]> git.lizzy.rs Git - rust.git/blob - src/librustc_resolve/lib.rs
Add E0603 error code
[rust.git] / src / librustc_resolve / lib.rs
1 // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 #![crate_name = "rustc_resolve"]
12 #![crate_type = "dylib"]
13 #![crate_type = "rlib"]
14 #![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
15       html_favicon_url = "https://doc.rust-lang.org/favicon.ico",
16       html_root_url = "https://doc.rust-lang.org/nightly/")]
17 #![deny(warnings)]
18
19 #![feature(associated_consts)]
20 #![feature(rustc_diagnostic_macros)]
21
22 #![cfg_attr(stage0, unstable(feature = "rustc_private", issue = "27812"))]
23 #![cfg_attr(stage0, feature(rustc_private))]
24 #![cfg_attr(stage0, feature(staged_api))]
25
26 #[macro_use]
27 extern crate log;
28 #[macro_use]
29 extern crate syntax;
30 extern crate syntax_pos;
31 extern crate rustc_errors as errors;
32 extern crate arena;
33 #[macro_use]
34 extern crate rustc;
35
36 use self::Namespace::*;
37 use self::TypeParameters::*;
38 use self::RibKind::*;
39
40 use rustc::hir::map::{Definitions, DefCollector};
41 use rustc::hir::{self, PrimTy, TyBool, TyChar, TyFloat, TyInt, TyUint, TyStr};
42 use rustc::middle::cstore::CrateLoader;
43 use rustc::session::Session;
44 use rustc::lint;
45 use rustc::hir::def::*;
46 use rustc::hir::def_id::{CRATE_DEF_INDEX, LOCAL_CRATE, DefId};
47 use rustc::ty;
48 use rustc::hir::{Freevar, FreevarMap, TraitCandidate, TraitMap, GlobMap};
49 use rustc::util::nodemap::{NodeMap, NodeSet, FxHashMap, FxHashSet, DefIdMap};
50
51 use syntax::ext::hygiene::{Mark, SyntaxContext};
52 use syntax::ast::{self, Name, NodeId, Ident, SpannedIdent, FloatTy, IntTy, UintTy};
53 use syntax::ext::base::SyntaxExtension;
54 use syntax::ext::base::Determinacy::{self, Determined, Undetermined};
55 use syntax::ext::base::MacroKind;
56 use syntax::symbol::{Symbol, keywords};
57 use syntax::util::lev_distance::find_best_match_for_name;
58
59 use syntax::visit::{self, FnKind, Visitor};
60 use syntax::attr;
61 use syntax::ast::{Arm, BindingMode, Block, Crate, Expr, ExprKind};
62 use syntax::ast::{FnDecl, ForeignItem, ForeignItemKind, Generics};
63 use syntax::ast::{Item, ItemKind, ImplItem, ImplItemKind};
64 use syntax::ast::{Local, Mutability, Pat, PatKind, Path};
65 use syntax::ast::{QSelf, TraitItemKind, TraitRef, Ty, TyKind};
66 use syntax::feature_gate::{feature_err, emit_feature_err, GateIssue};
67
68 use syntax_pos::{Span, DUMMY_SP, MultiSpan};
69 use errors::DiagnosticBuilder;
70
71 use std::cell::{Cell, RefCell};
72 use std::cmp;
73 use std::collections::BTreeSet;
74 use std::fmt;
75 use std::mem::replace;
76 use std::rc::Rc;
77
78 use resolve_imports::{ImportDirective, ImportDirectiveSubclass, NameResolution, ImportResolver};
79 use macros::{InvocationData, LegacyBinding, LegacyScope, MacroBinding};
80
81 // NB: This module needs to be declared first so diagnostics are
82 // registered before they are used.
83 mod diagnostics;
84
85 mod macros;
86 mod check_unused;
87 mod build_reduced_graph;
88 mod resolve_imports;
89
90 /// A free importable items suggested in case of resolution failure.
91 struct ImportSuggestion {
92     path: Path,
93 }
94
95 /// A field or associated item from self type suggested in case of resolution failure.
96 enum AssocSuggestion {
97     Field,
98     MethodWithSelf,
99     AssocItem,
100 }
101
102 #[derive(Eq)]
103 struct BindingError {
104     name: Name,
105     origin: BTreeSet<Span>,
106     target: BTreeSet<Span>,
107 }
108
109 impl PartialOrd for BindingError {
110     fn partial_cmp(&self, other: &BindingError) -> Option<cmp::Ordering> {
111         Some(self.cmp(other))
112     }
113 }
114
115 impl PartialEq for BindingError {
116     fn eq(&self, other: &BindingError) -> bool {
117         self.name == other.name
118     }
119 }
120
121 impl Ord for BindingError {
122     fn cmp(&self, other: &BindingError) -> cmp::Ordering {
123         self.name.cmp(&other.name)
124     }
125 }
126
127 enum ResolutionError<'a> {
128     /// error E0401: can't use type parameters from outer function
129     TypeParametersFromOuterFunction,
130     /// error E0403: the name is already used for a type parameter in this type parameter list
131     NameAlreadyUsedInTypeParameterList(Name, &'a Span),
132     /// error E0407: method is not a member of trait
133     MethodNotMemberOfTrait(Name, &'a str),
134     /// error E0437: type is not a member of trait
135     TypeNotMemberOfTrait(Name, &'a str),
136     /// error E0438: const is not a member of trait
137     ConstNotMemberOfTrait(Name, &'a str),
138     /// error E0408: variable `{}` is not bound in all patterns
139     VariableNotBoundInPattern(&'a BindingError),
140     /// error E0409: variable `{}` is bound in inconsistent ways within the same match arm
141     VariableBoundWithDifferentMode(Name, Span),
142     /// error E0415: identifier is bound more than once in this parameter list
143     IdentifierBoundMoreThanOnceInParameterList(&'a str),
144     /// error E0416: identifier is bound more than once in the same pattern
145     IdentifierBoundMoreThanOnceInSamePattern(&'a str),
146     /// error E0426: use of undeclared label
147     UndeclaredLabel(&'a str),
148     /// error E0429: `self` imports are only allowed within a { } list
149     SelfImportsOnlyAllowedWithin,
150     /// error E0430: `self` import can only appear once in the list
151     SelfImportCanOnlyAppearOnceInTheList,
152     /// error E0431: `self` import can only appear in an import list with a non-empty prefix
153     SelfImportOnlyInImportListWithNonEmptyPrefix,
154     /// error E0432: unresolved import
155     UnresolvedImport(Option<(&'a str, &'a str)>),
156     /// error E0433: failed to resolve
157     FailedToResolve(&'a str),
158     /// error E0434: can't capture dynamic environment in a fn item
159     CannotCaptureDynamicEnvironmentInFnItem,
160     /// error E0435: attempt to use a non-constant value in a constant
161     AttemptToUseNonConstantValueInConstant,
162     /// error E0530: X bindings cannot shadow Ys
163     BindingShadowsSomethingUnacceptable(&'a str, Name, &'a NameBinding<'a>),
164     /// error E0128: type parameters with a default cannot use forward declared identifiers
165     ForwardDeclaredTyParam,
166 }
167
168 fn resolve_error<'sess, 'a>(resolver: &'sess Resolver,
169                             span: Span,
170                             resolution_error: ResolutionError<'a>) {
171     resolve_struct_error(resolver, span, resolution_error).emit();
172 }
173
174 fn resolve_struct_error<'sess, 'a>(resolver: &'sess Resolver,
175                                    span: Span,
176                                    resolution_error: ResolutionError<'a>)
177                                    -> DiagnosticBuilder<'sess> {
178     match resolution_error {
179         ResolutionError::TypeParametersFromOuterFunction => {
180             let mut err = struct_span_err!(resolver.session,
181                                            span,
182                                            E0401,
183                                            "can't use type parameters from outer function; \
184                                            try using a local type parameter instead");
185             err.span_label(span, "use of type variable from outer function");
186             err
187         }
188         ResolutionError::NameAlreadyUsedInTypeParameterList(name, first_use_span) => {
189              let mut err = struct_span_err!(resolver.session,
190                                             span,
191                                             E0403,
192                                             "the name `{}` is already used for a type parameter \
193                                             in this type parameter list",
194                                             name);
195              err.span_label(span, "already used");
196              err.span_label(first_use_span.clone(), format!("first use of `{}`", name));
197              err
198         }
199         ResolutionError::MethodNotMemberOfTrait(method, trait_) => {
200             let mut err = struct_span_err!(resolver.session,
201                                            span,
202                                            E0407,
203                                            "method `{}` is not a member of trait `{}`",
204                                            method,
205                                            trait_);
206             err.span_label(span, format!("not a member of trait `{}`", trait_));
207             err
208         }
209         ResolutionError::TypeNotMemberOfTrait(type_, trait_) => {
210             let mut err = struct_span_err!(resolver.session,
211                              span,
212                              E0437,
213                              "type `{}` is not a member of trait `{}`",
214                              type_,
215                              trait_);
216             err.span_label(span, format!("not a member of trait `{}`", trait_));
217             err
218         }
219         ResolutionError::ConstNotMemberOfTrait(const_, trait_) => {
220             let mut err = struct_span_err!(resolver.session,
221                              span,
222                              E0438,
223                              "const `{}` is not a member of trait `{}`",
224                              const_,
225                              trait_);
226             err.span_label(span, format!("not a member of trait `{}`", trait_));
227             err
228         }
229         ResolutionError::VariableNotBoundInPattern(binding_error) => {
230             let target_sp = binding_error.target.iter().map(|x| *x).collect::<Vec<_>>();
231             let msp = MultiSpan::from_spans(target_sp.clone());
232             let msg = format!("variable `{}` is not bound in all patterns", binding_error.name);
233             let mut err = resolver.session.struct_span_err_with_code(msp, &msg, "E0408");
234             for sp in target_sp {
235                 err.span_label(sp, format!("pattern doesn't bind `{}`", binding_error.name));
236             }
237             let origin_sp = binding_error.origin.iter().map(|x| *x).collect::<Vec<_>>();
238             for sp in origin_sp {
239                 err.span_label(sp, "variable not in all patterns");
240             }
241             err
242         }
243         ResolutionError::VariableBoundWithDifferentMode(variable_name,
244                                                         first_binding_span) => {
245             let mut err = struct_span_err!(resolver.session,
246                              span,
247                              E0409,
248                              "variable `{}` is bound in inconsistent \
249                              ways within the same match arm",
250                              variable_name);
251             err.span_label(span, "bound in different ways");
252             err.span_label(first_binding_span, "first binding");
253             err
254         }
255         ResolutionError::IdentifierBoundMoreThanOnceInParameterList(identifier) => {
256             let mut err = struct_span_err!(resolver.session,
257                              span,
258                              E0415,
259                              "identifier `{}` is bound more than once in this parameter list",
260                              identifier);
261             err.span_label(span, "used as parameter more than once");
262             err
263         }
264         ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(identifier) => {
265             let mut err = struct_span_err!(resolver.session,
266                              span,
267                              E0416,
268                              "identifier `{}` is bound more than once in the same pattern",
269                              identifier);
270             err.span_label(span, "used in a pattern more than once");
271             err
272         }
273         ResolutionError::UndeclaredLabel(name) => {
274             let mut err = struct_span_err!(resolver.session,
275                                            span,
276                                            E0426,
277                                            "use of undeclared label `{}`",
278                                            name);
279             err.span_label(span, format!("undeclared label `{}`", name));
280             err
281         }
282         ResolutionError::SelfImportsOnlyAllowedWithin => {
283             struct_span_err!(resolver.session,
284                              span,
285                              E0429,
286                              "{}",
287                              "`self` imports are only allowed within a { } list")
288         }
289         ResolutionError::SelfImportCanOnlyAppearOnceInTheList => {
290             struct_span_err!(resolver.session,
291                              span,
292                              E0430,
293                              "`self` import can only appear once in the list")
294         }
295         ResolutionError::SelfImportOnlyInImportListWithNonEmptyPrefix => {
296             struct_span_err!(resolver.session,
297                              span,
298                              E0431,
299                              "`self` import can only appear in an import list with a \
300                               non-empty prefix")
301         }
302         ResolutionError::UnresolvedImport(name) => {
303             let msg = match name {
304                 Some((n, _)) => format!("unresolved import `{}`", n),
305                 None => "unresolved import".to_owned(),
306             };
307             let mut err = struct_span_err!(resolver.session, span, E0432, "{}", msg);
308             if let Some((_, p)) = name {
309                 err.span_label(span, p);
310             }
311             err
312         }
313         ResolutionError::FailedToResolve(msg) => {
314             let mut err = struct_span_err!(resolver.session, span, E0433,
315                                            "failed to resolve. {}", msg);
316             err.span_label(span, msg);
317             err
318         }
319         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem => {
320             struct_span_err!(resolver.session,
321                              span,
322                              E0434,
323                              "{}",
324                              "can't capture dynamic environment in a fn item; use the || { ... } \
325                               closure form instead")
326         }
327         ResolutionError::AttemptToUseNonConstantValueInConstant => {
328             let mut err = struct_span_err!(resolver.session,
329                              span,
330                              E0435,
331                              "attempt to use a non-constant value in a constant");
332             err.span_label(span, "non-constant used with constant");
333             err
334         }
335         ResolutionError::BindingShadowsSomethingUnacceptable(what_binding, name, binding) => {
336             let shadows_what = PathResolution::new(binding.def()).kind_name();
337             let mut err = struct_span_err!(resolver.session,
338                                            span,
339                                            E0530,
340                                            "{}s cannot shadow {}s", what_binding, shadows_what);
341             err.span_label(span, format!("cannot be named the same as a {}", shadows_what));
342             let participle = if binding.is_import() { "imported" } else { "defined" };
343             let msg = format!("a {} `{}` is {} here", shadows_what, name, participle);
344             err.span_label(binding.span, msg);
345             err
346         }
347         ResolutionError::ForwardDeclaredTyParam => {
348             let mut err = struct_span_err!(resolver.session, span, E0128,
349                                            "type parameters with a default cannot use \
350                                             forward declared identifiers");
351             err.span_label(span, format!("defaulted type parameters \
352                                            cannot be forward declared"));
353             err
354         }
355     }
356 }
357
358 #[derive(Copy, Clone, Debug)]
359 struct BindingInfo {
360     span: Span,
361     binding_mode: BindingMode,
362 }
363
364 // Map from the name in a pattern to its binding mode.
365 type BindingMap = FxHashMap<Ident, BindingInfo>;
366
367 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
368 enum PatternSource {
369     Match,
370     IfLet,
371     WhileLet,
372     Let,
373     For,
374     FnParam,
375 }
376
377 impl PatternSource {
378     fn is_refutable(self) -> bool {
379         match self {
380             PatternSource::Match | PatternSource::IfLet | PatternSource::WhileLet => true,
381             PatternSource::Let | PatternSource::For | PatternSource::FnParam  => false,
382         }
383     }
384     fn descr(self) -> &'static str {
385         match self {
386             PatternSource::Match => "match binding",
387             PatternSource::IfLet => "if let binding",
388             PatternSource::WhileLet => "while let binding",
389             PatternSource::Let => "let binding",
390             PatternSource::For => "for binding",
391             PatternSource::FnParam => "function parameter",
392         }
393     }
394 }
395
396 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
397 enum PathSource<'a> {
398     // Type paths `Path`.
399     Type,
400     // Trait paths in bounds or impls.
401     Trait,
402     // Expression paths `path`, with optional parent context.
403     Expr(Option<&'a Expr>),
404     // Paths in path patterns `Path`.
405     Pat,
406     // Paths in struct expressions and patterns `Path { .. }`.
407     Struct,
408     // Paths in tuple struct patterns `Path(..)`.
409     TupleStruct,
410     // `m::A::B` in `<T as m::A>::B::C`.
411     TraitItem(Namespace),
412     // Path in `pub(path)`
413     Visibility,
414     // Path in `use a::b::{...};`
415     ImportPrefix,
416 }
417
418 impl<'a> PathSource<'a> {
419     fn namespace(self) -> Namespace {
420         match self {
421             PathSource::Type | PathSource::Trait | PathSource::Struct |
422             PathSource::Visibility | PathSource::ImportPrefix => TypeNS,
423             PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct => ValueNS,
424             PathSource::TraitItem(ns) => ns,
425         }
426     }
427
428     fn global_by_default(self) -> bool {
429         match self {
430             PathSource::Visibility | PathSource::ImportPrefix => true,
431             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
432             PathSource::Struct | PathSource::TupleStruct |
433             PathSource::Trait | PathSource::TraitItem(..) => false,
434         }
435     }
436
437     fn defer_to_typeck(self) -> bool {
438         match self {
439             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
440             PathSource::Struct | PathSource::TupleStruct => true,
441             PathSource::Trait | PathSource::TraitItem(..) |
442             PathSource::Visibility | PathSource::ImportPrefix => false,
443         }
444     }
445
446     fn descr_expected(self) -> &'static str {
447         match self {
448             PathSource::Type => "type",
449             PathSource::Trait => "trait",
450             PathSource::Pat => "unit struct/variant or constant",
451             PathSource::Struct => "struct, variant or union type",
452             PathSource::TupleStruct => "tuple struct/variant",
453             PathSource::Visibility => "module",
454             PathSource::ImportPrefix => "module or enum",
455             PathSource::TraitItem(ns) => match ns {
456                 TypeNS => "associated type",
457                 ValueNS => "method or associated constant",
458                 MacroNS => bug!("associated macro"),
459             },
460             PathSource::Expr(parent) => match parent.map(|p| &p.node) {
461                 // "function" here means "anything callable" rather than `Def::Fn`,
462                 // this is not precise but usually more helpful than just "value".
463                 Some(&ExprKind::Call(..)) => "function",
464                 _ => "value",
465             },
466         }
467     }
468
469     fn is_expected(self, def: Def) -> bool {
470         match self {
471             PathSource::Type => match def {
472                 Def::Struct(..) | Def::Union(..) | Def::Enum(..) |
473                 Def::Trait(..) | Def::TyAlias(..) | Def::AssociatedTy(..) |
474                 Def::PrimTy(..) | Def::TyParam(..) | Def::SelfTy(..) => true,
475                 _ => false,
476             },
477             PathSource::Trait => match def {
478                 Def::Trait(..) => true,
479                 _ => false,
480             },
481             PathSource::Expr(..) => match def {
482                 Def::StructCtor(_, CtorKind::Const) | Def::StructCtor(_, CtorKind::Fn) |
483                 Def::VariantCtor(_, CtorKind::Const) | Def::VariantCtor(_, CtorKind::Fn) |
484                 Def::Const(..) | Def::Static(..) | Def::Local(..) | Def::Upvar(..) |
485                 Def::Fn(..) | Def::Method(..) | Def::AssociatedConst(..) => true,
486                 _ => false,
487             },
488             PathSource::Pat => match def {
489                 Def::StructCtor(_, CtorKind::Const) |
490                 Def::VariantCtor(_, CtorKind::Const) |
491                 Def::Const(..) | Def::AssociatedConst(..) => true,
492                 _ => false,
493             },
494             PathSource::TupleStruct => match def {
495                 Def::StructCtor(_, CtorKind::Fn) | Def::VariantCtor(_, CtorKind::Fn) => true,
496                 _ => false,
497             },
498             PathSource::Struct => match def {
499                 Def::Struct(..) | Def::Union(..) | Def::Variant(..) |
500                 Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => true,
501                 _ => false,
502             },
503             PathSource::TraitItem(ns) => match def {
504                 Def::AssociatedConst(..) | Def::Method(..) if ns == ValueNS => true,
505                 Def::AssociatedTy(..) if ns == TypeNS => true,
506                 _ => false,
507             },
508             PathSource::ImportPrefix => match def {
509                 Def::Mod(..) | Def::Enum(..) => true,
510                 _ => false,
511             },
512             PathSource::Visibility => match def {
513                 Def::Mod(..) => true,
514                 _ => false,
515             },
516         }
517     }
518
519     fn error_code(self, has_unexpected_resolution: bool) -> &'static str {
520         __diagnostic_used!(E0404);
521         __diagnostic_used!(E0405);
522         __diagnostic_used!(E0412);
523         __diagnostic_used!(E0422);
524         __diagnostic_used!(E0423);
525         __diagnostic_used!(E0425);
526         __diagnostic_used!(E0531);
527         __diagnostic_used!(E0532);
528         __diagnostic_used!(E0573);
529         __diagnostic_used!(E0574);
530         __diagnostic_used!(E0575);
531         __diagnostic_used!(E0576);
532         __diagnostic_used!(E0577);
533         __diagnostic_used!(E0578);
534         match (self, has_unexpected_resolution) {
535             (PathSource::Trait, true) => "E0404",
536             (PathSource::Trait, false) => "E0405",
537             (PathSource::Type, true) => "E0573",
538             (PathSource::Type, false) => "E0412",
539             (PathSource::Struct, true) => "E0574",
540             (PathSource::Struct, false) => "E0422",
541             (PathSource::Expr(..), true) => "E0423",
542             (PathSource::Expr(..), false) => "E0425",
543             (PathSource::Pat, true) | (PathSource::TupleStruct, true) => "E0532",
544             (PathSource::Pat, false) | (PathSource::TupleStruct, false) => "E0531",
545             (PathSource::TraitItem(..), true) => "E0575",
546             (PathSource::TraitItem(..), false) => "E0576",
547             (PathSource::Visibility, true) | (PathSource::ImportPrefix, true) => "E0577",
548             (PathSource::Visibility, false) | (PathSource::ImportPrefix, false) => "E0578",
549         }
550     }
551 }
552
553 #[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
554 pub enum Namespace {
555     TypeNS,
556     ValueNS,
557     MacroNS,
558 }
559
560 #[derive(Clone, Default, Debug)]
561 pub struct PerNS<T> {
562     value_ns: T,
563     type_ns: T,
564     macro_ns: Option<T>,
565 }
566
567 impl<T> ::std::ops::Index<Namespace> for PerNS<T> {
568     type Output = T;
569     fn index(&self, ns: Namespace) -> &T {
570         match ns {
571             ValueNS => &self.value_ns,
572             TypeNS => &self.type_ns,
573             MacroNS => self.macro_ns.as_ref().unwrap(),
574         }
575     }
576 }
577
578 impl<T> ::std::ops::IndexMut<Namespace> for PerNS<T> {
579     fn index_mut(&mut self, ns: Namespace) -> &mut T {
580         match ns {
581             ValueNS => &mut self.value_ns,
582             TypeNS => &mut self.type_ns,
583             MacroNS => self.macro_ns.as_mut().unwrap(),
584         }
585     }
586 }
587
588 impl<'a, 'tcx> Visitor<'tcx> for Resolver<'a> {
589     fn visit_item(&mut self, item: &'tcx Item) {
590         self.resolve_item(item);
591     }
592     fn visit_arm(&mut self, arm: &'tcx Arm) {
593         self.resolve_arm(arm);
594     }
595     fn visit_block(&mut self, block: &'tcx Block) {
596         self.resolve_block(block);
597     }
598     fn visit_expr(&mut self, expr: &'tcx Expr) {
599         self.resolve_expr(expr, None);
600     }
601     fn visit_local(&mut self, local: &'tcx Local) {
602         self.resolve_local(local);
603     }
604     fn visit_ty(&mut self, ty: &'tcx Ty) {
605         if let TyKind::Path(ref qself, ref path) = ty.node {
606             self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
607         } else if let TyKind::ImplicitSelf = ty.node {
608             let self_ty = keywords::SelfType.ident();
609             let def = self.resolve_ident_in_lexical_scope(self_ty, TypeNS, true, ty.span)
610                           .map_or(Def::Err, |d| d.def());
611             self.record_def(ty.id, PathResolution::new(def));
612         } else if let TyKind::Array(ref element, ref length) = ty.node {
613             self.visit_ty(element);
614             self.with_constant_rib(|this| {
615                 this.visit_expr(length);
616             });
617             return;
618         }
619         visit::walk_ty(self, ty);
620     }
621     fn visit_poly_trait_ref(&mut self,
622                             tref: &'tcx ast::PolyTraitRef,
623                             m: &'tcx ast::TraitBoundModifier) {
624         self.smart_resolve_path(tref.trait_ref.ref_id, None,
625                                 &tref.trait_ref.path, PathSource::Trait);
626         visit::walk_poly_trait_ref(self, tref, m);
627     }
628     fn visit_variant(&mut self,
629                      variant: &'tcx ast::Variant,
630                      generics: &'tcx Generics,
631                      item_id: ast::NodeId) {
632         if let Some(ref dis_expr) = variant.node.disr_expr {
633             // resolve the discriminator expr as a constant
634             self.with_constant_rib(|this| {
635                 this.visit_expr(dis_expr);
636             });
637         }
638
639         // `visit::walk_variant` without the discriminant expression.
640         self.visit_variant_data(&variant.node.data,
641                                 variant.node.name,
642                                 generics,
643                                 item_id,
644                                 variant.span);
645     }
646     fn visit_foreign_item(&mut self, foreign_item: &'tcx ForeignItem) {
647         let type_parameters = match foreign_item.node {
648             ForeignItemKind::Fn(_, ref generics) => {
649                 HasTypeParameters(generics, ItemRibKind)
650             }
651             ForeignItemKind::Static(..) => NoTypeParameters,
652         };
653         self.with_type_parameter_rib(type_parameters, |this| {
654             visit::walk_foreign_item(this, foreign_item);
655         });
656     }
657     fn visit_fn(&mut self,
658                 function_kind: FnKind<'tcx>,
659                 declaration: &'tcx FnDecl,
660                 _: Span,
661                 node_id: NodeId) {
662         let rib_kind = match function_kind {
663             FnKind::ItemFn(_, generics, ..) => {
664                 self.visit_generics(generics);
665                 ItemRibKind
666             }
667             FnKind::Method(_, sig, _, _) => {
668                 self.visit_generics(&sig.generics);
669                 MethodRibKind(!sig.decl.has_self())
670             }
671             FnKind::Closure(_) => ClosureRibKind(node_id),
672         };
673
674         // Create a value rib for the function.
675         self.ribs[ValueNS].push(Rib::new(rib_kind));
676
677         // Create a label rib for the function.
678         self.label_ribs.push(Rib::new(rib_kind));
679
680         // Add each argument to the rib.
681         let mut bindings_list = FxHashMap();
682         for argument in &declaration.inputs {
683             self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
684
685             self.visit_ty(&argument.ty);
686
687             debug!("(resolving function) recorded argument");
688         }
689         visit::walk_fn_ret_ty(self, &declaration.output);
690
691         // Resolve the function body.
692         match function_kind {
693             FnKind::ItemFn(.., body) |
694             FnKind::Method(.., body) => {
695                 self.visit_block(body);
696             }
697             FnKind::Closure(body) => {
698                 self.visit_expr(body);
699             }
700         };
701
702         debug!("(resolving function) leaving function");
703
704         self.label_ribs.pop();
705         self.ribs[ValueNS].pop();
706     }
707     fn visit_generics(&mut self, generics: &'tcx Generics) {
708         // For type parameter defaults, we have to ban access
709         // to following type parameters, as the Substs can only
710         // provide previous type parameters as they're built.
711         let mut default_ban_rib = Rib::new(ForwardTyParamBanRibKind);
712         default_ban_rib.bindings.extend(generics.ty_params.iter()
713             .skip_while(|p| p.default.is_none())
714             .map(|p| (Ident::with_empty_ctxt(p.ident.name), Def::Err)));
715
716         for param in &generics.ty_params {
717             for bound in &param.bounds {
718                 self.visit_ty_param_bound(bound);
719             }
720
721             if let Some(ref ty) = param.default {
722                 self.ribs[TypeNS].push(default_ban_rib);
723                 self.visit_ty(ty);
724                 default_ban_rib = self.ribs[TypeNS].pop().unwrap();
725             }
726
727             // Allow all following defaults to refer to this type parameter.
728             default_ban_rib.bindings.remove(&Ident::with_empty_ctxt(param.ident.name));
729         }
730         for lt in &generics.lifetimes { self.visit_lifetime_def(lt); }
731         for p in &generics.where_clause.predicates { self.visit_where_predicate(p); }
732     }
733 }
734
735 pub type ErrorMessage = Option<(Span, String)>;
736
737 #[derive(Copy, Clone)]
738 enum TypeParameters<'a, 'b> {
739     NoTypeParameters,
740     HasTypeParameters(// Type parameters.
741                       &'b Generics,
742
743                       // The kind of the rib used for type parameters.
744                       RibKind<'a>),
745 }
746
747 // The rib kind controls the translation of local
748 // definitions (`Def::Local`) to upvars (`Def::Upvar`).
749 #[derive(Copy, Clone, Debug)]
750 enum RibKind<'a> {
751     // No translation needs to be applied.
752     NormalRibKind,
753
754     // We passed through a closure scope at the given node ID.
755     // Translate upvars as appropriate.
756     ClosureRibKind(NodeId /* func id */),
757
758     // We passed through an impl or trait and are now in one of its
759     // methods. Allow references to ty params that impl or trait
760     // binds. Disallow any other upvars (including other ty params that are
761     // upvars).
762     //
763     // The boolean value represents the fact that this method is static or not.
764     MethodRibKind(bool),
765
766     // We passed through an item scope. Disallow upvars.
767     ItemRibKind,
768
769     // We're in a constant item. Can't refer to dynamic stuff.
770     ConstantItemRibKind,
771
772     // We passed through a module.
773     ModuleRibKind(Module<'a>),
774
775     // We passed through a `macro_rules!` statement
776     MacroDefinition(DefId),
777
778     // All bindings in this rib are type parameters that can't be used
779     // from the default of a type parameter because they're not declared
780     // before said type parameter. Also see the `visit_generics` override.
781     ForwardTyParamBanRibKind,
782 }
783
784 /// One local scope.
785 #[derive(Debug)]
786 struct Rib<'a> {
787     bindings: FxHashMap<Ident, Def>,
788     kind: RibKind<'a>,
789 }
790
791 impl<'a> Rib<'a> {
792     fn new(kind: RibKind<'a>) -> Rib<'a> {
793         Rib {
794             bindings: FxHashMap(),
795             kind: kind,
796         }
797     }
798 }
799
800 enum LexicalScopeBinding<'a> {
801     Item(&'a NameBinding<'a>),
802     Def(Def),
803 }
804
805 impl<'a> LexicalScopeBinding<'a> {
806     fn item(self) -> Option<&'a NameBinding<'a>> {
807         match self {
808             LexicalScopeBinding::Item(binding) => Some(binding),
809             _ => None,
810         }
811     }
812
813     fn def(self) -> Def {
814         match self {
815             LexicalScopeBinding::Item(binding) => binding.def(),
816             LexicalScopeBinding::Def(def) => def,
817         }
818     }
819 }
820
821 #[derive(Clone)]
822 enum PathResult<'a> {
823     Module(Module<'a>),
824     NonModule(PathResolution),
825     Indeterminate,
826     Failed(String, bool /* is the error from the last segment? */),
827 }
828
829 enum ModuleKind {
830     Block(NodeId),
831     Def(Def, Name),
832 }
833
834 /// One node in the tree of modules.
835 pub struct ModuleData<'a> {
836     parent: Option<Module<'a>>,
837     kind: ModuleKind,
838
839     // The def id of the closest normal module (`mod`) ancestor (including this module).
840     normal_ancestor_id: DefId,
841
842     resolutions: RefCell<FxHashMap<(Ident, Namespace), &'a RefCell<NameResolution<'a>>>>,
843     legacy_macro_resolutions: RefCell<Vec<(Mark, Ident, Span, MacroKind)>>,
844     macro_resolutions: RefCell<Vec<(Box<[Ident]>, Span)>>,
845
846     // Macro invocations that can expand into items in this module.
847     unresolved_invocations: RefCell<FxHashSet<Mark>>,
848
849     no_implicit_prelude: bool,
850
851     glob_importers: RefCell<Vec<&'a ImportDirective<'a>>>,
852     globs: RefCell<Vec<&'a ImportDirective<'a>>>,
853
854     // Used to memoize the traits in this module for faster searches through all traits in scope.
855     traits: RefCell<Option<Box<[(Ident, &'a NameBinding<'a>)]>>>,
856
857     // Whether this module is populated. If not populated, any attempt to
858     // access the children must be preceded with a
859     // `populate_module_if_necessary` call.
860     populated: Cell<bool>,
861
862     /// Span of the module itself. Used for error reporting.
863     span: Span,
864
865     expansion: Mark,
866 }
867
868 pub type Module<'a> = &'a ModuleData<'a>;
869
870 impl<'a> ModuleData<'a> {
871     fn new(parent: Option<Module<'a>>,
872            kind: ModuleKind,
873            normal_ancestor_id: DefId,
874            expansion: Mark,
875            span: Span) -> Self {
876         ModuleData {
877             parent: parent,
878             kind: kind,
879             normal_ancestor_id: normal_ancestor_id,
880             resolutions: RefCell::new(FxHashMap()),
881             legacy_macro_resolutions: RefCell::new(Vec::new()),
882             macro_resolutions: RefCell::new(Vec::new()),
883             unresolved_invocations: RefCell::new(FxHashSet()),
884             no_implicit_prelude: false,
885             glob_importers: RefCell::new(Vec::new()),
886             globs: RefCell::new((Vec::new())),
887             traits: RefCell::new(None),
888             populated: Cell::new(normal_ancestor_id.is_local()),
889             span: span,
890             expansion: expansion,
891         }
892     }
893
894     fn for_each_child<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
895         for (&(ident, ns), name_resolution) in self.resolutions.borrow().iter() {
896             name_resolution.borrow().binding.map(|binding| f(ident, ns, binding));
897         }
898     }
899
900     fn def(&self) -> Option<Def> {
901         match self.kind {
902             ModuleKind::Def(def, _) => Some(def),
903             _ => None,
904         }
905     }
906
907     fn def_id(&self) -> Option<DefId> {
908         self.def().as_ref().map(Def::def_id)
909     }
910
911     // `self` resolves to the first module ancestor that `is_normal`.
912     fn is_normal(&self) -> bool {
913         match self.kind {
914             ModuleKind::Def(Def::Mod(_), _) => true,
915             _ => false,
916         }
917     }
918
919     fn is_trait(&self) -> bool {
920         match self.kind {
921             ModuleKind::Def(Def::Trait(_), _) => true,
922             _ => false,
923         }
924     }
925
926     fn is_local(&self) -> bool {
927         self.normal_ancestor_id.is_local()
928     }
929
930     fn nearest_item_scope(&'a self) -> Module<'a> {
931         if self.is_trait() { self.parent.unwrap() } else { self }
932     }
933 }
934
935 impl<'a> fmt::Debug for ModuleData<'a> {
936     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
937         write!(f, "{:?}", self.def())
938     }
939 }
940
941 // Records a possibly-private value, type, or module definition.
942 #[derive(Clone, Debug)]
943 pub struct NameBinding<'a> {
944     kind: NameBindingKind<'a>,
945     expansion: Mark,
946     span: Span,
947     vis: ty::Visibility,
948 }
949
950 pub trait ToNameBinding<'a> {
951     fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a>;
952 }
953
954 impl<'a> ToNameBinding<'a> for &'a NameBinding<'a> {
955     fn to_name_binding(self, _: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> {
956         self
957     }
958 }
959
960 #[derive(Clone, Debug)]
961 enum NameBindingKind<'a> {
962     Def(Def),
963     Module(Module<'a>),
964     Import {
965         binding: &'a NameBinding<'a>,
966         directive: &'a ImportDirective<'a>,
967         used: Cell<bool>,
968         legacy_self_import: bool,
969     },
970     Ambiguity {
971         b1: &'a NameBinding<'a>,
972         b2: &'a NameBinding<'a>,
973         legacy: bool,
974     }
975 }
976
977 struct PrivacyError<'a>(Span, Name, &'a NameBinding<'a>);
978
979 struct AmbiguityError<'a> {
980     span: Span,
981     name: Name,
982     lexical: bool,
983     b1: &'a NameBinding<'a>,
984     b2: &'a NameBinding<'a>,
985     legacy: bool,
986 }
987
988 impl<'a> NameBinding<'a> {
989     fn module(&self) -> Option<Module<'a>> {
990         match self.kind {
991             NameBindingKind::Module(module) => Some(module),
992             NameBindingKind::Import { binding, .. } => binding.module(),
993             NameBindingKind::Ambiguity { legacy: true, b1, .. } => b1.module(),
994             _ => None,
995         }
996     }
997
998     fn def(&self) -> Def {
999         match self.kind {
1000             NameBindingKind::Def(def) => def,
1001             NameBindingKind::Module(module) => module.def().unwrap(),
1002             NameBindingKind::Import { binding, .. } => binding.def(),
1003             NameBindingKind::Ambiguity { legacy: true, b1, .. } => b1.def(),
1004             NameBindingKind::Ambiguity { .. } => Def::Err,
1005         }
1006     }
1007
1008     fn def_ignoring_ambiguity(&self) -> Def {
1009         match self.kind {
1010             NameBindingKind::Import { binding, .. } => binding.def_ignoring_ambiguity(),
1011             NameBindingKind::Ambiguity { b1, .. } => b1.def_ignoring_ambiguity(),
1012             _ => self.def(),
1013         }
1014     }
1015
1016     fn get_macro(&self, resolver: &mut Resolver<'a>) -> Rc<SyntaxExtension> {
1017         resolver.get_macro(self.def_ignoring_ambiguity())
1018     }
1019
1020     // We sometimes need to treat variants as `pub` for backwards compatibility
1021     fn pseudo_vis(&self) -> ty::Visibility {
1022         if self.is_variant() { ty::Visibility::Public } else { self.vis }
1023     }
1024
1025     fn is_variant(&self) -> bool {
1026         match self.kind {
1027             NameBindingKind::Def(Def::Variant(..)) |
1028             NameBindingKind::Def(Def::VariantCtor(..)) => true,
1029             _ => false,
1030         }
1031     }
1032
1033     fn is_extern_crate(&self) -> bool {
1034         match self.kind {
1035             NameBindingKind::Import {
1036                 directive: &ImportDirective {
1037                     subclass: ImportDirectiveSubclass::ExternCrate, ..
1038                 }, ..
1039             } => true,
1040             _ => false,
1041         }
1042     }
1043
1044     fn is_import(&self) -> bool {
1045         match self.kind {
1046             NameBindingKind::Import { .. } => true,
1047             _ => false,
1048         }
1049     }
1050
1051     fn is_glob_import(&self) -> bool {
1052         match self.kind {
1053             NameBindingKind::Import { directive, .. } => directive.is_glob(),
1054             NameBindingKind::Ambiguity { b1, .. } => b1.is_glob_import(),
1055             _ => false,
1056         }
1057     }
1058
1059     fn is_importable(&self) -> bool {
1060         match self.def() {
1061             Def::AssociatedConst(..) | Def::Method(..) | Def::AssociatedTy(..) => false,
1062             _ => true,
1063         }
1064     }
1065
1066     fn is_macro_def(&self) -> bool {
1067         match self.kind {
1068             NameBindingKind::Def(Def::Macro(..)) => true,
1069             _ => false,
1070         }
1071     }
1072
1073     fn descr(&self) -> &'static str {
1074         if self.is_extern_crate() { "extern crate" } else { self.def().kind_name() }
1075     }
1076 }
1077
1078 /// Interns the names of the primitive types.
1079 struct PrimitiveTypeTable {
1080     primitive_types: FxHashMap<Name, PrimTy>,
1081 }
1082
1083 impl PrimitiveTypeTable {
1084     fn new() -> PrimitiveTypeTable {
1085         let mut table = PrimitiveTypeTable { primitive_types: FxHashMap() };
1086
1087         table.intern("bool", TyBool);
1088         table.intern("char", TyChar);
1089         table.intern("f32", TyFloat(FloatTy::F32));
1090         table.intern("f64", TyFloat(FloatTy::F64));
1091         table.intern("isize", TyInt(IntTy::Is));
1092         table.intern("i8", TyInt(IntTy::I8));
1093         table.intern("i16", TyInt(IntTy::I16));
1094         table.intern("i32", TyInt(IntTy::I32));
1095         table.intern("i64", TyInt(IntTy::I64));
1096         table.intern("i128", TyInt(IntTy::I128));
1097         table.intern("str", TyStr);
1098         table.intern("usize", TyUint(UintTy::Us));
1099         table.intern("u8", TyUint(UintTy::U8));
1100         table.intern("u16", TyUint(UintTy::U16));
1101         table.intern("u32", TyUint(UintTy::U32));
1102         table.intern("u64", TyUint(UintTy::U64));
1103         table.intern("u128", TyUint(UintTy::U128));
1104         table
1105     }
1106
1107     fn intern(&mut self, string: &str, primitive_type: PrimTy) {
1108         self.primitive_types.insert(Symbol::intern(string), primitive_type);
1109     }
1110 }
1111
1112 /// The main resolver class.
1113 pub struct Resolver<'a> {
1114     session: &'a Session,
1115
1116     pub definitions: Definitions,
1117
1118     graph_root: Module<'a>,
1119
1120     prelude: Option<Module<'a>>,
1121
1122     // n.b. This is used only for better diagnostics, not name resolution itself.
1123     has_self: FxHashSet<DefId>,
1124
1125     // Names of fields of an item `DefId` accessible with dot syntax.
1126     // Used for hints during error reporting.
1127     field_names: FxHashMap<DefId, Vec<Name>>,
1128
1129     // All imports known to succeed or fail.
1130     determined_imports: Vec<&'a ImportDirective<'a>>,
1131
1132     // All non-determined imports.
1133     indeterminate_imports: Vec<&'a ImportDirective<'a>>,
1134
1135     // The module that represents the current item scope.
1136     current_module: Module<'a>,
1137
1138     // The current set of local scopes for types and values.
1139     // FIXME #4948: Reuse ribs to avoid allocation.
1140     ribs: PerNS<Vec<Rib<'a>>>,
1141
1142     // The current set of local scopes, for labels.
1143     label_ribs: Vec<Rib<'a>>,
1144
1145     // The trait that the current context can refer to.
1146     current_trait_ref: Option<(Module<'a>, TraitRef)>,
1147
1148     // The current self type if inside an impl (used for better errors).
1149     current_self_type: Option<Ty>,
1150
1151     // The idents for the primitive types.
1152     primitive_type_table: PrimitiveTypeTable,
1153
1154     def_map: DefMap,
1155     pub freevars: FreevarMap,
1156     freevars_seen: NodeMap<NodeMap<usize>>,
1157     pub export_map: ExportMap,
1158     pub trait_map: TraitMap,
1159
1160     // A map from nodes to anonymous modules.
1161     // Anonymous modules are pseudo-modules that are implicitly created around items
1162     // contained within blocks.
1163     //
1164     // For example, if we have this:
1165     //
1166     //  fn f() {
1167     //      fn g() {
1168     //          ...
1169     //      }
1170     //  }
1171     //
1172     // There will be an anonymous module created around `g` with the ID of the
1173     // entry block for `f`.
1174     block_map: NodeMap<Module<'a>>,
1175     module_map: FxHashMap<DefId, Module<'a>>,
1176     extern_module_map: FxHashMap<(DefId, bool /* MacrosOnly? */), Module<'a>>,
1177
1178     pub make_glob_map: bool,
1179     // Maps imports to the names of items actually imported (this actually maps
1180     // all imports, but only glob imports are actually interesting).
1181     pub glob_map: GlobMap,
1182
1183     used_imports: FxHashSet<(NodeId, Namespace)>,
1184     pub maybe_unused_trait_imports: NodeSet,
1185
1186     privacy_errors: Vec<PrivacyError<'a>>,
1187     ambiguity_errors: Vec<AmbiguityError<'a>>,
1188     gated_errors: FxHashSet<Span>,
1189     disallowed_shadowing: Vec<&'a LegacyBinding<'a>>,
1190
1191     arenas: &'a ResolverArenas<'a>,
1192     dummy_binding: &'a NameBinding<'a>,
1193     use_extern_macros: bool, // true if `#![feature(use_extern_macros)]`
1194
1195     crate_loader: &'a mut CrateLoader,
1196     macro_names: FxHashSet<Ident>,
1197     global_macros: FxHashMap<Name, &'a NameBinding<'a>>,
1198     lexical_macro_resolutions: Vec<(Ident, &'a Cell<LegacyScope<'a>>)>,
1199     macro_map: FxHashMap<DefId, Rc<SyntaxExtension>>,
1200     macro_defs: FxHashMap<Mark, DefId>,
1201     local_macro_def_scopes: FxHashMap<NodeId, Module<'a>>,
1202     macro_exports: Vec<Export>,
1203     pub whitelisted_legacy_custom_derives: Vec<Name>,
1204     pub found_unresolved_macro: bool,
1205
1206     // List of crate local macros that we need to warn about as being unused.
1207     // Right now this only includes macro_rules! macros.
1208     unused_macros: FxHashSet<DefId>,
1209
1210     // Maps the `Mark` of an expansion to its containing module or block.
1211     invocations: FxHashMap<Mark, &'a InvocationData<'a>>,
1212
1213     // Avoid duplicated errors for "name already defined".
1214     name_already_seen: FxHashMap<Name, Span>,
1215
1216     // If `#![feature(proc_macro)]` is set
1217     proc_macro_enabled: bool,
1218
1219     // A set of procedural macros imported by `#[macro_use]` that have already been warned about
1220     warned_proc_macros: FxHashSet<Name>,
1221
1222     potentially_unused_imports: Vec<&'a ImportDirective<'a>>,
1223
1224     // This table maps struct IDs into struct constructor IDs,
1225     // it's not used during normal resolution, only for better error reporting.
1226     struct_constructors: DefIdMap<(Def, ty::Visibility)>,
1227 }
1228
1229 pub struct ResolverArenas<'a> {
1230     modules: arena::TypedArena<ModuleData<'a>>,
1231     local_modules: RefCell<Vec<Module<'a>>>,
1232     name_bindings: arena::TypedArena<NameBinding<'a>>,
1233     import_directives: arena::TypedArena<ImportDirective<'a>>,
1234     name_resolutions: arena::TypedArena<RefCell<NameResolution<'a>>>,
1235     invocation_data: arena::TypedArena<InvocationData<'a>>,
1236     legacy_bindings: arena::TypedArena<LegacyBinding<'a>>,
1237 }
1238
1239 impl<'a> ResolverArenas<'a> {
1240     fn alloc_module(&'a self, module: ModuleData<'a>) -> Module<'a> {
1241         let module = self.modules.alloc(module);
1242         if module.def_id().map(|def_id| def_id.is_local()).unwrap_or(true) {
1243             self.local_modules.borrow_mut().push(module);
1244         }
1245         module
1246     }
1247     fn local_modules(&'a self) -> ::std::cell::Ref<'a, Vec<Module<'a>>> {
1248         self.local_modules.borrow()
1249     }
1250     fn alloc_name_binding(&'a self, name_binding: NameBinding<'a>) -> &'a NameBinding<'a> {
1251         self.name_bindings.alloc(name_binding)
1252     }
1253     fn alloc_import_directive(&'a self, import_directive: ImportDirective<'a>)
1254                               -> &'a ImportDirective {
1255         self.import_directives.alloc(import_directive)
1256     }
1257     fn alloc_name_resolution(&'a self) -> &'a RefCell<NameResolution<'a>> {
1258         self.name_resolutions.alloc(Default::default())
1259     }
1260     fn alloc_invocation_data(&'a self, expansion_data: InvocationData<'a>)
1261                              -> &'a InvocationData<'a> {
1262         self.invocation_data.alloc(expansion_data)
1263     }
1264     fn alloc_legacy_binding(&'a self, binding: LegacyBinding<'a>) -> &'a LegacyBinding<'a> {
1265         self.legacy_bindings.alloc(binding)
1266     }
1267 }
1268
1269 impl<'a, 'b: 'a> ty::DefIdTree for &'a Resolver<'b> {
1270     fn parent(self, id: DefId) -> Option<DefId> {
1271         match id.krate {
1272             LOCAL_CRATE => self.definitions.def_key(id.index).parent,
1273             _ => self.session.cstore.def_key(id).parent,
1274         }.map(|index| DefId { index: index, ..id })
1275     }
1276 }
1277
1278 impl<'a> hir::lowering::Resolver for Resolver<'a> {
1279     fn resolve_hir_path(&mut self, path: &mut hir::Path, is_value: bool) {
1280         let namespace = if is_value { ValueNS } else { TypeNS };
1281         let hir::Path { ref segments, span, ref mut def } = *path;
1282         let path: Vec<_> = segments.iter().map(|seg| Ident::with_empty_ctxt(seg.name)).collect();
1283         match self.resolve_path(&path, Some(namespace), true, span) {
1284             PathResult::Module(module) => *def = module.def().unwrap(),
1285             PathResult::NonModule(path_res) if path_res.unresolved_segments() == 0 =>
1286                 *def = path_res.base_def(),
1287             PathResult::NonModule(..) => match self.resolve_path(&path, None, true, span) {
1288                 PathResult::Failed(msg, _) => {
1289                     resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
1290                 }
1291                 _ => {}
1292             },
1293             PathResult::Indeterminate => unreachable!(),
1294             PathResult::Failed(msg, _) => {
1295                 resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
1296             }
1297         }
1298     }
1299
1300     fn get_resolution(&mut self, id: NodeId) -> Option<PathResolution> {
1301         self.def_map.get(&id).cloned()
1302     }
1303
1304     fn definitions(&mut self) -> &mut Definitions {
1305         &mut self.definitions
1306     }
1307 }
1308
1309 impl<'a> Resolver<'a> {
1310     pub fn new(session: &'a Session,
1311                krate: &Crate,
1312                crate_name: &str,
1313                make_glob_map: MakeGlobMap,
1314                crate_loader: &'a mut CrateLoader,
1315                arenas: &'a ResolverArenas<'a>)
1316                -> Resolver<'a> {
1317         let root_def_id = DefId::local(CRATE_DEF_INDEX);
1318         let root_module_kind = ModuleKind::Def(Def::Mod(root_def_id), keywords::Invalid.name());
1319         let graph_root = arenas.alloc_module(ModuleData {
1320             no_implicit_prelude: attr::contains_name(&krate.attrs, "no_implicit_prelude"),
1321             ..ModuleData::new(None, root_module_kind, root_def_id, Mark::root(), krate.span)
1322         });
1323         let mut module_map = FxHashMap();
1324         module_map.insert(DefId::local(CRATE_DEF_INDEX), graph_root);
1325
1326         let mut definitions = Definitions::new();
1327         DefCollector::new(&mut definitions, Mark::root())
1328             .collect_root(crate_name, &session.local_crate_disambiguator().as_str());
1329
1330         let mut invocations = FxHashMap();
1331         invocations.insert(Mark::root(),
1332                            arenas.alloc_invocation_data(InvocationData::root(graph_root)));
1333
1334         let features = session.features.borrow();
1335
1336         let mut macro_defs = FxHashMap();
1337         macro_defs.insert(Mark::root(), root_def_id);
1338
1339         Resolver {
1340             session: session,
1341
1342             definitions: definitions,
1343
1344             // The outermost module has def ID 0; this is not reflected in the
1345             // AST.
1346             graph_root: graph_root,
1347             prelude: None,
1348
1349             has_self: FxHashSet(),
1350             field_names: FxHashMap(),
1351
1352             determined_imports: Vec::new(),
1353             indeterminate_imports: Vec::new(),
1354
1355             current_module: graph_root,
1356             ribs: PerNS {
1357                 value_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1358                 type_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1359                 macro_ns: Some(vec![Rib::new(ModuleRibKind(graph_root))]),
1360             },
1361             label_ribs: Vec::new(),
1362
1363             current_trait_ref: None,
1364             current_self_type: None,
1365
1366             primitive_type_table: PrimitiveTypeTable::new(),
1367
1368             def_map: NodeMap(),
1369             freevars: NodeMap(),
1370             freevars_seen: NodeMap(),
1371             export_map: NodeMap(),
1372             trait_map: NodeMap(),
1373             module_map: module_map,
1374             block_map: NodeMap(),
1375             extern_module_map: FxHashMap(),
1376
1377             make_glob_map: make_glob_map == MakeGlobMap::Yes,
1378             glob_map: NodeMap(),
1379
1380             used_imports: FxHashSet(),
1381             maybe_unused_trait_imports: NodeSet(),
1382
1383             privacy_errors: Vec::new(),
1384             ambiguity_errors: Vec::new(),
1385             gated_errors: FxHashSet(),
1386             disallowed_shadowing: Vec::new(),
1387
1388             arenas: arenas,
1389             dummy_binding: arenas.alloc_name_binding(NameBinding {
1390                 kind: NameBindingKind::Def(Def::Err),
1391                 expansion: Mark::root(),
1392                 span: DUMMY_SP,
1393                 vis: ty::Visibility::Public,
1394             }),
1395
1396             // The `proc_macro` and `decl_macro` features imply `use_extern_macros`
1397             use_extern_macros:
1398                 features.use_extern_macros || features.proc_macro || features.decl_macro,
1399
1400             crate_loader: crate_loader,
1401             macro_names: FxHashSet(),
1402             global_macros: FxHashMap(),
1403             lexical_macro_resolutions: Vec::new(),
1404             macro_map: FxHashMap(),
1405             macro_exports: Vec::new(),
1406             invocations: invocations,
1407             macro_defs: macro_defs,
1408             local_macro_def_scopes: FxHashMap(),
1409             name_already_seen: FxHashMap(),
1410             whitelisted_legacy_custom_derives: Vec::new(),
1411             proc_macro_enabled: features.proc_macro,
1412             warned_proc_macros: FxHashSet(),
1413             potentially_unused_imports: Vec::new(),
1414             struct_constructors: DefIdMap(),
1415             found_unresolved_macro: false,
1416             unused_macros: FxHashSet(),
1417         }
1418     }
1419
1420     pub fn arenas() -> ResolverArenas<'a> {
1421         ResolverArenas {
1422             modules: arena::TypedArena::new(),
1423             local_modules: RefCell::new(Vec::new()),
1424             name_bindings: arena::TypedArena::new(),
1425             import_directives: arena::TypedArena::new(),
1426             name_resolutions: arena::TypedArena::new(),
1427             invocation_data: arena::TypedArena::new(),
1428             legacy_bindings: arena::TypedArena::new(),
1429         }
1430     }
1431
1432     fn per_ns<T, F: FnMut(&mut Self, Namespace) -> T>(&mut self, mut f: F) -> PerNS<T> {
1433         PerNS {
1434             type_ns: f(self, TypeNS),
1435             value_ns: f(self, ValueNS),
1436             macro_ns: match self.use_extern_macros {
1437                 true => Some(f(self, MacroNS)),
1438                 false => None,
1439             },
1440         }
1441     }
1442
1443     /// Entry point to crate resolution.
1444     pub fn resolve_crate(&mut self, krate: &Crate) {
1445         ImportResolver { resolver: self }.finalize_imports();
1446         self.current_module = self.graph_root;
1447         self.finalize_current_module_macro_resolutions();
1448         visit::walk_crate(self, krate);
1449
1450         check_unused::check_crate(self, krate);
1451         self.report_errors();
1452         self.crate_loader.postprocess(krate);
1453     }
1454
1455     fn new_module(
1456         &self,
1457         parent: Module<'a>,
1458         kind: ModuleKind,
1459         normal_ancestor_id: DefId,
1460         expansion: Mark,
1461         span: Span,
1462     ) -> Module<'a> {
1463         let module = ModuleData::new(Some(parent), kind, normal_ancestor_id, expansion, span);
1464         self.arenas.alloc_module(module)
1465     }
1466
1467     fn record_use(&mut self, ident: Ident, ns: Namespace, binding: &'a NameBinding<'a>, span: Span)
1468                   -> bool /* true if an error was reported */ {
1469         match binding.kind {
1470             NameBindingKind::Import { directive, binding, ref used, legacy_self_import }
1471                     if !used.get() => {
1472                 used.set(true);
1473                 directive.used.set(true);
1474                 if legacy_self_import {
1475                     self.warn_legacy_self_import(directive);
1476                     return false;
1477                 }
1478                 self.used_imports.insert((directive.id, ns));
1479                 self.add_to_glob_map(directive.id, ident);
1480                 self.record_use(ident, ns, binding, span)
1481             }
1482             NameBindingKind::Import { .. } => false,
1483             NameBindingKind::Ambiguity { b1, b2, legacy } => {
1484                 self.ambiguity_errors.push(AmbiguityError {
1485                     span: span, name: ident.name, lexical: false, b1: b1, b2: b2, legacy: legacy,
1486                 });
1487                 if legacy {
1488                     self.record_use(ident, ns, b1, span);
1489                 }
1490                 !legacy
1491             }
1492             _ => false
1493         }
1494     }
1495
1496     fn add_to_glob_map(&mut self, id: NodeId, ident: Ident) {
1497         if self.make_glob_map {
1498             self.glob_map.entry(id).or_insert_with(FxHashSet).insert(ident.name);
1499         }
1500     }
1501
1502     /// This resolves the identifier `ident` in the namespace `ns` in the current lexical scope.
1503     /// More specifically, we proceed up the hierarchy of scopes and return the binding for
1504     /// `ident` in the first scope that defines it (or None if no scopes define it).
1505     ///
1506     /// A block's items are above its local variables in the scope hierarchy, regardless of where
1507     /// the items are defined in the block. For example,
1508     /// ```rust
1509     /// fn f() {
1510     ///    g(); // Since there are no local variables in scope yet, this resolves to the item.
1511     ///    let g = || {};
1512     ///    fn g() {}
1513     ///    g(); // This resolves to the local variable `g` since it shadows the item.
1514     /// }
1515     /// ```
1516     ///
1517     /// Invariant: This must only be called during main resolution, not during
1518     /// import resolution.
1519     fn resolve_ident_in_lexical_scope(&mut self,
1520                                       mut ident: Ident,
1521                                       ns: Namespace,
1522                                       record_used: bool,
1523                                       path_span: Span)
1524                                       -> Option<LexicalScopeBinding<'a>> {
1525         if ns == TypeNS {
1526             ident.ctxt = if ident.name == keywords::SelfType.name() {
1527                 SyntaxContext::empty() // FIXME(jseyfried) improve `Self` hygiene
1528             } else {
1529                 ident.ctxt.modern()
1530             }
1531         }
1532
1533         // Walk backwards up the ribs in scope.
1534         let mut module = self.graph_root;
1535         for i in (0 .. self.ribs[ns].len()).rev() {
1536             if let Some(def) = self.ribs[ns][i].bindings.get(&ident).cloned() {
1537                 // The ident resolves to a type parameter or local variable.
1538                 return Some(LexicalScopeBinding::Def(
1539                     self.adjust_local_def(ns, i, def, record_used, path_span)
1540                 ));
1541             }
1542
1543             module = match self.ribs[ns][i].kind {
1544                 ModuleRibKind(module) => module,
1545                 MacroDefinition(def) if def == self.macro_defs[&ident.ctxt.outer()] => {
1546                     // If an invocation of this macro created `ident`, give up on `ident`
1547                     // and switch to `ident`'s source from the macro definition.
1548                     ident.ctxt.remove_mark();
1549                     continue
1550                 }
1551                 _ => continue,
1552             };
1553
1554             let item = self.resolve_ident_in_module_unadjusted(
1555                 module, ident, ns, false, record_used, path_span,
1556             );
1557             if let Ok(binding) = item {
1558                 // The ident resolves to an item.
1559                 return Some(LexicalScopeBinding::Item(binding));
1560             }
1561
1562             match module.kind {
1563                 ModuleKind::Block(..) => {}, // We can see through blocks
1564                 _ => break,
1565             }
1566         }
1567
1568         ident.ctxt = ident.ctxt.modern();
1569         loop {
1570             module = unwrap_or!(self.hygienic_lexical_parent(module, &mut ident.ctxt), break);
1571             let orig_current_module = self.current_module;
1572             self.current_module = module; // Lexical resolutions can never be a privacy error.
1573             let result = self.resolve_ident_in_module_unadjusted(
1574                 module, ident, ns, false, record_used, path_span,
1575             );
1576             self.current_module = orig_current_module;
1577
1578             match result {
1579                 Ok(binding) => return Some(LexicalScopeBinding::Item(binding)),
1580                 Err(Undetermined) => return None,
1581                 Err(Determined) => {}
1582             }
1583         }
1584
1585         match self.prelude {
1586             Some(prelude) if !module.no_implicit_prelude => {
1587                 self.resolve_ident_in_module_unadjusted(prelude, ident, ns, false, false, path_span)
1588                     .ok().map(LexicalScopeBinding::Item)
1589             }
1590             _ => None,
1591         }
1592     }
1593
1594     fn hygienic_lexical_parent(&mut self, mut module: Module<'a>, ctxt: &mut SyntaxContext)
1595                                -> Option<Module<'a>> {
1596         if !module.expansion.is_descendant_of(ctxt.outer()) {
1597             return Some(self.macro_def_scope(ctxt.remove_mark()));
1598         }
1599
1600         if let ModuleKind::Block(..) = module.kind {
1601             return Some(module.parent.unwrap());
1602         }
1603
1604         let mut module_expansion = module.expansion.modern(); // for backward compatability
1605         while let Some(parent) = module.parent {
1606             let parent_expansion = parent.expansion.modern();
1607             if module_expansion.is_descendant_of(parent_expansion) &&
1608                parent_expansion != module_expansion {
1609                 return if parent_expansion.is_descendant_of(ctxt.outer()) {
1610                     Some(parent)
1611                 } else {
1612                     None
1613                 };
1614             }
1615             module = parent;
1616             module_expansion = parent_expansion;
1617         }
1618
1619         None
1620     }
1621
1622     fn resolve_ident_in_module(&mut self,
1623                                module: Module<'a>,
1624                                mut ident: Ident,
1625                                ns: Namespace,
1626                                ignore_unresolved_invocations: bool,
1627                                record_used: bool,
1628                                span: Span)
1629                                -> Result<&'a NameBinding<'a>, Determinacy> {
1630         ident.ctxt = ident.ctxt.modern();
1631         let orig_current_module = self.current_module;
1632         if let Some(def) = ident.ctxt.adjust(module.expansion) {
1633             self.current_module = self.macro_def_scope(def);
1634         }
1635         let result = self.resolve_ident_in_module_unadjusted(
1636             module, ident, ns, ignore_unresolved_invocations, record_used, span,
1637         );
1638         self.current_module = orig_current_module;
1639         result
1640     }
1641
1642     fn resolve_crate_root(&mut self, mut ctxt: SyntaxContext) -> Module<'a> {
1643         let module = match ctxt.adjust(Mark::root()) {
1644             Some(def) => self.macro_def_scope(def),
1645             None => return self.graph_root,
1646         };
1647         self.get_module(DefId { index: CRATE_DEF_INDEX, ..module.normal_ancestor_id })
1648     }
1649
1650     fn resolve_self(&mut self, ctxt: &mut SyntaxContext, module: Module<'a>) -> Module<'a> {
1651         let mut module = self.get_module(module.normal_ancestor_id);
1652         while module.span.ctxt.modern() != *ctxt {
1653             let parent = module.parent.unwrap_or_else(|| self.macro_def_scope(ctxt.remove_mark()));
1654             module = self.get_module(parent.normal_ancestor_id);
1655         }
1656         module
1657     }
1658
1659     // AST resolution
1660     //
1661     // We maintain a list of value ribs and type ribs.
1662     //
1663     // Simultaneously, we keep track of the current position in the module
1664     // graph in the `current_module` pointer. When we go to resolve a name in
1665     // the value or type namespaces, we first look through all the ribs and
1666     // then query the module graph. When we resolve a name in the module
1667     // namespace, we can skip all the ribs (since nested modules are not
1668     // allowed within blocks in Rust) and jump straight to the current module
1669     // graph node.
1670     //
1671     // Named implementations are handled separately. When we find a method
1672     // call, we consult the module node to find all of the implementations in
1673     // scope. This information is lazily cached in the module node. We then
1674     // generate a fake "implementation scope" containing all the
1675     // implementations thus found, for compatibility with old resolve pass.
1676
1677     fn with_scope<F>(&mut self, id: NodeId, f: F)
1678         where F: FnOnce(&mut Resolver)
1679     {
1680         let id = self.definitions.local_def_id(id);
1681         let module = self.module_map.get(&id).cloned(); // clones a reference
1682         if let Some(module) = module {
1683             // Move down in the graph.
1684             let orig_module = replace(&mut self.current_module, module);
1685             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(module)));
1686             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(module)));
1687
1688             self.finalize_current_module_macro_resolutions();
1689             f(self);
1690
1691             self.current_module = orig_module;
1692             self.ribs[ValueNS].pop();
1693             self.ribs[TypeNS].pop();
1694         } else {
1695             f(self);
1696         }
1697     }
1698
1699     /// Searches the current set of local scopes for labels.
1700     /// Stops after meeting a closure.
1701     fn search_label(&self, mut ident: Ident) -> Option<Def> {
1702         for rib in self.label_ribs.iter().rev() {
1703             match rib.kind {
1704                 NormalRibKind => {}
1705                 // If an invocation of this macro created `ident`, give up on `ident`
1706                 // and switch to `ident`'s source from the macro definition.
1707                 MacroDefinition(def) => {
1708                     if def == self.macro_defs[&ident.ctxt.outer()] {
1709                         ident.ctxt.remove_mark();
1710                     }
1711                 }
1712                 _ => {
1713                     // Do not resolve labels across function boundary
1714                     return None;
1715                 }
1716             }
1717             let result = rib.bindings.get(&ident).cloned();
1718             if result.is_some() {
1719                 return result;
1720             }
1721         }
1722         None
1723     }
1724
1725     fn resolve_item(&mut self, item: &Item) {
1726         let name = item.ident.name;
1727
1728         debug!("(resolving item) resolving {}", name);
1729
1730         self.check_proc_macro_attrs(&item.attrs);
1731
1732         match item.node {
1733             ItemKind::Enum(_, ref generics) |
1734             ItemKind::Ty(_, ref generics) |
1735             ItemKind::Struct(_, ref generics) |
1736             ItemKind::Union(_, ref generics) |
1737             ItemKind::Fn(.., ref generics, _) => {
1738                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind),
1739                                              |this| visit::walk_item(this, item));
1740             }
1741
1742             ItemKind::DefaultImpl(_, ref trait_ref) => {
1743                 self.with_optional_trait_ref(Some(trait_ref), |this, _| {
1744                     // Resolve type arguments in trait path
1745                     visit::walk_trait_ref(this, trait_ref);
1746                 });
1747             }
1748             ItemKind::Impl(.., ref generics, ref opt_trait_ref, ref self_type, ref impl_items) =>
1749                 self.resolve_implementation(generics,
1750                                             opt_trait_ref,
1751                                             &self_type,
1752                                             item.id,
1753                                             impl_items),
1754
1755             ItemKind::Trait(_, ref generics, ref bounds, ref trait_items) => {
1756                 // Create a new rib for the trait-wide type parameters.
1757                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
1758                     let local_def_id = this.definitions.local_def_id(item.id);
1759                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
1760                         this.visit_generics(generics);
1761                         walk_list!(this, visit_ty_param_bound, bounds);
1762
1763                         for trait_item in trait_items {
1764                             this.check_proc_macro_attrs(&trait_item.attrs);
1765
1766                             match trait_item.node {
1767                                 TraitItemKind::Const(ref ty, ref default) => {
1768                                     this.visit_ty(ty);
1769
1770                                     // Only impose the restrictions of
1771                                     // ConstRibKind for an actual constant
1772                                     // expression in a provided default.
1773                                     if let Some(ref expr) = *default{
1774                                         this.with_constant_rib(|this| {
1775                                             this.visit_expr(expr);
1776                                         });
1777                                     }
1778                                 }
1779                                 TraitItemKind::Method(ref sig, _) => {
1780                                     let type_parameters =
1781                                         HasTypeParameters(&sig.generics,
1782                                                           MethodRibKind(!sig.decl.has_self()));
1783                                     this.with_type_parameter_rib(type_parameters, |this| {
1784                                         visit::walk_trait_item(this, trait_item)
1785                                     });
1786                                 }
1787                                 TraitItemKind::Type(..) => {
1788                                     this.with_type_parameter_rib(NoTypeParameters, |this| {
1789                                         visit::walk_trait_item(this, trait_item)
1790                                     });
1791                                 }
1792                                 TraitItemKind::Macro(_) => panic!("unexpanded macro in resolve!"),
1793                             };
1794                         }
1795                     });
1796                 });
1797             }
1798
1799             ItemKind::Mod(_) | ItemKind::ForeignMod(_) => {
1800                 self.with_scope(item.id, |this| {
1801                     visit::walk_item(this, item);
1802                 });
1803             }
1804
1805             ItemKind::Static(ref ty, _, ref expr) |
1806             ItemKind::Const(ref ty, ref expr) => {
1807                 self.with_item_rib(|this| {
1808                     this.visit_ty(ty);
1809                     this.with_constant_rib(|this| {
1810                         this.visit_expr(expr);
1811                     });
1812                 });
1813             }
1814
1815             ItemKind::Use(ref view_path) => {
1816                 match view_path.node {
1817                     ast::ViewPathList(ref prefix, ref items) if items.is_empty() => {
1818                         // Resolve prefix of an import with empty braces (issue #28388).
1819                         self.smart_resolve_path(item.id, None, prefix, PathSource::ImportPrefix);
1820                     }
1821                     _ => {}
1822                 }
1823             }
1824
1825             ItemKind::ExternCrate(_) | ItemKind::MacroDef(..) | ItemKind::GlobalAsm(_)=> {
1826                 // do nothing, these are just around to be encoded
1827             }
1828
1829             ItemKind::Mac(_) => panic!("unexpanded macro in resolve!"),
1830         }
1831     }
1832
1833     fn with_type_parameter_rib<'b, F>(&'b mut self, type_parameters: TypeParameters<'a, 'b>, f: F)
1834         where F: FnOnce(&mut Resolver)
1835     {
1836         match type_parameters {
1837             HasTypeParameters(generics, rib_kind) => {
1838                 let mut function_type_rib = Rib::new(rib_kind);
1839                 let mut seen_bindings = FxHashMap();
1840                 for type_parameter in &generics.ty_params {
1841                     let ident = type_parameter.ident.modern();
1842                     debug!("with_type_parameter_rib: {}", type_parameter.id);
1843
1844                     if seen_bindings.contains_key(&ident) {
1845                         let span = seen_bindings.get(&ident).unwrap();
1846                         let err =
1847                             ResolutionError::NameAlreadyUsedInTypeParameterList(ident.name, span);
1848                         resolve_error(self, type_parameter.span, err);
1849                     }
1850                     seen_bindings.entry(ident).or_insert(type_parameter.span);
1851
1852                     // plain insert (no renaming)
1853                     let def_id = self.definitions.local_def_id(type_parameter.id);
1854                     let def = Def::TyParam(def_id);
1855                     function_type_rib.bindings.insert(ident, def);
1856                     self.record_def(type_parameter.id, PathResolution::new(def));
1857                 }
1858                 self.ribs[TypeNS].push(function_type_rib);
1859             }
1860
1861             NoTypeParameters => {
1862                 // Nothing to do.
1863             }
1864         }
1865
1866         f(self);
1867
1868         if let HasTypeParameters(..) = type_parameters {
1869             self.ribs[TypeNS].pop();
1870         }
1871     }
1872
1873     fn with_label_rib<F>(&mut self, f: F)
1874         where F: FnOnce(&mut Resolver)
1875     {
1876         self.label_ribs.push(Rib::new(NormalRibKind));
1877         f(self);
1878         self.label_ribs.pop();
1879     }
1880
1881     fn with_item_rib<F>(&mut self, f: F)
1882         where F: FnOnce(&mut Resolver)
1883     {
1884         self.ribs[ValueNS].push(Rib::new(ItemRibKind));
1885         self.ribs[TypeNS].push(Rib::new(ItemRibKind));
1886         f(self);
1887         self.ribs[TypeNS].pop();
1888         self.ribs[ValueNS].pop();
1889     }
1890
1891     fn with_constant_rib<F>(&mut self, f: F)
1892         where F: FnOnce(&mut Resolver)
1893     {
1894         self.ribs[ValueNS].push(Rib::new(ConstantItemRibKind));
1895         f(self);
1896         self.ribs[ValueNS].pop();
1897     }
1898
1899     fn with_current_self_type<T, F>(&mut self, self_type: &Ty, f: F) -> T
1900         where F: FnOnce(&mut Resolver) -> T
1901     {
1902         // Handle nested impls (inside fn bodies)
1903         let previous_value = replace(&mut self.current_self_type, Some(self_type.clone()));
1904         let result = f(self);
1905         self.current_self_type = previous_value;
1906         result
1907     }
1908
1909     fn with_optional_trait_ref<T, F>(&mut self, opt_trait_ref: Option<&TraitRef>, f: F) -> T
1910         where F: FnOnce(&mut Resolver, Option<DefId>) -> T
1911     {
1912         let mut new_val = None;
1913         let mut new_id = None;
1914         if let Some(trait_ref) = opt_trait_ref {
1915             let path: Vec<_> = trait_ref.path.segments.iter().map(|seg| seg.identifier).collect();
1916             let def = self.smart_resolve_path_fragment(trait_ref.ref_id,
1917                                                        None,
1918                                                        &path,
1919                                                        trait_ref.path.span,
1920                                                        trait_ref.path.segments.last().unwrap().span,
1921                                                        PathSource::Trait)
1922                 .base_def();
1923             if def != Def::Err {
1924                 new_id = Some(def.def_id());
1925                 let span = trait_ref.path.span;
1926                 if let PathResult::Module(module) = self.resolve_path(&path, None, false, span) {
1927                     new_val = Some((module, trait_ref.clone()));
1928                 }
1929             }
1930         }
1931         let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
1932         let result = f(self, new_id);
1933         self.current_trait_ref = original_trait_ref;
1934         result
1935     }
1936
1937     fn with_self_rib<F>(&mut self, self_def: Def, f: F)
1938         where F: FnOnce(&mut Resolver)
1939     {
1940         let mut self_type_rib = Rib::new(NormalRibKind);
1941
1942         // plain insert (no renaming, types are not currently hygienic....)
1943         self_type_rib.bindings.insert(keywords::SelfType.ident(), self_def);
1944         self.ribs[TypeNS].push(self_type_rib);
1945         f(self);
1946         self.ribs[TypeNS].pop();
1947     }
1948
1949     fn resolve_implementation(&mut self,
1950                               generics: &Generics,
1951                               opt_trait_reference: &Option<TraitRef>,
1952                               self_type: &Ty,
1953                               item_id: NodeId,
1954                               impl_items: &[ImplItem]) {
1955         // If applicable, create a rib for the type parameters.
1956         self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
1957             // Dummy self type for better errors if `Self` is used in the trait path.
1958             this.with_self_rib(Def::SelfTy(None, None), |this| {
1959                 // Resolve the trait reference, if necessary.
1960                 this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| {
1961                     let item_def_id = this.definitions.local_def_id(item_id);
1962                     this.with_self_rib(Def::SelfTy(trait_id, Some(item_def_id)), |this| {
1963                         if let Some(trait_ref) = opt_trait_reference.as_ref() {
1964                             // Resolve type arguments in trait path
1965                             visit::walk_trait_ref(this, trait_ref);
1966                         }
1967                         // Resolve the self type.
1968                         this.visit_ty(self_type);
1969                         // Resolve the type parameters.
1970                         this.visit_generics(generics);
1971                         this.with_current_self_type(self_type, |this| {
1972                             for impl_item in impl_items {
1973                                 this.check_proc_macro_attrs(&impl_item.attrs);
1974                                 this.resolve_visibility(&impl_item.vis);
1975                                 match impl_item.node {
1976                                     ImplItemKind::Const(..) => {
1977                                         // If this is a trait impl, ensure the const
1978                                         // exists in trait
1979                                         this.check_trait_item(impl_item.ident,
1980                                                             ValueNS,
1981                                                             impl_item.span,
1982                                             |n, s| ResolutionError::ConstNotMemberOfTrait(n, s));
1983                                         visit::walk_impl_item(this, impl_item);
1984                                     }
1985                                     ImplItemKind::Method(ref sig, _) => {
1986                                         // If this is a trait impl, ensure the method
1987                                         // exists in trait
1988                                         this.check_trait_item(impl_item.ident,
1989                                                             ValueNS,
1990                                                             impl_item.span,
1991                                             |n, s| ResolutionError::MethodNotMemberOfTrait(n, s));
1992
1993                                         // We also need a new scope for the method-
1994                                         // specific type parameters.
1995                                         let type_parameters =
1996                                             HasTypeParameters(&sig.generics,
1997                                                             MethodRibKind(!sig.decl.has_self()));
1998                                         this.with_type_parameter_rib(type_parameters, |this| {
1999                                             visit::walk_impl_item(this, impl_item);
2000                                         });
2001                                     }
2002                                     ImplItemKind::Type(ref ty) => {
2003                                         // If this is a trait impl, ensure the type
2004                                         // exists in trait
2005                                         this.check_trait_item(impl_item.ident,
2006                                                             TypeNS,
2007                                                             impl_item.span,
2008                                             |n, s| ResolutionError::TypeNotMemberOfTrait(n, s));
2009
2010                                         this.visit_ty(ty);
2011                                     }
2012                                     ImplItemKind::Macro(_) =>
2013                                         panic!("unexpanded macro in resolve!"),
2014                                 }
2015                             }
2016                         });
2017                     });
2018                 });
2019             });
2020         });
2021     }
2022
2023     fn check_trait_item<F>(&mut self, ident: Ident, ns: Namespace, span: Span, err: F)
2024         where F: FnOnce(Name, &str) -> ResolutionError
2025     {
2026         // If there is a TraitRef in scope for an impl, then the method must be in the
2027         // trait.
2028         if let Some((module, _)) = self.current_trait_ref {
2029             if self.resolve_ident_in_module(module, ident, ns, false, false, span).is_err() {
2030                 let path = &self.current_trait_ref.as_ref().unwrap().1.path;
2031                 resolve_error(self, span, err(ident.name, &path_names_to_string(path)));
2032             }
2033         }
2034     }
2035
2036     fn resolve_local(&mut self, local: &Local) {
2037         // Resolve the type.
2038         walk_list!(self, visit_ty, &local.ty);
2039
2040         // Resolve the initializer.
2041         walk_list!(self, visit_expr, &local.init);
2042
2043         // Resolve the pattern.
2044         self.resolve_pattern(&local.pat, PatternSource::Let, &mut FxHashMap());
2045     }
2046
2047     // build a map from pattern identifiers to binding-info's.
2048     // this is done hygienically. This could arise for a macro
2049     // that expands into an or-pattern where one 'x' was from the
2050     // user and one 'x' came from the macro.
2051     fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
2052         let mut binding_map = FxHashMap();
2053
2054         pat.walk(&mut |pat| {
2055             if let PatKind::Ident(binding_mode, ident, ref sub_pat) = pat.node {
2056                 if sub_pat.is_some() || match self.def_map.get(&pat.id).map(|res| res.base_def()) {
2057                     Some(Def::Local(..)) => true,
2058                     _ => false,
2059                 } {
2060                     let binding_info = BindingInfo { span: ident.span, binding_mode: binding_mode };
2061                     binding_map.insert(ident.node, binding_info);
2062                 }
2063             }
2064             true
2065         });
2066
2067         binding_map
2068     }
2069
2070     // check that all of the arms in an or-pattern have exactly the
2071     // same set of bindings, with the same binding modes for each.
2072     fn check_consistent_bindings(&mut self, arm: &Arm) {
2073         if arm.pats.is_empty() {
2074             return;
2075         }
2076
2077         let mut missing_vars = FxHashMap();
2078         let mut inconsistent_vars = FxHashMap();
2079         for (i, p) in arm.pats.iter().enumerate() {
2080             let map_i = self.binding_mode_map(&p);
2081
2082             for (j, q) in arm.pats.iter().enumerate() {
2083                 if i == j {
2084                     continue;
2085                 }
2086
2087                 let map_j = self.binding_mode_map(&q);
2088                 for (&key, &binding_i) in &map_i {
2089                     if map_j.len() == 0 {                   // Account for missing bindings when
2090                         let binding_error = missing_vars    // map_j has none.
2091                             .entry(key.name)
2092                             .or_insert(BindingError {
2093                                 name: key.name,
2094                                 origin: BTreeSet::new(),
2095                                 target: BTreeSet::new(),
2096                             });
2097                         binding_error.origin.insert(binding_i.span);
2098                         binding_error.target.insert(q.span);
2099                     }
2100                     for (&key_j, &binding_j) in &map_j {
2101                         match map_i.get(&key_j) {
2102                             None => {  // missing binding
2103                                 let binding_error = missing_vars
2104                                     .entry(key_j.name)
2105                                     .or_insert(BindingError {
2106                                         name: key_j.name,
2107                                         origin: BTreeSet::new(),
2108                                         target: BTreeSet::new(),
2109                                     });
2110                                 binding_error.origin.insert(binding_j.span);
2111                                 binding_error.target.insert(p.span);
2112                             }
2113                             Some(binding_i) => {  // check consistent binding
2114                                 if binding_i.binding_mode != binding_j.binding_mode {
2115                                     inconsistent_vars
2116                                         .entry(key.name)
2117                                         .or_insert((binding_j.span, binding_i.span));
2118                                 }
2119                             }
2120                         }
2121                     }
2122                 }
2123             }
2124         }
2125         let mut missing_vars = missing_vars.iter().collect::<Vec<_>>();
2126         missing_vars.sort();
2127         for (_, v) in missing_vars {
2128             resolve_error(self,
2129                           *v.origin.iter().next().unwrap(),
2130                           ResolutionError::VariableNotBoundInPattern(v));
2131         }
2132         let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
2133         inconsistent_vars.sort();
2134         for (name, v) in inconsistent_vars {
2135             resolve_error(self, v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
2136         }
2137     }
2138
2139     fn resolve_arm(&mut self, arm: &Arm) {
2140         self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2141
2142         let mut bindings_list = FxHashMap();
2143         for pattern in &arm.pats {
2144             self.resolve_pattern(&pattern, PatternSource::Match, &mut bindings_list);
2145         }
2146
2147         // This has to happen *after* we determine which
2148         // pat_idents are variants
2149         self.check_consistent_bindings(arm);
2150
2151         walk_list!(self, visit_expr, &arm.guard);
2152         self.visit_expr(&arm.body);
2153
2154         self.ribs[ValueNS].pop();
2155     }
2156
2157     fn resolve_block(&mut self, block: &Block) {
2158         debug!("(resolving block) entering block");
2159         // Move down in the graph, if there's an anonymous module rooted here.
2160         let orig_module = self.current_module;
2161         let anonymous_module = self.block_map.get(&block.id).cloned(); // clones a reference
2162
2163         let mut num_macro_definition_ribs = 0;
2164         if let Some(anonymous_module) = anonymous_module {
2165             debug!("(resolving block) found anonymous module, moving down");
2166             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2167             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2168             self.current_module = anonymous_module;
2169             self.finalize_current_module_macro_resolutions();
2170         } else {
2171             self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2172         }
2173
2174         // Descend into the block.
2175         for stmt in &block.stmts {
2176             if let ast::StmtKind::Item(ref item) = stmt.node {
2177                 if let ast::ItemKind::MacroDef(..) = item.node {
2178                     num_macro_definition_ribs += 1;
2179                     let def = self.definitions.local_def_id(item.id);
2180                     self.ribs[ValueNS].push(Rib::new(MacroDefinition(def)));
2181                     self.label_ribs.push(Rib::new(MacroDefinition(def)));
2182                 }
2183             }
2184
2185             self.visit_stmt(stmt);
2186         }
2187
2188         // Move back up.
2189         self.current_module = orig_module;
2190         for _ in 0 .. num_macro_definition_ribs {
2191             self.ribs[ValueNS].pop();
2192             self.label_ribs.pop();
2193         }
2194         self.ribs[ValueNS].pop();
2195         if let Some(_) = anonymous_module {
2196             self.ribs[TypeNS].pop();
2197         }
2198         debug!("(resolving block) leaving block");
2199     }
2200
2201     fn fresh_binding(&mut self,
2202                      ident: &SpannedIdent,
2203                      pat_id: NodeId,
2204                      outer_pat_id: NodeId,
2205                      pat_src: PatternSource,
2206                      bindings: &mut FxHashMap<Ident, NodeId>)
2207                      -> PathResolution {
2208         // Add the binding to the local ribs, if it
2209         // doesn't already exist in the bindings map. (We
2210         // must not add it if it's in the bindings map
2211         // because that breaks the assumptions later
2212         // passes make about or-patterns.)
2213         let mut def = Def::Local(self.definitions.local_def_id(pat_id));
2214         match bindings.get(&ident.node).cloned() {
2215             Some(id) if id == outer_pat_id => {
2216                 // `Variant(a, a)`, error
2217                 resolve_error(
2218                     self,
2219                     ident.span,
2220                     ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(
2221                         &ident.node.name.as_str())
2222                 );
2223             }
2224             Some(..) if pat_src == PatternSource::FnParam => {
2225                 // `fn f(a: u8, a: u8)`, error
2226                 resolve_error(
2227                     self,
2228                     ident.span,
2229                     ResolutionError::IdentifierBoundMoreThanOnceInParameterList(
2230                         &ident.node.name.as_str())
2231                 );
2232             }
2233             Some(..) if pat_src == PatternSource::Match => {
2234                 // `Variant1(a) | Variant2(a)`, ok
2235                 // Reuse definition from the first `a`.
2236                 def = self.ribs[ValueNS].last_mut().unwrap().bindings[&ident.node];
2237             }
2238             Some(..) => {
2239                 span_bug!(ident.span, "two bindings with the same name from \
2240                                        unexpected pattern source {:?}", pat_src);
2241             }
2242             None => {
2243                 // A completely fresh binding, add to the lists if it's valid.
2244                 if ident.node.name != keywords::Invalid.name() {
2245                     bindings.insert(ident.node, outer_pat_id);
2246                     self.ribs[ValueNS].last_mut().unwrap().bindings.insert(ident.node, def);
2247                 }
2248             }
2249         }
2250
2251         PathResolution::new(def)
2252     }
2253
2254     fn resolve_pattern(&mut self,
2255                        pat: &Pat,
2256                        pat_src: PatternSource,
2257                        // Maps idents to the node ID for the
2258                        // outermost pattern that binds them.
2259                        bindings: &mut FxHashMap<Ident, NodeId>) {
2260         // Visit all direct subpatterns of this pattern.
2261         let outer_pat_id = pat.id;
2262         pat.walk(&mut |pat| {
2263             match pat.node {
2264                 PatKind::Ident(bmode, ref ident, ref opt_pat) => {
2265                     // First try to resolve the identifier as some existing
2266                     // entity, then fall back to a fresh binding.
2267                     let binding = self.resolve_ident_in_lexical_scope(ident.node, ValueNS,
2268                                                                       false, pat.span)
2269                                       .and_then(LexicalScopeBinding::item);
2270                     let resolution = binding.map(NameBinding::def).and_then(|def| {
2271                         let always_binding = !pat_src.is_refutable() || opt_pat.is_some() ||
2272                                              bmode != BindingMode::ByValue(Mutability::Immutable);
2273                         match def {
2274                             Def::StructCtor(_, CtorKind::Const) |
2275                             Def::VariantCtor(_, CtorKind::Const) |
2276                             Def::Const(..) if !always_binding => {
2277                                 // A unit struct/variant or constant pattern.
2278                                 self.record_use(ident.node, ValueNS, binding.unwrap(), ident.span);
2279                                 Some(PathResolution::new(def))
2280                             }
2281                             Def::StructCtor(..) | Def::VariantCtor(..) |
2282                             Def::Const(..) | Def::Static(..) => {
2283                                 // A fresh binding that shadows something unacceptable.
2284                                 resolve_error(
2285                                     self,
2286                                     ident.span,
2287                                     ResolutionError::BindingShadowsSomethingUnacceptable(
2288                                         pat_src.descr(), ident.node.name, binding.unwrap())
2289                                 );
2290                                 None
2291                             }
2292                             Def::Local(..) | Def::Upvar(..) | Def::Fn(..) | Def::Err => {
2293                                 // These entities are explicitly allowed
2294                                 // to be shadowed by fresh bindings.
2295                                 None
2296                             }
2297                             def => {
2298                                 span_bug!(ident.span, "unexpected definition for an \
2299                                                        identifier in pattern: {:?}", def);
2300                             }
2301                         }
2302                     }).unwrap_or_else(|| {
2303                         self.fresh_binding(ident, pat.id, outer_pat_id, pat_src, bindings)
2304                     });
2305
2306                     self.record_def(pat.id, resolution);
2307                 }
2308
2309                 PatKind::TupleStruct(ref path, ..) => {
2310                     self.smart_resolve_path(pat.id, None, path, PathSource::TupleStruct);
2311                 }
2312
2313                 PatKind::Path(ref qself, ref path) => {
2314                     self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
2315                 }
2316
2317                 PatKind::Struct(ref path, ..) => {
2318                     self.smart_resolve_path(pat.id, None, path, PathSource::Struct);
2319                 }
2320
2321                 _ => {}
2322             }
2323             true
2324         });
2325
2326         visit::walk_pat(self, pat);
2327     }
2328
2329     // High-level and context dependent path resolution routine.
2330     // Resolves the path and records the resolution into definition map.
2331     // If resolution fails tries several techniques to find likely
2332     // resolution candidates, suggest imports or other help, and report
2333     // errors in user friendly way.
2334     fn smart_resolve_path(&mut self,
2335                           id: NodeId,
2336                           qself: Option<&QSelf>,
2337                           path: &Path,
2338                           source: PathSource)
2339                           -> PathResolution {
2340         let segments = &path.segments.iter().map(|seg| seg.identifier).collect::<Vec<_>>();
2341         let ident_span = path.segments.last().map_or(path.span, |seg| seg.span);
2342         self.smart_resolve_path_fragment(id, qself, segments, path.span, ident_span, source)
2343     }
2344
2345     fn smart_resolve_path_fragment(&mut self,
2346                                    id: NodeId,
2347                                    qself: Option<&QSelf>,
2348                                    path: &[Ident],
2349                                    span: Span,
2350                                    ident_span: Span,
2351                                    source: PathSource)
2352                                    -> PathResolution {
2353         let ns = source.namespace();
2354         let is_expected = &|def| source.is_expected(def);
2355         let is_enum_variant = &|def| if let Def::Variant(..) = def { true } else { false };
2356
2357         // Base error is amended with one short label and possibly some longer helps/notes.
2358         let report_errors = |this: &mut Self, def: Option<Def>| {
2359             // Make the base error.
2360             let expected = source.descr_expected();
2361             let path_str = names_to_string(path);
2362             let code = source.error_code(def.is_some());
2363             let (base_msg, fallback_label, base_span) = if let Some(def) = def {
2364                 (format!("expected {}, found {} `{}`", expected, def.kind_name(), path_str),
2365                  format!("not a {}", expected), span)
2366             } else {
2367                 let item_str = path[path.len() - 1];
2368                 let (mod_prefix, mod_str) = if path.len() == 1 {
2369                     (format!(""), format!("this scope"))
2370                 } else if path.len() == 2 && path[0].name == keywords::CrateRoot.name() {
2371                     (format!(""), format!("the crate root"))
2372                 } else {
2373                     let mod_path = &path[..path.len() - 1];
2374                     let mod_prefix = match this.resolve_path(mod_path, Some(TypeNS), false, span) {
2375                         PathResult::Module(module) => module.def(),
2376                         _ => None,
2377                     }.map_or(format!(""), |def| format!("{} ", def.kind_name()));
2378                     (mod_prefix, format!("`{}`", names_to_string(mod_path)))
2379                 };
2380                 (format!("cannot find {} `{}` in {}{}", expected, item_str, mod_prefix, mod_str),
2381                  format!("not found in {}", mod_str), ident_span)
2382             };
2383             let mut err = this.session.struct_span_err_with_code(base_span, &base_msg, code);
2384
2385             // Emit special messages for unresolved `Self` and `self`.
2386             if is_self_type(path, ns) {
2387                 __diagnostic_used!(E0411);
2388                 err.code("E0411".into());
2389                 err.span_label(span, "`Self` is only available in traits and impls");
2390                 return err;
2391             }
2392             if is_self_value(path, ns) {
2393                 __diagnostic_used!(E0424);
2394                 err.code("E0424".into());
2395                 err.span_label(span, format!("`self` value is only available in \
2396                                                methods with `self` parameter"));
2397                 return err;
2398             }
2399
2400             // Try to lookup the name in more relaxed fashion for better error reporting.
2401             let ident = *path.last().unwrap();
2402             let candidates = this.lookup_import_candidates(ident.name, ns, is_expected);
2403             if !candidates.is_empty() {
2404                 let mut module_span = this.current_module.span;
2405                 module_span.hi = module_span.lo;
2406                 // Report import candidates as help and proceed searching for labels.
2407                 show_candidates(&mut err, module_span, &candidates, def.is_some());
2408             } else if is_expected(Def::Enum(DefId::local(CRATE_DEF_INDEX))) {
2409                 let enum_candidates =
2410                     this.lookup_import_candidates(ident.name, ns, is_enum_variant);
2411                 let mut enum_candidates = enum_candidates.iter()
2412                     .map(|suggestion| import_candidate_to_paths(&suggestion)).collect::<Vec<_>>();
2413                 enum_candidates.sort();
2414                 for (sp, variant_path, enum_path) in enum_candidates {
2415                     let msg = format!("there is an enum variant `{}`, did you mean to use `{}`?",
2416                                       variant_path,
2417                                       enum_path);
2418                     if sp == DUMMY_SP {
2419                         err.help(&msg);
2420                     } else {
2421                         err.span_help(sp, &msg);
2422                     }
2423                 }
2424             }
2425             if path.len() == 1 && this.self_type_is_available(span) {
2426                 if let Some(candidate) = this.lookup_assoc_candidate(ident, ns, is_expected) {
2427                     let self_is_available = this.self_value_is_available(path[0].ctxt, span);
2428                     match candidate {
2429                         AssocSuggestion::Field => {
2430                             err.span_label(span, format!("did you mean `self.{}`?", path_str));
2431                             if !self_is_available {
2432                                 err.span_label(span, format!("`self` value is only available in \
2433                                                                methods with `self` parameter"));
2434                             }
2435                         }
2436                         AssocSuggestion::MethodWithSelf if self_is_available => {
2437                             err.span_label(span, format!("did you mean `self.{}(...)`?",
2438                                                            path_str));
2439                         }
2440                         AssocSuggestion::MethodWithSelf | AssocSuggestion::AssocItem => {
2441                             err.span_label(span, format!("did you mean `Self::{}`?", path_str));
2442                         }
2443                     }
2444                     return err;
2445                 }
2446             }
2447
2448             let mut levenshtein_worked = false;
2449
2450             // Try Levenshtein.
2451             if let Some(candidate) = this.lookup_typo_candidate(path, ns, is_expected, span) {
2452                 err.span_label(ident_span, format!("did you mean `{}`?", candidate));
2453                 levenshtein_worked = true;
2454             }
2455
2456             // Try context dependent help if relaxed lookup didn't work.
2457             if let Some(def) = def {
2458                 match (def, source) {
2459                     (Def::Macro(..), _) => {
2460                         err.span_label(span, format!("did you mean `{}!(...)`?", path_str));
2461                         return err;
2462                     }
2463                     (Def::TyAlias(..), PathSource::Trait) => {
2464                         err.span_label(span, "type aliases cannot be used for traits");
2465                         return err;
2466                     }
2467                     (Def::Mod(..), PathSource::Expr(Some(parent))) => match parent.node {
2468                         ExprKind::Field(_, ident) => {
2469                             err.span_label(parent.span, format!("did you mean `{}::{}`?",
2470                                                                  path_str, ident.node));
2471                             return err;
2472                         }
2473                         ExprKind::MethodCall(ident, ..) => {
2474                             err.span_label(parent.span, format!("did you mean `{}::{}(...)`?",
2475                                                                  path_str, ident.node));
2476                             return err;
2477                         }
2478                         _ => {}
2479                     },
2480                     _ if ns == ValueNS && is_struct_like(def) => {
2481                         if let Def::Struct(def_id) = def {
2482                             if let Some((ctor_def, ctor_vis))
2483                                     = this.struct_constructors.get(&def_id).cloned() {
2484                                 if is_expected(ctor_def) && !this.is_accessible(ctor_vis) {
2485                                     err.span_label(span, format!("constructor is not visible \
2486                                                                    here due to private fields"));
2487                                 }
2488                             }
2489                         }
2490                         err.span_label(span, format!("did you mean `{} {{ /* fields */ }}`?",
2491                                                        path_str));
2492                         return err;
2493                     }
2494                     _ => {}
2495                 }
2496             }
2497
2498             // Fallback label.
2499             if !levenshtein_worked {
2500                 err.span_label(base_span, fallback_label);
2501             }
2502             err
2503         };
2504         let report_errors = |this: &mut Self, def: Option<Def>| {
2505             report_errors(this, def).emit();
2506             err_path_resolution()
2507         };
2508
2509         let resolution = match self.resolve_qpath_anywhere(id, qself, path, ns, span,
2510                                                            source.defer_to_typeck(),
2511                                                            source.global_by_default()) {
2512             Some(resolution) if resolution.unresolved_segments() == 0 => {
2513                 if is_expected(resolution.base_def()) || resolution.base_def() == Def::Err {
2514                     resolution
2515                 } else {
2516                     // Add a temporary hack to smooth the transition to new struct ctor
2517                     // visibility rules. See #38932 for more details.
2518                     let mut res = None;
2519                     if let Def::Struct(def_id) = resolution.base_def() {
2520                         if let Some((ctor_def, ctor_vis))
2521                                 = self.struct_constructors.get(&def_id).cloned() {
2522                             if is_expected(ctor_def) && self.is_accessible(ctor_vis) {
2523                                 let lint = lint::builtin::LEGACY_CONSTRUCTOR_VISIBILITY;
2524                                 self.session.add_lint(lint, id, span,
2525                                     "private struct constructors are not usable through \
2526                                      reexports in outer modules".to_string());
2527                                 res = Some(PathResolution::new(ctor_def));
2528                             }
2529                         }
2530                     }
2531
2532                     res.unwrap_or_else(|| report_errors(self, Some(resolution.base_def())))
2533                 }
2534             }
2535             Some(resolution) if source.defer_to_typeck() => {
2536                 // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
2537                 // or `<T>::A::B`. If `B` should be resolved in value namespace then
2538                 // it needs to be added to the trait map.
2539                 if ns == ValueNS {
2540                     let item_name = *path.last().unwrap();
2541                     let traits = self.get_traits_containing_item(item_name, ns);
2542                     self.trait_map.insert(id, traits);
2543                 }
2544                 resolution
2545             }
2546             _ => report_errors(self, None)
2547         };
2548
2549         if let PathSource::TraitItem(..) = source {} else {
2550             // Avoid recording definition of `A::B` in `<T as A>::B::C`.
2551             self.record_def(id, resolution);
2552         }
2553         resolution
2554     }
2555
2556     fn self_type_is_available(&mut self, span: Span) -> bool {
2557         let binding = self.resolve_ident_in_lexical_scope(keywords::SelfType.ident(),
2558                                                           TypeNS, false, span);
2559         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
2560     }
2561
2562     fn self_value_is_available(&mut self, ctxt: SyntaxContext, span: Span) -> bool {
2563         let ident = Ident { name: keywords::SelfValue.name(), ctxt: ctxt };
2564         let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, false, span);
2565         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
2566     }
2567
2568     // Resolve in alternative namespaces if resolution in the primary namespace fails.
2569     fn resolve_qpath_anywhere(&mut self,
2570                               id: NodeId,
2571                               qself: Option<&QSelf>,
2572                               path: &[Ident],
2573                               primary_ns: Namespace,
2574                               span: Span,
2575                               defer_to_typeck: bool,
2576                               global_by_default: bool)
2577                               -> Option<PathResolution> {
2578         let mut fin_res = None;
2579         // FIXME: can't resolve paths in macro namespace yet, macros are
2580         // processed by the little special hack below.
2581         for (i, ns) in [primary_ns, TypeNS, ValueNS, /*MacroNS*/].iter().cloned().enumerate() {
2582             if i == 0 || ns != primary_ns {
2583                 match self.resolve_qpath(id, qself, path, ns, span, global_by_default) {
2584                     // If defer_to_typeck, then resolution > no resolution,
2585                     // otherwise full resolution > partial resolution > no resolution.
2586                     Some(res) if res.unresolved_segments() == 0 || defer_to_typeck =>
2587                         return Some(res),
2588                     res => if fin_res.is_none() { fin_res = res },
2589                 };
2590             }
2591         }
2592         let is_global = self.global_macros.get(&path[0].name).cloned()
2593             .map(|binding| binding.get_macro(self).kind() == MacroKind::Bang).unwrap_or(false);
2594         if primary_ns != MacroNS && (is_global || self.macro_names.contains(&path[0].modern())) {
2595             // Return some dummy definition, it's enough for error reporting.
2596             return Some(
2597                 PathResolution::new(Def::Macro(DefId::local(CRATE_DEF_INDEX), MacroKind::Bang))
2598             );
2599         }
2600         fin_res
2601     }
2602
2603     /// Handles paths that may refer to associated items.
2604     fn resolve_qpath(&mut self,
2605                      id: NodeId,
2606                      qself: Option<&QSelf>,
2607                      path: &[Ident],
2608                      ns: Namespace,
2609                      span: Span,
2610                      global_by_default: bool)
2611                      -> Option<PathResolution> {
2612         if let Some(qself) = qself {
2613             if qself.position == 0 {
2614                 // FIXME: Create some fake resolution that can't possibly be a type.
2615                 return Some(PathResolution::with_unresolved_segments(
2616                     Def::Mod(DefId::local(CRATE_DEF_INDEX)), path.len()
2617                 ));
2618             }
2619             // Make sure `A::B` in `<T as A>::B::C` is a trait item.
2620             let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
2621             let res = self.smart_resolve_path_fragment(id, None, &path[..qself.position + 1],
2622                                                        span, span, PathSource::TraitItem(ns));
2623             return Some(PathResolution::with_unresolved_segments(
2624                 res.base_def(), res.unresolved_segments() + path.len() - qself.position - 1
2625             ));
2626         }
2627
2628         let result = match self.resolve_path(&path, Some(ns), true, span) {
2629             PathResult::NonModule(path_res) => path_res,
2630             PathResult::Module(module) if !module.is_normal() => {
2631                 PathResolution::new(module.def().unwrap())
2632             }
2633             // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
2634             // don't report an error right away, but try to fallback to a primitive type.
2635             // So, we are still able to successfully resolve something like
2636             //
2637             // use std::u8; // bring module u8 in scope
2638             // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
2639             //     u8::max_value() // OK, resolves to associated function <u8>::max_value,
2640             //                     // not to non-existent std::u8::max_value
2641             // }
2642             //
2643             // Such behavior is required for backward compatibility.
2644             // The same fallback is used when `a` resolves to nothing.
2645             PathResult::Module(..) | PathResult::Failed(..)
2646                     if (ns == TypeNS || path.len() > 1) &&
2647                        self.primitive_type_table.primitive_types.contains_key(&path[0].name) => {
2648                 let prim = self.primitive_type_table.primitive_types[&path[0].name];
2649                 match prim {
2650                     TyUint(UintTy::U128) | TyInt(IntTy::I128) => {
2651                         if !self.session.features.borrow().i128_type {
2652                             emit_feature_err(&self.session.parse_sess,
2653                                                 "i128_type", span, GateIssue::Language,
2654                                                 "128-bit type is unstable");
2655
2656                         }
2657                     }
2658                     _ => {}
2659                 }
2660                 PathResolution::with_unresolved_segments(Def::PrimTy(prim), path.len() - 1)
2661             }
2662             PathResult::Module(module) => PathResolution::new(module.def().unwrap()),
2663             PathResult::Failed(msg, false) => {
2664                 resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
2665                 err_path_resolution()
2666             }
2667             PathResult::Failed(..) => return None,
2668             PathResult::Indeterminate => bug!("indetermined path result in resolve_qpath"),
2669         };
2670
2671         if path.len() > 1 && !global_by_default && result.base_def() != Def::Err &&
2672            path[0].name != keywords::CrateRoot.name() && path[0].name != "$crate" {
2673             let unqualified_result = {
2674                 match self.resolve_path(&[*path.last().unwrap()], Some(ns), false, span) {
2675                     PathResult::NonModule(path_res) => path_res.base_def(),
2676                     PathResult::Module(module) => module.def().unwrap(),
2677                     _ => return Some(result),
2678                 }
2679             };
2680             if result.base_def() == unqualified_result {
2681                 let lint = lint::builtin::UNUSED_QUALIFICATIONS;
2682                 self.session.add_lint(lint, id, span, "unnecessary qualification".to_string());
2683             }
2684         }
2685
2686         Some(result)
2687     }
2688
2689     fn resolve_path(&mut self,
2690                     path: &[Ident],
2691                     opt_ns: Option<Namespace>, // `None` indicates a module path
2692                     record_used: bool,
2693                     path_span: Span)
2694                     -> PathResult<'a> {
2695         let mut module = None;
2696         let mut allow_super = true;
2697
2698         for (i, &ident) in path.iter().enumerate() {
2699             let is_last = i == path.len() - 1;
2700             let ns = if is_last { opt_ns.unwrap_or(TypeNS) } else { TypeNS };
2701
2702             if i == 0 && ns == TypeNS && ident.name == keywords::SelfValue.name() {
2703                 let mut ctxt = ident.ctxt.modern();
2704                 module = Some(self.resolve_self(&mut ctxt, self.current_module));
2705                 continue
2706             } else if allow_super && ns == TypeNS && ident.name == keywords::Super.name() {
2707                 let mut ctxt = ident.ctxt.modern();
2708                 let self_module = match i {
2709                     0 => self.resolve_self(&mut ctxt, self.current_module),
2710                     _ => module.unwrap(),
2711                 };
2712                 if let Some(parent) = self_module.parent {
2713                     module = Some(self.resolve_self(&mut ctxt, parent));
2714                     continue
2715                 } else {
2716                     let msg = "There are too many initial `super`s.".to_string();
2717                     return PathResult::Failed(msg, false);
2718                 }
2719             }
2720             allow_super = false;
2721
2722             if i == 0 && ns == TypeNS && ident.name == keywords::CrateRoot.name() {
2723                 module = Some(self.resolve_crate_root(ident.ctxt.modern()));
2724                 continue
2725             } else if i == 0 && ns == TypeNS && ident.name == "$crate" {
2726                 module = Some(self.resolve_crate_root(ident.ctxt));
2727                 continue
2728             }
2729
2730             let binding = if let Some(module) = module {
2731                 self.resolve_ident_in_module(module, ident, ns, false, record_used, path_span)
2732             } else if opt_ns == Some(MacroNS) {
2733                 self.resolve_lexical_macro_path_segment(ident, ns, record_used, path_span)
2734                     .map(MacroBinding::binding)
2735             } else {
2736                 match self.resolve_ident_in_lexical_scope(ident, ns, record_used, path_span) {
2737                     Some(LexicalScopeBinding::Item(binding)) => Ok(binding),
2738                     Some(LexicalScopeBinding::Def(def))
2739                             if opt_ns == Some(TypeNS) || opt_ns == Some(ValueNS) => {
2740                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
2741                             def, path.len() - 1
2742                         ));
2743                     }
2744                     _ => Err(if record_used { Determined } else { Undetermined }),
2745                 }
2746             };
2747
2748             match binding {
2749                 Ok(binding) => {
2750                     let def = binding.def();
2751                     let maybe_assoc = opt_ns != Some(MacroNS) && PathSource::Type.is_expected(def);
2752                     if let Some(next_module) = binding.module() {
2753                         module = Some(next_module);
2754                     } else if def == Def::Err {
2755                         return PathResult::NonModule(err_path_resolution());
2756                     } else if opt_ns.is_some() && (is_last || maybe_assoc) {
2757                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
2758                             def, path.len() - i - 1
2759                         ));
2760                     } else {
2761                         return PathResult::Failed(format!("Not a module `{}`", ident), is_last);
2762                     }
2763                 }
2764                 Err(Undetermined) => return PathResult::Indeterminate,
2765                 Err(Determined) => {
2766                     if let Some(module) = module {
2767                         if opt_ns.is_some() && !module.is_normal() {
2768                             return PathResult::NonModule(PathResolution::with_unresolved_segments(
2769                                 module.def().unwrap(), path.len() - i
2770                             ));
2771                         }
2772                     }
2773                     let msg = if module.and_then(ModuleData::def) == self.graph_root.def() {
2774                         let is_mod = |def| match def { Def::Mod(..) => true, _ => false };
2775                         let mut candidates =
2776                             self.lookup_import_candidates(ident.name, TypeNS, is_mod);
2777                         candidates.sort_by_key(|c| (c.path.segments.len(), c.path.to_string()));
2778                         if let Some(candidate) = candidates.get(0) {
2779                             format!("Did you mean `{}`?", candidate.path)
2780                         } else {
2781                             format!("Maybe a missing `extern crate {};`?", ident)
2782                         }
2783                     } else if i == 0 {
2784                         format!("Use of undeclared type or module `{}`", ident)
2785                     } else {
2786                         format!("Could not find `{}` in `{}`", ident, path[i - 1])
2787                     };
2788                     return PathResult::Failed(msg, is_last);
2789                 }
2790             }
2791         }
2792
2793         PathResult::Module(module.unwrap_or(self.graph_root))
2794     }
2795
2796     // Resolve a local definition, potentially adjusting for closures.
2797     fn adjust_local_def(&mut self,
2798                         ns: Namespace,
2799                         rib_index: usize,
2800                         mut def: Def,
2801                         record_used: bool,
2802                         span: Span) -> Def {
2803         let ribs = &self.ribs[ns][rib_index + 1..];
2804
2805         // An invalid forward use of a type parameter from a previous default.
2806         if let ForwardTyParamBanRibKind = self.ribs[ns][rib_index].kind {
2807             if record_used {
2808                 resolve_error(self, span,
2809                         ResolutionError::ForwardDeclaredTyParam);
2810             }
2811             assert_eq!(def, Def::Err);
2812             return Def::Err;
2813         }
2814
2815         match def {
2816             Def::Upvar(..) => {
2817                 span_bug!(span, "unexpected {:?} in bindings", def)
2818             }
2819             Def::Local(def_id) => {
2820                 for rib in ribs {
2821                     match rib.kind {
2822                         NormalRibKind | ModuleRibKind(..) | MacroDefinition(..) |
2823                         ForwardTyParamBanRibKind => {
2824                             // Nothing to do. Continue.
2825                         }
2826                         ClosureRibKind(function_id) => {
2827                             let prev_def = def;
2828                             let node_id = self.definitions.as_local_node_id(def_id).unwrap();
2829
2830                             let seen = self.freevars_seen
2831                                            .entry(function_id)
2832                                            .or_insert_with(|| NodeMap());
2833                             if let Some(&index) = seen.get(&node_id) {
2834                                 def = Def::Upvar(def_id, index, function_id);
2835                                 continue;
2836                             }
2837                             let vec = self.freevars
2838                                           .entry(function_id)
2839                                           .or_insert_with(|| vec![]);
2840                             let depth = vec.len();
2841                             def = Def::Upvar(def_id, depth, function_id);
2842
2843                             if record_used {
2844                                 vec.push(Freevar {
2845                                     def: prev_def,
2846                                     span: span,
2847                                 });
2848                                 seen.insert(node_id, depth);
2849                             }
2850                         }
2851                         ItemRibKind | MethodRibKind(_) => {
2852                             // This was an attempt to access an upvar inside a
2853                             // named function item. This is not allowed, so we
2854                             // report an error.
2855                             if record_used {
2856                                 resolve_error(self, span,
2857                                         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem);
2858                             }
2859                             return Def::Err;
2860                         }
2861                         ConstantItemRibKind => {
2862                             // Still doesn't deal with upvars
2863                             if record_used {
2864                                 resolve_error(self, span,
2865                                         ResolutionError::AttemptToUseNonConstantValueInConstant);
2866                             }
2867                             return Def::Err;
2868                         }
2869                     }
2870                 }
2871             }
2872             Def::TyParam(..) | Def::SelfTy(..) => {
2873                 for rib in ribs {
2874                     match rib.kind {
2875                         NormalRibKind | MethodRibKind(_) | ClosureRibKind(..) |
2876                         ModuleRibKind(..) | MacroDefinition(..) | ForwardTyParamBanRibKind |
2877                         ConstantItemRibKind => {
2878                             // Nothing to do. Continue.
2879                         }
2880                         ItemRibKind => {
2881                             // This was an attempt to use a type parameter outside
2882                             // its scope.
2883                             if record_used {
2884                                 resolve_error(self, span,
2885                                               ResolutionError::TypeParametersFromOuterFunction);
2886                             }
2887                             return Def::Err;
2888                         }
2889                     }
2890                 }
2891             }
2892             _ => {}
2893         }
2894         return def;
2895     }
2896
2897     // Calls `f` with a `Resolver` whose current lexical scope is `module`'s lexical scope,
2898     // i.e. the module's items and the prelude (unless the module is `#[no_implicit_prelude]`).
2899     // FIXME #34673: This needs testing.
2900     pub fn with_module_lexical_scope<T, F>(&mut self, module: Module<'a>, f: F) -> T
2901         where F: FnOnce(&mut Resolver<'a>) -> T,
2902     {
2903         self.with_empty_ribs(|this| {
2904             this.ribs[ValueNS].push(Rib::new(ModuleRibKind(module)));
2905             this.ribs[TypeNS].push(Rib::new(ModuleRibKind(module)));
2906             f(this)
2907         })
2908     }
2909
2910     fn with_empty_ribs<T, F>(&mut self, f: F) -> T
2911         where F: FnOnce(&mut Resolver<'a>) -> T,
2912     {
2913         let ribs = replace(&mut self.ribs, PerNS::<Vec<Rib>>::default());
2914         let label_ribs = replace(&mut self.label_ribs, Vec::new());
2915
2916         let result = f(self);
2917         self.ribs = ribs;
2918         self.label_ribs = label_ribs;
2919         result
2920     }
2921
2922     fn lookup_assoc_candidate<FilterFn>(&mut self,
2923                                         ident: Ident,
2924                                         ns: Namespace,
2925                                         filter_fn: FilterFn)
2926                                         -> Option<AssocSuggestion>
2927         where FilterFn: Fn(Def) -> bool
2928     {
2929         fn extract_node_id(t: &Ty) -> Option<NodeId> {
2930             match t.node {
2931                 TyKind::Path(None, _) => Some(t.id),
2932                 TyKind::Rptr(_, ref mut_ty) => extract_node_id(&mut_ty.ty),
2933                 // This doesn't handle the remaining `Ty` variants as they are not
2934                 // that commonly the self_type, it might be interesting to provide
2935                 // support for those in future.
2936                 _ => None,
2937             }
2938         }
2939
2940         // Fields are generally expected in the same contexts as locals.
2941         if filter_fn(Def::Local(DefId::local(CRATE_DEF_INDEX))) {
2942             if let Some(node_id) = self.current_self_type.as_ref().and_then(extract_node_id) {
2943                 // Look for a field with the same name in the current self_type.
2944                 if let Some(resolution) = self.def_map.get(&node_id) {
2945                     match resolution.base_def() {
2946                         Def::Struct(did) | Def::Union(did)
2947                                 if resolution.unresolved_segments() == 0 => {
2948                             if let Some(field_names) = self.field_names.get(&did) {
2949                                 if field_names.iter().any(|&field_name| ident.name == field_name) {
2950                                     return Some(AssocSuggestion::Field);
2951                                 }
2952                             }
2953                         }
2954                         _ => {}
2955                     }
2956                 }
2957             }
2958         }
2959
2960         // Look for associated items in the current trait.
2961         if let Some((module, _)) = self.current_trait_ref {
2962             if let Ok(binding) =
2963                     self.resolve_ident_in_module(module, ident, ns, false, false, module.span) {
2964                 let def = binding.def();
2965                 if filter_fn(def) {
2966                     return Some(if self.has_self.contains(&def.def_id()) {
2967                         AssocSuggestion::MethodWithSelf
2968                     } else {
2969                         AssocSuggestion::AssocItem
2970                     });
2971                 }
2972             }
2973         }
2974
2975         None
2976     }
2977
2978     fn lookup_typo_candidate<FilterFn>(&mut self,
2979                                        path: &[Ident],
2980                                        ns: Namespace,
2981                                        filter_fn: FilterFn,
2982                                        span: Span)
2983                                        -> Option<Symbol>
2984         where FilterFn: Fn(Def) -> bool
2985     {
2986         let add_module_candidates = |module: Module, names: &mut Vec<Name>| {
2987             for (&(ident, _), resolution) in module.resolutions.borrow().iter() {
2988                 if let Some(binding) = resolution.borrow().binding {
2989                     if filter_fn(binding.def()) {
2990                         names.push(ident.name);
2991                     }
2992                 }
2993             }
2994         };
2995
2996         let mut names = Vec::new();
2997         if path.len() == 1 {
2998             // Search in lexical scope.
2999             // Walk backwards up the ribs in scope and collect candidates.
3000             for rib in self.ribs[ns].iter().rev() {
3001                 // Locals and type parameters
3002                 for (ident, def) in &rib.bindings {
3003                     if filter_fn(*def) {
3004                         names.push(ident.name);
3005                     }
3006                 }
3007                 // Items in scope
3008                 if let ModuleRibKind(module) = rib.kind {
3009                     // Items from this module
3010                     add_module_candidates(module, &mut names);
3011
3012                     if let ModuleKind::Block(..) = module.kind {
3013                         // We can see through blocks
3014                     } else {
3015                         // Items from the prelude
3016                         if let Some(prelude) = self.prelude {
3017                             if !module.no_implicit_prelude {
3018                                 add_module_candidates(prelude, &mut names);
3019                             }
3020                         }
3021                         break;
3022                     }
3023                 }
3024             }
3025             // Add primitive types to the mix
3026             if filter_fn(Def::PrimTy(TyBool)) {
3027                 for (name, _) in &self.primitive_type_table.primitive_types {
3028                     names.push(*name);
3029                 }
3030             }
3031         } else {
3032             // Search in module.
3033             let mod_path = &path[..path.len() - 1];
3034             if let PathResult::Module(module) = self.resolve_path(mod_path, Some(TypeNS),
3035                                                                   false, span) {
3036                 add_module_candidates(module, &mut names);
3037             }
3038         }
3039
3040         let name = path[path.len() - 1].name;
3041         // Make sure error reporting is deterministic.
3042         names.sort_by_key(|name| name.as_str());
3043         match find_best_match_for_name(names.iter(), &name.as_str(), None) {
3044             Some(found) if found != name => Some(found),
3045             _ => None,
3046         }
3047     }
3048
3049     fn with_resolved_label<F>(&mut self, label: Option<SpannedIdent>, id: NodeId, f: F)
3050         where F: FnOnce(&mut Resolver)
3051     {
3052         if let Some(label) = label {
3053             let def = Def::Label(id);
3054             self.with_label_rib(|this| {
3055                 this.label_ribs.last_mut().unwrap().bindings.insert(label.node, def);
3056                 f(this);
3057             });
3058         } else {
3059             f(self);
3060         }
3061     }
3062
3063     fn resolve_labeled_block(&mut self, label: Option<SpannedIdent>, id: NodeId, block: &Block) {
3064         self.with_resolved_label(label, id, |this| this.visit_block(block));
3065     }
3066
3067     fn resolve_expr(&mut self, expr: &Expr, parent: Option<&Expr>) {
3068         // First, record candidate traits for this expression if it could
3069         // result in the invocation of a method call.
3070
3071         self.record_candidate_traits_for_expr_if_necessary(expr);
3072
3073         // Next, resolve the node.
3074         match expr.node {
3075             ExprKind::Path(ref qself, ref path) => {
3076                 self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
3077                 visit::walk_expr(self, expr);
3078             }
3079
3080             ExprKind::Struct(ref path, ..) => {
3081                 self.smart_resolve_path(expr.id, None, path, PathSource::Struct);
3082                 visit::walk_expr(self, expr);
3083             }
3084
3085             ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
3086                 match self.search_label(label.node) {
3087                     None => {
3088                         self.record_def(expr.id, err_path_resolution());
3089                         resolve_error(self,
3090                                       label.span,
3091                                       ResolutionError::UndeclaredLabel(&label.node.name.as_str()));
3092                     }
3093                     Some(def @ Def::Label(_)) => {
3094                         // Since this def is a label, it is never read.
3095                         self.record_def(expr.id, PathResolution::new(def));
3096                     }
3097                     Some(_) => {
3098                         span_bug!(expr.span, "label wasn't mapped to a label def!");
3099                     }
3100                 }
3101
3102                 // visit `break` argument if any
3103                 visit::walk_expr(self, expr);
3104             }
3105
3106             ExprKind::IfLet(ref pattern, ref subexpression, ref if_block, ref optional_else) => {
3107                 self.visit_expr(subexpression);
3108
3109                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
3110                 self.resolve_pattern(pattern, PatternSource::IfLet, &mut FxHashMap());
3111                 self.visit_block(if_block);
3112                 self.ribs[ValueNS].pop();
3113
3114                 optional_else.as_ref().map(|expr| self.visit_expr(expr));
3115             }
3116
3117             ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),
3118
3119             ExprKind::While(ref subexpression, ref block, label) => {
3120                 self.with_resolved_label(label, expr.id, |this| {
3121                     this.visit_expr(subexpression);
3122                     this.visit_block(block);
3123                 });
3124             }
3125
3126             ExprKind::WhileLet(ref pattern, ref subexpression, ref block, label) => {
3127                 self.with_resolved_label(label, expr.id, |this| {
3128                     this.visit_expr(subexpression);
3129                     this.ribs[ValueNS].push(Rib::new(NormalRibKind));
3130                     this.resolve_pattern(pattern, PatternSource::WhileLet, &mut FxHashMap());
3131                     this.visit_block(block);
3132                     this.ribs[ValueNS].pop();
3133                 });
3134             }
3135
3136             ExprKind::ForLoop(ref pattern, ref subexpression, ref block, label) => {
3137                 self.visit_expr(subexpression);
3138                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
3139                 self.resolve_pattern(pattern, PatternSource::For, &mut FxHashMap());
3140
3141                 self.resolve_labeled_block(label, expr.id, block);
3142
3143                 self.ribs[ValueNS].pop();
3144             }
3145
3146             // Equivalent to `visit::walk_expr` + passing some context to children.
3147             ExprKind::Field(ref subexpression, _) => {
3148                 self.resolve_expr(subexpression, Some(expr));
3149             }
3150             ExprKind::MethodCall(_, ref types, ref arguments) => {
3151                 let mut arguments = arguments.iter();
3152                 self.resolve_expr(arguments.next().unwrap(), Some(expr));
3153                 for argument in arguments {
3154                     self.resolve_expr(argument, None);
3155                 }
3156                 for ty in types.iter() {
3157                     self.visit_ty(ty);
3158                 }
3159             }
3160
3161             ExprKind::Repeat(ref element, ref count) => {
3162                 self.visit_expr(element);
3163                 self.with_constant_rib(|this| {
3164                     this.visit_expr(count);
3165                 });
3166             }
3167             ExprKind::Call(ref callee, ref arguments) => {
3168                 self.resolve_expr(callee, Some(expr));
3169                 for argument in arguments {
3170                     self.resolve_expr(argument, None);
3171                 }
3172             }
3173
3174             _ => {
3175                 visit::walk_expr(self, expr);
3176             }
3177         }
3178     }
3179
3180     fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &Expr) {
3181         match expr.node {
3182             ExprKind::Field(_, name) => {
3183                 // FIXME(#6890): Even though you can't treat a method like a
3184                 // field, we need to add any trait methods we find that match
3185                 // the field name so that we can do some nice error reporting
3186                 // later on in typeck.
3187                 let traits = self.get_traits_containing_item(name.node, ValueNS);
3188                 self.trait_map.insert(expr.id, traits);
3189             }
3190             ExprKind::MethodCall(name, ..) => {
3191                 debug!("(recording candidate traits for expr) recording traits for {}",
3192                        expr.id);
3193                 let traits = self.get_traits_containing_item(name.node, ValueNS);
3194                 self.trait_map.insert(expr.id, traits);
3195             }
3196             _ => {
3197                 // Nothing to do.
3198             }
3199         }
3200     }
3201
3202     fn get_traits_containing_item(&mut self, mut ident: Ident, ns: Namespace)
3203                                   -> Vec<TraitCandidate> {
3204         debug!("(getting traits containing item) looking for '{}'", ident.name);
3205
3206         let mut found_traits = Vec::new();
3207         // Look for the current trait.
3208         if let Some((module, _)) = self.current_trait_ref {
3209             if self.resolve_ident_in_module(module, ident, ns, false, false, module.span).is_ok() {
3210                 let def_id = module.def_id().unwrap();
3211                 found_traits.push(TraitCandidate { def_id: def_id, import_id: None });
3212             }
3213         }
3214
3215         ident.ctxt = ident.ctxt.modern();
3216         let mut search_module = self.current_module;
3217         loop {
3218             self.get_traits_in_module_containing_item(ident, ns, search_module, &mut found_traits);
3219             search_module =
3220                 unwrap_or!(self.hygienic_lexical_parent(search_module, &mut ident.ctxt), break);
3221         }
3222
3223         if let Some(prelude) = self.prelude {
3224             if !search_module.no_implicit_prelude {
3225                 self.get_traits_in_module_containing_item(ident, ns, prelude, &mut found_traits);
3226             }
3227         }
3228
3229         found_traits
3230     }
3231
3232     fn get_traits_in_module_containing_item(&mut self,
3233                                             ident: Ident,
3234                                             ns: Namespace,
3235                                             module: Module<'a>,
3236                                             found_traits: &mut Vec<TraitCandidate>) {
3237         let mut traits = module.traits.borrow_mut();
3238         if traits.is_none() {
3239             let mut collected_traits = Vec::new();
3240             module.for_each_child(|name, ns, binding| {
3241                 if ns != TypeNS { return }
3242                 if let Def::Trait(_) = binding.def() {
3243                     collected_traits.push((name, binding));
3244                 }
3245             });
3246             *traits = Some(collected_traits.into_boxed_slice());
3247         }
3248
3249         for &(trait_name, binding) in traits.as_ref().unwrap().iter() {
3250             let module = binding.module().unwrap();
3251             let mut ident = ident;
3252             if ident.ctxt.glob_adjust(module.expansion, binding.span.ctxt.modern()).is_none() {
3253                 continue
3254             }
3255             if self.resolve_ident_in_module_unadjusted(module, ident, ns, false, false, module.span)
3256                    .is_ok() {
3257                 let import_id = match binding.kind {
3258                     NameBindingKind::Import { directive, .. } => {
3259                         self.maybe_unused_trait_imports.insert(directive.id);
3260                         self.add_to_glob_map(directive.id, trait_name);
3261                         Some(directive.id)
3262                     }
3263                     _ => None,
3264                 };
3265                 let trait_def_id = module.def_id().unwrap();
3266                 found_traits.push(TraitCandidate { def_id: trait_def_id, import_id: import_id });
3267             }
3268         }
3269     }
3270
3271     /// When name resolution fails, this method can be used to look up candidate
3272     /// entities with the expected name. It allows filtering them using the
3273     /// supplied predicate (which should be used to only accept the types of
3274     /// definitions expected e.g. traits). The lookup spans across all crates.
3275     ///
3276     /// NOTE: The method does not look into imports, but this is not a problem,
3277     /// since we report the definitions (thus, the de-aliased imports).
3278     fn lookup_import_candidates<FilterFn>(&mut self,
3279                                           lookup_name: Name,
3280                                           namespace: Namespace,
3281                                           filter_fn: FilterFn)
3282                                           -> Vec<ImportSuggestion>
3283         where FilterFn: Fn(Def) -> bool
3284     {
3285         let mut candidates = Vec::new();
3286         let mut worklist = Vec::new();
3287         let mut seen_modules = FxHashSet();
3288         worklist.push((self.graph_root, Vec::new(), false));
3289
3290         while let Some((in_module,
3291                         path_segments,
3292                         in_module_is_extern)) = worklist.pop() {
3293             self.populate_module_if_necessary(in_module);
3294
3295             in_module.for_each_child(|ident, ns, name_binding| {
3296
3297                 // avoid imports entirely
3298                 if name_binding.is_import() && !name_binding.is_extern_crate() { return; }
3299                 // avoid non-importable candidates as well
3300                 if !name_binding.is_importable() { return; }
3301
3302                 // collect results based on the filter function
3303                 if ident.name == lookup_name && ns == namespace {
3304                     if filter_fn(name_binding.def()) {
3305                         // create the path
3306                         let mut segms = path_segments.clone();
3307                         segms.push(ast::PathSegment::from_ident(ident, name_binding.span));
3308                         let path = Path {
3309                             span: name_binding.span,
3310                             segments: segms,
3311                         };
3312                         // the entity is accessible in the following cases:
3313                         // 1. if it's defined in the same crate, it's always
3314                         // accessible (since private entities can be made public)
3315                         // 2. if it's defined in another crate, it's accessible
3316                         // only if both the module is public and the entity is
3317                         // declared as public (due to pruning, we don't explore
3318                         // outside crate private modules => no need to check this)
3319                         if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
3320                             candidates.push(ImportSuggestion { path: path });
3321                         }
3322                     }
3323                 }
3324
3325                 // collect submodules to explore
3326                 if let Some(module) = name_binding.module() {
3327                     // form the path
3328                     let mut path_segments = path_segments.clone();
3329                     path_segments.push(ast::PathSegment::from_ident(ident, name_binding.span));
3330
3331                     if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
3332                         // add the module to the lookup
3333                         let is_extern = in_module_is_extern || name_binding.is_extern_crate();
3334                         if seen_modules.insert(module.def_id().unwrap()) {
3335                             worklist.push((module, path_segments, is_extern));
3336                         }
3337                     }
3338                 }
3339             })
3340         }
3341
3342         candidates
3343     }
3344
3345     fn record_def(&mut self, node_id: NodeId, resolution: PathResolution) {
3346         debug!("(recording def) recording {:?} for {}", resolution, node_id);
3347         if let Some(prev_res) = self.def_map.insert(node_id, resolution) {
3348             panic!("path resolved multiple times ({:?} before, {:?} now)", prev_res, resolution);
3349         }
3350     }
3351
3352     fn resolve_visibility(&mut self, vis: &ast::Visibility) -> ty::Visibility {
3353         match *vis {
3354             ast::Visibility::Public => ty::Visibility::Public,
3355             ast::Visibility::Crate(..) => ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX)),
3356             ast::Visibility::Inherited => {
3357                 ty::Visibility::Restricted(self.current_module.normal_ancestor_id)
3358             }
3359             ast::Visibility::Restricted { ref path, id } => {
3360                 let def = self.smart_resolve_path(id, None, path,
3361                                                   PathSource::Visibility).base_def();
3362                 if def == Def::Err {
3363                     ty::Visibility::Public
3364                 } else {
3365                     let vis = ty::Visibility::Restricted(def.def_id());
3366                     if self.is_accessible(vis) {
3367                         vis
3368                     } else {
3369                         self.session.span_err(path.span, "visibilities can only be restricted \
3370                                                           to ancestor modules");
3371                         ty::Visibility::Public
3372                     }
3373                 }
3374             }
3375         }
3376     }
3377
3378     fn is_accessible(&self, vis: ty::Visibility) -> bool {
3379         vis.is_accessible_from(self.current_module.normal_ancestor_id, self)
3380     }
3381
3382     fn is_accessible_from(&self, vis: ty::Visibility, module: Module<'a>) -> bool {
3383         vis.is_accessible_from(module.normal_ancestor_id, self)
3384     }
3385
3386     fn report_errors(&mut self) {
3387         self.report_shadowing_errors();
3388         let mut reported_spans = FxHashSet();
3389
3390         for &AmbiguityError { span, name, b1, b2, lexical, legacy } in &self.ambiguity_errors {
3391             if !reported_spans.insert(span) { continue }
3392             let participle = |binding: &NameBinding| {
3393                 if binding.is_import() { "imported" } else { "defined" }
3394             };
3395             let msg1 = format!("`{}` could refer to the name {} here", name, participle(b1));
3396             let msg2 = format!("`{}` could also refer to the name {} here", name, participle(b2));
3397             let note = if b1.expansion == Mark::root() || !lexical && b1.is_glob_import() {
3398                 format!("consider adding an explicit import of `{}` to disambiguate", name)
3399             } else if let Def::Macro(..) = b1.def() {
3400                 format!("macro-expanded {} do not shadow",
3401                         if b1.is_import() { "macro imports" } else { "macros" })
3402             } else {
3403                 format!("macro-expanded {} do not shadow when used in a macro invocation path",
3404                         if b1.is_import() { "imports" } else { "items" })
3405             };
3406             if legacy {
3407                 let id = match b2.kind {
3408                     NameBindingKind::Import { directive, .. } => directive.id,
3409                     _ => unreachable!(),
3410                 };
3411                 let mut span = MultiSpan::from_span(span);
3412                 span.push_span_label(b1.span, msg1);
3413                 span.push_span_label(b2.span, msg2);
3414                 let msg = format!("`{}` is ambiguous", name);
3415                 self.session.add_lint(lint::builtin::LEGACY_IMPORTS, id, span, msg);
3416             } else {
3417                 let mut err =
3418                     self.session.struct_span_err(span, &format!("`{}` is ambiguous", name));
3419                 err.span_note(b1.span, &msg1);
3420                 match b2.def() {
3421                     Def::Macro(..) if b2.span == DUMMY_SP =>
3422                         err.note(&format!("`{}` is also a builtin macro", name)),
3423                     _ => err.span_note(b2.span, &msg2),
3424                 };
3425                 err.note(&note).emit();
3426             }
3427         }
3428
3429         for &PrivacyError(span, name, binding) in &self.privacy_errors {
3430             if !reported_spans.insert(span) { continue }
3431             span_err!(self.session, span, E0603, "{} `{}` is private", binding.descr(), name);
3432         }
3433     }
3434
3435     fn report_shadowing_errors(&mut self) {
3436         for (ident, scope) in replace(&mut self.lexical_macro_resolutions, Vec::new()) {
3437             self.resolve_legacy_scope(scope, ident, true);
3438         }
3439
3440         let mut reported_errors = FxHashSet();
3441         for binding in replace(&mut self.disallowed_shadowing, Vec::new()) {
3442             if self.resolve_legacy_scope(&binding.parent, binding.ident, false).is_some() &&
3443                reported_errors.insert((binding.ident, binding.span)) {
3444                 let msg = format!("`{}` is already in scope", binding.ident);
3445                 self.session.struct_span_err(binding.span, &msg)
3446                     .note("macro-expanded `macro_rules!`s may not shadow \
3447                            existing macros (see RFC 1560)")
3448                     .emit();
3449             }
3450         }
3451     }
3452
3453     fn report_conflict(&mut self,
3454                        parent: Module,
3455                        ident: Ident,
3456                        ns: Namespace,
3457                        binding: &NameBinding,
3458                        old_binding: &NameBinding) {
3459         // Error on the second of two conflicting names
3460         if old_binding.span.lo > binding.span.lo {
3461             return self.report_conflict(parent, ident, ns, old_binding, binding);
3462         }
3463
3464         let container = match parent.kind {
3465             ModuleKind::Def(Def::Mod(_), _) => "module",
3466             ModuleKind::Def(Def::Trait(_), _) => "trait",
3467             ModuleKind::Block(..) => "block",
3468             _ => "enum",
3469         };
3470
3471         let (participle, noun) = match old_binding.is_import() {
3472             true => ("imported", "import"),
3473             false => ("defined", "definition"),
3474         };
3475
3476         let (name, span) = (ident.name, binding.span);
3477
3478         if let Some(s) = self.name_already_seen.get(&name) {
3479             if s == &span {
3480                 return;
3481             }
3482         }
3483
3484         let msg = {
3485             let kind = match (ns, old_binding.module()) {
3486                 (ValueNS, _) => "a value",
3487                 (MacroNS, _) => "a macro",
3488                 (TypeNS, _) if old_binding.is_extern_crate() => "an extern crate",
3489                 (TypeNS, Some(module)) if module.is_normal() => "a module",
3490                 (TypeNS, Some(module)) if module.is_trait() => "a trait",
3491                 (TypeNS, _) => "a type",
3492             };
3493             format!("{} named `{}` has already been {} in this {}",
3494                     kind, name, participle, container)
3495         };
3496
3497         let mut err = match (old_binding.is_extern_crate(), binding.is_extern_crate()) {
3498             (true, true) => struct_span_err!(self.session, span, E0259, "{}", msg),
3499             (true, _) | (_, true) => match binding.is_import() && old_binding.is_import() {
3500                 true => struct_span_err!(self.session, span, E0254, "{}", msg),
3501                 false => struct_span_err!(self.session, span, E0260, "{}", msg),
3502             },
3503             _ => match (old_binding.is_import(), binding.is_import()) {
3504                 (false, false) => struct_span_err!(self.session, span, E0428, "{}", msg),
3505                 (true, true) => struct_span_err!(self.session, span, E0252, "{}", msg),
3506                 _ => struct_span_err!(self.session, span, E0255, "{}", msg),
3507             },
3508         };
3509
3510         err.span_label(span, format!("`{}` already {}", name, participle));
3511         if old_binding.span != syntax_pos::DUMMY_SP {
3512             err.span_label(old_binding.span, format!("previous {} of `{}` here", noun, name));
3513         }
3514         err.emit();
3515         self.name_already_seen.insert(name, span);
3516     }
3517
3518     fn warn_legacy_self_import(&self, directive: &'a ImportDirective<'a>) {
3519         let (id, span) = (directive.id, directive.span);
3520         let msg = "`self` no longer imports values".to_string();
3521         self.session.add_lint(lint::builtin::LEGACY_IMPORTS, id, span, msg);
3522     }
3523
3524     fn check_proc_macro_attrs(&mut self, attrs: &[ast::Attribute]) {
3525         if self.proc_macro_enabled { return; }
3526
3527         for attr in attrs {
3528             if attr.path.segments.len() > 1 {
3529                 continue
3530             }
3531             let ident = attr.path.segments[0].identifier;
3532             let result = self.resolve_lexical_macro_path_segment(ident,
3533                                                                  MacroNS,
3534                                                                  false,
3535                                                                  attr.path.span);
3536             if let Ok(binding) = result {
3537                 if let SyntaxExtension::AttrProcMacro(..) = *binding.binding().get_macro(self) {
3538                     attr::mark_known(attr);
3539
3540                     let msg = "attribute procedural macros are experimental";
3541                     let feature = "proc_macro";
3542
3543                     feature_err(&self.session.parse_sess, feature,
3544                                 attr.span, GateIssue::Language, msg)
3545                         .span_note(binding.span(), "procedural macro imported here")
3546                         .emit();
3547                 }
3548             }
3549         }
3550     }
3551 }
3552
3553 fn is_struct_like(def: Def) -> bool {
3554     match def {
3555         Def::VariantCtor(_, CtorKind::Fictive) => true,
3556         _ => PathSource::Struct.is_expected(def),
3557     }
3558 }
3559
3560 fn is_self_type(path: &[Ident], namespace: Namespace) -> bool {
3561     namespace == TypeNS && path.len() == 1 && path[0].name == keywords::SelfType.name()
3562 }
3563
3564 fn is_self_value(path: &[Ident], namespace: Namespace) -> bool {
3565     namespace == ValueNS && path.len() == 1 && path[0].name == keywords::SelfValue.name()
3566 }
3567
3568 fn names_to_string(idents: &[Ident]) -> String {
3569     let mut result = String::new();
3570     for (i, ident) in idents.iter().filter(|i| i.name != keywords::CrateRoot.name()).enumerate() {
3571         if i > 0 {
3572             result.push_str("::");
3573         }
3574         result.push_str(&ident.name.as_str());
3575     }
3576     result
3577 }
3578
3579 fn path_names_to_string(path: &Path) -> String {
3580     names_to_string(&path.segments.iter().map(|seg| seg.identifier).collect::<Vec<_>>())
3581 }
3582
3583 /// Get the path for an enum and the variant from an `ImportSuggestion` for an enum variant.
3584 fn import_candidate_to_paths(suggestion: &ImportSuggestion) -> (Span, String, String) {
3585     let variant_path = &suggestion.path;
3586     let variant_path_string = path_names_to_string(variant_path);
3587
3588     let path_len = suggestion.path.segments.len();
3589     let enum_path = ast::Path {
3590         span: suggestion.path.span,
3591         segments: suggestion.path.segments[0..path_len - 1].to_vec(),
3592     };
3593     let enum_path_string = path_names_to_string(&enum_path);
3594
3595     (suggestion.path.span, variant_path_string, enum_path_string)
3596 }
3597
3598
3599 /// When an entity with a given name is not available in scope, we search for
3600 /// entities with that name in all crates. This method allows outputting the
3601 /// results of this search in a programmer-friendly way
3602 fn show_candidates(err: &mut DiagnosticBuilder,
3603                    span: Span,
3604                    candidates: &[ImportSuggestion],
3605                    better: bool) {
3606
3607     // we want consistent results across executions, but candidates are produced
3608     // by iterating through a hash map, so make sure they are ordered:
3609     let mut path_strings: Vec<_> =
3610         candidates.into_iter().map(|c| path_names_to_string(&c.path)).collect();
3611     path_strings.sort();
3612
3613     let better = if better { "better " } else { "" };
3614     let msg_diff = match path_strings.len() {
3615         1 => " is found in another module, you can import it",
3616         _ => "s are found in other modules, you can import them",
3617     };
3618     let msg = format!("possible {}candidate{} into scope", better, msg_diff);
3619
3620     for candidate in &mut path_strings {
3621         *candidate = format!("use {};\n", candidate);
3622     }
3623
3624     err.span_suggestions(span, &msg, path_strings);
3625 }
3626
3627 /// A somewhat inefficient routine to obtain the name of a module.
3628 fn module_to_string(module: Module) -> String {
3629     let mut names = Vec::new();
3630
3631     fn collect_mod(names: &mut Vec<Ident>, module: Module) {
3632         if let ModuleKind::Def(_, name) = module.kind {
3633             if let Some(parent) = module.parent {
3634                 names.push(Ident::with_empty_ctxt(name));
3635                 collect_mod(names, parent);
3636             }
3637         } else {
3638             // danger, shouldn't be ident?
3639             names.push(Ident::from_str("<opaque>"));
3640             collect_mod(names, module.parent.unwrap());
3641         }
3642     }
3643     collect_mod(&mut names, module);
3644
3645     if names.is_empty() {
3646         return "???".to_string();
3647     }
3648     names_to_string(&names.into_iter().rev().collect::<Vec<_>>())
3649 }
3650
3651 fn err_path_resolution() -> PathResolution {
3652     PathResolution::new(Def::Err)
3653 }
3654
3655 #[derive(PartialEq,Copy, Clone)]
3656 pub enum MakeGlobMap {
3657     Yes,
3658     No,
3659 }
3660
3661 __build_diagnostic_array! { librustc_resolve, DIAGNOSTICS }