]> git.lizzy.rs Git - rust.git/blob - src/librustc_resolve/lib.rs
Account for --remap-path-prefix in save-analysis
[rust.git] / src / librustc_resolve / lib.rs
1 // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 #![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
12       html_favicon_url = "https://doc.rust-lang.org/favicon.ico",
13       html_root_url = "https://doc.rust-lang.org/nightly/")]
14
15 #![feature(crate_visibility_modifier)]
16 #![feature(rustc_diagnostic_macros)]
17 #![feature(slice_sort_by_cached_key)]
18
19 #[macro_use]
20 extern crate log;
21 #[macro_use]
22 extern crate syntax;
23 extern crate syntax_pos;
24 extern crate rustc_errors as errors;
25 extern crate arena;
26 #[macro_use]
27 extern crate rustc;
28 extern crate rustc_data_structures;
29 extern crate rustc_metadata;
30
31 pub use rustc::hir::def::{Namespace, PerNS};
32
33 use self::TypeParameters::*;
34 use self::RibKind::*;
35
36 use rustc::hir::map::{Definitions, DefCollector};
37 use rustc::hir::{self, PrimTy, TyBool, TyChar, TyFloat, TyInt, TyUint, TyStr};
38 use rustc::middle::cstore::CrateStore;
39 use rustc::session::Session;
40 use rustc::lint;
41 use rustc::hir::def::*;
42 use rustc::hir::def::Namespace::*;
43 use rustc::hir::def_id::{CRATE_DEF_INDEX, LOCAL_CRATE, DefId};
44 use rustc::ty;
45 use rustc::hir::{Freevar, FreevarMap, TraitCandidate, TraitMap, GlobMap};
46 use rustc::util::nodemap::{NodeMap, NodeSet, FxHashMap, FxHashSet, DefIdMap};
47
48 use rustc_metadata::creader::CrateLoader;
49 use rustc_metadata::cstore::CStore;
50
51 use syntax::codemap::CodeMap;
52 use syntax::ext::hygiene::{Mark, Transparency, SyntaxContext};
53 use syntax::ast::{self, Name, NodeId, Ident, FloatTy, IntTy, UintTy};
54 use syntax::ext::base::SyntaxExtension;
55 use syntax::ext::base::Determinacy::{self, Determined, Undetermined};
56 use syntax::ext::base::MacroKind;
57 use syntax::symbol::{Symbol, keywords};
58 use syntax::util::lev_distance::find_best_match_for_name;
59
60 use syntax::visit::{self, FnKind, Visitor};
61 use syntax::attr;
62 use syntax::ast::{CRATE_NODE_ID, Arm, IsAsync, BindingMode, Block, Crate, Expr, ExprKind};
63 use syntax::ast::{FnDecl, ForeignItem, ForeignItemKind, GenericParamKind, Generics};
64 use syntax::ast::{Item, ItemKind, ImplItem, ImplItemKind};
65 use syntax::ast::{Label, Local, Mutability, Pat, PatKind, Path};
66 use syntax::ast::{QSelf, TraitItemKind, TraitRef, Ty, TyKind};
67 use syntax::feature_gate::{feature_err, GateIssue};
68 use syntax::ptr::P;
69
70 use syntax_pos::{Span, DUMMY_SP, MultiSpan};
71 use errors::{DiagnosticBuilder, DiagnosticId};
72
73 use std::cell::{Cell, RefCell};
74 use std::cmp;
75 use std::collections::BTreeSet;
76 use std::fmt;
77 use std::iter;
78 use std::mem::replace;
79 use rustc_data_structures::sync::Lrc;
80
81 use resolve_imports::{ImportDirective, ImportDirectiveSubclass, NameResolution, ImportResolver};
82 use macros::{InvocationData, LegacyBinding, LegacyScope, MacroBinding};
83
84 // NB: This module needs to be declared first so diagnostics are
85 // registered before they are used.
86 mod diagnostics;
87
88 mod macros;
89 mod check_unused;
90 mod build_reduced_graph;
91 mod resolve_imports;
92
93 fn is_known_tool(name: Name) -> bool {
94     ["clippy", "rustfmt"].contains(&&*name.as_str())
95 }
96
97 /// A free importable items suggested in case of resolution failure.
98 struct ImportSuggestion {
99     path: Path,
100 }
101
102 /// A field or associated item from self type suggested in case of resolution failure.
103 enum AssocSuggestion {
104     Field,
105     MethodWithSelf,
106     AssocItem,
107 }
108
109 #[derive(Eq)]
110 struct BindingError {
111     name: Name,
112     origin: BTreeSet<Span>,
113     target: BTreeSet<Span>,
114 }
115
116 impl PartialOrd for BindingError {
117     fn partial_cmp(&self, other: &BindingError) -> Option<cmp::Ordering> {
118         Some(self.cmp(other))
119     }
120 }
121
122 impl PartialEq for BindingError {
123     fn eq(&self, other: &BindingError) -> bool {
124         self.name == other.name
125     }
126 }
127
128 impl Ord for BindingError {
129     fn cmp(&self, other: &BindingError) -> cmp::Ordering {
130         self.name.cmp(&other.name)
131     }
132 }
133
134 enum ResolutionError<'a> {
135     /// error E0401: can't use type parameters from outer function
136     TypeParametersFromOuterFunction(Def),
137     /// error E0403: the name is already used for a type parameter in this type parameter list
138     NameAlreadyUsedInTypeParameterList(Name, &'a Span),
139     /// error E0407: method is not a member of trait
140     MethodNotMemberOfTrait(Name, &'a str),
141     /// error E0437: type is not a member of trait
142     TypeNotMemberOfTrait(Name, &'a str),
143     /// error E0438: const is not a member of trait
144     ConstNotMemberOfTrait(Name, &'a str),
145     /// error E0408: variable `{}` is not bound in all patterns
146     VariableNotBoundInPattern(&'a BindingError),
147     /// error E0409: variable `{}` is bound in inconsistent ways within the same match arm
148     VariableBoundWithDifferentMode(Name, Span),
149     /// error E0415: identifier is bound more than once in this parameter list
150     IdentifierBoundMoreThanOnceInParameterList(&'a str),
151     /// error E0416: identifier is bound more than once in the same pattern
152     IdentifierBoundMoreThanOnceInSamePattern(&'a str),
153     /// error E0426: use of undeclared label
154     UndeclaredLabel(&'a str, Option<Name>),
155     /// error E0429: `self` imports are only allowed within a { } list
156     SelfImportsOnlyAllowedWithin,
157     /// error E0430: `self` import can only appear once in the list
158     SelfImportCanOnlyAppearOnceInTheList,
159     /// error E0431: `self` import can only appear in an import list with a non-empty prefix
160     SelfImportOnlyInImportListWithNonEmptyPrefix,
161     /// error E0432: unresolved import
162     UnresolvedImport(Option<(Span, &'a str, &'a str)>),
163     /// error E0433: failed to resolve
164     FailedToResolve(&'a str),
165     /// error E0434: can't capture dynamic environment in a fn item
166     CannotCaptureDynamicEnvironmentInFnItem,
167     /// error E0435: attempt to use a non-constant value in a constant
168     AttemptToUseNonConstantValueInConstant,
169     /// error E0530: X bindings cannot shadow Ys
170     BindingShadowsSomethingUnacceptable(&'a str, Name, &'a NameBinding<'a>),
171     /// error E0128: type parameters with a default cannot use forward declared identifiers
172     ForwardDeclaredTyParam,
173 }
174
175 /// Combines an error with provided span and emits it
176 ///
177 /// This takes the error provided, combines it with the span and any additional spans inside the
178 /// error and emits it.
179 fn resolve_error<'sess, 'a>(resolver: &'sess Resolver,
180                             span: Span,
181                             resolution_error: ResolutionError<'a>) {
182     resolve_struct_error(resolver, span, resolution_error).emit();
183 }
184
185 fn resolve_struct_error<'sess, 'a>(resolver: &'sess Resolver,
186                                    span: Span,
187                                    resolution_error: ResolutionError<'a>)
188                                    -> DiagnosticBuilder<'sess> {
189     match resolution_error {
190         ResolutionError::TypeParametersFromOuterFunction(outer_def) => {
191             let mut err = struct_span_err!(resolver.session,
192                                            span,
193                                            E0401,
194                                            "can't use type parameters from outer function");
195             err.span_label(span, "use of type variable from outer function");
196
197             let cm = resolver.session.codemap();
198             match outer_def {
199                 Def::SelfTy(_, maybe_impl_defid) => {
200                     if let Some(impl_span) = maybe_impl_defid.map_or(None,
201                             |def_id| resolver.definitions.opt_span(def_id)) {
202                         err.span_label(reduce_impl_span_to_impl_keyword(cm, impl_span),
203                                     "`Self` type implicitely declared here, on the `impl`");
204                     }
205                 },
206                 Def::TyParam(typaram_defid) => {
207                     if let Some(typaram_span) = resolver.definitions.opt_span(typaram_defid) {
208                         err.span_label(typaram_span, "type variable from outer function");
209                     }
210                 },
211                 _ => {
212                     bug!("TypeParametersFromOuterFunction should only be used with Def::SelfTy or \
213                          Def::TyParam")
214                 }
215             }
216
217             // Try to retrieve the span of the function signature and generate a new message with
218             // a local type parameter
219             let sugg_msg = "try using a local type parameter instead";
220             if let Some((sugg_span, new_snippet)) = cm.generate_local_type_param_snippet(span) {
221                 // Suggest the modification to the user
222                 err.span_suggestion(sugg_span,
223                                     sugg_msg,
224                                     new_snippet);
225             } else if let Some(sp) = cm.generate_fn_name_span(span) {
226                 err.span_label(sp, "try adding a local type parameter in this method instead");
227             } else {
228                 err.help("try using a local type parameter instead");
229             }
230
231             err
232         }
233         ResolutionError::NameAlreadyUsedInTypeParameterList(name, first_use_span) => {
234              let mut err = struct_span_err!(resolver.session,
235                                             span,
236                                             E0403,
237                                             "the name `{}` is already used for a type parameter \
238                                             in this type parameter list",
239                                             name);
240              err.span_label(span, "already used");
241              err.span_label(first_use_span.clone(), format!("first use of `{}`", name));
242              err
243         }
244         ResolutionError::MethodNotMemberOfTrait(method, trait_) => {
245             let mut err = struct_span_err!(resolver.session,
246                                            span,
247                                            E0407,
248                                            "method `{}` is not a member of trait `{}`",
249                                            method,
250                                            trait_);
251             err.span_label(span, format!("not a member of trait `{}`", trait_));
252             err
253         }
254         ResolutionError::TypeNotMemberOfTrait(type_, trait_) => {
255             let mut err = struct_span_err!(resolver.session,
256                              span,
257                              E0437,
258                              "type `{}` is not a member of trait `{}`",
259                              type_,
260                              trait_);
261             err.span_label(span, format!("not a member of trait `{}`", trait_));
262             err
263         }
264         ResolutionError::ConstNotMemberOfTrait(const_, trait_) => {
265             let mut err = struct_span_err!(resolver.session,
266                              span,
267                              E0438,
268                              "const `{}` is not a member of trait `{}`",
269                              const_,
270                              trait_);
271             err.span_label(span, format!("not a member of trait `{}`", trait_));
272             err
273         }
274         ResolutionError::VariableNotBoundInPattern(binding_error) => {
275             let target_sp = binding_error.target.iter().cloned().collect::<Vec<_>>();
276             let msp = MultiSpan::from_spans(target_sp.clone());
277             let msg = format!("variable `{}` is not bound in all patterns", binding_error.name);
278             let mut err = resolver.session.struct_span_err_with_code(
279                 msp,
280                 &msg,
281                 DiagnosticId::Error("E0408".into()),
282             );
283             for sp in target_sp {
284                 err.span_label(sp, format!("pattern doesn't bind `{}`", binding_error.name));
285             }
286             let origin_sp = binding_error.origin.iter().cloned();
287             for sp in origin_sp {
288                 err.span_label(sp, "variable not in all patterns");
289             }
290             err
291         }
292         ResolutionError::VariableBoundWithDifferentMode(variable_name,
293                                                         first_binding_span) => {
294             let mut err = struct_span_err!(resolver.session,
295                              span,
296                              E0409,
297                              "variable `{}` is bound in inconsistent \
298                              ways within the same match arm",
299                              variable_name);
300             err.span_label(span, "bound in different ways");
301             err.span_label(first_binding_span, "first binding");
302             err
303         }
304         ResolutionError::IdentifierBoundMoreThanOnceInParameterList(identifier) => {
305             let mut err = struct_span_err!(resolver.session,
306                              span,
307                              E0415,
308                              "identifier `{}` is bound more than once in this parameter list",
309                              identifier);
310             err.span_label(span, "used as parameter more than once");
311             err
312         }
313         ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(identifier) => {
314             let mut err = struct_span_err!(resolver.session,
315                              span,
316                              E0416,
317                              "identifier `{}` is bound more than once in the same pattern",
318                              identifier);
319             err.span_label(span, "used in a pattern more than once");
320             err
321         }
322         ResolutionError::UndeclaredLabel(name, lev_candidate) => {
323             let mut err = struct_span_err!(resolver.session,
324                                            span,
325                                            E0426,
326                                            "use of undeclared label `{}`",
327                                            name);
328             if let Some(lev_candidate) = lev_candidate {
329                 err.span_label(span, format!("did you mean `{}`?", lev_candidate));
330             } else {
331                 err.span_label(span, format!("undeclared label `{}`", name));
332             }
333             err
334         }
335         ResolutionError::SelfImportsOnlyAllowedWithin => {
336             struct_span_err!(resolver.session,
337                              span,
338                              E0429,
339                              "{}",
340                              "`self` imports are only allowed within a { } list")
341         }
342         ResolutionError::SelfImportCanOnlyAppearOnceInTheList => {
343             let mut err = struct_span_err!(resolver.session, span, E0430,
344                                            "`self` import can only appear once in an import list");
345             err.span_label(span, "can only appear once in an import list");
346             err
347         }
348         ResolutionError::SelfImportOnlyInImportListWithNonEmptyPrefix => {
349             let mut err = struct_span_err!(resolver.session, span, E0431,
350                                            "`self` import can only appear in an import list with \
351                                             a non-empty prefix");
352             err.span_label(span, "can only appear in an import list with a non-empty prefix");
353             err
354         }
355         ResolutionError::UnresolvedImport(name) => {
356             let (span, msg) = match name {
357                 Some((sp, n, _)) => (sp, format!("unresolved import `{}`", n)),
358                 None => (span, "unresolved import".to_owned()),
359             };
360             let mut err = struct_span_err!(resolver.session, span, E0432, "{}", msg);
361             if let Some((_, _, p)) = name {
362                 err.span_label(span, p);
363             }
364             err
365         }
366         ResolutionError::FailedToResolve(msg) => {
367             let mut err = struct_span_err!(resolver.session, span, E0433,
368                                            "failed to resolve. {}", msg);
369             err.span_label(span, msg);
370             err
371         }
372         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem => {
373             let mut err = struct_span_err!(resolver.session,
374                                            span,
375                                            E0434,
376                                            "{}",
377                                            "can't capture dynamic environment in a fn item");
378             err.help("use the `|| { ... }` closure form instead");
379             err
380         }
381         ResolutionError::AttemptToUseNonConstantValueInConstant => {
382             let mut err = struct_span_err!(resolver.session, span, E0435,
383                                            "attempt to use a non-constant value in a constant");
384             err.span_label(span, "non-constant value");
385             err
386         }
387         ResolutionError::BindingShadowsSomethingUnacceptable(what_binding, name, binding) => {
388             let shadows_what = PathResolution::new(binding.def()).kind_name();
389             let mut err = struct_span_err!(resolver.session,
390                                            span,
391                                            E0530,
392                                            "{}s cannot shadow {}s", what_binding, shadows_what);
393             err.span_label(span, format!("cannot be named the same as a {}", shadows_what));
394             let participle = if binding.is_import() { "imported" } else { "defined" };
395             let msg = format!("a {} `{}` is {} here", shadows_what, name, participle);
396             err.span_label(binding.span, msg);
397             err
398         }
399         ResolutionError::ForwardDeclaredTyParam => {
400             let mut err = struct_span_err!(resolver.session, span, E0128,
401                                            "type parameters with a default cannot use \
402                                             forward declared identifiers");
403             err.span_label(
404                 span, "defaulted type parameters cannot be forward declared".to_string());
405             err
406         }
407     }
408 }
409
410 /// Adjust the impl span so that just the `impl` keyword is taken by removing
411 /// everything after `<` (`"impl<T> Iterator for A<T> {}" -> "impl"`) and
412 /// everything after the first whitespace (`"impl Iterator for A" -> "impl"`)
413 ///
414 /// Attention: The method used is very fragile since it essentially duplicates the work of the
415 /// parser. If you need to use this function or something similar, please consider updating the
416 /// codemap functions and this function to something more robust.
417 fn reduce_impl_span_to_impl_keyword(cm: &CodeMap, impl_span: Span) -> Span {
418     let impl_span = cm.span_until_char(impl_span, '<');
419     let impl_span = cm.span_until_whitespace(impl_span);
420     impl_span
421 }
422
423 #[derive(Copy, Clone, Debug)]
424 struct BindingInfo {
425     span: Span,
426     binding_mode: BindingMode,
427 }
428
429 /// Map from the name in a pattern to its binding mode.
430 type BindingMap = FxHashMap<Ident, BindingInfo>;
431
432 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
433 enum PatternSource {
434     Match,
435     IfLet,
436     WhileLet,
437     Let,
438     For,
439     FnParam,
440 }
441
442 impl PatternSource {
443     fn descr(self) -> &'static str {
444         match self {
445             PatternSource::Match => "match binding",
446             PatternSource::IfLet => "if let binding",
447             PatternSource::WhileLet => "while let binding",
448             PatternSource::Let => "let binding",
449             PatternSource::For => "for binding",
450             PatternSource::FnParam => "function parameter",
451         }
452     }
453 }
454
455 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
456 enum AliasPossibility {
457     No,
458     Maybe,
459 }
460
461 #[derive(Copy, Clone, Debug)]
462 enum PathSource<'a> {
463     // Type paths `Path`.
464     Type,
465     // Trait paths in bounds or impls.
466     Trait(AliasPossibility),
467     // Expression paths `path`, with optional parent context.
468     Expr(Option<&'a Expr>),
469     // Paths in path patterns `Path`.
470     Pat,
471     // Paths in struct expressions and patterns `Path { .. }`.
472     Struct,
473     // Paths in tuple struct patterns `Path(..)`.
474     TupleStruct,
475     // `m::A::B` in `<T as m::A>::B::C`.
476     TraitItem(Namespace),
477     // Path in `pub(path)`
478     Visibility,
479     // Path in `use a::b::{...};`
480     ImportPrefix,
481 }
482
483 impl<'a> PathSource<'a> {
484     fn namespace(self) -> Namespace {
485         match self {
486             PathSource::Type | PathSource::Trait(_) | PathSource::Struct |
487             PathSource::Visibility | PathSource::ImportPrefix => TypeNS,
488             PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct => ValueNS,
489             PathSource::TraitItem(ns) => ns,
490         }
491     }
492
493     fn global_by_default(self) -> bool {
494         match self {
495             PathSource::Visibility | PathSource::ImportPrefix => true,
496             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
497             PathSource::Struct | PathSource::TupleStruct |
498             PathSource::Trait(_) | PathSource::TraitItem(..) => false,
499         }
500     }
501
502     fn defer_to_typeck(self) -> bool {
503         match self {
504             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
505             PathSource::Struct | PathSource::TupleStruct => true,
506             PathSource::Trait(_) | PathSource::TraitItem(..) |
507             PathSource::Visibility | PathSource::ImportPrefix => false,
508         }
509     }
510
511     fn descr_expected(self) -> &'static str {
512         match self {
513             PathSource::Type => "type",
514             PathSource::Trait(_) => "trait",
515             PathSource::Pat => "unit struct/variant or constant",
516             PathSource::Struct => "struct, variant or union type",
517             PathSource::TupleStruct => "tuple struct/variant",
518             PathSource::Visibility => "module",
519             PathSource::ImportPrefix => "module or enum",
520             PathSource::TraitItem(ns) => match ns {
521                 TypeNS => "associated type",
522                 ValueNS => "method or associated constant",
523                 MacroNS => bug!("associated macro"),
524             },
525             PathSource::Expr(parent) => match parent.map(|p| &p.node) {
526                 // "function" here means "anything callable" rather than `Def::Fn`,
527                 // this is not precise but usually more helpful than just "value".
528                 Some(&ExprKind::Call(..)) => "function",
529                 _ => "value",
530             },
531         }
532     }
533
534     fn is_expected(self, def: Def) -> bool {
535         match self {
536             PathSource::Type => match def {
537                 Def::Struct(..) | Def::Union(..) | Def::Enum(..) |
538                 Def::Trait(..) | Def::TyAlias(..) | Def::AssociatedTy(..) |
539                 Def::PrimTy(..) | Def::TyParam(..) | Def::SelfTy(..) |
540                 Def::Existential(..) |
541                 Def::TyForeign(..) => true,
542                 _ => false,
543             },
544             PathSource::Trait(AliasPossibility::No) => match def {
545                 Def::Trait(..) => true,
546                 _ => false,
547             },
548             PathSource::Trait(AliasPossibility::Maybe) => match def {
549                 Def::Trait(..) => true,
550                 Def::TraitAlias(..) => true,
551                 _ => false,
552             },
553             PathSource::Expr(..) => match def {
554                 Def::StructCtor(_, CtorKind::Const) | Def::StructCtor(_, CtorKind::Fn) |
555                 Def::VariantCtor(_, CtorKind::Const) | Def::VariantCtor(_, CtorKind::Fn) |
556                 Def::Const(..) | Def::Static(..) | Def::Local(..) | Def::Upvar(..) |
557                 Def::Fn(..) | Def::Method(..) | Def::AssociatedConst(..) => true,
558                 _ => false,
559             },
560             PathSource::Pat => match def {
561                 Def::StructCtor(_, CtorKind::Const) |
562                 Def::VariantCtor(_, CtorKind::Const) |
563                 Def::Const(..) | Def::AssociatedConst(..) => true,
564                 _ => false,
565             },
566             PathSource::TupleStruct => match def {
567                 Def::StructCtor(_, CtorKind::Fn) | Def::VariantCtor(_, CtorKind::Fn) => true,
568                 _ => false,
569             },
570             PathSource::Struct => match def {
571                 Def::Struct(..) | Def::Union(..) | Def::Variant(..) |
572                 Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => true,
573                 _ => false,
574             },
575             PathSource::TraitItem(ns) => match def {
576                 Def::AssociatedConst(..) | Def::Method(..) if ns == ValueNS => true,
577                 Def::AssociatedTy(..) if ns == TypeNS => true,
578                 _ => false,
579             },
580             PathSource::ImportPrefix => match def {
581                 Def::Mod(..) | Def::Enum(..) => true,
582                 _ => false,
583             },
584             PathSource::Visibility => match def {
585                 Def::Mod(..) => true,
586                 _ => false,
587             },
588         }
589     }
590
591     fn error_code(self, has_unexpected_resolution: bool) -> &'static str {
592         __diagnostic_used!(E0404);
593         __diagnostic_used!(E0405);
594         __diagnostic_used!(E0412);
595         __diagnostic_used!(E0422);
596         __diagnostic_used!(E0423);
597         __diagnostic_used!(E0425);
598         __diagnostic_used!(E0531);
599         __diagnostic_used!(E0532);
600         __diagnostic_used!(E0573);
601         __diagnostic_used!(E0574);
602         __diagnostic_used!(E0575);
603         __diagnostic_used!(E0576);
604         __diagnostic_used!(E0577);
605         __diagnostic_used!(E0578);
606         match (self, has_unexpected_resolution) {
607             (PathSource::Trait(_), true) => "E0404",
608             (PathSource::Trait(_), false) => "E0405",
609             (PathSource::Type, true) => "E0573",
610             (PathSource::Type, false) => "E0412",
611             (PathSource::Struct, true) => "E0574",
612             (PathSource::Struct, false) => "E0422",
613             (PathSource::Expr(..), true) => "E0423",
614             (PathSource::Expr(..), false) => "E0425",
615             (PathSource::Pat, true) | (PathSource::TupleStruct, true) => "E0532",
616             (PathSource::Pat, false) | (PathSource::TupleStruct, false) => "E0531",
617             (PathSource::TraitItem(..), true) => "E0575",
618             (PathSource::TraitItem(..), false) => "E0576",
619             (PathSource::Visibility, true) | (PathSource::ImportPrefix, true) => "E0577",
620             (PathSource::Visibility, false) | (PathSource::ImportPrefix, false) => "E0578",
621         }
622     }
623 }
624
625 struct UsePlacementFinder {
626     target_module: NodeId,
627     span: Option<Span>,
628     found_use: bool,
629 }
630
631 impl UsePlacementFinder {
632     fn check(krate: &Crate, target_module: NodeId) -> (Option<Span>, bool) {
633         let mut finder = UsePlacementFinder {
634             target_module,
635             span: None,
636             found_use: false,
637         };
638         visit::walk_crate(&mut finder, krate);
639         (finder.span, finder.found_use)
640     }
641 }
642
643 impl<'tcx> Visitor<'tcx> for UsePlacementFinder {
644     fn visit_mod(
645         &mut self,
646         module: &'tcx ast::Mod,
647         _: Span,
648         _: &[ast::Attribute],
649         node_id: NodeId,
650     ) {
651         if self.span.is_some() {
652             return;
653         }
654         if node_id != self.target_module {
655             visit::walk_mod(self, module);
656             return;
657         }
658         // find a use statement
659         for item in &module.items {
660             match item.node {
661                 ItemKind::Use(..) => {
662                     // don't suggest placing a use before the prelude
663                     // import or other generated ones
664                     if item.span.ctxt().outer().expn_info().is_none() {
665                         self.span = Some(item.span.shrink_to_lo());
666                         self.found_use = true;
667                         return;
668                     }
669                 },
670                 // don't place use before extern crate
671                 ItemKind::ExternCrate(_) => {}
672                 // but place them before the first other item
673                 _ => if self.span.map_or(true, |span| item.span < span ) {
674                     if item.span.ctxt().outer().expn_info().is_none() {
675                         // don't insert between attributes and an item
676                         if item.attrs.is_empty() {
677                             self.span = Some(item.span.shrink_to_lo());
678                         } else {
679                             // find the first attribute on the item
680                             for attr in &item.attrs {
681                                 if self.span.map_or(true, |span| attr.span < span) {
682                                     self.span = Some(attr.span.shrink_to_lo());
683                                 }
684                             }
685                         }
686                     }
687                 },
688             }
689         }
690     }
691 }
692
693 /// This thing walks the whole crate in DFS manner, visiting each item, resolving names as it goes.
694 impl<'a, 'tcx, 'cl> Visitor<'tcx> for Resolver<'a, 'cl> {
695     fn visit_item(&mut self, item: &'tcx Item) {
696         self.resolve_item(item);
697     }
698     fn visit_arm(&mut self, arm: &'tcx Arm) {
699         self.resolve_arm(arm);
700     }
701     fn visit_block(&mut self, block: &'tcx Block) {
702         self.resolve_block(block);
703     }
704     fn visit_anon_const(&mut self, constant: &'tcx ast::AnonConst) {
705         self.with_constant_rib(|this| {
706             visit::walk_anon_const(this, constant);
707         });
708     }
709     fn visit_expr(&mut self, expr: &'tcx Expr) {
710         self.resolve_expr(expr, None);
711     }
712     fn visit_local(&mut self, local: &'tcx Local) {
713         self.resolve_local(local);
714     }
715     fn visit_ty(&mut self, ty: &'tcx Ty) {
716         match ty.node {
717             TyKind::Path(ref qself, ref path) => {
718                 self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
719             }
720             TyKind::ImplicitSelf => {
721                 let self_ty = keywords::SelfType.ident();
722                 let def = self.resolve_ident_in_lexical_scope(self_ty, TypeNS, Some(ty.id), ty.span)
723                               .map_or(Def::Err, |d| d.def());
724                 self.record_def(ty.id, PathResolution::new(def));
725             }
726             _ => (),
727         }
728         visit::walk_ty(self, ty);
729     }
730     fn visit_poly_trait_ref(&mut self,
731                             tref: &'tcx ast::PolyTraitRef,
732                             m: &'tcx ast::TraitBoundModifier) {
733         self.smart_resolve_path(tref.trait_ref.ref_id, None,
734                                 &tref.trait_ref.path, PathSource::Trait(AliasPossibility::Maybe));
735         visit::walk_poly_trait_ref(self, tref, m);
736     }
737     fn visit_foreign_item(&mut self, foreign_item: &'tcx ForeignItem) {
738         let type_parameters = match foreign_item.node {
739             ForeignItemKind::Fn(_, ref generics) => {
740                 HasTypeParameters(generics, ItemRibKind)
741             }
742             ForeignItemKind::Static(..) => NoTypeParameters,
743             ForeignItemKind::Ty => NoTypeParameters,
744             ForeignItemKind::Macro(..) => NoTypeParameters,
745         };
746         self.with_type_parameter_rib(type_parameters, |this| {
747             visit::walk_foreign_item(this, foreign_item);
748         });
749     }
750     fn visit_fn(&mut self,
751                 function_kind: FnKind<'tcx>,
752                 declaration: &'tcx FnDecl,
753                 _: Span,
754                 node_id: NodeId)
755     {
756         let (rib_kind, asyncness) = match function_kind {
757             FnKind::ItemFn(_, ref header, ..) =>
758                 (ItemRibKind, header.asyncness),
759             FnKind::Method(_, ref sig, _, _) =>
760                 (TraitOrImplItemRibKind, sig.header.asyncness),
761             FnKind::Closure(_) =>
762                 // Async closures aren't resolved through `visit_fn`-- they're
763                 // processed separately
764                 (ClosureRibKind(node_id), IsAsync::NotAsync),
765         };
766
767         // Create a value rib for the function.
768         self.ribs[ValueNS].push(Rib::new(rib_kind));
769
770         // Create a label rib for the function.
771         self.label_ribs.push(Rib::new(rib_kind));
772
773         // Add each argument to the rib.
774         let mut bindings_list = FxHashMap();
775         for argument in &declaration.inputs {
776             self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
777
778             self.visit_ty(&argument.ty);
779
780             debug!("(resolving function) recorded argument");
781         }
782         visit::walk_fn_ret_ty(self, &declaration.output);
783
784         // Resolve the function body, potentially inside the body of an async closure
785         if let IsAsync::Async { closure_id, .. } = asyncness {
786             let rib_kind = ClosureRibKind(closure_id);
787             self.ribs[ValueNS].push(Rib::new(rib_kind));
788             self.label_ribs.push(Rib::new(rib_kind));
789         }
790
791         match function_kind {
792             FnKind::ItemFn(.., body) |
793             FnKind::Method(.., body) => {
794                 self.visit_block(body);
795             }
796             FnKind::Closure(body) => {
797                 self.visit_expr(body);
798             }
799         };
800
801         // Leave the body of the async closure
802         if asyncness.is_async() {
803             self.label_ribs.pop();
804             self.ribs[ValueNS].pop();
805         }
806
807         debug!("(resolving function) leaving function");
808
809         self.label_ribs.pop();
810         self.ribs[ValueNS].pop();
811     }
812     fn visit_generics(&mut self, generics: &'tcx Generics) {
813         // For type parameter defaults, we have to ban access
814         // to following type parameters, as the Substs can only
815         // provide previous type parameters as they're built. We
816         // put all the parameters on the ban list and then remove
817         // them one by one as they are processed and become available.
818         let mut default_ban_rib = Rib::new(ForwardTyParamBanRibKind);
819         let mut found_default = false;
820         default_ban_rib.bindings.extend(generics.params.iter()
821             .filter_map(|param| match param.kind {
822                 GenericParamKind::Lifetime { .. } => None,
823                 GenericParamKind::Type { ref default, .. } => {
824                     if found_default || default.is_some() {
825                         found_default = true;
826                         return Some((Ident::with_empty_ctxt(param.ident.name), Def::Err));
827                     }
828                     None
829                 }
830             }));
831
832         for param in &generics.params {
833             match param.kind {
834                 GenericParamKind::Lifetime { .. } => self.visit_generic_param(param),
835                 GenericParamKind::Type { ref default, .. } => {
836                     for bound in &param.bounds {
837                         self.visit_param_bound(bound);
838                     }
839
840                     if let Some(ref ty) = default {
841                         self.ribs[TypeNS].push(default_ban_rib);
842                         self.visit_ty(ty);
843                         default_ban_rib = self.ribs[TypeNS].pop().unwrap();
844                     }
845
846                     // Allow all following defaults to refer to this type parameter.
847                     default_ban_rib.bindings.remove(&Ident::with_empty_ctxt(param.ident.name));
848                 }
849             }
850         }
851         for p in &generics.where_clause.predicates {
852             self.visit_where_predicate(p);
853         }
854     }
855 }
856
857 #[derive(Copy, Clone)]
858 enum TypeParameters<'a, 'b> {
859     NoTypeParameters,
860     HasTypeParameters(// Type parameters.
861                       &'b Generics,
862
863                       // The kind of the rib used for type parameters.
864                       RibKind<'a>),
865 }
866
867 /// The rib kind controls the translation of local
868 /// definitions (`Def::Local`) to upvars (`Def::Upvar`).
869 #[derive(Copy, Clone, Debug)]
870 enum RibKind<'a> {
871     /// No translation needs to be applied.
872     NormalRibKind,
873
874     /// We passed through a closure scope at the given node ID.
875     /// Translate upvars as appropriate.
876     ClosureRibKind(NodeId /* func id */),
877
878     /// We passed through an impl or trait and are now in one of its
879     /// methods or associated types. Allow references to ty params that impl or trait
880     /// binds. Disallow any other upvars (including other ty params that are
881     /// upvars).
882     TraitOrImplItemRibKind,
883
884     /// We passed through an item scope. Disallow upvars.
885     ItemRibKind,
886
887     /// We're in a constant item. Can't refer to dynamic stuff.
888     ConstantItemRibKind,
889
890     /// We passed through a module.
891     ModuleRibKind(Module<'a>),
892
893     /// We passed through a `macro_rules!` statement
894     MacroDefinition(DefId),
895
896     /// All bindings in this rib are type parameters that can't be used
897     /// from the default of a type parameter because they're not declared
898     /// before said type parameter. Also see the `visit_generics` override.
899     ForwardTyParamBanRibKind,
900 }
901
902 /// One local scope.
903 ///
904 /// A rib represents a scope names can live in. Note that these appear in many places, not just
905 /// around braces. At any place where the list of accessible names (of the given namespace)
906 /// changes or a new restrictions on the name accessibility are introduced, a new rib is put onto a
907 /// stack. This may be, for example, a `let` statement (because it introduces variables), a macro,
908 /// etc.
909 ///
910 /// Different [rib kinds](enum.RibKind) are transparent for different names.
911 ///
912 /// The resolution keeps a separate stack of ribs as it traverses the AST for each namespace. When
913 /// resolving, the name is looked up from inside out.
914 #[derive(Debug)]
915 struct Rib<'a> {
916     bindings: FxHashMap<Ident, Def>,
917     kind: RibKind<'a>,
918 }
919
920 impl<'a> Rib<'a> {
921     fn new(kind: RibKind<'a>) -> Rib<'a> {
922         Rib {
923             bindings: FxHashMap(),
924             kind,
925         }
926     }
927 }
928
929 /// An intermediate resolution result.
930 ///
931 /// This refers to the thing referred by a name. The difference between `Def` and `Item` is that
932 /// items are visible in their whole block, while defs only from the place they are defined
933 /// forward.
934 enum LexicalScopeBinding<'a> {
935     Item(&'a NameBinding<'a>),
936     Def(Def),
937 }
938
939 impl<'a> LexicalScopeBinding<'a> {
940     fn item(self) -> Option<&'a NameBinding<'a>> {
941         match self {
942             LexicalScopeBinding::Item(binding) => Some(binding),
943             _ => None,
944         }
945     }
946
947     fn def(self) -> Def {
948         match self {
949             LexicalScopeBinding::Item(binding) => binding.def(),
950             LexicalScopeBinding::Def(def) => def,
951         }
952     }
953 }
954
955 #[derive(Clone, Debug)]
956 enum PathResult<'a> {
957     Module(Module<'a>),
958     NonModule(PathResolution),
959     Indeterminate,
960     Failed(Span, String, bool /* is the error from the last segment? */),
961 }
962
963 enum ModuleKind {
964     /// An anonymous module, eg. just a block.
965     ///
966     /// ```
967     /// fn main() {
968     ///     fn f() {} // (1)
969     ///     { // This is an anonymous module
970     ///         f(); // This resolves to (2) as we are inside the block.
971     ///         fn f() {} // (2)
972     ///     }
973     ///     f(); // Resolves to (1)
974     /// }
975     /// ```
976     Block(NodeId),
977     /// Any module with a name.
978     ///
979     /// This could be:
980     ///
981     /// * A normal module â€’ either `mod from_file;` or `mod from_block { }`.
982     /// * A trait or an enum (it implicitly contains associated types, methods and variant
983     ///   constructors).
984     Def(Def, Name),
985 }
986
987 /// One node in the tree of modules.
988 pub struct ModuleData<'a> {
989     parent: Option<Module<'a>>,
990     kind: ModuleKind,
991
992     // The def id of the closest normal module (`mod`) ancestor (including this module).
993     normal_ancestor_id: DefId,
994
995     resolutions: RefCell<FxHashMap<(Ident, Namespace), &'a RefCell<NameResolution<'a>>>>,
996     legacy_macro_resolutions: RefCell<Vec<(Mark, Ident, MacroKind, Option<Def>)>>,
997     macro_resolutions: RefCell<Vec<(Box<[Ident]>, Span)>>,
998
999     // Macro invocations that can expand into items in this module.
1000     unresolved_invocations: RefCell<FxHashSet<Mark>>,
1001
1002     no_implicit_prelude: bool,
1003
1004     glob_importers: RefCell<Vec<&'a ImportDirective<'a>>>,
1005     globs: RefCell<Vec<&'a ImportDirective<'a>>>,
1006
1007     // Used to memoize the traits in this module for faster searches through all traits in scope.
1008     traits: RefCell<Option<Box<[(Ident, &'a NameBinding<'a>)]>>>,
1009
1010     // Whether this module is populated. If not populated, any attempt to
1011     // access the children must be preceded with a
1012     // `populate_module_if_necessary` call.
1013     populated: Cell<bool>,
1014
1015     /// Span of the module itself. Used for error reporting.
1016     span: Span,
1017
1018     expansion: Mark,
1019 }
1020
1021 type Module<'a> = &'a ModuleData<'a>;
1022
1023 impl<'a> ModuleData<'a> {
1024     fn new(parent: Option<Module<'a>>,
1025            kind: ModuleKind,
1026            normal_ancestor_id: DefId,
1027            expansion: Mark,
1028            span: Span) -> Self {
1029         ModuleData {
1030             parent,
1031             kind,
1032             normal_ancestor_id,
1033             resolutions: RefCell::new(FxHashMap()),
1034             legacy_macro_resolutions: RefCell::new(Vec::new()),
1035             macro_resolutions: RefCell::new(Vec::new()),
1036             unresolved_invocations: RefCell::new(FxHashSet()),
1037             no_implicit_prelude: false,
1038             glob_importers: RefCell::new(Vec::new()),
1039             globs: RefCell::new(Vec::new()),
1040             traits: RefCell::new(None),
1041             populated: Cell::new(normal_ancestor_id.is_local()),
1042             span,
1043             expansion,
1044         }
1045     }
1046
1047     fn for_each_child<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1048         for (&(ident, ns), name_resolution) in self.resolutions.borrow().iter() {
1049             name_resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1050         }
1051     }
1052
1053     fn for_each_child_stable<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1054         let resolutions = self.resolutions.borrow();
1055         let mut resolutions = resolutions.iter().collect::<Vec<_>>();
1056         resolutions.sort_by_cached_key(|&(&(ident, ns), _)| (ident.as_str(), ns));
1057         for &(&(ident, ns), &resolution) in resolutions.iter() {
1058             resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1059         }
1060     }
1061
1062     fn def(&self) -> Option<Def> {
1063         match self.kind {
1064             ModuleKind::Def(def, _) => Some(def),
1065             _ => None,
1066         }
1067     }
1068
1069     fn def_id(&self) -> Option<DefId> {
1070         self.def().as_ref().map(Def::def_id)
1071     }
1072
1073     // `self` resolves to the first module ancestor that `is_normal`.
1074     fn is_normal(&self) -> bool {
1075         match self.kind {
1076             ModuleKind::Def(Def::Mod(_), _) => true,
1077             _ => false,
1078         }
1079     }
1080
1081     fn is_trait(&self) -> bool {
1082         match self.kind {
1083             ModuleKind::Def(Def::Trait(_), _) => true,
1084             _ => false,
1085         }
1086     }
1087
1088     fn is_local(&self) -> bool {
1089         self.normal_ancestor_id.is_local()
1090     }
1091
1092     fn nearest_item_scope(&'a self) -> Module<'a> {
1093         if self.is_trait() { self.parent.unwrap() } else { self }
1094     }
1095 }
1096
1097 impl<'a> fmt::Debug for ModuleData<'a> {
1098     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1099         write!(f, "{:?}", self.def())
1100     }
1101 }
1102
1103 /// Records a possibly-private value, type, or module definition.
1104 #[derive(Clone, Debug)]
1105 pub struct NameBinding<'a> {
1106     kind: NameBindingKind<'a>,
1107     expansion: Mark,
1108     span: Span,
1109     vis: ty::Visibility,
1110 }
1111
1112 pub trait ToNameBinding<'a> {
1113     fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a>;
1114 }
1115
1116 impl<'a> ToNameBinding<'a> for &'a NameBinding<'a> {
1117     fn to_name_binding(self, _: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> {
1118         self
1119     }
1120 }
1121
1122 #[derive(Clone, Debug)]
1123 enum NameBindingKind<'a> {
1124     Def(Def, /* is_macro_export */ bool),
1125     Module(Module<'a>),
1126     Import {
1127         binding: &'a NameBinding<'a>,
1128         directive: &'a ImportDirective<'a>,
1129         used: Cell<bool>,
1130     },
1131     Ambiguity {
1132         b1: &'a NameBinding<'a>,
1133         b2: &'a NameBinding<'a>,
1134     }
1135 }
1136
1137 struct PrivacyError<'a>(Span, Name, &'a NameBinding<'a>);
1138
1139 struct UseError<'a> {
1140     err: DiagnosticBuilder<'a>,
1141     /// Attach `use` statements for these candidates
1142     candidates: Vec<ImportSuggestion>,
1143     /// The node id of the module to place the use statements in
1144     node_id: NodeId,
1145     /// Whether the diagnostic should state that it's "better"
1146     better: bool,
1147 }
1148
1149 struct AmbiguityError<'a> {
1150     span: Span,
1151     name: Name,
1152     lexical: bool,
1153     b1: &'a NameBinding<'a>,
1154     b2: &'a NameBinding<'a>,
1155 }
1156
1157 impl<'a> NameBinding<'a> {
1158     fn module(&self) -> Option<Module<'a>> {
1159         match self.kind {
1160             NameBindingKind::Module(module) => Some(module),
1161             NameBindingKind::Import { binding, .. } => binding.module(),
1162             _ => None,
1163         }
1164     }
1165
1166     fn def(&self) -> Def {
1167         match self.kind {
1168             NameBindingKind::Def(def, _) => def,
1169             NameBindingKind::Module(module) => module.def().unwrap(),
1170             NameBindingKind::Import { binding, .. } => binding.def(),
1171             NameBindingKind::Ambiguity { .. } => Def::Err,
1172         }
1173     }
1174
1175     fn def_ignoring_ambiguity(&self) -> Def {
1176         match self.kind {
1177             NameBindingKind::Import { binding, .. } => binding.def_ignoring_ambiguity(),
1178             NameBindingKind::Ambiguity { b1, .. } => b1.def_ignoring_ambiguity(),
1179             _ => self.def(),
1180         }
1181     }
1182
1183     fn get_macro<'b: 'a>(&self, resolver: &mut Resolver<'a, 'b>) -> Lrc<SyntaxExtension> {
1184         resolver.get_macro(self.def_ignoring_ambiguity())
1185     }
1186
1187     // We sometimes need to treat variants as `pub` for backwards compatibility
1188     fn pseudo_vis(&self) -> ty::Visibility {
1189         if self.is_variant() && self.def().def_id().is_local() {
1190             ty::Visibility::Public
1191         } else {
1192             self.vis
1193         }
1194     }
1195
1196     fn is_variant(&self) -> bool {
1197         match self.kind {
1198             NameBindingKind::Def(Def::Variant(..), _) |
1199             NameBindingKind::Def(Def::VariantCtor(..), _) => true,
1200             _ => false,
1201         }
1202     }
1203
1204     fn is_extern_crate(&self) -> bool {
1205         match self.kind {
1206             NameBindingKind::Import {
1207                 directive: &ImportDirective {
1208                     subclass: ImportDirectiveSubclass::ExternCrate(_), ..
1209                 }, ..
1210             } => true,
1211             _ => false,
1212         }
1213     }
1214
1215     fn is_import(&self) -> bool {
1216         match self.kind {
1217             NameBindingKind::Import { .. } => true,
1218             _ => false,
1219         }
1220     }
1221
1222     fn is_renamed_extern_crate(&self) -> bool {
1223         if let NameBindingKind::Import { directive, ..} = self.kind {
1224             if let ImportDirectiveSubclass::ExternCrate(Some(_)) = directive.subclass {
1225                 return true;
1226             }
1227         }
1228         false
1229     }
1230
1231     fn is_glob_import(&self) -> bool {
1232         match self.kind {
1233             NameBindingKind::Import { directive, .. } => directive.is_glob(),
1234             NameBindingKind::Ambiguity { b1, .. } => b1.is_glob_import(),
1235             _ => false,
1236         }
1237     }
1238
1239     fn is_importable(&self) -> bool {
1240         match self.def() {
1241             Def::AssociatedConst(..) | Def::Method(..) | Def::AssociatedTy(..) => false,
1242             _ => true,
1243         }
1244     }
1245
1246     fn is_macro_def(&self) -> bool {
1247         match self.kind {
1248             NameBindingKind::Def(Def::Macro(..), _) => true,
1249             _ => false,
1250         }
1251     }
1252
1253     fn descr(&self) -> &'static str {
1254         if self.is_extern_crate() { "extern crate" } else { self.def().kind_name() }
1255     }
1256 }
1257
1258 /// Interns the names of the primitive types.
1259 ///
1260 /// All other types are defined somewhere and possibly imported, but the primitive ones need
1261 /// special handling, since they have no place of origin.
1262 struct PrimitiveTypeTable {
1263     primitive_types: FxHashMap<Name, PrimTy>,
1264 }
1265
1266 impl PrimitiveTypeTable {
1267     fn new() -> PrimitiveTypeTable {
1268         let mut table = PrimitiveTypeTable { primitive_types: FxHashMap() };
1269
1270         table.intern("bool", TyBool);
1271         table.intern("char", TyChar);
1272         table.intern("f32", TyFloat(FloatTy::F32));
1273         table.intern("f64", TyFloat(FloatTy::F64));
1274         table.intern("isize", TyInt(IntTy::Isize));
1275         table.intern("i8", TyInt(IntTy::I8));
1276         table.intern("i16", TyInt(IntTy::I16));
1277         table.intern("i32", TyInt(IntTy::I32));
1278         table.intern("i64", TyInt(IntTy::I64));
1279         table.intern("i128", TyInt(IntTy::I128));
1280         table.intern("str", TyStr);
1281         table.intern("usize", TyUint(UintTy::Usize));
1282         table.intern("u8", TyUint(UintTy::U8));
1283         table.intern("u16", TyUint(UintTy::U16));
1284         table.intern("u32", TyUint(UintTy::U32));
1285         table.intern("u64", TyUint(UintTy::U64));
1286         table.intern("u128", TyUint(UintTy::U128));
1287         table
1288     }
1289
1290     fn intern(&mut self, string: &str, primitive_type: PrimTy) {
1291         self.primitive_types.insert(Symbol::intern(string), primitive_type);
1292     }
1293 }
1294
1295 /// The main resolver class.
1296 ///
1297 /// This is the visitor that walks the whole crate.
1298 pub struct Resolver<'a, 'b: 'a> {
1299     session: &'a Session,
1300     cstore: &'a CStore,
1301
1302     pub definitions: Definitions,
1303
1304     graph_root: Module<'a>,
1305
1306     prelude: Option<Module<'a>>,
1307     extern_prelude: FxHashSet<Name>,
1308
1309     /// n.b. This is used only for better diagnostics, not name resolution itself.
1310     has_self: FxHashSet<DefId>,
1311
1312     /// Names of fields of an item `DefId` accessible with dot syntax.
1313     /// Used for hints during error reporting.
1314     field_names: FxHashMap<DefId, Vec<Name>>,
1315
1316     /// All imports known to succeed or fail.
1317     determined_imports: Vec<&'a ImportDirective<'a>>,
1318
1319     /// All non-determined imports.
1320     indeterminate_imports: Vec<&'a ImportDirective<'a>>,
1321
1322     /// The module that represents the current item scope.
1323     current_module: Module<'a>,
1324
1325     /// The current set of local scopes for types and values.
1326     /// FIXME #4948: Reuse ribs to avoid allocation.
1327     ribs: PerNS<Vec<Rib<'a>>>,
1328
1329     /// The current set of local scopes, for labels.
1330     label_ribs: Vec<Rib<'a>>,
1331
1332     /// The trait that the current context can refer to.
1333     current_trait_ref: Option<(Module<'a>, TraitRef)>,
1334
1335     /// The current self type if inside an impl (used for better errors).
1336     current_self_type: Option<Ty>,
1337
1338     /// The idents for the primitive types.
1339     primitive_type_table: PrimitiveTypeTable,
1340
1341     def_map: DefMap,
1342     import_map: ImportMap,
1343     pub freevars: FreevarMap,
1344     freevars_seen: NodeMap<NodeMap<usize>>,
1345     pub export_map: ExportMap,
1346     pub trait_map: TraitMap,
1347
1348     /// A map from nodes to anonymous modules.
1349     /// Anonymous modules are pseudo-modules that are implicitly created around items
1350     /// contained within blocks.
1351     ///
1352     /// For example, if we have this:
1353     ///
1354     ///  fn f() {
1355     ///      fn g() {
1356     ///          ...
1357     ///      }
1358     ///  }
1359     ///
1360     /// There will be an anonymous module created around `g` with the ID of the
1361     /// entry block for `f`.
1362     block_map: NodeMap<Module<'a>>,
1363     module_map: FxHashMap<DefId, Module<'a>>,
1364     extern_module_map: FxHashMap<(DefId, bool /* MacrosOnly? */), Module<'a>>,
1365
1366     pub make_glob_map: bool,
1367     /// Maps imports to the names of items actually imported (this actually maps
1368     /// all imports, but only glob imports are actually interesting).
1369     pub glob_map: GlobMap,
1370
1371     used_imports: FxHashSet<(NodeId, Namespace)>,
1372     pub maybe_unused_trait_imports: NodeSet,
1373     pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
1374
1375     /// A list of labels as of yet unused. Labels will be removed from this map when
1376     /// they are used (in a `break` or `continue` statement)
1377     pub unused_labels: FxHashMap<NodeId, Span>,
1378
1379     /// privacy errors are delayed until the end in order to deduplicate them
1380     privacy_errors: Vec<PrivacyError<'a>>,
1381     /// ambiguity errors are delayed for deduplication
1382     ambiguity_errors: Vec<AmbiguityError<'a>>,
1383     /// `use` injections are delayed for better placement and deduplication
1384     use_injections: Vec<UseError<'a>>,
1385     /// `use` injections for proc macros wrongly imported with #[macro_use]
1386     proc_mac_errors: Vec<macros::ProcMacError>,
1387
1388     gated_errors: FxHashSet<Span>,
1389     disallowed_shadowing: Vec<&'a LegacyBinding<'a>>,
1390
1391     arenas: &'a ResolverArenas<'a>,
1392     dummy_binding: &'a NameBinding<'a>,
1393     /// true if `#![feature(use_extern_macros)]`
1394     use_extern_macros: bool,
1395
1396     crate_loader: &'a mut CrateLoader<'b>,
1397     macro_names: FxHashSet<Ident>,
1398     macro_prelude: FxHashMap<Name, &'a NameBinding<'a>>,
1399     pub all_macros: FxHashMap<Name, Def>,
1400     lexical_macro_resolutions: Vec<(Ident, &'a Cell<LegacyScope<'a>>)>,
1401     macro_map: FxHashMap<DefId, Lrc<SyntaxExtension>>,
1402     macro_defs: FxHashMap<Mark, DefId>,
1403     local_macro_def_scopes: FxHashMap<NodeId, Module<'a>>,
1404     macro_exports: Vec<Export>, // FIXME: Remove when `use_extern_macros` is stabilized
1405     pub whitelisted_legacy_custom_derives: Vec<Name>,
1406     pub found_unresolved_macro: bool,
1407
1408     /// List of crate local macros that we need to warn about as being unused.
1409     /// Right now this only includes macro_rules! macros, and macros 2.0.
1410     unused_macros: FxHashSet<DefId>,
1411
1412     /// Maps the `Mark` of an expansion to its containing module or block.
1413     invocations: FxHashMap<Mark, &'a InvocationData<'a>>,
1414
1415     /// Avoid duplicated errors for "name already defined".
1416     name_already_seen: FxHashMap<Name, Span>,
1417
1418     /// A set of procedural macros imported by `#[macro_use]` that have already been warned about
1419     warned_proc_macros: FxHashSet<Name>,
1420
1421     potentially_unused_imports: Vec<&'a ImportDirective<'a>>,
1422
1423     /// This table maps struct IDs into struct constructor IDs,
1424     /// it's not used during normal resolution, only for better error reporting.
1425     struct_constructors: DefIdMap<(Def, ty::Visibility)>,
1426
1427     /// Only used for better errors on `fn(): fn()`
1428     current_type_ascription: Vec<Span>,
1429
1430     injected_crate: Option<Module<'a>>,
1431
1432     /// Only supposed to be used by rustdoc, otherwise should be false.
1433     pub ignore_extern_prelude_feature: bool,
1434
1435     /// Macro invocations in the whole crate that can expand into a `#[macro_export] macro_rules`.
1436     unresolved_invocations_macro_export: FxHashSet<Mark>,
1437 }
1438
1439 /// Nothing really interesting here, it just provides memory for the rest of the crate.
1440 pub struct ResolverArenas<'a> {
1441     modules: arena::TypedArena<ModuleData<'a>>,
1442     local_modules: RefCell<Vec<Module<'a>>>,
1443     name_bindings: arena::TypedArena<NameBinding<'a>>,
1444     import_directives: arena::TypedArena<ImportDirective<'a>>,
1445     name_resolutions: arena::TypedArena<RefCell<NameResolution<'a>>>,
1446     invocation_data: arena::TypedArena<InvocationData<'a>>,
1447     legacy_bindings: arena::TypedArena<LegacyBinding<'a>>,
1448 }
1449
1450 impl<'a> ResolverArenas<'a> {
1451     fn alloc_module(&'a self, module: ModuleData<'a>) -> Module<'a> {
1452         let module = self.modules.alloc(module);
1453         if module.def_id().map(|def_id| def_id.is_local()).unwrap_or(true) {
1454             self.local_modules.borrow_mut().push(module);
1455         }
1456         module
1457     }
1458     fn local_modules(&'a self) -> ::std::cell::Ref<'a, Vec<Module<'a>>> {
1459         self.local_modules.borrow()
1460     }
1461     fn alloc_name_binding(&'a self, name_binding: NameBinding<'a>) -> &'a NameBinding<'a> {
1462         self.name_bindings.alloc(name_binding)
1463     }
1464     fn alloc_import_directive(&'a self, import_directive: ImportDirective<'a>)
1465                               -> &'a ImportDirective {
1466         self.import_directives.alloc(import_directive)
1467     }
1468     fn alloc_name_resolution(&'a self) -> &'a RefCell<NameResolution<'a>> {
1469         self.name_resolutions.alloc(Default::default())
1470     }
1471     fn alloc_invocation_data(&'a self, expansion_data: InvocationData<'a>)
1472                              -> &'a InvocationData<'a> {
1473         self.invocation_data.alloc(expansion_data)
1474     }
1475     fn alloc_legacy_binding(&'a self, binding: LegacyBinding<'a>) -> &'a LegacyBinding<'a> {
1476         self.legacy_bindings.alloc(binding)
1477     }
1478 }
1479
1480 impl<'a, 'b: 'a, 'cl: 'b> ty::DefIdTree for &'a Resolver<'b, 'cl> {
1481     fn parent(self, id: DefId) -> Option<DefId> {
1482         match id.krate {
1483             LOCAL_CRATE => self.definitions.def_key(id.index).parent,
1484             _ => self.cstore.def_key(id).parent,
1485         }.map(|index| DefId { index, ..id })
1486     }
1487 }
1488
1489 /// This interface is used through the AST→HIR step, to embed full paths into the HIR. After that
1490 /// the resolver is no longer needed as all the relevant information is inline.
1491 impl<'a, 'cl> hir::lowering::Resolver for Resolver<'a, 'cl> {
1492     fn resolve_hir_path(&mut self, path: &mut hir::Path, is_value: bool) {
1493         self.resolve_hir_path_cb(path, is_value,
1494                                  |resolver, span, error| resolve_error(resolver, span, error))
1495     }
1496
1497     fn resolve_str_path(
1498         &mut self,
1499         span: Span,
1500         crate_root: Option<&str>,
1501         components: &[&str],
1502         args: Option<P<hir::GenericArgs>>,
1503         is_value: bool
1504     ) -> hir::Path {
1505         let mut segments = iter::once(keywords::CrateRoot.ident())
1506             .chain(
1507                 crate_root.into_iter()
1508                     .chain(components.iter().cloned())
1509                     .map(Ident::from_str)
1510             ).map(hir::PathSegment::from_ident).collect::<Vec<_>>();
1511
1512         if let Some(args) = args {
1513             let ident = segments.last().unwrap().ident;
1514             *segments.last_mut().unwrap() = hir::PathSegment {
1515                 ident,
1516                 args: Some(args),
1517                 infer_types: true,
1518             };
1519         }
1520
1521         let mut path = hir::Path {
1522             span,
1523             def: Def::Err,
1524             segments: segments.into(),
1525         };
1526
1527         self.resolve_hir_path(&mut path, is_value);
1528         path
1529     }
1530
1531     fn get_resolution(&mut self, id: NodeId) -> Option<PathResolution> {
1532         self.def_map.get(&id).cloned()
1533     }
1534
1535     fn get_import(&mut self, id: NodeId) -> PerNS<Option<PathResolution>> {
1536         self.import_map.get(&id).cloned().unwrap_or_default()
1537     }
1538
1539     fn definitions(&mut self) -> &mut Definitions {
1540         &mut self.definitions
1541     }
1542 }
1543
1544 impl<'a, 'crateloader> Resolver<'a, 'crateloader> {
1545     /// Rustdoc uses this to resolve things in a recoverable way. ResolutionError<'a>
1546     /// isn't something that can be returned because it can't be made to live that long,
1547     /// and also it's a private type. Fortunately rustdoc doesn't need to know the error,
1548     /// just that an error occurred.
1549     pub fn resolve_str_path_error(&mut self, span: Span, path_str: &str, is_value: bool)
1550         -> Result<hir::Path, ()> {
1551         use std::iter;
1552         let mut errored = false;
1553
1554         let mut path = if path_str.starts_with("::") {
1555             hir::Path {
1556                 span,
1557                 def: Def::Err,
1558                 segments: iter::once(keywords::CrateRoot.ident()).chain({
1559                     path_str.split("::").skip(1).map(Ident::from_str)
1560                 }).map(hir::PathSegment::from_ident).collect(),
1561             }
1562         } else {
1563             hir::Path {
1564                 span,
1565                 def: Def::Err,
1566                 segments: path_str.split("::").map(Ident::from_str)
1567                                   .map(hir::PathSegment::from_ident).collect(),
1568             }
1569         };
1570         self.resolve_hir_path_cb(&mut path, is_value, |_, _, _| errored = true);
1571         if errored || path.def == Def::Err {
1572             Err(())
1573         } else {
1574             Ok(path)
1575         }
1576     }
1577
1578     /// resolve_hir_path, but takes a callback in case there was an error
1579     fn resolve_hir_path_cb<F>(&mut self, path: &mut hir::Path, is_value: bool, error_callback: F)
1580         where F: for<'c, 'b> FnOnce(&'c mut Resolver, Span, ResolutionError<'b>)
1581     {
1582         let namespace = if is_value { ValueNS } else { TypeNS };
1583         let hir::Path { ref segments, span, ref mut def } = *path;
1584         let path: Vec<_> = segments.iter().map(|seg| seg.ident).collect();
1585         // FIXME (Manishearth): Intra doc links won't get warned of epoch changes
1586         match self.resolve_path(&path, Some(namespace), true, span, CrateLint::No) {
1587             PathResult::Module(module) => *def = module.def().unwrap(),
1588             PathResult::NonModule(path_res) if path_res.unresolved_segments() == 0 =>
1589                 *def = path_res.base_def(),
1590             PathResult::NonModule(..) => match self.resolve_path(
1591                 &path,
1592                 None,
1593                 true,
1594                 span,
1595                 CrateLint::No,
1596             ) {
1597                 PathResult::Failed(span, msg, _) => {
1598                     error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1599                 }
1600                 _ => {}
1601             },
1602             PathResult::Indeterminate => unreachable!(),
1603             PathResult::Failed(span, msg, _) => {
1604                 error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1605             }
1606         }
1607     }
1608 }
1609
1610 impl<'a, 'crateloader: 'a> Resolver<'a, 'crateloader> {
1611     pub fn new(session: &'a Session,
1612                cstore: &'a CStore,
1613                krate: &Crate,
1614                crate_name: &str,
1615                make_glob_map: MakeGlobMap,
1616                crate_loader: &'a mut CrateLoader<'crateloader>,
1617                arenas: &'a ResolverArenas<'a>)
1618                -> Resolver<'a, 'crateloader> {
1619         let root_def_id = DefId::local(CRATE_DEF_INDEX);
1620         let root_module_kind = ModuleKind::Def(Def::Mod(root_def_id), keywords::Invalid.name());
1621         let graph_root = arenas.alloc_module(ModuleData {
1622             no_implicit_prelude: attr::contains_name(&krate.attrs, "no_implicit_prelude"),
1623             ..ModuleData::new(None, root_module_kind, root_def_id, Mark::root(), krate.span)
1624         });
1625         let mut module_map = FxHashMap();
1626         module_map.insert(DefId::local(CRATE_DEF_INDEX), graph_root);
1627
1628         let mut definitions = Definitions::new();
1629         DefCollector::new(&mut definitions, Mark::root())
1630             .collect_root(crate_name, session.local_crate_disambiguator());
1631
1632         let mut extern_prelude: FxHashSet<Name> =
1633             session.opts.externs.iter().map(|kv| Symbol::intern(kv.0)).collect();
1634         if !attr::contains_name(&krate.attrs, "no_core") {
1635             if !attr::contains_name(&krate.attrs, "no_std") {
1636                 extern_prelude.insert(Symbol::intern("std"));
1637             } else {
1638                 extern_prelude.insert(Symbol::intern("core"));
1639             }
1640         }
1641
1642         let mut invocations = FxHashMap();
1643         invocations.insert(Mark::root(),
1644                            arenas.alloc_invocation_data(InvocationData::root(graph_root)));
1645
1646         let features = session.features_untracked();
1647
1648         let mut macro_defs = FxHashMap();
1649         macro_defs.insert(Mark::root(), root_def_id);
1650
1651         Resolver {
1652             session,
1653
1654             cstore,
1655
1656             definitions,
1657
1658             // The outermost module has def ID 0; this is not reflected in the
1659             // AST.
1660             graph_root,
1661             prelude: None,
1662             extern_prelude,
1663
1664             has_self: FxHashSet(),
1665             field_names: FxHashMap(),
1666
1667             determined_imports: Vec::new(),
1668             indeterminate_imports: Vec::new(),
1669
1670             current_module: graph_root,
1671             ribs: PerNS {
1672                 value_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1673                 type_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1674                 macro_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1675             },
1676             label_ribs: Vec::new(),
1677
1678             current_trait_ref: None,
1679             current_self_type: None,
1680
1681             primitive_type_table: PrimitiveTypeTable::new(),
1682
1683             def_map: NodeMap(),
1684             import_map: NodeMap(),
1685             freevars: NodeMap(),
1686             freevars_seen: NodeMap(),
1687             export_map: FxHashMap(),
1688             trait_map: NodeMap(),
1689             module_map,
1690             block_map: NodeMap(),
1691             extern_module_map: FxHashMap(),
1692
1693             make_glob_map: make_glob_map == MakeGlobMap::Yes,
1694             glob_map: NodeMap(),
1695
1696             used_imports: FxHashSet(),
1697             maybe_unused_trait_imports: NodeSet(),
1698             maybe_unused_extern_crates: Vec::new(),
1699
1700             unused_labels: FxHashMap(),
1701
1702             privacy_errors: Vec::new(),
1703             ambiguity_errors: Vec::new(),
1704             use_injections: Vec::new(),
1705             proc_mac_errors: Vec::new(),
1706             gated_errors: FxHashSet(),
1707             disallowed_shadowing: Vec::new(),
1708
1709             arenas,
1710             dummy_binding: arenas.alloc_name_binding(NameBinding {
1711                 kind: NameBindingKind::Def(Def::Err, false),
1712                 expansion: Mark::root(),
1713                 span: DUMMY_SP,
1714                 vis: ty::Visibility::Public,
1715             }),
1716
1717             use_extern_macros: features.use_extern_macros(),
1718
1719             crate_loader,
1720             macro_names: FxHashSet(),
1721             macro_prelude: FxHashMap(),
1722             all_macros: FxHashMap(),
1723             lexical_macro_resolutions: Vec::new(),
1724             macro_map: FxHashMap(),
1725             macro_exports: Vec::new(),
1726             invocations,
1727             macro_defs,
1728             local_macro_def_scopes: FxHashMap(),
1729             name_already_seen: FxHashMap(),
1730             whitelisted_legacy_custom_derives: Vec::new(),
1731             warned_proc_macros: FxHashSet(),
1732             potentially_unused_imports: Vec::new(),
1733             struct_constructors: DefIdMap(),
1734             found_unresolved_macro: false,
1735             unused_macros: FxHashSet(),
1736             current_type_ascription: Vec::new(),
1737             injected_crate: None,
1738             ignore_extern_prelude_feature: false,
1739             unresolved_invocations_macro_export: FxHashSet(),
1740         }
1741     }
1742
1743     pub fn arenas() -> ResolverArenas<'a> {
1744         ResolverArenas {
1745             modules: arena::TypedArena::new(),
1746             local_modules: RefCell::new(Vec::new()),
1747             name_bindings: arena::TypedArena::new(),
1748             import_directives: arena::TypedArena::new(),
1749             name_resolutions: arena::TypedArena::new(),
1750             invocation_data: arena::TypedArena::new(),
1751             legacy_bindings: arena::TypedArena::new(),
1752         }
1753     }
1754
1755     /// Runs the function on each namespace.
1756     fn per_ns<F: FnMut(&mut Self, Namespace)>(&mut self, mut f: F) {
1757         f(self, TypeNS);
1758         f(self, ValueNS);
1759         if self.use_extern_macros {
1760             f(self, MacroNS);
1761         }
1762     }
1763
1764     fn macro_def(&self, mut ctxt: SyntaxContext) -> DefId {
1765         loop {
1766             match self.macro_defs.get(&ctxt.outer()) {
1767                 Some(&def_id) => return def_id,
1768                 None => ctxt.remove_mark(),
1769             };
1770         }
1771     }
1772
1773     /// Entry point to crate resolution.
1774     pub fn resolve_crate(&mut self, krate: &Crate) {
1775         ImportResolver { resolver: self }.finalize_imports();
1776         self.current_module = self.graph_root;
1777         self.finalize_current_module_macro_resolutions();
1778
1779         visit::walk_crate(self, krate);
1780
1781         check_unused::check_crate(self, krate);
1782         self.report_errors(krate);
1783         self.crate_loader.postprocess(krate);
1784     }
1785
1786     fn new_module(
1787         &self,
1788         parent: Module<'a>,
1789         kind: ModuleKind,
1790         normal_ancestor_id: DefId,
1791         expansion: Mark,
1792         span: Span,
1793     ) -> Module<'a> {
1794         let module = ModuleData::new(Some(parent), kind, normal_ancestor_id, expansion, span);
1795         self.arenas.alloc_module(module)
1796     }
1797
1798     fn record_use(&mut self, ident: Ident, ns: Namespace, binding: &'a NameBinding<'a>, span: Span)
1799                   -> bool /* true if an error was reported */ {
1800         match binding.kind {
1801             NameBindingKind::Import { directive, binding, ref used }
1802                     if !used.get() => {
1803                 used.set(true);
1804                 directive.used.set(true);
1805                 self.used_imports.insert((directive.id, ns));
1806                 self.add_to_glob_map(directive.id, ident);
1807                 self.record_use(ident, ns, binding, span)
1808             }
1809             NameBindingKind::Import { .. } => false,
1810             NameBindingKind::Ambiguity { b1, b2 } => {
1811                 self.ambiguity_errors.push(AmbiguityError {
1812                     span, name: ident.name, lexical: false, b1, b2,
1813                 });
1814                 true
1815             }
1816             _ => false
1817         }
1818     }
1819
1820     fn add_to_glob_map(&mut self, id: NodeId, ident: Ident) {
1821         if self.make_glob_map {
1822             self.glob_map.entry(id).or_insert_with(FxHashSet).insert(ident.name);
1823         }
1824     }
1825
1826     /// This resolves the identifier `ident` in the namespace `ns` in the current lexical scope.
1827     /// More specifically, we proceed up the hierarchy of scopes and return the binding for
1828     /// `ident` in the first scope that defines it (or None if no scopes define it).
1829     ///
1830     /// A block's items are above its local variables in the scope hierarchy, regardless of where
1831     /// the items are defined in the block. For example,
1832     /// ```rust
1833     /// fn f() {
1834     ///    g(); // Since there are no local variables in scope yet, this resolves to the item.
1835     ///    let g = || {};
1836     ///    fn g() {}
1837     ///    g(); // This resolves to the local variable `g` since it shadows the item.
1838     /// }
1839     /// ```
1840     ///
1841     /// Invariant: This must only be called during main resolution, not during
1842     /// import resolution.
1843     fn resolve_ident_in_lexical_scope(&mut self,
1844                                       mut ident: Ident,
1845                                       ns: Namespace,
1846                                       record_used_id: Option<NodeId>,
1847                                       path_span: Span)
1848                                       -> Option<LexicalScopeBinding<'a>> {
1849         let record_used = record_used_id.is_some();
1850         assert!(ns == TypeNS  || ns == ValueNS);
1851         if ns == TypeNS {
1852             ident.span = if ident.name == keywords::SelfType.name() {
1853                 // FIXME(jseyfried) improve `Self` hygiene
1854                 ident.span.with_ctxt(SyntaxContext::empty())
1855             } else {
1856                 ident.span.modern()
1857             }
1858         } else {
1859             ident = ident.modern_and_legacy();
1860         }
1861
1862         // Walk backwards up the ribs in scope.
1863         let mut module = self.graph_root;
1864         for i in (0 .. self.ribs[ns].len()).rev() {
1865             if let Some(def) = self.ribs[ns][i].bindings.get(&ident).cloned() {
1866                 // The ident resolves to a type parameter or local variable.
1867                 return Some(LexicalScopeBinding::Def(
1868                     self.adjust_local_def(ns, i, def, record_used, path_span)
1869                 ));
1870             }
1871
1872             module = match self.ribs[ns][i].kind {
1873                 ModuleRibKind(module) => module,
1874                 MacroDefinition(def) if def == self.macro_def(ident.span.ctxt()) => {
1875                     // If an invocation of this macro created `ident`, give up on `ident`
1876                     // and switch to `ident`'s source from the macro definition.
1877                     ident.span.remove_mark();
1878                     continue
1879                 }
1880                 _ => continue,
1881             };
1882
1883             let item = self.resolve_ident_in_module_unadjusted(
1884                 module, ident, ns, false, record_used, path_span,
1885             );
1886             if let Ok(binding) = item {
1887                 // The ident resolves to an item.
1888                 return Some(LexicalScopeBinding::Item(binding));
1889             }
1890
1891             match module.kind {
1892                 ModuleKind::Block(..) => {}, // We can see through blocks
1893                 _ => break,
1894             }
1895         }
1896
1897         ident.span = ident.span.modern();
1898         loop {
1899             let (opt_module, poisoned) = if let Some(node_id) = record_used_id {
1900                 self.hygienic_lexical_parent_with_compatibility_fallback(module, &mut ident.span,
1901                                                                          node_id)
1902             } else {
1903                 (self.hygienic_lexical_parent(module, &mut ident.span), None)
1904             };
1905             module = unwrap_or!(opt_module, break);
1906             let orig_current_module = self.current_module;
1907             self.current_module = module; // Lexical resolutions can never be a privacy error.
1908             let result = self.resolve_ident_in_module_unadjusted(
1909                 module, ident, ns, false, record_used, path_span,
1910             );
1911             self.current_module = orig_current_module;
1912
1913             match result {
1914                 Ok(binding) => {
1915                     if let Some(node_id) = poisoned {
1916                         self.session.buffer_lint_with_diagnostic(
1917                             lint::builtin::PROC_MACRO_DERIVE_RESOLUTION_FALLBACK,
1918                             node_id, ident.span,
1919                             &format!("cannot find {} `{}` in this scope", ns.descr(), ident),
1920                             lint::builtin::BuiltinLintDiagnostics::
1921                                 ProcMacroDeriveResolutionFallback(ident.span),
1922                         );
1923                     }
1924                     return Some(LexicalScopeBinding::Item(binding))
1925                 }
1926                 _ if poisoned.is_some() => break,
1927                 Err(Determined) => continue,
1928                 Err(Undetermined) =>
1929                     span_bug!(ident.span, "undetermined resolution during main resolution pass"),
1930             }
1931         }
1932
1933         if !module.no_implicit_prelude {
1934             // `record_used` means that we don't try to load crates during speculative resolution
1935             if record_used && ns == TypeNS && self.extern_prelude.contains(&ident.name) {
1936                 if !self.session.features_untracked().extern_prelude &&
1937                    !self.ignore_extern_prelude_feature {
1938                     feature_err(&self.session.parse_sess, "extern_prelude",
1939                                 ident.span, GateIssue::Language,
1940                                 "access to extern crates through prelude is experimental").emit();
1941                 }
1942
1943                 let crate_id = self.crate_loader.process_path_extern(ident.name, ident.span);
1944                 let crate_root = self.get_module(DefId { krate: crate_id, index: CRATE_DEF_INDEX });
1945                 self.populate_module_if_necessary(crate_root);
1946
1947                 let binding = (crate_root, ty::Visibility::Public,
1948                                ident.span, Mark::root()).to_name_binding(self.arenas);
1949                 return Some(LexicalScopeBinding::Item(binding));
1950             }
1951             if ns == TypeNS && is_known_tool(ident.name) {
1952                 let binding = (Def::ToolMod, ty::Visibility::Public,
1953                                ident.span, Mark::root()).to_name_binding(self.arenas);
1954                 return Some(LexicalScopeBinding::Item(binding));
1955             }
1956             if let Some(prelude) = self.prelude {
1957                 if let Ok(binding) = self.resolve_ident_in_module_unadjusted(prelude, ident, ns,
1958                                                                         false, false, path_span) {
1959                     return Some(LexicalScopeBinding::Item(binding));
1960                 }
1961             }
1962         }
1963
1964         None
1965     }
1966
1967     fn hygienic_lexical_parent(&mut self, module: Module<'a>, span: &mut Span)
1968                                -> Option<Module<'a>> {
1969         if !module.expansion.is_descendant_of(span.ctxt().outer()) {
1970             return Some(self.macro_def_scope(span.remove_mark()));
1971         }
1972
1973         if let ModuleKind::Block(..) = module.kind {
1974             return Some(module.parent.unwrap());
1975         }
1976
1977         None
1978     }
1979
1980     fn hygienic_lexical_parent_with_compatibility_fallback(
1981         &mut self, module: Module<'a>, span: &mut Span, node_id: NodeId
1982     ) -> (Option<Module<'a>>, /* poisoned */ Option<NodeId>)
1983     {
1984         if let module @ Some(..) = self.hygienic_lexical_parent(module, span) {
1985             return (module, None);
1986         }
1987
1988         // We need to support the next case under a deprecation warning
1989         // ```
1990         // struct MyStruct;
1991         // ---- begin: this comes from a proc macro derive
1992         // mod implementation_details {
1993         //     // Note that `MyStruct` is not in scope here.
1994         //     impl SomeTrait for MyStruct { ... }
1995         // }
1996         // ---- end
1997         // ```
1998         // So we have to fall back to the module's parent during lexical resolution in this case.
1999         if let Some(parent) = module.parent {
2000             // Inner module is inside the macro, parent module is outside of the macro.
2001             if module.expansion != parent.expansion &&
2002             module.expansion.is_descendant_of(parent.expansion) {
2003                 // The macro is a proc macro derive
2004                 if module.expansion.looks_like_proc_macro_derive() {
2005                     if parent.expansion.is_descendant_of(span.ctxt().outer()) {
2006                         return (module.parent, Some(node_id));
2007                     }
2008                 }
2009             }
2010         }
2011
2012         (None, None)
2013     }
2014
2015     fn resolve_ident_in_module(&mut self,
2016                                module: Module<'a>,
2017                                mut ident: Ident,
2018                                ns: Namespace,
2019                                record_used: bool,
2020                                span: Span)
2021                                -> Result<&'a NameBinding<'a>, Determinacy> {
2022         ident.span = ident.span.modern();
2023         let orig_current_module = self.current_module;
2024         if let Some(def) = ident.span.adjust(module.expansion) {
2025             self.current_module = self.macro_def_scope(def);
2026         }
2027         let result = self.resolve_ident_in_module_unadjusted(
2028             module, ident, ns, false, record_used, span,
2029         );
2030         self.current_module = orig_current_module;
2031         result
2032     }
2033
2034     fn resolve_crate_root(&mut self, ident: Ident) -> Module<'a> {
2035         let mut ctxt = ident.span.ctxt();
2036         let mark = if ident.name == keywords::DollarCrate.name() {
2037             // When resolving `$crate` from a `macro_rules!` invoked in a `macro`,
2038             // we don't want to pretend that the `macro_rules!` definition is in the `macro`
2039             // as described in `SyntaxContext::apply_mark`, so we ignore prepended modern marks.
2040             // FIXME: This is only a guess and it doesn't work correctly for `macro_rules!`
2041             // definitions actually produced by `macro` and `macro` definitions produced by
2042             // `macro_rules!`, but at least such configurations are not stable yet.
2043             ctxt = ctxt.modern_and_legacy();
2044             let mut iter = ctxt.marks().into_iter().rev().peekable();
2045             let mut result = None;
2046             // Find the last modern mark from the end if it exists.
2047             while let Some(&(mark, transparency)) = iter.peek() {
2048                 if transparency == Transparency::Opaque {
2049                     result = Some(mark);
2050                     iter.next();
2051                 } else {
2052                     break;
2053                 }
2054             }
2055             // Then find the last legacy mark from the end if it exists.
2056             for (mark, transparency) in iter {
2057                 if transparency == Transparency::SemiTransparent {
2058                     result = Some(mark);
2059                 } else {
2060                     break;
2061                 }
2062             }
2063             result
2064         } else {
2065             ctxt = ctxt.modern();
2066             ctxt.adjust(Mark::root())
2067         };
2068         let module = match mark {
2069             Some(def) => self.macro_def_scope(def),
2070             None => return self.graph_root,
2071         };
2072         self.get_module(DefId { index: CRATE_DEF_INDEX, ..module.normal_ancestor_id })
2073     }
2074
2075     fn resolve_self(&mut self, ctxt: &mut SyntaxContext, module: Module<'a>) -> Module<'a> {
2076         let mut module = self.get_module(module.normal_ancestor_id);
2077         while module.span.ctxt().modern() != *ctxt {
2078             let parent = module.parent.unwrap_or_else(|| self.macro_def_scope(ctxt.remove_mark()));
2079             module = self.get_module(parent.normal_ancestor_id);
2080         }
2081         module
2082     }
2083
2084     // AST resolution
2085     //
2086     // We maintain a list of value ribs and type ribs.
2087     //
2088     // Simultaneously, we keep track of the current position in the module
2089     // graph in the `current_module` pointer. When we go to resolve a name in
2090     // the value or type namespaces, we first look through all the ribs and
2091     // then query the module graph. When we resolve a name in the module
2092     // namespace, we can skip all the ribs (since nested modules are not
2093     // allowed within blocks in Rust) and jump straight to the current module
2094     // graph node.
2095     //
2096     // Named implementations are handled separately. When we find a method
2097     // call, we consult the module node to find all of the implementations in
2098     // scope. This information is lazily cached in the module node. We then
2099     // generate a fake "implementation scope" containing all the
2100     // implementations thus found, for compatibility with old resolve pass.
2101
2102     pub fn with_scope<F, T>(&mut self, id: NodeId, f: F) -> T
2103         where F: FnOnce(&mut Resolver) -> T
2104     {
2105         let id = self.definitions.local_def_id(id);
2106         let module = self.module_map.get(&id).cloned(); // clones a reference
2107         if let Some(module) = module {
2108             // Move down in the graph.
2109             let orig_module = replace(&mut self.current_module, module);
2110             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(module)));
2111             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(module)));
2112
2113             self.finalize_current_module_macro_resolutions();
2114             let ret = f(self);
2115
2116             self.current_module = orig_module;
2117             self.ribs[ValueNS].pop();
2118             self.ribs[TypeNS].pop();
2119             ret
2120         } else {
2121             f(self)
2122         }
2123     }
2124
2125     /// Searches the current set of local scopes for labels. Returns the first non-None label that
2126     /// is returned by the given predicate function
2127     ///
2128     /// Stops after meeting a closure.
2129     fn search_label<P, R>(&self, mut ident: Ident, pred: P) -> Option<R>
2130         where P: Fn(&Rib, Ident) -> Option<R>
2131     {
2132         for rib in self.label_ribs.iter().rev() {
2133             match rib.kind {
2134                 NormalRibKind => {}
2135                 // If an invocation of this macro created `ident`, give up on `ident`
2136                 // and switch to `ident`'s source from the macro definition.
2137                 MacroDefinition(def) => {
2138                     if def == self.macro_def(ident.span.ctxt()) {
2139                         ident.span.remove_mark();
2140                     }
2141                 }
2142                 _ => {
2143                     // Do not resolve labels across function boundary
2144                     return None;
2145                 }
2146             }
2147             let r = pred(rib, ident);
2148             if r.is_some() {
2149                 return r;
2150             }
2151         }
2152         None
2153     }
2154
2155     fn resolve_item(&mut self, item: &Item) {
2156         let name = item.ident.name;
2157
2158         debug!("(resolving item) resolving {}", name);
2159
2160         self.check_proc_macro_attrs(&item.attrs);
2161
2162         match item.node {
2163             ItemKind::Enum(_, ref generics) |
2164             ItemKind::Ty(_, ref generics) |
2165             ItemKind::Existential(_, ref generics) |
2166             ItemKind::Struct(_, ref generics) |
2167             ItemKind::Union(_, ref generics) |
2168             ItemKind::Fn(_, _, ref generics, _) => {
2169                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind),
2170                                          |this| visit::walk_item(this, item));
2171             }
2172
2173             ItemKind::Impl(.., ref generics, ref opt_trait_ref, ref self_type, ref impl_items) =>
2174                 self.resolve_implementation(generics,
2175                                             opt_trait_ref,
2176                                             &self_type,
2177                                             item.id,
2178                                             impl_items),
2179
2180             ItemKind::Trait(.., ref generics, ref bounds, ref trait_items) => {
2181                 // Create a new rib for the trait-wide type parameters.
2182                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2183                     let local_def_id = this.definitions.local_def_id(item.id);
2184                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2185                         this.visit_generics(generics);
2186                         walk_list!(this, visit_param_bound, bounds);
2187
2188                         for trait_item in trait_items {
2189                             this.check_proc_macro_attrs(&trait_item.attrs);
2190
2191                             let type_parameters = HasTypeParameters(&trait_item.generics,
2192                                                                     TraitOrImplItemRibKind);
2193                             this.with_type_parameter_rib(type_parameters, |this| {
2194                                 match trait_item.node {
2195                                     TraitItemKind::Const(ref ty, ref default) => {
2196                                         this.visit_ty(ty);
2197
2198                                         // Only impose the restrictions of
2199                                         // ConstRibKind for an actual constant
2200                                         // expression in a provided default.
2201                                         if let Some(ref expr) = *default{
2202                                             this.with_constant_rib(|this| {
2203                                                 this.visit_expr(expr);
2204                                             });
2205                                         }
2206                                     }
2207                                     TraitItemKind::Method(_, _) => {
2208                                         visit::walk_trait_item(this, trait_item)
2209                                     }
2210                                     TraitItemKind::Type(..) => {
2211                                         visit::walk_trait_item(this, trait_item)
2212                                     }
2213                                     TraitItemKind::Macro(_) => {
2214                                         panic!("unexpanded macro in resolve!")
2215                                     }
2216                                 };
2217                             });
2218                         }
2219                     });
2220                 });
2221             }
2222
2223             ItemKind::TraitAlias(ref generics, ref bounds) => {
2224                 // Create a new rib for the trait-wide type parameters.
2225                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2226                     let local_def_id = this.definitions.local_def_id(item.id);
2227                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2228                         this.visit_generics(generics);
2229                         walk_list!(this, visit_param_bound, bounds);
2230                     });
2231                 });
2232             }
2233
2234             ItemKind::Mod(_) | ItemKind::ForeignMod(_) => {
2235                 self.with_scope(item.id, |this| {
2236                     visit::walk_item(this, item);
2237                 });
2238             }
2239
2240             ItemKind::Static(ref ty, _, ref expr) |
2241             ItemKind::Const(ref ty, ref expr) => {
2242                 self.with_item_rib(|this| {
2243                     this.visit_ty(ty);
2244                     this.with_constant_rib(|this| {
2245                         this.visit_expr(expr);
2246                     });
2247                 });
2248             }
2249
2250             ItemKind::Use(ref use_tree) => {
2251                 // Imports are resolved as global by default, add starting root segment.
2252                 let path = Path {
2253                     segments: use_tree.prefix.make_root().into_iter().collect(),
2254                     span: use_tree.span,
2255                 };
2256                 self.resolve_use_tree(item.id, use_tree.span, item.id, use_tree, &path);
2257             }
2258
2259             ItemKind::ExternCrate(_) | ItemKind::MacroDef(..) | ItemKind::GlobalAsm(_) => {
2260                 // do nothing, these are just around to be encoded
2261             }
2262
2263             ItemKind::Mac(_) => panic!("unexpanded macro in resolve!"),
2264         }
2265     }
2266
2267     /// For the most part, use trees are desugared into `ImportDirective` instances
2268     /// when building the reduced graph (see `build_reduced_graph_for_use_tree`). But
2269     /// there is one special case we handle here: an empty nested import like
2270     /// `a::{b::{}}`, which desugares into...no import directives.
2271     fn resolve_use_tree(
2272         &mut self,
2273         root_id: NodeId,
2274         root_span: Span,
2275         id: NodeId,
2276         use_tree: &ast::UseTree,
2277         prefix: &Path,
2278     ) {
2279         match use_tree.kind {
2280             ast::UseTreeKind::Nested(ref items) => {
2281                 let path = Path {
2282                     segments: prefix.segments
2283                         .iter()
2284                         .chain(use_tree.prefix.segments.iter())
2285                         .cloned()
2286                         .collect(),
2287                     span: prefix.span.to(use_tree.prefix.span),
2288                 };
2289
2290                 if items.len() == 0 {
2291                     // Resolve prefix of an import with empty braces (issue #28388).
2292                     self.smart_resolve_path_with_crate_lint(
2293                         id,
2294                         None,
2295                         &path,
2296                         PathSource::ImportPrefix,
2297                         CrateLint::UsePath { root_id, root_span },
2298                     );
2299                 } else {
2300                     for &(ref tree, nested_id) in items {
2301                         self.resolve_use_tree(root_id, root_span, nested_id, tree, &path);
2302                     }
2303                 }
2304             }
2305             ast::UseTreeKind::Simple(..) => {},
2306             ast::UseTreeKind::Glob => {},
2307         }
2308     }
2309
2310     fn with_type_parameter_rib<'b, F>(&'b mut self, type_parameters: TypeParameters<'a, 'b>, f: F)
2311         where F: FnOnce(&mut Resolver)
2312     {
2313         match type_parameters {
2314             HasTypeParameters(generics, rib_kind) => {
2315                 let mut function_type_rib = Rib::new(rib_kind);
2316                 let mut seen_bindings = FxHashMap();
2317                 generics.params.iter().for_each(|param| match param.kind {
2318                     GenericParamKind::Lifetime { .. } => {}
2319                     GenericParamKind::Type { .. } => {
2320                         let ident = param.ident.modern();
2321                         debug!("with_type_parameter_rib: {}", param.id);
2322
2323                         if seen_bindings.contains_key(&ident) {
2324                             let span = seen_bindings.get(&ident).unwrap();
2325                             let err = ResolutionError::NameAlreadyUsedInTypeParameterList(
2326                                 ident.name,
2327                                 span,
2328                             );
2329                             resolve_error(self, param.ident.span, err);
2330                         }
2331                         seen_bindings.entry(ident).or_insert(param.ident.span);
2332
2333                     // Plain insert (no renaming).
2334                     let def = Def::TyParam(self.definitions.local_def_id(param.id));
2335                         function_type_rib.bindings.insert(ident, def);
2336                         self.record_def(param.id, PathResolution::new(def));
2337                     }
2338                 });
2339                 self.ribs[TypeNS].push(function_type_rib);
2340             }
2341
2342             NoTypeParameters => {
2343                 // Nothing to do.
2344             }
2345         }
2346
2347         f(self);
2348
2349         if let HasTypeParameters(..) = type_parameters {
2350             self.ribs[TypeNS].pop();
2351         }
2352     }
2353
2354     fn with_label_rib<F>(&mut self, f: F)
2355         where F: FnOnce(&mut Resolver)
2356     {
2357         self.label_ribs.push(Rib::new(NormalRibKind));
2358         f(self);
2359         self.label_ribs.pop();
2360     }
2361
2362     fn with_item_rib<F>(&mut self, f: F)
2363         where F: FnOnce(&mut Resolver)
2364     {
2365         self.ribs[ValueNS].push(Rib::new(ItemRibKind));
2366         self.ribs[TypeNS].push(Rib::new(ItemRibKind));
2367         f(self);
2368         self.ribs[TypeNS].pop();
2369         self.ribs[ValueNS].pop();
2370     }
2371
2372     fn with_constant_rib<F>(&mut self, f: F)
2373         where F: FnOnce(&mut Resolver)
2374     {
2375         self.ribs[ValueNS].push(Rib::new(ConstantItemRibKind));
2376         self.label_ribs.push(Rib::new(ConstantItemRibKind));
2377         f(self);
2378         self.label_ribs.pop();
2379         self.ribs[ValueNS].pop();
2380     }
2381
2382     fn with_current_self_type<T, F>(&mut self, self_type: &Ty, f: F) -> T
2383         where F: FnOnce(&mut Resolver) -> T
2384     {
2385         // Handle nested impls (inside fn bodies)
2386         let previous_value = replace(&mut self.current_self_type, Some(self_type.clone()));
2387         let result = f(self);
2388         self.current_self_type = previous_value;
2389         result
2390     }
2391
2392     /// This is called to resolve a trait reference from an `impl` (i.e. `impl Trait for Foo`)
2393     fn with_optional_trait_ref<T, F>(&mut self, opt_trait_ref: Option<&TraitRef>, f: F) -> T
2394         where F: FnOnce(&mut Resolver, Option<DefId>) -> T
2395     {
2396         let mut new_val = None;
2397         let mut new_id = None;
2398         if let Some(trait_ref) = opt_trait_ref {
2399             let path: Vec<_> = trait_ref.path.segments.iter()
2400                 .map(|seg| seg.ident)
2401                 .collect();
2402             let def = self.smart_resolve_path_fragment(
2403                 trait_ref.ref_id,
2404                 None,
2405                 &path,
2406                 trait_ref.path.span,
2407                 PathSource::Trait(AliasPossibility::No),
2408                 CrateLint::SimplePath(trait_ref.ref_id),
2409             ).base_def();
2410             if def != Def::Err {
2411                 new_id = Some(def.def_id());
2412                 let span = trait_ref.path.span;
2413                 if let PathResult::Module(module) = self.resolve_path(
2414                     &path,
2415                     None,
2416                     false,
2417                     span,
2418                     CrateLint::SimplePath(trait_ref.ref_id),
2419                 ) {
2420                     new_val = Some((module, trait_ref.clone()));
2421                 }
2422             }
2423         }
2424         let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
2425         let result = f(self, new_id);
2426         self.current_trait_ref = original_trait_ref;
2427         result
2428     }
2429
2430     fn with_self_rib<F>(&mut self, self_def: Def, f: F)
2431         where F: FnOnce(&mut Resolver)
2432     {
2433         let mut self_type_rib = Rib::new(NormalRibKind);
2434
2435         // plain insert (no renaming, types are not currently hygienic....)
2436         self_type_rib.bindings.insert(keywords::SelfType.ident(), self_def);
2437         self.ribs[TypeNS].push(self_type_rib);
2438         f(self);
2439         self.ribs[TypeNS].pop();
2440     }
2441
2442     fn resolve_implementation(&mut self,
2443                               generics: &Generics,
2444                               opt_trait_reference: &Option<TraitRef>,
2445                               self_type: &Ty,
2446                               item_id: NodeId,
2447                               impl_items: &[ImplItem]) {
2448         // If applicable, create a rib for the type parameters.
2449         self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2450             // Dummy self type for better errors if `Self` is used in the trait path.
2451             this.with_self_rib(Def::SelfTy(None, None), |this| {
2452                 // Resolve the trait reference, if necessary.
2453                 this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| {
2454                     let item_def_id = this.definitions.local_def_id(item_id);
2455                     this.with_self_rib(Def::SelfTy(trait_id, Some(item_def_id)), |this| {
2456                         if let Some(trait_ref) = opt_trait_reference.as_ref() {
2457                             // Resolve type arguments in trait path
2458                             visit::walk_trait_ref(this, trait_ref);
2459                         }
2460                         // Resolve the self type.
2461                         this.visit_ty(self_type);
2462                         // Resolve the type parameters.
2463                         this.visit_generics(generics);
2464                         this.with_current_self_type(self_type, |this| {
2465                             for impl_item in impl_items {
2466                                 this.check_proc_macro_attrs(&impl_item.attrs);
2467                                 this.resolve_visibility(&impl_item.vis);
2468
2469                                 // We also need a new scope for the impl item type parameters.
2470                                 let type_parameters = HasTypeParameters(&impl_item.generics,
2471                                                                         TraitOrImplItemRibKind);
2472                                 this.with_type_parameter_rib(type_parameters, |this| {
2473                                     use self::ResolutionError::*;
2474                                     match impl_item.node {
2475                                         ImplItemKind::Const(..) => {
2476                                             // If this is a trait impl, ensure the const
2477                                             // exists in trait
2478                                             this.check_trait_item(impl_item.ident,
2479                                                                 ValueNS,
2480                                                                 impl_item.span,
2481                                                 |n, s| ConstNotMemberOfTrait(n, s));
2482                                             this.with_constant_rib(|this|
2483                                                 visit::walk_impl_item(this, impl_item)
2484                                             );
2485                                         }
2486                                         ImplItemKind::Method(..) => {
2487                                             // If this is a trait impl, ensure the method
2488                                             // exists in trait
2489                                             this.check_trait_item(impl_item.ident,
2490                                                                 ValueNS,
2491                                                                 impl_item.span,
2492                                                 |n, s| MethodNotMemberOfTrait(n, s));
2493
2494                                             visit::walk_impl_item(this, impl_item);
2495                                         }
2496                                         ImplItemKind::Type(ref ty) => {
2497                                             // If this is a trait impl, ensure the type
2498                                             // exists in trait
2499                                             this.check_trait_item(impl_item.ident,
2500                                                                 TypeNS,
2501                                                                 impl_item.span,
2502                                                 |n, s| TypeNotMemberOfTrait(n, s));
2503
2504                                             this.visit_ty(ty);
2505                                         }
2506                                         ImplItemKind::Existential(ref bounds) => {
2507                                             // If this is a trait impl, ensure the type
2508                                             // exists in trait
2509                                             this.check_trait_item(impl_item.ident,
2510                                                                 TypeNS,
2511                                                                 impl_item.span,
2512                                                 |n, s| TypeNotMemberOfTrait(n, s));
2513
2514                                             for bound in bounds {
2515                                                 this.visit_param_bound(bound);
2516                                             }
2517                                         }
2518                                         ImplItemKind::Macro(_) =>
2519                                             panic!("unexpanded macro in resolve!"),
2520                                     }
2521                                 });
2522                             }
2523                         });
2524                     });
2525                 });
2526             });
2527         });
2528     }
2529
2530     fn check_trait_item<F>(&mut self, ident: Ident, ns: Namespace, span: Span, err: F)
2531         where F: FnOnce(Name, &str) -> ResolutionError
2532     {
2533         // If there is a TraitRef in scope for an impl, then the method must be in the
2534         // trait.
2535         if let Some((module, _)) = self.current_trait_ref {
2536             if self.resolve_ident_in_module(module, ident, ns, false, span).is_err() {
2537                 let path = &self.current_trait_ref.as_ref().unwrap().1.path;
2538                 resolve_error(self, span, err(ident.name, &path_names_to_string(path)));
2539             }
2540         }
2541     }
2542
2543     fn resolve_local(&mut self, local: &Local) {
2544         // Resolve the type.
2545         walk_list!(self, visit_ty, &local.ty);
2546
2547         // Resolve the initializer.
2548         walk_list!(self, visit_expr, &local.init);
2549
2550         // Resolve the pattern.
2551         self.resolve_pattern(&local.pat, PatternSource::Let, &mut FxHashMap());
2552     }
2553
2554     // build a map from pattern identifiers to binding-info's.
2555     // this is done hygienically. This could arise for a macro
2556     // that expands into an or-pattern where one 'x' was from the
2557     // user and one 'x' came from the macro.
2558     fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
2559         let mut binding_map = FxHashMap();
2560
2561         pat.walk(&mut |pat| {
2562             if let PatKind::Ident(binding_mode, ident, ref sub_pat) = pat.node {
2563                 if sub_pat.is_some() || match self.def_map.get(&pat.id).map(|res| res.base_def()) {
2564                     Some(Def::Local(..)) => true,
2565                     _ => false,
2566                 } {
2567                     let binding_info = BindingInfo { span: ident.span, binding_mode: binding_mode };
2568                     binding_map.insert(ident, binding_info);
2569                 }
2570             }
2571             true
2572         });
2573
2574         binding_map
2575     }
2576
2577     // check that all of the arms in an or-pattern have exactly the
2578     // same set of bindings, with the same binding modes for each.
2579     fn check_consistent_bindings(&mut self, pats: &[P<Pat>]) {
2580         if pats.is_empty() {
2581             return;
2582         }
2583
2584         let mut missing_vars = FxHashMap();
2585         let mut inconsistent_vars = FxHashMap();
2586         for (i, p) in pats.iter().enumerate() {
2587             let map_i = self.binding_mode_map(&p);
2588
2589             for (j, q) in pats.iter().enumerate() {
2590                 if i == j {
2591                     continue;
2592                 }
2593
2594                 let map_j = self.binding_mode_map(&q);
2595                 for (&key, &binding_i) in &map_i {
2596                     if map_j.len() == 0 {                   // Account for missing bindings when
2597                         let binding_error = missing_vars    // map_j has none.
2598                             .entry(key.name)
2599                             .or_insert(BindingError {
2600                                 name: key.name,
2601                                 origin: BTreeSet::new(),
2602                                 target: BTreeSet::new(),
2603                             });
2604                         binding_error.origin.insert(binding_i.span);
2605                         binding_error.target.insert(q.span);
2606                     }
2607                     for (&key_j, &binding_j) in &map_j {
2608                         match map_i.get(&key_j) {
2609                             None => {  // missing binding
2610                                 let binding_error = missing_vars
2611                                     .entry(key_j.name)
2612                                     .or_insert(BindingError {
2613                                         name: key_j.name,
2614                                         origin: BTreeSet::new(),
2615                                         target: BTreeSet::new(),
2616                                     });
2617                                 binding_error.origin.insert(binding_j.span);
2618                                 binding_error.target.insert(p.span);
2619                             }
2620                             Some(binding_i) => {  // check consistent binding
2621                                 if binding_i.binding_mode != binding_j.binding_mode {
2622                                     inconsistent_vars
2623                                         .entry(key.name)
2624                                         .or_insert((binding_j.span, binding_i.span));
2625                                 }
2626                             }
2627                         }
2628                     }
2629                 }
2630             }
2631         }
2632         let mut missing_vars = missing_vars.iter().collect::<Vec<_>>();
2633         missing_vars.sort();
2634         for (_, v) in missing_vars {
2635             resolve_error(self,
2636                           *v.origin.iter().next().unwrap(),
2637                           ResolutionError::VariableNotBoundInPattern(v));
2638         }
2639         let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
2640         inconsistent_vars.sort();
2641         for (name, v) in inconsistent_vars {
2642             resolve_error(self, v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
2643         }
2644     }
2645
2646     fn resolve_arm(&mut self, arm: &Arm) {
2647         self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2648
2649         let mut bindings_list = FxHashMap();
2650         for pattern in &arm.pats {
2651             self.resolve_pattern(&pattern, PatternSource::Match, &mut bindings_list);
2652         }
2653
2654         // This has to happen *after* we determine which pat_idents are variants
2655         self.check_consistent_bindings(&arm.pats);
2656
2657         walk_list!(self, visit_expr, &arm.guard);
2658         self.visit_expr(&arm.body);
2659
2660         self.ribs[ValueNS].pop();
2661     }
2662
2663     fn resolve_block(&mut self, block: &Block) {
2664         debug!("(resolving block) entering block");
2665         // Move down in the graph, if there's an anonymous module rooted here.
2666         let orig_module = self.current_module;
2667         let anonymous_module = self.block_map.get(&block.id).cloned(); // clones a reference
2668
2669         let mut num_macro_definition_ribs = 0;
2670         if let Some(anonymous_module) = anonymous_module {
2671             debug!("(resolving block) found anonymous module, moving down");
2672             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2673             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2674             self.current_module = anonymous_module;
2675             self.finalize_current_module_macro_resolutions();
2676         } else {
2677             self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2678         }
2679
2680         // Descend into the block.
2681         for stmt in &block.stmts {
2682             if let ast::StmtKind::Item(ref item) = stmt.node {
2683                 if let ast::ItemKind::MacroDef(..) = item.node {
2684                     num_macro_definition_ribs += 1;
2685                     let def = self.definitions.local_def_id(item.id);
2686                     self.ribs[ValueNS].push(Rib::new(MacroDefinition(def)));
2687                     self.label_ribs.push(Rib::new(MacroDefinition(def)));
2688                 }
2689             }
2690
2691             self.visit_stmt(stmt);
2692         }
2693
2694         // Move back up.
2695         self.current_module = orig_module;
2696         for _ in 0 .. num_macro_definition_ribs {
2697             self.ribs[ValueNS].pop();
2698             self.label_ribs.pop();
2699         }
2700         self.ribs[ValueNS].pop();
2701         if let Some(_) = anonymous_module {
2702             self.ribs[TypeNS].pop();
2703         }
2704         debug!("(resolving block) leaving block");
2705     }
2706
2707     fn fresh_binding(&mut self,
2708                      ident: Ident,
2709                      pat_id: NodeId,
2710                      outer_pat_id: NodeId,
2711                      pat_src: PatternSource,
2712                      bindings: &mut FxHashMap<Ident, NodeId>)
2713                      -> PathResolution {
2714         // Add the binding to the local ribs, if it
2715         // doesn't already exist in the bindings map. (We
2716         // must not add it if it's in the bindings map
2717         // because that breaks the assumptions later
2718         // passes make about or-patterns.)
2719         let ident = ident.modern_and_legacy();
2720         let mut def = Def::Local(pat_id);
2721         match bindings.get(&ident).cloned() {
2722             Some(id) if id == outer_pat_id => {
2723                 // `Variant(a, a)`, error
2724                 resolve_error(
2725                     self,
2726                     ident.span,
2727                     ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(
2728                         &ident.as_str())
2729                 );
2730             }
2731             Some(..) if pat_src == PatternSource::FnParam => {
2732                 // `fn f(a: u8, a: u8)`, error
2733                 resolve_error(
2734                     self,
2735                     ident.span,
2736                     ResolutionError::IdentifierBoundMoreThanOnceInParameterList(
2737                         &ident.as_str())
2738                 );
2739             }
2740             Some(..) if pat_src == PatternSource::Match ||
2741                         pat_src == PatternSource::IfLet ||
2742                         pat_src == PatternSource::WhileLet => {
2743                 // `Variant1(a) | Variant2(a)`, ok
2744                 // Reuse definition from the first `a`.
2745                 def = self.ribs[ValueNS].last_mut().unwrap().bindings[&ident];
2746             }
2747             Some(..) => {
2748                 span_bug!(ident.span, "two bindings with the same name from \
2749                                        unexpected pattern source {:?}", pat_src);
2750             }
2751             None => {
2752                 // A completely fresh binding, add to the lists if it's valid.
2753                 if ident.name != keywords::Invalid.name() {
2754                     bindings.insert(ident, outer_pat_id);
2755                     self.ribs[ValueNS].last_mut().unwrap().bindings.insert(ident, def);
2756                 }
2757             }
2758         }
2759
2760         PathResolution::new(def)
2761     }
2762
2763     fn resolve_pattern(&mut self,
2764                        pat: &Pat,
2765                        pat_src: PatternSource,
2766                        // Maps idents to the node ID for the
2767                        // outermost pattern that binds them.
2768                        bindings: &mut FxHashMap<Ident, NodeId>) {
2769         // Visit all direct subpatterns of this pattern.
2770         let outer_pat_id = pat.id;
2771         pat.walk(&mut |pat| {
2772             match pat.node {
2773                 PatKind::Ident(bmode, ident, ref opt_pat) => {
2774                     // First try to resolve the identifier as some existing
2775                     // entity, then fall back to a fresh binding.
2776                     let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS,
2777                                                                       None, pat.span)
2778                                       .and_then(LexicalScopeBinding::item);
2779                     let resolution = binding.map(NameBinding::def).and_then(|def| {
2780                         let is_syntactic_ambiguity = opt_pat.is_none() &&
2781                             bmode == BindingMode::ByValue(Mutability::Immutable);
2782                         match def {
2783                             Def::StructCtor(_, CtorKind::Const) |
2784                             Def::VariantCtor(_, CtorKind::Const) |
2785                             Def::Const(..) if is_syntactic_ambiguity => {
2786                                 // Disambiguate in favor of a unit struct/variant
2787                                 // or constant pattern.
2788                                 self.record_use(ident, ValueNS, binding.unwrap(), ident.span);
2789                                 Some(PathResolution::new(def))
2790                             }
2791                             Def::StructCtor(..) | Def::VariantCtor(..) |
2792                             Def::Const(..) | Def::Static(..) => {
2793                                 // This is unambiguously a fresh binding, either syntactically
2794                                 // (e.g. `IDENT @ PAT` or `ref IDENT`) or because `IDENT` resolves
2795                                 // to something unusable as a pattern (e.g. constructor function),
2796                                 // but we still conservatively report an error, see
2797                                 // issues/33118#issuecomment-233962221 for one reason why.
2798                                 resolve_error(
2799                                     self,
2800                                     ident.span,
2801                                     ResolutionError::BindingShadowsSomethingUnacceptable(
2802                                         pat_src.descr(), ident.name, binding.unwrap())
2803                                 );
2804                                 None
2805                             }
2806                             Def::Fn(..) | Def::Err => {
2807                                 // These entities are explicitly allowed
2808                                 // to be shadowed by fresh bindings.
2809                                 None
2810                             }
2811                             def => {
2812                                 span_bug!(ident.span, "unexpected definition for an \
2813                                                        identifier in pattern: {:?}", def);
2814                             }
2815                         }
2816                     }).unwrap_or_else(|| {
2817                         self.fresh_binding(ident, pat.id, outer_pat_id, pat_src, bindings)
2818                     });
2819
2820                     self.record_def(pat.id, resolution);
2821                 }
2822
2823                 PatKind::TupleStruct(ref path, ..) => {
2824                     self.smart_resolve_path(pat.id, None, path, PathSource::TupleStruct);
2825                 }
2826
2827                 PatKind::Path(ref qself, ref path) => {
2828                     self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
2829                 }
2830
2831                 PatKind::Struct(ref path, ..) => {
2832                     self.smart_resolve_path(pat.id, None, path, PathSource::Struct);
2833                 }
2834
2835                 _ => {}
2836             }
2837             true
2838         });
2839
2840         visit::walk_pat(self, pat);
2841     }
2842
2843     // High-level and context dependent path resolution routine.
2844     // Resolves the path and records the resolution into definition map.
2845     // If resolution fails tries several techniques to find likely
2846     // resolution candidates, suggest imports or other help, and report
2847     // errors in user friendly way.
2848     fn smart_resolve_path(&mut self,
2849                           id: NodeId,
2850                           qself: Option<&QSelf>,
2851                           path: &Path,
2852                           source: PathSource)
2853                           -> PathResolution {
2854         self.smart_resolve_path_with_crate_lint(id, qself, path, source, CrateLint::SimplePath(id))
2855     }
2856
2857     /// A variant of `smart_resolve_path` where you also specify extra
2858     /// information about where the path came from; this extra info is
2859     /// sometimes needed for the lint that recommends rewriting
2860     /// absolute paths to `crate`, so that it knows how to frame the
2861     /// suggestion. If you are just resolving a path like `foo::bar`
2862     /// that appears...somewhere, though, then you just want
2863     /// `CrateLint::SimplePath`, which is what `smart_resolve_path`
2864     /// already provides.
2865     fn smart_resolve_path_with_crate_lint(
2866         &mut self,
2867         id: NodeId,
2868         qself: Option<&QSelf>,
2869         path: &Path,
2870         source: PathSource,
2871         crate_lint: CrateLint
2872     ) -> PathResolution {
2873         let segments = &path.segments.iter()
2874             .map(|seg| seg.ident)
2875             .collect::<Vec<_>>();
2876         self.smart_resolve_path_fragment(id, qself, segments, path.span, source, crate_lint)
2877     }
2878
2879     fn smart_resolve_path_fragment(&mut self,
2880                                    id: NodeId,
2881                                    qself: Option<&QSelf>,
2882                                    path: &[Ident],
2883                                    span: Span,
2884                                    source: PathSource,
2885                                    crate_lint: CrateLint)
2886                                    -> PathResolution {
2887         let ident_span = path.last().map_or(span, |ident| ident.span);
2888         let ns = source.namespace();
2889         let is_expected = &|def| source.is_expected(def);
2890         let is_enum_variant = &|def| if let Def::Variant(..) = def { true } else { false };
2891
2892         // Base error is amended with one short label and possibly some longer helps/notes.
2893         let report_errors = |this: &mut Self, def: Option<Def>| {
2894             // Make the base error.
2895             let expected = source.descr_expected();
2896             let path_str = names_to_string(path);
2897             let code = source.error_code(def.is_some());
2898             let (base_msg, fallback_label, base_span) = if let Some(def) = def {
2899                 (format!("expected {}, found {} `{}`", expected, def.kind_name(), path_str),
2900                  format!("not a {}", expected),
2901                  span)
2902             } else {
2903                 let item_str = path[path.len() - 1];
2904                 let item_span = path[path.len() - 1].span;
2905                 let (mod_prefix, mod_str) = if path.len() == 1 {
2906                     (String::new(), "this scope".to_string())
2907                 } else if path.len() == 2 && path[0].name == keywords::CrateRoot.name() {
2908                     (String::new(), "the crate root".to_string())
2909                 } else {
2910                     let mod_path = &path[..path.len() - 1];
2911                     let mod_prefix = match this.resolve_path(mod_path, Some(TypeNS),
2912                                                              false, span, CrateLint::No) {
2913                         PathResult::Module(module) => module.def(),
2914                         _ => None,
2915                     }.map_or(String::new(), |def| format!("{} ", def.kind_name()));
2916                     (mod_prefix, format!("`{}`", names_to_string(mod_path)))
2917                 };
2918                 (format!("cannot find {} `{}` in {}{}", expected, item_str, mod_prefix, mod_str),
2919                  format!("not found in {}", mod_str),
2920                  item_span)
2921             };
2922             let code = DiagnosticId::Error(code.into());
2923             let mut err = this.session.struct_span_err_with_code(base_span, &base_msg, code);
2924
2925             // Emit special messages for unresolved `Self` and `self`.
2926             if is_self_type(path, ns) {
2927                 __diagnostic_used!(E0411);
2928                 err.code(DiagnosticId::Error("E0411".into()));
2929                 err.span_label(span, "`Self` is only available in traits and impls");
2930                 return (err, Vec::new());
2931             }
2932             if is_self_value(path, ns) {
2933                 __diagnostic_used!(E0424);
2934                 err.code(DiagnosticId::Error("E0424".into()));
2935                 err.span_label(span, format!("`self` value is only available in \
2936                                                methods with `self` parameter"));
2937                 return (err, Vec::new());
2938             }
2939
2940             // Try to lookup the name in more relaxed fashion for better error reporting.
2941             let ident = *path.last().unwrap();
2942             let candidates = this.lookup_import_candidates(ident.name, ns, is_expected);
2943             if candidates.is_empty() && is_expected(Def::Enum(DefId::local(CRATE_DEF_INDEX))) {
2944                 let enum_candidates =
2945                     this.lookup_import_candidates(ident.name, ns, is_enum_variant);
2946                 let mut enum_candidates = enum_candidates.iter()
2947                     .map(|suggestion| import_candidate_to_paths(&suggestion)).collect::<Vec<_>>();
2948                 enum_candidates.sort();
2949                 for (sp, variant_path, enum_path) in enum_candidates {
2950                     if sp.is_dummy() {
2951                         let msg = format!("there is an enum variant `{}`, \
2952                                         try using `{}`?",
2953                                         variant_path,
2954                                         enum_path);
2955                         err.help(&msg);
2956                     } else {
2957                         err.span_suggestion(span, "you can try using the variant's enum",
2958                                             enum_path);
2959                     }
2960                 }
2961             }
2962             if path.len() == 1 && this.self_type_is_available(span) {
2963                 if let Some(candidate) = this.lookup_assoc_candidate(ident, ns, is_expected) {
2964                     let self_is_available = this.self_value_is_available(path[0].span, span);
2965                     match candidate {
2966                         AssocSuggestion::Field => {
2967                             err.span_suggestion(span, "try",
2968                                                 format!("self.{}", path_str));
2969                             if !self_is_available {
2970                                 err.span_label(span, format!("`self` value is only available in \
2971                                                                methods with `self` parameter"));
2972                             }
2973                         }
2974                         AssocSuggestion::MethodWithSelf if self_is_available => {
2975                             err.span_suggestion(span, "try",
2976                                                 format!("self.{}", path_str));
2977                         }
2978                         AssocSuggestion::MethodWithSelf | AssocSuggestion::AssocItem => {
2979                             err.span_suggestion(span, "try",
2980                                                 format!("Self::{}", path_str));
2981                         }
2982                     }
2983                     return (err, candidates);
2984                 }
2985             }
2986
2987             let mut levenshtein_worked = false;
2988
2989             // Try Levenshtein.
2990             if let Some(candidate) = this.lookup_typo_candidate(path, ns, is_expected, span) {
2991                 err.span_label(ident_span, format!("did you mean `{}`?", candidate));
2992                 levenshtein_worked = true;
2993             }
2994
2995             // Try context dependent help if relaxed lookup didn't work.
2996             if let Some(def) = def {
2997                 match (def, source) {
2998                     (Def::Macro(..), _) => {
2999                         err.span_label(span, format!("did you mean `{}!(...)`?", path_str));
3000                         return (err, candidates);
3001                     }
3002                     (Def::TyAlias(..), PathSource::Trait(_)) => {
3003                         err.span_label(span, "type aliases cannot be used for traits");
3004                         return (err, candidates);
3005                     }
3006                     (Def::Mod(..), PathSource::Expr(Some(parent))) => match parent.node {
3007                         ExprKind::Field(_, ident) => {
3008                             err.span_label(parent.span, format!("did you mean `{}::{}`?",
3009                                                                  path_str, ident));
3010                             return (err, candidates);
3011                         }
3012                         ExprKind::MethodCall(ref segment, ..) => {
3013                             err.span_label(parent.span, format!("did you mean `{}::{}(...)`?",
3014                                                                  path_str, segment.ident));
3015                             return (err, candidates);
3016                         }
3017                         _ => {}
3018                     },
3019                     (Def::Enum(..), PathSource::TupleStruct)
3020                         | (Def::Enum(..), PathSource::Expr(..))  => {
3021                         if let Some(variants) = this.collect_enum_variants(def) {
3022                             err.note(&format!("did you mean to use one \
3023                                                of the following variants?\n{}",
3024                                 variants.iter()
3025                                     .map(|suggestion| path_names_to_string(suggestion))
3026                                     .map(|suggestion| format!("- `{}`", suggestion))
3027                                     .collect::<Vec<_>>()
3028                                     .join("\n")));
3029
3030                         } else {
3031                             err.note("did you mean to use one of the enum's variants?");
3032                         }
3033                         return (err, candidates);
3034                     },
3035                     (Def::Struct(def_id), _) if ns == ValueNS => {
3036                         if let Some((ctor_def, ctor_vis))
3037                                 = this.struct_constructors.get(&def_id).cloned() {
3038                             let accessible_ctor = this.is_accessible(ctor_vis);
3039                             if is_expected(ctor_def) && !accessible_ctor {
3040                                 err.span_label(span, format!("constructor is not visible \
3041                                                               here due to private fields"));
3042                             }
3043                         } else {
3044                             // HACK(estebank): find a better way to figure out that this was a
3045                             // parser issue where a struct literal is being used on an expression
3046                             // where a brace being opened means a block is being started. Look
3047                             // ahead for the next text to see if `span` is followed by a `{`.
3048                             let cm = this.session.codemap();
3049                             let mut sp = span;
3050                             loop {
3051                                 sp = cm.next_point(sp);
3052                                 match cm.span_to_snippet(sp) {
3053                                     Ok(ref snippet) => {
3054                                         if snippet.chars().any(|c| { !c.is_whitespace() }) {
3055                                             break;
3056                                         }
3057                                     }
3058                                     _ => break,
3059                                 }
3060                             }
3061                             let followed_by_brace = match cm.span_to_snippet(sp) {
3062                                 Ok(ref snippet) if snippet == "{" => true,
3063                                 _ => false,
3064                             };
3065                             if let (PathSource::Expr(None), true) = (source, followed_by_brace) {
3066                                 err.span_label(
3067                                     span,
3068                                     format!("did you mean `({} {{ /* fields */ }})`?", path_str),
3069                                 );
3070                             } else {
3071                                 err.span_label(
3072                                     span,
3073                                     format!("did you mean `{} {{ /* fields */ }}`?", path_str),
3074                                 );
3075                             }
3076                         }
3077                         return (err, candidates);
3078                     }
3079                     (Def::Union(..), _) |
3080                     (Def::Variant(..), _) |
3081                     (Def::VariantCtor(_, CtorKind::Fictive), _) if ns == ValueNS => {
3082                         err.span_label(span, format!("did you mean `{} {{ /* fields */ }}`?",
3083                                                      path_str));
3084                         return (err, candidates);
3085                     }
3086                     (Def::SelfTy(..), _) if ns == ValueNS => {
3087                         err.span_label(span, fallback_label);
3088                         err.note("can't use `Self` as a constructor, you must use the \
3089                                   implemented struct");
3090                         return (err, candidates);
3091                     }
3092                     (Def::TyAlias(_), _) | (Def::AssociatedTy(..), _) if ns == ValueNS => {
3093                         err.note("can't use a type alias as a constructor");
3094                         return (err, candidates);
3095                     }
3096                     _ => {}
3097                 }
3098             }
3099
3100             // Fallback label.
3101             if !levenshtein_worked {
3102                 err.span_label(base_span, fallback_label);
3103                 this.type_ascription_suggestion(&mut err, base_span);
3104             }
3105             (err, candidates)
3106         };
3107         let report_errors = |this: &mut Self, def: Option<Def>| {
3108             let (err, candidates) = report_errors(this, def);
3109             let def_id = this.current_module.normal_ancestor_id;
3110             let node_id = this.definitions.as_local_node_id(def_id).unwrap();
3111             let better = def.is_some();
3112             this.use_injections.push(UseError { err, candidates, node_id, better });
3113             err_path_resolution()
3114         };
3115
3116         let resolution = match self.resolve_qpath_anywhere(
3117             id,
3118             qself,
3119             path,
3120             ns,
3121             span,
3122             source.defer_to_typeck(),
3123             source.global_by_default(),
3124             crate_lint,
3125         ) {
3126             Some(resolution) if resolution.unresolved_segments() == 0 => {
3127                 if is_expected(resolution.base_def()) || resolution.base_def() == Def::Err {
3128                     resolution
3129                 } else {
3130                     // Add a temporary hack to smooth the transition to new struct ctor
3131                     // visibility rules. See #38932 for more details.
3132                     let mut res = None;
3133                     if let Def::Struct(def_id) = resolution.base_def() {
3134                         if let Some((ctor_def, ctor_vis))
3135                                 = self.struct_constructors.get(&def_id).cloned() {
3136                             if is_expected(ctor_def) && self.is_accessible(ctor_vis) {
3137                                 let lint = lint::builtin::LEGACY_CONSTRUCTOR_VISIBILITY;
3138                                 self.session.buffer_lint(lint, id, span,
3139                                     "private struct constructors are not usable through \
3140                                      re-exports in outer modules",
3141                                 );
3142                                 res = Some(PathResolution::new(ctor_def));
3143                             }
3144                         }
3145                     }
3146
3147                     res.unwrap_or_else(|| report_errors(self, Some(resolution.base_def())))
3148                 }
3149             }
3150             Some(resolution) if source.defer_to_typeck() => {
3151                 // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
3152                 // or `<T>::A::B`. If `B` should be resolved in value namespace then
3153                 // it needs to be added to the trait map.
3154                 if ns == ValueNS {
3155                     let item_name = *path.last().unwrap();
3156                     let traits = self.get_traits_containing_item(item_name, ns);
3157                     self.trait_map.insert(id, traits);
3158                 }
3159                 resolution
3160             }
3161             _ => report_errors(self, None)
3162         };
3163
3164         if let PathSource::TraitItem(..) = source {} else {
3165             // Avoid recording definition of `A::B` in `<T as A>::B::C`.
3166             self.record_def(id, resolution);
3167         }
3168         resolution
3169     }
3170
3171     fn type_ascription_suggestion(&self,
3172                                   err: &mut DiagnosticBuilder,
3173                                   base_span: Span) {
3174         debug!("type_ascription_suggetion {:?}", base_span);
3175         let cm = self.session.codemap();
3176         debug!("self.current_type_ascription {:?}", self.current_type_ascription);
3177         if let Some(sp) = self.current_type_ascription.last() {
3178             let mut sp = *sp;
3179             loop {  // try to find the `:`, bail on first non-':'/non-whitespace
3180                 sp = cm.next_point(sp);
3181                 if let Ok(snippet) = cm.span_to_snippet(sp.to(cm.next_point(sp))) {
3182                     debug!("snippet {:?}", snippet);
3183                     let line_sp = cm.lookup_char_pos(sp.hi()).line;
3184                     let line_base_sp = cm.lookup_char_pos(base_span.lo()).line;
3185                     debug!("{:?} {:?}", line_sp, line_base_sp);
3186                     if snippet == ":" {
3187                         err.span_label(base_span,
3188                                        "expecting a type here because of type ascription");
3189                         if line_sp != line_base_sp {
3190                             err.span_suggestion_short(sp,
3191                                                       "did you mean to use `;` here instead?",
3192                                                       ";".to_string());
3193                         }
3194                         break;
3195                     } else if snippet.trim().len() != 0  {
3196                         debug!("tried to find type ascription `:` token, couldn't find it");
3197                         break;
3198                     }
3199                 } else {
3200                     break;
3201                 }
3202             }
3203         }
3204     }
3205
3206     fn self_type_is_available(&mut self, span: Span) -> bool {
3207         let binding = self.resolve_ident_in_lexical_scope(keywords::SelfType.ident(),
3208                                                           TypeNS, None, span);
3209         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3210     }
3211
3212     fn self_value_is_available(&mut self, self_span: Span, path_span: Span) -> bool {
3213         let ident = Ident::new(keywords::SelfValue.name(), self_span);
3214         let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, None, path_span);
3215         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3216     }
3217
3218     // Resolve in alternative namespaces if resolution in the primary namespace fails.
3219     fn resolve_qpath_anywhere(&mut self,
3220                               id: NodeId,
3221                               qself: Option<&QSelf>,
3222                               path: &[Ident],
3223                               primary_ns: Namespace,
3224                               span: Span,
3225                               defer_to_typeck: bool,
3226                               global_by_default: bool,
3227                               crate_lint: CrateLint)
3228                               -> Option<PathResolution> {
3229         let mut fin_res = None;
3230         // FIXME: can't resolve paths in macro namespace yet, macros are
3231         // processed by the little special hack below.
3232         for (i, ns) in [primary_ns, TypeNS, ValueNS, /*MacroNS*/].iter().cloned().enumerate() {
3233             if i == 0 || ns != primary_ns {
3234                 match self.resolve_qpath(id, qself, path, ns, span, global_by_default, crate_lint) {
3235                     // If defer_to_typeck, then resolution > no resolution,
3236                     // otherwise full resolution > partial resolution > no resolution.
3237                     Some(res) if res.unresolved_segments() == 0 || defer_to_typeck =>
3238                         return Some(res),
3239                     res => if fin_res.is_none() { fin_res = res },
3240                 };
3241             }
3242         }
3243         let is_global = self.macro_prelude.get(&path[0].name).cloned()
3244             .map(|binding| binding.get_macro(self).kind() == MacroKind::Bang).unwrap_or(false);
3245         if primary_ns != MacroNS && (is_global ||
3246                                      self.macro_names.contains(&path[0].modern())) {
3247             // Return some dummy definition, it's enough for error reporting.
3248             return Some(
3249                 PathResolution::new(Def::Macro(DefId::local(CRATE_DEF_INDEX), MacroKind::Bang))
3250             );
3251         }
3252         fin_res
3253     }
3254
3255     /// Handles paths that may refer to associated items.
3256     fn resolve_qpath(&mut self,
3257                      id: NodeId,
3258                      qself: Option<&QSelf>,
3259                      path: &[Ident],
3260                      ns: Namespace,
3261                      span: Span,
3262                      global_by_default: bool,
3263                      crate_lint: CrateLint)
3264                      -> Option<PathResolution> {
3265         debug!(
3266             "resolve_qpath(id={:?}, qself={:?}, path={:?}, \
3267              ns={:?}, span={:?}, global_by_default={:?})",
3268             id,
3269             qself,
3270             path,
3271             ns,
3272             span,
3273             global_by_default,
3274         );
3275
3276         if let Some(qself) = qself {
3277             if qself.position == 0 {
3278                 // This is a case like `<T>::B`, where there is no
3279                 // trait to resolve.  In that case, we leave the `B`
3280                 // segment to be resolved by type-check.
3281                 return Some(PathResolution::with_unresolved_segments(
3282                     Def::Mod(DefId::local(CRATE_DEF_INDEX)), path.len()
3283                 ));
3284             }
3285
3286             // Make sure `A::B` in `<T as A::B>::C` is a trait item.
3287             //
3288             // Currently, `path` names the full item (`A::B::C`, in
3289             // our example).  so we extract the prefix of that that is
3290             // the trait (the slice upto and including
3291             // `qself.position`). And then we recursively resolve that,
3292             // but with `qself` set to `None`.
3293             //
3294             // However, setting `qself` to none (but not changing the
3295             // span) loses the information about where this path
3296             // *actually* appears, so for the purposes of the crate
3297             // lint we pass along information that this is the trait
3298             // name from a fully qualified path, and this also
3299             // contains the full span (the `CrateLint::QPathTrait`).
3300             let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
3301             let res = self.smart_resolve_path_fragment(
3302                 id,
3303                 None,
3304                 &path[..qself.position + 1],
3305                 span,
3306                 PathSource::TraitItem(ns),
3307                 CrateLint::QPathTrait {
3308                     qpath_id: id,
3309                     qpath_span: qself.path_span,
3310                 },
3311             );
3312
3313             // The remaining segments (the `C` in our example) will
3314             // have to be resolved by type-check, since that requires doing
3315             // trait resolution.
3316             return Some(PathResolution::with_unresolved_segments(
3317                 res.base_def(), res.unresolved_segments() + path.len() - qself.position - 1
3318             ));
3319         }
3320
3321         let result = match self.resolve_path(
3322             &path,
3323             Some(ns),
3324             true,
3325             span,
3326             crate_lint,
3327         ) {
3328             PathResult::NonModule(path_res) => path_res,
3329             PathResult::Module(module) if !module.is_normal() => {
3330                 PathResolution::new(module.def().unwrap())
3331             }
3332             // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
3333             // don't report an error right away, but try to fallback to a primitive type.
3334             // So, we are still able to successfully resolve something like
3335             //
3336             // use std::u8; // bring module u8 in scope
3337             // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
3338             //     u8::max_value() // OK, resolves to associated function <u8>::max_value,
3339             //                     // not to non-existent std::u8::max_value
3340             // }
3341             //
3342             // Such behavior is required for backward compatibility.
3343             // The same fallback is used when `a` resolves to nothing.
3344             PathResult::Module(..) | PathResult::Failed(..)
3345                     if (ns == TypeNS || path.len() > 1) &&
3346                        self.primitive_type_table.primitive_types
3347                            .contains_key(&path[0].name) => {
3348                 let prim = self.primitive_type_table.primitive_types[&path[0].name];
3349                 PathResolution::with_unresolved_segments(Def::PrimTy(prim), path.len() - 1)
3350             }
3351             PathResult::Module(module) => PathResolution::new(module.def().unwrap()),
3352             PathResult::Failed(span, msg, false) => {
3353                 resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
3354                 err_path_resolution()
3355             }
3356             PathResult::Failed(..) => return None,
3357             PathResult::Indeterminate => bug!("indetermined path result in resolve_qpath"),
3358         };
3359
3360         if path.len() > 1 && !global_by_default && result.base_def() != Def::Err &&
3361            path[0].name != keywords::CrateRoot.name() &&
3362            path[0].name != keywords::DollarCrate.name() {
3363             let unqualified_result = {
3364                 match self.resolve_path(
3365                     &[*path.last().unwrap()],
3366                     Some(ns),
3367                     false,
3368                     span,
3369                     CrateLint::No,
3370                 ) {
3371                     PathResult::NonModule(path_res) => path_res.base_def(),
3372                     PathResult::Module(module) => module.def().unwrap(),
3373                     _ => return Some(result),
3374                 }
3375             };
3376             if result.base_def() == unqualified_result {
3377                 let lint = lint::builtin::UNUSED_QUALIFICATIONS;
3378                 self.session.buffer_lint(lint, id, span, "unnecessary qualification")
3379             }
3380         }
3381
3382         Some(result)
3383     }
3384
3385     fn resolve_path(
3386         &mut self,
3387         path: &[Ident],
3388         opt_ns: Option<Namespace>, // `None` indicates a module path
3389         record_used: bool,
3390         path_span: Span,
3391         crate_lint: CrateLint,
3392     ) -> PathResult<'a> {
3393         let mut module = None;
3394         let mut allow_super = true;
3395         let mut second_binding = None;
3396
3397         debug!(
3398             "resolve_path(path={:?}, opt_ns={:?}, record_used={:?}, \
3399              path_span={:?}, crate_lint={:?})",
3400             path,
3401             opt_ns,
3402             record_used,
3403             path_span,
3404             crate_lint,
3405         );
3406
3407         for (i, &ident) in path.iter().enumerate() {
3408             debug!("resolve_path ident {} {:?}", i, ident);
3409             let is_last = i == path.len() - 1;
3410             let ns = if is_last { opt_ns.unwrap_or(TypeNS) } else { TypeNS };
3411             let name = ident.name;
3412
3413             if i == 0 && ns == TypeNS && name == keywords::SelfValue.name() {
3414                 let mut ctxt = ident.span.ctxt().modern();
3415                 module = Some(self.resolve_self(&mut ctxt, self.current_module));
3416                 continue
3417             } else if allow_super && ns == TypeNS && name == keywords::Super.name() {
3418                 let mut ctxt = ident.span.ctxt().modern();
3419                 let self_module = match i {
3420                     0 => self.resolve_self(&mut ctxt, self.current_module),
3421                     _ => module.unwrap(),
3422                 };
3423                 if let Some(parent) = self_module.parent {
3424                     module = Some(self.resolve_self(&mut ctxt, parent));
3425                     continue
3426                 } else {
3427                     let msg = "There are too many initial `super`s.".to_string();
3428                     return PathResult::Failed(ident.span, msg, false);
3429                 }
3430             } else if i == 0 && ns == TypeNS && name == keywords::Extern.name() {
3431                 continue;
3432             }
3433             allow_super = false;
3434
3435             if ns == TypeNS {
3436                 if (i == 0 && name == keywords::CrateRoot.name()) ||
3437                    (i == 0 && name == keywords::Crate.name()) ||
3438                    (i == 0 && name == keywords::DollarCrate.name()) ||
3439                    (i == 1 && name == keywords::Crate.name() &&
3440                               path[0].name == keywords::CrateRoot.name()) {
3441                     // `::a::b`, `crate::a::b`, `::crate::a::b` or `$crate::a::b`
3442                     module = Some(self.resolve_crate_root(ident));
3443                     continue
3444                 } else if i == 1 && !ident.is_path_segment_keyword() {
3445                     let prev_name = path[0].name;
3446                     if prev_name == keywords::Extern.name() ||
3447                        prev_name == keywords::CrateRoot.name() &&
3448                        self.session.features_untracked().extern_absolute_paths &&
3449                        self.session.rust_2018() {
3450                         // `::extern_crate::a::b`
3451                         let crate_id = self.crate_loader.process_path_extern(name, ident.span);
3452                         let crate_root =
3453                             self.get_module(DefId { krate: crate_id, index: CRATE_DEF_INDEX });
3454                         self.populate_module_if_necessary(crate_root);
3455                         module = Some(crate_root);
3456                         continue
3457                     }
3458                 }
3459             }
3460
3461             // Report special messages for path segment keywords in wrong positions.
3462             if name == keywords::CrateRoot.name() && i != 0 ||
3463                name == keywords::DollarCrate.name() && i != 0 ||
3464                name == keywords::SelfValue.name() && i != 0 ||
3465                name == keywords::SelfType.name() && i != 0 ||
3466                name == keywords::Super.name() && i != 0 ||
3467                name == keywords::Extern.name() && i != 0 ||
3468                // we allow crate::foo and ::crate::foo but nothing else
3469                name == keywords::Crate.name() && i > 1 &&
3470                     path[0].name != keywords::CrateRoot.name() ||
3471                name == keywords::Crate.name() && path.len() == 1 {
3472                 let name_str = if name == keywords::CrateRoot.name() {
3473                     "crate root".to_string()
3474                 } else {
3475                     format!("`{}`", name)
3476                 };
3477                 let msg = if i == 1 && path[0].name == keywords::CrateRoot.name() {
3478                     format!("global paths cannot start with {}", name_str)
3479                 } else {
3480                     format!("{} in paths can only be used in start position", name_str)
3481                 };
3482                 return PathResult::Failed(ident.span, msg, false);
3483             }
3484
3485             let binding = if let Some(module) = module {
3486                 self.resolve_ident_in_module(module, ident, ns, record_used, path_span)
3487             } else if opt_ns == Some(MacroNS) {
3488                 self.resolve_lexical_macro_path_segment(ident, ns, record_used, path_span)
3489                     .map(MacroBinding::binding)
3490             } else {
3491                 let record_used_id =
3492                     if record_used { crate_lint.node_id().or(Some(CRATE_NODE_ID)) } else { None };
3493                 match self.resolve_ident_in_lexical_scope(ident, ns, record_used_id, path_span) {
3494                     // we found a locally-imported or available item/module
3495                     Some(LexicalScopeBinding::Item(binding)) => Ok(binding),
3496                     // we found a local variable or type param
3497                     Some(LexicalScopeBinding::Def(def))
3498                             if opt_ns == Some(TypeNS) || opt_ns == Some(ValueNS) => {
3499                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3500                             def, path.len() - 1
3501                         ));
3502                     }
3503                     _ => Err(if record_used { Determined } else { Undetermined }),
3504                 }
3505             };
3506
3507             match binding {
3508                 Ok(binding) => {
3509                     if i == 1 {
3510                         second_binding = Some(binding);
3511                     }
3512                     let def = binding.def();
3513                     let maybe_assoc = opt_ns != Some(MacroNS) && PathSource::Type.is_expected(def);
3514                     if let Some(next_module) = binding.module() {
3515                         module = Some(next_module);
3516                     } else if def == Def::ToolMod && i + 1 != path.len() {
3517                         return PathResult::NonModule(PathResolution::new(Def::NonMacroAttr))
3518                     } else if def == Def::Err {
3519                         return PathResult::NonModule(err_path_resolution());
3520                     } else if opt_ns.is_some() && (is_last || maybe_assoc) {
3521                         self.lint_if_path_starts_with_module(
3522                             crate_lint,
3523                             path,
3524                             path_span,
3525                             second_binding,
3526                         );
3527                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3528                             def, path.len() - i - 1
3529                         ));
3530                     } else {
3531                         return PathResult::Failed(ident.span,
3532                                                   format!("Not a module `{}`", ident),
3533                                                   is_last);
3534                     }
3535                 }
3536                 Err(Undetermined) => return PathResult::Indeterminate,
3537                 Err(Determined) => {
3538                     if let Some(module) = module {
3539                         if opt_ns.is_some() && !module.is_normal() {
3540                             return PathResult::NonModule(PathResolution::with_unresolved_segments(
3541                                 module.def().unwrap(), path.len() - i
3542                             ));
3543                         }
3544                     }
3545                     let msg = if module.and_then(ModuleData::def) == self.graph_root.def() {
3546                         let is_mod = |def| match def { Def::Mod(..) => true, _ => false };
3547                         let mut candidates =
3548                             self.lookup_import_candidates(name, TypeNS, is_mod);
3549                         candidates.sort_by_cached_key(|c| {
3550                             (c.path.segments.len(), c.path.to_string())
3551                         });
3552                         if let Some(candidate) = candidates.get(0) {
3553                             format!("Did you mean `{}`?", candidate.path)
3554                         } else {
3555                             format!("Maybe a missing `extern crate {};`?", ident)
3556                         }
3557                     } else if i == 0 {
3558                         format!("Use of undeclared type or module `{}`", ident)
3559                     } else {
3560                         format!("Could not find `{}` in `{}`", ident, path[i - 1])
3561                     };
3562                     return PathResult::Failed(ident.span, msg, is_last);
3563                 }
3564             }
3565         }
3566
3567         self.lint_if_path_starts_with_module(crate_lint, path, path_span, second_binding);
3568
3569         PathResult::Module(module.unwrap_or(self.graph_root))
3570     }
3571
3572     fn lint_if_path_starts_with_module(
3573         &self,
3574         crate_lint: CrateLint,
3575         path: &[Ident],
3576         path_span: Span,
3577         second_binding: Option<&NameBinding>,
3578     ) {
3579         let (diag_id, diag_span) = match crate_lint {
3580             CrateLint::No => return,
3581             CrateLint::SimplePath(id) => (id, path_span),
3582             CrateLint::UsePath { root_id, root_span } => (root_id, root_span),
3583             CrateLint::QPathTrait { qpath_id, qpath_span } => (qpath_id, qpath_span),
3584         };
3585
3586         let first_name = match path.get(0) {
3587             Some(ident) => ident.name,
3588             None => return,
3589         };
3590
3591         // We're only interested in `use` paths which should start with
3592         // `{{root}}` or `extern` currently.
3593         if first_name != keywords::Extern.name() && first_name != keywords::CrateRoot.name() {
3594             return
3595         }
3596
3597         match path.get(1) {
3598             // If this import looks like `crate::...` it's already good
3599             Some(ident) if ident.name == keywords::Crate.name() => return,
3600             // Otherwise go below to see if it's an extern crate
3601             Some(_) => {}
3602             // If the path has length one (and it's `CrateRoot` most likely)
3603             // then we don't know whether we're gonna be importing a crate or an
3604             // item in our crate. Defer this lint to elsewhere
3605             None => return,
3606         }
3607
3608         // If the first element of our path was actually resolved to an
3609         // `ExternCrate` (also used for `crate::...`) then no need to issue a
3610         // warning, this looks all good!
3611         if let Some(binding) = second_binding {
3612             if let NameBindingKind::Import { directive: d, .. } = binding.kind {
3613                 // Careful: we still want to rewrite paths from
3614                 // renamed extern crates.
3615                 if let ImportDirectiveSubclass::ExternCrate(None) = d.subclass {
3616                     return
3617                 }
3618             }
3619         }
3620
3621         self.lint_path_starts_with_module(diag_id, diag_span);
3622     }
3623
3624     fn lint_path_starts_with_module(&self, id: NodeId, span: Span) {
3625         // In the 2018 edition this lint is a hard error, so nothing to do
3626         if self.session.rust_2018() {
3627             return
3628         }
3629         // In the 2015 edition there's no use in emitting lints unless the
3630         // crate's already enabled the feature that we're going to suggest
3631         if !self.session.features_untracked().crate_in_paths {
3632             return
3633         }
3634         let diag = lint::builtin::BuiltinLintDiagnostics
3635             ::AbsPathWithModule(span);
3636         self.session.buffer_lint_with_diagnostic(
3637             lint::builtin::ABSOLUTE_PATHS_NOT_STARTING_WITH_CRATE,
3638             id, span,
3639             "absolute paths must start with `self`, `super`, \
3640             `crate`, or an external crate name in the 2018 edition",
3641             diag);
3642     }
3643
3644     // Resolve a local definition, potentially adjusting for closures.
3645     fn adjust_local_def(&mut self,
3646                         ns: Namespace,
3647                         rib_index: usize,
3648                         mut def: Def,
3649                         record_used: bool,
3650                         span: Span) -> Def {
3651         let ribs = &self.ribs[ns][rib_index + 1..];
3652
3653         // An invalid forward use of a type parameter from a previous default.
3654         if let ForwardTyParamBanRibKind = self.ribs[ns][rib_index].kind {
3655             if record_used {
3656                 resolve_error(self, span, ResolutionError::ForwardDeclaredTyParam);
3657             }
3658             assert_eq!(def, Def::Err);
3659             return Def::Err;
3660         }
3661
3662         match def {
3663             Def::Upvar(..) => {
3664                 span_bug!(span, "unexpected {:?} in bindings", def)
3665             }
3666             Def::Local(node_id) => {
3667                 for rib in ribs {
3668                     match rib.kind {
3669                         NormalRibKind | ModuleRibKind(..) | MacroDefinition(..) |
3670                         ForwardTyParamBanRibKind => {
3671                             // Nothing to do. Continue.
3672                         }
3673                         ClosureRibKind(function_id) => {
3674                             let prev_def = def;
3675
3676                             let seen = self.freevars_seen
3677                                            .entry(function_id)
3678                                            .or_insert_with(|| NodeMap());
3679                             if let Some(&index) = seen.get(&node_id) {
3680                                 def = Def::Upvar(node_id, index, function_id);
3681                                 continue;
3682                             }
3683                             let vec = self.freevars
3684                                           .entry(function_id)
3685                                           .or_insert_with(|| vec![]);
3686                             let depth = vec.len();
3687                             def = Def::Upvar(node_id, depth, function_id);
3688
3689                             if record_used {
3690                                 vec.push(Freevar {
3691                                     def: prev_def,
3692                                     span,
3693                                 });
3694                                 seen.insert(node_id, depth);
3695                             }
3696                         }
3697                         ItemRibKind | TraitOrImplItemRibKind => {
3698                             // This was an attempt to access an upvar inside a
3699                             // named function item. This is not allowed, so we
3700                             // report an error.
3701                             if record_used {
3702                                 resolve_error(self, span,
3703                                         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem);
3704                             }
3705                             return Def::Err;
3706                         }
3707                         ConstantItemRibKind => {
3708                             // Still doesn't deal with upvars
3709                             if record_used {
3710                                 resolve_error(self, span,
3711                                         ResolutionError::AttemptToUseNonConstantValueInConstant);
3712                             }
3713                             return Def::Err;
3714                         }
3715                     }
3716                 }
3717             }
3718             Def::TyParam(..) | Def::SelfTy(..) => {
3719                 for rib in ribs {
3720                     match rib.kind {
3721                         NormalRibKind | TraitOrImplItemRibKind | ClosureRibKind(..) |
3722                         ModuleRibKind(..) | MacroDefinition(..) | ForwardTyParamBanRibKind |
3723                         ConstantItemRibKind => {
3724                             // Nothing to do. Continue.
3725                         }
3726                         ItemRibKind => {
3727                             // This was an attempt to use a type parameter outside
3728                             // its scope.
3729                             if record_used {
3730                                 resolve_error(self, span,
3731                                     ResolutionError::TypeParametersFromOuterFunction(def));
3732                             }
3733                             return Def::Err;
3734                         }
3735                     }
3736                 }
3737             }
3738             _ => {}
3739         }
3740         return def;
3741     }
3742
3743     fn lookup_assoc_candidate<FilterFn>(&mut self,
3744                                         ident: Ident,
3745                                         ns: Namespace,
3746                                         filter_fn: FilterFn)
3747                                         -> Option<AssocSuggestion>
3748         where FilterFn: Fn(Def) -> bool
3749     {
3750         fn extract_node_id(t: &Ty) -> Option<NodeId> {
3751             match t.node {
3752                 TyKind::Path(None, _) => Some(t.id),
3753                 TyKind::Rptr(_, ref mut_ty) => extract_node_id(&mut_ty.ty),
3754                 // This doesn't handle the remaining `Ty` variants as they are not
3755                 // that commonly the self_type, it might be interesting to provide
3756                 // support for those in future.
3757                 _ => None,
3758             }
3759         }
3760
3761         // Fields are generally expected in the same contexts as locals.
3762         if filter_fn(Def::Local(ast::DUMMY_NODE_ID)) {
3763             if let Some(node_id) = self.current_self_type.as_ref().and_then(extract_node_id) {
3764                 // Look for a field with the same name in the current self_type.
3765                 if let Some(resolution) = self.def_map.get(&node_id) {
3766                     match resolution.base_def() {
3767                         Def::Struct(did) | Def::Union(did)
3768                                 if resolution.unresolved_segments() == 0 => {
3769                             if let Some(field_names) = self.field_names.get(&did) {
3770                                 if field_names.iter().any(|&field_name| ident.name == field_name) {
3771                                     return Some(AssocSuggestion::Field);
3772                                 }
3773                             }
3774                         }
3775                         _ => {}
3776                     }
3777                 }
3778             }
3779         }
3780
3781         // Look for associated items in the current trait.
3782         if let Some((module, _)) = self.current_trait_ref {
3783             if let Ok(binding) =
3784                     self.resolve_ident_in_module(module, ident, ns, false, module.span) {
3785                 let def = binding.def();
3786                 if filter_fn(def) {
3787                     return Some(if self.has_self.contains(&def.def_id()) {
3788                         AssocSuggestion::MethodWithSelf
3789                     } else {
3790                         AssocSuggestion::AssocItem
3791                     });
3792                 }
3793             }
3794         }
3795
3796         None
3797     }
3798
3799     fn lookup_typo_candidate<FilterFn>(&mut self,
3800                                        path: &[Ident],
3801                                        ns: Namespace,
3802                                        filter_fn: FilterFn,
3803                                        span: Span)
3804                                        -> Option<Symbol>
3805         where FilterFn: Fn(Def) -> bool
3806     {
3807         let add_module_candidates = |module: Module, names: &mut Vec<Name>| {
3808             for (&(ident, _), resolution) in module.resolutions.borrow().iter() {
3809                 if let Some(binding) = resolution.borrow().binding {
3810                     if filter_fn(binding.def()) {
3811                         names.push(ident.name);
3812                     }
3813                 }
3814             }
3815         };
3816
3817         let mut names = Vec::new();
3818         if path.len() == 1 {
3819             // Search in lexical scope.
3820             // Walk backwards up the ribs in scope and collect candidates.
3821             for rib in self.ribs[ns].iter().rev() {
3822                 // Locals and type parameters
3823                 for (ident, def) in &rib.bindings {
3824                     if filter_fn(*def) {
3825                         names.push(ident.name);
3826                     }
3827                 }
3828                 // Items in scope
3829                 if let ModuleRibKind(module) = rib.kind {
3830                     // Items from this module
3831                     add_module_candidates(module, &mut names);
3832
3833                     if let ModuleKind::Block(..) = module.kind {
3834                         // We can see through blocks
3835                     } else {
3836                         // Items from the prelude
3837                         if !module.no_implicit_prelude {
3838                             names.extend(self.extern_prelude.iter().cloned());
3839                             if let Some(prelude) = self.prelude {
3840                                 add_module_candidates(prelude, &mut names);
3841                             }
3842                         }
3843                         break;
3844                     }
3845                 }
3846             }
3847             // Add primitive types to the mix
3848             if filter_fn(Def::PrimTy(TyBool)) {
3849                 names.extend(
3850                     self.primitive_type_table.primitive_types.iter().map(|(name, _)| name)
3851                 )
3852             }
3853         } else {
3854             // Search in module.
3855             let mod_path = &path[..path.len() - 1];
3856             if let PathResult::Module(module) = self.resolve_path(mod_path, Some(TypeNS),
3857                                                                   false, span, CrateLint::No) {
3858                 add_module_candidates(module, &mut names);
3859             }
3860         }
3861
3862         let name = path[path.len() - 1].name;
3863         // Make sure error reporting is deterministic.
3864         names.sort_by_cached_key(|name| name.as_str());
3865         match find_best_match_for_name(names.iter(), &name.as_str(), None) {
3866             Some(found) if found != name => Some(found),
3867             _ => None,
3868         }
3869     }
3870
3871     fn with_resolved_label<F>(&mut self, label: Option<Label>, id: NodeId, f: F)
3872         where F: FnOnce(&mut Resolver)
3873     {
3874         if let Some(label) = label {
3875             self.unused_labels.insert(id, label.ident.span);
3876             let def = Def::Label(id);
3877             self.with_label_rib(|this| {
3878                 let ident = label.ident.modern_and_legacy();
3879                 this.label_ribs.last_mut().unwrap().bindings.insert(ident, def);
3880                 f(this);
3881             });
3882         } else {
3883             f(self);
3884         }
3885     }
3886
3887     fn resolve_labeled_block(&mut self, label: Option<Label>, id: NodeId, block: &Block) {
3888         self.with_resolved_label(label, id, |this| this.visit_block(block));
3889     }
3890
3891     fn resolve_expr(&mut self, expr: &Expr, parent: Option<&Expr>) {
3892         // First, record candidate traits for this expression if it could
3893         // result in the invocation of a method call.
3894
3895         self.record_candidate_traits_for_expr_if_necessary(expr);
3896
3897         // Next, resolve the node.
3898         match expr.node {
3899             ExprKind::Path(ref qself, ref path) => {
3900                 self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
3901                 visit::walk_expr(self, expr);
3902             }
3903
3904             ExprKind::Struct(ref path, ..) => {
3905                 self.smart_resolve_path(expr.id, None, path, PathSource::Struct);
3906                 visit::walk_expr(self, expr);
3907             }
3908
3909             ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
3910                 let def = self.search_label(label.ident, |rib, ident| {
3911                     rib.bindings.get(&ident.modern_and_legacy()).cloned()
3912                 });
3913                 match def {
3914                     None => {
3915                         // Search again for close matches...
3916                         // Picks the first label that is "close enough", which is not necessarily
3917                         // the closest match
3918                         let close_match = self.search_label(label.ident, |rib, ident| {
3919                             let names = rib.bindings.iter().map(|(id, _)| &id.name);
3920                             find_best_match_for_name(names, &*ident.as_str(), None)
3921                         });
3922                         self.record_def(expr.id, err_path_resolution());
3923                         resolve_error(self,
3924                                       label.ident.span,
3925                                       ResolutionError::UndeclaredLabel(&label.ident.as_str(),
3926                                                                        close_match));
3927                     }
3928                     Some(Def::Label(id)) => {
3929                         // Since this def is a label, it is never read.
3930                         self.record_def(expr.id, PathResolution::new(Def::Label(id)));
3931                         self.unused_labels.remove(&id);
3932                     }
3933                     Some(_) => {
3934                         span_bug!(expr.span, "label wasn't mapped to a label def!");
3935                     }
3936                 }
3937
3938                 // visit `break` argument if any
3939                 visit::walk_expr(self, expr);
3940             }
3941
3942             ExprKind::IfLet(ref pats, ref subexpression, ref if_block, ref optional_else) => {
3943                 self.visit_expr(subexpression);
3944
3945                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
3946                 let mut bindings_list = FxHashMap();
3947                 for pat in pats {
3948                     self.resolve_pattern(pat, PatternSource::IfLet, &mut bindings_list);
3949                 }
3950                 // This has to happen *after* we determine which pat_idents are variants
3951                 self.check_consistent_bindings(pats);
3952                 self.visit_block(if_block);
3953                 self.ribs[ValueNS].pop();
3954
3955                 optional_else.as_ref().map(|expr| self.visit_expr(expr));
3956             }
3957
3958             ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),
3959
3960             ExprKind::While(ref subexpression, ref block, label) => {
3961                 self.with_resolved_label(label, expr.id, |this| {
3962                     this.visit_expr(subexpression);
3963                     this.visit_block(block);
3964                 });
3965             }
3966
3967             ExprKind::WhileLet(ref pats, ref subexpression, ref block, label) => {
3968                 self.with_resolved_label(label, expr.id, |this| {
3969                     this.visit_expr(subexpression);
3970                     this.ribs[ValueNS].push(Rib::new(NormalRibKind));
3971                     let mut bindings_list = FxHashMap();
3972                     for pat in pats {
3973                         this.resolve_pattern(pat, PatternSource::WhileLet, &mut bindings_list);
3974                     }
3975                     // This has to happen *after* we determine which pat_idents are variants
3976                     this.check_consistent_bindings(pats);
3977                     this.visit_block(block);
3978                     this.ribs[ValueNS].pop();
3979                 });
3980             }
3981
3982             ExprKind::ForLoop(ref pattern, ref subexpression, ref block, label) => {
3983                 self.visit_expr(subexpression);
3984                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
3985                 self.resolve_pattern(pattern, PatternSource::For, &mut FxHashMap());
3986
3987                 self.resolve_labeled_block(label, expr.id, block);
3988
3989                 self.ribs[ValueNS].pop();
3990             }
3991
3992             ExprKind::Block(ref block, label) => self.resolve_labeled_block(label, block.id, block),
3993
3994             // Equivalent to `visit::walk_expr` + passing some context to children.
3995             ExprKind::Field(ref subexpression, _) => {
3996                 self.resolve_expr(subexpression, Some(expr));
3997             }
3998             ExprKind::MethodCall(ref segment, ref arguments) => {
3999                 let mut arguments = arguments.iter();
4000                 self.resolve_expr(arguments.next().unwrap(), Some(expr));
4001                 for argument in arguments {
4002                     self.resolve_expr(argument, None);
4003                 }
4004                 self.visit_path_segment(expr.span, segment);
4005             }
4006
4007             ExprKind::Call(ref callee, ref arguments) => {
4008                 self.resolve_expr(callee, Some(expr));
4009                 for argument in arguments {
4010                     self.resolve_expr(argument, None);
4011                 }
4012             }
4013             ExprKind::Type(ref type_expr, _) => {
4014                 self.current_type_ascription.push(type_expr.span);
4015                 visit::walk_expr(self, expr);
4016                 self.current_type_ascription.pop();
4017             }
4018             // Resolve the body of async exprs inside the async closure to which they desugar
4019             ExprKind::Async(_, async_closure_id, ref block) => {
4020                 let rib_kind = ClosureRibKind(async_closure_id);
4021                 self.ribs[ValueNS].push(Rib::new(rib_kind));
4022                 self.label_ribs.push(Rib::new(rib_kind));
4023                 self.visit_block(&block);
4024                 self.label_ribs.pop();
4025                 self.ribs[ValueNS].pop();
4026             }
4027             // `async |x| ...` gets desugared to `|x| future_from_generator(|| ...)`, so we need to
4028             // resolve the arguments within the proper scopes so that usages of them inside the
4029             // closure are detected as upvars rather than normal closure arg usages.
4030             ExprKind::Closure(
4031                 _, IsAsync::Async { closure_id: inner_closure_id, .. }, _,
4032                 ref fn_decl, ref body, _span,
4033             ) => {
4034                 let rib_kind = ClosureRibKind(expr.id);
4035                 self.ribs[ValueNS].push(Rib::new(rib_kind));
4036                 self.label_ribs.push(Rib::new(rib_kind));
4037                 // Resolve arguments:
4038                 let mut bindings_list = FxHashMap();
4039                 for argument in &fn_decl.inputs {
4040                     self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
4041                     self.visit_ty(&argument.ty);
4042                 }
4043                 // No need to resolve return type-- the outer closure return type is
4044                 // FunctionRetTy::Default
4045
4046                 // Now resolve the inner closure
4047                 {
4048                     let rib_kind = ClosureRibKind(inner_closure_id);
4049                     self.ribs[ValueNS].push(Rib::new(rib_kind));
4050                     self.label_ribs.push(Rib::new(rib_kind));
4051                     // No need to resolve arguments: the inner closure has none.
4052                     // Resolve the return type:
4053                     visit::walk_fn_ret_ty(self, &fn_decl.output);
4054                     // Resolve the body
4055                     self.visit_expr(body);
4056                     self.label_ribs.pop();
4057                     self.ribs[ValueNS].pop();
4058                 }
4059                 self.label_ribs.pop();
4060                 self.ribs[ValueNS].pop();
4061             }
4062             _ => {
4063                 visit::walk_expr(self, expr);
4064             }
4065         }
4066     }
4067
4068     fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &Expr) {
4069         match expr.node {
4070             ExprKind::Field(_, ident) => {
4071                 // FIXME(#6890): Even though you can't treat a method like a
4072                 // field, we need to add any trait methods we find that match
4073                 // the field name so that we can do some nice error reporting
4074                 // later on in typeck.
4075                 let traits = self.get_traits_containing_item(ident, ValueNS);
4076                 self.trait_map.insert(expr.id, traits);
4077             }
4078             ExprKind::MethodCall(ref segment, ..) => {
4079                 debug!("(recording candidate traits for expr) recording traits for {}",
4080                        expr.id);
4081                 let traits = self.get_traits_containing_item(segment.ident, ValueNS);
4082                 self.trait_map.insert(expr.id, traits);
4083             }
4084             _ => {
4085                 // Nothing to do.
4086             }
4087         }
4088     }
4089
4090     fn get_traits_containing_item(&mut self, mut ident: Ident, ns: Namespace)
4091                                   -> Vec<TraitCandidate> {
4092         debug!("(getting traits containing item) looking for '{}'", ident.name);
4093
4094         let mut found_traits = Vec::new();
4095         // Look for the current trait.
4096         if let Some((module, _)) = self.current_trait_ref {
4097             if self.resolve_ident_in_module(module, ident, ns, false, module.span).is_ok() {
4098                 let def_id = module.def_id().unwrap();
4099                 found_traits.push(TraitCandidate { def_id: def_id, import_id: None });
4100             }
4101         }
4102
4103         ident.span = ident.span.modern();
4104         let mut search_module = self.current_module;
4105         loop {
4106             self.get_traits_in_module_containing_item(ident, ns, search_module, &mut found_traits);
4107             search_module = unwrap_or!(
4108                 self.hygienic_lexical_parent(search_module, &mut ident.span), break
4109             );
4110         }
4111
4112         if let Some(prelude) = self.prelude {
4113             if !search_module.no_implicit_prelude {
4114                 self.get_traits_in_module_containing_item(ident, ns, prelude, &mut found_traits);
4115             }
4116         }
4117
4118         found_traits
4119     }
4120
4121     fn get_traits_in_module_containing_item(&mut self,
4122                                             ident: Ident,
4123                                             ns: Namespace,
4124                                             module: Module<'a>,
4125                                             found_traits: &mut Vec<TraitCandidate>) {
4126         let mut traits = module.traits.borrow_mut();
4127         if traits.is_none() {
4128             let mut collected_traits = Vec::new();
4129             module.for_each_child(|name, ns, binding| {
4130                 if ns != TypeNS { return }
4131                 if let Def::Trait(_) = binding.def() {
4132                     collected_traits.push((name, binding));
4133                 }
4134             });
4135             *traits = Some(collected_traits.into_boxed_slice());
4136         }
4137
4138         for &(trait_name, binding) in traits.as_ref().unwrap().iter() {
4139             let module = binding.module().unwrap();
4140             let mut ident = ident;
4141             if ident.span.glob_adjust(module.expansion, binding.span.ctxt().modern()).is_none() {
4142                 continue
4143             }
4144             if self.resolve_ident_in_module_unadjusted(module, ident, ns, false, false, module.span)
4145                    .is_ok() {
4146                 let import_id = match binding.kind {
4147                     NameBindingKind::Import { directive, .. } => {
4148                         self.maybe_unused_trait_imports.insert(directive.id);
4149                         self.add_to_glob_map(directive.id, trait_name);
4150                         Some(directive.id)
4151                     }
4152                     _ => None,
4153                 };
4154                 let trait_def_id = module.def_id().unwrap();
4155                 found_traits.push(TraitCandidate { def_id: trait_def_id, import_id: import_id });
4156             }
4157         }
4158     }
4159
4160     /// When name resolution fails, this method can be used to look up candidate
4161     /// entities with the expected name. It allows filtering them using the
4162     /// supplied predicate (which should be used to only accept the types of
4163     /// definitions expected e.g. traits). The lookup spans across all crates.
4164     ///
4165     /// NOTE: The method does not look into imports, but this is not a problem,
4166     /// since we report the definitions (thus, the de-aliased imports).
4167     fn lookup_import_candidates<FilterFn>(&mut self,
4168                                           lookup_name: Name,
4169                                           namespace: Namespace,
4170                                           filter_fn: FilterFn)
4171                                           -> Vec<ImportSuggestion>
4172         where FilterFn: Fn(Def) -> bool
4173     {
4174         let mut candidates = Vec::new();
4175         let mut worklist = Vec::new();
4176         let mut seen_modules = FxHashSet();
4177         worklist.push((self.graph_root, Vec::new(), false));
4178
4179         while let Some((in_module,
4180                         path_segments,
4181                         in_module_is_extern)) = worklist.pop() {
4182             self.populate_module_if_necessary(in_module);
4183
4184             // We have to visit module children in deterministic order to avoid
4185             // instabilities in reported imports (#43552).
4186             in_module.for_each_child_stable(|ident, ns, name_binding| {
4187                 // avoid imports entirely
4188                 if name_binding.is_import() && !name_binding.is_extern_crate() { return; }
4189                 // avoid non-importable candidates as well
4190                 if !name_binding.is_importable() { return; }
4191
4192                 // collect results based on the filter function
4193                 if ident.name == lookup_name && ns == namespace {
4194                     if filter_fn(name_binding.def()) {
4195                         // create the path
4196                         let mut segms = if self.session.rust_2018() && !in_module_is_extern {
4197                             // crate-local absolute paths start with `crate::` in edition 2018
4198                             // FIXME: may also be stabilized for Rust 2015 (Issues #45477, #44660)
4199                             let mut full_segms = vec![
4200                                 ast::PathSegment::from_ident(keywords::Crate.ident())
4201                             ];
4202                             full_segms.extend(path_segments.clone());
4203                             full_segms
4204                         } else {
4205                             path_segments.clone()
4206                         };
4207
4208                         segms.push(ast::PathSegment::from_ident(ident));
4209                         let path = Path {
4210                             span: name_binding.span,
4211                             segments: segms,
4212                         };
4213                         // the entity is accessible in the following cases:
4214                         // 1. if it's defined in the same crate, it's always
4215                         // accessible (since private entities can be made public)
4216                         // 2. if it's defined in another crate, it's accessible
4217                         // only if both the module is public and the entity is
4218                         // declared as public (due to pruning, we don't explore
4219                         // outside crate private modules => no need to check this)
4220                         if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
4221                             candidates.push(ImportSuggestion { path: path });
4222                         }
4223                     }
4224                 }
4225
4226                 // collect submodules to explore
4227                 if let Some(module) = name_binding.module() {
4228                     // form the path
4229                     let mut path_segments = path_segments.clone();
4230                     path_segments.push(ast::PathSegment::from_ident(ident));
4231
4232                     if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
4233                         // add the module to the lookup
4234                         let is_extern = in_module_is_extern || name_binding.is_extern_crate();
4235                         if seen_modules.insert(module.def_id().unwrap()) {
4236                             worklist.push((module, path_segments, is_extern));
4237                         }
4238                     }
4239                 }
4240             })
4241         }
4242
4243         candidates
4244     }
4245
4246     fn find_module(&mut self,
4247                    module_def: Def)
4248                    -> Option<(Module<'a>, ImportSuggestion)>
4249     {
4250         let mut result = None;
4251         let mut worklist = Vec::new();
4252         let mut seen_modules = FxHashSet();
4253         worklist.push((self.graph_root, Vec::new()));
4254
4255         while let Some((in_module, path_segments)) = worklist.pop() {
4256             // abort if the module is already found
4257             if let Some(_) = result { break; }
4258
4259             self.populate_module_if_necessary(in_module);
4260
4261             in_module.for_each_child_stable(|ident, _, name_binding| {
4262                 // abort if the module is already found or if name_binding is private external
4263                 if result.is_some() || !name_binding.vis.is_visible_locally() {
4264                     return
4265                 }
4266                 if let Some(module) = name_binding.module() {
4267                     // form the path
4268                     let mut path_segments = path_segments.clone();
4269                     path_segments.push(ast::PathSegment::from_ident(ident));
4270                     if module.def() == Some(module_def) {
4271                         let path = Path {
4272                             span: name_binding.span,
4273                             segments: path_segments,
4274                         };
4275                         result = Some((module, ImportSuggestion { path: path }));
4276                     } else {
4277                         // add the module to the lookup
4278                         if seen_modules.insert(module.def_id().unwrap()) {
4279                             worklist.push((module, path_segments));
4280                         }
4281                     }
4282                 }
4283             });
4284         }
4285
4286         result
4287     }
4288
4289     fn collect_enum_variants(&mut self, enum_def: Def) -> Option<Vec<Path>> {
4290         if let Def::Enum(..) = enum_def {} else {
4291             panic!("Non-enum def passed to collect_enum_variants: {:?}", enum_def)
4292         }
4293
4294         self.find_module(enum_def).map(|(enum_module, enum_import_suggestion)| {
4295             self.populate_module_if_necessary(enum_module);
4296
4297             let mut variants = Vec::new();
4298             enum_module.for_each_child_stable(|ident, _, name_binding| {
4299                 if let Def::Variant(..) = name_binding.def() {
4300                     let mut segms = enum_import_suggestion.path.segments.clone();
4301                     segms.push(ast::PathSegment::from_ident(ident));
4302                     variants.push(Path {
4303                         span: name_binding.span,
4304                         segments: segms,
4305                     });
4306                 }
4307             });
4308             variants
4309         })
4310     }
4311
4312     fn record_def(&mut self, node_id: NodeId, resolution: PathResolution) {
4313         debug!("(recording def) recording {:?} for {}", resolution, node_id);
4314         if let Some(prev_res) = self.def_map.insert(node_id, resolution) {
4315             panic!("path resolved multiple times ({:?} before, {:?} now)", prev_res, resolution);
4316         }
4317     }
4318
4319     fn resolve_visibility(&mut self, vis: &ast::Visibility) -> ty::Visibility {
4320         match vis.node {
4321             ast::VisibilityKind::Public => ty::Visibility::Public,
4322             ast::VisibilityKind::Crate(..) => {
4323                 ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX))
4324             }
4325             ast::VisibilityKind::Inherited => {
4326                 ty::Visibility::Restricted(self.current_module.normal_ancestor_id)
4327             }
4328             ast::VisibilityKind::Restricted { ref path, id, .. } => {
4329                 // Visibilities are resolved as global by default, add starting root segment.
4330                 let segments = path.make_root().iter().chain(path.segments.iter())
4331                     .map(|seg| seg.ident)
4332                     .collect::<Vec<_>>();
4333                 let def = self.smart_resolve_path_fragment(
4334                     id,
4335                     None,
4336                     &segments,
4337                     path.span,
4338                     PathSource::Visibility,
4339                     CrateLint::SimplePath(id),
4340                 ).base_def();
4341                 if def == Def::Err {
4342                     ty::Visibility::Public
4343                 } else {
4344                     let vis = ty::Visibility::Restricted(def.def_id());
4345                     if self.is_accessible(vis) {
4346                         vis
4347                     } else {
4348                         self.session.span_err(path.span, "visibilities can only be restricted \
4349                                                           to ancestor modules");
4350                         ty::Visibility::Public
4351                     }
4352                 }
4353             }
4354         }
4355     }
4356
4357     fn is_accessible(&self, vis: ty::Visibility) -> bool {
4358         vis.is_accessible_from(self.current_module.normal_ancestor_id, self)
4359     }
4360
4361     fn is_accessible_from(&self, vis: ty::Visibility, module: Module<'a>) -> bool {
4362         vis.is_accessible_from(module.normal_ancestor_id, self)
4363     }
4364
4365     fn report_errors(&mut self, krate: &Crate) {
4366         self.report_shadowing_errors();
4367         self.report_with_use_injections(krate);
4368         self.report_proc_macro_import(krate);
4369         let mut reported_spans = FxHashSet();
4370
4371         for &AmbiguityError { span, name, b1, b2, lexical } in &self.ambiguity_errors {
4372             if !reported_spans.insert(span) { continue }
4373             let participle = |binding: &NameBinding| {
4374                 if binding.is_import() { "imported" } else { "defined" }
4375             };
4376             let msg1 = format!("`{}` could refer to the name {} here", name, participle(b1));
4377             let msg2 = format!("`{}` could also refer to the name {} here", name, participle(b2));
4378             let note = if b1.expansion == Mark::root() || !lexical && b1.is_glob_import() {
4379                 format!("consider adding an explicit import of `{}` to disambiguate", name)
4380             } else if let Def::Macro(..) = b1.def() {
4381                 format!("macro-expanded {} do not shadow",
4382                         if b1.is_import() { "macro imports" } else { "macros" })
4383             } else {
4384                 format!("macro-expanded {} do not shadow when used in a macro invocation path",
4385                         if b1.is_import() { "imports" } else { "items" })
4386             };
4387
4388             let mut err = struct_span_err!(self.session, span, E0659, "`{}` is ambiguous", name);
4389             err.span_note(b1.span, &msg1);
4390             match b2.def() {
4391                 Def::Macro(..) if b2.span.is_dummy() =>
4392                     err.note(&format!("`{}` is also a builtin macro", name)),
4393                 _ => err.span_note(b2.span, &msg2),
4394             };
4395             err.note(&note).emit();
4396         }
4397
4398         for &PrivacyError(span, name, binding) in &self.privacy_errors {
4399             if !reported_spans.insert(span) { continue }
4400             span_err!(self.session, span, E0603, "{} `{}` is private", binding.descr(), name);
4401         }
4402     }
4403
4404     fn report_with_use_injections(&mut self, krate: &Crate) {
4405         for UseError { mut err, candidates, node_id, better } in self.use_injections.drain(..) {
4406             let (span, found_use) = UsePlacementFinder::check(krate, node_id);
4407             if !candidates.is_empty() {
4408                 show_candidates(&mut err, span, &candidates, better, found_use);
4409             }
4410             err.emit();
4411         }
4412     }
4413
4414     fn report_shadowing_errors(&mut self) {
4415         for (ident, scope) in replace(&mut self.lexical_macro_resolutions, Vec::new()) {
4416             self.resolve_legacy_scope(scope, ident, true);
4417         }
4418
4419         let mut reported_errors = FxHashSet();
4420         for binding in replace(&mut self.disallowed_shadowing, Vec::new()) {
4421             if self.resolve_legacy_scope(&binding.parent, binding.ident, false).is_some() &&
4422                reported_errors.insert((binding.ident, binding.span)) {
4423                 let msg = format!("`{}` is already in scope", binding.ident);
4424                 self.session.struct_span_err(binding.span, &msg)
4425                     .note("macro-expanded `macro_rules!`s may not shadow \
4426                            existing macros (see RFC 1560)")
4427                     .emit();
4428             }
4429         }
4430     }
4431
4432     fn report_conflict<'b>(&mut self,
4433                        parent: Module,
4434                        ident: Ident,
4435                        ns: Namespace,
4436                        new_binding: &NameBinding<'b>,
4437                        old_binding: &NameBinding<'b>) {
4438         // Error on the second of two conflicting names
4439         if old_binding.span.lo() > new_binding.span.lo() {
4440             return self.report_conflict(parent, ident, ns, old_binding, new_binding);
4441         }
4442
4443         let container = match parent.kind {
4444             ModuleKind::Def(Def::Mod(_), _) => "module",
4445             ModuleKind::Def(Def::Trait(_), _) => "trait",
4446             ModuleKind::Block(..) => "block",
4447             _ => "enum",
4448         };
4449
4450         let old_noun = match old_binding.is_import() {
4451             true => "import",
4452             false => "definition",
4453         };
4454
4455         let new_participle = match new_binding.is_import() {
4456             true => "imported",
4457             false => "defined",
4458         };
4459
4460         let (name, span) = (ident.name, self.session.codemap().def_span(new_binding.span));
4461
4462         if let Some(s) = self.name_already_seen.get(&name) {
4463             if s == &span {
4464                 return;
4465             }
4466         }
4467
4468         let old_kind = match (ns, old_binding.module()) {
4469             (ValueNS, _) => "value",
4470             (MacroNS, _) => "macro",
4471             (TypeNS, _) if old_binding.is_extern_crate() => "extern crate",
4472             (TypeNS, Some(module)) if module.is_normal() => "module",
4473             (TypeNS, Some(module)) if module.is_trait() => "trait",
4474             (TypeNS, _) => "type",
4475         };
4476
4477         let msg = format!("the name `{}` is defined multiple times", name);
4478
4479         let mut err = match (old_binding.is_extern_crate(), new_binding.is_extern_crate()) {
4480             (true, true) => struct_span_err!(self.session, span, E0259, "{}", msg),
4481             (true, _) | (_, true) => match new_binding.is_import() && old_binding.is_import() {
4482                 true => struct_span_err!(self.session, span, E0254, "{}", msg),
4483                 false => struct_span_err!(self.session, span, E0260, "{}", msg),
4484             },
4485             _ => match (old_binding.is_import(), new_binding.is_import()) {
4486                 (false, false) => struct_span_err!(self.session, span, E0428, "{}", msg),
4487                 (true, true) => struct_span_err!(self.session, span, E0252, "{}", msg),
4488                 _ => struct_span_err!(self.session, span, E0255, "{}", msg),
4489             },
4490         };
4491
4492         err.note(&format!("`{}` must be defined only once in the {} namespace of this {}",
4493                           name,
4494                           ns.descr(),
4495                           container));
4496
4497         err.span_label(span, format!("`{}` re{} here", name, new_participle));
4498         if !old_binding.span.is_dummy() {
4499             err.span_label(self.session.codemap().def_span(old_binding.span),
4500                            format!("previous {} of the {} `{}` here", old_noun, old_kind, name));
4501         }
4502
4503         // See https://github.com/rust-lang/rust/issues/32354
4504         if old_binding.is_import() || new_binding.is_import() {
4505             let binding = if new_binding.is_import() && !new_binding.span.is_dummy() {
4506                 new_binding
4507             } else {
4508                 old_binding
4509             };
4510
4511             let cm = self.session.codemap();
4512             let rename_msg = "You can use `as` to change the binding name of the import";
4513
4514             if let (Ok(snippet), false) = (cm.span_to_snippet(binding.span),
4515                                            binding.is_renamed_extern_crate()) {
4516                 let suggested_name = if name.as_str().chars().next().unwrap().is_uppercase() {
4517                     format!("Other{}", name)
4518                 } else {
4519                     format!("other_{}", name)
4520                 };
4521
4522                 err.span_suggestion(binding.span,
4523                                     rename_msg,
4524                                     if snippet.ends_with(';') {
4525                                         format!("{} as {};",
4526                                                 &snippet[..snippet.len()-1],
4527                                                 suggested_name)
4528                                     } else {
4529                                         format!("{} as {}", snippet, suggested_name)
4530                                     });
4531             } else {
4532                 err.span_label(binding.span, rename_msg);
4533             }
4534         }
4535
4536         err.emit();
4537         self.name_already_seen.insert(name, span);
4538     }
4539
4540     fn check_proc_macro_attrs(&mut self, attrs: &[ast::Attribute]) {
4541         if self.use_extern_macros { return; }
4542
4543         for attr in attrs {
4544             if attr.path.segments.len() > 1 {
4545                 continue
4546             }
4547             let ident = attr.path.segments[0].ident;
4548             let result = self.resolve_lexical_macro_path_segment(ident,
4549                                                                  MacroNS,
4550                                                                  false,
4551                                                                  attr.path.span);
4552             if let Ok(binding) = result {
4553                 if let SyntaxExtension::AttrProcMacro(..) = *binding.binding().get_macro(self) {
4554                     attr::mark_known(attr);
4555
4556                     let msg = "attribute procedural macros are experimental";
4557                     let feature = "use_extern_macros";
4558
4559                     feature_err(&self.session.parse_sess, feature,
4560                                 attr.span, GateIssue::Language, msg)
4561                         .span_label(binding.span(), "procedural macro imported here")
4562                         .emit();
4563                 }
4564             }
4565         }
4566     }
4567 }
4568
4569 fn is_self_type(path: &[Ident], namespace: Namespace) -> bool {
4570     namespace == TypeNS && path.len() == 1 && path[0].name == keywords::SelfType.name()
4571 }
4572
4573 fn is_self_value(path: &[Ident], namespace: Namespace) -> bool {
4574     namespace == ValueNS && path.len() == 1 && path[0].name == keywords::SelfValue.name()
4575 }
4576
4577 fn names_to_string(idents: &[Ident]) -> String {
4578     let mut result = String::new();
4579     for (i, ident) in idents.iter()
4580                             .filter(|ident| ident.name != keywords::CrateRoot.name())
4581                             .enumerate() {
4582         if i > 0 {
4583             result.push_str("::");
4584         }
4585         result.push_str(&ident.as_str());
4586     }
4587     result
4588 }
4589
4590 fn path_names_to_string(path: &Path) -> String {
4591     names_to_string(&path.segments.iter()
4592                         .map(|seg| seg.ident)
4593                         .collect::<Vec<_>>())
4594 }
4595
4596 /// Get the path for an enum and the variant from an `ImportSuggestion` for an enum variant.
4597 fn import_candidate_to_paths(suggestion: &ImportSuggestion) -> (Span, String, String) {
4598     let variant_path = &suggestion.path;
4599     let variant_path_string = path_names_to_string(variant_path);
4600
4601     let path_len = suggestion.path.segments.len();
4602     let enum_path = ast::Path {
4603         span: suggestion.path.span,
4604         segments: suggestion.path.segments[0..path_len - 1].to_vec(),
4605     };
4606     let enum_path_string = path_names_to_string(&enum_path);
4607
4608     (suggestion.path.span, variant_path_string, enum_path_string)
4609 }
4610
4611
4612 /// When an entity with a given name is not available in scope, we search for
4613 /// entities with that name in all crates. This method allows outputting the
4614 /// results of this search in a programmer-friendly way
4615 fn show_candidates(err: &mut DiagnosticBuilder,
4616                    // This is `None` if all placement locations are inside expansions
4617                    span: Option<Span>,
4618                    candidates: &[ImportSuggestion],
4619                    better: bool,
4620                    found_use: bool) {
4621
4622     // we want consistent results across executions, but candidates are produced
4623     // by iterating through a hash map, so make sure they are ordered:
4624     let mut path_strings: Vec<_> =
4625         candidates.into_iter().map(|c| path_names_to_string(&c.path)).collect();
4626     path_strings.sort();
4627
4628     let better = if better { "better " } else { "" };
4629     let msg_diff = match path_strings.len() {
4630         1 => " is found in another module, you can import it",
4631         _ => "s are found in other modules, you can import them",
4632     };
4633     let msg = format!("possible {}candidate{} into scope", better, msg_diff);
4634
4635     if let Some(span) = span {
4636         for candidate in &mut path_strings {
4637             // produce an additional newline to separate the new use statement
4638             // from the directly following item.
4639             let additional_newline = if found_use {
4640                 ""
4641             } else {
4642                 "\n"
4643             };
4644             *candidate = format!("use {};\n{}", candidate, additional_newline);
4645         }
4646
4647         err.span_suggestions(span, &msg, path_strings);
4648     } else {
4649         let mut msg = msg;
4650         msg.push(':');
4651         for candidate in path_strings {
4652             msg.push('\n');
4653             msg.push_str(&candidate);
4654         }
4655     }
4656 }
4657
4658 /// A somewhat inefficient routine to obtain the name of a module.
4659 fn module_to_string(module: Module) -> Option<String> {
4660     let mut names = Vec::new();
4661
4662     fn collect_mod(names: &mut Vec<Ident>, module: Module) {
4663         if let ModuleKind::Def(_, name) = module.kind {
4664             if let Some(parent) = module.parent {
4665                 names.push(Ident::with_empty_ctxt(name));
4666                 collect_mod(names, parent);
4667             }
4668         } else {
4669             // danger, shouldn't be ident?
4670             names.push(Ident::from_str("<opaque>"));
4671             collect_mod(names, module.parent.unwrap());
4672         }
4673     }
4674     collect_mod(&mut names, module);
4675
4676     if names.is_empty() {
4677         return None;
4678     }
4679     Some(names_to_string(&names.into_iter()
4680                         .rev()
4681                         .collect::<Vec<_>>()))
4682 }
4683
4684 fn err_path_resolution() -> PathResolution {
4685     PathResolution::new(Def::Err)
4686 }
4687
4688 #[derive(PartialEq,Copy, Clone)]
4689 pub enum MakeGlobMap {
4690     Yes,
4691     No,
4692 }
4693
4694 #[derive(Copy, Clone, Debug)]
4695 enum CrateLint {
4696     /// Do not issue the lint
4697     No,
4698
4699     /// This lint applies to some random path like `impl ::foo::Bar`
4700     /// or whatever. In this case, we can take the span of that path.
4701     SimplePath(NodeId),
4702
4703     /// This lint comes from a `use` statement. In this case, what we
4704     /// care about really is the *root* `use` statement; e.g., if we
4705     /// have nested things like `use a::{b, c}`, we care about the
4706     /// `use a` part.
4707     UsePath { root_id: NodeId, root_span: Span },
4708
4709     /// This is the "trait item" from a fully qualified path. For example,
4710     /// we might be resolving  `X::Y::Z` from a path like `<T as X::Y>::Z`.
4711     /// The `path_span` is the span of the to the trait itself (`X::Y`).
4712     QPathTrait { qpath_id: NodeId, qpath_span: Span },
4713 }
4714
4715 impl CrateLint {
4716     fn node_id(&self) -> Option<NodeId> {
4717         match *self {
4718             CrateLint::No => None,
4719             CrateLint::SimplePath(id) |
4720             CrateLint::UsePath { root_id: id, .. } |
4721             CrateLint::QPathTrait { qpath_id: id, .. } => Some(id),
4722         }
4723     }
4724 }
4725
4726 __build_diagnostic_array! { librustc_resolve, DIAGNOSTICS }