]> git.lizzy.rs Git - rust.git/blob - src/librustc_resolve/lib.rs
Auto merge of #52712 - oli-obk:const_eval_cleanups, r=RalfJung
[rust.git] / src / librustc_resolve / lib.rs
1 // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 #![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
12       html_favicon_url = "https://doc.rust-lang.org/favicon.ico",
13       html_root_url = "https://doc.rust-lang.org/nightly/")]
14
15 #![feature(crate_visibility_modifier)]
16 #![feature(rustc_diagnostic_macros)]
17 #![feature(slice_sort_by_cached_key)]
18
19 #[macro_use]
20 extern crate log;
21 #[macro_use]
22 extern crate syntax;
23 extern crate syntax_pos;
24 extern crate rustc_errors as errors;
25 extern crate arena;
26 #[macro_use]
27 extern crate rustc;
28 extern crate rustc_data_structures;
29
30 pub use rustc::hir::def::{Namespace, PerNS};
31
32 use self::TypeParameters::*;
33 use self::RibKind::*;
34
35 use rustc::hir::map::{Definitions, DefCollector};
36 use rustc::hir::{self, PrimTy, TyBool, TyChar, TyFloat, TyInt, TyUint, TyStr};
37 use rustc::middle::cstore::{CrateStore, CrateLoader};
38 use rustc::session::Session;
39 use rustc::lint;
40 use rustc::hir::def::*;
41 use rustc::hir::def::Namespace::*;
42 use rustc::hir::def_id::{CRATE_DEF_INDEX, LOCAL_CRATE, DefId};
43 use rustc::ty;
44 use rustc::hir::{Freevar, FreevarMap, TraitCandidate, TraitMap, GlobMap};
45 use rustc::util::nodemap::{NodeMap, NodeSet, FxHashMap, FxHashSet, DefIdMap};
46
47 use syntax::codemap::CodeMap;
48 use syntax::ext::hygiene::{Mark, Transparency, SyntaxContext};
49 use syntax::ast::{self, Name, NodeId, Ident, FloatTy, IntTy, UintTy};
50 use syntax::ext::base::SyntaxExtension;
51 use syntax::ext::base::Determinacy::{self, Determined, Undetermined};
52 use syntax::ext::base::MacroKind;
53 use syntax::symbol::{Symbol, keywords};
54 use syntax::util::lev_distance::find_best_match_for_name;
55
56 use syntax::visit::{self, FnKind, Visitor};
57 use syntax::attr;
58 use syntax::ast::{CRATE_NODE_ID, Arm, IsAsync, BindingMode, Block, Crate, Expr, ExprKind};
59 use syntax::ast::{FnDecl, ForeignItem, ForeignItemKind, GenericParamKind, Generics};
60 use syntax::ast::{Item, ItemKind, ImplItem, ImplItemKind};
61 use syntax::ast::{Label, Local, Mutability, Pat, PatKind, Path};
62 use syntax::ast::{QSelf, TraitItemKind, TraitRef, Ty, TyKind};
63 use syntax::feature_gate::{feature_err, GateIssue};
64 use syntax::ptr::P;
65
66 use syntax_pos::{Span, DUMMY_SP, MultiSpan};
67 use errors::{DiagnosticBuilder, DiagnosticId};
68
69 use std::cell::{Cell, RefCell};
70 use std::cmp;
71 use std::collections::BTreeSet;
72 use std::fmt;
73 use std::iter;
74 use std::mem::replace;
75 use rustc_data_structures::sync::Lrc;
76
77 use resolve_imports::{ImportDirective, ImportDirectiveSubclass, NameResolution, ImportResolver};
78 use macros::{InvocationData, LegacyBinding, LegacyScope, MacroBinding};
79
80 // NB: This module needs to be declared first so diagnostics are
81 // registered before they are used.
82 mod diagnostics;
83
84 mod macros;
85 mod check_unused;
86 mod build_reduced_graph;
87 mod resolve_imports;
88
89 fn is_known_tool(name: Name) -> bool {
90     ["clippy", "rustfmt"].contains(&&*name.as_str())
91 }
92
93 /// A free importable items suggested in case of resolution failure.
94 struct ImportSuggestion {
95     path: Path,
96 }
97
98 /// A field or associated item from self type suggested in case of resolution failure.
99 enum AssocSuggestion {
100     Field,
101     MethodWithSelf,
102     AssocItem,
103 }
104
105 #[derive(Eq)]
106 struct BindingError {
107     name: Name,
108     origin: BTreeSet<Span>,
109     target: BTreeSet<Span>,
110 }
111
112 impl PartialOrd for BindingError {
113     fn partial_cmp(&self, other: &BindingError) -> Option<cmp::Ordering> {
114         Some(self.cmp(other))
115     }
116 }
117
118 impl PartialEq for BindingError {
119     fn eq(&self, other: &BindingError) -> bool {
120         self.name == other.name
121     }
122 }
123
124 impl Ord for BindingError {
125     fn cmp(&self, other: &BindingError) -> cmp::Ordering {
126         self.name.cmp(&other.name)
127     }
128 }
129
130 enum ResolutionError<'a> {
131     /// error E0401: can't use type parameters from outer function
132     TypeParametersFromOuterFunction(Def),
133     /// error E0403: the name is already used for a type parameter in this type parameter list
134     NameAlreadyUsedInTypeParameterList(Name, &'a Span),
135     /// error E0407: method is not a member of trait
136     MethodNotMemberOfTrait(Name, &'a str),
137     /// error E0437: type is not a member of trait
138     TypeNotMemberOfTrait(Name, &'a str),
139     /// error E0438: const is not a member of trait
140     ConstNotMemberOfTrait(Name, &'a str),
141     /// error E0408: variable `{}` is not bound in all patterns
142     VariableNotBoundInPattern(&'a BindingError),
143     /// error E0409: variable `{}` is bound in inconsistent ways within the same match arm
144     VariableBoundWithDifferentMode(Name, Span),
145     /// error E0415: identifier is bound more than once in this parameter list
146     IdentifierBoundMoreThanOnceInParameterList(&'a str),
147     /// error E0416: identifier is bound more than once in the same pattern
148     IdentifierBoundMoreThanOnceInSamePattern(&'a str),
149     /// error E0426: use of undeclared label
150     UndeclaredLabel(&'a str, Option<Name>),
151     /// error E0429: `self` imports are only allowed within a { } list
152     SelfImportsOnlyAllowedWithin,
153     /// error E0430: `self` import can only appear once in the list
154     SelfImportCanOnlyAppearOnceInTheList,
155     /// error E0431: `self` import can only appear in an import list with a non-empty prefix
156     SelfImportOnlyInImportListWithNonEmptyPrefix,
157     /// error E0432: unresolved import
158     UnresolvedImport(Option<(Span, &'a str, &'a str)>),
159     /// error E0433: failed to resolve
160     FailedToResolve(&'a str),
161     /// error E0434: can't capture dynamic environment in a fn item
162     CannotCaptureDynamicEnvironmentInFnItem,
163     /// error E0435: attempt to use a non-constant value in a constant
164     AttemptToUseNonConstantValueInConstant,
165     /// error E0530: X bindings cannot shadow Ys
166     BindingShadowsSomethingUnacceptable(&'a str, Name, &'a NameBinding<'a>),
167     /// error E0128: type parameters with a default cannot use forward declared identifiers
168     ForwardDeclaredTyParam,
169 }
170
171 /// Combines an error with provided span and emits it
172 ///
173 /// This takes the error provided, combines it with the span and any additional spans inside the
174 /// error and emits it.
175 fn resolve_error<'sess, 'a>(resolver: &'sess Resolver,
176                             span: Span,
177                             resolution_error: ResolutionError<'a>) {
178     resolve_struct_error(resolver, span, resolution_error).emit();
179 }
180
181 fn resolve_struct_error<'sess, 'a>(resolver: &'sess Resolver,
182                                    span: Span,
183                                    resolution_error: ResolutionError<'a>)
184                                    -> DiagnosticBuilder<'sess> {
185     match resolution_error {
186         ResolutionError::TypeParametersFromOuterFunction(outer_def) => {
187             let mut err = struct_span_err!(resolver.session,
188                                            span,
189                                            E0401,
190                                            "can't use type parameters from outer function");
191             err.span_label(span, "use of type variable from outer function");
192
193             let cm = resolver.session.codemap();
194             match outer_def {
195                 Def::SelfTy(_, maybe_impl_defid) => {
196                     if let Some(impl_span) = maybe_impl_defid.map_or(None,
197                             |def_id| resolver.definitions.opt_span(def_id)) {
198                         err.span_label(reduce_impl_span_to_impl_keyword(cm, impl_span),
199                                     "`Self` type implicitely declared here, on the `impl`");
200                     }
201                 },
202                 Def::TyParam(typaram_defid) => {
203                     if let Some(typaram_span) = resolver.definitions.opt_span(typaram_defid) {
204                         err.span_label(typaram_span, "type variable from outer function");
205                     }
206                 },
207                 _ => {
208                     bug!("TypeParametersFromOuterFunction should only be used with Def::SelfTy or \
209                          Def::TyParam")
210                 }
211             }
212
213             // Try to retrieve the span of the function signature and generate a new message with
214             // a local type parameter
215             let sugg_msg = "try using a local type parameter instead";
216             if let Some((sugg_span, new_snippet)) = cm.generate_local_type_param_snippet(span) {
217                 // Suggest the modification to the user
218                 err.span_suggestion(sugg_span,
219                                     sugg_msg,
220                                     new_snippet);
221             } else if let Some(sp) = cm.generate_fn_name_span(span) {
222                 err.span_label(sp, "try adding a local type parameter in this method instead");
223             } else {
224                 err.help("try using a local type parameter instead");
225             }
226
227             err
228         }
229         ResolutionError::NameAlreadyUsedInTypeParameterList(name, first_use_span) => {
230              let mut err = struct_span_err!(resolver.session,
231                                             span,
232                                             E0403,
233                                             "the name `{}` is already used for a type parameter \
234                                             in this type parameter list",
235                                             name);
236              err.span_label(span, "already used");
237              err.span_label(first_use_span.clone(), format!("first use of `{}`", name));
238              err
239         }
240         ResolutionError::MethodNotMemberOfTrait(method, trait_) => {
241             let mut err = struct_span_err!(resolver.session,
242                                            span,
243                                            E0407,
244                                            "method `{}` is not a member of trait `{}`",
245                                            method,
246                                            trait_);
247             err.span_label(span, format!("not a member of trait `{}`", trait_));
248             err
249         }
250         ResolutionError::TypeNotMemberOfTrait(type_, trait_) => {
251             let mut err = struct_span_err!(resolver.session,
252                              span,
253                              E0437,
254                              "type `{}` is not a member of trait `{}`",
255                              type_,
256                              trait_);
257             err.span_label(span, format!("not a member of trait `{}`", trait_));
258             err
259         }
260         ResolutionError::ConstNotMemberOfTrait(const_, trait_) => {
261             let mut err = struct_span_err!(resolver.session,
262                              span,
263                              E0438,
264                              "const `{}` is not a member of trait `{}`",
265                              const_,
266                              trait_);
267             err.span_label(span, format!("not a member of trait `{}`", trait_));
268             err
269         }
270         ResolutionError::VariableNotBoundInPattern(binding_error) => {
271             let target_sp = binding_error.target.iter().cloned().collect::<Vec<_>>();
272             let msp = MultiSpan::from_spans(target_sp.clone());
273             let msg = format!("variable `{}` is not bound in all patterns", binding_error.name);
274             let mut err = resolver.session.struct_span_err_with_code(
275                 msp,
276                 &msg,
277                 DiagnosticId::Error("E0408".into()),
278             );
279             for sp in target_sp {
280                 err.span_label(sp, format!("pattern doesn't bind `{}`", binding_error.name));
281             }
282             let origin_sp = binding_error.origin.iter().cloned();
283             for sp in origin_sp {
284                 err.span_label(sp, "variable not in all patterns");
285             }
286             err
287         }
288         ResolutionError::VariableBoundWithDifferentMode(variable_name,
289                                                         first_binding_span) => {
290             let mut err = struct_span_err!(resolver.session,
291                              span,
292                              E0409,
293                              "variable `{}` is bound in inconsistent \
294                              ways within the same match arm",
295                              variable_name);
296             err.span_label(span, "bound in different ways");
297             err.span_label(first_binding_span, "first binding");
298             err
299         }
300         ResolutionError::IdentifierBoundMoreThanOnceInParameterList(identifier) => {
301             let mut err = struct_span_err!(resolver.session,
302                              span,
303                              E0415,
304                              "identifier `{}` is bound more than once in this parameter list",
305                              identifier);
306             err.span_label(span, "used as parameter more than once");
307             err
308         }
309         ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(identifier) => {
310             let mut err = struct_span_err!(resolver.session,
311                              span,
312                              E0416,
313                              "identifier `{}` is bound more than once in the same pattern",
314                              identifier);
315             err.span_label(span, "used in a pattern more than once");
316             err
317         }
318         ResolutionError::UndeclaredLabel(name, lev_candidate) => {
319             let mut err = struct_span_err!(resolver.session,
320                                            span,
321                                            E0426,
322                                            "use of undeclared label `{}`",
323                                            name);
324             if let Some(lev_candidate) = lev_candidate {
325                 err.span_label(span, format!("did you mean `{}`?", lev_candidate));
326             } else {
327                 err.span_label(span, format!("undeclared label `{}`", name));
328             }
329             err
330         }
331         ResolutionError::SelfImportsOnlyAllowedWithin => {
332             struct_span_err!(resolver.session,
333                              span,
334                              E0429,
335                              "{}",
336                              "`self` imports are only allowed within a { } list")
337         }
338         ResolutionError::SelfImportCanOnlyAppearOnceInTheList => {
339             let mut err = struct_span_err!(resolver.session, span, E0430,
340                                            "`self` import can only appear once in an import list");
341             err.span_label(span, "can only appear once in an import list");
342             err
343         }
344         ResolutionError::SelfImportOnlyInImportListWithNonEmptyPrefix => {
345             let mut err = struct_span_err!(resolver.session, span, E0431,
346                                            "`self` import can only appear in an import list with \
347                                             a non-empty prefix");
348             err.span_label(span, "can only appear in an import list with a non-empty prefix");
349             err
350         }
351         ResolutionError::UnresolvedImport(name) => {
352             let (span, msg) = match name {
353                 Some((sp, n, _)) => (sp, format!("unresolved import `{}`", n)),
354                 None => (span, "unresolved import".to_owned()),
355             };
356             let mut err = struct_span_err!(resolver.session, span, E0432, "{}", msg);
357             if let Some((_, _, p)) = name {
358                 err.span_label(span, p);
359             }
360             err
361         }
362         ResolutionError::FailedToResolve(msg) => {
363             let mut err = struct_span_err!(resolver.session, span, E0433,
364                                            "failed to resolve. {}", msg);
365             err.span_label(span, msg);
366             err
367         }
368         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem => {
369             let mut err = struct_span_err!(resolver.session,
370                                            span,
371                                            E0434,
372                                            "{}",
373                                            "can't capture dynamic environment in a fn item");
374             err.help("use the `|| { ... }` closure form instead");
375             err
376         }
377         ResolutionError::AttemptToUseNonConstantValueInConstant => {
378             let mut err = struct_span_err!(resolver.session, span, E0435,
379                                            "attempt to use a non-constant value in a constant");
380             err.span_label(span, "non-constant value");
381             err
382         }
383         ResolutionError::BindingShadowsSomethingUnacceptable(what_binding, name, binding) => {
384             let shadows_what = PathResolution::new(binding.def()).kind_name();
385             let mut err = struct_span_err!(resolver.session,
386                                            span,
387                                            E0530,
388                                            "{}s cannot shadow {}s", what_binding, shadows_what);
389             err.span_label(span, format!("cannot be named the same as a {}", shadows_what));
390             let participle = if binding.is_import() { "imported" } else { "defined" };
391             let msg = format!("a {} `{}` is {} here", shadows_what, name, participle);
392             err.span_label(binding.span, msg);
393             err
394         }
395         ResolutionError::ForwardDeclaredTyParam => {
396             let mut err = struct_span_err!(resolver.session, span, E0128,
397                                            "type parameters with a default cannot use \
398                                             forward declared identifiers");
399             err.span_label(
400                 span, "defaulted type parameters cannot be forward declared".to_string());
401             err
402         }
403     }
404 }
405
406 /// Adjust the impl span so that just the `impl` keyword is taken by removing
407 /// everything after `<` (`"impl<T> Iterator for A<T> {}" -> "impl"`) and
408 /// everything after the first whitespace (`"impl Iterator for A" -> "impl"`)
409 ///
410 /// Attention: The method used is very fragile since it essentially duplicates the work of the
411 /// parser. If you need to use this function or something similar, please consider updating the
412 /// codemap functions and this function to something more robust.
413 fn reduce_impl_span_to_impl_keyword(cm: &CodeMap, impl_span: Span) -> Span {
414     let impl_span = cm.span_until_char(impl_span, '<');
415     let impl_span = cm.span_until_whitespace(impl_span);
416     impl_span
417 }
418
419 #[derive(Copy, Clone, Debug)]
420 struct BindingInfo {
421     span: Span,
422     binding_mode: BindingMode,
423 }
424
425 /// Map from the name in a pattern to its binding mode.
426 type BindingMap = FxHashMap<Ident, BindingInfo>;
427
428 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
429 enum PatternSource {
430     Match,
431     IfLet,
432     WhileLet,
433     Let,
434     For,
435     FnParam,
436 }
437
438 impl PatternSource {
439     fn descr(self) -> &'static str {
440         match self {
441             PatternSource::Match => "match binding",
442             PatternSource::IfLet => "if let binding",
443             PatternSource::WhileLet => "while let binding",
444             PatternSource::Let => "let binding",
445             PatternSource::For => "for binding",
446             PatternSource::FnParam => "function parameter",
447         }
448     }
449 }
450
451 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
452 enum AliasPossibility {
453     No,
454     Maybe,
455 }
456
457 #[derive(Copy, Clone, Debug)]
458 enum PathSource<'a> {
459     // Type paths `Path`.
460     Type,
461     // Trait paths in bounds or impls.
462     Trait(AliasPossibility),
463     // Expression paths `path`, with optional parent context.
464     Expr(Option<&'a Expr>),
465     // Paths in path patterns `Path`.
466     Pat,
467     // Paths in struct expressions and patterns `Path { .. }`.
468     Struct,
469     // Paths in tuple struct patterns `Path(..)`.
470     TupleStruct,
471     // `m::A::B` in `<T as m::A>::B::C`.
472     TraitItem(Namespace),
473     // Path in `pub(path)`
474     Visibility,
475     // Path in `use a::b::{...};`
476     ImportPrefix,
477 }
478
479 impl<'a> PathSource<'a> {
480     fn namespace(self) -> Namespace {
481         match self {
482             PathSource::Type | PathSource::Trait(_) | PathSource::Struct |
483             PathSource::Visibility | PathSource::ImportPrefix => TypeNS,
484             PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct => ValueNS,
485             PathSource::TraitItem(ns) => ns,
486         }
487     }
488
489     fn global_by_default(self) -> bool {
490         match self {
491             PathSource::Visibility | PathSource::ImportPrefix => true,
492             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
493             PathSource::Struct | PathSource::TupleStruct |
494             PathSource::Trait(_) | PathSource::TraitItem(..) => false,
495         }
496     }
497
498     fn defer_to_typeck(self) -> bool {
499         match self {
500             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
501             PathSource::Struct | PathSource::TupleStruct => true,
502             PathSource::Trait(_) | PathSource::TraitItem(..) |
503             PathSource::Visibility | PathSource::ImportPrefix => false,
504         }
505     }
506
507     fn descr_expected(self) -> &'static str {
508         match self {
509             PathSource::Type => "type",
510             PathSource::Trait(_) => "trait",
511             PathSource::Pat => "unit struct/variant or constant",
512             PathSource::Struct => "struct, variant or union type",
513             PathSource::TupleStruct => "tuple struct/variant",
514             PathSource::Visibility => "module",
515             PathSource::ImportPrefix => "module or enum",
516             PathSource::TraitItem(ns) => match ns {
517                 TypeNS => "associated type",
518                 ValueNS => "method or associated constant",
519                 MacroNS => bug!("associated macro"),
520             },
521             PathSource::Expr(parent) => match parent.map(|p| &p.node) {
522                 // "function" here means "anything callable" rather than `Def::Fn`,
523                 // this is not precise but usually more helpful than just "value".
524                 Some(&ExprKind::Call(..)) => "function",
525                 _ => "value",
526             },
527         }
528     }
529
530     fn is_expected(self, def: Def) -> bool {
531         match self {
532             PathSource::Type => match def {
533                 Def::Struct(..) | Def::Union(..) | Def::Enum(..) |
534                 Def::Trait(..) | Def::TyAlias(..) | Def::AssociatedTy(..) |
535                 Def::PrimTy(..) | Def::TyParam(..) | Def::SelfTy(..) |
536                 Def::Existential(..) |
537                 Def::TyForeign(..) => true,
538                 _ => false,
539             },
540             PathSource::Trait(AliasPossibility::No) => match def {
541                 Def::Trait(..) => true,
542                 _ => false,
543             },
544             PathSource::Trait(AliasPossibility::Maybe) => match def {
545                 Def::Trait(..) => true,
546                 Def::TraitAlias(..) => true,
547                 _ => false,
548             },
549             PathSource::Expr(..) => match def {
550                 Def::StructCtor(_, CtorKind::Const) | Def::StructCtor(_, CtorKind::Fn) |
551                 Def::VariantCtor(_, CtorKind::Const) | Def::VariantCtor(_, CtorKind::Fn) |
552                 Def::Const(..) | Def::Static(..) | Def::Local(..) | Def::Upvar(..) |
553                 Def::Fn(..) | Def::Method(..) | Def::AssociatedConst(..) => true,
554                 _ => false,
555             },
556             PathSource::Pat => match def {
557                 Def::StructCtor(_, CtorKind::Const) |
558                 Def::VariantCtor(_, CtorKind::Const) |
559                 Def::Const(..) | Def::AssociatedConst(..) => true,
560                 _ => false,
561             },
562             PathSource::TupleStruct => match def {
563                 Def::StructCtor(_, CtorKind::Fn) | Def::VariantCtor(_, CtorKind::Fn) => true,
564                 _ => false,
565             },
566             PathSource::Struct => match def {
567                 Def::Struct(..) | Def::Union(..) | Def::Variant(..) |
568                 Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => true,
569                 _ => false,
570             },
571             PathSource::TraitItem(ns) => match def {
572                 Def::AssociatedConst(..) | Def::Method(..) if ns == ValueNS => true,
573                 Def::AssociatedTy(..) if ns == TypeNS => true,
574                 _ => false,
575             },
576             PathSource::ImportPrefix => match def {
577                 Def::Mod(..) | Def::Enum(..) => true,
578                 _ => false,
579             },
580             PathSource::Visibility => match def {
581                 Def::Mod(..) => true,
582                 _ => false,
583             },
584         }
585     }
586
587     fn error_code(self, has_unexpected_resolution: bool) -> &'static str {
588         __diagnostic_used!(E0404);
589         __diagnostic_used!(E0405);
590         __diagnostic_used!(E0412);
591         __diagnostic_used!(E0422);
592         __diagnostic_used!(E0423);
593         __diagnostic_used!(E0425);
594         __diagnostic_used!(E0531);
595         __diagnostic_used!(E0532);
596         __diagnostic_used!(E0573);
597         __diagnostic_used!(E0574);
598         __diagnostic_used!(E0575);
599         __diagnostic_used!(E0576);
600         __diagnostic_used!(E0577);
601         __diagnostic_used!(E0578);
602         match (self, has_unexpected_resolution) {
603             (PathSource::Trait(_), true) => "E0404",
604             (PathSource::Trait(_), false) => "E0405",
605             (PathSource::Type, true) => "E0573",
606             (PathSource::Type, false) => "E0412",
607             (PathSource::Struct, true) => "E0574",
608             (PathSource::Struct, false) => "E0422",
609             (PathSource::Expr(..), true) => "E0423",
610             (PathSource::Expr(..), false) => "E0425",
611             (PathSource::Pat, true) | (PathSource::TupleStruct, true) => "E0532",
612             (PathSource::Pat, false) | (PathSource::TupleStruct, false) => "E0531",
613             (PathSource::TraitItem(..), true) => "E0575",
614             (PathSource::TraitItem(..), false) => "E0576",
615             (PathSource::Visibility, true) | (PathSource::ImportPrefix, true) => "E0577",
616             (PathSource::Visibility, false) | (PathSource::ImportPrefix, false) => "E0578",
617         }
618     }
619 }
620
621 struct UsePlacementFinder {
622     target_module: NodeId,
623     span: Option<Span>,
624     found_use: bool,
625 }
626
627 impl UsePlacementFinder {
628     fn check(krate: &Crate, target_module: NodeId) -> (Option<Span>, bool) {
629         let mut finder = UsePlacementFinder {
630             target_module,
631             span: None,
632             found_use: false,
633         };
634         visit::walk_crate(&mut finder, krate);
635         (finder.span, finder.found_use)
636     }
637 }
638
639 impl<'tcx> Visitor<'tcx> for UsePlacementFinder {
640     fn visit_mod(
641         &mut self,
642         module: &'tcx ast::Mod,
643         _: Span,
644         _: &[ast::Attribute],
645         node_id: NodeId,
646     ) {
647         if self.span.is_some() {
648             return;
649         }
650         if node_id != self.target_module {
651             visit::walk_mod(self, module);
652             return;
653         }
654         // find a use statement
655         for item in &module.items {
656             match item.node {
657                 ItemKind::Use(..) => {
658                     // don't suggest placing a use before the prelude
659                     // import or other generated ones
660                     if item.span.ctxt().outer().expn_info().is_none() {
661                         self.span = Some(item.span.shrink_to_lo());
662                         self.found_use = true;
663                         return;
664                     }
665                 },
666                 // don't place use before extern crate
667                 ItemKind::ExternCrate(_) => {}
668                 // but place them before the first other item
669                 _ => if self.span.map_or(true, |span| item.span < span ) {
670                     if item.span.ctxt().outer().expn_info().is_none() {
671                         // don't insert between attributes and an item
672                         if item.attrs.is_empty() {
673                             self.span = Some(item.span.shrink_to_lo());
674                         } else {
675                             // find the first attribute on the item
676                             for attr in &item.attrs {
677                                 if self.span.map_or(true, |span| attr.span < span) {
678                                     self.span = Some(attr.span.shrink_to_lo());
679                                 }
680                             }
681                         }
682                     }
683                 },
684             }
685         }
686     }
687 }
688
689 /// This thing walks the whole crate in DFS manner, visiting each item, resolving names as it goes.
690 impl<'a, 'tcx> Visitor<'tcx> for Resolver<'a> {
691     fn visit_item(&mut self, item: &'tcx Item) {
692         self.resolve_item(item);
693     }
694     fn visit_arm(&mut self, arm: &'tcx Arm) {
695         self.resolve_arm(arm);
696     }
697     fn visit_block(&mut self, block: &'tcx Block) {
698         self.resolve_block(block);
699     }
700     fn visit_anon_const(&mut self, constant: &'tcx ast::AnonConst) {
701         self.with_constant_rib(|this| {
702             visit::walk_anon_const(this, constant);
703         });
704     }
705     fn visit_expr(&mut self, expr: &'tcx Expr) {
706         self.resolve_expr(expr, None);
707     }
708     fn visit_local(&mut self, local: &'tcx Local) {
709         self.resolve_local(local);
710     }
711     fn visit_ty(&mut self, ty: &'tcx Ty) {
712         match ty.node {
713             TyKind::Path(ref qself, ref path) => {
714                 self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
715             }
716             TyKind::ImplicitSelf => {
717                 let self_ty = keywords::SelfType.ident();
718                 let def = self.resolve_ident_in_lexical_scope(self_ty, TypeNS, Some(ty.id), ty.span)
719                               .map_or(Def::Err, |d| d.def());
720                 self.record_def(ty.id, PathResolution::new(def));
721             }
722             _ => (),
723         }
724         visit::walk_ty(self, ty);
725     }
726     fn visit_poly_trait_ref(&mut self,
727                             tref: &'tcx ast::PolyTraitRef,
728                             m: &'tcx ast::TraitBoundModifier) {
729         self.smart_resolve_path(tref.trait_ref.ref_id, None,
730                                 &tref.trait_ref.path, PathSource::Trait(AliasPossibility::Maybe));
731         visit::walk_poly_trait_ref(self, tref, m);
732     }
733     fn visit_foreign_item(&mut self, foreign_item: &'tcx ForeignItem) {
734         let type_parameters = match foreign_item.node {
735             ForeignItemKind::Fn(_, ref generics) => {
736                 HasTypeParameters(generics, ItemRibKind)
737             }
738             ForeignItemKind::Static(..) => NoTypeParameters,
739             ForeignItemKind::Ty => NoTypeParameters,
740             ForeignItemKind::Macro(..) => NoTypeParameters,
741         };
742         self.with_type_parameter_rib(type_parameters, |this| {
743             visit::walk_foreign_item(this, foreign_item);
744         });
745     }
746     fn visit_fn(&mut self,
747                 function_kind: FnKind<'tcx>,
748                 declaration: &'tcx FnDecl,
749                 _: Span,
750                 node_id: NodeId)
751     {
752         let (rib_kind, asyncness) = match function_kind {
753             FnKind::ItemFn(_, ref header, ..) =>
754                 (ItemRibKind, header.asyncness),
755             FnKind::Method(_, ref sig, _, _) =>
756                 (TraitOrImplItemRibKind, sig.header.asyncness),
757             FnKind::Closure(_) =>
758                 // Async closures aren't resolved through `visit_fn`-- they're
759                 // processed separately
760                 (ClosureRibKind(node_id), IsAsync::NotAsync),
761         };
762
763         // Create a value rib for the function.
764         self.ribs[ValueNS].push(Rib::new(rib_kind));
765
766         // Create a label rib for the function.
767         self.label_ribs.push(Rib::new(rib_kind));
768
769         // Add each argument to the rib.
770         let mut bindings_list = FxHashMap();
771         for argument in &declaration.inputs {
772             self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
773
774             self.visit_ty(&argument.ty);
775
776             debug!("(resolving function) recorded argument");
777         }
778         visit::walk_fn_ret_ty(self, &declaration.output);
779
780         // Resolve the function body, potentially inside the body of an async closure
781         if let IsAsync::Async { closure_id, .. } = asyncness {
782             let rib_kind = ClosureRibKind(closure_id);
783             self.ribs[ValueNS].push(Rib::new(rib_kind));
784             self.label_ribs.push(Rib::new(rib_kind));
785         }
786
787         match function_kind {
788             FnKind::ItemFn(.., body) |
789             FnKind::Method(.., body) => {
790                 self.visit_block(body);
791             }
792             FnKind::Closure(body) => {
793                 self.visit_expr(body);
794             }
795         };
796
797         // Leave the body of the async closure
798         if asyncness.is_async() {
799             self.label_ribs.pop();
800             self.ribs[ValueNS].pop();
801         }
802
803         debug!("(resolving function) leaving function");
804
805         self.label_ribs.pop();
806         self.ribs[ValueNS].pop();
807     }
808     fn visit_generics(&mut self, generics: &'tcx Generics) {
809         // For type parameter defaults, we have to ban access
810         // to following type parameters, as the Substs can only
811         // provide previous type parameters as they're built. We
812         // put all the parameters on the ban list and then remove
813         // them one by one as they are processed and become available.
814         let mut default_ban_rib = Rib::new(ForwardTyParamBanRibKind);
815         let mut found_default = false;
816         default_ban_rib.bindings.extend(generics.params.iter()
817             .filter_map(|param| match param.kind {
818                 GenericParamKind::Lifetime { .. } => None,
819                 GenericParamKind::Type { ref default, .. } => {
820                     if found_default || default.is_some() {
821                         found_default = true;
822                         return Some((Ident::with_empty_ctxt(param.ident.name), Def::Err));
823                     }
824                     None
825                 }
826             }));
827
828         for param in &generics.params {
829             match param.kind {
830                 GenericParamKind::Lifetime { .. } => self.visit_generic_param(param),
831                 GenericParamKind::Type { ref default, .. } => {
832                     for bound in &param.bounds {
833                         self.visit_param_bound(bound);
834                     }
835
836                     if let Some(ref ty) = default {
837                         self.ribs[TypeNS].push(default_ban_rib);
838                         self.visit_ty(ty);
839                         default_ban_rib = self.ribs[TypeNS].pop().unwrap();
840                     }
841
842                     // Allow all following defaults to refer to this type parameter.
843                     default_ban_rib.bindings.remove(&Ident::with_empty_ctxt(param.ident.name));
844                 }
845             }
846         }
847         for p in &generics.where_clause.predicates {
848             self.visit_where_predicate(p);
849         }
850     }
851 }
852
853 #[derive(Copy, Clone)]
854 enum TypeParameters<'a, 'b> {
855     NoTypeParameters,
856     HasTypeParameters(// Type parameters.
857                       &'b Generics,
858
859                       // The kind of the rib used for type parameters.
860                       RibKind<'a>),
861 }
862
863 /// The rib kind controls the translation of local
864 /// definitions (`Def::Local`) to upvars (`Def::Upvar`).
865 #[derive(Copy, Clone, Debug)]
866 enum RibKind<'a> {
867     /// No translation needs to be applied.
868     NormalRibKind,
869
870     /// We passed through a closure scope at the given node ID.
871     /// Translate upvars as appropriate.
872     ClosureRibKind(NodeId /* func id */),
873
874     /// We passed through an impl or trait and are now in one of its
875     /// methods or associated types. Allow references to ty params that impl or trait
876     /// binds. Disallow any other upvars (including other ty params that are
877     /// upvars).
878     TraitOrImplItemRibKind,
879
880     /// We passed through an item scope. Disallow upvars.
881     ItemRibKind,
882
883     /// We're in a constant item. Can't refer to dynamic stuff.
884     ConstantItemRibKind,
885
886     /// We passed through a module.
887     ModuleRibKind(Module<'a>),
888
889     /// We passed through a `macro_rules!` statement
890     MacroDefinition(DefId),
891
892     /// All bindings in this rib are type parameters that can't be used
893     /// from the default of a type parameter because they're not declared
894     /// before said type parameter. Also see the `visit_generics` override.
895     ForwardTyParamBanRibKind,
896 }
897
898 /// One local scope.
899 ///
900 /// A rib represents a scope names can live in. Note that these appear in many places, not just
901 /// around braces. At any place where the list of accessible names (of the given namespace)
902 /// changes or a new restrictions on the name accessibility are introduced, a new rib is put onto a
903 /// stack. This may be, for example, a `let` statement (because it introduces variables), a macro,
904 /// etc.
905 ///
906 /// Different [rib kinds](enum.RibKind) are transparent for different names.
907 ///
908 /// The resolution keeps a separate stack of ribs as it traverses the AST for each namespace. When
909 /// resolving, the name is looked up from inside out.
910 #[derive(Debug)]
911 struct Rib<'a> {
912     bindings: FxHashMap<Ident, Def>,
913     kind: RibKind<'a>,
914 }
915
916 impl<'a> Rib<'a> {
917     fn new(kind: RibKind<'a>) -> Rib<'a> {
918         Rib {
919             bindings: FxHashMap(),
920             kind,
921         }
922     }
923 }
924
925 /// An intermediate resolution result.
926 ///
927 /// This refers to the thing referred by a name. The difference between `Def` and `Item` is that
928 /// items are visible in their whole block, while defs only from the place they are defined
929 /// forward.
930 enum LexicalScopeBinding<'a> {
931     Item(&'a NameBinding<'a>),
932     Def(Def),
933 }
934
935 impl<'a> LexicalScopeBinding<'a> {
936     fn item(self) -> Option<&'a NameBinding<'a>> {
937         match self {
938             LexicalScopeBinding::Item(binding) => Some(binding),
939             _ => None,
940         }
941     }
942
943     fn def(self) -> Def {
944         match self {
945             LexicalScopeBinding::Item(binding) => binding.def(),
946             LexicalScopeBinding::Def(def) => def,
947         }
948     }
949 }
950
951 #[derive(Clone, Debug)]
952 enum PathResult<'a> {
953     Module(Module<'a>),
954     NonModule(PathResolution),
955     Indeterminate,
956     Failed(Span, String, bool /* is the error from the last segment? */),
957 }
958
959 enum ModuleKind {
960     /// An anonymous module, eg. just a block.
961     ///
962     /// ```
963     /// fn main() {
964     ///     fn f() {} // (1)
965     ///     { // This is an anonymous module
966     ///         f(); // This resolves to (2) as we are inside the block.
967     ///         fn f() {} // (2)
968     ///     }
969     ///     f(); // Resolves to (1)
970     /// }
971     /// ```
972     Block(NodeId),
973     /// Any module with a name.
974     ///
975     /// This could be:
976     ///
977     /// * A normal module â€’ either `mod from_file;` or `mod from_block { }`.
978     /// * A trait or an enum (it implicitly contains associated types, methods and variant
979     ///   constructors).
980     Def(Def, Name),
981 }
982
983 /// One node in the tree of modules.
984 pub struct ModuleData<'a> {
985     parent: Option<Module<'a>>,
986     kind: ModuleKind,
987
988     // The def id of the closest normal module (`mod`) ancestor (including this module).
989     normal_ancestor_id: DefId,
990
991     resolutions: RefCell<FxHashMap<(Ident, Namespace), &'a RefCell<NameResolution<'a>>>>,
992     legacy_macro_resolutions: RefCell<Vec<(Mark, Ident, MacroKind, Option<Def>)>>,
993     macro_resolutions: RefCell<Vec<(Box<[Ident]>, Span)>>,
994
995     // Macro invocations that can expand into items in this module.
996     unresolved_invocations: RefCell<FxHashSet<Mark>>,
997
998     no_implicit_prelude: bool,
999
1000     glob_importers: RefCell<Vec<&'a ImportDirective<'a>>>,
1001     globs: RefCell<Vec<&'a ImportDirective<'a>>>,
1002
1003     // Used to memoize the traits in this module for faster searches through all traits in scope.
1004     traits: RefCell<Option<Box<[(Ident, &'a NameBinding<'a>)]>>>,
1005
1006     // Whether this module is populated. If not populated, any attempt to
1007     // access the children must be preceded with a
1008     // `populate_module_if_necessary` call.
1009     populated: Cell<bool>,
1010
1011     /// Span of the module itself. Used for error reporting.
1012     span: Span,
1013
1014     expansion: Mark,
1015 }
1016
1017 type Module<'a> = &'a ModuleData<'a>;
1018
1019 impl<'a> ModuleData<'a> {
1020     fn new(parent: Option<Module<'a>>,
1021            kind: ModuleKind,
1022            normal_ancestor_id: DefId,
1023            expansion: Mark,
1024            span: Span) -> Self {
1025         ModuleData {
1026             parent,
1027             kind,
1028             normal_ancestor_id,
1029             resolutions: RefCell::new(FxHashMap()),
1030             legacy_macro_resolutions: RefCell::new(Vec::new()),
1031             macro_resolutions: RefCell::new(Vec::new()),
1032             unresolved_invocations: RefCell::new(FxHashSet()),
1033             no_implicit_prelude: false,
1034             glob_importers: RefCell::new(Vec::new()),
1035             globs: RefCell::new(Vec::new()),
1036             traits: RefCell::new(None),
1037             populated: Cell::new(normal_ancestor_id.is_local()),
1038             span,
1039             expansion,
1040         }
1041     }
1042
1043     fn for_each_child<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1044         for (&(ident, ns), name_resolution) in self.resolutions.borrow().iter() {
1045             name_resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1046         }
1047     }
1048
1049     fn for_each_child_stable<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1050         let resolutions = self.resolutions.borrow();
1051         let mut resolutions = resolutions.iter().collect::<Vec<_>>();
1052         resolutions.sort_by_cached_key(|&(&(ident, ns), _)| (ident.as_str(), ns));
1053         for &(&(ident, ns), &resolution) in resolutions.iter() {
1054             resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1055         }
1056     }
1057
1058     fn def(&self) -> Option<Def> {
1059         match self.kind {
1060             ModuleKind::Def(def, _) => Some(def),
1061             _ => None,
1062         }
1063     }
1064
1065     fn def_id(&self) -> Option<DefId> {
1066         self.def().as_ref().map(Def::def_id)
1067     }
1068
1069     // `self` resolves to the first module ancestor that `is_normal`.
1070     fn is_normal(&self) -> bool {
1071         match self.kind {
1072             ModuleKind::Def(Def::Mod(_), _) => true,
1073             _ => false,
1074         }
1075     }
1076
1077     fn is_trait(&self) -> bool {
1078         match self.kind {
1079             ModuleKind::Def(Def::Trait(_), _) => true,
1080             _ => false,
1081         }
1082     }
1083
1084     fn is_local(&self) -> bool {
1085         self.normal_ancestor_id.is_local()
1086     }
1087
1088     fn nearest_item_scope(&'a self) -> Module<'a> {
1089         if self.is_trait() { self.parent.unwrap() } else { self }
1090     }
1091 }
1092
1093 impl<'a> fmt::Debug for ModuleData<'a> {
1094     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1095         write!(f, "{:?}", self.def())
1096     }
1097 }
1098
1099 /// Records a possibly-private value, type, or module definition.
1100 #[derive(Clone, Debug)]
1101 pub struct NameBinding<'a> {
1102     kind: NameBindingKind<'a>,
1103     expansion: Mark,
1104     span: Span,
1105     vis: ty::Visibility,
1106 }
1107
1108 pub trait ToNameBinding<'a> {
1109     fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a>;
1110 }
1111
1112 impl<'a> ToNameBinding<'a> for &'a NameBinding<'a> {
1113     fn to_name_binding(self, _: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> {
1114         self
1115     }
1116 }
1117
1118 #[derive(Clone, Debug)]
1119 enum NameBindingKind<'a> {
1120     Def(Def, /* is_macro_export */ bool),
1121     Module(Module<'a>),
1122     Import {
1123         binding: &'a NameBinding<'a>,
1124         directive: &'a ImportDirective<'a>,
1125         used: Cell<bool>,
1126     },
1127     Ambiguity {
1128         b1: &'a NameBinding<'a>,
1129         b2: &'a NameBinding<'a>,
1130     }
1131 }
1132
1133 struct PrivacyError<'a>(Span, Name, &'a NameBinding<'a>);
1134
1135 struct UseError<'a> {
1136     err: DiagnosticBuilder<'a>,
1137     /// Attach `use` statements for these candidates
1138     candidates: Vec<ImportSuggestion>,
1139     /// The node id of the module to place the use statements in
1140     node_id: NodeId,
1141     /// Whether the diagnostic should state that it's "better"
1142     better: bool,
1143 }
1144
1145 struct AmbiguityError<'a> {
1146     span: Span,
1147     name: Name,
1148     lexical: bool,
1149     b1: &'a NameBinding<'a>,
1150     b2: &'a NameBinding<'a>,
1151 }
1152
1153 impl<'a> NameBinding<'a> {
1154     fn module(&self) -> Option<Module<'a>> {
1155         match self.kind {
1156             NameBindingKind::Module(module) => Some(module),
1157             NameBindingKind::Import { binding, .. } => binding.module(),
1158             _ => None,
1159         }
1160     }
1161
1162     fn def(&self) -> Def {
1163         match self.kind {
1164             NameBindingKind::Def(def, _) => def,
1165             NameBindingKind::Module(module) => module.def().unwrap(),
1166             NameBindingKind::Import { binding, .. } => binding.def(),
1167             NameBindingKind::Ambiguity { .. } => Def::Err,
1168         }
1169     }
1170
1171     fn def_ignoring_ambiguity(&self) -> Def {
1172         match self.kind {
1173             NameBindingKind::Import { binding, .. } => binding.def_ignoring_ambiguity(),
1174             NameBindingKind::Ambiguity { b1, .. } => b1.def_ignoring_ambiguity(),
1175             _ => self.def(),
1176         }
1177     }
1178
1179     fn get_macro(&self, resolver: &mut Resolver<'a>) -> Lrc<SyntaxExtension> {
1180         resolver.get_macro(self.def_ignoring_ambiguity())
1181     }
1182
1183     // We sometimes need to treat variants as `pub` for backwards compatibility
1184     fn pseudo_vis(&self) -> ty::Visibility {
1185         if self.is_variant() && self.def().def_id().is_local() {
1186             ty::Visibility::Public
1187         } else {
1188             self.vis
1189         }
1190     }
1191
1192     fn is_variant(&self) -> bool {
1193         match self.kind {
1194             NameBindingKind::Def(Def::Variant(..), _) |
1195             NameBindingKind::Def(Def::VariantCtor(..), _) => true,
1196             _ => false,
1197         }
1198     }
1199
1200     fn is_extern_crate(&self) -> bool {
1201         match self.kind {
1202             NameBindingKind::Import {
1203                 directive: &ImportDirective {
1204                     subclass: ImportDirectiveSubclass::ExternCrate(_), ..
1205                 }, ..
1206             } => true,
1207             _ => false,
1208         }
1209     }
1210
1211     fn is_import(&self) -> bool {
1212         match self.kind {
1213             NameBindingKind::Import { .. } => true,
1214             _ => false,
1215         }
1216     }
1217
1218     fn is_renamed_extern_crate(&self) -> bool {
1219         if let NameBindingKind::Import { directive, ..} = self.kind {
1220             if let ImportDirectiveSubclass::ExternCrate(Some(_)) = directive.subclass {
1221                 return true;
1222             }
1223         }
1224         false
1225     }
1226
1227     fn is_glob_import(&self) -> bool {
1228         match self.kind {
1229             NameBindingKind::Import { directive, .. } => directive.is_glob(),
1230             NameBindingKind::Ambiguity { b1, .. } => b1.is_glob_import(),
1231             _ => false,
1232         }
1233     }
1234
1235     fn is_importable(&self) -> bool {
1236         match self.def() {
1237             Def::AssociatedConst(..) | Def::Method(..) | Def::AssociatedTy(..) => false,
1238             _ => true,
1239         }
1240     }
1241
1242     fn is_macro_def(&self) -> bool {
1243         match self.kind {
1244             NameBindingKind::Def(Def::Macro(..), _) => true,
1245             _ => false,
1246         }
1247     }
1248
1249     fn descr(&self) -> &'static str {
1250         if self.is_extern_crate() { "extern crate" } else { self.def().kind_name() }
1251     }
1252 }
1253
1254 /// Interns the names of the primitive types.
1255 ///
1256 /// All other types are defined somewhere and possibly imported, but the primitive ones need
1257 /// special handling, since they have no place of origin.
1258 struct PrimitiveTypeTable {
1259     primitive_types: FxHashMap<Name, PrimTy>,
1260 }
1261
1262 impl PrimitiveTypeTable {
1263     fn new() -> PrimitiveTypeTable {
1264         let mut table = PrimitiveTypeTable { primitive_types: FxHashMap() };
1265
1266         table.intern("bool", TyBool);
1267         table.intern("char", TyChar);
1268         table.intern("f32", TyFloat(FloatTy::F32));
1269         table.intern("f64", TyFloat(FloatTy::F64));
1270         table.intern("isize", TyInt(IntTy::Isize));
1271         table.intern("i8", TyInt(IntTy::I8));
1272         table.intern("i16", TyInt(IntTy::I16));
1273         table.intern("i32", TyInt(IntTy::I32));
1274         table.intern("i64", TyInt(IntTy::I64));
1275         table.intern("i128", TyInt(IntTy::I128));
1276         table.intern("str", TyStr);
1277         table.intern("usize", TyUint(UintTy::Usize));
1278         table.intern("u8", TyUint(UintTy::U8));
1279         table.intern("u16", TyUint(UintTy::U16));
1280         table.intern("u32", TyUint(UintTy::U32));
1281         table.intern("u64", TyUint(UintTy::U64));
1282         table.intern("u128", TyUint(UintTy::U128));
1283         table
1284     }
1285
1286     fn intern(&mut self, string: &str, primitive_type: PrimTy) {
1287         self.primitive_types.insert(Symbol::intern(string), primitive_type);
1288     }
1289 }
1290
1291 /// The main resolver class.
1292 ///
1293 /// This is the visitor that walks the whole crate.
1294 pub struct Resolver<'a> {
1295     session: &'a Session,
1296     cstore: &'a dyn CrateStore,
1297
1298     pub definitions: Definitions,
1299
1300     graph_root: Module<'a>,
1301
1302     prelude: Option<Module<'a>>,
1303     extern_prelude: FxHashSet<Name>,
1304
1305     /// n.b. This is used only for better diagnostics, not name resolution itself.
1306     has_self: FxHashSet<DefId>,
1307
1308     /// Names of fields of an item `DefId` accessible with dot syntax.
1309     /// Used for hints during error reporting.
1310     field_names: FxHashMap<DefId, Vec<Name>>,
1311
1312     /// All imports known to succeed or fail.
1313     determined_imports: Vec<&'a ImportDirective<'a>>,
1314
1315     /// All non-determined imports.
1316     indeterminate_imports: Vec<&'a ImportDirective<'a>>,
1317
1318     /// The module that represents the current item scope.
1319     current_module: Module<'a>,
1320
1321     /// The current set of local scopes for types and values.
1322     /// FIXME #4948: Reuse ribs to avoid allocation.
1323     ribs: PerNS<Vec<Rib<'a>>>,
1324
1325     /// The current set of local scopes, for labels.
1326     label_ribs: Vec<Rib<'a>>,
1327
1328     /// The trait that the current context can refer to.
1329     current_trait_ref: Option<(Module<'a>, TraitRef)>,
1330
1331     /// The current self type if inside an impl (used for better errors).
1332     current_self_type: Option<Ty>,
1333
1334     /// The idents for the primitive types.
1335     primitive_type_table: PrimitiveTypeTable,
1336
1337     def_map: DefMap,
1338     import_map: ImportMap,
1339     pub freevars: FreevarMap,
1340     freevars_seen: NodeMap<NodeMap<usize>>,
1341     pub export_map: ExportMap,
1342     pub trait_map: TraitMap,
1343
1344     /// A map from nodes to anonymous modules.
1345     /// Anonymous modules are pseudo-modules that are implicitly created around items
1346     /// contained within blocks.
1347     ///
1348     /// For example, if we have this:
1349     ///
1350     ///  fn f() {
1351     ///      fn g() {
1352     ///          ...
1353     ///      }
1354     ///  }
1355     ///
1356     /// There will be an anonymous module created around `g` with the ID of the
1357     /// entry block for `f`.
1358     block_map: NodeMap<Module<'a>>,
1359     module_map: FxHashMap<DefId, Module<'a>>,
1360     extern_module_map: FxHashMap<(DefId, bool /* MacrosOnly? */), Module<'a>>,
1361
1362     pub make_glob_map: bool,
1363     /// Maps imports to the names of items actually imported (this actually maps
1364     /// all imports, but only glob imports are actually interesting).
1365     pub glob_map: GlobMap,
1366
1367     used_imports: FxHashSet<(NodeId, Namespace)>,
1368     pub maybe_unused_trait_imports: NodeSet,
1369     pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
1370
1371     /// A list of labels as of yet unused. Labels will be removed from this map when
1372     /// they are used (in a `break` or `continue` statement)
1373     pub unused_labels: FxHashMap<NodeId, Span>,
1374
1375     /// privacy errors are delayed until the end in order to deduplicate them
1376     privacy_errors: Vec<PrivacyError<'a>>,
1377     /// ambiguity errors are delayed for deduplication
1378     ambiguity_errors: Vec<AmbiguityError<'a>>,
1379     /// `use` injections are delayed for better placement and deduplication
1380     use_injections: Vec<UseError<'a>>,
1381     /// `use` injections for proc macros wrongly imported with #[macro_use]
1382     proc_mac_errors: Vec<macros::ProcMacError>,
1383
1384     gated_errors: FxHashSet<Span>,
1385     disallowed_shadowing: Vec<&'a LegacyBinding<'a>>,
1386
1387     arenas: &'a ResolverArenas<'a>,
1388     dummy_binding: &'a NameBinding<'a>,
1389     /// true if `#![feature(use_extern_macros)]`
1390     use_extern_macros: bool,
1391
1392     crate_loader: &'a mut dyn CrateLoader,
1393     macro_names: FxHashSet<Ident>,
1394     macro_prelude: FxHashMap<Name, &'a NameBinding<'a>>,
1395     pub all_macros: FxHashMap<Name, Def>,
1396     lexical_macro_resolutions: Vec<(Ident, &'a Cell<LegacyScope<'a>>)>,
1397     macro_map: FxHashMap<DefId, Lrc<SyntaxExtension>>,
1398     macro_defs: FxHashMap<Mark, DefId>,
1399     local_macro_def_scopes: FxHashMap<NodeId, Module<'a>>,
1400     macro_exports: Vec<Export>, // FIXME: Remove when `use_extern_macros` is stabilized
1401     pub whitelisted_legacy_custom_derives: Vec<Name>,
1402     pub found_unresolved_macro: bool,
1403
1404     /// List of crate local macros that we need to warn about as being unused.
1405     /// Right now this only includes macro_rules! macros, and macros 2.0.
1406     unused_macros: FxHashSet<DefId>,
1407
1408     /// Maps the `Mark` of an expansion to its containing module or block.
1409     invocations: FxHashMap<Mark, &'a InvocationData<'a>>,
1410
1411     /// Avoid duplicated errors for "name already defined".
1412     name_already_seen: FxHashMap<Name, Span>,
1413
1414     /// A set of procedural macros imported by `#[macro_use]` that have already been warned about
1415     warned_proc_macros: FxHashSet<Name>,
1416
1417     potentially_unused_imports: Vec<&'a ImportDirective<'a>>,
1418
1419     /// This table maps struct IDs into struct constructor IDs,
1420     /// it's not used during normal resolution, only for better error reporting.
1421     struct_constructors: DefIdMap<(Def, ty::Visibility)>,
1422
1423     /// Only used for better errors on `fn(): fn()`
1424     current_type_ascription: Vec<Span>,
1425
1426     injected_crate: Option<Module<'a>>,
1427
1428     /// Only supposed to be used by rustdoc, otherwise should be false.
1429     pub ignore_extern_prelude_feature: bool,
1430
1431     /// Macro invocations in the whole crate that can expand into a `#[macro_export] macro_rules`.
1432     unresolved_invocations_macro_export: FxHashSet<Mark>,
1433 }
1434
1435 /// Nothing really interesting here, it just provides memory for the rest of the crate.
1436 pub struct ResolverArenas<'a> {
1437     modules: arena::TypedArena<ModuleData<'a>>,
1438     local_modules: RefCell<Vec<Module<'a>>>,
1439     name_bindings: arena::TypedArena<NameBinding<'a>>,
1440     import_directives: arena::TypedArena<ImportDirective<'a>>,
1441     name_resolutions: arena::TypedArena<RefCell<NameResolution<'a>>>,
1442     invocation_data: arena::TypedArena<InvocationData<'a>>,
1443     legacy_bindings: arena::TypedArena<LegacyBinding<'a>>,
1444 }
1445
1446 impl<'a> ResolverArenas<'a> {
1447     fn alloc_module(&'a self, module: ModuleData<'a>) -> Module<'a> {
1448         let module = self.modules.alloc(module);
1449         if module.def_id().map(|def_id| def_id.is_local()).unwrap_or(true) {
1450             self.local_modules.borrow_mut().push(module);
1451         }
1452         module
1453     }
1454     fn local_modules(&'a self) -> ::std::cell::Ref<'a, Vec<Module<'a>>> {
1455         self.local_modules.borrow()
1456     }
1457     fn alloc_name_binding(&'a self, name_binding: NameBinding<'a>) -> &'a NameBinding<'a> {
1458         self.name_bindings.alloc(name_binding)
1459     }
1460     fn alloc_import_directive(&'a self, import_directive: ImportDirective<'a>)
1461                               -> &'a ImportDirective {
1462         self.import_directives.alloc(import_directive)
1463     }
1464     fn alloc_name_resolution(&'a self) -> &'a RefCell<NameResolution<'a>> {
1465         self.name_resolutions.alloc(Default::default())
1466     }
1467     fn alloc_invocation_data(&'a self, expansion_data: InvocationData<'a>)
1468                              -> &'a InvocationData<'a> {
1469         self.invocation_data.alloc(expansion_data)
1470     }
1471     fn alloc_legacy_binding(&'a self, binding: LegacyBinding<'a>) -> &'a LegacyBinding<'a> {
1472         self.legacy_bindings.alloc(binding)
1473     }
1474 }
1475
1476 impl<'a, 'b: 'a> ty::DefIdTree for &'a Resolver<'b> {
1477     fn parent(self, id: DefId) -> Option<DefId> {
1478         match id.krate {
1479             LOCAL_CRATE => self.definitions.def_key(id.index).parent,
1480             _ => self.cstore.def_key(id).parent,
1481         }.map(|index| DefId { index, ..id })
1482     }
1483 }
1484
1485 /// This interface is used through the AST→HIR step, to embed full paths into the HIR. After that
1486 /// the resolver is no longer needed as all the relevant information is inline.
1487 impl<'a> hir::lowering::Resolver for Resolver<'a> {
1488     fn resolve_hir_path(&mut self, path: &mut hir::Path, is_value: bool) {
1489         self.resolve_hir_path_cb(path, is_value,
1490                                  |resolver, span, error| resolve_error(resolver, span, error))
1491     }
1492
1493     fn resolve_str_path(
1494         &mut self,
1495         span: Span,
1496         crate_root: Option<&str>,
1497         components: &[&str],
1498         args: Option<P<hir::GenericArgs>>,
1499         is_value: bool
1500     ) -> hir::Path {
1501         let mut segments = iter::once(keywords::CrateRoot.ident())
1502             .chain(
1503                 crate_root.into_iter()
1504                     .chain(components.iter().cloned())
1505                     .map(Ident::from_str)
1506             ).map(hir::PathSegment::from_ident).collect::<Vec<_>>();
1507
1508         if let Some(args) = args {
1509             let ident = segments.last().unwrap().ident;
1510             *segments.last_mut().unwrap() = hir::PathSegment {
1511                 ident,
1512                 args: Some(args),
1513                 infer_types: true,
1514             };
1515         }
1516
1517         let mut path = hir::Path {
1518             span,
1519             def: Def::Err,
1520             segments: segments.into(),
1521         };
1522
1523         self.resolve_hir_path(&mut path, is_value);
1524         path
1525     }
1526
1527     fn get_resolution(&mut self, id: NodeId) -> Option<PathResolution> {
1528         self.def_map.get(&id).cloned()
1529     }
1530
1531     fn get_import(&mut self, id: NodeId) -> PerNS<Option<PathResolution>> {
1532         self.import_map.get(&id).cloned().unwrap_or_default()
1533     }
1534
1535     fn definitions(&mut self) -> &mut Definitions {
1536         &mut self.definitions
1537     }
1538 }
1539
1540 impl<'a> Resolver<'a> {
1541     /// Rustdoc uses this to resolve things in a recoverable way. ResolutionError<'a>
1542     /// isn't something that can be returned because it can't be made to live that long,
1543     /// and also it's a private type. Fortunately rustdoc doesn't need to know the error,
1544     /// just that an error occurred.
1545     pub fn resolve_str_path_error(&mut self, span: Span, path_str: &str, is_value: bool)
1546         -> Result<hir::Path, ()> {
1547         use std::iter;
1548         let mut errored = false;
1549
1550         let mut path = if path_str.starts_with("::") {
1551             hir::Path {
1552                 span,
1553                 def: Def::Err,
1554                 segments: iter::once(keywords::CrateRoot.ident()).chain({
1555                     path_str.split("::").skip(1).map(Ident::from_str)
1556                 }).map(hir::PathSegment::from_ident).collect(),
1557             }
1558         } else {
1559             hir::Path {
1560                 span,
1561                 def: Def::Err,
1562                 segments: path_str.split("::").map(Ident::from_str)
1563                                   .map(hir::PathSegment::from_ident).collect(),
1564             }
1565         };
1566         self.resolve_hir_path_cb(&mut path, is_value, |_, _, _| errored = true);
1567         if errored || path.def == Def::Err {
1568             Err(())
1569         } else {
1570             Ok(path)
1571         }
1572     }
1573
1574     /// resolve_hir_path, but takes a callback in case there was an error
1575     fn resolve_hir_path_cb<F>(&mut self, path: &mut hir::Path, is_value: bool, error_callback: F)
1576         where F: for<'c, 'b> FnOnce(&'c mut Resolver, Span, ResolutionError<'b>)
1577     {
1578         let namespace = if is_value { ValueNS } else { TypeNS };
1579         let hir::Path { ref segments, span, ref mut def } = *path;
1580         let path: Vec<_> = segments.iter().map(|seg| seg.ident).collect();
1581         // FIXME (Manishearth): Intra doc links won't get warned of epoch changes
1582         match self.resolve_path(&path, Some(namespace), true, span, CrateLint::No) {
1583             PathResult::Module(module) => *def = module.def().unwrap(),
1584             PathResult::NonModule(path_res) if path_res.unresolved_segments() == 0 =>
1585                 *def = path_res.base_def(),
1586             PathResult::NonModule(..) => match self.resolve_path(
1587                 &path,
1588                 None,
1589                 true,
1590                 span,
1591                 CrateLint::No,
1592             ) {
1593                 PathResult::Failed(span, msg, _) => {
1594                     error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1595                 }
1596                 _ => {}
1597             },
1598             PathResult::Indeterminate => unreachable!(),
1599             PathResult::Failed(span, msg, _) => {
1600                 error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1601             }
1602         }
1603     }
1604 }
1605
1606 impl<'a> Resolver<'a> {
1607     pub fn new(session: &'a Session,
1608                cstore: &'a dyn CrateStore,
1609                krate: &Crate,
1610                crate_name: &str,
1611                make_glob_map: MakeGlobMap,
1612                crate_loader: &'a mut dyn CrateLoader,
1613                arenas: &'a ResolverArenas<'a>)
1614                -> Resolver<'a> {
1615         let root_def_id = DefId::local(CRATE_DEF_INDEX);
1616         let root_module_kind = ModuleKind::Def(Def::Mod(root_def_id), keywords::Invalid.name());
1617         let graph_root = arenas.alloc_module(ModuleData {
1618             no_implicit_prelude: attr::contains_name(&krate.attrs, "no_implicit_prelude"),
1619             ..ModuleData::new(None, root_module_kind, root_def_id, Mark::root(), krate.span)
1620         });
1621         let mut module_map = FxHashMap();
1622         module_map.insert(DefId::local(CRATE_DEF_INDEX), graph_root);
1623
1624         let mut definitions = Definitions::new();
1625         DefCollector::new(&mut definitions, Mark::root())
1626             .collect_root(crate_name, session.local_crate_disambiguator());
1627
1628         let mut extern_prelude: FxHashSet<Name> =
1629             session.opts.externs.iter().map(|kv| Symbol::intern(kv.0)).collect();
1630         if !attr::contains_name(&krate.attrs, "no_core") {
1631             if !attr::contains_name(&krate.attrs, "no_std") {
1632                 extern_prelude.insert(Symbol::intern("std"));
1633             } else {
1634                 extern_prelude.insert(Symbol::intern("core"));
1635             }
1636         }
1637
1638         let mut invocations = FxHashMap();
1639         invocations.insert(Mark::root(),
1640                            arenas.alloc_invocation_data(InvocationData::root(graph_root)));
1641
1642         let features = session.features_untracked();
1643
1644         let mut macro_defs = FxHashMap();
1645         macro_defs.insert(Mark::root(), root_def_id);
1646
1647         Resolver {
1648             session,
1649
1650             cstore,
1651
1652             definitions,
1653
1654             // The outermost module has def ID 0; this is not reflected in the
1655             // AST.
1656             graph_root,
1657             prelude: None,
1658             extern_prelude,
1659
1660             has_self: FxHashSet(),
1661             field_names: FxHashMap(),
1662
1663             determined_imports: Vec::new(),
1664             indeterminate_imports: Vec::new(),
1665
1666             current_module: graph_root,
1667             ribs: PerNS {
1668                 value_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1669                 type_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1670                 macro_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1671             },
1672             label_ribs: Vec::new(),
1673
1674             current_trait_ref: None,
1675             current_self_type: None,
1676
1677             primitive_type_table: PrimitiveTypeTable::new(),
1678
1679             def_map: NodeMap(),
1680             import_map: NodeMap(),
1681             freevars: NodeMap(),
1682             freevars_seen: NodeMap(),
1683             export_map: FxHashMap(),
1684             trait_map: NodeMap(),
1685             module_map,
1686             block_map: NodeMap(),
1687             extern_module_map: FxHashMap(),
1688
1689             make_glob_map: make_glob_map == MakeGlobMap::Yes,
1690             glob_map: NodeMap(),
1691
1692             used_imports: FxHashSet(),
1693             maybe_unused_trait_imports: NodeSet(),
1694             maybe_unused_extern_crates: Vec::new(),
1695
1696             unused_labels: FxHashMap(),
1697
1698             privacy_errors: Vec::new(),
1699             ambiguity_errors: Vec::new(),
1700             use_injections: Vec::new(),
1701             proc_mac_errors: Vec::new(),
1702             gated_errors: FxHashSet(),
1703             disallowed_shadowing: Vec::new(),
1704
1705             arenas,
1706             dummy_binding: arenas.alloc_name_binding(NameBinding {
1707                 kind: NameBindingKind::Def(Def::Err, false),
1708                 expansion: Mark::root(),
1709                 span: DUMMY_SP,
1710                 vis: ty::Visibility::Public,
1711             }),
1712
1713             use_extern_macros: features.use_extern_macros(),
1714
1715             crate_loader,
1716             macro_names: FxHashSet(),
1717             macro_prelude: FxHashMap(),
1718             all_macros: FxHashMap(),
1719             lexical_macro_resolutions: Vec::new(),
1720             macro_map: FxHashMap(),
1721             macro_exports: Vec::new(),
1722             invocations,
1723             macro_defs,
1724             local_macro_def_scopes: FxHashMap(),
1725             name_already_seen: FxHashMap(),
1726             whitelisted_legacy_custom_derives: Vec::new(),
1727             warned_proc_macros: FxHashSet(),
1728             potentially_unused_imports: Vec::new(),
1729             struct_constructors: DefIdMap(),
1730             found_unresolved_macro: false,
1731             unused_macros: FxHashSet(),
1732             current_type_ascription: Vec::new(),
1733             injected_crate: None,
1734             ignore_extern_prelude_feature: false,
1735             unresolved_invocations_macro_export: FxHashSet(),
1736         }
1737     }
1738
1739     pub fn arenas() -> ResolverArenas<'a> {
1740         ResolverArenas {
1741             modules: arena::TypedArena::new(),
1742             local_modules: RefCell::new(Vec::new()),
1743             name_bindings: arena::TypedArena::new(),
1744             import_directives: arena::TypedArena::new(),
1745             name_resolutions: arena::TypedArena::new(),
1746             invocation_data: arena::TypedArena::new(),
1747             legacy_bindings: arena::TypedArena::new(),
1748         }
1749     }
1750
1751     /// Runs the function on each namespace.
1752     fn per_ns<F: FnMut(&mut Self, Namespace)>(&mut self, mut f: F) {
1753         f(self, TypeNS);
1754         f(self, ValueNS);
1755         if self.use_extern_macros {
1756             f(self, MacroNS);
1757         }
1758     }
1759
1760     fn macro_def(&self, mut ctxt: SyntaxContext) -> DefId {
1761         loop {
1762             match self.macro_defs.get(&ctxt.outer()) {
1763                 Some(&def_id) => return def_id,
1764                 None => ctxt.remove_mark(),
1765             };
1766         }
1767     }
1768
1769     /// Entry point to crate resolution.
1770     pub fn resolve_crate(&mut self, krate: &Crate) {
1771         ImportResolver { resolver: self }.finalize_imports();
1772         self.current_module = self.graph_root;
1773         self.finalize_current_module_macro_resolutions();
1774
1775         visit::walk_crate(self, krate);
1776
1777         check_unused::check_crate(self, krate);
1778         self.report_errors(krate);
1779         self.crate_loader.postprocess(krate);
1780     }
1781
1782     fn new_module(
1783         &self,
1784         parent: Module<'a>,
1785         kind: ModuleKind,
1786         normal_ancestor_id: DefId,
1787         expansion: Mark,
1788         span: Span,
1789     ) -> Module<'a> {
1790         let module = ModuleData::new(Some(parent), kind, normal_ancestor_id, expansion, span);
1791         self.arenas.alloc_module(module)
1792     }
1793
1794     fn record_use(&mut self, ident: Ident, ns: Namespace, binding: &'a NameBinding<'a>, span: Span)
1795                   -> bool /* true if an error was reported */ {
1796         match binding.kind {
1797             NameBindingKind::Import { directive, binding, ref used }
1798                     if !used.get() => {
1799                 used.set(true);
1800                 directive.used.set(true);
1801                 self.used_imports.insert((directive.id, ns));
1802                 self.add_to_glob_map(directive.id, ident);
1803                 self.record_use(ident, ns, binding, span)
1804             }
1805             NameBindingKind::Import { .. } => false,
1806             NameBindingKind::Ambiguity { b1, b2 } => {
1807                 self.ambiguity_errors.push(AmbiguityError {
1808                     span, name: ident.name, lexical: false, b1, b2,
1809                 });
1810                 true
1811             }
1812             _ => false
1813         }
1814     }
1815
1816     fn add_to_glob_map(&mut self, id: NodeId, ident: Ident) {
1817         if self.make_glob_map {
1818             self.glob_map.entry(id).or_insert_with(FxHashSet).insert(ident.name);
1819         }
1820     }
1821
1822     /// This resolves the identifier `ident` in the namespace `ns` in the current lexical scope.
1823     /// More specifically, we proceed up the hierarchy of scopes and return the binding for
1824     /// `ident` in the first scope that defines it (or None if no scopes define it).
1825     ///
1826     /// A block's items are above its local variables in the scope hierarchy, regardless of where
1827     /// the items are defined in the block. For example,
1828     /// ```rust
1829     /// fn f() {
1830     ///    g(); // Since there are no local variables in scope yet, this resolves to the item.
1831     ///    let g = || {};
1832     ///    fn g() {}
1833     ///    g(); // This resolves to the local variable `g` since it shadows the item.
1834     /// }
1835     /// ```
1836     ///
1837     /// Invariant: This must only be called during main resolution, not during
1838     /// import resolution.
1839     fn resolve_ident_in_lexical_scope(&mut self,
1840                                       mut ident: Ident,
1841                                       ns: Namespace,
1842                                       record_used_id: Option<NodeId>,
1843                                       path_span: Span)
1844                                       -> Option<LexicalScopeBinding<'a>> {
1845         let record_used = record_used_id.is_some();
1846         assert!(ns == TypeNS  || ns == ValueNS);
1847         if ns == TypeNS {
1848             ident.span = if ident.name == keywords::SelfType.name() {
1849                 // FIXME(jseyfried) improve `Self` hygiene
1850                 ident.span.with_ctxt(SyntaxContext::empty())
1851             } else {
1852                 ident.span.modern()
1853             }
1854         } else {
1855             ident = ident.modern_and_legacy();
1856         }
1857
1858         // Walk backwards up the ribs in scope.
1859         let mut module = self.graph_root;
1860         for i in (0 .. self.ribs[ns].len()).rev() {
1861             if let Some(def) = self.ribs[ns][i].bindings.get(&ident).cloned() {
1862                 // The ident resolves to a type parameter or local variable.
1863                 return Some(LexicalScopeBinding::Def(
1864                     self.adjust_local_def(ns, i, def, record_used, path_span)
1865                 ));
1866             }
1867
1868             module = match self.ribs[ns][i].kind {
1869                 ModuleRibKind(module) => module,
1870                 MacroDefinition(def) if def == self.macro_def(ident.span.ctxt()) => {
1871                     // If an invocation of this macro created `ident`, give up on `ident`
1872                     // and switch to `ident`'s source from the macro definition.
1873                     ident.span.remove_mark();
1874                     continue
1875                 }
1876                 _ => continue,
1877             };
1878
1879             let item = self.resolve_ident_in_module_unadjusted(
1880                 module, ident, ns, false, record_used, path_span,
1881             );
1882             if let Ok(binding) = item {
1883                 // The ident resolves to an item.
1884                 return Some(LexicalScopeBinding::Item(binding));
1885             }
1886
1887             match module.kind {
1888                 ModuleKind::Block(..) => {}, // We can see through blocks
1889                 _ => break,
1890             }
1891         }
1892
1893         ident.span = ident.span.modern();
1894         loop {
1895             let (opt_module, poisoned) = if let Some(node_id) = record_used_id {
1896                 self.hygienic_lexical_parent_with_compatibility_fallback(module, &mut ident.span,
1897                                                                          node_id)
1898             } else {
1899                 (self.hygienic_lexical_parent(module, &mut ident.span), None)
1900             };
1901             module = unwrap_or!(opt_module, break);
1902             let orig_current_module = self.current_module;
1903             self.current_module = module; // Lexical resolutions can never be a privacy error.
1904             let result = self.resolve_ident_in_module_unadjusted(
1905                 module, ident, ns, false, record_used, path_span,
1906             );
1907             self.current_module = orig_current_module;
1908
1909             match result {
1910                 Ok(binding) => {
1911                     if let Some(node_id) = poisoned {
1912                         self.session.buffer_lint_with_diagnostic(
1913                             lint::builtin::PROC_MACRO_DERIVE_RESOLUTION_FALLBACK,
1914                             node_id, ident.span,
1915                             &format!("cannot find {} `{}` in this scope", ns.descr(), ident),
1916                             lint::builtin::BuiltinLintDiagnostics::
1917                                 ProcMacroDeriveResolutionFallback(ident.span),
1918                         );
1919                     }
1920                     return Some(LexicalScopeBinding::Item(binding))
1921                 }
1922                 _ if poisoned.is_some() => break,
1923                 Err(Determined) => continue,
1924                 Err(Undetermined) =>
1925                     span_bug!(ident.span, "undetermined resolution during main resolution pass"),
1926             }
1927         }
1928
1929         if !module.no_implicit_prelude {
1930             // `record_used` means that we don't try to load crates during speculative resolution
1931             if record_used && ns == TypeNS && self.extern_prelude.contains(&ident.name) {
1932                 if !self.session.features_untracked().extern_prelude &&
1933                    !self.ignore_extern_prelude_feature {
1934                     feature_err(&self.session.parse_sess, "extern_prelude",
1935                                 ident.span, GateIssue::Language,
1936                                 "access to extern crates through prelude is experimental").emit();
1937                 }
1938
1939                 let crate_id = self.crate_loader.process_path_extern(ident.name, ident.span);
1940                 let crate_root = self.get_module(DefId { krate: crate_id, index: CRATE_DEF_INDEX });
1941                 self.populate_module_if_necessary(crate_root);
1942
1943                 let binding = (crate_root, ty::Visibility::Public,
1944                                ident.span, Mark::root()).to_name_binding(self.arenas);
1945                 return Some(LexicalScopeBinding::Item(binding));
1946             }
1947             if ns == TypeNS && is_known_tool(ident.name) {
1948                 let binding = (Def::ToolMod, ty::Visibility::Public,
1949                                ident.span, Mark::root()).to_name_binding(self.arenas);
1950                 return Some(LexicalScopeBinding::Item(binding));
1951             }
1952             if let Some(prelude) = self.prelude {
1953                 if let Ok(binding) = self.resolve_ident_in_module_unadjusted(prelude, ident, ns,
1954                                                                         false, false, path_span) {
1955                     return Some(LexicalScopeBinding::Item(binding));
1956                 }
1957             }
1958         }
1959
1960         None
1961     }
1962
1963     fn hygienic_lexical_parent(&mut self, module: Module<'a>, span: &mut Span)
1964                                -> Option<Module<'a>> {
1965         if !module.expansion.is_descendant_of(span.ctxt().outer()) {
1966             return Some(self.macro_def_scope(span.remove_mark()));
1967         }
1968
1969         if let ModuleKind::Block(..) = module.kind {
1970             return Some(module.parent.unwrap());
1971         }
1972
1973         None
1974     }
1975
1976     fn hygienic_lexical_parent_with_compatibility_fallback(
1977         &mut self, module: Module<'a>, span: &mut Span, node_id: NodeId
1978     ) -> (Option<Module<'a>>, /* poisoned */ Option<NodeId>)
1979     {
1980         if let module @ Some(..) = self.hygienic_lexical_parent(module, span) {
1981             return (module, None);
1982         }
1983
1984         // We need to support the next case under a deprecation warning
1985         // ```
1986         // struct MyStruct;
1987         // ---- begin: this comes from a proc macro derive
1988         // mod implementation_details {
1989         //     // Note that `MyStruct` is not in scope here.
1990         //     impl SomeTrait for MyStruct { ... }
1991         // }
1992         // ---- end
1993         // ```
1994         // So we have to fall back to the module's parent during lexical resolution in this case.
1995         if let Some(parent) = module.parent {
1996             // Inner module is inside the macro, parent module is outside of the macro.
1997             if module.expansion != parent.expansion &&
1998             module.expansion.is_descendant_of(parent.expansion) {
1999                 // The macro is a proc macro derive
2000                 if module.expansion.looks_like_proc_macro_derive() {
2001                     if parent.expansion.is_descendant_of(span.ctxt().outer()) {
2002                         return (module.parent, Some(node_id));
2003                     }
2004                 }
2005             }
2006         }
2007
2008         (None, None)
2009     }
2010
2011     fn resolve_ident_in_module(&mut self,
2012                                module: Module<'a>,
2013                                mut ident: Ident,
2014                                ns: Namespace,
2015                                record_used: bool,
2016                                span: Span)
2017                                -> Result<&'a NameBinding<'a>, Determinacy> {
2018         ident.span = ident.span.modern();
2019         let orig_current_module = self.current_module;
2020         if let Some(def) = ident.span.adjust(module.expansion) {
2021             self.current_module = self.macro_def_scope(def);
2022         }
2023         let result = self.resolve_ident_in_module_unadjusted(
2024             module, ident, ns, false, record_used, span,
2025         );
2026         self.current_module = orig_current_module;
2027         result
2028     }
2029
2030     fn resolve_crate_root(&mut self, ident: Ident) -> Module<'a> {
2031         let mut ctxt = ident.span.ctxt();
2032         let mark = if ident.name == keywords::DollarCrate.name() {
2033             // When resolving `$crate` from a `macro_rules!` invoked in a `macro`,
2034             // we don't want to pretend that the `macro_rules!` definition is in the `macro`
2035             // as described in `SyntaxContext::apply_mark`, so we ignore prepended modern marks.
2036             // FIXME: This is only a guess and it doesn't work correctly for `macro_rules!`
2037             // definitions actually produced by `macro` and `macro` definitions produced by
2038             // `macro_rules!`, but at least such configurations are not stable yet.
2039             ctxt = ctxt.modern_and_legacy();
2040             let mut iter = ctxt.marks().into_iter().rev().peekable();
2041             let mut result = None;
2042             // Find the last modern mark from the end if it exists.
2043             while let Some(&(mark, transparency)) = iter.peek() {
2044                 if transparency == Transparency::Opaque {
2045                     result = Some(mark);
2046                     iter.next();
2047                 } else {
2048                     break;
2049                 }
2050             }
2051             // Then find the last legacy mark from the end if it exists.
2052             for (mark, transparency) in iter {
2053                 if transparency == Transparency::SemiTransparent {
2054                     result = Some(mark);
2055                 } else {
2056                     break;
2057                 }
2058             }
2059             result
2060         } else {
2061             ctxt = ctxt.modern();
2062             ctxt.adjust(Mark::root())
2063         };
2064         let module = match mark {
2065             Some(def) => self.macro_def_scope(def),
2066             None => return self.graph_root,
2067         };
2068         self.get_module(DefId { index: CRATE_DEF_INDEX, ..module.normal_ancestor_id })
2069     }
2070
2071     fn resolve_self(&mut self, ctxt: &mut SyntaxContext, module: Module<'a>) -> Module<'a> {
2072         let mut module = self.get_module(module.normal_ancestor_id);
2073         while module.span.ctxt().modern() != *ctxt {
2074             let parent = module.parent.unwrap_or_else(|| self.macro_def_scope(ctxt.remove_mark()));
2075             module = self.get_module(parent.normal_ancestor_id);
2076         }
2077         module
2078     }
2079
2080     // AST resolution
2081     //
2082     // We maintain a list of value ribs and type ribs.
2083     //
2084     // Simultaneously, we keep track of the current position in the module
2085     // graph in the `current_module` pointer. When we go to resolve a name in
2086     // the value or type namespaces, we first look through all the ribs and
2087     // then query the module graph. When we resolve a name in the module
2088     // namespace, we can skip all the ribs (since nested modules are not
2089     // allowed within blocks in Rust) and jump straight to the current module
2090     // graph node.
2091     //
2092     // Named implementations are handled separately. When we find a method
2093     // call, we consult the module node to find all of the implementations in
2094     // scope. This information is lazily cached in the module node. We then
2095     // generate a fake "implementation scope" containing all the
2096     // implementations thus found, for compatibility with old resolve pass.
2097
2098     pub fn with_scope<F, T>(&mut self, id: NodeId, f: F) -> T
2099         where F: FnOnce(&mut Resolver) -> T
2100     {
2101         let id = self.definitions.local_def_id(id);
2102         let module = self.module_map.get(&id).cloned(); // clones a reference
2103         if let Some(module) = module {
2104             // Move down in the graph.
2105             let orig_module = replace(&mut self.current_module, module);
2106             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(module)));
2107             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(module)));
2108
2109             self.finalize_current_module_macro_resolutions();
2110             let ret = f(self);
2111
2112             self.current_module = orig_module;
2113             self.ribs[ValueNS].pop();
2114             self.ribs[TypeNS].pop();
2115             ret
2116         } else {
2117             f(self)
2118         }
2119     }
2120
2121     /// Searches the current set of local scopes for labels. Returns the first non-None label that
2122     /// is returned by the given predicate function
2123     ///
2124     /// Stops after meeting a closure.
2125     fn search_label<P, R>(&self, mut ident: Ident, pred: P) -> Option<R>
2126         where P: Fn(&Rib, Ident) -> Option<R>
2127     {
2128         for rib in self.label_ribs.iter().rev() {
2129             match rib.kind {
2130                 NormalRibKind => {}
2131                 // If an invocation of this macro created `ident`, give up on `ident`
2132                 // and switch to `ident`'s source from the macro definition.
2133                 MacroDefinition(def) => {
2134                     if def == self.macro_def(ident.span.ctxt()) {
2135                         ident.span.remove_mark();
2136                     }
2137                 }
2138                 _ => {
2139                     // Do not resolve labels across function boundary
2140                     return None;
2141                 }
2142             }
2143             let r = pred(rib, ident);
2144             if r.is_some() {
2145                 return r;
2146             }
2147         }
2148         None
2149     }
2150
2151     fn resolve_item(&mut self, item: &Item) {
2152         let name = item.ident.name;
2153
2154         debug!("(resolving item) resolving {}", name);
2155
2156         self.check_proc_macro_attrs(&item.attrs);
2157
2158         match item.node {
2159             ItemKind::Enum(_, ref generics) |
2160             ItemKind::Ty(_, ref generics) |
2161             ItemKind::Existential(_, ref generics) |
2162             ItemKind::Struct(_, ref generics) |
2163             ItemKind::Union(_, ref generics) |
2164             ItemKind::Fn(_, _, ref generics, _) => {
2165                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind),
2166                                          |this| visit::walk_item(this, item));
2167             }
2168
2169             ItemKind::Impl(.., ref generics, ref opt_trait_ref, ref self_type, ref impl_items) =>
2170                 self.resolve_implementation(generics,
2171                                             opt_trait_ref,
2172                                             &self_type,
2173                                             item.id,
2174                                             impl_items),
2175
2176             ItemKind::Trait(.., ref generics, ref bounds, ref trait_items) => {
2177                 // Create a new rib for the trait-wide type parameters.
2178                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2179                     let local_def_id = this.definitions.local_def_id(item.id);
2180                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2181                         this.visit_generics(generics);
2182                         walk_list!(this, visit_param_bound, bounds);
2183
2184                         for trait_item in trait_items {
2185                             this.check_proc_macro_attrs(&trait_item.attrs);
2186
2187                             let type_parameters = HasTypeParameters(&trait_item.generics,
2188                                                                     TraitOrImplItemRibKind);
2189                             this.with_type_parameter_rib(type_parameters, |this| {
2190                                 match trait_item.node {
2191                                     TraitItemKind::Const(ref ty, ref default) => {
2192                                         this.visit_ty(ty);
2193
2194                                         // Only impose the restrictions of
2195                                         // ConstRibKind for an actual constant
2196                                         // expression in a provided default.
2197                                         if let Some(ref expr) = *default{
2198                                             this.with_constant_rib(|this| {
2199                                                 this.visit_expr(expr);
2200                                             });
2201                                         }
2202                                     }
2203                                     TraitItemKind::Method(_, _) => {
2204                                         visit::walk_trait_item(this, trait_item)
2205                                     }
2206                                     TraitItemKind::Type(..) => {
2207                                         visit::walk_trait_item(this, trait_item)
2208                                     }
2209                                     TraitItemKind::Macro(_) => {
2210                                         panic!("unexpanded macro in resolve!")
2211                                     }
2212                                 };
2213                             });
2214                         }
2215                     });
2216                 });
2217             }
2218
2219             ItemKind::TraitAlias(ref generics, ref bounds) => {
2220                 // Create a new rib for the trait-wide type parameters.
2221                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2222                     let local_def_id = this.definitions.local_def_id(item.id);
2223                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2224                         this.visit_generics(generics);
2225                         walk_list!(this, visit_param_bound, bounds);
2226                     });
2227                 });
2228             }
2229
2230             ItemKind::Mod(_) | ItemKind::ForeignMod(_) => {
2231                 self.with_scope(item.id, |this| {
2232                     visit::walk_item(this, item);
2233                 });
2234             }
2235
2236             ItemKind::Static(ref ty, _, ref expr) |
2237             ItemKind::Const(ref ty, ref expr) => {
2238                 self.with_item_rib(|this| {
2239                     this.visit_ty(ty);
2240                     this.with_constant_rib(|this| {
2241                         this.visit_expr(expr);
2242                     });
2243                 });
2244             }
2245
2246             ItemKind::Use(ref use_tree) => {
2247                 // Imports are resolved as global by default, add starting root segment.
2248                 let path = Path {
2249                     segments: use_tree.prefix.make_root().into_iter().collect(),
2250                     span: use_tree.span,
2251                 };
2252                 self.resolve_use_tree(item.id, use_tree.span, item.id, use_tree, &path);
2253             }
2254
2255             ItemKind::ExternCrate(_) | ItemKind::MacroDef(..) | ItemKind::GlobalAsm(_) => {
2256                 // do nothing, these are just around to be encoded
2257             }
2258
2259             ItemKind::Mac(_) => panic!("unexpanded macro in resolve!"),
2260         }
2261     }
2262
2263     /// For the most part, use trees are desugared into `ImportDirective` instances
2264     /// when building the reduced graph (see `build_reduced_graph_for_use_tree`). But
2265     /// there is one special case we handle here: an empty nested import like
2266     /// `a::{b::{}}`, which desugares into...no import directives.
2267     fn resolve_use_tree(
2268         &mut self,
2269         root_id: NodeId,
2270         root_span: Span,
2271         id: NodeId,
2272         use_tree: &ast::UseTree,
2273         prefix: &Path,
2274     ) {
2275         match use_tree.kind {
2276             ast::UseTreeKind::Nested(ref items) => {
2277                 let path = Path {
2278                     segments: prefix.segments
2279                         .iter()
2280                         .chain(use_tree.prefix.segments.iter())
2281                         .cloned()
2282                         .collect(),
2283                     span: prefix.span.to(use_tree.prefix.span),
2284                 };
2285
2286                 if items.len() == 0 {
2287                     // Resolve prefix of an import with empty braces (issue #28388).
2288                     self.smart_resolve_path_with_crate_lint(
2289                         id,
2290                         None,
2291                         &path,
2292                         PathSource::ImportPrefix,
2293                         CrateLint::UsePath { root_id, root_span },
2294                     );
2295                 } else {
2296                     for &(ref tree, nested_id) in items {
2297                         self.resolve_use_tree(root_id, root_span, nested_id, tree, &path);
2298                     }
2299                 }
2300             }
2301             ast::UseTreeKind::Simple(..) => {},
2302             ast::UseTreeKind::Glob => {},
2303         }
2304     }
2305
2306     fn with_type_parameter_rib<'b, F>(&'b mut self, type_parameters: TypeParameters<'a, 'b>, f: F)
2307         where F: FnOnce(&mut Resolver)
2308     {
2309         match type_parameters {
2310             HasTypeParameters(generics, rib_kind) => {
2311                 let mut function_type_rib = Rib::new(rib_kind);
2312                 let mut seen_bindings = FxHashMap();
2313                 generics.params.iter().for_each(|param| match param.kind {
2314                     GenericParamKind::Lifetime { .. } => {}
2315                     GenericParamKind::Type { .. } => {
2316                         let ident = param.ident.modern();
2317                         debug!("with_type_parameter_rib: {}", param.id);
2318
2319                         if seen_bindings.contains_key(&ident) {
2320                             let span = seen_bindings.get(&ident).unwrap();
2321                             let err = ResolutionError::NameAlreadyUsedInTypeParameterList(
2322                                 ident.name,
2323                                 span,
2324                             );
2325                             resolve_error(self, param.ident.span, err);
2326                         }
2327                         seen_bindings.entry(ident).or_insert(param.ident.span);
2328
2329                     // Plain insert (no renaming).
2330                     let def = Def::TyParam(self.definitions.local_def_id(param.id));
2331                         function_type_rib.bindings.insert(ident, def);
2332                         self.record_def(param.id, PathResolution::new(def));
2333                     }
2334                 });
2335                 self.ribs[TypeNS].push(function_type_rib);
2336             }
2337
2338             NoTypeParameters => {
2339                 // Nothing to do.
2340             }
2341         }
2342
2343         f(self);
2344
2345         if let HasTypeParameters(..) = type_parameters {
2346             self.ribs[TypeNS].pop();
2347         }
2348     }
2349
2350     fn with_label_rib<F>(&mut self, f: F)
2351         where F: FnOnce(&mut Resolver)
2352     {
2353         self.label_ribs.push(Rib::new(NormalRibKind));
2354         f(self);
2355         self.label_ribs.pop();
2356     }
2357
2358     fn with_item_rib<F>(&mut self, f: F)
2359         where F: FnOnce(&mut Resolver)
2360     {
2361         self.ribs[ValueNS].push(Rib::new(ItemRibKind));
2362         self.ribs[TypeNS].push(Rib::new(ItemRibKind));
2363         f(self);
2364         self.ribs[TypeNS].pop();
2365         self.ribs[ValueNS].pop();
2366     }
2367
2368     fn with_constant_rib<F>(&mut self, f: F)
2369         where F: FnOnce(&mut Resolver)
2370     {
2371         self.ribs[ValueNS].push(Rib::new(ConstantItemRibKind));
2372         self.label_ribs.push(Rib::new(ConstantItemRibKind));
2373         f(self);
2374         self.label_ribs.pop();
2375         self.ribs[ValueNS].pop();
2376     }
2377
2378     fn with_current_self_type<T, F>(&mut self, self_type: &Ty, f: F) -> T
2379         where F: FnOnce(&mut Resolver) -> T
2380     {
2381         // Handle nested impls (inside fn bodies)
2382         let previous_value = replace(&mut self.current_self_type, Some(self_type.clone()));
2383         let result = f(self);
2384         self.current_self_type = previous_value;
2385         result
2386     }
2387
2388     /// This is called to resolve a trait reference from an `impl` (i.e. `impl Trait for Foo`)
2389     fn with_optional_trait_ref<T, F>(&mut self, opt_trait_ref: Option<&TraitRef>, f: F) -> T
2390         where F: FnOnce(&mut Resolver, Option<DefId>) -> T
2391     {
2392         let mut new_val = None;
2393         let mut new_id = None;
2394         if let Some(trait_ref) = opt_trait_ref {
2395             let path: Vec<_> = trait_ref.path.segments.iter()
2396                 .map(|seg| seg.ident)
2397                 .collect();
2398             let def = self.smart_resolve_path_fragment(
2399                 trait_ref.ref_id,
2400                 None,
2401                 &path,
2402                 trait_ref.path.span,
2403                 PathSource::Trait(AliasPossibility::No),
2404                 CrateLint::SimplePath(trait_ref.ref_id),
2405             ).base_def();
2406             if def != Def::Err {
2407                 new_id = Some(def.def_id());
2408                 let span = trait_ref.path.span;
2409                 if let PathResult::Module(module) = self.resolve_path(
2410                     &path,
2411                     None,
2412                     false,
2413                     span,
2414                     CrateLint::SimplePath(trait_ref.ref_id),
2415                 ) {
2416                     new_val = Some((module, trait_ref.clone()));
2417                 }
2418             }
2419         }
2420         let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
2421         let result = f(self, new_id);
2422         self.current_trait_ref = original_trait_ref;
2423         result
2424     }
2425
2426     fn with_self_rib<F>(&mut self, self_def: Def, f: F)
2427         where F: FnOnce(&mut Resolver)
2428     {
2429         let mut self_type_rib = Rib::new(NormalRibKind);
2430
2431         // plain insert (no renaming, types are not currently hygienic....)
2432         self_type_rib.bindings.insert(keywords::SelfType.ident(), self_def);
2433         self.ribs[TypeNS].push(self_type_rib);
2434         f(self);
2435         self.ribs[TypeNS].pop();
2436     }
2437
2438     fn resolve_implementation(&mut self,
2439                               generics: &Generics,
2440                               opt_trait_reference: &Option<TraitRef>,
2441                               self_type: &Ty,
2442                               item_id: NodeId,
2443                               impl_items: &[ImplItem]) {
2444         // If applicable, create a rib for the type parameters.
2445         self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2446             // Dummy self type for better errors if `Self` is used in the trait path.
2447             this.with_self_rib(Def::SelfTy(None, None), |this| {
2448                 // Resolve the trait reference, if necessary.
2449                 this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| {
2450                     let item_def_id = this.definitions.local_def_id(item_id);
2451                     this.with_self_rib(Def::SelfTy(trait_id, Some(item_def_id)), |this| {
2452                         if let Some(trait_ref) = opt_trait_reference.as_ref() {
2453                             // Resolve type arguments in trait path
2454                             visit::walk_trait_ref(this, trait_ref);
2455                         }
2456                         // Resolve the self type.
2457                         this.visit_ty(self_type);
2458                         // Resolve the type parameters.
2459                         this.visit_generics(generics);
2460                         this.with_current_self_type(self_type, |this| {
2461                             for impl_item in impl_items {
2462                                 this.check_proc_macro_attrs(&impl_item.attrs);
2463                                 this.resolve_visibility(&impl_item.vis);
2464
2465                                 // We also need a new scope for the impl item type parameters.
2466                                 let type_parameters = HasTypeParameters(&impl_item.generics,
2467                                                                         TraitOrImplItemRibKind);
2468                                 this.with_type_parameter_rib(type_parameters, |this| {
2469                                     use self::ResolutionError::*;
2470                                     match impl_item.node {
2471                                         ImplItemKind::Const(..) => {
2472                                             // If this is a trait impl, ensure the const
2473                                             // exists in trait
2474                                             this.check_trait_item(impl_item.ident,
2475                                                                 ValueNS,
2476                                                                 impl_item.span,
2477                                                 |n, s| ConstNotMemberOfTrait(n, s));
2478                                             this.with_constant_rib(|this|
2479                                                 visit::walk_impl_item(this, impl_item)
2480                                             );
2481                                         }
2482                                         ImplItemKind::Method(..) => {
2483                                             // If this is a trait impl, ensure the method
2484                                             // exists in trait
2485                                             this.check_trait_item(impl_item.ident,
2486                                                                 ValueNS,
2487                                                                 impl_item.span,
2488                                                 |n, s| MethodNotMemberOfTrait(n, s));
2489
2490                                             visit::walk_impl_item(this, impl_item);
2491                                         }
2492                                         ImplItemKind::Type(ref ty) => {
2493                                             // If this is a trait impl, ensure the type
2494                                             // exists in trait
2495                                             this.check_trait_item(impl_item.ident,
2496                                                                 TypeNS,
2497                                                                 impl_item.span,
2498                                                 |n, s| TypeNotMemberOfTrait(n, s));
2499
2500                                             this.visit_ty(ty);
2501                                         }
2502                                         ImplItemKind::Existential(ref bounds) => {
2503                                             // If this is a trait impl, ensure the type
2504                                             // exists in trait
2505                                             this.check_trait_item(impl_item.ident,
2506                                                                 TypeNS,
2507                                                                 impl_item.span,
2508                                                 |n, s| TypeNotMemberOfTrait(n, s));
2509
2510                                             for bound in bounds {
2511                                                 this.visit_param_bound(bound);
2512                                             }
2513                                         }
2514                                         ImplItemKind::Macro(_) =>
2515                                             panic!("unexpanded macro in resolve!"),
2516                                     }
2517                                 });
2518                             }
2519                         });
2520                     });
2521                 });
2522             });
2523         });
2524     }
2525
2526     fn check_trait_item<F>(&mut self, ident: Ident, ns: Namespace, span: Span, err: F)
2527         where F: FnOnce(Name, &str) -> ResolutionError
2528     {
2529         // If there is a TraitRef in scope for an impl, then the method must be in the
2530         // trait.
2531         if let Some((module, _)) = self.current_trait_ref {
2532             if self.resolve_ident_in_module(module, ident, ns, false, span).is_err() {
2533                 let path = &self.current_trait_ref.as_ref().unwrap().1.path;
2534                 resolve_error(self, span, err(ident.name, &path_names_to_string(path)));
2535             }
2536         }
2537     }
2538
2539     fn resolve_local(&mut self, local: &Local) {
2540         // Resolve the type.
2541         walk_list!(self, visit_ty, &local.ty);
2542
2543         // Resolve the initializer.
2544         walk_list!(self, visit_expr, &local.init);
2545
2546         // Resolve the pattern.
2547         self.resolve_pattern(&local.pat, PatternSource::Let, &mut FxHashMap());
2548     }
2549
2550     // build a map from pattern identifiers to binding-info's.
2551     // this is done hygienically. This could arise for a macro
2552     // that expands into an or-pattern where one 'x' was from the
2553     // user and one 'x' came from the macro.
2554     fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
2555         let mut binding_map = FxHashMap();
2556
2557         pat.walk(&mut |pat| {
2558             if let PatKind::Ident(binding_mode, ident, ref sub_pat) = pat.node {
2559                 if sub_pat.is_some() || match self.def_map.get(&pat.id).map(|res| res.base_def()) {
2560                     Some(Def::Local(..)) => true,
2561                     _ => false,
2562                 } {
2563                     let binding_info = BindingInfo { span: ident.span, binding_mode: binding_mode };
2564                     binding_map.insert(ident, binding_info);
2565                 }
2566             }
2567             true
2568         });
2569
2570         binding_map
2571     }
2572
2573     // check that all of the arms in an or-pattern have exactly the
2574     // same set of bindings, with the same binding modes for each.
2575     fn check_consistent_bindings(&mut self, pats: &[P<Pat>]) {
2576         if pats.is_empty() {
2577             return;
2578         }
2579
2580         let mut missing_vars = FxHashMap();
2581         let mut inconsistent_vars = FxHashMap();
2582         for (i, p) in pats.iter().enumerate() {
2583             let map_i = self.binding_mode_map(&p);
2584
2585             for (j, q) in pats.iter().enumerate() {
2586                 if i == j {
2587                     continue;
2588                 }
2589
2590                 let map_j = self.binding_mode_map(&q);
2591                 for (&key, &binding_i) in &map_i {
2592                     if map_j.len() == 0 {                   // Account for missing bindings when
2593                         let binding_error = missing_vars    // map_j has none.
2594                             .entry(key.name)
2595                             .or_insert(BindingError {
2596                                 name: key.name,
2597                                 origin: BTreeSet::new(),
2598                                 target: BTreeSet::new(),
2599                             });
2600                         binding_error.origin.insert(binding_i.span);
2601                         binding_error.target.insert(q.span);
2602                     }
2603                     for (&key_j, &binding_j) in &map_j {
2604                         match map_i.get(&key_j) {
2605                             None => {  // missing binding
2606                                 let binding_error = missing_vars
2607                                     .entry(key_j.name)
2608                                     .or_insert(BindingError {
2609                                         name: key_j.name,
2610                                         origin: BTreeSet::new(),
2611                                         target: BTreeSet::new(),
2612                                     });
2613                                 binding_error.origin.insert(binding_j.span);
2614                                 binding_error.target.insert(p.span);
2615                             }
2616                             Some(binding_i) => {  // check consistent binding
2617                                 if binding_i.binding_mode != binding_j.binding_mode {
2618                                     inconsistent_vars
2619                                         .entry(key.name)
2620                                         .or_insert((binding_j.span, binding_i.span));
2621                                 }
2622                             }
2623                         }
2624                     }
2625                 }
2626             }
2627         }
2628         let mut missing_vars = missing_vars.iter().collect::<Vec<_>>();
2629         missing_vars.sort();
2630         for (_, v) in missing_vars {
2631             resolve_error(self,
2632                           *v.origin.iter().next().unwrap(),
2633                           ResolutionError::VariableNotBoundInPattern(v));
2634         }
2635         let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
2636         inconsistent_vars.sort();
2637         for (name, v) in inconsistent_vars {
2638             resolve_error(self, v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
2639         }
2640     }
2641
2642     fn resolve_arm(&mut self, arm: &Arm) {
2643         self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2644
2645         let mut bindings_list = FxHashMap();
2646         for pattern in &arm.pats {
2647             self.resolve_pattern(&pattern, PatternSource::Match, &mut bindings_list);
2648         }
2649
2650         // This has to happen *after* we determine which pat_idents are variants
2651         self.check_consistent_bindings(&arm.pats);
2652
2653         walk_list!(self, visit_expr, &arm.guard);
2654         self.visit_expr(&arm.body);
2655
2656         self.ribs[ValueNS].pop();
2657     }
2658
2659     fn resolve_block(&mut self, block: &Block) {
2660         debug!("(resolving block) entering block");
2661         // Move down in the graph, if there's an anonymous module rooted here.
2662         let orig_module = self.current_module;
2663         let anonymous_module = self.block_map.get(&block.id).cloned(); // clones a reference
2664
2665         let mut num_macro_definition_ribs = 0;
2666         if let Some(anonymous_module) = anonymous_module {
2667             debug!("(resolving block) found anonymous module, moving down");
2668             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2669             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2670             self.current_module = anonymous_module;
2671             self.finalize_current_module_macro_resolutions();
2672         } else {
2673             self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2674         }
2675
2676         // Descend into the block.
2677         for stmt in &block.stmts {
2678             if let ast::StmtKind::Item(ref item) = stmt.node {
2679                 if let ast::ItemKind::MacroDef(..) = item.node {
2680                     num_macro_definition_ribs += 1;
2681                     let def = self.definitions.local_def_id(item.id);
2682                     self.ribs[ValueNS].push(Rib::new(MacroDefinition(def)));
2683                     self.label_ribs.push(Rib::new(MacroDefinition(def)));
2684                 }
2685             }
2686
2687             self.visit_stmt(stmt);
2688         }
2689
2690         // Move back up.
2691         self.current_module = orig_module;
2692         for _ in 0 .. num_macro_definition_ribs {
2693             self.ribs[ValueNS].pop();
2694             self.label_ribs.pop();
2695         }
2696         self.ribs[ValueNS].pop();
2697         if let Some(_) = anonymous_module {
2698             self.ribs[TypeNS].pop();
2699         }
2700         debug!("(resolving block) leaving block");
2701     }
2702
2703     fn fresh_binding(&mut self,
2704                      ident: Ident,
2705                      pat_id: NodeId,
2706                      outer_pat_id: NodeId,
2707                      pat_src: PatternSource,
2708                      bindings: &mut FxHashMap<Ident, NodeId>)
2709                      -> PathResolution {
2710         // Add the binding to the local ribs, if it
2711         // doesn't already exist in the bindings map. (We
2712         // must not add it if it's in the bindings map
2713         // because that breaks the assumptions later
2714         // passes make about or-patterns.)
2715         let ident = ident.modern_and_legacy();
2716         let mut def = Def::Local(pat_id);
2717         match bindings.get(&ident).cloned() {
2718             Some(id) if id == outer_pat_id => {
2719                 // `Variant(a, a)`, error
2720                 resolve_error(
2721                     self,
2722                     ident.span,
2723                     ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(
2724                         &ident.as_str())
2725                 );
2726             }
2727             Some(..) if pat_src == PatternSource::FnParam => {
2728                 // `fn f(a: u8, a: u8)`, error
2729                 resolve_error(
2730                     self,
2731                     ident.span,
2732                     ResolutionError::IdentifierBoundMoreThanOnceInParameterList(
2733                         &ident.as_str())
2734                 );
2735             }
2736             Some(..) if pat_src == PatternSource::Match ||
2737                         pat_src == PatternSource::IfLet ||
2738                         pat_src == PatternSource::WhileLet => {
2739                 // `Variant1(a) | Variant2(a)`, ok
2740                 // Reuse definition from the first `a`.
2741                 def = self.ribs[ValueNS].last_mut().unwrap().bindings[&ident];
2742             }
2743             Some(..) => {
2744                 span_bug!(ident.span, "two bindings with the same name from \
2745                                        unexpected pattern source {:?}", pat_src);
2746             }
2747             None => {
2748                 // A completely fresh binding, add to the lists if it's valid.
2749                 if ident.name != keywords::Invalid.name() {
2750                     bindings.insert(ident, outer_pat_id);
2751                     self.ribs[ValueNS].last_mut().unwrap().bindings.insert(ident, def);
2752                 }
2753             }
2754         }
2755
2756         PathResolution::new(def)
2757     }
2758
2759     fn resolve_pattern(&mut self,
2760                        pat: &Pat,
2761                        pat_src: PatternSource,
2762                        // Maps idents to the node ID for the
2763                        // outermost pattern that binds them.
2764                        bindings: &mut FxHashMap<Ident, NodeId>) {
2765         // Visit all direct subpatterns of this pattern.
2766         let outer_pat_id = pat.id;
2767         pat.walk(&mut |pat| {
2768             match pat.node {
2769                 PatKind::Ident(bmode, ident, ref opt_pat) => {
2770                     // First try to resolve the identifier as some existing
2771                     // entity, then fall back to a fresh binding.
2772                     let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS,
2773                                                                       None, pat.span)
2774                                       .and_then(LexicalScopeBinding::item);
2775                     let resolution = binding.map(NameBinding::def).and_then(|def| {
2776                         let is_syntactic_ambiguity = opt_pat.is_none() &&
2777                             bmode == BindingMode::ByValue(Mutability::Immutable);
2778                         match def {
2779                             Def::StructCtor(_, CtorKind::Const) |
2780                             Def::VariantCtor(_, CtorKind::Const) |
2781                             Def::Const(..) if is_syntactic_ambiguity => {
2782                                 // Disambiguate in favor of a unit struct/variant
2783                                 // or constant pattern.
2784                                 self.record_use(ident, ValueNS, binding.unwrap(), ident.span);
2785                                 Some(PathResolution::new(def))
2786                             }
2787                             Def::StructCtor(..) | Def::VariantCtor(..) |
2788                             Def::Const(..) | Def::Static(..) => {
2789                                 // This is unambiguously a fresh binding, either syntactically
2790                                 // (e.g. `IDENT @ PAT` or `ref IDENT`) or because `IDENT` resolves
2791                                 // to something unusable as a pattern (e.g. constructor function),
2792                                 // but we still conservatively report an error, see
2793                                 // issues/33118#issuecomment-233962221 for one reason why.
2794                                 resolve_error(
2795                                     self,
2796                                     ident.span,
2797                                     ResolutionError::BindingShadowsSomethingUnacceptable(
2798                                         pat_src.descr(), ident.name, binding.unwrap())
2799                                 );
2800                                 None
2801                             }
2802                             Def::Fn(..) | Def::Err => {
2803                                 // These entities are explicitly allowed
2804                                 // to be shadowed by fresh bindings.
2805                                 None
2806                             }
2807                             def => {
2808                                 span_bug!(ident.span, "unexpected definition for an \
2809                                                        identifier in pattern: {:?}", def);
2810                             }
2811                         }
2812                     }).unwrap_or_else(|| {
2813                         self.fresh_binding(ident, pat.id, outer_pat_id, pat_src, bindings)
2814                     });
2815
2816                     self.record_def(pat.id, resolution);
2817                 }
2818
2819                 PatKind::TupleStruct(ref path, ..) => {
2820                     self.smart_resolve_path(pat.id, None, path, PathSource::TupleStruct);
2821                 }
2822
2823                 PatKind::Path(ref qself, ref path) => {
2824                     self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
2825                 }
2826
2827                 PatKind::Struct(ref path, ..) => {
2828                     self.smart_resolve_path(pat.id, None, path, PathSource::Struct);
2829                 }
2830
2831                 _ => {}
2832             }
2833             true
2834         });
2835
2836         visit::walk_pat(self, pat);
2837     }
2838
2839     // High-level and context dependent path resolution routine.
2840     // Resolves the path and records the resolution into definition map.
2841     // If resolution fails tries several techniques to find likely
2842     // resolution candidates, suggest imports or other help, and report
2843     // errors in user friendly way.
2844     fn smart_resolve_path(&mut self,
2845                           id: NodeId,
2846                           qself: Option<&QSelf>,
2847                           path: &Path,
2848                           source: PathSource)
2849                           -> PathResolution {
2850         self.smart_resolve_path_with_crate_lint(id, qself, path, source, CrateLint::SimplePath(id))
2851     }
2852
2853     /// A variant of `smart_resolve_path` where you also specify extra
2854     /// information about where the path came from; this extra info is
2855     /// sometimes needed for the lint that recommends rewriting
2856     /// absolute paths to `crate`, so that it knows how to frame the
2857     /// suggestion. If you are just resolving a path like `foo::bar`
2858     /// that appears...somewhere, though, then you just want
2859     /// `CrateLint::SimplePath`, which is what `smart_resolve_path`
2860     /// already provides.
2861     fn smart_resolve_path_with_crate_lint(
2862         &mut self,
2863         id: NodeId,
2864         qself: Option<&QSelf>,
2865         path: &Path,
2866         source: PathSource,
2867         crate_lint: CrateLint
2868     ) -> PathResolution {
2869         let segments = &path.segments.iter()
2870             .map(|seg| seg.ident)
2871             .collect::<Vec<_>>();
2872         self.smart_resolve_path_fragment(id, qself, segments, path.span, source, crate_lint)
2873     }
2874
2875     fn smart_resolve_path_fragment(&mut self,
2876                                    id: NodeId,
2877                                    qself: Option<&QSelf>,
2878                                    path: &[Ident],
2879                                    span: Span,
2880                                    source: PathSource,
2881                                    crate_lint: CrateLint)
2882                                    -> PathResolution {
2883         let ident_span = path.last().map_or(span, |ident| ident.span);
2884         let ns = source.namespace();
2885         let is_expected = &|def| source.is_expected(def);
2886         let is_enum_variant = &|def| if let Def::Variant(..) = def { true } else { false };
2887
2888         // Base error is amended with one short label and possibly some longer helps/notes.
2889         let report_errors = |this: &mut Self, def: Option<Def>| {
2890             // Make the base error.
2891             let expected = source.descr_expected();
2892             let path_str = names_to_string(path);
2893             let code = source.error_code(def.is_some());
2894             let (base_msg, fallback_label, base_span) = if let Some(def) = def {
2895                 (format!("expected {}, found {} `{}`", expected, def.kind_name(), path_str),
2896                  format!("not a {}", expected),
2897                  span)
2898             } else {
2899                 let item_str = path[path.len() - 1];
2900                 let item_span = path[path.len() - 1].span;
2901                 let (mod_prefix, mod_str) = if path.len() == 1 {
2902                     (String::new(), "this scope".to_string())
2903                 } else if path.len() == 2 && path[0].name == keywords::CrateRoot.name() {
2904                     (String::new(), "the crate root".to_string())
2905                 } else {
2906                     let mod_path = &path[..path.len() - 1];
2907                     let mod_prefix = match this.resolve_path(mod_path, Some(TypeNS),
2908                                                              false, span, CrateLint::No) {
2909                         PathResult::Module(module) => module.def(),
2910                         _ => None,
2911                     }.map_or(String::new(), |def| format!("{} ", def.kind_name()));
2912                     (mod_prefix, format!("`{}`", names_to_string(mod_path)))
2913                 };
2914                 (format!("cannot find {} `{}` in {}{}", expected, item_str, mod_prefix, mod_str),
2915                  format!("not found in {}", mod_str),
2916                  item_span)
2917             };
2918             let code = DiagnosticId::Error(code.into());
2919             let mut err = this.session.struct_span_err_with_code(base_span, &base_msg, code);
2920
2921             // Emit special messages for unresolved `Self` and `self`.
2922             if is_self_type(path, ns) {
2923                 __diagnostic_used!(E0411);
2924                 err.code(DiagnosticId::Error("E0411".into()));
2925                 err.span_label(span, "`Self` is only available in traits and impls");
2926                 return (err, Vec::new());
2927             }
2928             if is_self_value(path, ns) {
2929                 __diagnostic_used!(E0424);
2930                 err.code(DiagnosticId::Error("E0424".into()));
2931                 err.span_label(span, format!("`self` value is only available in \
2932                                                methods with `self` parameter"));
2933                 return (err, Vec::new());
2934             }
2935
2936             // Try to lookup the name in more relaxed fashion for better error reporting.
2937             let ident = *path.last().unwrap();
2938             let candidates = this.lookup_import_candidates(ident.name, ns, is_expected);
2939             if candidates.is_empty() && is_expected(Def::Enum(DefId::local(CRATE_DEF_INDEX))) {
2940                 let enum_candidates =
2941                     this.lookup_import_candidates(ident.name, ns, is_enum_variant);
2942                 let mut enum_candidates = enum_candidates.iter()
2943                     .map(|suggestion| import_candidate_to_paths(&suggestion)).collect::<Vec<_>>();
2944                 enum_candidates.sort();
2945                 for (sp, variant_path, enum_path) in enum_candidates {
2946                     if sp.is_dummy() {
2947                         let msg = format!("there is an enum variant `{}`, \
2948                                         try using `{}`?",
2949                                         variant_path,
2950                                         enum_path);
2951                         err.help(&msg);
2952                     } else {
2953                         err.span_suggestion(span, "you can try using the variant's enum",
2954                                             enum_path);
2955                     }
2956                 }
2957             }
2958             if path.len() == 1 && this.self_type_is_available(span) {
2959                 if let Some(candidate) = this.lookup_assoc_candidate(ident, ns, is_expected) {
2960                     let self_is_available = this.self_value_is_available(path[0].span, span);
2961                     match candidate {
2962                         AssocSuggestion::Field => {
2963                             err.span_suggestion(span, "try",
2964                                                 format!("self.{}", path_str));
2965                             if !self_is_available {
2966                                 err.span_label(span, format!("`self` value is only available in \
2967                                                                methods with `self` parameter"));
2968                             }
2969                         }
2970                         AssocSuggestion::MethodWithSelf if self_is_available => {
2971                             err.span_suggestion(span, "try",
2972                                                 format!("self.{}", path_str));
2973                         }
2974                         AssocSuggestion::MethodWithSelf | AssocSuggestion::AssocItem => {
2975                             err.span_suggestion(span, "try",
2976                                                 format!("Self::{}", path_str));
2977                         }
2978                     }
2979                     return (err, candidates);
2980                 }
2981             }
2982
2983             let mut levenshtein_worked = false;
2984
2985             // Try Levenshtein.
2986             if let Some(candidate) = this.lookup_typo_candidate(path, ns, is_expected, span) {
2987                 err.span_label(ident_span, format!("did you mean `{}`?", candidate));
2988                 levenshtein_worked = true;
2989             }
2990
2991             // Try context dependent help if relaxed lookup didn't work.
2992             if let Some(def) = def {
2993                 match (def, source) {
2994                     (Def::Macro(..), _) => {
2995                         err.span_label(span, format!("did you mean `{}!(...)`?", path_str));
2996                         return (err, candidates);
2997                     }
2998                     (Def::TyAlias(..), PathSource::Trait(_)) => {
2999                         err.span_label(span, "type aliases cannot be used for traits");
3000                         return (err, candidates);
3001                     }
3002                     (Def::Mod(..), PathSource::Expr(Some(parent))) => match parent.node {
3003                         ExprKind::Field(_, ident) => {
3004                             err.span_label(parent.span, format!("did you mean `{}::{}`?",
3005                                                                  path_str, ident));
3006                             return (err, candidates);
3007                         }
3008                         ExprKind::MethodCall(ref segment, ..) => {
3009                             err.span_label(parent.span, format!("did you mean `{}::{}(...)`?",
3010                                                                  path_str, segment.ident));
3011                             return (err, candidates);
3012                         }
3013                         _ => {}
3014                     },
3015                     (Def::Enum(..), PathSource::TupleStruct)
3016                         | (Def::Enum(..), PathSource::Expr(..))  => {
3017                         if let Some(variants) = this.collect_enum_variants(def) {
3018                             err.note(&format!("did you mean to use one \
3019                                                of the following variants?\n{}",
3020                                 variants.iter()
3021                                     .map(|suggestion| path_names_to_string(suggestion))
3022                                     .map(|suggestion| format!("- `{}`", suggestion))
3023                                     .collect::<Vec<_>>()
3024                                     .join("\n")));
3025
3026                         } else {
3027                             err.note("did you mean to use one of the enum's variants?");
3028                         }
3029                         return (err, candidates);
3030                     },
3031                     (Def::Struct(def_id), _) if ns == ValueNS => {
3032                         if let Some((ctor_def, ctor_vis))
3033                                 = this.struct_constructors.get(&def_id).cloned() {
3034                             let accessible_ctor = this.is_accessible(ctor_vis);
3035                             if is_expected(ctor_def) && !accessible_ctor {
3036                                 err.span_label(span, format!("constructor is not visible \
3037                                                               here due to private fields"));
3038                             }
3039                         } else {
3040                             // HACK(estebank): find a better way to figure out that this was a
3041                             // parser issue where a struct literal is being used on an expression
3042                             // where a brace being opened means a block is being started. Look
3043                             // ahead for the next text to see if `span` is followed by a `{`.
3044                             let cm = this.session.codemap();
3045                             let mut sp = span;
3046                             loop {
3047                                 sp = cm.next_point(sp);
3048                                 match cm.span_to_snippet(sp) {
3049                                     Ok(ref snippet) => {
3050                                         if snippet.chars().any(|c| { !c.is_whitespace() }) {
3051                                             break;
3052                                         }
3053                                     }
3054                                     _ => break,
3055                                 }
3056                             }
3057                             let followed_by_brace = match cm.span_to_snippet(sp) {
3058                                 Ok(ref snippet) if snippet == "{" => true,
3059                                 _ => false,
3060                             };
3061                             if let (PathSource::Expr(None), true) = (source, followed_by_brace) {
3062                                 err.span_label(
3063                                     span,
3064                                     format!("did you mean `({} {{ /* fields */ }})`?", path_str),
3065                                 );
3066                             } else {
3067                                 err.span_label(
3068                                     span,
3069                                     format!("did you mean `{} {{ /* fields */ }}`?", path_str),
3070                                 );
3071                             }
3072                         }
3073                         return (err, candidates);
3074                     }
3075                     (Def::Union(..), _) |
3076                     (Def::Variant(..), _) |
3077                     (Def::VariantCtor(_, CtorKind::Fictive), _) if ns == ValueNS => {
3078                         err.span_label(span, format!("did you mean `{} {{ /* fields */ }}`?",
3079                                                      path_str));
3080                         return (err, candidates);
3081                     }
3082                     (Def::SelfTy(..), _) if ns == ValueNS => {
3083                         err.span_label(span, fallback_label);
3084                         err.note("can't use `Self` as a constructor, you must use the \
3085                                   implemented struct");
3086                         return (err, candidates);
3087                     }
3088                     (Def::TyAlias(_), _) | (Def::AssociatedTy(..), _) if ns == ValueNS => {
3089                         err.note("can't use a type alias as a constructor");
3090                         return (err, candidates);
3091                     }
3092                     _ => {}
3093                 }
3094             }
3095
3096             // Fallback label.
3097             if !levenshtein_worked {
3098                 err.span_label(base_span, fallback_label);
3099                 this.type_ascription_suggestion(&mut err, base_span);
3100             }
3101             (err, candidates)
3102         };
3103         let report_errors = |this: &mut Self, def: Option<Def>| {
3104             let (err, candidates) = report_errors(this, def);
3105             let def_id = this.current_module.normal_ancestor_id;
3106             let node_id = this.definitions.as_local_node_id(def_id).unwrap();
3107             let better = def.is_some();
3108             this.use_injections.push(UseError { err, candidates, node_id, better });
3109             err_path_resolution()
3110         };
3111
3112         let resolution = match self.resolve_qpath_anywhere(
3113             id,
3114             qself,
3115             path,
3116             ns,
3117             span,
3118             source.defer_to_typeck(),
3119             source.global_by_default(),
3120             crate_lint,
3121         ) {
3122             Some(resolution) if resolution.unresolved_segments() == 0 => {
3123                 if is_expected(resolution.base_def()) || resolution.base_def() == Def::Err {
3124                     resolution
3125                 } else {
3126                     // Add a temporary hack to smooth the transition to new struct ctor
3127                     // visibility rules. See #38932 for more details.
3128                     let mut res = None;
3129                     if let Def::Struct(def_id) = resolution.base_def() {
3130                         if let Some((ctor_def, ctor_vis))
3131                                 = self.struct_constructors.get(&def_id).cloned() {
3132                             if is_expected(ctor_def) && self.is_accessible(ctor_vis) {
3133                                 let lint = lint::builtin::LEGACY_CONSTRUCTOR_VISIBILITY;
3134                                 self.session.buffer_lint(lint, id, span,
3135                                     "private struct constructors are not usable through \
3136                                      re-exports in outer modules",
3137                                 );
3138                                 res = Some(PathResolution::new(ctor_def));
3139                             }
3140                         }
3141                     }
3142
3143                     res.unwrap_or_else(|| report_errors(self, Some(resolution.base_def())))
3144                 }
3145             }
3146             Some(resolution) if source.defer_to_typeck() => {
3147                 // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
3148                 // or `<T>::A::B`. If `B` should be resolved in value namespace then
3149                 // it needs to be added to the trait map.
3150                 if ns == ValueNS {
3151                     let item_name = *path.last().unwrap();
3152                     let traits = self.get_traits_containing_item(item_name, ns);
3153                     self.trait_map.insert(id, traits);
3154                 }
3155                 resolution
3156             }
3157             _ => report_errors(self, None)
3158         };
3159
3160         if let PathSource::TraitItem(..) = source {} else {
3161             // Avoid recording definition of `A::B` in `<T as A>::B::C`.
3162             self.record_def(id, resolution);
3163         }
3164         resolution
3165     }
3166
3167     fn type_ascription_suggestion(&self,
3168                                   err: &mut DiagnosticBuilder,
3169                                   base_span: Span) {
3170         debug!("type_ascription_suggetion {:?}", base_span);
3171         let cm = self.session.codemap();
3172         debug!("self.current_type_ascription {:?}", self.current_type_ascription);
3173         if let Some(sp) = self.current_type_ascription.last() {
3174             let mut sp = *sp;
3175             loop {  // try to find the `:`, bail on first non-':'/non-whitespace
3176                 sp = cm.next_point(sp);
3177                 if let Ok(snippet) = cm.span_to_snippet(sp.to(cm.next_point(sp))) {
3178                     debug!("snippet {:?}", snippet);
3179                     let line_sp = cm.lookup_char_pos(sp.hi()).line;
3180                     let line_base_sp = cm.lookup_char_pos(base_span.lo()).line;
3181                     debug!("{:?} {:?}", line_sp, line_base_sp);
3182                     if snippet == ":" {
3183                         err.span_label(base_span,
3184                                        "expecting a type here because of type ascription");
3185                         if line_sp != line_base_sp {
3186                             err.span_suggestion_short(sp,
3187                                                       "did you mean to use `;` here instead?",
3188                                                       ";".to_string());
3189                         }
3190                         break;
3191                     } else if snippet.trim().len() != 0  {
3192                         debug!("tried to find type ascription `:` token, couldn't find it");
3193                         break;
3194                     }
3195                 } else {
3196                     break;
3197                 }
3198             }
3199         }
3200     }
3201
3202     fn self_type_is_available(&mut self, span: Span) -> bool {
3203         let binding = self.resolve_ident_in_lexical_scope(keywords::SelfType.ident(),
3204                                                           TypeNS, None, span);
3205         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3206     }
3207
3208     fn self_value_is_available(&mut self, self_span: Span, path_span: Span) -> bool {
3209         let ident = Ident::new(keywords::SelfValue.name(), self_span);
3210         let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, None, path_span);
3211         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3212     }
3213
3214     // Resolve in alternative namespaces if resolution in the primary namespace fails.
3215     fn resolve_qpath_anywhere(&mut self,
3216                               id: NodeId,
3217                               qself: Option<&QSelf>,
3218                               path: &[Ident],
3219                               primary_ns: Namespace,
3220                               span: Span,
3221                               defer_to_typeck: bool,
3222                               global_by_default: bool,
3223                               crate_lint: CrateLint)
3224                               -> Option<PathResolution> {
3225         let mut fin_res = None;
3226         // FIXME: can't resolve paths in macro namespace yet, macros are
3227         // processed by the little special hack below.
3228         for (i, ns) in [primary_ns, TypeNS, ValueNS, /*MacroNS*/].iter().cloned().enumerate() {
3229             if i == 0 || ns != primary_ns {
3230                 match self.resolve_qpath(id, qself, path, ns, span, global_by_default, crate_lint) {
3231                     // If defer_to_typeck, then resolution > no resolution,
3232                     // otherwise full resolution > partial resolution > no resolution.
3233                     Some(res) if res.unresolved_segments() == 0 || defer_to_typeck =>
3234                         return Some(res),
3235                     res => if fin_res.is_none() { fin_res = res },
3236                 };
3237             }
3238         }
3239         let is_global = self.macro_prelude.get(&path[0].name).cloned()
3240             .map(|binding| binding.get_macro(self).kind() == MacroKind::Bang).unwrap_or(false);
3241         if primary_ns != MacroNS && (is_global ||
3242                                      self.macro_names.contains(&path[0].modern())) {
3243             // Return some dummy definition, it's enough for error reporting.
3244             return Some(
3245                 PathResolution::new(Def::Macro(DefId::local(CRATE_DEF_INDEX), MacroKind::Bang))
3246             );
3247         }
3248         fin_res
3249     }
3250
3251     /// Handles paths that may refer to associated items.
3252     fn resolve_qpath(&mut self,
3253                      id: NodeId,
3254                      qself: Option<&QSelf>,
3255                      path: &[Ident],
3256                      ns: Namespace,
3257                      span: Span,
3258                      global_by_default: bool,
3259                      crate_lint: CrateLint)
3260                      -> Option<PathResolution> {
3261         debug!(
3262             "resolve_qpath(id={:?}, qself={:?}, path={:?}, \
3263              ns={:?}, span={:?}, global_by_default={:?})",
3264             id,
3265             qself,
3266             path,
3267             ns,
3268             span,
3269             global_by_default,
3270         );
3271
3272         if let Some(qself) = qself {
3273             if qself.position == 0 {
3274                 // This is a case like `<T>::B`, where there is no
3275                 // trait to resolve.  In that case, we leave the `B`
3276                 // segment to be resolved by type-check.
3277                 return Some(PathResolution::with_unresolved_segments(
3278                     Def::Mod(DefId::local(CRATE_DEF_INDEX)), path.len()
3279                 ));
3280             }
3281
3282             // Make sure `A::B` in `<T as A::B>::C` is a trait item.
3283             //
3284             // Currently, `path` names the full item (`A::B::C`, in
3285             // our example).  so we extract the prefix of that that is
3286             // the trait (the slice upto and including
3287             // `qself.position`). And then we recursively resolve that,
3288             // but with `qself` set to `None`.
3289             //
3290             // However, setting `qself` to none (but not changing the
3291             // span) loses the information about where this path
3292             // *actually* appears, so for the purposes of the crate
3293             // lint we pass along information that this is the trait
3294             // name from a fully qualified path, and this also
3295             // contains the full span (the `CrateLint::QPathTrait`).
3296             let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
3297             let res = self.smart_resolve_path_fragment(
3298                 id,
3299                 None,
3300                 &path[..qself.position + 1],
3301                 span,
3302                 PathSource::TraitItem(ns),
3303                 CrateLint::QPathTrait {
3304                     qpath_id: id,
3305                     qpath_span: qself.path_span,
3306                 },
3307             );
3308
3309             // The remaining segments (the `C` in our example) will
3310             // have to be resolved by type-check, since that requires doing
3311             // trait resolution.
3312             return Some(PathResolution::with_unresolved_segments(
3313                 res.base_def(), res.unresolved_segments() + path.len() - qself.position - 1
3314             ));
3315         }
3316
3317         let result = match self.resolve_path(
3318             &path,
3319             Some(ns),
3320             true,
3321             span,
3322             crate_lint,
3323         ) {
3324             PathResult::NonModule(path_res) => path_res,
3325             PathResult::Module(module) if !module.is_normal() => {
3326                 PathResolution::new(module.def().unwrap())
3327             }
3328             // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
3329             // don't report an error right away, but try to fallback to a primitive type.
3330             // So, we are still able to successfully resolve something like
3331             //
3332             // use std::u8; // bring module u8 in scope
3333             // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
3334             //     u8::max_value() // OK, resolves to associated function <u8>::max_value,
3335             //                     // not to non-existent std::u8::max_value
3336             // }
3337             //
3338             // Such behavior is required for backward compatibility.
3339             // The same fallback is used when `a` resolves to nothing.
3340             PathResult::Module(..) | PathResult::Failed(..)
3341                     if (ns == TypeNS || path.len() > 1) &&
3342                        self.primitive_type_table.primitive_types
3343                            .contains_key(&path[0].name) => {
3344                 let prim = self.primitive_type_table.primitive_types[&path[0].name];
3345                 PathResolution::with_unresolved_segments(Def::PrimTy(prim), path.len() - 1)
3346             }
3347             PathResult::Module(module) => PathResolution::new(module.def().unwrap()),
3348             PathResult::Failed(span, msg, false) => {
3349                 resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
3350                 err_path_resolution()
3351             }
3352             PathResult::Failed(..) => return None,
3353             PathResult::Indeterminate => bug!("indetermined path result in resolve_qpath"),
3354         };
3355
3356         if path.len() > 1 && !global_by_default && result.base_def() != Def::Err &&
3357            path[0].name != keywords::CrateRoot.name() &&
3358            path[0].name != keywords::DollarCrate.name() {
3359             let unqualified_result = {
3360                 match self.resolve_path(
3361                     &[*path.last().unwrap()],
3362                     Some(ns),
3363                     false,
3364                     span,
3365                     CrateLint::No,
3366                 ) {
3367                     PathResult::NonModule(path_res) => path_res.base_def(),
3368                     PathResult::Module(module) => module.def().unwrap(),
3369                     _ => return Some(result),
3370                 }
3371             };
3372             if result.base_def() == unqualified_result {
3373                 let lint = lint::builtin::UNUSED_QUALIFICATIONS;
3374                 self.session.buffer_lint(lint, id, span, "unnecessary qualification")
3375             }
3376         }
3377
3378         Some(result)
3379     }
3380
3381     fn resolve_path(
3382         &mut self,
3383         path: &[Ident],
3384         opt_ns: Option<Namespace>, // `None` indicates a module path
3385         record_used: bool,
3386         path_span: Span,
3387         crate_lint: CrateLint,
3388     ) -> PathResult<'a> {
3389         let mut module = None;
3390         let mut allow_super = true;
3391         let mut second_binding = None;
3392
3393         debug!(
3394             "resolve_path(path={:?}, opt_ns={:?}, record_used={:?}, \
3395              path_span={:?}, crate_lint={:?})",
3396             path,
3397             opt_ns,
3398             record_used,
3399             path_span,
3400             crate_lint,
3401         );
3402
3403         for (i, &ident) in path.iter().enumerate() {
3404             debug!("resolve_path ident {} {:?}", i, ident);
3405             let is_last = i == path.len() - 1;
3406             let ns = if is_last { opt_ns.unwrap_or(TypeNS) } else { TypeNS };
3407             let name = ident.name;
3408
3409             if i == 0 && ns == TypeNS && name == keywords::SelfValue.name() {
3410                 let mut ctxt = ident.span.ctxt().modern();
3411                 module = Some(self.resolve_self(&mut ctxt, self.current_module));
3412                 continue
3413             } else if allow_super && ns == TypeNS && name == keywords::Super.name() {
3414                 let mut ctxt = ident.span.ctxt().modern();
3415                 let self_module = match i {
3416                     0 => self.resolve_self(&mut ctxt, self.current_module),
3417                     _ => module.unwrap(),
3418                 };
3419                 if let Some(parent) = self_module.parent {
3420                     module = Some(self.resolve_self(&mut ctxt, parent));
3421                     continue
3422                 } else {
3423                     let msg = "There are too many initial `super`s.".to_string();
3424                     return PathResult::Failed(ident.span, msg, false);
3425                 }
3426             } else if i == 0 && ns == TypeNS && name == keywords::Extern.name() {
3427                 continue;
3428             }
3429             allow_super = false;
3430
3431             if ns == TypeNS {
3432                 if (i == 0 && name == keywords::CrateRoot.name()) ||
3433                    (i == 0 && name == keywords::Crate.name()) ||
3434                    (i == 0 && name == keywords::DollarCrate.name()) ||
3435                    (i == 1 && name == keywords::Crate.name() &&
3436                               path[0].name == keywords::CrateRoot.name()) {
3437                     // `::a::b`, `crate::a::b`, `::crate::a::b` or `$crate::a::b`
3438                     module = Some(self.resolve_crate_root(ident));
3439                     continue
3440                 } else if i == 1 && !ident.is_path_segment_keyword() {
3441                     let prev_name = path[0].name;
3442                     if prev_name == keywords::Extern.name() ||
3443                        prev_name == keywords::CrateRoot.name() &&
3444                        self.session.features_untracked().extern_absolute_paths &&
3445                        self.session.rust_2018() {
3446                         // `::extern_crate::a::b`
3447                         let crate_id = self.crate_loader.process_path_extern(name, ident.span);
3448                         let crate_root =
3449                             self.get_module(DefId { krate: crate_id, index: CRATE_DEF_INDEX });
3450                         self.populate_module_if_necessary(crate_root);
3451                         module = Some(crate_root);
3452                         continue
3453                     }
3454                 }
3455             }
3456
3457             // Report special messages for path segment keywords in wrong positions.
3458             if name == keywords::CrateRoot.name() && i != 0 ||
3459                name == keywords::DollarCrate.name() && i != 0 ||
3460                name == keywords::SelfValue.name() && i != 0 ||
3461                name == keywords::SelfType.name() && i != 0 ||
3462                name == keywords::Super.name() && i != 0 ||
3463                name == keywords::Extern.name() && i != 0 ||
3464                // we allow crate::foo and ::crate::foo but nothing else
3465                name == keywords::Crate.name() && i > 1 &&
3466                     path[0].name != keywords::CrateRoot.name() ||
3467                name == keywords::Crate.name() && path.len() == 1 {
3468                 let name_str = if name == keywords::CrateRoot.name() {
3469                     "crate root".to_string()
3470                 } else {
3471                     format!("`{}`", name)
3472                 };
3473                 let msg = if i == 1 && path[0].name == keywords::CrateRoot.name() {
3474                     format!("global paths cannot start with {}", name_str)
3475                 } else {
3476                     format!("{} in paths can only be used in start position", name_str)
3477                 };
3478                 return PathResult::Failed(ident.span, msg, false);
3479             }
3480
3481             let binding = if let Some(module) = module {
3482                 self.resolve_ident_in_module(module, ident, ns, record_used, path_span)
3483             } else if opt_ns == Some(MacroNS) {
3484                 self.resolve_lexical_macro_path_segment(ident, ns, record_used, path_span)
3485                     .map(MacroBinding::binding)
3486             } else {
3487                 let record_used_id =
3488                     if record_used { crate_lint.node_id().or(Some(CRATE_NODE_ID)) } else { None };
3489                 match self.resolve_ident_in_lexical_scope(ident, ns, record_used_id, path_span) {
3490                     // we found a locally-imported or available item/module
3491                     Some(LexicalScopeBinding::Item(binding)) => Ok(binding),
3492                     // we found a local variable or type param
3493                     Some(LexicalScopeBinding::Def(def))
3494                             if opt_ns == Some(TypeNS) || opt_ns == Some(ValueNS) => {
3495                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3496                             def, path.len() - 1
3497                         ));
3498                     }
3499                     _ => Err(if record_used { Determined } else { Undetermined }),
3500                 }
3501             };
3502
3503             match binding {
3504                 Ok(binding) => {
3505                     if i == 1 {
3506                         second_binding = Some(binding);
3507                     }
3508                     let def = binding.def();
3509                     let maybe_assoc = opt_ns != Some(MacroNS) && PathSource::Type.is_expected(def);
3510                     if let Some(next_module) = binding.module() {
3511                         module = Some(next_module);
3512                     } else if def == Def::ToolMod && i + 1 != path.len() {
3513                         return PathResult::NonModule(PathResolution::new(Def::NonMacroAttr))
3514                     } else if def == Def::Err {
3515                         return PathResult::NonModule(err_path_resolution());
3516                     } else if opt_ns.is_some() && (is_last || maybe_assoc) {
3517                         self.lint_if_path_starts_with_module(
3518                             crate_lint,
3519                             path,
3520                             path_span,
3521                             second_binding,
3522                         );
3523                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3524                             def, path.len() - i - 1
3525                         ));
3526                     } else {
3527                         return PathResult::Failed(ident.span,
3528                                                   format!("Not a module `{}`", ident),
3529                                                   is_last);
3530                     }
3531                 }
3532                 Err(Undetermined) => return PathResult::Indeterminate,
3533                 Err(Determined) => {
3534                     if let Some(module) = module {
3535                         if opt_ns.is_some() && !module.is_normal() {
3536                             return PathResult::NonModule(PathResolution::with_unresolved_segments(
3537                                 module.def().unwrap(), path.len() - i
3538                             ));
3539                         }
3540                     }
3541                     let msg = if module.and_then(ModuleData::def) == self.graph_root.def() {
3542                         let is_mod = |def| match def { Def::Mod(..) => true, _ => false };
3543                         let mut candidates =
3544                             self.lookup_import_candidates(name, TypeNS, is_mod);
3545                         candidates.sort_by_cached_key(|c| {
3546                             (c.path.segments.len(), c.path.to_string())
3547                         });
3548                         if let Some(candidate) = candidates.get(0) {
3549                             format!("Did you mean `{}`?", candidate.path)
3550                         } else {
3551                             format!("Maybe a missing `extern crate {};`?", ident)
3552                         }
3553                     } else if i == 0 {
3554                         format!("Use of undeclared type or module `{}`", ident)
3555                     } else {
3556                         format!("Could not find `{}` in `{}`", ident, path[i - 1])
3557                     };
3558                     return PathResult::Failed(ident.span, msg, is_last);
3559                 }
3560             }
3561         }
3562
3563         self.lint_if_path_starts_with_module(crate_lint, path, path_span, second_binding);
3564
3565         PathResult::Module(module.unwrap_or(self.graph_root))
3566     }
3567
3568     fn lint_if_path_starts_with_module(
3569         &self,
3570         crate_lint: CrateLint,
3571         path: &[Ident],
3572         path_span: Span,
3573         second_binding: Option<&NameBinding>,
3574     ) {
3575         let (diag_id, diag_span) = match crate_lint {
3576             CrateLint::No => return,
3577             CrateLint::SimplePath(id) => (id, path_span),
3578             CrateLint::UsePath { root_id, root_span } => (root_id, root_span),
3579             CrateLint::QPathTrait { qpath_id, qpath_span } => (qpath_id, qpath_span),
3580         };
3581
3582         let first_name = match path.get(0) {
3583             Some(ident) => ident.name,
3584             None => return,
3585         };
3586
3587         // We're only interested in `use` paths which should start with
3588         // `{{root}}` or `extern` currently.
3589         if first_name != keywords::Extern.name() && first_name != keywords::CrateRoot.name() {
3590             return
3591         }
3592
3593         match path.get(1) {
3594             // If this import looks like `crate::...` it's already good
3595             Some(ident) if ident.name == keywords::Crate.name() => return,
3596             // Otherwise go below to see if it's an extern crate
3597             Some(_) => {}
3598             // If the path has length one (and it's `CrateRoot` most likely)
3599             // then we don't know whether we're gonna be importing a crate or an
3600             // item in our crate. Defer this lint to elsewhere
3601             None => return,
3602         }
3603
3604         // If the first element of our path was actually resolved to an
3605         // `ExternCrate` (also used for `crate::...`) then no need to issue a
3606         // warning, this looks all good!
3607         if let Some(binding) = second_binding {
3608             if let NameBindingKind::Import { directive: d, .. } = binding.kind {
3609                 // Careful: we still want to rewrite paths from
3610                 // renamed extern crates.
3611                 if let ImportDirectiveSubclass::ExternCrate(None) = d.subclass {
3612                     return
3613                 }
3614             }
3615         }
3616
3617         self.lint_path_starts_with_module(diag_id, diag_span);
3618     }
3619
3620     fn lint_path_starts_with_module(&self, id: NodeId, span: Span) {
3621         // In the 2018 edition this lint is a hard error, so nothing to do
3622         if self.session.rust_2018() {
3623             return
3624         }
3625         // In the 2015 edition there's no use in emitting lints unless the
3626         // crate's already enabled the feature that we're going to suggest
3627         if !self.session.features_untracked().crate_in_paths {
3628             return
3629         }
3630         let diag = lint::builtin::BuiltinLintDiagnostics
3631             ::AbsPathWithModule(span);
3632         self.session.buffer_lint_with_diagnostic(
3633             lint::builtin::ABSOLUTE_PATHS_NOT_STARTING_WITH_CRATE,
3634             id, span,
3635             "absolute paths must start with `self`, `super`, \
3636             `crate`, or an external crate name in the 2018 edition",
3637             diag);
3638     }
3639
3640     // Resolve a local definition, potentially adjusting for closures.
3641     fn adjust_local_def(&mut self,
3642                         ns: Namespace,
3643                         rib_index: usize,
3644                         mut def: Def,
3645                         record_used: bool,
3646                         span: Span) -> Def {
3647         let ribs = &self.ribs[ns][rib_index + 1..];
3648
3649         // An invalid forward use of a type parameter from a previous default.
3650         if let ForwardTyParamBanRibKind = self.ribs[ns][rib_index].kind {
3651             if record_used {
3652                 resolve_error(self, span, ResolutionError::ForwardDeclaredTyParam);
3653             }
3654             assert_eq!(def, Def::Err);
3655             return Def::Err;
3656         }
3657
3658         match def {
3659             Def::Upvar(..) => {
3660                 span_bug!(span, "unexpected {:?} in bindings", def)
3661             }
3662             Def::Local(node_id) => {
3663                 for rib in ribs {
3664                     match rib.kind {
3665                         NormalRibKind | ModuleRibKind(..) | MacroDefinition(..) |
3666                         ForwardTyParamBanRibKind => {
3667                             // Nothing to do. Continue.
3668                         }
3669                         ClosureRibKind(function_id) => {
3670                             let prev_def = def;
3671
3672                             let seen = self.freevars_seen
3673                                            .entry(function_id)
3674                                            .or_insert_with(|| NodeMap());
3675                             if let Some(&index) = seen.get(&node_id) {
3676                                 def = Def::Upvar(node_id, index, function_id);
3677                                 continue;
3678                             }
3679                             let vec = self.freevars
3680                                           .entry(function_id)
3681                                           .or_insert_with(|| vec![]);
3682                             let depth = vec.len();
3683                             def = Def::Upvar(node_id, depth, function_id);
3684
3685                             if record_used {
3686                                 vec.push(Freevar {
3687                                     def: prev_def,
3688                                     span,
3689                                 });
3690                                 seen.insert(node_id, depth);
3691                             }
3692                         }
3693                         ItemRibKind | TraitOrImplItemRibKind => {
3694                             // This was an attempt to access an upvar inside a
3695                             // named function item. This is not allowed, so we
3696                             // report an error.
3697                             if record_used {
3698                                 resolve_error(self, span,
3699                                         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem);
3700                             }
3701                             return Def::Err;
3702                         }
3703                         ConstantItemRibKind => {
3704                             // Still doesn't deal with upvars
3705                             if record_used {
3706                                 resolve_error(self, span,
3707                                         ResolutionError::AttemptToUseNonConstantValueInConstant);
3708                             }
3709                             return Def::Err;
3710                         }
3711                     }
3712                 }
3713             }
3714             Def::TyParam(..) | Def::SelfTy(..) => {
3715                 for rib in ribs {
3716                     match rib.kind {
3717                         NormalRibKind | TraitOrImplItemRibKind | ClosureRibKind(..) |
3718                         ModuleRibKind(..) | MacroDefinition(..) | ForwardTyParamBanRibKind |
3719                         ConstantItemRibKind => {
3720                             // Nothing to do. Continue.
3721                         }
3722                         ItemRibKind => {
3723                             // This was an attempt to use a type parameter outside
3724                             // its scope.
3725                             if record_used {
3726                                 resolve_error(self, span,
3727                                     ResolutionError::TypeParametersFromOuterFunction(def));
3728                             }
3729                             return Def::Err;
3730                         }
3731                     }
3732                 }
3733             }
3734             _ => {}
3735         }
3736         return def;
3737     }
3738
3739     fn lookup_assoc_candidate<FilterFn>(&mut self,
3740                                         ident: Ident,
3741                                         ns: Namespace,
3742                                         filter_fn: FilterFn)
3743                                         -> Option<AssocSuggestion>
3744         where FilterFn: Fn(Def) -> bool
3745     {
3746         fn extract_node_id(t: &Ty) -> Option<NodeId> {
3747             match t.node {
3748                 TyKind::Path(None, _) => Some(t.id),
3749                 TyKind::Rptr(_, ref mut_ty) => extract_node_id(&mut_ty.ty),
3750                 // This doesn't handle the remaining `Ty` variants as they are not
3751                 // that commonly the self_type, it might be interesting to provide
3752                 // support for those in future.
3753                 _ => None,
3754             }
3755         }
3756
3757         // Fields are generally expected in the same contexts as locals.
3758         if filter_fn(Def::Local(ast::DUMMY_NODE_ID)) {
3759             if let Some(node_id) = self.current_self_type.as_ref().and_then(extract_node_id) {
3760                 // Look for a field with the same name in the current self_type.
3761                 if let Some(resolution) = self.def_map.get(&node_id) {
3762                     match resolution.base_def() {
3763                         Def::Struct(did) | Def::Union(did)
3764                                 if resolution.unresolved_segments() == 0 => {
3765                             if let Some(field_names) = self.field_names.get(&did) {
3766                                 if field_names.iter().any(|&field_name| ident.name == field_name) {
3767                                     return Some(AssocSuggestion::Field);
3768                                 }
3769                             }
3770                         }
3771                         _ => {}
3772                     }
3773                 }
3774             }
3775         }
3776
3777         // Look for associated items in the current trait.
3778         if let Some((module, _)) = self.current_trait_ref {
3779             if let Ok(binding) =
3780                     self.resolve_ident_in_module(module, ident, ns, false, module.span) {
3781                 let def = binding.def();
3782                 if filter_fn(def) {
3783                     return Some(if self.has_self.contains(&def.def_id()) {
3784                         AssocSuggestion::MethodWithSelf
3785                     } else {
3786                         AssocSuggestion::AssocItem
3787                     });
3788                 }
3789             }
3790         }
3791
3792         None
3793     }
3794
3795     fn lookup_typo_candidate<FilterFn>(&mut self,
3796                                        path: &[Ident],
3797                                        ns: Namespace,
3798                                        filter_fn: FilterFn,
3799                                        span: Span)
3800                                        -> Option<Symbol>
3801         where FilterFn: Fn(Def) -> bool
3802     {
3803         let add_module_candidates = |module: Module, names: &mut Vec<Name>| {
3804             for (&(ident, _), resolution) in module.resolutions.borrow().iter() {
3805                 if let Some(binding) = resolution.borrow().binding {
3806                     if filter_fn(binding.def()) {
3807                         names.push(ident.name);
3808                     }
3809                 }
3810             }
3811         };
3812
3813         let mut names = Vec::new();
3814         if path.len() == 1 {
3815             // Search in lexical scope.
3816             // Walk backwards up the ribs in scope and collect candidates.
3817             for rib in self.ribs[ns].iter().rev() {
3818                 // Locals and type parameters
3819                 for (ident, def) in &rib.bindings {
3820                     if filter_fn(*def) {
3821                         names.push(ident.name);
3822                     }
3823                 }
3824                 // Items in scope
3825                 if let ModuleRibKind(module) = rib.kind {
3826                     // Items from this module
3827                     add_module_candidates(module, &mut names);
3828
3829                     if let ModuleKind::Block(..) = module.kind {
3830                         // We can see through blocks
3831                     } else {
3832                         // Items from the prelude
3833                         if !module.no_implicit_prelude {
3834                             names.extend(self.extern_prelude.iter().cloned());
3835                             if let Some(prelude) = self.prelude {
3836                                 add_module_candidates(prelude, &mut names);
3837                             }
3838                         }
3839                         break;
3840                     }
3841                 }
3842             }
3843             // Add primitive types to the mix
3844             if filter_fn(Def::PrimTy(TyBool)) {
3845                 names.extend(
3846                     self.primitive_type_table.primitive_types.iter().map(|(name, _)| name)
3847                 )
3848             }
3849         } else {
3850             // Search in module.
3851             let mod_path = &path[..path.len() - 1];
3852             if let PathResult::Module(module) = self.resolve_path(mod_path, Some(TypeNS),
3853                                                                   false, span, CrateLint::No) {
3854                 add_module_candidates(module, &mut names);
3855             }
3856         }
3857
3858         let name = path[path.len() - 1].name;
3859         // Make sure error reporting is deterministic.
3860         names.sort_by_cached_key(|name| name.as_str());
3861         match find_best_match_for_name(names.iter(), &name.as_str(), None) {
3862             Some(found) if found != name => Some(found),
3863             _ => None,
3864         }
3865     }
3866
3867     fn with_resolved_label<F>(&mut self, label: Option<Label>, id: NodeId, f: F)
3868         where F: FnOnce(&mut Resolver)
3869     {
3870         if let Some(label) = label {
3871             self.unused_labels.insert(id, label.ident.span);
3872             let def = Def::Label(id);
3873             self.with_label_rib(|this| {
3874                 let ident = label.ident.modern_and_legacy();
3875                 this.label_ribs.last_mut().unwrap().bindings.insert(ident, def);
3876                 f(this);
3877             });
3878         } else {
3879             f(self);
3880         }
3881     }
3882
3883     fn resolve_labeled_block(&mut self, label: Option<Label>, id: NodeId, block: &Block) {
3884         self.with_resolved_label(label, id, |this| this.visit_block(block));
3885     }
3886
3887     fn resolve_expr(&mut self, expr: &Expr, parent: Option<&Expr>) {
3888         // First, record candidate traits for this expression if it could
3889         // result in the invocation of a method call.
3890
3891         self.record_candidate_traits_for_expr_if_necessary(expr);
3892
3893         // Next, resolve the node.
3894         match expr.node {
3895             ExprKind::Path(ref qself, ref path) => {
3896                 self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
3897                 visit::walk_expr(self, expr);
3898             }
3899
3900             ExprKind::Struct(ref path, ..) => {
3901                 self.smart_resolve_path(expr.id, None, path, PathSource::Struct);
3902                 visit::walk_expr(self, expr);
3903             }
3904
3905             ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
3906                 let def = self.search_label(label.ident, |rib, ident| {
3907                     rib.bindings.get(&ident.modern_and_legacy()).cloned()
3908                 });
3909                 match def {
3910                     None => {
3911                         // Search again for close matches...
3912                         // Picks the first label that is "close enough", which is not necessarily
3913                         // the closest match
3914                         let close_match = self.search_label(label.ident, |rib, ident| {
3915                             let names = rib.bindings.iter().map(|(id, _)| &id.name);
3916                             find_best_match_for_name(names, &*ident.as_str(), None)
3917                         });
3918                         self.record_def(expr.id, err_path_resolution());
3919                         resolve_error(self,
3920                                       label.ident.span,
3921                                       ResolutionError::UndeclaredLabel(&label.ident.as_str(),
3922                                                                        close_match));
3923                     }
3924                     Some(Def::Label(id)) => {
3925                         // Since this def is a label, it is never read.
3926                         self.record_def(expr.id, PathResolution::new(Def::Label(id)));
3927                         self.unused_labels.remove(&id);
3928                     }
3929                     Some(_) => {
3930                         span_bug!(expr.span, "label wasn't mapped to a label def!");
3931                     }
3932                 }
3933
3934                 // visit `break` argument if any
3935                 visit::walk_expr(self, expr);
3936             }
3937
3938             ExprKind::IfLet(ref pats, ref subexpression, ref if_block, ref optional_else) => {
3939                 self.visit_expr(subexpression);
3940
3941                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
3942                 let mut bindings_list = FxHashMap();
3943                 for pat in pats {
3944                     self.resolve_pattern(pat, PatternSource::IfLet, &mut bindings_list);
3945                 }
3946                 // This has to happen *after* we determine which pat_idents are variants
3947                 self.check_consistent_bindings(pats);
3948                 self.visit_block(if_block);
3949                 self.ribs[ValueNS].pop();
3950
3951                 optional_else.as_ref().map(|expr| self.visit_expr(expr));
3952             }
3953
3954             ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),
3955
3956             ExprKind::While(ref subexpression, ref block, label) => {
3957                 self.with_resolved_label(label, expr.id, |this| {
3958                     this.visit_expr(subexpression);
3959                     this.visit_block(block);
3960                 });
3961             }
3962
3963             ExprKind::WhileLet(ref pats, ref subexpression, ref block, label) => {
3964                 self.with_resolved_label(label, expr.id, |this| {
3965                     this.visit_expr(subexpression);
3966                     this.ribs[ValueNS].push(Rib::new(NormalRibKind));
3967                     let mut bindings_list = FxHashMap();
3968                     for pat in pats {
3969                         this.resolve_pattern(pat, PatternSource::WhileLet, &mut bindings_list);
3970                     }
3971                     // This has to happen *after* we determine which pat_idents are variants
3972                     this.check_consistent_bindings(pats);
3973                     this.visit_block(block);
3974                     this.ribs[ValueNS].pop();
3975                 });
3976             }
3977
3978             ExprKind::ForLoop(ref pattern, ref subexpression, ref block, label) => {
3979                 self.visit_expr(subexpression);
3980                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
3981                 self.resolve_pattern(pattern, PatternSource::For, &mut FxHashMap());
3982
3983                 self.resolve_labeled_block(label, expr.id, block);
3984
3985                 self.ribs[ValueNS].pop();
3986             }
3987
3988             ExprKind::Block(ref block, label) => self.resolve_labeled_block(label, block.id, block),
3989
3990             // Equivalent to `visit::walk_expr` + passing some context to children.
3991             ExprKind::Field(ref subexpression, _) => {
3992                 self.resolve_expr(subexpression, Some(expr));
3993             }
3994             ExprKind::MethodCall(ref segment, ref arguments) => {
3995                 let mut arguments = arguments.iter();
3996                 self.resolve_expr(arguments.next().unwrap(), Some(expr));
3997                 for argument in arguments {
3998                     self.resolve_expr(argument, None);
3999                 }
4000                 self.visit_path_segment(expr.span, segment);
4001             }
4002
4003             ExprKind::Call(ref callee, ref arguments) => {
4004                 self.resolve_expr(callee, Some(expr));
4005                 for argument in arguments {
4006                     self.resolve_expr(argument, None);
4007                 }
4008             }
4009             ExprKind::Type(ref type_expr, _) => {
4010                 self.current_type_ascription.push(type_expr.span);
4011                 visit::walk_expr(self, expr);
4012                 self.current_type_ascription.pop();
4013             }
4014             // Resolve the body of async exprs inside the async closure to which they desugar
4015             ExprKind::Async(_, async_closure_id, ref block) => {
4016                 let rib_kind = ClosureRibKind(async_closure_id);
4017                 self.ribs[ValueNS].push(Rib::new(rib_kind));
4018                 self.label_ribs.push(Rib::new(rib_kind));
4019                 self.visit_block(&block);
4020                 self.label_ribs.pop();
4021                 self.ribs[ValueNS].pop();
4022             }
4023             // `async |x| ...` gets desugared to `|x| future_from_generator(|| ...)`, so we need to
4024             // resolve the arguments within the proper scopes so that usages of them inside the
4025             // closure are detected as upvars rather than normal closure arg usages.
4026             ExprKind::Closure(
4027                 _, IsAsync::Async { closure_id: inner_closure_id, .. }, _,
4028                 ref fn_decl, ref body, _span,
4029             ) => {
4030                 let rib_kind = ClosureRibKind(expr.id);
4031                 self.ribs[ValueNS].push(Rib::new(rib_kind));
4032                 self.label_ribs.push(Rib::new(rib_kind));
4033                 // Resolve arguments:
4034                 let mut bindings_list = FxHashMap();
4035                 for argument in &fn_decl.inputs {
4036                     self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
4037                     self.visit_ty(&argument.ty);
4038                 }
4039                 // No need to resolve return type-- the outer closure return type is
4040                 // FunctionRetTy::Default
4041
4042                 // Now resolve the inner closure
4043                 {
4044                     let rib_kind = ClosureRibKind(inner_closure_id);
4045                     self.ribs[ValueNS].push(Rib::new(rib_kind));
4046                     self.label_ribs.push(Rib::new(rib_kind));
4047                     // No need to resolve arguments: the inner closure has none.
4048                     // Resolve the return type:
4049                     visit::walk_fn_ret_ty(self, &fn_decl.output);
4050                     // Resolve the body
4051                     self.visit_expr(body);
4052                     self.label_ribs.pop();
4053                     self.ribs[ValueNS].pop();
4054                 }
4055                 self.label_ribs.pop();
4056                 self.ribs[ValueNS].pop();
4057             }
4058             _ => {
4059                 visit::walk_expr(self, expr);
4060             }
4061         }
4062     }
4063
4064     fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &Expr) {
4065         match expr.node {
4066             ExprKind::Field(_, ident) => {
4067                 // FIXME(#6890): Even though you can't treat a method like a
4068                 // field, we need to add any trait methods we find that match
4069                 // the field name so that we can do some nice error reporting
4070                 // later on in typeck.
4071                 let traits = self.get_traits_containing_item(ident, ValueNS);
4072                 self.trait_map.insert(expr.id, traits);
4073             }
4074             ExprKind::MethodCall(ref segment, ..) => {
4075                 debug!("(recording candidate traits for expr) recording traits for {}",
4076                        expr.id);
4077                 let traits = self.get_traits_containing_item(segment.ident, ValueNS);
4078                 self.trait_map.insert(expr.id, traits);
4079             }
4080             _ => {
4081                 // Nothing to do.
4082             }
4083         }
4084     }
4085
4086     fn get_traits_containing_item(&mut self, mut ident: Ident, ns: Namespace)
4087                                   -> Vec<TraitCandidate> {
4088         debug!("(getting traits containing item) looking for '{}'", ident.name);
4089
4090         let mut found_traits = Vec::new();
4091         // Look for the current trait.
4092         if let Some((module, _)) = self.current_trait_ref {
4093             if self.resolve_ident_in_module(module, ident, ns, false, module.span).is_ok() {
4094                 let def_id = module.def_id().unwrap();
4095                 found_traits.push(TraitCandidate { def_id: def_id, import_id: None });
4096             }
4097         }
4098
4099         ident.span = ident.span.modern();
4100         let mut search_module = self.current_module;
4101         loop {
4102             self.get_traits_in_module_containing_item(ident, ns, search_module, &mut found_traits);
4103             search_module = unwrap_or!(
4104                 self.hygienic_lexical_parent(search_module, &mut ident.span), break
4105             );
4106         }
4107
4108         if let Some(prelude) = self.prelude {
4109             if !search_module.no_implicit_prelude {
4110                 self.get_traits_in_module_containing_item(ident, ns, prelude, &mut found_traits);
4111             }
4112         }
4113
4114         found_traits
4115     }
4116
4117     fn get_traits_in_module_containing_item(&mut self,
4118                                             ident: Ident,
4119                                             ns: Namespace,
4120                                             module: Module<'a>,
4121                                             found_traits: &mut Vec<TraitCandidate>) {
4122         let mut traits = module.traits.borrow_mut();
4123         if traits.is_none() {
4124             let mut collected_traits = Vec::new();
4125             module.for_each_child(|name, ns, binding| {
4126                 if ns != TypeNS { return }
4127                 if let Def::Trait(_) = binding.def() {
4128                     collected_traits.push((name, binding));
4129                 }
4130             });
4131             *traits = Some(collected_traits.into_boxed_slice());
4132         }
4133
4134         for &(trait_name, binding) in traits.as_ref().unwrap().iter() {
4135             let module = binding.module().unwrap();
4136             let mut ident = ident;
4137             if ident.span.glob_adjust(module.expansion, binding.span.ctxt().modern()).is_none() {
4138                 continue
4139             }
4140             if self.resolve_ident_in_module_unadjusted(module, ident, ns, false, false, module.span)
4141                    .is_ok() {
4142                 let import_id = match binding.kind {
4143                     NameBindingKind::Import { directive, .. } => {
4144                         self.maybe_unused_trait_imports.insert(directive.id);
4145                         self.add_to_glob_map(directive.id, trait_name);
4146                         Some(directive.id)
4147                     }
4148                     _ => None,
4149                 };
4150                 let trait_def_id = module.def_id().unwrap();
4151                 found_traits.push(TraitCandidate { def_id: trait_def_id, import_id: import_id });
4152             }
4153         }
4154     }
4155
4156     /// When name resolution fails, this method can be used to look up candidate
4157     /// entities with the expected name. It allows filtering them using the
4158     /// supplied predicate (which should be used to only accept the types of
4159     /// definitions expected e.g. traits). The lookup spans across all crates.
4160     ///
4161     /// NOTE: The method does not look into imports, but this is not a problem,
4162     /// since we report the definitions (thus, the de-aliased imports).
4163     fn lookup_import_candidates<FilterFn>(&mut self,
4164                                           lookup_name: Name,
4165                                           namespace: Namespace,
4166                                           filter_fn: FilterFn)
4167                                           -> Vec<ImportSuggestion>
4168         where FilterFn: Fn(Def) -> bool
4169     {
4170         let mut candidates = Vec::new();
4171         let mut worklist = Vec::new();
4172         let mut seen_modules = FxHashSet();
4173         worklist.push((self.graph_root, Vec::new(), false));
4174
4175         while let Some((in_module,
4176                         path_segments,
4177                         in_module_is_extern)) = worklist.pop() {
4178             self.populate_module_if_necessary(in_module);
4179
4180             // We have to visit module children in deterministic order to avoid
4181             // instabilities in reported imports (#43552).
4182             in_module.for_each_child_stable(|ident, ns, name_binding| {
4183                 // avoid imports entirely
4184                 if name_binding.is_import() && !name_binding.is_extern_crate() { return; }
4185                 // avoid non-importable candidates as well
4186                 if !name_binding.is_importable() { return; }
4187
4188                 // collect results based on the filter function
4189                 if ident.name == lookup_name && ns == namespace {
4190                     if filter_fn(name_binding.def()) {
4191                         // create the path
4192                         let mut segms = if self.session.rust_2018() && !in_module_is_extern {
4193                             // crate-local absolute paths start with `crate::` in edition 2018
4194                             // FIXME: may also be stabilized for Rust 2015 (Issues #45477, #44660)
4195                             let mut full_segms = vec![
4196                                 ast::PathSegment::from_ident(keywords::Crate.ident())
4197                             ];
4198                             full_segms.extend(path_segments.clone());
4199                             full_segms
4200                         } else {
4201                             path_segments.clone()
4202                         };
4203
4204                         segms.push(ast::PathSegment::from_ident(ident));
4205                         let path = Path {
4206                             span: name_binding.span,
4207                             segments: segms,
4208                         };
4209                         // the entity is accessible in the following cases:
4210                         // 1. if it's defined in the same crate, it's always
4211                         // accessible (since private entities can be made public)
4212                         // 2. if it's defined in another crate, it's accessible
4213                         // only if both the module is public and the entity is
4214                         // declared as public (due to pruning, we don't explore
4215                         // outside crate private modules => no need to check this)
4216                         if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
4217                             candidates.push(ImportSuggestion { path: path });
4218                         }
4219                     }
4220                 }
4221
4222                 // collect submodules to explore
4223                 if let Some(module) = name_binding.module() {
4224                     // form the path
4225                     let mut path_segments = path_segments.clone();
4226                     path_segments.push(ast::PathSegment::from_ident(ident));
4227
4228                     if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
4229                         // add the module to the lookup
4230                         let is_extern = in_module_is_extern || name_binding.is_extern_crate();
4231                         if seen_modules.insert(module.def_id().unwrap()) {
4232                             worklist.push((module, path_segments, is_extern));
4233                         }
4234                     }
4235                 }
4236             })
4237         }
4238
4239         candidates
4240     }
4241
4242     fn find_module(&mut self,
4243                    module_def: Def)
4244                    -> Option<(Module<'a>, ImportSuggestion)>
4245     {
4246         let mut result = None;
4247         let mut worklist = Vec::new();
4248         let mut seen_modules = FxHashSet();
4249         worklist.push((self.graph_root, Vec::new()));
4250
4251         while let Some((in_module, path_segments)) = worklist.pop() {
4252             // abort if the module is already found
4253             if let Some(_) = result { break; }
4254
4255             self.populate_module_if_necessary(in_module);
4256
4257             in_module.for_each_child_stable(|ident, _, name_binding| {
4258                 // abort if the module is already found or if name_binding is private external
4259                 if result.is_some() || !name_binding.vis.is_visible_locally() {
4260                     return
4261                 }
4262                 if let Some(module) = name_binding.module() {
4263                     // form the path
4264                     let mut path_segments = path_segments.clone();
4265                     path_segments.push(ast::PathSegment::from_ident(ident));
4266                     if module.def() == Some(module_def) {
4267                         let path = Path {
4268                             span: name_binding.span,
4269                             segments: path_segments,
4270                         };
4271                         result = Some((module, ImportSuggestion { path: path }));
4272                     } else {
4273                         // add the module to the lookup
4274                         if seen_modules.insert(module.def_id().unwrap()) {
4275                             worklist.push((module, path_segments));
4276                         }
4277                     }
4278                 }
4279             });
4280         }
4281
4282         result
4283     }
4284
4285     fn collect_enum_variants(&mut self, enum_def: Def) -> Option<Vec<Path>> {
4286         if let Def::Enum(..) = enum_def {} else {
4287             panic!("Non-enum def passed to collect_enum_variants: {:?}", enum_def)
4288         }
4289
4290         self.find_module(enum_def).map(|(enum_module, enum_import_suggestion)| {
4291             self.populate_module_if_necessary(enum_module);
4292
4293             let mut variants = Vec::new();
4294             enum_module.for_each_child_stable(|ident, _, name_binding| {
4295                 if let Def::Variant(..) = name_binding.def() {
4296                     let mut segms = enum_import_suggestion.path.segments.clone();
4297                     segms.push(ast::PathSegment::from_ident(ident));
4298                     variants.push(Path {
4299                         span: name_binding.span,
4300                         segments: segms,
4301                     });
4302                 }
4303             });
4304             variants
4305         })
4306     }
4307
4308     fn record_def(&mut self, node_id: NodeId, resolution: PathResolution) {
4309         debug!("(recording def) recording {:?} for {}", resolution, node_id);
4310         if let Some(prev_res) = self.def_map.insert(node_id, resolution) {
4311             panic!("path resolved multiple times ({:?} before, {:?} now)", prev_res, resolution);
4312         }
4313     }
4314
4315     fn resolve_visibility(&mut self, vis: &ast::Visibility) -> ty::Visibility {
4316         match vis.node {
4317             ast::VisibilityKind::Public => ty::Visibility::Public,
4318             ast::VisibilityKind::Crate(..) => {
4319                 ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX))
4320             }
4321             ast::VisibilityKind::Inherited => {
4322                 ty::Visibility::Restricted(self.current_module.normal_ancestor_id)
4323             }
4324             ast::VisibilityKind::Restricted { ref path, id, .. } => {
4325                 // Visibilities are resolved as global by default, add starting root segment.
4326                 let segments = path.make_root().iter().chain(path.segments.iter())
4327                     .map(|seg| seg.ident)
4328                     .collect::<Vec<_>>();
4329                 let def = self.smart_resolve_path_fragment(
4330                     id,
4331                     None,
4332                     &segments,
4333                     path.span,
4334                     PathSource::Visibility,
4335                     CrateLint::SimplePath(id),
4336                 ).base_def();
4337                 if def == Def::Err {
4338                     ty::Visibility::Public
4339                 } else {
4340                     let vis = ty::Visibility::Restricted(def.def_id());
4341                     if self.is_accessible(vis) {
4342                         vis
4343                     } else {
4344                         self.session.span_err(path.span, "visibilities can only be restricted \
4345                                                           to ancestor modules");
4346                         ty::Visibility::Public
4347                     }
4348                 }
4349             }
4350         }
4351     }
4352
4353     fn is_accessible(&self, vis: ty::Visibility) -> bool {
4354         vis.is_accessible_from(self.current_module.normal_ancestor_id, self)
4355     }
4356
4357     fn is_accessible_from(&self, vis: ty::Visibility, module: Module<'a>) -> bool {
4358         vis.is_accessible_from(module.normal_ancestor_id, self)
4359     }
4360
4361     fn report_errors(&mut self, krate: &Crate) {
4362         self.report_shadowing_errors();
4363         self.report_with_use_injections(krate);
4364         self.report_proc_macro_import(krate);
4365         let mut reported_spans = FxHashSet();
4366
4367         for &AmbiguityError { span, name, b1, b2, lexical } in &self.ambiguity_errors {
4368             if !reported_spans.insert(span) { continue }
4369             let participle = |binding: &NameBinding| {
4370                 if binding.is_import() { "imported" } else { "defined" }
4371             };
4372             let msg1 = format!("`{}` could refer to the name {} here", name, participle(b1));
4373             let msg2 = format!("`{}` could also refer to the name {} here", name, participle(b2));
4374             let note = if b1.expansion == Mark::root() || !lexical && b1.is_glob_import() {
4375                 format!("consider adding an explicit import of `{}` to disambiguate", name)
4376             } else if let Def::Macro(..) = b1.def() {
4377                 format!("macro-expanded {} do not shadow",
4378                         if b1.is_import() { "macro imports" } else { "macros" })
4379             } else {
4380                 format!("macro-expanded {} do not shadow when used in a macro invocation path",
4381                         if b1.is_import() { "imports" } else { "items" })
4382             };
4383
4384             let mut err = struct_span_err!(self.session, span, E0659, "`{}` is ambiguous", name);
4385             err.span_note(b1.span, &msg1);
4386             match b2.def() {
4387                 Def::Macro(..) if b2.span.is_dummy() =>
4388                     err.note(&format!("`{}` is also a builtin macro", name)),
4389                 _ => err.span_note(b2.span, &msg2),
4390             };
4391             err.note(&note).emit();
4392         }
4393
4394         for &PrivacyError(span, name, binding) in &self.privacy_errors {
4395             if !reported_spans.insert(span) { continue }
4396             span_err!(self.session, span, E0603, "{} `{}` is private", binding.descr(), name);
4397         }
4398     }
4399
4400     fn report_with_use_injections(&mut self, krate: &Crate) {
4401         for UseError { mut err, candidates, node_id, better } in self.use_injections.drain(..) {
4402             let (span, found_use) = UsePlacementFinder::check(krate, node_id);
4403             if !candidates.is_empty() {
4404                 show_candidates(&mut err, span, &candidates, better, found_use);
4405             }
4406             err.emit();
4407         }
4408     }
4409
4410     fn report_shadowing_errors(&mut self) {
4411         for (ident, scope) in replace(&mut self.lexical_macro_resolutions, Vec::new()) {
4412             self.resolve_legacy_scope(scope, ident, true);
4413         }
4414
4415         let mut reported_errors = FxHashSet();
4416         for binding in replace(&mut self.disallowed_shadowing, Vec::new()) {
4417             if self.resolve_legacy_scope(&binding.parent, binding.ident, false).is_some() &&
4418                reported_errors.insert((binding.ident, binding.span)) {
4419                 let msg = format!("`{}` is already in scope", binding.ident);
4420                 self.session.struct_span_err(binding.span, &msg)
4421                     .note("macro-expanded `macro_rules!`s may not shadow \
4422                            existing macros (see RFC 1560)")
4423                     .emit();
4424             }
4425         }
4426     }
4427
4428     fn report_conflict<'b>(&mut self,
4429                        parent: Module,
4430                        ident: Ident,
4431                        ns: Namespace,
4432                        new_binding: &NameBinding<'b>,
4433                        old_binding: &NameBinding<'b>) {
4434         // Error on the second of two conflicting names
4435         if old_binding.span.lo() > new_binding.span.lo() {
4436             return self.report_conflict(parent, ident, ns, old_binding, new_binding);
4437         }
4438
4439         let container = match parent.kind {
4440             ModuleKind::Def(Def::Mod(_), _) => "module",
4441             ModuleKind::Def(Def::Trait(_), _) => "trait",
4442             ModuleKind::Block(..) => "block",
4443             _ => "enum",
4444         };
4445
4446         let old_noun = match old_binding.is_import() {
4447             true => "import",
4448             false => "definition",
4449         };
4450
4451         let new_participle = match new_binding.is_import() {
4452             true => "imported",
4453             false => "defined",
4454         };
4455
4456         let (name, span) = (ident.name, self.session.codemap().def_span(new_binding.span));
4457
4458         if let Some(s) = self.name_already_seen.get(&name) {
4459             if s == &span {
4460                 return;
4461             }
4462         }
4463
4464         let old_kind = match (ns, old_binding.module()) {
4465             (ValueNS, _) => "value",
4466             (MacroNS, _) => "macro",
4467             (TypeNS, _) if old_binding.is_extern_crate() => "extern crate",
4468             (TypeNS, Some(module)) if module.is_normal() => "module",
4469             (TypeNS, Some(module)) if module.is_trait() => "trait",
4470             (TypeNS, _) => "type",
4471         };
4472
4473         let msg = format!("the name `{}` is defined multiple times", name);
4474
4475         let mut err = match (old_binding.is_extern_crate(), new_binding.is_extern_crate()) {
4476             (true, true) => struct_span_err!(self.session, span, E0259, "{}", msg),
4477             (true, _) | (_, true) => match new_binding.is_import() && old_binding.is_import() {
4478                 true => struct_span_err!(self.session, span, E0254, "{}", msg),
4479                 false => struct_span_err!(self.session, span, E0260, "{}", msg),
4480             },
4481             _ => match (old_binding.is_import(), new_binding.is_import()) {
4482                 (false, false) => struct_span_err!(self.session, span, E0428, "{}", msg),
4483                 (true, true) => struct_span_err!(self.session, span, E0252, "{}", msg),
4484                 _ => struct_span_err!(self.session, span, E0255, "{}", msg),
4485             },
4486         };
4487
4488         err.note(&format!("`{}` must be defined only once in the {} namespace of this {}",
4489                           name,
4490                           ns.descr(),
4491                           container));
4492
4493         err.span_label(span, format!("`{}` re{} here", name, new_participle));
4494         if !old_binding.span.is_dummy() {
4495             err.span_label(self.session.codemap().def_span(old_binding.span),
4496                            format!("previous {} of the {} `{}` here", old_noun, old_kind, name));
4497         }
4498
4499         // See https://github.com/rust-lang/rust/issues/32354
4500         if old_binding.is_import() || new_binding.is_import() {
4501             let binding = if new_binding.is_import() && !new_binding.span.is_dummy() {
4502                 new_binding
4503             } else {
4504                 old_binding
4505             };
4506
4507             let cm = self.session.codemap();
4508             let rename_msg = "You can use `as` to change the binding name of the import";
4509
4510             if let (Ok(snippet), false) = (cm.span_to_snippet(binding.span),
4511                                            binding.is_renamed_extern_crate()) {
4512                 let suggested_name = if name.as_str().chars().next().unwrap().is_uppercase() {
4513                     format!("Other{}", name)
4514                 } else {
4515                     format!("other_{}", name)
4516                 };
4517
4518                 err.span_suggestion(binding.span,
4519                                     rename_msg,
4520                                     if snippet.ends_with(';') {
4521                                         format!("{} as {};",
4522                                                 &snippet[..snippet.len()-1],
4523                                                 suggested_name)
4524                                     } else {
4525                                         format!("{} as {}", snippet, suggested_name)
4526                                     });
4527             } else {
4528                 err.span_label(binding.span, rename_msg);
4529             }
4530         }
4531
4532         err.emit();
4533         self.name_already_seen.insert(name, span);
4534     }
4535
4536     fn check_proc_macro_attrs(&mut self, attrs: &[ast::Attribute]) {
4537         if self.use_extern_macros { return; }
4538
4539         for attr in attrs {
4540             if attr.path.segments.len() > 1 {
4541                 continue
4542             }
4543             let ident = attr.path.segments[0].ident;
4544             let result = self.resolve_lexical_macro_path_segment(ident,
4545                                                                  MacroNS,
4546                                                                  false,
4547                                                                  attr.path.span);
4548             if let Ok(binding) = result {
4549                 if let SyntaxExtension::AttrProcMacro(..) = *binding.binding().get_macro(self) {
4550                     attr::mark_known(attr);
4551
4552                     let msg = "attribute procedural macros are experimental";
4553                     let feature = "use_extern_macros";
4554
4555                     feature_err(&self.session.parse_sess, feature,
4556                                 attr.span, GateIssue::Language, msg)
4557                         .span_label(binding.span(), "procedural macro imported here")
4558                         .emit();
4559                 }
4560             }
4561         }
4562     }
4563 }
4564
4565 fn is_self_type(path: &[Ident], namespace: Namespace) -> bool {
4566     namespace == TypeNS && path.len() == 1 && path[0].name == keywords::SelfType.name()
4567 }
4568
4569 fn is_self_value(path: &[Ident], namespace: Namespace) -> bool {
4570     namespace == ValueNS && path.len() == 1 && path[0].name == keywords::SelfValue.name()
4571 }
4572
4573 fn names_to_string(idents: &[Ident]) -> String {
4574     let mut result = String::new();
4575     for (i, ident) in idents.iter()
4576                             .filter(|ident| ident.name != keywords::CrateRoot.name())
4577                             .enumerate() {
4578         if i > 0 {
4579             result.push_str("::");
4580         }
4581         result.push_str(&ident.as_str());
4582     }
4583     result
4584 }
4585
4586 fn path_names_to_string(path: &Path) -> String {
4587     names_to_string(&path.segments.iter()
4588                         .map(|seg| seg.ident)
4589                         .collect::<Vec<_>>())
4590 }
4591
4592 /// Get the path for an enum and the variant from an `ImportSuggestion` for an enum variant.
4593 fn import_candidate_to_paths(suggestion: &ImportSuggestion) -> (Span, String, String) {
4594     let variant_path = &suggestion.path;
4595     let variant_path_string = path_names_to_string(variant_path);
4596
4597     let path_len = suggestion.path.segments.len();
4598     let enum_path = ast::Path {
4599         span: suggestion.path.span,
4600         segments: suggestion.path.segments[0..path_len - 1].to_vec(),
4601     };
4602     let enum_path_string = path_names_to_string(&enum_path);
4603
4604     (suggestion.path.span, variant_path_string, enum_path_string)
4605 }
4606
4607
4608 /// When an entity with a given name is not available in scope, we search for
4609 /// entities with that name in all crates. This method allows outputting the
4610 /// results of this search in a programmer-friendly way
4611 fn show_candidates(err: &mut DiagnosticBuilder,
4612                    // This is `None` if all placement locations are inside expansions
4613                    span: Option<Span>,
4614                    candidates: &[ImportSuggestion],
4615                    better: bool,
4616                    found_use: bool) {
4617
4618     // we want consistent results across executions, but candidates are produced
4619     // by iterating through a hash map, so make sure they are ordered:
4620     let mut path_strings: Vec<_> =
4621         candidates.into_iter().map(|c| path_names_to_string(&c.path)).collect();
4622     path_strings.sort();
4623
4624     let better = if better { "better " } else { "" };
4625     let msg_diff = match path_strings.len() {
4626         1 => " is found in another module, you can import it",
4627         _ => "s are found in other modules, you can import them",
4628     };
4629     let msg = format!("possible {}candidate{} into scope", better, msg_diff);
4630
4631     if let Some(span) = span {
4632         for candidate in &mut path_strings {
4633             // produce an additional newline to separate the new use statement
4634             // from the directly following item.
4635             let additional_newline = if found_use {
4636                 ""
4637             } else {
4638                 "\n"
4639             };
4640             *candidate = format!("use {};\n{}", candidate, additional_newline);
4641         }
4642
4643         err.span_suggestions(span, &msg, path_strings);
4644     } else {
4645         let mut msg = msg;
4646         msg.push(':');
4647         for candidate in path_strings {
4648             msg.push('\n');
4649             msg.push_str(&candidate);
4650         }
4651     }
4652 }
4653
4654 /// A somewhat inefficient routine to obtain the name of a module.
4655 fn module_to_string(module: Module) -> Option<String> {
4656     let mut names = Vec::new();
4657
4658     fn collect_mod(names: &mut Vec<Ident>, module: Module) {
4659         if let ModuleKind::Def(_, name) = module.kind {
4660             if let Some(parent) = module.parent {
4661                 names.push(Ident::with_empty_ctxt(name));
4662                 collect_mod(names, parent);
4663             }
4664         } else {
4665             // danger, shouldn't be ident?
4666             names.push(Ident::from_str("<opaque>"));
4667             collect_mod(names, module.parent.unwrap());
4668         }
4669     }
4670     collect_mod(&mut names, module);
4671
4672     if names.is_empty() {
4673         return None;
4674     }
4675     Some(names_to_string(&names.into_iter()
4676                         .rev()
4677                         .collect::<Vec<_>>()))
4678 }
4679
4680 fn err_path_resolution() -> PathResolution {
4681     PathResolution::new(Def::Err)
4682 }
4683
4684 #[derive(PartialEq,Copy, Clone)]
4685 pub enum MakeGlobMap {
4686     Yes,
4687     No,
4688 }
4689
4690 #[derive(Copy, Clone, Debug)]
4691 enum CrateLint {
4692     /// Do not issue the lint
4693     No,
4694
4695     /// This lint applies to some random path like `impl ::foo::Bar`
4696     /// or whatever. In this case, we can take the span of that path.
4697     SimplePath(NodeId),
4698
4699     /// This lint comes from a `use` statement. In this case, what we
4700     /// care about really is the *root* `use` statement; e.g., if we
4701     /// have nested things like `use a::{b, c}`, we care about the
4702     /// `use a` part.
4703     UsePath { root_id: NodeId, root_span: Span },
4704
4705     /// This is the "trait item" from a fully qualified path. For example,
4706     /// we might be resolving  `X::Y::Z` from a path like `<T as X::Y>::Z`.
4707     /// The `path_span` is the span of the to the trait itself (`X::Y`).
4708     QPathTrait { qpath_id: NodeId, qpath_span: Span },
4709 }
4710
4711 impl CrateLint {
4712     fn node_id(&self) -> Option<NodeId> {
4713         match *self {
4714             CrateLint::No => None,
4715             CrateLint::SimplePath(id) |
4716             CrateLint::UsePath { root_id: id, .. } |
4717             CrateLint::QPathTrait { qpath_id: id, .. } => Some(id),
4718         }
4719     }
4720 }
4721
4722 __build_diagnostic_array! { librustc_resolve, DIAGNOSTICS }