]> git.lizzy.rs Git - rust.git/blob - src/librustc_resolve/lib.rs
cc9c6d8c516be07f884febce7fad5ce340779b6b
[rust.git] / src / librustc_resolve / lib.rs
1 #![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
2        html_favicon_url = "https://doc.rust-lang.org/favicon.ico",
3        html_root_url = "https://doc.rust-lang.org/nightly/")]
4
5 #![feature(crate_visibility_modifier)]
6 #![feature(label_break_value)]
7 #![feature(nll)]
8 #![feature(rustc_diagnostic_macros)]
9 #![feature(slice_sort_by_cached_key)]
10
11 #![recursion_limit="256"]
12
13 #[macro_use]
14 extern crate bitflags;
15 #[macro_use]
16 extern crate log;
17 #[macro_use]
18 extern crate syntax;
19 extern crate syntax_pos;
20 extern crate rustc_errors as errors;
21 extern crate arena;
22 #[macro_use]
23 extern crate rustc;
24 extern crate rustc_data_structures;
25 extern crate rustc_metadata;
26
27 pub use rustc::hir::def::{Namespace, PerNS};
28
29 use self::TypeParameters::*;
30 use self::RibKind::*;
31
32 use rustc::hir::map::{Definitions, DefCollector};
33 use rustc::hir::{self, PrimTy, Bool, Char, Float, Int, Uint, Str};
34 use rustc::middle::cstore::CrateStore;
35 use rustc::session::Session;
36 use rustc::lint;
37 use rustc::hir::def::*;
38 use rustc::hir::def::Namespace::*;
39 use rustc::hir::def_id::{CRATE_DEF_INDEX, LOCAL_CRATE, DefId};
40 use rustc::hir::{Freevar, FreevarMap, TraitCandidate, TraitMap, GlobMap};
41 use rustc::session::config::nightly_options;
42 use rustc::ty;
43 use rustc::util::nodemap::{NodeMap, NodeSet, FxHashMap, FxHashSet, DefIdMap};
44
45 use rustc_metadata::creader::CrateLoader;
46 use rustc_metadata::cstore::CStore;
47
48 use syntax::source_map::SourceMap;
49 use syntax::ext::hygiene::{Mark, Transparency, SyntaxContext};
50 use syntax::ast::{self, Name, NodeId, Ident, FloatTy, IntTy, UintTy};
51 use syntax::ext::base::SyntaxExtension;
52 use syntax::ext::base::Determinacy::{self, Determined, Undetermined};
53 use syntax::ext::base::MacroKind;
54 use syntax::symbol::{Symbol, keywords};
55 use syntax::util::lev_distance::find_best_match_for_name;
56
57 use syntax::visit::{self, FnKind, Visitor};
58 use syntax::attr;
59 use syntax::ast::{CRATE_NODE_ID, Arm, IsAsync, BindingMode, Block, Crate, Expr, ExprKind};
60 use syntax::ast::{FnDecl, ForeignItem, ForeignItemKind, GenericParamKind, Generics};
61 use syntax::ast::{Item, ItemKind, ImplItem, ImplItemKind};
62 use syntax::ast::{Label, Local, Mutability, Pat, PatKind, Path};
63 use syntax::ast::{QSelf, TraitItemKind, TraitRef, Ty, TyKind};
64 use syntax::ptr::P;
65
66 use syntax_pos::{Span, DUMMY_SP, MultiSpan};
67 use errors::{Applicability, DiagnosticBuilder, DiagnosticId};
68
69 use std::cell::{Cell, RefCell};
70 use std::{cmp, fmt, iter, ptr};
71 use std::collections::BTreeSet;
72 use std::mem::replace;
73 use rustc_data_structures::ptr_key::PtrKey;
74 use rustc_data_structures::sync::Lrc;
75
76 use resolve_imports::{ImportDirective, ImportDirectiveSubclass, NameResolution, ImportResolver};
77 use macros::{InvocationData, LegacyBinding, ParentScope};
78
79 // N.B., this module needs to be declared first so diagnostics are
80 // registered before they are used.
81 mod diagnostics;
82 mod error_reporting;
83 mod macros;
84 mod check_unused;
85 mod build_reduced_graph;
86 mod resolve_imports;
87
88 fn is_known_tool(name: Name) -> bool {
89     ["clippy", "rustfmt"].contains(&&*name.as_str())
90 }
91
92 enum Weak {
93     Yes,
94     No,
95 }
96
97 enum ScopeSet {
98     Import(Namespace),
99     AbsolutePath(Namespace),
100     Macro(MacroKind),
101     Module,
102 }
103
104 /// A free importable items suggested in case of resolution failure.
105 struct ImportSuggestion {
106     path: Path,
107 }
108
109 /// A field or associated item from self type suggested in case of resolution failure.
110 enum AssocSuggestion {
111     Field,
112     MethodWithSelf,
113     AssocItem,
114 }
115
116 #[derive(Eq)]
117 struct BindingError {
118     name: Name,
119     origin: BTreeSet<Span>,
120     target: BTreeSet<Span>,
121 }
122
123 impl PartialOrd for BindingError {
124     fn partial_cmp(&self, other: &BindingError) -> Option<cmp::Ordering> {
125         Some(self.cmp(other))
126     }
127 }
128
129 impl PartialEq for BindingError {
130     fn eq(&self, other: &BindingError) -> bool {
131         self.name == other.name
132     }
133 }
134
135 impl Ord for BindingError {
136     fn cmp(&self, other: &BindingError) -> cmp::Ordering {
137         self.name.cmp(&other.name)
138     }
139 }
140
141 enum ResolutionError<'a> {
142     /// error E0401: can't use type parameters from outer function
143     TypeParametersFromOuterFunction(Def),
144     /// error E0403: the name is already used for a type parameter in this type parameter list
145     NameAlreadyUsedInTypeParameterList(Name, &'a Span),
146     /// error E0407: method is not a member of trait
147     MethodNotMemberOfTrait(Name, &'a str),
148     /// error E0437: type is not a member of trait
149     TypeNotMemberOfTrait(Name, &'a str),
150     /// error E0438: const is not a member of trait
151     ConstNotMemberOfTrait(Name, &'a str),
152     /// error E0408: variable `{}` is not bound in all patterns
153     VariableNotBoundInPattern(&'a BindingError),
154     /// error E0409: variable `{}` is bound in inconsistent ways within the same match arm
155     VariableBoundWithDifferentMode(Name, Span),
156     /// error E0415: identifier is bound more than once in this parameter list
157     IdentifierBoundMoreThanOnceInParameterList(&'a str),
158     /// error E0416: identifier is bound more than once in the same pattern
159     IdentifierBoundMoreThanOnceInSamePattern(&'a str),
160     /// error E0426: use of undeclared label
161     UndeclaredLabel(&'a str, Option<Name>),
162     /// error E0429: `self` imports are only allowed within a { } list
163     SelfImportsOnlyAllowedWithin,
164     /// error E0430: `self` import can only appear once in the list
165     SelfImportCanOnlyAppearOnceInTheList,
166     /// error E0431: `self` import can only appear in an import list with a non-empty prefix
167     SelfImportOnlyInImportListWithNonEmptyPrefix,
168     /// error E0433: failed to resolve
169     FailedToResolve(&'a str),
170     /// error E0434: can't capture dynamic environment in a fn item
171     CannotCaptureDynamicEnvironmentInFnItem,
172     /// error E0435: attempt to use a non-constant value in a constant
173     AttemptToUseNonConstantValueInConstant,
174     /// error E0530: X bindings cannot shadow Ys
175     BindingShadowsSomethingUnacceptable(&'a str, Name, &'a NameBinding<'a>),
176     /// error E0128: type parameters with a default cannot use forward declared identifiers
177     ForwardDeclaredTyParam,
178 }
179
180 /// Combines an error with provided span and emits it
181 ///
182 /// This takes the error provided, combines it with the span and any additional spans inside the
183 /// error and emits it.
184 fn resolve_error<'sess, 'a>(resolver: &'sess Resolver,
185                             span: Span,
186                             resolution_error: ResolutionError<'a>) {
187     resolve_struct_error(resolver, span, resolution_error).emit();
188 }
189
190 fn resolve_struct_error<'sess, 'a>(resolver: &'sess Resolver,
191                                    span: Span,
192                                    resolution_error: ResolutionError<'a>)
193                                    -> DiagnosticBuilder<'sess> {
194     match resolution_error {
195         ResolutionError::TypeParametersFromOuterFunction(outer_def) => {
196             let mut err = struct_span_err!(resolver.session,
197                                            span,
198                                            E0401,
199                                            "can't use type parameters from outer function");
200             err.span_label(span, "use of type variable from outer function");
201
202             let cm = resolver.session.source_map();
203             match outer_def {
204                 Def::SelfTy(maybe_trait_defid, maybe_impl_defid) => {
205                     if let Some(impl_span) = maybe_impl_defid.and_then(|def_id| {
206                         resolver.definitions.opt_span(def_id)
207                     }) {
208                         err.span_label(
209                             reduce_impl_span_to_impl_keyword(cm, impl_span),
210                             "`Self` type implicitly declared here, by this `impl`",
211                         );
212                     }
213                     match (maybe_trait_defid, maybe_impl_defid) {
214                         (Some(_), None) => {
215                             err.span_label(span, "can't use `Self` here");
216                         }
217                         (_, Some(_)) => {
218                             err.span_label(span, "use a type here instead");
219                         }
220                         (None, None) => bug!("`impl` without trait nor type?"),
221                     }
222                     return err;
223                 },
224                 Def::TyParam(typaram_defid) => {
225                     if let Some(typaram_span) = resolver.definitions.opt_span(typaram_defid) {
226                         err.span_label(typaram_span, "type variable from outer function");
227                     }
228                 },
229                 _ => {
230                     bug!("TypeParametersFromOuterFunction should only be used with Def::SelfTy or \
231                          Def::TyParam")
232                 }
233             }
234
235             // Try to retrieve the span of the function signature and generate a new message with
236             // a local type parameter
237             let sugg_msg = "try using a local type parameter instead";
238             if let Some((sugg_span, new_snippet)) = cm.generate_local_type_param_snippet(span) {
239                 // Suggest the modification to the user
240                 err.span_suggestion_with_applicability(
241                     sugg_span,
242                     sugg_msg,
243                     new_snippet,
244                     Applicability::MachineApplicable,
245                 );
246             } else if let Some(sp) = cm.generate_fn_name_span(span) {
247                 err.span_label(sp, "try adding a local type parameter in this method instead");
248             } else {
249                 err.help("try using a local type parameter instead");
250             }
251
252             err
253         }
254         ResolutionError::NameAlreadyUsedInTypeParameterList(name, first_use_span) => {
255              let mut err = struct_span_err!(resolver.session,
256                                             span,
257                                             E0403,
258                                             "the name `{}` is already used for a type parameter \
259                                             in this type parameter list",
260                                             name);
261              err.span_label(span, "already used");
262              err.span_label(first_use_span.clone(), format!("first use of `{}`", name));
263              err
264         }
265         ResolutionError::MethodNotMemberOfTrait(method, trait_) => {
266             let mut err = struct_span_err!(resolver.session,
267                                            span,
268                                            E0407,
269                                            "method `{}` is not a member of trait `{}`",
270                                            method,
271                                            trait_);
272             err.span_label(span, format!("not a member of trait `{}`", trait_));
273             err
274         }
275         ResolutionError::TypeNotMemberOfTrait(type_, trait_) => {
276             let mut err = struct_span_err!(resolver.session,
277                              span,
278                              E0437,
279                              "type `{}` is not a member of trait `{}`",
280                              type_,
281                              trait_);
282             err.span_label(span, format!("not a member of trait `{}`", trait_));
283             err
284         }
285         ResolutionError::ConstNotMemberOfTrait(const_, trait_) => {
286             let mut err = struct_span_err!(resolver.session,
287                              span,
288                              E0438,
289                              "const `{}` is not a member of trait `{}`",
290                              const_,
291                              trait_);
292             err.span_label(span, format!("not a member of trait `{}`", trait_));
293             err
294         }
295         ResolutionError::VariableNotBoundInPattern(binding_error) => {
296             let target_sp = binding_error.target.iter().cloned().collect::<Vec<_>>();
297             let msp = MultiSpan::from_spans(target_sp.clone());
298             let msg = format!("variable `{}` is not bound in all patterns", binding_error.name);
299             let mut err = resolver.session.struct_span_err_with_code(
300                 msp,
301                 &msg,
302                 DiagnosticId::Error("E0408".into()),
303             );
304             for sp in target_sp {
305                 err.span_label(sp, format!("pattern doesn't bind `{}`", binding_error.name));
306             }
307             let origin_sp = binding_error.origin.iter().cloned();
308             for sp in origin_sp {
309                 err.span_label(sp, "variable not in all patterns");
310             }
311             err
312         }
313         ResolutionError::VariableBoundWithDifferentMode(variable_name,
314                                                         first_binding_span) => {
315             let mut err = struct_span_err!(resolver.session,
316                              span,
317                              E0409,
318                              "variable `{}` is bound in inconsistent \
319                              ways within the same match arm",
320                              variable_name);
321             err.span_label(span, "bound in different ways");
322             err.span_label(first_binding_span, "first binding");
323             err
324         }
325         ResolutionError::IdentifierBoundMoreThanOnceInParameterList(identifier) => {
326             let mut err = struct_span_err!(resolver.session,
327                              span,
328                              E0415,
329                              "identifier `{}` is bound more than once in this parameter list",
330                              identifier);
331             err.span_label(span, "used as parameter more than once");
332             err
333         }
334         ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(identifier) => {
335             let mut err = struct_span_err!(resolver.session,
336                              span,
337                              E0416,
338                              "identifier `{}` is bound more than once in the same pattern",
339                              identifier);
340             err.span_label(span, "used in a pattern more than once");
341             err
342         }
343         ResolutionError::UndeclaredLabel(name, lev_candidate) => {
344             let mut err = struct_span_err!(resolver.session,
345                                            span,
346                                            E0426,
347                                            "use of undeclared label `{}`",
348                                            name);
349             if let Some(lev_candidate) = lev_candidate {
350                 err.span_label(span, format!("did you mean `{}`?", lev_candidate));
351             } else {
352                 err.span_label(span, format!("undeclared label `{}`", name));
353             }
354             err
355         }
356         ResolutionError::SelfImportsOnlyAllowedWithin => {
357             struct_span_err!(resolver.session,
358                              span,
359                              E0429,
360                              "{}",
361                              "`self` imports are only allowed within a { } list")
362         }
363         ResolutionError::SelfImportCanOnlyAppearOnceInTheList => {
364             let mut err = struct_span_err!(resolver.session, span, E0430,
365                                            "`self` import can only appear once in an import list");
366             err.span_label(span, "can only appear once in an import list");
367             err
368         }
369         ResolutionError::SelfImportOnlyInImportListWithNonEmptyPrefix => {
370             let mut err = struct_span_err!(resolver.session, span, E0431,
371                                            "`self` import can only appear in an import list with \
372                                             a non-empty prefix");
373             err.span_label(span, "can only appear in an import list with a non-empty prefix");
374             err
375         }
376         ResolutionError::FailedToResolve(msg) => {
377             let mut err = struct_span_err!(resolver.session, span, E0433,
378                                            "failed to resolve: {}", msg);
379             err.span_label(span, msg);
380             err
381         }
382         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem => {
383             let mut err = struct_span_err!(resolver.session,
384                                            span,
385                                            E0434,
386                                            "{}",
387                                            "can't capture dynamic environment in a fn item");
388             err.help("use the `|| { ... }` closure form instead");
389             err
390         }
391         ResolutionError::AttemptToUseNonConstantValueInConstant => {
392             let mut err = struct_span_err!(resolver.session, span, E0435,
393                                            "attempt to use a non-constant value in a constant");
394             err.span_label(span, "non-constant value");
395             err
396         }
397         ResolutionError::BindingShadowsSomethingUnacceptable(what_binding, name, binding) => {
398             let shadows_what = binding.descr();
399             let mut err = struct_span_err!(resolver.session, span, E0530, "{}s cannot shadow {}s",
400                                            what_binding, shadows_what);
401             err.span_label(span, format!("cannot be named the same as {} {}",
402                                          binding.article(), shadows_what));
403             let participle = if binding.is_import() { "imported" } else { "defined" };
404             let msg = format!("the {} `{}` is {} here", shadows_what, name, participle);
405             err.span_label(binding.span, msg);
406             err
407         }
408         ResolutionError::ForwardDeclaredTyParam => {
409             let mut err = struct_span_err!(resolver.session, span, E0128,
410                                            "type parameters with a default cannot use \
411                                             forward declared identifiers");
412             err.span_label(
413                 span, "defaulted type parameters cannot be forward declared".to_string());
414             err
415         }
416     }
417 }
418
419 /// Adjust the impl span so that just the `impl` keyword is taken by removing
420 /// everything after `<` (`"impl<T> Iterator for A<T> {}" -> "impl"`) and
421 /// everything after the first whitespace (`"impl Iterator for A" -> "impl"`)
422 ///
423 /// Attention: The method used is very fragile since it essentially duplicates the work of the
424 /// parser. If you need to use this function or something similar, please consider updating the
425 /// source_map functions and this function to something more robust.
426 fn reduce_impl_span_to_impl_keyword(cm: &SourceMap, impl_span: Span) -> Span {
427     let impl_span = cm.span_until_char(impl_span, '<');
428     let impl_span = cm.span_until_whitespace(impl_span);
429     impl_span
430 }
431
432 #[derive(Copy, Clone, Debug)]
433 struct BindingInfo {
434     span: Span,
435     binding_mode: BindingMode,
436 }
437
438 /// Map from the name in a pattern to its binding mode.
439 type BindingMap = FxHashMap<Ident, BindingInfo>;
440
441 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
442 enum PatternSource {
443     Match,
444     IfLet,
445     WhileLet,
446     Let,
447     For,
448     FnParam,
449 }
450
451 impl PatternSource {
452     fn descr(self) -> &'static str {
453         match self {
454             PatternSource::Match => "match binding",
455             PatternSource::IfLet => "if let binding",
456             PatternSource::WhileLet => "while let binding",
457             PatternSource::Let => "let binding",
458             PatternSource::For => "for binding",
459             PatternSource::FnParam => "function parameter",
460         }
461     }
462 }
463
464 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
465 enum AliasPossibility {
466     No,
467     Maybe,
468 }
469
470 #[derive(Copy, Clone, Debug)]
471 enum PathSource<'a> {
472     // Type paths `Path`.
473     Type,
474     // Trait paths in bounds or impls.
475     Trait(AliasPossibility),
476     // Expression paths `path`, with optional parent context.
477     Expr(Option<&'a Expr>),
478     // Paths in path patterns `Path`.
479     Pat,
480     // Paths in struct expressions and patterns `Path { .. }`.
481     Struct,
482     // Paths in tuple struct patterns `Path(..)`.
483     TupleStruct,
484     // `m::A::B` in `<T as m::A>::B::C`.
485     TraitItem(Namespace),
486     // Path in `pub(path)`
487     Visibility,
488 }
489
490 impl<'a> PathSource<'a> {
491     fn namespace(self) -> Namespace {
492         match self {
493             PathSource::Type | PathSource::Trait(_) | PathSource::Struct |
494             PathSource::Visibility => TypeNS,
495             PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct => ValueNS,
496             PathSource::TraitItem(ns) => ns,
497         }
498     }
499
500     fn global_by_default(self) -> bool {
501         match self {
502             PathSource::Visibility => true,
503             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
504             PathSource::Struct | PathSource::TupleStruct |
505             PathSource::Trait(_) | PathSource::TraitItem(..) => false,
506         }
507     }
508
509     fn defer_to_typeck(self) -> bool {
510         match self {
511             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
512             PathSource::Struct | PathSource::TupleStruct => true,
513             PathSource::Trait(_) | PathSource::TraitItem(..) |
514             PathSource::Visibility => false,
515         }
516     }
517
518     fn descr_expected(self) -> &'static str {
519         match self {
520             PathSource::Type => "type",
521             PathSource::Trait(_) => "trait",
522             PathSource::Pat => "unit struct/variant or constant",
523             PathSource::Struct => "struct, variant or union type",
524             PathSource::TupleStruct => "tuple struct/variant",
525             PathSource::Visibility => "module",
526             PathSource::TraitItem(ns) => match ns {
527                 TypeNS => "associated type",
528                 ValueNS => "method or associated constant",
529                 MacroNS => bug!("associated macro"),
530             },
531             PathSource::Expr(parent) => match parent.map(|p| &p.node) {
532                 // "function" here means "anything callable" rather than `Def::Fn`,
533                 // this is not precise but usually more helpful than just "value".
534                 Some(&ExprKind::Call(..)) => "function",
535                 _ => "value",
536             },
537         }
538     }
539
540     fn is_expected(self, def: Def) -> bool {
541         match self {
542             PathSource::Type => match def {
543                 Def::Struct(..) | Def::Union(..) | Def::Enum(..) |
544                 Def::Trait(..) | Def::TraitAlias(..) | Def::TyAlias(..) |
545                 Def::AssociatedTy(..) | Def::PrimTy(..) | Def::TyParam(..) |
546                 Def::SelfTy(..) | Def::Existential(..) |
547                 Def::ForeignTy(..) => true,
548                 _ => false,
549             },
550             PathSource::Trait(AliasPossibility::No) => match def {
551                 Def::Trait(..) => true,
552                 _ => false,
553             },
554             PathSource::Trait(AliasPossibility::Maybe) => match def {
555                 Def::Trait(..) => true,
556                 Def::TraitAlias(..) => true,
557                 _ => false,
558             },
559             PathSource::Expr(..) => match def {
560                 Def::StructCtor(_, CtorKind::Const) | Def::StructCtor(_, CtorKind::Fn) |
561                 Def::VariantCtor(_, CtorKind::Const) | Def::VariantCtor(_, CtorKind::Fn) |
562                 Def::Const(..) | Def::Static(..) | Def::Local(..) | Def::Upvar(..) |
563                 Def::Fn(..) | Def::Method(..) | Def::AssociatedConst(..) |
564                 Def::SelfCtor(..) => true,
565                 _ => false,
566             },
567             PathSource::Pat => match def {
568                 Def::StructCtor(_, CtorKind::Const) |
569                 Def::VariantCtor(_, CtorKind::Const) |
570                 Def::Const(..) | Def::AssociatedConst(..) |
571                 Def::SelfCtor(..) => true,
572                 _ => false,
573             },
574             PathSource::TupleStruct => match def {
575                 Def::StructCtor(_, CtorKind::Fn) |
576                 Def::VariantCtor(_, CtorKind::Fn) |
577                 Def::SelfCtor(..) => true,
578                 _ => false,
579             },
580             PathSource::Struct => match def {
581                 Def::Struct(..) | Def::Union(..) | Def::Variant(..) |
582                 Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => true,
583                 _ => false,
584             },
585             PathSource::TraitItem(ns) => match def {
586                 Def::AssociatedConst(..) | Def::Method(..) if ns == ValueNS => true,
587                 Def::AssociatedTy(..) if ns == TypeNS => true,
588                 _ => false,
589             },
590             PathSource::Visibility => match def {
591                 Def::Mod(..) => true,
592                 _ => false,
593             },
594         }
595     }
596
597     fn error_code(self, has_unexpected_resolution: bool) -> &'static str {
598         __diagnostic_used!(E0404);
599         __diagnostic_used!(E0405);
600         __diagnostic_used!(E0412);
601         __diagnostic_used!(E0422);
602         __diagnostic_used!(E0423);
603         __diagnostic_used!(E0425);
604         __diagnostic_used!(E0531);
605         __diagnostic_used!(E0532);
606         __diagnostic_used!(E0573);
607         __diagnostic_used!(E0574);
608         __diagnostic_used!(E0575);
609         __diagnostic_used!(E0576);
610         __diagnostic_used!(E0577);
611         __diagnostic_used!(E0578);
612         match (self, has_unexpected_resolution) {
613             (PathSource::Trait(_), true) => "E0404",
614             (PathSource::Trait(_), false) => "E0405",
615             (PathSource::Type, true) => "E0573",
616             (PathSource::Type, false) => "E0412",
617             (PathSource::Struct, true) => "E0574",
618             (PathSource::Struct, false) => "E0422",
619             (PathSource::Expr(..), true) => "E0423",
620             (PathSource::Expr(..), false) => "E0425",
621             (PathSource::Pat, true) | (PathSource::TupleStruct, true) => "E0532",
622             (PathSource::Pat, false) | (PathSource::TupleStruct, false) => "E0531",
623             (PathSource::TraitItem(..), true) => "E0575",
624             (PathSource::TraitItem(..), false) => "E0576",
625             (PathSource::Visibility, true) => "E0577",
626             (PathSource::Visibility, false) => "E0578",
627         }
628     }
629 }
630
631 // A minimal representation of a path segment. We use this in resolve because
632 // we synthesize 'path segments' which don't have the rest of an AST or HIR
633 // `PathSegment`.
634 #[derive(Clone, Copy, Debug)]
635 pub struct Segment {
636     ident: Ident,
637     id: Option<NodeId>,
638 }
639
640 impl Segment {
641     fn from_path(path: &Path) -> Vec<Segment> {
642         path.segments.iter().map(|s| s.into()).collect()
643     }
644
645     fn from_ident(ident: Ident) -> Segment {
646         Segment {
647             ident,
648             id: None,
649         }
650     }
651
652     fn names_to_string(segments: &[Segment]) -> String {
653         names_to_string(&segments.iter()
654                             .map(|seg| seg.ident)
655                             .collect::<Vec<_>>())
656     }
657 }
658
659 impl<'a> From<&'a ast::PathSegment> for Segment {
660     fn from(seg: &'a ast::PathSegment) -> Segment {
661         Segment {
662             ident: seg.ident,
663             id: Some(seg.id),
664         }
665     }
666 }
667
668 struct UsePlacementFinder {
669     target_module: NodeId,
670     span: Option<Span>,
671     found_use: bool,
672 }
673
674 impl UsePlacementFinder {
675     fn check(krate: &Crate, target_module: NodeId) -> (Option<Span>, bool) {
676         let mut finder = UsePlacementFinder {
677             target_module,
678             span: None,
679             found_use: false,
680         };
681         visit::walk_crate(&mut finder, krate);
682         (finder.span, finder.found_use)
683     }
684 }
685
686 impl<'tcx> Visitor<'tcx> for UsePlacementFinder {
687     fn visit_mod(
688         &mut self,
689         module: &'tcx ast::Mod,
690         _: Span,
691         _: &[ast::Attribute],
692         node_id: NodeId,
693     ) {
694         if self.span.is_some() {
695             return;
696         }
697         if node_id != self.target_module {
698             visit::walk_mod(self, module);
699             return;
700         }
701         // find a use statement
702         for item in &module.items {
703             match item.node {
704                 ItemKind::Use(..) => {
705                     // don't suggest placing a use before the prelude
706                     // import or other generated ones
707                     if item.span.ctxt().outer().expn_info().is_none() {
708                         self.span = Some(item.span.shrink_to_lo());
709                         self.found_use = true;
710                         return;
711                     }
712                 },
713                 // don't place use before extern crate
714                 ItemKind::ExternCrate(_) => {}
715                 // but place them before the first other item
716                 _ => if self.span.map_or(true, |span| item.span < span ) {
717                     if item.span.ctxt().outer().expn_info().is_none() {
718                         // don't insert between attributes and an item
719                         if item.attrs.is_empty() {
720                             self.span = Some(item.span.shrink_to_lo());
721                         } else {
722                             // find the first attribute on the item
723                             for attr in &item.attrs {
724                                 if self.span.map_or(true, |span| attr.span < span) {
725                                     self.span = Some(attr.span.shrink_to_lo());
726                                 }
727                             }
728                         }
729                     }
730                 },
731             }
732         }
733     }
734 }
735
736 /// This thing walks the whole crate in DFS manner, visiting each item, resolving names as it goes.
737 impl<'a, 'tcx> Visitor<'tcx> for Resolver<'a> {
738     fn visit_item(&mut self, item: &'tcx Item) {
739         self.resolve_item(item);
740     }
741     fn visit_arm(&mut self, arm: &'tcx Arm) {
742         self.resolve_arm(arm);
743     }
744     fn visit_block(&mut self, block: &'tcx Block) {
745         self.resolve_block(block);
746     }
747     fn visit_anon_const(&mut self, constant: &'tcx ast::AnonConst) {
748         self.with_constant_rib(|this| {
749             visit::walk_anon_const(this, constant);
750         });
751     }
752     fn visit_expr(&mut self, expr: &'tcx Expr) {
753         self.resolve_expr(expr, None);
754     }
755     fn visit_local(&mut self, local: &'tcx Local) {
756         self.resolve_local(local);
757     }
758     fn visit_ty(&mut self, ty: &'tcx Ty) {
759         match ty.node {
760             TyKind::Path(ref qself, ref path) => {
761                 self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
762             }
763             TyKind::ImplicitSelf => {
764                 let self_ty = keywords::SelfUpper.ident();
765                 let def = self.resolve_ident_in_lexical_scope(self_ty, TypeNS, Some(ty.id), ty.span)
766                               .map_or(Def::Err, |d| d.def());
767                 self.record_def(ty.id, PathResolution::new(def));
768             }
769             _ => (),
770         }
771         visit::walk_ty(self, ty);
772     }
773     fn visit_poly_trait_ref(&mut self,
774                             tref: &'tcx ast::PolyTraitRef,
775                             m: &'tcx ast::TraitBoundModifier) {
776         self.smart_resolve_path(tref.trait_ref.ref_id, None,
777                                 &tref.trait_ref.path, PathSource::Trait(AliasPossibility::Maybe));
778         visit::walk_poly_trait_ref(self, tref, m);
779     }
780     fn visit_foreign_item(&mut self, foreign_item: &'tcx ForeignItem) {
781         let type_parameters = match foreign_item.node {
782             ForeignItemKind::Fn(_, ref generics) => {
783                 HasTypeParameters(generics, ItemRibKind)
784             }
785             ForeignItemKind::Static(..) => NoTypeParameters,
786             ForeignItemKind::Ty => NoTypeParameters,
787             ForeignItemKind::Macro(..) => NoTypeParameters,
788         };
789         self.with_type_parameter_rib(type_parameters, |this| {
790             visit::walk_foreign_item(this, foreign_item);
791         });
792     }
793     fn visit_fn(&mut self,
794                 function_kind: FnKind<'tcx>,
795                 declaration: &'tcx FnDecl,
796                 _: Span,
797                 node_id: NodeId)
798     {
799         let (rib_kind, asyncness) = match function_kind {
800             FnKind::ItemFn(_, ref header, ..) =>
801                 (ItemRibKind, header.asyncness),
802             FnKind::Method(_, ref sig, _, _) =>
803                 (TraitOrImplItemRibKind, sig.header.asyncness),
804             FnKind::Closure(_) =>
805                 // Async closures aren't resolved through `visit_fn`-- they're
806                 // processed separately
807                 (ClosureRibKind(node_id), IsAsync::NotAsync),
808         };
809
810         // Create a value rib for the function.
811         self.ribs[ValueNS].push(Rib::new(rib_kind));
812
813         // Create a label rib for the function.
814         self.label_ribs.push(Rib::new(rib_kind));
815
816         // Add each argument to the rib.
817         let mut bindings_list = FxHashMap::default();
818         for argument in &declaration.inputs {
819             self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
820
821             self.visit_ty(&argument.ty);
822
823             debug!("(resolving function) recorded argument");
824         }
825         visit::walk_fn_ret_ty(self, &declaration.output);
826
827         // Resolve the function body, potentially inside the body of an async closure
828         if let IsAsync::Async { closure_id, .. } = asyncness {
829             let rib_kind = ClosureRibKind(closure_id);
830             self.ribs[ValueNS].push(Rib::new(rib_kind));
831             self.label_ribs.push(Rib::new(rib_kind));
832         }
833
834         match function_kind {
835             FnKind::ItemFn(.., body) |
836             FnKind::Method(.., body) => {
837                 self.visit_block(body);
838             }
839             FnKind::Closure(body) => {
840                 self.visit_expr(body);
841             }
842         };
843
844         // Leave the body of the async closure
845         if asyncness.is_async() {
846             self.label_ribs.pop();
847             self.ribs[ValueNS].pop();
848         }
849
850         debug!("(resolving function) leaving function");
851
852         self.label_ribs.pop();
853         self.ribs[ValueNS].pop();
854     }
855     fn visit_generics(&mut self, generics: &'tcx Generics) {
856         // For type parameter defaults, we have to ban access
857         // to following type parameters, as the Substs can only
858         // provide previous type parameters as they're built. We
859         // put all the parameters on the ban list and then remove
860         // them one by one as they are processed and become available.
861         let mut default_ban_rib = Rib::new(ForwardTyParamBanRibKind);
862         let mut found_default = false;
863         default_ban_rib.bindings.extend(generics.params.iter()
864             .filter_map(|param| match param.kind {
865                 GenericParamKind::Lifetime { .. } => None,
866                 GenericParamKind::Type { ref default, .. } => {
867                     found_default |= default.is_some();
868                     if found_default {
869                         Some((Ident::with_empty_ctxt(param.ident.name), Def::Err))
870                     } else {
871                         None
872                     }
873                 }
874             }));
875
876         for param in &generics.params {
877             match param.kind {
878                 GenericParamKind::Lifetime { .. } => self.visit_generic_param(param),
879                 GenericParamKind::Type { ref default, .. } => {
880                     for bound in &param.bounds {
881                         self.visit_param_bound(bound);
882                     }
883
884                     if let Some(ref ty) = default {
885                         self.ribs[TypeNS].push(default_ban_rib);
886                         self.visit_ty(ty);
887                         default_ban_rib = self.ribs[TypeNS].pop().unwrap();
888                     }
889
890                     // Allow all following defaults to refer to this type parameter.
891                     default_ban_rib.bindings.remove(&Ident::with_empty_ctxt(param.ident.name));
892                 }
893             }
894         }
895         for p in &generics.where_clause.predicates {
896             self.visit_where_predicate(p);
897         }
898     }
899 }
900
901 #[derive(Copy, Clone)]
902 enum TypeParameters<'a, 'b> {
903     NoTypeParameters,
904     HasTypeParameters(// Type parameters.
905                       &'b Generics,
906
907                       // The kind of the rib used for type parameters.
908                       RibKind<'a>),
909 }
910
911 /// The rib kind controls the translation of local
912 /// definitions (`Def::Local`) to upvars (`Def::Upvar`).
913 #[derive(Copy, Clone, Debug)]
914 enum RibKind<'a> {
915     /// No translation needs to be applied.
916     NormalRibKind,
917
918     /// We passed through a closure scope at the given node ID.
919     /// Translate upvars as appropriate.
920     ClosureRibKind(NodeId /* func id */),
921
922     /// We passed through an impl or trait and are now in one of its
923     /// methods or associated types. Allow references to ty params that impl or trait
924     /// binds. Disallow any other upvars (including other ty params that are
925     /// upvars).
926     TraitOrImplItemRibKind,
927
928     /// We passed through an item scope. Disallow upvars.
929     ItemRibKind,
930
931     /// We're in a constant item. Can't refer to dynamic stuff.
932     ConstantItemRibKind,
933
934     /// We passed through a module.
935     ModuleRibKind(Module<'a>),
936
937     /// We passed through a `macro_rules!` statement
938     MacroDefinition(DefId),
939
940     /// All bindings in this rib are type parameters that can't be used
941     /// from the default of a type parameter because they're not declared
942     /// before said type parameter. Also see the `visit_generics` override.
943     ForwardTyParamBanRibKind,
944 }
945
946 /// One local scope.
947 ///
948 /// A rib represents a scope names can live in. Note that these appear in many places, not just
949 /// around braces. At any place where the list of accessible names (of the given namespace)
950 /// changes or a new restrictions on the name accessibility are introduced, a new rib is put onto a
951 /// stack. This may be, for example, a `let` statement (because it introduces variables), a macro,
952 /// etc.
953 ///
954 /// Different [rib kinds](enum.RibKind) are transparent for different names.
955 ///
956 /// The resolution keeps a separate stack of ribs as it traverses the AST for each namespace. When
957 /// resolving, the name is looked up from inside out.
958 #[derive(Debug)]
959 struct Rib<'a> {
960     bindings: FxHashMap<Ident, Def>,
961     kind: RibKind<'a>,
962 }
963
964 impl<'a> Rib<'a> {
965     fn new(kind: RibKind<'a>) -> Rib<'a> {
966         Rib {
967             bindings: Default::default(),
968             kind,
969         }
970     }
971 }
972
973 /// An intermediate resolution result.
974 ///
975 /// This refers to the thing referred by a name. The difference between `Def` and `Item` is that
976 /// items are visible in their whole block, while defs only from the place they are defined
977 /// forward.
978 enum LexicalScopeBinding<'a> {
979     Item(&'a NameBinding<'a>),
980     Def(Def),
981 }
982
983 impl<'a> LexicalScopeBinding<'a> {
984     fn item(self) -> Option<&'a NameBinding<'a>> {
985         match self {
986             LexicalScopeBinding::Item(binding) => Some(binding),
987             _ => None,
988         }
989     }
990
991     fn def(self) -> Def {
992         match self {
993             LexicalScopeBinding::Item(binding) => binding.def(),
994             LexicalScopeBinding::Def(def) => def,
995         }
996     }
997 }
998
999 #[derive(Copy, Clone, Debug)]
1000 enum ModuleOrUniformRoot<'a> {
1001     /// Regular module.
1002     Module(Module<'a>),
1003
1004     /// Virtual module that denotes resolution in crate root with fallback to extern prelude.
1005     CrateRootAndExternPrelude,
1006
1007     /// Virtual module that denotes resolution in extern prelude.
1008     /// Used for paths starting with `::` on 2018 edition or `extern::`.
1009     ExternPrelude,
1010
1011     /// Virtual module that denotes resolution in current scope.
1012     /// Used only for resolving single-segment imports. The reason it exists is that import paths
1013     /// are always split into two parts, the first of which should be some kind of module.
1014     CurrentScope,
1015 }
1016
1017 impl<'a> PartialEq for ModuleOrUniformRoot<'a> {
1018     fn eq(&self, other: &Self) -> bool {
1019         match (*self, *other) {
1020             (ModuleOrUniformRoot::Module(lhs),
1021              ModuleOrUniformRoot::Module(rhs)) => ptr::eq(lhs, rhs),
1022             (ModuleOrUniformRoot::CrateRootAndExternPrelude,
1023              ModuleOrUniformRoot::CrateRootAndExternPrelude) |
1024             (ModuleOrUniformRoot::ExternPrelude, ModuleOrUniformRoot::ExternPrelude) |
1025             (ModuleOrUniformRoot::CurrentScope, ModuleOrUniformRoot::CurrentScope) => true,
1026             _ => false,
1027         }
1028     }
1029 }
1030
1031 #[derive(Clone, Debug)]
1032 enum PathResult<'a> {
1033     Module(ModuleOrUniformRoot<'a>),
1034     NonModule(PathResolution),
1035     Indeterminate,
1036     Failed(Span, String, bool /* is the error from the last segment? */),
1037 }
1038
1039 enum ModuleKind {
1040     /// An anonymous module, eg. just a block.
1041     ///
1042     /// ```
1043     /// fn main() {
1044     ///     fn f() {} // (1)
1045     ///     { // This is an anonymous module
1046     ///         f(); // This resolves to (2) as we are inside the block.
1047     ///         fn f() {} // (2)
1048     ///     }
1049     ///     f(); // Resolves to (1)
1050     /// }
1051     /// ```
1052     Block(NodeId),
1053     /// Any module with a name.
1054     ///
1055     /// This could be:
1056     ///
1057     /// * A normal module â€’ either `mod from_file;` or `mod from_block { }`.
1058     /// * A trait or an enum (it implicitly contains associated types, methods and variant
1059     ///   constructors).
1060     Def(Def, Name),
1061 }
1062
1063 /// One node in the tree of modules.
1064 pub struct ModuleData<'a> {
1065     parent: Option<Module<'a>>,
1066     kind: ModuleKind,
1067
1068     // The def id of the closest normal module (`mod`) ancestor (including this module).
1069     normal_ancestor_id: DefId,
1070
1071     resolutions: RefCell<FxHashMap<(Ident, Namespace), &'a RefCell<NameResolution<'a>>>>,
1072     single_segment_macro_resolutions: RefCell<Vec<(Ident, MacroKind, ParentScope<'a>,
1073                                                    Option<&'a NameBinding<'a>>)>>,
1074     multi_segment_macro_resolutions: RefCell<Vec<(Vec<Segment>, Span, MacroKind, ParentScope<'a>,
1075                                                   Option<Def>)>>,
1076     builtin_attrs: RefCell<Vec<(Ident, ParentScope<'a>)>>,
1077
1078     // Macro invocations that can expand into items in this module.
1079     unresolved_invocations: RefCell<FxHashSet<Mark>>,
1080
1081     no_implicit_prelude: bool,
1082
1083     glob_importers: RefCell<Vec<&'a ImportDirective<'a>>>,
1084     globs: RefCell<Vec<&'a ImportDirective<'a>>>,
1085
1086     // Used to memoize the traits in this module for faster searches through all traits in scope.
1087     traits: RefCell<Option<Box<[(Ident, &'a NameBinding<'a>)]>>>,
1088
1089     // Whether this module is populated. If not populated, any attempt to
1090     // access the children must be preceded with a
1091     // `populate_module_if_necessary` call.
1092     populated: Cell<bool>,
1093
1094     /// Span of the module itself. Used for error reporting.
1095     span: Span,
1096
1097     expansion: Mark,
1098 }
1099
1100 type Module<'a> = &'a ModuleData<'a>;
1101
1102 impl<'a> ModuleData<'a> {
1103     fn new(parent: Option<Module<'a>>,
1104            kind: ModuleKind,
1105            normal_ancestor_id: DefId,
1106            expansion: Mark,
1107            span: Span) -> Self {
1108         ModuleData {
1109             parent,
1110             kind,
1111             normal_ancestor_id,
1112             resolutions: Default::default(),
1113             single_segment_macro_resolutions: RefCell::new(Vec::new()),
1114             multi_segment_macro_resolutions: RefCell::new(Vec::new()),
1115             builtin_attrs: RefCell::new(Vec::new()),
1116             unresolved_invocations: Default::default(),
1117             no_implicit_prelude: false,
1118             glob_importers: RefCell::new(Vec::new()),
1119             globs: RefCell::new(Vec::new()),
1120             traits: RefCell::new(None),
1121             populated: Cell::new(normal_ancestor_id.is_local()),
1122             span,
1123             expansion,
1124         }
1125     }
1126
1127     fn for_each_child<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1128         for (&(ident, ns), name_resolution) in self.resolutions.borrow().iter() {
1129             name_resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1130         }
1131     }
1132
1133     fn for_each_child_stable<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1134         let resolutions = self.resolutions.borrow();
1135         let mut resolutions = resolutions.iter().collect::<Vec<_>>();
1136         resolutions.sort_by_cached_key(|&(&(ident, ns), _)| (ident.as_str(), ns));
1137         for &(&(ident, ns), &resolution) in resolutions.iter() {
1138             resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1139         }
1140     }
1141
1142     fn def(&self) -> Option<Def> {
1143         match self.kind {
1144             ModuleKind::Def(def, _) => Some(def),
1145             _ => None,
1146         }
1147     }
1148
1149     fn def_id(&self) -> Option<DefId> {
1150         self.def().as_ref().map(Def::def_id)
1151     }
1152
1153     // `self` resolves to the first module ancestor that `is_normal`.
1154     fn is_normal(&self) -> bool {
1155         match self.kind {
1156             ModuleKind::Def(Def::Mod(_), _) => true,
1157             _ => false,
1158         }
1159     }
1160
1161     fn is_trait(&self) -> bool {
1162         match self.kind {
1163             ModuleKind::Def(Def::Trait(_), _) => true,
1164             _ => false,
1165         }
1166     }
1167
1168     fn nearest_item_scope(&'a self) -> Module<'a> {
1169         if self.is_trait() { self.parent.unwrap() } else { self }
1170     }
1171
1172     fn is_ancestor_of(&self, mut other: &Self) -> bool {
1173         while !ptr::eq(self, other) {
1174             if let Some(parent) = other.parent {
1175                 other = parent;
1176             } else {
1177                 return false;
1178             }
1179         }
1180         true
1181     }
1182 }
1183
1184 impl<'a> fmt::Debug for ModuleData<'a> {
1185     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1186         write!(f, "{:?}", self.def())
1187     }
1188 }
1189
1190 /// Records a possibly-private value, type, or module definition.
1191 #[derive(Clone, Debug)]
1192 pub struct NameBinding<'a> {
1193     kind: NameBindingKind<'a>,
1194     expansion: Mark,
1195     span: Span,
1196     vis: ty::Visibility,
1197 }
1198
1199 pub trait ToNameBinding<'a> {
1200     fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a>;
1201 }
1202
1203 impl<'a> ToNameBinding<'a> for &'a NameBinding<'a> {
1204     fn to_name_binding(self, _: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> {
1205         self
1206     }
1207 }
1208
1209 #[derive(Clone, Debug)]
1210 enum NameBindingKind<'a> {
1211     Def(Def, /* is_macro_export */ bool),
1212     Module(Module<'a>),
1213     Import {
1214         binding: &'a NameBinding<'a>,
1215         directive: &'a ImportDirective<'a>,
1216         used: Cell<bool>,
1217     },
1218     Ambiguity {
1219         kind: AmbiguityKind,
1220         b1: &'a NameBinding<'a>,
1221         b2: &'a NameBinding<'a>,
1222     }
1223 }
1224
1225 struct PrivacyError<'a>(Span, Ident, &'a NameBinding<'a>);
1226
1227 struct UseError<'a> {
1228     err: DiagnosticBuilder<'a>,
1229     /// Attach `use` statements for these candidates
1230     candidates: Vec<ImportSuggestion>,
1231     /// The node id of the module to place the use statements in
1232     node_id: NodeId,
1233     /// Whether the diagnostic should state that it's "better"
1234     better: bool,
1235 }
1236
1237 #[derive(Clone, Copy, PartialEq, Debug)]
1238 enum AmbiguityKind {
1239     Import,
1240     AbsolutePath,
1241     BuiltinAttr,
1242     DeriveHelper,
1243     LegacyHelperVsPrelude,
1244     LegacyVsModern,
1245     GlobVsOuter,
1246     GlobVsGlob,
1247     GlobVsExpanded,
1248     MoreExpandedVsOuter,
1249 }
1250
1251 impl AmbiguityKind {
1252     fn descr(self) -> &'static str {
1253         match self {
1254             AmbiguityKind::Import =>
1255                 "name vs any other name during import resolution",
1256             AmbiguityKind::AbsolutePath =>
1257                 "name in the crate root vs extern crate during absolute path resolution",
1258             AmbiguityKind::BuiltinAttr =>
1259                 "built-in attribute vs any other name",
1260             AmbiguityKind::DeriveHelper =>
1261                 "derive helper attribute vs any other name",
1262             AmbiguityKind::LegacyHelperVsPrelude =>
1263                 "legacy plugin helper attribute vs name from prelude",
1264             AmbiguityKind::LegacyVsModern =>
1265                 "`macro_rules` vs non-`macro_rules` from other module",
1266             AmbiguityKind::GlobVsOuter =>
1267                 "glob import vs any other name from outer scope during import/macro resolution",
1268             AmbiguityKind::GlobVsGlob =>
1269                 "glob import vs glob import in the same module",
1270             AmbiguityKind::GlobVsExpanded =>
1271                 "glob import vs macro-expanded name in the same \
1272                  module during import/macro resolution",
1273             AmbiguityKind::MoreExpandedVsOuter =>
1274                 "macro-expanded name vs less macro-expanded name \
1275                  from outer scope during import/macro resolution",
1276         }
1277     }
1278 }
1279
1280 /// Miscellaneous bits of metadata for better ambiguity error reporting.
1281 #[derive(Clone, Copy, PartialEq)]
1282 enum AmbiguityErrorMisc {
1283     SuggestCrate,
1284     SuggestSelf,
1285     FromPrelude,
1286     None,
1287 }
1288
1289 struct AmbiguityError<'a> {
1290     kind: AmbiguityKind,
1291     ident: Ident,
1292     b1: &'a NameBinding<'a>,
1293     b2: &'a NameBinding<'a>,
1294     misc1: AmbiguityErrorMisc,
1295     misc2: AmbiguityErrorMisc,
1296 }
1297
1298 impl<'a> NameBinding<'a> {
1299     fn module(&self) -> Option<Module<'a>> {
1300         match self.kind {
1301             NameBindingKind::Module(module) => Some(module),
1302             NameBindingKind::Import { binding, .. } => binding.module(),
1303             _ => None,
1304         }
1305     }
1306
1307     fn def(&self) -> Def {
1308         match self.kind {
1309             NameBindingKind::Def(def, _) => def,
1310             NameBindingKind::Module(module) => module.def().unwrap(),
1311             NameBindingKind::Import { binding, .. } => binding.def(),
1312             NameBindingKind::Ambiguity { .. } => Def::Err,
1313         }
1314     }
1315
1316     fn def_ignoring_ambiguity(&self) -> Def {
1317         match self.kind {
1318             NameBindingKind::Import { binding, .. } => binding.def_ignoring_ambiguity(),
1319             NameBindingKind::Ambiguity { b1, .. } => b1.def_ignoring_ambiguity(),
1320             _ => self.def(),
1321         }
1322     }
1323
1324     // We sometimes need to treat variants as `pub` for backwards compatibility
1325     fn pseudo_vis(&self) -> ty::Visibility {
1326         if self.is_variant() && self.def().def_id().is_local() {
1327             ty::Visibility::Public
1328         } else {
1329             self.vis
1330         }
1331     }
1332
1333     fn is_variant(&self) -> bool {
1334         match self.kind {
1335             NameBindingKind::Def(Def::Variant(..), _) |
1336             NameBindingKind::Def(Def::VariantCtor(..), _) => true,
1337             _ => false,
1338         }
1339     }
1340
1341     fn is_extern_crate(&self) -> bool {
1342         match self.kind {
1343             NameBindingKind::Import {
1344                 directive: &ImportDirective {
1345                     subclass: ImportDirectiveSubclass::ExternCrate { .. }, ..
1346                 }, ..
1347             } => true,
1348             NameBindingKind::Module(
1349                 &ModuleData { kind: ModuleKind::Def(Def::Mod(def_id), _), .. }
1350             ) => def_id.index == CRATE_DEF_INDEX,
1351             _ => false,
1352         }
1353     }
1354
1355     fn is_import(&self) -> bool {
1356         match self.kind {
1357             NameBindingKind::Import { .. } => true,
1358             _ => false,
1359         }
1360     }
1361
1362     fn is_glob_import(&self) -> bool {
1363         match self.kind {
1364             NameBindingKind::Import { directive, .. } => directive.is_glob(),
1365             NameBindingKind::Ambiguity { b1, .. } => b1.is_glob_import(),
1366             _ => false,
1367         }
1368     }
1369
1370     fn is_importable(&self) -> bool {
1371         match self.def() {
1372             Def::AssociatedConst(..) | Def::Method(..) | Def::AssociatedTy(..) => false,
1373             _ => true,
1374         }
1375     }
1376
1377     fn is_macro_def(&self) -> bool {
1378         match self.kind {
1379             NameBindingKind::Def(Def::Macro(..), _) => true,
1380             _ => false,
1381         }
1382     }
1383
1384     fn macro_kind(&self) -> Option<MacroKind> {
1385         match self.def_ignoring_ambiguity() {
1386             Def::Macro(_, kind) => Some(kind),
1387             Def::NonMacroAttr(..) => Some(MacroKind::Attr),
1388             _ => None,
1389         }
1390     }
1391
1392     fn descr(&self) -> &'static str {
1393         if self.is_extern_crate() { "extern crate" } else { self.def().kind_name() }
1394     }
1395
1396     fn article(&self) -> &'static str {
1397         if self.is_extern_crate() { "an" } else { self.def().article() }
1398     }
1399
1400     // Suppose that we resolved macro invocation with `invoc_parent_expansion` to binding `binding`
1401     // at some expansion round `max(invoc, binding)` when they both emerged from macros.
1402     // Then this function returns `true` if `self` may emerge from a macro *after* that
1403     // in some later round and screw up our previously found resolution.
1404     // See more detailed explanation in
1405     // https://github.com/rust-lang/rust/pull/53778#issuecomment-419224049
1406     fn may_appear_after(&self, invoc_parent_expansion: Mark, binding: &NameBinding) -> bool {
1407         // self > max(invoc, binding) => !(self <= invoc || self <= binding)
1408         // Expansions are partially ordered, so "may appear after" is an inversion of
1409         // "certainly appears before or simultaneously" and includes unordered cases.
1410         let self_parent_expansion = self.expansion;
1411         let other_parent_expansion = binding.expansion;
1412         let certainly_before_other_or_simultaneously =
1413             other_parent_expansion.is_descendant_of(self_parent_expansion);
1414         let certainly_before_invoc_or_simultaneously =
1415             invoc_parent_expansion.is_descendant_of(self_parent_expansion);
1416         !(certainly_before_other_or_simultaneously || certainly_before_invoc_or_simultaneously)
1417     }
1418 }
1419
1420 /// Interns the names of the primitive types.
1421 ///
1422 /// All other types are defined somewhere and possibly imported, but the primitive ones need
1423 /// special handling, since they have no place of origin.
1424 #[derive(Default)]
1425 struct PrimitiveTypeTable {
1426     primitive_types: FxHashMap<Name, PrimTy>,
1427 }
1428
1429 impl PrimitiveTypeTable {
1430     fn new() -> PrimitiveTypeTable {
1431         let mut table = PrimitiveTypeTable::default();
1432
1433         table.intern("bool", Bool);
1434         table.intern("char", Char);
1435         table.intern("f32", Float(FloatTy::F32));
1436         table.intern("f64", Float(FloatTy::F64));
1437         table.intern("isize", Int(IntTy::Isize));
1438         table.intern("i8", Int(IntTy::I8));
1439         table.intern("i16", Int(IntTy::I16));
1440         table.intern("i32", Int(IntTy::I32));
1441         table.intern("i64", Int(IntTy::I64));
1442         table.intern("i128", Int(IntTy::I128));
1443         table.intern("str", Str);
1444         table.intern("usize", Uint(UintTy::Usize));
1445         table.intern("u8", Uint(UintTy::U8));
1446         table.intern("u16", Uint(UintTy::U16));
1447         table.intern("u32", Uint(UintTy::U32));
1448         table.intern("u64", Uint(UintTy::U64));
1449         table.intern("u128", Uint(UintTy::U128));
1450         table
1451     }
1452
1453     fn intern(&mut self, string: &str, primitive_type: PrimTy) {
1454         self.primitive_types.insert(Symbol::intern(string), primitive_type);
1455     }
1456 }
1457
1458 #[derive(Default, Clone)]
1459 pub struct ExternPreludeEntry<'a> {
1460     extern_crate_item: Option<&'a NameBinding<'a>>,
1461     pub introduced_by_item: bool,
1462 }
1463
1464 /// The main resolver class.
1465 ///
1466 /// This is the visitor that walks the whole crate.
1467 pub struct Resolver<'a> {
1468     session: &'a Session,
1469     cstore: &'a CStore,
1470
1471     pub definitions: Definitions,
1472
1473     graph_root: Module<'a>,
1474
1475     prelude: Option<Module<'a>>,
1476     pub extern_prelude: FxHashMap<Ident, ExternPreludeEntry<'a>>,
1477
1478     /// n.b. This is used only for better diagnostics, not name resolution itself.
1479     has_self: FxHashSet<DefId>,
1480
1481     /// Names of fields of an item `DefId` accessible with dot syntax.
1482     /// Used for hints during error reporting.
1483     field_names: FxHashMap<DefId, Vec<Name>>,
1484
1485     /// All imports known to succeed or fail.
1486     determined_imports: Vec<&'a ImportDirective<'a>>,
1487
1488     /// All non-determined imports.
1489     indeterminate_imports: Vec<&'a ImportDirective<'a>>,
1490
1491     /// The module that represents the current item scope.
1492     current_module: Module<'a>,
1493
1494     /// The current set of local scopes for types and values.
1495     /// FIXME #4948: Reuse ribs to avoid allocation.
1496     ribs: PerNS<Vec<Rib<'a>>>,
1497
1498     /// The current set of local scopes, for labels.
1499     label_ribs: Vec<Rib<'a>>,
1500
1501     /// The trait that the current context can refer to.
1502     current_trait_ref: Option<(Module<'a>, TraitRef)>,
1503
1504     /// The current self type if inside an impl (used for better errors).
1505     current_self_type: Option<Ty>,
1506
1507     /// The current self item if inside an ADT (used for better errors).
1508     current_self_item: Option<NodeId>,
1509
1510     /// FIXME: Refactor things so that these fields are passed through arguments and not resolver.
1511     /// We are resolving a last import segment during import validation.
1512     last_import_segment: bool,
1513     /// This binding should be ignored during in-module resolution, so that we don't get
1514     /// "self-confirming" import resolutions during import validation.
1515     blacklisted_binding: Option<&'a NameBinding<'a>>,
1516
1517     /// The idents for the primitive types.
1518     primitive_type_table: PrimitiveTypeTable,
1519
1520     def_map: DefMap,
1521     import_map: ImportMap,
1522     pub freevars: FreevarMap,
1523     freevars_seen: NodeMap<NodeMap<usize>>,
1524     pub export_map: ExportMap,
1525     pub trait_map: TraitMap,
1526
1527     /// A map from nodes to anonymous modules.
1528     /// Anonymous modules are pseudo-modules that are implicitly created around items
1529     /// contained within blocks.
1530     ///
1531     /// For example, if we have this:
1532     ///
1533     ///  fn f() {
1534     ///      fn g() {
1535     ///          ...
1536     ///      }
1537     ///  }
1538     ///
1539     /// There will be an anonymous module created around `g` with the ID of the
1540     /// entry block for `f`.
1541     block_map: NodeMap<Module<'a>>,
1542     module_map: FxHashMap<DefId, Module<'a>>,
1543     extern_module_map: FxHashMap<(DefId, bool /* MacrosOnly? */), Module<'a>>,
1544     binding_parent_modules: FxHashMap<PtrKey<'a, NameBinding<'a>>, Module<'a>>,
1545
1546     pub make_glob_map: bool,
1547     /// Maps imports to the names of items actually imported (this actually maps
1548     /// all imports, but only glob imports are actually interesting).
1549     pub glob_map: GlobMap,
1550
1551     used_imports: FxHashSet<(NodeId, Namespace)>,
1552     pub maybe_unused_trait_imports: NodeSet,
1553     pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
1554
1555     /// A list of labels as of yet unused. Labels will be removed from this map when
1556     /// they are used (in a `break` or `continue` statement)
1557     pub unused_labels: FxHashMap<NodeId, Span>,
1558
1559     /// privacy errors are delayed until the end in order to deduplicate them
1560     privacy_errors: Vec<PrivacyError<'a>>,
1561     /// ambiguity errors are delayed for deduplication
1562     ambiguity_errors: Vec<AmbiguityError<'a>>,
1563     /// `use` injections are delayed for better placement and deduplication
1564     use_injections: Vec<UseError<'a>>,
1565     /// crate-local macro expanded `macro_export` referred to by a module-relative path
1566     macro_expanded_macro_export_errors: BTreeSet<(Span, Span)>,
1567
1568     arenas: &'a ResolverArenas<'a>,
1569     dummy_binding: &'a NameBinding<'a>,
1570
1571     crate_loader: &'a mut CrateLoader<'a>,
1572     macro_names: FxHashSet<Ident>,
1573     builtin_macros: FxHashMap<Name, &'a NameBinding<'a>>,
1574     macro_use_prelude: FxHashMap<Name, &'a NameBinding<'a>>,
1575     pub all_macros: FxHashMap<Name, Def>,
1576     macro_map: FxHashMap<DefId, Lrc<SyntaxExtension>>,
1577     macro_defs: FxHashMap<Mark, DefId>,
1578     local_macro_def_scopes: FxHashMap<NodeId, Module<'a>>,
1579     pub found_unresolved_macro: bool,
1580
1581     /// List of crate local macros that we need to warn about as being unused.
1582     /// Right now this only includes macro_rules! macros, and macros 2.0.
1583     unused_macros: FxHashSet<DefId>,
1584
1585     /// Maps the `Mark` of an expansion to its containing module or block.
1586     invocations: FxHashMap<Mark, &'a InvocationData<'a>>,
1587
1588     /// Avoid duplicated errors for "name already defined".
1589     name_already_seen: FxHashMap<Name, Span>,
1590
1591     potentially_unused_imports: Vec<&'a ImportDirective<'a>>,
1592
1593     /// This table maps struct IDs into struct constructor IDs,
1594     /// it's not used during normal resolution, only for better error reporting.
1595     struct_constructors: DefIdMap<(Def, ty::Visibility)>,
1596
1597     /// Only used for better errors on `fn(): fn()`
1598     current_type_ascription: Vec<Span>,
1599
1600     injected_crate: Option<Module<'a>>,
1601 }
1602
1603 /// Nothing really interesting here, it just provides memory for the rest of the crate.
1604 #[derive(Default)]
1605 pub struct ResolverArenas<'a> {
1606     modules: arena::TypedArena<ModuleData<'a>>,
1607     local_modules: RefCell<Vec<Module<'a>>>,
1608     name_bindings: arena::TypedArena<NameBinding<'a>>,
1609     import_directives: arena::TypedArena<ImportDirective<'a>>,
1610     name_resolutions: arena::TypedArena<RefCell<NameResolution<'a>>>,
1611     invocation_data: arena::TypedArena<InvocationData<'a>>,
1612     legacy_bindings: arena::TypedArena<LegacyBinding<'a>>,
1613 }
1614
1615 impl<'a> ResolverArenas<'a> {
1616     fn alloc_module(&'a self, module: ModuleData<'a>) -> Module<'a> {
1617         let module = self.modules.alloc(module);
1618         if module.def_id().map(|def_id| def_id.is_local()).unwrap_or(true) {
1619             self.local_modules.borrow_mut().push(module);
1620         }
1621         module
1622     }
1623     fn local_modules(&'a self) -> ::std::cell::Ref<'a, Vec<Module<'a>>> {
1624         self.local_modules.borrow()
1625     }
1626     fn alloc_name_binding(&'a self, name_binding: NameBinding<'a>) -> &'a NameBinding<'a> {
1627         self.name_bindings.alloc(name_binding)
1628     }
1629     fn alloc_import_directive(&'a self, import_directive: ImportDirective<'a>)
1630                               -> &'a ImportDirective {
1631         self.import_directives.alloc(import_directive)
1632     }
1633     fn alloc_name_resolution(&'a self) -> &'a RefCell<NameResolution<'a>> {
1634         self.name_resolutions.alloc(Default::default())
1635     }
1636     fn alloc_invocation_data(&'a self, expansion_data: InvocationData<'a>)
1637                              -> &'a InvocationData<'a> {
1638         self.invocation_data.alloc(expansion_data)
1639     }
1640     fn alloc_legacy_binding(&'a self, binding: LegacyBinding<'a>) -> &'a LegacyBinding<'a> {
1641         self.legacy_bindings.alloc(binding)
1642     }
1643 }
1644
1645 impl<'a, 'b: 'a> ty::DefIdTree for &'a Resolver<'b> {
1646     fn parent(self, id: DefId) -> Option<DefId> {
1647         match id.krate {
1648             LOCAL_CRATE => self.definitions.def_key(id.index).parent,
1649             _ => self.cstore.def_key(id).parent,
1650         }.map(|index| DefId { index, ..id })
1651     }
1652 }
1653
1654 /// This interface is used through the AST→HIR step, to embed full paths into the HIR. After that
1655 /// the resolver is no longer needed as all the relevant information is inline.
1656 impl<'a> hir::lowering::Resolver for Resolver<'a> {
1657     fn resolve_hir_path(
1658         &mut self,
1659         path: &ast::Path,
1660         is_value: bool,
1661     ) -> hir::Path {
1662         self.resolve_hir_path_cb(path, is_value,
1663                                  |resolver, span, error| resolve_error(resolver, span, error))
1664     }
1665
1666     fn resolve_str_path(
1667         &mut self,
1668         span: Span,
1669         crate_root: Option<&str>,
1670         components: &[&str],
1671         is_value: bool
1672     ) -> hir::Path {
1673         let segments = iter::once(keywords::PathRoot.ident())
1674             .chain(
1675                 crate_root.into_iter()
1676                     .chain(components.iter().cloned())
1677                     .map(Ident::from_str)
1678             ).map(|i| self.new_ast_path_segment(i)).collect::<Vec<_>>();
1679
1680
1681         let path = ast::Path {
1682             span,
1683             segments,
1684         };
1685
1686         self.resolve_hir_path(&path, is_value)
1687     }
1688
1689     fn get_resolution(&mut self, id: NodeId) -> Option<PathResolution> {
1690         self.def_map.get(&id).cloned()
1691     }
1692
1693     fn get_import(&mut self, id: NodeId) -> PerNS<Option<PathResolution>> {
1694         self.import_map.get(&id).cloned().unwrap_or_default()
1695     }
1696
1697     fn definitions(&mut self) -> &mut Definitions {
1698         &mut self.definitions
1699     }
1700 }
1701
1702 impl<'a> Resolver<'a> {
1703     /// Rustdoc uses this to resolve things in a recoverable way. ResolutionError<'a>
1704     /// isn't something that can be returned because it can't be made to live that long,
1705     /// and also it's a private type. Fortunately rustdoc doesn't need to know the error,
1706     /// just that an error occurred.
1707     pub fn resolve_str_path_error(&mut self, span: Span, path_str: &str, is_value: bool)
1708         -> Result<hir::Path, ()> {
1709         use std::iter;
1710         let mut errored = false;
1711
1712         let path = if path_str.starts_with("::") {
1713             ast::Path {
1714                 span,
1715                 segments: iter::once(keywords::PathRoot.ident())
1716                     .chain({
1717                         path_str.split("::").skip(1).map(Ident::from_str)
1718                     })
1719                     .map(|i| self.new_ast_path_segment(i))
1720                     .collect(),
1721             }
1722         } else {
1723             ast::Path {
1724                 span,
1725                 segments: path_str
1726                     .split("::")
1727                     .map(Ident::from_str)
1728                     .map(|i| self.new_ast_path_segment(i))
1729                     .collect(),
1730             }
1731         };
1732         let path = self.resolve_hir_path_cb(&path, is_value, |_, _, _| errored = true);
1733         if errored || path.def == Def::Err {
1734             Err(())
1735         } else {
1736             Ok(path)
1737         }
1738     }
1739
1740     /// resolve_hir_path, but takes a callback in case there was an error
1741     fn resolve_hir_path_cb<F>(
1742         &mut self,
1743         path: &ast::Path,
1744         is_value: bool,
1745         error_callback: F,
1746     ) -> hir::Path
1747         where F: for<'c, 'b> FnOnce(&'c mut Resolver, Span, ResolutionError<'b>)
1748     {
1749         let namespace = if is_value { ValueNS } else { TypeNS };
1750         let span = path.span;
1751         let segments = &path.segments;
1752         let path = Segment::from_path(&path);
1753         // FIXME (Manishearth): Intra doc links won't get warned of epoch changes
1754         let def = match self.resolve_path_without_parent_scope(&path, Some(namespace), true,
1755                                                                span, CrateLint::No) {
1756             PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
1757                 module.def().unwrap(),
1758             PathResult::NonModule(path_res) if path_res.unresolved_segments() == 0 =>
1759                 path_res.base_def(),
1760             PathResult::NonModule(..) => {
1761                 let msg = "type-relative paths are not supported in this context";
1762                 error_callback(self, span, ResolutionError::FailedToResolve(msg));
1763                 Def::Err
1764             }
1765             PathResult::Module(..) | PathResult::Indeterminate => unreachable!(),
1766             PathResult::Failed(span, msg, _) => {
1767                 error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1768                 Def::Err
1769             }
1770         };
1771
1772         let segments: Vec<_> = segments.iter().map(|seg| {
1773             let mut hir_seg = hir::PathSegment::from_ident(seg.ident);
1774             hir_seg.def = Some(self.def_map.get(&seg.id).map_or(Def::Err, |p| p.base_def()));
1775             hir_seg
1776         }).collect();
1777         hir::Path {
1778             span,
1779             def,
1780             segments: segments.into(),
1781         }
1782     }
1783
1784     fn new_ast_path_segment(&self, ident: Ident) -> ast::PathSegment {
1785         let mut seg = ast::PathSegment::from_ident(ident);
1786         seg.id = self.session.next_node_id();
1787         seg
1788     }
1789 }
1790
1791 impl<'a> Resolver<'a> {
1792     pub fn new(session: &'a Session,
1793                cstore: &'a CStore,
1794                krate: &Crate,
1795                crate_name: &str,
1796                make_glob_map: MakeGlobMap,
1797                crate_loader: &'a mut CrateLoader<'a>,
1798                arenas: &'a ResolverArenas<'a>)
1799                -> Resolver<'a> {
1800         let root_def_id = DefId::local(CRATE_DEF_INDEX);
1801         let root_module_kind = ModuleKind::Def(Def::Mod(root_def_id), keywords::Invalid.name());
1802         let graph_root = arenas.alloc_module(ModuleData {
1803             no_implicit_prelude: attr::contains_name(&krate.attrs, "no_implicit_prelude"),
1804             ..ModuleData::new(None, root_module_kind, root_def_id, Mark::root(), krate.span)
1805         });
1806         let mut module_map = FxHashMap::default();
1807         module_map.insert(DefId::local(CRATE_DEF_INDEX), graph_root);
1808
1809         let mut definitions = Definitions::new();
1810         DefCollector::new(&mut definitions, Mark::root())
1811             .collect_root(crate_name, session.local_crate_disambiguator());
1812
1813         let mut extern_prelude: FxHashMap<Ident, ExternPreludeEntry> =
1814             session.opts.externs.iter().map(|kv| (Ident::from_str(kv.0), Default::default()))
1815                                        .collect();
1816
1817         if !attr::contains_name(&krate.attrs, "no_core") {
1818             extern_prelude.insert(Ident::from_str("core"), Default::default());
1819             if !attr::contains_name(&krate.attrs, "no_std") {
1820                 extern_prelude.insert(Ident::from_str("std"), Default::default());
1821                 if session.rust_2018() {
1822                     extern_prelude.insert(Ident::from_str("meta"), Default::default());
1823                 }
1824             }
1825         }
1826
1827         let mut invocations = FxHashMap::default();
1828         invocations.insert(Mark::root(),
1829                            arenas.alloc_invocation_data(InvocationData::root(graph_root)));
1830
1831         let mut macro_defs = FxHashMap::default();
1832         macro_defs.insert(Mark::root(), root_def_id);
1833
1834         Resolver {
1835             session,
1836
1837             cstore,
1838
1839             definitions,
1840
1841             // The outermost module has def ID 0; this is not reflected in the
1842             // AST.
1843             graph_root,
1844             prelude: None,
1845             extern_prelude,
1846
1847             has_self: FxHashSet::default(),
1848             field_names: FxHashMap::default(),
1849
1850             determined_imports: Vec::new(),
1851             indeterminate_imports: Vec::new(),
1852
1853             current_module: graph_root,
1854             ribs: PerNS {
1855                 value_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1856                 type_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1857                 macro_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1858             },
1859             label_ribs: Vec::new(),
1860
1861             current_trait_ref: None,
1862             current_self_type: None,
1863             current_self_item: None,
1864             last_import_segment: false,
1865             blacklisted_binding: None,
1866
1867             primitive_type_table: PrimitiveTypeTable::new(),
1868
1869             def_map: Default::default(),
1870             import_map: Default::default(),
1871             freevars: Default::default(),
1872             freevars_seen: Default::default(),
1873             export_map: FxHashMap::default(),
1874             trait_map: Default::default(),
1875             module_map,
1876             block_map: Default::default(),
1877             extern_module_map: FxHashMap::default(),
1878             binding_parent_modules: FxHashMap::default(),
1879
1880             make_glob_map: make_glob_map == MakeGlobMap::Yes,
1881             glob_map: Default::default(),
1882
1883             used_imports: FxHashSet::default(),
1884             maybe_unused_trait_imports: Default::default(),
1885             maybe_unused_extern_crates: Vec::new(),
1886
1887             unused_labels: FxHashMap::default(),
1888
1889             privacy_errors: Vec::new(),
1890             ambiguity_errors: Vec::new(),
1891             use_injections: Vec::new(),
1892             macro_expanded_macro_export_errors: BTreeSet::new(),
1893
1894             arenas,
1895             dummy_binding: arenas.alloc_name_binding(NameBinding {
1896                 kind: NameBindingKind::Def(Def::Err, false),
1897                 expansion: Mark::root(),
1898                 span: DUMMY_SP,
1899                 vis: ty::Visibility::Public,
1900             }),
1901
1902             crate_loader,
1903             macro_names: FxHashSet::default(),
1904             builtin_macros: FxHashMap::default(),
1905             macro_use_prelude: FxHashMap::default(),
1906             all_macros: FxHashMap::default(),
1907             macro_map: FxHashMap::default(),
1908             invocations,
1909             macro_defs,
1910             local_macro_def_scopes: FxHashMap::default(),
1911             name_already_seen: FxHashMap::default(),
1912             potentially_unused_imports: Vec::new(),
1913             struct_constructors: Default::default(),
1914             found_unresolved_macro: false,
1915             unused_macros: FxHashSet::default(),
1916             current_type_ascription: Vec::new(),
1917             injected_crate: None,
1918         }
1919     }
1920
1921     pub fn arenas() -> ResolverArenas<'a> {
1922         Default::default()
1923     }
1924
1925     /// Runs the function on each namespace.
1926     fn per_ns<F: FnMut(&mut Self, Namespace)>(&mut self, mut f: F) {
1927         f(self, TypeNS);
1928         f(self, ValueNS);
1929         f(self, MacroNS);
1930     }
1931
1932     fn macro_def(&self, mut ctxt: SyntaxContext) -> DefId {
1933         loop {
1934             match self.macro_defs.get(&ctxt.outer()) {
1935                 Some(&def_id) => return def_id,
1936                 None => ctxt.remove_mark(),
1937             };
1938         }
1939     }
1940
1941     /// Entry point to crate resolution.
1942     pub fn resolve_crate(&mut self, krate: &Crate) {
1943         ImportResolver { resolver: self }.finalize_imports();
1944         self.current_module = self.graph_root;
1945         self.finalize_current_module_macro_resolutions();
1946
1947         visit::walk_crate(self, krate);
1948
1949         check_unused::check_crate(self, krate);
1950         self.report_errors(krate);
1951         self.crate_loader.postprocess(krate);
1952     }
1953
1954     fn new_module(
1955         &self,
1956         parent: Module<'a>,
1957         kind: ModuleKind,
1958         normal_ancestor_id: DefId,
1959         expansion: Mark,
1960         span: Span,
1961     ) -> Module<'a> {
1962         let module = ModuleData::new(Some(parent), kind, normal_ancestor_id, expansion, span);
1963         self.arenas.alloc_module(module)
1964     }
1965
1966     fn record_use(&mut self, ident: Ident, ns: Namespace,
1967                   used_binding: &'a NameBinding<'a>, is_lexical_scope: bool) {
1968         match used_binding.kind {
1969             NameBindingKind::Import { directive, binding, ref used } if !used.get() => {
1970                 // Avoid marking `extern crate` items that refer to a name from extern prelude,
1971                 // but not introduce it, as used if they are accessed from lexical scope.
1972                 if is_lexical_scope {
1973                     if let Some(entry) = self.extern_prelude.get(&ident.modern()) {
1974                         if let Some(crate_item) = entry.extern_crate_item {
1975                             if ptr::eq(used_binding, crate_item) && !entry.introduced_by_item {
1976                                 return;
1977                             }
1978                         }
1979                     }
1980                 }
1981                 used.set(true);
1982                 directive.used.set(true);
1983                 self.used_imports.insert((directive.id, ns));
1984                 self.add_to_glob_map(directive.id, ident);
1985                 self.record_use(ident, ns, binding, false);
1986             }
1987             NameBindingKind::Ambiguity { kind, b1, b2 } => {
1988                 self.ambiguity_errors.push(AmbiguityError {
1989                     kind, ident, b1, b2,
1990                     misc1: AmbiguityErrorMisc::None,
1991                     misc2: AmbiguityErrorMisc::None,
1992                 });
1993             }
1994             _ => {}
1995         }
1996     }
1997
1998     fn add_to_glob_map(&mut self, id: NodeId, ident: Ident) {
1999         if self.make_glob_map {
2000             self.glob_map.entry(id).or_default().insert(ident.name);
2001         }
2002     }
2003
2004     /// This resolves the identifier `ident` in the namespace `ns` in the current lexical scope.
2005     /// More specifically, we proceed up the hierarchy of scopes and return the binding for
2006     /// `ident` in the first scope that defines it (or None if no scopes define it).
2007     ///
2008     /// A block's items are above its local variables in the scope hierarchy, regardless of where
2009     /// the items are defined in the block. For example,
2010     /// ```rust
2011     /// fn f() {
2012     ///    g(); // Since there are no local variables in scope yet, this resolves to the item.
2013     ///    let g = || {};
2014     ///    fn g() {}
2015     ///    g(); // This resolves to the local variable `g` since it shadows the item.
2016     /// }
2017     /// ```
2018     ///
2019     /// Invariant: This must only be called during main resolution, not during
2020     /// import resolution.
2021     fn resolve_ident_in_lexical_scope(&mut self,
2022                                       mut ident: Ident,
2023                                       ns: Namespace,
2024                                       record_used_id: Option<NodeId>,
2025                                       path_span: Span)
2026                                       -> Option<LexicalScopeBinding<'a>> {
2027         let record_used = record_used_id.is_some();
2028         assert!(ns == TypeNS  || ns == ValueNS);
2029         if ns == TypeNS {
2030             ident.span = if ident.name == keywords::SelfUpper.name() {
2031                 // FIXME(jseyfried) improve `Self` hygiene
2032                 ident.span.with_ctxt(SyntaxContext::empty())
2033             } else {
2034                 ident.span.modern()
2035             }
2036         } else {
2037             ident = ident.modern_and_legacy();
2038         }
2039
2040         // Walk backwards up the ribs in scope.
2041         let mut module = self.graph_root;
2042         for i in (0 .. self.ribs[ns].len()).rev() {
2043             if let Some(def) = self.ribs[ns][i].bindings.get(&ident).cloned() {
2044                 // The ident resolves to a type parameter or local variable.
2045                 return Some(LexicalScopeBinding::Def(
2046                     self.adjust_local_def(ns, i, def, record_used, path_span)
2047                 ));
2048             }
2049
2050             module = match self.ribs[ns][i].kind {
2051                 ModuleRibKind(module) => module,
2052                 MacroDefinition(def) if def == self.macro_def(ident.span.ctxt()) => {
2053                     // If an invocation of this macro created `ident`, give up on `ident`
2054                     // and switch to `ident`'s source from the macro definition.
2055                     ident.span.remove_mark();
2056                     continue
2057                 }
2058                 _ => continue,
2059             };
2060
2061             let item = self.resolve_ident_in_module_unadjusted(
2062                 ModuleOrUniformRoot::Module(module),
2063                 ident,
2064                 ns,
2065                 record_used,
2066                 path_span,
2067             );
2068             if let Ok(binding) = item {
2069                 // The ident resolves to an item.
2070                 return Some(LexicalScopeBinding::Item(binding));
2071             }
2072
2073             match module.kind {
2074                 ModuleKind::Block(..) => {}, // We can see through blocks
2075                 _ => break,
2076             }
2077         }
2078
2079         ident.span = ident.span.modern();
2080         let mut poisoned = None;
2081         loop {
2082             let opt_module = if let Some(node_id) = record_used_id {
2083                 self.hygienic_lexical_parent_with_compatibility_fallback(module, &mut ident.span,
2084                                                                          node_id, &mut poisoned)
2085             } else {
2086                 self.hygienic_lexical_parent(module, &mut ident.span)
2087             };
2088             module = unwrap_or!(opt_module, break);
2089             let orig_current_module = self.current_module;
2090             self.current_module = module; // Lexical resolutions can never be a privacy error.
2091             let result = self.resolve_ident_in_module_unadjusted(
2092                 ModuleOrUniformRoot::Module(module),
2093                 ident,
2094                 ns,
2095                 record_used,
2096                 path_span,
2097             );
2098             self.current_module = orig_current_module;
2099
2100             match result {
2101                 Ok(binding) => {
2102                     if let Some(node_id) = poisoned {
2103                         self.session.buffer_lint_with_diagnostic(
2104                             lint::builtin::PROC_MACRO_DERIVE_RESOLUTION_FALLBACK,
2105                             node_id, ident.span,
2106                             &format!("cannot find {} `{}` in this scope", ns.descr(), ident),
2107                             lint::builtin::BuiltinLintDiagnostics::
2108                                 ProcMacroDeriveResolutionFallback(ident.span),
2109                         );
2110                     }
2111                     return Some(LexicalScopeBinding::Item(binding))
2112                 }
2113                 Err(Determined) => continue,
2114                 Err(Undetermined) =>
2115                     span_bug!(ident.span, "undetermined resolution during main resolution pass"),
2116             }
2117         }
2118
2119         if !module.no_implicit_prelude {
2120             if ns == TypeNS {
2121                 if let Some(binding) = self.extern_prelude_get(ident, !record_used) {
2122                     return Some(LexicalScopeBinding::Item(binding));
2123                 }
2124             }
2125             if ns == TypeNS && is_known_tool(ident.name) {
2126                 let binding = (Def::ToolMod, ty::Visibility::Public,
2127                                DUMMY_SP, Mark::root()).to_name_binding(self.arenas);
2128                 return Some(LexicalScopeBinding::Item(binding));
2129             }
2130             if let Some(prelude) = self.prelude {
2131                 if let Ok(binding) = self.resolve_ident_in_module_unadjusted(
2132                     ModuleOrUniformRoot::Module(prelude),
2133                     ident,
2134                     ns,
2135                     false,
2136                     path_span,
2137                 ) {
2138                     return Some(LexicalScopeBinding::Item(binding));
2139                 }
2140             }
2141         }
2142
2143         None
2144     }
2145
2146     fn hygienic_lexical_parent(&mut self, module: Module<'a>, span: &mut Span)
2147                                -> Option<Module<'a>> {
2148         if !module.expansion.is_descendant_of(span.ctxt().outer()) {
2149             return Some(self.macro_def_scope(span.remove_mark()));
2150         }
2151
2152         if let ModuleKind::Block(..) = module.kind {
2153             return Some(module.parent.unwrap());
2154         }
2155
2156         None
2157     }
2158
2159     fn hygienic_lexical_parent_with_compatibility_fallback(&mut self, module: Module<'a>,
2160                                                            span: &mut Span, node_id: NodeId,
2161                                                            poisoned: &mut Option<NodeId>)
2162                                                            -> Option<Module<'a>> {
2163         if let module @ Some(..) = self.hygienic_lexical_parent(module, span) {
2164             return module;
2165         }
2166
2167         // We need to support the next case under a deprecation warning
2168         // ```
2169         // struct MyStruct;
2170         // ---- begin: this comes from a proc macro derive
2171         // mod implementation_details {
2172         //     // Note that `MyStruct` is not in scope here.
2173         //     impl SomeTrait for MyStruct { ... }
2174         // }
2175         // ---- end
2176         // ```
2177         // So we have to fall back to the module's parent during lexical resolution in this case.
2178         if let Some(parent) = module.parent {
2179             // Inner module is inside the macro, parent module is outside of the macro.
2180             if module.expansion != parent.expansion &&
2181             module.expansion.is_descendant_of(parent.expansion) {
2182                 // The macro is a proc macro derive
2183                 if module.expansion.looks_like_proc_macro_derive() {
2184                     if parent.expansion.is_descendant_of(span.ctxt().outer()) {
2185                         *poisoned = Some(node_id);
2186                         return module.parent;
2187                     }
2188                 }
2189             }
2190         }
2191
2192         None
2193     }
2194
2195     fn resolve_ident_in_module(
2196         &mut self,
2197         module: ModuleOrUniformRoot<'a>,
2198         ident: Ident,
2199         ns: Namespace,
2200         parent_scope: Option<&ParentScope<'a>>,
2201         record_used: bool,
2202         path_span: Span
2203     ) -> Result<&'a NameBinding<'a>, Determinacy> {
2204         self.resolve_ident_in_module_ext(
2205             module, ident, ns, parent_scope, record_used, path_span
2206         ).map_err(|(determinacy, _)| determinacy)
2207     }
2208
2209     fn resolve_ident_in_module_ext(
2210         &mut self,
2211         module: ModuleOrUniformRoot<'a>,
2212         mut ident: Ident,
2213         ns: Namespace,
2214         parent_scope: Option<&ParentScope<'a>>,
2215         record_used: bool,
2216         path_span: Span
2217     ) -> Result<&'a NameBinding<'a>, (Determinacy, Weak)> {
2218         let orig_current_module = self.current_module;
2219         match module {
2220             ModuleOrUniformRoot::Module(module) => {
2221                 ident.span = ident.span.modern();
2222                 if let Some(def) = ident.span.adjust(module.expansion) {
2223                     self.current_module = self.macro_def_scope(def);
2224                 }
2225             }
2226             ModuleOrUniformRoot::ExternPrelude => {
2227                 ident.span = ident.span.modern();
2228                 ident.span.adjust(Mark::root());
2229             }
2230             ModuleOrUniformRoot::CrateRootAndExternPrelude |
2231             ModuleOrUniformRoot::CurrentScope => {
2232                 // No adjustments
2233             }
2234         }
2235         let result = self.resolve_ident_in_module_unadjusted_ext(
2236             module, ident, ns, parent_scope, false, record_used, path_span,
2237         );
2238         self.current_module = orig_current_module;
2239         result
2240     }
2241
2242     fn resolve_crate_root(&mut self, ident: Ident) -> Module<'a> {
2243         let mut ctxt = ident.span.ctxt();
2244         let mark = if ident.name == keywords::DollarCrate.name() {
2245             // When resolving `$crate` from a `macro_rules!` invoked in a `macro`,
2246             // we don't want to pretend that the `macro_rules!` definition is in the `macro`
2247             // as described in `SyntaxContext::apply_mark`, so we ignore prepended modern marks.
2248             // FIXME: This is only a guess and it doesn't work correctly for `macro_rules!`
2249             // definitions actually produced by `macro` and `macro` definitions produced by
2250             // `macro_rules!`, but at least such configurations are not stable yet.
2251             ctxt = ctxt.modern_and_legacy();
2252             let mut iter = ctxt.marks().into_iter().rev().peekable();
2253             let mut result = None;
2254             // Find the last modern mark from the end if it exists.
2255             while let Some(&(mark, transparency)) = iter.peek() {
2256                 if transparency == Transparency::Opaque {
2257                     result = Some(mark);
2258                     iter.next();
2259                 } else {
2260                     break;
2261                 }
2262             }
2263             // Then find the last legacy mark from the end if it exists.
2264             for (mark, transparency) in iter {
2265                 if transparency == Transparency::SemiTransparent {
2266                     result = Some(mark);
2267                 } else {
2268                     break;
2269                 }
2270             }
2271             result
2272         } else {
2273             ctxt = ctxt.modern();
2274             ctxt.adjust(Mark::root())
2275         };
2276         let module = match mark {
2277             Some(def) => self.macro_def_scope(def),
2278             None => return self.graph_root,
2279         };
2280         self.get_module(DefId { index: CRATE_DEF_INDEX, ..module.normal_ancestor_id })
2281     }
2282
2283     fn resolve_self(&mut self, ctxt: &mut SyntaxContext, module: Module<'a>) -> Module<'a> {
2284         let mut module = self.get_module(module.normal_ancestor_id);
2285         while module.span.ctxt().modern() != *ctxt {
2286             let parent = module.parent.unwrap_or_else(|| self.macro_def_scope(ctxt.remove_mark()));
2287             module = self.get_module(parent.normal_ancestor_id);
2288         }
2289         module
2290     }
2291
2292     // AST resolution
2293     //
2294     // We maintain a list of value ribs and type ribs.
2295     //
2296     // Simultaneously, we keep track of the current position in the module
2297     // graph in the `current_module` pointer. When we go to resolve a name in
2298     // the value or type namespaces, we first look through all the ribs and
2299     // then query the module graph. When we resolve a name in the module
2300     // namespace, we can skip all the ribs (since nested modules are not
2301     // allowed within blocks in Rust) and jump straight to the current module
2302     // graph node.
2303     //
2304     // Named implementations are handled separately. When we find a method
2305     // call, we consult the module node to find all of the implementations in
2306     // scope. This information is lazily cached in the module node. We then
2307     // generate a fake "implementation scope" containing all the
2308     // implementations thus found, for compatibility with old resolve pass.
2309
2310     pub fn with_scope<F, T>(&mut self, id: NodeId, f: F) -> T
2311         where F: FnOnce(&mut Resolver) -> T
2312     {
2313         let id = self.definitions.local_def_id(id);
2314         let module = self.module_map.get(&id).cloned(); // clones a reference
2315         if let Some(module) = module {
2316             // Move down in the graph.
2317             let orig_module = replace(&mut self.current_module, module);
2318             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(module)));
2319             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(module)));
2320
2321             self.finalize_current_module_macro_resolutions();
2322             let ret = f(self);
2323
2324             self.current_module = orig_module;
2325             self.ribs[ValueNS].pop();
2326             self.ribs[TypeNS].pop();
2327             ret
2328         } else {
2329             f(self)
2330         }
2331     }
2332
2333     /// Searches the current set of local scopes for labels. Returns the first non-None label that
2334     /// is returned by the given predicate function
2335     ///
2336     /// Stops after meeting a closure.
2337     fn search_label<P, R>(&self, mut ident: Ident, pred: P) -> Option<R>
2338         where P: Fn(&Rib, Ident) -> Option<R>
2339     {
2340         for rib in self.label_ribs.iter().rev() {
2341             match rib.kind {
2342                 NormalRibKind => {}
2343                 // If an invocation of this macro created `ident`, give up on `ident`
2344                 // and switch to `ident`'s source from the macro definition.
2345                 MacroDefinition(def) => {
2346                     if def == self.macro_def(ident.span.ctxt()) {
2347                         ident.span.remove_mark();
2348                     }
2349                 }
2350                 _ => {
2351                     // Do not resolve labels across function boundary
2352                     return None;
2353                 }
2354             }
2355             let r = pred(rib, ident);
2356             if r.is_some() {
2357                 return r;
2358             }
2359         }
2360         None
2361     }
2362
2363     fn resolve_adt(&mut self, item: &Item, generics: &Generics) {
2364         self.with_current_self_item(item, |this| {
2365             this.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2366                 let item_def_id = this.definitions.local_def_id(item.id);
2367                 this.with_self_rib(Def::SelfTy(None, Some(item_def_id)), |this| {
2368                     visit::walk_item(this, item);
2369                 });
2370             });
2371         });
2372     }
2373
2374     fn future_proof_import(&mut self, use_tree: &ast::UseTree) {
2375         let segments = &use_tree.prefix.segments;
2376         if !segments.is_empty() {
2377             let ident = segments[0].ident;
2378             if ident.is_path_segment_keyword() || ident.span.rust_2015() {
2379                 return;
2380             }
2381
2382             let nss = match use_tree.kind {
2383                 ast::UseTreeKind::Simple(..) if segments.len() == 1 => &[TypeNS, ValueNS][..],
2384                 _ => &[TypeNS],
2385             };
2386             for &ns in nss {
2387                 if let Some(LexicalScopeBinding::Def(..)) =
2388                         self.resolve_ident_in_lexical_scope(ident, ns, None, use_tree.prefix.span) {
2389                     let what = if ns == TypeNS { "type parameters" } else { "local variables" };
2390                     self.session.span_err(ident.span, &format!("imports cannot refer to {}", what));
2391                 }
2392             }
2393         } else if let ast::UseTreeKind::Nested(use_trees) = &use_tree.kind {
2394             for (use_tree, _) in use_trees {
2395                 self.future_proof_import(use_tree);
2396             }
2397         }
2398     }
2399
2400     fn resolve_item(&mut self, item: &Item) {
2401         let name = item.ident.name;
2402         debug!("(resolving item) resolving {}", name);
2403
2404         match item.node {
2405             ItemKind::Ty(_, ref generics) |
2406             ItemKind::Fn(_, _, ref generics, _) |
2407             ItemKind::Existential(_, ref generics) => {
2408                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind),
2409                                              |this| visit::walk_item(this, item));
2410             }
2411
2412             ItemKind::Enum(_, ref generics) |
2413             ItemKind::Struct(_, ref generics) |
2414             ItemKind::Union(_, ref generics) => {
2415                 self.resolve_adt(item, generics);
2416             }
2417
2418             ItemKind::Impl(.., ref generics, ref opt_trait_ref, ref self_type, ref impl_items) =>
2419                 self.resolve_implementation(generics,
2420                                             opt_trait_ref,
2421                                             &self_type,
2422                                             item.id,
2423                                             impl_items),
2424
2425             ItemKind::Trait(.., ref generics, ref bounds, ref trait_items) => {
2426                 // Create a new rib for the trait-wide type parameters.
2427                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2428                     let local_def_id = this.definitions.local_def_id(item.id);
2429                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2430                         this.visit_generics(generics);
2431                         walk_list!(this, visit_param_bound, bounds);
2432
2433                         for trait_item in trait_items {
2434                             let type_parameters = HasTypeParameters(&trait_item.generics,
2435                                                                     TraitOrImplItemRibKind);
2436                             this.with_type_parameter_rib(type_parameters, |this| {
2437                                 match trait_item.node {
2438                                     TraitItemKind::Const(ref ty, ref default) => {
2439                                         this.visit_ty(ty);
2440
2441                                         // Only impose the restrictions of
2442                                         // ConstRibKind for an actual constant
2443                                         // expression in a provided default.
2444                                         if let Some(ref expr) = *default{
2445                                             this.with_constant_rib(|this| {
2446                                                 this.visit_expr(expr);
2447                                             });
2448                                         }
2449                                     }
2450                                     TraitItemKind::Method(_, _) => {
2451                                         visit::walk_trait_item(this, trait_item)
2452                                     }
2453                                     TraitItemKind::Type(..) => {
2454                                         visit::walk_trait_item(this, trait_item)
2455                                     }
2456                                     TraitItemKind::Macro(_) => {
2457                                         panic!("unexpanded macro in resolve!")
2458                                     }
2459                                 };
2460                             });
2461                         }
2462                     });
2463                 });
2464             }
2465
2466             ItemKind::TraitAlias(ref generics, ref bounds) => {
2467                 // Create a new rib for the trait-wide type parameters.
2468                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2469                     let local_def_id = this.definitions.local_def_id(item.id);
2470                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2471                         this.visit_generics(generics);
2472                         walk_list!(this, visit_param_bound, bounds);
2473                     });
2474                 });
2475             }
2476
2477             ItemKind::Mod(_) | ItemKind::ForeignMod(_) => {
2478                 self.with_scope(item.id, |this| {
2479                     visit::walk_item(this, item);
2480                 });
2481             }
2482
2483             ItemKind::Static(ref ty, _, ref expr) |
2484             ItemKind::Const(ref ty, ref expr) => {
2485                 self.with_item_rib(|this| {
2486                     this.visit_ty(ty);
2487                     this.with_constant_rib(|this| {
2488                         this.visit_expr(expr);
2489                     });
2490                 });
2491             }
2492
2493             ItemKind::Use(ref use_tree) => {
2494                 self.future_proof_import(use_tree);
2495             }
2496
2497             ItemKind::ExternCrate(..) |
2498             ItemKind::MacroDef(..) | ItemKind::GlobalAsm(..) => {
2499                 // do nothing, these are just around to be encoded
2500             }
2501
2502             ItemKind::Mac(_) => panic!("unexpanded macro in resolve!"),
2503         }
2504     }
2505
2506     fn with_type_parameter_rib<'b, F>(&'b mut self, type_parameters: TypeParameters<'a, 'b>, f: F)
2507         where F: FnOnce(&mut Resolver)
2508     {
2509         match type_parameters {
2510             HasTypeParameters(generics, rib_kind) => {
2511                 let mut function_type_rib = Rib::new(rib_kind);
2512                 let mut seen_bindings = FxHashMap::default();
2513                 for param in &generics.params {
2514                     match param.kind {
2515                         GenericParamKind::Lifetime { .. } => {}
2516                         GenericParamKind::Type { .. } => {
2517                             let ident = param.ident.modern();
2518                             debug!("with_type_parameter_rib: {}", param.id);
2519
2520                             if seen_bindings.contains_key(&ident) {
2521                                 let span = seen_bindings.get(&ident).unwrap();
2522                                 let err = ResolutionError::NameAlreadyUsedInTypeParameterList(
2523                                     ident.name,
2524                                     span,
2525                                 );
2526                                 resolve_error(self, param.ident.span, err);
2527                             }
2528                             seen_bindings.entry(ident).or_insert(param.ident.span);
2529
2530                         // Plain insert (no renaming).
2531                         let def = Def::TyParam(self.definitions.local_def_id(param.id));
2532                             function_type_rib.bindings.insert(ident, def);
2533                             self.record_def(param.id, PathResolution::new(def));
2534                         }
2535                     }
2536                 }
2537                 self.ribs[TypeNS].push(function_type_rib);
2538             }
2539
2540             NoTypeParameters => {
2541                 // Nothing to do.
2542             }
2543         }
2544
2545         f(self);
2546
2547         if let HasTypeParameters(..) = type_parameters {
2548             self.ribs[TypeNS].pop();
2549         }
2550     }
2551
2552     fn with_label_rib<F>(&mut self, f: F)
2553         where F: FnOnce(&mut Resolver)
2554     {
2555         self.label_ribs.push(Rib::new(NormalRibKind));
2556         f(self);
2557         self.label_ribs.pop();
2558     }
2559
2560     fn with_item_rib<F>(&mut self, f: F)
2561         where F: FnOnce(&mut Resolver)
2562     {
2563         self.ribs[ValueNS].push(Rib::new(ItemRibKind));
2564         self.ribs[TypeNS].push(Rib::new(ItemRibKind));
2565         f(self);
2566         self.ribs[TypeNS].pop();
2567         self.ribs[ValueNS].pop();
2568     }
2569
2570     fn with_constant_rib<F>(&mut self, f: F)
2571         where F: FnOnce(&mut Resolver)
2572     {
2573         self.ribs[ValueNS].push(Rib::new(ConstantItemRibKind));
2574         self.label_ribs.push(Rib::new(ConstantItemRibKind));
2575         f(self);
2576         self.label_ribs.pop();
2577         self.ribs[ValueNS].pop();
2578     }
2579
2580     fn with_current_self_type<T, F>(&mut self, self_type: &Ty, f: F) -> T
2581         where F: FnOnce(&mut Resolver) -> T
2582     {
2583         // Handle nested impls (inside fn bodies)
2584         let previous_value = replace(&mut self.current_self_type, Some(self_type.clone()));
2585         let result = f(self);
2586         self.current_self_type = previous_value;
2587         result
2588     }
2589
2590     fn with_current_self_item<T, F>(&mut self, self_item: &Item, f: F) -> T
2591         where F: FnOnce(&mut Resolver) -> T
2592     {
2593         let previous_value = replace(&mut self.current_self_item, Some(self_item.id));
2594         let result = f(self);
2595         self.current_self_item = previous_value;
2596         result
2597     }
2598
2599     /// This is called to resolve a trait reference from an `impl` (i.e., `impl Trait for Foo`)
2600     fn with_optional_trait_ref<T, F>(&mut self, opt_trait_ref: Option<&TraitRef>, f: F) -> T
2601         where F: FnOnce(&mut Resolver, Option<DefId>) -> T
2602     {
2603         let mut new_val = None;
2604         let mut new_id = None;
2605         if let Some(trait_ref) = opt_trait_ref {
2606             let path: Vec<_> = Segment::from_path(&trait_ref.path);
2607             let def = self.smart_resolve_path_fragment(
2608                 trait_ref.ref_id,
2609                 None,
2610                 &path,
2611                 trait_ref.path.span,
2612                 PathSource::Trait(AliasPossibility::No),
2613                 CrateLint::SimplePath(trait_ref.ref_id),
2614             ).base_def();
2615             if def != Def::Err {
2616                 new_id = Some(def.def_id());
2617                 let span = trait_ref.path.span;
2618                 if let PathResult::Module(ModuleOrUniformRoot::Module(module)) =
2619                     self.resolve_path_without_parent_scope(
2620                         &path,
2621                         Some(TypeNS),
2622                         false,
2623                         span,
2624                         CrateLint::SimplePath(trait_ref.ref_id),
2625                     )
2626                 {
2627                     new_val = Some((module, trait_ref.clone()));
2628                 }
2629             }
2630         }
2631         let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
2632         let result = f(self, new_id);
2633         self.current_trait_ref = original_trait_ref;
2634         result
2635     }
2636
2637     fn with_self_rib<F>(&mut self, self_def: Def, f: F)
2638         where F: FnOnce(&mut Resolver)
2639     {
2640         let mut self_type_rib = Rib::new(NormalRibKind);
2641
2642         // plain insert (no renaming, types are not currently hygienic....)
2643         self_type_rib.bindings.insert(keywords::SelfUpper.ident(), self_def);
2644         self.ribs[TypeNS].push(self_type_rib);
2645         f(self);
2646         self.ribs[TypeNS].pop();
2647     }
2648
2649     fn with_self_struct_ctor_rib<F>(&mut self, impl_id: DefId, f: F)
2650         where F: FnOnce(&mut Resolver)
2651     {
2652         let self_def = Def::SelfCtor(impl_id);
2653         let mut self_type_rib = Rib::new(NormalRibKind);
2654         self_type_rib.bindings.insert(keywords::SelfUpper.ident(), self_def);
2655         self.ribs[ValueNS].push(self_type_rib);
2656         f(self);
2657         self.ribs[ValueNS].pop();
2658     }
2659
2660     fn resolve_implementation(&mut self,
2661                               generics: &Generics,
2662                               opt_trait_reference: &Option<TraitRef>,
2663                               self_type: &Ty,
2664                               item_id: NodeId,
2665                               impl_items: &[ImplItem]) {
2666         // If applicable, create a rib for the type parameters.
2667         self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2668             // Dummy self type for better errors if `Self` is used in the trait path.
2669             this.with_self_rib(Def::SelfTy(None, None), |this| {
2670                 // Resolve the trait reference, if necessary.
2671                 this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| {
2672                     let item_def_id = this.definitions.local_def_id(item_id);
2673                     this.with_self_rib(Def::SelfTy(trait_id, Some(item_def_id)), |this| {
2674                         if let Some(trait_ref) = opt_trait_reference.as_ref() {
2675                             // Resolve type arguments in the trait path.
2676                             visit::walk_trait_ref(this, trait_ref);
2677                         }
2678                         // Resolve the self type.
2679                         this.visit_ty(self_type);
2680                         // Resolve the type parameters.
2681                         this.visit_generics(generics);
2682                         // Resolve the items within the impl.
2683                         this.with_current_self_type(self_type, |this| {
2684                             this.with_self_struct_ctor_rib(item_def_id, |this| {
2685                                 for impl_item in impl_items {
2686                                     this.resolve_visibility(&impl_item.vis);
2687
2688                                     // We also need a new scope for the impl item type parameters.
2689                                     let type_parameters = HasTypeParameters(&impl_item.generics,
2690                                                                             TraitOrImplItemRibKind);
2691                                     this.with_type_parameter_rib(type_parameters, |this| {
2692                                         use self::ResolutionError::*;
2693                                         match impl_item.node {
2694                                             ImplItemKind::Const(..) => {
2695                                                 // If this is a trait impl, ensure the const
2696                                                 // exists in trait
2697                                                 this.check_trait_item(impl_item.ident,
2698                                                                       ValueNS,
2699                                                                       impl_item.span,
2700                                                     |n, s| ConstNotMemberOfTrait(n, s));
2701                                                 this.with_constant_rib(|this|
2702                                                     visit::walk_impl_item(this, impl_item)
2703                                                 );
2704                                             }
2705                                             ImplItemKind::Method(..) => {
2706                                                 // If this is a trait impl, ensure the method
2707                                                 // exists in trait
2708                                                 this.check_trait_item(impl_item.ident,
2709                                                                       ValueNS,
2710                                                                       impl_item.span,
2711                                                     |n, s| MethodNotMemberOfTrait(n, s));
2712
2713                                                 visit::walk_impl_item(this, impl_item);
2714                                             }
2715                                             ImplItemKind::Type(ref ty) => {
2716                                                 // If this is a trait impl, ensure the type
2717                                                 // exists in trait
2718                                                 this.check_trait_item(impl_item.ident,
2719                                                                       TypeNS,
2720                                                                       impl_item.span,
2721                                                     |n, s| TypeNotMemberOfTrait(n, s));
2722
2723                                                 this.visit_ty(ty);
2724                                             }
2725                                             ImplItemKind::Existential(ref bounds) => {
2726                                                 // If this is a trait impl, ensure the type
2727                                                 // exists in trait
2728                                                 this.check_trait_item(impl_item.ident,
2729                                                                       TypeNS,
2730                                                                       impl_item.span,
2731                                                     |n, s| TypeNotMemberOfTrait(n, s));
2732
2733                                                 for bound in bounds {
2734                                                     this.visit_param_bound(bound);
2735                                                 }
2736                                             }
2737                                             ImplItemKind::Macro(_) =>
2738                                                 panic!("unexpanded macro in resolve!"),
2739                                         }
2740                                     });
2741                                 }
2742                             });
2743                         });
2744                     });
2745                 });
2746             });
2747         });
2748     }
2749
2750     fn check_trait_item<F>(&mut self, ident: Ident, ns: Namespace, span: Span, err: F)
2751         where F: FnOnce(Name, &str) -> ResolutionError
2752     {
2753         // If there is a TraitRef in scope for an impl, then the method must be in the
2754         // trait.
2755         if let Some((module, _)) = self.current_trait_ref {
2756             if self.resolve_ident_in_module(
2757                 ModuleOrUniformRoot::Module(module),
2758                 ident,
2759                 ns,
2760                 None,
2761                 false,
2762                 span,
2763             ).is_err() {
2764                 let path = &self.current_trait_ref.as_ref().unwrap().1.path;
2765                 resolve_error(self, span, err(ident.name, &path_names_to_string(path)));
2766             }
2767         }
2768     }
2769
2770     fn resolve_local(&mut self, local: &Local) {
2771         // Resolve the type.
2772         walk_list!(self, visit_ty, &local.ty);
2773
2774         // Resolve the initializer.
2775         walk_list!(self, visit_expr, &local.init);
2776
2777         // Resolve the pattern.
2778         self.resolve_pattern(&local.pat, PatternSource::Let, &mut FxHashMap::default());
2779     }
2780
2781     // build a map from pattern identifiers to binding-info's.
2782     // this is done hygienically. This could arise for a macro
2783     // that expands into an or-pattern where one 'x' was from the
2784     // user and one 'x' came from the macro.
2785     fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
2786         let mut binding_map = FxHashMap::default();
2787
2788         pat.walk(&mut |pat| {
2789             if let PatKind::Ident(binding_mode, ident, ref sub_pat) = pat.node {
2790                 if sub_pat.is_some() || match self.def_map.get(&pat.id).map(|res| res.base_def()) {
2791                     Some(Def::Local(..)) => true,
2792                     _ => false,
2793                 } {
2794                     let binding_info = BindingInfo { span: ident.span, binding_mode: binding_mode };
2795                     binding_map.insert(ident, binding_info);
2796                 }
2797             }
2798             true
2799         });
2800
2801         binding_map
2802     }
2803
2804     // check that all of the arms in an or-pattern have exactly the
2805     // same set of bindings, with the same binding modes for each.
2806     fn check_consistent_bindings(&mut self, pats: &[P<Pat>]) {
2807         if pats.is_empty() {
2808             return;
2809         }
2810
2811         let mut missing_vars = FxHashMap::default();
2812         let mut inconsistent_vars = FxHashMap::default();
2813         for (i, p) in pats.iter().enumerate() {
2814             let map_i = self.binding_mode_map(&p);
2815
2816             for (j, q) in pats.iter().enumerate() {
2817                 if i == j {
2818                     continue;
2819                 }
2820
2821                 let map_j = self.binding_mode_map(&q);
2822                 for (&key, &binding_i) in &map_i {
2823                     if map_j.is_empty() {                   // Account for missing bindings when
2824                         let binding_error = missing_vars    // map_j has none.
2825                             .entry(key.name)
2826                             .or_insert(BindingError {
2827                                 name: key.name,
2828                                 origin: BTreeSet::new(),
2829                                 target: BTreeSet::new(),
2830                             });
2831                         binding_error.origin.insert(binding_i.span);
2832                         binding_error.target.insert(q.span);
2833                     }
2834                     for (&key_j, &binding_j) in &map_j {
2835                         match map_i.get(&key_j) {
2836                             None => {  // missing binding
2837                                 let binding_error = missing_vars
2838                                     .entry(key_j.name)
2839                                     .or_insert(BindingError {
2840                                         name: key_j.name,
2841                                         origin: BTreeSet::new(),
2842                                         target: BTreeSet::new(),
2843                                     });
2844                                 binding_error.origin.insert(binding_j.span);
2845                                 binding_error.target.insert(p.span);
2846                             }
2847                             Some(binding_i) => {  // check consistent binding
2848                                 if binding_i.binding_mode != binding_j.binding_mode {
2849                                     inconsistent_vars
2850                                         .entry(key.name)
2851                                         .or_insert((binding_j.span, binding_i.span));
2852                                 }
2853                             }
2854                         }
2855                     }
2856                 }
2857             }
2858         }
2859         let mut missing_vars = missing_vars.iter().collect::<Vec<_>>();
2860         missing_vars.sort();
2861         for (_, v) in missing_vars {
2862             resolve_error(self,
2863                           *v.origin.iter().next().unwrap(),
2864                           ResolutionError::VariableNotBoundInPattern(v));
2865         }
2866         let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
2867         inconsistent_vars.sort();
2868         for (name, v) in inconsistent_vars {
2869             resolve_error(self, v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
2870         }
2871     }
2872
2873     fn resolve_arm(&mut self, arm: &Arm) {
2874         self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2875
2876         let mut bindings_list = FxHashMap::default();
2877         for pattern in &arm.pats {
2878             self.resolve_pattern(&pattern, PatternSource::Match, &mut bindings_list);
2879         }
2880
2881         // This has to happen *after* we determine which pat_idents are variants.
2882         self.check_consistent_bindings(&arm.pats);
2883
2884         if let Some(ast::Guard::If(ref expr)) = arm.guard {
2885             self.visit_expr(expr)
2886         }
2887         self.visit_expr(&arm.body);
2888
2889         self.ribs[ValueNS].pop();
2890     }
2891
2892     fn resolve_block(&mut self, block: &Block) {
2893         debug!("(resolving block) entering block");
2894         // Move down in the graph, if there's an anonymous module rooted here.
2895         let orig_module = self.current_module;
2896         let anonymous_module = self.block_map.get(&block.id).cloned(); // clones a reference
2897
2898         let mut num_macro_definition_ribs = 0;
2899         if let Some(anonymous_module) = anonymous_module {
2900             debug!("(resolving block) found anonymous module, moving down");
2901             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2902             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2903             self.current_module = anonymous_module;
2904             self.finalize_current_module_macro_resolutions();
2905         } else {
2906             self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2907         }
2908
2909         // Descend into the block.
2910         for stmt in &block.stmts {
2911             if let ast::StmtKind::Item(ref item) = stmt.node {
2912                 if let ast::ItemKind::MacroDef(..) = item.node {
2913                     num_macro_definition_ribs += 1;
2914                     let def = self.definitions.local_def_id(item.id);
2915                     self.ribs[ValueNS].push(Rib::new(MacroDefinition(def)));
2916                     self.label_ribs.push(Rib::new(MacroDefinition(def)));
2917                 }
2918             }
2919
2920             self.visit_stmt(stmt);
2921         }
2922
2923         // Move back up.
2924         self.current_module = orig_module;
2925         for _ in 0 .. num_macro_definition_ribs {
2926             self.ribs[ValueNS].pop();
2927             self.label_ribs.pop();
2928         }
2929         self.ribs[ValueNS].pop();
2930         if anonymous_module.is_some() {
2931             self.ribs[TypeNS].pop();
2932         }
2933         debug!("(resolving block) leaving block");
2934     }
2935
2936     fn fresh_binding(&mut self,
2937                      ident: Ident,
2938                      pat_id: NodeId,
2939                      outer_pat_id: NodeId,
2940                      pat_src: PatternSource,
2941                      bindings: &mut FxHashMap<Ident, NodeId>)
2942                      -> PathResolution {
2943         // Add the binding to the local ribs, if it
2944         // doesn't already exist in the bindings map. (We
2945         // must not add it if it's in the bindings map
2946         // because that breaks the assumptions later
2947         // passes make about or-patterns.)
2948         let ident = ident.modern_and_legacy();
2949         let mut def = Def::Local(pat_id);
2950         match bindings.get(&ident).cloned() {
2951             Some(id) if id == outer_pat_id => {
2952                 // `Variant(a, a)`, error
2953                 resolve_error(
2954                     self,
2955                     ident.span,
2956                     ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(
2957                         &ident.as_str())
2958                 );
2959             }
2960             Some(..) if pat_src == PatternSource::FnParam => {
2961                 // `fn f(a: u8, a: u8)`, error
2962                 resolve_error(
2963                     self,
2964                     ident.span,
2965                     ResolutionError::IdentifierBoundMoreThanOnceInParameterList(
2966                         &ident.as_str())
2967                 );
2968             }
2969             Some(..) if pat_src == PatternSource::Match ||
2970                         pat_src == PatternSource::IfLet ||
2971                         pat_src == PatternSource::WhileLet => {
2972                 // `Variant1(a) | Variant2(a)`, ok
2973                 // Reuse definition from the first `a`.
2974                 def = self.ribs[ValueNS].last_mut().unwrap().bindings[&ident];
2975             }
2976             Some(..) => {
2977                 span_bug!(ident.span, "two bindings with the same name from \
2978                                        unexpected pattern source {:?}", pat_src);
2979             }
2980             None => {
2981                 // A completely fresh binding, add to the lists if it's valid.
2982                 if ident.name != keywords::Invalid.name() {
2983                     bindings.insert(ident, outer_pat_id);
2984                     self.ribs[ValueNS].last_mut().unwrap().bindings.insert(ident, def);
2985                 }
2986             }
2987         }
2988
2989         PathResolution::new(def)
2990     }
2991
2992     fn resolve_pattern(&mut self,
2993                        pat: &Pat,
2994                        pat_src: PatternSource,
2995                        // Maps idents to the node ID for the
2996                        // outermost pattern that binds them.
2997                        bindings: &mut FxHashMap<Ident, NodeId>) {
2998         // Visit all direct subpatterns of this pattern.
2999         let outer_pat_id = pat.id;
3000         pat.walk(&mut |pat| {
3001             debug!("resolve_pattern pat={:?} node={:?}", pat, pat.node);
3002             match pat.node {
3003                 PatKind::Ident(bmode, ident, ref opt_pat) => {
3004                     // First try to resolve the identifier as some existing
3005                     // entity, then fall back to a fresh binding.
3006                     let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS,
3007                                                                       None, pat.span)
3008                                       .and_then(LexicalScopeBinding::item);
3009                     let resolution = binding.map(NameBinding::def).and_then(|def| {
3010                         let is_syntactic_ambiguity = opt_pat.is_none() &&
3011                             bmode == BindingMode::ByValue(Mutability::Immutable);
3012                         match def {
3013                             Def::StructCtor(_, CtorKind::Const) |
3014                             Def::VariantCtor(_, CtorKind::Const) |
3015                             Def::Const(..) if is_syntactic_ambiguity => {
3016                                 // Disambiguate in favor of a unit struct/variant
3017                                 // or constant pattern.
3018                                 self.record_use(ident, ValueNS, binding.unwrap(), false);
3019                                 Some(PathResolution::new(def))
3020                             }
3021                             Def::StructCtor(..) | Def::VariantCtor(..) |
3022                             Def::Const(..) | Def::Static(..) => {
3023                                 // This is unambiguously a fresh binding, either syntactically
3024                                 // (e.g., `IDENT @ PAT` or `ref IDENT`) or because `IDENT` resolves
3025                                 // to something unusable as a pattern (e.g., constructor function),
3026                                 // but we still conservatively report an error, see
3027                                 // issues/33118#issuecomment-233962221 for one reason why.
3028                                 resolve_error(
3029                                     self,
3030                                     ident.span,
3031                                     ResolutionError::BindingShadowsSomethingUnacceptable(
3032                                         pat_src.descr(), ident.name, binding.unwrap())
3033                                 );
3034                                 None
3035                             }
3036                             Def::Fn(..) | Def::Err => {
3037                                 // These entities are explicitly allowed
3038                                 // to be shadowed by fresh bindings.
3039                                 None
3040                             }
3041                             def => {
3042                                 span_bug!(ident.span, "unexpected definition for an \
3043                                                        identifier in pattern: {:?}", def);
3044                             }
3045                         }
3046                     }).unwrap_or_else(|| {
3047                         self.fresh_binding(ident, pat.id, outer_pat_id, pat_src, bindings)
3048                     });
3049
3050                     self.record_def(pat.id, resolution);
3051                 }
3052
3053                 PatKind::TupleStruct(ref path, ..) => {
3054                     self.smart_resolve_path(pat.id, None, path, PathSource::TupleStruct);
3055                 }
3056
3057                 PatKind::Path(ref qself, ref path) => {
3058                     self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
3059                 }
3060
3061                 PatKind::Struct(ref path, ..) => {
3062                     self.smart_resolve_path(pat.id, None, path, PathSource::Struct);
3063                 }
3064
3065                 _ => {}
3066             }
3067             true
3068         });
3069
3070         visit::walk_pat(self, pat);
3071     }
3072
3073     // High-level and context dependent path resolution routine.
3074     // Resolves the path and records the resolution into definition map.
3075     // If resolution fails tries several techniques to find likely
3076     // resolution candidates, suggest imports or other help, and report
3077     // errors in user friendly way.
3078     fn smart_resolve_path(&mut self,
3079                           id: NodeId,
3080                           qself: Option<&QSelf>,
3081                           path: &Path,
3082                           source: PathSource)
3083                           -> PathResolution {
3084         self.smart_resolve_path_with_crate_lint(id, qself, path, source, CrateLint::SimplePath(id))
3085     }
3086
3087     /// A variant of `smart_resolve_path` where you also specify extra
3088     /// information about where the path came from; this extra info is
3089     /// sometimes needed for the lint that recommends rewriting
3090     /// absolute paths to `crate`, so that it knows how to frame the
3091     /// suggestion. If you are just resolving a path like `foo::bar`
3092     /// that appears...somewhere, though, then you just want
3093     /// `CrateLint::SimplePath`, which is what `smart_resolve_path`
3094     /// already provides.
3095     fn smart_resolve_path_with_crate_lint(
3096         &mut self,
3097         id: NodeId,
3098         qself: Option<&QSelf>,
3099         path: &Path,
3100         source: PathSource,
3101         crate_lint: CrateLint
3102     ) -> PathResolution {
3103         self.smart_resolve_path_fragment(
3104             id,
3105             qself,
3106             &Segment::from_path(path),
3107             path.span,
3108             source,
3109             crate_lint,
3110         )
3111     }
3112
3113     fn smart_resolve_path_fragment(&mut self,
3114                                    id: NodeId,
3115                                    qself: Option<&QSelf>,
3116                                    path: &[Segment],
3117                                    span: Span,
3118                                    source: PathSource,
3119                                    crate_lint: CrateLint)
3120                                    -> PathResolution {
3121         let ident_span = path.last().map_or(span, |ident| ident.ident.span);
3122         let ns = source.namespace();
3123         let is_expected = &|def| source.is_expected(def);
3124         let is_enum_variant = &|def| if let Def::Variant(..) = def { true } else { false };
3125
3126         // Base error is amended with one short label and possibly some longer helps/notes.
3127         let report_errors = |this: &mut Self, def: Option<Def>| {
3128             // Make the base error.
3129             let expected = source.descr_expected();
3130             let path_str = Segment::names_to_string(path);
3131             let item_str = path.last().unwrap().ident;
3132             let code = source.error_code(def.is_some());
3133             let (base_msg, fallback_label, base_span) = if let Some(def) = def {
3134                 (format!("expected {}, found {} `{}`", expected, def.kind_name(), path_str),
3135                  format!("not a {}", expected),
3136                  span)
3137             } else {
3138                 let item_span = path.last().unwrap().ident.span;
3139                 let (mod_prefix, mod_str) = if path.len() == 1 {
3140                     (String::new(), "this scope".to_string())
3141                 } else if path.len() == 2 && path[0].ident.name == keywords::PathRoot.name() {
3142                     (String::new(), "the crate root".to_string())
3143                 } else {
3144                     let mod_path = &path[..path.len() - 1];
3145                     let mod_prefix = match this.resolve_path_without_parent_scope(
3146                         mod_path, Some(TypeNS), false, span, CrateLint::No
3147                     ) {
3148                         PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3149                             module.def(),
3150                         _ => None,
3151                     }.map_or(String::new(), |def| format!("{} ", def.kind_name()));
3152                     (mod_prefix, format!("`{}`", Segment::names_to_string(mod_path)))
3153                 };
3154                 (format!("cannot find {} `{}` in {}{}", expected, item_str, mod_prefix, mod_str),
3155                  format!("not found in {}", mod_str),
3156                  item_span)
3157             };
3158
3159             let code = DiagnosticId::Error(code.into());
3160             let mut err = this.session.struct_span_err_with_code(base_span, &base_msg, code);
3161
3162             // Emit help message for fake-self from other languages like `this`(javascript)
3163             if ["this", "my"].contains(&&*item_str.as_str())
3164                 && this.self_value_is_available(path[0].ident.span, span) {
3165                 err.span_suggestion_with_applicability(
3166                     span,
3167                     "did you mean",
3168                     "self".to_string(),
3169                     Applicability::MaybeIncorrect,
3170                 );
3171             }
3172
3173             // Emit special messages for unresolved `Self` and `self`.
3174             if is_self_type(path, ns) {
3175                 __diagnostic_used!(E0411);
3176                 err.code(DiagnosticId::Error("E0411".into()));
3177                 err.span_label(span, format!("`Self` is only available in impls, traits, \
3178                                               and type definitions"));
3179                 return (err, Vec::new());
3180             }
3181             if is_self_value(path, ns) {
3182                 debug!("smart_resolve_path_fragment E0424 source:{:?}", source);
3183
3184                 __diagnostic_used!(E0424);
3185                 err.code(DiagnosticId::Error("E0424".into()));
3186                 err.span_label(span, match source {
3187                     PathSource::Pat => {
3188                         format!("`self` value is a keyword \
3189                                 and may not be bound to \
3190                                 variables or shadowed")
3191                     }
3192                     _ => {
3193                         format!("`self` value is a keyword \
3194                                 only available in methods \
3195                                 with `self` parameter")
3196                     }
3197                 });
3198                 return (err, Vec::new());
3199             }
3200
3201             // Try to lookup the name in more relaxed fashion for better error reporting.
3202             let ident = path.last().unwrap().ident;
3203             let candidates = this.lookup_import_candidates(ident, ns, is_expected);
3204             if candidates.is_empty() && is_expected(Def::Enum(DefId::local(CRATE_DEF_INDEX))) {
3205                 let enum_candidates =
3206                     this.lookup_import_candidates(ident, ns, is_enum_variant);
3207                 let mut enum_candidates = enum_candidates.iter()
3208                     .map(|suggestion| {
3209                         import_candidate_to_enum_paths(&suggestion)
3210                     }).collect::<Vec<_>>();
3211                 enum_candidates.sort();
3212
3213                 if !enum_candidates.is_empty() {
3214                     // contextualize for E0412 "cannot find type", but don't belabor the point
3215                     // (that it's a variant) for E0573 "expected type, found variant"
3216                     let preamble = if def.is_none() {
3217                         let others = match enum_candidates.len() {
3218                             1 => String::new(),
3219                             2 => " and 1 other".to_owned(),
3220                             n => format!(" and {} others", n)
3221                         };
3222                         format!("there is an enum variant `{}`{}; ",
3223                                 enum_candidates[0].0, others)
3224                     } else {
3225                         String::new()
3226                     };
3227                     let msg = format!("{}try using the variant's enum", preamble);
3228
3229                     err.span_suggestions_with_applicability(
3230                         span,
3231                         &msg,
3232                         enum_candidates.into_iter()
3233                             .map(|(_variant_path, enum_ty_path)| enum_ty_path)
3234                             // variants reëxported in prelude doesn't mean `prelude::v1` is the
3235                             // type name! FIXME: is there a more principled way to do this that
3236                             // would work for other reëxports?
3237                             .filter(|enum_ty_path| enum_ty_path != "std::prelude::v1")
3238                             // also say `Option` rather than `std::prelude::v1::Option`
3239                             .map(|enum_ty_path| {
3240                                 // FIXME #56861: DRYer prelude filtering
3241                                 enum_ty_path.trim_start_matches("std::prelude::v1::").to_owned()
3242                             }),
3243                         Applicability::MachineApplicable,
3244                     );
3245                 }
3246             }
3247             if path.len() == 1 && this.self_type_is_available(span) {
3248                 if let Some(candidate) = this.lookup_assoc_candidate(ident, ns, is_expected) {
3249                     let self_is_available = this.self_value_is_available(path[0].ident.span, span);
3250                     match candidate {
3251                         AssocSuggestion::Field => {
3252                             err.span_suggestion_with_applicability(
3253                                 span,
3254                                 "try",
3255                                 format!("self.{}", path_str),
3256                                 Applicability::MachineApplicable,
3257                             );
3258                             if !self_is_available {
3259                                 err.span_label(span, format!("`self` value is a keyword \
3260                                                                only available in \
3261                                                                methods with `self` parameter"));
3262                             }
3263                         }
3264                         AssocSuggestion::MethodWithSelf if self_is_available => {
3265                             err.span_suggestion_with_applicability(
3266                                 span,
3267                                 "try",
3268                                 format!("self.{}", path_str),
3269                                 Applicability::MachineApplicable,
3270                             );
3271                         }
3272                         AssocSuggestion::MethodWithSelf | AssocSuggestion::AssocItem => {
3273                             err.span_suggestion_with_applicability(
3274                                 span,
3275                                 "try",
3276                                 format!("Self::{}", path_str),
3277                                 Applicability::MachineApplicable,
3278                             );
3279                         }
3280                     }
3281                     return (err, candidates);
3282                 }
3283             }
3284
3285             let mut levenshtein_worked = false;
3286
3287             // Try Levenshtein algorithm.
3288             if let Some(candidate) = this.lookup_typo_candidate(path, ns, is_expected, span) {
3289                 err.span_label(ident_span, format!("did you mean `{}`?", candidate));
3290                 levenshtein_worked = true;
3291             }
3292
3293             // Try context dependent help if relaxed lookup didn't work.
3294             if let Some(def) = def {
3295                 match (def, source) {
3296                     (Def::Macro(..), _) => {
3297                         err.span_label(span, format!("did you mean `{}!(...)`?", path_str));
3298                         return (err, candidates);
3299                     }
3300                     (Def::TyAlias(..), PathSource::Trait(_)) => {
3301                         err.span_label(span, "type aliases cannot be used as traits");
3302                         if nightly_options::is_nightly_build() {
3303                             err.note("did you mean to use a trait alias?");
3304                         }
3305                         return (err, candidates);
3306                     }
3307                     (Def::Mod(..), PathSource::Expr(Some(parent))) => match parent.node {
3308                         ExprKind::Field(_, ident) => {
3309                             err.span_label(parent.span, format!("did you mean `{}::{}`?",
3310                                                                  path_str, ident));
3311                             return (err, candidates);
3312                         }
3313                         ExprKind::MethodCall(ref segment, ..) => {
3314                             err.span_label(parent.span, format!("did you mean `{}::{}(...)`?",
3315                                                                  path_str, segment.ident));
3316                             return (err, candidates);
3317                         }
3318                         _ => {}
3319                     },
3320                     (Def::Enum(..), PathSource::TupleStruct)
3321                         | (Def::Enum(..), PathSource::Expr(..))  => {
3322                         if let Some(variants) = this.collect_enum_variants(def) {
3323                             err.note(&format!("did you mean to use one \
3324                                                of the following variants?\n{}",
3325                                 variants.iter()
3326                                     .map(|suggestion| path_names_to_string(suggestion))
3327                                     .map(|suggestion| format!("- `{}`", suggestion))
3328                                     .collect::<Vec<_>>()
3329                                     .join("\n")));
3330
3331                         } else {
3332                             err.note("did you mean to use one of the enum's variants?");
3333                         }
3334                         return (err, candidates);
3335                     },
3336                     (Def::Struct(def_id), _) if ns == ValueNS => {
3337                         if let Some((ctor_def, ctor_vis))
3338                                 = this.struct_constructors.get(&def_id).cloned() {
3339                             let accessible_ctor = this.is_accessible(ctor_vis);
3340                             if is_expected(ctor_def) && !accessible_ctor {
3341                                 err.span_label(span, format!("constructor is not visible \
3342                                                               here due to private fields"));
3343                             }
3344                         } else {
3345                             // HACK(estebank): find a better way to figure out that this was a
3346                             // parser issue where a struct literal is being used on an expression
3347                             // where a brace being opened means a block is being started. Look
3348                             // ahead for the next text to see if `span` is followed by a `{`.
3349                             let sm = this.session.source_map();
3350                             let mut sp = span;
3351                             loop {
3352                                 sp = sm.next_point(sp);
3353                                 match sm.span_to_snippet(sp) {
3354                                     Ok(ref snippet) => {
3355                                         if snippet.chars().any(|c| { !c.is_whitespace() }) {
3356                                             break;
3357                                         }
3358                                     }
3359                                     _ => break,
3360                                 }
3361                             }
3362                             let followed_by_brace = match sm.span_to_snippet(sp) {
3363                                 Ok(ref snippet) if snippet == "{" => true,
3364                                 _ => false,
3365                             };
3366                             match source {
3367                                 PathSource::Expr(Some(parent)) => {
3368                                     match parent.node {
3369                                         ExprKind::MethodCall(ref path_assignment, _)  => {
3370                                             err.span_suggestion_with_applicability(
3371                                                 sm.start_point(parent.span)
3372                                                   .to(path_assignment.ident.span),
3373                                                 "use `::` to access an associated function",
3374                                                 format!("{}::{}",
3375                                                         path_str,
3376                                                         path_assignment.ident),
3377                                                 Applicability::MaybeIncorrect
3378                                             );
3379                                             return (err, candidates);
3380                                         },
3381                                         _ => {
3382                                             err.span_label(
3383                                                 span,
3384                                                 format!("did you mean `{} {{ /* fields */ }}`?",
3385                                                         path_str),
3386                                             );
3387                                             return (err, candidates);
3388                                         },
3389                                     }
3390                                 },
3391                                 PathSource::Expr(None) if followed_by_brace == true => {
3392                                     err.span_label(
3393                                         span,
3394                                         format!("did you mean `({} {{ /* fields */ }})`?",
3395                                                 path_str),
3396                                     );
3397                                     return (err, candidates);
3398                                 },
3399                                 _ => {
3400                                     err.span_label(
3401                                         span,
3402                                         format!("did you mean `{} {{ /* fields */ }}`?",
3403                                                 path_str),
3404                                     );
3405                                     return (err, candidates);
3406                                 },
3407                             }
3408                         }
3409                         return (err, candidates);
3410                     }
3411                     (Def::Union(..), _) |
3412                     (Def::Variant(..), _) |
3413                     (Def::VariantCtor(_, CtorKind::Fictive), _) if ns == ValueNS => {
3414                         err.span_label(span, format!("did you mean `{} {{ /* fields */ }}`?",
3415                                                      path_str));
3416                         return (err, candidates);
3417                     }
3418                     (Def::SelfTy(..), _) if ns == ValueNS => {
3419                         err.span_label(span, fallback_label);
3420                         err.note("can't use `Self` as a constructor, you must use the \
3421                                   implemented struct");
3422                         return (err, candidates);
3423                     }
3424                     (Def::TyAlias(_), _) | (Def::AssociatedTy(..), _) if ns == ValueNS => {
3425                         err.note("can't use a type alias as a constructor");
3426                         return (err, candidates);
3427                     }
3428                     _ => {}
3429                 }
3430             }
3431
3432             // Fallback label.
3433             if !levenshtein_worked {
3434                 err.span_label(base_span, fallback_label);
3435                 this.type_ascription_suggestion(&mut err, base_span);
3436             }
3437             (err, candidates)
3438         };
3439         let report_errors = |this: &mut Self, def: Option<Def>| {
3440             let (err, candidates) = report_errors(this, def);
3441             let def_id = this.current_module.normal_ancestor_id;
3442             let node_id = this.definitions.as_local_node_id(def_id).unwrap();
3443             let better = def.is_some();
3444             this.use_injections.push(UseError { err, candidates, node_id, better });
3445             err_path_resolution()
3446         };
3447
3448         let resolution = match self.resolve_qpath_anywhere(
3449             id,
3450             qself,
3451             path,
3452             ns,
3453             span,
3454             source.defer_to_typeck(),
3455             source.global_by_default(),
3456             crate_lint,
3457         ) {
3458             Some(resolution) if resolution.unresolved_segments() == 0 => {
3459                 if is_expected(resolution.base_def()) || resolution.base_def() == Def::Err {
3460                     resolution
3461                 } else {
3462                     // Add a temporary hack to smooth the transition to new struct ctor
3463                     // visibility rules. See #38932 for more details.
3464                     let mut res = None;
3465                     if let Def::Struct(def_id) = resolution.base_def() {
3466                         if let Some((ctor_def, ctor_vis))
3467                                 = self.struct_constructors.get(&def_id).cloned() {
3468                             if is_expected(ctor_def) && self.is_accessible(ctor_vis) {
3469                                 let lint = lint::builtin::LEGACY_CONSTRUCTOR_VISIBILITY;
3470                                 self.session.buffer_lint(lint, id, span,
3471                                     "private struct constructors are not usable through \
3472                                      re-exports in outer modules",
3473                                 );
3474                                 res = Some(PathResolution::new(ctor_def));
3475                             }
3476                         }
3477                     }
3478
3479                     res.unwrap_or_else(|| report_errors(self, Some(resolution.base_def())))
3480                 }
3481             }
3482             Some(resolution) if source.defer_to_typeck() => {
3483                 // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
3484                 // or `<T>::A::B`. If `B` should be resolved in value namespace then
3485                 // it needs to be added to the trait map.
3486                 if ns == ValueNS {
3487                     let item_name = path.last().unwrap().ident;
3488                     let traits = self.get_traits_containing_item(item_name, ns);
3489                     self.trait_map.insert(id, traits);
3490                 }
3491                 resolution
3492             }
3493             _ => report_errors(self, None)
3494         };
3495
3496         if let PathSource::TraitItem(..) = source {} else {
3497             // Avoid recording definition of `A::B` in `<T as A>::B::C`.
3498             self.record_def(id, resolution);
3499         }
3500         resolution
3501     }
3502
3503     fn type_ascription_suggestion(&self,
3504                                   err: &mut DiagnosticBuilder,
3505                                   base_span: Span) {
3506         debug!("type_ascription_suggetion {:?}", base_span);
3507         let cm = self.session.source_map();
3508         debug!("self.current_type_ascription {:?}", self.current_type_ascription);
3509         if let Some(sp) = self.current_type_ascription.last() {
3510             let mut sp = *sp;
3511             loop {  // try to find the `:`, bail on first non-':'/non-whitespace
3512                 sp = cm.next_point(sp);
3513                 if let Ok(snippet) = cm.span_to_snippet(sp.to(cm.next_point(sp))) {
3514                     debug!("snippet {:?}", snippet);
3515                     let line_sp = cm.lookup_char_pos(sp.hi()).line;
3516                     let line_base_sp = cm.lookup_char_pos(base_span.lo()).line;
3517                     debug!("{:?} {:?}", line_sp, line_base_sp);
3518                     if snippet == ":" {
3519                         err.span_label(base_span,
3520                                        "expecting a type here because of type ascription");
3521                         if line_sp != line_base_sp {
3522                             err.span_suggestion_short_with_applicability(
3523                                 sp,
3524                                 "did you mean to use `;` here instead?",
3525                                 ";".to_string(),
3526                                 Applicability::MaybeIncorrect,
3527                             );
3528                         }
3529                         break;
3530                     } else if !snippet.trim().is_empty() {
3531                         debug!("tried to find type ascription `:` token, couldn't find it");
3532                         break;
3533                     }
3534                 } else {
3535                     break;
3536                 }
3537             }
3538         }
3539     }
3540
3541     fn self_type_is_available(&mut self, span: Span) -> bool {
3542         let binding = self.resolve_ident_in_lexical_scope(keywords::SelfUpper.ident(),
3543                                                           TypeNS, None, span);
3544         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3545     }
3546
3547     fn self_value_is_available(&mut self, self_span: Span, path_span: Span) -> bool {
3548         let ident = Ident::new(keywords::SelfLower.name(), self_span);
3549         let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, None, path_span);
3550         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3551     }
3552
3553     // Resolve in alternative namespaces if resolution in the primary namespace fails.
3554     fn resolve_qpath_anywhere(&mut self,
3555                               id: NodeId,
3556                               qself: Option<&QSelf>,
3557                               path: &[Segment],
3558                               primary_ns: Namespace,
3559                               span: Span,
3560                               defer_to_typeck: bool,
3561                               global_by_default: bool,
3562                               crate_lint: CrateLint)
3563                               -> Option<PathResolution> {
3564         let mut fin_res = None;
3565         // FIXME: can't resolve paths in macro namespace yet, macros are
3566         // processed by the little special hack below.
3567         for (i, ns) in [primary_ns, TypeNS, ValueNS, /*MacroNS*/].iter().cloned().enumerate() {
3568             if i == 0 || ns != primary_ns {
3569                 match self.resolve_qpath(id, qself, path, ns, span, global_by_default, crate_lint) {
3570                     // If defer_to_typeck, then resolution > no resolution,
3571                     // otherwise full resolution > partial resolution > no resolution.
3572                     Some(res) if res.unresolved_segments() == 0 || defer_to_typeck =>
3573                         return Some(res),
3574                     res => if fin_res.is_none() { fin_res = res },
3575                 };
3576             }
3577         }
3578         if primary_ns != MacroNS &&
3579            (self.macro_names.contains(&path[0].ident.modern()) ||
3580             self.builtin_macros.get(&path[0].ident.name).cloned()
3581                                .and_then(NameBinding::macro_kind) == Some(MacroKind::Bang) ||
3582             self.macro_use_prelude.get(&path[0].ident.name).cloned()
3583                                   .and_then(NameBinding::macro_kind) == Some(MacroKind::Bang)) {
3584             // Return some dummy definition, it's enough for error reporting.
3585             return Some(
3586                 PathResolution::new(Def::Macro(DefId::local(CRATE_DEF_INDEX), MacroKind::Bang))
3587             );
3588         }
3589         fin_res
3590     }
3591
3592     /// Handles paths that may refer to associated items.
3593     fn resolve_qpath(&mut self,
3594                      id: NodeId,
3595                      qself: Option<&QSelf>,
3596                      path: &[Segment],
3597                      ns: Namespace,
3598                      span: Span,
3599                      global_by_default: bool,
3600                      crate_lint: CrateLint)
3601                      -> Option<PathResolution> {
3602         debug!(
3603             "resolve_qpath(id={:?}, qself={:?}, path={:?}, \
3604              ns={:?}, span={:?}, global_by_default={:?})",
3605             id,
3606             qself,
3607             path,
3608             ns,
3609             span,
3610             global_by_default,
3611         );
3612
3613         if let Some(qself) = qself {
3614             if qself.position == 0 {
3615                 // This is a case like `<T>::B`, where there is no
3616                 // trait to resolve.  In that case, we leave the `B`
3617                 // segment to be resolved by type-check.
3618                 return Some(PathResolution::with_unresolved_segments(
3619                     Def::Mod(DefId::local(CRATE_DEF_INDEX)), path.len()
3620                 ));
3621             }
3622
3623             // Make sure `A::B` in `<T as A::B>::C` is a trait item.
3624             //
3625             // Currently, `path` names the full item (`A::B::C`, in
3626             // our example).  so we extract the prefix of that that is
3627             // the trait (the slice upto and including
3628             // `qself.position`). And then we recursively resolve that,
3629             // but with `qself` set to `None`.
3630             //
3631             // However, setting `qself` to none (but not changing the
3632             // span) loses the information about where this path
3633             // *actually* appears, so for the purposes of the crate
3634             // lint we pass along information that this is the trait
3635             // name from a fully qualified path, and this also
3636             // contains the full span (the `CrateLint::QPathTrait`).
3637             let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
3638             let res = self.smart_resolve_path_fragment(
3639                 id,
3640                 None,
3641                 &path[..=qself.position],
3642                 span,
3643                 PathSource::TraitItem(ns),
3644                 CrateLint::QPathTrait {
3645                     qpath_id: id,
3646                     qpath_span: qself.path_span,
3647                 },
3648             );
3649
3650             // The remaining segments (the `C` in our example) will
3651             // have to be resolved by type-check, since that requires doing
3652             // trait resolution.
3653             return Some(PathResolution::with_unresolved_segments(
3654                 res.base_def(), res.unresolved_segments() + path.len() - qself.position - 1
3655             ));
3656         }
3657
3658         let result = match self.resolve_path_without_parent_scope(
3659             &path,
3660             Some(ns),
3661             true,
3662             span,
3663             crate_lint,
3664         ) {
3665             PathResult::NonModule(path_res) => path_res,
3666             PathResult::Module(ModuleOrUniformRoot::Module(module)) if !module.is_normal() => {
3667                 PathResolution::new(module.def().unwrap())
3668             }
3669             // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
3670             // don't report an error right away, but try to fallback to a primitive type.
3671             // So, we are still able to successfully resolve something like
3672             //
3673             // use std::u8; // bring module u8 in scope
3674             // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
3675             //     u8::max_value() // OK, resolves to associated function <u8>::max_value,
3676             //                     // not to non-existent std::u8::max_value
3677             // }
3678             //
3679             // Such behavior is required for backward compatibility.
3680             // The same fallback is used when `a` resolves to nothing.
3681             PathResult::Module(ModuleOrUniformRoot::Module(_)) |
3682             PathResult::Failed(..)
3683                     if (ns == TypeNS || path.len() > 1) &&
3684                        self.primitive_type_table.primitive_types
3685                            .contains_key(&path[0].ident.name) => {
3686                 let prim = self.primitive_type_table.primitive_types[&path[0].ident.name];
3687                 PathResolution::with_unresolved_segments(Def::PrimTy(prim), path.len() - 1)
3688             }
3689             PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3690                 PathResolution::new(module.def().unwrap()),
3691             PathResult::Failed(span, msg, false) => {
3692                 resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
3693                 err_path_resolution()
3694             }
3695             PathResult::Module(..) | PathResult::Failed(..) => return None,
3696             PathResult::Indeterminate => bug!("indetermined path result in resolve_qpath"),
3697         };
3698
3699         if path.len() > 1 && !global_by_default && result.base_def() != Def::Err &&
3700            path[0].ident.name != keywords::PathRoot.name() &&
3701            path[0].ident.name != keywords::DollarCrate.name() {
3702             let unqualified_result = {
3703                 match self.resolve_path_without_parent_scope(
3704                     &[*path.last().unwrap()],
3705                     Some(ns),
3706                     false,
3707                     span,
3708                     CrateLint::No,
3709                 ) {
3710                     PathResult::NonModule(path_res) => path_res.base_def(),
3711                     PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3712                         module.def().unwrap(),
3713                     _ => return Some(result),
3714                 }
3715             };
3716             if result.base_def() == unqualified_result {
3717                 let lint = lint::builtin::UNUSED_QUALIFICATIONS;
3718                 self.session.buffer_lint(lint, id, span, "unnecessary qualification")
3719             }
3720         }
3721
3722         Some(result)
3723     }
3724
3725     fn resolve_path_without_parent_scope(
3726         &mut self,
3727         path: &[Segment],
3728         opt_ns: Option<Namespace>, // `None` indicates a module path in import
3729         record_used: bool,
3730         path_span: Span,
3731         crate_lint: CrateLint,
3732     ) -> PathResult<'a> {
3733         // Macro and import paths must have full parent scope available during resolution,
3734         // other paths will do okay with parent module alone.
3735         assert!(opt_ns != None && opt_ns != Some(MacroNS));
3736         let parent_scope = ParentScope { module: self.current_module, ..self.dummy_parent_scope() };
3737         self.resolve_path(path, opt_ns, &parent_scope, record_used, path_span, crate_lint)
3738     }
3739
3740     fn resolve_path(
3741         &mut self,
3742         path: &[Segment],
3743         opt_ns: Option<Namespace>, // `None` indicates a module path in import
3744         parent_scope: &ParentScope<'a>,
3745         record_used: bool,
3746         path_span: Span,
3747         crate_lint: CrateLint,
3748     ) -> PathResult<'a> {
3749         let mut module = None;
3750         let mut allow_super = true;
3751         let mut second_binding = None;
3752         self.current_module = parent_scope.module;
3753
3754         debug!(
3755             "resolve_path(path={:?}, opt_ns={:?}, record_used={:?}, \
3756              path_span={:?}, crate_lint={:?})",
3757             path,
3758             opt_ns,
3759             record_used,
3760             path_span,
3761             crate_lint,
3762         );
3763
3764         for (i, &Segment { ident, id }) in path.iter().enumerate() {
3765             debug!("resolve_path ident {} {:?} {:?}", i, ident, id);
3766             let record_segment_def = |this: &mut Self, def| {
3767                 if record_used {
3768                     if let Some(id) = id {
3769                         if !this.def_map.contains_key(&id) {
3770                             assert!(id != ast::DUMMY_NODE_ID, "Trying to resolve dummy id");
3771                             this.record_def(id, PathResolution::new(def));
3772                         }
3773                     }
3774                 }
3775             };
3776
3777             let is_last = i == path.len() - 1;
3778             let ns = if is_last { opt_ns.unwrap_or(TypeNS) } else { TypeNS };
3779             let name = ident.name;
3780
3781             allow_super &= ns == TypeNS &&
3782                 (name == keywords::SelfLower.name() ||
3783                  name == keywords::Super.name());
3784
3785             if ns == TypeNS {
3786                 if allow_super && name == keywords::Super.name() {
3787                     let mut ctxt = ident.span.ctxt().modern();
3788                     let self_module = match i {
3789                         0 => Some(self.resolve_self(&mut ctxt, self.current_module)),
3790                         _ => match module {
3791                             Some(ModuleOrUniformRoot::Module(module)) => Some(module),
3792                             _ => None,
3793                         },
3794                     };
3795                     if let Some(self_module) = self_module {
3796                         if let Some(parent) = self_module.parent {
3797                             module = Some(ModuleOrUniformRoot::Module(
3798                                 self.resolve_self(&mut ctxt, parent)));
3799                             continue;
3800                         }
3801                     }
3802                     let msg = "there are too many initial `super`s.".to_string();
3803                     return PathResult::Failed(ident.span, msg, false);
3804                 }
3805                 if i == 0 {
3806                     if name == keywords::SelfLower.name() {
3807                         let mut ctxt = ident.span.ctxt().modern();
3808                         module = Some(ModuleOrUniformRoot::Module(
3809                             self.resolve_self(&mut ctxt, self.current_module)));
3810                         continue;
3811                     }
3812                     if name == keywords::Extern.name() ||
3813                        name == keywords::PathRoot.name() && ident.span.rust_2018() {
3814                         module = Some(ModuleOrUniformRoot::ExternPrelude);
3815                         continue;
3816                     }
3817                     if name == keywords::PathRoot.name() &&
3818                        ident.span.rust_2015() && self.session.rust_2018() {
3819                         // `::a::b` from 2015 macro on 2018 global edition
3820                         module = Some(ModuleOrUniformRoot::CrateRootAndExternPrelude);
3821                         continue;
3822                     }
3823                     if name == keywords::PathRoot.name() ||
3824                        name == keywords::Crate.name() ||
3825                        name == keywords::DollarCrate.name() {
3826                         // `::a::b`, `crate::a::b` or `$crate::a::b`
3827                         module = Some(ModuleOrUniformRoot::Module(
3828                             self.resolve_crate_root(ident)));
3829                         continue;
3830                     }
3831                 }
3832             }
3833
3834             // Report special messages for path segment keywords in wrong positions.
3835             if ident.is_path_segment_keyword() && i != 0 {
3836                 let name_str = if name == keywords::PathRoot.name() {
3837                     "crate root".to_string()
3838                 } else {
3839                     format!("`{}`", name)
3840                 };
3841                 let msg = if i == 1 && path[0].ident.name == keywords::PathRoot.name() {
3842                     format!("global paths cannot start with {}", name_str)
3843                 } else {
3844                     format!("{} in paths can only be used in start position", name_str)
3845                 };
3846                 return PathResult::Failed(ident.span, msg, false);
3847             }
3848
3849             let binding = if let Some(module) = module {
3850                 self.resolve_ident_in_module(module, ident, ns, None, record_used, path_span)
3851             } else if opt_ns.is_none() || opt_ns == Some(MacroNS) {
3852                 assert!(ns == TypeNS);
3853                 let scopes = if opt_ns.is_none() { ScopeSet::Import(ns) } else { ScopeSet::Module };
3854                 self.early_resolve_ident_in_lexical_scope(ident, scopes, parent_scope, record_used,
3855                                                           record_used, path_span)
3856             } else {
3857                 let record_used_id =
3858                     if record_used { crate_lint.node_id().or(Some(CRATE_NODE_ID)) } else { None };
3859                 match self.resolve_ident_in_lexical_scope(ident, ns, record_used_id, path_span) {
3860                     // we found a locally-imported or available item/module
3861                     Some(LexicalScopeBinding::Item(binding)) => Ok(binding),
3862                     // we found a local variable or type param
3863                     Some(LexicalScopeBinding::Def(def))
3864                             if opt_ns == Some(TypeNS) || opt_ns == Some(ValueNS) => {
3865                         record_segment_def(self, def);
3866                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3867                             def, path.len() - 1
3868                         ));
3869                     }
3870                     _ => Err(Determinacy::determined(record_used)),
3871                 }
3872             };
3873
3874             match binding {
3875                 Ok(binding) => {
3876                     if i == 1 {
3877                         second_binding = Some(binding);
3878                     }
3879                     let def = binding.def();
3880                     let maybe_assoc = opt_ns != Some(MacroNS) && PathSource::Type.is_expected(def);
3881                     if let Some(next_module) = binding.module() {
3882                         module = Some(ModuleOrUniformRoot::Module(next_module));
3883                         record_segment_def(self, def);
3884                     } else if def == Def::ToolMod && i + 1 != path.len() {
3885                         let def = Def::NonMacroAttr(NonMacroAttrKind::Tool);
3886                         return PathResult::NonModule(PathResolution::new(def));
3887                     } else if def == Def::Err {
3888                         return PathResult::NonModule(err_path_resolution());
3889                     } else if opt_ns.is_some() && (is_last || maybe_assoc) {
3890                         self.lint_if_path_starts_with_module(
3891                             crate_lint,
3892                             path,
3893                             path_span,
3894                             second_binding,
3895                         );
3896                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3897                             def, path.len() - i - 1
3898                         ));
3899                     } else {
3900                         return PathResult::Failed(ident.span,
3901                                                   format!("not a module `{}`", ident),
3902                                                   is_last);
3903                     }
3904                 }
3905                 Err(Undetermined) => return PathResult::Indeterminate,
3906                 Err(Determined) => {
3907                     if let Some(ModuleOrUniformRoot::Module(module)) = module {
3908                         if opt_ns.is_some() && !module.is_normal() {
3909                             return PathResult::NonModule(PathResolution::with_unresolved_segments(
3910                                 module.def().unwrap(), path.len() - i
3911                             ));
3912                         }
3913                     }
3914                     let module_def = match module {
3915                         Some(ModuleOrUniformRoot::Module(module)) => module.def(),
3916                         _ => None,
3917                     };
3918                     let msg = if module_def == self.graph_root.def() {
3919                         let is_mod = |def| match def { Def::Mod(..) => true, _ => false };
3920                         let mut candidates =
3921                             self.lookup_import_candidates(ident, TypeNS, is_mod);
3922                         candidates.sort_by_cached_key(|c| {
3923                             (c.path.segments.len(), c.path.to_string())
3924                         });
3925                         if let Some(candidate) = candidates.get(0) {
3926                             format!("did you mean `{}`?", candidate.path)
3927                         } else {
3928                             format!("maybe a missing `extern crate {};`?", ident)
3929                         }
3930                     } else if i == 0 {
3931                         format!("use of undeclared type or module `{}`", ident)
3932                     } else {
3933                         format!("could not find `{}` in `{}`", ident, path[i - 1].ident)
3934                     };
3935                     return PathResult::Failed(ident.span, msg, is_last);
3936                 }
3937             }
3938         }
3939
3940         self.lint_if_path_starts_with_module(crate_lint, path, path_span, second_binding);
3941
3942         PathResult::Module(match module {
3943             Some(module) => module,
3944             None if path.is_empty() => ModuleOrUniformRoot::CurrentScope,
3945             _ => span_bug!(path_span, "resolve_path: non-empty path `{:?}` has no module", path),
3946         })
3947     }
3948
3949     fn lint_if_path_starts_with_module(
3950         &self,
3951         crate_lint: CrateLint,
3952         path: &[Segment],
3953         path_span: Span,
3954         second_binding: Option<&NameBinding>,
3955     ) {
3956         let (diag_id, diag_span) = match crate_lint {
3957             CrateLint::No => return,
3958             CrateLint::SimplePath(id) => (id, path_span),
3959             CrateLint::UsePath { root_id, root_span } => (root_id, root_span),
3960             CrateLint::QPathTrait { qpath_id, qpath_span } => (qpath_id, qpath_span),
3961         };
3962
3963         let first_name = match path.get(0) {
3964             // In the 2018 edition this lint is a hard error, so nothing to do
3965             Some(seg) if seg.ident.span.rust_2015() && self.session.rust_2015() => seg.ident.name,
3966             _ => return,
3967         };
3968
3969         // We're only interested in `use` paths which should start with
3970         // `{{root}}` or `extern` currently.
3971         if first_name != keywords::Extern.name() && first_name != keywords::PathRoot.name() {
3972             return
3973         }
3974
3975         match path.get(1) {
3976             // If this import looks like `crate::...` it's already good
3977             Some(Segment { ident, .. }) if ident.name == keywords::Crate.name() => return,
3978             // Otherwise go below to see if it's an extern crate
3979             Some(_) => {}
3980             // If the path has length one (and it's `PathRoot` most likely)
3981             // then we don't know whether we're gonna be importing a crate or an
3982             // item in our crate. Defer this lint to elsewhere
3983             None => return,
3984         }
3985
3986         // If the first element of our path was actually resolved to an
3987         // `ExternCrate` (also used for `crate::...`) then no need to issue a
3988         // warning, this looks all good!
3989         if let Some(binding) = second_binding {
3990             if let NameBindingKind::Import { directive: d, .. } = binding.kind {
3991                 // Careful: we still want to rewrite paths from
3992                 // renamed extern crates.
3993                 if let ImportDirectiveSubclass::ExternCrate { source: None, .. } = d.subclass {
3994                     return
3995                 }
3996             }
3997         }
3998
3999         let diag = lint::builtin::BuiltinLintDiagnostics
4000             ::AbsPathWithModule(diag_span);
4001         self.session.buffer_lint_with_diagnostic(
4002             lint::builtin::ABSOLUTE_PATHS_NOT_STARTING_WITH_CRATE,
4003             diag_id, diag_span,
4004             "absolute paths must start with `self`, `super`, \
4005             `crate`, or an external crate name in the 2018 edition",
4006             diag);
4007     }
4008
4009     // Resolve a local definition, potentially adjusting for closures.
4010     fn adjust_local_def(&mut self,
4011                         ns: Namespace,
4012                         rib_index: usize,
4013                         mut def: Def,
4014                         record_used: bool,
4015                         span: Span) -> Def {
4016         let ribs = &self.ribs[ns][rib_index + 1..];
4017
4018         // An invalid forward use of a type parameter from a previous default.
4019         if let ForwardTyParamBanRibKind = self.ribs[ns][rib_index].kind {
4020             if record_used {
4021                 resolve_error(self, span, ResolutionError::ForwardDeclaredTyParam);
4022             }
4023             assert_eq!(def, Def::Err);
4024             return Def::Err;
4025         }
4026
4027         match def {
4028             Def::Upvar(..) => {
4029                 span_bug!(span, "unexpected {:?} in bindings", def)
4030             }
4031             Def::Local(node_id) => {
4032                 for rib in ribs {
4033                     match rib.kind {
4034                         NormalRibKind | ModuleRibKind(..) | MacroDefinition(..) |
4035                         ForwardTyParamBanRibKind => {
4036                             // Nothing to do. Continue.
4037                         }
4038                         ClosureRibKind(function_id) => {
4039                             let prev_def = def;
4040
4041                             let seen = self.freevars_seen
4042                                            .entry(function_id)
4043                                            .or_default();
4044                             if let Some(&index) = seen.get(&node_id) {
4045                                 def = Def::Upvar(node_id, index, function_id);
4046                                 continue;
4047                             }
4048                             let vec = self.freevars
4049                                           .entry(function_id)
4050                                           .or_default();
4051                             let depth = vec.len();
4052                             def = Def::Upvar(node_id, depth, function_id);
4053
4054                             if record_used {
4055                                 vec.push(Freevar {
4056                                     def: prev_def,
4057                                     span,
4058                                 });
4059                                 seen.insert(node_id, depth);
4060                             }
4061                         }
4062                         ItemRibKind | TraitOrImplItemRibKind => {
4063                             // This was an attempt to access an upvar inside a
4064                             // named function item. This is not allowed, so we
4065                             // report an error.
4066                             if record_used {
4067                                 resolve_error(self, span,
4068                                     ResolutionError::CannotCaptureDynamicEnvironmentInFnItem);
4069                             }
4070                             return Def::Err;
4071                         }
4072                         ConstantItemRibKind => {
4073                             // Still doesn't deal with upvars
4074                             if record_used {
4075                                 resolve_error(self, span,
4076                                     ResolutionError::AttemptToUseNonConstantValueInConstant);
4077                             }
4078                             return Def::Err;
4079                         }
4080                     }
4081                 }
4082             }
4083             Def::TyParam(..) | Def::SelfTy(..) => {
4084                 for rib in ribs {
4085                     match rib.kind {
4086                         NormalRibKind | TraitOrImplItemRibKind | ClosureRibKind(..) |
4087                         ModuleRibKind(..) | MacroDefinition(..) | ForwardTyParamBanRibKind |
4088                         ConstantItemRibKind => {
4089                             // Nothing to do. Continue.
4090                         }
4091                         ItemRibKind => {
4092                             // This was an attempt to use a type parameter outside
4093                             // its scope.
4094                             if record_used {
4095                                 resolve_error(self, span,
4096                                     ResolutionError::TypeParametersFromOuterFunction(def));
4097                             }
4098                             return Def::Err;
4099                         }
4100                     }
4101                 }
4102             }
4103             _ => {}
4104         }
4105         def
4106     }
4107
4108     fn lookup_assoc_candidate<FilterFn>(&mut self,
4109                                         ident: Ident,
4110                                         ns: Namespace,
4111                                         filter_fn: FilterFn)
4112                                         -> Option<AssocSuggestion>
4113         where FilterFn: Fn(Def) -> bool
4114     {
4115         fn extract_node_id(t: &Ty) -> Option<NodeId> {
4116             match t.node {
4117                 TyKind::Path(None, _) => Some(t.id),
4118                 TyKind::Rptr(_, ref mut_ty) => extract_node_id(&mut_ty.ty),
4119                 // This doesn't handle the remaining `Ty` variants as they are not
4120                 // that commonly the self_type, it might be interesting to provide
4121                 // support for those in future.
4122                 _ => None,
4123             }
4124         }
4125
4126         // Fields are generally expected in the same contexts as locals.
4127         if filter_fn(Def::Local(ast::DUMMY_NODE_ID)) {
4128             if let Some(node_id) = self.current_self_type.as_ref().and_then(extract_node_id) {
4129                 // Look for a field with the same name in the current self_type.
4130                 if let Some(resolution) = self.def_map.get(&node_id) {
4131                     match resolution.base_def() {
4132                         Def::Struct(did) | Def::Union(did)
4133                                 if resolution.unresolved_segments() == 0 => {
4134                             if let Some(field_names) = self.field_names.get(&did) {
4135                                 if field_names.iter().any(|&field_name| ident.name == field_name) {
4136                                     return Some(AssocSuggestion::Field);
4137                                 }
4138                             }
4139                         }
4140                         _ => {}
4141                     }
4142                 }
4143             }
4144         }
4145
4146         // Look for associated items in the current trait.
4147         if let Some((module, _)) = self.current_trait_ref {
4148             if let Ok(binding) = self.resolve_ident_in_module(
4149                     ModuleOrUniformRoot::Module(module),
4150                     ident,
4151                     ns,
4152                     None,
4153                     false,
4154                     module.span,
4155                 ) {
4156                 let def = binding.def();
4157                 if filter_fn(def) {
4158                     return Some(if self.has_self.contains(&def.def_id()) {
4159                         AssocSuggestion::MethodWithSelf
4160                     } else {
4161                         AssocSuggestion::AssocItem
4162                     });
4163                 }
4164             }
4165         }
4166
4167         None
4168     }
4169
4170     fn lookup_typo_candidate<FilterFn>(&mut self,
4171                                        path: &[Segment],
4172                                        ns: Namespace,
4173                                        filter_fn: FilterFn,
4174                                        span: Span)
4175                                        -> Option<Symbol>
4176         where FilterFn: Fn(Def) -> bool
4177     {
4178         let add_module_candidates = |module: Module, names: &mut Vec<Name>| {
4179             for (&(ident, _), resolution) in module.resolutions.borrow().iter() {
4180                 if let Some(binding) = resolution.borrow().binding {
4181                     if filter_fn(binding.def()) {
4182                         names.push(ident.name);
4183                     }
4184                 }
4185             }
4186         };
4187
4188         let mut names = Vec::new();
4189         if path.len() == 1 {
4190             // Search in lexical scope.
4191             // Walk backwards up the ribs in scope and collect candidates.
4192             for rib in self.ribs[ns].iter().rev() {
4193                 // Locals and type parameters
4194                 for (ident, def) in &rib.bindings {
4195                     if filter_fn(*def) {
4196                         names.push(ident.name);
4197                     }
4198                 }
4199                 // Items in scope
4200                 if let ModuleRibKind(module) = rib.kind {
4201                     // Items from this module
4202                     add_module_candidates(module, &mut names);
4203
4204                     if let ModuleKind::Block(..) = module.kind {
4205                         // We can see through blocks
4206                     } else {
4207                         // Items from the prelude
4208                         if !module.no_implicit_prelude {
4209                             names.extend(self.extern_prelude.iter().map(|(ident, _)| ident.name));
4210                             if let Some(prelude) = self.prelude {
4211                                 add_module_candidates(prelude, &mut names);
4212                             }
4213                         }
4214                         break;
4215                     }
4216                 }
4217             }
4218             // Add primitive types to the mix
4219             if filter_fn(Def::PrimTy(Bool)) {
4220                 names.extend(
4221                     self.primitive_type_table.primitive_types.iter().map(|(name, _)| name)
4222                 )
4223             }
4224         } else {
4225             // Search in module.
4226             let mod_path = &path[..path.len() - 1];
4227             if let PathResult::Module(module) = self.resolve_path_without_parent_scope(
4228                 mod_path, Some(TypeNS), false, span, CrateLint::No
4229             ) {
4230                 if let ModuleOrUniformRoot::Module(module) = module {
4231                     add_module_candidates(module, &mut names);
4232                 }
4233             }
4234         }
4235
4236         let name = path[path.len() - 1].ident.name;
4237         // Make sure error reporting is deterministic.
4238         names.sort_by_cached_key(|name| name.as_str());
4239         match find_best_match_for_name(names.iter(), &name.as_str(), None) {
4240             Some(found) if found != name => Some(found),
4241             _ => None,
4242         }
4243     }
4244
4245     fn with_resolved_label<F>(&mut self, label: Option<Label>, id: NodeId, f: F)
4246         where F: FnOnce(&mut Resolver)
4247     {
4248         if let Some(label) = label {
4249             self.unused_labels.insert(id, label.ident.span);
4250             let def = Def::Label(id);
4251             self.with_label_rib(|this| {
4252                 let ident = label.ident.modern_and_legacy();
4253                 this.label_ribs.last_mut().unwrap().bindings.insert(ident, def);
4254                 f(this);
4255             });
4256         } else {
4257             f(self);
4258         }
4259     }
4260
4261     fn resolve_labeled_block(&mut self, label: Option<Label>, id: NodeId, block: &Block) {
4262         self.with_resolved_label(label, id, |this| this.visit_block(block));
4263     }
4264
4265     fn resolve_expr(&mut self, expr: &Expr, parent: Option<&Expr>) {
4266         // First, record candidate traits for this expression if it could
4267         // result in the invocation of a method call.
4268
4269         self.record_candidate_traits_for_expr_if_necessary(expr);
4270
4271         // Next, resolve the node.
4272         match expr.node {
4273             ExprKind::Path(ref qself, ref path) => {
4274                 self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
4275                 visit::walk_expr(self, expr);
4276             }
4277
4278             ExprKind::Struct(ref path, ..) => {
4279                 self.smart_resolve_path(expr.id, None, path, PathSource::Struct);
4280                 visit::walk_expr(self, expr);
4281             }
4282
4283             ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
4284                 let def = self.search_label(label.ident, |rib, ident| {
4285                     rib.bindings.get(&ident.modern_and_legacy()).cloned()
4286                 });
4287                 match def {
4288                     None => {
4289                         // Search again for close matches...
4290                         // Picks the first label that is "close enough", which is not necessarily
4291                         // the closest match
4292                         let close_match = self.search_label(label.ident, |rib, ident| {
4293                             let names = rib.bindings.iter().map(|(id, _)| &id.name);
4294                             find_best_match_for_name(names, &*ident.as_str(), None)
4295                         });
4296                         self.record_def(expr.id, err_path_resolution());
4297                         resolve_error(self,
4298                                       label.ident.span,
4299                                       ResolutionError::UndeclaredLabel(&label.ident.as_str(),
4300                                                                        close_match));
4301                     }
4302                     Some(Def::Label(id)) => {
4303                         // Since this def is a label, it is never read.
4304                         self.record_def(expr.id, PathResolution::new(Def::Label(id)));
4305                         self.unused_labels.remove(&id);
4306                     }
4307                     Some(_) => {
4308                         span_bug!(expr.span, "label wasn't mapped to a label def!");
4309                     }
4310                 }
4311
4312                 // visit `break` argument if any
4313                 visit::walk_expr(self, expr);
4314             }
4315
4316             ExprKind::IfLet(ref pats, ref subexpression, ref if_block, ref optional_else) => {
4317                 self.visit_expr(subexpression);
4318
4319                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
4320                 let mut bindings_list = FxHashMap::default();
4321                 for pat in pats {
4322                     self.resolve_pattern(pat, PatternSource::IfLet, &mut bindings_list);
4323                 }
4324                 // This has to happen *after* we determine which pat_idents are variants
4325                 self.check_consistent_bindings(pats);
4326                 self.visit_block(if_block);
4327                 self.ribs[ValueNS].pop();
4328
4329                 optional_else.as_ref().map(|expr| self.visit_expr(expr));
4330             }
4331
4332             ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),
4333
4334             ExprKind::While(ref subexpression, ref block, label) => {
4335                 self.with_resolved_label(label, expr.id, |this| {
4336                     this.visit_expr(subexpression);
4337                     this.visit_block(block);
4338                 });
4339             }
4340
4341             ExprKind::WhileLet(ref pats, ref subexpression, ref block, label) => {
4342                 self.with_resolved_label(label, expr.id, |this| {
4343                     this.visit_expr(subexpression);
4344                     this.ribs[ValueNS].push(Rib::new(NormalRibKind));
4345                     let mut bindings_list = FxHashMap::default();
4346                     for pat in pats {
4347                         this.resolve_pattern(pat, PatternSource::WhileLet, &mut bindings_list);
4348                     }
4349                     // This has to happen *after* we determine which pat_idents are variants.
4350                     this.check_consistent_bindings(pats);
4351                     this.visit_block(block);
4352                     this.ribs[ValueNS].pop();
4353                 });
4354             }
4355
4356             ExprKind::ForLoop(ref pattern, ref subexpression, ref block, label) => {
4357                 self.visit_expr(subexpression);
4358                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
4359                 self.resolve_pattern(pattern, PatternSource::For, &mut FxHashMap::default());
4360
4361                 self.resolve_labeled_block(label, expr.id, block);
4362
4363                 self.ribs[ValueNS].pop();
4364             }
4365
4366             ExprKind::Block(ref block, label) => self.resolve_labeled_block(label, block.id, block),
4367
4368             // Equivalent to `visit::walk_expr` + passing some context to children.
4369             ExprKind::Field(ref subexpression, _) => {
4370                 self.resolve_expr(subexpression, Some(expr));
4371             }
4372             ExprKind::MethodCall(ref segment, ref arguments) => {
4373                 let mut arguments = arguments.iter();
4374                 self.resolve_expr(arguments.next().unwrap(), Some(expr));
4375                 for argument in arguments {
4376                     self.resolve_expr(argument, None);
4377                 }
4378                 self.visit_path_segment(expr.span, segment);
4379             }
4380
4381             ExprKind::Call(ref callee, ref arguments) => {
4382                 self.resolve_expr(callee, Some(expr));
4383                 for argument in arguments {
4384                     self.resolve_expr(argument, None);
4385                 }
4386             }
4387             ExprKind::Type(ref type_expr, _) => {
4388                 self.current_type_ascription.push(type_expr.span);
4389                 visit::walk_expr(self, expr);
4390                 self.current_type_ascription.pop();
4391             }
4392             // Resolve the body of async exprs inside the async closure to which they desugar
4393             ExprKind::Async(_, async_closure_id, ref block) => {
4394                 let rib_kind = ClosureRibKind(async_closure_id);
4395                 self.ribs[ValueNS].push(Rib::new(rib_kind));
4396                 self.label_ribs.push(Rib::new(rib_kind));
4397                 self.visit_block(&block);
4398                 self.label_ribs.pop();
4399                 self.ribs[ValueNS].pop();
4400             }
4401             // `async |x| ...` gets desugared to `|x| future_from_generator(|| ...)`, so we need to
4402             // resolve the arguments within the proper scopes so that usages of them inside the
4403             // closure are detected as upvars rather than normal closure arg usages.
4404             ExprKind::Closure(
4405                 _, IsAsync::Async { closure_id: inner_closure_id, .. }, _,
4406                 ref fn_decl, ref body, _span,
4407             ) => {
4408                 let rib_kind = ClosureRibKind(expr.id);
4409                 self.ribs[ValueNS].push(Rib::new(rib_kind));
4410                 self.label_ribs.push(Rib::new(rib_kind));
4411                 // Resolve arguments:
4412                 let mut bindings_list = FxHashMap::default();
4413                 for argument in &fn_decl.inputs {
4414                     self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
4415                     self.visit_ty(&argument.ty);
4416                 }
4417                 // No need to resolve return type-- the outer closure return type is
4418                 // FunctionRetTy::Default
4419
4420                 // Now resolve the inner closure
4421                 {
4422                     let rib_kind = ClosureRibKind(inner_closure_id);
4423                     self.ribs[ValueNS].push(Rib::new(rib_kind));
4424                     self.label_ribs.push(Rib::new(rib_kind));
4425                     // No need to resolve arguments: the inner closure has none.
4426                     // Resolve the return type:
4427                     visit::walk_fn_ret_ty(self, &fn_decl.output);
4428                     // Resolve the body
4429                     self.visit_expr(body);
4430                     self.label_ribs.pop();
4431                     self.ribs[ValueNS].pop();
4432                 }
4433                 self.label_ribs.pop();
4434                 self.ribs[ValueNS].pop();
4435             }
4436             _ => {
4437                 visit::walk_expr(self, expr);
4438             }
4439         }
4440     }
4441
4442     fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &Expr) {
4443         match expr.node {
4444             ExprKind::Field(_, ident) => {
4445                 // FIXME(#6890): Even though you can't treat a method like a
4446                 // field, we need to add any trait methods we find that match
4447                 // the field name so that we can do some nice error reporting
4448                 // later on in typeck.
4449                 let traits = self.get_traits_containing_item(ident, ValueNS);
4450                 self.trait_map.insert(expr.id, traits);
4451             }
4452             ExprKind::MethodCall(ref segment, ..) => {
4453                 debug!("(recording candidate traits for expr) recording traits for {}",
4454                        expr.id);
4455                 let traits = self.get_traits_containing_item(segment.ident, ValueNS);
4456                 self.trait_map.insert(expr.id, traits);
4457             }
4458             _ => {
4459                 // Nothing to do.
4460             }
4461         }
4462     }
4463
4464     fn get_traits_containing_item(&mut self, mut ident: Ident, ns: Namespace)
4465                                   -> Vec<TraitCandidate> {
4466         debug!("(getting traits containing item) looking for '{}'", ident.name);
4467
4468         let mut found_traits = Vec::new();
4469         // Look for the current trait.
4470         if let Some((module, _)) = self.current_trait_ref {
4471             if self.resolve_ident_in_module(
4472                 ModuleOrUniformRoot::Module(module),
4473                 ident,
4474                 ns,
4475                 None,
4476                 false,
4477                 module.span,
4478             ).is_ok() {
4479                 let def_id = module.def_id().unwrap();
4480                 found_traits.push(TraitCandidate { def_id: def_id, import_id: None });
4481             }
4482         }
4483
4484         ident.span = ident.span.modern();
4485         let mut search_module = self.current_module;
4486         loop {
4487             self.get_traits_in_module_containing_item(ident, ns, search_module, &mut found_traits);
4488             search_module = unwrap_or!(
4489                 self.hygienic_lexical_parent(search_module, &mut ident.span), break
4490             );
4491         }
4492
4493         if let Some(prelude) = self.prelude {
4494             if !search_module.no_implicit_prelude {
4495                 self.get_traits_in_module_containing_item(ident, ns, prelude, &mut found_traits);
4496             }
4497         }
4498
4499         found_traits
4500     }
4501
4502     fn get_traits_in_module_containing_item(&mut self,
4503                                             ident: Ident,
4504                                             ns: Namespace,
4505                                             module: Module<'a>,
4506                                             found_traits: &mut Vec<TraitCandidate>) {
4507         assert!(ns == TypeNS || ns == ValueNS);
4508         let mut traits = module.traits.borrow_mut();
4509         if traits.is_none() {
4510             let mut collected_traits = Vec::new();
4511             module.for_each_child(|name, ns, binding| {
4512                 if ns != TypeNS { return }
4513                 if let Def::Trait(_) = binding.def() {
4514                     collected_traits.push((name, binding));
4515                 }
4516             });
4517             *traits = Some(collected_traits.into_boxed_slice());
4518         }
4519
4520         for &(trait_name, binding) in traits.as_ref().unwrap().iter() {
4521             let module = binding.module().unwrap();
4522             let mut ident = ident;
4523             if ident.span.glob_adjust(module.expansion, binding.span.ctxt().modern()).is_none() {
4524                 continue
4525             }
4526             if self.resolve_ident_in_module_unadjusted(
4527                 ModuleOrUniformRoot::Module(module),
4528                 ident,
4529                 ns,
4530                 false,
4531                 module.span,
4532             ).is_ok() {
4533                 let import_id = match binding.kind {
4534                     NameBindingKind::Import { directive, .. } => {
4535                         self.maybe_unused_trait_imports.insert(directive.id);
4536                         self.add_to_glob_map(directive.id, trait_name);
4537                         Some(directive.id)
4538                     }
4539                     _ => None,
4540                 };
4541                 let trait_def_id = module.def_id().unwrap();
4542                 found_traits.push(TraitCandidate { def_id: trait_def_id, import_id: import_id });
4543             }
4544         }
4545     }
4546
4547     fn lookup_import_candidates_from_module<FilterFn>(&mut self,
4548                                           lookup_ident: Ident,
4549                                           namespace: Namespace,
4550                                           start_module: &'a ModuleData<'a>,
4551                                           crate_name: Ident,
4552                                           filter_fn: FilterFn)
4553                                           -> Vec<ImportSuggestion>
4554         where FilterFn: Fn(Def) -> bool
4555     {
4556         let mut candidates = Vec::new();
4557         let mut seen_modules = FxHashSet::default();
4558         let not_local_module = crate_name != keywords::Crate.ident();
4559         let mut worklist = vec![(start_module, Vec::<ast::PathSegment>::new(), not_local_module)];
4560
4561         while let Some((in_module,
4562                         path_segments,
4563                         in_module_is_extern)) = worklist.pop() {
4564             self.populate_module_if_necessary(in_module);
4565
4566             // We have to visit module children in deterministic order to avoid
4567             // instabilities in reported imports (#43552).
4568             in_module.for_each_child_stable(|ident, ns, name_binding| {
4569                 // avoid imports entirely
4570                 if name_binding.is_import() && !name_binding.is_extern_crate() { return; }
4571                 // avoid non-importable candidates as well
4572                 if !name_binding.is_importable() { return; }
4573
4574                 // collect results based on the filter function
4575                 if ident.name == lookup_ident.name && ns == namespace {
4576                     if filter_fn(name_binding.def()) {
4577                         // create the path
4578                         let mut segms = path_segments.clone();
4579                         if lookup_ident.span.rust_2018() {
4580                             // crate-local absolute paths start with `crate::` in edition 2018
4581                             // FIXME: may also be stabilized for Rust 2015 (Issues #45477, #44660)
4582                             segms.insert(
4583                                 0, ast::PathSegment::from_ident(crate_name)
4584                             );
4585                         }
4586
4587                         segms.push(ast::PathSegment::from_ident(ident));
4588                         let path = Path {
4589                             span: name_binding.span,
4590                             segments: segms,
4591                         };
4592                         // the entity is accessible in the following cases:
4593                         // 1. if it's defined in the same crate, it's always
4594                         // accessible (since private entities can be made public)
4595                         // 2. if it's defined in another crate, it's accessible
4596                         // only if both the module is public and the entity is
4597                         // declared as public (due to pruning, we don't explore
4598                         // outside crate private modules => no need to check this)
4599                         if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
4600                             candidates.push(ImportSuggestion { path });
4601                         }
4602                     }
4603                 }
4604
4605                 // collect submodules to explore
4606                 if let Some(module) = name_binding.module() {
4607                     // form the path
4608                     let mut path_segments = path_segments.clone();
4609                     path_segments.push(ast::PathSegment::from_ident(ident));
4610
4611                     let is_extern_crate_that_also_appears_in_prelude =
4612                         name_binding.is_extern_crate() &&
4613                         lookup_ident.span.rust_2018();
4614
4615                     let is_visible_to_user =
4616                         !in_module_is_extern || name_binding.vis == ty::Visibility::Public;
4617
4618                     if !is_extern_crate_that_also_appears_in_prelude && is_visible_to_user {
4619                         // add the module to the lookup
4620                         let is_extern = in_module_is_extern || name_binding.is_extern_crate();
4621                         if seen_modules.insert(module.def_id().unwrap()) {
4622                             worklist.push((module, path_segments, is_extern));
4623                         }
4624                     }
4625                 }
4626             })
4627         }
4628
4629         candidates
4630     }
4631
4632     /// When name resolution fails, this method can be used to look up candidate
4633     /// entities with the expected name. It allows filtering them using the
4634     /// supplied predicate (which should be used to only accept the types of
4635     /// definitions expected e.g., traits). The lookup spans across all crates.
4636     ///
4637     /// NOTE: The method does not look into imports, but this is not a problem,
4638     /// since we report the definitions (thus, the de-aliased imports).
4639     fn lookup_import_candidates<FilterFn>(&mut self,
4640                                           lookup_ident: Ident,
4641                                           namespace: Namespace,
4642                                           filter_fn: FilterFn)
4643                                           -> Vec<ImportSuggestion>
4644         where FilterFn: Fn(Def) -> bool
4645     {
4646         let mut suggestions = self.lookup_import_candidates_from_module(
4647             lookup_ident, namespace, self.graph_root, keywords::Crate.ident(), &filter_fn);
4648
4649         if lookup_ident.span.rust_2018() {
4650             let extern_prelude_names = self.extern_prelude.clone();
4651             for (ident, _) in extern_prelude_names.into_iter() {
4652                 if let Some(crate_id) = self.crate_loader.maybe_process_path_extern(ident.name,
4653                                                                                     ident.span) {
4654                     let crate_root = self.get_module(DefId {
4655                         krate: crate_id,
4656                         index: CRATE_DEF_INDEX,
4657                     });
4658                     self.populate_module_if_necessary(&crate_root);
4659
4660                     suggestions.extend(self.lookup_import_candidates_from_module(
4661                         lookup_ident, namespace, crate_root, ident, &filter_fn));
4662                 }
4663             }
4664         }
4665
4666         suggestions
4667     }
4668
4669     fn find_module(&mut self,
4670                    module_def: Def)
4671                    -> Option<(Module<'a>, ImportSuggestion)>
4672     {
4673         let mut result = None;
4674         let mut seen_modules = FxHashSet::default();
4675         let mut worklist = vec![(self.graph_root, Vec::new())];
4676
4677         while let Some((in_module, path_segments)) = worklist.pop() {
4678             // abort if the module is already found
4679             if result.is_some() { break; }
4680
4681             self.populate_module_if_necessary(in_module);
4682
4683             in_module.for_each_child_stable(|ident, _, name_binding| {
4684                 // abort if the module is already found or if name_binding is private external
4685                 if result.is_some() || !name_binding.vis.is_visible_locally() {
4686                     return
4687                 }
4688                 if let Some(module) = name_binding.module() {
4689                     // form the path
4690                     let mut path_segments = path_segments.clone();
4691                     path_segments.push(ast::PathSegment::from_ident(ident));
4692                     if module.def() == Some(module_def) {
4693                         let path = Path {
4694                             span: name_binding.span,
4695                             segments: path_segments,
4696                         };
4697                         result = Some((module, ImportSuggestion { path }));
4698                     } else {
4699                         // add the module to the lookup
4700                         if seen_modules.insert(module.def_id().unwrap()) {
4701                             worklist.push((module, path_segments));
4702                         }
4703                     }
4704                 }
4705             });
4706         }
4707
4708         result
4709     }
4710
4711     fn collect_enum_variants(&mut self, enum_def: Def) -> Option<Vec<Path>> {
4712         if let Def::Enum(..) = enum_def {} else {
4713             panic!("Non-enum def passed to collect_enum_variants: {:?}", enum_def)
4714         }
4715
4716         self.find_module(enum_def).map(|(enum_module, enum_import_suggestion)| {
4717             self.populate_module_if_necessary(enum_module);
4718
4719             let mut variants = Vec::new();
4720             enum_module.for_each_child_stable(|ident, _, name_binding| {
4721                 if let Def::Variant(..) = name_binding.def() {
4722                     let mut segms = enum_import_suggestion.path.segments.clone();
4723                     segms.push(ast::PathSegment::from_ident(ident));
4724                     variants.push(Path {
4725                         span: name_binding.span,
4726                         segments: segms,
4727                     });
4728                 }
4729             });
4730             variants
4731         })
4732     }
4733
4734     fn record_def(&mut self, node_id: NodeId, resolution: PathResolution) {
4735         debug!("(recording def) recording {:?} for {}", resolution, node_id);
4736         if let Some(prev_res) = self.def_map.insert(node_id, resolution) {
4737             panic!("path resolved multiple times ({:?} before, {:?} now)", prev_res, resolution);
4738         }
4739     }
4740
4741     fn resolve_visibility(&mut self, vis: &ast::Visibility) -> ty::Visibility {
4742         match vis.node {
4743             ast::VisibilityKind::Public => ty::Visibility::Public,
4744             ast::VisibilityKind::Crate(..) => {
4745                 ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX))
4746             }
4747             ast::VisibilityKind::Inherited => {
4748                 ty::Visibility::Restricted(self.current_module.normal_ancestor_id)
4749             }
4750             ast::VisibilityKind::Restricted { ref path, id, .. } => {
4751                 // For visibilities we are not ready to provide correct implementation of "uniform
4752                 // paths" right now, so on 2018 edition we only allow module-relative paths for now.
4753                 // On 2015 edition visibilities are resolved as crate-relative by default,
4754                 // so we are prepending a root segment if necessary.
4755                 let ident = path.segments.get(0).expect("empty path in visibility").ident;
4756                 let crate_root = if ident.is_path_segment_keyword() {
4757                     None
4758                 } else if ident.span.rust_2018() {
4759                     let msg = "relative paths are not supported in visibilities on 2018 edition";
4760                     self.session.struct_span_err(ident.span, msg)
4761                                 .span_suggestion(path.span, "try", format!("crate::{}", path))
4762                                 .emit();
4763                     return ty::Visibility::Public;
4764                 } else {
4765                     let ctxt = ident.span.ctxt();
4766                     Some(Segment::from_ident(Ident::new(
4767                         keywords::PathRoot.name(), path.span.shrink_to_lo().with_ctxt(ctxt)
4768                     )))
4769                 };
4770
4771                 let segments = crate_root.into_iter()
4772                     .chain(path.segments.iter().map(|seg| seg.into())).collect::<Vec<_>>();
4773                 let def = self.smart_resolve_path_fragment(
4774                     id,
4775                     None,
4776                     &segments,
4777                     path.span,
4778                     PathSource::Visibility,
4779                     CrateLint::SimplePath(id),
4780                 ).base_def();
4781                 if def == Def::Err {
4782                     ty::Visibility::Public
4783                 } else {
4784                     let vis = ty::Visibility::Restricted(def.def_id());
4785                     if self.is_accessible(vis) {
4786                         vis
4787                     } else {
4788                         self.session.span_err(path.span, "visibilities can only be restricted \
4789                                                           to ancestor modules");
4790                         ty::Visibility::Public
4791                     }
4792                 }
4793             }
4794         }
4795     }
4796
4797     fn is_accessible(&self, vis: ty::Visibility) -> bool {
4798         vis.is_accessible_from(self.current_module.normal_ancestor_id, self)
4799     }
4800
4801     fn is_accessible_from(&self, vis: ty::Visibility, module: Module<'a>) -> bool {
4802         vis.is_accessible_from(module.normal_ancestor_id, self)
4803     }
4804
4805     fn set_binding_parent_module(&mut self, binding: &'a NameBinding<'a>, module: Module<'a>) {
4806         if let Some(old_module) = self.binding_parent_modules.insert(PtrKey(binding), module) {
4807             if !ptr::eq(module, old_module) {
4808                 span_bug!(binding.span, "parent module is reset for binding");
4809             }
4810         }
4811     }
4812
4813     fn disambiguate_legacy_vs_modern(
4814         &self,
4815         legacy: &'a NameBinding<'a>,
4816         modern: &'a NameBinding<'a>,
4817     ) -> bool {
4818         // Some non-controversial subset of ambiguities "modern macro name" vs "macro_rules"
4819         // is disambiguated to mitigate regressions from macro modularization.
4820         // Scoping for `macro_rules` behaves like scoping for `let` at module level, in general.
4821         match (self.binding_parent_modules.get(&PtrKey(legacy)),
4822                self.binding_parent_modules.get(&PtrKey(modern))) {
4823             (Some(legacy), Some(modern)) =>
4824                 legacy.normal_ancestor_id == modern.normal_ancestor_id &&
4825                 modern.is_ancestor_of(legacy),
4826             _ => false,
4827         }
4828     }
4829
4830     fn binding_description(&self, b: &NameBinding, ident: Ident, from_prelude: bool) -> String {
4831         if b.span.is_dummy() {
4832             let add_built_in = match b.def() {
4833                 // These already contain the "built-in" prefix or look bad with it.
4834                 Def::NonMacroAttr(..) | Def::PrimTy(..) | Def::ToolMod => false,
4835                 _ => true,
4836             };
4837             let (built_in, from) = if from_prelude {
4838                 ("", " from prelude")
4839             } else if b.is_extern_crate() && !b.is_import() &&
4840                         self.session.opts.externs.get(&ident.as_str()).is_some() {
4841                 ("", " passed with `--extern`")
4842             } else if add_built_in {
4843                 (" built-in", "")
4844             } else {
4845                 ("", "")
4846             };
4847
4848             let article = if built_in.is_empty() { b.article() } else { "a" };
4849             format!("{a}{built_in} {thing}{from}",
4850                     a = article, thing = b.descr(), built_in = built_in, from = from)
4851         } else {
4852             let introduced = if b.is_import() { "imported" } else { "defined" };
4853             format!("the {thing} {introduced} here",
4854                     thing = b.descr(), introduced = introduced)
4855         }
4856     }
4857
4858     fn report_ambiguity_error(&self, ambiguity_error: &AmbiguityError) {
4859         let AmbiguityError { kind, ident, b1, b2, misc1, misc2 } = *ambiguity_error;
4860         let (b1, b2, misc1, misc2, swapped) = if b2.span.is_dummy() && !b1.span.is_dummy() {
4861             // We have to print the span-less alternative first, otherwise formatting looks bad.
4862             (b2, b1, misc2, misc1, true)
4863         } else {
4864             (b1, b2, misc1, misc2, false)
4865         };
4866
4867         let mut err = struct_span_err!(self.session, ident.span, E0659,
4868                                        "`{ident}` is ambiguous ({why})",
4869                                        ident = ident, why = kind.descr());
4870         err.span_label(ident.span, "ambiguous name");
4871
4872         let mut could_refer_to = |b: &NameBinding, misc: AmbiguityErrorMisc, also: &str| {
4873             let what = self.binding_description(b, ident, misc == AmbiguityErrorMisc::FromPrelude);
4874             let note_msg = format!("`{ident}` could{also} refer to {what}",
4875                                    ident = ident, also = also, what = what);
4876
4877             let mut help_msgs = Vec::new();
4878             if b.is_glob_import() && (kind == AmbiguityKind::GlobVsGlob ||
4879                                       kind == AmbiguityKind::GlobVsExpanded ||
4880                                       kind == AmbiguityKind::GlobVsOuter &&
4881                                       swapped != also.is_empty()) {
4882                 help_msgs.push(format!("consider adding an explicit import of \
4883                                         `{ident}` to disambiguate", ident = ident))
4884             }
4885             if b.is_extern_crate() && ident.span.rust_2018() {
4886                 help_msgs.push(format!(
4887                     "use `::{ident}` to refer to this {thing} unambiguously",
4888                     ident = ident, thing = b.descr(),
4889                 ))
4890             }
4891             if misc == AmbiguityErrorMisc::SuggestCrate {
4892                 help_msgs.push(format!(
4893                     "use `crate::{ident}` to refer to this {thing} unambiguously",
4894                     ident = ident, thing = b.descr(),
4895                 ))
4896             } else if misc == AmbiguityErrorMisc::SuggestSelf {
4897                 help_msgs.push(format!(
4898                     "use `self::{ident}` to refer to this {thing} unambiguously",
4899                     ident = ident, thing = b.descr(),
4900                 ))
4901             }
4902
4903             if b.span.is_dummy() {
4904                 err.note(&note_msg);
4905             } else {
4906                 err.span_note(b.span, &note_msg);
4907             }
4908             for (i, help_msg) in help_msgs.iter().enumerate() {
4909                 let or = if i == 0 { "" } else { "or " };
4910                 err.help(&format!("{}{}", or, help_msg));
4911             }
4912         };
4913
4914         could_refer_to(b1, misc1, "");
4915         could_refer_to(b2, misc2, " also");
4916         err.emit();
4917     }
4918
4919     fn report_errors(&mut self, krate: &Crate) {
4920         self.report_with_use_injections(krate);
4921
4922         for &(span_use, span_def) in &self.macro_expanded_macro_export_errors {
4923             let msg = "macro-expanded `macro_export` macros from the current crate \
4924                        cannot be referred to by absolute paths";
4925             self.session.buffer_lint_with_diagnostic(
4926                 lint::builtin::MACRO_EXPANDED_MACRO_EXPORTS_ACCESSED_BY_ABSOLUTE_PATHS,
4927                 CRATE_NODE_ID, span_use, msg,
4928                 lint::builtin::BuiltinLintDiagnostics::
4929                     MacroExpandedMacroExportsAccessedByAbsolutePaths(span_def),
4930             );
4931         }
4932
4933         for ambiguity_error in &self.ambiguity_errors {
4934             self.report_ambiguity_error(ambiguity_error);
4935         }
4936
4937         let mut reported_spans = FxHashSet::default();
4938         for &PrivacyError(dedup_span, ident, binding) in &self.privacy_errors {
4939             if reported_spans.insert(dedup_span) {
4940                 span_err!(self.session, ident.span, E0603, "{} `{}` is private",
4941                           binding.descr(), ident.name);
4942             }
4943         }
4944     }
4945
4946     fn report_with_use_injections(&mut self, krate: &Crate) {
4947         for UseError { mut err, candidates, node_id, better } in self.use_injections.drain(..) {
4948             let (span, found_use) = UsePlacementFinder::check(krate, node_id);
4949             if !candidates.is_empty() {
4950                 show_candidates(&mut err, span, &candidates, better, found_use);
4951             }
4952             err.emit();
4953         }
4954     }
4955
4956     fn report_conflict<'b>(&mut self,
4957                        parent: Module,
4958                        ident: Ident,
4959                        ns: Namespace,
4960                        new_binding: &NameBinding<'b>,
4961                        old_binding: &NameBinding<'b>) {
4962         // Error on the second of two conflicting names
4963         if old_binding.span.lo() > new_binding.span.lo() {
4964             return self.report_conflict(parent, ident, ns, old_binding, new_binding);
4965         }
4966
4967         let container = match parent.kind {
4968             ModuleKind::Def(Def::Mod(_), _) => "module",
4969             ModuleKind::Def(Def::Trait(_), _) => "trait",
4970             ModuleKind::Block(..) => "block",
4971             _ => "enum",
4972         };
4973
4974         let old_noun = match old_binding.is_import() {
4975             true => "import",
4976             false => "definition",
4977         };
4978
4979         let new_participle = match new_binding.is_import() {
4980             true => "imported",
4981             false => "defined",
4982         };
4983
4984         let (name, span) = (ident.name, self.session.source_map().def_span(new_binding.span));
4985
4986         if let Some(s) = self.name_already_seen.get(&name) {
4987             if s == &span {
4988                 return;
4989             }
4990         }
4991
4992         let old_kind = match (ns, old_binding.module()) {
4993             (ValueNS, _) => "value",
4994             (MacroNS, _) => "macro",
4995             (TypeNS, _) if old_binding.is_extern_crate() => "extern crate",
4996             (TypeNS, Some(module)) if module.is_normal() => "module",
4997             (TypeNS, Some(module)) if module.is_trait() => "trait",
4998             (TypeNS, _) => "type",
4999         };
5000
5001         let msg = format!("the name `{}` is defined multiple times", name);
5002
5003         let mut err = match (old_binding.is_extern_crate(), new_binding.is_extern_crate()) {
5004             (true, true) => struct_span_err!(self.session, span, E0259, "{}", msg),
5005             (true, _) | (_, true) => match new_binding.is_import() && old_binding.is_import() {
5006                 true => struct_span_err!(self.session, span, E0254, "{}", msg),
5007                 false => struct_span_err!(self.session, span, E0260, "{}", msg),
5008             },
5009             _ => match (old_binding.is_import(), new_binding.is_import()) {
5010                 (false, false) => struct_span_err!(self.session, span, E0428, "{}", msg),
5011                 (true, true) => struct_span_err!(self.session, span, E0252, "{}", msg),
5012                 _ => struct_span_err!(self.session, span, E0255, "{}", msg),
5013             },
5014         };
5015
5016         err.note(&format!("`{}` must be defined only once in the {} namespace of this {}",
5017                           name,
5018                           ns.descr(),
5019                           container));
5020
5021         err.span_label(span, format!("`{}` re{} here", name, new_participle));
5022         if !old_binding.span.is_dummy() {
5023             err.span_label(self.session.source_map().def_span(old_binding.span),
5024                            format!("previous {} of the {} `{}` here", old_noun, old_kind, name));
5025         }
5026
5027         // See https://github.com/rust-lang/rust/issues/32354
5028         if old_binding.is_import() || new_binding.is_import() {
5029             let binding = if new_binding.is_import() && !new_binding.span.is_dummy() {
5030                 new_binding
5031             } else {
5032                 old_binding
5033             };
5034
5035             let cm = self.session.source_map();
5036             let rename_msg = "you can use `as` to change the binding name of the import";
5037
5038             if let (
5039                 Ok(snippet),
5040                 NameBindingKind::Import { directive, ..},
5041                 _dummy @ false,
5042             ) = (
5043                 cm.span_to_snippet(binding.span),
5044                 binding.kind.clone(),
5045                 binding.span.is_dummy(),
5046             ) {
5047                 let suggested_name = if name.as_str().chars().next().unwrap().is_uppercase() {
5048                     format!("Other{}", name)
5049                 } else {
5050                     format!("other_{}", name)
5051                 };
5052
5053                 err.span_suggestion_with_applicability(
5054                     binding.span,
5055                     &rename_msg,
5056                     match directive.subclass {
5057                         ImportDirectiveSubclass::SingleImport { type_ns_only: true, .. } =>
5058                             format!("self as {}", suggested_name),
5059                         ImportDirectiveSubclass::SingleImport { source, .. } =>
5060                             format!(
5061                                 "{} as {}{}",
5062                                 &snippet[..((source.span.hi().0 - binding.span.lo().0) as usize)],
5063                                 suggested_name,
5064                                 if snippet.ends_with(";") {
5065                                     ";"
5066                                 } else {
5067                                     ""
5068                                 }
5069                             ),
5070                         ImportDirectiveSubclass::ExternCrate { source, target, .. } =>
5071                             format!(
5072                                 "extern crate {} as {};",
5073                                 source.unwrap_or(target.name),
5074                                 suggested_name,
5075                             ),
5076                         _ => unreachable!(),
5077                     },
5078                     Applicability::MaybeIncorrect,
5079                 );
5080             } else {
5081                 err.span_label(binding.span, rename_msg);
5082             }
5083         }
5084
5085         err.emit();
5086         self.name_already_seen.insert(name, span);
5087     }
5088
5089     fn extern_prelude_get(&mut self, ident: Ident, speculative: bool)
5090                           -> Option<&'a NameBinding<'a>> {
5091         if ident.is_path_segment_keyword() {
5092             // Make sure `self`, `super` etc produce an error when passed to here.
5093             return None;
5094         }
5095         self.extern_prelude.get(&ident.modern()).cloned().and_then(|entry| {
5096             if let Some(binding) = entry.extern_crate_item {
5097                 Some(binding)
5098             } else {
5099                 let crate_id = if !speculative {
5100                     self.crate_loader.process_path_extern(ident.name, ident.span)
5101                 } else if let Some(crate_id) =
5102                         self.crate_loader.maybe_process_path_extern(ident.name, ident.span) {
5103                     crate_id
5104                 } else {
5105                     return None;
5106                 };
5107                 let crate_root = self.get_module(DefId { krate: crate_id, index: CRATE_DEF_INDEX });
5108                 self.populate_module_if_necessary(&crate_root);
5109                 Some((crate_root, ty::Visibility::Public, DUMMY_SP, Mark::root())
5110                     .to_name_binding(self.arenas))
5111             }
5112         })
5113     }
5114 }
5115
5116 fn is_self_type(path: &[Segment], namespace: Namespace) -> bool {
5117     namespace == TypeNS && path.len() == 1 && path[0].ident.name == keywords::SelfUpper.name()
5118 }
5119
5120 fn is_self_value(path: &[Segment], namespace: Namespace) -> bool {
5121     namespace == ValueNS && path.len() == 1 && path[0].ident.name == keywords::SelfLower.name()
5122 }
5123
5124 fn names_to_string(idents: &[Ident]) -> String {
5125     let mut result = String::new();
5126     for (i, ident) in idents.iter()
5127                             .filter(|ident| ident.name != keywords::PathRoot.name())
5128                             .enumerate() {
5129         if i > 0 {
5130             result.push_str("::");
5131         }
5132         result.push_str(&ident.as_str());
5133     }
5134     result
5135 }
5136
5137 fn path_names_to_string(path: &Path) -> String {
5138     names_to_string(&path.segments.iter()
5139                         .map(|seg| seg.ident)
5140                         .collect::<Vec<_>>())
5141 }
5142
5143 /// Get the stringified path for an enum from an `ImportSuggestion` for an enum variant.
5144 fn import_candidate_to_enum_paths(suggestion: &ImportSuggestion) -> (String, String) {
5145     let variant_path = &suggestion.path;
5146     let variant_path_string = path_names_to_string(variant_path);
5147
5148     let path_len = suggestion.path.segments.len();
5149     let enum_path = ast::Path {
5150         span: suggestion.path.span,
5151         segments: suggestion.path.segments[0..path_len - 1].to_vec(),
5152     };
5153     let enum_path_string = path_names_to_string(&enum_path);
5154
5155     (variant_path_string, enum_path_string)
5156 }
5157
5158
5159 /// When an entity with a given name is not available in scope, we search for
5160 /// entities with that name in all crates. This method allows outputting the
5161 /// results of this search in a programmer-friendly way
5162 fn show_candidates(err: &mut DiagnosticBuilder,
5163                    // This is `None` if all placement locations are inside expansions
5164                    span: Option<Span>,
5165                    candidates: &[ImportSuggestion],
5166                    better: bool,
5167                    found_use: bool) {
5168
5169     // we want consistent results across executions, but candidates are produced
5170     // by iterating through a hash map, so make sure they are ordered:
5171     let mut path_strings: Vec<_> =
5172         candidates.into_iter().map(|c| path_names_to_string(&c.path)).collect();
5173     path_strings.sort();
5174
5175     let better = if better { "better " } else { "" };
5176     let msg_diff = match path_strings.len() {
5177         1 => " is found in another module, you can import it",
5178         _ => "s are found in other modules, you can import them",
5179     };
5180     let msg = format!("possible {}candidate{} into scope", better, msg_diff);
5181
5182     if let Some(span) = span {
5183         for candidate in &mut path_strings {
5184             // produce an additional newline to separate the new use statement
5185             // from the directly following item.
5186             let additional_newline = if found_use {
5187                 ""
5188             } else {
5189                 "\n"
5190             };
5191             *candidate = format!("use {};\n{}", candidate, additional_newline);
5192         }
5193
5194         err.span_suggestions_with_applicability(
5195             span,
5196             &msg,
5197             path_strings.into_iter(),
5198             Applicability::Unspecified,
5199         );
5200     } else {
5201         let mut msg = msg;
5202         msg.push(':');
5203         for candidate in path_strings {
5204             msg.push('\n');
5205             msg.push_str(&candidate);
5206         }
5207     }
5208 }
5209
5210 /// A somewhat inefficient routine to obtain the name of a module.
5211 fn module_to_string(module: Module) -> Option<String> {
5212     let mut names = Vec::new();
5213
5214     fn collect_mod(names: &mut Vec<Ident>, module: Module) {
5215         if let ModuleKind::Def(_, name) = module.kind {
5216             if let Some(parent) = module.parent {
5217                 names.push(Ident::with_empty_ctxt(name));
5218                 collect_mod(names, parent);
5219             }
5220         } else {
5221             // danger, shouldn't be ident?
5222             names.push(Ident::from_str("<opaque>"));
5223             collect_mod(names, module.parent.unwrap());
5224         }
5225     }
5226     collect_mod(&mut names, module);
5227
5228     if names.is_empty() {
5229         return None;
5230     }
5231     Some(names_to_string(&names.into_iter()
5232                         .rev()
5233                         .collect::<Vec<_>>()))
5234 }
5235
5236 fn err_path_resolution() -> PathResolution {
5237     PathResolution::new(Def::Err)
5238 }
5239
5240 #[derive(PartialEq,Copy, Clone)]
5241 pub enum MakeGlobMap {
5242     Yes,
5243     No,
5244 }
5245
5246 #[derive(Copy, Clone, Debug)]
5247 enum CrateLint {
5248     /// Do not issue the lint
5249     No,
5250
5251     /// This lint applies to some random path like `impl ::foo::Bar`
5252     /// or whatever. In this case, we can take the span of that path.
5253     SimplePath(NodeId),
5254
5255     /// This lint comes from a `use` statement. In this case, what we
5256     /// care about really is the *root* `use` statement; e.g., if we
5257     /// have nested things like `use a::{b, c}`, we care about the
5258     /// `use a` part.
5259     UsePath { root_id: NodeId, root_span: Span },
5260
5261     /// This is the "trait item" from a fully qualified path. For example,
5262     /// we might be resolving  `X::Y::Z` from a path like `<T as X::Y>::Z`.
5263     /// The `path_span` is the span of the to the trait itself (`X::Y`).
5264     QPathTrait { qpath_id: NodeId, qpath_span: Span },
5265 }
5266
5267 impl CrateLint {
5268     fn node_id(&self) -> Option<NodeId> {
5269         match *self {
5270             CrateLint::No => None,
5271             CrateLint::SimplePath(id) |
5272             CrateLint::UsePath { root_id: id, .. } |
5273             CrateLint::QPathTrait { qpath_id: id, .. } => Some(id),
5274         }
5275     }
5276 }
5277
5278 __build_diagnostic_array! { librustc_resolve, DIAGNOSTICS }