuleData {
1585             no_implicit_prelude: attr::contains_name(&krate.attrs, "no_implicit_prelude"),
1586             ..ModuleData::new(None, root_module_kind, root_def_id, Mark::root(), krate.span)
1587         });
1588         let mut module_map = FxHashMap();
1589         module_map.insert(DefId::local(CRATE_DEF_INDEX), graph_root);
1590
1591         let mut definitions = Definitions::new();
1592         DefCollector::new(&mut definitions, Mark::root())
1593             .collect_root(crate_name, session.local_crate_disambiguator());
1594
1595         let mut extern_prelude: FxHashSet<Name> =
1596             session.opts.externs.iter().map(|kv| Symbol::intern(kv.0)).collect();
1597         if !attr::contains_name(&krate.attrs, "no_core") {
1598             if !attr::contains_name(&krate.attrs, "no_std") {
1599                 extern_prelude.insert(Symbol::intern("std"));
1600             } else {
1601                 extern_prelude.insert(Symbol::intern("core"));
1602             }
1603         }
1604
1605         let mut invocations = FxHashMap();
1606         invocations.insert(Mark::root(),
1607                            arenas.alloc_invocation_data(InvocationData::root(graph_root)));
1608
1609         let features = session.features_untracked();
1610
1611         let mut macro_defs = FxHashMap();
1612         macro_defs.insert(Mark::root(), root_def_id);
1613
1614         Resolver {
1615             session,
1616
1617             cstore,
1618
1619             definitions,
1620
1621             // The outermost module has def ID 0; this is not reflected in the
1622             // AST.
1623             graph_root,
1624             prelude: None,
1625             extern_prelude,
1626
1627             has_self: FxHashSet(),
1628             field_names: FxHashMap(),
1629
1630             determined_imports: Vec::new(),
1631             indeterminate_imports: Vec::new(),
1632
1633             current_module: graph_root,
1634             ribs: PerNS {
1635                 value_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1636                 type_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1637                 macro_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1638             },
1639             label_ribs: Vec::new(),
1640
1641             current_trait_ref: None,
1642             current_self_type: None,
1643
1644             primitive_type_table: PrimitiveTypeTable::new(),
1645
1646             def_map: NodeMap(),
1647             import_map: NodeMap(),
1648             freevars: NodeMap(),
1649             freevars_seen: NodeMap(),
1650             export_map: FxHashMap(),
1651             trait_map: NodeMap(),
1652             module_map,
1653             block_map: NodeMap(),
1654             extern_module_map: FxHashMap(),
1655
1656             make_glob_map: make_glob_map == MakeGlobMap::Yes,
1657             glob_map: NodeMap(),
1658
1659             used_imports: FxHashSet(),
1660             maybe_unused_trait_imports: NodeSet(),
1661             maybe_unused_extern_crates: Vec::new(),
1662
1663             unused_labels: FxHashMap(),
1664
1665             privacy_errors: Vec::new(),
1666             ambiguity_errors: Vec::new(),
1667             use_injections: Vec::new(),
1668             proc_mac_errors: Vec::new(),
1669             gated_errors: FxHashSet(),
1670             disallowed_shadowing: Vec::new(),
1671
1672             arenas,
1673             dummy_binding: arenas.alloc_name_binding(NameBinding {
1674                 kind: NameBindingKind::Def(Def::Err),
1675                 expansion: Mark::root(),
1676                 span: DUMMY_SP,
1677                 vis: ty::Visibility::Public,
1678             }),
1679
1680             // The `proc_macro` and `decl_macro` features imply `use_extern_macros`
1681             use_extern_macros:
1682                 features.use_extern_macros || features.proc_macro || features.decl_macro,
1683
1684             crate_loader,
1685             macro_names: FxHashSet(),
1686             global_macros: FxHashMap(),
1687             all_macros: FxHashMap(),
1688             lexical_macro_resolutions: Vec::new(),
1689             macro_map: FxHashMap(),
1690             macro_exports: Vec::new(),
1691             invocations,
1692             macro_defs,
1693             local_macro_def_scopes: FxHashMap(),
1694             name_already_seen: FxHashMap(),
1695             whitelisted_legacy_custom_derives: Vec::new(),
1696             proc_macro_enabled: features.proc_macro,
1697             warned_proc_macros: FxHashSet(),
1698             potentially_unused_imports: Vec::new(),
1699             struct_constructors: DefIdMap(),
1700             found_unresolved_macro: false,
1701             unused_macros: FxHashSet(),
1702             current_type_ascription: Vec::new(),
1703             injected_crate: None,
1704             ignore_extern_prelude_feature: false,
1705         }
1706     }
1707
1708     pub fn arenas() -> ResolverArenas<'a> {
1709         ResolverArenas {
1710             modules: arena::TypedArena::new(),
1711             local_modules: RefCell::new(Vec::new()),
1712             name_bindings: arena::TypedArena::new(),
1713             import_directives: arena::TypedArena::new(),
1714             name_resolutions: arena::TypedArena::new(),
1715             invocation_data: arena::TypedArena::new(),
1716             legacy_bindings: arena::TypedArena::new(),
1717         }
1718     }
1719
1720     /// Runs the function on each namespace.
1721     fn per_ns<F: FnMut(&mut Self, Namespace)>(&mut self, mut f: F) {
1722         f(self, TypeNS);
1723         f(self, ValueNS);
1724         if self.use_extern_macros {
1725             f(self, MacroNS);
1726         }
1727     }
1728
1729     fn macro_def(&self, mut ctxt: SyntaxContext) -> DefId {
1730         loop {
1731             match self.macro_defs.get(&ctxt.outer()) {
1732                 Some(&def_id) => return def_id,
1733                 None => ctxt.remove_mark(),
1734             };
1735         }
1736     }
1737
1738     /// Entry point to crate resolution.
1739     pub fn resolve_crate(&mut self, krate: &Crate) {
1740         ImportResolver { resolver: self }.finalize_imports();
1741         self.current_module = self.graph_root;
1742         self.finalize_current_module_macro_resolutions();
1743
1744         visit::walk_crate(self, krate);
1745
1746         check_unused::check_crate(self, krate);
1747         self.report_errors(krate);
1748         self.crate_loader.postprocess(krate);
1749     }
1750
1751     fn new_module(
1752         &self,
1753         parent: Module<'a>,
1754         kind: ModuleKind,
1755         normal_ancestor_id: DefId,
1756         expansion: Mark,
1757         span: Span,
1758     ) -> Module<'a> {
1759         let module = ModuleData::new(Some(parent), kind, normal_ancestor_id, expansion, span);
1760         self.arenas.alloc_module(module)
1761     }
1762
1763     fn record_use(&mut self, ident: Ident, ns: Namespace, binding: &'a NameBinding<'a>, span: Span)
1764                   -> bool /* true if an error was reported */ {
1765         match binding.kind {
1766             NameBindingKind::Import { directive, binding, ref used }
1767                     if !used.get() => {
1768                 used.set(true);
1769                 directive.used.set(true);
1770                 self.used_imports.insert((directive.id, ns));
1771                 self.add_to_glob_map(directive.id, ident);
1772                 self.record_use(ident, ns, binding, span)
1773             }
1774             NameBindingKind::Import { .. } => false,
1775             NameBindingKind::Ambiguity { b1, b2 } => {
1776                 self.ambiguity_errors.push(AmbiguityError {
1777                     span, name: ident.name, lexical: false, b1, b2,
1778                 });
1779                 true
1780             }
1781             _ => false
1782         }
1783     }
1784
1785     fn add_to_glob_map(&mut self, id: NodeId, ident: Ident) {
1786         if self.make_glob_map {
1787             self.glob_map.entry(id).or_insert_with(FxHashSet).insert(ident.name);
1788         }
1789     }
1790
1791     /// This resolves the identifier `ident` in the namespace `ns` in the current lexical scope.
1792     /// More specifically, we proceed up the hierarchy of scopes and return the binding for
1793     /// `ident` in the first scope that defines it (or None if no scopes define it).
1794     ///
1795     /// A block's items are above its local variables in the scope hierarchy, regardless of where
1796     /// the items are defined in the block. For example,
1797     /// ```rust
1798     /// fn f() {
1799     ///    g(); // Since there are no local variables in scope yet, this resolves to the item.
1800     ///    let g = || {};
1801     ///    fn g() {}
1802     ///    g(); // This resolves to the local variable `g` since it shadows the item.
1803     /// }
1804     /// ```
1805     ///
1806     /// Invariant: This must only be called during main resolution, not during
1807     /// import resolution.
1808     fn resolve_ident_in_lexical_scope(&mut self,
1809                                       mut ident: Ident,
1810                                       ns: Namespace,
1811                                       record_used: bool,
1812                                       path_span: Span)
1813                                       -> Option<LexicalScopeBinding<'a>> {
1814         if ns == TypeNS {
1815             ident.span = if ident.name == keywords::SelfType.name() {
1816                 // FIXME(jseyfried) improve `Self` hygiene
1817                 ident.span.with_ctxt(SyntaxContext::empty())
1818             } else {
1819                 ident.span.modern()
1820             }
1821         }
1822
1823         // Walk backwards up the ribs in scope.
1824         let mut module = self.graph_root;
1825         for i in (0 .. self.ribs[ns].len()).rev() {
1826             if let Some(def) = self.ribs[ns][i].bindings.get(&ident).cloned() {
1827                 // The ident resolves to a type parameter or local variable.
1828                 return Some(LexicalScopeBinding::Def(
1829                     self.adjust_local_def(ns, i, def, record_used, path_span)
1830                 ));
1831             }
1832
1833             module = match self.ribs[ns][i].kind {
1834                 ModuleRibKind(module) => module,
1835                 MacroDefinition(def) if def == self.macro_def(ident.span.ctxt()) => {
1836                     // If an invocation of this macro created `ident`, give up on `ident`
1837                     // and switch to `ident`'s source from the macro definition.
1838                     ident.span.remove_mark();
1839                     continue
1840                 }
1841                 _ => continue,
1842             };
1843
1844             let item = self.resolve_ident_in_module_unadjusted(
1845                 module, ident, ns, false, record_used, path_span,
1846             );
1847             if let Ok(binding) = item {
1848                 // The ident resolves to an item.
1849                 return Some(LexicalScopeBinding::Item(binding));
1850             }
1851
1852             match module.kind {
1853                 ModuleKind::Block(..) => {}, // We can see through blocks
1854                 _ => break,
1855             }
1856         }
1857
1858         ident.span = ident.span.modern();
1859         loop {
1860             module = unwrap_or!(self.hygienic_lexical_parent(module, &mut ident.span), break);
1861             let orig_current_module = self.current_module;
1862             self.current_module = module; // Lexical resolutions can never be a privacy error.
1863             let result = self.resolve_ident_in_module_unadjusted(
1864                 module, ident, ns, false, record_used, path_span,
1865             );
1866             self.current_module = orig_current_module;
1867
1868             match result {
1869                 Ok(binding) => return Some(LexicalScopeBinding::Item(binding)),
1870                 Err(Undetermined) => return None,
1871                 Err(Determined) => {}
1872             }
1873         }
1874
1875         if !module.no_implicit_prelude {
1876             // `record_used` means that we don't try to load crates during speculative resolution
1877             if record_used && ns == TypeNS && self.extern_prelude.contains(&ident.name) {
1878                 if !self.session.features_untracked().extern_prelude &&
1879                    !self.ignore_extern_prelude_feature {
1880                     feature_err(&self.session.parse_sess, "extern_prelude",
1881                                 ident.span, GateIssue::Language,
1882                                 "access to extern crates through prelude is experimental").emit();
1883                 }
1884
1885                 let crate_id = self.crate_loader.process_path_extern(ident.name, ident.span);
1886                 let crate_root = self.get_module(DefId { krate: crate_id, index: CRATE_DEF_INDEX });
1887                 self.populate_module_if_necessary(crate_root);
1888
1889                 let binding = (crate_root, ty::Visibility::Public,
1890                                ident.span, Mark::root()).to_name_binding(self.arenas);
1891                 return Some(LexicalScopeBinding::Item(binding));
1892             }
1893             if let Some(prelude) = self.prelude {
1894                 if let Ok(binding) = self.resolve_ident_in_module_unadjusted(prelude, ident, ns,
1895                                                                         false, false, path_span) {
1896                     return Some(LexicalScopeBinding::Item(binding));
1897                 }
1898             }
1899         }
1900
1901         None
1902     }
1903
1904     fn hygienic_lexical_parent(&mut self, mut module: Module<'a>, span: &mut Span)
1905                                -> Option<Module<'a>> {
1906         if !module.expansion.is_descendant_of(span.ctxt().outer()) {
1907             return Some(self.macro_def_scope(span.remove_mark()));
1908         }
1909
1910         if let ModuleKind::Block(..) = module.kind {
1911             return Some(module.parent.unwrap());
1912         }
1913
1914         let mut module_expansion = module.expansion.modern(); // for backward compatibility
1915         while let Some(parent) = module.parent {
1916             let parent_expansion = parent.expansion.modern();
1917             if module_expansion.is_descendant_of(parent_expansion) &&
1918                parent_expansion != module_expansion {
1919                 return if parent_expansion.is_descendant_of(span.ctxt().outer()) {
1920                     Some(parent)
1921                 } else {
1922                     None
1923                 };
1924             }
1925             module = parent;
1926             module_expansion = parent_expansion;
1927         }
1928
1929         None
1930     }
1931
1932     fn resolve_ident_in_module(&mut self,
1933                                module: Module<'a>,
1934                                mut ident: Ident,
1935                                ns: Namespace,
1936                                ignore_unresolved_invocations: bool,
1937                                record_used: bool,
1938                                span: Span)
1939                                -> Result<&'a NameBinding<'a>, Determinacy> {
1940         ident.span = ident.span.modern();
1941         let orig_current_module = self.current_module;
1942         if let Some(def) = ident.span.adjust(module.expansion) {
1943             self.current_module = self.macro_def_scope(def);
1944         }
1945         let result = self.resolve_ident_in_module_unadjusted(
1946             module, ident, ns, ignore_unresolved_invocations, record_used, span,
1947         );
1948         self.current_module = orig_current_module;
1949         result
1950     }
1951
1952     fn resolve_crate_root(&mut self, mut ctxt: SyntaxContext, legacy: bool) -> Module<'a> {
1953         let mark = if legacy {
1954             // When resolving `$crate` from a `macro_rules!` invoked in a `macro`,
1955             // we don't want to pretend that the `macro_rules!` definition is in the `macro`
1956             // as described in `SyntaxContext::apply_mark`, so we ignore prepended modern marks.
1957             ctxt.marks().into_iter().find(|&mark| mark.kind() != MarkKind::Modern)
1958         } else {
1959             ctxt = ctxt.modern();
1960             ctxt.adjust(Mark::root())
1961         };
1962         let module = match mark {
1963             Some(def) => self.macro_def_scope(def),
1964             None => return self.graph_root,
1965         };
1966         self.get_module(DefId { index: CRATE_DEF_INDEX, ..module.normal_ancestor_id })
1967     }
1968
1969     fn resolve_self(&mut self, ctxt: &mut SyntaxContext, module: Module<'a>) -> Module<'a> {
1970         let mut module = self.get_module(module.normal_ancestor_id);
1971         while module.span.ctxt().modern() != *ctxt {
1972             let parent = module.parent.unwrap_or_else(|| self.macro_def_scope(ctxt.remove_mark()));
1973             module = self.get_module(parent.normal_ancestor_id);
1974         }
1975         module
1976     }
1977
1978     // AST resolution
1979     //
1980     // We maintain a list of value ribs and type ribs.
1981     //
1982     // Simultaneously, we keep track of the current position in the module
1983     // graph in the `current_module` pointer. When we go to resolve a name in
1984     // the value or type namespaces, we first look through all the ribs and
1985     // then query the module graph. When we resolve a name in the module
1986     // namespace, we can skip all the ribs (since nested modules are not
1987     // allowed within blocks in Rust) and jump straight to the current module
1988     // graph node.
1989     //
1990     // Named implementations are handled separately. When we find a method
1991     // call, we consult the module node to find all of the implementations in
1992     // scope. This information is lazily cached in the module node. We then
1993     // generate a fake "implementation scope" containing all the
1994     // implementations thus found, for compatibility with old resolve pass.
1995
1996     pub fn with_scope<F, T>(&mut self, id: NodeId, f: F) -> T
1997         where F: FnOnce(&mut Resolver) -> T
1998     {
1999         let id = self.definitions.local_def_id(id);
2000         let module = self.module_map.get(&id).cloned(); // clones a reference
2001         if let Some(module) = module {
2002             // Move down in the graph.
2003             let orig_module = replace(&mut self.current_module, module);
2004             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(module)));
2005             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(module)));
2006
2007             self.finalize_current_module_macro_resolutions();
2008             let ret = f(self);
2009
2010             self.current_module = orig_module;
2011             self.ribs[ValueNS].pop();
2012             self.ribs[TypeNS].pop();
2013             ret
2014         } else {
2015             f(self)
2016         }
2017     }
2018
2019     /// Searches the current set of local scopes for labels. Returns the first non-None label that
2020     /// is returned by the given predicate function
2021     ///
2022     /// Stops after meeting a closure.
2023     fn search_label<P, R>(&self, mut ident: Ident, pred: P) -> Option<R>
2024         where P: Fn(&Rib, Ident) -> Option<R>
2025     {
2026         for rib in self.label_ribs.iter().rev() {
2027             match rib.kind {
2028                 NormalRibKind => {}
2029                 // If an invocation of this macro created `ident`, give up on `ident`
2030                 // and switch to `ident`'s source from the macro definition.
2031                 MacroDefinition(def) => {
2032                     if def == self.macro_def(ident.span.ctxt()) {
2033                         ident.span.remove_mark();
2034                     }
2035                 }
2036                 _ => {
2037                     // Do not resolve labels across function boundary
2038                     return None;
2039                 }
2040             }
2041             let r = pred(rib, ident);
2042             if r.is_some() {
2043                 return r;
2044             }
2045         }
2046         None
2047     }
2048
2049     fn resolve_item(&mut self, item: &Item) {
2050         let name = item.ident.name;
2051
2052         debug!("(resolving item) resolving {}", name);
2053
2054         self.check_proc_macro_attrs(&item.attrs);
2055
2056         match item.node {
2057             ItemKind::Fn(ref declaration,
2058                          FnHeader { asyncness: IsAsync::Async(async_closure_id), .. },
2059                          ref generics,
2060                          ref body) => {
2061                 // Async functions are desugared from `async fn foo() { .. }`
2062                 // to `fn foo() { future_from_generator(move || ... ) }`,
2063                 // so we have to visit the body inside the closure scope
2064                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2065                     this.visit_vis(&item.vis);
2066                     this.visit_ident(item.ident);
2067                     this.visit_generics(generics);
2068                     let rib_kind = ItemRibKind;
2069                     this.ribs[ValueNS].push(Rib::new(rib_kind));
2070                     this.label_ribs.push(Rib::new(rib_kind));
2071                     let mut bindings_list = FxHashMap();
2072                     for argument in &declaration.inputs {
2073                         this.resolve_pattern(
2074                             &argument.pat, PatternSource::FnParam, &mut bindings_list);
2075                         this.visit_ty(&*argument.ty);
2076                     }
2077                     visit::walk_fn_ret_ty(this, &declaration.output);
2078
2079                     // Now resolve the inner closure
2080                     {
2081                         let rib_kind = ClosureRibKind(async_closure_id);
2082                         this.ribs[ValueNS].push(Rib::new(rib_kind));
2083                         this.label_ribs.push(Rib::new(rib_kind));
2084                         // No need to resolve either arguments nor return type,
2085                         // as this closure has neither
2086
2087                         // Resolve the body
2088                         this.visit_block(body);
2089                         this.label_ribs.pop();
2090                         this.ribs[ValueNS].pop();
2091                     }
2092                     this.label_ribs.pop();
2093                     this.ribs[ValueNS].pop();
2094
2095                     walk_list!(this, visit_attribute, &item.attrs);
2096                 })
2097             }
2098             ItemKind::Enum(_, ref generics) |
2099             ItemKind::Ty(_, ref generics) |
2100             ItemKind::Struct(_, ref generics) |
2101             ItemKind::Union(_, ref generics) |
2102             ItemKind::Fn(_, _, ref generics, _) => {
2103                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind),
2104                                          |this| visit::walk_item(this, item));
2105             }
2106
2107             ItemKind::Impl(.., ref generics, ref opt_trait_ref, ref self_type, ref impl_items) =>
2108                 self.resolve_implementation(generics,
2109                                             opt_trait_ref,
2110                                             &self_type,
2111                                             item.id,
2112                                             impl_items),
2113
2114             ItemKind::Trait(.., ref generics, ref bounds, ref trait_items) => {
2115                 // Create a new rib for the trait-wide type parameters.
2116                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2117                     let local_def_id = this.definitions.local_def_id(item.id);
2118                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2119                         this.visit_generics(generics);
2120                         walk_list!(this, visit_param_bound, bounds);
2121
2122                         for trait_item in trait_items {
2123                             this.check_proc_macro_attrs(&trait_item.attrs);
2124
2125                             let type_parameters = HasTypeParameters(&trait_item.generics,
2126                                                                     TraitOrImplItemRibKind);
2127                             this.with_type_parameter_rib(type_parameters, |this| {
2128                                 match trait_item.node {
2129                                     TraitItemKind::Const(ref ty, ref default) => {
2130                                         this.visit_ty(ty);
2131
2132                                         // Only impose the restrictions of
2133                                         // ConstRibKind for an actual constant
2134                                         // expression in a provided default.
2135                                         if let Some(ref expr) = *default{
2136                                             this.with_constant_rib(|this| {
2137                                                 this.visit_expr(expr);
2138                                             });
2139                                         }
2140                                     }
2141                                     TraitItemKind::Method(_, _) => {
2142                                         visit::walk_trait_item(this, trait_item)
2143                                     }
2144                                     TraitItemKind::Type(..) => {
2145                                         visit::walk_trait_item(this, trait_item)
2146                                     }
2147                                     TraitItemKind::Macro(_) => {
2148                                         panic!("unexpanded macro in resolve!")
2149                                     }
2150                                 };
2151                             });
2152                         }
2153                     });
2154                 });
2155             }
2156
2157             ItemKind::TraitAlias(ref generics, ref bounds) => {
2158                 // Create a new rib for the trait-wide type parameters.
2159                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2160                     let local_def_id = this.definitions.local_def_id(item.id);
2161                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2162                         this.visit_generics(generics);
2163                         walk_list!(this, visit_param_bound, bounds);
2164                     });
2165                 });
2166             }
2167
2168             ItemKind::Mod(_) | ItemKind::ForeignMod(_) => {
2169                 self.with_scope(item.id, |this| {
2170                     visit::walk_item(this, item);
2171                 });
2172             }
2173
2174             ItemKind::Static(ref ty, _, ref expr) |
2175             ItemKind::Const(ref ty, ref expr) => {
2176                 self.with_item_rib(|this| {
2177                     this.visit_ty(ty);
2178                     this.with_constant_rib(|this| {
2179                         this.visit_expr(expr);
2180                     });
2181                 });
2182             }
2183
2184             ItemKind::Use(ref use_tree) => {
2185                 // Imports are resolved as global by default, add starting root segment.
2186                 let path = Path {
2187                     segments: use_tree.prefix.make_root().into_iter().collect(),
2188                     span: use_tree.span,
2189                 };
2190                 self.resolve_use_tree(item.id, use_tree.span, item.id, use_tree, &path);
2191             }
2192
2193             ItemKind::ExternCrate(_) | ItemKind::MacroDef(..) | ItemKind::GlobalAsm(_) => {
2194                 // do nothing, these are just around to be encoded
2195             }
2196
2197             ItemKind::Mac(_) => panic!("unexpanded macro in resolve!"),
2198         }
2199     }
2200
2201     /// For the most part, use trees are desugared into `ImportDirective` instances
2202     /// when building the reduced graph (see `build_reduced_graph_for_use_tree`). But
2203     /// there is one special case we handle here: an empty nested import like
2204     /// `a::{b::{}}`, which desugares into...no import directives.
2205     fn resolve_use_tree(
2206         &mut self,
2207         root_id: NodeId,
2208         root_span: Span,
2209         id: NodeId,
2210         use_tree: &ast::UseTree,
2211         prefix: &Path,
2212     ) {
2213         match use_tree.kind {
2214             ast::UseTreeKind::Nested(ref items) => {
2215                 let path = Path {
2216                     segments: prefix.segments
2217                         .iter()
2218                         .chain(use_tree.prefix.segments.iter())
2219                         .cloned()
2220                         .collect(),
2221                     span: prefix.span.to(use_tree.prefix.span),
2222                 };
2223
2224                 if items.len() == 0 {
2225                     // Resolve prefix of an import with empty braces (issue #28388).
2226                     self.smart_resolve_path_with_crate_lint(
2227                         id,
2228                         None,
2229                         &path,
2230                         PathSource::ImportPrefix,
2231                         CrateLint::UsePath { root_id, root_span },
2232                     );
2233                 } else {
2234                     for &(ref tree, nested_id) in items {
2235                         self.resolve_use_tree(root_id, root_span, nested_id, tree, &path);
2236                     }
2237                 }
2238             }
2239             ast::UseTreeKind::Simple(..) => {},
2240             ast::UseTreeKind::Glob => {},
2241         }
2242     }
2243
2244     fn with_type_parameter_rib<'b, F>(&'b mut self, type_parameters: TypeParameters<'a, 'b>, f: F)
2245         where F: FnOnce(&mut Resolver)
2246     {
2247         match type_parameters {
2248             HasTypeParameters(generics, rib_kind) => {
2249                 let mut function_type_rib = Rib::new(rib_kind);
2250                 let mut seen_bindings = FxHashMap();
2251                 generics.params.iter().for_each(|param| match param.kind {
2252                     GenericParamKind::Lifetime { .. } => {}
2253                     GenericParamKind::Type { .. } => {
2254                         let ident = param.ident.modern();
2255                         debug!("with_type_parameter_rib: {}", param.id);
2256
2257                         if seen_bindings.contains_key(&ident) {
2258                             let span = seen_bindings.get(&ident).unwrap();
2259                             let err = ResolutionError::NameAlreadyUsedInTypeParameterList(
2260                                 ident.name,
2261                                 span,
2262                             );
2263                             resolve_error(self, param.ident.span, err);
2264                         }
2265                         seen_bindings.entry(ident).or_insert(param.ident.span);
2266
2267                     // Plain insert (no renaming).
2268                     let def = Def::TyParam(self.definitions.local_def_id(param.id));
2269                         function_type_rib.bindings.insert(ident, def);
2270                         self.record_def(param.id, PathResolution::new(def));
2271                     }
2272                 });
2273                 self.ribs[TypeNS].push(function_type_rib);
2274             }
2275
2276             NoTypeParameters => {
2277                 // Nothing to do.
2278             }
2279         }
2280
2281         f(self);
2282
2283         if let HasTypeParameters(..) = type_parameters {
2284             self.ribs[TypeNS].pop();
2285         }
2286     }
2287
2288     fn with_label_rib<F>(&mut self, f: F)
2289         where F: FnOnce(&mut Resolver)
2290     {
2291         self.label_ribs.push(Rib::new(NormalRibKind));
2292         f(self);
2293         self.label_ribs.pop();
2294     }
2295
2296     fn with_item_rib<F>(&mut self, f: F)
2297         where F: FnOnce(&mut Resolver)
2298     {
2299         self.ribs[ValueNS].push(Rib::new(ItemRibKind));
2300         self.ribs[TypeNS].push(Rib::new(ItemRibKind));
2301         f(self);
2302         self.ribs[TypeNS].pop();
2303         self.ribs[ValueNS].pop();
2304     }
2305
2306     fn with_constant_rib<F>(&mut self, f: F)
2307         where F: FnOnce(&mut Resolver)
2308     {
2309         self.ribs[ValueNS].push(Rib::new(ConstantItemRibKind));
2310         f(self);
2311         self.ribs[ValueNS].pop();
2312     }
2313
2314     fn with_current_self_type<T, F>(&mut self, self_type: &Ty, f: F) -> T
2315         where F: FnOnce(&mut Resolver) -> T
2316     {
2317         // Handle nested impls (inside fn bodies)
2318         let previous_value = replace(&mut self.current_self_type, Some(self_type.clone()));
2319         let result = f(self);
2320         self.current_self_type = previous_value;
2321         result
2322     }
2323
2324     /// This is called to resolve a trait reference from an `impl` (i.e. `impl Trait for Foo`)
2325     fn with_optional_trait_ref<T, F>(&mut self, opt_trait_ref: Option<&TraitRef>, f: F) -> T
2326         where F: FnOnce(&mut Resolver, Option<DefId>) -> T
2327     {
2328         let mut new_val = None;
2329         let mut new_id = None;
2330         if let Some(trait_ref) = opt_trait_ref {
2331             let path: Vec<_> = trait_ref.path.segments.iter()
2332                 .map(|seg| seg.ident)
2333                 .collect();
2334             let def = self.smart_resolve_path_fragment(
2335                 trait_ref.ref_id,
2336                 None,
2337                 &path,
2338                 trait_ref.path.span,
2339                 PathSource::Trait(AliasPossibility::No),
2340                 CrateLint::SimplePath(trait_ref.ref_id),
2341             ).base_def();
2342             if def != Def::Err {
2343                 new_id = Some(def.def_id());
2344                 let span = trait_ref.path.span;
2345                 if let PathResult::Module(module) = self.resolve_path(
2346                     &path,
2347                     None,
2348                     false,
2349                     span,
2350                     CrateLint::SimplePath(trait_ref.ref_id),
2351                 ) {
2352                     new_val = Some((module, trait_ref.clone()));
2353                 }
2354             }
2355         }
2356         let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
2357         let result = f(self, new_id);
2358         self.current_trait_ref = original_trait_ref;
2359         result
2360     }
2361
2362     fn with_self_rib<F>(&mut self, self_def: Def, f: F)
2363         where F: FnOnce(&mut Resolver)
2364     {
2365         let mut self_type_rib = Rib::new(NormalRibKind);
2366
2367         // plain insert (no renaming, types are not currently hygienic....)
2368         self_type_rib.bindings.insert(keywords::SelfType.ident(), self_def);
2369         self.ribs[TypeNS].push(self_type_rib);
2370         f(self);
2371         self.ribs[TypeNS].pop();
2372     }
2373
2374     fn resolve_implementation(&mut self,
2375                               generics: &Generics,
2376                               opt_trait_reference: &Option<TraitRef>,
2377                               self_type: &Ty,
2378                               item_id: NodeId,
2379                               impl_items: &[ImplItem]) {
2380         // If applicable, create a rib for the type parameters.
2381         self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2382             // Dummy self type for better errors if `Self` is used in the trait path.
2383             this.with_self_rib(Def::SelfTy(None, None), |this| {
2384                 // Resolve the trait reference, if necessary.
2385                 this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| {
2386                     let item_def_id = this.definitions.local_def_id(item_id);
2387                     this.with_self_rib(Def::SelfTy(trait_id, Some(item_def_id)), |this| {
2388                         if let Some(trait_ref) = opt_trait_reference.as_ref() {
2389                             // Resolve type arguments in trait path
2390                             visit::walk_trait_ref(this, trait_ref);
2391                         }
2392                         // Resolve the self type.
2393                         this.visit_ty(self_type);
2394                         // Resolve the type parameters.
2395                         this.visit_generics(generics);
2396                         this.with_current_self_type(self_type, |this| {
2397                             for impl_item in impl_items {
2398                                 this.check_proc_macro_attrs(&impl_item.attrs);
2399                                 this.resolve_visibility(&impl_item.vis);
2400
2401                                 // We also need a new scope for the impl item type parameters.
2402                                 let type_parameters = HasTypeParameters(&impl_item.generics,
2403                                                                         TraitOrImplItemRibKind);
2404                                 this.with_type_parameter_rib(type_parameters, |this| {
2405                                     use self::ResolutionError::*;
2406                                     match impl_item.node {
2407                                         ImplItemKind::Const(..) => {
2408                                             // If this is a trait impl, ensure the const
2409                                             // exists in trait
2410                                             this.check_trait_item(impl_item.ident,
2411                                                                 ValueNS,
2412                                                                 impl_item.span,
2413                                                 |n, s| ConstNotMemberOfTrait(n, s));
2414                                             this.with_constant_rib(|this|
2415                                                 visit::walk_impl_item(this, impl_item)
2416                                             );
2417                                         }
2418                                         ImplItemKind::Method(_, _) => {
2419                                             // If this is a trait impl, ensure the method
2420                                             // exists in trait
2421                                             this.check_trait_item(impl_item.ident,
2422                                                                 ValueNS,
2423                                                                 impl_item.span,
2424                                                 |n, s| MethodNotMemberOfTrait(n, s));
2425
2426                                             visit::walk_impl_item(this, impl_item);
2427                                         }
2428                                         ImplItemKind::Type(ref ty) => {
2429                                             // If this is a trait impl, ensure the type
2430                                             // exists in trait
2431                                             this.check_trait_item(impl_item.ident,
2432                                                                 TypeNS,
2433                                                                 impl_item.span,
2434                                                 |n, s| TypeNotMemberOfTrait(n, s));
2435
2436                                             this.visit_ty(ty);
2437                                         }
2438                                         ImplItemKind::Macro(_) =>
2439                                             panic!("unexpanded macro in resolve!"),
2440                                     }
2441                                 });
2442                             }
2443                         });
2444                     });
2445                 });
2446             });
2447         });
2448     }
2449
2450     fn check_trait_item<F>(&mut self, ident: Ident, ns: Namespace, span: Span, err: F)
2451         where F: FnOnce(Name, &str) -> ResolutionError
2452     {
2453         // If there is a TraitRef in scope for an impl, then the method must be in the
2454         // trait.
2455         if let Some((module, _)) = self.current_trait_ref {
2456             if self.resolve_ident_in_module(module, ident, ns, false, false, span).is_err() {
2457                 let path = &self.current_trait_ref.as_ref().unwrap().1.path;
2458                 resolve_error(self, span, err(ident.name, &path_names_to_string(path)));
2459             }
2460         }
2461     }
2462
2463     fn resolve_local(&mut self, local: &Local) {
2464         // Resolve the type.
2465         walk_list!(self, visit_ty, &local.ty);
2466
2467         // Resolve the initializer.
2468         walk_list!(self, visit_expr, &local.init);
2469
2470         // Resolve the pattern.
2471         self.resolve_pattern(&local.pat, PatternSource::Let, &mut FxHashMap());
2472     }
2473
2474     // build a map from pattern identifiers to binding-info's.
2475     // this is done hygienically. This could arise for a macro
2476     // that expands into an or-pattern where one 'x' was from the
2477     // user and one 'x' came from the macro.
2478     fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
2479         let mut binding_map = FxHashMap();
2480
2481         pat.walk(&mut |pat| {
2482             if let PatKind::Ident(binding_mode, ident, ref sub_pat) = pat.node {
2483                 if sub_pat.is_some() || match self.def_map.get(&pat.id).map(|res| res.base_def()) {
2484                     Some(Def::Local(..)) => true,
2485                     _ => false,
2486                 } {
2487                     let binding_info = BindingInfo { span: ident.span, binding_mode: binding_mode };
2488                     binding_map.insert(ident, binding_info);
2489                 }
2490             }
2491             true
2492         });
2493
2494         binding_map
2495     }
2496
2497     // check that all of the arms in an or-pattern have exactly the
2498     // same set of bindings, with the same binding modes for each.
2499     fn check_consistent_bindings(&mut self, pats: &[P<Pat>]) {
2500         if pats.is_empty() {
2501             return;
2502         }
2503
2504         let mut missing_vars = FxHashMap();
2505         let mut inconsistent_vars = FxHashMap();
2506         for (i, p) in pats.iter().enumerate() {
2507             let map_i = self.binding_mode_map(&p);
2508
2509             for (j, q) in pats.iter().enumerate() {
2510                 if i == j {
2511                     continue;
2512                 }
2513
2514                 let map_j = self.binding_mode_map(&q);
2515                 for (&key, &binding_i) in &map_i {
2516                     if map_j.len() == 0 {                   // Account for missing bindings when
2517                         let binding_error = missing_vars    // map_j has none.
2518                             .entry(key.name)
2519                             .or_insert(BindingError {
2520                                 name: key.name,
2521                                 origin: BTreeSet::new(),
2522                                 target: BTreeSet::new(),
2523                             });
2524                         binding_error.origin.insert(binding_i.span);
2525                         binding_error.target.insert(q.span);
2526                     }
2527                     for (&key_j, &binding_j) in &map_j {
2528                         match map_i.get(&key_j) {
2529                             None => {  // missing binding
2530                                 let binding_error = missing_vars
2531                                     .entry(key_j.name)
2532                                     .or_insert(BindingError {
2533                                         name: key_j.name,
2534                                         origin: BTreeSet::new(),
2535                                         target: BTreeSet::new(),
2536                                     });
2537                                 binding_error.origin.insert(binding_j.span);
2538                                 binding_error.target.insert(p.span);
2539                             }
2540                             Some(binding_i) => {  // check consistent binding
2541                                 if binding_i.binding_mode != binding_j.binding_mode {
2542                                     inconsistent_vars
2543                                         .entry(key.name)
2544                                         .or_insert((binding_j.span, binding_i.span));
2545                                 }
2546                             }
2547                         }
2548                     }
2549                 }
2550             }
2551         }
2552         let mut missing_vars = missing_vars.iter().collect::<Vec<_>>();
2553         missing_vars.sort();
2554         for (_, v) in missing_vars {
2555             resolve_error(self,
2556                           *v.origin.iter().next().unwrap(),
2557                           ResolutionError::VariableNotBoundInPattern(v));
2558         }
2559         let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
2560         inconsistent_vars.sort();
2561         for (name, v) in inconsistent_vars {
2562             resolve_error(self, v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
2563         }
2564     }
2565
2566     fn resolve_arm(&mut self, arm: &Arm) {
2567         self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2568
2569         let mut bindings_list = FxHashMap();
2570         for pattern in &arm.pats {
2571             self.resolve_pattern(&pattern, PatternSource::Match, &mut bindings_list);
2572         }
2573
2574         // This has to happen *after* we determine which pat_idents are variants
2575         self.check_consistent_bindings(&arm.pats);
2576
2577         walk_list!(self, visit_expr, &arm.guard);
2578         self.visit_expr(&arm.body);
2579
2580         self.ribs[ValueNS].pop();
2581     }
2582
2583     fn resolve_block(&mut self, block: &Block) {
2584         debug!("(resolving block) entering block");
2585         // Move down in the graph, if there's an anonymous module rooted here.
2586         let orig_module = self.current_module;
2587         let anonymous_module = self.block_map.get(&block.id).cloned(); // clones a reference
2588
2589         let mut num_macro_definition_ribs = 0;
2590         if let Some(anonymous_module) = anonymous_module {
2591             debug!("(resolving block) found anonymous module, moving down");
2592             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2593             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2594             self.current_module = anonymous_module;
2595             self.finalize_current_module_macro_resolutions();
2596         } else {
2597             self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2598         }
2599
2600         // Descend into the block.
2601         for stmt in &block.stmts {
2602             if let ast::StmtKind::Item(ref item) = stmt.node {
2603                 if let ast::ItemKind::MacroDef(..) = item.node {
2604                     num_macro_definition_ribs += 1;
2605                     let def = self.definitions.local_def_id(item.id);
2606                     self.ribs[ValueNS].push(Rib::new(MacroDefinition(def)));
2607                     self.label_ribs.push(Rib::new(MacroDefinition(def)));
2608                 }
2609             }
2610
2611             self.visit_stmt(stmt);
2612         }
2613
2614         // Move back up.
2615         self.current_module = orig_module;
2616         for _ in 0 .. num_macro_definition_ribs {
2617             self.ribs[ValueNS].pop();
2618             self.label_ribs.pop();
2619         }
2620         self.ribs[ValueNS].pop();
2621         if let Some(_) = anonymous_module {
2622             self.ribs[TypeNS].pop();
2623         }
2624         debug!("(resolving block) leaving block");
2625     }
2626
2627     fn fresh_binding(&mut self,
2628                      ident: Ident,
2629                      pat_id: NodeId,
2630                      outer_pat_id: NodeId,
2631                      pat_src: PatternSource,
2632                      bindings: &mut FxHashMap<Ident, NodeId>)
2633                      -> PathResolution {
2634         // Add the binding to the local ribs, if it
2635         // doesn't already exist in the bindings map. (We
2636         // must not add it if it's in the bindings map
2637         // because that breaks the assumptions later
2638         // passes make about or-patterns.)
2639         let mut def = Def::Local(pat_id);
2640         match bindings.get(&ident).cloned() {
2641             Some(id) if id == outer_pat_id => {
2642                 // `Variant(a, a)`, error
2643                 resolve_error(
2644                     self,
2645                     ident.span,
2646                     ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(
2647                         &ident.as_str())
2648                 );
2649             }
2650             Some(..) if pat_src == PatternSource::FnParam => {
2651                 // `fn f(a: u8, a: u8)`, error
2652                 resolve_error(
2653                     self,
2654                     ident.span,
2655                     ResolutionError::IdentifierBoundMoreThanOnceInParameterList(
2656                         &ident.as_str())
2657                 );
2658             }
2659             Some(..) if pat_src == PatternSource::Match ||
2660                         pat_src == PatternSource::IfLet ||
2661                         pat_src == PatternSource::WhileLet => {
2662                 // `Variant1(a) | Variant2(a)`, ok
2663                 // Reuse definition from the first `a`.
2664                 def = self.ribs[ValueNS].last_mut().unwrap().bindings[&ident];
2665             }
2666             Some(..) => {
2667                 span_bug!(ident.span, "two bindings with the same name from \
2668                                        unexpected pattern source {:?}", pat_src);
2669             }
2670             None => {
2671                 // A completely fresh binding, add to the lists if it's valid.
2672                 if ident.name != keywords::Invalid.name() {
2673                     bindings.insert(ident, outer_pat_id);
2674                     self.ribs[ValueNS].last_mut().unwrap().bindings.insert(ident, def);
2675                 }
2676             }
2677         }
2678
2679         PathResolution::new(def)
2680     }
2681
2682     fn resolve_pattern(&mut self,
2683                        pat: &Pat,
2684                        pat_src: PatternSource,
2685                        // Maps idents to the node ID for the
2686                        // outermost pattern that binds them.
2687                        bindings: &mut FxHashMap<Ident, NodeId>) {
2688         // Visit all direct subpatterns of this pattern.
2689         let outer_pat_id = pat.id;
2690         pat.walk(&mut |pat| {
2691             match pat.node {
2692                 PatKind::Ident(bmode, ident, ref opt_pat) => {
2693                     // First try to resolve the identifier as some existing
2694                     // entity, then fall back to a fresh binding.
2695                     let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS,
2696                                                                       false, pat.span)
2697                                       .and_then(LexicalScopeBinding::item);
2698                     let resolution = binding.map(NameBinding::def).and_then(|def| {
2699                         let is_syntactic_ambiguity = opt_pat.is_none() &&
2700                             bmode == BindingMode::ByValue(Mutability::Immutable);
2701                         match def {
2702                             Def::StructCtor(_, CtorKind::Const) |
2703                             Def::VariantCtor(_, CtorKind::Const) |
2704                             Def::Const(..) if is_syntactic_ambiguity => {
2705                                 // Disambiguate in favor of a unit struct/variant
2706                                 // or constant pattern.
2707                                 self.record_use(ident, ValueNS, binding.unwrap(), ident.span);
2708                                 Some(PathResolution::new(def))
2709                             }
2710                             Def::StructCtor(..) | Def::VariantCtor(..) |
2711                             Def::Const(..) | Def::Static(..) => {
2712                                 // This is unambiguously a fresh binding, either syntactically
2713                                 // (e.g. `IDENT @ PAT` or `ref IDENT`) or because `IDENT` resolves
2714                                 // to something unusable as a pattern (e.g. constructor function),
2715                                 // but we still conservatively report an error, see
2716                                 // issues/33118#issuecomment-233962221 for one reason why.
2717                                 resolve_error(
2718                                     self,
2719                                     ident.span,
2720                                     ResolutionError::BindingShadowsSomethingUnacceptable(
2721                                         pat_src.descr(), ident.name, binding.unwrap())
2722                                 );
2723                                 None
2724                             }
2725                             Def::Fn(..) | Def::Err => {
2726                                 // These entities are explicitly allowed
2727                                 // to be shadowed by fresh bindings.
2728                                 None
2729                             }
2730                             def => {
2731                                 span_bug!(ident.span, "unexpected definition for an \
2732                                                        identifier in pattern: {:?}", def);
2733                             }
2734                         }
2735                     }).unwrap_or_else(|| {
2736                         self.fresh_binding(ident, pat.id, outer_pat_id, pat_src, bindings)
2737                     });
2738
2739                     self.record_def(pat.id, resolution);
2740                 }
2741
2742                 PatKind::TupleStruct(ref path, ..) => {
2743                     self.smart_resolve_path(pat.id, None, path, PathSource::TupleStruct);
2744                 }
2745
2746                 PatKind::Path(ref qself, ref path) => {
2747                     self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
2748                 }
2749
2750                 PatKind::Struct(ref path, ..) => {
2751                     self.smart_resolve_path(pat.id, None, path, PathSource::Struct);
2752                 }
2753
2754                 _ => {}
2755             }
2756             true
2757         });
2758
2759         visit::walk_pat(self, pat);
2760     }
2761
2762     // High-level and context dependent path resolution routine.
2763     // Resolves the path and records the resolution into definition map.
2764     // If resolution fails tries several techniques to find likely
2765     // resolution candidates, suggest imports or other help, and report
2766     // errors in user friendly way.
2767     fn smart_resolve_path(&mut self,
2768                           id: NodeId,
2769                           qself: Option<&QSelf>,
2770                           path: &Path,
2771                           source: PathSource)
2772                           -> PathResolution {
2773         self.smart_resolve_path_with_crate_lint(id, qself, path, source, CrateLint::SimplePath(id))
2774     }
2775
2776     /// A variant of `smart_resolve_path` where you also specify extra
2777     /// information about where the path came from; this extra info is
2778     /// sometimes needed for the lint that recommends rewriting
2779     /// absoluate paths to `crate`, so that it knows how to frame the
2780     /// suggestion. If you are just resolving a path like `foo::bar`
2781     /// that appears...somewhere, though, then you just want
2782     /// `CrateLint::SimplePath`, which is what `smart_resolve_path`
2783     /// already provides.
2784     fn smart_resolve_path_with_crate_lint(
2785         &mut self,
2786         id: NodeId,
2787         qself: Option<&QSelf>,
2788         path: &Path,
2789         source: PathSource,
2790         crate_lint: CrateLint
2791     ) -> PathResolution {
2792         let segments = &path.segments.iter()
2793             .map(|seg| seg.ident)
2794             .collect::<Vec<_>>();
2795         self.smart_resolve_path_fragment(id, qself, segments, path.span, source, crate_lint)
2796     }
2797
2798     fn smart_resolve_path_fragment(&mut self,
2799                                    id: NodeId,
2800                                    qself: Option<&QSelf>,
2801                                    path: &[Ident],
2802                                    span: Span,
2803                                    source: PathSource,
2804                                    crate_lint: CrateLint)
2805                                    -> PathResolution {
2806         let ident_span = path.last().map_or(span, |ident| ident.span);
2807         let ns = source.namespace();
2808         let is_expected = &|def| source.is_expected(def);
2809         let is_enum_variant = &|def| if let Def::Variant(..) = def { true } else { false };
2810
2811         // Base error is amended with one short label and possibly some longer helps/notes.
2812         let report_errors = |this: &mut Self, def: Option<Def>| {
2813             // Make the base error.
2814             let expected = source.descr_expected();
2815             let path_str = names_to_string(path);
2816             let code = source.error_code(def.is_some());
2817             let (base_msg, fallback_label, base_span) = if let Some(def) = def {
2818                 (format!("expected {}, found {} `{}`", expected, def.kind_name(), path_str),
2819                  format!("not a {}", expected),
2820                  span)
2821             } else {
2822                 let item_str = path[path.len() - 1];
2823                 let item_span = path[path.len() - 1].span;
2824                 let (mod_prefix, mod_str) = if path.len() == 1 {
2825                     (format!(""), format!("this scope"))
2826                 } else if path.len() == 2 && path[0].name == keywords::CrateRoot.name() {
2827                     (format!(""), format!("the crate root"))
2828                 } else {
2829                     let mod_path = &path[..path.len() - 1];
2830                     let mod_prefix = match this.resolve_path(mod_path, Some(TypeNS),
2831                                                              false, span, CrateLint::No) {
2832                         PathResult::Module(module) => module.def(),
2833                         _ => None,
2834                     }.map_or(format!(""), |def| format!("{} ", def.kind_name()));
2835                     (mod_prefix, format!("`{}`", names_to_string(mod_path)))
2836                 };
2837                 (format!("cannot find {} `{}` in {}{}", expected, item_str, mod_prefix, mod_str),
2838                  format!("not found in {}", mod_str),
2839                  item_span)
2840             };
2841             let code = DiagnosticId::Error(code.into());
2842             let mut err = this.session.struct_span_err_with_code(base_span, &base_msg, code);
2843
2844             // Emit special messages for unresolved `Self` and `self`.
2845             if is_self_type(path, ns) {
2846                 __diagnostic_used!(E0411);
2847                 err.code(DiagnosticId::Error("E0411".into()));
2848                 err.span_label(span, "`Self` is only available in traits and impls");
2849                 return (err, Vec::new());
2850             }
2851             if is_self_value(path, ns) {
2852                 __diagnostic_used!(E0424);
2853                 err.code(DiagnosticId::Error("E0424".into()));
2854                 err.span_label(span, format!("`self` value is only available in \
2855                                                methods with `self` parameter"));
2856                 return (err, Vec::new());
2857             }
2858
2859             // Try to lookup the name in more relaxed fashion for better error reporting.
2860             let ident = *path.last().unwrap();
2861             let candidates = this.lookup_import_candidates(ident.name, ns, is_expected);
2862             if candidates.is_empty() && is_expected(Def::Enum(DefId::local(CRATE_DEF_INDEX))) {
2863                 let enum_candidates =
2864                     this.lookup_import_candidates(ident.name, ns, is_enum_variant);
2865                 let mut enum_candidates = enum_candidates.iter()
2866                     .map(|suggestion| import_candidate_to_paths(&suggestion)).collect::<Vec<_>>();
2867                 enum_candidates.sort();
2868                 for (sp, variant_path, enum_path) in enum_candidates {
2869                     if sp == DUMMY_SP {
2870                         let msg = format!("there is an enum variant `{}`, \
2871                                         try using `{}`?",
2872                                         variant_path,
2873                                         enum_path);
2874                         err.help(&msg);
2875                     } else {
2876                         err.span_suggestion(span, "you can try using the variant's enum",
2877                                             enum_path);
2878                     }
2879                 }
2880             }
2881             if path.len() == 1 && this.self_type_is_available(span) {
2882                 if let Some(candidate) = this.lookup_assoc_candidate(ident, ns, is_expected) {
2883                     let self_is_available = this.self_value_is_available(path[0].span, span);
2884                     match candidate {
2885                         AssocSuggestion::Field => {
2886                             err.span_suggestion(span, "try",
2887                                                 format!("self.{}", path_str));
2888                             if !self_is_available {
2889                                 err.span_label(span, format!("`self` value is only available in \
2890                                                                methods with `self` parameter"));
2891                             }
2892                         }
2893                         AssocSuggestion::MethodWithSelf if self_is_available => {
2894                             err.span_suggestion(span, "try",
2895                                                 format!("self.{}", path_str));
2896                         }
2897                         AssocSuggestion::MethodWithSelf | AssocSuggestion::AssocItem => {
2898                             err.span_suggestion(span, "try",
2899                                                 format!("Self::{}", path_str));
2900                         }
2901                     }
2902                     return (err, candidates);
2903                 }
2904             }
2905
2906             let mut levenshtein_worked = false;
2907
2908             // Try Levenshtein.
2909             if let Some(candidate) = this.lookup_typo_candidate(path, ns, is_expected, span) {
2910                 err.span_label(ident_span, format!("did you mean `{}`?", candidate));
2911                 levenshtein_worked = true;
2912             }
2913
2914             // Try context dependent help if relaxed lookup didn't work.
2915             if let Some(def) = def {
2916                 match (def, source) {
2917                     (Def::Macro(..), _) => {
2918                         err.span_label(span, format!("did you mean `{}!(...)`?", path_str));
2919                         return (err, candidates);
2920                     }
2921                     (Def::TyAlias(..), PathSource::Trait(_)) => {
2922                         err.span_label(span, "type aliases cannot be used for traits");
2923                         return (err, candidates);
2924                     }
2925                     (Def::Mod(..), PathSource::Expr(Some(parent))) => match parent.node {
2926                         ExprKind::Field(_, ident) => {
2927                             err.span_label(parent.span, format!("did you mean `{}::{}`?",
2928                                                                  path_str, ident));
2929                             return (err, candidates);
2930                         }
2931                         ExprKind::MethodCall(ref segment, ..) => {
2932                             err.span_label(parent.span, format!("did you mean `{}::{}(...)`?",
2933                                                                  path_str, segment.ident));
2934                             return (err, candidates);
2935                         }
2936                         _ => {}
2937                     },
2938                     (Def::Enum(..), PathSource::TupleStruct)
2939                         | (Def::Enum(..), PathSource::Expr(..))  => {
2940                         if let Some(variants) = this.collect_enum_variants(def) {
2941                             err.note(&format!("did you mean to use one \
2942                                                of the following variants?\n{}",
2943                                 variants.iter()
2944                                     .map(|suggestion| path_names_to_string(suggestion))
2945                                     .map(|suggestion| format!("- `{}`", suggestion))
2946                                     .collect::<Vec<_>>()
2947                                     .join("\n")));
2948
2949                         } else {
2950                             err.note("did you mean to use one of the enum's variants?");
2951                         }
2952                         return (err, candidates);
2953                     },
2954                     (Def::Struct(def_id), _) if ns == ValueNS => {
2955                         if let Some((ctor_def, ctor_vis))
2956                                 = this.struct_constructors.get(&def_id).cloned() {
2957                             let accessible_ctor = this.is_accessible(ctor_vis);
2958                             if is_expected(ctor_def) && !accessible_ctor {
2959                                 err.span_label(span, format!("constructor is not visible \
2960                                                               here due to private fields"));
2961                             }
2962                         } else {
2963                             // HACK(estebank): find a better way to figure out that this was a
2964                             // parser issue where a struct literal is being used on an expression
2965                             // where a brace being opened means a block is being started. Look
2966                             // ahead for the next text to see if `span` is followed by a `{`.
2967                             let cm = this.session.codemap();
2968                             let mut sp = span;
2969                             loop {
2970                                 sp = cm.next_point(sp);
2971                                 match cm.span_to_snippet(sp) {
2972                                     Ok(ref snippet) => {
2973                                         if snippet.chars().any(|c| { !c.is_whitespace() }) {
2974                                             break;
2975                                         }
2976                                     }
2977                                     _ => break,
2978                                 }
2979                             }
2980                             let followed_by_brace = match cm.span_to_snippet(sp) {
2981                                 Ok(ref snippet) if snippet == "{" => true,
2982                                 _ => false,
2983                             };
2984                             if let (PathSource::Expr(None), true) = (source, followed_by_brace) {
2985                                 err.span_label(
2986                                     span,
2987                                     format!("did you mean `({} {{ /* fields */ }})`?", path_str),
2988                                 );
2989                             } else {
2990                                 err.span_label(
2991                                     span,
2992                                     format!("did you mean `{} {{ /* fields */ }}`?", path_str),
2993                                 );
2994                             }
2995                         }
2996                         return (err, candidates);
2997                     }
2998                     (Def::Union(..), _) |
2999                     (Def::Variant(..), _) |
3000                     (Def::VariantCtor(_, CtorKind::Fictive), _) if ns == ValueNS => {
3001                         err.span_label(span, format!("did you mean `{} {{ /* fields */ }}`?",
3002                                                      path_str));
3003                         return (err, candidates);
3004                     }
3005                     (Def::SelfTy(..), _) if ns == ValueNS => {
3006                         err.span_label(span, fallback_label);
3007                         err.note("can't use `Self` as a constructor, you must use the \
3008                                   implemented struct");
3009                         return (err, candidates);
3010                     }
3011                     (Def::TyAlias(_), _) | (Def::AssociatedTy(..), _) if ns == ValueNS => {
3012                         err.note("can't use a type alias as a constructor");
3013                         return (err, candidates);
3014                     }
3015                     _ => {}
3016                 }
3017             }
3018
3019             // Fallback label.
3020             if !levenshtein_worked {
3021                 err.span_label(base_span, fallback_label);
3022                 this.type_ascription_suggestion(&mut err, base_span);
3023             }
3024             (err, candidates)
3025         };
3026         let report_errors = |this: &mut Self, def: Option<Def>| {
3027             let (err, candidates) = report_errors(this, def);
3028             let def_id = this.current_module.normal_ancestor_id;
3029             let node_id = this.definitions.as_local_node_id(def_id).unwrap();
3030             let better = def.is_some();
3031             this.use_injections.push(UseError { err, candidates, node_id, better });
3032             err_path_resolution()
3033         };
3034
3035         let resolution = match self.resolve_qpath_anywhere(
3036             id,
3037             qself,
3038             path,
3039             ns,
3040             span,
3041             source.defer_to_typeck(),
3042             source.global_by_default(),
3043             crate_lint,
3044         ) {
3045             Some(resolution) if resolution.unresolved_segments() == 0 => {
3046                 if is_expected(resolution.base_def()) || resolution.base_def() == Def::Err {
3047                     resolution
3048                 } else {
3049                     // Add a temporary hack to smooth the transition to new struct ctor
3050                     // visibility rules. See #38932 for more details.
3051                     let mut res = None;
3052                     if let Def::Struct(def_id) = resolution.base_def() {
3053                         if let Some((ctor_def, ctor_vis))
3054                                 = self.struct_constructors.get(&def_id).cloned() {
3055                             if is_expected(ctor_def) && self.is_accessible(ctor_vis) {
3056                                 let lint = lint::builtin::LEGACY_CONSTRUCTOR_VISIBILITY;
3057                                 self.session.buffer_lint(lint, id, span,
3058                                     "private struct constructors are not usable through \
3059                                      re-exports in outer modules",
3060                                 );
3061                                 res = Some(PathResolution::new(ctor_def));
3062                             }
3063                         }
3064                     }
3065
3066                     res.unwrap_or_else(|| report_errors(self, Some(resolution.base_def())))
3067                 }
3068             }
3069             Some(resolution) if source.defer_to_typeck() => {
3070                 // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
3071                 // or `<T>::A::B`. If `B` should be resolved in value namespace then
3072                 // it needs to be added to the trait map.
3073                 if ns == ValueNS {
3074                     let item_name = *path.last().unwrap();
3075                     let traits = self.get_traits_containing_item(item_name, ns);
3076                     self.trait_map.insert(id, traits);
3077                 }
3078                 resolution
3079             }
3080             _ => report_errors(self, None)
3081         };
3082
3083         if let PathSource::TraitItem(..) = source {} else {
3084             // Avoid recording definition of `A::B` in `<T as A>::B::C`.
3085             self.record_def(id, resolution);
3086         }
3087         resolution
3088     }
3089
3090     fn type_ascription_suggestion(&self,
3091                                   err: &mut DiagnosticBuilder,
3092                                   base_span: Span) {
3093         debug!("type_ascription_suggetion {:?}", base_span);
3094         let cm = self.session.codemap();
3095         debug!("self.current_type_ascription {:?}", self.current_type_ascription);
3096         if let Some(sp) = self.current_type_ascription.last() {
3097             let mut sp = *sp;
3098             loop {  // try to find the `:`, bail on first non-':'/non-whitespace
3099                 sp = cm.next_point(sp);
3100                 if let Ok(snippet) = cm.span_to_snippet(sp.to(cm.next_point(sp))) {
3101                     debug!("snippet {:?}", snippet);
3102                     let line_sp = cm.lookup_char_pos(sp.hi()).line;
3103                     let line_base_sp = cm.lookup_char_pos(base_span.lo()).line;
3104                     debug!("{:?} {:?}", line_sp, line_base_sp);
3105                     if snippet == ":" {
3106                         err.span_label(base_span,
3107                                        "expecting a type here because of type ascription");
3108                         if line_sp != line_base_sp {
3109                             err.span_suggestion_short(sp,
3110                                                       "did you mean to use `;` here instead?",
3111                                                       ";".to_string());
3112                         }
3113                         break;
3114                     } else if snippet.trim().len() != 0  {
3115                         debug!("tried to find type ascription `:` token, couldn't find it");
3116                         break;
3117                     }
3118                 } else {
3119                     break;
3120                 }
3121             }
3122         }
3123     }
3124
3125     fn self_type_is_available(&mut self, span: Span) -> bool {
3126         let binding = self.resolve_ident_in_lexical_scope(keywords::SelfType.ident(),
3127                                                           TypeNS, false, span);
3128         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3129     }
3130
3131     fn self_value_is_available(&mut self, self_span: Span, path_span: Span) -> bool {
3132         let ident = Ident::new(keywords::SelfValue.name(), self_span);
3133         let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, false, path_span);
3134         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3135     }
3136
3137     // Resolve in alternative namespaces if resolution in the primary namespace fails.
3138     fn resolve_qpath_anywhere(&mut self,
3139                               id: NodeId,
3140                               qself: Option<&QSelf>,
3141                               path: &[Ident],
3142                               primary_ns: Namespace,
3143                               span: Span,
3144                               defer_to_typeck: bool,
3145                               global_by_default: bool,
3146                               crate_lint: CrateLint)
3147                               -> Option<PathResolution> {
3148         let mut fin_res = None;
3149         // FIXME: can't resolve paths in macro namespace yet, macros are
3150         // processed by the little special hack below.
3151         for (i, ns) in [primary_ns, TypeNS, ValueNS, /*MacroNS*/].iter().cloned().enumerate() {
3152             if i == 0 || ns != primary_ns {
3153                 match self.resolve_qpath(id, qself, path, ns, span, global_by_default, crate_lint) {
3154                     // If defer_to_typeck, then resolution > no resolution,
3155                     // otherwise full resolution > partial resolution > no resolution.
3156                     Some(res) if res.unresolved_segments() == 0 || defer_to_typeck =>
3157                         return Some(res),
3158                     res => if fin_res.is_none() { fin_res = res },
3159                 };
3160             }
3161         }
3162         let is_global = self.global_macros.get(&path[0].name).cloned()
3163             .map(|binding| binding.get_macro(self).kind() == MacroKind::Bang).unwrap_or(false);
3164         if primary_ns != MacroNS && (is_global ||
3165                                      self.macro_names.contains(&path[0].modern())) {
3166             // Return some dummy definition, it's enough for error reporting.
3167             return Some(
3168                 PathResolution::new(Def::Macro(DefId::local(CRATE_DEF_INDEX), MacroKind::Bang))
3169             );
3170         }
3171         fin_res
3172     }
3173
3174     /// Handles paths that may refer to associated items.
3175     fn resolve_qpath(&mut self,
3176                      id: NodeId,
3177                      qself: Option<&QSelf>,
3178                      path: &[Ident],
3179                      ns: Namespace,
3180                      span: Span,
3181                      global_by_default: bool,
3182                      crate_lint: CrateLint)
3183                      -> Option<PathResolution> {
3184         debug!(
3185             "resolve_qpath(id={:?}, qself={:?}, path={:?}, \
3186              ns={:?}, span={:?}, global_by_default={:?})",
3187             id,
3188             qself,
3189             path,
3190             ns,
3191             span,
3192             global_by_default,
3193         );
3194
3195         if let Some(qself) = qself {
3196             if qself.position == 0 {
3197                 // This is a case like `<T>::B`, where there is no
3198                 // trait to resolve.  In that case, we leave the `B`
3199                 // segment to be resolved by type-check.
3200                 return Some(PathResolution::with_unresolved_segments(
3201                     Def::Mod(DefId::local(CRATE_DEF_INDEX)), path.len()
3202                 ));
3203             }
3204
3205             // Make sure `A::B` in `<T as A::B>::C` is a trait item.
3206             //
3207             // Currently, `path` names the full item (`A::B::C`, in
3208             // our example).  so we extract the prefix of that that is
3209             // the trait (the slice upto and including
3210             // `qself.position`). And then we recursively resolve that,
3211             // but with `qself` set to `None`.
3212             //
3213             // However, setting `qself` to none (but not changing the
3214             // span) loses the information about where this path
3215             // *actually* appears, so for the purposes of the crate
3216             // lint we pass along information that this is the trait
3217             // name from a fully qualified path, and this also
3218             // contains the full span (the `CrateLint::QPathTrait`).
3219             let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
3220             let res = self.smart_resolve_path_fragment(
3221                 id,
3222                 None,
3223                 &path[..qself.position + 1],
3224                 span,
3225                 PathSource::TraitItem(ns),
3226                 CrateLint::QPathTrait {
3227                     qpath_id: id,
3228                     qpath_span: qself.path_span,
3229                 },
3230             );
3231
3232             // The remaining segments (the `C` in our example) will
3233             // have to be resolved by type-check, since that requires doing
3234             // trait resolution.
3235             return Some(PathResolution::with_unresolved_segments(
3236                 res.base_def(), res.unresolved_segments() + path.len() - qself.position - 1
3237             ));
3238         }
3239
3240         let result = match self.resolve_path(
3241             &path,
3242             Some(ns),
3243             true,
3244             span,
3245             crate_lint,
3246         ) {
3247             PathResult::NonModule(path_res) => path_res,
3248             PathResult::Module(module) if !module.is_normal() => {
3249                 PathResolution::new(module.def().unwrap())
3250             }
3251             // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
3252             // don't report an error right away, but try to fallback to a primitive type.
3253             // So, we are still able to successfully resolve something like
3254             //
3255             // use std::u8; // bring module u8 in scope
3256             // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
3257             //     u8::max_value() // OK, resolves to associated function <u8>::max_value,
3258             //                     // not to non-existent std::u8::max_value
3259             // }
3260             //
3261             // Such behavior is required for backward compatibility.
3262             // The same fallback is used when `a` resolves to nothing.
3263             PathResult::Module(..) | PathResult::Failed(..)
3264                     if (ns == TypeNS || path.len() > 1) &&
3265                        self.primitive_type_table.primitive_types
3266                            .contains_key(&path[0].name) => {
3267                 let prim = self.primitive_type_table.primitive_types[&path[0].name];
3268                 PathResolution::with_unresolved_segments(Def::PrimTy(prim), path.len() - 1)
3269             }
3270             PathResult::Module(module) => PathResolution::new(module.def().unwrap()),
3271             PathResult::Failed(span, msg, false) => {
3272                 resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
3273                 err_path_resolution()
3274             }
3275             PathResult::Failed(..) => return None,
3276             PathResult::Indeterminate => bug!("indetermined path result in resolve_qpath"),
3277         };
3278
3279         if path.len() > 1 && !global_by_default && result.base_def() != Def::Err &&
3280            path[0].name != keywords::CrateRoot.name() &&
3281            path[0].name != keywords::DollarCrate.name() {
3282             let unqualified_result = {
3283                 match self.resolve_path(
3284                     &[*path.last().unwrap()],
3285                     Some(ns),
3286                     false,
3287                     span,
3288                     CrateLint::No,
3289                 ) {
3290                     PathResult::NonModule(path_res) => path_res.base_def(),
3291                     PathResult::Module(module) => module.def().unwrap(),
3292                     _ => return Some(result),
3293                 }
3294             };
3295             if result.base_def() == unqualified_result {
3296                 let lint = lint::builtin::UNUSED_QUALIFICATIONS;
3297                 self.session.buffer_lint(lint, id, span, "unnecessary qualification")
3298             }
3299         }
3300
3301         Some(result)
3302     }
3303
3304     fn resolve_path(
3305         &mut self,
3306         path: &[Ident],
3307         opt_ns: Option<Namespace>, // `None` indicates a module path
3308         record_used: bool,
3309         path_span: Span,
3310         crate_lint: CrateLint,
3311     ) -> PathResult<'a> {
3312         let mut module = None;
3313         let mut allow_super = true;
3314         let mut second_binding = None;
3315
3316         debug!(
3317             "resolve_path(path={:?}, opt_ns={:?}, record_used={:?}, \
3318              path_span={:?}, crate_lint={:?})",
3319             path,
3320             opt_ns,
3321             record_used,
3322             path_span,
3323             crate_lint,
3324         );
3325
3326         for (i, &ident) in path.iter().enumerate() {
3327             debug!("resolve_path ident {} {:?}", i, ident);
3328             let is_last = i == path.len() - 1;
3329             let ns = if is_last { opt_ns.unwrap_or(TypeNS) } else { TypeNS };
3330             let name = ident.name;
3331
3332             if i == 0 && ns == TypeNS && name == keywords::SelfValue.name() {
3333                 let mut ctxt = ident.span.ctxt().modern();
3334                 module = Some(self.resolve_self(&mut ctxt, self.current_module));
3335                 continue
3336             } else if allow_super && ns == TypeNS && name == keywords::Super.name() {
3337                 let mut ctxt = ident.span.ctxt().modern();
3338                 let self_module = match i {
3339                     0 => self.resolve_self(&mut ctxt, self.current_module),
3340                     _ => module.unwrap(),
3341                 };
3342                 if let Some(parent) = self_module.parent {
3343                     module = Some(self.resolve_self(&mut ctxt, parent));
3344                     continue
3345                 } else {
3346                     let msg = "There are too many initial `super`s.".to_string();
3347                     return PathResult::Failed(ident.span, msg, false);
3348                 }
3349             } else if i == 0 && ns == TypeNS && name == keywords::Extern.name() {
3350                 continue;
3351             }
3352             allow_super = false;
3353
3354             if ns == TypeNS {
3355                 if (i == 0 && name == keywords::CrateRoot.name()) ||
3356                    (i == 0 && name == keywords::Crate.name()) ||
3357                    (i == 1 && name == keywords::Crate.name() &&
3358                               path[0].name == keywords::CrateRoot.name()) {
3359                     // `::a::b` or `::crate::a::b`
3360                     module = Some(self.resolve_crate_root(ident.span.ctxt(), false));
3361                     continue
3362                 } else if i == 0 && name == keywords::DollarCrate.name() {
3363                     // `$crate::a::b`
3364                     module = Some(self.resolve_crate_root(ident.span.ctxt(), true));
3365                     continue
3366                 } else if i == 1 && !ident.is_path_segment_keyword() {
3367                     let prev_name = path[0].name;
3368                     if prev_name == keywords::Extern.name() ||
3369                        prev_name == keywords::CrateRoot.name() &&
3370                        self.session.features_untracked().extern_absolute_paths &&
3371                        self.session.rust_2018() {
3372                         // `::extern_crate::a::b`
3373                         let crate_id = self.crate_loader.process_path_extern(name, ident.span);
3374                         let crate_root =
3375                             self.get_module(DefId { krate: crate_id, index: CRATE_DEF_INDEX });
3376                         self.populate_module_if_necessary(crate_root);
3377                         module = Some(crate_root);
3378                         continue
3379                     }
3380                 }
3381             }
3382
3383             // Report special messages for path segment keywords in wrong positions.
3384             if name == keywords::CrateRoot.name() && i != 0 ||
3385                name == keywords::DollarCrate.name() && i != 0 ||
3386                name == keywords::SelfValue.name() && i != 0 ||
3387                name == keywords::SelfType.name() && i != 0 ||
3388                name == keywords::Super.name() && i != 0 ||
3389                name == keywords::Extern.name() && i != 0 ||
3390                // we allow crate::foo and ::crate::foo but nothing else
3391                name == keywords::Crate.name() && i > 1 &&
3392                     path[0].name != keywords::CrateRoot.name() ||
3393                name == keywords::Crate.name() && path.len() == 1 {
3394                 let name_str = if name == keywords::CrateRoot.name() {
3395                     format!("crate root")
3396                 } else {
3397                     format!("`{}`", name)
3398                 };
3399                 let msg = if i == 1 && path[0].name == keywords::CrateRoot.name() {
3400                     format!("global paths cannot start with {}", name_str)
3401                 } else {
3402                     format!("{} in paths can only be used in start position", name_str)
3403                 };
3404                 return PathResult::Failed(ident.span, msg, false);
3405             }
3406
3407             let binding = if let Some(module) = module {
3408                 self.resolve_ident_in_module(module, ident, ns, false, record_used, path_span)
3409             } else if opt_ns == Some(MacroNS) {
3410                 self.resolve_lexical_macro_path_segment(ident, ns, record_used, path_span)
3411                     .map(MacroBinding::binding)
3412             } else {
3413                 match self.resolve_ident_in_lexical_scope(ident, ns, record_used, path_span) {
3414                     // we found a locally-imported or available item/module
3415                     Some(LexicalScopeBinding::Item(binding)) => Ok(binding),
3416                     // we found a local variable or type param
3417                     Some(LexicalScopeBinding::Def(def))
3418                             if opt_ns == Some(TypeNS) || opt_ns == Some(ValueNS) => {
3419                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3420                             def, path.len() - 1
3421                         ));
3422                     }
3423                     _ => Err(if record_used { Determined } else { Undetermined }),
3424                 }
3425             };
3426
3427             match binding {
3428                 Ok(binding) => {
3429                     if i == 1 {
3430                         second_binding = Some(binding);
3431                     }
3432                     let def = binding.def();
3433                     let maybe_assoc = opt_ns != Some(MacroNS) && PathSource::Type.is_expected(def);
3434                     if let Some(next_module) = binding.module() {
3435                         module = Some(next_module);
3436                     } else if def == Def::Err {
3437                         return PathResult::NonModule(err_path_resolution());
3438                     } else if opt_ns.is_some() && (is_last || maybe_assoc) {
3439                         self.lint_if_path_starts_with_module(
3440                             crate_lint,
3441                             path,
3442                             path_span,
3443                             second_binding,
3444                         );
3445                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3446                             def, path.len() - i - 1
3447                         ));
3448                     } else {
3449                         return PathResult::Failed(ident.span,
3450                                                   format!("Not a module `{}`", ident),
3451                                                   is_last);
3452                     }
3453                 }
3454                 Err(Undetermined) => return PathResult::Indeterminate,
3455                 Err(Determined) => {
3456                     if let Some(module) = module {
3457                         if opt_ns.is_some() && !module.is_normal() {
3458                             return PathResult::NonModule(PathResolution::with_unresolved_segments(
3459                                 module.def().unwrap(), path.len() - i
3460                             ));
3461                         }
3462                     }
3463                     let msg = if module.and_then(ModuleData::def) == self.graph_root.def() {
3464                         let is_mod = |def| match def { Def::Mod(..) => true, _ => false };
3465                         let mut candidates =
3466                             self.lookup_import_candidates(name, TypeNS, is_mod);
3467                         candidates.sort_by_cached_key(|c| {
3468                             (c.path.segments.len(), c.path.to_string())
3469                         });
3470                         if let Some(candidate) = candidates.get(0) {
3471                             format!("Did you mean `{}`?", candidate.path)
3472                         } else {
3473                             format!("Maybe a missing `extern crate {};`?", ident)
3474                         }
3475                     } else if i == 0 {
3476                         format!("Use of undeclared type or module `{}`", ident)
3477                     } else {
3478                         format!("Could not find `{}` in `{}`", ident, path[i - 1])
3479                     };
3480                     return PathResult::Failed(ident.span, msg, is_last);
3481                 }
3482             }
3483         }
3484
3485         self.lint_if_path_starts_with_module(crate_lint, path, path_span, second_binding);
3486
3487         PathResult::Module(module.unwrap_or(self.graph_root))
3488     }
3489
3490     fn lint_if_path_starts_with_module(
3491         &self,
3492         crate_lint: CrateLint,
3493         path: &[Ident],
3494         path_span: Span,
3495         second_binding: Option<&NameBinding>,
3496     ) {
3497         let (diag_id, diag_span) = match crate_lint {
3498             CrateLint::No => return,
3499             CrateLint::SimplePath(id) => (id, path_span),
3500             CrateLint::UsePath { root_id, root_span } => (root_id, root_span),
3501             CrateLint::QPathTrait { qpath_id, qpath_span } => (qpath_id, qpath_span),
3502         };
3503
3504         let first_name = match path.get(0) {
3505             Some(ident) => ident.name,
3506             None => return,
3507         };
3508
3509         // We're only interested in `use` paths which should start with
3510         // `{{root}}` or `extern` currently.
3511         if first_name != keywords::Extern.name() && first_name != keywords::CrateRoot.name() {
3512             return
3513         }
3514
3515         match path.get(1) {
3516             // If this import looks like `crate::...` it's already good
3517             Some(name) if name.name == keywords::Crate.name() => return,
3518             // Otherwise go below to see if it's an extern crate
3519             Some(_) => {}
3520             // If the path has length one (and it's `CrateRoot` most likely)
3521             // then we don't know whether we're gonna be importing a crate or an
3522             // item in our crate. Defer this lint to elsewhere
3523             None => return,
3524         }
3525
3526         // If the first element of our path was actually resolved to an
3527         // `ExternCrate` (also used for `crate::...`) then no need to issue a
3528         // warning, this looks all good!
3529         if let Some(binding) = second_binding {
3530             if let NameBindingKind::Import { directive: d, .. } = binding.kind {
3531                 // Careful: we still want to rewrite paths from
3532                 // renamed extern crates.
3533                 if let ImportDirectiveSubclass::ExternCrate(None) = d.subclass {
3534                     return
3535                 }
3536             }
3537         }
3538
3539         self.lint_path_starts_with_module(diag_id, diag_span);
3540     }
3541
3542     fn lint_path_starts_with_module(&self, id: NodeId, span: Span) {
3543         // In the 2018 edition this lint is a hard error, so nothing to do
3544         if self.session.rust_2018() {
3545             return
3546         }
3547         // In the 2015 edition there's no use in emitting lints unless the
3548         // crate's already enabled the feature that we're going to suggest
3549         if !self.session.features_untracked().crate_in_paths {
3550             return
3551         }
3552         let diag = lint::builtin::BuiltinLintDiagnostics
3553             ::AbsPathWithModule(span);
3554         self.session.buffer_lint_with_diagnostic(
3555             lint::builtin::ABSOLUTE_PATHS_NOT_STARTING_WITH_CRATE,
3556             id, span,
3557             "absolute paths must start with `self`, `super`, \
3558             `crate`, or an external crate name in the 2018 edition",
3559             diag);
3560     }
3561
3562     // Resolve a local definition, potentially adjusting for closures.
3563     fn adjust_local_def(&mut self,
3564                         ns: Namespace,
3565                         rib_index: usize,
3566                         mut def: Def,
3567                         record_used: bool,
3568                         span: Span) -> Def {
3569         let ribs = &self.ribs[ns][rib_index + 1..];
3570
3571         // An invalid forward use of a type parameter from a previous default.
3572         if let ForwardTyParamBanRibKind = self.ribs[ns][rib_index].kind {
3573             if record_used {
3574                 resolve_error(self, span, ResolutionError::ForwardDeclaredTyParam);
3575             }
3576             assert_eq!(def, Def::Err);
3577             return Def::Err;
3578         }
3579
3580         match def {
3581             Def::Upvar(..) => {
3582                 span_bug!(span, "unexpected {:?} in bindings", def)
3583             }
3584             Def::Local(node_id) => {
3585                 for rib in ribs {
3586                     match rib.kind {
3587                         NormalRibKind | ModuleRibKind(..) | MacroDefinition(..) |
3588                         ForwardTyParamBanRibKind => {
3589                             // Nothing to do. Continue.
3590                         }
3591                         ClosureRibKind(function_id) => {
3592                             let prev_def = def;
3593
3594                             let seen = self.freevars_seen
3595                                            .entry(function_id)
3596                                            .or_insert_with(|| NodeMap());
3597                             if let Some(&index) = seen.get(&node_id) {
3598                                 def = Def::Upvar(node_id, index, function_id);
3599                                 continue;
3600                             }
3601                             let vec = self.freevars
3602                                           .entry(function_id)
3603                                           .or_insert_with(|| vec![]);
3604                             let depth = vec.len();
3605                             def = Def::Upvar(node_id, depth, function_id);
3606
3607                             if record_used {
3608                                 vec.push(Freevar {
3609                                     def: prev_def,
3610                                     span,
3611                                 });
3612                                 seen.insert(node_id, depth);
3613                             }
3614                         }
3615                         ItemRibKind | TraitOrImplItemRibKind => {
3616                             // This was an attempt to access an upvar inside a
3617                             // named function item. This is not allowed, so we
3618                             // report an error.
3619                             if record_used {
3620                                 resolve_error(self, span,
3621                                         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem);
3622                             }
3623                             return Def::Err;
3624                         }
3625                         ConstantItemRibKind => {
3626                             // Still doesn't deal with upvars
3627                             if record_used {
3628                                 resolve_error(self, span,
3629                                         ResolutionError::AttemptToUseNonConstantValueInConstant);
3630                             }
3631                             return Def::Err;
3632                         }
3633                     }
3634                 }
3635             }
3636             Def::TyParam(..) | Def::SelfTy(..) => {
3637                 for rib in ribs {
3638                     match rib.kind {
3639                         NormalRibKind | TraitOrImplItemRibKind | ClosureRibKind(..) |
3640                         ModuleRibKind(..) | MacroDefinition(..) | ForwardTyParamBanRibKind |
3641                         ConstantItemRibKind => {
3642                             // Nothing to do. Continue.
3643                         }
3644                         ItemRibKind => {
3645                             // This was an attempt to use a type parameter outside
3646                             // its scope.
3647                             if record_used {
3648                                 resolve_error(self, span,
3649                                     ResolutionError::TypeParametersFromOuterFunction(def));
3650                             }
3651                             return Def::Err;
3652                         }
3653                     }
3654                 }
3655             }
3656             _ => {}
3657         }
3658         return def;
3659     }
3660
3661     fn lookup_assoc_candidate<FilterFn>(&mut self,
3662                                         ident: Ident,
3663                                         ns: Namespace,
3664                                         filter_fn: FilterFn)
3665                                         -> Option<AssocSuggestion>
3666         where FilterFn: Fn(Def) -> bool
3667     {
3668         fn extract_node_id(t: &Ty) -> Option<NodeId> {
3669             match t.node {
3670                 TyKind::Path(None, _) => Some(t.id),
3671                 TyKind::Rptr(_, ref mut_ty) => extract_node_id(&mut_ty.ty),
3672                 // This doesn't handle the remaining `Ty` variants as they are not
3673                 // that commonly the self_type, it might be interesting to provide
3674                 // support for those in future.
3675                 _ => None,
3676             }
3677         }
3678
3679         // Fields are generally expected in the same contexts as locals.
3680         if filter_fn(Def::Local(ast::DUMMY_NODE_ID)) {
3681             if let Some(node_id) = self.current_self_type.as_ref().and_then(extract_node_id) {
3682                 // Look for a field with the same name in the current self_type.
3683                 if let Some(resolution) = self.def_map.get(&node_id) {
3684                     match resolution.base_def() {
3685                         Def::Struct(did) | Def::Union(did)
3686                                 if resolution.unresolved_segments() == 0 => {
3687                             if let Some(field_names) = self.field_names.get(&did) {
3688                                 if field_names.iter().any(|&field_name| ident.name == field_name) {
3689                                     return Some(AssocSuggestion::Field);
3690                                 }
3691                             }
3692                         }
3693                         _ => {}
3694                     }
3695                 }
3696             }
3697         }
3698
3699         // Look for associated items in the current trait.
3700         if let Some((module, _)) = self.current_trait_ref {
3701             if let Ok(binding) =
3702                     self.resolve_ident_in_module(module, ident, ns, false, false, module.span) {
3703                 let def = binding.def();
3704                 if filter_fn(def) {
3705                     return Some(if self.has_self.contains(&def.def_id()) {
3706                         AssocSuggestion::MethodWithSelf
3707                     } else {
3708                         AssocSuggestion::AssocItem
3709                     });
3710                 }
3711             }
3712         }
3713
3714         None
3715     }
3716
3717     fn lookup_typo_candidate<FilterFn>(&mut self,
3718                                        path: &[Ident],
3719                                        ns: Namespace,
3720                                        filter_fn: FilterFn,
3721                                        span: Span)
3722                                        -> Option<Symbol>
3723         where FilterFn: Fn(Def) -> bool
3724     {
3725         let add_module_candidates = |module: Module, names: &mut Vec<Name>| {
3726             for (&(ident, _), resolution) in module.resolutions.borrow().iter() {
3727                 if let Some(binding) = resolution.borrow().binding {
3728                     if filter_fn(binding.def()) {
3729                         names.push(ident.name);
3730                     }
3731                 }
3732             }
3733         };
3734
3735         let mut names = Vec::new();
3736         if path.len() == 1 {
3737             // Search in lexical scope.
3738             // Walk backwards up the ribs in scope and collect candidates.
3739             for rib in self.ribs[ns].iter().rev() {
3740                 // Locals and type parameters
3741                 for (ident, def) in &rib.bindings {
3742                     if filter_fn(*def) {
3743                         names.push(ident.name);
3744                     }
3745                 }
3746                 // Items in scope
3747                 if let ModuleRibKind(module) = rib.kind {
3748                     // Items from this module
3749                     add_module_candidates(module, &mut names);
3750
3751                     if let ModuleKind::Block(..) = module.kind {
3752                         // We can see through blocks
3753                     } else {
3754                         // Items from the prelude
3755                         if !module.no_implicit_prelude {
3756                             names.extend(self.extern_prelude.iter().cloned());
3757                             if let Some(prelude) = self.prelude {
3758                                 add_module_candidates(prelude, &mut names);
3759                             }
3760                         }
3761                         break;
3762                     }
3763                 }
3764             }
3765             // Add primitive types to the mix
3766             if filter_fn(Def::PrimTy(TyBool)) {
3767                 for (name, _) in &self.primitive_type_table.primitive_types {
3768                     names.push(*name);
3769                 }
3770             }
3771         } else {
3772             // Search in module.
3773             let mod_path = &path[..path.len() - 1];
3774             if let PathResult::Module(module) = self.resolve_path(mod_path, Some(TypeNS),
3775                                                                   false, span, CrateLint::No) {
3776                 add_module_candidates(module, &mut names);
3777             }
3778         }
3779
3780         let name = path[path.len() - 1].name;
3781         // Make sure error reporting is deterministic.
3782         names.sort_by_cached_key(|name| name.as_str());
3783         match find_best_match_for_name(names.iter(), &name.as_str(), None) {
3784             Some(found) if found != name => Some(found),
3785             _ => None,
3786         }
3787     }
3788
3789     fn with_resolved_label<F>(&mut self, label: Option<Label>, id: NodeId, f: F)
3790         where F: FnOnce(&mut Resolver)
3791     {
3792         if let Some(label) = label {
3793             self.unused_labels.insert(id, label.ident.span);
3794             let def = Def::Label(id);
3795             self.with_label_rib(|this| {
3796                 this.label_ribs.last_mut().unwrap().bindings.insert(label.ident, def);
3797                 f(this);
3798             });
3799         } else {
3800             f(self);
3801         }
3802     }
3803
3804     fn resolve_labeled_block(&mut self, label: Option<Label>, id: NodeId, block: &Block) {
3805         self.with_resolved_label(label, id, |this| this.visit_block(block));
3806     }
3807
3808     fn resolve_expr(&mut self, expr: &Expr, parent: Option<&Expr>) {
3809         // First, record candidate traits for this expression if it could
3810         // result in the invocation of a method call.
3811
3812         self.record_candidate_traits_for_expr_if_necessary(expr);
3813
3814         // Next, resolve the node.
3815         match expr.node {
3816             ExprKind::Path(ref qself, ref path) => {
3817                 self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
3818                 visit::walk_expr(self, expr);
3819             }
3820
3821             ExprKind::Struct(ref path, ..) => {
3822                 self.smart_resolve_path(expr.id, None, path, PathSource::Struct);
3823                 visit::walk_expr(self, expr);
3824             }
3825
3826             ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
3827                 match self.search_label(label.ident, |rib, id| rib.bindings.get(&id).cloned()) {
3828                     None => {
3829                         // Search again for close matches...
3830                         // Picks the first label that is "close enough", which is not necessarily
3831                         // the closest match
3832                         let close_match = self.search_label(label.ident, |rib, ident| {
3833                             let names = rib.bindings.iter().map(|(id, _)| &id.name);
3834                             find_best_match_for_name(names, &*ident.as_str(), None)
3835                         });
3836                         self.record_def(expr.id, err_path_resolution());
3837                         resolve_error(self,
3838                                       label.ident.span,
3839                                       ResolutionError::UndeclaredLabel(&label.ident.as_str(),
3840                                                                        close_match));
3841                     }
3842                     Some(Def::Label(id)) => {
3843                         // Since this def is a label, it is never read.
3844                         self.record_def(expr.id, PathResolution::new(Def::Label(id)));
3845                         self.unused_labels.remove(&id);
3846                     }
3847                     Some(_) => {
3848                         span_bug!(expr.span, "label wasn't mapped to a label def!");
3849                     }
3850                 }
3851
3852                 // visit `break` argument if any
3853                 visit::walk_expr(self, expr);
3854             }
3855
3856             ExprKind::IfLet(ref pats, ref subexpression, ref if_block, ref optional_else) => {
3857                 self.visit_expr(subexpression);
3858
3859                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
3860                 let mut bindings_list = FxHashMap();
3861                 for pat in pats {
3862                     self.resolve_pattern(pat, PatternSource::IfLet, &mut bindings_list);
3863                 }
3864                 // This has to happen *after* we determine which pat_idents are variants
3865                 self.check_consistent_bindings(pats);
3866                 self.visit_block(if_block);
3867                 self.ribs[ValueNS].pop();
3868
3869                 optional_else.as_ref().map(|expr| self.visit_expr(expr));
3870             }
3871
3872             ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),
3873
3874             ExprKind::While(ref subexpression, ref block, label) => {
3875                 self.with_resolved_label(label, expr.id, |this| {
3876                     this.visit_expr(subexpression);
3877                     this.visit_block(block);
3878                 });
3879             }
3880
3881             ExprKind::WhileLet(ref pats, ref subexpression, ref block, label) => {
3882                 self.with_resolved_label(label, expr.id, |this| {
3883                     this.visit_expr(subexpression);
3884                     this.ribs[ValueNS].push(Rib::new(NormalRibKind));
3885                     let mut bindings_list = FxHashMap();
3886                     for pat in pats {
3887                         this.resolve_pattern(pat, PatternSource::WhileLet, &mut bindings_list);
3888                     }
3889                     // This has to happen *after* we determine which pat_idents are variants
3890                     this.check_consistent_bindings(pats);
3891                     this.visit_block(block);
3892                     this.ribs[ValueNS].pop();
3893                 });
3894             }
3895
3896             ExprKind::ForLoop(ref pattern, ref subexpression, ref block, label) => {
3897                 self.visit_expr(subexpression);
3898                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
3899                 self.resolve_pattern(pattern, PatternSource::For, &mut FxHashMap());
3900
3901                 self.resolve_labeled_block(label, expr.id, block);
3902
3903                 self.ribs[ValueNS].pop();
3904             }
3905
3906             ExprKind::Block(ref block, label) => self.resolve_labeled_block(label, block.id, block),
3907
3908             // Equivalent to `visit::walk_expr` + passing some context to children.
3909             ExprKind::Field(ref subexpression, _) => {
3910                 self.resolve_expr(subexpression, Some(expr));
3911             }
3912             ExprKind::MethodCall(ref segment, ref arguments) => {
3913                 let mut arguments = arguments.iter();
3914                 self.resolve_expr(arguments.next().unwrap(), Some(expr));
3915                 for argument in arguments {
3916                     self.resolve_expr(argument, None);
3917                 }
3918                 self.visit_path_segment(expr.span, segment);
3919             }
3920
3921             ExprKind::Call(ref callee, ref arguments) => {
3922                 self.resolve_expr(callee, Some(expr));
3923                 for argument in arguments {
3924                     self.resolve_expr(argument, None);
3925                 }
3926             }
3927             ExprKind::Type(ref type_expr, _) => {
3928                 self.current_type_ascription.push(type_expr.span);
3929                 visit::walk_expr(self, expr);
3930                 self.current_type_ascription.pop();
3931             }
3932             // Resolve the body of async exprs inside the async closure to which they desugar
3933             ExprKind::Async(_, async_closure_id, ref block) => {
3934                 let rib_kind = ClosureRibKind(async_closure_id);
3935                 self.ribs[ValueNS].push(Rib::new(rib_kind));
3936                 self.label_ribs.push(Rib::new(rib_kind));
3937                 self.visit_block(&block);
3938                 self.label_ribs.pop();
3939                 self.ribs[ValueNS].pop();
3940             }
3941             // `async |x| ...` gets desugared to `|x| future_from_generator(|| ...)`, so we need to
3942             // resolve the arguments within the proper scopes so that usages of them inside the
3943             // closure are detected as upvars rather than normal closure arg usages.
3944             ExprKind::Closure(
3945                 _, IsAsync::Async(inner_closure_id), _, ref fn_decl, ref body, _span) =>
3946             {
3947                 let rib_kind = ClosureRibKind(expr.id);
3948                 self.ribs[ValueNS].push(Rib::new(rib_kind));
3949                 self.label_ribs.push(Rib::new(rib_kind));
3950                 // Resolve arguments:
3951                 let mut bindings_list = FxHashMap();
3952                 for argument in &fn_decl.inputs {
3953                     self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
3954                     self.visit_ty(&argument.ty);
3955                 }
3956                 // No need to resolve return type-- the outer closure return type is
3957                 // FunctionRetTy::Default
3958
3959                 // Now resolve the inner closure
3960                 {
3961                     let rib_kind = ClosureRibKind(inner_closure_id);
3962                     self.ribs[ValueNS].push(Rib::new(rib_kind));
3963                     self.label_ribs.push(Rib::new(rib_kind));
3964                     // No need to resolve arguments: the inner closure has none.
3965                     // Resolve the return type:
3966                     visit::walk_fn_ret_ty(self, &fn_decl.output);
3967                     // Resolve the body
3968                     self.visit_expr(body);
3969                     self.label_ribs.pop();
3970                     self.ribs[ValueNS].pop();
3971                 }
3972                 self.label_ribs.pop();
3973                 self.ribs[ValueNS].pop();
3974             }
3975             _ => {
3976                 visit::walk_expr(self, expr);
3977             }
3978         }
3979     }
3980
3981     fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &Expr) {
3982         match expr.node {
3983             ExprKind::Field(_, ident) => {
3984                 // FIXME(#6890): Even though you can't treat a method like a
3985                 // field, we need to add any trait methods we find that match
3986                 // the field name so that we can do some nice error reporting
3987                 // later on in typeck.
3988                 let traits = self.get_traits_containing_item(ident, ValueNS);
3989                 self.trait_map.insert(expr.id, traits);
3990             }
3991             ExprKind::MethodCall(ref segment, ..) => {
3992                 debug!("(recording candidate traits for expr) recording traits for {}",
3993                        expr.id);
3994                 let traits = self.get_traits_containing_item(segment.ident, ValueNS);
3995                 self.trait_map.insert(expr.id, traits);
3996             }
3997             _ => {
3998                 // Nothing to do.
3999             }
4000         }
4001     }
4002
4003     fn get_traits_containing_item(&mut self, mut ident: Ident, ns: Namespace)
4004                                   -> Vec<TraitCandidate> {
4005         debug!("(getting traits containing item) looking for '{}'", ident.name);
4006
4007         let mut found_traits = Vec::new();
4008         // Look for the current trait.
4009         if let Some((module, _)) = self.current_trait_ref {
4010             if self.resolve_ident_in_module(module, ident, ns, false, false, module.span).is_ok() {
4011                 let def_id = module.def_id().unwrap();
4012                 found_traits.push(TraitCandidate { def_id: def_id, import_id: None });
4013             }
4014         }
4015
4016         ident.span = ident.span.modern();
4017         let mut search_module = self.current_module;
4018         loop {
4019             self.get_traits_in_module_containing_item(ident, ns, search_module, &mut found_traits);
4020             search_module =
4021                 unwrap_or!(self.hygienic_lexical_parent(search_module, &mut ident.span), break);
4022         }
4023
4024         if let Some(prelude) = self.prelude {
4025             if !search_module.no_implicit_prelude {
4026                 self.get_traits_in_module_containing_item(ident, ns, prelude, &mut found_traits);
4027             }
4028         }
4029
4030         found_traits
4031     }
4032
4033     fn get_traits_in_module_containing_item(&mut self,
4034                                             ident: Ident,
4035                                             ns: Namespace,
4036                                             module: Module<'a>,
4037                                             found_traits: &mut Vec<TraitCandidate>) {
4038         let mut traits = module.traits.borrow_mut();
4039         if traits.is_none() {
4040             let mut collected_traits = Vec::new();
4041             module.for_each_child(|name, ns, binding| {
4042                 if ns != TypeNS { return }
4043                 if let Def::Trait(_) = binding.def() {
4044                     collected_traits.push((name, binding));
4045                 }
4046             });
4047             *traits = Some(collected_traits.into_boxed_slice());
4048         }
4049
4050         for &(trait_name, binding) in traits.as_ref().unwrap().iter() {
4051             let module = binding.module().unwrap();
4052             let mut ident = ident;
4053             if ident.span.glob_adjust(module.expansion, binding.span.ctxt().modern()).is_none() {
4054                 continue
4055             }
4056             if self.resolve_ident_in_module_unadjusted(module, ident, ns, false, false, module.span)
4057                    .is_ok() {
4058                 let import_id = match binding.kind {
4059                     NameBindingKind::Import { directive, .. } => {
4060                         self.maybe_unused_trait_imports.insert(directive.id);
4061                         self.add_to_glob_map(directive.id, trait_name);
4062                         Some(directive.id)
4063                     }
4064                     _ => None,
4065                 };
4066                 let trait_def_id = module.def_id().unwrap();
4067                 found_traits.push(TraitCandidate { def_id: trait_def_id, import_id: import_id });
4068             }
4069         }
4070     }
4071
4072     /// When name resolution fails, this method can be used to look up candidate
4073     /// entities with the expected name. It allows filtering them using the
4074     /// supplied predicate (which should be used to only accept the types of
4075     /// definitions expected e.g. traits). The lookup spans across all crates.
4076     ///
4077     /// NOTE: The method does not look into imports, but this is not a problem,
4078     /// since we report the definitions (thus, the de-aliased imports).
4079     fn lookup_import_candidates<FilterFn>(&mut self,
4080                                           lookup_name: Name,
4081                                           namespace: Namespace,
4082                                           filter_fn: FilterFn)
4083                                           -> Vec<ImportSuggestion>
4084         where FilterFn: Fn(Def) -> bool
4085     {
4086         let mut candidates = Vec::new();
4087         let mut worklist = Vec::new();
4088         let mut seen_modules = FxHashSet();
4089         worklist.push((self.graph_root, Vec::new(), false));
4090
4091         while let Some((in_module,
4092                         path_segments,
4093                         in_module_is_extern)) = worklist.pop() {
4094             self.populate_module_if_necessary(in_module);
4095
4096             // We have to visit module children in deterministic order to avoid
4097             // instabilities in reported imports (#43552).
4098             in_module.for_each_child_stable(|ident, ns, name_binding| {
4099                 // avoid imports entirely
4100                 if name_binding.is_import() && !name_binding.is_extern_crate() { return; }
4101                 // avoid non-importable candidates as well
4102                 if !name_binding.is_importable() { return; }
4103
4104                 // collect results based on the filter function
4105                 if ident.name == lookup_name && ns == namespace {
4106                     if filter_fn(name_binding.def()) {
4107                         // create the path
4108                         let mut segms = path_segments.clone();
4109                         segms.push(ast::PathSegment::from_ident(ident));
4110                         let path = Path {
4111                             span: name_binding.span,
4112                             segments: segms,
4113                         };
4114                         // the entity is accessible in the following cases:
4115                         // 1. if it's defined in the same crate, it's always
4116                         // accessible (since private entities can be made public)
4117                         // 2. if it's defined in another crate, it's accessible
4118                         // only if both the module is public and the entity is
4119                         // declared as public (due to pruning, we don't explore
4120                         // outside crate private modules => no need to check this)
4121                         if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
4122                             candidates.push(ImportSuggestion { path: path });
4123                         }
4124                     }
4125                 }
4126
4127                 // collect submodules to explore
4128                 if let Some(module) = name_binding.module() {
4129                     // form the path
4130                     let mut path_segments = path_segments.clone();
4131                     path_segments.push(ast::PathSegment::from_ident(ident));
4132
4133                     if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
4134                         // add the module to the lookup
4135                         let is_extern = in_module_is_extern || name_binding.is_extern_crate();
4136                         if seen_modules.insert(module.def_id().unwrap()) {
4137                             worklist.push((module, path_segments, is_extern));
4138                         }
4139                     }
4140                 }
4141             })
4142         }
4143
4144         candidates
4145     }
4146
4147     fn find_module(&mut self,
4148                    module_def: Def)
4149                    -> Option<(Module<'a>, ImportSuggestion)>
4150     {
4151         let mut result = None;
4152         let mut worklist = Vec::new();
4153         let mut seen_modules = FxHashSet();
4154         worklist.push((self.graph_root, Vec::new()));
4155
4156         while let Some((in_module, path_segments)) = worklist.pop() {
4157             // abort if the module is already found
4158             if let Some(_) = result { break; }
4159
4160             self.populate_module_if_necessary(in_module);
4161
4162             in_module.for_each_child_stable(|ident, _, name_binding| {
4163                 // abort if the module is already found or if name_binding is private external
4164                 if result.is_some() || !name_binding.vis.is_visible_locally() {
4165                     return
4166                 }
4167                 if let Some(module) = name_binding.module() {
4168                     // form the path
4169                     let mut path_segments = path_segments.clone();
4170                     path_segments.push(ast::PathSegment::from_ident(ident));
4171                     if module.def() == Some(module_def) {
4172                         let path = Path {
4173                             span: name_binding.span,
4174                             segments: path_segments,
4175                         };
4176                         result = Some((module, ImportSuggestion { path: path }));
4177                     } else {
4178                         // add the module to the lookup
4179                         if seen_modules.insert(module.def_id().unwrap()) {
4180                             worklist.push((module, path_segments));
4181                         }
4182                     }
4183                 }
4184             });
4185         }
4186
4187         result
4188     }
4189
4190     fn collect_enum_variants(&mut self, enum_def: Def) -> Option<Vec<Path>> {
4191         if let Def::Enum(..) = enum_def {} else {
4192             panic!("Non-enum def passed to collect_enum_variants: {:?}", enum_def)
4193         }
4194
4195         self.find_module(enum_def).map(|(enum_module, enum_import_suggestion)| {
4196             self.populate_module_if_necessary(enum_module);
4197
4198             let mut variants = Vec::new();
4199             enum_module.for_each_child_stable(|ident, _, name_binding| {
4200                 if let Def::Variant(..) = name_binding.def() {
4201                     let mut segms = enum_import_suggestion.path.segments.clone();
4202                     segms.push(ast::PathSegment::from_ident(ident));
4203                     variants.push(Path {
4204                         span: name_binding.span,
4205                         segments: segms,
4206                     });
4207                 }
4208             });
4209             variants
4210         })
4211     }
4212
4213     fn record_def(&mut self, node_id: NodeId, resolution: PathResolution) {
4214         debug!("(recording def) recording {:?} for {}", resolution, node_id);
4215         if let Some(prev_res) = self.def_map.insert(node_id, resolution) {
4216             panic!("path resolved multiple times ({:?} before, {:?} now)", prev_res, resolution);
4217         }
4218     }
4219
4220     fn resolve_visibility(&mut self, vis: &ast::Visibility) -> ty::Visibility {
4221         match vis.node {
4222             ast::VisibilityKind::Public => ty::Visibility::Public,
4223             ast::VisibilityKind::Crate(..) => {
4224                 ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX))
4225             }
4226             ast::VisibilityKind::Inherited => {
4227                 ty::Visibility::Restricted(self.current_module.normal_ancestor_id)
4228             }
4229             ast::VisibilityKind::Restricted { ref path, id, .. } => {
4230                 // Visibilities are resolved as global by default, add starting root segment.
4231                 let segments = path.make_root().iter().chain(path.segments.iter())
4232                     .map(|seg| seg.ident)
4233                     .collect::<Vec<_>>();
4234                 let def = self.smart_resolve_path_fragment(
4235                     id,
4236                     None,
4237                     &segments,
4238                     path.span,
4239                     PathSource::Visibility,
4240                     CrateLint::SimplePath(id),
4241                 ).base_def();
4242                 if def == Def::Err {
4243                     ty::Visibility::Public
4244                 } else {
4245                     let vis = ty::Visibility::Restricted(def.def_id());
4246                     if self.is_accessible(vis) {
4247                         vis
4248                     } else {
4249                         self.session.span_err(path.span, "visibilities can only be restricted \
4250                                                           to ancestor modules");
4251                         ty::Visibility::Public
4252                     }
4253                 }
4254             }
4255         }
4256     }
4257
4258     fn is_accessible(&self, vis: ty::Visibility) -> bool {
4259         vis.is_accessible_from(self.current_module.normal_ancestor_id, self)
4260     }
4261
4262     fn is_accessible_from(&self, vis: ty::Visibility, module: Module<'a>) -> bool {
4263         vis.is_accessible_from(module.normal_ancestor_id, self)
4264     }
4265
4266     fn report_errors(&mut self, krate: &Crate) {
4267         self.report_shadowing_errors();
4268         self.report_with_use_injections(krate);
4269         self.report_proc_macro_import(krate);
4270         let mut reported_spans = FxHashSet();
4271
4272         for &AmbiguityError { span, name, b1, b2, lexical } in &self.ambiguity_errors {
4273             if !reported_spans.insert(span) { continue }
4274             let participle = |binding: &NameBinding| {
4275                 if binding.is_import() { "imported" } else { "defined" }
4276             };
4277             let msg1 = format!("`{}` could refer to the name {} here", name, participle(b1));
4278             let msg2 = format!("`{}` could also refer to the name {} here", name, participle(b2));
4279             let note = if b1.expansion == Mark::root() || !lexical && b1.is_glob_import() {
4280                 format!("consider adding an explicit import of `{}` to disambiguate", name)
4281             } else if let Def::Macro(..) = b1.def() {
4282                 format!("macro-expanded {} do not shadow",
4283                         if b1.is_import() { "macro imports" } else { "macros" })
4284             } else {
4285                 format!("macro-expanded {} do not shadow when used in a macro invocation path",
4286                         if b1.is_import() { "imports" } else { "items" })
4287             };
4288
4289             let mut err = struct_span_err!(self.session, span, E0659, "`{}` is ambiguous", name);
4290             err.span_note(b1.span, &msg1);
4291             match b2.def() {
4292                 Def::Macro(..) if b2.span == DUMMY_SP =>
4293                     err.note(&format!("`{}` is also a builtin macro", name)),
4294                 _ => err.span_note(b2.span, &msg2),
4295             };
4296             err.note(&note).emit();
4297         }
4298
4299         for &PrivacyError(span, name, binding) in &self.privacy_errors {
4300             if !reported_spans.insert(span) { continue }
4301             span_err!(self.session, span, E0603, "{} `{}` is private", binding.descr(), name);
4302         }
4303     }
4304
4305     fn report_with_use_injections(&mut self, krate: &Crate) {
4306         for UseError { mut err, candidates, node_id, better } in self.use_injections.drain(..) {
4307             let (span, found_use) = UsePlacementFinder::check(krate, node_id);
4308             if !candidates.is_empty() {
4309                 show_candidates(&mut err, span, &candidates, better, found_use);
4310             }
4311             err.emit();
4312         }
4313     }
4314
4315     fn report_shadowing_errors(&mut self) {
4316         for (ident, scope) in replace(&mut self.lexical_macro_resolutions, Vec::new()) {
4317             self.resolve_legacy_scope(scope, ident, true);
4318         }
4319
4320         let mut reported_errors = FxHashSet();
4321         for binding in replace(&mut self.disallowed_shadowing, Vec::new()) {
4322             if self.resolve_legacy_scope(&binding.parent, binding.ident, false).is_some() &&
4323                reported_errors.insert((binding.ident, binding.span)) {
4324                 let msg = format!("`{}` is already in scope", binding.ident);
4325                 self.session.struct_span_err(binding.span, &msg)
4326                     .note("macro-expanded `macro_rules!`s may not shadow \
4327                            existing macros (see RFC 1560)")
4328                     .emit();
4329             }
4330         }
4331     }
4332
4333     fn report_conflict<'b>(&mut self,
4334                        parent: Module,
4335                        ident: Ident,
4336                        ns: Namespace,
4337                        new_binding: &NameBinding<'b>,
4338                        old_binding: &NameBinding<'b>) {
4339         // Error on the second of two conflicting names
4340         if old_binding.span.lo() > new_binding.span.lo() {
4341             return self.report_conflict(parent, ident, ns, old_binding, new_binding);
4342         }
4343
4344         let container = match parent.kind {
4345             ModuleKind::Def(Def::Mod(_), _) => "module",
4346             ModuleKind::Def(Def::Trait(_), _) => "trait",
4347             ModuleKind::Block(..) => "block",
4348             _ => "enum",
4349         };
4350
4351         let old_noun = match old_binding.is_import() {
4352             true => "import",
4353             false => "definition",
4354         };
4355
4356         let new_participle = match new_binding.is_import() {
4357             true => "imported",
4358             false => "defined",
4359         };
4360
4361         let (name, span) = (ident.name, self.session.codemap().def_span(new_binding.span));
4362
4363         if let Some(s) = self.name_already_seen.get(&name) {
4364             if s == &span {
4365                 return;
4366             }
4367         }
4368
4369         let old_kind = match (ns, old_binding.module()) {
4370             (ValueNS, _) => "value",
4371             (MacroNS, _) => "macro",
4372             (TypeNS, _) if old_binding.is_extern_crate() => "extern crate",
4373             (TypeNS, Some(module)) if module.is_normal() => "module",
4374             (TypeNS, Some(module)) if module.is_trait() => "trait",
4375             (TypeNS, _) => "type",
4376         };
4377
4378         let namespace = match ns {
4379             ValueNS => "value",
4380             MacroNS => "macro",
4381             TypeNS => "type",
4382         };
4383
4384         let msg = format!("the name `{}` is defined multiple times", name);
4385
4386         let mut err = match (old_binding.is_extern_crate(), new_binding.is_extern_crate()) {
4387             (true, true) => struct_span_err!(self.session, span, E0259, "{}", msg),
4388             (true, _) | (_, true) => match new_binding.is_import() && old_binding.is_import() {
4389                 true => struct_span_err!(self.session, span, E0254, "{}", msg),
4390                 false => struct_span_err!(self.session, span, E0260, "{}", msg),
4391             },
4392             _ => match (old_binding.is_import(), new_binding.is_import()) {
4393                 (false, false) => struct_span_err!(self.session, span, E0428, "{}", msg),
4394                 (true, true) => struct_span_err!(self.session, span, E0252, "{}", msg),
4395                 _ => struct_span_err!(self.session, span, E0255, "{}", msg),
4396             },
4397         };
4398
4399         err.note(&format!("`{}` must be defined only once in the {} namespace of this {}",
4400                           name,
4401                           namespace,
4402                           container));
4403
4404         err.span_label(span, format!("`{}` re{} here", name, new_participle));
4405         if old_binding.span != DUMMY_SP {
4406             err.span_label(self.session.codemap().def_span(old_binding.span),
4407                            format!("previous {} of the {} `{}` here", old_noun, old_kind, name));
4408         }
4409
4410         // See https://github.com/rust-lang/rust/issues/32354
4411         if old_binding.is_import() || new_binding.is_import() {
4412             let binding = if new_binding.is_import() && new_binding.span != DUMMY_SP {
4413                 new_binding
4414             } else {
4415                 old_binding
4416             };
4417
4418             let cm = self.session.codemap();
4419             let rename_msg = "You can use `as` to change the binding name of the import";
4420
4421             if let (Ok(snippet), false) = (cm.span_to_snippet(binding.span),
4422                                            binding.is_renamed_extern_crate()) {
4423                 let suggested_name = if name.as_str().chars().next().unwrap().is_uppercase() {
4424                     format!("Other{}", name)
4425                 } else {
4426                     format!("other_{}", name)
4427                 };
4428
4429                 err.span_suggestion(binding.span,
4430                                     rename_msg,
4431                                     if snippet.ends_with(';') {
4432                                         format!("{} as {};",
4433                                                 &snippet[..snippet.len()-1],
4434                                                 suggested_name)
4435                                     } else {
4436                                         format!("{} as {}", snippet, suggested_name)
4437                                     });
4438             } else {
4439                 err.span_label(binding.span, rename_msg);
4440             }
4441         }
4442
4443         err.emit();
4444         self.name_already_seen.insert(name, span);
4445     }
4446
4447     fn check_proc_macro_attrs(&mut self, attrs: &[ast::Attribute]) {
4448         if self.proc_macro_enabled { return; }
4449
4450         for attr in attrs {
4451             if attr.path.segments.len() > 1 {
4452                 continue
4453             }
4454             let ident = attr.path.segments[0].ident;
4455             let result = self.resolve_lexical_macro_path_segment(ident,
4456                                                                  MacroNS,
4457                                                                  false,
4458                                                                  attr.path.span);
4459             if let Ok(binding) = result {
4460                 if let SyntaxExtension::AttrProcMacro(..) = *binding.binding().get_macro(self) {
4461                     attr::mark_known(attr);
4462
4463                     let msg = "attribute procedural macros are experimental";
4464                     let feature = "proc_macro";
4465
4466                     feature_err(&self.session.parse_sess, feature,
4467                                 attr.span, GateIssue::Language, msg)
4468                         .span_label(binding.span(), "procedural macro imported here")
4469                         .emit();
4470                 }
4471             }
4472         }
4473     }
4474 }
4475
4476 fn is_self_type(path: &[Ident], namespace: Namespace) -> bool {
4477     namespace == TypeNS && path.len() == 1 && path[0].name == keywords::SelfType.name()
4478 }
4479
4480 fn is_self_value(path: &[Ident], namespace: Namespace) -> bool {
4481     namespace == ValueNS && path.len() == 1 && path[0].name == keywords::SelfValue.name()
4482 }
4483
4484 fn names_to_string(idents: &[Ident]) -> String {
4485     let mut result = String::new();
4486     for (i, ident) in idents.iter()
4487                             .filter(|ident| ident.name != keywords::CrateRoot.name())
4488                             .enumerate() {
4489         if i > 0 {
4490             result.push_str("::");
4491         }
4492         result.push_str(&ident.as_str());
4493     }
4494     result
4495 }
4496
4497 fn path_names_to_string(path: &Path) -> String {
4498     names_to_string(&path.segments.iter()
4499                         .map(|seg| seg.ident)
4500                         .collect::<Vec<_>>())
4501 }
4502
4503 /// Get the path for an enum and the variant from an `ImportSuggestion` for an enum variant.
4504 fn import_candidate_to_paths(suggestion: &ImportSuggestion) -> (Span, String, String) {
4505     let variant_path = &suggestion.path;
4506     let variant_path_string = path_names_to_string(variant_path);
4507
4508     let path_len = suggestion.path.segments.len();
4509     let enum_path = ast::Path {
4510         span: suggestion.path.span,
4511         segments: suggestion.path.segments[0..path_len - 1].to_vec(),
4512     };
4513     let enum_path_string = path_names_to_string(&enum_path);
4514
4515     (suggestion.path.span, variant_path_string, enum_path_string)
4516 }
4517
4518
4519 /// When an entity with a given name is not available in scope, we search for
4520 /// entities with that name in all crates. This method allows outputting the
4521 /// results of this search in a programmer-friendly way
4522 fn show_candidates(err: &mut DiagnosticBuilder,
4523                    // This is `None` if all placement locations are inside expansions
4524                    span: Option<Span>,
4525                    candidates: &[ImportSuggestion],
4526                    better: bool,
4527                    found_use: bool) {
4528
4529     // we want consistent results across executions, but candidates are produced
4530     // by iterating through a hash map, so make sure they are ordered:
4531     let mut path_strings: Vec<_> =
4532         candidates.into_iter().map(|c| path_names_to_string(&c.path)).collect();
4533     path_strings.sort();
4534
4535     let better = if better { "better " } else { "" };
4536     let msg_diff = match path_strings.len() {
4537         1 => " is found in another module, you can import it",
4538         _ => "s are found in other modules, you can import them",
4539     };
4540     let msg = format!("possible {}candidate{} into scope", better, msg_diff);
4541
4542     if let Some(span) = span {
4543         for candidate in &mut path_strings {
4544             // produce an additional newline to separate the new use statement
4545             // from the directly following item.
4546             let additional_newline = if found_use {
4547                 ""
4548             } else {
4549                 "\n"
4550             };
4551             *candidate = format!("use {};\n{}", candidate, additional_newline);
4552         }
4553
4554         err.span_suggestions(span, &msg, path_strings);
4555     } else {
4556         let mut msg = msg;
4557         msg.push(':');
4558         for candidate in path_strings {
4559             msg.push('\n');
4560             msg.push_str(&candidate);
4561         }
4562     }
4563 }
4564
4565 /// A somewhat inefficient routine to obtain the name of a module.
4566 fn module_to_string(module: Module) -> Option<String> {
4567     let mut names = Vec::new();
4568
4569     fn collect_mod(names: &mut Vec<Ident>, module: Module) {
4570         if let ModuleKind::Def(_, name) = module.kind {
4571             if let Some(parent) = module.parent {
4572                 names.push(Ident::with_empty_ctxt(name));
4573                 collect_mod(names, parent);
4574             }
4575         } else {
4576             // danger, shouldn't be ident?
4577             names.push(Ident::from_str("<opaque>"));
4578             collect_mod(names, module.parent.unwrap());
4579         }
4580     }
4581     collect_mod(&mut names, module);
4582
4583     if names.is_empty() {
4584         return None;
4585     }
4586     Some(names_to_string(&names.into_iter()
4587                         .rev()
4588                         .collect::<Vec<_>>()))
4589 }
4590
4591 fn err_path_resolution() -> PathResolution {
4592     PathResolution::new(Def::Err)
4593 }
4594
4595 #[derive(PartialEq,Copy, Clone)]
4596 pub enum MakeGlobMap {
4597     Yes,
4598     No,
4599 }
4600
4601 #[derive(Copy, Clone, Debug)]
4602 enum CrateLint {
4603     /// Do not issue the lint
4604     No,
4605
4606     /// This lint applies to some random path like `impl ::foo::Bar`
4607     /// or whatever. In this case, we can take the span of that path.
4608     SimplePath(NodeId),
4609
4610     /// This lint comes from a `use` statement. In this case, what we
4611     /// care about really is the *root* `use` statement; e.g., if we
4612     /// have nested things like `use a::{b, c}`, we care about the
4613     /// `use a` part.
4614     UsePath { root_id: NodeId, root_span: Span },
4615
4616     /// This is the "trait item" from a fully qualified path. For example,
4617     /// we might be resolving  `X::Y::Z` from a path like `<T as X::Y>::Z`.
4618     /// The `path_span` is the span of the to the trait itself (`X::Y`).
4619     QPathTrait { qpath_id: NodeId, qpath_span: Span },
4620 }
4621
4622 __build_diagnostic_array! { librustc_resolve, DIAGNOSTICS }