]> git.lizzy.rs Git - rust.git/blob - src/librustc_resolve/lib.rs
Propagate bounds from generators
[rust.git] / src / librustc_resolve / lib.rs
1 // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 #![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
12        html_favicon_url = "https://doc.rust-lang.org/favicon.ico",
13        html_root_url = "https://doc.rust-lang.org/nightly/")]
14
15 #![feature(crate_visibility_modifier)]
16 #![feature(nll)]
17 #![feature(rustc_diagnostic_macros)]
18 #![feature(slice_sort_by_cached_key)]
19
20 #[macro_use]
21 extern crate bitflags;
22 #[macro_use]
23 extern crate log;
24 #[macro_use]
25 extern crate syntax;
26 extern crate syntax_pos;
27 extern crate rustc_errors as errors;
28 extern crate arena;
29 #[macro_use]
30 extern crate rustc;
31 extern crate rustc_data_structures;
32 extern crate rustc_metadata;
33
34 pub use rustc::hir::def::{Namespace, PerNS};
35
36 use self::TypeParameters::*;
37 use self::RibKind::*;
38
39 use rustc::hir::map::{Definitions, DefCollector};
40 use rustc::hir::{self, PrimTy, Bool, Char, Float, Int, Uint, Str};
41 use rustc::middle::cstore::CrateStore;
42 use rustc::session::Session;
43 use rustc::lint;
44 use rustc::hir::def::*;
45 use rustc::hir::def::Namespace::*;
46 use rustc::hir::def_id::{CRATE_DEF_INDEX, LOCAL_CRATE, DefId};
47 use rustc::hir::{Freevar, FreevarMap, TraitCandidate, TraitMap, GlobMap};
48 use rustc::session::config::nightly_options;
49 use rustc::ty;
50 use rustc::util::nodemap::{NodeMap, NodeSet, FxHashMap, FxHashSet, DefIdMap};
51
52 use rustc_metadata::creader::CrateLoader;
53 use rustc_metadata::cstore::CStore;
54
55 use syntax::source_map::SourceMap;
56 use syntax::ext::hygiene::{Mark, Transparency, SyntaxContext};
57 use syntax::ast::{self, Name, NodeId, Ident, FloatTy, IntTy, UintTy};
58 use syntax::ext::base::SyntaxExtension;
59 use syntax::ext::base::Determinacy::{self, Determined, Undetermined};
60 use syntax::ext::base::MacroKind;
61 use syntax::symbol::{Symbol, keywords};
62 use syntax::util::lev_distance::find_best_match_for_name;
63
64 use syntax::visit::{self, FnKind, Visitor};
65 use syntax::attr;
66 use syntax::ast::{CRATE_NODE_ID, Arm, IsAsync, BindingMode, Block, Crate, Expr, ExprKind};
67 use syntax::ast::{FnDecl, ForeignItem, ForeignItemKind, GenericParamKind, Generics};
68 use syntax::ast::{Item, ItemKind, ImplItem, ImplItemKind};
69 use syntax::ast::{Label, Local, Mutability, Pat, PatKind, Path};
70 use syntax::ast::{QSelf, TraitItemKind, TraitRef, Ty, TyKind};
71 use syntax::ptr::P;
72
73 use syntax_pos::{Span, DUMMY_SP, MultiSpan};
74 use errors::{Applicability, DiagnosticBuilder, DiagnosticId};
75
76 use std::cell::{Cell, RefCell};
77 use std::{cmp, fmt, iter, ptr};
78 use std::collections::BTreeSet;
79 use std::mem::replace;
80 use rustc_data_structures::ptr_key::PtrKey;
81 use rustc_data_structures::sync::Lrc;
82
83 use resolve_imports::{ImportDirective, ImportDirectiveSubclass, NameResolution, ImportResolver};
84 use macros::{InvocationData, LegacyBinding, ParentScope};
85
86 // NB: This module needs to be declared first so diagnostics are
87 // registered before they are used.
88 mod diagnostics;
89 mod error_reporting;
90 mod macros;
91 mod check_unused;
92 mod build_reduced_graph;
93 mod resolve_imports;
94
95 fn is_known_tool(name: Name) -> bool {
96     ["clippy", "rustfmt"].contains(&&*name.as_str())
97 }
98
99 /// A free importable items suggested in case of resolution failure.
100 struct ImportSuggestion {
101     path: Path,
102 }
103
104 /// A field or associated item from self type suggested in case of resolution failure.
105 enum AssocSuggestion {
106     Field,
107     MethodWithSelf,
108     AssocItem,
109 }
110
111 #[derive(Eq)]
112 struct BindingError {
113     name: Name,
114     origin: BTreeSet<Span>,
115     target: BTreeSet<Span>,
116 }
117
118 impl PartialOrd for BindingError {
119     fn partial_cmp(&self, other: &BindingError) -> Option<cmp::Ordering> {
120         Some(self.cmp(other))
121     }
122 }
123
124 impl PartialEq for BindingError {
125     fn eq(&self, other: &BindingError) -> bool {
126         self.name == other.name
127     }
128 }
129
130 impl Ord for BindingError {
131     fn cmp(&self, other: &BindingError) -> cmp::Ordering {
132         self.name.cmp(&other.name)
133     }
134 }
135
136 enum ResolutionError<'a> {
137     /// error E0401: can't use type parameters from outer function
138     TypeParametersFromOuterFunction(Def),
139     /// error E0403: the name is already used for a type parameter in this type parameter list
140     NameAlreadyUsedInTypeParameterList(Name, &'a Span),
141     /// error E0407: method is not a member of trait
142     MethodNotMemberOfTrait(Name, &'a str),
143     /// error E0437: type is not a member of trait
144     TypeNotMemberOfTrait(Name, &'a str),
145     /// error E0438: const is not a member of trait
146     ConstNotMemberOfTrait(Name, &'a str),
147     /// error E0408: variable `{}` is not bound in all patterns
148     VariableNotBoundInPattern(&'a BindingError),
149     /// error E0409: variable `{}` is bound in inconsistent ways within the same match arm
150     VariableBoundWithDifferentMode(Name, Span),
151     /// error E0415: identifier is bound more than once in this parameter list
152     IdentifierBoundMoreThanOnceInParameterList(&'a str),
153     /// error E0416: identifier is bound more than once in the same pattern
154     IdentifierBoundMoreThanOnceInSamePattern(&'a str),
155     /// error E0426: use of undeclared label
156     UndeclaredLabel(&'a str, Option<Name>),
157     /// error E0429: `self` imports are only allowed within a { } list
158     SelfImportsOnlyAllowedWithin,
159     /// error E0430: `self` import can only appear once in the list
160     SelfImportCanOnlyAppearOnceInTheList,
161     /// error E0431: `self` import can only appear in an import list with a non-empty prefix
162     SelfImportOnlyInImportListWithNonEmptyPrefix,
163     /// error E0433: failed to resolve
164     FailedToResolve(&'a str),
165     /// error E0434: can't capture dynamic environment in a fn item
166     CannotCaptureDynamicEnvironmentInFnItem,
167     /// error E0435: attempt to use a non-constant value in a constant
168     AttemptToUseNonConstantValueInConstant,
169     /// error E0530: X bindings cannot shadow Ys
170     BindingShadowsSomethingUnacceptable(&'a str, Name, &'a NameBinding<'a>),
171     /// error E0128: type parameters with a default cannot use forward declared identifiers
172     ForwardDeclaredTyParam,
173 }
174
175 /// Combines an error with provided span and emits it
176 ///
177 /// This takes the error provided, combines it with the span and any additional spans inside the
178 /// error and emits it.
179 fn resolve_error<'sess, 'a>(resolver: &'sess Resolver,
180                             span: Span,
181                             resolution_error: ResolutionError<'a>) {
182     resolve_struct_error(resolver, span, resolution_error).emit();
183 }
184
185 fn resolve_struct_error<'sess, 'a>(resolver: &'sess Resolver,
186                                    span: Span,
187                                    resolution_error: ResolutionError<'a>)
188                                    -> DiagnosticBuilder<'sess> {
189     match resolution_error {
190         ResolutionError::TypeParametersFromOuterFunction(outer_def) => {
191             let mut err = struct_span_err!(resolver.session,
192                                            span,
193                                            E0401,
194                                            "can't use type parameters from outer function");
195             err.span_label(span, "use of type variable from outer function");
196
197             let cm = resolver.session.source_map();
198             match outer_def {
199                 Def::SelfTy(maybe_trait_defid, maybe_impl_defid) => {
200                     if let Some(impl_span) = maybe_impl_defid.and_then(|def_id| {
201                         resolver.definitions.opt_span(def_id)
202                     }) {
203                         err.span_label(
204                             reduce_impl_span_to_impl_keyword(cm, impl_span),
205                             "`Self` type implicitly declared here, by this `impl`",
206                         );
207                     }
208                     match (maybe_trait_defid, maybe_impl_defid) {
209                         (Some(_), None) => {
210                             err.span_label(span, "can't use `Self` here");
211                         }
212                         (_, Some(_)) => {
213                             err.span_label(span, "use a type here instead");
214                         }
215                         (None, None) => bug!("`impl` without trait nor type?"),
216                     }
217                     return err;
218                 },
219                 Def::TyParam(typaram_defid) => {
220                     if let Some(typaram_span) = resolver.definitions.opt_span(typaram_defid) {
221                         err.span_label(typaram_span, "type variable from outer function");
222                     }
223                 },
224                 _ => {
225                     bug!("TypeParametersFromOuterFunction should only be used with Def::SelfTy or \
226                          Def::TyParam")
227                 }
228             }
229
230             // Try to retrieve the span of the function signature and generate a new message with
231             // a local type parameter
232             let sugg_msg = "try using a local type parameter instead";
233             if let Some((sugg_span, new_snippet)) = cm.generate_local_type_param_snippet(span) {
234                 // Suggest the modification to the user
235                 err.span_suggestion_with_applicability(
236                     sugg_span,
237                     sugg_msg,
238                     new_snippet,
239                     Applicability::MachineApplicable,
240                 );
241             } else if let Some(sp) = cm.generate_fn_name_span(span) {
242                 err.span_label(sp, "try adding a local type parameter in this method instead");
243             } else {
244                 err.help("try using a local type parameter instead");
245             }
246
247             err
248         }
249         ResolutionError::NameAlreadyUsedInTypeParameterList(name, first_use_span) => {
250              let mut err = struct_span_err!(resolver.session,
251                                             span,
252                                             E0403,
253                                             "the name `{}` is already used for a type parameter \
254                                             in this type parameter list",
255                                             name);
256              err.span_label(span, "already used");
257              err.span_label(first_use_span.clone(), format!("first use of `{}`", name));
258              err
259         }
260         ResolutionError::MethodNotMemberOfTrait(method, trait_) => {
261             let mut err = struct_span_err!(resolver.session,
262                                            span,
263                                            E0407,
264                                            "method `{}` is not a member of trait `{}`",
265                                            method,
266                                            trait_);
267             err.span_label(span, format!("not a member of trait `{}`", trait_));
268             err
269         }
270         ResolutionError::TypeNotMemberOfTrait(type_, trait_) => {
271             let mut err = struct_span_err!(resolver.session,
272                              span,
273                              E0437,
274                              "type `{}` is not a member of trait `{}`",
275                              type_,
276                              trait_);
277             err.span_label(span, format!("not a member of trait `{}`", trait_));
278             err
279         }
280         ResolutionError::ConstNotMemberOfTrait(const_, trait_) => {
281             let mut err = struct_span_err!(resolver.session,
282                              span,
283                              E0438,
284                              "const `{}` is not a member of trait `{}`",
285                              const_,
286                              trait_);
287             err.span_label(span, format!("not a member of trait `{}`", trait_));
288             err
289         }
290         ResolutionError::VariableNotBoundInPattern(binding_error) => {
291             let target_sp = binding_error.target.iter().cloned().collect::<Vec<_>>();
292             let msp = MultiSpan::from_spans(target_sp.clone());
293             let msg = format!("variable `{}` is not bound in all patterns", binding_error.name);
294             let mut err = resolver.session.struct_span_err_with_code(
295                 msp,
296                 &msg,
297                 DiagnosticId::Error("E0408".into()),
298             );
299             for sp in target_sp {
300                 err.span_label(sp, format!("pattern doesn't bind `{}`", binding_error.name));
301             }
302             let origin_sp = binding_error.origin.iter().cloned();
303             for sp in origin_sp {
304                 err.span_label(sp, "variable not in all patterns");
305             }
306             err
307         }
308         ResolutionError::VariableBoundWithDifferentMode(variable_name,
309                                                         first_binding_span) => {
310             let mut err = struct_span_err!(resolver.session,
311                              span,
312                              E0409,
313                              "variable `{}` is bound in inconsistent \
314                              ways within the same match arm",
315                              variable_name);
316             err.span_label(span, "bound in different ways");
317             err.span_label(first_binding_span, "first binding");
318             err
319         }
320         ResolutionError::IdentifierBoundMoreThanOnceInParameterList(identifier) => {
321             let mut err = struct_span_err!(resolver.session,
322                              span,
323                              E0415,
324                              "identifier `{}` is bound more than once in this parameter list",
325                              identifier);
326             err.span_label(span, "used as parameter more than once");
327             err
328         }
329         ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(identifier) => {
330             let mut err = struct_span_err!(resolver.session,
331                              span,
332                              E0416,
333                              "identifier `{}` is bound more than once in the same pattern",
334                              identifier);
335             err.span_label(span, "used in a pattern more than once");
336             err
337         }
338         ResolutionError::UndeclaredLabel(name, lev_candidate) => {
339             let mut err = struct_span_err!(resolver.session,
340                                            span,
341                                            E0426,
342                                            "use of undeclared label `{}`",
343                                            name);
344             if let Some(lev_candidate) = lev_candidate {
345                 err.span_label(span, format!("did you mean `{}`?", lev_candidate));
346             } else {
347                 err.span_label(span, format!("undeclared label `{}`", name));
348             }
349             err
350         }
351         ResolutionError::SelfImportsOnlyAllowedWithin => {
352             struct_span_err!(resolver.session,
353                              span,
354                              E0429,
355                              "{}",
356                              "`self` imports are only allowed within a { } list")
357         }
358         ResolutionError::SelfImportCanOnlyAppearOnceInTheList => {
359             let mut err = struct_span_err!(resolver.session, span, E0430,
360                                            "`self` import can only appear once in an import list");
361             err.span_label(span, "can only appear once in an import list");
362             err
363         }
364         ResolutionError::SelfImportOnlyInImportListWithNonEmptyPrefix => {
365             let mut err = struct_span_err!(resolver.session, span, E0431,
366                                            "`self` import can only appear in an import list with \
367                                             a non-empty prefix");
368             err.span_label(span, "can only appear in an import list with a non-empty prefix");
369             err
370         }
371         ResolutionError::FailedToResolve(msg) => {
372             let mut err = struct_span_err!(resolver.session, span, E0433,
373                                            "failed to resolve. {}", msg);
374             err.span_label(span, msg);
375             err
376         }
377         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem => {
378             let mut err = struct_span_err!(resolver.session,
379                                            span,
380                                            E0434,
381                                            "{}",
382                                            "can't capture dynamic environment in a fn item");
383             err.help("use the `|| { ... }` closure form instead");
384             err
385         }
386         ResolutionError::AttemptToUseNonConstantValueInConstant => {
387             let mut err = struct_span_err!(resolver.session, span, E0435,
388                                            "attempt to use a non-constant value in a constant");
389             err.span_label(span, "non-constant value");
390             err
391         }
392         ResolutionError::BindingShadowsSomethingUnacceptable(what_binding, name, binding) => {
393             let shadows_what = PathResolution::new(binding.def()).kind_name();
394             let mut err = struct_span_err!(resolver.session,
395                                            span,
396                                            E0530,
397                                            "{}s cannot shadow {}s", what_binding, shadows_what);
398             err.span_label(span, format!("cannot be named the same as a {}", shadows_what));
399             let participle = if binding.is_import() { "imported" } else { "defined" };
400             let msg = format!("a {} `{}` is {} here", shadows_what, name, participle);
401             err.span_label(binding.span, msg);
402             err
403         }
404         ResolutionError::ForwardDeclaredTyParam => {
405             let mut err = struct_span_err!(resolver.session, span, E0128,
406                                            "type parameters with a default cannot use \
407                                             forward declared identifiers");
408             err.span_label(
409                 span, "defaulted type parameters cannot be forward declared".to_string());
410             err
411         }
412     }
413 }
414
415 /// Adjust the impl span so that just the `impl` keyword is taken by removing
416 /// everything after `<` (`"impl<T> Iterator for A<T> {}" -> "impl"`) and
417 /// everything after the first whitespace (`"impl Iterator for A" -> "impl"`)
418 ///
419 /// Attention: The method used is very fragile since it essentially duplicates the work of the
420 /// parser. If you need to use this function or something similar, please consider updating the
421 /// source_map functions and this function to something more robust.
422 fn reduce_impl_span_to_impl_keyword(cm: &SourceMap, impl_span: Span) -> Span {
423     let impl_span = cm.span_until_char(impl_span, '<');
424     let impl_span = cm.span_until_whitespace(impl_span);
425     impl_span
426 }
427
428 #[derive(Copy, Clone, Debug)]
429 struct BindingInfo {
430     span: Span,
431     binding_mode: BindingMode,
432 }
433
434 /// Map from the name in a pattern to its binding mode.
435 type BindingMap = FxHashMap<Ident, BindingInfo>;
436
437 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
438 enum PatternSource {
439     Match,
440     IfLet,
441     WhileLet,
442     Let,
443     For,
444     FnParam,
445 }
446
447 impl PatternSource {
448     fn descr(self) -> &'static str {
449         match self {
450             PatternSource::Match => "match binding",
451             PatternSource::IfLet => "if let binding",
452             PatternSource::WhileLet => "while let binding",
453             PatternSource::Let => "let binding",
454             PatternSource::For => "for binding",
455             PatternSource::FnParam => "function parameter",
456         }
457     }
458 }
459
460 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
461 enum AliasPossibility {
462     No,
463     Maybe,
464 }
465
466 #[derive(Copy, Clone, Debug)]
467 enum PathSource<'a> {
468     // Type paths `Path`.
469     Type,
470     // Trait paths in bounds or impls.
471     Trait(AliasPossibility),
472     // Expression paths `path`, with optional parent context.
473     Expr(Option<&'a Expr>),
474     // Paths in path patterns `Path`.
475     Pat,
476     // Paths in struct expressions and patterns `Path { .. }`.
477     Struct,
478     // Paths in tuple struct patterns `Path(..)`.
479     TupleStruct,
480     // `m::A::B` in `<T as m::A>::B::C`.
481     TraitItem(Namespace),
482     // Path in `pub(path)`
483     Visibility,
484     // Path in `use a::b::{...};`
485     ImportPrefix,
486 }
487
488 impl<'a> PathSource<'a> {
489     fn namespace(self) -> Namespace {
490         match self {
491             PathSource::Type | PathSource::Trait(_) | PathSource::Struct |
492             PathSource::Visibility | PathSource::ImportPrefix => TypeNS,
493             PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct => ValueNS,
494             PathSource::TraitItem(ns) => ns,
495         }
496     }
497
498     fn global_by_default(self) -> bool {
499         match self {
500             PathSource::Visibility | PathSource::ImportPrefix => true,
501             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
502             PathSource::Struct | PathSource::TupleStruct |
503             PathSource::Trait(_) | PathSource::TraitItem(..) => false,
504         }
505     }
506
507     fn defer_to_typeck(self) -> bool {
508         match self {
509             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
510             PathSource::Struct | PathSource::TupleStruct => true,
511             PathSource::Trait(_) | PathSource::TraitItem(..) |
512             PathSource::Visibility | PathSource::ImportPrefix => false,
513         }
514     }
515
516     fn descr_expected(self) -> &'static str {
517         match self {
518             PathSource::Type => "type",
519             PathSource::Trait(_) => "trait",
520             PathSource::Pat => "unit struct/variant or constant",
521             PathSource::Struct => "struct, variant or union type",
522             PathSource::TupleStruct => "tuple struct/variant",
523             PathSource::Visibility => "module",
524             PathSource::ImportPrefix => "module or enum",
525             PathSource::TraitItem(ns) => match ns {
526                 TypeNS => "associated type",
527                 ValueNS => "method or associated constant",
528                 MacroNS => bug!("associated macro"),
529             },
530             PathSource::Expr(parent) => match parent.map(|p| &p.node) {
531                 // "function" here means "anything callable" rather than `Def::Fn`,
532                 // this is not precise but usually more helpful than just "value".
533                 Some(&ExprKind::Call(..)) => "function",
534                 _ => "value",
535             },
536         }
537     }
538
539     fn is_expected(self, def: Def) -> bool {
540         match self {
541             PathSource::Type => match def {
542                 Def::Struct(..) | Def::Union(..) | Def::Enum(..) |
543                 Def::Trait(..) | Def::TyAlias(..) | Def::AssociatedTy(..) |
544                 Def::PrimTy(..) | Def::TyParam(..) | Def::SelfTy(..) |
545                 Def::Existential(..) |
546                 Def::ForeignTy(..) => true,
547                 _ => false,
548             },
549             PathSource::Trait(AliasPossibility::No) => match def {
550                 Def::Trait(..) => true,
551                 _ => false,
552             },
553             PathSource::Trait(AliasPossibility::Maybe) => match def {
554                 Def::Trait(..) => true,
555                 Def::TraitAlias(..) => true,
556                 _ => false,
557             },
558             PathSource::Expr(..) => match def {
559                 Def::StructCtor(_, CtorKind::Const) | Def::StructCtor(_, CtorKind::Fn) |
560                 Def::VariantCtor(_, CtorKind::Const) | Def::VariantCtor(_, CtorKind::Fn) |
561                 Def::Const(..) | Def::Static(..) | Def::Local(..) | Def::Upvar(..) |
562                 Def::Fn(..) | Def::Method(..) | Def::AssociatedConst(..) |
563                 Def::SelfCtor(..) => true,
564                 _ => false,
565             },
566             PathSource::Pat => match def {
567                 Def::StructCtor(_, CtorKind::Const) |
568                 Def::VariantCtor(_, CtorKind::Const) |
569                 Def::Const(..) | Def::AssociatedConst(..) |
570                 Def::SelfCtor(..) => true,
571                 _ => false,
572             },
573             PathSource::TupleStruct => match def {
574                 Def::StructCtor(_, CtorKind::Fn) |
575                 Def::VariantCtor(_, CtorKind::Fn) |
576                 Def::SelfCtor(..) => true,
577                 _ => false,
578             },
579             PathSource::Struct => match def {
580                 Def::Struct(..) | Def::Union(..) | Def::Variant(..) |
581                 Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => true,
582                 _ => false,
583             },
584             PathSource::TraitItem(ns) => match def {
585                 Def::AssociatedConst(..) | Def::Method(..) if ns == ValueNS => true,
586                 Def::AssociatedTy(..) if ns == TypeNS => true,
587                 _ => false,
588             },
589             PathSource::ImportPrefix => match def {
590                 Def::Mod(..) | Def::Enum(..) => true,
591                 _ => false,
592             },
593             PathSource::Visibility => match def {
594                 Def::Mod(..) => true,
595                 _ => false,
596             },
597         }
598     }
599
600     fn error_code(self, has_unexpected_resolution: bool) -> &'static str {
601         __diagnostic_used!(E0404);
602         __diagnostic_used!(E0405);
603         __diagnostic_used!(E0412);
604         __diagnostic_used!(E0422);
605         __diagnostic_used!(E0423);
606         __diagnostic_used!(E0425);
607         __diagnostic_used!(E0531);
608         __diagnostic_used!(E0532);
609         __diagnostic_used!(E0573);
610         __diagnostic_used!(E0574);
611         __diagnostic_used!(E0575);
612         __diagnostic_used!(E0576);
613         __diagnostic_used!(E0577);
614         __diagnostic_used!(E0578);
615         match (self, has_unexpected_resolution) {
616             (PathSource::Trait(_), true) => "E0404",
617             (PathSource::Trait(_), false) => "E0405",
618             (PathSource::Type, true) => "E0573",
619             (PathSource::Type, false) => "E0412",
620             (PathSource::Struct, true) => "E0574",
621             (PathSource::Struct, false) => "E0422",
622             (PathSource::Expr(..), true) => "E0423",
623             (PathSource::Expr(..), false) => "E0425",
624             (PathSource::Pat, true) | (PathSource::TupleStruct, true) => "E0532",
625             (PathSource::Pat, false) | (PathSource::TupleStruct, false) => "E0531",
626             (PathSource::TraitItem(..), true) => "E0575",
627             (PathSource::TraitItem(..), false) => "E0576",
628             (PathSource::Visibility, true) | (PathSource::ImportPrefix, true) => "E0577",
629             (PathSource::Visibility, false) | (PathSource::ImportPrefix, false) => "E0578",
630         }
631     }
632 }
633
634 struct UsePlacementFinder {
635     target_module: NodeId,
636     span: Option<Span>,
637     found_use: bool,
638 }
639
640 impl UsePlacementFinder {
641     fn check(krate: &Crate, target_module: NodeId) -> (Option<Span>, bool) {
642         let mut finder = UsePlacementFinder {
643             target_module,
644             span: None,
645             found_use: false,
646         };
647         visit::walk_crate(&mut finder, krate);
648         (finder.span, finder.found_use)
649     }
650 }
651
652 impl<'tcx> Visitor<'tcx> for UsePlacementFinder {
653     fn visit_mod(
654         &mut self,
655         module: &'tcx ast::Mod,
656         _: Span,
657         _: &[ast::Attribute],
658         node_id: NodeId,
659     ) {
660         if self.span.is_some() {
661             return;
662         }
663         if node_id != self.target_module {
664             visit::walk_mod(self, module);
665             return;
666         }
667         // find a use statement
668         for item in &module.items {
669             match item.node {
670                 ItemKind::Use(..) => {
671                     // don't suggest placing a use before the prelude
672                     // import or other generated ones
673                     if item.span.ctxt().outer().expn_info().is_none() {
674                         self.span = Some(item.span.shrink_to_lo());
675                         self.found_use = true;
676                         return;
677                     }
678                 },
679                 // don't place use before extern crate
680                 ItemKind::ExternCrate(_) => {}
681                 // but place them before the first other item
682                 _ => if self.span.map_or(true, |span| item.span < span ) {
683                     if item.span.ctxt().outer().expn_info().is_none() {
684                         // don't insert between attributes and an item
685                         if item.attrs.is_empty() {
686                             self.span = Some(item.span.shrink_to_lo());
687                         } else {
688                             // find the first attribute on the item
689                             for attr in &item.attrs {
690                                 if self.span.map_or(true, |span| attr.span < span) {
691                                     self.span = Some(attr.span.shrink_to_lo());
692                                 }
693                             }
694                         }
695                     }
696                 },
697             }
698         }
699     }
700 }
701
702 /// This thing walks the whole crate in DFS manner, visiting each item, resolving names as it goes.
703 impl<'a, 'tcx, 'cl> Visitor<'tcx> for Resolver<'a, 'cl> {
704     fn visit_item(&mut self, item: &'tcx Item) {
705         self.resolve_item(item);
706     }
707     fn visit_arm(&mut self, arm: &'tcx Arm) {
708         self.resolve_arm(arm);
709     }
710     fn visit_block(&mut self, block: &'tcx Block) {
711         self.resolve_block(block);
712     }
713     fn visit_anon_const(&mut self, constant: &'tcx ast::AnonConst) {
714         self.with_constant_rib(|this| {
715             visit::walk_anon_const(this, constant);
716         });
717     }
718     fn visit_expr(&mut self, expr: &'tcx Expr) {
719         self.resolve_expr(expr, None);
720     }
721     fn visit_local(&mut self, local: &'tcx Local) {
722         self.resolve_local(local);
723     }
724     fn visit_ty(&mut self, ty: &'tcx Ty) {
725         match ty.node {
726             TyKind::Path(ref qself, ref path) => {
727                 self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
728             }
729             TyKind::ImplicitSelf => {
730                 let self_ty = keywords::SelfType.ident();
731                 let def = self.resolve_ident_in_lexical_scope(self_ty, TypeNS, Some(ty.id), ty.span)
732                               .map_or(Def::Err, |d| d.def());
733                 self.record_def(ty.id, PathResolution::new(def));
734             }
735             _ => (),
736         }
737         visit::walk_ty(self, ty);
738     }
739     fn visit_poly_trait_ref(&mut self,
740                             tref: &'tcx ast::PolyTraitRef,
741                             m: &'tcx ast::TraitBoundModifier) {
742         self.smart_resolve_path(tref.trait_ref.ref_id, None,
743                                 &tref.trait_ref.path, PathSource::Trait(AliasPossibility::Maybe));
744         visit::walk_poly_trait_ref(self, tref, m);
745     }
746     fn visit_foreign_item(&mut self, foreign_item: &'tcx ForeignItem) {
747         let type_parameters = match foreign_item.node {
748             ForeignItemKind::Fn(_, ref generics) => {
749                 HasTypeParameters(generics, ItemRibKind)
750             }
751             ForeignItemKind::Static(..) => NoTypeParameters,
752             ForeignItemKind::Ty => NoTypeParameters,
753             ForeignItemKind::Macro(..) => NoTypeParameters,
754         };
755         self.with_type_parameter_rib(type_parameters, |this| {
756             visit::walk_foreign_item(this, foreign_item);
757         });
758     }
759     fn visit_fn(&mut self,
760                 function_kind: FnKind<'tcx>,
761                 declaration: &'tcx FnDecl,
762                 _: Span,
763                 node_id: NodeId)
764     {
765         let (rib_kind, asyncness) = match function_kind {
766             FnKind::ItemFn(_, ref header, ..) =>
767                 (ItemRibKind, header.asyncness),
768             FnKind::Method(_, ref sig, _, _) =>
769                 (TraitOrImplItemRibKind, sig.header.asyncness),
770             FnKind::Closure(_) =>
771                 // Async closures aren't resolved through `visit_fn`-- they're
772                 // processed separately
773                 (ClosureRibKind(node_id), IsAsync::NotAsync),
774         };
775
776         // Create a value rib for the function.
777         self.ribs[ValueNS].push(Rib::new(rib_kind));
778
779         // Create a label rib for the function.
780         self.label_ribs.push(Rib::new(rib_kind));
781
782         // Add each argument to the rib.
783         let mut bindings_list = FxHashMap();
784         for argument in &declaration.inputs {
785             self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
786
787             self.visit_ty(&argument.ty);
788
789             debug!("(resolving function) recorded argument");
790         }
791         visit::walk_fn_ret_ty(self, &declaration.output);
792
793         // Resolve the function body, potentially inside the body of an async closure
794         if let IsAsync::Async { closure_id, .. } = asyncness {
795             let rib_kind = ClosureRibKind(closure_id);
796             self.ribs[ValueNS].push(Rib::new(rib_kind));
797             self.label_ribs.push(Rib::new(rib_kind));
798         }
799
800         match function_kind {
801             FnKind::ItemFn(.., body) |
802             FnKind::Method(.., body) => {
803                 self.visit_block(body);
804             }
805             FnKind::Closure(body) => {
806                 self.visit_expr(body);
807             }
808         };
809
810         // Leave the body of the async closure
811         if asyncness.is_async() {
812             self.label_ribs.pop();
813             self.ribs[ValueNS].pop();
814         }
815
816         debug!("(resolving function) leaving function");
817
818         self.label_ribs.pop();
819         self.ribs[ValueNS].pop();
820     }
821     fn visit_generics(&mut self, generics: &'tcx Generics) {
822         // For type parameter defaults, we have to ban access
823         // to following type parameters, as the Substs can only
824         // provide previous type parameters as they're built. We
825         // put all the parameters on the ban list and then remove
826         // them one by one as they are processed and become available.
827         let mut default_ban_rib = Rib::new(ForwardTyParamBanRibKind);
828         let mut found_default = false;
829         default_ban_rib.bindings.extend(generics.params.iter()
830             .filter_map(|param| match param.kind {
831                 GenericParamKind::Lifetime { .. } => None,
832                 GenericParamKind::Type { ref default, .. } => {
833                     found_default |= default.is_some();
834                     if found_default {
835                         Some((Ident::with_empty_ctxt(param.ident.name), Def::Err))
836                     } else {
837                         None
838                     }
839                 }
840             }));
841
842         for param in &generics.params {
843             match param.kind {
844                 GenericParamKind::Lifetime { .. } => self.visit_generic_param(param),
845                 GenericParamKind::Type { ref default, .. } => {
846                     for bound in &param.bounds {
847                         self.visit_param_bound(bound);
848                     }
849
850                     if let Some(ref ty) = default {
851                         self.ribs[TypeNS].push(default_ban_rib);
852                         self.visit_ty(ty);
853                         default_ban_rib = self.ribs[TypeNS].pop().unwrap();
854                     }
855
856                     // Allow all following defaults to refer to this type parameter.
857                     default_ban_rib.bindings.remove(&Ident::with_empty_ctxt(param.ident.name));
858                 }
859             }
860         }
861         for p in &generics.where_clause.predicates {
862             self.visit_where_predicate(p);
863         }
864     }
865 }
866
867 #[derive(Copy, Clone)]
868 enum TypeParameters<'a, 'b> {
869     NoTypeParameters,
870     HasTypeParameters(// Type parameters.
871                       &'b Generics,
872
873                       // The kind of the rib used for type parameters.
874                       RibKind<'a>),
875 }
876
877 /// The rib kind controls the translation of local
878 /// definitions (`Def::Local`) to upvars (`Def::Upvar`).
879 #[derive(Copy, Clone, Debug)]
880 enum RibKind<'a> {
881     /// No translation needs to be applied.
882     NormalRibKind,
883
884     /// We passed through a closure scope at the given node ID.
885     /// Translate upvars as appropriate.
886     ClosureRibKind(NodeId /* func id */),
887
888     /// We passed through an impl or trait and are now in one of its
889     /// methods or associated types. Allow references to ty params that impl or trait
890     /// binds. Disallow any other upvars (including other ty params that are
891     /// upvars).
892     TraitOrImplItemRibKind,
893
894     /// We passed through an item scope. Disallow upvars.
895     ItemRibKind,
896
897     /// We're in a constant item. Can't refer to dynamic stuff.
898     ConstantItemRibKind,
899
900     /// We passed through a module.
901     ModuleRibKind(Module<'a>),
902
903     /// We passed through a `macro_rules!` statement
904     MacroDefinition(DefId),
905
906     /// All bindings in this rib are type parameters that can't be used
907     /// from the default of a type parameter because they're not declared
908     /// before said type parameter. Also see the `visit_generics` override.
909     ForwardTyParamBanRibKind,
910 }
911
912 /// One local scope.
913 ///
914 /// A rib represents a scope names can live in. Note that these appear in many places, not just
915 /// around braces. At any place where the list of accessible names (of the given namespace)
916 /// changes or a new restrictions on the name accessibility are introduced, a new rib is put onto a
917 /// stack. This may be, for example, a `let` statement (because it introduces variables), a macro,
918 /// etc.
919 ///
920 /// Different [rib kinds](enum.RibKind) are transparent for different names.
921 ///
922 /// The resolution keeps a separate stack of ribs as it traverses the AST for each namespace. When
923 /// resolving, the name is looked up from inside out.
924 #[derive(Debug)]
925 struct Rib<'a> {
926     bindings: FxHashMap<Ident, Def>,
927     kind: RibKind<'a>,
928 }
929
930 impl<'a> Rib<'a> {
931     fn new(kind: RibKind<'a>) -> Rib<'a> {
932         Rib {
933             bindings: FxHashMap(),
934             kind,
935         }
936     }
937 }
938
939 /// An intermediate resolution result.
940 ///
941 /// This refers to the thing referred by a name. The difference between `Def` and `Item` is that
942 /// items are visible in their whole block, while defs only from the place they are defined
943 /// forward.
944 enum LexicalScopeBinding<'a> {
945     Item(&'a NameBinding<'a>),
946     Def(Def),
947 }
948
949 impl<'a> LexicalScopeBinding<'a> {
950     fn item(self) -> Option<&'a NameBinding<'a>> {
951         match self {
952             LexicalScopeBinding::Item(binding) => Some(binding),
953             _ => None,
954         }
955     }
956
957     fn def(self) -> Def {
958         match self {
959             LexicalScopeBinding::Item(binding) => binding.def(),
960             LexicalScopeBinding::Def(def) => def,
961         }
962     }
963 }
964
965 #[derive(Copy, Clone, Debug)]
966 pub enum ModuleOrUniformRoot<'a> {
967     /// Regular module.
968     Module(Module<'a>),
969
970     /// The `{{root}}` (`CrateRoot` aka "global") / `extern` initial segment
971     /// in which external crates resolve, and also `crate` (only in `{{root}}`,
972     /// but *not* `extern`), in the Rust 2018 edition.
973     UniformRoot(Name),
974 }
975
976 #[derive(Clone, Debug)]
977 enum PathResult<'a> {
978     Module(ModuleOrUniformRoot<'a>),
979     NonModule(PathResolution),
980     Indeterminate,
981     Failed(Span, String, bool /* is the error from the last segment? */),
982 }
983
984 enum ModuleKind {
985     /// An anonymous module, eg. just a block.
986     ///
987     /// ```
988     /// fn main() {
989     ///     fn f() {} // (1)
990     ///     { // This is an anonymous module
991     ///         f(); // This resolves to (2) as we are inside the block.
992     ///         fn f() {} // (2)
993     ///     }
994     ///     f(); // Resolves to (1)
995     /// }
996     /// ```
997     Block(NodeId),
998     /// Any module with a name.
999     ///
1000     /// This could be:
1001     ///
1002     /// * A normal module â€’ either `mod from_file;` or `mod from_block { }`.
1003     /// * A trait or an enum (it implicitly contains associated types, methods and variant
1004     ///   constructors).
1005     Def(Def, Name),
1006 }
1007
1008 /// One node in the tree of modules.
1009 pub struct ModuleData<'a> {
1010     parent: Option<Module<'a>>,
1011     kind: ModuleKind,
1012
1013     // The def id of the closest normal module (`mod`) ancestor (including this module).
1014     normal_ancestor_id: DefId,
1015
1016     resolutions: RefCell<FxHashMap<(Ident, Namespace), &'a RefCell<NameResolution<'a>>>>,
1017     legacy_macro_resolutions: RefCell<Vec<(Ident, MacroKind, ParentScope<'a>,
1018                                            Option<&'a NameBinding<'a>>)>>,
1019     macro_resolutions: RefCell<Vec<(Box<[Ident]>, Span)>>,
1020     builtin_attrs: RefCell<Vec<(Ident, ParentScope<'a>)>>,
1021
1022     // Macro invocations that can expand into items in this module.
1023     unresolved_invocations: RefCell<FxHashSet<Mark>>,
1024
1025     no_implicit_prelude: bool,
1026
1027     glob_importers: RefCell<Vec<&'a ImportDirective<'a>>>,
1028     globs: RefCell<Vec<&'a ImportDirective<'a>>>,
1029
1030     // Used to memoize the traits in this module for faster searches through all traits in scope.
1031     traits: RefCell<Option<Box<[(Ident, &'a NameBinding<'a>)]>>>,
1032
1033     // Whether this module is populated. If not populated, any attempt to
1034     // access the children must be preceded with a
1035     // `populate_module_if_necessary` call.
1036     populated: Cell<bool>,
1037
1038     /// Span of the module itself. Used for error reporting.
1039     span: Span,
1040
1041     expansion: Mark,
1042 }
1043
1044 type Module<'a> = &'a ModuleData<'a>;
1045
1046 impl<'a> ModuleData<'a> {
1047     fn new(parent: Option<Module<'a>>,
1048            kind: ModuleKind,
1049            normal_ancestor_id: DefId,
1050            expansion: Mark,
1051            span: Span) -> Self {
1052         ModuleData {
1053             parent,
1054             kind,
1055             normal_ancestor_id,
1056             resolutions: RefCell::new(FxHashMap()),
1057             legacy_macro_resolutions: RefCell::new(Vec::new()),
1058             macro_resolutions: RefCell::new(Vec::new()),
1059             builtin_attrs: RefCell::new(Vec::new()),
1060             unresolved_invocations: RefCell::new(FxHashSet()),
1061             no_implicit_prelude: false,
1062             glob_importers: RefCell::new(Vec::new()),
1063             globs: RefCell::new(Vec::new()),
1064             traits: RefCell::new(None),
1065             populated: Cell::new(normal_ancestor_id.is_local()),
1066             span,
1067             expansion,
1068         }
1069     }
1070
1071     fn for_each_child<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1072         for (&(ident, ns), name_resolution) in self.resolutions.borrow().iter() {
1073             name_resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1074         }
1075     }
1076
1077     fn for_each_child_stable<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1078         let resolutions = self.resolutions.borrow();
1079         let mut resolutions = resolutions.iter().collect::<Vec<_>>();
1080         resolutions.sort_by_cached_key(|&(&(ident, ns), _)| (ident.as_str(), ns));
1081         for &(&(ident, ns), &resolution) in resolutions.iter() {
1082             resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1083         }
1084     }
1085
1086     fn def(&self) -> Option<Def> {
1087         match self.kind {
1088             ModuleKind::Def(def, _) => Some(def),
1089             _ => None,
1090         }
1091     }
1092
1093     fn def_id(&self) -> Option<DefId> {
1094         self.def().as_ref().map(Def::def_id)
1095     }
1096
1097     // `self` resolves to the first module ancestor that `is_normal`.
1098     fn is_normal(&self) -> bool {
1099         match self.kind {
1100             ModuleKind::Def(Def::Mod(_), _) => true,
1101             _ => false,
1102         }
1103     }
1104
1105     fn is_trait(&self) -> bool {
1106         match self.kind {
1107             ModuleKind::Def(Def::Trait(_), _) => true,
1108             _ => false,
1109         }
1110     }
1111
1112     fn is_local(&self) -> bool {
1113         self.normal_ancestor_id.is_local()
1114     }
1115
1116     fn nearest_item_scope(&'a self) -> Module<'a> {
1117         if self.is_trait() { self.parent.unwrap() } else { self }
1118     }
1119
1120     fn is_ancestor_of(&self, mut other: &Self) -> bool {
1121         while !ptr::eq(self, other) {
1122             if let Some(parent) = other.parent {
1123                 other = parent;
1124             } else {
1125                 return false;
1126             }
1127         }
1128         true
1129     }
1130 }
1131
1132 impl<'a> fmt::Debug for ModuleData<'a> {
1133     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1134         write!(f, "{:?}", self.def())
1135     }
1136 }
1137
1138 /// Records a possibly-private value, type, or module definition.
1139 #[derive(Clone, Debug)]
1140 pub struct NameBinding<'a> {
1141     kind: NameBindingKind<'a>,
1142     expansion: Mark,
1143     span: Span,
1144     vis: ty::Visibility,
1145 }
1146
1147 pub trait ToNameBinding<'a> {
1148     fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a>;
1149 }
1150
1151 impl<'a> ToNameBinding<'a> for &'a NameBinding<'a> {
1152     fn to_name_binding(self, _: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> {
1153         self
1154     }
1155 }
1156
1157 #[derive(Clone, Debug)]
1158 enum NameBindingKind<'a> {
1159     Def(Def, /* is_macro_export */ bool),
1160     Module(Module<'a>),
1161     Import {
1162         binding: &'a NameBinding<'a>,
1163         directive: &'a ImportDirective<'a>,
1164         used: Cell<bool>,
1165     },
1166     Ambiguity {
1167         b1: &'a NameBinding<'a>,
1168         b2: &'a NameBinding<'a>,
1169     }
1170 }
1171
1172 struct PrivacyError<'a>(Span, Name, &'a NameBinding<'a>);
1173
1174 struct UseError<'a> {
1175     err: DiagnosticBuilder<'a>,
1176     /// Attach `use` statements for these candidates
1177     candidates: Vec<ImportSuggestion>,
1178     /// The node id of the module to place the use statements in
1179     node_id: NodeId,
1180     /// Whether the diagnostic should state that it's "better"
1181     better: bool,
1182 }
1183
1184 struct AmbiguityError<'a> {
1185     ident: Ident,
1186     b1: &'a NameBinding<'a>,
1187     b2: &'a NameBinding<'a>,
1188 }
1189
1190 impl<'a> NameBinding<'a> {
1191     fn module(&self) -> Option<Module<'a>> {
1192         match self.kind {
1193             NameBindingKind::Module(module) => Some(module),
1194             NameBindingKind::Import { binding, .. } => binding.module(),
1195             _ => None,
1196         }
1197     }
1198
1199     fn def(&self) -> Def {
1200         match self.kind {
1201             NameBindingKind::Def(def, _) => def,
1202             NameBindingKind::Module(module) => module.def().unwrap(),
1203             NameBindingKind::Import { binding, .. } => binding.def(),
1204             NameBindingKind::Ambiguity { .. } => Def::Err,
1205         }
1206     }
1207
1208     fn def_ignoring_ambiguity(&self) -> Def {
1209         match self.kind {
1210             NameBindingKind::Import { binding, .. } => binding.def_ignoring_ambiguity(),
1211             NameBindingKind::Ambiguity { b1, .. } => b1.def_ignoring_ambiguity(),
1212             _ => self.def(),
1213         }
1214     }
1215
1216     // We sometimes need to treat variants as `pub` for backwards compatibility
1217     fn pseudo_vis(&self) -> ty::Visibility {
1218         if self.is_variant() && self.def().def_id().is_local() {
1219             ty::Visibility::Public
1220         } else {
1221             self.vis
1222         }
1223     }
1224
1225     fn is_variant(&self) -> bool {
1226         match self.kind {
1227             NameBindingKind::Def(Def::Variant(..), _) |
1228             NameBindingKind::Def(Def::VariantCtor(..), _) => true,
1229             _ => false,
1230         }
1231     }
1232
1233     fn is_extern_crate(&self) -> bool {
1234         match self.kind {
1235             NameBindingKind::Import {
1236                 directive: &ImportDirective {
1237                     subclass: ImportDirectiveSubclass::ExternCrate(_), ..
1238                 }, ..
1239             } => true,
1240             _ => false,
1241         }
1242     }
1243
1244     fn is_import(&self) -> bool {
1245         match self.kind {
1246             NameBindingKind::Import { .. } => true,
1247             _ => false,
1248         }
1249     }
1250
1251     fn is_renamed_extern_crate(&self) -> bool {
1252         if let NameBindingKind::Import { directive, ..} = self.kind {
1253             if let ImportDirectiveSubclass::ExternCrate(Some(_)) = directive.subclass {
1254                 return true;
1255             }
1256         }
1257         false
1258     }
1259
1260     fn is_glob_import(&self) -> bool {
1261         match self.kind {
1262             NameBindingKind::Import { directive, .. } => directive.is_glob(),
1263             NameBindingKind::Ambiguity { b1, .. } => b1.is_glob_import(),
1264             _ => false,
1265         }
1266     }
1267
1268     fn is_importable(&self) -> bool {
1269         match self.def() {
1270             Def::AssociatedConst(..) | Def::Method(..) | Def::AssociatedTy(..) => false,
1271             _ => true,
1272         }
1273     }
1274
1275     fn is_macro_def(&self) -> bool {
1276         match self.kind {
1277             NameBindingKind::Def(Def::Macro(..), _) => true,
1278             _ => false,
1279         }
1280     }
1281
1282     fn macro_kind(&self) -> Option<MacroKind> {
1283         match self.def_ignoring_ambiguity() {
1284             Def::Macro(_, kind) => Some(kind),
1285             Def::NonMacroAttr(..) => Some(MacroKind::Attr),
1286             _ => None,
1287         }
1288     }
1289
1290     fn descr(&self) -> &'static str {
1291         if self.is_extern_crate() { "extern crate" } else { self.def().kind_name() }
1292     }
1293
1294     // Suppose that we resolved macro invocation with `invoc_parent_expansion` to binding `binding`
1295     // at some expansion round `max(invoc, binding)` when they both emerged from macros.
1296     // Then this function returns `true` if `self` may emerge from a macro *after* that
1297     // in some later round and screw up our previously found resolution.
1298     // See more detailed explanation in
1299     // https://github.com/rust-lang/rust/pull/53778#issuecomment-419224049
1300     fn may_appear_after(&self, invoc_parent_expansion: Mark, binding: &NameBinding) -> bool {
1301         // self > max(invoc, binding) => !(self <= invoc || self <= binding)
1302         // Expansions are partially ordered, so "may appear after" is an inversion of
1303         // "certainly appears before or simultaneously" and includes unordered cases.
1304         let self_parent_expansion = self.expansion;
1305         let other_parent_expansion = binding.expansion;
1306         let certainly_before_other_or_simultaneously =
1307             other_parent_expansion.is_descendant_of(self_parent_expansion);
1308         let certainly_before_invoc_or_simultaneously =
1309             invoc_parent_expansion.is_descendant_of(self_parent_expansion);
1310         !(certainly_before_other_or_simultaneously || certainly_before_invoc_or_simultaneously)
1311     }
1312 }
1313
1314 /// Interns the names of the primitive types.
1315 ///
1316 /// All other types are defined somewhere and possibly imported, but the primitive ones need
1317 /// special handling, since they have no place of origin.
1318 struct PrimitiveTypeTable {
1319     primitive_types: FxHashMap<Name, PrimTy>,
1320 }
1321
1322 impl PrimitiveTypeTable {
1323     fn new() -> PrimitiveTypeTable {
1324         let mut table = PrimitiveTypeTable { primitive_types: FxHashMap() };
1325
1326         table.intern("bool", Bool);
1327         table.intern("char", Char);
1328         table.intern("f32", Float(FloatTy::F32));
1329         table.intern("f64", Float(FloatTy::F64));
1330         table.intern("isize", Int(IntTy::Isize));
1331         table.intern("i8", Int(IntTy::I8));
1332         table.intern("i16", Int(IntTy::I16));
1333         table.intern("i32", Int(IntTy::I32));
1334         table.intern("i64", Int(IntTy::I64));
1335         table.intern("i128", Int(IntTy::I128));
1336         table.intern("str", Str);
1337         table.intern("usize", Uint(UintTy::Usize));
1338         table.intern("u8", Uint(UintTy::U8));
1339         table.intern("u16", Uint(UintTy::U16));
1340         table.intern("u32", Uint(UintTy::U32));
1341         table.intern("u64", Uint(UintTy::U64));
1342         table.intern("u128", Uint(UintTy::U128));
1343         table
1344     }
1345
1346     fn intern(&mut self, string: &str, primitive_type: PrimTy) {
1347         self.primitive_types.insert(Symbol::intern(string), primitive_type);
1348     }
1349 }
1350
1351 /// The main resolver class.
1352 ///
1353 /// This is the visitor that walks the whole crate.
1354 pub struct Resolver<'a, 'b: 'a> {
1355     session: &'a Session,
1356     cstore: &'a CStore,
1357
1358     pub definitions: Definitions,
1359
1360     graph_root: Module<'a>,
1361
1362     prelude: Option<Module<'a>>,
1363     pub extern_prelude: FxHashSet<Name>,
1364
1365     /// n.b. This is used only for better diagnostics, not name resolution itself.
1366     has_self: FxHashSet<DefId>,
1367
1368     /// Names of fields of an item `DefId` accessible with dot syntax.
1369     /// Used for hints during error reporting.
1370     field_names: FxHashMap<DefId, Vec<Name>>,
1371
1372     /// All imports known to succeed or fail.
1373     determined_imports: Vec<&'a ImportDirective<'a>>,
1374
1375     /// All non-determined imports.
1376     indeterminate_imports: Vec<&'a ImportDirective<'a>>,
1377
1378     /// The module that represents the current item scope.
1379     current_module: Module<'a>,
1380
1381     /// The current set of local scopes for types and values.
1382     /// FIXME #4948: Reuse ribs to avoid allocation.
1383     ribs: PerNS<Vec<Rib<'a>>>,
1384
1385     /// The current set of local scopes, for labels.
1386     label_ribs: Vec<Rib<'a>>,
1387
1388     /// The trait that the current context can refer to.
1389     current_trait_ref: Option<(Module<'a>, TraitRef)>,
1390
1391     /// The current self type if inside an impl (used for better errors).
1392     current_self_type: Option<Ty>,
1393
1394     /// The current self item if inside an ADT (used for better errors).
1395     current_self_item: Option<NodeId>,
1396
1397     /// The idents for the primitive types.
1398     primitive_type_table: PrimitiveTypeTable,
1399
1400     def_map: DefMap,
1401     import_map: ImportMap,
1402     pub freevars: FreevarMap,
1403     freevars_seen: NodeMap<NodeMap<usize>>,
1404     pub export_map: ExportMap,
1405     pub trait_map: TraitMap,
1406
1407     /// A map from nodes to anonymous modules.
1408     /// Anonymous modules are pseudo-modules that are implicitly created around items
1409     /// contained within blocks.
1410     ///
1411     /// For example, if we have this:
1412     ///
1413     ///  fn f() {
1414     ///      fn g() {
1415     ///          ...
1416     ///      }
1417     ///  }
1418     ///
1419     /// There will be an anonymous module created around `g` with the ID of the
1420     /// entry block for `f`.
1421     block_map: NodeMap<Module<'a>>,
1422     module_map: FxHashMap<DefId, Module<'a>>,
1423     extern_module_map: FxHashMap<(DefId, bool /* MacrosOnly? */), Module<'a>>,
1424     binding_parent_modules: FxHashMap<PtrKey<'a, NameBinding<'a>>, Module<'a>>,
1425
1426     pub make_glob_map: bool,
1427     /// Maps imports to the names of items actually imported (this actually maps
1428     /// all imports, but only glob imports are actually interesting).
1429     pub glob_map: GlobMap,
1430
1431     used_imports: FxHashSet<(NodeId, Namespace)>,
1432     pub maybe_unused_trait_imports: NodeSet,
1433     pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
1434
1435     /// A list of labels as of yet unused. Labels will be removed from this map when
1436     /// they are used (in a `break` or `continue` statement)
1437     pub unused_labels: FxHashMap<NodeId, Span>,
1438
1439     /// privacy errors are delayed until the end in order to deduplicate them
1440     privacy_errors: Vec<PrivacyError<'a>>,
1441     /// ambiguity errors are delayed for deduplication
1442     ambiguity_errors: Vec<AmbiguityError<'a>>,
1443     /// `use` injections are delayed for better placement and deduplication
1444     use_injections: Vec<UseError<'a>>,
1445     /// crate-local macro expanded `macro_export` referred to by a module-relative path
1446     macro_expanded_macro_export_errors: BTreeSet<(Span, Span)>,
1447
1448     arenas: &'a ResolverArenas<'a>,
1449     dummy_binding: &'a NameBinding<'a>,
1450
1451     crate_loader: &'a mut CrateLoader<'b>,
1452     macro_names: FxHashSet<Ident>,
1453     builtin_macros: FxHashMap<Name, &'a NameBinding<'a>>,
1454     macro_use_prelude: FxHashMap<Name, &'a NameBinding<'a>>,
1455     pub all_macros: FxHashMap<Name, Def>,
1456     macro_map: FxHashMap<DefId, Lrc<SyntaxExtension>>,
1457     macro_defs: FxHashMap<Mark, DefId>,
1458     local_macro_def_scopes: FxHashMap<NodeId, Module<'a>>,
1459     pub whitelisted_legacy_custom_derives: Vec<Name>,
1460     pub found_unresolved_macro: bool,
1461
1462     /// List of crate local macros that we need to warn about as being unused.
1463     /// Right now this only includes macro_rules! macros, and macros 2.0.
1464     unused_macros: FxHashSet<DefId>,
1465
1466     /// Maps the `Mark` of an expansion to its containing module or block.
1467     invocations: FxHashMap<Mark, &'a InvocationData<'a>>,
1468
1469     /// Avoid duplicated errors for "name already defined".
1470     name_already_seen: FxHashMap<Name, Span>,
1471
1472     potentially_unused_imports: Vec<&'a ImportDirective<'a>>,
1473
1474     /// This table maps struct IDs into struct constructor IDs,
1475     /// it's not used during normal resolution, only for better error reporting.
1476     struct_constructors: DefIdMap<(Def, ty::Visibility)>,
1477
1478     /// Only used for better errors on `fn(): fn()`
1479     current_type_ascription: Vec<Span>,
1480
1481     injected_crate: Option<Module<'a>>,
1482 }
1483
1484 /// Nothing really interesting here, it just provides memory for the rest of the crate.
1485 pub struct ResolverArenas<'a> {
1486     modules: arena::TypedArena<ModuleData<'a>>,
1487     local_modules: RefCell<Vec<Module<'a>>>,
1488     name_bindings: arena::TypedArena<NameBinding<'a>>,
1489     import_directives: arena::TypedArena<ImportDirective<'a>>,
1490     name_resolutions: arena::TypedArena<RefCell<NameResolution<'a>>>,
1491     invocation_data: arena::TypedArena<InvocationData<'a>>,
1492     legacy_bindings: arena::TypedArena<LegacyBinding<'a>>,
1493 }
1494
1495 impl<'a> ResolverArenas<'a> {
1496     fn alloc_module(&'a self, module: ModuleData<'a>) -> Module<'a> {
1497         let module = self.modules.alloc(module);
1498         if module.def_id().map(|def_id| def_id.is_local()).unwrap_or(true) {
1499             self.local_modules.borrow_mut().push(module);
1500         }
1501         module
1502     }
1503     fn local_modules(&'a self) -> ::std::cell::Ref<'a, Vec<Module<'a>>> {
1504         self.local_modules.borrow()
1505     }
1506     fn alloc_name_binding(&'a self, name_binding: NameBinding<'a>) -> &'a NameBinding<'a> {
1507         self.name_bindings.alloc(name_binding)
1508     }
1509     fn alloc_import_directive(&'a self, import_directive: ImportDirective<'a>)
1510                               -> &'a ImportDirective {
1511         self.import_directives.alloc(import_directive)
1512     }
1513     fn alloc_name_resolution(&'a self) -> &'a RefCell<NameResolution<'a>> {
1514         self.name_resolutions.alloc(Default::default())
1515     }
1516     fn alloc_invocation_data(&'a self, expansion_data: InvocationData<'a>)
1517                              -> &'a InvocationData<'a> {
1518         self.invocation_data.alloc(expansion_data)
1519     }
1520     fn alloc_legacy_binding(&'a self, binding: LegacyBinding<'a>) -> &'a LegacyBinding<'a> {
1521         self.legacy_bindings.alloc(binding)
1522     }
1523 }
1524
1525 impl<'a, 'b: 'a, 'cl: 'b> ty::DefIdTree for &'a Resolver<'b, 'cl> {
1526     fn parent(self, id: DefId) -> Option<DefId> {
1527         match id.krate {
1528             LOCAL_CRATE => self.definitions.def_key(id.index).parent,
1529             _ => self.cstore.def_key(id).parent,
1530         }.map(|index| DefId { index, ..id })
1531     }
1532 }
1533
1534 /// This interface is used through the AST→HIR step, to embed full paths into the HIR. After that
1535 /// the resolver is no longer needed as all the relevant information is inline.
1536 impl<'a, 'cl> hir::lowering::Resolver for Resolver<'a, 'cl> {
1537     fn resolve_hir_path(&mut self, path: &mut hir::Path, is_value: bool) {
1538         self.resolve_hir_path_cb(path, is_value,
1539                                  |resolver, span, error| resolve_error(resolver, span, error))
1540     }
1541
1542     fn resolve_str_path(
1543         &mut self,
1544         span: Span,
1545         crate_root: Option<&str>,
1546         components: &[&str],
1547         args: Option<P<hir::GenericArgs>>,
1548         is_value: bool
1549     ) -> hir::Path {
1550         let mut segments = iter::once(keywords::CrateRoot.ident())
1551             .chain(
1552                 crate_root.into_iter()
1553                     .chain(components.iter().cloned())
1554                     .map(Ident::from_str)
1555             ).map(hir::PathSegment::from_ident).collect::<Vec<_>>();
1556
1557         if let Some(args) = args {
1558             let ident = segments.last().unwrap().ident;
1559             *segments.last_mut().unwrap() = hir::PathSegment {
1560                 ident,
1561                 args: Some(args),
1562                 infer_types: true,
1563             };
1564         }
1565
1566         let mut path = hir::Path {
1567             span,
1568             def: Def::Err,
1569             segments: segments.into(),
1570         };
1571
1572         self.resolve_hir_path(&mut path, is_value);
1573         path
1574     }
1575
1576     fn get_resolution(&mut self, id: NodeId) -> Option<PathResolution> {
1577         self.def_map.get(&id).cloned()
1578     }
1579
1580     fn get_import(&mut self, id: NodeId) -> PerNS<Option<PathResolution>> {
1581         self.import_map.get(&id).cloned().unwrap_or_default()
1582     }
1583
1584     fn definitions(&mut self) -> &mut Definitions {
1585         &mut self.definitions
1586     }
1587 }
1588
1589 impl<'a, 'crateloader> Resolver<'a, 'crateloader> {
1590     /// Rustdoc uses this to resolve things in a recoverable way. ResolutionError<'a>
1591     /// isn't something that can be returned because it can't be made to live that long,
1592     /// and also it's a private type. Fortunately rustdoc doesn't need to know the error,
1593     /// just that an error occurred.
1594     pub fn resolve_str_path_error(&mut self, span: Span, path_str: &str, is_value: bool)
1595         -> Result<hir::Path, ()> {
1596         use std::iter;
1597         let mut errored = false;
1598
1599         let mut path = if path_str.starts_with("::") {
1600             hir::Path {
1601                 span,
1602                 def: Def::Err,
1603                 segments: iter::once(keywords::CrateRoot.ident()).chain({
1604                     path_str.split("::").skip(1).map(Ident::from_str)
1605                 }).map(hir::PathSegment::from_ident).collect(),
1606             }
1607         } else {
1608             hir::Path {
1609                 span,
1610                 def: Def::Err,
1611                 segments: path_str.split("::").map(Ident::from_str)
1612                                   .map(hir::PathSegment::from_ident).collect(),
1613             }
1614         };
1615         self.resolve_hir_path_cb(&mut path, is_value, |_, _, _| errored = true);
1616         if errored || path.def == Def::Err {
1617             Err(())
1618         } else {
1619             Ok(path)
1620         }
1621     }
1622
1623     /// resolve_hir_path, but takes a callback in case there was an error
1624     fn resolve_hir_path_cb<F>(&mut self, path: &mut hir::Path, is_value: bool, error_callback: F)
1625         where F: for<'c, 'b> FnOnce(&'c mut Resolver, Span, ResolutionError<'b>)
1626     {
1627         let namespace = if is_value { ValueNS } else { TypeNS };
1628         let hir::Path { ref segments, span, ref mut def } = *path;
1629         let path: Vec<_> = segments.iter().map(|seg| seg.ident).collect();
1630         // FIXME (Manishearth): Intra doc links won't get warned of epoch changes
1631         match self.resolve_path(None, &path, Some(namespace), true, span, CrateLint::No) {
1632             PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
1633                 *def = module.def().unwrap(),
1634             PathResult::NonModule(path_res) if path_res.unresolved_segments() == 0 =>
1635                 *def = path_res.base_def(),
1636             PathResult::NonModule(..) => match self.resolve_path(
1637                 None,
1638                 &path,
1639                 None,
1640                 true,
1641                 span,
1642                 CrateLint::No,
1643             ) {
1644                 PathResult::Failed(span, msg, _) => {
1645                     error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1646                 }
1647                 _ => {}
1648             },
1649             PathResult::Module(ModuleOrUniformRoot::UniformRoot(_)) |
1650             PathResult::Indeterminate => unreachable!(),
1651             PathResult::Failed(span, msg, _) => {
1652                 error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1653             }
1654         }
1655     }
1656 }
1657
1658 impl<'a, 'crateloader: 'a> Resolver<'a, 'crateloader> {
1659     pub fn new(session: &'a Session,
1660                cstore: &'a CStore,
1661                krate: &Crate,
1662                crate_name: &str,
1663                make_glob_map: MakeGlobMap,
1664                crate_loader: &'a mut CrateLoader<'crateloader>,
1665                arenas: &'a ResolverArenas<'a>)
1666                -> Resolver<'a, 'crateloader> {
1667         let root_def_id = DefId::local(CRATE_DEF_INDEX);
1668         let root_module_kind = ModuleKind::Def(Def::Mod(root_def_id), keywords::Invalid.name());
1669         let graph_root = arenas.alloc_module(ModuleData {
1670             no_implicit_prelude: attr::contains_name(&krate.attrs, "no_implicit_prelude"),
1671             ..ModuleData::new(None, root_module_kind, root_def_id, Mark::root(), krate.span)
1672         });
1673         let mut module_map = FxHashMap();
1674         module_map.insert(DefId::local(CRATE_DEF_INDEX), graph_root);
1675
1676         let mut definitions = Definitions::new();
1677         DefCollector::new(&mut definitions, Mark::root())
1678             .collect_root(crate_name, session.local_crate_disambiguator());
1679
1680         let mut extern_prelude: FxHashSet<Name> =
1681             session.opts.externs.iter().map(|kv| Symbol::intern(kv.0)).collect();
1682
1683         if !attr::contains_name(&krate.attrs, "no_core") {
1684             extern_prelude.insert(Symbol::intern("core"));
1685             if !attr::contains_name(&krate.attrs, "no_std") {
1686                 extern_prelude.insert(Symbol::intern("std"));
1687                 if session.rust_2018() {
1688                     extern_prelude.insert(Symbol::intern("meta"));
1689                 }
1690             }
1691         }
1692
1693         let mut invocations = FxHashMap();
1694         invocations.insert(Mark::root(),
1695                            arenas.alloc_invocation_data(InvocationData::root(graph_root)));
1696
1697         let mut macro_defs = FxHashMap();
1698         macro_defs.insert(Mark::root(), root_def_id);
1699
1700         Resolver {
1701             session,
1702
1703             cstore,
1704
1705             definitions,
1706
1707             // The outermost module has def ID 0; this is not reflected in the
1708             // AST.
1709             graph_root,
1710             prelude: None,
1711             extern_prelude,
1712
1713             has_self: FxHashSet(),
1714             field_names: FxHashMap(),
1715
1716             determined_imports: Vec::new(),
1717             indeterminate_imports: Vec::new(),
1718
1719             current_module: graph_root,
1720             ribs: PerNS {
1721                 value_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1722                 type_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1723                 macro_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1724             },
1725             label_ribs: Vec::new(),
1726
1727             current_trait_ref: None,
1728             current_self_type: None,
1729             current_self_item: None,
1730
1731             primitive_type_table: PrimitiveTypeTable::new(),
1732
1733             def_map: NodeMap(),
1734             import_map: NodeMap(),
1735             freevars: NodeMap(),
1736             freevars_seen: NodeMap(),
1737             export_map: FxHashMap(),
1738             trait_map: NodeMap(),
1739             module_map,
1740             block_map: NodeMap(),
1741             extern_module_map: FxHashMap(),
1742             binding_parent_modules: FxHashMap(),
1743
1744             make_glob_map: make_glob_map == MakeGlobMap::Yes,
1745             glob_map: NodeMap(),
1746
1747             used_imports: FxHashSet(),
1748             maybe_unused_trait_imports: NodeSet(),
1749             maybe_unused_extern_crates: Vec::new(),
1750
1751             unused_labels: FxHashMap(),
1752
1753             privacy_errors: Vec::new(),
1754             ambiguity_errors: Vec::new(),
1755             use_injections: Vec::new(),
1756             macro_expanded_macro_export_errors: BTreeSet::new(),
1757
1758             arenas,
1759             dummy_binding: arenas.alloc_name_binding(NameBinding {
1760                 kind: NameBindingKind::Def(Def::Err, false),
1761                 expansion: Mark::root(),
1762                 span: DUMMY_SP,
1763                 vis: ty::Visibility::Public,
1764             }),
1765
1766             crate_loader,
1767             macro_names: FxHashSet(),
1768             builtin_macros: FxHashMap(),
1769             macro_use_prelude: FxHashMap(),
1770             all_macros: FxHashMap(),
1771             macro_map: FxHashMap(),
1772             invocations,
1773             macro_defs,
1774             local_macro_def_scopes: FxHashMap(),
1775             name_already_seen: FxHashMap(),
1776             whitelisted_legacy_custom_derives: Vec::new(),
1777             potentially_unused_imports: Vec::new(),
1778             struct_constructors: DefIdMap(),
1779             found_unresolved_macro: false,
1780             unused_macros: FxHashSet(),
1781             current_type_ascription: Vec::new(),
1782             injected_crate: None,
1783         }
1784     }
1785
1786     pub fn arenas() -> ResolverArenas<'a> {
1787         ResolverArenas {
1788             modules: arena::TypedArena::new(),
1789             local_modules: RefCell::new(Vec::new()),
1790             name_bindings: arena::TypedArena::new(),
1791             import_directives: arena::TypedArena::new(),
1792             name_resolutions: arena::TypedArena::new(),
1793             invocation_data: arena::TypedArena::new(),
1794             legacy_bindings: arena::TypedArena::new(),
1795         }
1796     }
1797
1798     /// Runs the function on each namespace.
1799     fn per_ns<F: FnMut(&mut Self, Namespace)>(&mut self, mut f: F) {
1800         f(self, TypeNS);
1801         f(self, ValueNS);
1802         f(self, MacroNS);
1803     }
1804
1805     fn macro_def(&self, mut ctxt: SyntaxContext) -> DefId {
1806         loop {
1807             match self.macro_defs.get(&ctxt.outer()) {
1808                 Some(&def_id) => return def_id,
1809                 None => ctxt.remove_mark(),
1810             };
1811         }
1812     }
1813
1814     /// Entry point to crate resolution.
1815     pub fn resolve_crate(&mut self, krate: &Crate) {
1816         ImportResolver { resolver: self }.finalize_imports();
1817         self.current_module = self.graph_root;
1818         self.finalize_current_module_macro_resolutions();
1819
1820         visit::walk_crate(self, krate);
1821
1822         check_unused::check_crate(self, krate);
1823         self.report_errors(krate);
1824         self.crate_loader.postprocess(krate);
1825     }
1826
1827     fn new_module(
1828         &self,
1829         parent: Module<'a>,
1830         kind: ModuleKind,
1831         normal_ancestor_id: DefId,
1832         expansion: Mark,
1833         span: Span,
1834     ) -> Module<'a> {
1835         let module = ModuleData::new(Some(parent), kind, normal_ancestor_id, expansion, span);
1836         self.arenas.alloc_module(module)
1837     }
1838
1839     fn record_use(&mut self, ident: Ident, ns: Namespace, binding: &'a NameBinding<'a>)
1840                   -> bool /* true if an error was reported */ {
1841         match binding.kind {
1842             NameBindingKind::Import { directive, binding, ref used }
1843                     if !used.get() => {
1844                 used.set(true);
1845                 directive.used.set(true);
1846                 self.used_imports.insert((directive.id, ns));
1847                 self.add_to_glob_map(directive.id, ident);
1848                 self.record_use(ident, ns, binding)
1849             }
1850             NameBindingKind::Import { .. } => false,
1851             NameBindingKind::Ambiguity { b1, b2 } => {
1852                 self.ambiguity_errors.push(AmbiguityError { ident, b1, b2 });
1853                 true
1854             }
1855             _ => false
1856         }
1857     }
1858
1859     fn add_to_glob_map(&mut self, id: NodeId, ident: Ident) {
1860         if self.make_glob_map {
1861             self.glob_map.entry(id).or_default().insert(ident.name);
1862         }
1863     }
1864
1865     /// This resolves the identifier `ident` in the namespace `ns` in the current lexical scope.
1866     /// More specifically, we proceed up the hierarchy of scopes and return the binding for
1867     /// `ident` in the first scope that defines it (or None if no scopes define it).
1868     ///
1869     /// A block's items are above its local variables in the scope hierarchy, regardless of where
1870     /// the items are defined in the block. For example,
1871     /// ```rust
1872     /// fn f() {
1873     ///    g(); // Since there are no local variables in scope yet, this resolves to the item.
1874     ///    let g = || {};
1875     ///    fn g() {}
1876     ///    g(); // This resolves to the local variable `g` since it shadows the item.
1877     /// }
1878     /// ```
1879     ///
1880     /// Invariant: This must only be called during main resolution, not during
1881     /// import resolution.
1882     fn resolve_ident_in_lexical_scope(&mut self,
1883                                       mut ident: Ident,
1884                                       ns: Namespace,
1885                                       record_used_id: Option<NodeId>,
1886                                       path_span: Span)
1887                                       -> Option<LexicalScopeBinding<'a>> {
1888         let record_used = record_used_id.is_some();
1889         assert!(ns == TypeNS  || ns == ValueNS);
1890         if ns == TypeNS {
1891             ident.span = if ident.name == keywords::SelfType.name() {
1892                 // FIXME(jseyfried) improve `Self` hygiene
1893                 ident.span.with_ctxt(SyntaxContext::empty())
1894             } else {
1895                 ident.span.modern()
1896             }
1897         } else {
1898             ident = ident.modern_and_legacy();
1899         }
1900
1901         // Walk backwards up the ribs in scope.
1902         let mut module = self.graph_root;
1903         for i in (0 .. self.ribs[ns].len()).rev() {
1904             if let Some(def) = self.ribs[ns][i].bindings.get(&ident).cloned() {
1905                 // The ident resolves to a type parameter or local variable.
1906                 return Some(LexicalScopeBinding::Def(
1907                     self.adjust_local_def(ns, i, def, record_used, path_span)
1908                 ));
1909             }
1910
1911             module = match self.ribs[ns][i].kind {
1912                 ModuleRibKind(module) => module,
1913                 MacroDefinition(def) if def == self.macro_def(ident.span.ctxt()) => {
1914                     // If an invocation of this macro created `ident`, give up on `ident`
1915                     // and switch to `ident`'s source from the macro definition.
1916                     ident.span.remove_mark();
1917                     continue
1918                 }
1919                 _ => continue,
1920             };
1921
1922             let item = self.resolve_ident_in_module_unadjusted(
1923                 ModuleOrUniformRoot::Module(module),
1924                 ident,
1925                 ns,
1926                 false,
1927                 record_used,
1928                 path_span,
1929             );
1930             if let Ok(binding) = item {
1931                 // The ident resolves to an item.
1932                 return Some(LexicalScopeBinding::Item(binding));
1933             }
1934
1935             match module.kind {
1936                 ModuleKind::Block(..) => {}, // We can see through blocks
1937                 _ => break,
1938             }
1939         }
1940
1941         ident.span = ident.span.modern();
1942         let mut poisoned = None;
1943         loop {
1944             let opt_module = if let Some(node_id) = record_used_id {
1945                 self.hygienic_lexical_parent_with_compatibility_fallback(module, &mut ident.span,
1946                                                                          node_id, &mut poisoned)
1947             } else {
1948                 self.hygienic_lexical_parent(module, &mut ident.span)
1949             };
1950             module = unwrap_or!(opt_module, break);
1951             let orig_current_module = self.current_module;
1952             self.current_module = module; // Lexical resolutions can never be a privacy error.
1953             let result = self.resolve_ident_in_module_unadjusted(
1954                 ModuleOrUniformRoot::Module(module),
1955                 ident,
1956                 ns,
1957                 false,
1958                 record_used,
1959                 path_span,
1960             );
1961             self.current_module = orig_current_module;
1962
1963             match result {
1964                 Ok(binding) => {
1965                     if let Some(node_id) = poisoned {
1966                         self.session.buffer_lint_with_diagnostic(
1967                             lint::builtin::PROC_MACRO_DERIVE_RESOLUTION_FALLBACK,
1968                             node_id, ident.span,
1969                             &format!("cannot find {} `{}` in this scope", ns.descr(), ident),
1970                             lint::builtin::BuiltinLintDiagnostics::
1971                                 ProcMacroDeriveResolutionFallback(ident.span),
1972                         );
1973                     }
1974                     return Some(LexicalScopeBinding::Item(binding))
1975                 }
1976                 Err(Determined) => continue,
1977                 Err(Undetermined) =>
1978                     span_bug!(ident.span, "undetermined resolution during main resolution pass"),
1979             }
1980         }
1981
1982         if !module.no_implicit_prelude {
1983             if ns == TypeNS && self.extern_prelude.contains(&ident.name) {
1984                 let crate_id = if record_used {
1985                     self.crate_loader.process_path_extern(ident.name, ident.span)
1986                 } else if let Some(crate_id) =
1987                         self.crate_loader.maybe_process_path_extern(ident.name, ident.span) {
1988                     crate_id
1989                 } else {
1990                     return None;
1991                 };
1992                 let crate_root = self.get_module(DefId { krate: crate_id, index: CRATE_DEF_INDEX });
1993                 self.populate_module_if_necessary(&crate_root);
1994
1995                 let binding = (crate_root, ty::Visibility::Public,
1996                                ident.span, Mark::root()).to_name_binding(self.arenas);
1997                 return Some(LexicalScopeBinding::Item(binding));
1998             }
1999             if ns == TypeNS && is_known_tool(ident.name) {
2000                 let binding = (Def::ToolMod, ty::Visibility::Public,
2001                                ident.span, Mark::root()).to_name_binding(self.arenas);
2002                 return Some(LexicalScopeBinding::Item(binding));
2003             }
2004             if let Some(prelude) = self.prelude {
2005                 if let Ok(binding) = self.resolve_ident_in_module_unadjusted(
2006                     ModuleOrUniformRoot::Module(prelude),
2007                     ident,
2008                     ns,
2009                     false,
2010                     false,
2011                     path_span,
2012                 ) {
2013                     return Some(LexicalScopeBinding::Item(binding));
2014                 }
2015             }
2016         }
2017
2018         None
2019     }
2020
2021     fn hygienic_lexical_parent(&mut self, module: Module<'a>, span: &mut Span)
2022                                -> Option<Module<'a>> {
2023         if !module.expansion.is_descendant_of(span.ctxt().outer()) {
2024             return Some(self.macro_def_scope(span.remove_mark()));
2025         }
2026
2027         if let ModuleKind::Block(..) = module.kind {
2028             return Some(module.parent.unwrap());
2029         }
2030
2031         None
2032     }
2033
2034     fn hygienic_lexical_parent_with_compatibility_fallback(&mut self, module: Module<'a>,
2035                                                            span: &mut Span, node_id: NodeId,
2036                                                            poisoned: &mut Option<NodeId>)
2037                                                            -> Option<Module<'a>> {
2038         if let module @ Some(..) = self.hygienic_lexical_parent(module, span) {
2039             return module;
2040         }
2041
2042         // We need to support the next case under a deprecation warning
2043         // ```
2044         // struct MyStruct;
2045         // ---- begin: this comes from a proc macro derive
2046         // mod implementation_details {
2047         //     // Note that `MyStruct` is not in scope here.
2048         //     impl SomeTrait for MyStruct { ... }
2049         // }
2050         // ---- end
2051         // ```
2052         // So we have to fall back to the module's parent during lexical resolution in this case.
2053         if let Some(parent) = module.parent {
2054             // Inner module is inside the macro, parent module is outside of the macro.
2055             if module.expansion != parent.expansion &&
2056             module.expansion.is_descendant_of(parent.expansion) {
2057                 // The macro is a proc macro derive
2058                 if module.expansion.looks_like_proc_macro_derive() {
2059                     if parent.expansion.is_descendant_of(span.ctxt().outer()) {
2060                         *poisoned = Some(node_id);
2061                         return module.parent;
2062                     }
2063                 }
2064             }
2065         }
2066
2067         None
2068     }
2069
2070     fn resolve_ident_in_module(&mut self,
2071                                module: ModuleOrUniformRoot<'a>,
2072                                mut ident: Ident,
2073                                ns: Namespace,
2074                                record_used: bool,
2075                                span: Span)
2076                                -> Result<&'a NameBinding<'a>, Determinacy> {
2077         ident.span = ident.span.modern();
2078         let orig_current_module = self.current_module;
2079         if let ModuleOrUniformRoot::Module(module) = module {
2080             if let Some(def) = ident.span.adjust(module.expansion) {
2081                 self.current_module = self.macro_def_scope(def);
2082             }
2083         }
2084         let result = self.resolve_ident_in_module_unadjusted(
2085             module, ident, ns, false, record_used, span,
2086         );
2087         self.current_module = orig_current_module;
2088         result
2089     }
2090
2091     fn resolve_crate_root(&mut self, ident: Ident) -> Module<'a> {
2092         let mut ctxt = ident.span.ctxt();
2093         let mark = if ident.name == keywords::DollarCrate.name() {
2094             // When resolving `$crate` from a `macro_rules!` invoked in a `macro`,
2095             // we don't want to pretend that the `macro_rules!` definition is in the `macro`
2096             // as described in `SyntaxContext::apply_mark`, so we ignore prepended modern marks.
2097             // FIXME: This is only a guess and it doesn't work correctly for `macro_rules!`
2098             // definitions actually produced by `macro` and `macro` definitions produced by
2099             // `macro_rules!`, but at least such configurations are not stable yet.
2100             ctxt = ctxt.modern_and_legacy();
2101             let mut iter = ctxt.marks().into_iter().rev().peekable();
2102             let mut result = None;
2103             // Find the last modern mark from the end if it exists.
2104             while let Some(&(mark, transparency)) = iter.peek() {
2105                 if transparency == Transparency::Opaque {
2106                     result = Some(mark);
2107                     iter.next();
2108                 } else {
2109                     break;
2110                 }
2111             }
2112             // Then find the last legacy mark from the end if it exists.
2113             for (mark, transparency) in iter {
2114                 if transparency == Transparency::SemiTransparent {
2115                     result = Some(mark);
2116                 } else {
2117                     break;
2118                 }
2119             }
2120             result
2121         } else {
2122             ctxt = ctxt.modern();
2123             ctxt.adjust(Mark::root())
2124         };
2125         let module = match mark {
2126             Some(def) => self.macro_def_scope(def),
2127             None => return self.graph_root,
2128         };
2129         self.get_module(DefId { index: CRATE_DEF_INDEX, ..module.normal_ancestor_id })
2130     }
2131
2132     fn resolve_self(&mut self, ctxt: &mut SyntaxContext, module: Module<'a>) -> Module<'a> {
2133         let mut module = self.get_module(module.normal_ancestor_id);
2134         while module.span.ctxt().modern() != *ctxt {
2135             let parent = module.parent.unwrap_or_else(|| self.macro_def_scope(ctxt.remove_mark()));
2136             module = self.get_module(parent.normal_ancestor_id);
2137         }
2138         module
2139     }
2140
2141     // AST resolution
2142     //
2143     // We maintain a list of value ribs and type ribs.
2144     //
2145     // Simultaneously, we keep track of the current position in the module
2146     // graph in the `current_module` pointer. When we go to resolve a name in
2147     // the value or type namespaces, we first look through all the ribs and
2148     // then query the module graph. When we resolve a name in the module
2149     // namespace, we can skip all the ribs (since nested modules are not
2150     // allowed within blocks in Rust) and jump straight to the current module
2151     // graph node.
2152     //
2153     // Named implementations are handled separately. When we find a method
2154     // call, we consult the module node to find all of the implementations in
2155     // scope. This information is lazily cached in the module node. We then
2156     // generate a fake "implementation scope" containing all the
2157     // implementations thus found, for compatibility with old resolve pass.
2158
2159     pub fn with_scope<F, T>(&mut self, id: NodeId, f: F) -> T
2160         where F: FnOnce(&mut Resolver) -> T
2161     {
2162         let id = self.definitions.local_def_id(id);
2163         let module = self.module_map.get(&id).cloned(); // clones a reference
2164         if let Some(module) = module {
2165             // Move down in the graph.
2166             let orig_module = replace(&mut self.current_module, module);
2167             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(module)));
2168             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(module)));
2169
2170             self.finalize_current_module_macro_resolutions();
2171             let ret = f(self);
2172
2173             self.current_module = orig_module;
2174             self.ribs[ValueNS].pop();
2175             self.ribs[TypeNS].pop();
2176             ret
2177         } else {
2178             f(self)
2179         }
2180     }
2181
2182     /// Searches the current set of local scopes for labels. Returns the first non-None label that
2183     /// is returned by the given predicate function
2184     ///
2185     /// Stops after meeting a closure.
2186     fn search_label<P, R>(&self, mut ident: Ident, pred: P) -> Option<R>
2187         where P: Fn(&Rib, Ident) -> Option<R>
2188     {
2189         for rib in self.label_ribs.iter().rev() {
2190             match rib.kind {
2191                 NormalRibKind => {}
2192                 // If an invocation of this macro created `ident`, give up on `ident`
2193                 // and switch to `ident`'s source from the macro definition.
2194                 MacroDefinition(def) => {
2195                     if def == self.macro_def(ident.span.ctxt()) {
2196                         ident.span.remove_mark();
2197                     }
2198                 }
2199                 _ => {
2200                     // Do not resolve labels across function boundary
2201                     return None;
2202                 }
2203             }
2204             let r = pred(rib, ident);
2205             if r.is_some() {
2206                 return r;
2207             }
2208         }
2209         None
2210     }
2211
2212     fn resolve_adt(&mut self, item: &Item, generics: &Generics) {
2213         self.with_current_self_item(item, |this| {
2214             this.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2215                 let item_def_id = this.definitions.local_def_id(item.id);
2216                 if this.session.features_untracked().self_in_typedefs {
2217                     this.with_self_rib(Def::SelfTy(None, Some(item_def_id)), |this| {
2218                         visit::walk_item(this, item);
2219                     });
2220                 } else {
2221                     visit::walk_item(this, item);
2222                 }
2223             });
2224         });
2225     }
2226
2227     fn resolve_item(&mut self, item: &Item) {
2228         let name = item.ident.name;
2229         debug!("(resolving item) resolving {}", name);
2230
2231         match item.node {
2232             ItemKind::Ty(_, ref generics) |
2233             ItemKind::Fn(_, _, ref generics, _) |
2234             ItemKind::Existential(_, ref generics) => {
2235                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind),
2236                                              |this| visit::walk_item(this, item));
2237             }
2238
2239             ItemKind::Enum(_, ref generics) |
2240             ItemKind::Struct(_, ref generics) |
2241             ItemKind::Union(_, ref generics) => {
2242                 self.resolve_adt(item, generics);
2243             }
2244
2245             ItemKind::Impl(.., ref generics, ref opt_trait_ref, ref self_type, ref impl_items) =>
2246                 self.resolve_implementation(generics,
2247                                             opt_trait_ref,
2248                                             &self_type,
2249                                             item.id,
2250                                             impl_items),
2251
2252             ItemKind::Trait(.., ref generics, ref bounds, ref trait_items) => {
2253                 // Create a new rib for the trait-wide type parameters.
2254                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2255                     let local_def_id = this.definitions.local_def_id(item.id);
2256                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2257                         this.visit_generics(generics);
2258                         walk_list!(this, visit_param_bound, bounds);
2259
2260                         for trait_item in trait_items {
2261                             let type_parameters = HasTypeParameters(&trait_item.generics,
2262                                                                     TraitOrImplItemRibKind);
2263                             this.with_type_parameter_rib(type_parameters, |this| {
2264                                 match trait_item.node {
2265                                     TraitItemKind::Const(ref ty, ref default) => {
2266                                         this.visit_ty(ty);
2267
2268                                         // Only impose the restrictions of
2269                                         // ConstRibKind for an actual constant
2270                                         // expression in a provided default.
2271                                         if let Some(ref expr) = *default{
2272                                             this.with_constant_rib(|this| {
2273                                                 this.visit_expr(expr);
2274                                             });
2275                                         }
2276                                     }
2277                                     TraitItemKind::Method(_, _) => {
2278                                         visit::walk_trait_item(this, trait_item)
2279                                     }
2280                                     TraitItemKind::Type(..) => {
2281                                         visit::walk_trait_item(this, trait_item)
2282                                     }
2283                                     TraitItemKind::Macro(_) => {
2284                                         panic!("unexpanded macro in resolve!")
2285                                     }
2286                                 };
2287                             });
2288                         }
2289                     });
2290                 });
2291             }
2292
2293             ItemKind::TraitAlias(ref generics, ref bounds) => {
2294                 // Create a new rib for the trait-wide type parameters.
2295                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2296                     let local_def_id = this.definitions.local_def_id(item.id);
2297                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2298                         this.visit_generics(generics);
2299                         walk_list!(this, visit_param_bound, bounds);
2300                     });
2301                 });
2302             }
2303
2304             ItemKind::Mod(_) | ItemKind::ForeignMod(_) => {
2305                 self.with_scope(item.id, |this| {
2306                     visit::walk_item(this, item);
2307                 });
2308             }
2309
2310             ItemKind::Static(ref ty, _, ref expr) |
2311             ItemKind::Const(ref ty, ref expr) => {
2312                 self.with_item_rib(|this| {
2313                     this.visit_ty(ty);
2314                     this.with_constant_rib(|this| {
2315                         this.visit_expr(expr);
2316                     });
2317                 });
2318             }
2319
2320             ItemKind::Use(ref use_tree) => {
2321                 // Imports are resolved as global by default, add starting root segment.
2322                 let path = Path {
2323                     segments: use_tree.prefix.make_root().into_iter().collect(),
2324                     span: use_tree.span,
2325                 };
2326                 self.resolve_use_tree(item.id, use_tree.span, item.id, use_tree, &path);
2327             }
2328
2329             ItemKind::ExternCrate(_) | ItemKind::MacroDef(..) | ItemKind::GlobalAsm(_) => {
2330                 // do nothing, these are just around to be encoded
2331             }
2332
2333             ItemKind::Mac(_) => panic!("unexpanded macro in resolve!"),
2334         }
2335     }
2336
2337     /// For the most part, use trees are desugared into `ImportDirective` instances
2338     /// when building the reduced graph (see `build_reduced_graph_for_use_tree`). But
2339     /// there is one special case we handle here: an empty nested import like
2340     /// `a::{b::{}}`, which desugares into...no import directives.
2341     fn resolve_use_tree(
2342         &mut self,
2343         root_id: NodeId,
2344         root_span: Span,
2345         id: NodeId,
2346         use_tree: &ast::UseTree,
2347         prefix: &Path,
2348     ) {
2349         match use_tree.kind {
2350             ast::UseTreeKind::Nested(ref items) => {
2351                 let path = Path {
2352                     segments: prefix.segments
2353                         .iter()
2354                         .chain(use_tree.prefix.segments.iter())
2355                         .cloned()
2356                         .collect(),
2357                     span: prefix.span.to(use_tree.prefix.span),
2358                 };
2359
2360                 if items.len() == 0 {
2361                     // Resolve prefix of an import with empty braces (issue #28388).
2362                     self.smart_resolve_path_with_crate_lint(
2363                         id,
2364                         None,
2365                         &path,
2366                         PathSource::ImportPrefix,
2367                         CrateLint::UsePath { root_id, root_span },
2368                     );
2369                 } else {
2370                     for &(ref tree, nested_id) in items {
2371                         self.resolve_use_tree(root_id, root_span, nested_id, tree, &path);
2372                     }
2373                 }
2374             }
2375             ast::UseTreeKind::Simple(..) => {},
2376             ast::UseTreeKind::Glob => {},
2377         }
2378     }
2379
2380     fn with_type_parameter_rib<'b, F>(&'b mut self, type_parameters: TypeParameters<'a, 'b>, f: F)
2381         where F: FnOnce(&mut Resolver)
2382     {
2383         match type_parameters {
2384             HasTypeParameters(generics, rib_kind) => {
2385                 let mut function_type_rib = Rib::new(rib_kind);
2386                 let mut seen_bindings = FxHashMap();
2387                 for param in &generics.params {
2388                     match param.kind {
2389                         GenericParamKind::Lifetime { .. } => {}
2390                         GenericParamKind::Type { .. } => {
2391                             let ident = param.ident.modern();
2392                             debug!("with_type_parameter_rib: {}", param.id);
2393
2394                             if seen_bindings.contains_key(&ident) {
2395                                 let span = seen_bindings.get(&ident).unwrap();
2396                                 let err = ResolutionError::NameAlreadyUsedInTypeParameterList(
2397                                     ident.name,
2398                                     span,
2399                                 );
2400                                 resolve_error(self, param.ident.span, err);
2401                             }
2402                             seen_bindings.entry(ident).or_insert(param.ident.span);
2403
2404                         // Plain insert (no renaming).
2405                         let def = Def::TyParam(self.definitions.local_def_id(param.id));
2406                             function_type_rib.bindings.insert(ident, def);
2407                             self.record_def(param.id, PathResolution::new(def));
2408                         }
2409                     }
2410                 }
2411                 self.ribs[TypeNS].push(function_type_rib);
2412             }
2413
2414             NoTypeParameters => {
2415                 // Nothing to do.
2416             }
2417         }
2418
2419         f(self);
2420
2421         if let HasTypeParameters(..) = type_parameters {
2422             self.ribs[TypeNS].pop();
2423         }
2424     }
2425
2426     fn with_label_rib<F>(&mut self, f: F)
2427         where F: FnOnce(&mut Resolver)
2428     {
2429         self.label_ribs.push(Rib::new(NormalRibKind));
2430         f(self);
2431         self.label_ribs.pop();
2432     }
2433
2434     fn with_item_rib<F>(&mut self, f: F)
2435         where F: FnOnce(&mut Resolver)
2436     {
2437         self.ribs[ValueNS].push(Rib::new(ItemRibKind));
2438         self.ribs[TypeNS].push(Rib::new(ItemRibKind));
2439         f(self);
2440         self.ribs[TypeNS].pop();
2441         self.ribs[ValueNS].pop();
2442     }
2443
2444     fn with_constant_rib<F>(&mut self, f: F)
2445         where F: FnOnce(&mut Resolver)
2446     {
2447         self.ribs[ValueNS].push(Rib::new(ConstantItemRibKind));
2448         self.label_ribs.push(Rib::new(ConstantItemRibKind));
2449         f(self);
2450         self.label_ribs.pop();
2451         self.ribs[ValueNS].pop();
2452     }
2453
2454     fn with_current_self_type<T, F>(&mut self, self_type: &Ty, f: F) -> T
2455         where F: FnOnce(&mut Resolver) -> T
2456     {
2457         // Handle nested impls (inside fn bodies)
2458         let previous_value = replace(&mut self.current_self_type, Some(self_type.clone()));
2459         let result = f(self);
2460         self.current_self_type = previous_value;
2461         result
2462     }
2463
2464     fn with_current_self_item<T, F>(&mut self, self_item: &Item, f: F) -> T
2465         where F: FnOnce(&mut Resolver) -> T
2466     {
2467         let previous_value = replace(&mut self.current_self_item, Some(self_item.id));
2468         let result = f(self);
2469         self.current_self_item = previous_value;
2470         result
2471     }
2472
2473     /// This is called to resolve a trait reference from an `impl` (i.e. `impl Trait for Foo`)
2474     fn with_optional_trait_ref<T, F>(&mut self, opt_trait_ref: Option<&TraitRef>, f: F) -> T
2475         where F: FnOnce(&mut Resolver, Option<DefId>) -> T
2476     {
2477         let mut new_val = None;
2478         let mut new_id = None;
2479         if let Some(trait_ref) = opt_trait_ref {
2480             let path: Vec<_> = trait_ref.path.segments.iter()
2481                 .map(|seg| seg.ident)
2482                 .collect();
2483             let def = self.smart_resolve_path_fragment(
2484                 trait_ref.ref_id,
2485                 None,
2486                 &path,
2487                 trait_ref.path.span,
2488                 PathSource::Trait(AliasPossibility::No),
2489                 CrateLint::SimplePath(trait_ref.ref_id),
2490             ).base_def();
2491             if def != Def::Err {
2492                 new_id = Some(def.def_id());
2493                 let span = trait_ref.path.span;
2494                 if let PathResult::Module(ModuleOrUniformRoot::Module(module)) =
2495                     self.resolve_path(
2496                         None,
2497                         &path,
2498                         None,
2499                         false,
2500                         span,
2501                         CrateLint::SimplePath(trait_ref.ref_id),
2502                     )
2503                 {
2504                     new_val = Some((module, trait_ref.clone()));
2505                 }
2506             }
2507         }
2508         let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
2509         let result = f(self, new_id);
2510         self.current_trait_ref = original_trait_ref;
2511         result
2512     }
2513
2514     fn with_self_rib<F>(&mut self, self_def: Def, f: F)
2515         where F: FnOnce(&mut Resolver)
2516     {
2517         let mut self_type_rib = Rib::new(NormalRibKind);
2518
2519         // plain insert (no renaming, types are not currently hygienic....)
2520         self_type_rib.bindings.insert(keywords::SelfType.ident(), self_def);
2521         self.ribs[TypeNS].push(self_type_rib);
2522         f(self);
2523         self.ribs[TypeNS].pop();
2524     }
2525
2526     fn with_self_struct_ctor_rib<F>(&mut self, impl_id: DefId, f: F)
2527         where F: FnOnce(&mut Resolver)
2528     {
2529         let self_def = Def::SelfCtor(impl_id);
2530         let mut self_type_rib = Rib::new(NormalRibKind);
2531         self_type_rib.bindings.insert(keywords::SelfType.ident(), self_def);
2532         self.ribs[ValueNS].push(self_type_rib);
2533         f(self);
2534         self.ribs[ValueNS].pop();
2535     }
2536
2537     fn resolve_implementation(&mut self,
2538                               generics: &Generics,
2539                               opt_trait_reference: &Option<TraitRef>,
2540                               self_type: &Ty,
2541                               item_id: NodeId,
2542                               impl_items: &[ImplItem]) {
2543         // If applicable, create a rib for the type parameters.
2544         self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2545             // Dummy self type for better errors if `Self` is used in the trait path.
2546             this.with_self_rib(Def::SelfTy(None, None), |this| {
2547                 // Resolve the trait reference, if necessary.
2548                 this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| {
2549                     let item_def_id = this.definitions.local_def_id(item_id);
2550                     this.with_self_rib(Def::SelfTy(trait_id, Some(item_def_id)), |this| {
2551                         if let Some(trait_ref) = opt_trait_reference.as_ref() {
2552                             // Resolve type arguments in the trait path.
2553                             visit::walk_trait_ref(this, trait_ref);
2554                         }
2555                         // Resolve the self type.
2556                         this.visit_ty(self_type);
2557                         // Resolve the type parameters.
2558                         this.visit_generics(generics);
2559                         // Resolve the items within the impl.
2560                         this.with_current_self_type(self_type, |this| {
2561                             this.with_self_struct_ctor_rib(item_def_id, |this| {
2562                                 for impl_item in impl_items {
2563                                     this.resolve_visibility(&impl_item.vis);
2564
2565                                     // We also need a new scope for the impl item type parameters.
2566                                     let type_parameters = HasTypeParameters(&impl_item.generics,
2567                                                                             TraitOrImplItemRibKind);
2568                                     this.with_type_parameter_rib(type_parameters, |this| {
2569                                         use self::ResolutionError::*;
2570                                         match impl_item.node {
2571                                             ImplItemKind::Const(..) => {
2572                                                 // If this is a trait impl, ensure the const
2573                                                 // exists in trait
2574                                                 this.check_trait_item(impl_item.ident,
2575                                                                       ValueNS,
2576                                                                       impl_item.span,
2577                                                     |n, s| ConstNotMemberOfTrait(n, s));
2578                                                 this.with_constant_rib(|this|
2579                                                     visit::walk_impl_item(this, impl_item)
2580                                                 );
2581                                             }
2582                                             ImplItemKind::Method(..) => {
2583                                                 // If this is a trait impl, ensure the method
2584                                                 // exists in trait
2585                                                 this.check_trait_item(impl_item.ident,
2586                                                                       ValueNS,
2587                                                                       impl_item.span,
2588                                                     |n, s| MethodNotMemberOfTrait(n, s));
2589
2590                                                 visit::walk_impl_item(this, impl_item);
2591                                             }
2592                                             ImplItemKind::Type(ref ty) => {
2593                                                 // If this is a trait impl, ensure the type
2594                                                 // exists in trait
2595                                                 this.check_trait_item(impl_item.ident,
2596                                                                       TypeNS,
2597                                                                       impl_item.span,
2598                                                     |n, s| TypeNotMemberOfTrait(n, s));
2599
2600                                                 this.visit_ty(ty);
2601                                             }
2602                                             ImplItemKind::Existential(ref bounds) => {
2603                                                 // If this is a trait impl, ensure the type
2604                                                 // exists in trait
2605                                                 this.check_trait_item(impl_item.ident,
2606                                                                       TypeNS,
2607                                                                       impl_item.span,
2608                                                     |n, s| TypeNotMemberOfTrait(n, s));
2609
2610                                                 for bound in bounds {
2611                                                     this.visit_param_bound(bound);
2612                                                 }
2613                                             }
2614                                             ImplItemKind::Macro(_) =>
2615                                                 panic!("unexpanded macro in resolve!"),
2616                                         }
2617                                     });
2618                                 }
2619                             });
2620                         });
2621                     });
2622                 });
2623             });
2624         });
2625     }
2626
2627     fn check_trait_item<F>(&mut self, ident: Ident, ns: Namespace, span: Span, err: F)
2628         where F: FnOnce(Name, &str) -> ResolutionError
2629     {
2630         // If there is a TraitRef in scope for an impl, then the method must be in the
2631         // trait.
2632         if let Some((module, _)) = self.current_trait_ref {
2633             if self.resolve_ident_in_module(
2634                 ModuleOrUniformRoot::Module(module),
2635                 ident,
2636                 ns,
2637                 false,
2638                 span,
2639             ).is_err() {
2640                 let path = &self.current_trait_ref.as_ref().unwrap().1.path;
2641                 resolve_error(self, span, err(ident.name, &path_names_to_string(path)));
2642             }
2643         }
2644     }
2645
2646     fn resolve_local(&mut self, local: &Local) {
2647         // Resolve the type.
2648         walk_list!(self, visit_ty, &local.ty);
2649
2650         // Resolve the initializer.
2651         walk_list!(self, visit_expr, &local.init);
2652
2653         // Resolve the pattern.
2654         self.resolve_pattern(&local.pat, PatternSource::Let, &mut FxHashMap());
2655     }
2656
2657     // build a map from pattern identifiers to binding-info's.
2658     // this is done hygienically. This could arise for a macro
2659     // that expands into an or-pattern where one 'x' was from the
2660     // user and one 'x' came from the macro.
2661     fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
2662         let mut binding_map = FxHashMap();
2663
2664         pat.walk(&mut |pat| {
2665             if let PatKind::Ident(binding_mode, ident, ref sub_pat) = pat.node {
2666                 if sub_pat.is_some() || match self.def_map.get(&pat.id).map(|res| res.base_def()) {
2667                     Some(Def::Local(..)) => true,
2668                     _ => false,
2669                 } {
2670                     let binding_info = BindingInfo { span: ident.span, binding_mode: binding_mode };
2671                     binding_map.insert(ident, binding_info);
2672                 }
2673             }
2674             true
2675         });
2676
2677         binding_map
2678     }
2679
2680     // check that all of the arms in an or-pattern have exactly the
2681     // same set of bindings, with the same binding modes for each.
2682     fn check_consistent_bindings(&mut self, pats: &[P<Pat>]) {
2683         if pats.is_empty() {
2684             return;
2685         }
2686
2687         let mut missing_vars = FxHashMap();
2688         let mut inconsistent_vars = FxHashMap();
2689         for (i, p) in pats.iter().enumerate() {
2690             let map_i = self.binding_mode_map(&p);
2691
2692             for (j, q) in pats.iter().enumerate() {
2693                 if i == j {
2694                     continue;
2695                 }
2696
2697                 let map_j = self.binding_mode_map(&q);
2698                 for (&key, &binding_i) in &map_i {
2699                     if map_j.len() == 0 {                   // Account for missing bindings when
2700                         let binding_error = missing_vars    // map_j has none.
2701                             .entry(key.name)
2702                             .or_insert(BindingError {
2703                                 name: key.name,
2704                                 origin: BTreeSet::new(),
2705                                 target: BTreeSet::new(),
2706                             });
2707                         binding_error.origin.insert(binding_i.span);
2708                         binding_error.target.insert(q.span);
2709                     }
2710                     for (&key_j, &binding_j) in &map_j {
2711                         match map_i.get(&key_j) {
2712                             None => {  // missing binding
2713                                 let binding_error = missing_vars
2714                                     .entry(key_j.name)
2715                                     .or_insert(BindingError {
2716                                         name: key_j.name,
2717                                         origin: BTreeSet::new(),
2718                                         target: BTreeSet::new(),
2719                                     });
2720                                 binding_error.origin.insert(binding_j.span);
2721                                 binding_error.target.insert(p.span);
2722                             }
2723                             Some(binding_i) => {  // check consistent binding
2724                                 if binding_i.binding_mode != binding_j.binding_mode {
2725                                     inconsistent_vars
2726                                         .entry(key.name)
2727                                         .or_insert((binding_j.span, binding_i.span));
2728                                 }
2729                             }
2730                         }
2731                     }
2732                 }
2733             }
2734         }
2735         let mut missing_vars = missing_vars.iter().collect::<Vec<_>>();
2736         missing_vars.sort();
2737         for (_, v) in missing_vars {
2738             resolve_error(self,
2739                           *v.origin.iter().next().unwrap(),
2740                           ResolutionError::VariableNotBoundInPattern(v));
2741         }
2742         let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
2743         inconsistent_vars.sort();
2744         for (name, v) in inconsistent_vars {
2745             resolve_error(self, v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
2746         }
2747     }
2748
2749     fn resolve_arm(&mut self, arm: &Arm) {
2750         self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2751
2752         let mut bindings_list = FxHashMap();
2753         for pattern in &arm.pats {
2754             self.resolve_pattern(&pattern, PatternSource::Match, &mut bindings_list);
2755         }
2756
2757         // This has to happen *after* we determine which pat_idents are variants
2758         self.check_consistent_bindings(&arm.pats);
2759
2760         match arm.guard {
2761             Some(ast::Guard::If(ref expr)) => self.visit_expr(expr),
2762             _ => {}
2763         }
2764         self.visit_expr(&arm.body);
2765
2766         self.ribs[ValueNS].pop();
2767     }
2768
2769     fn resolve_block(&mut self, block: &Block) {
2770         debug!("(resolving block) entering block");
2771         // Move down in the graph, if there's an anonymous module rooted here.
2772         let orig_module = self.current_module;
2773         let anonymous_module = self.block_map.get(&block.id).cloned(); // clones a reference
2774
2775         let mut num_macro_definition_ribs = 0;
2776         if let Some(anonymous_module) = anonymous_module {
2777             debug!("(resolving block) found anonymous module, moving down");
2778             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2779             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2780             self.current_module = anonymous_module;
2781             self.finalize_current_module_macro_resolutions();
2782         } else {
2783             self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2784         }
2785
2786         // Descend into the block.
2787         for stmt in &block.stmts {
2788             if let ast::StmtKind::Item(ref item) = stmt.node {
2789                 if let ast::ItemKind::MacroDef(..) = item.node {
2790                     num_macro_definition_ribs += 1;
2791                     let def = self.definitions.local_def_id(item.id);
2792                     self.ribs[ValueNS].push(Rib::new(MacroDefinition(def)));
2793                     self.label_ribs.push(Rib::new(MacroDefinition(def)));
2794                 }
2795             }
2796
2797             self.visit_stmt(stmt);
2798         }
2799
2800         // Move back up.
2801         self.current_module = orig_module;
2802         for _ in 0 .. num_macro_definition_ribs {
2803             self.ribs[ValueNS].pop();
2804             self.label_ribs.pop();
2805         }
2806         self.ribs[ValueNS].pop();
2807         if anonymous_module.is_some() {
2808             self.ribs[TypeNS].pop();
2809         }
2810         debug!("(resolving block) leaving block");
2811     }
2812
2813     fn fresh_binding(&mut self,
2814                      ident: Ident,
2815                      pat_id: NodeId,
2816                      outer_pat_id: NodeId,
2817                      pat_src: PatternSource,
2818                      bindings: &mut FxHashMap<Ident, NodeId>)
2819                      -> PathResolution {
2820         // Add the binding to the local ribs, if it
2821         // doesn't already exist in the bindings map. (We
2822         // must not add it if it's in the bindings map
2823         // because that breaks the assumptions later
2824         // passes make about or-patterns.)
2825         let ident = ident.modern_and_legacy();
2826         let mut def = Def::Local(pat_id);
2827         match bindings.get(&ident).cloned() {
2828             Some(id) if id == outer_pat_id => {
2829                 // `Variant(a, a)`, error
2830                 resolve_error(
2831                     self,
2832                     ident.span,
2833                     ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(
2834                         &ident.as_str())
2835                 );
2836             }
2837             Some(..) if pat_src == PatternSource::FnParam => {
2838                 // `fn f(a: u8, a: u8)`, error
2839                 resolve_error(
2840                     self,
2841                     ident.span,
2842                     ResolutionError::IdentifierBoundMoreThanOnceInParameterList(
2843                         &ident.as_str())
2844                 );
2845             }
2846             Some(..) if pat_src == PatternSource::Match ||
2847                         pat_src == PatternSource::IfLet ||
2848                         pat_src == PatternSource::WhileLet => {
2849                 // `Variant1(a) | Variant2(a)`, ok
2850                 // Reuse definition from the first `a`.
2851                 def = self.ribs[ValueNS].last_mut().unwrap().bindings[&ident];
2852             }
2853             Some(..) => {
2854                 span_bug!(ident.span, "two bindings with the same name from \
2855                                        unexpected pattern source {:?}", pat_src);
2856             }
2857             None => {
2858                 // A completely fresh binding, add to the lists if it's valid.
2859                 if ident.name != keywords::Invalid.name() {
2860                     bindings.insert(ident, outer_pat_id);
2861                     self.ribs[ValueNS].last_mut().unwrap().bindings.insert(ident, def);
2862                 }
2863             }
2864         }
2865
2866         PathResolution::new(def)
2867     }
2868
2869     fn resolve_pattern(&mut self,
2870                        pat: &Pat,
2871                        pat_src: PatternSource,
2872                        // Maps idents to the node ID for the
2873                        // outermost pattern that binds them.
2874                        bindings: &mut FxHashMap<Ident, NodeId>) {
2875         // Visit all direct subpatterns of this pattern.
2876         let outer_pat_id = pat.id;
2877         pat.walk(&mut |pat| {
2878             match pat.node {
2879                 PatKind::Ident(bmode, ident, ref opt_pat) => {
2880                     // First try to resolve the identifier as some existing
2881                     // entity, then fall back to a fresh binding.
2882                     let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS,
2883                                                                       None, pat.span)
2884                                       .and_then(LexicalScopeBinding::item);
2885                     let resolution = binding.map(NameBinding::def).and_then(|def| {
2886                         let is_syntactic_ambiguity = opt_pat.is_none() &&
2887                             bmode == BindingMode::ByValue(Mutability::Immutable);
2888                         match def {
2889                             Def::StructCtor(_, CtorKind::Const) |
2890                             Def::VariantCtor(_, CtorKind::Const) |
2891                             Def::Const(..) if is_syntactic_ambiguity => {
2892                                 // Disambiguate in favor of a unit struct/variant
2893                                 // or constant pattern.
2894                                 self.record_use(ident, ValueNS, binding.unwrap());
2895                                 Some(PathResolution::new(def))
2896                             }
2897                             Def::StructCtor(..) | Def::VariantCtor(..) |
2898                             Def::Const(..) | Def::Static(..) => {
2899                                 // This is unambiguously a fresh binding, either syntactically
2900                                 // (e.g. `IDENT @ PAT` or `ref IDENT`) or because `IDENT` resolves
2901                                 // to something unusable as a pattern (e.g. constructor function),
2902                                 // but we still conservatively report an error, see
2903                                 // issues/33118#issuecomment-233962221 for one reason why.
2904                                 resolve_error(
2905                                     self,
2906                                     ident.span,
2907                                     ResolutionError::BindingShadowsSomethingUnacceptable(
2908                                         pat_src.descr(), ident.name, binding.unwrap())
2909                                 );
2910                                 None
2911                             }
2912                             Def::Fn(..) | Def::Err => {
2913                                 // These entities are explicitly allowed
2914                                 // to be shadowed by fresh bindings.
2915                                 None
2916                             }
2917                             def => {
2918                                 span_bug!(ident.span, "unexpected definition for an \
2919                                                        identifier in pattern: {:?}", def);
2920                             }
2921                         }
2922                     }).unwrap_or_else(|| {
2923                         self.fresh_binding(ident, pat.id, outer_pat_id, pat_src, bindings)
2924                     });
2925
2926                     self.record_def(pat.id, resolution);
2927                 }
2928
2929                 PatKind::TupleStruct(ref path, ..) => {
2930                     self.smart_resolve_path(pat.id, None, path, PathSource::TupleStruct);
2931                 }
2932
2933                 PatKind::Path(ref qself, ref path) => {
2934                     self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
2935                 }
2936
2937                 PatKind::Struct(ref path, ..) => {
2938                     self.smart_resolve_path(pat.id, None, path, PathSource::Struct);
2939                 }
2940
2941                 _ => {}
2942             }
2943             true
2944         });
2945
2946         visit::walk_pat(self, pat);
2947     }
2948
2949     // High-level and context dependent path resolution routine.
2950     // Resolves the path and records the resolution into definition map.
2951     // If resolution fails tries several techniques to find likely
2952     // resolution candidates, suggest imports or other help, and report
2953     // errors in user friendly way.
2954     fn smart_resolve_path(&mut self,
2955                           id: NodeId,
2956                           qself: Option<&QSelf>,
2957                           path: &Path,
2958                           source: PathSource)
2959                           -> PathResolution {
2960         self.smart_resolve_path_with_crate_lint(id, qself, path, source, CrateLint::SimplePath(id))
2961     }
2962
2963     /// A variant of `smart_resolve_path` where you also specify extra
2964     /// information about where the path came from; this extra info is
2965     /// sometimes needed for the lint that recommends rewriting
2966     /// absolute paths to `crate`, so that it knows how to frame the
2967     /// suggestion. If you are just resolving a path like `foo::bar`
2968     /// that appears...somewhere, though, then you just want
2969     /// `CrateLint::SimplePath`, which is what `smart_resolve_path`
2970     /// already provides.
2971     fn smart_resolve_path_with_crate_lint(
2972         &mut self,
2973         id: NodeId,
2974         qself: Option<&QSelf>,
2975         path: &Path,
2976         source: PathSource,
2977         crate_lint: CrateLint
2978     ) -> PathResolution {
2979         let segments = &path.segments.iter()
2980             .map(|seg| seg.ident)
2981             .collect::<Vec<_>>();
2982         self.smart_resolve_path_fragment(id, qself, segments, path.span, source, crate_lint)
2983     }
2984
2985     fn smart_resolve_path_fragment(&mut self,
2986                                    id: NodeId,
2987                                    qself: Option<&QSelf>,
2988                                    path: &[Ident],
2989                                    span: Span,
2990                                    source: PathSource,
2991                                    crate_lint: CrateLint)
2992                                    -> PathResolution {
2993         let ident_span = path.last().map_or(span, |ident| ident.span);
2994         let ns = source.namespace();
2995         let is_expected = &|def| source.is_expected(def);
2996         let is_enum_variant = &|def| if let Def::Variant(..) = def { true } else { false };
2997
2998         // Base error is amended with one short label and possibly some longer helps/notes.
2999         let report_errors = |this: &mut Self, def: Option<Def>| {
3000             // Make the base error.
3001             let expected = source.descr_expected();
3002             let path_str = names_to_string(path);
3003             let item_str = path[path.len() - 1];
3004             let code = source.error_code(def.is_some());
3005             let (base_msg, fallback_label, base_span) = if let Some(def) = def {
3006                 (format!("expected {}, found {} `{}`", expected, def.kind_name(), path_str),
3007                  format!("not a {}", expected),
3008                  span)
3009             } else {
3010                 let item_span = path[path.len() - 1].span;
3011                 let (mod_prefix, mod_str) = if path.len() == 1 {
3012                     (String::new(), "this scope".to_string())
3013                 } else if path.len() == 2 && path[0].name == keywords::CrateRoot.name() {
3014                     (String::new(), "the crate root".to_string())
3015                 } else {
3016                     let mod_path = &path[..path.len() - 1];
3017                     let mod_prefix = match this.resolve_path(None, mod_path, Some(TypeNS),
3018                                                              false, span, CrateLint::No) {
3019                         PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3020                             module.def(),
3021                         _ => None,
3022                     }.map_or(String::new(), |def| format!("{} ", def.kind_name()));
3023                     (mod_prefix, format!("`{}`", names_to_string(mod_path)))
3024                 };
3025                 (format!("cannot find {} `{}` in {}{}", expected, item_str, mod_prefix, mod_str),
3026                  format!("not found in {}", mod_str),
3027                  item_span)
3028             };
3029             let code = DiagnosticId::Error(code.into());
3030             let mut err = this.session.struct_span_err_with_code(base_span, &base_msg, code);
3031
3032             // Emit help message for fake-self from other languages like `this`(javascript)
3033             let fake_self: Vec<Ident> = ["this", "my"].iter().map(
3034                 |s| Ident::from_str(*s)
3035             ).collect();
3036             if fake_self.contains(&item_str)
3037                 && this.self_value_is_available(path[0].span, span) {
3038                 err.span_suggestion_with_applicability(
3039                     span,
3040                     "did you mean",
3041                     "self".to_string(),
3042                     Applicability::MaybeIncorrect,
3043                 );
3044             }
3045
3046             // Emit special messages for unresolved `Self` and `self`.
3047             if is_self_type(path, ns) {
3048                 __diagnostic_used!(E0411);
3049                 err.code(DiagnosticId::Error("E0411".into()));
3050                 let available_in = if this.session.features_untracked().self_in_typedefs {
3051                     "impls, traits, and type definitions"
3052                 } else {
3053                     "traits and impls"
3054                 };
3055                 err.span_label(span, format!("`Self` is only available in {}", available_in));
3056                 if this.current_self_item.is_some() && nightly_options::is_nightly_build() {
3057                     err.help("add #![feature(self_in_typedefs)] to the crate attributes \
3058                               to enable");
3059                 }
3060                 return (err, Vec::new());
3061             }
3062             if is_self_value(path, ns) {
3063                 __diagnostic_used!(E0424);
3064                 err.code(DiagnosticId::Error("E0424".into()));
3065                 err.span_label(span, format!("`self` value is a keyword \
3066                                                only available in \
3067                                                methods with `self` parameter"));
3068                 return (err, Vec::new());
3069             }
3070
3071             // Try to lookup the name in more relaxed fashion for better error reporting.
3072             let ident = *path.last().unwrap();
3073             let candidates = this.lookup_import_candidates(ident.name, ns, is_expected);
3074             if candidates.is_empty() && is_expected(Def::Enum(DefId::local(CRATE_DEF_INDEX))) {
3075                 let enum_candidates =
3076                     this.lookup_import_candidates(ident.name, ns, is_enum_variant);
3077                 let mut enum_candidates = enum_candidates.iter()
3078                     .map(|suggestion| import_candidate_to_paths(&suggestion)).collect::<Vec<_>>();
3079                 enum_candidates.sort();
3080                 for (sp, variant_path, enum_path) in enum_candidates {
3081                     if sp.is_dummy() {
3082                         let msg = format!("there is an enum variant `{}`, \
3083                                         try using `{}`?",
3084                                         variant_path,
3085                                         enum_path);
3086                         err.help(&msg);
3087                     } else {
3088                         err.span_suggestion_with_applicability(
3089                             span,
3090                             "you can try using the variant's enum",
3091                             enum_path,
3092                             Applicability::MachineApplicable,
3093                         );
3094                     }
3095                 }
3096             }
3097             if path.len() == 1 && this.self_type_is_available(span) {
3098                 if let Some(candidate) = this.lookup_assoc_candidate(ident, ns, is_expected) {
3099                     let self_is_available = this.self_value_is_available(path[0].span, span);
3100                     match candidate {
3101                         AssocSuggestion::Field => {
3102                             err.span_suggestion_with_applicability(
3103                                 span,
3104                                 "try",
3105                                 format!("self.{}", path_str),
3106                                 Applicability::MachineApplicable,
3107                             );
3108                             if !self_is_available {
3109                                 err.span_label(span, format!("`self` value is a keyword \
3110                                                                only available in \
3111                                                                methods with `self` parameter"));
3112                             }
3113                         }
3114                         AssocSuggestion::MethodWithSelf if self_is_available => {
3115                             err.span_suggestion_with_applicability(
3116                                 span,
3117                                 "try",
3118                                 format!("self.{}", path_str),
3119                                 Applicability::MachineApplicable,
3120                             );
3121                         }
3122                         AssocSuggestion::MethodWithSelf | AssocSuggestion::AssocItem => {
3123                             err.span_suggestion_with_applicability(
3124                                 span,
3125                                 "try",
3126                                 format!("Self::{}", path_str),
3127                                 Applicability::MachineApplicable,
3128                             );
3129                         }
3130                     }
3131                     return (err, candidates);
3132                 }
3133             }
3134
3135             let mut levenshtein_worked = false;
3136
3137             // Try Levenshtein.
3138             if let Some(candidate) = this.lookup_typo_candidate(path, ns, is_expected, span) {
3139                 err.span_label(ident_span, format!("did you mean `{}`?", candidate));
3140                 levenshtein_worked = true;
3141             }
3142
3143             // Try context dependent help if relaxed lookup didn't work.
3144             if let Some(def) = def {
3145                 match (def, source) {
3146                     (Def::Macro(..), _) => {
3147                         err.span_label(span, format!("did you mean `{}!(...)`?", path_str));
3148                         return (err, candidates);
3149                     }
3150                     (Def::TyAlias(..), PathSource::Trait(_)) => {
3151                         err.span_label(span, "type aliases cannot be used for traits");
3152                         return (err, candidates);
3153                     }
3154                     (Def::Mod(..), PathSource::Expr(Some(parent))) => match parent.node {
3155                         ExprKind::Field(_, ident) => {
3156                             err.span_label(parent.span, format!("did you mean `{}::{}`?",
3157                                                                  path_str, ident));
3158                             return (err, candidates);
3159                         }
3160                         ExprKind::MethodCall(ref segment, ..) => {
3161                             err.span_label(parent.span, format!("did you mean `{}::{}(...)`?",
3162                                                                  path_str, segment.ident));
3163                             return (err, candidates);
3164                         }
3165                         _ => {}
3166                     },
3167                     (Def::Enum(..), PathSource::TupleStruct)
3168                         | (Def::Enum(..), PathSource::Expr(..))  => {
3169                         if let Some(variants) = this.collect_enum_variants(def) {
3170                             err.note(&format!("did you mean to use one \
3171                                                of the following variants?\n{}",
3172                                 variants.iter()
3173                                     .map(|suggestion| path_names_to_string(suggestion))
3174                                     .map(|suggestion| format!("- `{}`", suggestion))
3175                                     .collect::<Vec<_>>()
3176                                     .join("\n")));
3177
3178                         } else {
3179                             err.note("did you mean to use one of the enum's variants?");
3180                         }
3181                         return (err, candidates);
3182                     },
3183                     (Def::Struct(def_id), _) if ns == ValueNS => {
3184                         if let Some((ctor_def, ctor_vis))
3185                                 = this.struct_constructors.get(&def_id).cloned() {
3186                             let accessible_ctor = this.is_accessible(ctor_vis);
3187                             if is_expected(ctor_def) && !accessible_ctor {
3188                                 err.span_label(span, format!("constructor is not visible \
3189                                                               here due to private fields"));
3190                             }
3191                         } else {
3192                             // HACK(estebank): find a better way to figure out that this was a
3193                             // parser issue where a struct literal is being used on an expression
3194                             // where a brace being opened means a block is being started. Look
3195                             // ahead for the next text to see if `span` is followed by a `{`.
3196                             let sm = this.session.source_map();
3197                             let mut sp = span;
3198                             loop {
3199                                 sp = sm.next_point(sp);
3200                                 match sm.span_to_snippet(sp) {
3201                                     Ok(ref snippet) => {
3202                                         if snippet.chars().any(|c| { !c.is_whitespace() }) {
3203                                             break;
3204                                         }
3205                                     }
3206                                     _ => break,
3207                                 }
3208                             }
3209                             let followed_by_brace = match sm.span_to_snippet(sp) {
3210                                 Ok(ref snippet) if snippet == "{" => true,
3211                                 _ => false,
3212                             };
3213                             match source {
3214                                 PathSource::Expr(Some(parent)) => {
3215                                     match parent.node {
3216                                         ExprKind::MethodCall(ref path_assignment, _)  => {
3217                                             err.span_suggestion_with_applicability(
3218                                                 sm.start_point(parent.span)
3219                                                   .to(path_assignment.ident.span),
3220                                                 "use `::` to access an associated function",
3221                                                 format!("{}::{}",
3222                                                         path_str,
3223                                                         path_assignment.ident),
3224                                                 Applicability::MaybeIncorrect
3225                                             );
3226                                             return (err, candidates);
3227                                         },
3228                                         _ => {
3229                                             err.span_label(
3230                                                 span,
3231                                                 format!("did you mean `{} {{ /* fields */ }}`?",
3232                                                         path_str),
3233                                             );
3234                                             return (err, candidates);
3235                                         },
3236                                     }
3237                                 },
3238                                 PathSource::Expr(None) if followed_by_brace == true => {
3239                                     err.span_label(
3240                                         span,
3241                                         format!("did you mean `({} {{ /* fields */ }})`?",
3242                                                 path_str),
3243                                     );
3244                                     return (err, candidates);
3245                                 },
3246                                 _ => {
3247                                     err.span_label(
3248                                         span,
3249                                         format!("did you mean `{} {{ /* fields */ }}`?",
3250                                                 path_str),
3251                                     );
3252                                     return (err, candidates);
3253                                 },
3254                             }
3255                         }
3256                         return (err, candidates);
3257                     }
3258                     (Def::Union(..), _) |
3259                     (Def::Variant(..), _) |
3260                     (Def::VariantCtor(_, CtorKind::Fictive), _) if ns == ValueNS => {
3261                         err.span_label(span, format!("did you mean `{} {{ /* fields */ }}`?",
3262                                                      path_str));
3263                         return (err, candidates);
3264                     }
3265                     (Def::SelfTy(..), _) if ns == ValueNS => {
3266                         err.span_label(span, fallback_label);
3267                         err.note("can't use `Self` as a constructor, you must use the \
3268                                   implemented struct");
3269                         return (err, candidates);
3270                     }
3271                     (Def::TyAlias(_), _) | (Def::AssociatedTy(..), _) if ns == ValueNS => {
3272                         err.note("can't use a type alias as a constructor");
3273                         return (err, candidates);
3274                     }
3275                     _ => {}
3276                 }
3277             }
3278
3279             // Fallback label.
3280             if !levenshtein_worked {
3281                 err.span_label(base_span, fallback_label);
3282                 this.type_ascription_suggestion(&mut err, base_span);
3283             }
3284             (err, candidates)
3285         };
3286         let report_errors = |this: &mut Self, def: Option<Def>| {
3287             let (err, candidates) = report_errors(this, def);
3288             let def_id = this.current_module.normal_ancestor_id;
3289             let node_id = this.definitions.as_local_node_id(def_id).unwrap();
3290             let better = def.is_some();
3291             this.use_injections.push(UseError { err, candidates, node_id, better });
3292             err_path_resolution()
3293         };
3294
3295         let resolution = match self.resolve_qpath_anywhere(
3296             id,
3297             qself,
3298             path,
3299             ns,
3300             span,
3301             source.defer_to_typeck(),
3302             source.global_by_default(),
3303             crate_lint,
3304         ) {
3305             Some(resolution) if resolution.unresolved_segments() == 0 => {
3306                 if is_expected(resolution.base_def()) || resolution.base_def() == Def::Err {
3307                     resolution
3308                 } else {
3309                     // Add a temporary hack to smooth the transition to new struct ctor
3310                     // visibility rules. See #38932 for more details.
3311                     let mut res = None;
3312                     if let Def::Struct(def_id) = resolution.base_def() {
3313                         if let Some((ctor_def, ctor_vis))
3314                                 = self.struct_constructors.get(&def_id).cloned() {
3315                             if is_expected(ctor_def) && self.is_accessible(ctor_vis) {
3316                                 let lint = lint::builtin::LEGACY_CONSTRUCTOR_VISIBILITY;
3317                                 self.session.buffer_lint(lint, id, span,
3318                                     "private struct constructors are not usable through \
3319                                      re-exports in outer modules",
3320                                 );
3321                                 res = Some(PathResolution::new(ctor_def));
3322                             }
3323                         }
3324                     }
3325
3326                     res.unwrap_or_else(|| report_errors(self, Some(resolution.base_def())))
3327                 }
3328             }
3329             Some(resolution) if source.defer_to_typeck() => {
3330                 // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
3331                 // or `<T>::A::B`. If `B` should be resolved in value namespace then
3332                 // it needs to be added to the trait map.
3333                 if ns == ValueNS {
3334                     let item_name = *path.last().unwrap();
3335                     let traits = self.get_traits_containing_item(item_name, ns);
3336                     self.trait_map.insert(id, traits);
3337                 }
3338                 resolution
3339             }
3340             _ => report_errors(self, None)
3341         };
3342
3343         if let PathSource::TraitItem(..) = source {} else {
3344             // Avoid recording definition of `A::B` in `<T as A>::B::C`.
3345             self.record_def(id, resolution);
3346         }
3347         resolution
3348     }
3349
3350     fn type_ascription_suggestion(&self,
3351                                   err: &mut DiagnosticBuilder,
3352                                   base_span: Span) {
3353         debug!("type_ascription_suggetion {:?}", base_span);
3354         let cm = self.session.source_map();
3355         debug!("self.current_type_ascription {:?}", self.current_type_ascription);
3356         if let Some(sp) = self.current_type_ascription.last() {
3357             let mut sp = *sp;
3358             loop {  // try to find the `:`, bail on first non-':'/non-whitespace
3359                 sp = cm.next_point(sp);
3360                 if let Ok(snippet) = cm.span_to_snippet(sp.to(cm.next_point(sp))) {
3361                     debug!("snippet {:?}", snippet);
3362                     let line_sp = cm.lookup_char_pos(sp.hi()).line;
3363                     let line_base_sp = cm.lookup_char_pos(base_span.lo()).line;
3364                     debug!("{:?} {:?}", line_sp, line_base_sp);
3365                     if snippet == ":" {
3366                         err.span_label(base_span,
3367                                        "expecting a type here because of type ascription");
3368                         if line_sp != line_base_sp {
3369                             err.span_suggestion_short_with_applicability(
3370                                 sp,
3371                                 "did you mean to use `;` here instead?",
3372                                 ";".to_string(),
3373                                 Applicability::MaybeIncorrect,
3374                             );
3375                         }
3376                         break;
3377                     } else if snippet.trim().len() != 0  {
3378                         debug!("tried to find type ascription `:` token, couldn't find it");
3379                         break;
3380                     }
3381                 } else {
3382                     break;
3383                 }
3384             }
3385         }
3386     }
3387
3388     fn self_type_is_available(&mut self, span: Span) -> bool {
3389         let binding = self.resolve_ident_in_lexical_scope(keywords::SelfType.ident(),
3390                                                           TypeNS, None, span);
3391         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3392     }
3393
3394     fn self_value_is_available(&mut self, self_span: Span, path_span: Span) -> bool {
3395         let ident = Ident::new(keywords::SelfValue.name(), self_span);
3396         let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, None, path_span);
3397         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3398     }
3399
3400     // Resolve in alternative namespaces if resolution in the primary namespace fails.
3401     fn resolve_qpath_anywhere(&mut self,
3402                               id: NodeId,
3403                               qself: Option<&QSelf>,
3404                               path: &[Ident],
3405                               primary_ns: Namespace,
3406                               span: Span,
3407                               defer_to_typeck: bool,
3408                               global_by_default: bool,
3409                               crate_lint: CrateLint)
3410                               -> Option<PathResolution> {
3411         let mut fin_res = None;
3412         // FIXME: can't resolve paths in macro namespace yet, macros are
3413         // processed by the little special hack below.
3414         for (i, ns) in [primary_ns, TypeNS, ValueNS, /*MacroNS*/].iter().cloned().enumerate() {
3415             if i == 0 || ns != primary_ns {
3416                 match self.resolve_qpath(id, qself, path, ns, span, global_by_default, crate_lint) {
3417                     // If defer_to_typeck, then resolution > no resolution,
3418                     // otherwise full resolution > partial resolution > no resolution.
3419                     Some(res) if res.unresolved_segments() == 0 || defer_to_typeck =>
3420                         return Some(res),
3421                     res => if fin_res.is_none() { fin_res = res },
3422                 };
3423             }
3424         }
3425         if primary_ns != MacroNS &&
3426            (self.macro_names.contains(&path[0].modern()) ||
3427             self.builtin_macros.get(&path[0].name).cloned()
3428                                .and_then(NameBinding::macro_kind) == Some(MacroKind::Bang) ||
3429             self.macro_use_prelude.get(&path[0].name).cloned()
3430                                   .and_then(NameBinding::macro_kind) == Some(MacroKind::Bang)) {
3431             // Return some dummy definition, it's enough for error reporting.
3432             return Some(
3433                 PathResolution::new(Def::Macro(DefId::local(CRATE_DEF_INDEX), MacroKind::Bang))
3434             );
3435         }
3436         fin_res
3437     }
3438
3439     /// Handles paths that may refer to associated items.
3440     fn resolve_qpath(&mut self,
3441                      id: NodeId,
3442                      qself: Option<&QSelf>,
3443                      path: &[Ident],
3444                      ns: Namespace,
3445                      span: Span,
3446                      global_by_default: bool,
3447                      crate_lint: CrateLint)
3448                      -> Option<PathResolution> {
3449         debug!(
3450             "resolve_qpath(id={:?}, qself={:?}, path={:?}, \
3451              ns={:?}, span={:?}, global_by_default={:?})",
3452             id,
3453             qself,
3454             path,
3455             ns,
3456             span,
3457             global_by_default,
3458         );
3459
3460         if let Some(qself) = qself {
3461             if qself.position == 0 {
3462                 // This is a case like `<T>::B`, where there is no
3463                 // trait to resolve.  In that case, we leave the `B`
3464                 // segment to be resolved by type-check.
3465                 return Some(PathResolution::with_unresolved_segments(
3466                     Def::Mod(DefId::local(CRATE_DEF_INDEX)), path.len()
3467                 ));
3468             }
3469
3470             // Make sure `A::B` in `<T as A::B>::C` is a trait item.
3471             //
3472             // Currently, `path` names the full item (`A::B::C`, in
3473             // our example).  so we extract the prefix of that that is
3474             // the trait (the slice upto and including
3475             // `qself.position`). And then we recursively resolve that,
3476             // but with `qself` set to `None`.
3477             //
3478             // However, setting `qself` to none (but not changing the
3479             // span) loses the information about where this path
3480             // *actually* appears, so for the purposes of the crate
3481             // lint we pass along information that this is the trait
3482             // name from a fully qualified path, and this also
3483             // contains the full span (the `CrateLint::QPathTrait`).
3484             let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
3485             let res = self.smart_resolve_path_fragment(
3486                 id,
3487                 None,
3488                 &path[..qself.position + 1],
3489                 span,
3490                 PathSource::TraitItem(ns),
3491                 CrateLint::QPathTrait {
3492                     qpath_id: id,
3493                     qpath_span: qself.path_span,
3494                 },
3495             );
3496
3497             // The remaining segments (the `C` in our example) will
3498             // have to be resolved by type-check, since that requires doing
3499             // trait resolution.
3500             return Some(PathResolution::with_unresolved_segments(
3501                 res.base_def(), res.unresolved_segments() + path.len() - qself.position - 1
3502             ));
3503         }
3504
3505         let result = match self.resolve_path(
3506             None,
3507             &path,
3508             Some(ns),
3509             true,
3510             span,
3511             crate_lint,
3512         ) {
3513             PathResult::NonModule(path_res) => path_res,
3514             PathResult::Module(ModuleOrUniformRoot::Module(module)) if !module.is_normal() => {
3515                 PathResolution::new(module.def().unwrap())
3516             }
3517             // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
3518             // don't report an error right away, but try to fallback to a primitive type.
3519             // So, we are still able to successfully resolve something like
3520             //
3521             // use std::u8; // bring module u8 in scope
3522             // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
3523             //     u8::max_value() // OK, resolves to associated function <u8>::max_value,
3524             //                     // not to non-existent std::u8::max_value
3525             // }
3526             //
3527             // Such behavior is required for backward compatibility.
3528             // The same fallback is used when `a` resolves to nothing.
3529             PathResult::Module(ModuleOrUniformRoot::Module(_)) |
3530             PathResult::Failed(..)
3531                     if (ns == TypeNS || path.len() > 1) &&
3532                        self.primitive_type_table.primitive_types
3533                            .contains_key(&path[0].name) => {
3534                 let prim = self.primitive_type_table.primitive_types[&path[0].name];
3535                 PathResolution::with_unresolved_segments(Def::PrimTy(prim), path.len() - 1)
3536             }
3537             PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3538                 PathResolution::new(module.def().unwrap()),
3539             PathResult::Failed(span, msg, false) => {
3540                 resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
3541                 err_path_resolution()
3542             }
3543             PathResult::Module(ModuleOrUniformRoot::UniformRoot(_)) |
3544             PathResult::Failed(..) => return None,
3545             PathResult::Indeterminate => bug!("indetermined path result in resolve_qpath"),
3546         };
3547
3548         if path.len() > 1 && !global_by_default && result.base_def() != Def::Err &&
3549            path[0].name != keywords::CrateRoot.name() &&
3550            path[0].name != keywords::DollarCrate.name() {
3551             let unqualified_result = {
3552                 match self.resolve_path(
3553                     None,
3554                     &[*path.last().unwrap()],
3555                     Some(ns),
3556                     false,
3557                     span,
3558                     CrateLint::No,
3559                 ) {
3560                     PathResult::NonModule(path_res) => path_res.base_def(),
3561                     PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3562                         module.def().unwrap(),
3563                     _ => return Some(result),
3564                 }
3565             };
3566             if result.base_def() == unqualified_result {
3567                 let lint = lint::builtin::UNUSED_QUALIFICATIONS;
3568                 self.session.buffer_lint(lint, id, span, "unnecessary qualification")
3569             }
3570         }
3571
3572         Some(result)
3573     }
3574
3575     fn resolve_path(
3576         &mut self,
3577         base_module: Option<ModuleOrUniformRoot<'a>>,
3578         path: &[Ident],
3579         opt_ns: Option<Namespace>, // `None` indicates a module path
3580         record_used: bool,
3581         path_span: Span,
3582         crate_lint: CrateLint,
3583     ) -> PathResult<'a> {
3584         let parent_scope = ParentScope { module: self.current_module, ..self.dummy_parent_scope() };
3585         self.resolve_path_with_parent_scope(base_module, path, opt_ns, &parent_scope,
3586                                             record_used, path_span, crate_lint)
3587     }
3588
3589     fn resolve_path_with_parent_scope(
3590         &mut self,
3591         base_module: Option<ModuleOrUniformRoot<'a>>,
3592         path: &[Ident],
3593         opt_ns: Option<Namespace>, // `None` indicates a module path
3594         parent_scope: &ParentScope<'a>,
3595         record_used: bool,
3596         path_span: Span,
3597         crate_lint: CrateLint,
3598     ) -> PathResult<'a> {
3599         let mut module = base_module;
3600         let mut allow_super = true;
3601         let mut second_binding = None;
3602         self.current_module = parent_scope.module;
3603
3604         debug!(
3605             "resolve_path(path={:?}, opt_ns={:?}, record_used={:?}, \
3606              path_span={:?}, crate_lint={:?})",
3607             path,
3608             opt_ns,
3609             record_used,
3610             path_span,
3611             crate_lint,
3612         );
3613
3614         for (i, &ident) in path.iter().enumerate() {
3615             debug!("resolve_path ident {} {:?}", i, ident);
3616             let is_last = i == path.len() - 1;
3617             let ns = if is_last { opt_ns.unwrap_or(TypeNS) } else { TypeNS };
3618             let name = ident.name;
3619
3620             allow_super &= ns == TypeNS &&
3621                 (name == keywords::SelfValue.name() ||
3622                  name == keywords::Super.name());
3623
3624             if ns == TypeNS {
3625                 if allow_super && name == keywords::Super.name() {
3626                     let mut ctxt = ident.span.ctxt().modern();
3627                     let self_module = match i {
3628                         0 => Some(self.resolve_self(&mut ctxt, self.current_module)),
3629                         _ => match module {
3630                             Some(ModuleOrUniformRoot::Module(module)) => Some(module),
3631                             _ => None,
3632                         },
3633                     };
3634                     if let Some(self_module) = self_module {
3635                         if let Some(parent) = self_module.parent {
3636                             module = Some(ModuleOrUniformRoot::Module(
3637                                 self.resolve_self(&mut ctxt, parent)));
3638                             continue;
3639                         }
3640                     }
3641                     let msg = "There are too many initial `super`s.".to_string();
3642                     return PathResult::Failed(ident.span, msg, false);
3643                 }
3644                 if i == 0 {
3645                     if name == keywords::SelfValue.name() {
3646                         let mut ctxt = ident.span.ctxt().modern();
3647                         module = Some(ModuleOrUniformRoot::Module(
3648                             self.resolve_self(&mut ctxt, self.current_module)));
3649                         continue;
3650                     }
3651                     if name == keywords::Extern.name() ||
3652                        name == keywords::CrateRoot.name() &&
3653                        self.session.rust_2018() {
3654                         module = Some(ModuleOrUniformRoot::UniformRoot(name));
3655                         continue;
3656                     }
3657                     if name == keywords::CrateRoot.name() ||
3658                        name == keywords::Crate.name() ||
3659                        name == keywords::DollarCrate.name() {
3660                         // `::a::b`, `crate::a::b` or `$crate::a::b`
3661                         module = Some(ModuleOrUniformRoot::Module(
3662                             self.resolve_crate_root(ident)));
3663                         continue;
3664                     }
3665                 }
3666             }
3667
3668             // Report special messages for path segment keywords in wrong positions.
3669             if ident.is_path_segment_keyword() && i != 0 {
3670                 let name_str = if name == keywords::CrateRoot.name() {
3671                     "crate root".to_string()
3672                 } else {
3673                     format!("`{}`", name)
3674                 };
3675                 let msg = if i == 1 && path[0].name == keywords::CrateRoot.name() {
3676                     format!("global paths cannot start with {}", name_str)
3677                 } else {
3678                     format!("{} in paths can only be used in start position", name_str)
3679                 };
3680                 return PathResult::Failed(ident.span, msg, false);
3681             }
3682
3683             let binding = if let Some(module) = module {
3684                 self.resolve_ident_in_module(module, ident, ns, record_used, path_span)
3685             } else if opt_ns == Some(MacroNS) {
3686                 assert!(ns == TypeNS);
3687                 self.early_resolve_ident_in_lexical_scope(ident, ns, None, parent_scope,
3688                                                           record_used, record_used, path_span)
3689             } else {
3690                 let record_used_id =
3691                     if record_used { crate_lint.node_id().or(Some(CRATE_NODE_ID)) } else { None };
3692                 match self.resolve_ident_in_lexical_scope(ident, ns, record_used_id, path_span) {
3693                     // we found a locally-imported or available item/module
3694                     Some(LexicalScopeBinding::Item(binding)) => Ok(binding),
3695                     // we found a local variable or type param
3696                     Some(LexicalScopeBinding::Def(def))
3697                             if opt_ns == Some(TypeNS) || opt_ns == Some(ValueNS) => {
3698                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3699                             def, path.len() - 1
3700                         ));
3701                     }
3702                     _ => Err(if record_used { Determined } else { Undetermined }),
3703                 }
3704             };
3705
3706             match binding {
3707                 Ok(binding) => {
3708                     if i == 1 {
3709                         second_binding = Some(binding);
3710                     }
3711                     let def = binding.def();
3712                     let maybe_assoc = opt_ns != Some(MacroNS) && PathSource::Type.is_expected(def);
3713                     if let Some(next_module) = binding.module() {
3714                         module = Some(ModuleOrUniformRoot::Module(next_module));
3715                     } else if def == Def::ToolMod && i + 1 != path.len() {
3716                         let def = Def::NonMacroAttr(NonMacroAttrKind::Tool);
3717                         return PathResult::NonModule(PathResolution::new(def));
3718                     } else if def == Def::Err {
3719                         return PathResult::NonModule(err_path_resolution());
3720                     } else if opt_ns.is_some() && (is_last || maybe_assoc) {
3721                         self.lint_if_path_starts_with_module(
3722                             crate_lint,
3723                             path,
3724                             path_span,
3725                             second_binding,
3726                         );
3727                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3728                             def, path.len() - i - 1
3729                         ));
3730                     } else {
3731                         return PathResult::Failed(ident.span,
3732                                                   format!("Not a module `{}`", ident),
3733                                                   is_last);
3734                     }
3735                 }
3736                 Err(Undetermined) => return PathResult::Indeterminate,
3737                 Err(Determined) => {
3738                     if let Some(ModuleOrUniformRoot::Module(module)) = module {
3739                         if opt_ns.is_some() && !module.is_normal() {
3740                             return PathResult::NonModule(PathResolution::with_unresolved_segments(
3741                                 module.def().unwrap(), path.len() - i
3742                             ));
3743                         }
3744                     }
3745                     let module_def = match module {
3746                         Some(ModuleOrUniformRoot::Module(module)) => module.def(),
3747                         _ => None,
3748                     };
3749                     let msg = if module_def == self.graph_root.def() {
3750                         let is_mod = |def| match def { Def::Mod(..) => true, _ => false };
3751                         let mut candidates =
3752                             self.lookup_import_candidates(name, TypeNS, is_mod);
3753                         candidates.sort_by_cached_key(|c| {
3754                             (c.path.segments.len(), c.path.to_string())
3755                         });
3756                         if let Some(candidate) = candidates.get(0) {
3757                             format!("Did you mean `{}`?", candidate.path)
3758                         } else {
3759                             format!("Maybe a missing `extern crate {};`?", ident)
3760                         }
3761                     } else if i == 0 {
3762                         format!("Use of undeclared type or module `{}`", ident)
3763                     } else {
3764                         format!("Could not find `{}` in `{}`", ident, path[i - 1])
3765                     };
3766                     return PathResult::Failed(ident.span, msg, is_last);
3767                 }
3768             }
3769         }
3770
3771         self.lint_if_path_starts_with_module(crate_lint, path, path_span, second_binding);
3772
3773         PathResult::Module(module.unwrap_or_else(|| {
3774             span_bug!(path_span, "resolve_path: empty(?) path {:?} has no module", path);
3775         }))
3776
3777     }
3778
3779     fn lint_if_path_starts_with_module(
3780         &self,
3781         crate_lint: CrateLint,
3782         path: &[Ident],
3783         path_span: Span,
3784         second_binding: Option<&NameBinding>,
3785     ) {
3786         // In the 2018 edition this lint is a hard error, so nothing to do
3787         if self.session.rust_2018() {
3788             return
3789         }
3790
3791         let (diag_id, diag_span) = match crate_lint {
3792             CrateLint::No => return,
3793             CrateLint::SimplePath(id) => (id, path_span),
3794             CrateLint::UsePath { root_id, root_span } => (root_id, root_span),
3795             CrateLint::QPathTrait { qpath_id, qpath_span } => (qpath_id, qpath_span),
3796         };
3797
3798         let first_name = match path.get(0) {
3799             Some(ident) => ident.name,
3800             None => return,
3801         };
3802
3803         // We're only interested in `use` paths which should start with
3804         // `{{root}}` or `extern` currently.
3805         if first_name != keywords::Extern.name() && first_name != keywords::CrateRoot.name() {
3806             return
3807         }
3808
3809         match path.get(1) {
3810             // If this import looks like `crate::...` it's already good
3811             Some(ident) if ident.name == keywords::Crate.name() => return,
3812             // Otherwise go below to see if it's an extern crate
3813             Some(_) => {}
3814             // If the path has length one (and it's `CrateRoot` most likely)
3815             // then we don't know whether we're gonna be importing a crate or an
3816             // item in our crate. Defer this lint to elsewhere
3817             None => return,
3818         }
3819
3820         // If the first element of our path was actually resolved to an
3821         // `ExternCrate` (also used for `crate::...`) then no need to issue a
3822         // warning, this looks all good!
3823         if let Some(binding) = second_binding {
3824             if let NameBindingKind::Import { directive: d, .. } = binding.kind {
3825                 // Careful: we still want to rewrite paths from
3826                 // renamed extern crates.
3827                 if let ImportDirectiveSubclass::ExternCrate(None) = d.subclass {
3828                     return
3829                 }
3830             }
3831         }
3832
3833         let diag = lint::builtin::BuiltinLintDiagnostics
3834             ::AbsPathWithModule(diag_span);
3835         self.session.buffer_lint_with_diagnostic(
3836             lint::builtin::ABSOLUTE_PATHS_NOT_STARTING_WITH_CRATE,
3837             diag_id, diag_span,
3838             "absolute paths must start with `self`, `super`, \
3839             `crate`, or an external crate name in the 2018 edition",
3840             diag);
3841     }
3842
3843     // Resolve a local definition, potentially adjusting for closures.
3844     fn adjust_local_def(&mut self,
3845                         ns: Namespace,
3846                         rib_index: usize,
3847                         mut def: Def,
3848                         record_used: bool,
3849                         span: Span) -> Def {
3850         let ribs = &self.ribs[ns][rib_index + 1..];
3851
3852         // An invalid forward use of a type parameter from a previous default.
3853         if let ForwardTyParamBanRibKind = self.ribs[ns][rib_index].kind {
3854             if record_used {
3855                 resolve_error(self, span, ResolutionError::ForwardDeclaredTyParam);
3856             }
3857             assert_eq!(def, Def::Err);
3858             return Def::Err;
3859         }
3860
3861         match def {
3862             Def::Upvar(..) => {
3863                 span_bug!(span, "unexpected {:?} in bindings", def)
3864             }
3865             Def::Local(node_id) => {
3866                 for rib in ribs {
3867                     match rib.kind {
3868                         NormalRibKind | ModuleRibKind(..) | MacroDefinition(..) |
3869                         ForwardTyParamBanRibKind => {
3870                             // Nothing to do. Continue.
3871                         }
3872                         ClosureRibKind(function_id) => {
3873                             let prev_def = def;
3874
3875                             let seen = self.freevars_seen
3876                                            .entry(function_id)
3877                                            .or_default();
3878                             if let Some(&index) = seen.get(&node_id) {
3879                                 def = Def::Upvar(node_id, index, function_id);
3880                                 continue;
3881                             }
3882                             let vec = self.freevars
3883                                           .entry(function_id)
3884                                           .or_default();
3885                             let depth = vec.len();
3886                             def = Def::Upvar(node_id, depth, function_id);
3887
3888                             if record_used {
3889                                 vec.push(Freevar {
3890                                     def: prev_def,
3891                                     span,
3892                                 });
3893                                 seen.insert(node_id, depth);
3894                             }
3895                         }
3896                         ItemRibKind | TraitOrImplItemRibKind => {
3897                             // This was an attempt to access an upvar inside a
3898                             // named function item. This is not allowed, so we
3899                             // report an error.
3900                             if record_used {
3901                                 resolve_error(self, span,
3902                                         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem);
3903                             }
3904                             return Def::Err;
3905                         }
3906                         ConstantItemRibKind => {
3907                             // Still doesn't deal with upvars
3908                             if record_used {
3909                                 resolve_error(self, span,
3910                                         ResolutionError::AttemptToUseNonConstantValueInConstant);
3911                             }
3912                             return Def::Err;
3913                         }
3914                     }
3915                 }
3916             }
3917             Def::TyParam(..) | Def::SelfTy(..) => {
3918                 for rib in ribs {
3919                     match rib.kind {
3920                         NormalRibKind | TraitOrImplItemRibKind | ClosureRibKind(..) |
3921                         ModuleRibKind(..) | MacroDefinition(..) | ForwardTyParamBanRibKind |
3922                         ConstantItemRibKind => {
3923                             // Nothing to do. Continue.
3924                         }
3925                         ItemRibKind => {
3926                             // This was an attempt to use a type parameter outside
3927                             // its scope.
3928                             if record_used {
3929                                 resolve_error(self, span,
3930                                     ResolutionError::TypeParametersFromOuterFunction(def));
3931                             }
3932                             return Def::Err;
3933                         }
3934                     }
3935                 }
3936             }
3937             _ => {}
3938         }
3939         return def;
3940     }
3941
3942     fn lookup_assoc_candidate<FilterFn>(&mut self,
3943                                         ident: Ident,
3944                                         ns: Namespace,
3945                                         filter_fn: FilterFn)
3946                                         -> Option<AssocSuggestion>
3947         where FilterFn: Fn(Def) -> bool
3948     {
3949         fn extract_node_id(t: &Ty) -> Option<NodeId> {
3950             match t.node {
3951                 TyKind::Path(None, _) => Some(t.id),
3952                 TyKind::Rptr(_, ref mut_ty) => extract_node_id(&mut_ty.ty),
3953                 // This doesn't handle the remaining `Ty` variants as they are not
3954                 // that commonly the self_type, it might be interesting to provide
3955                 // support for those in future.
3956                 _ => None,
3957             }
3958         }
3959
3960         // Fields are generally expected in the same contexts as locals.
3961         if filter_fn(Def::Local(ast::DUMMY_NODE_ID)) {
3962             if let Some(node_id) = self.current_self_type.as_ref().and_then(extract_node_id) {
3963                 // Look for a field with the same name in the current self_type.
3964                 if let Some(resolution) = self.def_map.get(&node_id) {
3965                     match resolution.base_def() {
3966                         Def::Struct(did) | Def::Union(did)
3967                                 if resolution.unresolved_segments() == 0 => {
3968                             if let Some(field_names) = self.field_names.get(&did) {
3969                                 if field_names.iter().any(|&field_name| ident.name == field_name) {
3970                                     return Some(AssocSuggestion::Field);
3971                                 }
3972                             }
3973                         }
3974                         _ => {}
3975                     }
3976                 }
3977             }
3978         }
3979
3980         // Look for associated items in the current trait.
3981         if let Some((module, _)) = self.current_trait_ref {
3982             if let Ok(binding) = self.resolve_ident_in_module(
3983                     ModuleOrUniformRoot::Module(module),
3984                     ident,
3985                     ns,
3986                     false,
3987                     module.span,
3988                 ) {
3989                 let def = binding.def();
3990                 if filter_fn(def) {
3991                     return Some(if self.has_self.contains(&def.def_id()) {
3992                         AssocSuggestion::MethodWithSelf
3993                     } else {
3994                         AssocSuggestion::AssocItem
3995                     });
3996                 }
3997             }
3998         }
3999
4000         None
4001     }
4002
4003     fn lookup_typo_candidate<FilterFn>(&mut self,
4004                                        path: &[Ident],
4005                                        ns: Namespace,
4006                                        filter_fn: FilterFn,
4007                                        span: Span)
4008                                        -> Option<Symbol>
4009         where FilterFn: Fn(Def) -> bool
4010     {
4011         let add_module_candidates = |module: Module, names: &mut Vec<Name>| {
4012             for (&(ident, _), resolution) in module.resolutions.borrow().iter() {
4013                 if let Some(binding) = resolution.borrow().binding {
4014                     if filter_fn(binding.def()) {
4015                         names.push(ident.name);
4016                     }
4017                 }
4018             }
4019         };
4020
4021         let mut names = Vec::new();
4022         if path.len() == 1 {
4023             // Search in lexical scope.
4024             // Walk backwards up the ribs in scope and collect candidates.
4025             for rib in self.ribs[ns].iter().rev() {
4026                 // Locals and type parameters
4027                 for (ident, def) in &rib.bindings {
4028                     if filter_fn(*def) {
4029                         names.push(ident.name);
4030                     }
4031                 }
4032                 // Items in scope
4033                 if let ModuleRibKind(module) = rib.kind {
4034                     // Items from this module
4035                     add_module_candidates(module, &mut names);
4036
4037                     if let ModuleKind::Block(..) = module.kind {
4038                         // We can see through blocks
4039                     } else {
4040                         // Items from the prelude
4041                         if !module.no_implicit_prelude {
4042                             names.extend(self.extern_prelude.iter().cloned());
4043                             if let Some(prelude) = self.prelude {
4044                                 add_module_candidates(prelude, &mut names);
4045                             }
4046                         }
4047                         break;
4048                     }
4049                 }
4050             }
4051             // Add primitive types to the mix
4052             if filter_fn(Def::PrimTy(Bool)) {
4053                 names.extend(
4054                     self.primitive_type_table.primitive_types.iter().map(|(name, _)| name)
4055                 )
4056             }
4057         } else {
4058             // Search in module.
4059             let mod_path = &path[..path.len() - 1];
4060             if let PathResult::Module(module) = self.resolve_path(None, mod_path, Some(TypeNS),
4061                                                                   false, span, CrateLint::No) {
4062                 if let ModuleOrUniformRoot::Module(module) = module {
4063                     add_module_candidates(module, &mut names);
4064                 }
4065             }
4066         }
4067
4068         let name = path[path.len() - 1].name;
4069         // Make sure error reporting is deterministic.
4070         names.sort_by_cached_key(|name| name.as_str());
4071         match find_best_match_for_name(names.iter(), &name.as_str(), None) {
4072             Some(found) if found != name => Some(found),
4073             _ => None,
4074         }
4075     }
4076
4077     fn with_resolved_label<F>(&mut self, label: Option<Label>, id: NodeId, f: F)
4078         where F: FnOnce(&mut Resolver)
4079     {
4080         if let Some(label) = label {
4081             self.unused_labels.insert(id, label.ident.span);
4082             let def = Def::Label(id);
4083             self.with_label_rib(|this| {
4084                 let ident = label.ident.modern_and_legacy();
4085                 this.label_ribs.last_mut().unwrap().bindings.insert(ident, def);
4086                 f(this);
4087             });
4088         } else {
4089             f(self);
4090         }
4091     }
4092
4093     fn resolve_labeled_block(&mut self, label: Option<Label>, id: NodeId, block: &Block) {
4094         self.with_resolved_label(label, id, |this| this.visit_block(block));
4095     }
4096
4097     fn resolve_expr(&mut self, expr: &Expr, parent: Option<&Expr>) {
4098         // First, record candidate traits for this expression if it could
4099         // result in the invocation of a method call.
4100
4101         self.record_candidate_traits_for_expr_if_necessary(expr);
4102
4103         // Next, resolve the node.
4104         match expr.node {
4105             ExprKind::Path(ref qself, ref path) => {
4106                 self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
4107                 visit::walk_expr(self, expr);
4108             }
4109
4110             ExprKind::Struct(ref path, ..) => {
4111                 self.smart_resolve_path(expr.id, None, path, PathSource::Struct);
4112                 visit::walk_expr(self, expr);
4113             }
4114
4115             ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
4116                 let def = self.search_label(label.ident, |rib, ident| {
4117                     rib.bindings.get(&ident.modern_and_legacy()).cloned()
4118                 });
4119                 match def {
4120                     None => {
4121                         // Search again for close matches...
4122                         // Picks the first label that is "close enough", which is not necessarily
4123                         // the closest match
4124                         let close_match = self.search_label(label.ident, |rib, ident| {
4125                             let names = rib.bindings.iter().map(|(id, _)| &id.name);
4126                             find_best_match_for_name(names, &*ident.as_str(), None)
4127                         });
4128                         self.record_def(expr.id, err_path_resolution());
4129                         resolve_error(self,
4130                                       label.ident.span,
4131                                       ResolutionError::UndeclaredLabel(&label.ident.as_str(),
4132                                                                        close_match));
4133                     }
4134                     Some(Def::Label(id)) => {
4135                         // Since this def is a label, it is never read.
4136                         self.record_def(expr.id, PathResolution::new(Def::Label(id)));
4137                         self.unused_labels.remove(&id);
4138                     }
4139                     Some(_) => {
4140                         span_bug!(expr.span, "label wasn't mapped to a label def!");
4141                     }
4142                 }
4143
4144                 // visit `break` argument if any
4145                 visit::walk_expr(self, expr);
4146             }
4147
4148             ExprKind::IfLet(ref pats, ref subexpression, ref if_block, ref optional_else) => {
4149                 self.visit_expr(subexpression);
4150
4151                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
4152                 let mut bindings_list = FxHashMap();
4153                 for pat in pats {
4154                     self.resolve_pattern(pat, PatternSource::IfLet, &mut bindings_list);
4155                 }
4156                 // This has to happen *after* we determine which pat_idents are variants
4157                 self.check_consistent_bindings(pats);
4158                 self.visit_block(if_block);
4159                 self.ribs[ValueNS].pop();
4160
4161                 optional_else.as_ref().map(|expr| self.visit_expr(expr));
4162             }
4163
4164             ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),
4165
4166             ExprKind::While(ref subexpression, ref block, label) => {
4167                 self.with_resolved_label(label, expr.id, |this| {
4168                     this.visit_expr(subexpression);
4169                     this.visit_block(block);
4170                 });
4171             }
4172
4173             ExprKind::WhileLet(ref pats, ref subexpression, ref block, label) => {
4174                 self.with_resolved_label(label, expr.id, |this| {
4175                     this.visit_expr(subexpression);
4176                     this.ribs[ValueNS].push(Rib::new(NormalRibKind));
4177                     let mut bindings_list = FxHashMap();
4178                     for pat in pats {
4179                         this.resolve_pattern(pat, PatternSource::WhileLet, &mut bindings_list);
4180                     }
4181                     // This has to happen *after* we determine which pat_idents are variants
4182                     this.check_consistent_bindings(pats);
4183                     this.visit_block(block);
4184                     this.ribs[ValueNS].pop();
4185                 });
4186             }
4187
4188             ExprKind::ForLoop(ref pattern, ref subexpression, ref block, label) => {
4189                 self.visit_expr(subexpression);
4190                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
4191                 self.resolve_pattern(pattern, PatternSource::For, &mut FxHashMap());
4192
4193                 self.resolve_labeled_block(label, expr.id, block);
4194
4195                 self.ribs[ValueNS].pop();
4196             }
4197
4198             ExprKind::Block(ref block, label) => self.resolve_labeled_block(label, block.id, block),
4199
4200             // Equivalent to `visit::walk_expr` + passing some context to children.
4201             ExprKind::Field(ref subexpression, _) => {
4202                 self.resolve_expr(subexpression, Some(expr));
4203             }
4204             ExprKind::MethodCall(ref segment, ref arguments) => {
4205                 let mut arguments = arguments.iter();
4206                 self.resolve_expr(arguments.next().unwrap(), Some(expr));
4207                 for argument in arguments {
4208                     self.resolve_expr(argument, None);
4209                 }
4210                 self.visit_path_segment(expr.span, segment);
4211             }
4212
4213             ExprKind::Call(ref callee, ref arguments) => {
4214                 self.resolve_expr(callee, Some(expr));
4215                 for argument in arguments {
4216                     self.resolve_expr(argument, None);
4217                 }
4218             }
4219             ExprKind::Type(ref type_expr, _) => {
4220                 self.current_type_ascription.push(type_expr.span);
4221                 visit::walk_expr(self, expr);
4222                 self.current_type_ascription.pop();
4223             }
4224             // Resolve the body of async exprs inside the async closure to which they desugar
4225             ExprKind::Async(_, async_closure_id, ref block) => {
4226                 let rib_kind = ClosureRibKind(async_closure_id);
4227                 self.ribs[ValueNS].push(Rib::new(rib_kind));
4228                 self.label_ribs.push(Rib::new(rib_kind));
4229                 self.visit_block(&block);
4230                 self.label_ribs.pop();
4231                 self.ribs[ValueNS].pop();
4232             }
4233             // `async |x| ...` gets desugared to `|x| future_from_generator(|| ...)`, so we need to
4234             // resolve the arguments within the proper scopes so that usages of them inside the
4235             // closure are detected as upvars rather than normal closure arg usages.
4236             ExprKind::Closure(
4237                 _, IsAsync::Async { closure_id: inner_closure_id, .. }, _,
4238                 ref fn_decl, ref body, _span,
4239             ) => {
4240                 let rib_kind = ClosureRibKind(expr.id);
4241                 self.ribs[ValueNS].push(Rib::new(rib_kind));
4242                 self.label_ribs.push(Rib::new(rib_kind));
4243                 // Resolve arguments:
4244                 let mut bindings_list = FxHashMap();
4245                 for argument in &fn_decl.inputs {
4246                     self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
4247                     self.visit_ty(&argument.ty);
4248                 }
4249                 // No need to resolve return type-- the outer closure return type is
4250                 // FunctionRetTy::Default
4251
4252                 // Now resolve the inner closure
4253                 {
4254                     let rib_kind = ClosureRibKind(inner_closure_id);
4255                     self.ribs[ValueNS].push(Rib::new(rib_kind));
4256                     self.label_ribs.push(Rib::new(rib_kind));
4257                     // No need to resolve arguments: the inner closure has none.
4258                     // Resolve the return type:
4259                     visit::walk_fn_ret_ty(self, &fn_decl.output);
4260                     // Resolve the body
4261                     self.visit_expr(body);
4262                     self.label_ribs.pop();
4263                     self.ribs[ValueNS].pop();
4264                 }
4265                 self.label_ribs.pop();
4266                 self.ribs[ValueNS].pop();
4267             }
4268             _ => {
4269                 visit::walk_expr(self, expr);
4270             }
4271         }
4272     }
4273
4274     fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &Expr) {
4275         match expr.node {
4276             ExprKind::Field(_, ident) => {
4277                 // FIXME(#6890): Even though you can't treat a method like a
4278                 // field, we need to add any trait methods we find that match
4279                 // the field name so that we can do some nice error reporting
4280                 // later on in typeck.
4281                 let traits = self.get_traits_containing_item(ident, ValueNS);
4282                 self.trait_map.insert(expr.id, traits);
4283             }
4284             ExprKind::MethodCall(ref segment, ..) => {
4285                 debug!("(recording candidate traits for expr) recording traits for {}",
4286                        expr.id);
4287                 let traits = self.get_traits_containing_item(segment.ident, ValueNS);
4288                 self.trait_map.insert(expr.id, traits);
4289             }
4290             _ => {
4291                 // Nothing to do.
4292             }
4293         }
4294     }
4295
4296     fn get_traits_containing_item(&mut self, mut ident: Ident, ns: Namespace)
4297                                   -> Vec<TraitCandidate> {
4298         debug!("(getting traits containing item) looking for '{}'", ident.name);
4299
4300         let mut found_traits = Vec::new();
4301         // Look for the current trait.
4302         if let Some((module, _)) = self.current_trait_ref {
4303             if self.resolve_ident_in_module(
4304                 ModuleOrUniformRoot::Module(module),
4305                 ident,
4306                 ns,
4307                 false,
4308                 module.span,
4309             ).is_ok() {
4310                 let def_id = module.def_id().unwrap();
4311                 found_traits.push(TraitCandidate { def_id: def_id, import_id: None });
4312             }
4313         }
4314
4315         ident.span = ident.span.modern();
4316         let mut search_module = self.current_module;
4317         loop {
4318             self.get_traits_in_module_containing_item(ident, ns, search_module, &mut found_traits);
4319             search_module = unwrap_or!(
4320                 self.hygienic_lexical_parent(search_module, &mut ident.span), break
4321             );
4322         }
4323
4324         if let Some(prelude) = self.prelude {
4325             if !search_module.no_implicit_prelude {
4326                 self.get_traits_in_module_containing_item(ident, ns, prelude, &mut found_traits);
4327             }
4328         }
4329
4330         found_traits
4331     }
4332
4333     fn get_traits_in_module_containing_item(&mut self,
4334                                             ident: Ident,
4335                                             ns: Namespace,
4336                                             module: Module<'a>,
4337                                             found_traits: &mut Vec<TraitCandidate>) {
4338         assert!(ns == TypeNS || ns == ValueNS);
4339         let mut traits = module.traits.borrow_mut();
4340         if traits.is_none() {
4341             let mut collected_traits = Vec::new();
4342             module.for_each_child(|name, ns, binding| {
4343                 if ns != TypeNS { return }
4344                 if let Def::Trait(_) = binding.def() {
4345                     collected_traits.push((name, binding));
4346                 }
4347             });
4348             *traits = Some(collected_traits.into_boxed_slice());
4349         }
4350
4351         for &(trait_name, binding) in traits.as_ref().unwrap().iter() {
4352             let module = binding.module().unwrap();
4353             let mut ident = ident;
4354             if ident.span.glob_adjust(module.expansion, binding.span.ctxt().modern()).is_none() {
4355                 continue
4356             }
4357             if self.resolve_ident_in_module_unadjusted(
4358                 ModuleOrUniformRoot::Module(module),
4359                 ident,
4360                 ns,
4361                 false,
4362                 false,
4363                 module.span,
4364             ).is_ok() {
4365                 let import_id = match binding.kind {
4366                     NameBindingKind::Import { directive, .. } => {
4367                         self.maybe_unused_trait_imports.insert(directive.id);
4368                         self.add_to_glob_map(directive.id, trait_name);
4369                         Some(directive.id)
4370                     }
4371                     _ => None,
4372                 };
4373                 let trait_def_id = module.def_id().unwrap();
4374                 found_traits.push(TraitCandidate { def_id: trait_def_id, import_id: import_id });
4375             }
4376         }
4377     }
4378
4379     fn lookup_import_candidates_from_module<FilterFn>(&mut self,
4380                                           lookup_name: Name,
4381                                           namespace: Namespace,
4382                                           start_module: &'a ModuleData<'a>,
4383                                           crate_name: Ident,
4384                                           filter_fn: FilterFn)
4385                                           -> Vec<ImportSuggestion>
4386         where FilterFn: Fn(Def) -> bool
4387     {
4388         let mut candidates = Vec::new();
4389         let mut worklist = Vec::new();
4390         let mut seen_modules = FxHashSet();
4391         let not_local_module = crate_name != keywords::Crate.ident();
4392         worklist.push((start_module, Vec::<ast::PathSegment>::new(), not_local_module));
4393
4394         while let Some((in_module,
4395                         path_segments,
4396                         in_module_is_extern)) = worklist.pop() {
4397             self.populate_module_if_necessary(in_module);
4398
4399             // We have to visit module children in deterministic order to avoid
4400             // instabilities in reported imports (#43552).
4401             in_module.for_each_child_stable(|ident, ns, name_binding| {
4402                 // avoid imports entirely
4403                 if name_binding.is_import() && !name_binding.is_extern_crate() { return; }
4404                 // avoid non-importable candidates as well
4405                 if !name_binding.is_importable() { return; }
4406
4407                 // collect results based on the filter function
4408                 if ident.name == lookup_name && ns == namespace {
4409                     if filter_fn(name_binding.def()) {
4410                         // create the path
4411                         let mut segms = path_segments.clone();
4412                         if self.session.rust_2018() {
4413                             // crate-local absolute paths start with `crate::` in edition 2018
4414                             // FIXME: may also be stabilized for Rust 2015 (Issues #45477, #44660)
4415                             segms.insert(
4416                                 0, ast::PathSegment::from_ident(crate_name)
4417                             );
4418                         }
4419
4420                         segms.push(ast::PathSegment::from_ident(ident));
4421                         let path = Path {
4422                             span: name_binding.span,
4423                             segments: segms,
4424                         };
4425                         // the entity is accessible in the following cases:
4426                         // 1. if it's defined in the same crate, it's always
4427                         // accessible (since private entities can be made public)
4428                         // 2. if it's defined in another crate, it's accessible
4429                         // only if both the module is public and the entity is
4430                         // declared as public (due to pruning, we don't explore
4431                         // outside crate private modules => no need to check this)
4432                         if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
4433                             candidates.push(ImportSuggestion { path: path });
4434                         }
4435                     }
4436                 }
4437
4438                 // collect submodules to explore
4439                 if let Some(module) = name_binding.module() {
4440                     // form the path
4441                     let mut path_segments = path_segments.clone();
4442                     path_segments.push(ast::PathSegment::from_ident(ident));
4443
4444                     let is_extern_crate_that_also_appears_in_prelude =
4445                         name_binding.is_extern_crate() &&
4446                         self.session.rust_2018();
4447
4448                     let is_visible_to_user =
4449                         !in_module_is_extern || name_binding.vis == ty::Visibility::Public;
4450
4451                     if !is_extern_crate_that_also_appears_in_prelude && is_visible_to_user {
4452                         // add the module to the lookup
4453                         let is_extern = in_module_is_extern || name_binding.is_extern_crate();
4454                         if seen_modules.insert(module.def_id().unwrap()) {
4455                             worklist.push((module, path_segments, is_extern));
4456                         }
4457                     }
4458                 }
4459             })
4460         }
4461
4462         candidates
4463     }
4464
4465     /// When name resolution fails, this method can be used to look up candidate
4466     /// entities with the expected name. It allows filtering them using the
4467     /// supplied predicate (which should be used to only accept the types of
4468     /// definitions expected e.g. traits). The lookup spans across all crates.
4469     ///
4470     /// NOTE: The method does not look into imports, but this is not a problem,
4471     /// since we report the definitions (thus, the de-aliased imports).
4472     fn lookup_import_candidates<FilterFn>(&mut self,
4473                                           lookup_name: Name,
4474                                           namespace: Namespace,
4475                                           filter_fn: FilterFn)
4476                                           -> Vec<ImportSuggestion>
4477         where FilterFn: Fn(Def) -> bool
4478     {
4479         let mut suggestions = vec![];
4480
4481         suggestions.extend(
4482             self.lookup_import_candidates_from_module(
4483                 lookup_name, namespace, self.graph_root, keywords::Crate.ident(), &filter_fn
4484             )
4485         );
4486
4487         if self.session.rust_2018() {
4488             let extern_prelude_names = self.extern_prelude.clone();
4489             for &name in extern_prelude_names.iter() {
4490                 let ident = Ident::with_empty_ctxt(name);
4491                 match self.crate_loader.maybe_process_path_extern(name, ident.span) {
4492                     Some(crate_id) => {
4493                         let crate_root = self.get_module(DefId {
4494                             krate: crate_id,
4495                             index: CRATE_DEF_INDEX,
4496                         });
4497                         self.populate_module_if_necessary(&crate_root);
4498
4499                         suggestions.extend(
4500                             self.lookup_import_candidates_from_module(
4501                                 lookup_name, namespace, crate_root, ident, &filter_fn
4502                             )
4503                         );
4504                     }
4505                     None => {}
4506                 }
4507             }
4508         }
4509
4510         suggestions
4511     }
4512
4513     fn find_module(&mut self,
4514                    module_def: Def)
4515                    -> Option<(Module<'a>, ImportSuggestion)>
4516     {
4517         let mut result = None;
4518         let mut worklist = Vec::new();
4519         let mut seen_modules = FxHashSet();
4520         worklist.push((self.graph_root, Vec::new()));
4521
4522         while let Some((in_module, path_segments)) = worklist.pop() {
4523             // abort if the module is already found
4524             if result.is_some() { break; }
4525
4526             self.populate_module_if_necessary(in_module);
4527
4528             in_module.for_each_child_stable(|ident, _, name_binding| {
4529                 // abort if the module is already found or if name_binding is private external
4530                 if result.is_some() || !name_binding.vis.is_visible_locally() {
4531                     return
4532                 }
4533                 if let Some(module) = name_binding.module() {
4534                     // form the path
4535                     let mut path_segments = path_segments.clone();
4536                     path_segments.push(ast::PathSegment::from_ident(ident));
4537                     if module.def() == Some(module_def) {
4538                         let path = Path {
4539                             span: name_binding.span,
4540                             segments: path_segments,
4541                         };
4542                         result = Some((module, ImportSuggestion { path: path }));
4543                     } else {
4544                         // add the module to the lookup
4545                         if seen_modules.insert(module.def_id().unwrap()) {
4546                             worklist.push((module, path_segments));
4547                         }
4548                     }
4549                 }
4550             });
4551         }
4552
4553         result
4554     }
4555
4556     fn collect_enum_variants(&mut self, enum_def: Def) -> Option<Vec<Path>> {
4557         if let Def::Enum(..) = enum_def {} else {
4558             panic!("Non-enum def passed to collect_enum_variants: {:?}", enum_def)
4559         }
4560
4561         self.find_module(enum_def).map(|(enum_module, enum_import_suggestion)| {
4562             self.populate_module_if_necessary(enum_module);
4563
4564             let mut variants = Vec::new();
4565             enum_module.for_each_child_stable(|ident, _, name_binding| {
4566                 if let Def::Variant(..) = name_binding.def() {
4567                     let mut segms = enum_import_suggestion.path.segments.clone();
4568                     segms.push(ast::PathSegment::from_ident(ident));
4569                     variants.push(Path {
4570                         span: name_binding.span,
4571                         segments: segms,
4572                     });
4573                 }
4574             });
4575             variants
4576         })
4577     }
4578
4579     fn record_def(&mut self, node_id: NodeId, resolution: PathResolution) {
4580         debug!("(recording def) recording {:?} for {}", resolution, node_id);
4581         if let Some(prev_res) = self.def_map.insert(node_id, resolution) {
4582             panic!("path resolved multiple times ({:?} before, {:?} now)", prev_res, resolution);
4583         }
4584     }
4585
4586     fn resolve_visibility(&mut self, vis: &ast::Visibility) -> ty::Visibility {
4587         match vis.node {
4588             ast::VisibilityKind::Public => ty::Visibility::Public,
4589             ast::VisibilityKind::Crate(..) => {
4590                 ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX))
4591             }
4592             ast::VisibilityKind::Inherited => {
4593                 ty::Visibility::Restricted(self.current_module.normal_ancestor_id)
4594             }
4595             ast::VisibilityKind::Restricted { ref path, id, .. } => {
4596                 // Visibilities are resolved as global by default, add starting root segment.
4597                 let segments = path.make_root().iter().chain(path.segments.iter())
4598                     .map(|seg| seg.ident)
4599                     .collect::<Vec<_>>();
4600                 let def = self.smart_resolve_path_fragment(
4601                     id,
4602                     None,
4603                     &segments,
4604                     path.span,
4605                     PathSource::Visibility,
4606                     CrateLint::SimplePath(id),
4607                 ).base_def();
4608                 if def == Def::Err {
4609                     ty::Visibility::Public
4610                 } else {
4611                     let vis = ty::Visibility::Restricted(def.def_id());
4612                     if self.is_accessible(vis) {
4613                         vis
4614                     } else {
4615                         self.session.span_err(path.span, "visibilities can only be restricted \
4616                                                           to ancestor modules");
4617                         ty::Visibility::Public
4618                     }
4619                 }
4620             }
4621         }
4622     }
4623
4624     fn is_accessible(&self, vis: ty::Visibility) -> bool {
4625         vis.is_accessible_from(self.current_module.normal_ancestor_id, self)
4626     }
4627
4628     fn is_accessible_from(&self, vis: ty::Visibility, module: Module<'a>) -> bool {
4629         vis.is_accessible_from(module.normal_ancestor_id, self)
4630     }
4631
4632     fn set_binding_parent_module(&mut self, binding: &'a NameBinding<'a>, module: Module<'a>) {
4633         if let Some(old_module) = self.binding_parent_modules.insert(PtrKey(binding), module) {
4634             if !ptr::eq(module, old_module) {
4635                 span_bug!(binding.span, "parent module is reset for binding");
4636             }
4637         }
4638     }
4639
4640     fn disambiguate_legacy_vs_modern(
4641         &self,
4642         legacy: &'a NameBinding<'a>,
4643         modern: &'a NameBinding<'a>,
4644     ) -> bool {
4645         // Some non-controversial subset of ambiguities "modern macro name" vs "macro_rules"
4646         // is disambiguated to mitigate regressions from macro modularization.
4647         // Scoping for `macro_rules` behaves like scoping for `let` at module level, in general.
4648         match (self.binding_parent_modules.get(&PtrKey(legacy)),
4649                self.binding_parent_modules.get(&PtrKey(modern))) {
4650             (Some(legacy), Some(modern)) =>
4651                 legacy.normal_ancestor_id == modern.normal_ancestor_id &&
4652                 modern.is_ancestor_of(legacy),
4653             _ => false,
4654         }
4655     }
4656
4657     fn report_ambiguity_error(&self, ident: Ident, b1: &NameBinding, b2: &NameBinding) {
4658         let participle = |is_import: bool| if is_import { "imported" } else { "defined" };
4659         let msg1 =
4660             format!("`{}` could refer to the name {} here", ident, participle(b1.is_import()));
4661         let msg2 =
4662             format!("`{}` could also refer to the name {} here", ident, participle(b2.is_import()));
4663         let note = if b1.expansion != Mark::root() {
4664             Some(if let Def::Macro(..) = b1.def() {
4665                 format!("macro-expanded {} do not shadow",
4666                         if b1.is_import() { "macro imports" } else { "macros" })
4667             } else {
4668                 format!("macro-expanded {} do not shadow when used in a macro invocation path",
4669                         if b1.is_import() { "imports" } else { "items" })
4670             })
4671         } else if b1.is_glob_import() {
4672             Some(format!("consider adding an explicit import of `{}` to disambiguate", ident))
4673         } else {
4674             None
4675         };
4676
4677         let mut err = struct_span_err!(self.session, ident.span, E0659, "`{}` is ambiguous", ident);
4678         err.span_label(ident.span, "ambiguous name");
4679         err.span_note(b1.span, &msg1);
4680         match b2.def() {
4681             Def::Macro(..) if b2.span.is_dummy() =>
4682                 err.note(&format!("`{}` is also a builtin macro", ident)),
4683             _ => err.span_note(b2.span, &msg2),
4684         };
4685         if let Some(note) = note {
4686             err.note(&note);
4687         }
4688         err.emit();
4689     }
4690
4691     fn report_errors(&mut self, krate: &Crate) {
4692         self.report_with_use_injections(krate);
4693         let mut reported_spans = FxHashSet();
4694
4695         for &(span_use, span_def) in &self.macro_expanded_macro_export_errors {
4696             let msg = "macro-expanded `macro_export` macros from the current crate \
4697                        cannot be referred to by absolute paths";
4698             self.session.buffer_lint_with_diagnostic(
4699                 lint::builtin::MACRO_EXPANDED_MACRO_EXPORTS_ACCESSED_BY_ABSOLUTE_PATHS,
4700                 CRATE_NODE_ID, span_use, msg,
4701                 lint::builtin::BuiltinLintDiagnostics::
4702                     MacroExpandedMacroExportsAccessedByAbsolutePaths(span_def),
4703             );
4704         }
4705
4706         for &AmbiguityError { ident, b1, b2 } in &self.ambiguity_errors {
4707             if reported_spans.insert(ident.span) {
4708                 self.report_ambiguity_error(ident, b1, b2);
4709             }
4710         }
4711
4712         for &PrivacyError(span, name, binding) in &self.privacy_errors {
4713             if !reported_spans.insert(span) { continue }
4714             span_err!(self.session, span, E0603, "{} `{}` is private", binding.descr(), name);
4715         }
4716     }
4717
4718     fn report_with_use_injections(&mut self, krate: &Crate) {
4719         for UseError { mut err, candidates, node_id, better } in self.use_injections.drain(..) {
4720             let (span, found_use) = UsePlacementFinder::check(krate, node_id);
4721             if !candidates.is_empty() {
4722                 show_candidates(&mut err, span, &candidates, better, found_use);
4723             }
4724             err.emit();
4725         }
4726     }
4727
4728     fn report_conflict<'b>(&mut self,
4729                        parent: Module,
4730                        ident: Ident,
4731                        ns: Namespace,
4732                        new_binding: &NameBinding<'b>,
4733                        old_binding: &NameBinding<'b>) {
4734         // Error on the second of two conflicting names
4735         if old_binding.span.lo() > new_binding.span.lo() {
4736             return self.report_conflict(parent, ident, ns, old_binding, new_binding);
4737         }
4738
4739         let container = match parent.kind {
4740             ModuleKind::Def(Def::Mod(_), _) => "module",
4741             ModuleKind::Def(Def::Trait(_), _) => "trait",
4742             ModuleKind::Block(..) => "block",
4743             _ => "enum",
4744         };
4745
4746         let old_noun = match old_binding.is_import() {
4747             true => "import",
4748             false => "definition",
4749         };
4750
4751         let new_participle = match new_binding.is_import() {
4752             true => "imported",
4753             false => "defined",
4754         };
4755
4756         let (name, span) = (ident.name, self.session.source_map().def_span(new_binding.span));
4757
4758         if let Some(s) = self.name_already_seen.get(&name) {
4759             if s == &span {
4760                 return;
4761             }
4762         }
4763
4764         let old_kind = match (ns, old_binding.module()) {
4765             (ValueNS, _) => "value",
4766             (MacroNS, _) => "macro",
4767             (TypeNS, _) if old_binding.is_extern_crate() => "extern crate",
4768             (TypeNS, Some(module)) if module.is_normal() => "module",
4769             (TypeNS, Some(module)) if module.is_trait() => "trait",
4770             (TypeNS, _) => "type",
4771         };
4772
4773         let msg = format!("the name `{}` is defined multiple times", name);
4774
4775         let mut err = match (old_binding.is_extern_crate(), new_binding.is_extern_crate()) {
4776             (true, true) => struct_span_err!(self.session, span, E0259, "{}", msg),
4777             (true, _) | (_, true) => match new_binding.is_import() && old_binding.is_import() {
4778                 true => struct_span_err!(self.session, span, E0254, "{}", msg),
4779                 false => struct_span_err!(self.session, span, E0260, "{}", msg),
4780             },
4781             _ => match (old_binding.is_import(), new_binding.is_import()) {
4782                 (false, false) => struct_span_err!(self.session, span, E0428, "{}", msg),
4783                 (true, true) => struct_span_err!(self.session, span, E0252, "{}", msg),
4784                 _ => struct_span_err!(self.session, span, E0255, "{}", msg),
4785             },
4786         };
4787
4788         err.note(&format!("`{}` must be defined only once in the {} namespace of this {}",
4789                           name,
4790                           ns.descr(),
4791                           container));
4792
4793         err.span_label(span, format!("`{}` re{} here", name, new_participle));
4794         if !old_binding.span.is_dummy() {
4795             err.span_label(self.session.source_map().def_span(old_binding.span),
4796                            format!("previous {} of the {} `{}` here", old_noun, old_kind, name));
4797         }
4798
4799         // See https://github.com/rust-lang/rust/issues/32354
4800         if old_binding.is_import() || new_binding.is_import() {
4801             let binding = if new_binding.is_import() && !new_binding.span.is_dummy() {
4802                 new_binding
4803             } else {
4804                 old_binding
4805             };
4806
4807             let cm = self.session.source_map();
4808             let rename_msg = "You can use `as` to change the binding name of the import";
4809
4810             if let (Ok(snippet), false) = (cm.span_to_snippet(binding.span),
4811                                            binding.is_renamed_extern_crate()) {
4812                 let suggested_name = if name.as_str().chars().next().unwrap().is_uppercase() {
4813                     format!("Other{}", name)
4814                 } else {
4815                     format!("other_{}", name)
4816                 };
4817
4818                 err.span_suggestion_with_applicability(
4819                     binding.span,
4820                     rename_msg,
4821                     if snippet.ends_with(';') {
4822                         format!("{} as {};", &snippet[..snippet.len() - 1], suggested_name)
4823                     } else {
4824                         format!("{} as {}", snippet, suggested_name)
4825                     },
4826                     Applicability::MachineApplicable,
4827                 );
4828             } else {
4829                 err.span_label(binding.span, rename_msg);
4830             }
4831         }
4832
4833         err.emit();
4834         self.name_already_seen.insert(name, span);
4835     }
4836 }
4837
4838 fn is_self_type(path: &[Ident], namespace: Namespace) -> bool {
4839     namespace == TypeNS && path.len() == 1 && path[0].name == keywords::SelfType.name()
4840 }
4841
4842 fn is_self_value(path: &[Ident], namespace: Namespace) -> bool {
4843     namespace == ValueNS && path.len() == 1 && path[0].name == keywords::SelfValue.name()
4844 }
4845
4846 fn names_to_string(idents: &[Ident]) -> String {
4847     let mut result = String::new();
4848     for (i, ident) in idents.iter()
4849                             .filter(|ident| ident.name != keywords::CrateRoot.name())
4850                             .enumerate() {
4851         if i > 0 {
4852             result.push_str("::");
4853         }
4854         result.push_str(&ident.as_str());
4855     }
4856     result
4857 }
4858
4859 fn path_names_to_string(path: &Path) -> String {
4860     names_to_string(&path.segments.iter()
4861                         .map(|seg| seg.ident)
4862                         .collect::<Vec<_>>())
4863 }
4864
4865 /// Get the path for an enum and the variant from an `ImportSuggestion` for an enum variant.
4866 fn import_candidate_to_paths(suggestion: &ImportSuggestion) -> (Span, String, String) {
4867     let variant_path = &suggestion.path;
4868     let variant_path_string = path_names_to_string(variant_path);
4869
4870     let path_len = suggestion.path.segments.len();
4871     let enum_path = ast::Path {
4872         span: suggestion.path.span,
4873         segments: suggestion.path.segments[0..path_len - 1].to_vec(),
4874     };
4875     let enum_path_string = path_names_to_string(&enum_path);
4876
4877     (suggestion.path.span, variant_path_string, enum_path_string)
4878 }
4879
4880
4881 /// When an entity with a given name is not available in scope, we search for
4882 /// entities with that name in all crates. This method allows outputting the
4883 /// results of this search in a programmer-friendly way
4884 fn show_candidates(err: &mut DiagnosticBuilder,
4885                    // This is `None` if all placement locations are inside expansions
4886                    span: Option<Span>,
4887                    candidates: &[ImportSuggestion],
4888                    better: bool,
4889                    found_use: bool) {
4890
4891     // we want consistent results across executions, but candidates are produced
4892     // by iterating through a hash map, so make sure they are ordered:
4893     let mut path_strings: Vec<_> =
4894         candidates.into_iter().map(|c| path_names_to_string(&c.path)).collect();
4895     path_strings.sort();
4896
4897     let better = if better { "better " } else { "" };
4898     let msg_diff = match path_strings.len() {
4899         1 => " is found in another module, you can import it",
4900         _ => "s are found in other modules, you can import them",
4901     };
4902     let msg = format!("possible {}candidate{} into scope", better, msg_diff);
4903
4904     if let Some(span) = span {
4905         for candidate in &mut path_strings {
4906             // produce an additional newline to separate the new use statement
4907             // from the directly following item.
4908             let additional_newline = if found_use {
4909                 ""
4910             } else {
4911                 "\n"
4912             };
4913             *candidate = format!("use {};\n{}", candidate, additional_newline);
4914         }
4915
4916         err.span_suggestions_with_applicability(
4917             span,
4918             &msg,
4919             path_strings,
4920             Applicability::Unspecified,
4921         );
4922     } else {
4923         let mut msg = msg;
4924         msg.push(':');
4925         for candidate in path_strings {
4926             msg.push('\n');
4927             msg.push_str(&candidate);
4928         }
4929     }
4930 }
4931
4932 /// A somewhat inefficient routine to obtain the name of a module.
4933 fn module_to_string(module: Module) -> Option<String> {
4934     let mut names = Vec::new();
4935
4936     fn collect_mod(names: &mut Vec<Ident>, module: Module) {
4937         if let ModuleKind::Def(_, name) = module.kind {
4938             if let Some(parent) = module.parent {
4939                 names.push(Ident::with_empty_ctxt(name));
4940                 collect_mod(names, parent);
4941             }
4942         } else {
4943             // danger, shouldn't be ident?
4944             names.push(Ident::from_str("<opaque>"));
4945             collect_mod(names, module.parent.unwrap());
4946         }
4947     }
4948     collect_mod(&mut names, module);
4949
4950     if names.is_empty() {
4951         return None;
4952     }
4953     Some(names_to_string(&names.into_iter()
4954                         .rev()
4955                         .collect::<Vec<_>>()))
4956 }
4957
4958 fn err_path_resolution() -> PathResolution {
4959     PathResolution::new(Def::Err)
4960 }
4961
4962 #[derive(PartialEq,Copy, Clone)]
4963 pub enum MakeGlobMap {
4964     Yes,
4965     No,
4966 }
4967
4968 #[derive(Copy, Clone, Debug)]
4969 enum CrateLint {
4970     /// Do not issue the lint
4971     No,
4972
4973     /// This lint applies to some random path like `impl ::foo::Bar`
4974     /// or whatever. In this case, we can take the span of that path.
4975     SimplePath(NodeId),
4976
4977     /// This lint comes from a `use` statement. In this case, what we
4978     /// care about really is the *root* `use` statement; e.g., if we
4979     /// have nested things like `use a::{b, c}`, we care about the
4980     /// `use a` part.
4981     UsePath { root_id: NodeId, root_span: Span },
4982
4983     /// This is the "trait item" from a fully qualified path. For example,
4984     /// we might be resolving  `X::Y::Z` from a path like `<T as X::Y>::Z`.
4985     /// The `path_span` is the span of the to the trait itself (`X::Y`).
4986     QPathTrait { qpath_id: NodeId, qpath_span: Span },
4987 }
4988
4989 impl CrateLint {
4990     fn node_id(&self) -> Option<NodeId> {
4991         match *self {
4992             CrateLint::No => None,
4993             CrateLint::SimplePath(id) |
4994             CrateLint::UsePath { root_id: id, .. } |
4995             CrateLint::QPathTrait { qpath_id: id, .. } => Some(id),
4996         }
4997     }
4998 }
4999
5000 __build_diagnostic_array! { librustc_resolve, DIAGNOSTICS }