]> git.lizzy.rs Git - rust.git/blob - src/librustc_resolve/lib.rs
remove unneeded import
[rust.git] / src / librustc_resolve / lib.rs
1 // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 #![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
12       html_favicon_url = "https://doc.rust-lang.org/favicon.ico",
13       html_root_url = "https://doc.rust-lang.org/nightly/")]
14 #![deny(warnings)]
15
16 #![feature(rustc_diagnostic_macros)]
17
18 #[macro_use]
19 extern crate log;
20 #[macro_use]
21 extern crate syntax;
22 extern crate syntax_pos;
23 extern crate rustc_errors as errors;
24 extern crate arena;
25 #[macro_use]
26 extern crate rustc;
27 extern crate rustc_data_structures;
28
29 use self::Namespace::*;
30 use self::TypeParameters::*;
31 use self::RibKind::*;
32
33 use rustc::hir::map::{Definitions, DefCollector};
34 use rustc::hir::{self, PrimTy, TyBool, TyChar, TyFloat, TyInt, TyUint, TyStr};
35 use rustc::middle::cstore::{CrateStore, CrateLoader};
36 use rustc::session::Session;
37 use rustc::lint;
38 use rustc::hir::def::*;
39 use rustc::hir::def_id::{CRATE_DEF_INDEX, LOCAL_CRATE, DefId};
40 use rustc::ty;
41 use rustc::hir::{Freevar, FreevarMap, TraitCandidate, TraitMap, GlobMap};
42 use rustc::util::nodemap::{NodeMap, NodeSet, FxHashMap, FxHashSet, DefIdMap};
43
44 use syntax::codemap::{dummy_spanned, respan, BytePos, CodeMap};
45 use syntax::ext::hygiene::{Mark, MarkKind, SyntaxContext};
46 use syntax::ast::{self, Name, NodeId, Ident, SpannedIdent, FloatTy, IntTy, UintTy};
47 use syntax::ext::base::SyntaxExtension;
48 use syntax::ext::base::Determinacy::{self, Determined, Undetermined};
49 use syntax::ext::base::MacroKind;
50 use syntax::symbol::{Symbol, keywords};
51 use syntax::util::lev_distance::find_best_match_for_name;
52
53 use syntax::visit::{self, FnKind, Visitor};
54 use syntax::attr;
55 use syntax::ast::{Arm, BindingMode, Block, Crate, Expr, ExprKind};
56 use syntax::ast::{FnDecl, ForeignItem, ForeignItemKind, GenericParam, Generics};
57 use syntax::ast::{Item, ItemKind, ImplItem, ImplItemKind};
58 use syntax::ast::{Label, Local, Mutability, Pat, PatKind, Path};
59 use syntax::ast::{QSelf, TraitItemKind, TraitRef, Ty, TyKind};
60 use syntax::feature_gate::{feature_err, GateIssue};
61 use syntax::parse::token;
62 use syntax::ptr::P;
63
64 use syntax_pos::{Span, DUMMY_SP, MultiSpan};
65 use errors::{DiagnosticBuilder, DiagnosticId};
66
67 use std::cell::{Cell, RefCell};
68 use std::cmp;
69 use std::collections::BTreeSet;
70 use std::fmt;
71 use std::iter;
72 use std::mem::replace;
73 use rustc_data_structures::sync::Lrc;
74
75 use resolve_imports::{ImportDirective, ImportDirectiveSubclass, NameResolution, ImportResolver};
76 use macros::{InvocationData, LegacyBinding, LegacyScope, MacroBinding};
77
78 // NB: This module needs to be declared first so diagnostics are
79 // registered before they are used.
80 mod diagnostics;
81
82 mod macros;
83 mod check_unused;
84 mod build_reduced_graph;
85 mod resolve_imports;
86
87 /// A free importable items suggested in case of resolution failure.
88 struct ImportSuggestion {
89     path: Path,
90 }
91
92 /// A field or associated item from self type suggested in case of resolution failure.
93 enum AssocSuggestion {
94     Field,
95     MethodWithSelf,
96     AssocItem,
97 }
98
99 #[derive(Eq)]
100 struct BindingError {
101     name: Name,
102     origin: BTreeSet<Span>,
103     target: BTreeSet<Span>,
104 }
105
106 impl PartialOrd for BindingError {
107     fn partial_cmp(&self, other: &BindingError) -> Option<cmp::Ordering> {
108         Some(self.cmp(other))
109     }
110 }
111
112 impl PartialEq for BindingError {
113     fn eq(&self, other: &BindingError) -> bool {
114         self.name == other.name
115     }
116 }
117
118 impl Ord for BindingError {
119     fn cmp(&self, other: &BindingError) -> cmp::Ordering {
120         self.name.cmp(&other.name)
121     }
122 }
123
124 enum ResolutionError<'a> {
125     /// error E0401: can't use type parameters from outer function
126     TypeParametersFromOuterFunction(Def),
127     /// error E0403: the name is already used for a type parameter in this type parameter list
128     NameAlreadyUsedInTypeParameterList(Name, &'a Span),
129     /// error E0407: method is not a member of trait
130     MethodNotMemberOfTrait(Name, &'a str),
131     /// error E0437: type is not a member of trait
132     TypeNotMemberOfTrait(Name, &'a str),
133     /// error E0438: const is not a member of trait
134     ConstNotMemberOfTrait(Name, &'a str),
135     /// error E0408: variable `{}` is not bound in all patterns
136     VariableNotBoundInPattern(&'a BindingError),
137     /// error E0409: variable `{}` is bound in inconsistent ways within the same match arm
138     VariableBoundWithDifferentMode(Name, Span),
139     /// error E0415: identifier is bound more than once in this parameter list
140     IdentifierBoundMoreThanOnceInParameterList(&'a str),
141     /// error E0416: identifier is bound more than once in the same pattern
142     IdentifierBoundMoreThanOnceInSamePattern(&'a str),
143     /// error E0426: use of undeclared label
144     UndeclaredLabel(&'a str, Option<Name>),
145     /// error E0429: `self` imports are only allowed within a { } list
146     SelfImportsOnlyAllowedWithin,
147     /// error E0430: `self` import can only appear once in the list
148     SelfImportCanOnlyAppearOnceInTheList,
149     /// error E0431: `self` import can only appear in an import list with a non-empty prefix
150     SelfImportOnlyInImportListWithNonEmptyPrefix,
151     /// error E0432: unresolved import
152     UnresolvedImport(Option<(Span, &'a str, &'a str)>),
153     /// error E0433: failed to resolve
154     FailedToResolve(&'a str),
155     /// error E0434: can't capture dynamic environment in a fn item
156     CannotCaptureDynamicEnvironmentInFnItem,
157     /// error E0435: attempt to use a non-constant value in a constant
158     AttemptToUseNonConstantValueInConstant,
159     /// error E0530: X bindings cannot shadow Ys
160     BindingShadowsSomethingUnacceptable(&'a str, Name, &'a NameBinding<'a>),
161     /// error E0128: type parameters with a default cannot use forward declared identifiers
162     ForwardDeclaredTyParam,
163 }
164
165 fn resolve_error<'sess, 'a>(resolver: &'sess Resolver,
166                             span: Span,
167                             resolution_error: ResolutionError<'a>) {
168     resolve_struct_error(resolver, span, resolution_error).emit();
169 }
170
171 fn resolve_struct_error<'sess, 'a>(resolver: &'sess Resolver,
172                                    span: Span,
173                                    resolution_error: ResolutionError<'a>)
174                                    -> DiagnosticBuilder<'sess> {
175     match resolution_error {
176         ResolutionError::TypeParametersFromOuterFunction(outer_def) => {
177             let mut err = struct_span_err!(resolver.session,
178                                            span,
179                                            E0401,
180                                            "can't use type parameters from outer function");
181             err.span_label(span, "use of type variable from outer function");
182
183             let cm = resolver.session.codemap();
184             match outer_def {
185                 Def::SelfTy(_, maybe_impl_defid) => {
186                     if let Some(impl_span) = maybe_impl_defid.map_or(None,
187                             |def_id| resolver.definitions.opt_span(def_id)) {
188                         err.span_label(reduce_impl_span_to_impl_keyword(cm, impl_span),
189                                     "`Self` type implicitely declared here, on the `impl`");
190                     }
191                 },
192                 Def::TyParam(typaram_defid) => {
193                     if let Some(typaram_span) = resolver.definitions.opt_span(typaram_defid) {
194                         err.span_label(typaram_span, "type variable from outer function");
195                     }
196                 },
197                 Def::Mod(..) | Def::Struct(..) | Def::Union(..) | Def::Enum(..) | Def::Variant(..) |
198                 Def::Trait(..) | Def::TyAlias(..) | Def::TyForeign(..) | Def::TraitAlias(..) |
199                 Def::AssociatedTy(..) | Def::PrimTy(..) | Def::Fn(..) | Def::Const(..) |
200                 Def::Static(..) | Def::StructCtor(..) | Def::VariantCtor(..) | Def::Method(..) |
201                 Def::AssociatedConst(..) | Def::Local(..) | Def::Upvar(..) | Def::Label(..) |
202                 Def::Macro(..) | Def::GlobalAsm(..) | Def::Err =>
203                     bug!("TypeParametersFromOuterFunction should only be used with Def::SelfTy or \
204                          Def::TyParam")
205             }
206
207             // Try to retrieve the span of the function signature and generate a new message with
208             // a local type parameter
209             let sugg_msg = "try using a local type parameter instead";
210             if let Some((sugg_span, new_snippet)) = generate_local_type_param_snippet(cm, span) {
211                 // Suggest the modification to the user
212                 err.span_suggestion(sugg_span,
213                                     sugg_msg,
214                                     new_snippet);
215             } else if let Some(sp) = generate_fn_name_span(cm, span) {
216                 err.span_label(sp, "try adding a local type parameter in this method instead");
217             } else {
218                 err.help("try using a local type parameter instead");
219             }
220
221             err
222         }
223         ResolutionError::NameAlreadyUsedInTypeParameterList(name, first_use_span) => {
224              let mut err = struct_span_err!(resolver.session,
225                                             span,
226                                             E0403,
227                                             "the name `{}` is already used for a type parameter \
228                                             in this type parameter list",
229                                             name);
230              err.span_label(span, "already used");
231              err.span_label(first_use_span.clone(), format!("first use of `{}`", name));
232              err
233         }
234         ResolutionError::MethodNotMemberOfTrait(method, trait_) => {
235             let mut err = struct_span_err!(resolver.session,
236                                            span,
237                                            E0407,
238                                            "method `{}` is not a member of trait `{}`",
239                                            method,
240                                            trait_);
241             err.span_label(span, format!("not a member of trait `{}`", trait_));
242             err
243         }
244         ResolutionError::TypeNotMemberOfTrait(type_, trait_) => {
245             let mut err = struct_span_err!(resolver.session,
246                              span,
247                              E0437,
248                              "type `{}` is not a member of trait `{}`",
249                              type_,
250                              trait_);
251             err.span_label(span, format!("not a member of trait `{}`", trait_));
252             err
253         }
254         ResolutionError::ConstNotMemberOfTrait(const_, trait_) => {
255             let mut err = struct_span_err!(resolver.session,
256                              span,
257                              E0438,
258                              "const `{}` is not a member of trait `{}`",
259                              const_,
260                              trait_);
261             err.span_label(span, format!("not a member of trait `{}`", trait_));
262             err
263         }
264         ResolutionError::VariableNotBoundInPattern(binding_error) => {
265             let target_sp = binding_error.target.iter().map(|x| *x).collect::<Vec<_>>();
266             let msp = MultiSpan::from_spans(target_sp.clone());
267             let msg = format!("variable `{}` is not bound in all patterns", binding_error.name);
268             let mut err = resolver.session.struct_span_err_with_code(
269                 msp,
270                 &msg,
271                 DiagnosticId::Error("E0408".into()),
272             );
273             for sp in target_sp {
274                 err.span_label(sp, format!("pattern doesn't bind `{}`", binding_error.name));
275             }
276             let origin_sp = binding_error.origin.iter().map(|x| *x).collect::<Vec<_>>();
277             for sp in origin_sp {
278                 err.span_label(sp, "variable not in all patterns");
279             }
280             err
281         }
282         ResolutionError::VariableBoundWithDifferentMode(variable_name,
283                                                         first_binding_span) => {
284             let mut err = struct_span_err!(resolver.session,
285                              span,
286                              E0409,
287                              "variable `{}` is bound in inconsistent \
288                              ways within the same match arm",
289                              variable_name);
290             err.span_label(span, "bound in different ways");
291             err.span_label(first_binding_span, "first binding");
292             err
293         }
294         ResolutionError::IdentifierBoundMoreThanOnceInParameterList(identifier) => {
295             let mut err = struct_span_err!(resolver.session,
296                              span,
297                              E0415,
298                              "identifier `{}` is bound more than once in this parameter list",
299                              identifier);
300             err.span_label(span, "used as parameter more than once");
301             err
302         }
303         ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(identifier) => {
304             let mut err = struct_span_err!(resolver.session,
305                              span,
306                              E0416,
307                              "identifier `{}` is bound more than once in the same pattern",
308                              identifier);
309             err.span_label(span, "used in a pattern more than once");
310             err
311         }
312         ResolutionError::UndeclaredLabel(name, lev_candidate) => {
313             let mut err = struct_span_err!(resolver.session,
314                                            span,
315                                            E0426,
316                                            "use of undeclared label `{}`",
317                                            name);
318             if let Some(lev_candidate) = lev_candidate {
319                 err.span_label(span, format!("did you mean `{}`?", lev_candidate));
320             } else {
321                 err.span_label(span, format!("undeclared label `{}`", name));
322             }
323             err
324         }
325         ResolutionError::SelfImportsOnlyAllowedWithin => {
326             struct_span_err!(resolver.session,
327                              span,
328                              E0429,
329                              "{}",
330                              "`self` imports are only allowed within a { } list")
331         }
332         ResolutionError::SelfImportCanOnlyAppearOnceInTheList => {
333             let mut err = struct_span_err!(resolver.session, span, E0430,
334                                            "`self` import can only appear once in an import list");
335             err.span_label(span, "can only appear once in an import list");
336             err
337         }
338         ResolutionError::SelfImportOnlyInImportListWithNonEmptyPrefix => {
339             let mut err = struct_span_err!(resolver.session, span, E0431,
340                                            "`self` import can only appear in an import list with \
341                                             a non-empty prefix");
342             err.span_label(span, "can only appear in an import list with a non-empty prefix");
343             err
344         }
345         ResolutionError::UnresolvedImport(name) => {
346             let (span, msg) = match name {
347                 Some((sp, n, _)) => (sp, format!("unresolved import `{}`", n)),
348                 None => (span, "unresolved import".to_owned()),
349             };
350             let mut err = struct_span_err!(resolver.session, span, E0432, "{}", msg);
351             if let Some((_, _, p)) = name {
352                 err.span_label(span, p);
353             }
354             err
355         }
356         ResolutionError::FailedToResolve(msg) => {
357             let mut err = struct_span_err!(resolver.session, span, E0433,
358                                            "failed to resolve. {}", msg);
359             err.span_label(span, msg);
360             err
361         }
362         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem => {
363             let mut err = struct_span_err!(resolver.session,
364                                            span,
365                                            E0434,
366                                            "{}",
367                                            "can't capture dynamic environment in a fn item");
368             err.help("use the `|| { ... }` closure form instead");
369             err
370         }
371         ResolutionError::AttemptToUseNonConstantValueInConstant => {
372             let mut err = struct_span_err!(resolver.session, span, E0435,
373                                            "attempt to use a non-constant value in a constant");
374             err.span_label(span, "non-constant value");
375             err
376         }
377         ResolutionError::BindingShadowsSomethingUnacceptable(what_binding, name, binding) => {
378             let shadows_what = PathResolution::new(binding.def()).kind_name();
379             let mut err = struct_span_err!(resolver.session,
380                                            span,
381                                            E0530,
382                                            "{}s cannot shadow {}s", what_binding, shadows_what);
383             err.span_label(span, format!("cannot be named the same as a {}", shadows_what));
384             let participle = if binding.is_import() { "imported" } else { "defined" };
385             let msg = format!("a {} `{}` is {} here", shadows_what, name, participle);
386             err.span_label(binding.span, msg);
387             err
388         }
389         ResolutionError::ForwardDeclaredTyParam => {
390             let mut err = struct_span_err!(resolver.session, span, E0128,
391                                            "type parameters with a default cannot use \
392                                             forward declared identifiers");
393             err.span_label(span, format!("defaulted type parameters cannot be forward declared"));
394             err
395         }
396     }
397 }
398
399 /// Adjust the impl span so that just the `impl` keyword is taken by removing
400 /// everything after `<` (`"impl<T> Iterator for A<T> {}" -> "impl"`) and
401 /// everything after the first whitespace (`"impl Iterator for A" -> "impl"`)
402 ///
403 /// Attention: The method used is very fragile since it essentially duplicates the work of the
404 /// parser. If you need to use this function or something similar, please consider updating the
405 /// codemap functions and this function to something more robust.
406 fn reduce_impl_span_to_impl_keyword(cm: &CodeMap, impl_span: Span) -> Span {
407     let impl_span = cm.span_until_char(impl_span, '<');
408     let impl_span = cm.span_until_whitespace(impl_span);
409     impl_span
410 }
411
412 fn generate_fn_name_span(cm: &CodeMap, span: Span) -> Option<Span> {
413     let prev_span = cm.span_extend_to_prev_str(span, "fn", true);
414     cm.span_to_snippet(prev_span).map(|snippet| {
415         let len = snippet.find(|c: char| !c.is_alphanumeric() && c != '_')
416             .expect("no label after fn");
417         prev_span.with_hi(BytePos(prev_span.lo().0 + len as u32))
418     }).ok()
419 }
420
421 /// Take the span of a type parameter in a function signature and try to generate a span for the
422 /// function name (with generics) and a new snippet for this span with the pointed type parameter as
423 /// a new local type parameter.
424 ///
425 /// For instance:
426 /// ```
427 /// // Given span
428 /// fn my_function(param: T)
429 ///                       ^ Original span
430 ///
431 /// // Result
432 /// fn my_function(param: T)
433 ///    ^^^^^^^^^^^ Generated span with snippet `my_function<T>`
434 /// ```
435 ///
436 /// Attention: The method used is very fragile since it essentially duplicates the work of the
437 /// parser. If you need to use this function or something similar, please consider updating the
438 /// codemap functions and this function to something more robust.
439 fn generate_local_type_param_snippet(cm: &CodeMap, span: Span) -> Option<(Span, String)> {
440     // Try to extend the span to the previous "fn" keyword to retrieve the function
441     // signature
442     let sugg_span = cm.span_extend_to_prev_str(span, "fn", false);
443     if sugg_span != span {
444         if let Ok(snippet) = cm.span_to_snippet(sugg_span) {
445             // Consume the function name
446             let mut offset = snippet.find(|c: char| !c.is_alphanumeric() && c != '_')
447                 .expect("no label after fn");
448
449             // Consume the generics part of the function signature
450             let mut bracket_counter = 0;
451             let mut last_char = None;
452             for c in snippet[offset..].chars() {
453                 match c {
454                     '<' => bracket_counter += 1,
455                     '>' => bracket_counter -= 1,
456                     '(' => if bracket_counter == 0 { break; }
457                     _ => {}
458                 }
459                 offset += c.len_utf8();
460                 last_char = Some(c);
461             }
462
463             // Adjust the suggestion span to encompass the function name with its generics
464             let sugg_span = sugg_span.with_hi(BytePos(sugg_span.lo().0 + offset as u32));
465
466             // Prepare the new suggested snippet to append the type parameter that triggered
467             // the error in the generics of the function signature
468             let mut new_snippet = if last_char == Some('>') {
469                 format!("{}, ", &snippet[..(offset - '>'.len_utf8())])
470             } else {
471                 format!("{}<", &snippet[..offset])
472             };
473             new_snippet.push_str(&cm.span_to_snippet(span).unwrap_or("T".to_string()));
474             new_snippet.push('>');
475
476             return Some((sugg_span, new_snippet));
477         }
478     }
479
480     None
481 }
482
483 #[derive(Copy, Clone, Debug)]
484 struct BindingInfo {
485     span: Span,
486     binding_mode: BindingMode,
487 }
488
489 // Map from the name in a pattern to its binding mode.
490 type BindingMap = FxHashMap<Ident, BindingInfo>;
491
492 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
493 enum PatternSource {
494     Match,
495     IfLet,
496     WhileLet,
497     Let,
498     For,
499     FnParam,
500 }
501
502 impl PatternSource {
503     fn descr(self) -> &'static str {
504         match self {
505             PatternSource::Match => "match binding",
506             PatternSource::IfLet => "if let binding",
507             PatternSource::WhileLet => "while let binding",
508             PatternSource::Let => "let binding",
509             PatternSource::For => "for binding",
510             PatternSource::FnParam => "function parameter",
511         }
512     }
513 }
514
515 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
516 enum AliasPossibility {
517     No,
518     Maybe,
519 }
520
521 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
522 enum PathSource<'a> {
523     // Type paths `Path`.
524     Type,
525     // Trait paths in bounds or impls.
526     Trait(AliasPossibility),
527     // Expression paths `path`, with optional parent context.
528     Expr(Option<&'a Expr>),
529     // Paths in path patterns `Path`.
530     Pat,
531     // Paths in struct expressions and patterns `Path { .. }`.
532     Struct,
533     // Paths in tuple struct patterns `Path(..)`.
534     TupleStruct,
535     // `m::A::B` in `<T as m::A>::B::C`.
536     TraitItem(Namespace),
537     // Path in `pub(path)`
538     Visibility,
539     // Path in `use a::b::{...};`
540     ImportPrefix,
541 }
542
543 impl<'a> PathSource<'a> {
544     fn namespace(self) -> Namespace {
545         match self {
546             PathSource::Type | PathSource::Trait(_) | PathSource::Struct |
547             PathSource::Visibility | PathSource::ImportPrefix => TypeNS,
548             PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct => ValueNS,
549             PathSource::TraitItem(ns) => ns,
550         }
551     }
552
553     fn global_by_default(self) -> bool {
554         match self {
555             PathSource::Visibility | PathSource::ImportPrefix => true,
556             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
557             PathSource::Struct | PathSource::TupleStruct |
558             PathSource::Trait(_) | PathSource::TraitItem(..) => false,
559         }
560     }
561
562     fn defer_to_typeck(self) -> bool {
563         match self {
564             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
565             PathSource::Struct | PathSource::TupleStruct => true,
566             PathSource::Trait(_) | PathSource::TraitItem(..) |
567             PathSource::Visibility | PathSource::ImportPrefix => false,
568         }
569     }
570
571     fn descr_expected(self) -> &'static str {
572         match self {
573             PathSource::Type => "type",
574             PathSource::Trait(_) => "trait",
575             PathSource::Pat => "unit struct/variant or constant",
576             PathSource::Struct => "struct, variant or union type",
577             PathSource::TupleStruct => "tuple struct/variant",
578             PathSource::Visibility => "module",
579             PathSource::ImportPrefix => "module or enum",
580             PathSource::TraitItem(ns) => match ns {
581                 TypeNS => "associated type",
582                 ValueNS => "method or associated constant",
583                 MacroNS => bug!("associated macro"),
584             },
585             PathSource::Expr(parent) => match parent.map(|p| &p.node) {
586                 // "function" here means "anything callable" rather than `Def::Fn`,
587                 // this is not precise but usually more helpful than just "value".
588                 Some(&ExprKind::Call(..)) => "function",
589                 _ => "value",
590             },
591         }
592     }
593
594     fn is_expected(self, def: Def) -> bool {
595         match self {
596             PathSource::Type => match def {
597                 Def::Struct(..) | Def::Union(..) | Def::Enum(..) |
598                 Def::Trait(..) | Def::TyAlias(..) | Def::AssociatedTy(..) |
599                 Def::PrimTy(..) | Def::TyParam(..) | Def::SelfTy(..) |
600                 Def::TyForeign(..) => true,
601                 _ => false,
602             },
603             PathSource::Trait(AliasPossibility::No) => match def {
604                 Def::Trait(..) => true,
605                 _ => false,
606             },
607             PathSource::Trait(AliasPossibility::Maybe) => match def {
608                 Def::Trait(..) => true,
609                 Def::TraitAlias(..) => true,
610                 _ => false,
611             },
612             PathSource::Expr(..) => match def {
613                 Def::StructCtor(_, CtorKind::Const) | Def::StructCtor(_, CtorKind::Fn) |
614                 Def::VariantCtor(_, CtorKind::Const) | Def::VariantCtor(_, CtorKind::Fn) |
615                 Def::Const(..) | Def::Static(..) | Def::Local(..) | Def::Upvar(..) |
616                 Def::Fn(..) | Def::Method(..) | Def::AssociatedConst(..) => true,
617                 _ => false,
618             },
619             PathSource::Pat => match def {
620                 Def::StructCtor(_, CtorKind::Const) |
621                 Def::VariantCtor(_, CtorKind::Const) |
622                 Def::Const(..) | Def::AssociatedConst(..) => true,
623                 _ => false,
624             },
625             PathSource::TupleStruct => match def {
626                 Def::StructCtor(_, CtorKind::Fn) | Def::VariantCtor(_, CtorKind::Fn) => true,
627                 _ => false,
628             },
629             PathSource::Struct => match def {
630                 Def::Struct(..) | Def::Union(..) | Def::Variant(..) |
631                 Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => true,
632                 _ => false,
633             },
634             PathSource::TraitItem(ns) => match def {
635                 Def::AssociatedConst(..) | Def::Method(..) if ns == ValueNS => true,
636                 Def::AssociatedTy(..) if ns == TypeNS => true,
637                 _ => false,
638             },
639             PathSource::ImportPrefix => match def {
640                 Def::Mod(..) | Def::Enum(..) => true,
641                 _ => false,
642             },
643             PathSource::Visibility => match def {
644                 Def::Mod(..) => true,
645                 _ => false,
646             },
647         }
648     }
649
650     fn error_code(self, has_unexpected_resolution: bool) -> &'static str {
651         __diagnostic_used!(E0404);
652         __diagnostic_used!(E0405);
653         __diagnostic_used!(E0412);
654         __diagnostic_used!(E0422);
655         __diagnostic_used!(E0423);
656         __diagnostic_used!(E0425);
657         __diagnostic_used!(E0531);
658         __diagnostic_used!(E0532);
659         __diagnostic_used!(E0573);
660         __diagnostic_used!(E0574);
661         __diagnostic_used!(E0575);
662         __diagnostic_used!(E0576);
663         __diagnostic_used!(E0577);
664         __diagnostic_used!(E0578);
665         match (self, has_unexpected_resolution) {
666             (PathSource::Trait(_), true) => "E0404",
667             (PathSource::Trait(_), false) => "E0405",
668             (PathSource::Type, true) => "E0573",
669             (PathSource::Type, false) => "E0412",
670             (PathSource::Struct, true) => "E0574",
671             (PathSource::Struct, false) => "E0422",
672             (PathSource::Expr(..), true) => "E0423",
673             (PathSource::Expr(..), false) => "E0425",
674             (PathSource::Pat, true) | (PathSource::TupleStruct, true) => "E0532",
675             (PathSource::Pat, false) | (PathSource::TupleStruct, false) => "E0531",
676             (PathSource::TraitItem(..), true) => "E0575",
677             (PathSource::TraitItem(..), false) => "E0576",
678             (PathSource::Visibility, true) | (PathSource::ImportPrefix, true) => "E0577",
679             (PathSource::Visibility, false) | (PathSource::ImportPrefix, false) => "E0578",
680         }
681     }
682 }
683
684 #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
685 pub enum Namespace {
686     TypeNS,
687     ValueNS,
688     MacroNS,
689 }
690
691 #[derive(Clone, Default, Debug)]
692 pub struct PerNS<T> {
693     value_ns: T,
694     type_ns: T,
695     macro_ns: Option<T>,
696 }
697
698 impl<T> ::std::ops::Index<Namespace> for PerNS<T> {
699     type Output = T;
700     fn index(&self, ns: Namespace) -> &T {
701         match ns {
702             ValueNS => &self.value_ns,
703             TypeNS => &self.type_ns,
704             MacroNS => self.macro_ns.as_ref().unwrap(),
705         }
706     }
707 }
708
709 impl<T> ::std::ops::IndexMut<Namespace> for PerNS<T> {
710     fn index_mut(&mut self, ns: Namespace) -> &mut T {
711         match ns {
712             ValueNS => &mut self.value_ns,
713             TypeNS => &mut self.type_ns,
714             MacroNS => self.macro_ns.as_mut().unwrap(),
715         }
716     }
717 }
718
719 struct UsePlacementFinder {
720     target_module: NodeId,
721     span: Option<Span>,
722     found_use: bool,
723 }
724
725 impl UsePlacementFinder {
726     fn check(krate: &Crate, target_module: NodeId) -> (Option<Span>, bool) {
727         let mut finder = UsePlacementFinder {
728             target_module,
729             span: None,
730             found_use: false,
731         };
732         visit::walk_crate(&mut finder, krate);
733         (finder.span, finder.found_use)
734     }
735 }
736
737 impl<'tcx> Visitor<'tcx> for UsePlacementFinder {
738     fn visit_mod(
739         &mut self,
740         module: &'tcx ast::Mod,
741         _: Span,
742         _: &[ast::Attribute],
743         node_id: NodeId,
744     ) {
745         if self.span.is_some() {
746             return;
747         }
748         if node_id != self.target_module {
749             visit::walk_mod(self, module);
750             return;
751         }
752         // find a use statement
753         for item in &module.items {
754             match item.node {
755                 ItemKind::Use(..) => {
756                     // don't suggest placing a use before the prelude
757                     // import or other generated ones
758                     if item.span.ctxt().outer().expn_info().is_none() {
759                         self.span = Some(item.span.shrink_to_lo());
760                         self.found_use = true;
761                         return;
762                     }
763                 },
764                 // don't place use before extern crate
765                 ItemKind::ExternCrate(_) => {}
766                 // but place them before the first other item
767                 _ => if self.span.map_or(true, |span| item.span < span ) {
768                     if item.span.ctxt().outer().expn_info().is_none() {
769                         // don't insert between attributes and an item
770                         if item.attrs.is_empty() {
771                             self.span = Some(item.span.shrink_to_lo());
772                         } else {
773                             // find the first attribute on the item
774                             for attr in &item.attrs {
775                                 if self.span.map_or(true, |span| attr.span < span) {
776                                     self.span = Some(attr.span.shrink_to_lo());
777                                 }
778                             }
779                         }
780                     }
781                 },
782             }
783         }
784     }
785 }
786
787 impl<'a, 'tcx> Visitor<'tcx> for Resolver<'a> {
788     fn visit_item(&mut self, item: &'tcx Item) {
789         self.resolve_item(item);
790     }
791     fn visit_arm(&mut self, arm: &'tcx Arm) {
792         self.resolve_arm(arm);
793     }
794     fn visit_block(&mut self, block: &'tcx Block) {
795         self.resolve_block(block);
796     }
797     fn visit_expr(&mut self, expr: &'tcx Expr) {
798         self.resolve_expr(expr, None);
799     }
800     fn visit_local(&mut self, local: &'tcx Local) {
801         self.resolve_local(local);
802     }
803     fn visit_ty(&mut self, ty: &'tcx Ty) {
804         match ty.node {
805             TyKind::Path(ref qself, ref path) => {
806                 self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
807             }
808             TyKind::ImplicitSelf => {
809                 let self_ty = keywords::SelfType.ident();
810                 let def = self.resolve_ident_in_lexical_scope(self_ty, TypeNS, true, ty.span)
811                               .map_or(Def::Err, |d| d.def());
812                 self.record_def(ty.id, PathResolution::new(def));
813             }
814             TyKind::Array(ref element, ref length) => {
815                 self.visit_ty(element);
816                 self.with_constant_rib(|this| {
817                     this.visit_expr(length);
818                 });
819                 return;
820             }
821             _ => (),
822         }
823         visit::walk_ty(self, ty);
824     }
825     fn visit_poly_trait_ref(&mut self,
826                             tref: &'tcx ast::PolyTraitRef,
827                             m: &'tcx ast::TraitBoundModifier) {
828         self.smart_resolve_path(tref.trait_ref.ref_id, None,
829                                 &tref.trait_ref.path, PathSource::Trait(AliasPossibility::Maybe));
830         visit::walk_poly_trait_ref(self, tref, m);
831     }
832     fn visit_variant(&mut self,
833                      variant: &'tcx ast::Variant,
834                      generics: &'tcx Generics,
835                      item_id: ast::NodeId) {
836         if let Some(ref dis_expr) = variant.node.disr_expr {
837             // resolve the discriminator expr as a constant
838             self.with_constant_rib(|this| {
839                 this.visit_expr(dis_expr);
840             });
841         }
842
843         // `visit::walk_variant` without the discriminant expression.
844         self.visit_variant_data(&variant.node.data,
845                                 variant.node.name,
846                                 generics,
847                                 item_id,
848                                 variant.span);
849     }
850     fn visit_foreign_item(&mut self, foreign_item: &'tcx ForeignItem) {
851         let type_parameters = match foreign_item.node {
852             ForeignItemKind::Fn(_, ref generics) => {
853                 HasTypeParameters(generics, ItemRibKind)
854             }
855             ForeignItemKind::Static(..) => NoTypeParameters,
856             ForeignItemKind::Ty => NoTypeParameters,
857         };
858         self.with_type_parameter_rib(type_parameters, |this| {
859             visit::walk_foreign_item(this, foreign_item);
860         });
861     }
862     fn visit_fn(&mut self,
863                 function_kind: FnKind<'tcx>,
864                 declaration: &'tcx FnDecl,
865                 _: Span,
866                 node_id: NodeId) {
867         let rib_kind = match function_kind {
868             FnKind::ItemFn(..) => {
869                 ItemRibKind
870             }
871             FnKind::Method(_, _, _, _) => {
872                 TraitOrImplItemRibKind
873             }
874             FnKind::Closure(_) => ClosureRibKind(node_id),
875         };
876
877         // Create a value rib for the function.
878         self.ribs[ValueNS].push(Rib::new(rib_kind));
879
880         // Create a label rib for the function.
881         self.label_ribs.push(Rib::new(rib_kind));
882
883         // Add each argument to the rib.
884         let mut bindings_list = FxHashMap();
885         for argument in &declaration.inputs {
886             self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
887
888             self.visit_ty(&argument.ty);
889
890             debug!("(resolving function) recorded argument");
891         }
892         visit::walk_fn_ret_ty(self, &declaration.output);
893
894         // Resolve the function body.
895         match function_kind {
896             FnKind::ItemFn(.., body) |
897             FnKind::Method(.., body) => {
898                 self.visit_block(body);
899             }
900             FnKind::Closure(body) => {
901                 self.visit_expr(body);
902             }
903         };
904
905         debug!("(resolving function) leaving function");
906
907         self.label_ribs.pop();
908         self.ribs[ValueNS].pop();
909     }
910     fn visit_generics(&mut self, generics: &'tcx Generics) {
911         // For type parameter defaults, we have to ban access
912         // to following type parameters, as the Substs can only
913         // provide previous type parameters as they're built.
914         let mut default_ban_rib = Rib::new(ForwardTyParamBanRibKind);
915         default_ban_rib.bindings.extend(generics.params.iter()
916             .filter_map(|p| if let GenericParam::Type(ref tp) = *p { Some(tp) } else { None })
917             .skip_while(|p| p.default.is_none())
918             .map(|p| (Ident::with_empty_ctxt(p.ident.name), Def::Err)));
919
920         for param in &generics.params {
921             match *param {
922                 GenericParam::Lifetime(_) => self.visit_generic_param(param),
923                 GenericParam::Type(ref ty_param) => {
924                     for bound in &ty_param.bounds {
925                         self.visit_ty_param_bound(bound);
926                     }
927
928                     if let Some(ref ty) = ty_param.default {
929                         self.ribs[TypeNS].push(default_ban_rib);
930                         self.visit_ty(ty);
931                         default_ban_rib = self.ribs[TypeNS].pop().unwrap();
932                     }
933
934                     // Allow all following defaults to refer to this type parameter.
935                     default_ban_rib.bindings.remove(&Ident::with_empty_ctxt(ty_param.ident.name));
936                 }
937             }
938         }
939         for p in &generics.where_clause.predicates { self.visit_where_predicate(p); }
940     }
941 }
942
943 #[derive(Copy, Clone)]
944 enum TypeParameters<'a, 'b> {
945     NoTypeParameters,
946     HasTypeParameters(// Type parameters.
947                       &'b Generics,
948
949                       // The kind of the rib used for type parameters.
950                       RibKind<'a>),
951 }
952
953 // The rib kind controls the translation of local
954 // definitions (`Def::Local`) to upvars (`Def::Upvar`).
955 #[derive(Copy, Clone, Debug)]
956 enum RibKind<'a> {
957     // No translation needs to be applied.
958     NormalRibKind,
959
960     // We passed through a closure scope at the given node ID.
961     // Translate upvars as appropriate.
962     ClosureRibKind(NodeId /* func id */),
963
964     // We passed through an impl or trait and are now in one of its
965     // methods or associated types. Allow references to ty params that impl or trait
966     // binds. Disallow any other upvars (including other ty params that are
967     // upvars).
968     TraitOrImplItemRibKind,
969
970     // We passed through an item scope. Disallow upvars.
971     ItemRibKind,
972
973     // We're in a constant item. Can't refer to dynamic stuff.
974     ConstantItemRibKind,
975
976     // We passed through a module.
977     ModuleRibKind(Module<'a>),
978
979     // We passed through a `macro_rules!` statement
980     MacroDefinition(DefId),
981
982     // All bindings in this rib are type parameters that can't be used
983     // from the default of a type parameter because they're not declared
984     // before said type parameter. Also see the `visit_generics` override.
985     ForwardTyParamBanRibKind,
986 }
987
988 /// One local scope.
989 #[derive(Debug)]
990 struct Rib<'a> {
991     bindings: FxHashMap<Ident, Def>,
992     kind: RibKind<'a>,
993 }
994
995 impl<'a> Rib<'a> {
996     fn new(kind: RibKind<'a>) -> Rib<'a> {
997         Rib {
998             bindings: FxHashMap(),
999             kind,
1000         }
1001     }
1002 }
1003
1004 enum LexicalScopeBinding<'a> {
1005     Item(&'a NameBinding<'a>),
1006     Def(Def),
1007 }
1008
1009 impl<'a> LexicalScopeBinding<'a> {
1010     fn item(self) -> Option<&'a NameBinding<'a>> {
1011         match self {
1012             LexicalScopeBinding::Item(binding) => Some(binding),
1013             _ => None,
1014         }
1015     }
1016
1017     fn def(self) -> Def {
1018         match self {
1019             LexicalScopeBinding::Item(binding) => binding.def(),
1020             LexicalScopeBinding::Def(def) => def,
1021         }
1022     }
1023 }
1024
1025 #[derive(Clone, Debug)]
1026 enum PathResult<'a> {
1027     Module(Module<'a>),
1028     NonModule(PathResolution),
1029     Indeterminate,
1030     Failed(Span, String, bool /* is the error from the last segment? */),
1031 }
1032
1033 enum ModuleKind {
1034     Block(NodeId),
1035     Def(Def, Name),
1036 }
1037
1038 /// One node in the tree of modules.
1039 pub struct ModuleData<'a> {
1040     parent: Option<Module<'a>>,
1041     kind: ModuleKind,
1042
1043     // The def id of the closest normal module (`mod`) ancestor (including this module).
1044     normal_ancestor_id: DefId,
1045
1046     resolutions: RefCell<FxHashMap<(Ident, Namespace), &'a RefCell<NameResolution<'a>>>>,
1047     legacy_macro_resolutions: RefCell<Vec<(Mark, Ident, Span, MacroKind)>>,
1048     macro_resolutions: RefCell<Vec<(Box<[Ident]>, Span)>>,
1049
1050     // Macro invocations that can expand into items in this module.
1051     unresolved_invocations: RefCell<FxHashSet<Mark>>,
1052
1053     no_implicit_prelude: bool,
1054
1055     glob_importers: RefCell<Vec<&'a ImportDirective<'a>>>,
1056     globs: RefCell<Vec<&'a ImportDirective<'a>>>,
1057
1058     // Used to memoize the traits in this module for faster searches through all traits in scope.
1059     traits: RefCell<Option<Box<[(Ident, &'a NameBinding<'a>)]>>>,
1060
1061     // Whether this module is populated. If not populated, any attempt to
1062     // access the children must be preceded with a
1063     // `populate_module_if_necessary` call.
1064     populated: Cell<bool>,
1065
1066     /// Span of the module itself. Used for error reporting.
1067     span: Span,
1068
1069     expansion: Mark,
1070 }
1071
1072 type Module<'a> = &'a ModuleData<'a>;
1073
1074 impl<'a> ModuleData<'a> {
1075     fn new(parent: Option<Module<'a>>,
1076            kind: ModuleKind,
1077            normal_ancestor_id: DefId,
1078            expansion: Mark,
1079            span: Span) -> Self {
1080         ModuleData {
1081             parent,
1082             kind,
1083             normal_ancestor_id,
1084             resolutions: RefCell::new(FxHashMap()),
1085             legacy_macro_resolutions: RefCell::new(Vec::new()),
1086             macro_resolutions: RefCell::new(Vec::new()),
1087             unresolved_invocations: RefCell::new(FxHashSet()),
1088             no_implicit_prelude: false,
1089             glob_importers: RefCell::new(Vec::new()),
1090             globs: RefCell::new(Vec::new()),
1091             traits: RefCell::new(None),
1092             populated: Cell::new(normal_ancestor_id.is_local()),
1093             span,
1094             expansion,
1095         }
1096     }
1097
1098     fn for_each_child<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1099         for (&(ident, ns), name_resolution) in self.resolutions.borrow().iter() {
1100             name_resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1101         }
1102     }
1103
1104     fn for_each_child_stable<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1105         let resolutions = self.resolutions.borrow();
1106         let mut resolutions = resolutions.iter().map(|(&(ident, ns), &resolution)| {
1107                                                     // Pre-compute keys for sorting
1108                                                     (ident.name.as_str(), ns, ident, resolution)
1109                                                 })
1110                                                 .collect::<Vec<_>>();
1111         resolutions.sort_unstable_by_key(|&(str, ns, ..)| (str, ns));
1112         for &(_, ns, ident, resolution) in resolutions.iter() {
1113             resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1114         }
1115     }
1116
1117     fn def(&self) -> Option<Def> {
1118         match self.kind {
1119             ModuleKind::Def(def, _) => Some(def),
1120             _ => None,
1121         }
1122     }
1123
1124     fn def_id(&self) -> Option<DefId> {
1125         self.def().as_ref().map(Def::def_id)
1126     }
1127
1128     // `self` resolves to the first module ancestor that `is_normal`.
1129     fn is_normal(&self) -> bool {
1130         match self.kind {
1131             ModuleKind::Def(Def::Mod(_), _) => true,
1132             _ => false,
1133         }
1134     }
1135
1136     fn is_trait(&self) -> bool {
1137         match self.kind {
1138             ModuleKind::Def(Def::Trait(_), _) => true,
1139             _ => false,
1140         }
1141     }
1142
1143     fn is_local(&self) -> bool {
1144         self.normal_ancestor_id.is_local()
1145     }
1146
1147     fn nearest_item_scope(&'a self) -> Module<'a> {
1148         if self.is_trait() { self.parent.unwrap() } else { self }
1149     }
1150 }
1151
1152 impl<'a> fmt::Debug for ModuleData<'a> {
1153     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1154         write!(f, "{:?}", self.def())
1155     }
1156 }
1157
1158 // Records a possibly-private value, type, or module definition.
1159 #[derive(Clone, Debug)]
1160 pub struct NameBinding<'a> {
1161     kind: NameBindingKind<'a>,
1162     expansion: Mark,
1163     span: Span,
1164     vis: ty::Visibility,
1165 }
1166
1167 pub trait ToNameBinding<'a> {
1168     fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a>;
1169 }
1170
1171 impl<'a> ToNameBinding<'a> for &'a NameBinding<'a> {
1172     fn to_name_binding(self, _: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> {
1173         self
1174     }
1175 }
1176
1177 #[derive(Clone, Debug)]
1178 enum NameBindingKind<'a> {
1179     Def(Def),
1180     Module(Module<'a>),
1181     Import {
1182         binding: &'a NameBinding<'a>,
1183         directive: &'a ImportDirective<'a>,
1184         used: Cell<bool>,
1185         legacy_self_import: bool,
1186     },
1187     Ambiguity {
1188         b1: &'a NameBinding<'a>,
1189         b2: &'a NameBinding<'a>,
1190         legacy: bool,
1191     }
1192 }
1193
1194 struct PrivacyError<'a>(Span, Name, &'a NameBinding<'a>);
1195
1196 struct UseError<'a> {
1197     err: DiagnosticBuilder<'a>,
1198     /// Attach `use` statements for these candidates
1199     candidates: Vec<ImportSuggestion>,
1200     /// The node id of the module to place the use statements in
1201     node_id: NodeId,
1202     /// Whether the diagnostic should state that it's "better"
1203     better: bool,
1204 }
1205
1206 struct AmbiguityError<'a> {
1207     span: Span,
1208     name: Name,
1209     lexical: bool,
1210     b1: &'a NameBinding<'a>,
1211     b2: &'a NameBinding<'a>,
1212     legacy: bool,
1213 }
1214
1215 impl<'a> NameBinding<'a> {
1216     fn module(&self) -> Option<Module<'a>> {
1217         match self.kind {
1218             NameBindingKind::Module(module) => Some(module),
1219             NameBindingKind::Import { binding, .. } => binding.module(),
1220             NameBindingKind::Ambiguity { legacy: true, b1, .. } => b1.module(),
1221             _ => None,
1222         }
1223     }
1224
1225     fn def(&self) -> Def {
1226         match self.kind {
1227             NameBindingKind::Def(def) => def,
1228             NameBindingKind::Module(module) => module.def().unwrap(),
1229             NameBindingKind::Import { binding, .. } => binding.def(),
1230             NameBindingKind::Ambiguity { legacy: true, b1, .. } => b1.def(),
1231             NameBindingKind::Ambiguity { .. } => Def::Err,
1232         }
1233     }
1234
1235     fn def_ignoring_ambiguity(&self) -> Def {
1236         match self.kind {
1237             NameBindingKind::Import { binding, .. } => binding.def_ignoring_ambiguity(),
1238             NameBindingKind::Ambiguity { b1, .. } => b1.def_ignoring_ambiguity(),
1239             _ => self.def(),
1240         }
1241     }
1242
1243     fn get_macro(&self, resolver: &mut Resolver<'a>) -> Lrc<SyntaxExtension> {
1244         resolver.get_macro(self.def_ignoring_ambiguity())
1245     }
1246
1247     // We sometimes need to treat variants as `pub` for backwards compatibility
1248     fn pseudo_vis(&self) -> ty::Visibility {
1249         if self.is_variant() && self.def().def_id().is_local() {
1250             ty::Visibility::Public
1251         } else {
1252             self.vis
1253         }
1254     }
1255
1256     fn is_variant(&self) -> bool {
1257         match self.kind {
1258             NameBindingKind::Def(Def::Variant(..)) |
1259             NameBindingKind::Def(Def::VariantCtor(..)) => true,
1260             _ => false,
1261         }
1262     }
1263
1264     fn is_extern_crate(&self) -> bool {
1265         match self.kind {
1266             NameBindingKind::Import {
1267                 directive: &ImportDirective {
1268                     subclass: ImportDirectiveSubclass::ExternCrate(_), ..
1269                 }, ..
1270             } => true,
1271             _ => false,
1272         }
1273     }
1274
1275     fn is_import(&self) -> bool {
1276         match self.kind {
1277             NameBindingKind::Import { .. } => true,
1278             _ => false,
1279         }
1280     }
1281
1282     fn is_renamed_extern_crate(&self) -> bool {
1283         if let NameBindingKind::Import { directive, ..} = self.kind {
1284             if let ImportDirectiveSubclass::ExternCrate(Some(_)) = directive.subclass {
1285                 return true;
1286             }
1287         }
1288         false
1289     }
1290
1291     fn is_glob_import(&self) -> bool {
1292         match self.kind {
1293             NameBindingKind::Import { directive, .. } => directive.is_glob(),
1294             NameBindingKind::Ambiguity { b1, .. } => b1.is_glob_import(),
1295             _ => false,
1296         }
1297     }
1298
1299     fn is_importable(&self) -> bool {
1300         match self.def() {
1301             Def::AssociatedConst(..) | Def::Method(..) | Def::AssociatedTy(..) => false,
1302             _ => true,
1303         }
1304     }
1305
1306     fn is_macro_def(&self) -> bool {
1307         match self.kind {
1308             NameBindingKind::Def(Def::Macro(..)) => true,
1309             _ => false,
1310         }
1311     }
1312
1313     fn descr(&self) -> &'static str {
1314         if self.is_extern_crate() { "extern crate" } else { self.def().kind_name() }
1315     }
1316 }
1317
1318 /// Interns the names of the primitive types.
1319 struct PrimitiveTypeTable {
1320     primitive_types: FxHashMap<Name, PrimTy>,
1321 }
1322
1323 impl PrimitiveTypeTable {
1324     fn new() -> PrimitiveTypeTable {
1325         let mut table = PrimitiveTypeTable { primitive_types: FxHashMap() };
1326
1327         table.intern("bool", TyBool);
1328         table.intern("char", TyChar);
1329         table.intern("f32", TyFloat(FloatTy::F32));
1330         table.intern("f64", TyFloat(FloatTy::F64));
1331         table.intern("isize", TyInt(IntTy::Isize));
1332         table.intern("i8", TyInt(IntTy::I8));
1333         table.intern("i16", TyInt(IntTy::I16));
1334         table.intern("i32", TyInt(IntTy::I32));
1335         table.intern("i64", TyInt(IntTy::I64));
1336         table.intern("i128", TyInt(IntTy::I128));
1337         table.intern("str", TyStr);
1338         table.intern("usize", TyUint(UintTy::Usize));
1339         table.intern("u8", TyUint(UintTy::U8));
1340         table.intern("u16", TyUint(UintTy::U16));
1341         table.intern("u32", TyUint(UintTy::U32));
1342         table.intern("u64", TyUint(UintTy::U64));
1343         table.intern("u128", TyUint(UintTy::U128));
1344         table
1345     }
1346
1347     fn intern(&mut self, string: &str, primitive_type: PrimTy) {
1348         self.primitive_types.insert(Symbol::intern(string), primitive_type);
1349     }
1350 }
1351
1352 /// The main resolver class.
1353 pub struct Resolver<'a> {
1354     session: &'a Session,
1355     cstore: &'a CrateStore,
1356
1357     pub definitions: Definitions,
1358
1359     graph_root: Module<'a>,
1360
1361     prelude: Option<Module<'a>>,
1362
1363     // n.b. This is used only for better diagnostics, not name resolution itself.
1364     has_self: FxHashSet<DefId>,
1365
1366     // Names of fields of an item `DefId` accessible with dot syntax.
1367     // Used for hints during error reporting.
1368     field_names: FxHashMap<DefId, Vec<Name>>,
1369
1370     // All imports known to succeed or fail.
1371     determined_imports: Vec<&'a ImportDirective<'a>>,
1372
1373     // All non-determined imports.
1374     indeterminate_imports: Vec<&'a ImportDirective<'a>>,
1375
1376     // The module that represents the current item scope.
1377     current_module: Module<'a>,
1378
1379     // The current set of local scopes for types and values.
1380     // FIXME #4948: Reuse ribs to avoid allocation.
1381     ribs: PerNS<Vec<Rib<'a>>>,
1382
1383     // The current set of local scopes, for labels.
1384     label_ribs: Vec<Rib<'a>>,
1385
1386     // The trait that the current context can refer to.
1387     current_trait_ref: Option<(Module<'a>, TraitRef)>,
1388
1389     // The current self type if inside an impl (used for better errors).
1390     current_self_type: Option<Ty>,
1391
1392     // The idents for the primitive types.
1393     primitive_type_table: PrimitiveTypeTable,
1394
1395     def_map: DefMap,
1396     pub freevars: FreevarMap,
1397     freevars_seen: NodeMap<NodeMap<usize>>,
1398     pub export_map: ExportMap,
1399     pub trait_map: TraitMap,
1400
1401     // A map from nodes to anonymous modules.
1402     // Anonymous modules are pseudo-modules that are implicitly created around items
1403     // contained within blocks.
1404     //
1405     // For example, if we have this:
1406     //
1407     //  fn f() {
1408     //      fn g() {
1409     //          ...
1410     //      }
1411     //  }
1412     //
1413     // There will be an anonymous module created around `g` with the ID of the
1414     // entry block for `f`.
1415     block_map: NodeMap<Module<'a>>,
1416     module_map: FxHashMap<DefId, Module<'a>>,
1417     extern_module_map: FxHashMap<(DefId, bool /* MacrosOnly? */), Module<'a>>,
1418
1419     pub make_glob_map: bool,
1420     /// Maps imports to the names of items actually imported (this actually maps
1421     /// all imports, but only glob imports are actually interesting).
1422     pub glob_map: GlobMap,
1423
1424     used_imports: FxHashSet<(NodeId, Namespace)>,
1425     pub maybe_unused_trait_imports: NodeSet,
1426     pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
1427
1428     /// privacy errors are delayed until the end in order to deduplicate them
1429     privacy_errors: Vec<PrivacyError<'a>>,
1430     /// ambiguity errors are delayed for deduplication
1431     ambiguity_errors: Vec<AmbiguityError<'a>>,
1432     /// `use` injections are delayed for better placement and deduplication
1433     use_injections: Vec<UseError<'a>>,
1434     /// `use` injections for proc macros wrongly imported with #[macro_use]
1435     proc_mac_errors: Vec<macros::ProcMacError>,
1436
1437     gated_errors: FxHashSet<Span>,
1438     disallowed_shadowing: Vec<&'a LegacyBinding<'a>>,
1439
1440     arenas: &'a ResolverArenas<'a>,
1441     dummy_binding: &'a NameBinding<'a>,
1442     use_extern_macros: bool, // true if `#![feature(use_extern_macros)]`
1443
1444     crate_loader: &'a mut CrateLoader,
1445     macro_names: FxHashSet<Ident>,
1446     global_macros: FxHashMap<Name, &'a NameBinding<'a>>,
1447     pub all_macros: FxHashMap<Name, Def>,
1448     lexical_macro_resolutions: Vec<(Ident, &'a Cell<LegacyScope<'a>>)>,
1449     macro_map: FxHashMap<DefId, Lrc<SyntaxExtension>>,
1450     macro_defs: FxHashMap<Mark, DefId>,
1451     local_macro_def_scopes: FxHashMap<NodeId, Module<'a>>,
1452     macro_exports: Vec<Export>,
1453     pub whitelisted_legacy_custom_derives: Vec<Name>,
1454     pub found_unresolved_macro: bool,
1455
1456     // List of crate local macros that we need to warn about as being unused.
1457     // Right now this only includes macro_rules! macros, and macros 2.0.
1458     unused_macros: FxHashSet<DefId>,
1459
1460     // Maps the `Mark` of an expansion to its containing module or block.
1461     invocations: FxHashMap<Mark, &'a InvocationData<'a>>,
1462
1463     // Avoid duplicated errors for "name already defined".
1464     name_already_seen: FxHashMap<Name, Span>,
1465
1466     // If `#![feature(proc_macro)]` is set
1467     proc_macro_enabled: bool,
1468
1469     // A set of procedural macros imported by `#[macro_use]` that have already been warned about
1470     warned_proc_macros: FxHashSet<Name>,
1471
1472     potentially_unused_imports: Vec<&'a ImportDirective<'a>>,
1473
1474     // This table maps struct IDs into struct constructor IDs,
1475     // it's not used during normal resolution, only for better error reporting.
1476     struct_constructors: DefIdMap<(Def, ty::Visibility)>,
1477
1478     // Only used for better errors on `fn(): fn()`
1479     current_type_ascription: Vec<Span>,
1480
1481     injected_crate: Option<Module<'a>>,
1482 }
1483
1484 pub struct ResolverArenas<'a> {
1485     modules: arena::TypedArena<ModuleData<'a>>,
1486     local_modules: RefCell<Vec<Module<'a>>>,
1487     name_bindings: arena::TypedArena<NameBinding<'a>>,
1488     import_directives: arena::TypedArena<ImportDirective<'a>>,
1489     name_resolutions: arena::TypedArena<RefCell<NameResolution<'a>>>,
1490     invocation_data: arena::TypedArena<InvocationData<'a>>,
1491     legacy_bindings: arena::TypedArena<LegacyBinding<'a>>,
1492 }
1493
1494 impl<'a> ResolverArenas<'a> {
1495     fn alloc_module(&'a self, module: ModuleData<'a>) -> Module<'a> {
1496         let module = self.modules.alloc(module);
1497         if module.def_id().map(|def_id| def_id.is_local()).unwrap_or(true) {
1498             self.local_modules.borrow_mut().push(module);
1499         }
1500         module
1501     }
1502     fn local_modules(&'a self) -> ::std::cell::Ref<'a, Vec<Module<'a>>> {
1503         self.local_modules.borrow()
1504     }
1505     fn alloc_name_binding(&'a self, name_binding: NameBinding<'a>) -> &'a NameBinding<'a> {
1506         self.name_bindings.alloc(name_binding)
1507     }
1508     fn alloc_import_directive(&'a self, import_directive: ImportDirective<'a>)
1509                               -> &'a ImportDirective {
1510         self.import_directives.alloc(import_directive)
1511     }
1512     fn alloc_name_resolution(&'a self) -> &'a RefCell<NameResolution<'a>> {
1513         self.name_resolutions.alloc(Default::default())
1514     }
1515     fn alloc_invocation_data(&'a self, expansion_data: InvocationData<'a>)
1516                              -> &'a InvocationData<'a> {
1517         self.invocation_data.alloc(expansion_data)
1518     }
1519     fn alloc_legacy_binding(&'a self, binding: LegacyBinding<'a>) -> &'a LegacyBinding<'a> {
1520         self.legacy_bindings.alloc(binding)
1521     }
1522 }
1523
1524 impl<'a, 'b: 'a> ty::DefIdTree for &'a Resolver<'b> {
1525     fn parent(self, id: DefId) -> Option<DefId> {
1526         match id.krate {
1527             LOCAL_CRATE => self.definitions.def_key(id.index).parent,
1528             _ => self.cstore.def_key(id).parent,
1529         }.map(|index| DefId { index: index, ..id })
1530     }
1531 }
1532
1533 impl<'a> hir::lowering::Resolver for Resolver<'a> {
1534     fn resolve_hir_path(&mut self, path: &mut hir::Path, is_value: bool) {
1535         self.resolve_hir_path_cb(path, is_value,
1536                                  |resolver, span, error| resolve_error(resolver, span, error))
1537     }
1538
1539     fn resolve_str_path(&mut self, span: Span, crate_root: Option<&str>,
1540                         components: &[&str], is_value: bool) -> hir::Path {
1541         let mut path = hir::Path {
1542             span,
1543             def: Def::Err,
1544             segments: iter::once(keywords::CrateRoot.name()).chain({
1545                 crate_root.into_iter().chain(components.iter().cloned()).map(Symbol::intern)
1546             }).map(hir::PathSegment::from_name).collect(),
1547         };
1548
1549         self.resolve_hir_path(&mut path, is_value);
1550         path
1551     }
1552
1553     fn get_resolution(&mut self, id: NodeId) -> Option<PathResolution> {
1554         self.def_map.get(&id).cloned()
1555     }
1556
1557     fn definitions(&mut self) -> &mut Definitions {
1558         &mut self.definitions
1559     }
1560 }
1561
1562 impl<'a> Resolver<'a> {
1563     /// Rustdoc uses this to resolve things in a recoverable way. ResolutionError<'a>
1564     /// isn't something that can be returned because it can't be made to live that long,
1565     /// and also it's a private type. Fortunately rustdoc doesn't need to know the error,
1566     /// just that an error occurred.
1567     pub fn resolve_str_path_error(&mut self, span: Span, path_str: &str, is_value: bool)
1568         -> Result<hir::Path, ()> {
1569         use std::iter;
1570         let mut errored = false;
1571
1572         let mut path = if path_str.starts_with("::") {
1573             hir::Path {
1574                 span,
1575                 def: Def::Err,
1576                 segments: iter::once(keywords::CrateRoot.name()).chain({
1577                     path_str.split("::").skip(1).map(Symbol::intern)
1578                 }).map(hir::PathSegment::from_name).collect(),
1579             }
1580         } else {
1581             hir::Path {
1582                 span,
1583                 def: Def::Err,
1584                 segments: path_str.split("::").map(Symbol::intern)
1585                                   .map(hir::PathSegment::from_name).collect(),
1586             }
1587         };
1588         self.resolve_hir_path_cb(&mut path, is_value, |_, _, _| errored = true);
1589         if errored || path.def == Def::Err {
1590             Err(())
1591         } else {
1592             Ok(path)
1593         }
1594     }
1595
1596     /// resolve_hir_path, but takes a callback in case there was an error
1597     fn resolve_hir_path_cb<F>(&mut self, path: &mut hir::Path, is_value: bool, error_callback: F)
1598             where F: for<'c, 'b> FnOnce(&'c mut Resolver, Span, ResolutionError<'b>)
1599         {
1600         let namespace = if is_value { ValueNS } else { TypeNS };
1601         let hir::Path { ref segments, span, ref mut def } = *path;
1602         let path: Vec<SpannedIdent> = segments.iter()
1603             .map(|seg| respan(span, Ident::with_empty_ctxt(seg.name)))
1604             .collect();
1605         match self.resolve_path(&path, Some(namespace), true, span) {
1606             PathResult::Module(module) => *def = module.def().unwrap(),
1607             PathResult::NonModule(path_res) if path_res.unresolved_segments() == 0 =>
1608                 *def = path_res.base_def(),
1609             PathResult::NonModule(..) => match self.resolve_path(&path, None, true, span) {
1610                 PathResult::Failed(span, msg, _) => {
1611                     error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1612                 }
1613                 _ => {}
1614             },
1615             PathResult::Indeterminate => unreachable!(),
1616             PathResult::Failed(span, msg, _) => {
1617                 error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1618             }
1619         }
1620     }
1621 }
1622
1623 impl<'a> Resolver<'a> {
1624     pub fn new(session: &'a Session,
1625                cstore: &'a CrateStore,
1626                krate: &Crate,
1627                crate_name: &str,
1628                make_glob_map: MakeGlobMap,
1629                crate_loader: &'a mut CrateLoader,
1630                arenas: &'a ResolverArenas<'a>)
1631                -> Resolver<'a> {
1632         let root_def_id = DefId::local(CRATE_DEF_INDEX);
1633         let root_module_kind = ModuleKind::Def(Def::Mod(root_def_id), keywords::Invalid.name());
1634         let graph_root = arenas.alloc_module(ModuleData {
1635             no_implicit_prelude: attr::contains_name(&krate.attrs, "no_implicit_prelude"),
1636             ..ModuleData::new(None, root_module_kind, root_def_id, Mark::root(), krate.span)
1637         });
1638         let mut module_map = FxHashMap();
1639         module_map.insert(DefId::local(CRATE_DEF_INDEX), graph_root);
1640
1641         let mut definitions = Definitions::new();
1642         DefCollector::new(&mut definitions, Mark::root())
1643             .collect_root(crate_name, session.local_crate_disambiguator());
1644
1645         let mut invocations = FxHashMap();
1646         invocations.insert(Mark::root(),
1647                            arenas.alloc_invocation_data(InvocationData::root(graph_root)));
1648
1649         let features = session.features_untracked();
1650
1651         let mut macro_defs = FxHashMap();
1652         macro_defs.insert(Mark::root(), root_def_id);
1653
1654         Resolver {
1655             session,
1656
1657             cstore,
1658
1659             definitions,
1660
1661             // The outermost module has def ID 0; this is not reflected in the
1662             // AST.
1663             graph_root,
1664             prelude: None,
1665
1666             has_self: FxHashSet(),
1667             field_names: FxHashMap(),
1668
1669             determined_imports: Vec::new(),
1670             indeterminate_imports: Vec::new(),
1671
1672             current_module: graph_root,
1673             ribs: PerNS {
1674                 value_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1675                 type_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1676                 macro_ns: Some(vec![Rib::new(ModuleRibKind(graph_root))]),
1677             },
1678             label_ribs: Vec::new(),
1679
1680             current_trait_ref: None,
1681             current_self_type: None,
1682
1683             primitive_type_table: PrimitiveTypeTable::new(),
1684
1685             def_map: NodeMap(),
1686             freevars: NodeMap(),
1687             freevars_seen: NodeMap(),
1688             export_map: FxHashMap(),
1689             trait_map: NodeMap(),
1690             module_map,
1691             block_map: NodeMap(),
1692             extern_module_map: FxHashMap(),
1693
1694             make_glob_map: make_glob_map == MakeGlobMap::Yes,
1695             glob_map: NodeMap(),
1696
1697             used_imports: FxHashSet(),
1698             maybe_unused_trait_imports: NodeSet(),
1699             maybe_unused_extern_crates: Vec::new(),
1700
1701             privacy_errors: Vec::new(),
1702             ambiguity_errors: Vec::new(),
1703             use_injections: Vec::new(),
1704             proc_mac_errors: Vec::new(),
1705             gated_errors: FxHashSet(),
1706             disallowed_shadowing: Vec::new(),
1707
1708             arenas,
1709             dummy_binding: arenas.alloc_name_binding(NameBinding {
1710                 kind: NameBindingKind::Def(Def::Err),
1711                 expansion: Mark::root(),
1712                 span: DUMMY_SP,
1713                 vis: ty::Visibility::Public,
1714             }),
1715
1716             // The `proc_macro` and `decl_macro` features imply `use_extern_macros`
1717             use_extern_macros:
1718                 features.use_extern_macros || features.proc_macro || features.decl_macro,
1719
1720             crate_loader,
1721             macro_names: FxHashSet(),
1722             global_macros: FxHashMap(),
1723             all_macros: FxHashMap(),
1724             lexical_macro_resolutions: Vec::new(),
1725             macro_map: FxHashMap(),
1726             macro_exports: Vec::new(),
1727             invocations,
1728             macro_defs,
1729             local_macro_def_scopes: FxHashMap(),
1730             name_already_seen: FxHashMap(),
1731             whitelisted_legacy_custom_derives: Vec::new(),
1732             proc_macro_enabled: features.proc_macro,
1733             warned_proc_macros: FxHashSet(),
1734             potentially_unused_imports: Vec::new(),
1735             struct_constructors: DefIdMap(),
1736             found_unresolved_macro: false,
1737             unused_macros: FxHashSet(),
1738             current_type_ascription: Vec::new(),
1739             injected_crate: None,
1740         }
1741     }
1742
1743     pub fn arenas() -> ResolverArenas<'a> {
1744         ResolverArenas {
1745             modules: arena::TypedArena::new(),
1746             local_modules: RefCell::new(Vec::new()),
1747             name_bindings: arena::TypedArena::new(),
1748             import_directives: arena::TypedArena::new(),
1749             name_resolutions: arena::TypedArena::new(),
1750             invocation_data: arena::TypedArena::new(),
1751             legacy_bindings: arena::TypedArena::new(),
1752         }
1753     }
1754
1755     fn per_ns<T, F: FnMut(&mut Self, Namespace) -> T>(&mut self, mut f: F) -> PerNS<T> {
1756         PerNS {
1757             type_ns: f(self, TypeNS),
1758             value_ns: f(self, ValueNS),
1759             macro_ns: match self.use_extern_macros {
1760                 true => Some(f(self, MacroNS)),
1761                 false => None,
1762             },
1763         }
1764     }
1765
1766     fn macro_def(&self, mut ctxt: SyntaxContext) -> DefId {
1767         loop {
1768             match self.macro_defs.get(&ctxt.outer()) {
1769                 Some(&def_id) => return def_id,
1770                 None => ctxt.remove_mark(),
1771             };
1772         }
1773     }
1774
1775     /// Entry point to crate resolution.
1776     pub fn resolve_crate(&mut self, krate: &Crate) {
1777         ImportResolver { resolver: self }.finalize_imports();
1778         self.current_module = self.graph_root;
1779         self.finalize_current_module_macro_resolutions();
1780
1781         visit::walk_crate(self, krate);
1782
1783         check_unused::check_crate(self, krate);
1784         self.report_errors(krate);
1785         self.crate_loader.postprocess(krate);
1786     }
1787
1788     fn new_module(
1789         &self,
1790         parent: Module<'a>,
1791         kind: ModuleKind,
1792         normal_ancestor_id: DefId,
1793         expansion: Mark,
1794         span: Span,
1795     ) -> Module<'a> {
1796         let module = ModuleData::new(Some(parent), kind, normal_ancestor_id, expansion, span);
1797         self.arenas.alloc_module(module)
1798     }
1799
1800     fn record_use(&mut self, ident: Ident, ns: Namespace, binding: &'a NameBinding<'a>, span: Span)
1801                   -> bool /* true if an error was reported */ {
1802         match binding.kind {
1803             NameBindingKind::Import { directive, binding, ref used, legacy_self_import }
1804                     if !used.get() => {
1805                 used.set(true);
1806                 directive.used.set(true);
1807                 if legacy_self_import {
1808                     self.warn_legacy_self_import(directive);
1809                     return false;
1810                 }
1811                 self.used_imports.insert((directive.id, ns));
1812                 self.add_to_glob_map(directive.id, ident);
1813                 self.record_use(ident, ns, binding, span)
1814             }
1815             NameBindingKind::Import { .. } => false,
1816             NameBindingKind::Ambiguity { b1, b2, legacy } => {
1817                 self.ambiguity_errors.push(AmbiguityError {
1818                     span: span, name: ident.name, lexical: false, b1: b1, b2: b2, legacy,
1819                 });
1820                 if legacy {
1821                     self.record_use(ident, ns, b1, span);
1822                 }
1823                 !legacy
1824             }
1825             _ => false
1826         }
1827     }
1828
1829     fn add_to_glob_map(&mut self, id: NodeId, ident: Ident) {
1830         if self.make_glob_map {
1831             self.glob_map.entry(id).or_insert_with(FxHashSet).insert(ident.name);
1832         }
1833     }
1834
1835     /// This resolves the identifier `ident` in the namespace `ns` in the current lexical scope.
1836     /// More specifically, we proceed up the hierarchy of scopes and return the binding for
1837     /// `ident` in the first scope that defines it (or None if no scopes define it).
1838     ///
1839     /// A block's items are above its local variables in the scope hierarchy, regardless of where
1840     /// the items are defined in the block. For example,
1841     /// ```rust
1842     /// fn f() {
1843     ///    g(); // Since there are no local variables in scope yet, this resolves to the item.
1844     ///    let g = || {};
1845     ///    fn g() {}
1846     ///    g(); // This resolves to the local variable `g` since it shadows the item.
1847     /// }
1848     /// ```
1849     ///
1850     /// Invariant: This must only be called during main resolution, not during
1851     /// import resolution.
1852     fn resolve_ident_in_lexical_scope(&mut self,
1853                                       mut ident: Ident,
1854                                       ns: Namespace,
1855                                       record_used: bool,
1856                                       path_span: Span)
1857                                       -> Option<LexicalScopeBinding<'a>> {
1858         if ns == TypeNS {
1859             ident.ctxt = if ident.name == keywords::SelfType.name() {
1860                 SyntaxContext::empty() // FIXME(jseyfried) improve `Self` hygiene
1861             } else {
1862                 ident.ctxt.modern()
1863             }
1864         }
1865
1866         // Walk backwards up the ribs in scope.
1867         let mut module = self.graph_root;
1868         for i in (0 .. self.ribs[ns].len()).rev() {
1869             if let Some(def) = self.ribs[ns][i].bindings.get(&ident).cloned() {
1870                 // The ident resolves to a type parameter or local variable.
1871                 return Some(LexicalScopeBinding::Def(
1872                     self.adjust_local_def(ns, i, def, record_used, path_span)
1873                 ));
1874             }
1875
1876             module = match self.ribs[ns][i].kind {
1877                 ModuleRibKind(module) => module,
1878                 MacroDefinition(def) if def == self.macro_def(ident.ctxt) => {
1879                     // If an invocation of this macro created `ident`, give up on `ident`
1880                     // and switch to `ident`'s source from the macro definition.
1881                     ident.ctxt.remove_mark();
1882                     continue
1883                 }
1884                 _ => continue,
1885             };
1886
1887             let item = self.resolve_ident_in_module_unadjusted(
1888                 module, ident, ns, false, record_used, path_span,
1889             );
1890             if let Ok(binding) = item {
1891                 // The ident resolves to an item.
1892                 return Some(LexicalScopeBinding::Item(binding));
1893             }
1894
1895             match module.kind {
1896                 ModuleKind::Block(..) => {}, // We can see through blocks
1897                 _ => break,
1898             }
1899         }
1900
1901         ident.ctxt = ident.ctxt.modern();
1902         loop {
1903             module = unwrap_or!(self.hygienic_lexical_parent(module, &mut ident.ctxt), break);
1904             let orig_current_module = self.current_module;
1905             self.current_module = module; // Lexical resolutions can never be a privacy error.
1906             let result = self.resolve_ident_in_module_unadjusted(
1907                 module, ident, ns, false, record_used, path_span,
1908             );
1909             self.current_module = orig_current_module;
1910
1911             match result {
1912                 Ok(binding) => return Some(LexicalScopeBinding::Item(binding)),
1913                 Err(Undetermined) => return None,
1914                 Err(Determined) => {}
1915             }
1916         }
1917
1918         match self.prelude {
1919             Some(prelude) if !module.no_implicit_prelude => {
1920                 self.resolve_ident_in_module_unadjusted(prelude, ident, ns, false, false, path_span)
1921                     .ok().map(LexicalScopeBinding::Item)
1922             }
1923             _ => None,
1924         }
1925     }
1926
1927     fn hygienic_lexical_parent(&mut self, mut module: Module<'a>, ctxt: &mut SyntaxContext)
1928                                -> Option<Module<'a>> {
1929         if !module.expansion.is_descendant_of(ctxt.outer()) {
1930             return Some(self.macro_def_scope(ctxt.remove_mark()));
1931         }
1932
1933         if let ModuleKind::Block(..) = module.kind {
1934             return Some(module.parent.unwrap());
1935         }
1936
1937         let mut module_expansion = module.expansion.modern(); // for backward compatibility
1938         while let Some(parent) = module.parent {
1939             let parent_expansion = parent.expansion.modern();
1940             if module_expansion.is_descendant_of(parent_expansion) &&
1941                parent_expansion != module_expansion {
1942                 return if parent_expansion.is_descendant_of(ctxt.outer()) {
1943                     Some(parent)
1944                 } else {
1945                     None
1946                 };
1947             }
1948             module = parent;
1949             module_expansion = parent_expansion;
1950         }
1951
1952         None
1953     }
1954
1955     fn resolve_ident_in_module(&mut self,
1956                                module: Module<'a>,
1957                                mut ident: Ident,
1958                                ns: Namespace,
1959                                ignore_unresolved_invocations: bool,
1960                                record_used: bool,
1961                                span: Span)
1962                                -> Result<&'a NameBinding<'a>, Determinacy> {
1963         ident.ctxt = ident.ctxt.modern();
1964         let orig_current_module = self.current_module;
1965         if let Some(def) = ident.ctxt.adjust(module.expansion) {
1966             self.current_module = self.macro_def_scope(def);
1967         }
1968         let result = self.resolve_ident_in_module_unadjusted(
1969             module, ident, ns, ignore_unresolved_invocations, record_used, span,
1970         );
1971         self.current_module = orig_current_module;
1972         result
1973     }
1974
1975     fn resolve_crate_root(&mut self, mut ctxt: SyntaxContext, legacy: bool) -> Module<'a> {
1976         let mark = if legacy {
1977             // When resolving `$crate` from a `macro_rules!` invoked in a `macro`,
1978             // we don't want to pretend that the `macro_rules!` definition is in the `macro`
1979             // as described in `SyntaxContext::apply_mark`, so we ignore prepended modern marks.
1980             ctxt.marks().into_iter().find(|&mark| mark.kind() != MarkKind::Modern)
1981         } else {
1982             ctxt = ctxt.modern();
1983             ctxt.adjust(Mark::root())
1984         };
1985         let module = match mark {
1986             Some(def) => self.macro_def_scope(def),
1987             None => return self.graph_root,
1988         };
1989         self.get_module(DefId { index: CRATE_DEF_INDEX, ..module.normal_ancestor_id })
1990     }
1991
1992     fn resolve_self(&mut self, ctxt: &mut SyntaxContext, module: Module<'a>) -> Module<'a> {
1993         let mut module = self.get_module(module.normal_ancestor_id);
1994         while module.span.ctxt().modern() != *ctxt {
1995             let parent = module.parent.unwrap_or_else(|| self.macro_def_scope(ctxt.remove_mark()));
1996             module = self.get_module(parent.normal_ancestor_id);
1997         }
1998         module
1999     }
2000
2001     // AST resolution
2002     //
2003     // We maintain a list of value ribs and type ribs.
2004     //
2005     // Simultaneously, we keep track of the current position in the module
2006     // graph in the `current_module` pointer. When we go to resolve a name in
2007     // the value or type namespaces, we first look through all the ribs and
2008     // then query the module graph. When we resolve a name in the module
2009     // namespace, we can skip all the ribs (since nested modules are not
2010     // allowed within blocks in Rust) and jump straight to the current module
2011     // graph node.
2012     //
2013     // Named implementations are handled separately. When we find a method
2014     // call, we consult the module node to find all of the implementations in
2015     // scope. This information is lazily cached in the module node. We then
2016     // generate a fake "implementation scope" containing all the
2017     // implementations thus found, for compatibility with old resolve pass.
2018
2019     pub fn with_scope<F, T>(&mut self, id: NodeId, f: F) -> T
2020         where F: FnOnce(&mut Resolver) -> T
2021     {
2022         let id = self.definitions.local_def_id(id);
2023         let module = self.module_map.get(&id).cloned(); // clones a reference
2024         if let Some(module) = module {
2025             // Move down in the graph.
2026             let orig_module = replace(&mut self.current_module, module);
2027             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(module)));
2028             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(module)));
2029
2030             self.finalize_current_module_macro_resolutions();
2031             let ret = f(self);
2032
2033             self.current_module = orig_module;
2034             self.ribs[ValueNS].pop();
2035             self.ribs[TypeNS].pop();
2036             ret
2037         } else {
2038             f(self)
2039         }
2040     }
2041
2042     /// Searches the current set of local scopes for labels. Returns the first non-None label that
2043     /// is returned by the given predicate function
2044     ///
2045     /// Stops after meeting a closure.
2046     fn search_label<P, R>(&self, mut ident: Ident, pred: P) -> Option<R>
2047         where P: Fn(&Rib, Ident) -> Option<R>
2048     {
2049         for rib in self.label_ribs.iter().rev() {
2050             match rib.kind {
2051                 NormalRibKind => {}
2052                 // If an invocation of this macro created `ident`, give up on `ident`
2053                 // and switch to `ident`'s source from the macro definition.
2054                 MacroDefinition(def) => {
2055                     if def == self.macro_def(ident.ctxt) {
2056                         ident.ctxt.remove_mark();
2057                     }
2058                 }
2059                 _ => {
2060                     // Do not resolve labels across function boundary
2061                     return None;
2062                 }
2063             }
2064             let r = pred(rib, ident);
2065             if r.is_some() {
2066                 return r;
2067             }
2068         }
2069         None
2070     }
2071
2072     fn resolve_item(&mut self, item: &Item) {
2073         let name = item.ident.name;
2074
2075         debug!("(resolving item) resolving {}", name);
2076
2077         self.check_proc_macro_attrs(&item.attrs);
2078
2079         match item.node {
2080             ItemKind::Enum(_, ref generics) |
2081             ItemKind::Ty(_, ref generics) |
2082             ItemKind::Struct(_, ref generics) |
2083             ItemKind::Union(_, ref generics) |
2084             ItemKind::Fn(.., ref generics, _) => {
2085                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind),
2086                                              |this| visit::walk_item(this, item));
2087             }
2088
2089             ItemKind::Impl(.., ref generics, ref opt_trait_ref, ref self_type, ref impl_items) =>
2090                 self.resolve_implementation(generics,
2091                                             opt_trait_ref,
2092                                             &self_type,
2093                                             item.id,
2094                                             impl_items),
2095
2096             ItemKind::Trait(.., ref generics, ref bounds, ref trait_items) => {
2097                 // Create a new rib for the trait-wide type parameters.
2098                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2099                     let local_def_id = this.definitions.local_def_id(item.id);
2100                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2101                         this.visit_generics(generics);
2102                         walk_list!(this, visit_ty_param_bound, bounds);
2103
2104                         for trait_item in trait_items {
2105                             this.check_proc_macro_attrs(&trait_item.attrs);
2106
2107                             let type_parameters = HasTypeParameters(&trait_item.generics,
2108                                                                     TraitOrImplItemRibKind);
2109                             this.with_type_parameter_rib(type_parameters, |this| {
2110                                 match trait_item.node {
2111                                     TraitItemKind::Const(ref ty, ref default) => {
2112                                         this.visit_ty(ty);
2113
2114                                         // Only impose the restrictions of
2115                                         // ConstRibKind for an actual constant
2116                                         // expression in a provided default.
2117                                         if let Some(ref expr) = *default{
2118                                             this.with_constant_rib(|this| {
2119                                                 this.visit_expr(expr);
2120                                             });
2121                                         }
2122                                     }
2123                                     TraitItemKind::Method(_, _) => {
2124                                         visit::walk_trait_item(this, trait_item)
2125                                     }
2126                                     TraitItemKind::Type(..) => {
2127                                         visit::walk_trait_item(this, trait_item)
2128                                     }
2129                                     TraitItemKind::Macro(_) => {
2130                                         panic!("unexpanded macro in resolve!")
2131                                     }
2132                                 };
2133                             });
2134                         }
2135                     });
2136                 });
2137             }
2138
2139             ItemKind::TraitAlias(ref generics, ref bounds) => {
2140                 // Create a new rib for the trait-wide type parameters.
2141                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2142                     let local_def_id = this.definitions.local_def_id(item.id);
2143                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2144                         this.visit_generics(generics);
2145                         walk_list!(this, visit_ty_param_bound, bounds);
2146                     });
2147                 });
2148             }
2149
2150             ItemKind::Mod(_) | ItemKind::ForeignMod(_) => {
2151                 self.with_scope(item.id, |this| {
2152                     visit::walk_item(this, item);
2153                 });
2154             }
2155
2156             ItemKind::Static(ref ty, _, ref expr) |
2157             ItemKind::Const(ref ty, ref expr) => {
2158                 self.with_item_rib(|this| {
2159                     this.visit_ty(ty);
2160                     this.with_constant_rib(|this| {
2161                         this.visit_expr(expr);
2162                     });
2163                 });
2164             }
2165
2166             ItemKind::Use(ref use_tree) => {
2167                 // Imports are resolved as global by default, add starting root segment.
2168                 let path = Path {
2169                     segments: use_tree.prefix.make_root().into_iter().collect(),
2170                     span: use_tree.span,
2171                 };
2172                 self.resolve_use_tree(item.id, use_tree, &path);
2173             }
2174
2175             ItemKind::ExternCrate(_) | ItemKind::MacroDef(..) | ItemKind::GlobalAsm(_) => {
2176                 // do nothing, these are just around to be encoded
2177             }
2178
2179             ItemKind::Mac(_) => panic!("unexpanded macro in resolve!"),
2180         }
2181     }
2182
2183     fn resolve_use_tree(&mut self, id: NodeId, use_tree: &ast::UseTree, prefix: &Path) {
2184         match use_tree.kind {
2185             ast::UseTreeKind::Nested(ref items) => {
2186                 let path = Path {
2187                     segments: prefix.segments
2188                         .iter()
2189                         .chain(use_tree.prefix.segments.iter())
2190                         .cloned()
2191                         .collect(),
2192                     span: prefix.span.to(use_tree.prefix.span),
2193                 };
2194
2195                 if items.len() == 0 {
2196                     // Resolve prefix of an import with empty braces (issue #28388).
2197                     self.smart_resolve_path(id, None, &path, PathSource::ImportPrefix);
2198                 } else {
2199                     for &(ref tree, nested_id) in items {
2200                         self.resolve_use_tree(nested_id, tree, &path);
2201                     }
2202                 }
2203             }
2204             ast::UseTreeKind::Simple(_) => {},
2205             ast::UseTreeKind::Glob => {},
2206         }
2207     }
2208
2209     fn with_type_parameter_rib<'b, F>(&'b mut self, type_parameters: TypeParameters<'a, 'b>, f: F)
2210         where F: FnOnce(&mut Resolver)
2211     {
2212         match type_parameters {
2213             HasTypeParameters(generics, rib_kind) => {
2214                 let mut function_type_rib = Rib::new(rib_kind);
2215                 let mut seen_bindings = FxHashMap();
2216                 for param in &generics.params {
2217                     if let GenericParam::Type(ref type_parameter) = *param {
2218                         let ident = type_parameter.ident.modern();
2219                         debug!("with_type_parameter_rib: {}", type_parameter.id);
2220
2221                         if seen_bindings.contains_key(&ident) {
2222                             let span = seen_bindings.get(&ident).unwrap();
2223                             let err = ResolutionError::NameAlreadyUsedInTypeParameterList(
2224                                 ident.name,
2225                                 span,
2226                             );
2227                             resolve_error(self, type_parameter.span, err);
2228                         }
2229                         seen_bindings.entry(ident).or_insert(type_parameter.span);
2230
2231                         // plain insert (no renaming)
2232                         let def_id = self.definitions.local_def_id(type_parameter.id);
2233                         let def = Def::TyParam(def_id);
2234                         function_type_rib.bindings.insert(ident, def);
2235                         self.record_def(type_parameter.id, PathResolution::new(def));
2236                     }
2237                 }
2238                 self.ribs[TypeNS].push(function_type_rib);
2239             }
2240
2241             NoTypeParameters => {
2242                 // Nothing to do.
2243             }
2244         }
2245
2246         f(self);
2247
2248         if let HasTypeParameters(..) = type_parameters {
2249             self.ribs[TypeNS].pop();
2250         }
2251     }
2252
2253     fn with_label_rib<F>(&mut self, f: F)
2254         where F: FnOnce(&mut Resolver)
2255     {
2256         self.label_ribs.push(Rib::new(NormalRibKind));
2257         f(self);
2258         self.label_ribs.pop();
2259     }
2260
2261     fn with_item_rib<F>(&mut self, f: F)
2262         where F: FnOnce(&mut Resolver)
2263     {
2264         self.ribs[ValueNS].push(Rib::new(ItemRibKind));
2265         self.ribs[TypeNS].push(Rib::new(ItemRibKind));
2266         f(self);
2267         self.ribs[TypeNS].pop();
2268         self.ribs[ValueNS].pop();
2269     }
2270
2271     fn with_constant_rib<F>(&mut self, f: F)
2272         where F: FnOnce(&mut Resolver)
2273     {
2274         self.ribs[ValueNS].push(Rib::new(ConstantItemRibKind));
2275         f(self);
2276         self.ribs[ValueNS].pop();
2277     }
2278
2279     fn with_current_self_type<T, F>(&mut self, self_type: &Ty, f: F) -> T
2280         where F: FnOnce(&mut Resolver) -> T
2281     {
2282         // Handle nested impls (inside fn bodies)
2283         let previous_value = replace(&mut self.current_self_type, Some(self_type.clone()));
2284         let result = f(self);
2285         self.current_self_type = previous_value;
2286         result
2287     }
2288
2289     /// This is called to resolve a trait reference from an `impl` (i.e. `impl Trait for Foo`)
2290     fn with_optional_trait_ref<T, F>(&mut self, opt_trait_ref: Option<&TraitRef>, f: F) -> T
2291         where F: FnOnce(&mut Resolver, Option<DefId>) -> T
2292     {
2293         let mut new_val = None;
2294         let mut new_id = None;
2295         if let Some(trait_ref) = opt_trait_ref {
2296             let path: Vec<_> = trait_ref.path.segments.iter()
2297                 .map(|seg| respan(seg.span, seg.identifier))
2298                 .collect();
2299             let def = self.smart_resolve_path_fragment(
2300                 trait_ref.ref_id,
2301                 None,
2302                 &path,
2303                 trait_ref.path.span,
2304                 PathSource::Trait(AliasPossibility::No)
2305             ).base_def();
2306             if def != Def::Err {
2307                 new_id = Some(def.def_id());
2308                 let span = trait_ref.path.span;
2309                 if let PathResult::Module(module) = self.resolve_path(&path, None, false, span) {
2310                     new_val = Some((module, trait_ref.clone()));
2311                 }
2312             }
2313         }
2314         let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
2315         let result = f(self, new_id);
2316         self.current_trait_ref = original_trait_ref;
2317         result
2318     }
2319
2320     fn with_self_rib<F>(&mut self, self_def: Def, f: F)
2321         where F: FnOnce(&mut Resolver)
2322     {
2323         let mut self_type_rib = Rib::new(NormalRibKind);
2324
2325         // plain insert (no renaming, types are not currently hygienic....)
2326         self_type_rib.bindings.insert(keywords::SelfType.ident(), self_def);
2327         self.ribs[TypeNS].push(self_type_rib);
2328         f(self);
2329         self.ribs[TypeNS].pop();
2330     }
2331
2332     fn resolve_implementation(&mut self,
2333                               generics: &Generics,
2334                               opt_trait_reference: &Option<TraitRef>,
2335                               self_type: &Ty,
2336                               item_id: NodeId,
2337                               impl_items: &[ImplItem]) {
2338         // If applicable, create a rib for the type parameters.
2339         self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2340             // Dummy self type for better errors if `Self` is used in the trait path.
2341             this.with_self_rib(Def::SelfTy(None, None), |this| {
2342                 // Resolve the trait reference, if necessary.
2343                 this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| {
2344                     let item_def_id = this.definitions.local_def_id(item_id);
2345                     this.with_self_rib(Def::SelfTy(trait_id, Some(item_def_id)), |this| {
2346                         if let Some(trait_ref) = opt_trait_reference.as_ref() {
2347                             // Resolve type arguments in trait path
2348                             visit::walk_trait_ref(this, trait_ref);
2349                         }
2350                         // Resolve the self type.
2351                         this.visit_ty(self_type);
2352                         // Resolve the type parameters.
2353                         this.visit_generics(generics);
2354                         this.with_current_self_type(self_type, |this| {
2355                             for impl_item in impl_items {
2356                                 this.check_proc_macro_attrs(&impl_item.attrs);
2357                                 this.resolve_visibility(&impl_item.vis);
2358
2359                                 // We also need a new scope for the impl item type parameters.
2360                                 let type_parameters = HasTypeParameters(&impl_item.generics,
2361                                                                         TraitOrImplItemRibKind);
2362                                 this.with_type_parameter_rib(type_parameters, |this| {
2363                                     use self::ResolutionError::*;
2364                                     match impl_item.node {
2365                                         ImplItemKind::Const(..) => {
2366                                             // If this is a trait impl, ensure the const
2367                                             // exists in trait
2368                                             this.check_trait_item(impl_item.ident,
2369                                                                 ValueNS,
2370                                                                 impl_item.span,
2371                                                 |n, s| ConstNotMemberOfTrait(n, s));
2372                                             this.with_constant_rib(|this|
2373                                                 visit::walk_impl_item(this, impl_item)
2374                                             );
2375                                         }
2376                                         ImplItemKind::Method(_, _) => {
2377                                             // If this is a trait impl, ensure the method
2378                                             // exists in trait
2379                                             this.check_trait_item(impl_item.ident,
2380                                                                 ValueNS,
2381                                                                 impl_item.span,
2382                                                 |n, s| MethodNotMemberOfTrait(n, s));
2383
2384                                             visit::walk_impl_item(this, impl_item);
2385                                         }
2386                                         ImplItemKind::Type(ref ty) => {
2387                                             // If this is a trait impl, ensure the type
2388                                             // exists in trait
2389                                             this.check_trait_item(impl_item.ident,
2390                                                                 TypeNS,
2391                                                                 impl_item.span,
2392                                                 |n, s| TypeNotMemberOfTrait(n, s));
2393
2394                                             this.visit_ty(ty);
2395                                         }
2396                                         ImplItemKind::Macro(_) =>
2397                                             panic!("unexpanded macro in resolve!"),
2398                                     }
2399                                 });
2400                             }
2401                         });
2402                     });
2403                 });
2404             });
2405         });
2406     }
2407
2408     fn check_trait_item<F>(&mut self, ident: Ident, ns: Namespace, span: Span, err: F)
2409         where F: FnOnce(Name, &str) -> ResolutionError
2410     {
2411         // If there is a TraitRef in scope for an impl, then the method must be in the
2412         // trait.
2413         if let Some((module, _)) = self.current_trait_ref {
2414             if self.resolve_ident_in_module(module, ident, ns, false, false, span).is_err() {
2415                 let path = &self.current_trait_ref.as_ref().unwrap().1.path;
2416                 resolve_error(self, span, err(ident.name, &path_names_to_string(path)));
2417             }
2418         }
2419     }
2420
2421     fn resolve_local(&mut self, local: &Local) {
2422         // Resolve the type.
2423         walk_list!(self, visit_ty, &local.ty);
2424
2425         // Resolve the initializer.
2426         walk_list!(self, visit_expr, &local.init);
2427
2428         // Resolve the pattern.
2429         self.resolve_pattern(&local.pat, PatternSource::Let, &mut FxHashMap());
2430     }
2431
2432     // build a map from pattern identifiers to binding-info's.
2433     // this is done hygienically. This could arise for a macro
2434     // that expands into an or-pattern where one 'x' was from the
2435     // user and one 'x' came from the macro.
2436     fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
2437         let mut binding_map = FxHashMap();
2438
2439         pat.walk(&mut |pat| {
2440             if let PatKind::Ident(binding_mode, ident, ref sub_pat) = pat.node {
2441                 if sub_pat.is_some() || match self.def_map.get(&pat.id).map(|res| res.base_def()) {
2442                     Some(Def::Local(..)) => true,
2443                     _ => false,
2444                 } {
2445                     let binding_info = BindingInfo { span: ident.span, binding_mode: binding_mode };
2446                     binding_map.insert(ident.node, binding_info);
2447                 }
2448             }
2449             true
2450         });
2451
2452         binding_map
2453     }
2454
2455     // check that all of the arms in an or-pattern have exactly the
2456     // same set of bindings, with the same binding modes for each.
2457     fn check_consistent_bindings(&mut self, pats: &[P<Pat>]) {
2458         if pats.is_empty() {
2459             return;
2460         }
2461
2462         let mut missing_vars = FxHashMap();
2463         let mut inconsistent_vars = FxHashMap();
2464         for (i, p) in pats.iter().enumerate() {
2465             let map_i = self.binding_mode_map(&p);
2466
2467             for (j, q) in pats.iter().enumerate() {
2468                 if i == j {
2469                     continue;
2470                 }
2471
2472                 let map_j = self.binding_mode_map(&q);
2473                 for (&key, &binding_i) in &map_i {
2474                     if map_j.len() == 0 {                   // Account for missing bindings when
2475                         let binding_error = missing_vars    // map_j has none.
2476                             .entry(key.name)
2477                             .or_insert(BindingError {
2478                                 name: key.name,
2479                                 origin: BTreeSet::new(),
2480                                 target: BTreeSet::new(),
2481                             });
2482                         binding_error.origin.insert(binding_i.span);
2483                         binding_error.target.insert(q.span);
2484                     }
2485                     for (&key_j, &binding_j) in &map_j {
2486                         match map_i.get(&key_j) {
2487                             None => {  // missing binding
2488                                 let binding_error = missing_vars
2489                                     .entry(key_j.name)
2490                                     .or_insert(BindingError {
2491                                         name: key_j.name,
2492                                         origin: BTreeSet::new(),
2493                                         target: BTreeSet::new(),
2494                                     });
2495                                 binding_error.origin.insert(binding_j.span);
2496                                 binding_error.target.insert(p.span);
2497                             }
2498                             Some(binding_i) => {  // check consistent binding
2499                                 if binding_i.binding_mode != binding_j.binding_mode {
2500                                     inconsistent_vars
2501                                         .entry(key.name)
2502                                         .or_insert((binding_j.span, binding_i.span));
2503                                 }
2504                             }
2505                         }
2506                     }
2507                 }
2508             }
2509         }
2510         let mut missing_vars = missing_vars.iter().collect::<Vec<_>>();
2511         missing_vars.sort();
2512         for (_, v) in missing_vars {
2513             resolve_error(self,
2514                           *v.origin.iter().next().unwrap(),
2515                           ResolutionError::VariableNotBoundInPattern(v));
2516         }
2517         let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
2518         inconsistent_vars.sort();
2519         for (name, v) in inconsistent_vars {
2520             resolve_error(self, v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
2521         }
2522     }
2523
2524     fn resolve_arm(&mut self, arm: &Arm) {
2525         self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2526
2527         let mut bindings_list = FxHashMap();
2528         for pattern in &arm.pats {
2529             self.resolve_pattern(&pattern, PatternSource::Match, &mut bindings_list);
2530         }
2531
2532         // This has to happen *after* we determine which pat_idents are variants
2533         self.check_consistent_bindings(&arm.pats);
2534
2535         walk_list!(self, visit_expr, &arm.guard);
2536         self.visit_expr(&arm.body);
2537
2538         self.ribs[ValueNS].pop();
2539     }
2540
2541     fn resolve_block(&mut self, block: &Block) {
2542         debug!("(resolving block) entering block");
2543         // Move down in the graph, if there's an anonymous module rooted here.
2544         let orig_module = self.current_module;
2545         let anonymous_module = self.block_map.get(&block.id).cloned(); // clones a reference
2546
2547         let mut num_macro_definition_ribs = 0;
2548         if let Some(anonymous_module) = anonymous_module {
2549             debug!("(resolving block) found anonymous module, moving down");
2550             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2551             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2552             self.current_module = anonymous_module;
2553             self.finalize_current_module_macro_resolutions();
2554         } else {
2555             self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2556         }
2557
2558         // Descend into the block.
2559         for stmt in &block.stmts {
2560             if let ast::StmtKind::Item(ref item) = stmt.node {
2561                 if let ast::ItemKind::MacroDef(..) = item.node {
2562                     num_macro_definition_ribs += 1;
2563                     let def = self.definitions.local_def_id(item.id);
2564                     self.ribs[ValueNS].push(Rib::new(MacroDefinition(def)));
2565                     self.label_ribs.push(Rib::new(MacroDefinition(def)));
2566                 }
2567             }
2568
2569             self.visit_stmt(stmt);
2570         }
2571
2572         // Move back up.
2573         self.current_module = orig_module;
2574         for _ in 0 .. num_macro_definition_ribs {
2575             self.ribs[ValueNS].pop();
2576             self.label_ribs.pop();
2577         }
2578         self.ribs[ValueNS].pop();
2579         if let Some(_) = anonymous_module {
2580             self.ribs[TypeNS].pop();
2581         }
2582         debug!("(resolving block) leaving block");
2583     }
2584
2585     fn fresh_binding(&mut self,
2586                      ident: &SpannedIdent,
2587                      pat_id: NodeId,
2588                      outer_pat_id: NodeId,
2589                      pat_src: PatternSource,
2590                      bindings: &mut FxHashMap<Ident, NodeId>)
2591                      -> PathResolution {
2592         // Add the binding to the local ribs, if it
2593         // doesn't already exist in the bindings map. (We
2594         // must not add it if it's in the bindings map
2595         // because that breaks the assumptions later
2596         // passes make about or-patterns.)
2597         let mut def = Def::Local(pat_id);
2598         match bindings.get(&ident.node).cloned() {
2599             Some(id) if id == outer_pat_id => {
2600                 // `Variant(a, a)`, error
2601                 resolve_error(
2602                     self,
2603                     ident.span,
2604                     ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(
2605                         &ident.node.name.as_str())
2606                 );
2607             }
2608             Some(..) if pat_src == PatternSource::FnParam => {
2609                 // `fn f(a: u8, a: u8)`, error
2610                 resolve_error(
2611                     self,
2612                     ident.span,
2613                     ResolutionError::IdentifierBoundMoreThanOnceInParameterList(
2614                         &ident.node.name.as_str())
2615                 );
2616             }
2617             Some(..) if pat_src == PatternSource::Match ||
2618                         pat_src == PatternSource::IfLet ||
2619                         pat_src == PatternSource::WhileLet => {
2620                 // `Variant1(a) | Variant2(a)`, ok
2621                 // Reuse definition from the first `a`.
2622                 def = self.ribs[ValueNS].last_mut().unwrap().bindings[&ident.node];
2623             }
2624             Some(..) => {
2625                 span_bug!(ident.span, "two bindings with the same name from \
2626                                        unexpected pattern source {:?}", pat_src);
2627             }
2628             None => {
2629                 // A completely fresh binding, add to the lists if it's valid.
2630                 if ident.node.name != keywords::Invalid.name() {
2631                     bindings.insert(ident.node, outer_pat_id);
2632                     self.ribs[ValueNS].last_mut().unwrap().bindings.insert(ident.node, def);
2633                 }
2634             }
2635         }
2636
2637         PathResolution::new(def)
2638     }
2639
2640     fn resolve_pattern(&mut self,
2641                        pat: &Pat,
2642                        pat_src: PatternSource,
2643                        // Maps idents to the node ID for the
2644                        // outermost pattern that binds them.
2645                        bindings: &mut FxHashMap<Ident, NodeId>) {
2646         // Visit all direct subpatterns of this pattern.
2647         let outer_pat_id = pat.id;
2648         pat.walk(&mut |pat| {
2649             match pat.node {
2650                 PatKind::Ident(bmode, ref ident, ref opt_pat) => {
2651                     // First try to resolve the identifier as some existing
2652                     // entity, then fall back to a fresh binding.
2653                     let binding = self.resolve_ident_in_lexical_scope(ident.node, ValueNS,
2654                                                                       false, pat.span)
2655                                       .and_then(LexicalScopeBinding::item);
2656                     let resolution = binding.map(NameBinding::def).and_then(|def| {
2657                         let is_syntactic_ambiguity = opt_pat.is_none() &&
2658                             bmode == BindingMode::ByValue(Mutability::Immutable);
2659                         match def {
2660                             Def::StructCtor(_, CtorKind::Const) |
2661                             Def::VariantCtor(_, CtorKind::Const) |
2662                             Def::Const(..) if is_syntactic_ambiguity => {
2663                                 // Disambiguate in favor of a unit struct/variant
2664                                 // or constant pattern.
2665                                 self.record_use(ident.node, ValueNS, binding.unwrap(), ident.span);
2666                                 Some(PathResolution::new(def))
2667                             }
2668                             Def::StructCtor(..) | Def::VariantCtor(..) |
2669                             Def::Const(..) | Def::Static(..) => {
2670                                 // This is unambiguously a fresh binding, either syntactically
2671                                 // (e.g. `IDENT @ PAT` or `ref IDENT`) or because `IDENT` resolves
2672                                 // to something unusable as a pattern (e.g. constructor function),
2673                                 // but we still conservatively report an error, see
2674                                 // issues/33118#issuecomment-233962221 for one reason why.
2675                                 resolve_error(
2676                                     self,
2677                                     ident.span,
2678                                     ResolutionError::BindingShadowsSomethingUnacceptable(
2679                                         pat_src.descr(), ident.node.name, binding.unwrap())
2680                                 );
2681                                 None
2682                             }
2683                             Def::Fn(..) | Def::Err => {
2684                                 // These entities are explicitly allowed
2685                                 // to be shadowed by fresh bindings.
2686                                 None
2687                             }
2688                             def => {
2689                                 span_bug!(ident.span, "unexpected definition for an \
2690                                                        identifier in pattern: {:?}", def);
2691                             }
2692                         }
2693                     }).unwrap_or_else(|| {
2694                         self.fresh_binding(ident, pat.id, outer_pat_id, pat_src, bindings)
2695                     });
2696
2697                     self.record_def(pat.id, resolution);
2698                 }
2699
2700                 PatKind::TupleStruct(ref path, ..) => {
2701                     self.smart_resolve_path(pat.id, None, path, PathSource::TupleStruct);
2702                 }
2703
2704                 PatKind::Path(ref qself, ref path) => {
2705                     self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
2706                 }
2707
2708                 PatKind::Struct(ref path, ..) => {
2709                     self.smart_resolve_path(pat.id, None, path, PathSource::Struct);
2710                 }
2711
2712                 _ => {}
2713             }
2714             true
2715         });
2716
2717         visit::walk_pat(self, pat);
2718     }
2719
2720     // High-level and context dependent path resolution routine.
2721     // Resolves the path and records the resolution into definition map.
2722     // If resolution fails tries several techniques to find likely
2723     // resolution candidates, suggest imports or other help, and report
2724     // errors in user friendly way.
2725     fn smart_resolve_path(&mut self,
2726                           id: NodeId,
2727                           qself: Option<&QSelf>,
2728                           path: &Path,
2729                           source: PathSource)
2730                           -> PathResolution {
2731         let segments = &path.segments.iter()
2732             .map(|seg| respan(seg.span, seg.identifier))
2733             .collect::<Vec<_>>();
2734         self.smart_resolve_path_fragment(id, qself, segments, path.span, source)
2735     }
2736
2737     fn smart_resolve_path_fragment(&mut self,
2738                                    id: NodeId,
2739                                    qself: Option<&QSelf>,
2740                                    path: &[SpannedIdent],
2741                                    span: Span,
2742                                    source: PathSource)
2743                                    -> PathResolution {
2744         let ident_span = path.last().map_or(span, |ident| ident.span);
2745         let ns = source.namespace();
2746         let is_expected = &|def| source.is_expected(def);
2747         let is_enum_variant = &|def| if let Def::Variant(..) = def { true } else { false };
2748
2749         // Base error is amended with one short label and possibly some longer helps/notes.
2750         let report_errors = |this: &mut Self, def: Option<Def>| {
2751             // Make the base error.
2752             let expected = source.descr_expected();
2753             let path_str = names_to_string(path);
2754             let code = source.error_code(def.is_some());
2755             let (base_msg, fallback_label, base_span) = if let Some(def) = def {
2756                 (format!("expected {}, found {} `{}`", expected, def.kind_name(), path_str),
2757                  format!("not a {}", expected),
2758                  span)
2759             } else {
2760                 let item_str = path[path.len() - 1].node;
2761                 let item_span = path[path.len() - 1].span;
2762                 let (mod_prefix, mod_str) = if path.len() == 1 {
2763                     (format!(""), format!("this scope"))
2764                 } else if path.len() == 2 && path[0].node.name == keywords::CrateRoot.name() {
2765                     (format!(""), format!("the crate root"))
2766                 } else {
2767                     let mod_path = &path[..path.len() - 1];
2768                     let mod_prefix = match this.resolve_path(mod_path, Some(TypeNS), false, span) {
2769                         PathResult::Module(module) => module.def(),
2770                         _ => None,
2771                     }.map_or(format!(""), |def| format!("{} ", def.kind_name()));
2772                     (mod_prefix, format!("`{}`", names_to_string(mod_path)))
2773                 };
2774                 (format!("cannot find {} `{}` in {}{}", expected, item_str, mod_prefix, mod_str),
2775                  format!("not found in {}", mod_str),
2776                  item_span)
2777             };
2778             let code = DiagnosticId::Error(code.into());
2779             let mut err = this.session.struct_span_err_with_code(base_span, &base_msg, code);
2780
2781             // Emit special messages for unresolved `Self` and `self`.
2782             if is_self_type(path, ns) {
2783                 __diagnostic_used!(E0411);
2784                 err.code(DiagnosticId::Error("E0411".into()));
2785                 err.span_label(span, "`Self` is only available in traits and impls");
2786                 return (err, Vec::new());
2787             }
2788             if is_self_value(path, ns) {
2789                 __diagnostic_used!(E0424);
2790                 err.code(DiagnosticId::Error("E0424".into()));
2791                 err.span_label(span, format!("`self` value is only available in \
2792                                                methods with `self` parameter"));
2793                 return (err, Vec::new());
2794             }
2795
2796             // Try to lookup the name in more relaxed fashion for better error reporting.
2797             let ident = *path.last().unwrap();
2798             let candidates = this.lookup_import_candidates(ident.node.name, ns, is_expected);
2799             if candidates.is_empty() && is_expected(Def::Enum(DefId::local(CRATE_DEF_INDEX))) {
2800                 let enum_candidates =
2801                     this.lookup_import_candidates(ident.node.name, ns, is_enum_variant);
2802                 let mut enum_candidates = enum_candidates.iter()
2803                     .map(|suggestion| import_candidate_to_paths(&suggestion)).collect::<Vec<_>>();
2804                 enum_candidates.sort();
2805                 for (sp, variant_path, enum_path) in enum_candidates {
2806                     if sp == DUMMY_SP {
2807                         let msg = format!("there is an enum variant `{}`, \
2808                                         try using `{}`?",
2809                                         variant_path,
2810                                         enum_path);
2811                         err.help(&msg);
2812                     } else {
2813                         err.span_suggestion(span, "you can try using the variant's enum",
2814                                             enum_path);
2815                     }
2816                 }
2817             }
2818             if path.len() == 1 && this.self_type_is_available(span) {
2819                 if let Some(candidate) = this.lookup_assoc_candidate(ident.node, ns, is_expected) {
2820                     let self_is_available = this.self_value_is_available(path[0].node.ctxt, span);
2821                     match candidate {
2822                         AssocSuggestion::Field => {
2823                             err.span_suggestion(span, "try",
2824                                                 format!("self.{}", path_str));
2825                             if !self_is_available {
2826                                 err.span_label(span, format!("`self` value is only available in \
2827                                                                methods with `self` parameter"));
2828                             }
2829                         }
2830                         AssocSuggestion::MethodWithSelf if self_is_available => {
2831                             err.span_suggestion(span, "try",
2832                                                 format!("self.{}", path_str));
2833                         }
2834                         AssocSuggestion::MethodWithSelf | AssocSuggestion::AssocItem => {
2835                             err.span_suggestion(span, "try",
2836                                                 format!("Self::{}", path_str));
2837                         }
2838                     }
2839                     return (err, candidates);
2840                 }
2841             }
2842
2843             let mut levenshtein_worked = false;
2844
2845             // Try Levenshtein.
2846             if let Some(candidate) = this.lookup_typo_candidate(path, ns, is_expected, span) {
2847                 err.span_label(ident_span, format!("did you mean `{}`?", candidate));
2848                 levenshtein_worked = true;
2849             }
2850
2851             // Try context dependent help if relaxed lookup didn't work.
2852             if let Some(def) = def {
2853                 match (def, source) {
2854                     (Def::Macro(..), _) => {
2855                         err.span_label(span, format!("did you mean `{}!(...)`?", path_str));
2856                         return (err, candidates);
2857                     }
2858                     (Def::TyAlias(..), PathSource::Trait(_)) => {
2859                         err.span_label(span, "type aliases cannot be used for traits");
2860                         return (err, candidates);
2861                     }
2862                     (Def::Mod(..), PathSource::Expr(Some(parent))) => match parent.node {
2863                         ExprKind::Field(_, ident) => {
2864                             err.span_label(parent.span, format!("did you mean `{}::{}`?",
2865                                                                  path_str, ident.node));
2866                             return (err, candidates);
2867                         }
2868                         ExprKind::MethodCall(ref segment, ..) => {
2869                             err.span_label(parent.span, format!("did you mean `{}::{}(...)`?",
2870                                                                  path_str, segment.identifier));
2871                             return (err, candidates);
2872                         }
2873                         _ => {}
2874                     },
2875                     (Def::Enum(..), PathSource::TupleStruct)
2876                         | (Def::Enum(..), PathSource::Expr(..))  => {
2877                         if let Some(variants) = this.collect_enum_variants(def) {
2878                             err.note(&format!("did you mean to use one \
2879                                                of the following variants?\n{}",
2880                                 variants.iter()
2881                                     .map(|suggestion| path_names_to_string(suggestion))
2882                                     .map(|suggestion| format!("- `{}`", suggestion))
2883                                     .collect::<Vec<_>>()
2884                                     .join("\n")));
2885
2886                         } else {
2887                             err.note("did you mean to use one of the enum's variants?");
2888                         }
2889                         return (err, candidates);
2890                     },
2891                     (Def::Struct(def_id), _) if ns == ValueNS => {
2892                         if let Some((ctor_def, ctor_vis))
2893                                 = this.struct_constructors.get(&def_id).cloned() {
2894                             let accessible_ctor = this.is_accessible(ctor_vis);
2895                             if is_expected(ctor_def) && !accessible_ctor {
2896                                 err.span_label(span, format!("constructor is not visible \
2897                                                               here due to private fields"));
2898                             }
2899                         } else {
2900                             err.span_label(span, format!("did you mean `{} {{ /* fields */ }}`?",
2901                                                          path_str));
2902                         }
2903                         return (err, candidates);
2904                     }
2905                     (Def::Union(..), _) |
2906                     (Def::Variant(..), _) |
2907                     (Def::VariantCtor(_, CtorKind::Fictive), _) if ns == ValueNS => {
2908                         err.span_label(span, format!("did you mean `{} {{ /* fields */ }}`?",
2909                                                      path_str));
2910                         return (err, candidates);
2911                     }
2912                     (Def::SelfTy(..), _) if ns == ValueNS => {
2913                         err.span_label(span, fallback_label);
2914                         err.note("can't use `Self` as a constructor, you must use the \
2915                                   implemented struct");
2916                         return (err, candidates);
2917                     }
2918                     (Def::TyAlias(_), _) | (Def::AssociatedTy(..), _) if ns == ValueNS => {
2919                         err.note("can't use a type alias as a constructor");
2920                         return (err, candidates);
2921                     }
2922                     _ => {}
2923                 }
2924             }
2925
2926             // Fallback label.
2927             if !levenshtein_worked {
2928                 err.span_label(base_span, fallback_label);
2929                 this.type_ascription_suggestion(&mut err, base_span);
2930             }
2931             (err, candidates)
2932         };
2933         let report_errors = |this: &mut Self, def: Option<Def>| {
2934             let (err, candidates) = report_errors(this, def);
2935             let def_id = this.current_module.normal_ancestor_id;
2936             let node_id = this.definitions.as_local_node_id(def_id).unwrap();
2937             let better = def.is_some();
2938             this.use_injections.push(UseError { err, candidates, node_id, better });
2939             err_path_resolution()
2940         };
2941
2942         let resolution = match self.resolve_qpath_anywhere(id, qself, path, ns, span,
2943                                                            source.defer_to_typeck(),
2944                                                            source.global_by_default()) {
2945             Some(resolution) if resolution.unresolved_segments() == 0 => {
2946                 if is_expected(resolution.base_def()) || resolution.base_def() == Def::Err {
2947                     resolution
2948                 } else {
2949                     // Add a temporary hack to smooth the transition to new struct ctor
2950                     // visibility rules. See #38932 for more details.
2951                     let mut res = None;
2952                     if let Def::Struct(def_id) = resolution.base_def() {
2953                         if let Some((ctor_def, ctor_vis))
2954                                 = self.struct_constructors.get(&def_id).cloned() {
2955                             if is_expected(ctor_def) && self.is_accessible(ctor_vis) {
2956                                 let lint = lint::builtin::LEGACY_CONSTRUCTOR_VISIBILITY;
2957                                 self.session.buffer_lint(lint, id, span,
2958                                     "private struct constructors are not usable through \
2959                                      re-exports in outer modules",
2960                                 );
2961                                 res = Some(PathResolution::new(ctor_def));
2962                             }
2963                         }
2964                     }
2965
2966                     res.unwrap_or_else(|| report_errors(self, Some(resolution.base_def())))
2967                 }
2968             }
2969             Some(resolution) if source.defer_to_typeck() => {
2970                 // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
2971                 // or `<T>::A::B`. If `B` should be resolved in value namespace then
2972                 // it needs to be added to the trait map.
2973                 if ns == ValueNS {
2974                     let item_name = path.last().unwrap().node;
2975                     let traits = self.get_traits_containing_item(item_name, ns);
2976                     self.trait_map.insert(id, traits);
2977                 }
2978                 resolution
2979             }
2980             _ => report_errors(self, None)
2981         };
2982
2983         if let PathSource::TraitItem(..) = source {} else {
2984             // Avoid recording definition of `A::B` in `<T as A>::B::C`.
2985             self.record_def(id, resolution);
2986         }
2987         resolution
2988     }
2989
2990     fn type_ascription_suggestion(&self,
2991                                   err: &mut DiagnosticBuilder,
2992                                   base_span: Span) {
2993         debug!("type_ascription_suggetion {:?}", base_span);
2994         let cm = self.session.codemap();
2995         debug!("self.current_type_ascription {:?}", self.current_type_ascription);
2996         if let Some(sp) = self.current_type_ascription.last() {
2997             let mut sp = *sp;
2998             loop {  // try to find the `:`, bail on first non-':'/non-whitespace
2999                 sp = cm.next_point(sp);
3000                 if let Ok(snippet) = cm.span_to_snippet(sp.to(cm.next_point(sp))) {
3001                     debug!("snippet {:?}", snippet);
3002                     let line_sp = cm.lookup_char_pos(sp.hi()).line;
3003                     let line_base_sp = cm.lookup_char_pos(base_span.lo()).line;
3004                     debug!("{:?} {:?}", line_sp, line_base_sp);
3005                     if snippet == ":" {
3006                         err.span_label(base_span,
3007                                        "expecting a type here because of type ascription");
3008                         if line_sp != line_base_sp {
3009                             err.span_suggestion_short(sp,
3010                                                       "did you mean to use `;` here instead?",
3011                                                       ";".to_string());
3012                         }
3013                         break;
3014                     } else if snippet.trim().len() != 0  {
3015                         debug!("tried to find type ascription `:` token, couldn't find it");
3016                         break;
3017                     }
3018                 } else {
3019                     break;
3020                 }
3021             }
3022         }
3023     }
3024
3025     fn self_type_is_available(&mut self, span: Span) -> bool {
3026         let binding = self.resolve_ident_in_lexical_scope(keywords::SelfType.ident(),
3027                                                           TypeNS, false, span);
3028         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3029     }
3030
3031     fn self_value_is_available(&mut self, ctxt: SyntaxContext, span: Span) -> bool {
3032         let ident = Ident { name: keywords::SelfValue.name(), ctxt: ctxt };
3033         let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, false, span);
3034         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3035     }
3036
3037     // Resolve in alternative namespaces if resolution in the primary namespace fails.
3038     fn resolve_qpath_anywhere(&mut self,
3039                               id: NodeId,
3040                               qself: Option<&QSelf>,
3041                               path: &[SpannedIdent],
3042                               primary_ns: Namespace,
3043                               span: Span,
3044                               defer_to_typeck: bool,
3045                               global_by_default: bool)
3046                               -> Option<PathResolution> {
3047         let mut fin_res = None;
3048         // FIXME: can't resolve paths in macro namespace yet, macros are
3049         // processed by the little special hack below.
3050         for (i, ns) in [primary_ns, TypeNS, ValueNS, /*MacroNS*/].iter().cloned().enumerate() {
3051             if i == 0 || ns != primary_ns {
3052                 match self.resolve_qpath(id, qself, path, ns, span, global_by_default) {
3053                     // If defer_to_typeck, then resolution > no resolution,
3054                     // otherwise full resolution > partial resolution > no resolution.
3055                     Some(res) if res.unresolved_segments() == 0 || defer_to_typeck =>
3056                         return Some(res),
3057                     res => if fin_res.is_none() { fin_res = res },
3058                 };
3059             }
3060         }
3061         let is_global = self.global_macros.get(&path[0].node.name).cloned()
3062             .map(|binding| binding.get_macro(self).kind() == MacroKind::Bang).unwrap_or(false);
3063         if primary_ns != MacroNS && (is_global ||
3064                                      self.macro_names.contains(&path[0].node.modern())) {
3065             // Return some dummy definition, it's enough for error reporting.
3066             return Some(
3067                 PathResolution::new(Def::Macro(DefId::local(CRATE_DEF_INDEX), MacroKind::Bang))
3068             );
3069         }
3070         fin_res
3071     }
3072
3073     /// Handles paths that may refer to associated items.
3074     fn resolve_qpath(&mut self,
3075                      id: NodeId,
3076                      qself: Option<&QSelf>,
3077                      path: &[SpannedIdent],
3078                      ns: Namespace,
3079                      span: Span,
3080                      global_by_default: bool)
3081                      -> Option<PathResolution> {
3082         if let Some(qself) = qself {
3083             if qself.position == 0 {
3084                 // FIXME: Create some fake resolution that can't possibly be a type.
3085                 return Some(PathResolution::with_unresolved_segments(
3086                     Def::Mod(DefId::local(CRATE_DEF_INDEX)), path.len()
3087                 ));
3088             }
3089             // Make sure `A::B` in `<T as A>::B::C` is a trait item.
3090             let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
3091             let res = self.smart_resolve_path_fragment(id, None, &path[..qself.position + 1],
3092                                                        span, PathSource::TraitItem(ns));
3093             return Some(PathResolution::with_unresolved_segments(
3094                 res.base_def(), res.unresolved_segments() + path.len() - qself.position - 1
3095             ));
3096         }
3097
3098         let result = match self.resolve_path(&path, Some(ns), true, span) {
3099             PathResult::NonModule(path_res) => path_res,
3100             PathResult::Module(module) if !module.is_normal() => {
3101                 PathResolution::new(module.def().unwrap())
3102             }
3103             // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
3104             // don't report an error right away, but try to fallback to a primitive type.
3105             // So, we are still able to successfully resolve something like
3106             //
3107             // use std::u8; // bring module u8 in scope
3108             // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
3109             //     u8::max_value() // OK, resolves to associated function <u8>::max_value,
3110             //                     // not to non-existent std::u8::max_value
3111             // }
3112             //
3113             // Such behavior is required for backward compatibility.
3114             // The same fallback is used when `a` resolves to nothing.
3115             PathResult::Module(..) | PathResult::Failed(..)
3116                     if (ns == TypeNS || path.len() > 1) &&
3117                        self.primitive_type_table.primitive_types
3118                            .contains_key(&path[0].node.name) => {
3119                 let prim = self.primitive_type_table.primitive_types[&path[0].node.name];
3120                 PathResolution::with_unresolved_segments(Def::PrimTy(prim), path.len() - 1)
3121             }
3122             PathResult::Module(module) => PathResolution::new(module.def().unwrap()),
3123             PathResult::Failed(span, msg, false) => {
3124                 resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
3125                 err_path_resolution()
3126             }
3127             PathResult::Failed(..) => return None,
3128             PathResult::Indeterminate => bug!("indetermined path result in resolve_qpath"),
3129         };
3130
3131         if path.len() > 1 && !global_by_default && result.base_def() != Def::Err &&
3132            path[0].node.name != keywords::CrateRoot.name() &&
3133            path[0].node.name != keywords::DollarCrate.name() {
3134             let unqualified_result = {
3135                 match self.resolve_path(&[*path.last().unwrap()], Some(ns), false, span) {
3136                     PathResult::NonModule(path_res) => path_res.base_def(),
3137                     PathResult::Module(module) => module.def().unwrap(),
3138                     _ => return Some(result),
3139                 }
3140             };
3141             if result.base_def() == unqualified_result {
3142                 let lint = lint::builtin::UNUSED_QUALIFICATIONS;
3143                 self.session.buffer_lint(lint, id, span, "unnecessary qualification")
3144             }
3145         }
3146
3147         Some(result)
3148     }
3149
3150     fn resolve_path(&mut self,
3151                     path: &[SpannedIdent],
3152                     opt_ns: Option<Namespace>, // `None` indicates a module path
3153                     record_used: bool,
3154                     path_span: Span)
3155                     -> PathResult<'a> {
3156         let mut module = None;
3157         let mut allow_super = true;
3158
3159         for (i, &ident) in path.iter().enumerate() {
3160             debug!("resolve_path ident {} {:?}", i, ident);
3161             let is_last = i == path.len() - 1;
3162             let ns = if is_last { opt_ns.unwrap_or(TypeNS) } else { TypeNS };
3163             let name = ident.node.name;
3164
3165             if i == 0 && ns == TypeNS && name == keywords::SelfValue.name() {
3166                 let mut ctxt = ident.node.ctxt.modern();
3167                 module = Some(self.resolve_self(&mut ctxt, self.current_module));
3168                 continue
3169             } else if allow_super && ns == TypeNS && name == keywords::Super.name() {
3170                 let mut ctxt = ident.node.ctxt.modern();
3171                 let self_module = match i {
3172                     0 => self.resolve_self(&mut ctxt, self.current_module),
3173                     _ => module.unwrap(),
3174                 };
3175                 if let Some(parent) = self_module.parent {
3176                     module = Some(self.resolve_self(&mut ctxt, parent));
3177                     continue
3178                 } else {
3179                     let msg = "There are too many initial `super`s.".to_string();
3180                     return PathResult::Failed(ident.span, msg, false);
3181                 }
3182             } else if i == 0 && ns == TypeNS && name == keywords::Extern.name() {
3183                 continue;
3184             }
3185             allow_super = false;
3186
3187             if ns == TypeNS {
3188                 if (i == 0 && name == keywords::CrateRoot.name()) ||
3189                    (i == 1 && name == keywords::Crate.name() &&
3190                               path[0].node.name == keywords::CrateRoot.name()) {
3191                     // `::a::b` or `::crate::a::b`
3192                     module = Some(self.resolve_crate_root(ident.node.ctxt, false));
3193                     continue
3194                 } else if i == 0 && name == keywords::DollarCrate.name() {
3195                     // `$crate::a::b`
3196                     module = Some(self.resolve_crate_root(ident.node.ctxt, true));
3197                     continue
3198                 } else if i == 1 && !token::is_path_segment_keyword(ident.node) {
3199                     let prev_name = path[0].node.name;
3200                     if prev_name == keywords::Extern.name() ||
3201                        prev_name == keywords::CrateRoot.name() &&
3202                        self.session.features_untracked().extern_absolute_paths {
3203                         // `::extern_crate::a::b`
3204                         let crate_id = self.crate_loader.resolve_crate_from_path(name, ident.span);
3205                         let crate_root =
3206                             self.get_module(DefId { krate: crate_id, index: CRATE_DEF_INDEX });
3207                         self.populate_module_if_necessary(crate_root);
3208                         module = Some(crate_root);
3209                         continue
3210                     }
3211                 }
3212             }
3213
3214             // Report special messages for path segment keywords in wrong positions.
3215             if name == keywords::CrateRoot.name() && i != 0 ||
3216                name == keywords::DollarCrate.name() && i != 0 ||
3217                name == keywords::SelfValue.name() && i != 0 ||
3218                name == keywords::SelfType.name() && i != 0 ||
3219                name == keywords::Super.name() && i != 0 ||
3220                name == keywords::Extern.name() && i != 0 ||
3221                name == keywords::Crate.name() && i != 1 &&
3222                     path[0].node.name != keywords::CrateRoot.name() {
3223                 let name_str = if name == keywords::CrateRoot.name() {
3224                     format!("crate root")
3225                 } else {
3226                     format!("`{}`", name)
3227                 };
3228                 let msg = if i == 1 && path[0].node.name == keywords::CrateRoot.name() {
3229                     format!("global paths cannot start with {}", name_str)
3230                 } else if i == 0 && name == keywords::Crate.name() {
3231                     format!("{} can only be used in absolute paths", name_str)
3232                 } else {
3233                     format!("{} in paths can only be used in start position", name_str)
3234                 };
3235                 return PathResult::Failed(ident.span, msg, false);
3236             }
3237
3238             let binding = if let Some(module) = module {
3239                 self.resolve_ident_in_module(module, ident.node, ns, false, record_used, path_span)
3240             } else if opt_ns == Some(MacroNS) {
3241                 self.resolve_lexical_macro_path_segment(ident.node, ns, record_used, path_span)
3242                     .map(MacroBinding::binding)
3243             } else {
3244                 match self.resolve_ident_in_lexical_scope(ident.node, ns, record_used, path_span) {
3245                     Some(LexicalScopeBinding::Item(binding)) => Ok(binding),
3246                     Some(LexicalScopeBinding::Def(def))
3247                             if opt_ns == Some(TypeNS) || opt_ns == Some(ValueNS) => {
3248                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3249                             def, path.len() - 1
3250                         ));
3251                     }
3252                     _ => Err(if record_used { Determined } else { Undetermined }),
3253                 }
3254             };
3255
3256             match binding {
3257                 Ok(binding) => {
3258                     let def = binding.def();
3259                     let maybe_assoc = opt_ns != Some(MacroNS) && PathSource::Type.is_expected(def);
3260                     if let Some(next_module) = binding.module() {
3261                         module = Some(next_module);
3262                     } else if def == Def::Err {
3263                         return PathResult::NonModule(err_path_resolution());
3264                     } else if opt_ns.is_some() && (is_last || maybe_assoc) {
3265                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3266                             def, path.len() - i - 1
3267                         ));
3268                     } else {
3269                         return PathResult::Failed(ident.span,
3270                                                   format!("Not a module `{}`", ident.node),
3271                                                   is_last);
3272                     }
3273                 }
3274                 Err(Undetermined) => return PathResult::Indeterminate,
3275                 Err(Determined) => {
3276                     if let Some(module) = module {
3277                         if opt_ns.is_some() && !module.is_normal() {
3278                             return PathResult::NonModule(PathResolution::with_unresolved_segments(
3279                                 module.def().unwrap(), path.len() - i
3280                             ));
3281                         }
3282                     }
3283                     let msg = if module.and_then(ModuleData::def) == self.graph_root.def() {
3284                         let is_mod = |def| match def { Def::Mod(..) => true, _ => false };
3285                         let mut candidates =
3286                             self.lookup_import_candidates(name, TypeNS, is_mod);
3287                         candidates.sort_by_key(|c| (c.path.segments.len(), c.path.to_string()));
3288                         if let Some(candidate) = candidates.get(0) {
3289                             format!("Did you mean `{}`?", candidate.path)
3290                         } else {
3291                             format!("Maybe a missing `extern crate {};`?", ident.node)
3292                         }
3293                     } else if i == 0 {
3294                         format!("Use of undeclared type or module `{}`", ident.node)
3295                     } else {
3296                         format!("Could not find `{}` in `{}`", ident.node, path[i - 1].node)
3297                     };
3298                     return PathResult::Failed(ident.span, msg, is_last);
3299                 }
3300             }
3301         }
3302
3303         PathResult::Module(module.unwrap_or(self.graph_root))
3304     }
3305
3306     // Resolve a local definition, potentially adjusting for closures.
3307     fn adjust_local_def(&mut self,
3308                         ns: Namespace,
3309                         rib_index: usize,
3310                         mut def: Def,
3311                         record_used: bool,
3312                         span: Span) -> Def {
3313         let ribs = &self.ribs[ns][rib_index + 1..];
3314
3315         // An invalid forward use of a type parameter from a previous default.
3316         if let ForwardTyParamBanRibKind = self.ribs[ns][rib_index].kind {
3317             if record_used {
3318                 resolve_error(self, span, ResolutionError::ForwardDeclaredTyParam);
3319             }
3320             assert_eq!(def, Def::Err);
3321             return Def::Err;
3322         }
3323
3324         match def {
3325             Def::Upvar(..) => {
3326                 span_bug!(span, "unexpected {:?} in bindings", def)
3327             }
3328             Def::Local(node_id) => {
3329                 for rib in ribs {
3330                     match rib.kind {
3331                         NormalRibKind | ModuleRibKind(..) | MacroDefinition(..) |
3332                         ForwardTyParamBanRibKind => {
3333                             // Nothing to do. Continue.
3334                         }
3335                         ClosureRibKind(function_id) => {
3336                             let prev_def = def;
3337
3338                             let seen = self.freevars_seen
3339                                            .entry(function_id)
3340                                            .or_insert_with(|| NodeMap());
3341                             if let Some(&index) = seen.get(&node_id) {
3342                                 def = Def::Upvar(node_id, index, function_id);
3343                                 continue;
3344                             }
3345                             let vec = self.freevars
3346                                           .entry(function_id)
3347                                           .or_insert_with(|| vec![]);
3348                             let depth = vec.len();
3349                             def = Def::Upvar(node_id, depth, function_id);
3350
3351                             if record_used {
3352                                 vec.push(Freevar {
3353                                     def: prev_def,
3354                                     span,
3355                                 });
3356                                 seen.insert(node_id, depth);
3357                             }
3358                         }
3359                         ItemRibKind | TraitOrImplItemRibKind => {
3360                             // This was an attempt to access an upvar inside a
3361                             // named function item. This is not allowed, so we
3362                             // report an error.
3363                             if record_used {
3364                                 resolve_error(self, span,
3365                                         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem);
3366                             }
3367                             return Def::Err;
3368                         }
3369                         ConstantItemRibKind => {
3370                             // Still doesn't deal with upvars
3371                             if record_used {
3372                                 resolve_error(self, span,
3373                                         ResolutionError::AttemptToUseNonConstantValueInConstant);
3374                             }
3375                             return Def::Err;
3376                         }
3377                     }
3378                 }
3379             }
3380             Def::TyParam(..) | Def::SelfTy(..) => {
3381                 for rib in ribs {
3382                     match rib.kind {
3383                         NormalRibKind | TraitOrImplItemRibKind | ClosureRibKind(..) |
3384                         ModuleRibKind(..) | MacroDefinition(..) | ForwardTyParamBanRibKind |
3385                         ConstantItemRibKind => {
3386                             // Nothing to do. Continue.
3387                         }
3388                         ItemRibKind => {
3389                             // This was an attempt to use a type parameter outside
3390                             // its scope.
3391                             if record_used {
3392                                 resolve_error(self, span,
3393                                     ResolutionError::TypeParametersFromOuterFunction(def));
3394                             }
3395                             return Def::Err;
3396                         }
3397                     }
3398                 }
3399             }
3400             _ => {}
3401         }
3402         return def;
3403     }
3404
3405     fn lookup_assoc_candidate<FilterFn>(&mut self,
3406                                         ident: Ident,
3407                                         ns: Namespace,
3408                                         filter_fn: FilterFn)
3409                                         -> Option<AssocSuggestion>
3410         where FilterFn: Fn(Def) -> bool
3411     {
3412         fn extract_node_id(t: &Ty) -> Option<NodeId> {
3413             match t.node {
3414                 TyKind::Path(None, _) => Some(t.id),
3415                 TyKind::Rptr(_, ref mut_ty) => extract_node_id(&mut_ty.ty),
3416                 // This doesn't handle the remaining `Ty` variants as they are not
3417                 // that commonly the self_type, it might be interesting to provide
3418                 // support for those in future.
3419                 _ => None,
3420             }
3421         }
3422
3423         // Fields are generally expected in the same contexts as locals.
3424         if filter_fn(Def::Local(ast::DUMMY_NODE_ID)) {
3425             if let Some(node_id) = self.current_self_type.as_ref().and_then(extract_node_id) {
3426                 // Look for a field with the same name in the current self_type.
3427                 if let Some(resolution) = self.def_map.get(&node_id) {
3428                     match resolution.base_def() {
3429                         Def::Struct(did) | Def::Union(did)
3430                                 if resolution.unresolved_segments() == 0 => {
3431                             if let Some(field_names) = self.field_names.get(&did) {
3432                                 if field_names.iter().any(|&field_name| ident.name == field_name) {
3433                                     return Some(AssocSuggestion::Field);
3434                                 }
3435                             }
3436                         }
3437                         _ => {}
3438                     }
3439                 }
3440             }
3441         }
3442
3443         // Look for associated items in the current trait.
3444         if let Some((module, _)) = self.current_trait_ref {
3445             if let Ok(binding) =
3446                     self.resolve_ident_in_module(module, ident, ns, false, false, module.span) {
3447                 let def = binding.def();
3448                 if filter_fn(def) {
3449                     return Some(if self.has_self.contains(&def.def_id()) {
3450                         AssocSuggestion::MethodWithSelf
3451                     } else {
3452                         AssocSuggestion::AssocItem
3453                     });
3454                 }
3455             }
3456         }
3457
3458         None
3459     }
3460
3461     fn lookup_typo_candidate<FilterFn>(&mut self,
3462                                        path: &[SpannedIdent],
3463                                        ns: Namespace,
3464                                        filter_fn: FilterFn,
3465                                        span: Span)
3466                                        -> Option<Symbol>
3467         where FilterFn: Fn(Def) -> bool
3468     {
3469         let add_module_candidates = |module: Module, names: &mut Vec<Name>| {
3470             for (&(ident, _), resolution) in module.resolutions.borrow().iter() {
3471                 if let Some(binding) = resolution.borrow().binding {
3472                     if filter_fn(binding.def()) {
3473                         names.push(ident.name);
3474                     }
3475                 }
3476             }
3477         };
3478
3479         let mut names = Vec::new();
3480         if path.len() == 1 {
3481             // Search in lexical scope.
3482             // Walk backwards up the ribs in scope and collect candidates.
3483             for rib in self.ribs[ns].iter().rev() {
3484                 // Locals and type parameters
3485                 for (ident, def) in &rib.bindings {
3486                     if filter_fn(*def) {
3487                         names.push(ident.name);
3488                     }
3489                 }
3490                 // Items in scope
3491                 if let ModuleRibKind(module) = rib.kind {
3492                     // Items from this module
3493                     add_module_candidates(module, &mut names);
3494
3495                     if let ModuleKind::Block(..) = module.kind {
3496                         // We can see through blocks
3497                     } else {
3498                         // Items from the prelude
3499                         if let Some(prelude) = self.prelude {
3500                             if !module.no_implicit_prelude {
3501                                 add_module_candidates(prelude, &mut names);
3502                             }
3503                         }
3504                         break;
3505                     }
3506                 }
3507             }
3508             // Add primitive types to the mix
3509             if filter_fn(Def::PrimTy(TyBool)) {
3510                 for (name, _) in &self.primitive_type_table.primitive_types {
3511                     names.push(*name);
3512                 }
3513             }
3514         } else {
3515             // Search in module.
3516             let mod_path = &path[..path.len() - 1];
3517             if let PathResult::Module(module) = self.resolve_path(mod_path, Some(TypeNS),
3518                                                                   false, span) {
3519                 add_module_candidates(module, &mut names);
3520             }
3521         }
3522
3523         let name = path[path.len() - 1].node.name;
3524         // Make sure error reporting is deterministic.
3525         names.sort_by_key(|name| name.as_str());
3526         match find_best_match_for_name(names.iter(), &name.as_str(), None) {
3527             Some(found) if found != name => Some(found),
3528             _ => None,
3529         }
3530     }
3531
3532     fn with_resolved_label<F>(&mut self, label: Option<Label>, id: NodeId, f: F)
3533         where F: FnOnce(&mut Resolver)
3534     {
3535         if let Some(label) = label {
3536             let def = Def::Label(id);
3537             self.with_label_rib(|this| {
3538                 this.label_ribs.last_mut().unwrap().bindings.insert(label.ident, def);
3539                 f(this);
3540             });
3541         } else {
3542             f(self);
3543         }
3544     }
3545
3546     fn resolve_labeled_block(&mut self, label: Option<Label>, id: NodeId, block: &Block) {
3547         self.with_resolved_label(label, id, |this| this.visit_block(block));
3548     }
3549
3550     fn resolve_expr(&mut self, expr: &Expr, parent: Option<&Expr>) {
3551         // First, record candidate traits for this expression if it could
3552         // result in the invocation of a method call.
3553
3554         self.record_candidate_traits_for_expr_if_necessary(expr);
3555
3556         // Next, resolve the node.
3557         match expr.node {
3558             ExprKind::Path(ref qself, ref path) => {
3559                 self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
3560                 visit::walk_expr(self, expr);
3561             }
3562
3563             ExprKind::Struct(ref path, ..) => {
3564                 self.smart_resolve_path(expr.id, None, path, PathSource::Struct);
3565                 visit::walk_expr(self, expr);
3566             }
3567
3568             ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
3569                 match self.search_label(label.ident, |rib, id| rib.bindings.get(&id).cloned()) {
3570                     None => {
3571                         // Search again for close matches...
3572                         // Picks the first label that is "close enough", which is not necessarily
3573                         // the closest match
3574                         let close_match = self.search_label(label.ident, |rib, ident| {
3575                             let names = rib.bindings.iter().map(|(id, _)| &id.name);
3576                             find_best_match_for_name(names, &*ident.name.as_str(), None)
3577                         });
3578                         self.record_def(expr.id, err_path_resolution());
3579                         resolve_error(self,
3580                                       label.span,
3581                                       ResolutionError::UndeclaredLabel(&label.ident.name.as_str(),
3582                                                                        close_match));
3583                     }
3584                     Some(def @ Def::Label(_)) => {
3585                         // Since this def is a label, it is never read.
3586                         self.record_def(expr.id, PathResolution::new(def));
3587                     }
3588                     Some(_) => {
3589                         span_bug!(expr.span, "label wasn't mapped to a label def!");
3590                     }
3591                 }
3592
3593                 // visit `break` argument if any
3594                 visit::walk_expr(self, expr);
3595             }
3596
3597             ExprKind::IfLet(ref pats, ref subexpression, ref if_block, ref optional_else) => {
3598                 self.visit_expr(subexpression);
3599
3600                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
3601                 let mut bindings_list = FxHashMap();
3602                 for pat in pats {
3603                     self.resolve_pattern(pat, PatternSource::IfLet, &mut bindings_list);
3604                 }
3605                 // This has to happen *after* we determine which pat_idents are variants
3606                 self.check_consistent_bindings(pats);
3607                 self.visit_block(if_block);
3608                 self.ribs[ValueNS].pop();
3609
3610                 optional_else.as_ref().map(|expr| self.visit_expr(expr));
3611             }
3612
3613             ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),
3614
3615             ExprKind::While(ref subexpression, ref block, label) => {
3616                 self.with_resolved_label(label, expr.id, |this| {
3617                     this.visit_expr(subexpression);
3618                     this.visit_block(block);
3619                 });
3620             }
3621
3622             ExprKind::WhileLet(ref pats, ref subexpression, ref block, label) => {
3623                 self.with_resolved_label(label, expr.id, |this| {
3624                     this.visit_expr(subexpression);
3625                     this.ribs[ValueNS].push(Rib::new(NormalRibKind));
3626                     let mut bindings_list = FxHashMap();
3627                     for pat in pats {
3628                         this.resolve_pattern(pat, PatternSource::WhileLet, &mut bindings_list);
3629                     }
3630                     // This has to happen *after* we determine which pat_idents are variants
3631                     this.check_consistent_bindings(pats);
3632                     this.visit_block(block);
3633                     this.ribs[ValueNS].pop();
3634                 });
3635             }
3636
3637             ExprKind::ForLoop(ref pattern, ref subexpression, ref block, label) => {
3638                 self.visit_expr(subexpression);
3639                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
3640                 self.resolve_pattern(pattern, PatternSource::For, &mut FxHashMap());
3641
3642                 self.resolve_labeled_block(label, expr.id, block);
3643
3644                 self.ribs[ValueNS].pop();
3645             }
3646
3647             // Equivalent to `visit::walk_expr` + passing some context to children.
3648             ExprKind::Field(ref subexpression, _) => {
3649                 self.resolve_expr(subexpression, Some(expr));
3650             }
3651             ExprKind::MethodCall(ref segment, ref arguments) => {
3652                 let mut arguments = arguments.iter();
3653                 self.resolve_expr(arguments.next().unwrap(), Some(expr));
3654                 for argument in arguments {
3655                     self.resolve_expr(argument, None);
3656                 }
3657                 self.visit_path_segment(expr.span, segment);
3658             }
3659
3660             ExprKind::Repeat(ref element, ref count) => {
3661                 self.visit_expr(element);
3662                 self.with_constant_rib(|this| {
3663                     this.visit_expr(count);
3664                 });
3665             }
3666             ExprKind::Call(ref callee, ref arguments) => {
3667                 self.resolve_expr(callee, Some(expr));
3668                 for argument in arguments {
3669                     self.resolve_expr(argument, None);
3670                 }
3671             }
3672             ExprKind::Type(ref type_expr, _) => {
3673                 self.current_type_ascription.push(type_expr.span);
3674                 visit::walk_expr(self, expr);
3675                 self.current_type_ascription.pop();
3676             }
3677             _ => {
3678                 visit::walk_expr(self, expr);
3679             }
3680         }
3681     }
3682
3683     fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &Expr) {
3684         match expr.node {
3685             ExprKind::Field(_, name) => {
3686                 // FIXME(#6890): Even though you can't treat a method like a
3687                 // field, we need to add any trait methods we find that match
3688                 // the field name so that we can do some nice error reporting
3689                 // later on in typeck.
3690                 let traits = self.get_traits_containing_item(name.node, ValueNS);
3691                 self.trait_map.insert(expr.id, traits);
3692             }
3693             ExprKind::MethodCall(ref segment, ..) => {
3694                 debug!("(recording candidate traits for expr) recording traits for {}",
3695                        expr.id);
3696                 let traits = self.get_traits_containing_item(segment.identifier, ValueNS);
3697                 self.trait_map.insert(expr.id, traits);
3698             }
3699             _ => {
3700                 // Nothing to do.
3701             }
3702         }
3703     }
3704
3705     fn get_traits_containing_item(&mut self, mut ident: Ident, ns: Namespace)
3706                                   -> Vec<TraitCandidate> {
3707         debug!("(getting traits containing item) looking for '{}'", ident.name);
3708
3709         let mut found_traits = Vec::new();
3710         // Look for the current trait.
3711         if let Some((module, _)) = self.current_trait_ref {
3712             if self.resolve_ident_in_module(module, ident, ns, false, false, module.span).is_ok() {
3713                 let def_id = module.def_id().unwrap();
3714                 found_traits.push(TraitCandidate { def_id: def_id, import_id: None });
3715             }
3716         }
3717
3718         ident.ctxt = ident.ctxt.modern();
3719         let mut search_module = self.current_module;
3720         loop {
3721             self.get_traits_in_module_containing_item(ident, ns, search_module, &mut found_traits);
3722             search_module =
3723                 unwrap_or!(self.hygienic_lexical_parent(search_module, &mut ident.ctxt), break);
3724         }
3725
3726         if let Some(prelude) = self.prelude {
3727             if !search_module.no_implicit_prelude {
3728                 self.get_traits_in_module_containing_item(ident, ns, prelude, &mut found_traits);
3729             }
3730         }
3731
3732         found_traits
3733     }
3734
3735     fn get_traits_in_module_containing_item(&mut self,
3736                                             ident: Ident,
3737                                             ns: Namespace,
3738                                             module: Module<'a>,
3739                                             found_traits: &mut Vec<TraitCandidate>) {
3740         let mut traits = module.traits.borrow_mut();
3741         if traits.is_none() {
3742             let mut collected_traits = Vec::new();
3743             module.for_each_child(|name, ns, binding| {
3744                 if ns != TypeNS { return }
3745                 if let Def::Trait(_) = binding.def() {
3746                     collected_traits.push((name, binding));
3747                 }
3748             });
3749             *traits = Some(collected_traits.into_boxed_slice());
3750         }
3751
3752         for &(trait_name, binding) in traits.as_ref().unwrap().iter() {
3753             let module = binding.module().unwrap();
3754             let mut ident = ident;
3755             if ident.ctxt.glob_adjust(module.expansion, binding.span.ctxt().modern()).is_none() {
3756                 continue
3757             }
3758             if self.resolve_ident_in_module_unadjusted(module, ident, ns, false, false, module.span)
3759                    .is_ok() {
3760                 let import_id = match binding.kind {
3761                     NameBindingKind::Import { directive, .. } => {
3762                         self.maybe_unused_trait_imports.insert(directive.id);
3763                         self.add_to_glob_map(directive.id, trait_name);
3764                         Some(directive.id)
3765                     }
3766                     _ => None,
3767                 };
3768                 let trait_def_id = module.def_id().unwrap();
3769                 found_traits.push(TraitCandidate { def_id: trait_def_id, import_id: import_id });
3770             }
3771         }
3772     }
3773
3774     /// When name resolution fails, this method can be used to look up candidate
3775     /// entities with the expected name. It allows filtering them using the
3776     /// supplied predicate (which should be used to only accept the types of
3777     /// definitions expected e.g. traits). The lookup spans across all crates.
3778     ///
3779     /// NOTE: The method does not look into imports, but this is not a problem,
3780     /// since we report the definitions (thus, the de-aliased imports).
3781     fn lookup_import_candidates<FilterFn>(&mut self,
3782                                           lookup_name: Name,
3783                                           namespace: Namespace,
3784                                           filter_fn: FilterFn)
3785                                           -> Vec<ImportSuggestion>
3786         where FilterFn: Fn(Def) -> bool
3787     {
3788         let mut candidates = Vec::new();
3789         let mut worklist = Vec::new();
3790         let mut seen_modules = FxHashSet();
3791         worklist.push((self.graph_root, Vec::new(), false));
3792
3793         while let Some((in_module,
3794                         path_segments,
3795                         in_module_is_extern)) = worklist.pop() {
3796             self.populate_module_if_necessary(in_module);
3797
3798             // We have to visit module children in deterministic order to avoid
3799             // instabilities in reported imports (#43552).
3800             in_module.for_each_child_stable(|ident, ns, name_binding| {
3801                 // avoid imports entirely
3802                 if name_binding.is_import() && !name_binding.is_extern_crate() { return; }
3803                 // avoid non-importable candidates as well
3804                 if !name_binding.is_importable() { return; }
3805
3806                 // collect results based on the filter function
3807                 if ident.name == lookup_name && ns == namespace {
3808                     if filter_fn(name_binding.def()) {
3809                         // create the path
3810                         let mut segms = path_segments.clone();
3811                         segms.push(ast::PathSegment::from_ident(ident, name_binding.span));
3812                         let path = Path {
3813                             span: name_binding.span,
3814                             segments: segms,
3815                         };
3816                         // the entity is accessible in the following cases:
3817                         // 1. if it's defined in the same crate, it's always
3818                         // accessible (since private entities can be made public)
3819                         // 2. if it's defined in another crate, it's accessible
3820                         // only if both the module is public and the entity is
3821                         // declared as public (due to pruning, we don't explore
3822                         // outside crate private modules => no need to check this)
3823                         if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
3824                             candidates.push(ImportSuggestion { path: path });
3825                         }
3826                     }
3827                 }
3828
3829                 // collect submodules to explore
3830                 if let Some(module) = name_binding.module() {
3831                     // form the path
3832                     let mut path_segments = path_segments.clone();
3833                     path_segments.push(ast::PathSegment::from_ident(ident, name_binding.span));
3834
3835                     if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
3836                         // add the module to the lookup
3837                         let is_extern = in_module_is_extern || name_binding.is_extern_crate();
3838                         if seen_modules.insert(module.def_id().unwrap()) {
3839                             worklist.push((module, path_segments, is_extern));
3840                         }
3841                     }
3842                 }
3843             })
3844         }
3845
3846         candidates
3847     }
3848
3849     fn find_module(&mut self,
3850                    module_def: Def)
3851                    -> Option<(Module<'a>, ImportSuggestion)>
3852     {
3853         let mut result = None;
3854         let mut worklist = Vec::new();
3855         let mut seen_modules = FxHashSet();
3856         worklist.push((self.graph_root, Vec::new()));
3857
3858         while let Some((in_module, path_segments)) = worklist.pop() {
3859             // abort if the module is already found
3860             if let Some(_) = result { break; }
3861
3862             self.populate_module_if_necessary(in_module);
3863
3864             in_module.for_each_child_stable(|ident, _, name_binding| {
3865                 // abort if the module is already found or if name_binding is private external
3866                 if result.is_some() || !name_binding.vis.is_visible_locally() {
3867                     return
3868                 }
3869                 if let Some(module) = name_binding.module() {
3870                     // form the path
3871                     let mut path_segments = path_segments.clone();
3872                     path_segments.push(ast::PathSegment::from_ident(ident, name_binding.span));
3873                     if module.def() == Some(module_def) {
3874                         let path = Path {
3875                             span: name_binding.span,
3876                             segments: path_segments,
3877                         };
3878                         result = Some((module, ImportSuggestion { path: path }));
3879                     } else {
3880                         // add the module to the lookup
3881                         if seen_modules.insert(module.def_id().unwrap()) {
3882                             worklist.push((module, path_segments));
3883                         }
3884                     }
3885                 }
3886             });
3887         }
3888
3889         result
3890     }
3891
3892     fn collect_enum_variants(&mut self, enum_def: Def) -> Option<Vec<Path>> {
3893         if let Def::Enum(..) = enum_def {} else {
3894             panic!("Non-enum def passed to collect_enum_variants: {:?}", enum_def)
3895         }
3896
3897         self.find_module(enum_def).map(|(enum_module, enum_import_suggestion)| {
3898             self.populate_module_if_necessary(enum_module);
3899
3900             let mut variants = Vec::new();
3901             enum_module.for_each_child_stable(|ident, _, name_binding| {
3902                 if let Def::Variant(..) = name_binding.def() {
3903                     let mut segms = enum_import_suggestion.path.segments.clone();
3904                     segms.push(ast::PathSegment::from_ident(ident, name_binding.span));
3905                     variants.push(Path {
3906                         span: name_binding.span,
3907                         segments: segms,
3908                     });
3909                 }
3910             });
3911             variants
3912         })
3913     }
3914
3915     fn record_def(&mut self, node_id: NodeId, resolution: PathResolution) {
3916         debug!("(recording def) recording {:?} for {}", resolution, node_id);
3917         if let Some(prev_res) = self.def_map.insert(node_id, resolution) {
3918             panic!("path resolved multiple times ({:?} before, {:?} now)", prev_res, resolution);
3919         }
3920     }
3921
3922     fn resolve_visibility(&mut self, vis: &ast::Visibility) -> ty::Visibility {
3923         match vis.node {
3924             ast::VisibilityKind::Public => ty::Visibility::Public,
3925             ast::VisibilityKind::Crate(..) => {
3926                 ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX))
3927             }
3928             ast::VisibilityKind::Inherited => {
3929                 ty::Visibility::Restricted(self.current_module.normal_ancestor_id)
3930             }
3931             ast::VisibilityKind::Restricted { ref path, id, .. } => {
3932                 // Visibilities are resolved as global by default, add starting root segment.
3933                 let segments = path.make_root().iter().chain(path.segments.iter())
3934                     .map(|seg| respan(seg.span, seg.identifier))
3935                     .collect::<Vec<_>>();
3936                 let def = self.smart_resolve_path_fragment(id, None, &segments, path.span,
3937                                                            PathSource::Visibility).base_def();
3938                 if def == Def::Err {
3939                     ty::Visibility::Public
3940                 } else {
3941                     let vis = ty::Visibility::Restricted(def.def_id());
3942                     if self.is_accessible(vis) {
3943                         vis
3944                     } else {
3945                         self.session.span_err(path.span, "visibilities can only be restricted \
3946                                                           to ancestor modules");
3947                         ty::Visibility::Public
3948                     }
3949                 }
3950             }
3951         }
3952     }
3953
3954     fn is_accessible(&self, vis: ty::Visibility) -> bool {
3955         vis.is_accessible_from(self.current_module.normal_ancestor_id, self)
3956     }
3957
3958     fn is_accessible_from(&self, vis: ty::Visibility, module: Module<'a>) -> bool {
3959         vis.is_accessible_from(module.normal_ancestor_id, self)
3960     }
3961
3962     fn report_errors(&mut self, krate: &Crate) {
3963         self.report_shadowing_errors();
3964         self.report_with_use_injections(krate);
3965         self.report_proc_macro_import(krate);
3966         let mut reported_spans = FxHashSet();
3967
3968         for &AmbiguityError { span, name, b1, b2, lexical, legacy } in &self.ambiguity_errors {
3969             if !reported_spans.insert(span) { continue }
3970             let participle = |binding: &NameBinding| {
3971                 if binding.is_import() { "imported" } else { "defined" }
3972             };
3973             let msg1 = format!("`{}` could refer to the name {} here", name, participle(b1));
3974             let msg2 = format!("`{}` could also refer to the name {} here", name, participle(b2));
3975             let note = if b1.expansion == Mark::root() || !lexical && b1.is_glob_import() {
3976                 format!("consider adding an explicit import of `{}` to disambiguate", name)
3977             } else if let Def::Macro(..) = b1.def() {
3978                 format!("macro-expanded {} do not shadow",
3979                         if b1.is_import() { "macro imports" } else { "macros" })
3980             } else {
3981                 format!("macro-expanded {} do not shadow when used in a macro invocation path",
3982                         if b1.is_import() { "imports" } else { "items" })
3983             };
3984             if legacy {
3985                 let id = match b2.kind {
3986                     NameBindingKind::Import { directive, .. } => directive.id,
3987                     _ => unreachable!(),
3988                 };
3989                 let mut span = MultiSpan::from_span(span);
3990                 span.push_span_label(b1.span, msg1);
3991                 span.push_span_label(b2.span, msg2);
3992                 let msg = format!("`{}` is ambiguous", name);
3993                 self.session.buffer_lint(lint::builtin::LEGACY_IMPORTS, id, span, &msg);
3994             } else {
3995                 let mut err =
3996                     struct_span_err!(self.session, span, E0659, "`{}` is ambiguous", name);
3997                 err.span_note(b1.span, &msg1);
3998                 match b2.def() {
3999                     Def::Macro(..) if b2.span == DUMMY_SP =>
4000                         err.note(&format!("`{}` is also a builtin macro", name)),
4001                     _ => err.span_note(b2.span, &msg2),
4002                 };
4003                 err.note(&note).emit();
4004             }
4005         }
4006
4007         for &PrivacyError(span, name, binding) in &self.privacy_errors {
4008             if !reported_spans.insert(span) { continue }
4009             span_err!(self.session, span, E0603, "{} `{}` is private", binding.descr(), name);
4010         }
4011     }
4012
4013     fn report_with_use_injections(&mut self, krate: &Crate) {
4014         for UseError { mut err, candidates, node_id, better } in self.use_injections.drain(..) {
4015             let (span, found_use) = UsePlacementFinder::check(krate, node_id);
4016             if !candidates.is_empty() {
4017                 show_candidates(&mut err, span, &candidates, better, found_use);
4018             }
4019             err.emit();
4020         }
4021     }
4022
4023     fn report_shadowing_errors(&mut self) {
4024         for (ident, scope) in replace(&mut self.lexical_macro_resolutions, Vec::new()) {
4025             self.resolve_legacy_scope(scope, ident, true);
4026         }
4027
4028         let mut reported_errors = FxHashSet();
4029         for binding in replace(&mut self.disallowed_shadowing, Vec::new()) {
4030             if self.resolve_legacy_scope(&binding.parent, binding.ident, false).is_some() &&
4031                reported_errors.insert((binding.ident, binding.span)) {
4032                 let msg = format!("`{}` is already in scope", binding.ident);
4033                 self.session.struct_span_err(binding.span, &msg)
4034                     .note("macro-expanded `macro_rules!`s may not shadow \
4035                            existing macros (see RFC 1560)")
4036                     .emit();
4037             }
4038         }
4039     }
4040
4041     fn report_conflict<'b>(&mut self,
4042                        parent: Module,
4043                        ident: Ident,
4044                        ns: Namespace,
4045                        new_binding: &NameBinding<'b>,
4046                        old_binding: &NameBinding<'b>) {
4047         // Error on the second of two conflicting names
4048         if old_binding.span.lo() > new_binding.span.lo() {
4049             return self.report_conflict(parent, ident, ns, old_binding, new_binding);
4050         }
4051
4052         let container = match parent.kind {
4053             ModuleKind::Def(Def::Mod(_), _) => "module",
4054             ModuleKind::Def(Def::Trait(_), _) => "trait",
4055             ModuleKind::Block(..) => "block",
4056             _ => "enum",
4057         };
4058
4059         let old_noun = match old_binding.is_import() {
4060             true => "import",
4061             false => "definition",
4062         };
4063
4064         let new_participle = match new_binding.is_import() {
4065             true => "imported",
4066             false => "defined",
4067         };
4068
4069         let (name, span) = (ident.name, self.session.codemap().def_span(new_binding.span));
4070
4071         if let Some(s) = self.name_already_seen.get(&name) {
4072             if s == &span {
4073                 return;
4074             }
4075         }
4076
4077         let old_kind = match (ns, old_binding.module()) {
4078             (ValueNS, _) => "value",
4079             (MacroNS, _) => "macro",
4080             (TypeNS, _) if old_binding.is_extern_crate() => "extern crate",
4081             (TypeNS, Some(module)) if module.is_normal() => "module",
4082             (TypeNS, Some(module)) if module.is_trait() => "trait",
4083             (TypeNS, _) => "type",
4084         };
4085
4086         let namespace = match ns {
4087             ValueNS => "value",
4088             MacroNS => "macro",
4089             TypeNS => "type",
4090         };
4091
4092         let msg = format!("the name `{}` is defined multiple times", name);
4093
4094         let mut err = match (old_binding.is_extern_crate(), new_binding.is_extern_crate()) {
4095             (true, true) => struct_span_err!(self.session, span, E0259, "{}", msg),
4096             (true, _) | (_, true) => match new_binding.is_import() && old_binding.is_import() {
4097                 true => struct_span_err!(self.session, span, E0254, "{}", msg),
4098                 false => struct_span_err!(self.session, span, E0260, "{}", msg),
4099             },
4100             _ => match (old_binding.is_import(), new_binding.is_import()) {
4101                 (false, false) => struct_span_err!(self.session, span, E0428, "{}", msg),
4102                 (true, true) => struct_span_err!(self.session, span, E0252, "{}", msg),
4103                 _ => struct_span_err!(self.session, span, E0255, "{}", msg),
4104             },
4105         };
4106
4107         err.note(&format!("`{}` must be defined only once in the {} namespace of this {}",
4108                           name,
4109                           namespace,
4110                           container));
4111
4112         err.span_label(span, format!("`{}` re{} here", name, new_participle));
4113         if old_binding.span != DUMMY_SP {
4114             err.span_label(self.session.codemap().def_span(old_binding.span),
4115                            format!("previous {} of the {} `{}` here", old_noun, old_kind, name));
4116         }
4117
4118         // See https://github.com/rust-lang/rust/issues/32354
4119         if old_binding.is_import() || new_binding.is_import() {
4120             let binding = if new_binding.is_import() && new_binding.span != DUMMY_SP {
4121                 new_binding
4122             } else {
4123                 old_binding
4124             };
4125
4126             let cm = self.session.codemap();
4127             let rename_msg = "You can use `as` to change the binding name of the import";
4128
4129             if let (Ok(snippet), false) = (cm.span_to_snippet(binding.span),
4130                                            binding.is_renamed_extern_crate()) {
4131                 let suggested_name = if name.as_str().chars().next().unwrap().is_uppercase() {
4132                     format!("Other{}", name)
4133                 } else {
4134                     format!("other_{}", name)
4135                 };
4136
4137                 err.span_suggestion(binding.span,
4138                                     rename_msg,
4139                                     if snippet.ends_with(';') {
4140                                         format!("{} as {};",
4141                                                 &snippet[..snippet.len()-1],
4142                                                 suggested_name)
4143                                     } else {
4144                                         format!("{} as {}", snippet, suggested_name)
4145                                     });
4146             } else {
4147                 err.span_label(binding.span, rename_msg);
4148             }
4149         }
4150
4151         err.emit();
4152         self.name_already_seen.insert(name, span);
4153     }
4154
4155     fn warn_legacy_self_import(&self, directive: &'a ImportDirective<'a>) {
4156         let (id, span) = (directive.id, directive.span);
4157         let msg = "`self` no longer imports values";
4158         self.session.buffer_lint(lint::builtin::LEGACY_IMPORTS, id, span, msg);
4159     }
4160
4161     fn check_proc_macro_attrs(&mut self, attrs: &[ast::Attribute]) {
4162         if self.proc_macro_enabled { return; }
4163
4164         for attr in attrs {
4165             if attr.path.segments.len() > 1 {
4166                 continue
4167             }
4168             let ident = attr.path.segments[0].identifier;
4169             let result = self.resolve_lexical_macro_path_segment(ident,
4170                                                                  MacroNS,
4171                                                                  false,
4172                                                                  attr.path.span);
4173             if let Ok(binding) = result {
4174                 if let SyntaxExtension::AttrProcMacro(..) = *binding.binding().get_macro(self) {
4175                     attr::mark_known(attr);
4176
4177                     let msg = "attribute procedural macros are experimental";
4178                     let feature = "proc_macro";
4179
4180                     feature_err(&self.session.parse_sess, feature,
4181                                 attr.span, GateIssue::Language, msg)
4182                         .span_label(binding.span(), "procedural macro imported here")
4183                         .emit();
4184                 }
4185             }
4186         }
4187     }
4188 }
4189
4190 fn is_self_type(path: &[SpannedIdent], namespace: Namespace) -> bool {
4191     namespace == TypeNS && path.len() == 1 && path[0].node.name == keywords::SelfType.name()
4192 }
4193
4194 fn is_self_value(path: &[SpannedIdent], namespace: Namespace) -> bool {
4195     namespace == ValueNS && path.len() == 1 && path[0].node.name == keywords::SelfValue.name()
4196 }
4197
4198 fn names_to_string(idents: &[SpannedIdent]) -> String {
4199     let mut result = String::new();
4200     for (i, ident) in idents.iter()
4201                             .filter(|i| i.node.name != keywords::CrateRoot.name())
4202                             .enumerate() {
4203         if i > 0 {
4204             result.push_str("::");
4205         }
4206         result.push_str(&ident.node.name.as_str());
4207     }
4208     result
4209 }
4210
4211 fn path_names_to_string(path: &Path) -> String {
4212     names_to_string(&path.segments.iter()
4213                         .map(|seg| respan(seg.span, seg.identifier))
4214                         .collect::<Vec<_>>())
4215 }
4216
4217 /// Get the path for an enum and the variant from an `ImportSuggestion` for an enum variant.
4218 fn import_candidate_to_paths(suggestion: &ImportSuggestion) -> (Span, String, String) {
4219     let variant_path = &suggestion.path;
4220     let variant_path_string = path_names_to_string(variant_path);
4221
4222     let path_len = suggestion.path.segments.len();
4223     let enum_path = ast::Path {
4224         span: suggestion.path.span,
4225         segments: suggestion.path.segments[0..path_len - 1].to_vec(),
4226     };
4227     let enum_path_string = path_names_to_string(&enum_path);
4228
4229     (suggestion.path.span, variant_path_string, enum_path_string)
4230 }
4231
4232
4233 /// When an entity with a given name is not available in scope, we search for
4234 /// entities with that name in all crates. This method allows outputting the
4235 /// results of this search in a programmer-friendly way
4236 fn show_candidates(err: &mut DiagnosticBuilder,
4237                    // This is `None` if all placement locations are inside expansions
4238                    span: Option<Span>,
4239                    candidates: &[ImportSuggestion],
4240                    better: bool,
4241                    found_use: bool) {
4242
4243     // we want consistent results across executions, but candidates are produced
4244     // by iterating through a hash map, so make sure they are ordered:
4245     let mut path_strings: Vec<_> =
4246         candidates.into_iter().map(|c| path_names_to_string(&c.path)).collect();
4247     path_strings.sort();
4248
4249     let better = if better { "better " } else { "" };
4250     let msg_diff = match path_strings.len() {
4251         1 => " is found in another module, you can import it",
4252         _ => "s are found in other modules, you can import them",
4253     };
4254     let msg = format!("possible {}candidate{} into scope", better, msg_diff);
4255
4256     if let Some(span) = span {
4257         for candidate in &mut path_strings {
4258             // produce an additional newline to separate the new use statement
4259             // from the directly following item.
4260             let additional_newline = if found_use {
4261                 ""
4262             } else {
4263                 "\n"
4264             };
4265             *candidate = format!("use {};\n{}", candidate, additional_newline);
4266         }
4267
4268         err.span_suggestions(span, &msg, path_strings);
4269     } else {
4270         let mut msg = msg;
4271         msg.push(':');
4272         for candidate in path_strings {
4273             msg.push('\n');
4274             msg.push_str(&candidate);
4275         }
4276     }
4277 }
4278
4279 /// A somewhat inefficient routine to obtain the name of a module.
4280 fn module_to_string(module: Module) -> Option<String> {
4281     let mut names = Vec::new();
4282
4283     fn collect_mod(names: &mut Vec<Ident>, module: Module) {
4284         if let ModuleKind::Def(_, name) = module.kind {
4285             if let Some(parent) = module.parent {
4286                 names.push(Ident::with_empty_ctxt(name));
4287                 collect_mod(names, parent);
4288             }
4289         } else {
4290             // danger, shouldn't be ident?
4291             names.push(Ident::from_str("<opaque>"));
4292             collect_mod(names, module.parent.unwrap());
4293         }
4294     }
4295     collect_mod(&mut names, module);
4296
4297     if names.is_empty() {
4298         return None;
4299     }
4300     Some(names_to_string(&names.into_iter()
4301                         .rev()
4302                         .map(|n| dummy_spanned(n))
4303                         .collect::<Vec<_>>()))
4304 }
4305
4306 fn err_path_resolution() -> PathResolution {
4307     PathResolution::new(Def::Err)
4308 }
4309
4310 #[derive(PartialEq,Copy, Clone)]
4311 pub enum MakeGlobMap {
4312     Yes,
4313     No,
4314 }
4315
4316 __build_diagnostic_array! { librustc_resolve, DIAGNOSTICS }