]> git.lizzy.rs Git - rust.git/blob - src/librustc_resolve/lib.rs
bc8ee2a8adb0b0dd346876064174781d7edbb0e1
[rust.git] / src / librustc_resolve / lib.rs
1 // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 #![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
12       html_favicon_url = "https://doc.rust-lang.org/favicon.ico",
13       html_root_url = "https://doc.rust-lang.org/nightly/")]
14
15 #![feature(crate_visibility_modifier)]
16 #![cfg_attr(not(stage0), feature(nll))]
17 #![feature(rustc_diagnostic_macros)]
18 #![feature(slice_sort_by_cached_key)]
19
20 #[macro_use]
21 extern crate log;
22 #[macro_use]
23 extern crate syntax;
24 extern crate syntax_pos;
25 extern crate rustc_errors as errors;
26 extern crate arena;
27 #[macro_use]
28 extern crate rustc;
29 extern crate rustc_data_structures;
30 extern crate rustc_metadata;
31
32 pub use rustc::hir::def::{Namespace, PerNS};
33
34 use self::TypeParameters::*;
35 use self::RibKind::*;
36
37 use rustc::hir::map::{Definitions, DefCollector};
38 use rustc::hir::{self, PrimTy, TyBool, TyChar, TyFloat, TyInt, TyUint, TyStr};
39 use rustc::middle::cstore::CrateStore;
40 use rustc::session::Session;
41 use rustc::lint;
42 use rustc::hir::def::*;
43 use rustc::hir::def::Namespace::*;
44 use rustc::hir::def_id::{CRATE_DEF_INDEX, LOCAL_CRATE, DefId};
45 use rustc::ty;
46 use rustc::hir::{Freevar, FreevarMap, TraitCandidate, TraitMap, GlobMap};
47 use rustc::util::nodemap::{NodeMap, NodeSet, FxHashMap, FxHashSet, DefIdMap};
48
49 use rustc_metadata::creader::CrateLoader;
50 use rustc_metadata::cstore::CStore;
51
52 use syntax::codemap::CodeMap;
53 use syntax::ext::hygiene::{Mark, Transparency, SyntaxContext};
54 use syntax::ast::{self, Name, NodeId, Ident, FloatTy, IntTy, UintTy};
55 use syntax::ext::base::SyntaxExtension;
56 use syntax::ext::base::Determinacy::{self, Determined, Undetermined};
57 use syntax::ext::base::MacroKind;
58 use syntax::symbol::{Symbol, keywords};
59 use syntax::util::lev_distance::find_best_match_for_name;
60
61 use syntax::visit::{self, FnKind, Visitor};
62 use syntax::attr;
63 use syntax::ast::{CRATE_NODE_ID, Arm, IsAsync, BindingMode, Block, Crate, Expr, ExprKind};
64 use syntax::ast::{FnDecl, ForeignItem, ForeignItemKind, GenericParamKind, Generics};
65 use syntax::ast::{Item, ItemKind, ImplItem, ImplItemKind};
66 use syntax::ast::{Label, Local, Mutability, Pat, PatKind, Path};
67 use syntax::ast::{QSelf, TraitItemKind, TraitRef, Ty, TyKind};
68 use syntax::feature_gate::{feature_err, GateIssue};
69 use syntax::ptr::P;
70
71 use syntax_pos::{Span, DUMMY_SP, MultiSpan};
72 use errors::{DiagnosticBuilder, DiagnosticId};
73
74 use std::cell::{Cell, RefCell};
75 use std::cmp;
76 use std::collections::BTreeSet;
77 use std::fmt;
78 use std::iter;
79 use std::mem::replace;
80 use rustc_data_structures::sync::Lrc;
81
82 use resolve_imports::{ImportDirective, ImportDirectiveSubclass, NameResolution, ImportResolver};
83 use macros::{InvocationData, LegacyBinding, MacroBinding};
84
85 // NB: This module needs to be declared first so diagnostics are
86 // registered before they are used.
87 mod diagnostics;
88
89 mod macros;
90 mod check_unused;
91 mod build_reduced_graph;
92 mod resolve_imports;
93
94 fn is_known_tool(name: Name) -> bool {
95     ["clippy", "rustfmt"].contains(&&*name.as_str())
96 }
97
98 /// A free importable items suggested in case of resolution failure.
99 struct ImportSuggestion {
100     path: Path,
101 }
102
103 /// A field or associated item from self type suggested in case of resolution failure.
104 enum AssocSuggestion {
105     Field,
106     MethodWithSelf,
107     AssocItem,
108 }
109
110 #[derive(Eq)]
111 struct BindingError {
112     name: Name,
113     origin: BTreeSet<Span>,
114     target: BTreeSet<Span>,
115 }
116
117 impl PartialOrd for BindingError {
118     fn partial_cmp(&self, other: &BindingError) -> Option<cmp::Ordering> {
119         Some(self.cmp(other))
120     }
121 }
122
123 impl PartialEq for BindingError {
124     fn eq(&self, other: &BindingError) -> bool {
125         self.name == other.name
126     }
127 }
128
129 impl Ord for BindingError {
130     fn cmp(&self, other: &BindingError) -> cmp::Ordering {
131         self.name.cmp(&other.name)
132     }
133 }
134
135 enum ResolutionError<'a> {
136     /// error E0401: can't use type parameters from outer function
137     TypeParametersFromOuterFunction(Def),
138     /// error E0403: the name is already used for a type parameter in this type parameter list
139     NameAlreadyUsedInTypeParameterList(Name, &'a Span),
140     /// error E0407: method is not a member of trait
141     MethodNotMemberOfTrait(Name, &'a str),
142     /// error E0437: type is not a member of trait
143     TypeNotMemberOfTrait(Name, &'a str),
144     /// error E0438: const is not a member of trait
145     ConstNotMemberOfTrait(Name, &'a str),
146     /// error E0408: variable `{}` is not bound in all patterns
147     VariableNotBoundInPattern(&'a BindingError),
148     /// error E0409: variable `{}` is bound in inconsistent ways within the same match arm
149     VariableBoundWithDifferentMode(Name, Span),
150     /// error E0415: identifier is bound more than once in this parameter list
151     IdentifierBoundMoreThanOnceInParameterList(&'a str),
152     /// error E0416: identifier is bound more than once in the same pattern
153     IdentifierBoundMoreThanOnceInSamePattern(&'a str),
154     /// error E0426: use of undeclared label
155     UndeclaredLabel(&'a str, Option<Name>),
156     /// error E0429: `self` imports are only allowed within a { } list
157     SelfImportsOnlyAllowedWithin,
158     /// error E0430: `self` import can only appear once in the list
159     SelfImportCanOnlyAppearOnceInTheList,
160     /// error E0431: `self` import can only appear in an import list with a non-empty prefix
161     SelfImportOnlyInImportListWithNonEmptyPrefix,
162     /// error E0432: unresolved import
163     UnresolvedImport(Option<(Span, &'a str, &'a str)>),
164     /// error E0433: failed to resolve
165     FailedToResolve(&'a str),
166     /// error E0434: can't capture dynamic environment in a fn item
167     CannotCaptureDynamicEnvironmentInFnItem,
168     /// error E0435: attempt to use a non-constant value in a constant
169     AttemptToUseNonConstantValueInConstant,
170     /// error E0530: X bindings cannot shadow Ys
171     BindingShadowsSomethingUnacceptable(&'a str, Name, &'a NameBinding<'a>),
172     /// error E0128: type parameters with a default cannot use forward declared identifiers
173     ForwardDeclaredTyParam,
174 }
175
176 /// Combines an error with provided span and emits it
177 ///
178 /// This takes the error provided, combines it with the span and any additional spans inside the
179 /// error and emits it.
180 fn resolve_error<'sess, 'a>(resolver: &'sess Resolver,
181                             span: Span,
182                             resolution_error: ResolutionError<'a>) {
183     resolve_struct_error(resolver, span, resolution_error).emit();
184 }
185
186 fn resolve_struct_error<'sess, 'a>(resolver: &'sess Resolver,
187                                    span: Span,
188                                    resolution_error: ResolutionError<'a>)
189                                    -> DiagnosticBuilder<'sess> {
190     match resolution_error {
191         ResolutionError::TypeParametersFromOuterFunction(outer_def) => {
192             let mut err = struct_span_err!(resolver.session,
193                                            span,
194                                            E0401,
195                                            "can't use type parameters from outer function");
196             err.span_label(span, "use of type variable from outer function");
197
198             let cm = resolver.session.codemap();
199             match outer_def {
200                 Def::SelfTy(_, maybe_impl_defid) => {
201                     if let Some(impl_span) = maybe_impl_defid.map_or(None,
202                             |def_id| resolver.definitions.opt_span(def_id)) {
203                         err.span_label(reduce_impl_span_to_impl_keyword(cm, impl_span),
204                                     "`Self` type implicitely declared here, on the `impl`");
205                     }
206                 },
207                 Def::TyParam(typaram_defid) => {
208                     if let Some(typaram_span) = resolver.definitions.opt_span(typaram_defid) {
209                         err.span_label(typaram_span, "type variable from outer function");
210                     }
211                 },
212                 _ => {
213                     bug!("TypeParametersFromOuterFunction should only be used with Def::SelfTy or \
214                          Def::TyParam")
215                 }
216             }
217
218             // Try to retrieve the span of the function signature and generate a new message with
219             // a local type parameter
220             let sugg_msg = "try using a local type parameter instead";
221             if let Some((sugg_span, new_snippet)) = cm.generate_local_type_param_snippet(span) {
222                 // Suggest the modification to the user
223                 err.span_suggestion(sugg_span,
224                                     sugg_msg,
225                                     new_snippet);
226             } else if let Some(sp) = cm.generate_fn_name_span(span) {
227                 err.span_label(sp, "try adding a local type parameter in this method instead");
228             } else {
229                 err.help("try using a local type parameter instead");
230             }
231
232             err
233         }
234         ResolutionError::NameAlreadyUsedInTypeParameterList(name, first_use_span) => {
235              let mut err = struct_span_err!(resolver.session,
236                                             span,
237                                             E0403,
238                                             "the name `{}` is already used for a type parameter \
239                                             in this type parameter list",
240                                             name);
241              err.span_label(span, "already used");
242              err.span_label(first_use_span.clone(), format!("first use of `{}`", name));
243              err
244         }
245         ResolutionError::MethodNotMemberOfTrait(method, trait_) => {
246             let mut err = struct_span_err!(resolver.session,
247                                            span,
248                                            E0407,
249                                            "method `{}` is not a member of trait `{}`",
250                                            method,
251                                            trait_);
252             err.span_label(span, format!("not a member of trait `{}`", trait_));
253             err
254         }
255         ResolutionError::TypeNotMemberOfTrait(type_, trait_) => {
256             let mut err = struct_span_err!(resolver.session,
257                              span,
258                              E0437,
259                              "type `{}` is not a member of trait `{}`",
260                              type_,
261                              trait_);
262             err.span_label(span, format!("not a member of trait `{}`", trait_));
263             err
264         }
265         ResolutionError::ConstNotMemberOfTrait(const_, trait_) => {
266             let mut err = struct_span_err!(resolver.session,
267                              span,
268                              E0438,
269                              "const `{}` is not a member of trait `{}`",
270                              const_,
271                              trait_);
272             err.span_label(span, format!("not a member of trait `{}`", trait_));
273             err
274         }
275         ResolutionError::VariableNotBoundInPattern(binding_error) => {
276             let target_sp = binding_error.target.iter().cloned().collect::<Vec<_>>();
277             let msp = MultiSpan::from_spans(target_sp.clone());
278             let msg = format!("variable `{}` is not bound in all patterns", binding_error.name);
279             let mut err = resolver.session.struct_span_err_with_code(
280                 msp,
281                 &msg,
282                 DiagnosticId::Error("E0408".into()),
283             );
284             for sp in target_sp {
285                 err.span_label(sp, format!("pattern doesn't bind `{}`", binding_error.name));
286             }
287             let origin_sp = binding_error.origin.iter().cloned();
288             for sp in origin_sp {
289                 err.span_label(sp, "variable not in all patterns");
290             }
291             err
292         }
293         ResolutionError::VariableBoundWithDifferentMode(variable_name,
294                                                         first_binding_span) => {
295             let mut err = struct_span_err!(resolver.session,
296                              span,
297                              E0409,
298                              "variable `{}` is bound in inconsistent \
299                              ways within the same match arm",
300                              variable_name);
301             err.span_label(span, "bound in different ways");
302             err.span_label(first_binding_span, "first binding");
303             err
304         }
305         ResolutionError::IdentifierBoundMoreThanOnceInParameterList(identifier) => {
306             let mut err = struct_span_err!(resolver.session,
307                              span,
308                              E0415,
309                              "identifier `{}` is bound more than once in this parameter list",
310                              identifier);
311             err.span_label(span, "used as parameter more than once");
312             err
313         }
314         ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(identifier) => {
315             let mut err = struct_span_err!(resolver.session,
316                              span,
317                              E0416,
318                              "identifier `{}` is bound more than once in the same pattern",
319                              identifier);
320             err.span_label(span, "used in a pattern more than once");
321             err
322         }
323         ResolutionError::UndeclaredLabel(name, lev_candidate) => {
324             let mut err = struct_span_err!(resolver.session,
325                                            span,
326                                            E0426,
327                                            "use of undeclared label `{}`",
328                                            name);
329             if let Some(lev_candidate) = lev_candidate {
330                 err.span_label(span, format!("did you mean `{}`?", lev_candidate));
331             } else {
332                 err.span_label(span, format!("undeclared label `{}`", name));
333             }
334             err
335         }
336         ResolutionError::SelfImportsOnlyAllowedWithin => {
337             struct_span_err!(resolver.session,
338                              span,
339                              E0429,
340                              "{}",
341                              "`self` imports are only allowed within a { } list")
342         }
343         ResolutionError::SelfImportCanOnlyAppearOnceInTheList => {
344             let mut err = struct_span_err!(resolver.session, span, E0430,
345                                            "`self` import can only appear once in an import list");
346             err.span_label(span, "can only appear once in an import list");
347             err
348         }
349         ResolutionError::SelfImportOnlyInImportListWithNonEmptyPrefix => {
350             let mut err = struct_span_err!(resolver.session, span, E0431,
351                                            "`self` import can only appear in an import list with \
352                                             a non-empty prefix");
353             err.span_label(span, "can only appear in an import list with a non-empty prefix");
354             err
355         }
356         ResolutionError::UnresolvedImport(name) => {
357             let (span, msg) = match name {
358                 Some((sp, n, _)) => (sp, format!("unresolved import `{}`", n)),
359                 None => (span, "unresolved import".to_owned()),
360             };
361             let mut err = struct_span_err!(resolver.session, span, E0432, "{}", msg);
362             if let Some((_, _, p)) = name {
363                 err.span_label(span, p);
364             }
365             err
366         }
367         ResolutionError::FailedToResolve(msg) => {
368             let mut err = struct_span_err!(resolver.session, span, E0433,
369                                            "failed to resolve. {}", msg);
370             err.span_label(span, msg);
371             err
372         }
373         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem => {
374             let mut err = struct_span_err!(resolver.session,
375                                            span,
376                                            E0434,
377                                            "{}",
378                                            "can't capture dynamic environment in a fn item");
379             err.help("use the `|| { ... }` closure form instead");
380             err
381         }
382         ResolutionError::AttemptToUseNonConstantValueInConstant => {
383             let mut err = struct_span_err!(resolver.session, span, E0435,
384                                            "attempt to use a non-constant value in a constant");
385             err.span_label(span, "non-constant value");
386             err
387         }
388         ResolutionError::BindingShadowsSomethingUnacceptable(what_binding, name, binding) => {
389             let shadows_what = PathResolution::new(binding.def()).kind_name();
390             let mut err = struct_span_err!(resolver.session,
391                                            span,
392                                            E0530,
393                                            "{}s cannot shadow {}s", what_binding, shadows_what);
394             err.span_label(span, format!("cannot be named the same as a {}", shadows_what));
395             let participle = if binding.is_import() { "imported" } else { "defined" };
396             let msg = format!("a {} `{}` is {} here", shadows_what, name, participle);
397             err.span_label(binding.span, msg);
398             err
399         }
400         ResolutionError::ForwardDeclaredTyParam => {
401             let mut err = struct_span_err!(resolver.session, span, E0128,
402                                            "type parameters with a default cannot use \
403                                             forward declared identifiers");
404             err.span_label(
405                 span, "defaulted type parameters cannot be forward declared".to_string());
406             err
407         }
408     }
409 }
410
411 /// Adjust the impl span so that just the `impl` keyword is taken by removing
412 /// everything after `<` (`"impl<T> Iterator for A<T> {}" -> "impl"`) and
413 /// everything after the first whitespace (`"impl Iterator for A" -> "impl"`)
414 ///
415 /// Attention: The method used is very fragile since it essentially duplicates the work of the
416 /// parser. If you need to use this function or something similar, please consider updating the
417 /// codemap functions and this function to something more robust.
418 fn reduce_impl_span_to_impl_keyword(cm: &CodeMap, impl_span: Span) -> Span {
419     let impl_span = cm.span_until_char(impl_span, '<');
420     let impl_span = cm.span_until_whitespace(impl_span);
421     impl_span
422 }
423
424 #[derive(Copy, Clone, Debug)]
425 struct BindingInfo {
426     span: Span,
427     binding_mode: BindingMode,
428 }
429
430 /// Map from the name in a pattern to its binding mode.
431 type BindingMap = FxHashMap<Ident, BindingInfo>;
432
433 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
434 enum PatternSource {
435     Match,
436     IfLet,
437     WhileLet,
438     Let,
439     For,
440     FnParam,
441 }
442
443 impl PatternSource {
444     fn descr(self) -> &'static str {
445         match self {
446             PatternSource::Match => "match binding",
447             PatternSource::IfLet => "if let binding",
448             PatternSource::WhileLet => "while let binding",
449             PatternSource::Let => "let binding",
450             PatternSource::For => "for binding",
451             PatternSource::FnParam => "function parameter",
452         }
453     }
454 }
455
456 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
457 enum AliasPossibility {
458     No,
459     Maybe,
460 }
461
462 #[derive(Copy, Clone, Debug)]
463 enum PathSource<'a> {
464     // Type paths `Path`.
465     Type,
466     // Trait paths in bounds or impls.
467     Trait(AliasPossibility),
468     // Expression paths `path`, with optional parent context.
469     Expr(Option<&'a Expr>),
470     // Paths in path patterns `Path`.
471     Pat,
472     // Paths in struct expressions and patterns `Path { .. }`.
473     Struct,
474     // Paths in tuple struct patterns `Path(..)`.
475     TupleStruct,
476     // `m::A::B` in `<T as m::A>::B::C`.
477     TraitItem(Namespace),
478     // Path in `pub(path)`
479     Visibility,
480     // Path in `use a::b::{...};`
481     ImportPrefix,
482 }
483
484 impl<'a> PathSource<'a> {
485     fn namespace(self) -> Namespace {
486         match self {
487             PathSource::Type | PathSource::Trait(_) | PathSource::Struct |
488             PathSource::Visibility | PathSource::ImportPrefix => TypeNS,
489             PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct => ValueNS,
490             PathSource::TraitItem(ns) => ns,
491         }
492     }
493
494     fn global_by_default(self) -> bool {
495         match self {
496             PathSource::Visibility | PathSource::ImportPrefix => true,
497             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
498             PathSource::Struct | PathSource::TupleStruct |
499             PathSource::Trait(_) | PathSource::TraitItem(..) => false,
500         }
501     }
502
503     fn defer_to_typeck(self) -> bool {
504         match self {
505             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
506             PathSource::Struct | PathSource::TupleStruct => true,
507             PathSource::Trait(_) | PathSource::TraitItem(..) |
508             PathSource::Visibility | PathSource::ImportPrefix => false,
509         }
510     }
511
512     fn descr_expected(self) -> &'static str {
513         match self {
514             PathSource::Type => "type",
515             PathSource::Trait(_) => "trait",
516             PathSource::Pat => "unit struct/variant or constant",
517             PathSource::Struct => "struct, variant or union type",
518             PathSource::TupleStruct => "tuple struct/variant",
519             PathSource::Visibility => "module",
520             PathSource::ImportPrefix => "module or enum",
521             PathSource::TraitItem(ns) => match ns {
522                 TypeNS => "associated type",
523                 ValueNS => "method or associated constant",
524                 MacroNS => bug!("associated macro"),
525             },
526             PathSource::Expr(parent) => match parent.map(|p| &p.node) {
527                 // "function" here means "anything callable" rather than `Def::Fn`,
528                 // this is not precise but usually more helpful than just "value".
529                 Some(&ExprKind::Call(..)) => "function",
530                 _ => "value",
531             },
532         }
533     }
534
535     fn is_expected(self, def: Def) -> bool {
536         match self {
537             PathSource::Type => match def {
538                 Def::Struct(..) | Def::Union(..) | Def::Enum(..) |
539                 Def::Trait(..) | Def::TyAlias(..) | Def::AssociatedTy(..) |
540                 Def::PrimTy(..) | Def::TyParam(..) | Def::SelfTy(..) |
541                 Def::Existential(..) |
542                 Def::TyForeign(..) => true,
543                 _ => false,
544             },
545             PathSource::Trait(AliasPossibility::No) => match def {
546                 Def::Trait(..) => true,
547                 _ => false,
548             },
549             PathSource::Trait(AliasPossibility::Maybe) => match def {
550                 Def::Trait(..) => true,
551                 Def::TraitAlias(..) => true,
552                 _ => false,
553             },
554             PathSource::Expr(..) => match def {
555                 Def::StructCtor(_, CtorKind::Const) | Def::StructCtor(_, CtorKind::Fn) |
556                 Def::VariantCtor(_, CtorKind::Const) | Def::VariantCtor(_, CtorKind::Fn) |
557                 Def::Const(..) | Def::Static(..) | Def::Local(..) | Def::Upvar(..) |
558                 Def::Fn(..) | Def::Method(..) | Def::AssociatedConst(..) => true,
559                 _ => false,
560             },
561             PathSource::Pat => match def {
562                 Def::StructCtor(_, CtorKind::Const) |
563                 Def::VariantCtor(_, CtorKind::Const) |
564                 Def::Const(..) | Def::AssociatedConst(..) => true,
565                 _ => false,
566             },
567             PathSource::TupleStruct => match def {
568                 Def::StructCtor(_, CtorKind::Fn) | Def::VariantCtor(_, CtorKind::Fn) => true,
569                 _ => false,
570             },
571             PathSource::Struct => match def {
572                 Def::Struct(..) | Def::Union(..) | Def::Variant(..) |
573                 Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => true,
574                 _ => false,
575             },
576             PathSource::TraitItem(ns) => match def {
577                 Def::AssociatedConst(..) | Def::Method(..) if ns == ValueNS => true,
578                 Def::AssociatedTy(..) if ns == TypeNS => true,
579                 _ => false,
580             },
581             PathSource::ImportPrefix => match def {
582                 Def::Mod(..) | Def::Enum(..) => true,
583                 _ => false,
584             },
585             PathSource::Visibility => match def {
586                 Def::Mod(..) => true,
587                 _ => false,
588             },
589         }
590     }
591
592     fn error_code(self, has_unexpected_resolution: bool) -> &'static str {
593         __diagnostic_used!(E0404);
594         __diagnostic_used!(E0405);
595         __diagnostic_used!(E0412);
596         __diagnostic_used!(E0422);
597         __diagnostic_used!(E0423);
598         __diagnostic_used!(E0425);
599         __diagnostic_used!(E0531);
600         __diagnostic_used!(E0532);
601         __diagnostic_used!(E0573);
602         __diagnostic_used!(E0574);
603         __diagnostic_used!(E0575);
604         __diagnostic_used!(E0576);
605         __diagnostic_used!(E0577);
606         __diagnostic_used!(E0578);
607         match (self, has_unexpected_resolution) {
608             (PathSource::Trait(_), true) => "E0404",
609             (PathSource::Trait(_), false) => "E0405",
610             (PathSource::Type, true) => "E0573",
611             (PathSource::Type, false) => "E0412",
612             (PathSource::Struct, true) => "E0574",
613             (PathSource::Struct, false) => "E0422",
614             (PathSource::Expr(..), true) => "E0423",
615             (PathSource::Expr(..), false) => "E0425",
616             (PathSource::Pat, true) | (PathSource::TupleStruct, true) => "E0532",
617             (PathSource::Pat, false) | (PathSource::TupleStruct, false) => "E0531",
618             (PathSource::TraitItem(..), true) => "E0575",
619             (PathSource::TraitItem(..), false) => "E0576",
620             (PathSource::Visibility, true) | (PathSource::ImportPrefix, true) => "E0577",
621             (PathSource::Visibility, false) | (PathSource::ImportPrefix, false) => "E0578",
622         }
623     }
624 }
625
626 struct UsePlacementFinder {
627     target_module: NodeId,
628     span: Option<Span>,
629     found_use: bool,
630 }
631
632 impl UsePlacementFinder {
633     fn check(krate: &Crate, target_module: NodeId) -> (Option<Span>, bool) {
634         let mut finder = UsePlacementFinder {
635             target_module,
636             span: None,
637             found_use: false,
638         };
639         visit::walk_crate(&mut finder, krate);
640         (finder.span, finder.found_use)
641     }
642 }
643
644 impl<'tcx> Visitor<'tcx> for UsePlacementFinder {
645     fn visit_mod(
646         &mut self,
647         module: &'tcx ast::Mod,
648         _: Span,
649         _: &[ast::Attribute],
650         node_id: NodeId,
651     ) {
652         if self.span.is_some() {
653             return;
654         }
655         if node_id != self.target_module {
656             visit::walk_mod(self, module);
657             return;
658         }
659         // find a use statement
660         for item in &module.items {
661             match item.node {
662                 ItemKind::Use(..) => {
663                     // don't suggest placing a use before the prelude
664                     // import or other generated ones
665                     if item.span.ctxt().outer().expn_info().is_none() {
666                         self.span = Some(item.span.shrink_to_lo());
667                         self.found_use = true;
668                         return;
669                     }
670                 },
671                 // don't place use before extern crate
672                 ItemKind::ExternCrate(_) => {}
673                 // but place them before the first other item
674                 _ => if self.span.map_or(true, |span| item.span < span ) {
675                     if item.span.ctxt().outer().expn_info().is_none() {
676                         // don't insert between attributes and an item
677                         if item.attrs.is_empty() {
678                             self.span = Some(item.span.shrink_to_lo());
679                         } else {
680                             // find the first attribute on the item
681                             for attr in &item.attrs {
682                                 if self.span.map_or(true, |span| attr.span < span) {
683                                     self.span = Some(attr.span.shrink_to_lo());
684                                 }
685                             }
686                         }
687                     }
688                 },
689             }
690         }
691     }
692 }
693
694 /// This thing walks the whole crate in DFS manner, visiting each item, resolving names as it goes.
695 impl<'a, 'tcx, 'cl> Visitor<'tcx> for Resolver<'a, 'cl> {
696     fn visit_item(&mut self, item: &'tcx Item) {
697         self.resolve_item(item);
698     }
699     fn visit_arm(&mut self, arm: &'tcx Arm) {
700         self.resolve_arm(arm);
701     }
702     fn visit_block(&mut self, block: &'tcx Block) {
703         self.resolve_block(block);
704     }
705     fn visit_anon_const(&mut self, constant: &'tcx ast::AnonConst) {
706         self.with_constant_rib(|this| {
707             visit::walk_anon_const(this, constant);
708         });
709     }
710     fn visit_expr(&mut self, expr: &'tcx Expr) {
711         self.resolve_expr(expr, None);
712     }
713     fn visit_local(&mut self, local: &'tcx Local) {
714         self.resolve_local(local);
715     }
716     fn visit_ty(&mut self, ty: &'tcx Ty) {
717         match ty.node {
718             TyKind::Path(ref qself, ref path) => {
719                 self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
720             }
721             TyKind::ImplicitSelf => {
722                 let self_ty = keywords::SelfType.ident();
723                 let def = self.resolve_ident_in_lexical_scope(self_ty, TypeNS, Some(ty.id), ty.span)
724                               .map_or(Def::Err, |d| d.def());
725                 self.record_def(ty.id, PathResolution::new(def));
726             }
727             _ => (),
728         }
729         visit::walk_ty(self, ty);
730     }
731     fn visit_poly_trait_ref(&mut self,
732                             tref: &'tcx ast::PolyTraitRef,
733                             m: &'tcx ast::TraitBoundModifier) {
734         self.smart_resolve_path(tref.trait_ref.ref_id, None,
735                                 &tref.trait_ref.path, PathSource::Trait(AliasPossibility::Maybe));
736         visit::walk_poly_trait_ref(self, tref, m);
737     }
738     fn visit_foreign_item(&mut self, foreign_item: &'tcx ForeignItem) {
739         let type_parameters = match foreign_item.node {
740             ForeignItemKind::Fn(_, ref generics) => {
741                 HasTypeParameters(generics, ItemRibKind)
742             }
743             ForeignItemKind::Static(..) => NoTypeParameters,
744             ForeignItemKind::Ty => NoTypeParameters,
745             ForeignItemKind::Macro(..) => NoTypeParameters,
746         };
747         self.with_type_parameter_rib(type_parameters, |this| {
748             visit::walk_foreign_item(this, foreign_item);
749         });
750     }
751     fn visit_fn(&mut self,
752                 function_kind: FnKind<'tcx>,
753                 declaration: &'tcx FnDecl,
754                 _: Span,
755                 node_id: NodeId)
756     {
757         let (rib_kind, asyncness) = match function_kind {
758             FnKind::ItemFn(_, ref header, ..) =>
759                 (ItemRibKind, header.asyncness),
760             FnKind::Method(_, ref sig, _, _) =>
761                 (TraitOrImplItemRibKind, sig.header.asyncness),
762             FnKind::Closure(_) =>
763                 // Async closures aren't resolved through `visit_fn`-- they're
764                 // processed separately
765                 (ClosureRibKind(node_id), IsAsync::NotAsync),
766         };
767
768         // Create a value rib for the function.
769         self.ribs[ValueNS].push(Rib::new(rib_kind));
770
771         // Create a label rib for the function.
772         self.label_ribs.push(Rib::new(rib_kind));
773
774         // Add each argument to the rib.
775         let mut bindings_list = FxHashMap();
776         for argument in &declaration.inputs {
777             self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
778
779             self.visit_ty(&argument.ty);
780
781             debug!("(resolving function) recorded argument");
782         }
783         visit::walk_fn_ret_ty(self, &declaration.output);
784
785         // Resolve the function body, potentially inside the body of an async closure
786         if let IsAsync::Async { closure_id, .. } = asyncness {
787             let rib_kind = ClosureRibKind(closure_id);
788             self.ribs[ValueNS].push(Rib::new(rib_kind));
789             self.label_ribs.push(Rib::new(rib_kind));
790         }
791
792         match function_kind {
793             FnKind::ItemFn(.., body) |
794             FnKind::Method(.., body) => {
795                 self.visit_block(body);
796             }
797             FnKind::Closure(body) => {
798                 self.visit_expr(body);
799             }
800         };
801
802         // Leave the body of the async closure
803         if asyncness.is_async() {
804             self.label_ribs.pop();
805             self.ribs[ValueNS].pop();
806         }
807
808         debug!("(resolving function) leaving function");
809
810         self.label_ribs.pop();
811         self.ribs[ValueNS].pop();
812     }
813     fn visit_generics(&mut self, generics: &'tcx Generics) {
814         // For type parameter defaults, we have to ban access
815         // to following type parameters, as the Substs can only
816         // provide previous type parameters as they're built. We
817         // put all the parameters on the ban list and then remove
818         // them one by one as they are processed and become available.
819         let mut default_ban_rib = Rib::new(ForwardTyParamBanRibKind);
820         let mut found_default = false;
821         default_ban_rib.bindings.extend(generics.params.iter()
822             .filter_map(|param| match param.kind {
823                 GenericParamKind::Lifetime { .. } => None,
824                 GenericParamKind::Type { ref default, .. } => {
825                     if found_default || default.is_some() {
826                         found_default = true;
827                         return Some((Ident::with_empty_ctxt(param.ident.name), Def::Err));
828                     }
829                     None
830                 }
831             }));
832
833         for param in &generics.params {
834             match param.kind {
835                 GenericParamKind::Lifetime { .. } => self.visit_generic_param(param),
836                 GenericParamKind::Type { ref default, .. } => {
837                     for bound in &param.bounds {
838                         self.visit_param_bound(bound);
839                     }
840
841                     if let Some(ref ty) = default {
842                         self.ribs[TypeNS].push(default_ban_rib);
843                         self.visit_ty(ty);
844                         default_ban_rib = self.ribs[TypeNS].pop().unwrap();
845                     }
846
847                     // Allow all following defaults to refer to this type parameter.
848                     default_ban_rib.bindings.remove(&Ident::with_empty_ctxt(param.ident.name));
849                 }
850             }
851         }
852         for p in &generics.where_clause.predicates {
853             self.visit_where_predicate(p);
854         }
855     }
856 }
857
858 #[derive(Copy, Clone)]
859 enum TypeParameters<'a, 'b> {
860     NoTypeParameters,
861     HasTypeParameters(// Type parameters.
862                       &'b Generics,
863
864                       // The kind of the rib used for type parameters.
865                       RibKind<'a>),
866 }
867
868 /// The rib kind controls the translation of local
869 /// definitions (`Def::Local`) to upvars (`Def::Upvar`).
870 #[derive(Copy, Clone, Debug)]
871 enum RibKind<'a> {
872     /// No translation needs to be applied.
873     NormalRibKind,
874
875     /// We passed through a closure scope at the given node ID.
876     /// Translate upvars as appropriate.
877     ClosureRibKind(NodeId /* func id */),
878
879     /// We passed through an impl or trait and are now in one of its
880     /// methods or associated types. Allow references to ty params that impl or trait
881     /// binds. Disallow any other upvars (including other ty params that are
882     /// upvars).
883     TraitOrImplItemRibKind,
884
885     /// We passed through an item scope. Disallow upvars.
886     ItemRibKind,
887
888     /// We're in a constant item. Can't refer to dynamic stuff.
889     ConstantItemRibKind,
890
891     /// We passed through a module.
892     ModuleRibKind(Module<'a>),
893
894     /// We passed through a `macro_rules!` statement
895     MacroDefinition(DefId),
896
897     /// All bindings in this rib are type parameters that can't be used
898     /// from the default of a type parameter because they're not declared
899     /// before said type parameter. Also see the `visit_generics` override.
900     ForwardTyParamBanRibKind,
901 }
902
903 /// One local scope.
904 ///
905 /// A rib represents a scope names can live in. Note that these appear in many places, not just
906 /// around braces. At any place where the list of accessible names (of the given namespace)
907 /// changes or a new restrictions on the name accessibility are introduced, a new rib is put onto a
908 /// stack. This may be, for example, a `let` statement (because it introduces variables), a macro,
909 /// etc.
910 ///
911 /// Different [rib kinds](enum.RibKind) are transparent for different names.
912 ///
913 /// The resolution keeps a separate stack of ribs as it traverses the AST for each namespace. When
914 /// resolving, the name is looked up from inside out.
915 #[derive(Debug)]
916 struct Rib<'a> {
917     bindings: FxHashMap<Ident, Def>,
918     kind: RibKind<'a>,
919 }
920
921 impl<'a> Rib<'a> {
922     fn new(kind: RibKind<'a>) -> Rib<'a> {
923         Rib {
924             bindings: FxHashMap(),
925             kind,
926         }
927     }
928 }
929
930 /// An intermediate resolution result.
931 ///
932 /// This refers to the thing referred by a name. The difference between `Def` and `Item` is that
933 /// items are visible in their whole block, while defs only from the place they are defined
934 /// forward.
935 enum LexicalScopeBinding<'a> {
936     Item(&'a NameBinding<'a>),
937     Def(Def),
938 }
939
940 impl<'a> LexicalScopeBinding<'a> {
941     fn item(self) -> Option<&'a NameBinding<'a>> {
942         match self {
943             LexicalScopeBinding::Item(binding) => Some(binding),
944             _ => None,
945         }
946     }
947
948     fn def(self) -> Def {
949         match self {
950             LexicalScopeBinding::Item(binding) => binding.def(),
951             LexicalScopeBinding::Def(def) => def,
952         }
953     }
954 }
955
956 #[derive(Copy, Clone, Debug)]
957 pub enum ModuleOrUniformRoot<'a> {
958     /// Regular module.
959     Module(Module<'a>),
960
961     /// The `{{root}}` (`CrateRoot` aka "global") / `extern` initial segment
962     /// in which external crates resolve, and also `crate` (only in `{{root}}`,
963     /// but *not* `extern`), in the Rust 2018 edition.
964     UniformRoot(Name),
965 }
966
967 #[derive(Clone, Debug)]
968 enum PathResult<'a> {
969     Module(ModuleOrUniformRoot<'a>),
970     NonModule(PathResolution),
971     Indeterminate,
972     Failed(Span, String, bool /* is the error from the last segment? */),
973 }
974
975 enum ModuleKind {
976     /// An anonymous module, eg. just a block.
977     ///
978     /// ```
979     /// fn main() {
980     ///     fn f() {} // (1)
981     ///     { // This is an anonymous module
982     ///         f(); // This resolves to (2) as we are inside the block.
983     ///         fn f() {} // (2)
984     ///     }
985     ///     f(); // Resolves to (1)
986     /// }
987     /// ```
988     Block(NodeId),
989     /// Any module with a name.
990     ///
991     /// This could be:
992     ///
993     /// * A normal module â€’ either `mod from_file;` or `mod from_block { }`.
994     /// * A trait or an enum (it implicitly contains associated types, methods and variant
995     ///   constructors).
996     Def(Def, Name),
997 }
998
999 /// One node in the tree of modules.
1000 pub struct ModuleData<'a> {
1001     parent: Option<Module<'a>>,
1002     kind: ModuleKind,
1003
1004     // The def id of the closest normal module (`mod`) ancestor (including this module).
1005     normal_ancestor_id: DefId,
1006
1007     resolutions: RefCell<FxHashMap<(Ident, Namespace), &'a RefCell<NameResolution<'a>>>>,
1008     legacy_macro_resolutions: RefCell<Vec<(Mark, Ident, MacroKind, Option<Def>)>>,
1009     macro_resolutions: RefCell<Vec<(Box<[Ident]>, Span)>>,
1010
1011     // Macro invocations that can expand into items in this module.
1012     unresolved_invocations: RefCell<FxHashSet<Mark>>,
1013
1014     no_implicit_prelude: bool,
1015
1016     glob_importers: RefCell<Vec<&'a ImportDirective<'a>>>,
1017     globs: RefCell<Vec<&'a ImportDirective<'a>>>,
1018
1019     // Used to memoize the traits in this module for faster searches through all traits in scope.
1020     traits: RefCell<Option<Box<[(Ident, &'a NameBinding<'a>)]>>>,
1021
1022     // Whether this module is populated. If not populated, any attempt to
1023     // access the children must be preceded with a
1024     // `populate_module_if_necessary` call.
1025     populated: Cell<bool>,
1026
1027     /// Span of the module itself. Used for error reporting.
1028     span: Span,
1029
1030     expansion: Mark,
1031 }
1032
1033 type Module<'a> = &'a ModuleData<'a>;
1034
1035 impl<'a> ModuleData<'a> {
1036     fn new(parent: Option<Module<'a>>,
1037            kind: ModuleKind,
1038            normal_ancestor_id: DefId,
1039            expansion: Mark,
1040            span: Span) -> Self {
1041         ModuleData {
1042             parent,
1043             kind,
1044             normal_ancestor_id,
1045             resolutions: RefCell::new(FxHashMap()),
1046             legacy_macro_resolutions: RefCell::new(Vec::new()),
1047             macro_resolutions: RefCell::new(Vec::new()),
1048             unresolved_invocations: RefCell::new(FxHashSet()),
1049             no_implicit_prelude: false,
1050             glob_importers: RefCell::new(Vec::new()),
1051             globs: RefCell::new(Vec::new()),
1052             traits: RefCell::new(None),
1053             populated: Cell::new(normal_ancestor_id.is_local()),
1054             span,
1055             expansion,
1056         }
1057     }
1058
1059     fn for_each_child<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1060         for (&(ident, ns), name_resolution) in self.resolutions.borrow().iter() {
1061             name_resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1062         }
1063     }
1064
1065     fn for_each_child_stable<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1066         let resolutions = self.resolutions.borrow();
1067         let mut resolutions = resolutions.iter().collect::<Vec<_>>();
1068         resolutions.sort_by_cached_key(|&(&(ident, ns), _)| (ident.as_str(), ns));
1069         for &(&(ident, ns), &resolution) in resolutions.iter() {
1070             resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1071         }
1072     }
1073
1074     fn def(&self) -> Option<Def> {
1075         match self.kind {
1076             ModuleKind::Def(def, _) => Some(def),
1077             _ => None,
1078         }
1079     }
1080
1081     fn def_id(&self) -> Option<DefId> {
1082         self.def().as_ref().map(Def::def_id)
1083     }
1084
1085     // `self` resolves to the first module ancestor that `is_normal`.
1086     fn is_normal(&self) -> bool {
1087         match self.kind {
1088             ModuleKind::Def(Def::Mod(_), _) => true,
1089             _ => false,
1090         }
1091     }
1092
1093     fn is_trait(&self) -> bool {
1094         match self.kind {
1095             ModuleKind::Def(Def::Trait(_), _) => true,
1096             _ => false,
1097         }
1098     }
1099
1100     fn is_local(&self) -> bool {
1101         self.normal_ancestor_id.is_local()
1102     }
1103
1104     fn nearest_item_scope(&'a self) -> Module<'a> {
1105         if self.is_trait() { self.parent.unwrap() } else { self }
1106     }
1107 }
1108
1109 impl<'a> fmt::Debug for ModuleData<'a> {
1110     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1111         write!(f, "{:?}", self.def())
1112     }
1113 }
1114
1115 /// Records a possibly-private value, type, or module definition.
1116 #[derive(Clone, Debug)]
1117 pub struct NameBinding<'a> {
1118     kind: NameBindingKind<'a>,
1119     expansion: Mark,
1120     span: Span,
1121     vis: ty::Visibility,
1122 }
1123
1124 pub trait ToNameBinding<'a> {
1125     fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a>;
1126 }
1127
1128 impl<'a> ToNameBinding<'a> for &'a NameBinding<'a> {
1129     fn to_name_binding(self, _: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> {
1130         self
1131     }
1132 }
1133
1134 #[derive(Clone, Debug)]
1135 enum NameBindingKind<'a> {
1136     Def(Def, /* is_macro_export */ bool),
1137     Module(Module<'a>),
1138     Import {
1139         binding: &'a NameBinding<'a>,
1140         directive: &'a ImportDirective<'a>,
1141         used: Cell<bool>,
1142     },
1143     Ambiguity {
1144         b1: &'a NameBinding<'a>,
1145         b2: &'a NameBinding<'a>,
1146     }
1147 }
1148
1149 struct PrivacyError<'a>(Span, Name, &'a NameBinding<'a>);
1150
1151 struct UseError<'a> {
1152     err: DiagnosticBuilder<'a>,
1153     /// Attach `use` statements for these candidates
1154     candidates: Vec<ImportSuggestion>,
1155     /// The node id of the module to place the use statements in
1156     node_id: NodeId,
1157     /// Whether the diagnostic should state that it's "better"
1158     better: bool,
1159 }
1160
1161 struct AmbiguityError<'a> {
1162     span: Span,
1163     name: Name,
1164     lexical: bool,
1165     b1: &'a NameBinding<'a>,
1166     b2: &'a NameBinding<'a>,
1167 }
1168
1169 impl<'a> NameBinding<'a> {
1170     fn module(&self) -> Option<Module<'a>> {
1171         match self.kind {
1172             NameBindingKind::Module(module) => Some(module),
1173             NameBindingKind::Import { binding, .. } => binding.module(),
1174             _ => None,
1175         }
1176     }
1177
1178     fn def(&self) -> Def {
1179         match self.kind {
1180             NameBindingKind::Def(def, _) => def,
1181             NameBindingKind::Module(module) => module.def().unwrap(),
1182             NameBindingKind::Import { binding, .. } => binding.def(),
1183             NameBindingKind::Ambiguity { .. } => Def::Err,
1184         }
1185     }
1186
1187     fn def_ignoring_ambiguity(&self) -> Def {
1188         match self.kind {
1189             NameBindingKind::Import { binding, .. } => binding.def_ignoring_ambiguity(),
1190             NameBindingKind::Ambiguity { b1, .. } => b1.def_ignoring_ambiguity(),
1191             _ => self.def(),
1192         }
1193     }
1194
1195     fn get_macro<'b: 'a>(&self, resolver: &mut Resolver<'a, 'b>) -> Lrc<SyntaxExtension> {
1196         resolver.get_macro(self.def_ignoring_ambiguity())
1197     }
1198
1199     // We sometimes need to treat variants as `pub` for backwards compatibility
1200     fn pseudo_vis(&self) -> ty::Visibility {
1201         if self.is_variant() && self.def().def_id().is_local() {
1202             ty::Visibility::Public
1203         } else {
1204             self.vis
1205         }
1206     }
1207
1208     fn is_variant(&self) -> bool {
1209         match self.kind {
1210             NameBindingKind::Def(Def::Variant(..), _) |
1211             NameBindingKind::Def(Def::VariantCtor(..), _) => true,
1212             _ => false,
1213         }
1214     }
1215
1216     fn is_extern_crate(&self) -> bool {
1217         match self.kind {
1218             NameBindingKind::Import {
1219                 directive: &ImportDirective {
1220                     subclass: ImportDirectiveSubclass::ExternCrate(_), ..
1221                 }, ..
1222             } => true,
1223             _ => false,
1224         }
1225     }
1226
1227     fn is_import(&self) -> bool {
1228         match self.kind {
1229             NameBindingKind::Import { .. } => true,
1230             _ => false,
1231         }
1232     }
1233
1234     fn is_renamed_extern_crate(&self) -> bool {
1235         if let NameBindingKind::Import { directive, ..} = self.kind {
1236             if let ImportDirectiveSubclass::ExternCrate(Some(_)) = directive.subclass {
1237                 return true;
1238             }
1239         }
1240         false
1241     }
1242
1243     fn is_glob_import(&self) -> bool {
1244         match self.kind {
1245             NameBindingKind::Import { directive, .. } => directive.is_glob(),
1246             NameBindingKind::Ambiguity { b1, .. } => b1.is_glob_import(),
1247             _ => false,
1248         }
1249     }
1250
1251     fn is_importable(&self) -> bool {
1252         match self.def() {
1253             Def::AssociatedConst(..) | Def::Method(..) | Def::AssociatedTy(..) => false,
1254             _ => true,
1255         }
1256     }
1257
1258     fn is_macro_def(&self) -> bool {
1259         match self.kind {
1260             NameBindingKind::Def(Def::Macro(..), _) => true,
1261             _ => false,
1262         }
1263     }
1264
1265     fn descr(&self) -> &'static str {
1266         if self.is_extern_crate() { "extern crate" } else { self.def().kind_name() }
1267     }
1268 }
1269
1270 /// Interns the names of the primitive types.
1271 ///
1272 /// All other types are defined somewhere and possibly imported, but the primitive ones need
1273 /// special handling, since they have no place of origin.
1274 struct PrimitiveTypeTable {
1275     primitive_types: FxHashMap<Name, PrimTy>,
1276 }
1277
1278 impl PrimitiveTypeTable {
1279     fn new() -> PrimitiveTypeTable {
1280         let mut table = PrimitiveTypeTable { primitive_types: FxHashMap() };
1281
1282         table.intern("bool", TyBool);
1283         table.intern("char", TyChar);
1284         table.intern("f32", TyFloat(FloatTy::F32));
1285         table.intern("f64", TyFloat(FloatTy::F64));
1286         table.intern("isize", TyInt(IntTy::Isize));
1287         table.intern("i8", TyInt(IntTy::I8));
1288         table.intern("i16", TyInt(IntTy::I16));
1289         table.intern("i32", TyInt(IntTy::I32));
1290         table.intern("i64", TyInt(IntTy::I64));
1291         table.intern("i128", TyInt(IntTy::I128));
1292         table.intern("str", TyStr);
1293         table.intern("usize", TyUint(UintTy::Usize));
1294         table.intern("u8", TyUint(UintTy::U8));
1295         table.intern("u16", TyUint(UintTy::U16));
1296         table.intern("u32", TyUint(UintTy::U32));
1297         table.intern("u64", TyUint(UintTy::U64));
1298         table.intern("u128", TyUint(UintTy::U128));
1299         table
1300     }
1301
1302     fn intern(&mut self, string: &str, primitive_type: PrimTy) {
1303         self.primitive_types.insert(Symbol::intern(string), primitive_type);
1304     }
1305 }
1306
1307 /// The main resolver class.
1308 ///
1309 /// This is the visitor that walks the whole crate.
1310 pub struct Resolver<'a, 'b: 'a> {
1311     session: &'a Session,
1312     cstore: &'a CStore,
1313
1314     pub definitions: Definitions,
1315
1316     graph_root: Module<'a>,
1317
1318     prelude: Option<Module<'a>>,
1319     extern_prelude: FxHashSet<Name>,
1320
1321     /// n.b. This is used only for better diagnostics, not name resolution itself.
1322     has_self: FxHashSet<DefId>,
1323
1324     /// Names of fields of an item `DefId` accessible with dot syntax.
1325     /// Used for hints during error reporting.
1326     field_names: FxHashMap<DefId, Vec<Name>>,
1327
1328     /// All imports known to succeed or fail.
1329     determined_imports: Vec<&'a ImportDirective<'a>>,
1330
1331     /// All non-determined imports.
1332     indeterminate_imports: Vec<&'a ImportDirective<'a>>,
1333
1334     /// The module that represents the current item scope.
1335     current_module: Module<'a>,
1336
1337     /// The current set of local scopes for types and values.
1338     /// FIXME #4948: Reuse ribs to avoid allocation.
1339     ribs: PerNS<Vec<Rib<'a>>>,
1340
1341     /// The current set of local scopes, for labels.
1342     label_ribs: Vec<Rib<'a>>,
1343
1344     /// The trait that the current context can refer to.
1345     current_trait_ref: Option<(Module<'a>, TraitRef)>,
1346
1347     /// The current self type if inside an impl (used for better errors).
1348     current_self_type: Option<Ty>,
1349
1350     /// The idents for the primitive types.
1351     primitive_type_table: PrimitiveTypeTable,
1352
1353     def_map: DefMap,
1354     import_map: ImportMap,
1355     pub freevars: FreevarMap,
1356     freevars_seen: NodeMap<NodeMap<usize>>,
1357     pub export_map: ExportMap,
1358     pub trait_map: TraitMap,
1359
1360     /// A map from nodes to anonymous modules.
1361     /// Anonymous modules are pseudo-modules that are implicitly created around items
1362     /// contained within blocks.
1363     ///
1364     /// For example, if we have this:
1365     ///
1366     ///  fn f() {
1367     ///      fn g() {
1368     ///          ...
1369     ///      }
1370     ///  }
1371     ///
1372     /// There will be an anonymous module created around `g` with the ID of the
1373     /// entry block for `f`.
1374     block_map: NodeMap<Module<'a>>,
1375     module_map: FxHashMap<DefId, Module<'a>>,
1376     extern_module_map: FxHashMap<(DefId, bool /* MacrosOnly? */), Module<'a>>,
1377
1378     pub make_glob_map: bool,
1379     /// Maps imports to the names of items actually imported (this actually maps
1380     /// all imports, but only glob imports are actually interesting).
1381     pub glob_map: GlobMap,
1382
1383     used_imports: FxHashSet<(NodeId, Namespace)>,
1384     pub maybe_unused_trait_imports: NodeSet,
1385     pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
1386
1387     /// A list of labels as of yet unused. Labels will be removed from this map when
1388     /// they are used (in a `break` or `continue` statement)
1389     pub unused_labels: FxHashMap<NodeId, Span>,
1390
1391     /// privacy errors are delayed until the end in order to deduplicate them
1392     privacy_errors: Vec<PrivacyError<'a>>,
1393     /// ambiguity errors are delayed for deduplication
1394     ambiguity_errors: Vec<AmbiguityError<'a>>,
1395     /// `use` injections are delayed for better placement and deduplication
1396     use_injections: Vec<UseError<'a>>,
1397     /// `use` injections for proc macros wrongly imported with #[macro_use]
1398     proc_mac_errors: Vec<macros::ProcMacError>,
1399     /// crate-local macro expanded `macro_export` referred to by a module-relative path
1400     macro_expanded_macro_export_errors: BTreeSet<(Span, Span)>,
1401
1402     disallowed_shadowing: Vec<&'a LegacyBinding<'a>>,
1403
1404     arenas: &'a ResolverArenas<'a>,
1405     dummy_binding: &'a NameBinding<'a>,
1406
1407     crate_loader: &'a mut CrateLoader<'b>,
1408     macro_names: FxHashSet<Ident>,
1409     macro_prelude: FxHashMap<Name, &'a NameBinding<'a>>,
1410     pub all_macros: FxHashMap<Name, Def>,
1411     macro_map: FxHashMap<DefId, Lrc<SyntaxExtension>>,
1412     macro_defs: FxHashMap<Mark, DefId>,
1413     local_macro_def_scopes: FxHashMap<NodeId, Module<'a>>,
1414     pub whitelisted_legacy_custom_derives: Vec<Name>,
1415     pub found_unresolved_macro: bool,
1416
1417     /// List of crate local macros that we need to warn about as being unused.
1418     /// Right now this only includes macro_rules! macros, and macros 2.0.
1419     unused_macros: FxHashSet<DefId>,
1420
1421     /// Maps the `Mark` of an expansion to its containing module or block.
1422     invocations: FxHashMap<Mark, &'a InvocationData<'a>>,
1423
1424     /// Avoid duplicated errors for "name already defined".
1425     name_already_seen: FxHashMap<Name, Span>,
1426
1427     /// A set of procedural macros imported by `#[macro_use]` that have already been warned about
1428     warned_proc_macros: FxHashSet<Name>,
1429
1430     potentially_unused_imports: Vec<&'a ImportDirective<'a>>,
1431
1432     /// This table maps struct IDs into struct constructor IDs,
1433     /// it's not used during normal resolution, only for better error reporting.
1434     struct_constructors: DefIdMap<(Def, ty::Visibility)>,
1435
1436     /// Only used for better errors on `fn(): fn()`
1437     current_type_ascription: Vec<Span>,
1438
1439     injected_crate: Option<Module<'a>>,
1440
1441     /// Only supposed to be used by rustdoc, otherwise should be false.
1442     pub ignore_extern_prelude_feature: bool,
1443 }
1444
1445 /// Nothing really interesting here, it just provides memory for the rest of the crate.
1446 pub struct ResolverArenas<'a> {
1447     modules: arena::TypedArena<ModuleData<'a>>,
1448     local_modules: RefCell<Vec<Module<'a>>>,
1449     name_bindings: arena::TypedArena<NameBinding<'a>>,
1450     import_directives: arena::TypedArena<ImportDirective<'a>>,
1451     name_resolutions: arena::TypedArena<RefCell<NameResolution<'a>>>,
1452     invocation_data: arena::TypedArena<InvocationData<'a>>,
1453     legacy_bindings: arena::TypedArena<LegacyBinding<'a>>,
1454 }
1455
1456 impl<'a> ResolverArenas<'a> {
1457     fn alloc_module(&'a self, module: ModuleData<'a>) -> Module<'a> {
1458         let module = self.modules.alloc(module);
1459         if module.def_id().map(|def_id| def_id.is_local()).unwrap_or(true) {
1460             self.local_modules.borrow_mut().push(module);
1461         }
1462         module
1463     }
1464     fn local_modules(&'a self) -> ::std::cell::Ref<'a, Vec<Module<'a>>> {
1465         self.local_modules.borrow()
1466     }
1467     fn alloc_name_binding(&'a self, name_binding: NameBinding<'a>) -> &'a NameBinding<'a> {
1468         self.name_bindings.alloc(name_binding)
1469     }
1470     fn alloc_import_directive(&'a self, import_directive: ImportDirective<'a>)
1471                               -> &'a ImportDirective {
1472         self.import_directives.alloc(import_directive)
1473     }
1474     fn alloc_name_resolution(&'a self) -> &'a RefCell<NameResolution<'a>> {
1475         self.name_resolutions.alloc(Default::default())
1476     }
1477     fn alloc_invocation_data(&'a self, expansion_data: InvocationData<'a>)
1478                              -> &'a InvocationData<'a> {
1479         self.invocation_data.alloc(expansion_data)
1480     }
1481     fn alloc_legacy_binding(&'a self, binding: LegacyBinding<'a>) -> &'a LegacyBinding<'a> {
1482         self.legacy_bindings.alloc(binding)
1483     }
1484 }
1485
1486 impl<'a, 'b: 'a, 'cl: 'b> ty::DefIdTree for &'a Resolver<'b, 'cl> {
1487     fn parent(self, id: DefId) -> Option<DefId> {
1488         match id.krate {
1489             LOCAL_CRATE => self.definitions.def_key(id.index).parent,
1490             _ => self.cstore.def_key(id).parent,
1491         }.map(|index| DefId { index, ..id })
1492     }
1493 }
1494
1495 /// This interface is used through the AST→HIR step, to embed full paths into the HIR. After that
1496 /// the resolver is no longer needed as all the relevant information is inline.
1497 impl<'a, 'cl> hir::lowering::Resolver for Resolver<'a, 'cl> {
1498     fn resolve_hir_path(&mut self, path: &mut hir::Path, is_value: bool) {
1499         self.resolve_hir_path_cb(path, is_value,
1500                                  |resolver, span, error| resolve_error(resolver, span, error))
1501     }
1502
1503     fn resolve_str_path(
1504         &mut self,
1505         span: Span,
1506         crate_root: Option<&str>,
1507         components: &[&str],
1508         args: Option<P<hir::GenericArgs>>,
1509         is_value: bool
1510     ) -> hir::Path {
1511         let mut segments = iter::once(keywords::CrateRoot.ident())
1512             .chain(
1513                 crate_root.into_iter()
1514                     .chain(components.iter().cloned())
1515                     .map(Ident::from_str)
1516             ).map(hir::PathSegment::from_ident).collect::<Vec<_>>();
1517
1518         if let Some(args) = args {
1519             let ident = segments.last().unwrap().ident;
1520             *segments.last_mut().unwrap() = hir::PathSegment {
1521                 ident,
1522                 args: Some(args),
1523                 infer_types: true,
1524             };
1525         }
1526
1527         let mut path = hir::Path {
1528             span,
1529             def: Def::Err,
1530             segments: segments.into(),
1531         };
1532
1533         self.resolve_hir_path(&mut path, is_value);
1534         path
1535     }
1536
1537     fn get_resolution(&mut self, id: NodeId) -> Option<PathResolution> {
1538         self.def_map.get(&id).cloned()
1539     }
1540
1541     fn get_import(&mut self, id: NodeId) -> PerNS<Option<PathResolution>> {
1542         self.import_map.get(&id).cloned().unwrap_or_default()
1543     }
1544
1545     fn definitions(&mut self) -> &mut Definitions {
1546         &mut self.definitions
1547     }
1548 }
1549
1550 impl<'a, 'crateloader> Resolver<'a, 'crateloader> {
1551     /// Rustdoc uses this to resolve things in a recoverable way. ResolutionError<'a>
1552     /// isn't something that can be returned because it can't be made to live that long,
1553     /// and also it's a private type. Fortunately rustdoc doesn't need to know the error,
1554     /// just that an error occurred.
1555     pub fn resolve_str_path_error(&mut self, span: Span, path_str: &str, is_value: bool)
1556         -> Result<hir::Path, ()> {
1557         use std::iter;
1558         let mut errored = false;
1559
1560         let mut path = if path_str.starts_with("::") {
1561             hir::Path {
1562                 span,
1563                 def: Def::Err,
1564                 segments: iter::once(keywords::CrateRoot.ident()).chain({
1565                     path_str.split("::").skip(1).map(Ident::from_str)
1566                 }).map(hir::PathSegment::from_ident).collect(),
1567             }
1568         } else {
1569             hir::Path {
1570                 span,
1571                 def: Def::Err,
1572                 segments: path_str.split("::").map(Ident::from_str)
1573                                   .map(hir::PathSegment::from_ident).collect(),
1574             }
1575         };
1576         self.resolve_hir_path_cb(&mut path, is_value, |_, _, _| errored = true);
1577         if errored || path.def == Def::Err {
1578             Err(())
1579         } else {
1580             Ok(path)
1581         }
1582     }
1583
1584     /// resolve_hir_path, but takes a callback in case there was an error
1585     fn resolve_hir_path_cb<F>(&mut self, path: &mut hir::Path, is_value: bool, error_callback: F)
1586         where F: for<'c, 'b> FnOnce(&'c mut Resolver, Span, ResolutionError<'b>)
1587     {
1588         let namespace = if is_value { ValueNS } else { TypeNS };
1589         let hir::Path { ref segments, span, ref mut def } = *path;
1590         let path: Vec<_> = segments.iter().map(|seg| seg.ident).collect();
1591         // FIXME (Manishearth): Intra doc links won't get warned of epoch changes
1592         match self.resolve_path(None, &path, Some(namespace), true, span, CrateLint::No) {
1593             PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
1594                 *def = module.def().unwrap(),
1595             PathResult::NonModule(path_res) if path_res.unresolved_segments() == 0 =>
1596                 *def = path_res.base_def(),
1597             PathResult::NonModule(..) => match self.resolve_path(
1598                 None,
1599                 &path,
1600                 None,
1601                 true,
1602                 span,
1603                 CrateLint::No,
1604             ) {
1605                 PathResult::Failed(span, msg, _) => {
1606                     error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1607                 }
1608                 _ => {}
1609             },
1610             PathResult::Module(ModuleOrUniformRoot::UniformRoot(_)) |
1611             PathResult::Indeterminate => unreachable!(),
1612             PathResult::Failed(span, msg, _) => {
1613                 error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1614             }
1615         }
1616     }
1617 }
1618
1619 impl<'a, 'crateloader: 'a> Resolver<'a, 'crateloader> {
1620     pub fn new(session: &'a Session,
1621                cstore: &'a CStore,
1622                krate: &Crate,
1623                crate_name: &str,
1624                make_glob_map: MakeGlobMap,
1625                crate_loader: &'a mut CrateLoader<'crateloader>,
1626                arenas: &'a ResolverArenas<'a>)
1627                -> Resolver<'a, 'crateloader> {
1628         let root_def_id = DefId::local(CRATE_DEF_INDEX);
1629         let root_module_kind = ModuleKind::Def(Def::Mod(root_def_id), keywords::Invalid.name());
1630         let graph_root = arenas.alloc_module(ModuleData {
1631             no_implicit_prelude: attr::contains_name(&krate.attrs, "no_implicit_prelude"),
1632             ..ModuleData::new(None, root_module_kind, root_def_id, Mark::root(), krate.span)
1633         });
1634         let mut module_map = FxHashMap();
1635         module_map.insert(DefId::local(CRATE_DEF_INDEX), graph_root);
1636
1637         let mut definitions = Definitions::new();
1638         DefCollector::new(&mut definitions, Mark::root())
1639             .collect_root(crate_name, session.local_crate_disambiguator());
1640
1641         let mut extern_prelude: FxHashSet<Name> =
1642             session.opts.externs.iter().map(|kv| Symbol::intern(kv.0)).collect();
1643         if !attr::contains_name(&krate.attrs, "no_core") {
1644             if !attr::contains_name(&krate.attrs, "no_std") {
1645                 extern_prelude.insert(Symbol::intern("std"));
1646             } else {
1647                 extern_prelude.insert(Symbol::intern("core"));
1648             }
1649         }
1650
1651         let mut invocations = FxHashMap();
1652         invocations.insert(Mark::root(),
1653                            arenas.alloc_invocation_data(InvocationData::root(graph_root)));
1654
1655         let mut macro_defs = FxHashMap();
1656         macro_defs.insert(Mark::root(), root_def_id);
1657
1658         Resolver {
1659             session,
1660
1661             cstore,
1662
1663             definitions,
1664
1665             // The outermost module has def ID 0; this is not reflected in the
1666             // AST.
1667             graph_root,
1668             prelude: None,
1669             extern_prelude,
1670
1671             has_self: FxHashSet(),
1672             field_names: FxHashMap(),
1673
1674             determined_imports: Vec::new(),
1675             indeterminate_imports: Vec::new(),
1676
1677             current_module: graph_root,
1678             ribs: PerNS {
1679                 value_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1680                 type_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1681                 macro_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1682             },
1683             label_ribs: Vec::new(),
1684
1685             current_trait_ref: None,
1686             current_self_type: None,
1687
1688             primitive_type_table: PrimitiveTypeTable::new(),
1689
1690             def_map: NodeMap(),
1691             import_map: NodeMap(),
1692             freevars: NodeMap(),
1693             freevars_seen: NodeMap(),
1694             export_map: FxHashMap(),
1695             trait_map: NodeMap(),
1696             module_map,
1697             block_map: NodeMap(),
1698             extern_module_map: FxHashMap(),
1699
1700             make_glob_map: make_glob_map == MakeGlobMap::Yes,
1701             glob_map: NodeMap(),
1702
1703             used_imports: FxHashSet(),
1704             maybe_unused_trait_imports: NodeSet(),
1705             maybe_unused_extern_crates: Vec::new(),
1706
1707             unused_labels: FxHashMap(),
1708
1709             privacy_errors: Vec::new(),
1710             ambiguity_errors: Vec::new(),
1711             use_injections: Vec::new(),
1712             proc_mac_errors: Vec::new(),
1713             disallowed_shadowing: Vec::new(),
1714             macro_expanded_macro_export_errors: BTreeSet::new(),
1715
1716             arenas,
1717             dummy_binding: arenas.alloc_name_binding(NameBinding {
1718                 kind: NameBindingKind::Def(Def::Err, false),
1719                 expansion: Mark::root(),
1720                 span: DUMMY_SP,
1721                 vis: ty::Visibility::Public,
1722             }),
1723
1724             crate_loader,
1725             macro_names: FxHashSet(),
1726             macro_prelude: FxHashMap(),
1727             all_macros: FxHashMap(),
1728             macro_map: FxHashMap(),
1729             invocations,
1730             macro_defs,
1731             local_macro_def_scopes: FxHashMap(),
1732             name_already_seen: FxHashMap(),
1733             whitelisted_legacy_custom_derives: Vec::new(),
1734             warned_proc_macros: FxHashSet(),
1735             potentially_unused_imports: Vec::new(),
1736             struct_constructors: DefIdMap(),
1737             found_unresolved_macro: false,
1738             unused_macros: FxHashSet(),
1739             current_type_ascription: Vec::new(),
1740             injected_crate: None,
1741             ignore_extern_prelude_feature: false,
1742         }
1743     }
1744
1745     pub fn arenas() -> ResolverArenas<'a> {
1746         ResolverArenas {
1747             modules: arena::TypedArena::new(),
1748             local_modules: RefCell::new(Vec::new()),
1749             name_bindings: arena::TypedArena::new(),
1750             import_directives: arena::TypedArena::new(),
1751             name_resolutions: arena::TypedArena::new(),
1752             invocation_data: arena::TypedArena::new(),
1753             legacy_bindings: arena::TypedArena::new(),
1754         }
1755     }
1756
1757     /// Runs the function on each namespace.
1758     fn per_ns<F: FnMut(&mut Self, Namespace)>(&mut self, mut f: F) {
1759         f(self, TypeNS);
1760         f(self, ValueNS);
1761         f(self, MacroNS);
1762     }
1763
1764     fn macro_def(&self, mut ctxt: SyntaxContext) -> DefId {
1765         loop {
1766             match self.macro_defs.get(&ctxt.outer()) {
1767                 Some(&def_id) => return def_id,
1768                 None => ctxt.remove_mark(),
1769             };
1770         }
1771     }
1772
1773     /// Entry point to crate resolution.
1774     pub fn resolve_crate(&mut self, krate: &Crate) {
1775         ImportResolver { resolver: self }.finalize_imports();
1776         self.current_module = self.graph_root;
1777         self.finalize_current_module_macro_resolutions();
1778
1779         visit::walk_crate(self, krate);
1780
1781         check_unused::check_crate(self, krate);
1782         self.report_errors(krate);
1783         self.crate_loader.postprocess(krate);
1784     }
1785
1786     fn new_module(
1787         &self,
1788         parent: Module<'a>,
1789         kind: ModuleKind,
1790         normal_ancestor_id: DefId,
1791         expansion: Mark,
1792         span: Span,
1793     ) -> Module<'a> {
1794         let module = ModuleData::new(Some(parent), kind, normal_ancestor_id, expansion, span);
1795         self.arenas.alloc_module(module)
1796     }
1797
1798     fn record_use(&mut self, ident: Ident, ns: Namespace, binding: &'a NameBinding<'a>, span: Span)
1799                   -> bool /* true if an error was reported */ {
1800         match binding.kind {
1801             NameBindingKind::Import { directive, binding, ref used }
1802                     if !used.get() => {
1803                 used.set(true);
1804                 directive.used.set(true);
1805                 self.used_imports.insert((directive.id, ns));
1806                 self.add_to_glob_map(directive.id, ident);
1807                 self.record_use(ident, ns, binding, span)
1808             }
1809             NameBindingKind::Import { .. } => false,
1810             NameBindingKind::Ambiguity { b1, b2 } => {
1811                 self.ambiguity_errors.push(AmbiguityError {
1812                     span, name: ident.name, lexical: false, b1, b2,
1813                 });
1814                 true
1815             }
1816             _ => false
1817         }
1818     }
1819
1820     fn add_to_glob_map(&mut self, id: NodeId, ident: Ident) {
1821         if self.make_glob_map {
1822             self.glob_map.entry(id).or_insert_with(FxHashSet).insert(ident.name);
1823         }
1824     }
1825
1826     /// This resolves the identifier `ident` in the namespace `ns` in the current lexical scope.
1827     /// More specifically, we proceed up the hierarchy of scopes and return the binding for
1828     /// `ident` in the first scope that defines it (or None if no scopes define it).
1829     ///
1830     /// A block's items are above its local variables in the scope hierarchy, regardless of where
1831     /// the items are defined in the block. For example,
1832     /// ```rust
1833     /// fn f() {
1834     ///    g(); // Since there are no local variables in scope yet, this resolves to the item.
1835     ///    let g = || {};
1836     ///    fn g() {}
1837     ///    g(); // This resolves to the local variable `g` since it shadows the item.
1838     /// }
1839     /// ```
1840     ///
1841     /// Invariant: This must only be called during main resolution, not during
1842     /// import resolution.
1843     fn resolve_ident_in_lexical_scope(&mut self,
1844                                       mut ident: Ident,
1845                                       ns: Namespace,
1846                                       record_used_id: Option<NodeId>,
1847                                       path_span: Span)
1848                                       -> Option<LexicalScopeBinding<'a>> {
1849         let record_used = record_used_id.is_some();
1850         assert!(ns == TypeNS  || ns == ValueNS);
1851         if ns == TypeNS {
1852             ident.span = if ident.name == keywords::SelfType.name() {
1853                 // FIXME(jseyfried) improve `Self` hygiene
1854                 ident.span.with_ctxt(SyntaxContext::empty())
1855             } else {
1856                 ident.span.modern()
1857             }
1858         } else {
1859             ident = ident.modern_and_legacy();
1860         }
1861
1862         // Walk backwards up the ribs in scope.
1863         let mut module = self.graph_root;
1864         for i in (0 .. self.ribs[ns].len()).rev() {
1865             if let Some(def) = self.ribs[ns][i].bindings.get(&ident).cloned() {
1866                 // The ident resolves to a type parameter or local variable.
1867                 return Some(LexicalScopeBinding::Def(
1868                     self.adjust_local_def(ns, i, def, record_used, path_span)
1869                 ));
1870             }
1871
1872             module = match self.ribs[ns][i].kind {
1873                 ModuleRibKind(module) => module,
1874                 MacroDefinition(def) if def == self.macro_def(ident.span.ctxt()) => {
1875                     // If an invocation of this macro created `ident`, give up on `ident`
1876                     // and switch to `ident`'s source from the macro definition.
1877                     ident.span.remove_mark();
1878                     continue
1879                 }
1880                 _ => continue,
1881             };
1882
1883             let item = self.resolve_ident_in_module_unadjusted(
1884                 ModuleOrUniformRoot::Module(module),
1885                 ident,
1886                 ns,
1887                 false,
1888                 record_used,
1889                 path_span,
1890             );
1891             if let Ok(binding) = item {
1892                 // The ident resolves to an item.
1893                 return Some(LexicalScopeBinding::Item(binding));
1894             }
1895
1896             match module.kind {
1897                 ModuleKind::Block(..) => {}, // We can see through blocks
1898                 _ => break,
1899             }
1900         }
1901
1902         ident.span = ident.span.modern();
1903         loop {
1904             let (opt_module, poisoned) = if let Some(node_id) = record_used_id {
1905                 self.hygienic_lexical_parent_with_compatibility_fallback(module, &mut ident.span,
1906                                                                          node_id)
1907             } else {
1908                 (self.hygienic_lexical_parent(module, &mut ident.span), None)
1909             };
1910             module = unwrap_or!(opt_module, break);
1911             let orig_current_module = self.current_module;
1912             self.current_module = module; // Lexical resolutions can never be a privacy error.
1913             let result = self.resolve_ident_in_module_unadjusted(
1914                 ModuleOrUniformRoot::Module(module),
1915                 ident,
1916                 ns,
1917                 false,
1918                 record_used,
1919                 path_span,
1920             );
1921             self.current_module = orig_current_module;
1922
1923             match result {
1924                 Ok(binding) => {
1925                     if let Some(node_id) = poisoned {
1926                         self.session.buffer_lint_with_diagnostic(
1927                             lint::builtin::PROC_MACRO_DERIVE_RESOLUTION_FALLBACK,
1928                             node_id, ident.span,
1929                             &format!("cannot find {} `{}` in this scope", ns.descr(), ident),
1930                             lint::builtin::BuiltinLintDiagnostics::
1931                                 ProcMacroDeriveResolutionFallback(ident.span),
1932                         );
1933                     }
1934                     return Some(LexicalScopeBinding::Item(binding))
1935                 }
1936                 _ if poisoned.is_some() => break,
1937                 Err(Determined) => continue,
1938                 Err(Undetermined) =>
1939                     span_bug!(ident.span, "undetermined resolution during main resolution pass"),
1940             }
1941         }
1942
1943         if !module.no_implicit_prelude {
1944             // `record_used` means that we don't try to load crates during speculative resolution
1945             if record_used && ns == TypeNS && self.extern_prelude.contains(&ident.name) {
1946                 if !self.session.features_untracked().extern_prelude &&
1947                    !self.ignore_extern_prelude_feature {
1948                     feature_err(&self.session.parse_sess, "extern_prelude",
1949                                 ident.span, GateIssue::Language,
1950                                 "access to extern crates through prelude is experimental").emit();
1951                 }
1952
1953                 let crate_id = self.crate_loader.process_path_extern(ident.name, ident.span);
1954                 let crate_root = self.get_module(DefId { krate: crate_id, index: CRATE_DEF_INDEX });
1955                 self.populate_module_if_necessary(crate_root);
1956
1957                 let binding = (crate_root, ty::Visibility::Public,
1958                                ident.span, Mark::root()).to_name_binding(self.arenas);
1959                 return Some(LexicalScopeBinding::Item(binding));
1960             }
1961             if ns == TypeNS && is_known_tool(ident.name) {
1962                 let binding = (Def::ToolMod, ty::Visibility::Public,
1963                                ident.span, Mark::root()).to_name_binding(self.arenas);
1964                 return Some(LexicalScopeBinding::Item(binding));
1965             }
1966             if let Some(prelude) = self.prelude {
1967                 if let Ok(binding) = self.resolve_ident_in_module_unadjusted(
1968                     ModuleOrUniformRoot::Module(prelude),
1969                     ident,
1970                     ns,
1971                     false,
1972                     false,
1973                     path_span,
1974                 ) {
1975                     return Some(LexicalScopeBinding::Item(binding));
1976                 }
1977             }
1978         }
1979
1980         None
1981     }
1982
1983     fn hygienic_lexical_parent(&mut self, module: Module<'a>, span: &mut Span)
1984                                -> Option<Module<'a>> {
1985         if !module.expansion.is_descendant_of(span.ctxt().outer()) {
1986             return Some(self.macro_def_scope(span.remove_mark()));
1987         }
1988
1989         if let ModuleKind::Block(..) = module.kind {
1990             return Some(module.parent.unwrap());
1991         }
1992
1993         None
1994     }
1995
1996     fn hygienic_lexical_parent_with_compatibility_fallback(
1997         &mut self, module: Module<'a>, span: &mut Span, node_id: NodeId
1998     ) -> (Option<Module<'a>>, /* poisoned */ Option<NodeId>)
1999     {
2000         if let module @ Some(..) = self.hygienic_lexical_parent(module, span) {
2001             return (module, None);
2002         }
2003
2004         // We need to support the next case under a deprecation warning
2005         // ```
2006         // struct MyStruct;
2007         // ---- begin: this comes from a proc macro derive
2008         // mod implementation_details {
2009         //     // Note that `MyStruct` is not in scope here.
2010         //     impl SomeTrait for MyStruct { ... }
2011         // }
2012         // ---- end
2013         // ```
2014         // So we have to fall back to the module's parent during lexical resolution in this case.
2015         if let Some(parent) = module.parent {
2016             // Inner module is inside the macro, parent module is outside of the macro.
2017             if module.expansion != parent.expansion &&
2018             module.expansion.is_descendant_of(parent.expansion) {
2019                 // The macro is a proc macro derive
2020                 if module.expansion.looks_like_proc_macro_derive() {
2021                     if parent.expansion.is_descendant_of(span.ctxt().outer()) {
2022                         return (module.parent, Some(node_id));
2023                     }
2024                 }
2025             }
2026         }
2027
2028         (None, None)
2029     }
2030
2031     fn resolve_ident_in_module(&mut self,
2032                                module: ModuleOrUniformRoot<'a>,
2033                                mut ident: Ident,
2034                                ns: Namespace,
2035                                record_used: bool,
2036                                span: Span)
2037                                -> Result<&'a NameBinding<'a>, Determinacy> {
2038         ident.span = ident.span.modern();
2039         let orig_current_module = self.current_module;
2040         if let ModuleOrUniformRoot::Module(module) = module {
2041             if let Some(def) = ident.span.adjust(module.expansion) {
2042                 self.current_module = self.macro_def_scope(def);
2043             }
2044         }
2045         let result = self.resolve_ident_in_module_unadjusted(
2046             module, ident, ns, false, record_used, span,
2047         );
2048         self.current_module = orig_current_module;
2049         result
2050     }
2051
2052     fn resolve_crate_root(&mut self, ident: Ident) -> Module<'a> {
2053         let mut ctxt = ident.span.ctxt();
2054         let mark = if ident.name == keywords::DollarCrate.name() {
2055             // When resolving `$crate` from a `macro_rules!` invoked in a `macro`,
2056             // we don't want to pretend that the `macro_rules!` definition is in the `macro`
2057             // as described in `SyntaxContext::apply_mark`, so we ignore prepended modern marks.
2058             // FIXME: This is only a guess and it doesn't work correctly for `macro_rules!`
2059             // definitions actually produced by `macro` and `macro` definitions produced by
2060             // `macro_rules!`, but at least such configurations are not stable yet.
2061             ctxt = ctxt.modern_and_legacy();
2062             let mut iter = ctxt.marks().into_iter().rev().peekable();
2063             let mut result = None;
2064             // Find the last modern mark from the end if it exists.
2065             while let Some(&(mark, transparency)) = iter.peek() {
2066                 if transparency == Transparency::Opaque {
2067                     result = Some(mark);
2068                     iter.next();
2069                 } else {
2070                     break;
2071                 }
2072             }
2073             // Then find the last legacy mark from the end if it exists.
2074             for (mark, transparency) in iter {
2075                 if transparency == Transparency::SemiTransparent {
2076                     result = Some(mark);
2077                 } else {
2078                     break;
2079                 }
2080             }
2081             result
2082         } else {
2083             ctxt = ctxt.modern();
2084             ctxt.adjust(Mark::root())
2085         };
2086         let module = match mark {
2087             Some(def) => self.macro_def_scope(def),
2088             None => return self.graph_root,
2089         };
2090         self.get_module(DefId { index: CRATE_DEF_INDEX, ..module.normal_ancestor_id })
2091     }
2092
2093     fn resolve_self(&mut self, ctxt: &mut SyntaxContext, module: Module<'a>) -> Module<'a> {
2094         let mut module = self.get_module(module.normal_ancestor_id);
2095         while module.span.ctxt().modern() != *ctxt {
2096             let parent = module.parent.unwrap_or_else(|| self.macro_def_scope(ctxt.remove_mark()));
2097             module = self.get_module(parent.normal_ancestor_id);
2098         }
2099         module
2100     }
2101
2102     // AST resolution
2103     //
2104     // We maintain a list of value ribs and type ribs.
2105     //
2106     // Simultaneously, we keep track of the current position in the module
2107     // graph in the `current_module` pointer. When we go to resolve a name in
2108     // the value or type namespaces, we first look through all the ribs and
2109     // then query the module graph. When we resolve a name in the module
2110     // namespace, we can skip all the ribs (since nested modules are not
2111     // allowed within blocks in Rust) and jump straight to the current module
2112     // graph node.
2113     //
2114     // Named implementations are handled separately. When we find a method
2115     // call, we consult the module node to find all of the implementations in
2116     // scope. This information is lazily cached in the module node. We then
2117     // generate a fake "implementation scope" containing all the
2118     // implementations thus found, for compatibility with old resolve pass.
2119
2120     pub fn with_scope<F, T>(&mut self, id: NodeId, f: F) -> T
2121         where F: FnOnce(&mut Resolver) -> T
2122     {
2123         let id = self.definitions.local_def_id(id);
2124         let module = self.module_map.get(&id).cloned(); // clones a reference
2125         if let Some(module) = module {
2126             // Move down in the graph.
2127             let orig_module = replace(&mut self.current_module, module);
2128             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(module)));
2129             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(module)));
2130
2131             self.finalize_current_module_macro_resolutions();
2132             let ret = f(self);
2133
2134             self.current_module = orig_module;
2135             self.ribs[ValueNS].pop();
2136             self.ribs[TypeNS].pop();
2137             ret
2138         } else {
2139             f(self)
2140         }
2141     }
2142
2143     /// Searches the current set of local scopes for labels. Returns the first non-None label that
2144     /// is returned by the given predicate function
2145     ///
2146     /// Stops after meeting a closure.
2147     fn search_label<P, R>(&self, mut ident: Ident, pred: P) -> Option<R>
2148         where P: Fn(&Rib, Ident) -> Option<R>
2149     {
2150         for rib in self.label_ribs.iter().rev() {
2151             match rib.kind {
2152                 NormalRibKind => {}
2153                 // If an invocation of this macro created `ident`, give up on `ident`
2154                 // and switch to `ident`'s source from the macro definition.
2155                 MacroDefinition(def) => {
2156                     if def == self.macro_def(ident.span.ctxt()) {
2157                         ident.span.remove_mark();
2158                     }
2159                 }
2160                 _ => {
2161                     // Do not resolve labels across function boundary
2162                     return None;
2163                 }
2164             }
2165             let r = pred(rib, ident);
2166             if r.is_some() {
2167                 return r;
2168             }
2169         }
2170         None
2171     }
2172
2173     fn resolve_item(&mut self, item: &Item) {
2174         let name = item.ident.name;
2175         debug!("(resolving item) resolving {}", name);
2176
2177         match item.node {
2178             ItemKind::Enum(_, ref generics) |
2179             ItemKind::Ty(_, ref generics) |
2180             ItemKind::Existential(_, ref generics) |
2181             ItemKind::Struct(_, ref generics) |
2182             ItemKind::Union(_, ref generics) |
2183             ItemKind::Fn(_, _, ref generics, _) => {
2184                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind),
2185                                          |this| visit::walk_item(this, item));
2186             }
2187
2188             ItemKind::Impl(.., ref generics, ref opt_trait_ref, ref self_type, ref impl_items) =>
2189                 self.resolve_implementation(generics,
2190                                             opt_trait_ref,
2191                                             &self_type,
2192                                             item.id,
2193                                             impl_items),
2194
2195             ItemKind::Trait(.., ref generics, ref bounds, ref trait_items) => {
2196                 // Create a new rib for the trait-wide type parameters.
2197                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2198                     let local_def_id = this.definitions.local_def_id(item.id);
2199                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2200                         this.visit_generics(generics);
2201                         walk_list!(this, visit_param_bound, bounds);
2202
2203                         for trait_item in trait_items {
2204                             let type_parameters = HasTypeParameters(&trait_item.generics,
2205                                                                     TraitOrImplItemRibKind);
2206                             this.with_type_parameter_rib(type_parameters, |this| {
2207                                 match trait_item.node {
2208                                     TraitItemKind::Const(ref ty, ref default) => {
2209                                         this.visit_ty(ty);
2210
2211                                         // Only impose the restrictions of
2212                                         // ConstRibKind for an actual constant
2213                                         // expression in a provided default.
2214                                         if let Some(ref expr) = *default{
2215                                             this.with_constant_rib(|this| {
2216                                                 this.visit_expr(expr);
2217                                             });
2218                                         }
2219                                     }
2220                                     TraitItemKind::Method(_, _) => {
2221                                         visit::walk_trait_item(this, trait_item)
2222                                     }
2223                                     TraitItemKind::Type(..) => {
2224                                         visit::walk_trait_item(this, trait_item)
2225                                     }
2226                                     TraitItemKind::Macro(_) => {
2227                                         panic!("unexpanded macro in resolve!")
2228                                     }
2229                                 };
2230                             });
2231                         }
2232                     });
2233                 });
2234             }
2235
2236             ItemKind::TraitAlias(ref generics, ref bounds) => {
2237                 // Create a new rib for the trait-wide type parameters.
2238                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2239                     let local_def_id = this.definitions.local_def_id(item.id);
2240                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2241                         this.visit_generics(generics);
2242                         walk_list!(this, visit_param_bound, bounds);
2243                     });
2244                 });
2245             }
2246
2247             ItemKind::Mod(_) | ItemKind::ForeignMod(_) => {
2248                 self.with_scope(item.id, |this| {
2249                     visit::walk_item(this, item);
2250                 });
2251             }
2252
2253             ItemKind::Static(ref ty, _, ref expr) |
2254             ItemKind::Const(ref ty, ref expr) => {
2255                 self.with_item_rib(|this| {
2256                     this.visit_ty(ty);
2257                     this.with_constant_rib(|this| {
2258                         this.visit_expr(expr);
2259                     });
2260                 });
2261             }
2262
2263             ItemKind::Use(ref use_tree) => {
2264                 // Imports are resolved as global by default, add starting root segment.
2265                 let path = Path {
2266                     segments: use_tree.prefix.make_root().into_iter().collect(),
2267                     span: use_tree.span,
2268                 };
2269                 self.resolve_use_tree(item.id, use_tree.span, item.id, use_tree, &path);
2270             }
2271
2272             ItemKind::ExternCrate(_) | ItemKind::MacroDef(..) | ItemKind::GlobalAsm(_) => {
2273                 // do nothing, these are just around to be encoded
2274             }
2275
2276             ItemKind::Mac(_) => panic!("unexpanded macro in resolve!"),
2277         }
2278     }
2279
2280     /// For the most part, use trees are desugared into `ImportDirective` instances
2281     /// when building the reduced graph (see `build_reduced_graph_for_use_tree`). But
2282     /// there is one special case we handle here: an empty nested import like
2283     /// `a::{b::{}}`, which desugares into...no import directives.
2284     fn resolve_use_tree(
2285         &mut self,
2286         root_id: NodeId,
2287         root_span: Span,
2288         id: NodeId,
2289         use_tree: &ast::UseTree,
2290         prefix: &Path,
2291     ) {
2292         match use_tree.kind {
2293             ast::UseTreeKind::Nested(ref items) => {
2294                 let path = Path {
2295                     segments: prefix.segments
2296                         .iter()
2297                         .chain(use_tree.prefix.segments.iter())
2298                         .cloned()
2299                         .collect(),
2300                     span: prefix.span.to(use_tree.prefix.span),
2301                 };
2302
2303                 if items.len() == 0 {
2304                     // Resolve prefix of an import with empty braces (issue #28388).
2305                     self.smart_resolve_path_with_crate_lint(
2306                         id,
2307                         None,
2308                         &path,
2309                         PathSource::ImportPrefix,
2310                         CrateLint::UsePath { root_id, root_span },
2311                     );
2312                 } else {
2313                     for &(ref tree, nested_id) in items {
2314                         self.resolve_use_tree(root_id, root_span, nested_id, tree, &path);
2315                     }
2316                 }
2317             }
2318             ast::UseTreeKind::Simple(..) => {},
2319             ast::UseTreeKind::Glob => {},
2320         }
2321     }
2322
2323     fn with_type_parameter_rib<'b, F>(&'b mut self, type_parameters: TypeParameters<'a, 'b>, f: F)
2324         where F: FnOnce(&mut Resolver)
2325     {
2326         match type_parameters {
2327             HasTypeParameters(generics, rib_kind) => {
2328                 let mut function_type_rib = Rib::new(rib_kind);
2329                 let mut seen_bindings = FxHashMap();
2330                 generics.params.iter().for_each(|param| match param.kind {
2331                     GenericParamKind::Lifetime { .. } => {}
2332                     GenericParamKind::Type { .. } => {
2333                         let ident = param.ident.modern();
2334                         debug!("with_type_parameter_rib: {}", param.id);
2335
2336                         if seen_bindings.contains_key(&ident) {
2337                             let span = seen_bindings.get(&ident).unwrap();
2338                             let err = ResolutionError::NameAlreadyUsedInTypeParameterList(
2339                                 ident.name,
2340                                 span,
2341                             );
2342                             resolve_error(self, param.ident.span, err);
2343                         }
2344                         seen_bindings.entry(ident).or_insert(param.ident.span);
2345
2346                     // Plain insert (no renaming).
2347                     let def = Def::TyParam(self.definitions.local_def_id(param.id));
2348                         function_type_rib.bindings.insert(ident, def);
2349                         self.record_def(param.id, PathResolution::new(def));
2350                     }
2351                 });
2352                 self.ribs[TypeNS].push(function_type_rib);
2353             }
2354
2355             NoTypeParameters => {
2356                 // Nothing to do.
2357             }
2358         }
2359
2360         f(self);
2361
2362         if let HasTypeParameters(..) = type_parameters {
2363             self.ribs[TypeNS].pop();
2364         }
2365     }
2366
2367     fn with_label_rib<F>(&mut self, f: F)
2368         where F: FnOnce(&mut Resolver)
2369     {
2370         self.label_ribs.push(Rib::new(NormalRibKind));
2371         f(self);
2372         self.label_ribs.pop();
2373     }
2374
2375     fn with_item_rib<F>(&mut self, f: F)
2376         where F: FnOnce(&mut Resolver)
2377     {
2378         self.ribs[ValueNS].push(Rib::new(ItemRibKind));
2379         self.ribs[TypeNS].push(Rib::new(ItemRibKind));
2380         f(self);
2381         self.ribs[TypeNS].pop();
2382         self.ribs[ValueNS].pop();
2383     }
2384
2385     fn with_constant_rib<F>(&mut self, f: F)
2386         where F: FnOnce(&mut Resolver)
2387     {
2388         self.ribs[ValueNS].push(Rib::new(ConstantItemRibKind));
2389         self.label_ribs.push(Rib::new(ConstantItemRibKind));
2390         f(self);
2391         self.label_ribs.pop();
2392         self.ribs[ValueNS].pop();
2393     }
2394
2395     fn with_current_self_type<T, F>(&mut self, self_type: &Ty, f: F) -> T
2396         where F: FnOnce(&mut Resolver) -> T
2397     {
2398         // Handle nested impls (inside fn bodies)
2399         let previous_value = replace(&mut self.current_self_type, Some(self_type.clone()));
2400         let result = f(self);
2401         self.current_self_type = previous_value;
2402         result
2403     }
2404
2405     /// This is called to resolve a trait reference from an `impl` (i.e. `impl Trait for Foo`)
2406     fn with_optional_trait_ref<T, F>(&mut self, opt_trait_ref: Option<&TraitRef>, f: F) -> T
2407         where F: FnOnce(&mut Resolver, Option<DefId>) -> T
2408     {
2409         let mut new_val = None;
2410         let mut new_id = None;
2411         if let Some(trait_ref) = opt_trait_ref {
2412             let path: Vec<_> = trait_ref.path.segments.iter()
2413                 .map(|seg| seg.ident)
2414                 .collect();
2415             let def = self.smart_resolve_path_fragment(
2416                 trait_ref.ref_id,
2417                 None,
2418                 &path,
2419                 trait_ref.path.span,
2420                 PathSource::Trait(AliasPossibility::No),
2421                 CrateLint::SimplePath(trait_ref.ref_id),
2422             ).base_def();
2423             if def != Def::Err {
2424                 new_id = Some(def.def_id());
2425                 let span = trait_ref.path.span;
2426                 if let PathResult::Module(ModuleOrUniformRoot::Module(module)) =
2427                     self.resolve_path(
2428                         None,
2429                         &path,
2430                         None,
2431                         false,
2432                         span,
2433                         CrateLint::SimplePath(trait_ref.ref_id),
2434                     )
2435                 {
2436                     new_val = Some((module, trait_ref.clone()));
2437                 }
2438             }
2439         }
2440         let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
2441         let result = f(self, new_id);
2442         self.current_trait_ref = original_trait_ref;
2443         result
2444     }
2445
2446     fn with_self_rib<F>(&mut self, self_def: Def, f: F)
2447         where F: FnOnce(&mut Resolver)
2448     {
2449         let mut self_type_rib = Rib::new(NormalRibKind);
2450
2451         // plain insert (no renaming, types are not currently hygienic....)
2452         self_type_rib.bindings.insert(keywords::SelfType.ident(), self_def);
2453         self.ribs[TypeNS].push(self_type_rib);
2454         f(self);
2455         self.ribs[TypeNS].pop();
2456     }
2457
2458     fn resolve_implementation(&mut self,
2459                               generics: &Generics,
2460                               opt_trait_reference: &Option<TraitRef>,
2461                               self_type: &Ty,
2462                               item_id: NodeId,
2463                               impl_items: &[ImplItem]) {
2464         // If applicable, create a rib for the type parameters.
2465         self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2466             // Dummy self type for better errors if `Self` is used in the trait path.
2467             this.with_self_rib(Def::SelfTy(None, None), |this| {
2468                 // Resolve the trait reference, if necessary.
2469                 this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| {
2470                     let item_def_id = this.definitions.local_def_id(item_id);
2471                     this.with_self_rib(Def::SelfTy(trait_id, Some(item_def_id)), |this| {
2472                         if let Some(trait_ref) = opt_trait_reference.as_ref() {
2473                             // Resolve type arguments in trait path
2474                             visit::walk_trait_ref(this, trait_ref);
2475                         }
2476                         // Resolve the self type.
2477                         this.visit_ty(self_type);
2478                         // Resolve the type parameters.
2479                         this.visit_generics(generics);
2480                         this.with_current_self_type(self_type, |this| {
2481                             for impl_item in impl_items {
2482                                 this.resolve_visibility(&impl_item.vis);
2483
2484                                 // We also need a new scope for the impl item type parameters.
2485                                 let type_parameters = HasTypeParameters(&impl_item.generics,
2486                                                                         TraitOrImplItemRibKind);
2487                                 this.with_type_parameter_rib(type_parameters, |this| {
2488                                     use self::ResolutionError::*;
2489                                     match impl_item.node {
2490                                         ImplItemKind::Const(..) => {
2491                                             // If this is a trait impl, ensure the const
2492                                             // exists in trait
2493                                             this.check_trait_item(impl_item.ident,
2494                                                                 ValueNS,
2495                                                                 impl_item.span,
2496                                                 |n, s| ConstNotMemberOfTrait(n, s));
2497                                             this.with_constant_rib(|this|
2498                                                 visit::walk_impl_item(this, impl_item)
2499                                             );
2500                                         }
2501                                         ImplItemKind::Method(..) => {
2502                                             // If this is a trait impl, ensure the method
2503                                             // exists in trait
2504                                             this.check_trait_item(impl_item.ident,
2505                                                                 ValueNS,
2506                                                                 impl_item.span,
2507                                                 |n, s| MethodNotMemberOfTrait(n, s));
2508
2509                                             visit::walk_impl_item(this, impl_item);
2510                                         }
2511                                         ImplItemKind::Type(ref ty) => {
2512                                             // If this is a trait impl, ensure the type
2513                                             // exists in trait
2514                                             this.check_trait_item(impl_item.ident,
2515                                                                 TypeNS,
2516                                                                 impl_item.span,
2517                                                 |n, s| TypeNotMemberOfTrait(n, s));
2518
2519                                             this.visit_ty(ty);
2520                                         }
2521                                         ImplItemKind::Existential(ref bounds) => {
2522                                             // If this is a trait impl, ensure the type
2523                                             // exists in trait
2524                                             this.check_trait_item(impl_item.ident,
2525                                                                 TypeNS,
2526                                                                 impl_item.span,
2527                                                 |n, s| TypeNotMemberOfTrait(n, s));
2528
2529                                             for bound in bounds {
2530                                                 this.visit_param_bound(bound);
2531                                             }
2532                                         }
2533                                         ImplItemKind::Macro(_) =>
2534                                             panic!("unexpanded macro in resolve!"),
2535                                     }
2536                                 });
2537                             }
2538                         });
2539                     });
2540                 });
2541             });
2542         });
2543     }
2544
2545     fn check_trait_item<F>(&mut self, ident: Ident, ns: Namespace, span: Span, err: F)
2546         where F: FnOnce(Name, &str) -> ResolutionError
2547     {
2548         // If there is a TraitRef in scope for an impl, then the method must be in the
2549         // trait.
2550         if let Some((module, _)) = self.current_trait_ref {
2551             if self.resolve_ident_in_module(
2552                 ModuleOrUniformRoot::Module(module),
2553                 ident,
2554                 ns,
2555                 false,
2556                 span,
2557             ).is_err() {
2558                 let path = &self.current_trait_ref.as_ref().unwrap().1.path;
2559                 resolve_error(self, span, err(ident.name, &path_names_to_string(path)));
2560             }
2561         }
2562     }
2563
2564     fn resolve_local(&mut self, local: &Local) {
2565         // Resolve the type.
2566         walk_list!(self, visit_ty, &local.ty);
2567
2568         // Resolve the initializer.
2569         walk_list!(self, visit_expr, &local.init);
2570
2571         // Resolve the pattern.
2572         self.resolve_pattern(&local.pat, PatternSource::Let, &mut FxHashMap());
2573     }
2574
2575     // build a map from pattern identifiers to binding-info's.
2576     // this is done hygienically. This could arise for a macro
2577     // that expands into an or-pattern where one 'x' was from the
2578     // user and one 'x' came from the macro.
2579     fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
2580         let mut binding_map = FxHashMap();
2581
2582         pat.walk(&mut |pat| {
2583             if let PatKind::Ident(binding_mode, ident, ref sub_pat) = pat.node {
2584                 if sub_pat.is_some() || match self.def_map.get(&pat.id).map(|res| res.base_def()) {
2585                     Some(Def::Local(..)) => true,
2586                     _ => false,
2587                 } {
2588                     let binding_info = BindingInfo { span: ident.span, binding_mode: binding_mode };
2589                     binding_map.insert(ident, binding_info);
2590                 }
2591             }
2592             true
2593         });
2594
2595         binding_map
2596     }
2597
2598     // check that all of the arms in an or-pattern have exactly the
2599     // same set of bindings, with the same binding modes for each.
2600     fn check_consistent_bindings(&mut self, pats: &[P<Pat>]) {
2601         if pats.is_empty() {
2602             return;
2603         }
2604
2605         let mut missing_vars = FxHashMap();
2606         let mut inconsistent_vars = FxHashMap();
2607         for (i, p) in pats.iter().enumerate() {
2608             let map_i = self.binding_mode_map(&p);
2609
2610             for (j, q) in pats.iter().enumerate() {
2611                 if i == j {
2612                     continue;
2613                 }
2614
2615                 let map_j = self.binding_mode_map(&q);
2616                 for (&key, &binding_i) in &map_i {
2617                     if map_j.len() == 0 {                   // Account for missing bindings when
2618                         let binding_error = missing_vars    // map_j has none.
2619                             .entry(key.name)
2620                             .or_insert(BindingError {
2621                                 name: key.name,
2622                                 origin: BTreeSet::new(),
2623                                 target: BTreeSet::new(),
2624                             });
2625                         binding_error.origin.insert(binding_i.span);
2626                         binding_error.target.insert(q.span);
2627                     }
2628                     for (&key_j, &binding_j) in &map_j {
2629                         match map_i.get(&key_j) {
2630                             None => {  // missing binding
2631                                 let binding_error = missing_vars
2632                                     .entry(key_j.name)
2633                                     .or_insert(BindingError {
2634                                         name: key_j.name,
2635                                         origin: BTreeSet::new(),
2636                                         target: BTreeSet::new(),
2637                                     });
2638                                 binding_error.origin.insert(binding_j.span);
2639                                 binding_error.target.insert(p.span);
2640                             }
2641                             Some(binding_i) => {  // check consistent binding
2642                                 if binding_i.binding_mode != binding_j.binding_mode {
2643                                     inconsistent_vars
2644                                         .entry(key.name)
2645                                         .or_insert((binding_j.span, binding_i.span));
2646                                 }
2647                             }
2648                         }
2649                     }
2650                 }
2651             }
2652         }
2653         let mut missing_vars = missing_vars.iter().collect::<Vec<_>>();
2654         missing_vars.sort();
2655         for (_, v) in missing_vars {
2656             resolve_error(self,
2657                           *v.origin.iter().next().unwrap(),
2658                           ResolutionError::VariableNotBoundInPattern(v));
2659         }
2660         let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
2661         inconsistent_vars.sort();
2662         for (name, v) in inconsistent_vars {
2663             resolve_error(self, v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
2664         }
2665     }
2666
2667     fn resolve_arm(&mut self, arm: &Arm) {
2668         self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2669
2670         let mut bindings_list = FxHashMap();
2671         for pattern in &arm.pats {
2672             self.resolve_pattern(&pattern, PatternSource::Match, &mut bindings_list);
2673         }
2674
2675         // This has to happen *after* we determine which pat_idents are variants
2676         self.check_consistent_bindings(&arm.pats);
2677
2678         walk_list!(self, visit_expr, &arm.guard);
2679         self.visit_expr(&arm.body);
2680
2681         self.ribs[ValueNS].pop();
2682     }
2683
2684     fn resolve_block(&mut self, block: &Block) {
2685         debug!("(resolving block) entering block");
2686         // Move down in the graph, if there's an anonymous module rooted here.
2687         let orig_module = self.current_module;
2688         let anonymous_module = self.block_map.get(&block.id).cloned(); // clones a reference
2689
2690         let mut num_macro_definition_ribs = 0;
2691         if let Some(anonymous_module) = anonymous_module {
2692             debug!("(resolving block) found anonymous module, moving down");
2693             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2694             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2695             self.current_module = anonymous_module;
2696             self.finalize_current_module_macro_resolutions();
2697         } else {
2698             self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2699         }
2700
2701         // Descend into the block.
2702         for stmt in &block.stmts {
2703             if let ast::StmtKind::Item(ref item) = stmt.node {
2704                 if let ast::ItemKind::MacroDef(..) = item.node {
2705                     num_macro_definition_ribs += 1;
2706                     let def = self.definitions.local_def_id(item.id);
2707                     self.ribs[ValueNS].push(Rib::new(MacroDefinition(def)));
2708                     self.label_ribs.push(Rib::new(MacroDefinition(def)));
2709                 }
2710             }
2711
2712             self.visit_stmt(stmt);
2713         }
2714
2715         // Move back up.
2716         self.current_module = orig_module;
2717         for _ in 0 .. num_macro_definition_ribs {
2718             self.ribs[ValueNS].pop();
2719             self.label_ribs.pop();
2720         }
2721         self.ribs[ValueNS].pop();
2722         if anonymous_module.is_some() {
2723             self.ribs[TypeNS].pop();
2724         }
2725         debug!("(resolving block) leaving block");
2726     }
2727
2728     fn fresh_binding(&mut self,
2729                      ident: Ident,
2730                      pat_id: NodeId,
2731                      outer_pat_id: NodeId,
2732                      pat_src: PatternSource,
2733                      bindings: &mut FxHashMap<Ident, NodeId>)
2734                      -> PathResolution {
2735         // Add the binding to the local ribs, if it
2736         // doesn't already exist in the bindings map. (We
2737         // must not add it if it's in the bindings map
2738         // because that breaks the assumptions later
2739         // passes make about or-patterns.)
2740         let ident = ident.modern_and_legacy();
2741         let mut def = Def::Local(pat_id);
2742         match bindings.get(&ident).cloned() {
2743             Some(id) if id == outer_pat_id => {
2744                 // `Variant(a, a)`, error
2745                 resolve_error(
2746                     self,
2747                     ident.span,
2748                     ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(
2749                         &ident.as_str())
2750                 );
2751             }
2752             Some(..) if pat_src == PatternSource::FnParam => {
2753                 // `fn f(a: u8, a: u8)`, error
2754                 resolve_error(
2755                     self,
2756                     ident.span,
2757                     ResolutionError::IdentifierBoundMoreThanOnceInParameterList(
2758                         &ident.as_str())
2759                 );
2760             }
2761             Some(..) if pat_src == PatternSource::Match ||
2762                         pat_src == PatternSource::IfLet ||
2763                         pat_src == PatternSource::WhileLet => {
2764                 // `Variant1(a) | Variant2(a)`, ok
2765                 // Reuse definition from the first `a`.
2766                 def = self.ribs[ValueNS].last_mut().unwrap().bindings[&ident];
2767             }
2768             Some(..) => {
2769                 span_bug!(ident.span, "two bindings with the same name from \
2770                                        unexpected pattern source {:?}", pat_src);
2771             }
2772             None => {
2773                 // A completely fresh binding, add to the lists if it's valid.
2774                 if ident.name != keywords::Invalid.name() {
2775                     bindings.insert(ident, outer_pat_id);
2776                     self.ribs[ValueNS].last_mut().unwrap().bindings.insert(ident, def);
2777                 }
2778             }
2779         }
2780
2781         PathResolution::new(def)
2782     }
2783
2784     fn resolve_pattern(&mut self,
2785                        pat: &Pat,
2786                        pat_src: PatternSource,
2787                        // Maps idents to the node ID for the
2788                        // outermost pattern that binds them.
2789                        bindings: &mut FxHashMap<Ident, NodeId>) {
2790         // Visit all direct subpatterns of this pattern.
2791         let outer_pat_id = pat.id;
2792         pat.walk(&mut |pat| {
2793             match pat.node {
2794                 PatKind::Ident(bmode, ident, ref opt_pat) => {
2795                     // First try to resolve the identifier as some existing
2796                     // entity, then fall back to a fresh binding.
2797                     let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS,
2798                                                                       None, pat.span)
2799                                       .and_then(LexicalScopeBinding::item);
2800                     let resolution = binding.map(NameBinding::def).and_then(|def| {
2801                         let is_syntactic_ambiguity = opt_pat.is_none() &&
2802                             bmode == BindingMode::ByValue(Mutability::Immutable);
2803                         match def {
2804                             Def::StructCtor(_, CtorKind::Const) |
2805                             Def::VariantCtor(_, CtorKind::Const) |
2806                             Def::Const(..) if is_syntactic_ambiguity => {
2807                                 // Disambiguate in favor of a unit struct/variant
2808                                 // or constant pattern.
2809                                 self.record_use(ident, ValueNS, binding.unwrap(), ident.span);
2810                                 Some(PathResolution::new(def))
2811                             }
2812                             Def::StructCtor(..) | Def::VariantCtor(..) |
2813                             Def::Const(..) | Def::Static(..) => {
2814                                 // This is unambiguously a fresh binding, either syntactically
2815                                 // (e.g. `IDENT @ PAT` or `ref IDENT`) or because `IDENT` resolves
2816                                 // to something unusable as a pattern (e.g. constructor function),
2817                                 // but we still conservatively report an error, see
2818                                 // issues/33118#issuecomment-233962221 for one reason why.
2819                                 resolve_error(
2820                                     self,
2821                                     ident.span,
2822                                     ResolutionError::BindingShadowsSomethingUnacceptable(
2823                                         pat_src.descr(), ident.name, binding.unwrap())
2824                                 );
2825                                 None
2826                             }
2827                             Def::Fn(..) | Def::Err => {
2828                                 // These entities are explicitly allowed
2829                                 // to be shadowed by fresh bindings.
2830                                 None
2831                             }
2832                             def => {
2833                                 span_bug!(ident.span, "unexpected definition for an \
2834                                                        identifier in pattern: {:?}", def);
2835                             }
2836                         }
2837                     }).unwrap_or_else(|| {
2838                         self.fresh_binding(ident, pat.id, outer_pat_id, pat_src, bindings)
2839                     });
2840
2841                     self.record_def(pat.id, resolution);
2842                 }
2843
2844                 PatKind::TupleStruct(ref path, ..) => {
2845                     self.smart_resolve_path(pat.id, None, path, PathSource::TupleStruct);
2846                 }
2847
2848                 PatKind::Path(ref qself, ref path) => {
2849                     self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
2850                 }
2851
2852                 PatKind::Struct(ref path, ..) => {
2853                     self.smart_resolve_path(pat.id, None, path, PathSource::Struct);
2854                 }
2855
2856                 _ => {}
2857             }
2858             true
2859         });
2860
2861         visit::walk_pat(self, pat);
2862     }
2863
2864     // High-level and context dependent path resolution routine.
2865     // Resolves the path and records the resolution into definition map.
2866     // If resolution fails tries several techniques to find likely
2867     // resolution candidates, suggest imports or other help, and report
2868     // errors in user friendly way.
2869     fn smart_resolve_path(&mut self,
2870                           id: NodeId,
2871                           qself: Option<&QSelf>,
2872                           path: &Path,
2873                           source: PathSource)
2874                           -> PathResolution {
2875         self.smart_resolve_path_with_crate_lint(id, qself, path, source, CrateLint::SimplePath(id))
2876     }
2877
2878     /// A variant of `smart_resolve_path` where you also specify extra
2879     /// information about where the path came from; this extra info is
2880     /// sometimes needed for the lint that recommends rewriting
2881     /// absolute paths to `crate`, so that it knows how to frame the
2882     /// suggestion. If you are just resolving a path like `foo::bar`
2883     /// that appears...somewhere, though, then you just want
2884     /// `CrateLint::SimplePath`, which is what `smart_resolve_path`
2885     /// already provides.
2886     fn smart_resolve_path_with_crate_lint(
2887         &mut self,
2888         id: NodeId,
2889         qself: Option<&QSelf>,
2890         path: &Path,
2891         source: PathSource,
2892         crate_lint: CrateLint
2893     ) -> PathResolution {
2894         let segments = &path.segments.iter()
2895             .map(|seg| seg.ident)
2896             .collect::<Vec<_>>();
2897         self.smart_resolve_path_fragment(id, qself, segments, path.span, source, crate_lint)
2898     }
2899
2900     fn smart_resolve_path_fragment(&mut self,
2901                                    id: NodeId,
2902                                    qself: Option<&QSelf>,
2903                                    path: &[Ident],
2904                                    span: Span,
2905                                    source: PathSource,
2906                                    crate_lint: CrateLint)
2907                                    -> PathResolution {
2908         let ident_span = path.last().map_or(span, |ident| ident.span);
2909         let ns = source.namespace();
2910         let is_expected = &|def| source.is_expected(def);
2911         let is_enum_variant = &|def| if let Def::Variant(..) = def { true } else { false };
2912
2913         // Base error is amended with one short label and possibly some longer helps/notes.
2914         let report_errors = |this: &mut Self, def: Option<Def>| {
2915             // Make the base error.
2916             let expected = source.descr_expected();
2917             let path_str = names_to_string(path);
2918             let code = source.error_code(def.is_some());
2919             let (base_msg, fallback_label, base_span) = if let Some(def) = def {
2920                 (format!("expected {}, found {} `{}`", expected, def.kind_name(), path_str),
2921                  format!("not a {}", expected),
2922                  span)
2923             } else {
2924                 let item_str = path[path.len() - 1];
2925                 let item_span = path[path.len() - 1].span;
2926                 let (mod_prefix, mod_str) = if path.len() == 1 {
2927                     (String::new(), "this scope".to_string())
2928                 } else if path.len() == 2 && path[0].name == keywords::CrateRoot.name() {
2929                     (String::new(), "the crate root".to_string())
2930                 } else {
2931                     let mod_path = &path[..path.len() - 1];
2932                     let mod_prefix = match this.resolve_path(None, mod_path, Some(TypeNS),
2933                                                              false, span, CrateLint::No) {
2934                         PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
2935                             module.def(),
2936                         _ => None,
2937                     }.map_or(String::new(), |def| format!("{} ", def.kind_name()));
2938                     (mod_prefix, format!("`{}`", names_to_string(mod_path)))
2939                 };
2940                 (format!("cannot find {} `{}` in {}{}", expected, item_str, mod_prefix, mod_str),
2941                  format!("not found in {}", mod_str),
2942                  item_span)
2943             };
2944             let code = DiagnosticId::Error(code.into());
2945             let mut err = this.session.struct_span_err_with_code(base_span, &base_msg, code);
2946
2947             // Emit special messages for unresolved `Self` and `self`.
2948             if is_self_type(path, ns) {
2949                 __diagnostic_used!(E0411);
2950                 err.code(DiagnosticId::Error("E0411".into()));
2951                 err.span_label(span, "`Self` is only available in traits and impls");
2952                 return (err, Vec::new());
2953             }
2954             if is_self_value(path, ns) {
2955                 __diagnostic_used!(E0424);
2956                 err.code(DiagnosticId::Error("E0424".into()));
2957                 err.span_label(span, format!("`self` value is only available in \
2958                                                methods with `self` parameter"));
2959                 return (err, Vec::new());
2960             }
2961
2962             // Try to lookup the name in more relaxed fashion for better error reporting.
2963             let ident = *path.last().unwrap();
2964             let candidates = this.lookup_import_candidates(ident.name, ns, is_expected);
2965             if candidates.is_empty() && is_expected(Def::Enum(DefId::local(CRATE_DEF_INDEX))) {
2966                 let enum_candidates =
2967                     this.lookup_import_candidates(ident.name, ns, is_enum_variant);
2968                 let mut enum_candidates = enum_candidates.iter()
2969                     .map(|suggestion| import_candidate_to_paths(&suggestion)).collect::<Vec<_>>();
2970                 enum_candidates.sort();
2971                 for (sp, variant_path, enum_path) in enum_candidates {
2972                     if sp.is_dummy() {
2973                         let msg = format!("there is an enum variant `{}`, \
2974                                         try using `{}`?",
2975                                         variant_path,
2976                                         enum_path);
2977                         err.help(&msg);
2978                     } else {
2979                         err.span_suggestion(span, "you can try using the variant's enum",
2980                                             enum_path);
2981                     }
2982                 }
2983             }
2984             if path.len() == 1 && this.self_type_is_available(span) {
2985                 if let Some(candidate) = this.lookup_assoc_candidate(ident, ns, is_expected) {
2986                     let self_is_available = this.self_value_is_available(path[0].span, span);
2987                     match candidate {
2988                         AssocSuggestion::Field => {
2989                             err.span_suggestion(span, "try",
2990                                                 format!("self.{}", path_str));
2991                             if !self_is_available {
2992                                 err.span_label(span, format!("`self` value is only available in \
2993                                                                methods with `self` parameter"));
2994                             }
2995                         }
2996                         AssocSuggestion::MethodWithSelf if self_is_available => {
2997                             err.span_suggestion(span, "try",
2998                                                 format!("self.{}", path_str));
2999                         }
3000                         AssocSuggestion::MethodWithSelf | AssocSuggestion::AssocItem => {
3001                             err.span_suggestion(span, "try",
3002                                                 format!("Self::{}", path_str));
3003                         }
3004                     }
3005                     return (err, candidates);
3006                 }
3007             }
3008
3009             let mut levenshtein_worked = false;
3010
3011             // Try Levenshtein.
3012             if let Some(candidate) = this.lookup_typo_candidate(path, ns, is_expected, span) {
3013                 err.span_label(ident_span, format!("did you mean `{}`?", candidate));
3014                 levenshtein_worked = true;
3015             }
3016
3017             // Try context dependent help if relaxed lookup didn't work.
3018             if let Some(def) = def {
3019                 match (def, source) {
3020                     (Def::Macro(..), _) => {
3021                         err.span_label(span, format!("did you mean `{}!(...)`?", path_str));
3022                         return (err, candidates);
3023                     }
3024                     (Def::TyAlias(..), PathSource::Trait(_)) => {
3025                         err.span_label(span, "type aliases cannot be used for traits");
3026                         return (err, candidates);
3027                     }
3028                     (Def::Mod(..), PathSource::Expr(Some(parent))) => match parent.node {
3029                         ExprKind::Field(_, ident) => {
3030                             err.span_label(parent.span, format!("did you mean `{}::{}`?",
3031                                                                  path_str, ident));
3032                             return (err, candidates);
3033                         }
3034                         ExprKind::MethodCall(ref segment, ..) => {
3035                             err.span_label(parent.span, format!("did you mean `{}::{}(...)`?",
3036                                                                  path_str, segment.ident));
3037                             return (err, candidates);
3038                         }
3039                         _ => {}
3040                     },
3041                     (Def::Enum(..), PathSource::TupleStruct)
3042                         | (Def::Enum(..), PathSource::Expr(..))  => {
3043                         if let Some(variants) = this.collect_enum_variants(def) {
3044                             err.note(&format!("did you mean to use one \
3045                                                of the following variants?\n{}",
3046                                 variants.iter()
3047                                     .map(|suggestion| path_names_to_string(suggestion))
3048                                     .map(|suggestion| format!("- `{}`", suggestion))
3049                                     .collect::<Vec<_>>()
3050                                     .join("\n")));
3051
3052                         } else {
3053                             err.note("did you mean to use one of the enum's variants?");
3054                         }
3055                         return (err, candidates);
3056                     },
3057                     (Def::Struct(def_id), _) if ns == ValueNS => {
3058                         if let Some((ctor_def, ctor_vis))
3059                                 = this.struct_constructors.get(&def_id).cloned() {
3060                             let accessible_ctor = this.is_accessible(ctor_vis);
3061                             if is_expected(ctor_def) && !accessible_ctor {
3062                                 err.span_label(span, format!("constructor is not visible \
3063                                                               here due to private fields"));
3064                             }
3065                         } else {
3066                             // HACK(estebank): find a better way to figure out that this was a
3067                             // parser issue where a struct literal is being used on an expression
3068                             // where a brace being opened means a block is being started. Look
3069                             // ahead for the next text to see if `span` is followed by a `{`.
3070                             let cm = this.session.codemap();
3071                             let mut sp = span;
3072                             loop {
3073                                 sp = cm.next_point(sp);
3074                                 match cm.span_to_snippet(sp) {
3075                                     Ok(ref snippet) => {
3076                                         if snippet.chars().any(|c| { !c.is_whitespace() }) {
3077                                             break;
3078                                         }
3079                                     }
3080                                     _ => break,
3081                                 }
3082                             }
3083                             let followed_by_brace = match cm.span_to_snippet(sp) {
3084                                 Ok(ref snippet) if snippet == "{" => true,
3085                                 _ => false,
3086                             };
3087                             if let (PathSource::Expr(None), true) = (source, followed_by_brace) {
3088                                 err.span_label(
3089                                     span,
3090                                     format!("did you mean `({} {{ /* fields */ }})`?", path_str),
3091                                 );
3092                             } else {
3093                                 err.span_label(
3094                                     span,
3095                                     format!("did you mean `{} {{ /* fields */ }}`?", path_str),
3096                                 );
3097                             }
3098                         }
3099                         return (err, candidates);
3100                     }
3101                     (Def::Union(..), _) |
3102                     (Def::Variant(..), _) |
3103                     (Def::VariantCtor(_, CtorKind::Fictive), _) if ns == ValueNS => {
3104                         err.span_label(span, format!("did you mean `{} {{ /* fields */ }}`?",
3105                                                      path_str));
3106                         return (err, candidates);
3107                     }
3108                     (Def::SelfTy(..), _) if ns == ValueNS => {
3109                         err.span_label(span, fallback_label);
3110                         err.note("can't use `Self` as a constructor, you must use the \
3111                                   implemented struct");
3112                         return (err, candidates);
3113                     }
3114                     (Def::TyAlias(_), _) | (Def::AssociatedTy(..), _) if ns == ValueNS => {
3115                         err.note("can't use a type alias as a constructor");
3116                         return (err, candidates);
3117                     }
3118                     _ => {}
3119                 }
3120             }
3121
3122             // Fallback label.
3123             if !levenshtein_worked {
3124                 err.span_label(base_span, fallback_label);
3125                 this.type_ascription_suggestion(&mut err, base_span);
3126             }
3127             (err, candidates)
3128         };
3129         let report_errors = |this: &mut Self, def: Option<Def>| {
3130             let (err, candidates) = report_errors(this, def);
3131             let def_id = this.current_module.normal_ancestor_id;
3132             let node_id = this.definitions.as_local_node_id(def_id).unwrap();
3133             let better = def.is_some();
3134             this.use_injections.push(UseError { err, candidates, node_id, better });
3135             err_path_resolution()
3136         };
3137
3138         let resolution = match self.resolve_qpath_anywhere(
3139             id,
3140             qself,
3141             path,
3142             ns,
3143             span,
3144             source.defer_to_typeck(),
3145             source.global_by_default(),
3146             crate_lint,
3147         ) {
3148             Some(resolution) if resolution.unresolved_segments() == 0 => {
3149                 if is_expected(resolution.base_def()) || resolution.base_def() == Def::Err {
3150                     resolution
3151                 } else {
3152                     // Add a temporary hack to smooth the transition to new struct ctor
3153                     // visibility rules. See #38932 for more details.
3154                     let mut res = None;
3155                     if let Def::Struct(def_id) = resolution.base_def() {
3156                         if let Some((ctor_def, ctor_vis))
3157                                 = self.struct_constructors.get(&def_id).cloned() {
3158                             if is_expected(ctor_def) && self.is_accessible(ctor_vis) {
3159                                 let lint = lint::builtin::LEGACY_CONSTRUCTOR_VISIBILITY;
3160                                 self.session.buffer_lint(lint, id, span,
3161                                     "private struct constructors are not usable through \
3162                                      re-exports in outer modules",
3163                                 );
3164                                 res = Some(PathResolution::new(ctor_def));
3165                             }
3166                         }
3167                     }
3168
3169                     res.unwrap_or_else(|| report_errors(self, Some(resolution.base_def())))
3170                 }
3171             }
3172             Some(resolution) if source.defer_to_typeck() => {
3173                 // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
3174                 // or `<T>::A::B`. If `B` should be resolved in value namespace then
3175                 // it needs to be added to the trait map.
3176                 if ns == ValueNS {
3177                     let item_name = *path.last().unwrap();
3178                     let traits = self.get_traits_containing_item(item_name, ns);
3179                     self.trait_map.insert(id, traits);
3180                 }
3181                 resolution
3182             }
3183             _ => report_errors(self, None)
3184         };
3185
3186         if let PathSource::TraitItem(..) = source {} else {
3187             // Avoid recording definition of `A::B` in `<T as A>::B::C`.
3188             self.record_def(id, resolution);
3189         }
3190         resolution
3191     }
3192
3193     fn type_ascription_suggestion(&self,
3194                                   err: &mut DiagnosticBuilder,
3195                                   base_span: Span) {
3196         debug!("type_ascription_suggetion {:?}", base_span);
3197         let cm = self.session.codemap();
3198         debug!("self.current_type_ascription {:?}", self.current_type_ascription);
3199         if let Some(sp) = self.current_type_ascription.last() {
3200             let mut sp = *sp;
3201             loop {  // try to find the `:`, bail on first non-':'/non-whitespace
3202                 sp = cm.next_point(sp);
3203                 if let Ok(snippet) = cm.span_to_snippet(sp.to(cm.next_point(sp))) {
3204                     debug!("snippet {:?}", snippet);
3205                     let line_sp = cm.lookup_char_pos(sp.hi()).line;
3206                     let line_base_sp = cm.lookup_char_pos(base_span.lo()).line;
3207                     debug!("{:?} {:?}", line_sp, line_base_sp);
3208                     if snippet == ":" {
3209                         err.span_label(base_span,
3210                                        "expecting a type here because of type ascription");
3211                         if line_sp != line_base_sp {
3212                             err.span_suggestion_short(sp,
3213                                                       "did you mean to use `;` here instead?",
3214                                                       ";".to_string());
3215                         }
3216                         break;
3217                     } else if snippet.trim().len() != 0  {
3218                         debug!("tried to find type ascription `:` token, couldn't find it");
3219                         break;
3220                     }
3221                 } else {
3222                     break;
3223                 }
3224             }
3225         }
3226     }
3227
3228     fn self_type_is_available(&mut self, span: Span) -> bool {
3229         let binding = self.resolve_ident_in_lexical_scope(keywords::SelfType.ident(),
3230                                                           TypeNS, None, span);
3231         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3232     }
3233
3234     fn self_value_is_available(&mut self, self_span: Span, path_span: Span) -> bool {
3235         let ident = Ident::new(keywords::SelfValue.name(), self_span);
3236         let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, None, path_span);
3237         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3238     }
3239
3240     // Resolve in alternative namespaces if resolution in the primary namespace fails.
3241     fn resolve_qpath_anywhere(&mut self,
3242                               id: NodeId,
3243                               qself: Option<&QSelf>,
3244                               path: &[Ident],
3245                               primary_ns: Namespace,
3246                               span: Span,
3247                               defer_to_typeck: bool,
3248                               global_by_default: bool,
3249                               crate_lint: CrateLint)
3250                               -> Option<PathResolution> {
3251         let mut fin_res = None;
3252         // FIXME: can't resolve paths in macro namespace yet, macros are
3253         // processed by the little special hack below.
3254         for (i, ns) in [primary_ns, TypeNS, ValueNS, /*MacroNS*/].iter().cloned().enumerate() {
3255             if i == 0 || ns != primary_ns {
3256                 match self.resolve_qpath(id, qself, path, ns, span, global_by_default, crate_lint) {
3257                     // If defer_to_typeck, then resolution > no resolution,
3258                     // otherwise full resolution > partial resolution > no resolution.
3259                     Some(res) if res.unresolved_segments() == 0 || defer_to_typeck =>
3260                         return Some(res),
3261                     res => if fin_res.is_none() { fin_res = res },
3262                 };
3263             }
3264         }
3265         let is_global = self.macro_prelude.get(&path[0].name).cloned()
3266             .map(|binding| binding.get_macro(self).kind() == MacroKind::Bang).unwrap_or(false);
3267         if primary_ns != MacroNS && (is_global ||
3268                                      self.macro_names.contains(&path[0].modern())) {
3269             // Return some dummy definition, it's enough for error reporting.
3270             return Some(
3271                 PathResolution::new(Def::Macro(DefId::local(CRATE_DEF_INDEX), MacroKind::Bang))
3272             );
3273         }
3274         fin_res
3275     }
3276
3277     /// Handles paths that may refer to associated items.
3278     fn resolve_qpath(&mut self,
3279                      id: NodeId,
3280                      qself: Option<&QSelf>,
3281                      path: &[Ident],
3282                      ns: Namespace,
3283                      span: Span,
3284                      global_by_default: bool,
3285                      crate_lint: CrateLint)
3286                      -> Option<PathResolution> {
3287         debug!(
3288             "resolve_qpath(id={:?}, qself={:?}, path={:?}, \
3289              ns={:?}, span={:?}, global_by_default={:?})",
3290             id,
3291             qself,
3292             path,
3293             ns,
3294             span,
3295             global_by_default,
3296         );
3297
3298         if let Some(qself) = qself {
3299             if qself.position == 0 {
3300                 // This is a case like `<T>::B`, where there is no
3301                 // trait to resolve.  In that case, we leave the `B`
3302                 // segment to be resolved by type-check.
3303                 return Some(PathResolution::with_unresolved_segments(
3304                     Def::Mod(DefId::local(CRATE_DEF_INDEX)), path.len()
3305                 ));
3306             }
3307
3308             // Make sure `A::B` in `<T as A::B>::C` is a trait item.
3309             //
3310             // Currently, `path` names the full item (`A::B::C`, in
3311             // our example).  so we extract the prefix of that that is
3312             // the trait (the slice upto and including
3313             // `qself.position`). And then we recursively resolve that,
3314             // but with `qself` set to `None`.
3315             //
3316             // However, setting `qself` to none (but not changing the
3317             // span) loses the information about where this path
3318             // *actually* appears, so for the purposes of the crate
3319             // lint we pass along information that this is the trait
3320             // name from a fully qualified path, and this also
3321             // contains the full span (the `CrateLint::QPathTrait`).
3322             let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
3323             let res = self.smart_resolve_path_fragment(
3324                 id,
3325                 None,
3326                 &path[..qself.position + 1],
3327                 span,
3328                 PathSource::TraitItem(ns),
3329                 CrateLint::QPathTrait {
3330                     qpath_id: id,
3331                     qpath_span: qself.path_span,
3332                 },
3333             );
3334
3335             // The remaining segments (the `C` in our example) will
3336             // have to be resolved by type-check, since that requires doing
3337             // trait resolution.
3338             return Some(PathResolution::with_unresolved_segments(
3339                 res.base_def(), res.unresolved_segments() + path.len() - qself.position - 1
3340             ));
3341         }
3342
3343         let result = match self.resolve_path(
3344             None,
3345             &path,
3346             Some(ns),
3347             true,
3348             span,
3349             crate_lint,
3350         ) {
3351             PathResult::NonModule(path_res) => path_res,
3352             PathResult::Module(ModuleOrUniformRoot::Module(module)) if !module.is_normal() => {
3353                 PathResolution::new(module.def().unwrap())
3354             }
3355             // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
3356             // don't report an error right away, but try to fallback to a primitive type.
3357             // So, we are still able to successfully resolve something like
3358             //
3359             // use std::u8; // bring module u8 in scope
3360             // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
3361             //     u8::max_value() // OK, resolves to associated function <u8>::max_value,
3362             //                     // not to non-existent std::u8::max_value
3363             // }
3364             //
3365             // Such behavior is required for backward compatibility.
3366             // The same fallback is used when `a` resolves to nothing.
3367             PathResult::Module(ModuleOrUniformRoot::Module(_)) |
3368             PathResult::Failed(..)
3369                     if (ns == TypeNS || path.len() > 1) &&
3370                        self.primitive_type_table.primitive_types
3371                            .contains_key(&path[0].name) => {
3372                 let prim = self.primitive_type_table.primitive_types[&path[0].name];
3373                 PathResolution::with_unresolved_segments(Def::PrimTy(prim), path.len() - 1)
3374             }
3375             PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3376                 PathResolution::new(module.def().unwrap()),
3377             PathResult::Failed(span, msg, false) => {
3378                 resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
3379                 err_path_resolution()
3380             }
3381             PathResult::Module(ModuleOrUniformRoot::UniformRoot(_)) |
3382             PathResult::Failed(..) => return None,
3383             PathResult::Indeterminate => bug!("indetermined path result in resolve_qpath"),
3384         };
3385
3386         if path.len() > 1 && !global_by_default && result.base_def() != Def::Err &&
3387            path[0].name != keywords::CrateRoot.name() &&
3388            path[0].name != keywords::DollarCrate.name() {
3389             let unqualified_result = {
3390                 match self.resolve_path(
3391                     None,
3392                     &[*path.last().unwrap()],
3393                     Some(ns),
3394                     false,
3395                     span,
3396                     CrateLint::No,
3397                 ) {
3398                     PathResult::NonModule(path_res) => path_res.base_def(),
3399                     PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3400                         module.def().unwrap(),
3401                     _ => return Some(result),
3402                 }
3403             };
3404             if result.base_def() == unqualified_result {
3405                 let lint = lint::builtin::UNUSED_QUALIFICATIONS;
3406                 self.session.buffer_lint(lint, id, span, "unnecessary qualification")
3407             }
3408         }
3409
3410         Some(result)
3411     }
3412
3413     fn resolve_path(
3414         &mut self,
3415         base_module: Option<ModuleOrUniformRoot<'a>>,
3416         path: &[Ident],
3417         opt_ns: Option<Namespace>, // `None` indicates a module path
3418         record_used: bool,
3419         path_span: Span,
3420         crate_lint: CrateLint,
3421     ) -> PathResult<'a> {
3422         let mut module = base_module;
3423         let mut allow_super = true;
3424         let mut second_binding = None;
3425
3426         debug!(
3427             "resolve_path(path={:?}, opt_ns={:?}, record_used={:?}, \
3428              path_span={:?}, crate_lint={:?})",
3429             path,
3430             opt_ns,
3431             record_used,
3432             path_span,
3433             crate_lint,
3434         );
3435
3436         for (i, &ident) in path.iter().enumerate() {
3437             debug!("resolve_path ident {} {:?}", i, ident);
3438             let is_last = i == path.len() - 1;
3439             let ns = if is_last { opt_ns.unwrap_or(TypeNS) } else { TypeNS };
3440             let name = ident.name;
3441
3442             allow_super &= ns == TypeNS &&
3443                 (name == keywords::SelfValue.name() ||
3444                  name == keywords::Super.name());
3445
3446             if ns == TypeNS {
3447                 if allow_super && name == keywords::Super.name() {
3448                     let mut ctxt = ident.span.ctxt().modern();
3449                     let self_module = match i {
3450                         0 => Some(self.resolve_self(&mut ctxt, self.current_module)),
3451                         _ => match module {
3452                             Some(ModuleOrUniformRoot::Module(module)) => Some(module),
3453                             _ => None,
3454                         },
3455                     };
3456                     if let Some(self_module) = self_module {
3457                         if let Some(parent) = self_module.parent {
3458                             module = Some(ModuleOrUniformRoot::Module(
3459                                 self.resolve_self(&mut ctxt, parent)));
3460                             continue;
3461                         }
3462                     }
3463                     let msg = "There are too many initial `super`s.".to_string();
3464                     return PathResult::Failed(ident.span, msg, false);
3465                 }
3466                 if i == 0 {
3467                     if name == keywords::SelfValue.name() {
3468                         let mut ctxt = ident.span.ctxt().modern();
3469                         module = Some(ModuleOrUniformRoot::Module(
3470                             self.resolve_self(&mut ctxt, self.current_module)));
3471                         continue;
3472                     }
3473                     if name == keywords::Extern.name() ||
3474                        name == keywords::CrateRoot.name() &&
3475                        self.session.features_untracked().extern_absolute_paths &&
3476                        self.session.rust_2018() {
3477                         module = Some(ModuleOrUniformRoot::UniformRoot(name));
3478                         continue;
3479                     }
3480                     if name == keywords::CrateRoot.name() ||
3481                        name == keywords::Crate.name() ||
3482                        name == keywords::DollarCrate.name() {
3483                         // `::a::b`, `crate::a::b` or `$crate::a::b`
3484                         module = Some(ModuleOrUniformRoot::Module(
3485                             self.resolve_crate_root(ident)));
3486                         continue;
3487                     }
3488                 }
3489             }
3490
3491             // Report special messages for path segment keywords in wrong positions.
3492             if ident.is_path_segment_keyword() && i != 0 {
3493                 let name_str = if name == keywords::CrateRoot.name() {
3494                     "crate root".to_string()
3495                 } else {
3496                     format!("`{}`", name)
3497                 };
3498                 let msg = if i == 1 && path[0].name == keywords::CrateRoot.name() {
3499                     format!("global paths cannot start with {}", name_str)
3500                 } else {
3501                     format!("{} in paths can only be used in start position", name_str)
3502                 };
3503                 return PathResult::Failed(ident.span, msg, false);
3504             }
3505
3506             let binding = if let Some(module) = module {
3507                 self.resolve_ident_in_module(module, ident, ns, record_used, path_span)
3508             } else if opt_ns == Some(MacroNS) {
3509                 assert!(ns == TypeNS);
3510                 self.resolve_lexical_macro_path_segment(ident, ns, record_used, record_used,
3511                                                         false, path_span).map(MacroBinding::binding)
3512             } else {
3513                 let record_used_id =
3514                     if record_used { crate_lint.node_id().or(Some(CRATE_NODE_ID)) } else { None };
3515                 match self.resolve_ident_in_lexical_scope(ident, ns, record_used_id, path_span) {
3516                     // we found a locally-imported or available item/module
3517                     Some(LexicalScopeBinding::Item(binding)) => Ok(binding),
3518                     // we found a local variable or type param
3519                     Some(LexicalScopeBinding::Def(def))
3520                             if opt_ns == Some(TypeNS) || opt_ns == Some(ValueNS) => {
3521                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3522                             def, path.len() - 1
3523                         ));
3524                     }
3525                     _ => Err(if record_used { Determined } else { Undetermined }),
3526                 }
3527             };
3528
3529             match binding {
3530                 Ok(binding) => {
3531                     if i == 1 {
3532                         second_binding = Some(binding);
3533                     }
3534                     let def = binding.def();
3535                     let maybe_assoc = opt_ns != Some(MacroNS) && PathSource::Type.is_expected(def);
3536                     if let Some(next_module) = binding.module() {
3537                         module = Some(ModuleOrUniformRoot::Module(next_module));
3538                     } else if def == Def::ToolMod && i + 1 != path.len() {
3539                         let def = Def::NonMacroAttr(NonMacroAttrKind::Tool);
3540                         return PathResult::NonModule(PathResolution::new(def));
3541                     } else if def == Def::Err {
3542                         return PathResult::NonModule(err_path_resolution());
3543                     } else if opt_ns.is_some() && (is_last || maybe_assoc) {
3544                         self.lint_if_path_starts_with_module(
3545                             crate_lint,
3546                             path,
3547                             path_span,
3548                             second_binding,
3549                         );
3550                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3551                             def, path.len() - i - 1
3552                         ));
3553                     } else {
3554                         return PathResult::Failed(ident.span,
3555                                                   format!("Not a module `{}`", ident),
3556                                                   is_last);
3557                     }
3558                 }
3559                 Err(Undetermined) => return PathResult::Indeterminate,
3560                 Err(Determined) => {
3561                     if let Some(ModuleOrUniformRoot::Module(module)) = module {
3562                         if opt_ns.is_some() && !module.is_normal() {
3563                             return PathResult::NonModule(PathResolution::with_unresolved_segments(
3564                                 module.def().unwrap(), path.len() - i
3565                             ));
3566                         }
3567                     }
3568                     let module_def = match module {
3569                         Some(ModuleOrUniformRoot::Module(module)) => module.def(),
3570                         _ => None,
3571                     };
3572                     let msg = if module_def == self.graph_root.def() {
3573                         let is_mod = |def| match def { Def::Mod(..) => true, _ => false };
3574                         let mut candidates =
3575                             self.lookup_import_candidates(name, TypeNS, is_mod);
3576                         candidates.sort_by_cached_key(|c| {
3577                             (c.path.segments.len(), c.path.to_string())
3578                         });
3579                         if let Some(candidate) = candidates.get(0) {
3580                             format!("Did you mean `{}`?", candidate.path)
3581                         } else {
3582                             format!("Maybe a missing `extern crate {};`?", ident)
3583                         }
3584                     } else if i == 0 {
3585                         format!("Use of undeclared type or module `{}`", ident)
3586                     } else {
3587                         format!("Could not find `{}` in `{}`", ident, path[i - 1])
3588                     };
3589                     return PathResult::Failed(ident.span, msg, is_last);
3590                 }
3591             }
3592         }
3593
3594         self.lint_if_path_starts_with_module(crate_lint, path, path_span, second_binding);
3595
3596         PathResult::Module(module.unwrap_or_else(|| {
3597             span_bug!(path_span, "resolve_path: empty(?) path {:?} has no module", path);
3598         }))
3599
3600     }
3601
3602     fn lint_if_path_starts_with_module(
3603         &self,
3604         crate_lint: CrateLint,
3605         path: &[Ident],
3606         path_span: Span,
3607         second_binding: Option<&NameBinding>,
3608     ) {
3609         // In the 2018 edition this lint is a hard error, so nothing to do
3610         if self.session.rust_2018() {
3611             return
3612         }
3613
3614         // In the 2015 edition there's no use in emitting lints unless the
3615         // crate's already enabled the feature that we're going to suggest
3616         if !self.session.features_untracked().crate_in_paths {
3617             return
3618         }
3619
3620         let (diag_id, diag_span) = match crate_lint {
3621             CrateLint::No => return,
3622             CrateLint::SimplePath(id) => (id, path_span),
3623             CrateLint::UsePath { root_id, root_span } => (root_id, root_span),
3624             CrateLint::QPathTrait { qpath_id, qpath_span } => (qpath_id, qpath_span),
3625         };
3626
3627         let first_name = match path.get(0) {
3628             Some(ident) => ident.name,
3629             None => return,
3630         };
3631
3632         // We're only interested in `use` paths which should start with
3633         // `{{root}}` or `extern` currently.
3634         if first_name != keywords::Extern.name() && first_name != keywords::CrateRoot.name() {
3635             return
3636         }
3637
3638         match path.get(1) {
3639             // If this import looks like `crate::...` it's already good
3640             Some(ident) if ident.name == keywords::Crate.name() => return,
3641             // Otherwise go below to see if it's an extern crate
3642             Some(_) => {}
3643             // If the path has length one (and it's `CrateRoot` most likely)
3644             // then we don't know whether we're gonna be importing a crate or an
3645             // item in our crate. Defer this lint to elsewhere
3646             None => return,
3647         }
3648
3649         // If the first element of our path was actually resolved to an
3650         // `ExternCrate` (also used for `crate::...`) then no need to issue a
3651         // warning, this looks all good!
3652         if let Some(binding) = second_binding {
3653             if let NameBindingKind::Import { directive: d, .. } = binding.kind {
3654                 // Careful: we still want to rewrite paths from
3655                 // renamed extern crates.
3656                 if let ImportDirectiveSubclass::ExternCrate(None) = d.subclass {
3657                     return
3658                 }
3659             }
3660         }
3661
3662         let diag = lint::builtin::BuiltinLintDiagnostics
3663             ::AbsPathWithModule(diag_span);
3664         self.session.buffer_lint_with_diagnostic(
3665             lint::builtin::ABSOLUTE_PATHS_NOT_STARTING_WITH_CRATE,
3666             diag_id, diag_span,
3667             "absolute paths must start with `self`, `super`, \
3668             `crate`, or an external crate name in the 2018 edition",
3669             diag);
3670     }
3671
3672     // Resolve a local definition, potentially adjusting for closures.
3673     fn adjust_local_def(&mut self,
3674                         ns: Namespace,
3675                         rib_index: usize,
3676                         mut def: Def,
3677                         record_used: bool,
3678                         span: Span) -> Def {
3679         let ribs = &self.ribs[ns][rib_index + 1..];
3680
3681         // An invalid forward use of a type parameter from a previous default.
3682         if let ForwardTyParamBanRibKind = self.ribs[ns][rib_index].kind {
3683             if record_used {
3684                 resolve_error(self, span, ResolutionError::ForwardDeclaredTyParam);
3685             }
3686             assert_eq!(def, Def::Err);
3687             return Def::Err;
3688         }
3689
3690         match def {
3691             Def::Upvar(..) => {
3692                 span_bug!(span, "unexpected {:?} in bindings", def)
3693             }
3694             Def::Local(node_id) => {
3695                 for rib in ribs {
3696                     match rib.kind {
3697                         NormalRibKind | ModuleRibKind(..) | MacroDefinition(..) |
3698                         ForwardTyParamBanRibKind => {
3699                             // Nothing to do. Continue.
3700                         }
3701                         ClosureRibKind(function_id) => {
3702                             let prev_def = def;
3703
3704                             let seen = self.freevars_seen
3705                                            .entry(function_id)
3706                                            .or_insert_with(|| NodeMap());
3707                             if let Some(&index) = seen.get(&node_id) {
3708                                 def = Def::Upvar(node_id, index, function_id);
3709                                 continue;
3710                             }
3711                             let vec = self.freevars
3712                                           .entry(function_id)
3713                                           .or_insert_with(|| vec![]);
3714                             let depth = vec.len();
3715                             def = Def::Upvar(node_id, depth, function_id);
3716
3717                             if record_used {
3718                                 vec.push(Freevar {
3719                                     def: prev_def,
3720                                     span,
3721                                 });
3722                                 seen.insert(node_id, depth);
3723                             }
3724                         }
3725                         ItemRibKind | TraitOrImplItemRibKind => {
3726                             // This was an attempt to access an upvar inside a
3727                             // named function item. This is not allowed, so we
3728                             // report an error.
3729                             if record_used {
3730                                 resolve_error(self, span,
3731                                         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem);
3732                             }
3733                             return Def::Err;
3734                         }
3735                         ConstantItemRibKind => {
3736                             // Still doesn't deal with upvars
3737                             if record_used {
3738                                 resolve_error(self, span,
3739                                         ResolutionError::AttemptToUseNonConstantValueInConstant);
3740                             }
3741                             return Def::Err;
3742                         }
3743                     }
3744                 }
3745             }
3746             Def::TyParam(..) | Def::SelfTy(..) => {
3747                 for rib in ribs {
3748                     match rib.kind {
3749                         NormalRibKind | TraitOrImplItemRibKind | ClosureRibKind(..) |
3750                         ModuleRibKind(..) | MacroDefinition(..) | ForwardTyParamBanRibKind |
3751                         ConstantItemRibKind => {
3752                             // Nothing to do. Continue.
3753                         }
3754                         ItemRibKind => {
3755                             // This was an attempt to use a type parameter outside
3756                             // its scope.
3757                             if record_used {
3758                                 resolve_error(self, span,
3759                                     ResolutionError::TypeParametersFromOuterFunction(def));
3760                             }
3761                             return Def::Err;
3762                         }
3763                     }
3764                 }
3765             }
3766             _ => {}
3767         }
3768         return def;
3769     }
3770
3771     fn lookup_assoc_candidate<FilterFn>(&mut self,
3772                                         ident: Ident,
3773                                         ns: Namespace,
3774                                         filter_fn: FilterFn)
3775                                         -> Option<AssocSuggestion>
3776         where FilterFn: Fn(Def) -> bool
3777     {
3778         fn extract_node_id(t: &Ty) -> Option<NodeId> {
3779             match t.node {
3780                 TyKind::Path(None, _) => Some(t.id),
3781                 TyKind::Rptr(_, ref mut_ty) => extract_node_id(&mut_ty.ty),
3782                 // This doesn't handle the remaining `Ty` variants as they are not
3783                 // that commonly the self_type, it might be interesting to provide
3784                 // support for those in future.
3785                 _ => None,
3786             }
3787         }
3788
3789         // Fields are generally expected in the same contexts as locals.
3790         if filter_fn(Def::Local(ast::DUMMY_NODE_ID)) {
3791             if let Some(node_id) = self.current_self_type.as_ref().and_then(extract_node_id) {
3792                 // Look for a field with the same name in the current self_type.
3793                 if let Some(resolution) = self.def_map.get(&node_id) {
3794                     match resolution.base_def() {
3795                         Def::Struct(did) | Def::Union(did)
3796                                 if resolution.unresolved_segments() == 0 => {
3797                             if let Some(field_names) = self.field_names.get(&did) {
3798                                 if field_names.iter().any(|&field_name| ident.name == field_name) {
3799                                     return Some(AssocSuggestion::Field);
3800                                 }
3801                             }
3802                         }
3803                         _ => {}
3804                     }
3805                 }
3806             }
3807         }
3808
3809         // Look for associated items in the current trait.
3810         if let Some((module, _)) = self.current_trait_ref {
3811             if let Ok(binding) = self.resolve_ident_in_module(
3812                     ModuleOrUniformRoot::Module(module),
3813                     ident,
3814                     ns,
3815                     false,
3816                     module.span,
3817                 ) {
3818                 let def = binding.def();
3819                 if filter_fn(def) {
3820                     return Some(if self.has_self.contains(&def.def_id()) {
3821                         AssocSuggestion::MethodWithSelf
3822                     } else {
3823                         AssocSuggestion::AssocItem
3824                     });
3825                 }
3826             }
3827         }
3828
3829         None
3830     }
3831
3832     fn lookup_typo_candidate<FilterFn>(&mut self,
3833                                        path: &[Ident],
3834                                        ns: Namespace,
3835                                        filter_fn: FilterFn,
3836                                        span: Span)
3837                                        -> Option<Symbol>
3838         where FilterFn: Fn(Def) -> bool
3839     {
3840         let add_module_candidates = |module: Module, names: &mut Vec<Name>| {
3841             for (&(ident, _), resolution) in module.resolutions.borrow().iter() {
3842                 if let Some(binding) = resolution.borrow().binding {
3843                     if filter_fn(binding.def()) {
3844                         names.push(ident.name);
3845                     }
3846                 }
3847             }
3848         };
3849
3850         let mut names = Vec::new();
3851         if path.len() == 1 {
3852             // Search in lexical scope.
3853             // Walk backwards up the ribs in scope and collect candidates.
3854             for rib in self.ribs[ns].iter().rev() {
3855                 // Locals and type parameters
3856                 for (ident, def) in &rib.bindings {
3857                     if filter_fn(*def) {
3858                         names.push(ident.name);
3859                     }
3860                 }
3861                 // Items in scope
3862                 if let ModuleRibKind(module) = rib.kind {
3863                     // Items from this module
3864                     add_module_candidates(module, &mut names);
3865
3866                     if let ModuleKind::Block(..) = module.kind {
3867                         // We can see through blocks
3868                     } else {
3869                         // Items from the prelude
3870                         if !module.no_implicit_prelude {
3871                             names.extend(self.extern_prelude.iter().cloned());
3872                             if let Some(prelude) = self.prelude {
3873                                 add_module_candidates(prelude, &mut names);
3874                             }
3875                         }
3876                         break;
3877                     }
3878                 }
3879             }
3880             // Add primitive types to the mix
3881             if filter_fn(Def::PrimTy(TyBool)) {
3882                 names.extend(
3883                     self.primitive_type_table.primitive_types.iter().map(|(name, _)| name)
3884                 )
3885             }
3886         } else {
3887             // Search in module.
3888             let mod_path = &path[..path.len() - 1];
3889             if let PathResult::Module(module) = self.resolve_path(None, mod_path, Some(TypeNS),
3890                                                                   false, span, CrateLint::No) {
3891                 if let ModuleOrUniformRoot::Module(module) = module {
3892                     add_module_candidates(module, &mut names);
3893                 }
3894             }
3895         }
3896
3897         let name = path[path.len() - 1].name;
3898         // Make sure error reporting is deterministic.
3899         names.sort_by_cached_key(|name| name.as_str());
3900         match find_best_match_for_name(names.iter(), &name.as_str(), None) {
3901             Some(found) if found != name => Some(found),
3902             _ => None,
3903         }
3904     }
3905
3906     fn with_resolved_label<F>(&mut self, label: Option<Label>, id: NodeId, f: F)
3907         where F: FnOnce(&mut Resolver)
3908     {
3909         if let Some(label) = label {
3910             self.unused_labels.insert(id, label.ident.span);
3911             let def = Def::Label(id);
3912             self.with_label_rib(|this| {
3913                 let ident = label.ident.modern_and_legacy();
3914                 this.label_ribs.last_mut().unwrap().bindings.insert(ident, def);
3915                 f(this);
3916             });
3917         } else {
3918             f(self);
3919         }
3920     }
3921
3922     fn resolve_labeled_block(&mut self, label: Option<Label>, id: NodeId, block: &Block) {
3923         self.with_resolved_label(label, id, |this| this.visit_block(block));
3924     }
3925
3926     fn resolve_expr(&mut self, expr: &Expr, parent: Option<&Expr>) {
3927         // First, record candidate traits for this expression if it could
3928         // result in the invocation of a method call.
3929
3930         self.record_candidate_traits_for_expr_if_necessary(expr);
3931
3932         // Next, resolve the node.
3933         match expr.node {
3934             ExprKind::Path(ref qself, ref path) => {
3935                 self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
3936                 visit::walk_expr(self, expr);
3937             }
3938
3939             ExprKind::Struct(ref path, ..) => {
3940                 self.smart_resolve_path(expr.id, None, path, PathSource::Struct);
3941                 visit::walk_expr(self, expr);
3942             }
3943
3944             ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
3945                 let def = self.search_label(label.ident, |rib, ident| {
3946                     rib.bindings.get(&ident.modern_and_legacy()).cloned()
3947                 });
3948                 match def {
3949                     None => {
3950                         // Search again for close matches...
3951                         // Picks the first label that is "close enough", which is not necessarily
3952                         // the closest match
3953                         let close_match = self.search_label(label.ident, |rib, ident| {
3954                             let names = rib.bindings.iter().map(|(id, _)| &id.name);
3955                             find_best_match_for_name(names, &*ident.as_str(), None)
3956                         });
3957                         self.record_def(expr.id, err_path_resolution());
3958                         resolve_error(self,
3959                                       label.ident.span,
3960                                       ResolutionError::UndeclaredLabel(&label.ident.as_str(),
3961                                                                        close_match));
3962                     }
3963                     Some(Def::Label(id)) => {
3964                         // Since this def is a label, it is never read.
3965                         self.record_def(expr.id, PathResolution::new(Def::Label(id)));
3966                         self.unused_labels.remove(&id);
3967                     }
3968                     Some(_) => {
3969                         span_bug!(expr.span, "label wasn't mapped to a label def!");
3970                     }
3971                 }
3972
3973                 // visit `break` argument if any
3974                 visit::walk_expr(self, expr);
3975             }
3976
3977             ExprKind::IfLet(ref pats, ref subexpression, ref if_block, ref optional_else) => {
3978                 self.visit_expr(subexpression);
3979
3980                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
3981                 let mut bindings_list = FxHashMap();
3982                 for pat in pats {
3983                     self.resolve_pattern(pat, PatternSource::IfLet, &mut bindings_list);
3984                 }
3985                 // This has to happen *after* we determine which pat_idents are variants
3986                 self.check_consistent_bindings(pats);
3987                 self.visit_block(if_block);
3988                 self.ribs[ValueNS].pop();
3989
3990                 optional_else.as_ref().map(|expr| self.visit_expr(expr));
3991             }
3992
3993             ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),
3994
3995             ExprKind::While(ref subexpression, ref block, label) => {
3996                 self.with_resolved_label(label, expr.id, |this| {
3997                     this.visit_expr(subexpression);
3998                     this.visit_block(block);
3999                 });
4000             }
4001
4002             ExprKind::WhileLet(ref pats, ref subexpression, ref block, label) => {
4003                 self.with_resolved_label(label, expr.id, |this| {
4004                     this.visit_expr(subexpression);
4005                     this.ribs[ValueNS].push(Rib::new(NormalRibKind));
4006                     let mut bindings_list = FxHashMap();
4007                     for pat in pats {
4008                         this.resolve_pattern(pat, PatternSource::WhileLet, &mut bindings_list);
4009                     }
4010                     // This has to happen *after* we determine which pat_idents are variants
4011                     this.check_consistent_bindings(pats);
4012                     this.visit_block(block);
4013                     this.ribs[ValueNS].pop();
4014                 });
4015             }
4016
4017             ExprKind::ForLoop(ref pattern, ref subexpression, ref block, label) => {
4018                 self.visit_expr(subexpression);
4019                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
4020                 self.resolve_pattern(pattern, PatternSource::For, &mut FxHashMap());
4021
4022                 self.resolve_labeled_block(label, expr.id, block);
4023
4024                 self.ribs[ValueNS].pop();
4025             }
4026
4027             ExprKind::Block(ref block, label) => self.resolve_labeled_block(label, block.id, block),
4028
4029             // Equivalent to `visit::walk_expr` + passing some context to children.
4030             ExprKind::Field(ref subexpression, _) => {
4031                 self.resolve_expr(subexpression, Some(expr));
4032             }
4033             ExprKind::MethodCall(ref segment, ref arguments) => {
4034                 let mut arguments = arguments.iter();
4035                 self.resolve_expr(arguments.next().unwrap(), Some(expr));
4036                 for argument in arguments {
4037                     self.resolve_expr(argument, None);
4038                 }
4039                 self.visit_path_segment(expr.span, segment);
4040             }
4041
4042             ExprKind::Call(ref callee, ref arguments) => {
4043                 self.resolve_expr(callee, Some(expr));
4044                 for argument in arguments {
4045                     self.resolve_expr(argument, None);
4046                 }
4047             }
4048             ExprKind::Type(ref type_expr, _) => {
4049                 self.current_type_ascription.push(type_expr.span);
4050                 visit::walk_expr(self, expr);
4051                 self.current_type_ascription.pop();
4052             }
4053             // Resolve the body of async exprs inside the async closure to which they desugar
4054             ExprKind::Async(_, async_closure_id, ref block) => {
4055                 let rib_kind = ClosureRibKind(async_closure_id);
4056                 self.ribs[ValueNS].push(Rib::new(rib_kind));
4057                 self.label_ribs.push(Rib::new(rib_kind));
4058                 self.visit_block(&block);
4059                 self.label_ribs.pop();
4060                 self.ribs[ValueNS].pop();
4061             }
4062             // `async |x| ...` gets desugared to `|x| future_from_generator(|| ...)`, so we need to
4063             // resolve the arguments within the proper scopes so that usages of them inside the
4064             // closure are detected as upvars rather than normal closure arg usages.
4065             ExprKind::Closure(
4066                 _, IsAsync::Async { closure_id: inner_closure_id, .. }, _,
4067                 ref fn_decl, ref body, _span,
4068             ) => {
4069                 let rib_kind = ClosureRibKind(expr.id);
4070                 self.ribs[ValueNS].push(Rib::new(rib_kind));
4071                 self.label_ribs.push(Rib::new(rib_kind));
4072                 // Resolve arguments:
4073                 let mut bindings_list = FxHashMap();
4074                 for argument in &fn_decl.inputs {
4075                     self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
4076                     self.visit_ty(&argument.ty);
4077                 }
4078                 // No need to resolve return type-- the outer closure return type is
4079                 // FunctionRetTy::Default
4080
4081                 // Now resolve the inner closure
4082                 {
4083                     let rib_kind = ClosureRibKind(inner_closure_id);
4084                     self.ribs[ValueNS].push(Rib::new(rib_kind));
4085                     self.label_ribs.push(Rib::new(rib_kind));
4086                     // No need to resolve arguments: the inner closure has none.
4087                     // Resolve the return type:
4088                     visit::walk_fn_ret_ty(self, &fn_decl.output);
4089                     // Resolve the body
4090                     self.visit_expr(body);
4091                     self.label_ribs.pop();
4092                     self.ribs[ValueNS].pop();
4093                 }
4094                 self.label_ribs.pop();
4095                 self.ribs[ValueNS].pop();
4096             }
4097             _ => {
4098                 visit::walk_expr(self, expr);
4099             }
4100         }
4101     }
4102
4103     fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &Expr) {
4104         match expr.node {
4105             ExprKind::Field(_, ident) => {
4106                 // FIXME(#6890): Even though you can't treat a method like a
4107                 // field, we need to add any trait methods we find that match
4108                 // the field name so that we can do some nice error reporting
4109                 // later on in typeck.
4110                 let traits = self.get_traits_containing_item(ident, ValueNS);
4111                 self.trait_map.insert(expr.id, traits);
4112             }
4113             ExprKind::MethodCall(ref segment, ..) => {
4114                 debug!("(recording candidate traits for expr) recording traits for {}",
4115                        expr.id);
4116                 let traits = self.get_traits_containing_item(segment.ident, ValueNS);
4117                 self.trait_map.insert(expr.id, traits);
4118             }
4119             _ => {
4120                 // Nothing to do.
4121             }
4122         }
4123     }
4124
4125     fn get_traits_containing_item(&mut self, mut ident: Ident, ns: Namespace)
4126                                   -> Vec<TraitCandidate> {
4127         debug!("(getting traits containing item) looking for '{}'", ident.name);
4128
4129         let mut found_traits = Vec::new();
4130         // Look for the current trait.
4131         if let Some((module, _)) = self.current_trait_ref {
4132             if self.resolve_ident_in_module(
4133                 ModuleOrUniformRoot::Module(module),
4134                 ident,
4135                 ns,
4136                 false,
4137                 module.span,
4138             ).is_ok() {
4139                 let def_id = module.def_id().unwrap();
4140                 found_traits.push(TraitCandidate { def_id: def_id, import_id: None });
4141             }
4142         }
4143
4144         ident.span = ident.span.modern();
4145         let mut search_module = self.current_module;
4146         loop {
4147             self.get_traits_in_module_containing_item(ident, ns, search_module, &mut found_traits);
4148             search_module = unwrap_or!(
4149                 self.hygienic_lexical_parent(search_module, &mut ident.span), break
4150             );
4151         }
4152
4153         if let Some(prelude) = self.prelude {
4154             if !search_module.no_implicit_prelude {
4155                 self.get_traits_in_module_containing_item(ident, ns, prelude, &mut found_traits);
4156             }
4157         }
4158
4159         found_traits
4160     }
4161
4162     fn get_traits_in_module_containing_item(&mut self,
4163                                             ident: Ident,
4164                                             ns: Namespace,
4165                                             module: Module<'a>,
4166                                             found_traits: &mut Vec<TraitCandidate>) {
4167         assert!(ns == TypeNS || ns == ValueNS);
4168         let mut traits = module.traits.borrow_mut();
4169         if traits.is_none() {
4170             let mut collected_traits = Vec::new();
4171             module.for_each_child(|name, ns, binding| {
4172                 if ns != TypeNS { return }
4173                 if let Def::Trait(_) = binding.def() {
4174                     collected_traits.push((name, binding));
4175                 }
4176             });
4177             *traits = Some(collected_traits.into_boxed_slice());
4178         }
4179
4180         for &(trait_name, binding) in traits.as_ref().unwrap().iter() {
4181             let module = binding.module().unwrap();
4182             let mut ident = ident;
4183             if ident.span.glob_adjust(module.expansion, binding.span.ctxt().modern()).is_none() {
4184                 continue
4185             }
4186             if self.resolve_ident_in_module_unadjusted(
4187                 ModuleOrUniformRoot::Module(module),
4188                 ident,
4189                 ns,
4190                 false,
4191                 false,
4192                 module.span,
4193             ).is_ok() {
4194                 let import_id = match binding.kind {
4195                     NameBindingKind::Import { directive, .. } => {
4196                         self.maybe_unused_trait_imports.insert(directive.id);
4197                         self.add_to_glob_map(directive.id, trait_name);
4198                         Some(directive.id)
4199                     }
4200                     _ => None,
4201                 };
4202                 let trait_def_id = module.def_id().unwrap();
4203                 found_traits.push(TraitCandidate { def_id: trait_def_id, import_id: import_id });
4204             }
4205         }
4206     }
4207
4208     /// When name resolution fails, this method can be used to look up candidate
4209     /// entities with the expected name. It allows filtering them using the
4210     /// supplied predicate (which should be used to only accept the types of
4211     /// definitions expected e.g. traits). The lookup spans across all crates.
4212     ///
4213     /// NOTE: The method does not look into imports, but this is not a problem,
4214     /// since we report the definitions (thus, the de-aliased imports).
4215     fn lookup_import_candidates<FilterFn>(&mut self,
4216                                           lookup_name: Name,
4217                                           namespace: Namespace,
4218                                           filter_fn: FilterFn)
4219                                           -> Vec<ImportSuggestion>
4220         where FilterFn: Fn(Def) -> bool
4221     {
4222         let mut candidates = Vec::new();
4223         let mut worklist = Vec::new();
4224         let mut seen_modules = FxHashSet();
4225         worklist.push((self.graph_root, Vec::new(), false));
4226
4227         while let Some((in_module,
4228                         path_segments,
4229                         in_module_is_extern)) = worklist.pop() {
4230             self.populate_module_if_necessary(in_module);
4231
4232             // We have to visit module children in deterministic order to avoid
4233             // instabilities in reported imports (#43552).
4234             in_module.for_each_child_stable(|ident, ns, name_binding| {
4235                 // avoid imports entirely
4236                 if name_binding.is_import() && !name_binding.is_extern_crate() { return; }
4237                 // avoid non-importable candidates as well
4238                 if !name_binding.is_importable() { return; }
4239
4240                 // collect results based on the filter function
4241                 if ident.name == lookup_name && ns == namespace {
4242                     if filter_fn(name_binding.def()) {
4243                         // create the path
4244                         let mut segms = if self.session.rust_2018() && !in_module_is_extern {
4245                             // crate-local absolute paths start with `crate::` in edition 2018
4246                             // FIXME: may also be stabilized for Rust 2015 (Issues #45477, #44660)
4247                             let mut full_segms = vec![
4248                                 ast::PathSegment::from_ident(keywords::Crate.ident())
4249                             ];
4250                             full_segms.extend(path_segments.clone());
4251                             full_segms
4252                         } else {
4253                             path_segments.clone()
4254                         };
4255
4256                         segms.push(ast::PathSegment::from_ident(ident));
4257                         let path = Path {
4258                             span: name_binding.span,
4259                             segments: segms,
4260                         };
4261                         // the entity is accessible in the following cases:
4262                         // 1. if it's defined in the same crate, it's always
4263                         // accessible (since private entities can be made public)
4264                         // 2. if it's defined in another crate, it's accessible
4265                         // only if both the module is public and the entity is
4266                         // declared as public (due to pruning, we don't explore
4267                         // outside crate private modules => no need to check this)
4268                         if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
4269                             candidates.push(ImportSuggestion { path: path });
4270                         }
4271                     }
4272                 }
4273
4274                 // collect submodules to explore
4275                 if let Some(module) = name_binding.module() {
4276                     // form the path
4277                     let mut path_segments = path_segments.clone();
4278                     path_segments.push(ast::PathSegment::from_ident(ident));
4279
4280                     if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
4281                         // add the module to the lookup
4282                         let is_extern = in_module_is_extern || name_binding.is_extern_crate();
4283                         if seen_modules.insert(module.def_id().unwrap()) {
4284                             worklist.push((module, path_segments, is_extern));
4285                         }
4286                     }
4287                 }
4288             })
4289         }
4290
4291         candidates
4292     }
4293
4294     fn find_module(&mut self,
4295                    module_def: Def)
4296                    -> Option<(Module<'a>, ImportSuggestion)>
4297     {
4298         let mut result = None;
4299         let mut worklist = Vec::new();
4300         let mut seen_modules = FxHashSet();
4301         worklist.push((self.graph_root, Vec::new()));
4302
4303         while let Some((in_module, path_segments)) = worklist.pop() {
4304             // abort if the module is already found
4305             if result.is_some() { break; }
4306
4307             self.populate_module_if_necessary(in_module);
4308
4309             in_module.for_each_child_stable(|ident, _, name_binding| {
4310                 // abort if the module is already found or if name_binding is private external
4311                 if result.is_some() || !name_binding.vis.is_visible_locally() {
4312                     return
4313                 }
4314                 if let Some(module) = name_binding.module() {
4315                     // form the path
4316                     let mut path_segments = path_segments.clone();
4317                     path_segments.push(ast::PathSegment::from_ident(ident));
4318                     if module.def() == Some(module_def) {
4319                         let path = Path {
4320                             span: name_binding.span,
4321                             segments: path_segments,
4322                         };
4323                         result = Some((module, ImportSuggestion { path: path }));
4324                     } else {
4325                         // add the module to the lookup
4326                         if seen_modules.insert(module.def_id().unwrap()) {
4327                             worklist.push((module, path_segments));
4328                         }
4329                     }
4330                 }
4331             });
4332         }
4333
4334         result
4335     }
4336
4337     fn collect_enum_variants(&mut self, enum_def: Def) -> Option<Vec<Path>> {
4338         if let Def::Enum(..) = enum_def {} else {
4339             panic!("Non-enum def passed to collect_enum_variants: {:?}", enum_def)
4340         }
4341
4342         self.find_module(enum_def).map(|(enum_module, enum_import_suggestion)| {
4343             self.populate_module_if_necessary(enum_module);
4344
4345             let mut variants = Vec::new();
4346             enum_module.for_each_child_stable(|ident, _, name_binding| {
4347                 if let Def::Variant(..) = name_binding.def() {
4348                     let mut segms = enum_import_suggestion.path.segments.clone();
4349                     segms.push(ast::PathSegment::from_ident(ident));
4350                     variants.push(Path {
4351                         span: name_binding.span,
4352                         segments: segms,
4353                     });
4354                 }
4355             });
4356             variants
4357         })
4358     }
4359
4360     fn record_def(&mut self, node_id: NodeId, resolution: PathResolution) {
4361         debug!("(recording def) recording {:?} for {}", resolution, node_id);
4362         if let Some(prev_res) = self.def_map.insert(node_id, resolution) {
4363             panic!("path resolved multiple times ({:?} before, {:?} now)", prev_res, resolution);
4364         }
4365     }
4366
4367     fn resolve_visibility(&mut self, vis: &ast::Visibility) -> ty::Visibility {
4368         match vis.node {
4369             ast::VisibilityKind::Public => ty::Visibility::Public,
4370             ast::VisibilityKind::Crate(..) => {
4371                 ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX))
4372             }
4373             ast::VisibilityKind::Inherited => {
4374                 ty::Visibility::Restricted(self.current_module.normal_ancestor_id)
4375             }
4376             ast::VisibilityKind::Restricted { ref path, id, .. } => {
4377                 // Visibilities are resolved as global by default, add starting root segment.
4378                 let segments = path.make_root().iter().chain(path.segments.iter())
4379                     .map(|seg| seg.ident)
4380                     .collect::<Vec<_>>();
4381                 let def = self.smart_resolve_path_fragment(
4382                     id,
4383                     None,
4384                     &segments,
4385                     path.span,
4386                     PathSource::Visibility,
4387                     CrateLint::SimplePath(id),
4388                 ).base_def();
4389                 if def == Def::Err {
4390                     ty::Visibility::Public
4391                 } else {
4392                     let vis = ty::Visibility::Restricted(def.def_id());
4393                     if self.is_accessible(vis) {
4394                         vis
4395                     } else {
4396                         self.session.span_err(path.span, "visibilities can only be restricted \
4397                                                           to ancestor modules");
4398                         ty::Visibility::Public
4399                     }
4400                 }
4401             }
4402         }
4403     }
4404
4405     fn is_accessible(&self, vis: ty::Visibility) -> bool {
4406         vis.is_accessible_from(self.current_module.normal_ancestor_id, self)
4407     }
4408
4409     fn is_accessible_from(&self, vis: ty::Visibility, module: Module<'a>) -> bool {
4410         vis.is_accessible_from(module.normal_ancestor_id, self)
4411     }
4412
4413     fn report_errors(&mut self, krate: &Crate) {
4414         self.report_shadowing_errors();
4415         self.report_with_use_injections(krate);
4416         self.report_proc_macro_import(krate);
4417         let mut reported_spans = FxHashSet();
4418
4419         for &(span_use, span_def) in &self.macro_expanded_macro_export_errors {
4420             let msg = "macro-expanded `macro_export` macros from the current crate \
4421                        cannot be referred to by absolute paths";
4422             self.session.struct_span_err(span_use, msg)
4423                         .span_note(span_def, "the macro is defined here")
4424                         .emit();
4425         }
4426
4427         for &AmbiguityError { span, name, b1, b2, lexical } in &self.ambiguity_errors {
4428             if !reported_spans.insert(span) { continue }
4429             let participle = |binding: &NameBinding| {
4430                 if binding.is_import() { "imported" } else { "defined" }
4431             };
4432             let msg1 = format!("`{}` could refer to the name {} here", name, participle(b1));
4433             let msg2 = format!("`{}` could also refer to the name {} here", name, participle(b2));
4434             let note = if b1.expansion == Mark::root() || !lexical && b1.is_glob_import() {
4435                 format!("consider adding an explicit import of `{}` to disambiguate", name)
4436             } else if let Def::Macro(..) = b1.def() {
4437                 format!("macro-expanded {} do not shadow",
4438                         if b1.is_import() { "macro imports" } else { "macros" })
4439             } else {
4440                 format!("macro-expanded {} do not shadow when used in a macro invocation path",
4441                         if b1.is_import() { "imports" } else { "items" })
4442             };
4443
4444             let mut err = struct_span_err!(self.session, span, E0659, "`{}` is ambiguous", name);
4445             err.span_note(b1.span, &msg1);
4446             match b2.def() {
4447                 Def::Macro(..) if b2.span.is_dummy() =>
4448                     err.note(&format!("`{}` is also a builtin macro", name)),
4449                 _ => err.span_note(b2.span, &msg2),
4450             };
4451             err.note(&note).emit();
4452         }
4453
4454         for &PrivacyError(span, name, binding) in &self.privacy_errors {
4455             if !reported_spans.insert(span) { continue }
4456             span_err!(self.session, span, E0603, "{} `{}` is private", binding.descr(), name);
4457         }
4458     }
4459
4460     fn report_with_use_injections(&mut self, krate: &Crate) {
4461         for UseError { mut err, candidates, node_id, better } in self.use_injections.drain(..) {
4462             let (span, found_use) = UsePlacementFinder::check(krate, node_id);
4463             if !candidates.is_empty() {
4464                 show_candidates(&mut err, span, &candidates, better, found_use);
4465             }
4466             err.emit();
4467         }
4468     }
4469
4470     fn report_shadowing_errors(&mut self) {
4471         let mut reported_errors = FxHashSet();
4472         for binding in replace(&mut self.disallowed_shadowing, Vec::new()) {
4473             if self.resolve_legacy_scope(&binding.parent, binding.ident, false).is_some() &&
4474                reported_errors.insert((binding.ident, binding.span)) {
4475                 let msg = format!("`{}` is already in scope", binding.ident);
4476                 self.session.struct_span_err(binding.span, &msg)
4477                     .note("macro-expanded `macro_rules!`s may not shadow \
4478                            existing macros (see RFC 1560)")
4479                     .emit();
4480             }
4481         }
4482     }
4483
4484     fn report_conflict<'b>(&mut self,
4485                        parent: Module,
4486                        ident: Ident,
4487                        ns: Namespace,
4488                        new_binding: &NameBinding<'b>,
4489                        old_binding: &NameBinding<'b>) {
4490         // Error on the second of two conflicting names
4491         if old_binding.span.lo() > new_binding.span.lo() {
4492             return self.report_conflict(parent, ident, ns, old_binding, new_binding);
4493         }
4494
4495         let container = match parent.kind {
4496             ModuleKind::Def(Def::Mod(_), _) => "module",
4497             ModuleKind::Def(Def::Trait(_), _) => "trait",
4498             ModuleKind::Block(..) => "block",
4499             _ => "enum",
4500         };
4501
4502         let old_noun = match old_binding.is_import() {
4503             true => "import",
4504             false => "definition",
4505         };
4506
4507         let new_participle = match new_binding.is_import() {
4508             true => "imported",
4509             false => "defined",
4510         };
4511
4512         let (name, span) = (ident.name, self.session.codemap().def_span(new_binding.span));
4513
4514         if let Some(s) = self.name_already_seen.get(&name) {
4515             if s == &span {
4516                 return;
4517             }
4518         }
4519
4520         let old_kind = match (ns, old_binding.module()) {
4521             (ValueNS, _) => "value",
4522             (MacroNS, _) => "macro",
4523             (TypeNS, _) if old_binding.is_extern_crate() => "extern crate",
4524             (TypeNS, Some(module)) if module.is_normal() => "module",
4525             (TypeNS, Some(module)) if module.is_trait() => "trait",
4526             (TypeNS, _) => "type",
4527         };
4528
4529         let msg = format!("the name `{}` is defined multiple times", name);
4530
4531         let mut err = match (old_binding.is_extern_crate(), new_binding.is_extern_crate()) {
4532             (true, true) => struct_span_err!(self.session, span, E0259, "{}", msg),
4533             (true, _) | (_, true) => match new_binding.is_import() && old_binding.is_import() {
4534                 true => struct_span_err!(self.session, span, E0254, "{}", msg),
4535                 false => struct_span_err!(self.session, span, E0260, "{}", msg),
4536             },
4537             _ => match (old_binding.is_import(), new_binding.is_import()) {
4538                 (false, false) => struct_span_err!(self.session, span, E0428, "{}", msg),
4539                 (true, true) => struct_span_err!(self.session, span, E0252, "{}", msg),
4540                 _ => struct_span_err!(self.session, span, E0255, "{}", msg),
4541             },
4542         };
4543
4544         err.note(&format!("`{}` must be defined only once in the {} namespace of this {}",
4545                           name,
4546                           ns.descr(),
4547                           container));
4548
4549         err.span_label(span, format!("`{}` re{} here", name, new_participle));
4550         if !old_binding.span.is_dummy() {
4551             err.span_label(self.session.codemap().def_span(old_binding.span),
4552                            format!("previous {} of the {} `{}` here", old_noun, old_kind, name));
4553         }
4554
4555         // See https://github.com/rust-lang/rust/issues/32354
4556         if old_binding.is_import() || new_binding.is_import() {
4557             let binding = if new_binding.is_import() && !new_binding.span.is_dummy() {
4558                 new_binding
4559             } else {
4560                 old_binding
4561             };
4562
4563             let cm = self.session.codemap();
4564             let rename_msg = "You can use `as` to change the binding name of the import";
4565
4566             if let (Ok(snippet), false) = (cm.span_to_snippet(binding.span),
4567                                            binding.is_renamed_extern_crate()) {
4568                 let suggested_name = if name.as_str().chars().next().unwrap().is_uppercase() {
4569                     format!("Other{}", name)
4570                 } else {
4571                     format!("other_{}", name)
4572                 };
4573
4574                 err.span_suggestion(binding.span,
4575                                     rename_msg,
4576                                     if snippet.ends_with(';') {
4577                                         format!("{} as {};",
4578                                                 &snippet[..snippet.len()-1],
4579                                                 suggested_name)
4580                                     } else {
4581                                         format!("{} as {}", snippet, suggested_name)
4582                                     });
4583             } else {
4584                 err.span_label(binding.span, rename_msg);
4585             }
4586         }
4587
4588         err.emit();
4589         self.name_already_seen.insert(name, span);
4590     }
4591 }
4592
4593 fn is_self_type(path: &[Ident], namespace: Namespace) -> bool {
4594     namespace == TypeNS && path.len() == 1 && path[0].name == keywords::SelfType.name()
4595 }
4596
4597 fn is_self_value(path: &[Ident], namespace: Namespace) -> bool {
4598     namespace == ValueNS && path.len() == 1 && path[0].name == keywords::SelfValue.name()
4599 }
4600
4601 fn names_to_string(idents: &[Ident]) -> String {
4602     let mut result = String::new();
4603     for (i, ident) in idents.iter()
4604                             .filter(|ident| ident.name != keywords::CrateRoot.name())
4605                             .enumerate() {
4606         if i > 0 {
4607             result.push_str("::");
4608         }
4609         result.push_str(&ident.as_str());
4610     }
4611     result
4612 }
4613
4614 fn path_names_to_string(path: &Path) -> String {
4615     names_to_string(&path.segments.iter()
4616                         .map(|seg| seg.ident)
4617                         .collect::<Vec<_>>())
4618 }
4619
4620 /// Get the path for an enum and the variant from an `ImportSuggestion` for an enum variant.
4621 fn import_candidate_to_paths(suggestion: &ImportSuggestion) -> (Span, String, String) {
4622     let variant_path = &suggestion.path;
4623     let variant_path_string = path_names_to_string(variant_path);
4624
4625     let path_len = suggestion.path.segments.len();
4626     let enum_path = ast::Path {
4627         span: suggestion.path.span,
4628         segments: suggestion.path.segments[0..path_len - 1].to_vec(),
4629     };
4630     let enum_path_string = path_names_to_string(&enum_path);
4631
4632     (suggestion.path.span, variant_path_string, enum_path_string)
4633 }
4634
4635
4636 /// When an entity with a given name is not available in scope, we search for
4637 /// entities with that name in all crates. This method allows outputting the
4638 /// results of this search in a programmer-friendly way
4639 fn show_candidates(err: &mut DiagnosticBuilder,
4640                    // This is `None` if all placement locations are inside expansions
4641                    span: Option<Span>,
4642                    candidates: &[ImportSuggestion],
4643                    better: bool,
4644                    found_use: bool) {
4645
4646     // we want consistent results across executions, but candidates are produced
4647     // by iterating through a hash map, so make sure they are ordered:
4648     let mut path_strings: Vec<_> =
4649         candidates.into_iter().map(|c| path_names_to_string(&c.path)).collect();
4650     path_strings.sort();
4651
4652     let better = if better { "better " } else { "" };
4653     let msg_diff = match path_strings.len() {
4654         1 => " is found in another module, you can import it",
4655         _ => "s are found in other modules, you can import them",
4656     };
4657     let msg = format!("possible {}candidate{} into scope", better, msg_diff);
4658
4659     if let Some(span) = span {
4660         for candidate in &mut path_strings {
4661             // produce an additional newline to separate the new use statement
4662             // from the directly following item.
4663             let additional_newline = if found_use {
4664                 ""
4665             } else {
4666                 "\n"
4667             };
4668             *candidate = format!("use {};\n{}", candidate, additional_newline);
4669         }
4670
4671         err.span_suggestions(span, &msg, path_strings);
4672     } else {
4673         let mut msg = msg;
4674         msg.push(':');
4675         for candidate in path_strings {
4676             msg.push('\n');
4677             msg.push_str(&candidate);
4678         }
4679     }
4680 }
4681
4682 /// A somewhat inefficient routine to obtain the name of a module.
4683 fn module_to_string(module: Module) -> Option<String> {
4684     let mut names = Vec::new();
4685
4686     fn collect_mod(names: &mut Vec<Ident>, module: Module) {
4687         if let ModuleKind::Def(_, name) = module.kind {
4688             if let Some(parent) = module.parent {
4689                 names.push(Ident::with_empty_ctxt(name));
4690                 collect_mod(names, parent);
4691             }
4692         } else {
4693             // danger, shouldn't be ident?
4694             names.push(Ident::from_str("<opaque>"));
4695             collect_mod(names, module.parent.unwrap());
4696         }
4697     }
4698     collect_mod(&mut names, module);
4699
4700     if names.is_empty() {
4701         return None;
4702     }
4703     Some(names_to_string(&names.into_iter()
4704                         .rev()
4705                         .collect::<Vec<_>>()))
4706 }
4707
4708 fn err_path_resolution() -> PathResolution {
4709     PathResolution::new(Def::Err)
4710 }
4711
4712 #[derive(PartialEq,Copy, Clone)]
4713 pub enum MakeGlobMap {
4714     Yes,
4715     No,
4716 }
4717
4718 #[derive(Copy, Clone, Debug)]
4719 enum CrateLint {
4720     /// Do not issue the lint
4721     No,
4722
4723     /// This lint applies to some random path like `impl ::foo::Bar`
4724     /// or whatever. In this case, we can take the span of that path.
4725     SimplePath(NodeId),
4726
4727     /// This lint comes from a `use` statement. In this case, what we
4728     /// care about really is the *root* `use` statement; e.g., if we
4729     /// have nested things like `use a::{b, c}`, we care about the
4730     /// `use a` part.
4731     UsePath { root_id: NodeId, root_span: Span },
4732
4733     /// This is the "trait item" from a fully qualified path. For example,
4734     /// we might be resolving  `X::Y::Z` from a path like `<T as X::Y>::Z`.
4735     /// The `path_span` is the span of the to the trait itself (`X::Y`).
4736     QPathTrait { qpath_id: NodeId, qpath_span: Span },
4737 }
4738
4739 impl CrateLint {
4740     fn node_id(&self) -> Option<NodeId> {
4741         match *self {
4742             CrateLint::No => None,
4743             CrateLint::SimplePath(id) |
4744             CrateLint::UsePath { root_id: id, .. } |
4745             CrateLint::QPathTrait { qpath_id: id, .. } => Some(id),
4746         }
4747     }
4748 }
4749
4750 __build_diagnostic_array! { librustc_resolve, DIAGNOSTICS }