]> git.lizzy.rs Git - rust.git/blob - src/librustc_resolve/lib.rs
Add `modernize_and_adjust` methods.
[rust.git] / src / librustc_resolve / lib.rs
1 // ignore-tidy-filelength
2
3 #![doc(html_root_url = "https://doc.rust-lang.org/nightly/")]
4
5 #![feature(crate_visibility_modifier)]
6 #![feature(label_break_value)]
7 #![feature(nll)]
8 #![feature(rustc_diagnostic_macros)]
9 #![feature(type_alias_enum_variants)]
10
11 #![recursion_limit="256"]
12
13 #![deny(rust_2018_idioms)]
14 #![deny(internal)]
15
16 pub use rustc::hir::def::{Namespace, PerNS};
17
18 use GenericParameters::*;
19 use RibKind::*;
20 use smallvec::smallvec;
21
22 use rustc::hir::map::{Definitions, DefCollector};
23 use rustc::hir::{self, PrimTy, Bool, Char, Float, Int, Uint, Str};
24 use rustc::middle::cstore::CrateStore;
25 use rustc::session::Session;
26 use rustc::lint;
27 use rustc::hir::def::{
28     self, DefKind, PartialRes, CtorKind, CtorOf, NonMacroAttrKind, ExportMap
29 };
30 use rustc::hir::def::Namespace::*;
31 use rustc::hir::def_id::{CRATE_DEF_INDEX, LOCAL_CRATE, DefId};
32 use rustc::hir::{TraitCandidate, TraitMap, GlobMap};
33 use rustc::ty::{self, DefIdTree};
34 use rustc::util::nodemap::{NodeMap, NodeSet, FxHashMap, FxHashSet, DefIdMap};
35 use rustc::{bug, span_bug};
36
37 use rustc_metadata::creader::CrateLoader;
38 use rustc_metadata::cstore::CStore;
39
40 use syntax::source_map::SourceMap;
41 use syntax::ext::hygiene::{Mark, Transparency, SyntaxContext};
42 use syntax::ast::{self, Name, NodeId, Ident, FloatTy, IntTy, UintTy};
43 use syntax::ext::base::SyntaxExtension;
44 use syntax::ext::base::Determinacy::{self, Determined, Undetermined};
45 use syntax::ext::base::MacroKind;
46 use syntax::symbol::{Symbol, kw, sym};
47 use syntax::util::lev_distance::find_best_match_for_name;
48
49 use syntax::visit::{self, FnKind, Visitor};
50 use syntax::attr;
51 use syntax::ast::{CRATE_NODE_ID, Arm, IsAsync, BindingMode, Block, Crate, Expr, ExprKind};
52 use syntax::ast::{FnDecl, ForeignItem, ForeignItemKind, GenericParamKind, Generics};
53 use syntax::ast::{Item, ItemKind, ImplItem, ImplItemKind};
54 use syntax::ast::{Label, Local, Mutability, Pat, PatKind, Path};
55 use syntax::ast::{QSelf, TraitItemKind, TraitRef, Ty, TyKind};
56 use syntax::ptr::P;
57 use syntax::{span_err, struct_span_err, unwrap_or, walk_list};
58
59 use syntax_pos::{Span, DUMMY_SP, MultiSpan};
60 use errors::{Applicability, DiagnosticBuilder, DiagnosticId};
61
62 use log::debug;
63
64 use std::cell::{Cell, RefCell};
65 use std::{cmp, fmt, iter, mem, ptr};
66 use std::collections::BTreeSet;
67 use std::mem::replace;
68 use rustc_data_structures::ptr_key::PtrKey;
69 use rustc_data_structures::sync::Lrc;
70 use smallvec::SmallVec;
71
72 use diagnostics::{find_span_of_binding_until_next_binding, extend_span_to_previous_binding};
73 use resolve_imports::{ImportDirective, ImportDirectiveSubclass, NameResolution, ImportResolver};
74 use macros::{InvocationData, LegacyBinding, ParentScope};
75
76 type Res = def::Res<NodeId>;
77
78 // N.B., this module needs to be declared first so diagnostics are
79 // registered before they are used.
80 mod error_codes;
81 mod diagnostics;
82 mod macros;
83 mod check_unused;
84 mod build_reduced_graph;
85 mod resolve_imports;
86
87 fn is_known_tool(name: Name) -> bool {
88     ["clippy", "rustfmt"].contains(&&*name.as_str())
89 }
90
91 enum Weak {
92     Yes,
93     No,
94 }
95
96 enum ScopeSet {
97     Import(Namespace),
98     AbsolutePath(Namespace),
99     Macro(MacroKind),
100     Module,
101 }
102
103 /// A free importable items suggested in case of resolution failure.
104 struct ImportSuggestion {
105     did: Option<DefId>,
106     path: Path,
107 }
108
109 /// A field or associated item from self type suggested in case of resolution failure.
110 enum AssocSuggestion {
111     Field,
112     MethodWithSelf,
113     AssocItem,
114 }
115
116 #[derive(Eq)]
117 struct BindingError {
118     name: Name,
119     origin: BTreeSet<Span>,
120     target: BTreeSet<Span>,
121 }
122
123 struct TypoSuggestion {
124     candidate: Symbol,
125
126     /// The kind of the binding ("crate", "module", etc.)
127     kind: &'static str,
128
129     /// An appropriate article to refer to the binding ("a", "an", etc.)
130     article: &'static str,
131 }
132
133 impl PartialOrd for BindingError {
134     fn partial_cmp(&self, other: &BindingError) -> Option<cmp::Ordering> {
135         Some(self.cmp(other))
136     }
137 }
138
139 impl PartialEq for BindingError {
140     fn eq(&self, other: &BindingError) -> bool {
141         self.name == other.name
142     }
143 }
144
145 impl Ord for BindingError {
146     fn cmp(&self, other: &BindingError) -> cmp::Ordering {
147         self.name.cmp(&other.name)
148     }
149 }
150
151 /// A vector of spans and replacements, a message and applicability.
152 type Suggestion = (Vec<(Span, String)>, String, Applicability);
153
154 enum ResolutionError<'a> {
155     /// Error E0401: can't use type or const parameters from outer function.
156     GenericParamsFromOuterFunction(Res),
157     /// Error E0403: the name is already used for a type or const parameter in this generic
158     /// parameter list.
159     NameAlreadyUsedInParameterList(Name, &'a Span),
160     /// Error E0407: method is not a member of trait.
161     MethodNotMemberOfTrait(Name, &'a str),
162     /// Error E0437: type is not a member of trait.
163     TypeNotMemberOfTrait(Name, &'a str),
164     /// Error E0438: const is not a member of trait.
165     ConstNotMemberOfTrait(Name, &'a str),
166     /// Error E0408: variable `{}` is not bound in all patterns.
167     VariableNotBoundInPattern(&'a BindingError),
168     /// Error E0409: variable `{}` is bound in inconsistent ways within the same match arm.
169     VariableBoundWithDifferentMode(Name, Span),
170     /// Error E0415: identifier is bound more than once in this parameter list.
171     IdentifierBoundMoreThanOnceInParameterList(&'a str),
172     /// Error E0416: identifier is bound more than once in the same pattern.
173     IdentifierBoundMoreThanOnceInSamePattern(&'a str),
174     /// Error E0426: use of undeclared label.
175     UndeclaredLabel(&'a str, Option<Name>),
176     /// Error E0429: `self` imports are only allowed within a `{ }` list.
177     SelfImportsOnlyAllowedWithin,
178     /// Error E0430: `self` import can only appear once in the list.
179     SelfImportCanOnlyAppearOnceInTheList,
180     /// Error E0431: `self` import can only appear in an import list with a non-empty prefix.
181     SelfImportOnlyInImportListWithNonEmptyPrefix,
182     /// Error E0433: failed to resolve.
183     FailedToResolve { label: String, suggestion: Option<Suggestion> },
184     /// Error E0434: can't capture dynamic environment in a fn item.
185     CannotCaptureDynamicEnvironmentInFnItem,
186     /// Error E0435: attempt to use a non-constant value in a constant.
187     AttemptToUseNonConstantValueInConstant,
188     /// Error E0530: `X` bindings cannot shadow `Y`s.
189     BindingShadowsSomethingUnacceptable(&'a str, Name, &'a NameBinding<'a>),
190     /// Error E0128: type parameters with a default cannot use forward-declared identifiers.
191     ForwardDeclaredTyParam, // FIXME(const_generics:defaults)
192     /// Error E0671: const parameter cannot depend on type parameter.
193     ConstParamDependentOnTypeParam,
194 }
195
196 /// Combines an error with provided span and emits it.
197 ///
198 /// This takes the error provided, combines it with the span and any additional spans inside the
199 /// error and emits it.
200 fn resolve_error<'sess, 'a>(resolver: &'sess Resolver<'_>,
201                             span: Span,
202                             resolution_error: ResolutionError<'a>) {
203     resolve_struct_error(resolver, span, resolution_error).emit();
204 }
205
206 fn resolve_struct_error<'sess, 'a>(resolver: &'sess Resolver<'_>,
207                                    span: Span,
208                                    resolution_error: ResolutionError<'a>)
209                                    -> DiagnosticBuilder<'sess> {
210     match resolution_error {
211         ResolutionError::GenericParamsFromOuterFunction(outer_res) => {
212             let mut err = struct_span_err!(resolver.session,
213                 span,
214                 E0401,
215                 "can't use generic parameters from outer function",
216             );
217             err.span_label(span, format!("use of generic parameter from outer function"));
218
219             let cm = resolver.session.source_map();
220             match outer_res {
221                 Res::SelfTy(maybe_trait_defid, maybe_impl_defid) => {
222                     if let Some(impl_span) = maybe_impl_defid.and_then(|def_id| {
223                         resolver.definitions.opt_span(def_id)
224                     }) {
225                         err.span_label(
226                             reduce_impl_span_to_impl_keyword(cm, impl_span),
227                             "`Self` type implicitly declared here, by this `impl`",
228                         );
229                     }
230                     match (maybe_trait_defid, maybe_impl_defid) {
231                         (Some(_), None) => {
232                             err.span_label(span, "can't use `Self` here");
233                         }
234                         (_, Some(_)) => {
235                             err.span_label(span, "use a type here instead");
236                         }
237                         (None, None) => bug!("`impl` without trait nor type?"),
238                     }
239                     return err;
240                 },
241                 Res::Def(DefKind::TyParam, def_id) => {
242                     if let Some(span) = resolver.definitions.opt_span(def_id) {
243                         err.span_label(span, "type parameter from outer function");
244                     }
245                 }
246                 Res::Def(DefKind::ConstParam, def_id) => {
247                     if let Some(span) = resolver.definitions.opt_span(def_id) {
248                         err.span_label(span, "const parameter from outer function");
249                     }
250                 }
251                 _ => {
252                     bug!("GenericParamsFromOuterFunction should only be used with Res::SelfTy, \
253                          DefKind::TyParam");
254                 }
255             }
256
257             // Try to retrieve the span of the function signature and generate a new message with
258             // a local type or const parameter.
259             let sugg_msg = &format!("try using a local generic parameter instead");
260             if let Some((sugg_span, new_snippet)) = cm.generate_local_type_param_snippet(span) {
261                 // Suggest the modification to the user
262                 err.span_suggestion(
263                     sugg_span,
264                     sugg_msg,
265                     new_snippet,
266                     Applicability::MachineApplicable,
267                 );
268             } else if let Some(sp) = cm.generate_fn_name_span(span) {
269                 err.span_label(sp,
270                     format!("try adding a local generic parameter in this method instead"));
271             } else {
272                 err.help(&format!("try using a local generic parameter instead"));
273             }
274
275             err
276         }
277         ResolutionError::NameAlreadyUsedInParameterList(name, first_use_span) => {
278              let mut err = struct_span_err!(resolver.session,
279                                             span,
280                                             E0403,
281                                             "the name `{}` is already used for a generic \
282                                             parameter in this list of generic parameters",
283                                             name);
284              err.span_label(span, "already used");
285              err.span_label(first_use_span.clone(), format!("first use of `{}`", name));
286              err
287         }
288         ResolutionError::MethodNotMemberOfTrait(method, trait_) => {
289             let mut err = struct_span_err!(resolver.session,
290                                            span,
291                                            E0407,
292                                            "method `{}` is not a member of trait `{}`",
293                                            method,
294                                            trait_);
295             err.span_label(span, format!("not a member of trait `{}`", trait_));
296             err
297         }
298         ResolutionError::TypeNotMemberOfTrait(type_, trait_) => {
299             let mut err = struct_span_err!(resolver.session,
300                              span,
301                              E0437,
302                              "type `{}` is not a member of trait `{}`",
303                              type_,
304                              trait_);
305             err.span_label(span, format!("not a member of trait `{}`", trait_));
306             err
307         }
308         ResolutionError::ConstNotMemberOfTrait(const_, trait_) => {
309             let mut err = struct_span_err!(resolver.session,
310                              span,
311                              E0438,
312                              "const `{}` is not a member of trait `{}`",
313                              const_,
314                              trait_);
315             err.span_label(span, format!("not a member of trait `{}`", trait_));
316             err
317         }
318         ResolutionError::VariableNotBoundInPattern(binding_error) => {
319             let target_sp = binding_error.target.iter().cloned().collect::<Vec<_>>();
320             let msp = MultiSpan::from_spans(target_sp.clone());
321             let msg = format!("variable `{}` is not bound in all patterns", binding_error.name);
322             let mut err = resolver.session.struct_span_err_with_code(
323                 msp,
324                 &msg,
325                 DiagnosticId::Error("E0408".into()),
326             );
327             for sp in target_sp {
328                 err.span_label(sp, format!("pattern doesn't bind `{}`", binding_error.name));
329             }
330             let origin_sp = binding_error.origin.iter().cloned();
331             for sp in origin_sp {
332                 err.span_label(sp, "variable not in all patterns");
333             }
334             err
335         }
336         ResolutionError::VariableBoundWithDifferentMode(variable_name,
337                                                         first_binding_span) => {
338             let mut err = struct_span_err!(resolver.session,
339                              span,
340                              E0409,
341                              "variable `{}` is bound in inconsistent \
342                              ways within the same match arm",
343                              variable_name);
344             err.span_label(span, "bound in different ways");
345             err.span_label(first_binding_span, "first binding");
346             err
347         }
348         ResolutionError::IdentifierBoundMoreThanOnceInParameterList(identifier) => {
349             let mut err = struct_span_err!(resolver.session,
350                              span,
351                              E0415,
352                              "identifier `{}` is bound more than once in this parameter list",
353                              identifier);
354             err.span_label(span, "used as parameter more than once");
355             err
356         }
357         ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(identifier) => {
358             let mut err = struct_span_err!(resolver.session,
359                              span,
360                              E0416,
361                              "identifier `{}` is bound more than once in the same pattern",
362                              identifier);
363             err.span_label(span, "used in a pattern more than once");
364             err
365         }
366         ResolutionError::UndeclaredLabel(name, lev_candidate) => {
367             let mut err = struct_span_err!(resolver.session,
368                                            span,
369                                            E0426,
370                                            "use of undeclared label `{}`",
371                                            name);
372             if let Some(lev_candidate) = lev_candidate {
373                 err.span_suggestion(
374                     span,
375                     "a label with a similar name exists in this scope",
376                     lev_candidate.to_string(),
377                     Applicability::MaybeIncorrect,
378                 );
379             } else {
380                 err.span_label(span, format!("undeclared label `{}`", name));
381             }
382             err
383         }
384         ResolutionError::SelfImportsOnlyAllowedWithin => {
385             struct_span_err!(resolver.session,
386                              span,
387                              E0429,
388                              "{}",
389                              "`self` imports are only allowed within a { } list")
390         }
391         ResolutionError::SelfImportCanOnlyAppearOnceInTheList => {
392             let mut err = struct_span_err!(resolver.session, span, E0430,
393                                            "`self` import can only appear once in an import list");
394             err.span_label(span, "can only appear once in an import list");
395             err
396         }
397         ResolutionError::SelfImportOnlyInImportListWithNonEmptyPrefix => {
398             let mut err = struct_span_err!(resolver.session, span, E0431,
399                                            "`self` import can only appear in an import list with \
400                                             a non-empty prefix");
401             err.span_label(span, "can only appear in an import list with a non-empty prefix");
402             err
403         }
404         ResolutionError::FailedToResolve { label, suggestion } => {
405             let mut err = struct_span_err!(resolver.session, span, E0433,
406                                            "failed to resolve: {}", &label);
407             err.span_label(span, label);
408
409             if let Some((suggestions, msg, applicability)) = suggestion {
410                 err.multipart_suggestion(&msg, suggestions, applicability);
411             }
412
413             err
414         }
415         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem => {
416             let mut err = struct_span_err!(resolver.session,
417                                            span,
418                                            E0434,
419                                            "{}",
420                                            "can't capture dynamic environment in a fn item");
421             err.help("use the `|| { ... }` closure form instead");
422             err
423         }
424         ResolutionError::AttemptToUseNonConstantValueInConstant => {
425             let mut err = struct_span_err!(resolver.session, span, E0435,
426                                            "attempt to use a non-constant value in a constant");
427             err.span_label(span, "non-constant value");
428             err
429         }
430         ResolutionError::BindingShadowsSomethingUnacceptable(what_binding, name, binding) => {
431             let shadows_what = binding.descr();
432             let mut err = struct_span_err!(resolver.session, span, E0530, "{}s cannot shadow {}s",
433                                            what_binding, shadows_what);
434             err.span_label(span, format!("cannot be named the same as {} {}",
435                                          binding.article(), shadows_what));
436             let participle = if binding.is_import() { "imported" } else { "defined" };
437             let msg = format!("the {} `{}` is {} here", shadows_what, name, participle);
438             err.span_label(binding.span, msg);
439             err
440         }
441         ResolutionError::ForwardDeclaredTyParam => {
442             let mut err = struct_span_err!(resolver.session, span, E0128,
443                                            "type parameters with a default cannot use \
444                                             forward declared identifiers");
445             err.span_label(
446                 span, "defaulted type parameters cannot be forward declared".to_string());
447             err
448         }
449         ResolutionError::ConstParamDependentOnTypeParam => {
450             let mut err = struct_span_err!(
451                 resolver.session,
452                 span,
453                 E0671,
454                 "const parameters cannot depend on type parameters"
455             );
456             err.span_label(span, format!("const parameter depends on type parameter"));
457             err
458         }
459     }
460 }
461
462 /// Adjust the impl span so that just the `impl` keyword is taken by removing
463 /// everything after `<` (`"impl<T> Iterator for A<T> {}" -> "impl"`) and
464 /// everything after the first whitespace (`"impl Iterator for A" -> "impl"`).
465 ///
466 /// *Attention*: the method used is very fragile since it essentially duplicates the work of the
467 /// parser. If you need to use this function or something similar, please consider updating the
468 /// `source_map` functions and this function to something more robust.
469 fn reduce_impl_span_to_impl_keyword(cm: &SourceMap, impl_span: Span) -> Span {
470     let impl_span = cm.span_until_char(impl_span, '<');
471     let impl_span = cm.span_until_whitespace(impl_span);
472     impl_span
473 }
474
475 #[derive(Copy, Clone, Debug)]
476 struct BindingInfo {
477     span: Span,
478     binding_mode: BindingMode,
479 }
480
481 /// Map from the name in a pattern to its binding mode.
482 type BindingMap = FxHashMap<Ident, BindingInfo>;
483
484 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
485 enum PatternSource {
486     Match,
487     IfLet,
488     WhileLet,
489     Let,
490     For,
491     FnParam,
492 }
493
494 impl PatternSource {
495     fn descr(self) -> &'static str {
496         match self {
497             PatternSource::Match => "match binding",
498             PatternSource::IfLet => "if let binding",
499             PatternSource::WhileLet => "while let binding",
500             PatternSource::Let => "let binding",
501             PatternSource::For => "for binding",
502             PatternSource::FnParam => "function parameter",
503         }
504     }
505 }
506
507 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
508 enum AliasPossibility {
509     No,
510     Maybe,
511 }
512
513 #[derive(Copy, Clone, Debug)]
514 enum PathSource<'a> {
515     // Type paths `Path`.
516     Type,
517     // Trait paths in bounds or impls.
518     Trait(AliasPossibility),
519     // Expression paths `path`, with optional parent context.
520     Expr(Option<&'a Expr>),
521     // Paths in path patterns `Path`.
522     Pat,
523     // Paths in struct expressions and patterns `Path { .. }`.
524     Struct,
525     // Paths in tuple struct patterns `Path(..)`.
526     TupleStruct,
527     // `m::A::B` in `<T as m::A>::B::C`.
528     TraitItem(Namespace),
529     // Path in `pub(path)`
530     Visibility,
531 }
532
533 impl<'a> PathSource<'a> {
534     fn namespace(self) -> Namespace {
535         match self {
536             PathSource::Type | PathSource::Trait(_) | PathSource::Struct |
537             PathSource::Visibility => TypeNS,
538             PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct => ValueNS,
539             PathSource::TraitItem(ns) => ns,
540         }
541     }
542
543     fn global_by_default(self) -> bool {
544         match self {
545             PathSource::Visibility => true,
546             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
547             PathSource::Struct | PathSource::TupleStruct |
548             PathSource::Trait(_) | PathSource::TraitItem(..) => false,
549         }
550     }
551
552     fn defer_to_typeck(self) -> bool {
553         match self {
554             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
555             PathSource::Struct | PathSource::TupleStruct => true,
556             PathSource::Trait(_) | PathSource::TraitItem(..) |
557             PathSource::Visibility => false,
558         }
559     }
560
561     fn descr_expected(self) -> &'static str {
562         match self {
563             PathSource::Type => "type",
564             PathSource::Trait(_) => "trait",
565             PathSource::Pat => "unit struct/variant or constant",
566             PathSource::Struct => "struct, variant or union type",
567             PathSource::TupleStruct => "tuple struct/variant",
568             PathSource::Visibility => "module",
569             PathSource::TraitItem(ns) => match ns {
570                 TypeNS => "associated type",
571                 ValueNS => "method or associated constant",
572                 MacroNS => bug!("associated macro"),
573             },
574             PathSource::Expr(parent) => match parent.map(|p| &p.node) {
575                 // "function" here means "anything callable" rather than `DefKind::Fn`,
576                 // this is not precise but usually more helpful than just "value".
577                 Some(&ExprKind::Call(..)) => "function",
578                 _ => "value",
579             },
580         }
581     }
582
583     fn is_expected(self, res: Res) -> bool {
584         match self {
585             PathSource::Type => match res {
586                 Res::Def(DefKind::Struct, _)
587                 | Res::Def(DefKind::Union, _)
588                 | Res::Def(DefKind::Enum, _)
589                 | Res::Def(DefKind::Trait, _)
590                 | Res::Def(DefKind::TraitAlias, _)
591                 | Res::Def(DefKind::TyAlias, _)
592                 | Res::Def(DefKind::AssocTy, _)
593                 | Res::PrimTy(..)
594                 | Res::Def(DefKind::TyParam, _)
595                 | Res::SelfTy(..)
596                 | Res::Def(DefKind::Existential, _)
597                 | Res::Def(DefKind::ForeignTy, _) => true,
598                 _ => false,
599             },
600             PathSource::Trait(AliasPossibility::No) => match res {
601                 Res::Def(DefKind::Trait, _) => true,
602                 _ => false,
603             },
604             PathSource::Trait(AliasPossibility::Maybe) => match res {
605                 Res::Def(DefKind::Trait, _) => true,
606                 Res::Def(DefKind::TraitAlias, _) => true,
607                 _ => false,
608             },
609             PathSource::Expr(..) => match res {
610                 Res::Def(DefKind::Ctor(_, CtorKind::Const), _)
611                 | Res::Def(DefKind::Ctor(_, CtorKind::Fn), _)
612                 | Res::Def(DefKind::Const, _)
613                 | Res::Def(DefKind::Static, _)
614                 | Res::Local(..)
615                 | Res::Def(DefKind::Fn, _)
616                 | Res::Def(DefKind::Method, _)
617                 | Res::Def(DefKind::AssocConst, _)
618                 | Res::SelfCtor(..)
619                 | Res::Def(DefKind::ConstParam, _) => true,
620                 _ => false,
621             },
622             PathSource::Pat => match res {
623                 Res::Def(DefKind::Ctor(_, CtorKind::Const), _) |
624                 Res::Def(DefKind::Const, _) | Res::Def(DefKind::AssocConst, _) |
625                 Res::SelfCtor(..) => true,
626                 _ => false,
627             },
628             PathSource::TupleStruct => match res {
629                 Res::Def(DefKind::Ctor(_, CtorKind::Fn), _) | Res::SelfCtor(..) => true,
630                 _ => false,
631             },
632             PathSource::Struct => match res {
633                 Res::Def(DefKind::Struct, _)
634                 | Res::Def(DefKind::Union, _)
635                 | Res::Def(DefKind::Variant, _)
636                 | Res::Def(DefKind::TyAlias, _)
637                 | Res::Def(DefKind::AssocTy, _)
638                 | Res::SelfTy(..) => true,
639                 _ => false,
640             },
641             PathSource::TraitItem(ns) => match res {
642                 Res::Def(DefKind::AssocConst, _)
643                 | Res::Def(DefKind::Method, _) if ns == ValueNS => true,
644                 Res::Def(DefKind::AssocTy, _) if ns == TypeNS => true,
645                 _ => false,
646             },
647             PathSource::Visibility => match res {
648                 Res::Def(DefKind::Mod, _) => true,
649                 _ => false,
650             },
651         }
652     }
653
654     fn error_code(self, has_unexpected_resolution: bool) -> &'static str {
655         __diagnostic_used!(E0404);
656         __diagnostic_used!(E0405);
657         __diagnostic_used!(E0412);
658         __diagnostic_used!(E0422);
659         __diagnostic_used!(E0423);
660         __diagnostic_used!(E0425);
661         __diagnostic_used!(E0531);
662         __diagnostic_used!(E0532);
663         __diagnostic_used!(E0573);
664         __diagnostic_used!(E0574);
665         __diagnostic_used!(E0575);
666         __diagnostic_used!(E0576);
667         __diagnostic_used!(E0577);
668         __diagnostic_used!(E0578);
669         match (self, has_unexpected_resolution) {
670             (PathSource::Trait(_), true) => "E0404",
671             (PathSource::Trait(_), false) => "E0405",
672             (PathSource::Type, true) => "E0573",
673             (PathSource::Type, false) => "E0412",
674             (PathSource::Struct, true) => "E0574",
675             (PathSource::Struct, false) => "E0422",
676             (PathSource::Expr(..), true) => "E0423",
677             (PathSource::Expr(..), false) => "E0425",
678             (PathSource::Pat, true) | (PathSource::TupleStruct, true) => "E0532",
679             (PathSource::Pat, false) | (PathSource::TupleStruct, false) => "E0531",
680             (PathSource::TraitItem(..), true) => "E0575",
681             (PathSource::TraitItem(..), false) => "E0576",
682             (PathSource::Visibility, true) => "E0577",
683             (PathSource::Visibility, false) => "E0578",
684         }
685     }
686 }
687
688 // A minimal representation of a path segment. We use this in resolve because
689 // we synthesize 'path segments' which don't have the rest of an AST or HIR
690 // `PathSegment`.
691 #[derive(Clone, Copy, Debug)]
692 pub struct Segment {
693     ident: Ident,
694     id: Option<NodeId>,
695 }
696
697 impl Segment {
698     fn from_path(path: &Path) -> Vec<Segment> {
699         path.segments.iter().map(|s| s.into()).collect()
700     }
701
702     fn from_ident(ident: Ident) -> Segment {
703         Segment {
704             ident,
705             id: None,
706         }
707     }
708
709     fn names_to_string(segments: &[Segment]) -> String {
710         names_to_string(&segments.iter()
711                             .map(|seg| seg.ident)
712                             .collect::<Vec<_>>())
713     }
714 }
715
716 impl<'a> From<&'a ast::PathSegment> for Segment {
717     fn from(seg: &'a ast::PathSegment) -> Segment {
718         Segment {
719             ident: seg.ident,
720             id: Some(seg.id),
721         }
722     }
723 }
724
725 struct UsePlacementFinder {
726     target_module: NodeId,
727     span: Option<Span>,
728     found_use: bool,
729 }
730
731 impl UsePlacementFinder {
732     fn check(krate: &Crate, target_module: NodeId) -> (Option<Span>, bool) {
733         let mut finder = UsePlacementFinder {
734             target_module,
735             span: None,
736             found_use: false,
737         };
738         visit::walk_crate(&mut finder, krate);
739         (finder.span, finder.found_use)
740     }
741 }
742
743 impl<'tcx> Visitor<'tcx> for UsePlacementFinder {
744     fn visit_mod(
745         &mut self,
746         module: &'tcx ast::Mod,
747         _: Span,
748         _: &[ast::Attribute],
749         node_id: NodeId,
750     ) {
751         if self.span.is_some() {
752             return;
753         }
754         if node_id != self.target_module {
755             visit::walk_mod(self, module);
756             return;
757         }
758         // find a use statement
759         for item in &module.items {
760             match item.node {
761                 ItemKind::Use(..) => {
762                     // don't suggest placing a use before the prelude
763                     // import or other generated ones
764                     if item.span.ctxt().outer_expn_info().is_none() {
765                         self.span = Some(item.span.shrink_to_lo());
766                         self.found_use = true;
767                         return;
768                     }
769                 },
770                 // don't place use before extern crate
771                 ItemKind::ExternCrate(_) => {}
772                 // but place them before the first other item
773                 _ => if self.span.map_or(true, |span| item.span < span ) {
774                     if item.span.ctxt().outer_expn_info().is_none() {
775                         // don't insert between attributes and an item
776                         if item.attrs.is_empty() {
777                             self.span = Some(item.span.shrink_to_lo());
778                         } else {
779                             // find the first attribute on the item
780                             for attr in &item.attrs {
781                                 if self.span.map_or(true, |span| attr.span < span) {
782                                     self.span = Some(attr.span.shrink_to_lo());
783                                 }
784                             }
785                         }
786                     }
787                 },
788             }
789         }
790     }
791 }
792
793 /// Walks the whole crate in DFS order, visiting each item, resolving names as it goes.
794 impl<'a, 'tcx> Visitor<'tcx> for Resolver<'a> {
795     fn visit_item(&mut self, item: &'tcx Item) {
796         self.resolve_item(item);
797     }
798     fn visit_arm(&mut self, arm: &'tcx Arm) {
799         self.resolve_arm(arm);
800     }
801     fn visit_block(&mut self, block: &'tcx Block) {
802         self.resolve_block(block);
803     }
804     fn visit_anon_const(&mut self, constant: &'tcx ast::AnonConst) {
805         debug!("visit_anon_const {:?}", constant);
806         self.with_constant_rib(|this| {
807             visit::walk_anon_const(this, constant);
808         });
809     }
810     fn visit_expr(&mut self, expr: &'tcx Expr) {
811         self.resolve_expr(expr, None);
812     }
813     fn visit_local(&mut self, local: &'tcx Local) {
814         self.resolve_local(local);
815     }
816     fn visit_ty(&mut self, ty: &'tcx Ty) {
817         match ty.node {
818             TyKind::Path(ref qself, ref path) => {
819                 self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
820             }
821             TyKind::ImplicitSelf => {
822                 let self_ty = Ident::with_empty_ctxt(kw::SelfUpper);
823                 let res = self.resolve_ident_in_lexical_scope(self_ty, TypeNS, Some(ty.id), ty.span)
824                               .map_or(Res::Err, |d| d.res());
825                 self.record_partial_res(ty.id, PartialRes::new(res));
826             }
827             _ => (),
828         }
829         visit::walk_ty(self, ty);
830     }
831     fn visit_poly_trait_ref(&mut self,
832                             tref: &'tcx ast::PolyTraitRef,
833                             m: &'tcx ast::TraitBoundModifier) {
834         self.smart_resolve_path(tref.trait_ref.ref_id, None,
835                                 &tref.trait_ref.path, PathSource::Trait(AliasPossibility::Maybe));
836         visit::walk_poly_trait_ref(self, tref, m);
837     }
838     fn visit_foreign_item(&mut self, foreign_item: &'tcx ForeignItem) {
839         let generic_params = match foreign_item.node {
840             ForeignItemKind::Fn(_, ref generics) => {
841                 HasGenericParams(generics, ItemRibKind)
842             }
843             ForeignItemKind::Static(..) => NoGenericParams,
844             ForeignItemKind::Ty => NoGenericParams,
845             ForeignItemKind::Macro(..) => NoGenericParams,
846         };
847         self.with_generic_param_rib(generic_params, |this| {
848             visit::walk_foreign_item(this, foreign_item);
849         });
850     }
851     fn visit_fn(&mut self,
852                 function_kind: FnKind<'tcx>,
853                 declaration: &'tcx FnDecl,
854                 _: Span,
855                 _: NodeId)
856     {
857         debug!("(resolving function) entering function");
858         let rib_kind = match function_kind {
859             FnKind::ItemFn(..) => FnItemRibKind,
860             FnKind::Method(..) => AssocItemRibKind,
861             FnKind::Closure(_) => NormalRibKind,
862         };
863
864         // Create a value rib for the function.
865         self.ribs[ValueNS].push(Rib::new(rib_kind));
866
867         // Create a label rib for the function.
868         self.label_ribs.push(Rib::new(rib_kind));
869
870         // Add each argument to the rib.
871         let mut bindings_list = FxHashMap::default();
872         for argument in &declaration.inputs {
873             self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
874
875             self.visit_ty(&argument.ty);
876
877             debug!("(resolving function) recorded argument");
878         }
879         visit::walk_fn_ret_ty(self, &declaration.output);
880
881         // Resolve the function body, potentially inside the body of an async closure
882         match function_kind {
883             FnKind::ItemFn(.., body) |
884             FnKind::Method(.., body) => {
885                 self.visit_block(body);
886             }
887             FnKind::Closure(body) => {
888                 self.visit_expr(body);
889             }
890         };
891
892         debug!("(resolving function) leaving function");
893
894         self.label_ribs.pop();
895         self.ribs[ValueNS].pop();
896     }
897
898     fn visit_generics(&mut self, generics: &'tcx Generics) {
899         // For type parameter defaults, we have to ban access
900         // to following type parameters, as the InternalSubsts can only
901         // provide previous type parameters as they're built. We
902         // put all the parameters on the ban list and then remove
903         // them one by one as they are processed and become available.
904         let mut default_ban_rib = Rib::new(ForwardTyParamBanRibKind);
905         let mut found_default = false;
906         default_ban_rib.bindings.extend(generics.params.iter()
907             .filter_map(|param| match param.kind {
908                 GenericParamKind::Const { .. } |
909                 GenericParamKind::Lifetime { .. } => None,
910                 GenericParamKind::Type { ref default, .. } => {
911                     found_default |= default.is_some();
912                     if found_default {
913                         Some((Ident::with_empty_ctxt(param.ident.name), Res::Err))
914                     } else {
915                         None
916                     }
917                 }
918             }));
919
920         // We also ban access to type parameters for use as the types of const parameters.
921         let mut const_ty_param_ban_rib = Rib::new(TyParamAsConstParamTy);
922         const_ty_param_ban_rib.bindings.extend(generics.params.iter()
923             .filter(|param| {
924                 if let GenericParamKind::Type { .. } = param.kind {
925                     true
926                 } else {
927                     false
928                 }
929             })
930             .map(|param| (Ident::with_empty_ctxt(param.ident.name), Res::Err)));
931
932         for param in &generics.params {
933             match param.kind {
934                 GenericParamKind::Lifetime { .. } => self.visit_generic_param(param),
935                 GenericParamKind::Type { ref default, .. } => {
936                     for bound in &param.bounds {
937                         self.visit_param_bound(bound);
938                     }
939
940                     if let Some(ref ty) = default {
941                         self.ribs[TypeNS].push(default_ban_rib);
942                         self.visit_ty(ty);
943                         default_ban_rib = self.ribs[TypeNS].pop().unwrap();
944                     }
945
946                     // Allow all following defaults to refer to this type parameter.
947                     default_ban_rib.bindings.remove(&Ident::with_empty_ctxt(param.ident.name));
948                 }
949                 GenericParamKind::Const { ref ty } => {
950                     self.ribs[TypeNS].push(const_ty_param_ban_rib);
951
952                     for bound in &param.bounds {
953                         self.visit_param_bound(bound);
954                     }
955
956                     self.visit_ty(ty);
957
958                     const_ty_param_ban_rib = self.ribs[TypeNS].pop().unwrap();
959                 }
960             }
961         }
962         for p in &generics.where_clause.predicates {
963             self.visit_where_predicate(p);
964         }
965     }
966 }
967
968 #[derive(Copy, Clone)]
969 enum GenericParameters<'a, 'b> {
970     NoGenericParams,
971     HasGenericParams(// Type parameters.
972                       &'b Generics,
973
974                       // The kind of the rib used for type parameters.
975                       RibKind<'a>),
976 }
977
978 /// The rib kind restricts certain accesses,
979 /// e.g. to a `Res::Local` of an outer item.
980 #[derive(Copy, Clone, Debug)]
981 enum RibKind<'a> {
982     /// No restriction needs to be applied.
983     NormalRibKind,
984
985     /// We passed through an impl or trait and are now in one of its
986     /// methods or associated types. Allow references to ty params that impl or trait
987     /// binds. Disallow any other upvars (including other ty params that are
988     /// upvars).
989     AssocItemRibKind,
990
991     /// We passed through a function definition. Disallow upvars.
992     /// Permit only those const parameters that are specified in the function's generics.
993     FnItemRibKind,
994
995     /// We passed through an item scope. Disallow upvars.
996     ItemRibKind,
997
998     /// We're in a constant item. Can't refer to dynamic stuff.
999     ConstantItemRibKind,
1000
1001     /// We passed through a module.
1002     ModuleRibKind(Module<'a>),
1003
1004     /// We passed through a `macro_rules!` statement
1005     MacroDefinition(DefId),
1006
1007     /// All bindings in this rib are type parameters that can't be used
1008     /// from the default of a type parameter because they're not declared
1009     /// before said type parameter. Also see the `visit_generics` override.
1010     ForwardTyParamBanRibKind,
1011
1012     /// We forbid the use of type parameters as the types of const parameters.
1013     TyParamAsConstParamTy,
1014 }
1015
1016 /// A single local scope.
1017 ///
1018 /// A rib represents a scope names can live in. Note that these appear in many places, not just
1019 /// around braces. At any place where the list of accessible names (of the given namespace)
1020 /// changes or a new restrictions on the name accessibility are introduced, a new rib is put onto a
1021 /// stack. This may be, for example, a `let` statement (because it introduces variables), a macro,
1022 /// etc.
1023 ///
1024 /// Different [rib kinds](enum.RibKind) are transparent for different names.
1025 ///
1026 /// The resolution keeps a separate stack of ribs as it traverses the AST for each namespace. When
1027 /// resolving, the name is looked up from inside out.
1028 #[derive(Debug)]
1029 struct Rib<'a, R = Res> {
1030     bindings: FxHashMap<Ident, R>,
1031     kind: RibKind<'a>,
1032 }
1033
1034 impl<'a, R> Rib<'a, R> {
1035     fn new(kind: RibKind<'a>) -> Rib<'a, R> {
1036         Rib {
1037             bindings: Default::default(),
1038             kind,
1039         }
1040     }
1041 }
1042
1043 /// An intermediate resolution result.
1044 ///
1045 /// This refers to the thing referred by a name. The difference between `Res` and `Item` is that
1046 /// items are visible in their whole block, while `Res`es only from the place they are defined
1047 /// forward.
1048 enum LexicalScopeBinding<'a> {
1049     Item(&'a NameBinding<'a>),
1050     Res(Res),
1051 }
1052
1053 impl<'a> LexicalScopeBinding<'a> {
1054     fn item(self) -> Option<&'a NameBinding<'a>> {
1055         match self {
1056             LexicalScopeBinding::Item(binding) => Some(binding),
1057             _ => None,
1058         }
1059     }
1060
1061     fn res(self) -> Res {
1062         match self {
1063             LexicalScopeBinding::Item(binding) => binding.res(),
1064             LexicalScopeBinding::Res(res) => res,
1065         }
1066     }
1067 }
1068
1069 #[derive(Copy, Clone, Debug)]
1070 enum ModuleOrUniformRoot<'a> {
1071     /// Regular module.
1072     Module(Module<'a>),
1073
1074     /// Virtual module that denotes resolution in crate root with fallback to extern prelude.
1075     CrateRootAndExternPrelude,
1076
1077     /// Virtual module that denotes resolution in extern prelude.
1078     /// Used for paths starting with `::` on 2018 edition.
1079     ExternPrelude,
1080
1081     /// Virtual module that denotes resolution in current scope.
1082     /// Used only for resolving single-segment imports. The reason it exists is that import paths
1083     /// are always split into two parts, the first of which should be some kind of module.
1084     CurrentScope,
1085 }
1086
1087 impl ModuleOrUniformRoot<'_> {
1088     fn same_def(lhs: Self, rhs: Self) -> bool {
1089         match (lhs, rhs) {
1090             (ModuleOrUniformRoot::Module(lhs),
1091              ModuleOrUniformRoot::Module(rhs)) => lhs.def_id() == rhs.def_id(),
1092             (ModuleOrUniformRoot::CrateRootAndExternPrelude,
1093              ModuleOrUniformRoot::CrateRootAndExternPrelude) |
1094             (ModuleOrUniformRoot::ExternPrelude, ModuleOrUniformRoot::ExternPrelude) |
1095             (ModuleOrUniformRoot::CurrentScope, ModuleOrUniformRoot::CurrentScope) => true,
1096             _ => false,
1097         }
1098     }
1099 }
1100
1101 #[derive(Clone, Debug)]
1102 enum PathResult<'a> {
1103     Module(ModuleOrUniformRoot<'a>),
1104     NonModule(PartialRes),
1105     Indeterminate,
1106     Failed {
1107         span: Span,
1108         label: String,
1109         suggestion: Option<Suggestion>,
1110         is_error_from_last_segment: bool,
1111     },
1112 }
1113
1114 enum ModuleKind {
1115     /// An anonymous module; e.g., just a block.
1116     ///
1117     /// ```
1118     /// fn main() {
1119     ///     fn f() {} // (1)
1120     ///     { // This is an anonymous module
1121     ///         f(); // This resolves to (2) as we are inside the block.
1122     ///         fn f() {} // (2)
1123     ///     }
1124     ///     f(); // Resolves to (1)
1125     /// }
1126     /// ```
1127     Block(NodeId),
1128     /// Any module with a name.
1129     ///
1130     /// This could be:
1131     ///
1132     /// * A normal module â€’ either `mod from_file;` or `mod from_block { }`.
1133     /// * A trait or an enum (it implicitly contains associated types, methods and variant
1134     ///   constructors).
1135     Def(DefKind, DefId, Name),
1136 }
1137
1138 impl ModuleKind {
1139     /// Get name of the module.
1140     pub fn name(&self) -> Option<Name> {
1141         match self {
1142             ModuleKind::Block(..) => None,
1143             ModuleKind::Def(.., name) => Some(*name),
1144         }
1145     }
1146 }
1147
1148 /// One node in the tree of modules.
1149 pub struct ModuleData<'a> {
1150     parent: Option<Module<'a>>,
1151     kind: ModuleKind,
1152
1153     // The def id of the closest normal module (`mod`) ancestor (including this module).
1154     normal_ancestor_id: DefId,
1155
1156     resolutions: RefCell<FxHashMap<(Ident, Namespace), &'a RefCell<NameResolution<'a>>>>,
1157     single_segment_macro_resolutions: RefCell<Vec<(Ident, MacroKind, ParentScope<'a>,
1158                                                    Option<&'a NameBinding<'a>>)>>,
1159     multi_segment_macro_resolutions: RefCell<Vec<(Vec<Segment>, Span, MacroKind, ParentScope<'a>,
1160                                                   Option<Res>)>>,
1161     builtin_attrs: RefCell<Vec<(Ident, ParentScope<'a>)>>,
1162
1163     // Macro invocations that can expand into items in this module.
1164     unresolved_invocations: RefCell<FxHashSet<Mark>>,
1165
1166     no_implicit_prelude: bool,
1167
1168     glob_importers: RefCell<Vec<&'a ImportDirective<'a>>>,
1169     globs: RefCell<Vec<&'a ImportDirective<'a>>>,
1170
1171     // Used to memoize the traits in this module for faster searches through all traits in scope.
1172     traits: RefCell<Option<Box<[(Ident, &'a NameBinding<'a>)]>>>,
1173
1174     // Whether this module is populated. If not populated, any attempt to
1175     // access the children must be preceded with a
1176     // `populate_module_if_necessary` call.
1177     populated: Cell<bool>,
1178
1179     /// Span of the module itself. Used for error reporting.
1180     span: Span,
1181
1182     expansion: Mark,
1183 }
1184
1185 type Module<'a> = &'a ModuleData<'a>;
1186
1187 impl<'a> ModuleData<'a> {
1188     fn new(parent: Option<Module<'a>>,
1189            kind: ModuleKind,
1190            normal_ancestor_id: DefId,
1191            expansion: Mark,
1192            span: Span) -> Self {
1193         ModuleData {
1194             parent,
1195             kind,
1196             normal_ancestor_id,
1197             resolutions: Default::default(),
1198             single_segment_macro_resolutions: RefCell::new(Vec::new()),
1199             multi_segment_macro_resolutions: RefCell::new(Vec::new()),
1200             builtin_attrs: RefCell::new(Vec::new()),
1201             unresolved_invocations: Default::default(),
1202             no_implicit_prelude: false,
1203             glob_importers: RefCell::new(Vec::new()),
1204             globs: RefCell::new(Vec::new()),
1205             traits: RefCell::new(None),
1206             populated: Cell::new(normal_ancestor_id.is_local()),
1207             span,
1208             expansion,
1209         }
1210     }
1211
1212     fn for_each_child<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1213         for (&(ident, ns), name_resolution) in self.resolutions.borrow().iter() {
1214             name_resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1215         }
1216     }
1217
1218     fn for_each_child_stable<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1219         let resolutions = self.resolutions.borrow();
1220         let mut resolutions = resolutions.iter().collect::<Vec<_>>();
1221         resolutions.sort_by_cached_key(|&(&(ident, ns), _)| (ident.as_str(), ns));
1222         for &(&(ident, ns), &resolution) in resolutions.iter() {
1223             resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1224         }
1225     }
1226
1227     fn res(&self) -> Option<Res> {
1228         match self.kind {
1229             ModuleKind::Def(kind, def_id, _) => Some(Res::Def(kind, def_id)),
1230             _ => None,
1231         }
1232     }
1233
1234     fn def_kind(&self) -> Option<DefKind> {
1235         match self.kind {
1236             ModuleKind::Def(kind, ..) => Some(kind),
1237             _ => None,
1238         }
1239     }
1240
1241     fn def_id(&self) -> Option<DefId> {
1242         match self.kind {
1243             ModuleKind::Def(_, def_id, _) => Some(def_id),
1244             _ => None,
1245         }
1246     }
1247
1248     // `self` resolves to the first module ancestor that `is_normal`.
1249     fn is_normal(&self) -> bool {
1250         match self.kind {
1251             ModuleKind::Def(DefKind::Mod, _, _) => true,
1252             _ => false,
1253         }
1254     }
1255
1256     fn is_trait(&self) -> bool {
1257         match self.kind {
1258             ModuleKind::Def(DefKind::Trait, _, _) => true,
1259             _ => false,
1260         }
1261     }
1262
1263     fn nearest_item_scope(&'a self) -> Module<'a> {
1264         if self.is_trait() { self.parent.unwrap() } else { self }
1265     }
1266
1267     fn is_ancestor_of(&self, mut other: &Self) -> bool {
1268         while !ptr::eq(self, other) {
1269             if let Some(parent) = other.parent {
1270                 other = parent;
1271             } else {
1272                 return false;
1273             }
1274         }
1275         true
1276     }
1277 }
1278
1279 impl<'a> fmt::Debug for ModuleData<'a> {
1280     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1281         write!(f, "{:?}", self.res())
1282     }
1283 }
1284
1285 /// Records a possibly-private value, type, or module definition.
1286 #[derive(Clone, Debug)]
1287 pub struct NameBinding<'a> {
1288     kind: NameBindingKind<'a>,
1289     ambiguity: Option<(&'a NameBinding<'a>, AmbiguityKind)>,
1290     expansion: Mark,
1291     span: Span,
1292     vis: ty::Visibility,
1293 }
1294
1295 pub trait ToNameBinding<'a> {
1296     fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a>;
1297 }
1298
1299 impl<'a> ToNameBinding<'a> for &'a NameBinding<'a> {
1300     fn to_name_binding(self, _: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> {
1301         self
1302     }
1303 }
1304
1305 #[derive(Clone, Debug)]
1306 enum NameBindingKind<'a> {
1307     Res(Res, /* is_macro_export */ bool),
1308     Module(Module<'a>),
1309     Import {
1310         binding: &'a NameBinding<'a>,
1311         directive: &'a ImportDirective<'a>,
1312         used: Cell<bool>,
1313     },
1314 }
1315
1316 impl<'a> NameBindingKind<'a> {
1317     /// Is this a name binding of a import?
1318     fn is_import(&self) -> bool {
1319         match *self {
1320             NameBindingKind::Import { .. } => true,
1321             _ => false,
1322         }
1323     }
1324 }
1325
1326 struct PrivacyError<'a>(Span, Ident, &'a NameBinding<'a>);
1327
1328 struct UseError<'a> {
1329     err: DiagnosticBuilder<'a>,
1330     /// Attach `use` statements for these candidates.
1331     candidates: Vec<ImportSuggestion>,
1332     /// The `NodeId` of the module to place the use-statements in.
1333     node_id: NodeId,
1334     /// Whether the diagnostic should state that it's "better".
1335     better: bool,
1336 }
1337
1338 #[derive(Clone, Copy, PartialEq, Debug)]
1339 enum AmbiguityKind {
1340     Import,
1341     BuiltinAttr,
1342     DeriveHelper,
1343     LegacyHelperVsPrelude,
1344     LegacyVsModern,
1345     GlobVsOuter,
1346     GlobVsGlob,
1347     GlobVsExpanded,
1348     MoreExpandedVsOuter,
1349 }
1350
1351 impl AmbiguityKind {
1352     fn descr(self) -> &'static str {
1353         match self {
1354             AmbiguityKind::Import =>
1355                 "name vs any other name during import resolution",
1356             AmbiguityKind::BuiltinAttr =>
1357                 "built-in attribute vs any other name",
1358             AmbiguityKind::DeriveHelper =>
1359                 "derive helper attribute vs any other name",
1360             AmbiguityKind::LegacyHelperVsPrelude =>
1361                 "legacy plugin helper attribute vs name from prelude",
1362             AmbiguityKind::LegacyVsModern =>
1363                 "`macro_rules` vs non-`macro_rules` from other module",
1364             AmbiguityKind::GlobVsOuter =>
1365                 "glob import vs any other name from outer scope during import/macro resolution",
1366             AmbiguityKind::GlobVsGlob =>
1367                 "glob import vs glob import in the same module",
1368             AmbiguityKind::GlobVsExpanded =>
1369                 "glob import vs macro-expanded name in the same \
1370                  module during import/macro resolution",
1371             AmbiguityKind::MoreExpandedVsOuter =>
1372                 "macro-expanded name vs less macro-expanded name \
1373                  from outer scope during import/macro resolution",
1374         }
1375     }
1376 }
1377
1378 /// Miscellaneous bits of metadata for better ambiguity error reporting.
1379 #[derive(Clone, Copy, PartialEq)]
1380 enum AmbiguityErrorMisc {
1381     SuggestCrate,
1382     SuggestSelf,
1383     FromPrelude,
1384     None,
1385 }
1386
1387 struct AmbiguityError<'a> {
1388     kind: AmbiguityKind,
1389     ident: Ident,
1390     b1: &'a NameBinding<'a>,
1391     b2: &'a NameBinding<'a>,
1392     misc1: AmbiguityErrorMisc,
1393     misc2: AmbiguityErrorMisc,
1394 }
1395
1396 impl<'a> NameBinding<'a> {
1397     fn module(&self) -> Option<Module<'a>> {
1398         match self.kind {
1399             NameBindingKind::Module(module) => Some(module),
1400             NameBindingKind::Import { binding, .. } => binding.module(),
1401             _ => None,
1402         }
1403     }
1404
1405     fn res(&self) -> Res {
1406         match self.kind {
1407             NameBindingKind::Res(res, _) => res,
1408             NameBindingKind::Module(module) => module.res().unwrap(),
1409             NameBindingKind::Import { binding, .. } => binding.res(),
1410         }
1411     }
1412
1413     fn is_ambiguity(&self) -> bool {
1414         self.ambiguity.is_some() || match self.kind {
1415             NameBindingKind::Import { binding, .. } => binding.is_ambiguity(),
1416             _ => false,
1417         }
1418     }
1419
1420     // We sometimes need to treat variants as `pub` for backwards compatibility.
1421     fn pseudo_vis(&self) -> ty::Visibility {
1422         if self.is_variant() && self.res().def_id().is_local() {
1423             ty::Visibility::Public
1424         } else {
1425             self.vis
1426         }
1427     }
1428
1429     fn is_variant(&self) -> bool {
1430         match self.kind {
1431             NameBindingKind::Res(Res::Def(DefKind::Variant, _), _) |
1432             NameBindingKind::Res(Res::Def(DefKind::Ctor(CtorOf::Variant, ..), _), _) => true,
1433             _ => false,
1434         }
1435     }
1436
1437     fn is_extern_crate(&self) -> bool {
1438         match self.kind {
1439             NameBindingKind::Import {
1440                 directive: &ImportDirective {
1441                     subclass: ImportDirectiveSubclass::ExternCrate { .. }, ..
1442                 }, ..
1443             } => true,
1444             NameBindingKind::Module(
1445                 &ModuleData { kind: ModuleKind::Def(DefKind::Mod, def_id, _), .. }
1446             ) => def_id.index == CRATE_DEF_INDEX,
1447             _ => false,
1448         }
1449     }
1450
1451     fn is_import(&self) -> bool {
1452         match self.kind {
1453             NameBindingKind::Import { .. } => true,
1454             _ => false,
1455         }
1456     }
1457
1458     fn is_glob_import(&self) -> bool {
1459         match self.kind {
1460             NameBindingKind::Import { directive, .. } => directive.is_glob(),
1461             _ => false,
1462         }
1463     }
1464
1465     fn is_importable(&self) -> bool {
1466         match self.res() {
1467             Res::Def(DefKind::AssocConst, _)
1468             | Res::Def(DefKind::Method, _)
1469             | Res::Def(DefKind::AssocTy, _) => false,
1470             _ => true,
1471         }
1472     }
1473
1474     fn is_macro_def(&self) -> bool {
1475         match self.kind {
1476             NameBindingKind::Res(Res::Def(DefKind::Macro(..), _), _) => true,
1477             _ => false,
1478         }
1479     }
1480
1481     fn macro_kind(&self) -> Option<MacroKind> {
1482         match self.res() {
1483             Res::Def(DefKind::Macro(kind), _) => Some(kind),
1484             Res::NonMacroAttr(..) => Some(MacroKind::Attr),
1485             _ => None,
1486         }
1487     }
1488
1489     fn descr(&self) -> &'static str {
1490         if self.is_extern_crate() { "extern crate" } else { self.res().descr() }
1491     }
1492
1493     fn article(&self) -> &'static str {
1494         if self.is_extern_crate() { "an" } else { self.res().article() }
1495     }
1496
1497     // Suppose that we resolved macro invocation with `invoc_parent_expansion` to binding `binding`
1498     // at some expansion round `max(invoc, binding)` when they both emerged from macros.
1499     // Then this function returns `true` if `self` may emerge from a macro *after* that
1500     // in some later round and screw up our previously found resolution.
1501     // See more detailed explanation in
1502     // https://github.com/rust-lang/rust/pull/53778#issuecomment-419224049
1503     fn may_appear_after(&self, invoc_parent_expansion: Mark, binding: &NameBinding<'_>) -> bool {
1504         // self > max(invoc, binding) => !(self <= invoc || self <= binding)
1505         // Expansions are partially ordered, so "may appear after" is an inversion of
1506         // "certainly appears before or simultaneously" and includes unordered cases.
1507         let self_parent_expansion = self.expansion;
1508         let other_parent_expansion = binding.expansion;
1509         let certainly_before_other_or_simultaneously =
1510             other_parent_expansion.is_descendant_of(self_parent_expansion);
1511         let certainly_before_invoc_or_simultaneously =
1512             invoc_parent_expansion.is_descendant_of(self_parent_expansion);
1513         !(certainly_before_other_or_simultaneously || certainly_before_invoc_or_simultaneously)
1514     }
1515 }
1516
1517 /// Interns the names of the primitive types.
1518 ///
1519 /// All other types are defined somewhere and possibly imported, but the primitive ones need
1520 /// special handling, since they have no place of origin.
1521 #[derive(Default)]
1522 struct PrimitiveTypeTable {
1523     primitive_types: FxHashMap<Name, PrimTy>,
1524 }
1525
1526 impl PrimitiveTypeTable {
1527     fn new() -> PrimitiveTypeTable {
1528         let mut table = PrimitiveTypeTable::default();
1529
1530         table.intern("bool", Bool);
1531         table.intern("char", Char);
1532         table.intern("f32", Float(FloatTy::F32));
1533         table.intern("f64", Float(FloatTy::F64));
1534         table.intern("isize", Int(IntTy::Isize));
1535         table.intern("i8", Int(IntTy::I8));
1536         table.intern("i16", Int(IntTy::I16));
1537         table.intern("i32", Int(IntTy::I32));
1538         table.intern("i64", Int(IntTy::I64));
1539         table.intern("i128", Int(IntTy::I128));
1540         table.intern("str", Str);
1541         table.intern("usize", Uint(UintTy::Usize));
1542         table.intern("u8", Uint(UintTy::U8));
1543         table.intern("u16", Uint(UintTy::U16));
1544         table.intern("u32", Uint(UintTy::U32));
1545         table.intern("u64", Uint(UintTy::U64));
1546         table.intern("u128", Uint(UintTy::U128));
1547         table
1548     }
1549
1550     fn intern(&mut self, string: &str, primitive_type: PrimTy) {
1551         self.primitive_types.insert(Symbol::intern(string), primitive_type);
1552     }
1553 }
1554
1555 #[derive(Debug, Default, Clone)]
1556 pub struct ExternPreludeEntry<'a> {
1557     extern_crate_item: Option<&'a NameBinding<'a>>,
1558     pub introduced_by_item: bool,
1559 }
1560
1561 /// The main resolver class.
1562 ///
1563 /// This is the visitor that walks the whole crate.
1564 pub struct Resolver<'a> {
1565     session: &'a Session,
1566     cstore: &'a CStore,
1567
1568     pub definitions: Definitions,
1569
1570     graph_root: Module<'a>,
1571
1572     prelude: Option<Module<'a>>,
1573     pub extern_prelude: FxHashMap<Ident, ExternPreludeEntry<'a>>,
1574
1575     /// N.B., this is used only for better diagnostics, not name resolution itself.
1576     has_self: FxHashSet<DefId>,
1577
1578     /// Names of fields of an item `DefId` accessible with dot syntax.
1579     /// Used for hints during error reporting.
1580     field_names: FxHashMap<DefId, Vec<Name>>,
1581
1582     /// All imports known to succeed or fail.
1583     determined_imports: Vec<&'a ImportDirective<'a>>,
1584
1585     /// All non-determined imports.
1586     indeterminate_imports: Vec<&'a ImportDirective<'a>>,
1587
1588     /// The module that represents the current item scope.
1589     current_module: Module<'a>,
1590
1591     /// The current set of local scopes for types and values.
1592     /// FIXME #4948: Reuse ribs to avoid allocation.
1593     ribs: PerNS<Vec<Rib<'a>>>,
1594
1595     /// The current set of local scopes, for labels.
1596     label_ribs: Vec<Rib<'a, NodeId>>,
1597
1598     /// The trait that the current context can refer to.
1599     current_trait_ref: Option<(Module<'a>, TraitRef)>,
1600
1601     /// The current self type if inside an impl (used for better errors).
1602     current_self_type: Option<Ty>,
1603
1604     /// The current self item if inside an ADT (used for better errors).
1605     current_self_item: Option<NodeId>,
1606
1607     /// FIXME: Refactor things so that these fields are passed through arguments and not resolver.
1608     /// We are resolving a last import segment during import validation.
1609     last_import_segment: bool,
1610     /// This binding should be ignored during in-module resolution, so that we don't get
1611     /// "self-confirming" import resolutions during import validation.
1612     blacklisted_binding: Option<&'a NameBinding<'a>>,
1613
1614     /// The idents for the primitive types.
1615     primitive_type_table: PrimitiveTypeTable,
1616
1617     /// Resolutions for nodes that have a single resolution.
1618     partial_res_map: NodeMap<PartialRes>,
1619     /// Resolutions for import nodes, which have multiple resolutions in different namespaces.
1620     import_res_map: NodeMap<PerNS<Option<Res>>>,
1621     /// Resolutions for labels (node IDs of their corresponding blocks or loops).
1622     label_res_map: NodeMap<NodeId>,
1623
1624     pub export_map: ExportMap<NodeId>,
1625     pub trait_map: TraitMap,
1626
1627     /// A map from nodes to anonymous modules.
1628     /// Anonymous modules are pseudo-modules that are implicitly created around items
1629     /// contained within blocks.
1630     ///
1631     /// For example, if we have this:
1632     ///
1633     ///  fn f() {
1634     ///      fn g() {
1635     ///          ...
1636     ///      }
1637     ///  }
1638     ///
1639     /// There will be an anonymous module created around `g` with the ID of the
1640     /// entry block for `f`.
1641     block_map: NodeMap<Module<'a>>,
1642     module_map: FxHashMap<DefId, Module<'a>>,
1643     extern_module_map: FxHashMap<(DefId, bool /* MacrosOnly? */), Module<'a>>,
1644     binding_parent_modules: FxHashMap<PtrKey<'a, NameBinding<'a>>, Module<'a>>,
1645
1646     /// Maps glob imports to the names of items actually imported.
1647     pub glob_map: GlobMap,
1648
1649     used_imports: FxHashSet<(NodeId, Namespace)>,
1650     pub maybe_unused_trait_imports: NodeSet,
1651     pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
1652
1653     /// A list of labels as of yet unused. Labels will be removed from this map when
1654     /// they are used (in a `break` or `continue` statement)
1655     pub unused_labels: FxHashMap<NodeId, Span>,
1656
1657     /// Privacy errors are delayed until the end in order to deduplicate them.
1658     privacy_errors: Vec<PrivacyError<'a>>,
1659     /// Ambiguity errors are delayed for deduplication.
1660     ambiguity_errors: Vec<AmbiguityError<'a>>,
1661     /// `use` injections are delayed for better placement and deduplication.
1662     use_injections: Vec<UseError<'a>>,
1663     /// Crate-local macro expanded `macro_export` referred to by a module-relative path.
1664     macro_expanded_macro_export_errors: BTreeSet<(Span, Span)>,
1665
1666     arenas: &'a ResolverArenas<'a>,
1667     dummy_binding: &'a NameBinding<'a>,
1668
1669     crate_loader: &'a mut CrateLoader<'a>,
1670     macro_names: FxHashSet<Ident>,
1671     builtin_macros: FxHashMap<Name, &'a NameBinding<'a>>,
1672     macro_use_prelude: FxHashMap<Name, &'a NameBinding<'a>>,
1673     pub all_macros: FxHashMap<Name, Res>,
1674     macro_map: FxHashMap<DefId, Lrc<SyntaxExtension>>,
1675     macro_defs: FxHashMap<Mark, DefId>,
1676     local_macro_def_scopes: FxHashMap<NodeId, Module<'a>>,
1677
1678     /// List of crate local macros that we need to warn about as being unused.
1679     /// Right now this only includes macro_rules! macros, and macros 2.0.
1680     unused_macros: FxHashSet<DefId>,
1681
1682     /// Maps the `Mark` of an expansion to its containing module or block.
1683     invocations: FxHashMap<Mark, &'a InvocationData<'a>>,
1684
1685     /// Avoid duplicated errors for "name already defined".
1686     name_already_seen: FxHashMap<Name, Span>,
1687
1688     potentially_unused_imports: Vec<&'a ImportDirective<'a>>,
1689
1690     /// Table for mapping struct IDs into struct constructor IDs,
1691     /// it's not used during normal resolution, only for better error reporting.
1692     struct_constructors: DefIdMap<(Res, ty::Visibility)>,
1693
1694     /// Only used for better errors on `fn(): fn()`.
1695     current_type_ascription: Vec<Span>,
1696
1697     injected_crate: Option<Module<'a>>,
1698 }
1699
1700 /// Nothing really interesting here; it just provides memory for the rest of the crate.
1701 #[derive(Default)]
1702 pub struct ResolverArenas<'a> {
1703     modules: arena::TypedArena<ModuleData<'a>>,
1704     local_modules: RefCell<Vec<Module<'a>>>,
1705     name_bindings: arena::TypedArena<NameBinding<'a>>,
1706     import_directives: arena::TypedArena<ImportDirective<'a>>,
1707     name_resolutions: arena::TypedArena<RefCell<NameResolution<'a>>>,
1708     invocation_data: arena::TypedArena<InvocationData<'a>>,
1709     legacy_bindings: arena::TypedArena<LegacyBinding<'a>>,
1710 }
1711
1712 impl<'a> ResolverArenas<'a> {
1713     fn alloc_module(&'a self, module: ModuleData<'a>) -> Module<'a> {
1714         let module = self.modules.alloc(module);
1715         if module.def_id().map(|def_id| def_id.is_local()).unwrap_or(true) {
1716             self.local_modules.borrow_mut().push(module);
1717         }
1718         module
1719     }
1720     fn local_modules(&'a self) -> std::cell::Ref<'a, Vec<Module<'a>>> {
1721         self.local_modules.borrow()
1722     }
1723     fn alloc_name_binding(&'a self, name_binding: NameBinding<'a>) -> &'a NameBinding<'a> {
1724         self.name_bindings.alloc(name_binding)
1725     }
1726     fn alloc_import_directive(&'a self, import_directive: ImportDirective<'a>)
1727                               -> &'a ImportDirective<'_> {
1728         self.import_directives.alloc(import_directive)
1729     }
1730     fn alloc_name_resolution(&'a self) -> &'a RefCell<NameResolution<'a>> {
1731         self.name_resolutions.alloc(Default::default())
1732     }
1733     fn alloc_invocation_data(&'a self, expansion_data: InvocationData<'a>)
1734                              -> &'a InvocationData<'a> {
1735         self.invocation_data.alloc(expansion_data)
1736     }
1737     fn alloc_legacy_binding(&'a self, binding: LegacyBinding<'a>) -> &'a LegacyBinding<'a> {
1738         self.legacy_bindings.alloc(binding)
1739     }
1740 }
1741
1742 impl<'a, 'b: 'a> ty::DefIdTree for &'a Resolver<'b> {
1743     fn parent(self, id: DefId) -> Option<DefId> {
1744         match id.krate {
1745             LOCAL_CRATE => self.definitions.def_key(id.index).parent,
1746             _ => self.cstore.def_key(id).parent,
1747         }.map(|index| DefId { index, ..id })
1748     }
1749 }
1750
1751 /// This interface is used through the AST→HIR step, to embed full paths into the HIR. After that
1752 /// the resolver is no longer needed as all the relevant information is inline.
1753 impl<'a> hir::lowering::Resolver for Resolver<'a> {
1754     fn resolve_hir_path(
1755         &mut self,
1756         path: &ast::Path,
1757         is_value: bool,
1758     ) -> hir::Path {
1759         self.resolve_hir_path_cb(path, is_value,
1760                                  |resolver, span, error| resolve_error(resolver, span, error))
1761     }
1762
1763     fn resolve_str_path(
1764         &mut self,
1765         span: Span,
1766         crate_root: Option<Symbol>,
1767         components: &[Symbol],
1768         is_value: bool
1769     ) -> hir::Path {
1770         let root = if crate_root.is_some() {
1771             kw::PathRoot
1772         } else {
1773             kw::Crate
1774         };
1775         let segments = iter::once(Ident::with_empty_ctxt(root))
1776             .chain(
1777                 crate_root.into_iter()
1778                     .chain(components.iter().cloned())
1779                     .map(Ident::with_empty_ctxt)
1780             ).map(|i| self.new_ast_path_segment(i)).collect::<Vec<_>>();
1781
1782         let path = ast::Path {
1783             span,
1784             segments,
1785         };
1786
1787         self.resolve_hir_path(&path, is_value)
1788     }
1789
1790     fn get_partial_res(&mut self, id: NodeId) -> Option<PartialRes> {
1791         self.partial_res_map.get(&id).cloned()
1792     }
1793
1794     fn get_import_res(&mut self, id: NodeId) -> PerNS<Option<Res>> {
1795         self.import_res_map.get(&id).cloned().unwrap_or_default()
1796     }
1797
1798     fn get_label_res(&mut self, id: NodeId) -> Option<NodeId> {
1799         self.label_res_map.get(&id).cloned()
1800     }
1801
1802     fn definitions(&mut self) -> &mut Definitions {
1803         &mut self.definitions
1804     }
1805 }
1806
1807 impl<'a> Resolver<'a> {
1808     /// Rustdoc uses this to resolve things in a recoverable way. `ResolutionError<'a>`
1809     /// isn't something that can be returned because it can't be made to live that long,
1810     /// and also it's a private type. Fortunately rustdoc doesn't need to know the error,
1811     /// just that an error occurred.
1812     pub fn resolve_str_path_error(&mut self, span: Span, path_str: &str, is_value: bool)
1813         -> Result<hir::Path, ()> {
1814         let mut errored = false;
1815
1816         let path = if path_str.starts_with("::") {
1817             ast::Path {
1818                 span,
1819                 segments: iter::once(Ident::with_empty_ctxt(kw::PathRoot))
1820                     .chain({
1821                         path_str.split("::").skip(1).map(Ident::from_str)
1822                     })
1823                     .map(|i| self.new_ast_path_segment(i))
1824                     .collect(),
1825             }
1826         } else {
1827             ast::Path {
1828                 span,
1829                 segments: path_str
1830                     .split("::")
1831                     .map(Ident::from_str)
1832                     .map(|i| self.new_ast_path_segment(i))
1833                     .collect(),
1834             }
1835         };
1836         let path = self.resolve_hir_path_cb(&path, is_value, |_, _, _| errored = true);
1837         if errored || path.res == def::Res::Err {
1838             Err(())
1839         } else {
1840             Ok(path)
1841         }
1842     }
1843
1844     /// Like `resolve_hir_path`, but takes a callback in case there was an error.
1845     fn resolve_hir_path_cb<F>(
1846         &mut self,
1847         path: &ast::Path,
1848         is_value: bool,
1849         error_callback: F,
1850     ) -> hir::Path
1851         where F: for<'c, 'b> FnOnce(&'c mut Resolver<'_>, Span, ResolutionError<'b>)
1852     {
1853         let namespace = if is_value { ValueNS } else { TypeNS };
1854         let span = path.span;
1855         let segments = &path.segments;
1856         let path = Segment::from_path(&path);
1857         // FIXME(Manishearth): intra-doc links won't get warned of epoch changes.
1858         let res = match self.resolve_path_without_parent_scope(&path, Some(namespace), true,
1859                                                                span, CrateLint::No) {
1860             PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
1861                 module.res().unwrap(),
1862             PathResult::NonModule(path_res) if path_res.unresolved_segments() == 0 =>
1863                 path_res.base_res(),
1864             PathResult::NonModule(..) => {
1865                 error_callback(self, span, ResolutionError::FailedToResolve {
1866                     label: String::from("type-relative paths are not supported in this context"),
1867                     suggestion: None,
1868                 });
1869                 Res::Err
1870             }
1871             PathResult::Module(..) | PathResult::Indeterminate => unreachable!(),
1872             PathResult::Failed { span, label, suggestion, .. } => {
1873                 error_callback(self, span, ResolutionError::FailedToResolve {
1874                     label,
1875                     suggestion,
1876                 });
1877                 Res::Err
1878             }
1879         };
1880
1881         let segments: Vec<_> = segments.iter().map(|seg| {
1882             let mut hir_seg = hir::PathSegment::from_ident(seg.ident);
1883             hir_seg.res = Some(self.partial_res_map.get(&seg.id).map_or(def::Res::Err, |p| {
1884                 p.base_res().map_id(|_| panic!("unexpected node_id"))
1885             }));
1886             hir_seg
1887         }).collect();
1888         hir::Path {
1889             span,
1890             res: res.map_id(|_| panic!("unexpected node_id")),
1891             segments: segments.into(),
1892         }
1893     }
1894
1895     fn new_ast_path_segment(&self, ident: Ident) -> ast::PathSegment {
1896         let mut seg = ast::PathSegment::from_ident(ident);
1897         seg.id = self.session.next_node_id();
1898         seg
1899     }
1900 }
1901
1902 impl<'a> Resolver<'a> {
1903     pub fn new(session: &'a Session,
1904                cstore: &'a CStore,
1905                krate: &Crate,
1906                crate_name: &str,
1907                crate_loader: &'a mut CrateLoader<'a>,
1908                arenas: &'a ResolverArenas<'a>)
1909                -> Resolver<'a> {
1910         let root_def_id = DefId::local(CRATE_DEF_INDEX);
1911         let root_module_kind = ModuleKind::Def(
1912             DefKind::Mod,
1913             root_def_id,
1914             kw::Invalid,
1915         );
1916         let graph_root = arenas.alloc_module(ModuleData {
1917             no_implicit_prelude: attr::contains_name(&krate.attrs, sym::no_implicit_prelude),
1918             ..ModuleData::new(None, root_module_kind, root_def_id, Mark::root(), krate.span)
1919         });
1920         let mut module_map = FxHashMap::default();
1921         module_map.insert(DefId::local(CRATE_DEF_INDEX), graph_root);
1922
1923         let mut definitions = Definitions::default();
1924         DefCollector::new(&mut definitions, Mark::root())
1925             .collect_root(crate_name, session.local_crate_disambiguator());
1926
1927         let mut extern_prelude: FxHashMap<Ident, ExternPreludeEntry<'_>> =
1928             session.opts.externs.iter().map(|kv| (Ident::from_str(kv.0), Default::default()))
1929                                        .collect();
1930
1931         if !attr::contains_name(&krate.attrs, sym::no_core) {
1932             extern_prelude.insert(Ident::with_empty_ctxt(sym::core), Default::default());
1933             if !attr::contains_name(&krate.attrs, sym::no_std) {
1934                 extern_prelude.insert(Ident::with_empty_ctxt(sym::std), Default::default());
1935                 if session.rust_2018() {
1936                     extern_prelude.insert(Ident::with_empty_ctxt(sym::meta), Default::default());
1937                 }
1938             }
1939         }
1940
1941         let mut invocations = FxHashMap::default();
1942         invocations.insert(Mark::root(),
1943                            arenas.alloc_invocation_data(InvocationData::root(graph_root)));
1944
1945         let mut macro_defs = FxHashMap::default();
1946         macro_defs.insert(Mark::root(), root_def_id);
1947
1948         Resolver {
1949             session,
1950
1951             cstore,
1952
1953             definitions,
1954
1955             // The outermost module has def ID 0; this is not reflected in the
1956             // AST.
1957             graph_root,
1958             prelude: None,
1959             extern_prelude,
1960
1961             has_self: FxHashSet::default(),
1962             field_names: FxHashMap::default(),
1963
1964             determined_imports: Vec::new(),
1965             indeterminate_imports: Vec::new(),
1966
1967             current_module: graph_root,
1968             ribs: PerNS {
1969                 value_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1970                 type_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1971                 macro_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1972             },
1973             label_ribs: Vec::new(),
1974
1975             current_trait_ref: None,
1976             current_self_type: None,
1977             current_self_item: None,
1978             last_import_segment: false,
1979             blacklisted_binding: None,
1980
1981             primitive_type_table: PrimitiveTypeTable::new(),
1982
1983             partial_res_map: Default::default(),
1984             import_res_map: Default::default(),
1985             label_res_map: Default::default(),
1986             export_map: FxHashMap::default(),
1987             trait_map: Default::default(),
1988             module_map,
1989             block_map: Default::default(),
1990             extern_module_map: FxHashMap::default(),
1991             binding_parent_modules: FxHashMap::default(),
1992
1993             glob_map: Default::default(),
1994
1995             used_imports: FxHashSet::default(),
1996             maybe_unused_trait_imports: Default::default(),
1997             maybe_unused_extern_crates: Vec::new(),
1998
1999             unused_labels: FxHashMap::default(),
2000
2001             privacy_errors: Vec::new(),
2002             ambiguity_errors: Vec::new(),
2003             use_injections: Vec::new(),
2004             macro_expanded_macro_export_errors: BTreeSet::new(),
2005
2006             arenas,
2007             dummy_binding: arenas.alloc_name_binding(NameBinding {
2008                 kind: NameBindingKind::Res(Res::Err, false),
2009                 ambiguity: None,
2010                 expansion: Mark::root(),
2011                 span: DUMMY_SP,
2012                 vis: ty::Visibility::Public,
2013             }),
2014
2015             crate_loader,
2016             macro_names: FxHashSet::default(),
2017             builtin_macros: FxHashMap::default(),
2018             macro_use_prelude: FxHashMap::default(),
2019             all_macros: FxHashMap::default(),
2020             macro_map: FxHashMap::default(),
2021             invocations,
2022             macro_defs,
2023             local_macro_def_scopes: FxHashMap::default(),
2024             name_already_seen: FxHashMap::default(),
2025             potentially_unused_imports: Vec::new(),
2026             struct_constructors: Default::default(),
2027             unused_macros: FxHashSet::default(),
2028             current_type_ascription: Vec::new(),
2029             injected_crate: None,
2030         }
2031     }
2032
2033     pub fn arenas() -> ResolverArenas<'a> {
2034         Default::default()
2035     }
2036
2037     /// Runs the function on each namespace.
2038     fn per_ns<F: FnMut(&mut Self, Namespace)>(&mut self, mut f: F) {
2039         f(self, TypeNS);
2040         f(self, ValueNS);
2041         f(self, MacroNS);
2042     }
2043
2044     fn macro_def(&self, mut ctxt: SyntaxContext) -> DefId {
2045         loop {
2046             match self.macro_defs.get(&ctxt.outer()) {
2047                 Some(&def_id) => return def_id,
2048                 None => ctxt.remove_mark(),
2049             };
2050         }
2051     }
2052
2053     /// Entry point to crate resolution.
2054     pub fn resolve_crate(&mut self, krate: &Crate) {
2055         ImportResolver { resolver: self }.finalize_imports();
2056         self.current_module = self.graph_root;
2057         self.finalize_current_module_macro_resolutions();
2058
2059         visit::walk_crate(self, krate);
2060
2061         check_unused::check_crate(self, krate);
2062         self.report_errors(krate);
2063         self.crate_loader.postprocess(krate);
2064     }
2065
2066     fn new_module(
2067         &self,
2068         parent: Module<'a>,
2069         kind: ModuleKind,
2070         normal_ancestor_id: DefId,
2071         expansion: Mark,
2072         span: Span,
2073     ) -> Module<'a> {
2074         let module = ModuleData::new(Some(parent), kind, normal_ancestor_id, expansion, span);
2075         self.arenas.alloc_module(module)
2076     }
2077
2078     fn record_use(&mut self, ident: Ident, ns: Namespace,
2079                   used_binding: &'a NameBinding<'a>, is_lexical_scope: bool) {
2080         if let Some((b2, kind)) = used_binding.ambiguity {
2081             self.ambiguity_errors.push(AmbiguityError {
2082                 kind, ident, b1: used_binding, b2,
2083                 misc1: AmbiguityErrorMisc::None,
2084                 misc2: AmbiguityErrorMisc::None,
2085             });
2086         }
2087         if let NameBindingKind::Import { directive, binding, ref used } = used_binding.kind {
2088             // Avoid marking `extern crate` items that refer to a name from extern prelude,
2089             // but not introduce it, as used if they are accessed from lexical scope.
2090             if is_lexical_scope {
2091                 if let Some(entry) = self.extern_prelude.get(&ident.modern()) {
2092                     if let Some(crate_item) = entry.extern_crate_item {
2093                         if ptr::eq(used_binding, crate_item) && !entry.introduced_by_item {
2094                             return;
2095                         }
2096                     }
2097                 }
2098             }
2099             used.set(true);
2100             directive.used.set(true);
2101             self.used_imports.insert((directive.id, ns));
2102             self.add_to_glob_map(&directive, ident);
2103             self.record_use(ident, ns, binding, false);
2104         }
2105     }
2106
2107     #[inline]
2108     fn add_to_glob_map(&mut self, directive: &ImportDirective<'_>, ident: Ident) {
2109         if directive.is_glob() {
2110             self.glob_map.entry(directive.id).or_default().insert(ident.name);
2111         }
2112     }
2113
2114     /// This resolves the identifier `ident` in the namespace `ns` in the current lexical scope.
2115     /// More specifically, we proceed up the hierarchy of scopes and return the binding for
2116     /// `ident` in the first scope that defines it (or None if no scopes define it).
2117     ///
2118     /// A block's items are above its local variables in the scope hierarchy, regardless of where
2119     /// the items are defined in the block. For example,
2120     /// ```rust
2121     /// fn f() {
2122     ///    g(); // Since there are no local variables in scope yet, this resolves to the item.
2123     ///    let g = || {};
2124     ///    fn g() {}
2125     ///    g(); // This resolves to the local variable `g` since it shadows the item.
2126     /// }
2127     /// ```
2128     ///
2129     /// Invariant: This must only be called during main resolution, not during
2130     /// import resolution.
2131     fn resolve_ident_in_lexical_scope(&mut self,
2132                                       mut ident: Ident,
2133                                       ns: Namespace,
2134                                       record_used_id: Option<NodeId>,
2135                                       path_span: Span)
2136                                       -> Option<LexicalScopeBinding<'a>> {
2137         assert!(ns == TypeNS  || ns == ValueNS);
2138         if ident.name == kw::Invalid {
2139             return Some(LexicalScopeBinding::Res(Res::Err));
2140         }
2141         ident.span = if ident.name == kw::SelfUpper {
2142             // FIXME(jseyfried) improve `Self` hygiene
2143             ident.span.with_ctxt(SyntaxContext::empty())
2144         } else if ns == TypeNS {
2145             ident.span.modern()
2146         } else {
2147             ident.span.modern_and_legacy()
2148         };
2149
2150         // Walk backwards up the ribs in scope.
2151         let record_used = record_used_id.is_some();
2152         let mut module = self.graph_root;
2153         for i in (0 .. self.ribs[ns].len()).rev() {
2154             debug!("walk rib\n{:?}", self.ribs[ns][i].bindings);
2155             if let Some(res) = self.ribs[ns][i].bindings.get(&ident).cloned() {
2156                 // The ident resolves to a type parameter or local variable.
2157                 return Some(LexicalScopeBinding::Res(
2158                     self.validate_res_from_ribs(ns, i, res, record_used, path_span),
2159                 ));
2160             }
2161
2162             module = match self.ribs[ns][i].kind {
2163                 ModuleRibKind(module) => module,
2164                 MacroDefinition(def) if def == self.macro_def(ident.span.ctxt()) => {
2165                     // If an invocation of this macro created `ident`, give up on `ident`
2166                     // and switch to `ident`'s source from the macro definition.
2167                     ident.span.remove_mark();
2168                     continue
2169                 }
2170                 _ => continue,
2171             };
2172
2173             let item = self.resolve_ident_in_module_unadjusted(
2174                 ModuleOrUniformRoot::Module(module),
2175                 ident,
2176                 ns,
2177                 record_used,
2178                 path_span,
2179             );
2180             if let Ok(binding) = item {
2181                 // The ident resolves to an item.
2182                 return Some(LexicalScopeBinding::Item(binding));
2183             }
2184
2185             match module.kind {
2186                 ModuleKind::Block(..) => {}, // We can see through blocks
2187                 _ => break,
2188             }
2189         }
2190
2191         ident.span = ident.span.modern();
2192         let mut poisoned = None;
2193         loop {
2194             let opt_module = if let Some(node_id) = record_used_id {
2195                 self.hygienic_lexical_parent_with_compatibility_fallback(module, &mut ident.span,
2196                                                                          node_id, &mut poisoned)
2197             } else {
2198                 self.hygienic_lexical_parent(module, &mut ident.span)
2199             };
2200             module = unwrap_or!(opt_module, break);
2201             let orig_current_module = self.current_module;
2202             self.current_module = module; // Lexical resolutions can never be a privacy error.
2203             let result = self.resolve_ident_in_module_unadjusted(
2204                 ModuleOrUniformRoot::Module(module),
2205                 ident,
2206                 ns,
2207                 record_used,
2208                 path_span,
2209             );
2210             self.current_module = orig_current_module;
2211
2212             match result {
2213                 Ok(binding) => {
2214                     if let Some(node_id) = poisoned {
2215                         self.session.buffer_lint_with_diagnostic(
2216                             lint::builtin::PROC_MACRO_DERIVE_RESOLUTION_FALLBACK,
2217                             node_id, ident.span,
2218                             &format!("cannot find {} `{}` in this scope", ns.descr(), ident),
2219                             lint::builtin::BuiltinLintDiagnostics::
2220                                 ProcMacroDeriveResolutionFallback(ident.span),
2221                         );
2222                     }
2223                     return Some(LexicalScopeBinding::Item(binding))
2224                 }
2225                 Err(Determined) => continue,
2226                 Err(Undetermined) =>
2227                     span_bug!(ident.span, "undetermined resolution during main resolution pass"),
2228             }
2229         }
2230
2231         if !module.no_implicit_prelude {
2232             if ns == TypeNS {
2233                 if let Some(binding) = self.extern_prelude_get(ident, !record_used) {
2234                     return Some(LexicalScopeBinding::Item(binding));
2235                 }
2236             }
2237             if ns == TypeNS && is_known_tool(ident.name) {
2238                 let binding = (Res::ToolMod, ty::Visibility::Public,
2239                                DUMMY_SP, Mark::root()).to_name_binding(self.arenas);
2240                 return Some(LexicalScopeBinding::Item(binding));
2241             }
2242             if let Some(prelude) = self.prelude {
2243                 if let Ok(binding) = self.resolve_ident_in_module_unadjusted(
2244                     ModuleOrUniformRoot::Module(prelude),
2245                     ident,
2246                     ns,
2247                     false,
2248                     path_span,
2249                 ) {
2250                     return Some(LexicalScopeBinding::Item(binding));
2251                 }
2252             }
2253         }
2254
2255         None
2256     }
2257
2258     fn hygienic_lexical_parent(&mut self, module: Module<'a>, span: &mut Span)
2259                                -> Option<Module<'a>> {
2260         if !module.expansion.outer_is_descendant_of(span.ctxt()) {
2261             return Some(self.macro_def_scope(span.remove_mark()));
2262         }
2263
2264         if let ModuleKind::Block(..) = module.kind {
2265             return Some(module.parent.unwrap());
2266         }
2267
2268         None
2269     }
2270
2271     fn hygienic_lexical_parent_with_compatibility_fallback(&mut self, module: Module<'a>,
2272                                                            span: &mut Span, node_id: NodeId,
2273                                                            poisoned: &mut Option<NodeId>)
2274                                                            -> Option<Module<'a>> {
2275         if let module @ Some(..) = self.hygienic_lexical_parent(module, span) {
2276             return module;
2277         }
2278
2279         // We need to support the next case under a deprecation warning
2280         // ```
2281         // struct MyStruct;
2282         // ---- begin: this comes from a proc macro derive
2283         // mod implementation_details {
2284         //     // Note that `MyStruct` is not in scope here.
2285         //     impl SomeTrait for MyStruct { ... }
2286         // }
2287         // ---- end
2288         // ```
2289         // So we have to fall back to the module's parent during lexical resolution in this case.
2290         if let Some(parent) = module.parent {
2291             // Inner module is inside the macro, parent module is outside of the macro.
2292             if module.expansion != parent.expansion &&
2293             module.expansion.is_descendant_of(parent.expansion) {
2294                 // The macro is a proc macro derive
2295                 if module.expansion.looks_like_proc_macro_derive() {
2296                     if parent.expansion.outer_is_descendant_of(span.ctxt()) {
2297                         *poisoned = Some(node_id);
2298                         return module.parent;
2299                     }
2300                 }
2301             }
2302         }
2303
2304         None
2305     }
2306
2307     fn resolve_ident_in_module(
2308         &mut self,
2309         module: ModuleOrUniformRoot<'a>,
2310         ident: Ident,
2311         ns: Namespace,
2312         parent_scope: Option<&ParentScope<'a>>,
2313         record_used: bool,
2314         path_span: Span
2315     ) -> Result<&'a NameBinding<'a>, Determinacy> {
2316         self.resolve_ident_in_module_ext(
2317             module, ident, ns, parent_scope, record_used, path_span
2318         ).map_err(|(determinacy, _)| determinacy)
2319     }
2320
2321     fn resolve_ident_in_module_ext(
2322         &mut self,
2323         module: ModuleOrUniformRoot<'a>,
2324         mut ident: Ident,
2325         ns: Namespace,
2326         parent_scope: Option<&ParentScope<'a>>,
2327         record_used: bool,
2328         path_span: Span
2329     ) -> Result<&'a NameBinding<'a>, (Determinacy, Weak)> {
2330         let orig_current_module = self.current_module;
2331         match module {
2332             ModuleOrUniformRoot::Module(module) => {
2333                 if let Some(def) = ident.span.modernize_and_adjust(module.expansion) {
2334                     self.current_module = self.macro_def_scope(def);
2335                 }
2336             }
2337             ModuleOrUniformRoot::ExternPrelude => {
2338                 ident.span.modernize_and_adjust(Mark::root());
2339             }
2340             ModuleOrUniformRoot::CrateRootAndExternPrelude |
2341             ModuleOrUniformRoot::CurrentScope => {
2342                 // No adjustments
2343             }
2344         }
2345         let result = self.resolve_ident_in_module_unadjusted_ext(
2346             module, ident, ns, parent_scope, false, record_used, path_span,
2347         );
2348         self.current_module = orig_current_module;
2349         result
2350     }
2351
2352     fn resolve_crate_root(&mut self, ident: Ident) -> Module<'a> {
2353         let mut ctxt = ident.span.ctxt();
2354         let mark = if ident.name == kw::DollarCrate {
2355             // When resolving `$crate` from a `macro_rules!` invoked in a `macro`,
2356             // we don't want to pretend that the `macro_rules!` definition is in the `macro`
2357             // as described in `SyntaxContext::apply_mark`, so we ignore prepended modern marks.
2358             // FIXME: This is only a guess and it doesn't work correctly for `macro_rules!`
2359             // definitions actually produced by `macro` and `macro` definitions produced by
2360             // `macro_rules!`, but at least such configurations are not stable yet.
2361             ctxt = ctxt.modern_and_legacy();
2362             let mut iter = ctxt.marks().into_iter().rev().peekable();
2363             let mut result = None;
2364             // Find the last modern mark from the end if it exists.
2365             while let Some(&(mark, transparency)) = iter.peek() {
2366                 if transparency == Transparency::Opaque {
2367                     result = Some(mark);
2368                     iter.next();
2369                 } else {
2370                     break;
2371                 }
2372             }
2373             // Then find the last legacy mark from the end if it exists.
2374             for (mark, transparency) in iter {
2375                 if transparency == Transparency::SemiTransparent {
2376                     result = Some(mark);
2377                 } else {
2378                     break;
2379                 }
2380             }
2381             result
2382         } else {
2383             ctxt = ctxt.modern();
2384             ctxt.adjust(Mark::root())
2385         };
2386         let module = match mark {
2387             Some(def) => self.macro_def_scope(def),
2388             None => return self.graph_root,
2389         };
2390         self.get_module(DefId { index: CRATE_DEF_INDEX, ..module.normal_ancestor_id })
2391     }
2392
2393     fn resolve_self(&mut self, ctxt: &mut SyntaxContext, module: Module<'a>) -> Module<'a> {
2394         let mut module = self.get_module(module.normal_ancestor_id);
2395         while module.span.ctxt().modern() != *ctxt {
2396             let parent = module.parent.unwrap_or_else(|| self.macro_def_scope(ctxt.remove_mark()));
2397             module = self.get_module(parent.normal_ancestor_id);
2398         }
2399         module
2400     }
2401
2402     // AST resolution
2403     //
2404     // We maintain a list of value ribs and type ribs.
2405     //
2406     // Simultaneously, we keep track of the current position in the module
2407     // graph in the `current_module` pointer. When we go to resolve a name in
2408     // the value or type namespaces, we first look through all the ribs and
2409     // then query the module graph. When we resolve a name in the module
2410     // namespace, we can skip all the ribs (since nested modules are not
2411     // allowed within blocks in Rust) and jump straight to the current module
2412     // graph node.
2413     //
2414     // Named implementations are handled separately. When we find a method
2415     // call, we consult the module node to find all of the implementations in
2416     // scope. This information is lazily cached in the module node. We then
2417     // generate a fake "implementation scope" containing all the
2418     // implementations thus found, for compatibility with old resolve pass.
2419
2420     pub fn with_scope<F, T>(&mut self, id: NodeId, f: F) -> T
2421         where F: FnOnce(&mut Resolver<'_>) -> T
2422     {
2423         let id = self.definitions.local_def_id(id);
2424         let module = self.module_map.get(&id).cloned(); // clones a reference
2425         if let Some(module) = module {
2426             // Move down in the graph.
2427             let orig_module = replace(&mut self.current_module, module);
2428             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(module)));
2429             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(module)));
2430
2431             self.finalize_current_module_macro_resolutions();
2432             let ret = f(self);
2433
2434             self.current_module = orig_module;
2435             self.ribs[ValueNS].pop();
2436             self.ribs[TypeNS].pop();
2437             ret
2438         } else {
2439             f(self)
2440         }
2441     }
2442
2443     /// Searches the current set of local scopes for labels. Returns the first non-`None` label that
2444     /// is returned by the given predicate function
2445     ///
2446     /// Stops after meeting a closure.
2447     fn search_label<P, R>(&self, mut ident: Ident, pred: P) -> Option<R>
2448         where P: Fn(&Rib<'_, NodeId>, Ident) -> Option<R>
2449     {
2450         for rib in self.label_ribs.iter().rev() {
2451             match rib.kind {
2452                 NormalRibKind => {}
2453                 // If an invocation of this macro created `ident`, give up on `ident`
2454                 // and switch to `ident`'s source from the macro definition.
2455                 MacroDefinition(def) => {
2456                     if def == self.macro_def(ident.span.ctxt()) {
2457                         ident.span.remove_mark();
2458                     }
2459                 }
2460                 _ => {
2461                     // Do not resolve labels across function boundary
2462                     return None;
2463                 }
2464             }
2465             let r = pred(rib, ident);
2466             if r.is_some() {
2467                 return r;
2468             }
2469         }
2470         None
2471     }
2472
2473     fn resolve_adt(&mut self, item: &Item, generics: &Generics) {
2474         debug!("resolve_adt");
2475         self.with_current_self_item(item, |this| {
2476             this.with_generic_param_rib(HasGenericParams(generics, ItemRibKind), |this| {
2477                 let item_def_id = this.definitions.local_def_id(item.id);
2478                 this.with_self_rib(Res::SelfTy(None, Some(item_def_id)), |this| {
2479                     visit::walk_item(this, item);
2480                 });
2481             });
2482         });
2483     }
2484
2485     fn future_proof_import(&mut self, use_tree: &ast::UseTree) {
2486         let segments = &use_tree.prefix.segments;
2487         if !segments.is_empty() {
2488             let ident = segments[0].ident;
2489             if ident.is_path_segment_keyword() || ident.span.rust_2015() {
2490                 return;
2491             }
2492
2493             let nss = match use_tree.kind {
2494                 ast::UseTreeKind::Simple(..) if segments.len() == 1 => &[TypeNS, ValueNS][..],
2495                 _ => &[TypeNS],
2496             };
2497             let report_error = |this: &Self, ns| {
2498                 let what = if ns == TypeNS { "type parameters" } else { "local variables" };
2499                 this.session.span_err(ident.span, &format!("imports cannot refer to {}", what));
2500             };
2501
2502             for &ns in nss {
2503                 match self.resolve_ident_in_lexical_scope(ident, ns, None, use_tree.prefix.span) {
2504                     Some(LexicalScopeBinding::Res(..)) => {
2505                         report_error(self, ns);
2506                     }
2507                     Some(LexicalScopeBinding::Item(binding)) => {
2508                         let orig_blacklisted_binding =
2509                             mem::replace(&mut self.blacklisted_binding, Some(binding));
2510                         if let Some(LexicalScopeBinding::Res(..)) =
2511                                 self.resolve_ident_in_lexical_scope(ident, ns, None,
2512                                                                     use_tree.prefix.span) {
2513                             report_error(self, ns);
2514                         }
2515                         self.blacklisted_binding = orig_blacklisted_binding;
2516                     }
2517                     None => {}
2518                 }
2519             }
2520         } else if let ast::UseTreeKind::Nested(use_trees) = &use_tree.kind {
2521             for (use_tree, _) in use_trees {
2522                 self.future_proof_import(use_tree);
2523             }
2524         }
2525     }
2526
2527     fn resolve_item(&mut self, item: &Item) {
2528         let name = item.ident.name;
2529         debug!("(resolving item) resolving {} ({:?})", name, item.node);
2530
2531         match item.node {
2532             ItemKind::Ty(_, ref generics) |
2533             ItemKind::Fn(_, _, ref generics, _) |
2534             ItemKind::Existential(_, ref generics) => {
2535                 self.with_generic_param_rib(HasGenericParams(generics, ItemRibKind),
2536                                              |this| visit::walk_item(this, item));
2537             }
2538
2539             ItemKind::Enum(_, ref generics) |
2540             ItemKind::Struct(_, ref generics) |
2541             ItemKind::Union(_, ref generics) => {
2542                 self.resolve_adt(item, generics);
2543             }
2544
2545             ItemKind::Impl(.., ref generics, ref opt_trait_ref, ref self_type, ref impl_items) =>
2546                 self.resolve_implementation(generics,
2547                                             opt_trait_ref,
2548                                             &self_type,
2549                                             item.id,
2550                                             impl_items),
2551
2552             ItemKind::Trait(.., ref generics, ref bounds, ref trait_items) => {
2553                 // Create a new rib for the trait-wide type parameters.
2554                 self.with_generic_param_rib(HasGenericParams(generics, ItemRibKind), |this| {
2555                     let local_def_id = this.definitions.local_def_id(item.id);
2556                     this.with_self_rib(Res::SelfTy(Some(local_def_id), None), |this| {
2557                         this.visit_generics(generics);
2558                         walk_list!(this, visit_param_bound, bounds);
2559
2560                         for trait_item in trait_items {
2561                             let generic_params = HasGenericParams(&trait_item.generics,
2562                                                                     AssocItemRibKind);
2563                             this.with_generic_param_rib(generic_params, |this| {
2564                                 match trait_item.node {
2565                                     TraitItemKind::Const(ref ty, ref default) => {
2566                                         this.visit_ty(ty);
2567
2568                                         // Only impose the restrictions of
2569                                         // ConstRibKind for an actual constant
2570                                         // expression in a provided default.
2571                                         if let Some(ref expr) = *default{
2572                                             this.with_constant_rib(|this| {
2573                                                 this.visit_expr(expr);
2574                                             });
2575                                         }
2576                                     }
2577                                     TraitItemKind::Method(_, _) => {
2578                                         visit::walk_trait_item(this, trait_item)
2579                                     }
2580                                     TraitItemKind::Type(..) => {
2581                                         visit::walk_trait_item(this, trait_item)
2582                                     }
2583                                     TraitItemKind::Macro(_) => {
2584                                         panic!("unexpanded macro in resolve!")
2585                                     }
2586                                 };
2587                             });
2588                         }
2589                     });
2590                 });
2591             }
2592
2593             ItemKind::TraitAlias(ref generics, ref bounds) => {
2594                 // Create a new rib for the trait-wide type parameters.
2595                 self.with_generic_param_rib(HasGenericParams(generics, ItemRibKind), |this| {
2596                     let local_def_id = this.definitions.local_def_id(item.id);
2597                     this.with_self_rib(Res::SelfTy(Some(local_def_id), None), |this| {
2598                         this.visit_generics(generics);
2599                         walk_list!(this, visit_param_bound, bounds);
2600                     });
2601                 });
2602             }
2603
2604             ItemKind::Mod(_) | ItemKind::ForeignMod(_) => {
2605                 self.with_scope(item.id, |this| {
2606                     visit::walk_item(this, item);
2607                 });
2608             }
2609
2610             ItemKind::Static(ref ty, _, ref expr) |
2611             ItemKind::Const(ref ty, ref expr) => {
2612                 debug!("resolve_item ItemKind::Const");
2613                 self.with_item_rib(|this| {
2614                     this.visit_ty(ty);
2615                     this.with_constant_rib(|this| {
2616                         this.visit_expr(expr);
2617                     });
2618                 });
2619             }
2620
2621             ItemKind::Use(ref use_tree) => {
2622                 self.future_proof_import(use_tree);
2623             }
2624
2625             ItemKind::ExternCrate(..) |
2626             ItemKind::MacroDef(..) | ItemKind::GlobalAsm(..) => {
2627                 // do nothing, these are just around to be encoded
2628             }
2629
2630             ItemKind::Mac(_) => panic!("unexpanded macro in resolve!"),
2631         }
2632     }
2633
2634     fn with_generic_param_rib<'b, F>(&'b mut self, generic_params: GenericParameters<'a, 'b>, f: F)
2635         where F: FnOnce(&mut Resolver<'_>)
2636     {
2637         debug!("with_generic_param_rib");
2638         match generic_params {
2639             HasGenericParams(generics, rib_kind) => {
2640                 let mut function_type_rib = Rib::new(rib_kind);
2641                 let mut function_value_rib = Rib::new(rib_kind);
2642                 let mut seen_bindings = FxHashMap::default();
2643                 for param in &generics.params {
2644                     match param.kind {
2645                         GenericParamKind::Lifetime { .. } => {}
2646                         GenericParamKind::Type { .. } => {
2647                             let ident = param.ident.modern();
2648                             debug!("with_generic_param_rib: {}", param.id);
2649
2650                             if seen_bindings.contains_key(&ident) {
2651                                 let span = seen_bindings.get(&ident).unwrap();
2652                                 let err = ResolutionError::NameAlreadyUsedInParameterList(
2653                                     ident.name,
2654                                     span,
2655                                 );
2656                                 resolve_error(self, param.ident.span, err);
2657                             }
2658                             seen_bindings.entry(ident).or_insert(param.ident.span);
2659
2660                             // Plain insert (no renaming).
2661                             let res = Res::Def(
2662                                 DefKind::TyParam,
2663                                 self.definitions.local_def_id(param.id),
2664                             );
2665                             function_type_rib.bindings.insert(ident, res);
2666                             self.record_partial_res(param.id, PartialRes::new(res));
2667                         }
2668                         GenericParamKind::Const { .. } => {
2669                             let ident = param.ident.modern();
2670                             debug!("with_generic_param_rib: {}", param.id);
2671
2672                             if seen_bindings.contains_key(&ident) {
2673                                 let span = seen_bindings.get(&ident).unwrap();
2674                                 let err = ResolutionError::NameAlreadyUsedInParameterList(
2675                                     ident.name,
2676                                     span,
2677                                 );
2678                                 resolve_error(self, param.ident.span, err);
2679                             }
2680                             seen_bindings.entry(ident).or_insert(param.ident.span);
2681
2682                             let res = Res::Def(
2683                                 DefKind::ConstParam,
2684                                 self.definitions.local_def_id(param.id),
2685                             );
2686                             function_value_rib.bindings.insert(ident, res);
2687                             self.record_partial_res(param.id, PartialRes::new(res));
2688                         }
2689                     }
2690                 }
2691                 self.ribs[ValueNS].push(function_value_rib);
2692                 self.ribs[TypeNS].push(function_type_rib);
2693             }
2694
2695             NoGenericParams => {
2696                 // Nothing to do.
2697             }
2698         }
2699
2700         f(self);
2701
2702         if let HasGenericParams(..) = generic_params {
2703             self.ribs[TypeNS].pop();
2704             self.ribs[ValueNS].pop();
2705         }
2706     }
2707
2708     fn with_label_rib<F>(&mut self, f: F)
2709         where F: FnOnce(&mut Resolver<'_>)
2710     {
2711         self.label_ribs.push(Rib::new(NormalRibKind));
2712         f(self);
2713         self.label_ribs.pop();
2714     }
2715
2716     fn with_item_rib<F>(&mut self, f: F)
2717         where F: FnOnce(&mut Resolver<'_>)
2718     {
2719         self.ribs[ValueNS].push(Rib::new(ItemRibKind));
2720         self.ribs[TypeNS].push(Rib::new(ItemRibKind));
2721         f(self);
2722         self.ribs[TypeNS].pop();
2723         self.ribs[ValueNS].pop();
2724     }
2725
2726     fn with_constant_rib<F>(&mut self, f: F)
2727         where F: FnOnce(&mut Resolver<'_>)
2728     {
2729         debug!("with_constant_rib");
2730         self.ribs[ValueNS].push(Rib::new(ConstantItemRibKind));
2731         self.label_ribs.push(Rib::new(ConstantItemRibKind));
2732         f(self);
2733         self.label_ribs.pop();
2734         self.ribs[ValueNS].pop();
2735     }
2736
2737     fn with_current_self_type<T, F>(&mut self, self_type: &Ty, f: F) -> T
2738         where F: FnOnce(&mut Resolver<'_>) -> T
2739     {
2740         // Handle nested impls (inside fn bodies)
2741         let previous_value = replace(&mut self.current_self_type, Some(self_type.clone()));
2742         let result = f(self);
2743         self.current_self_type = previous_value;
2744         result
2745     }
2746
2747     fn with_current_self_item<T, F>(&mut self, self_item: &Item, f: F) -> T
2748         where F: FnOnce(&mut Resolver<'_>) -> T
2749     {
2750         let previous_value = replace(&mut self.current_self_item, Some(self_item.id));
2751         let result = f(self);
2752         self.current_self_item = previous_value;
2753         result
2754     }
2755
2756     /// This is called to resolve a trait reference from an `impl` (i.e., `impl Trait for Foo`).
2757     fn with_optional_trait_ref<T, F>(&mut self, opt_trait_ref: Option<&TraitRef>, f: F) -> T
2758         where F: FnOnce(&mut Resolver<'_>, Option<DefId>) -> T
2759     {
2760         let mut new_val = None;
2761         let mut new_id = None;
2762         if let Some(trait_ref) = opt_trait_ref {
2763             let path: Vec<_> = Segment::from_path(&trait_ref.path);
2764             let res = self.smart_resolve_path_fragment(
2765                 trait_ref.ref_id,
2766                 None,
2767                 &path,
2768                 trait_ref.path.span,
2769                 PathSource::Trait(AliasPossibility::No),
2770                 CrateLint::SimplePath(trait_ref.ref_id),
2771             ).base_res();
2772             if res != Res::Err {
2773                 new_id = Some(res.def_id());
2774                 let span = trait_ref.path.span;
2775                 if let PathResult::Module(ModuleOrUniformRoot::Module(module)) =
2776                     self.resolve_path_without_parent_scope(
2777                         &path,
2778                         Some(TypeNS),
2779                         false,
2780                         span,
2781                         CrateLint::SimplePath(trait_ref.ref_id),
2782                     )
2783                 {
2784                     new_val = Some((module, trait_ref.clone()));
2785                 }
2786             }
2787         }
2788         let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
2789         let result = f(self, new_id);
2790         self.current_trait_ref = original_trait_ref;
2791         result
2792     }
2793
2794     fn with_self_rib<F>(&mut self, self_res: Res, f: F)
2795         where F: FnOnce(&mut Resolver<'_>)
2796     {
2797         let mut self_type_rib = Rib::new(NormalRibKind);
2798
2799         // Plain insert (no renaming, since types are not currently hygienic)
2800         self_type_rib.bindings.insert(Ident::with_empty_ctxt(kw::SelfUpper), self_res);
2801         self.ribs[TypeNS].push(self_type_rib);
2802         f(self);
2803         self.ribs[TypeNS].pop();
2804     }
2805
2806     fn with_self_struct_ctor_rib<F>(&mut self, impl_id: DefId, f: F)
2807         where F: FnOnce(&mut Resolver<'_>)
2808     {
2809         let self_res = Res::SelfCtor(impl_id);
2810         let mut self_type_rib = Rib::new(NormalRibKind);
2811         self_type_rib.bindings.insert(Ident::with_empty_ctxt(kw::SelfUpper), self_res);
2812         self.ribs[ValueNS].push(self_type_rib);
2813         f(self);
2814         self.ribs[ValueNS].pop();
2815     }
2816
2817     fn resolve_implementation(&mut self,
2818                               generics: &Generics,
2819                               opt_trait_reference: &Option<TraitRef>,
2820                               self_type: &Ty,
2821                               item_id: NodeId,
2822                               impl_items: &[ImplItem]) {
2823         debug!("resolve_implementation");
2824         // If applicable, create a rib for the type parameters.
2825         self.with_generic_param_rib(HasGenericParams(generics, ItemRibKind), |this| {
2826             // Dummy self type for better errors if `Self` is used in the trait path.
2827             this.with_self_rib(Res::SelfTy(None, None), |this| {
2828                 // Resolve the trait reference, if necessary.
2829                 this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| {
2830                     let item_def_id = this.definitions.local_def_id(item_id);
2831                     this.with_self_rib(Res::SelfTy(trait_id, Some(item_def_id)), |this| {
2832                         if let Some(trait_ref) = opt_trait_reference.as_ref() {
2833                             // Resolve type arguments in the trait path.
2834                             visit::walk_trait_ref(this, trait_ref);
2835                         }
2836                         // Resolve the self type.
2837                         this.visit_ty(self_type);
2838                         // Resolve the generic parameters.
2839                         this.visit_generics(generics);
2840                         // Resolve the items within the impl.
2841                         this.with_current_self_type(self_type, |this| {
2842                             this.with_self_struct_ctor_rib(item_def_id, |this| {
2843                                 debug!("resolve_implementation with_self_struct_ctor_rib");
2844                                 for impl_item in impl_items {
2845                                     this.resolve_visibility(&impl_item.vis);
2846
2847                                     // We also need a new scope for the impl item type parameters.
2848                                     let generic_params = HasGenericParams(&impl_item.generics,
2849                                                                           AssocItemRibKind);
2850                                     this.with_generic_param_rib(generic_params, |this| {
2851                                         use self::ResolutionError::*;
2852                                         match impl_item.node {
2853                                             ImplItemKind::Const(..) => {
2854                                                 debug!(
2855                                                     "resolve_implementation ImplItemKind::Const",
2856                                                 );
2857                                                 // If this is a trait impl, ensure the const
2858                                                 // exists in trait
2859                                                 this.check_trait_item(
2860                                                     impl_item.ident,
2861                                                     ValueNS,
2862                                                     impl_item.span,
2863                                                     |n, s| ConstNotMemberOfTrait(n, s),
2864                                                 );
2865
2866                                                 this.with_constant_rib(|this| {
2867                                                     visit::walk_impl_item(this, impl_item)
2868                                                 });
2869                                             }
2870                                             ImplItemKind::Method(..) => {
2871                                                 // If this is a trait impl, ensure the method
2872                                                 // exists in trait
2873                                                 this.check_trait_item(impl_item.ident,
2874                                                                       ValueNS,
2875                                                                       impl_item.span,
2876                                                     |n, s| MethodNotMemberOfTrait(n, s));
2877
2878                                                 visit::walk_impl_item(this, impl_item);
2879                                             }
2880                                             ImplItemKind::Type(ref ty) => {
2881                                                 // If this is a trait impl, ensure the type
2882                                                 // exists in trait
2883                                                 this.check_trait_item(impl_item.ident,
2884                                                                       TypeNS,
2885                                                                       impl_item.span,
2886                                                     |n, s| TypeNotMemberOfTrait(n, s));
2887
2888                                                 this.visit_ty(ty);
2889                                             }
2890                                             ImplItemKind::Existential(ref bounds) => {
2891                                                 // If this is a trait impl, ensure the type
2892                                                 // exists in trait
2893                                                 this.check_trait_item(impl_item.ident,
2894                                                                       TypeNS,
2895                                                                       impl_item.span,
2896                                                     |n, s| TypeNotMemberOfTrait(n, s));
2897
2898                                                 for bound in bounds {
2899                                                     this.visit_param_bound(bound);
2900                                                 }
2901                                             }
2902                                             ImplItemKind::Macro(_) =>
2903                                                 panic!("unexpanded macro in resolve!"),
2904                                         }
2905                                     });
2906                                 }
2907                             });
2908                         });
2909                     });
2910                 });
2911             });
2912         });
2913     }
2914
2915     fn check_trait_item<F>(&mut self, ident: Ident, ns: Namespace, span: Span, err: F)
2916         where F: FnOnce(Name, &str) -> ResolutionError<'_>
2917     {
2918         // If there is a TraitRef in scope for an impl, then the method must be in the
2919         // trait.
2920         if let Some((module, _)) = self.current_trait_ref {
2921             if self.resolve_ident_in_module(
2922                 ModuleOrUniformRoot::Module(module),
2923                 ident,
2924                 ns,
2925                 None,
2926                 false,
2927                 span,
2928             ).is_err() {
2929                 let path = &self.current_trait_ref.as_ref().unwrap().1.path;
2930                 resolve_error(self, span, err(ident.name, &path_names_to_string(path)));
2931             }
2932         }
2933     }
2934
2935     fn resolve_local(&mut self, local: &Local) {
2936         // Resolve the type.
2937         walk_list!(self, visit_ty, &local.ty);
2938
2939         // Resolve the initializer.
2940         walk_list!(self, visit_expr, &local.init);
2941
2942         // Resolve the pattern.
2943         self.resolve_pattern(&local.pat, PatternSource::Let, &mut FxHashMap::default());
2944     }
2945
2946     // build a map from pattern identifiers to binding-info's.
2947     // this is done hygienically. This could arise for a macro
2948     // that expands into an or-pattern where one 'x' was from the
2949     // user and one 'x' came from the macro.
2950     fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
2951         let mut binding_map = FxHashMap::default();
2952
2953         pat.walk(&mut |pat| {
2954             if let PatKind::Ident(binding_mode, ident, ref sub_pat) = pat.node {
2955                 if sub_pat.is_some() || match self.partial_res_map.get(&pat.id)
2956                                                                   .map(|res| res.base_res()) {
2957                     Some(Res::Local(..)) => true,
2958                     _ => false,
2959                 } {
2960                     let binding_info = BindingInfo { span: ident.span, binding_mode: binding_mode };
2961                     binding_map.insert(ident, binding_info);
2962                 }
2963             }
2964             true
2965         });
2966
2967         binding_map
2968     }
2969
2970     // check that all of the arms in an or-pattern have exactly the
2971     // same set of bindings, with the same binding modes for each.
2972     fn check_consistent_bindings(&mut self, pats: &[P<Pat>]) {
2973         if pats.is_empty() {
2974             return;
2975         }
2976
2977         let mut missing_vars = FxHashMap::default();
2978         let mut inconsistent_vars = FxHashMap::default();
2979         for (i, p) in pats.iter().enumerate() {
2980             let map_i = self.binding_mode_map(&p);
2981
2982             for (j, q) in pats.iter().enumerate() {
2983                 if i == j {
2984                     continue;
2985                 }
2986
2987                 let map_j = self.binding_mode_map(&q);
2988                 for (&key, &binding_i) in &map_i {
2989                     if map_j.is_empty() {                   // Account for missing bindings when
2990                         let binding_error = missing_vars    // map_j has none.
2991                             .entry(key.name)
2992                             .or_insert(BindingError {
2993                                 name: key.name,
2994                                 origin: BTreeSet::new(),
2995                                 target: BTreeSet::new(),
2996                             });
2997                         binding_error.origin.insert(binding_i.span);
2998                         binding_error.target.insert(q.span);
2999                     }
3000                     for (&key_j, &binding_j) in &map_j {
3001                         match map_i.get(&key_j) {
3002                             None => {  // missing binding
3003                                 let binding_error = missing_vars
3004                                     .entry(key_j.name)
3005                                     .or_insert(BindingError {
3006                                         name: key_j.name,
3007                                         origin: BTreeSet::new(),
3008                                         target: BTreeSet::new(),
3009                                     });
3010                                 binding_error.origin.insert(binding_j.span);
3011                                 binding_error.target.insert(p.span);
3012                             }
3013                             Some(binding_i) => {  // check consistent binding
3014                                 if binding_i.binding_mode != binding_j.binding_mode {
3015                                     inconsistent_vars
3016                                         .entry(key.name)
3017                                         .or_insert((binding_j.span, binding_i.span));
3018                                 }
3019                             }
3020                         }
3021                     }
3022                 }
3023             }
3024         }
3025         let mut missing_vars = missing_vars.iter().collect::<Vec<_>>();
3026         missing_vars.sort();
3027         for (_, v) in missing_vars {
3028             resolve_error(self,
3029                           *v.origin.iter().next().unwrap(),
3030                           ResolutionError::VariableNotBoundInPattern(v));
3031         }
3032         let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
3033         inconsistent_vars.sort();
3034         for (name, v) in inconsistent_vars {
3035             resolve_error(self, v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
3036         }
3037     }
3038
3039     fn resolve_arm(&mut self, arm: &Arm) {
3040         self.ribs[ValueNS].push(Rib::new(NormalRibKind));
3041
3042         let mut bindings_list = FxHashMap::default();
3043         for pattern in &arm.pats {
3044             self.resolve_pattern(&pattern, PatternSource::Match, &mut bindings_list);
3045         }
3046
3047         // This has to happen *after* we determine which pat_idents are variants.
3048         self.check_consistent_bindings(&arm.pats);
3049
3050         if let Some(ast::Guard::If(ref expr)) = arm.guard {
3051             self.visit_expr(expr)
3052         }
3053         self.visit_expr(&arm.body);
3054
3055         self.ribs[ValueNS].pop();
3056     }
3057
3058     fn resolve_block(&mut self, block: &Block) {
3059         debug!("(resolving block) entering block");
3060         // Move down in the graph, if there's an anonymous module rooted here.
3061         let orig_module = self.current_module;
3062         let anonymous_module = self.block_map.get(&block.id).cloned(); // clones a reference
3063
3064         let mut num_macro_definition_ribs = 0;
3065         if let Some(anonymous_module) = anonymous_module {
3066             debug!("(resolving block) found anonymous module, moving down");
3067             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
3068             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
3069             self.current_module = anonymous_module;
3070             self.finalize_current_module_macro_resolutions();
3071         } else {
3072             self.ribs[ValueNS].push(Rib::new(NormalRibKind));
3073         }
3074
3075         // Descend into the block.
3076         for stmt in &block.stmts {
3077             if let ast::StmtKind::Item(ref item) = stmt.node {
3078                 if let ast::ItemKind::MacroDef(..) = item.node {
3079                     num_macro_definition_ribs += 1;
3080                     let res = self.definitions.local_def_id(item.id);
3081                     self.ribs[ValueNS].push(Rib::new(MacroDefinition(res)));
3082                     self.label_ribs.push(Rib::new(MacroDefinition(res)));
3083                 }
3084             }
3085
3086             self.visit_stmt(stmt);
3087         }
3088
3089         // Move back up.
3090         self.current_module = orig_module;
3091         for _ in 0 .. num_macro_definition_ribs {
3092             self.ribs[ValueNS].pop();
3093             self.label_ribs.pop();
3094         }
3095         self.ribs[ValueNS].pop();
3096         if anonymous_module.is_some() {
3097             self.ribs[TypeNS].pop();
3098         }
3099         debug!("(resolving block) leaving block");
3100     }
3101
3102     fn fresh_binding(&mut self,
3103                      ident: Ident,
3104                      pat_id: NodeId,
3105                      outer_pat_id: NodeId,
3106                      pat_src: PatternSource,
3107                      bindings: &mut FxHashMap<Ident, NodeId>)
3108                      -> Res {
3109         // Add the binding to the local ribs, if it
3110         // doesn't already exist in the bindings map. (We
3111         // must not add it if it's in the bindings map
3112         // because that breaks the assumptions later
3113         // passes make about or-patterns.)
3114         let ident = ident.modern_and_legacy();
3115         let mut res = Res::Local(pat_id);
3116         match bindings.get(&ident).cloned() {
3117             Some(id) if id == outer_pat_id => {
3118                 // `Variant(a, a)`, error
3119                 resolve_error(
3120                     self,
3121                     ident.span,
3122                     ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(
3123                         &ident.as_str())
3124                 );
3125             }
3126             Some(..) if pat_src == PatternSource::FnParam => {
3127                 // `fn f(a: u8, a: u8)`, error
3128                 resolve_error(
3129                     self,
3130                     ident.span,
3131                     ResolutionError::IdentifierBoundMoreThanOnceInParameterList(
3132                         &ident.as_str())
3133                 );
3134             }
3135             Some(..) if pat_src == PatternSource::Match ||
3136                         pat_src == PatternSource::IfLet ||
3137                         pat_src == PatternSource::WhileLet => {
3138                 // `Variant1(a) | Variant2(a)`, ok
3139                 // Reuse definition from the first `a`.
3140                 res = self.ribs[ValueNS].last_mut().unwrap().bindings[&ident];
3141             }
3142             Some(..) => {
3143                 span_bug!(ident.span, "two bindings with the same name from \
3144                                        unexpected pattern source {:?}", pat_src);
3145             }
3146             None => {
3147                 // A completely fresh binding, add to the lists if it's valid.
3148                 if ident.name != kw::Invalid {
3149                     bindings.insert(ident, outer_pat_id);
3150                     self.ribs[ValueNS].last_mut().unwrap().bindings.insert(ident, res);
3151                 }
3152             }
3153         }
3154
3155         res
3156     }
3157
3158     fn resolve_pattern(&mut self,
3159                        pat: &Pat,
3160                        pat_src: PatternSource,
3161                        // Maps idents to the node ID for the
3162                        // outermost pattern that binds them.
3163                        bindings: &mut FxHashMap<Ident, NodeId>) {
3164         // Visit all direct subpatterns of this pattern.
3165         let outer_pat_id = pat.id;
3166         pat.walk(&mut |pat| {
3167             debug!("resolve_pattern pat={:?} node={:?}", pat, pat.node);
3168             match pat.node {
3169                 PatKind::Ident(bmode, ident, ref opt_pat) => {
3170                     // First try to resolve the identifier as some existing
3171                     // entity, then fall back to a fresh binding.
3172                     let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS,
3173                                                                       None, pat.span)
3174                                       .and_then(LexicalScopeBinding::item);
3175                     let res = binding.map(NameBinding::res).and_then(|res| {
3176                         let is_syntactic_ambiguity = opt_pat.is_none() &&
3177                             bmode == BindingMode::ByValue(Mutability::Immutable);
3178                         match res {
3179                             Res::Def(DefKind::Ctor(_, CtorKind::Const), _) |
3180                             Res::Def(DefKind::Const, _) if is_syntactic_ambiguity => {
3181                                 // Disambiguate in favor of a unit struct/variant
3182                                 // or constant pattern.
3183                                 self.record_use(ident, ValueNS, binding.unwrap(), false);
3184                                 Some(res)
3185                             }
3186                             Res::Def(DefKind::Ctor(..), _)
3187                             | Res::Def(DefKind::Const, _)
3188                             | Res::Def(DefKind::Static, _) => {
3189                                 // This is unambiguously a fresh binding, either syntactically
3190                                 // (e.g., `IDENT @ PAT` or `ref IDENT`) or because `IDENT` resolves
3191                                 // to something unusable as a pattern (e.g., constructor function),
3192                                 // but we still conservatively report an error, see
3193                                 // issues/33118#issuecomment-233962221 for one reason why.
3194                                 resolve_error(
3195                                     self,
3196                                     ident.span,
3197                                     ResolutionError::BindingShadowsSomethingUnacceptable(
3198                                         pat_src.descr(), ident.name, binding.unwrap())
3199                                 );
3200                                 None
3201                             }
3202                             Res::Def(DefKind::Fn, _) | Res::Err => {
3203                                 // These entities are explicitly allowed
3204                                 // to be shadowed by fresh bindings.
3205                                 None
3206                             }
3207                             res => {
3208                                 span_bug!(ident.span, "unexpected resolution for an \
3209                                                        identifier in pattern: {:?}", res);
3210                             }
3211                         }
3212                     }).unwrap_or_else(|| {
3213                         self.fresh_binding(ident, pat.id, outer_pat_id, pat_src, bindings)
3214                     });
3215
3216                     self.record_partial_res(pat.id, PartialRes::new(res));
3217                 }
3218
3219                 PatKind::TupleStruct(ref path, ..) => {
3220                     self.smart_resolve_path(pat.id, None, path, PathSource::TupleStruct);
3221                 }
3222
3223                 PatKind::Path(ref qself, ref path) => {
3224                     self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
3225                 }
3226
3227                 PatKind::Struct(ref path, ..) => {
3228                     self.smart_resolve_path(pat.id, None, path, PathSource::Struct);
3229                 }
3230
3231                 _ => {}
3232             }
3233             true
3234         });
3235
3236         visit::walk_pat(self, pat);
3237     }
3238
3239     // High-level and context dependent path resolution routine.
3240     // Resolves the path and records the resolution into definition map.
3241     // If resolution fails tries several techniques to find likely
3242     // resolution candidates, suggest imports or other help, and report
3243     // errors in user friendly way.
3244     fn smart_resolve_path(&mut self,
3245                           id: NodeId,
3246                           qself: Option<&QSelf>,
3247                           path: &Path,
3248                           source: PathSource<'_>) {
3249         self.smart_resolve_path_fragment(
3250             id,
3251             qself,
3252             &Segment::from_path(path),
3253             path.span,
3254             source,
3255             CrateLint::SimplePath(id),
3256         );
3257     }
3258
3259     fn smart_resolve_path_fragment(&mut self,
3260                                    id: NodeId,
3261                                    qself: Option<&QSelf>,
3262                                    path: &[Segment],
3263                                    span: Span,
3264                                    source: PathSource<'_>,
3265                                    crate_lint: CrateLint)
3266                                    -> PartialRes {
3267         let ns = source.namespace();
3268         let is_expected = &|res| source.is_expected(res);
3269
3270         let report_errors = |this: &mut Self, res: Option<Res>| {
3271             let (err, candidates) = this.smart_resolve_report_errors(path, span, source, res);
3272             let def_id = this.current_module.normal_ancestor_id;
3273             let node_id = this.definitions.as_local_node_id(def_id).unwrap();
3274             let better = res.is_some();
3275             this.use_injections.push(UseError { err, candidates, node_id, better });
3276             PartialRes::new(Res::Err)
3277         };
3278
3279         let partial_res = match self.resolve_qpath_anywhere(
3280             id,
3281             qself,
3282             path,
3283             ns,
3284             span,
3285             source.defer_to_typeck(),
3286             source.global_by_default(),
3287             crate_lint,
3288         ) {
3289             Some(partial_res) if partial_res.unresolved_segments() == 0 => {
3290                 if is_expected(partial_res.base_res()) || partial_res.base_res() == Res::Err {
3291                     partial_res
3292                 } else {
3293                     // Add a temporary hack to smooth the transition to new struct ctor
3294                     // visibility rules. See #38932 for more details.
3295                     let mut res = None;
3296                     if let Res::Def(DefKind::Struct, def_id) = partial_res.base_res() {
3297                         if let Some((ctor_res, ctor_vis))
3298                                 = self.struct_constructors.get(&def_id).cloned() {
3299                             if is_expected(ctor_res) && self.is_accessible(ctor_vis) {
3300                                 let lint = lint::builtin::LEGACY_CONSTRUCTOR_VISIBILITY;
3301                                 self.session.buffer_lint(lint, id, span,
3302                                     "private struct constructors are not usable through \
3303                                      re-exports in outer modules",
3304                                 );
3305                                 res = Some(PartialRes::new(ctor_res));
3306                             }
3307                         }
3308                     }
3309
3310                     res.unwrap_or_else(|| report_errors(self, Some(partial_res.base_res())))
3311                 }
3312             }
3313             Some(partial_res) if source.defer_to_typeck() => {
3314                 // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
3315                 // or `<T>::A::B`. If `B` should be resolved in value namespace then
3316                 // it needs to be added to the trait map.
3317                 if ns == ValueNS {
3318                     let item_name = path.last().unwrap().ident;
3319                     let traits = self.get_traits_containing_item(item_name, ns);
3320                     self.trait_map.insert(id, traits);
3321                 }
3322
3323                 let mut std_path = vec![Segment::from_ident(Ident::with_empty_ctxt(sym::std))];
3324                 std_path.extend(path);
3325                 if self.primitive_type_table.primitive_types.contains_key(&path[0].ident.name) {
3326                     let cl = CrateLint::No;
3327                     let ns = Some(ns);
3328                     if let PathResult::Module(_) | PathResult::NonModule(_) =
3329                         self.resolve_path_without_parent_scope(&std_path, ns, false, span, cl)
3330                     {
3331                         // check if we wrote `str::from_utf8` instead of `std::str::from_utf8`
3332                         let item_span = path.iter().last().map(|segment| segment.ident.span)
3333                             .unwrap_or(span);
3334                         debug!("accessed item from `std` submodule as a bare type {:?}", std_path);
3335                         let mut hm = self.session.confused_type_with_std_module.borrow_mut();
3336                         hm.insert(item_span, span);
3337                         // In some places (E0223) we only have access to the full path
3338                         hm.insert(span, span);
3339                     }
3340                 }
3341                 partial_res
3342             }
3343             _ => report_errors(self, None)
3344         };
3345
3346         if let PathSource::TraitItem(..) = source {} else {
3347             // Avoid recording definition of `A::B` in `<T as A>::B::C`.
3348             self.record_partial_res(id, partial_res);
3349         }
3350         partial_res
3351     }
3352
3353     /// Only used in a specific case of type ascription suggestions
3354     #[doc(hidden)]
3355     fn get_colon_suggestion_span(&self, start: Span) -> Span {
3356         let cm = self.session.source_map();
3357         start.to(cm.next_point(start))
3358     }
3359
3360     fn type_ascription_suggestion(
3361         &self,
3362         err: &mut DiagnosticBuilder<'_>,
3363         base_span: Span,
3364     ) {
3365         debug!("type_ascription_suggetion {:?}", base_span);
3366         let cm = self.session.source_map();
3367         let base_snippet = cm.span_to_snippet(base_span);
3368         debug!("self.current_type_ascription {:?}", self.current_type_ascription);
3369         if let Some(sp) = self.current_type_ascription.last() {
3370             let mut sp = *sp;
3371             loop {
3372                 // Try to find the `:`; bail on first non-':' / non-whitespace.
3373                 sp = cm.next_point(sp);
3374                 if let Ok(snippet) = cm.span_to_snippet(sp.to(cm.next_point(sp))) {
3375                     let line_sp = cm.lookup_char_pos(sp.hi()).line;
3376                     let line_base_sp = cm.lookup_char_pos(base_span.lo()).line;
3377                     if snippet == ":" {
3378                         let mut show_label = true;
3379                         if line_sp != line_base_sp {
3380                             err.span_suggestion_short(
3381                                 sp,
3382                                 "did you mean to use `;` here instead?",
3383                                 ";".to_string(),
3384                                 Applicability::MaybeIncorrect,
3385                             );
3386                         } else {
3387                             let colon_sp = self.get_colon_suggestion_span(sp);
3388                             let after_colon_sp = self.get_colon_suggestion_span(
3389                                 colon_sp.shrink_to_hi(),
3390                             );
3391                             if !cm.span_to_snippet(after_colon_sp).map(|s| s == " ")
3392                                 .unwrap_or(false)
3393                             {
3394                                 err.span_suggestion(
3395                                     colon_sp,
3396                                     "maybe you meant to write a path separator here",
3397                                     "::".to_string(),
3398                                     Applicability::MaybeIncorrect,
3399                                 );
3400                                 show_label = false;
3401                             }
3402                             if let Ok(base_snippet) = base_snippet {
3403                                 let mut sp = after_colon_sp;
3404                                 for _ in 0..100 {
3405                                     // Try to find an assignment
3406                                     sp = cm.next_point(sp);
3407                                     let snippet = cm.span_to_snippet(sp.to(cm.next_point(sp)));
3408                                     match snippet {
3409                                         Ok(ref x) if x.as_str() == "=" => {
3410                                             err.span_suggestion(
3411                                                 base_span,
3412                                                 "maybe you meant to write an assignment here",
3413                                                 format!("let {}", base_snippet),
3414                                                 Applicability::MaybeIncorrect,
3415                                             );
3416                                             show_label = false;
3417                                             break;
3418                                         }
3419                                         Ok(ref x) if x.as_str() == "\n" => break,
3420                                         Err(_) => break,
3421                                         Ok(_) => {}
3422                                     }
3423                                 }
3424                             }
3425                         }
3426                         if show_label {
3427                             err.span_label(base_span,
3428                                            "expecting a type here because of type ascription");
3429                         }
3430                         break;
3431                     } else if !snippet.trim().is_empty() {
3432                         debug!("tried to find type ascription `:` token, couldn't find it");
3433                         break;
3434                     }
3435                 } else {
3436                     break;
3437                 }
3438             }
3439         }
3440     }
3441
3442     fn self_type_is_available(&mut self, span: Span) -> bool {
3443         let binding = self.resolve_ident_in_lexical_scope(Ident::with_empty_ctxt(kw::SelfUpper),
3444                                                           TypeNS, None, span);
3445         if let Some(LexicalScopeBinding::Res(res)) = binding { res != Res::Err } else { false }
3446     }
3447
3448     fn self_value_is_available(&mut self, self_span: Span, path_span: Span) -> bool {
3449         let ident = Ident::new(kw::SelfLower, self_span);
3450         let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, None, path_span);
3451         if let Some(LexicalScopeBinding::Res(res)) = binding { res != Res::Err } else { false }
3452     }
3453
3454     // Resolve in alternative namespaces if resolution in the primary namespace fails.
3455     fn resolve_qpath_anywhere(
3456         &mut self,
3457         id: NodeId,
3458         qself: Option<&QSelf>,
3459         path: &[Segment],
3460         primary_ns: Namespace,
3461         span: Span,
3462         defer_to_typeck: bool,
3463         global_by_default: bool,
3464         crate_lint: CrateLint,
3465     ) -> Option<PartialRes> {
3466         let mut fin_res = None;
3467         // FIXME: can't resolve paths in macro namespace yet, macros are
3468         // processed by the little special hack below.
3469         for (i, ns) in [primary_ns, TypeNS, ValueNS, /*MacroNS*/].iter().cloned().enumerate() {
3470             if i == 0 || ns != primary_ns {
3471                 match self.resolve_qpath(id, qself, path, ns, span, global_by_default, crate_lint) {
3472                     // If defer_to_typeck, then resolution > no resolution,
3473                     // otherwise full resolution > partial resolution > no resolution.
3474                     Some(partial_res) if partial_res.unresolved_segments() == 0 ||
3475                                          defer_to_typeck =>
3476                         return Some(partial_res),
3477                     partial_res => if fin_res.is_none() { fin_res = partial_res },
3478                 };
3479             }
3480         }
3481         if primary_ns != MacroNS &&
3482            (self.macro_names.contains(&path[0].ident.modern()) ||
3483             self.builtin_macros.get(&path[0].ident.name).cloned()
3484                                .and_then(NameBinding::macro_kind) == Some(MacroKind::Bang) ||
3485             self.macro_use_prelude.get(&path[0].ident.name).cloned()
3486                                   .and_then(NameBinding::macro_kind) == Some(MacroKind::Bang)) {
3487             // Return some dummy definition, it's enough for error reporting.
3488             return Some(PartialRes::new(Res::Def(
3489                 DefKind::Macro(MacroKind::Bang),
3490                 DefId::local(CRATE_DEF_INDEX),
3491             )));
3492         }
3493         fin_res
3494     }
3495
3496     /// Handles paths that may refer to associated items.
3497     fn resolve_qpath(
3498         &mut self,
3499         id: NodeId,
3500         qself: Option<&QSelf>,
3501         path: &[Segment],
3502         ns: Namespace,
3503         span: Span,
3504         global_by_default: bool,
3505         crate_lint: CrateLint,
3506     ) -> Option<PartialRes> {
3507         debug!(
3508             "resolve_qpath(id={:?}, qself={:?}, path={:?}, \
3509              ns={:?}, span={:?}, global_by_default={:?})",
3510             id,
3511             qself,
3512             path,
3513             ns,
3514             span,
3515             global_by_default,
3516         );
3517
3518         if let Some(qself) = qself {
3519             if qself.position == 0 {
3520                 // This is a case like `<T>::B`, where there is no
3521                 // trait to resolve.  In that case, we leave the `B`
3522                 // segment to be resolved by type-check.
3523                 return Some(PartialRes::with_unresolved_segments(
3524                     Res::Def(DefKind::Mod, DefId::local(CRATE_DEF_INDEX)), path.len()
3525                 ));
3526             }
3527
3528             // Make sure `A::B` in `<T as A::B>::C` is a trait item.
3529             //
3530             // Currently, `path` names the full item (`A::B::C`, in
3531             // our example).  so we extract the prefix of that that is
3532             // the trait (the slice upto and including
3533             // `qself.position`). And then we recursively resolve that,
3534             // but with `qself` set to `None`.
3535             //
3536             // However, setting `qself` to none (but not changing the
3537             // span) loses the information about where this path
3538             // *actually* appears, so for the purposes of the crate
3539             // lint we pass along information that this is the trait
3540             // name from a fully qualified path, and this also
3541             // contains the full span (the `CrateLint::QPathTrait`).
3542             let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
3543             let partial_res = self.smart_resolve_path_fragment(
3544                 id,
3545                 None,
3546                 &path[..=qself.position],
3547                 span,
3548                 PathSource::TraitItem(ns),
3549                 CrateLint::QPathTrait {
3550                     qpath_id: id,
3551                     qpath_span: qself.path_span,
3552                 },
3553             );
3554
3555             // The remaining segments (the `C` in our example) will
3556             // have to be resolved by type-check, since that requires doing
3557             // trait resolution.
3558             return Some(PartialRes::with_unresolved_segments(
3559                 partial_res.base_res(),
3560                 partial_res.unresolved_segments() + path.len() - qself.position - 1,
3561             ));
3562         }
3563
3564         let result = match self.resolve_path_without_parent_scope(
3565             &path,
3566             Some(ns),
3567             true,
3568             span,
3569             crate_lint,
3570         ) {
3571             PathResult::NonModule(path_res) => path_res,
3572             PathResult::Module(ModuleOrUniformRoot::Module(module)) if !module.is_normal() => {
3573                 PartialRes::new(module.res().unwrap())
3574             }
3575             // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
3576             // don't report an error right away, but try to fallback to a primitive type.
3577             // So, we are still able to successfully resolve something like
3578             //
3579             // use std::u8; // bring module u8 in scope
3580             // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
3581             //     u8::max_value() // OK, resolves to associated function <u8>::max_value,
3582             //                     // not to non-existent std::u8::max_value
3583             // }
3584             //
3585             // Such behavior is required for backward compatibility.
3586             // The same fallback is used when `a` resolves to nothing.
3587             PathResult::Module(ModuleOrUniformRoot::Module(_)) |
3588             PathResult::Failed { .. }
3589                     if (ns == TypeNS || path.len() > 1) &&
3590                        self.primitive_type_table.primitive_types
3591                            .contains_key(&path[0].ident.name) => {
3592                 let prim = self.primitive_type_table.primitive_types[&path[0].ident.name];
3593                 PartialRes::with_unresolved_segments(Res::PrimTy(prim), path.len() - 1)
3594             }
3595             PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3596                 PartialRes::new(module.res().unwrap()),
3597             PathResult::Failed { is_error_from_last_segment: false, span, label, suggestion } => {
3598                 resolve_error(self, span, ResolutionError::FailedToResolve { label, suggestion });
3599                 PartialRes::new(Res::Err)
3600             }
3601             PathResult::Module(..) | PathResult::Failed { .. } => return None,
3602             PathResult::Indeterminate => bug!("indetermined path result in resolve_qpath"),
3603         };
3604
3605         if path.len() > 1 && !global_by_default && result.base_res() != Res::Err &&
3606            path[0].ident.name != kw::PathRoot &&
3607            path[0].ident.name != kw::DollarCrate {
3608             let unqualified_result = {
3609                 match self.resolve_path_without_parent_scope(
3610                     &[*path.last().unwrap()],
3611                     Some(ns),
3612                     false,
3613                     span,
3614                     CrateLint::No,
3615                 ) {
3616                     PathResult::NonModule(path_res) => path_res.base_res(),
3617                     PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3618                         module.res().unwrap(),
3619                     _ => return Some(result),
3620                 }
3621             };
3622             if result.base_res() == unqualified_result {
3623                 let lint = lint::builtin::UNUSED_QUALIFICATIONS;
3624                 self.session.buffer_lint(lint, id, span, "unnecessary qualification")
3625             }
3626         }
3627
3628         Some(result)
3629     }
3630
3631     fn resolve_path_without_parent_scope(
3632         &mut self,
3633         path: &[Segment],
3634         opt_ns: Option<Namespace>, // `None` indicates a module path in import
3635         record_used: bool,
3636         path_span: Span,
3637         crate_lint: CrateLint,
3638     ) -> PathResult<'a> {
3639         // Macro and import paths must have full parent scope available during resolution,
3640         // other paths will do okay with parent module alone.
3641         assert!(opt_ns != None && opt_ns != Some(MacroNS));
3642         let parent_scope = ParentScope { module: self.current_module, ..self.dummy_parent_scope() };
3643         self.resolve_path(path, opt_ns, &parent_scope, record_used, path_span, crate_lint)
3644     }
3645
3646     fn resolve_path(
3647         &mut self,
3648         path: &[Segment],
3649         opt_ns: Option<Namespace>, // `None` indicates a module path in import
3650         parent_scope: &ParentScope<'a>,
3651         record_used: bool,
3652         path_span: Span,
3653         crate_lint: CrateLint,
3654     ) -> PathResult<'a> {
3655         let mut module = None;
3656         let mut allow_super = true;
3657         let mut second_binding = None;
3658         self.current_module = parent_scope.module;
3659
3660         debug!(
3661             "resolve_path(path={:?}, opt_ns={:?}, record_used={:?}, \
3662              path_span={:?}, crate_lint={:?})",
3663             path,
3664             opt_ns,
3665             record_used,
3666             path_span,
3667             crate_lint,
3668         );
3669
3670         for (i, &Segment { ident, id }) in path.iter().enumerate() {
3671             debug!("resolve_path ident {} {:?} {:?}", i, ident, id);
3672             let record_segment_res = |this: &mut Self, res| {
3673                 if record_used {
3674                     if let Some(id) = id {
3675                         if !this.partial_res_map.contains_key(&id) {
3676                             assert!(id != ast::DUMMY_NODE_ID, "Trying to resolve dummy id");
3677                             this.record_partial_res(id, PartialRes::new(res));
3678                         }
3679                     }
3680                 }
3681             };
3682
3683             let is_last = i == path.len() - 1;
3684             let ns = if is_last { opt_ns.unwrap_or(TypeNS) } else { TypeNS };
3685             let name = ident.name;
3686
3687             allow_super &= ns == TypeNS &&
3688                 (name == kw::SelfLower ||
3689                  name == kw::Super);
3690
3691             if ns == TypeNS {
3692                 if allow_super && name == kw::Super {
3693                     let mut ctxt = ident.span.ctxt().modern();
3694                     let self_module = match i {
3695                         0 => Some(self.resolve_self(&mut ctxt, self.current_module)),
3696                         _ => match module {
3697                             Some(ModuleOrUniformRoot::Module(module)) => Some(module),
3698                             _ => None,
3699                         },
3700                     };
3701                     if let Some(self_module) = self_module {
3702                         if let Some(parent) = self_module.parent {
3703                             module = Some(ModuleOrUniformRoot::Module(
3704                                 self.resolve_self(&mut ctxt, parent)));
3705                             continue;
3706                         }
3707                     }
3708                     let msg = "there are too many initial `super`s.".to_string();
3709                     return PathResult::Failed {
3710                         span: ident.span,
3711                         label: msg,
3712                         suggestion: None,
3713                         is_error_from_last_segment: false,
3714                     };
3715                 }
3716                 if i == 0 {
3717                     if name == kw::SelfLower {
3718                         let mut ctxt = ident.span.ctxt().modern();
3719                         module = Some(ModuleOrUniformRoot::Module(
3720                             self.resolve_self(&mut ctxt, self.current_module)));
3721                         continue;
3722                     }
3723                     if name == kw::PathRoot && ident.span.rust_2018() {
3724                         module = Some(ModuleOrUniformRoot::ExternPrelude);
3725                         continue;
3726                     }
3727                     if name == kw::PathRoot &&
3728                        ident.span.rust_2015() && self.session.rust_2018() {
3729                         // `::a::b` from 2015 macro on 2018 global edition
3730                         module = Some(ModuleOrUniformRoot::CrateRootAndExternPrelude);
3731                         continue;
3732                     }
3733                     if name == kw::PathRoot ||
3734                        name == kw::Crate ||
3735                        name == kw::DollarCrate {
3736                         // `::a::b`, `crate::a::b` or `$crate::a::b`
3737                         module = Some(ModuleOrUniformRoot::Module(
3738                             self.resolve_crate_root(ident)));
3739                         continue;
3740                     }
3741                 }
3742             }
3743
3744             // Report special messages for path segment keywords in wrong positions.
3745             if ident.is_path_segment_keyword() && i != 0 {
3746                 let name_str = if name == kw::PathRoot {
3747                     "crate root".to_string()
3748                 } else {
3749                     format!("`{}`", name)
3750                 };
3751                 let label = if i == 1 && path[0].ident.name == kw::PathRoot {
3752                     format!("global paths cannot start with {}", name_str)
3753                 } else {
3754                     format!("{} in paths can only be used in start position", name_str)
3755                 };
3756                 return PathResult::Failed {
3757                     span: ident.span,
3758                     label,
3759                     suggestion: None,
3760                     is_error_from_last_segment: false,
3761                 };
3762             }
3763
3764             let binding = if let Some(module) = module {
3765                 self.resolve_ident_in_module(module, ident, ns, None, record_used, path_span)
3766             } else if opt_ns.is_none() || opt_ns == Some(MacroNS) {
3767                 assert!(ns == TypeNS);
3768                 let scopes = if opt_ns.is_none() { ScopeSet::Import(ns) } else { ScopeSet::Module };
3769                 self.early_resolve_ident_in_lexical_scope(ident, scopes, parent_scope, record_used,
3770                                                           record_used, path_span)
3771             } else {
3772                 let record_used_id =
3773                     if record_used { crate_lint.node_id().or(Some(CRATE_NODE_ID)) } else { None };
3774                 match self.resolve_ident_in_lexical_scope(ident, ns, record_used_id, path_span) {
3775                     // we found a locally-imported or available item/module
3776                     Some(LexicalScopeBinding::Item(binding)) => Ok(binding),
3777                     // we found a local variable or type param
3778                     Some(LexicalScopeBinding::Res(res))
3779                             if opt_ns == Some(TypeNS) || opt_ns == Some(ValueNS) => {
3780                         record_segment_res(self, res);
3781                         return PathResult::NonModule(PartialRes::with_unresolved_segments(
3782                             res, path.len() - 1
3783                         ));
3784                     }
3785                     _ => Err(Determinacy::determined(record_used)),
3786                 }
3787             };
3788
3789             match binding {
3790                 Ok(binding) => {
3791                     if i == 1 {
3792                         second_binding = Some(binding);
3793                     }
3794                     let res = binding.res();
3795                     let maybe_assoc = opt_ns != Some(MacroNS) && PathSource::Type.is_expected(res);
3796                     if let Some(next_module) = binding.module() {
3797                         module = Some(ModuleOrUniformRoot::Module(next_module));
3798                         record_segment_res(self, res);
3799                     } else if res == Res::ToolMod && i + 1 != path.len() {
3800                         if binding.is_import() {
3801                             self.session.struct_span_err(
3802                                 ident.span, "cannot use a tool module through an import"
3803                             ).span_note(
3804                                 binding.span, "the tool module imported here"
3805                             ).emit();
3806                         }
3807                         let res = Res::NonMacroAttr(NonMacroAttrKind::Tool);
3808                         return PathResult::NonModule(PartialRes::new(res));
3809                     } else if res == Res::Err {
3810                         return PathResult::NonModule(PartialRes::new(Res::Err));
3811                     } else if opt_ns.is_some() && (is_last || maybe_assoc) {
3812                         self.lint_if_path_starts_with_module(
3813                             crate_lint,
3814                             path,
3815                             path_span,
3816                             second_binding,
3817                         );
3818                         return PathResult::NonModule(PartialRes::with_unresolved_segments(
3819                             res, path.len() - i - 1
3820                         ));
3821                     } else {
3822                         let label = format!(
3823                             "`{}` is {} {}, not a module",
3824                             ident,
3825                             res.article(),
3826                             res.descr(),
3827                         );
3828
3829                         return PathResult::Failed {
3830                             span: ident.span,
3831                             label,
3832                             suggestion: None,
3833                             is_error_from_last_segment: is_last,
3834                         };
3835                     }
3836                 }
3837                 Err(Undetermined) => return PathResult::Indeterminate,
3838                 Err(Determined) => {
3839                     if let Some(ModuleOrUniformRoot::Module(module)) = module {
3840                         if opt_ns.is_some() && !module.is_normal() {
3841                             return PathResult::NonModule(PartialRes::with_unresolved_segments(
3842                                 module.res().unwrap(), path.len() - i
3843                             ));
3844                         }
3845                     }
3846                     let module_res = match module {
3847                         Some(ModuleOrUniformRoot::Module(module)) => module.res(),
3848                         _ => None,
3849                     };
3850                     let (label, suggestion) = if module_res == self.graph_root.res() {
3851                         let is_mod = |res| {
3852                             match res { Res::Def(DefKind::Mod, _) => true, _ => false }
3853                         };
3854                         let mut candidates =
3855                             self.lookup_import_candidates(ident, TypeNS, is_mod);
3856                         candidates.sort_by_cached_key(|c| {
3857                             (c.path.segments.len(), c.path.to_string())
3858                         });
3859                         if let Some(candidate) = candidates.get(0) {
3860                             (
3861                                 String::from("unresolved import"),
3862                                 Some((
3863                                     vec![(ident.span, candidate.path.to_string())],
3864                                     String::from("a similar path exists"),
3865                                     Applicability::MaybeIncorrect,
3866                                 )),
3867                             )
3868                         } else if !ident.is_reserved() {
3869                             (format!("maybe a missing `extern crate {};`?", ident), None)
3870                         } else {
3871                             // the parser will already have complained about the keyword being used
3872                             return PathResult::NonModule(PartialRes::new(Res::Err));
3873                         }
3874                     } else if i == 0 {
3875                         (format!("use of undeclared type or module `{}`", ident), None)
3876                     } else {
3877                         (format!("could not find `{}` in `{}`", ident, path[i - 1].ident), None)
3878                     };
3879                     return PathResult::Failed {
3880                         span: ident.span,
3881                         label,
3882                         suggestion,
3883                         is_error_from_last_segment: is_last,
3884                     };
3885                 }
3886             }
3887         }
3888
3889         self.lint_if_path_starts_with_module(crate_lint, path, path_span, second_binding);
3890
3891         PathResult::Module(match module {
3892             Some(module) => module,
3893             None if path.is_empty() => ModuleOrUniformRoot::CurrentScope,
3894             _ => span_bug!(path_span, "resolve_path: non-empty path `{:?}` has no module", path),
3895         })
3896     }
3897
3898     fn lint_if_path_starts_with_module(
3899         &self,
3900         crate_lint: CrateLint,
3901         path: &[Segment],
3902         path_span: Span,
3903         second_binding: Option<&NameBinding<'_>>,
3904     ) {
3905         let (diag_id, diag_span) = match crate_lint {
3906             CrateLint::No => return,
3907             CrateLint::SimplePath(id) => (id, path_span),
3908             CrateLint::UsePath { root_id, root_span } => (root_id, root_span),
3909             CrateLint::QPathTrait { qpath_id, qpath_span } => (qpath_id, qpath_span),
3910         };
3911
3912         let first_name = match path.get(0) {
3913             // In the 2018 edition this lint is a hard error, so nothing to do
3914             Some(seg) if seg.ident.span.rust_2015() && self.session.rust_2015() => seg.ident.name,
3915             _ => return,
3916         };
3917
3918         // We're only interested in `use` paths which should start with
3919         // `{{root}}` currently.
3920         if first_name != kw::PathRoot {
3921             return
3922         }
3923
3924         match path.get(1) {
3925             // If this import looks like `crate::...` it's already good
3926             Some(Segment { ident, .. }) if ident.name == kw::Crate => return,
3927             // Otherwise go below to see if it's an extern crate
3928             Some(_) => {}
3929             // If the path has length one (and it's `PathRoot` most likely)
3930             // then we don't know whether we're gonna be importing a crate or an
3931             // item in our crate. Defer this lint to elsewhere
3932             None => return,
3933         }
3934
3935         // If the first element of our path was actually resolved to an
3936         // `ExternCrate` (also used for `crate::...`) then no need to issue a
3937         // warning, this looks all good!
3938         if let Some(binding) = second_binding {
3939             if let NameBindingKind::Import { directive: d, .. } = binding.kind {
3940                 // Careful: we still want to rewrite paths from
3941                 // renamed extern crates.
3942                 if let ImportDirectiveSubclass::ExternCrate { source: None, .. } = d.subclass {
3943                     return
3944                 }
3945             }
3946         }
3947
3948         let diag = lint::builtin::BuiltinLintDiagnostics
3949             ::AbsPathWithModule(diag_span);
3950         self.session.buffer_lint_with_diagnostic(
3951             lint::builtin::ABSOLUTE_PATHS_NOT_STARTING_WITH_CRATE,
3952             diag_id, diag_span,
3953             "absolute paths must start with `self`, `super`, \
3954             `crate`, or an external crate name in the 2018 edition",
3955             diag);
3956     }
3957
3958     // Validate a local resolution (from ribs).
3959     fn validate_res_from_ribs(
3960         &mut self,
3961         ns: Namespace,
3962         rib_index: usize,
3963         res: Res,
3964         record_used: bool,
3965         span: Span,
3966     ) -> Res {
3967         debug!("validate_res_from_ribs({:?})", res);
3968         let ribs = &self.ribs[ns][rib_index + 1..];
3969
3970         // An invalid forward use of a type parameter from a previous default.
3971         if let ForwardTyParamBanRibKind = self.ribs[ns][rib_index].kind {
3972             if record_used {
3973                 resolve_error(self, span, ResolutionError::ForwardDeclaredTyParam);
3974             }
3975             assert_eq!(res, Res::Err);
3976             return Res::Err;
3977         }
3978
3979         // An invalid use of a type parameter as the type of a const parameter.
3980         if let TyParamAsConstParamTy = self.ribs[ns][rib_index].kind {
3981             if record_used {
3982                 resolve_error(self, span, ResolutionError::ConstParamDependentOnTypeParam);
3983             }
3984             assert_eq!(res, Res::Err);
3985             return Res::Err;
3986         }
3987
3988         match res {
3989             Res::Local(_) => {
3990                 use ResolutionError::*;
3991                 let mut res_err = None;
3992
3993                 for rib in ribs {
3994                     match rib.kind {
3995                         NormalRibKind | ModuleRibKind(..) | MacroDefinition(..) |
3996                         ForwardTyParamBanRibKind | TyParamAsConstParamTy => {
3997                             // Nothing to do. Continue.
3998                         }
3999                         ItemRibKind | FnItemRibKind | AssocItemRibKind => {
4000                             // This was an attempt to access an upvar inside a
4001                             // named function item. This is not allowed, so we
4002                             // report an error.
4003                             if record_used {
4004                                 // We don't immediately trigger a resolve error, because
4005                                 // we want certain other resolution errors (namely those
4006                                 // emitted for `ConstantItemRibKind` below) to take
4007                                 // precedence.
4008                                 res_err = Some(CannotCaptureDynamicEnvironmentInFnItem);
4009                             }
4010                         }
4011                         ConstantItemRibKind => {
4012                             // Still doesn't deal with upvars
4013                             if record_used {
4014                                 resolve_error(self, span, AttemptToUseNonConstantValueInConstant);
4015                             }
4016                             return Res::Err;
4017                         }
4018                     }
4019                 }
4020                 if let Some(res_err) = res_err {
4021                      resolve_error(self, span, res_err);
4022                      return Res::Err;
4023                 }
4024             }
4025             Res::Def(DefKind::TyParam, _) | Res::SelfTy(..) => {
4026                 for rib in ribs {
4027                     match rib.kind {
4028                         NormalRibKind | AssocItemRibKind |
4029                         ModuleRibKind(..) | MacroDefinition(..) | ForwardTyParamBanRibKind |
4030                         ConstantItemRibKind | TyParamAsConstParamTy => {
4031                             // Nothing to do. Continue.
4032                         }
4033                         ItemRibKind | FnItemRibKind => {
4034                             // This was an attempt to use a type parameter outside its scope.
4035                             if record_used {
4036                                 resolve_error(
4037                                     self,
4038                                     span,
4039                                     ResolutionError::GenericParamsFromOuterFunction(res),
4040                                 );
4041                             }
4042                             return Res::Err;
4043                         }
4044                     }
4045                 }
4046             }
4047             Res::Def(DefKind::ConstParam, _) => {
4048                 let mut ribs = ribs.iter().peekable();
4049                 if let Some(Rib { kind: FnItemRibKind, .. }) = ribs.peek() {
4050                     // When declaring const parameters inside function signatures, the first rib
4051                     // is always a `FnItemRibKind`. In this case, we can skip it, to avoid it
4052                     // (spuriously) conflicting with the const param.
4053                     ribs.next();
4054                 }
4055                 for rib in ribs {
4056                     if let ItemRibKind | FnItemRibKind = rib.kind {
4057                         // This was an attempt to use a const parameter outside its scope.
4058                         if record_used {
4059                             resolve_error(
4060                                 self,
4061                                 span,
4062                                 ResolutionError::GenericParamsFromOuterFunction(res),
4063                             );
4064                         }
4065                         return Res::Err;
4066                     }
4067                 }
4068             }
4069             _ => {}
4070         }
4071         res
4072     }
4073
4074     fn lookup_assoc_candidate<FilterFn>(&mut self,
4075                                         ident: Ident,
4076                                         ns: Namespace,
4077                                         filter_fn: FilterFn)
4078                                         -> Option<AssocSuggestion>
4079         where FilterFn: Fn(Res) -> bool
4080     {
4081         fn extract_node_id(t: &Ty) -> Option<NodeId> {
4082             match t.node {
4083                 TyKind::Path(None, _) => Some(t.id),
4084                 TyKind::Rptr(_, ref mut_ty) => extract_node_id(&mut_ty.ty),
4085                 // This doesn't handle the remaining `Ty` variants as they are not
4086                 // that commonly the self_type, it might be interesting to provide
4087                 // support for those in future.
4088                 _ => None,
4089             }
4090         }
4091
4092         // Fields are generally expected in the same contexts as locals.
4093         if filter_fn(Res::Local(ast::DUMMY_NODE_ID)) {
4094             if let Some(node_id) = self.current_self_type.as_ref().and_then(extract_node_id) {
4095                 // Look for a field with the same name in the current self_type.
4096                 if let Some(resolution) = self.partial_res_map.get(&node_id) {
4097                     match resolution.base_res() {
4098                         Res::Def(DefKind::Struct, did) | Res::Def(DefKind::Union, did)
4099                                 if resolution.unresolved_segments() == 0 => {
4100                             if let Some(field_names) = self.field_names.get(&did) {
4101                                 if field_names.iter().any(|&field_name| ident.name == field_name) {
4102                                     return Some(AssocSuggestion::Field);
4103                                 }
4104                             }
4105                         }
4106                         _ => {}
4107                     }
4108                 }
4109             }
4110         }
4111
4112         // Look for associated items in the current trait.
4113         if let Some((module, _)) = self.current_trait_ref {
4114             if let Ok(binding) = self.resolve_ident_in_module(
4115                     ModuleOrUniformRoot::Module(module),
4116                     ident,
4117                     ns,
4118                     None,
4119                     false,
4120                     module.span,
4121                 ) {
4122                 let res = binding.res();
4123                 if filter_fn(res) {
4124                     return Some(if self.has_self.contains(&res.def_id()) {
4125                         AssocSuggestion::MethodWithSelf
4126                     } else {
4127                         AssocSuggestion::AssocItem
4128                     });
4129                 }
4130             }
4131         }
4132
4133         None
4134     }
4135
4136     fn lookup_typo_candidate<FilterFn>(
4137         &mut self,
4138         path: &[Segment],
4139         ns: Namespace,
4140         filter_fn: FilterFn,
4141         span: Span,
4142     ) -> Option<TypoSuggestion>
4143     where
4144         FilterFn: Fn(Res) -> bool,
4145     {
4146         let add_module_candidates = |module: Module<'_>, names: &mut Vec<TypoSuggestion>| {
4147             for (&(ident, _), resolution) in module.resolutions.borrow().iter() {
4148                 if let Some(binding) = resolution.borrow().binding {
4149                     if filter_fn(binding.res()) {
4150                         names.push(TypoSuggestion {
4151                             candidate: ident.name,
4152                             article: binding.res().article(),
4153                             kind: binding.res().descr(),
4154                         });
4155                     }
4156                 }
4157             }
4158         };
4159
4160         let mut names = Vec::new();
4161         if path.len() == 1 {
4162             // Search in lexical scope.
4163             // Walk backwards up the ribs in scope and collect candidates.
4164             for rib in self.ribs[ns].iter().rev() {
4165                 // Locals and type parameters
4166                 for (ident, &res) in &rib.bindings {
4167                     if filter_fn(res) {
4168                         names.push(TypoSuggestion {
4169                             candidate: ident.name,
4170                             article: res.article(),
4171                             kind: res.descr(),
4172                         });
4173                     }
4174                 }
4175                 // Items in scope
4176                 if let ModuleRibKind(module) = rib.kind {
4177                     // Items from this module
4178                     add_module_candidates(module, &mut names);
4179
4180                     if let ModuleKind::Block(..) = module.kind {
4181                         // We can see through blocks
4182                     } else {
4183                         // Items from the prelude
4184                         if !module.no_implicit_prelude {
4185                             names.extend(self.extern_prelude.clone().iter().flat_map(|(ident, _)| {
4186                                 self.crate_loader
4187                                     .maybe_process_path_extern(ident.name, ident.span)
4188                                     .and_then(|crate_id| {
4189                                         let crate_mod = Res::Def(
4190                                             DefKind::Mod,
4191                                             DefId {
4192                                                 krate: crate_id,
4193                                                 index: CRATE_DEF_INDEX,
4194                                             },
4195                                         );
4196
4197                                         if filter_fn(crate_mod) {
4198                                             Some(TypoSuggestion {
4199                                                 candidate: ident.name,
4200                                                 article: "a",
4201                                                 kind: "crate",
4202                                             })
4203                                         } else {
4204                                             None
4205                                         }
4206                                     })
4207                             }));
4208
4209                             if let Some(prelude) = self.prelude {
4210                                 add_module_candidates(prelude, &mut names);
4211                             }
4212                         }
4213                         break;
4214                     }
4215                 }
4216             }
4217             // Add primitive types to the mix
4218             if filter_fn(Res::PrimTy(Bool)) {
4219                 names.extend(
4220                     self.primitive_type_table.primitive_types.iter().map(|(name, _)| {
4221                         TypoSuggestion {
4222                             candidate: *name,
4223                             article: "a",
4224                             kind: "primitive type",
4225                         }
4226                     })
4227                 )
4228             }
4229         } else {
4230             // Search in module.
4231             let mod_path = &path[..path.len() - 1];
4232             if let PathResult::Module(module) = self.resolve_path_without_parent_scope(
4233                 mod_path, Some(TypeNS), false, span, CrateLint::No
4234             ) {
4235                 if let ModuleOrUniformRoot::Module(module) = module {
4236                     add_module_candidates(module, &mut names);
4237                 }
4238             }
4239         }
4240
4241         let name = path[path.len() - 1].ident.name;
4242         // Make sure error reporting is deterministic.
4243         names.sort_by_cached_key(|suggestion| suggestion.candidate.as_str());
4244
4245         match find_best_match_for_name(
4246             names.iter().map(|suggestion| &suggestion.candidate),
4247             &name.as_str(),
4248             None,
4249         ) {
4250             Some(found) if found != name => names
4251                 .into_iter()
4252                 .find(|suggestion| suggestion.candidate == found),
4253             _ => None,
4254         }
4255     }
4256
4257     fn with_resolved_label<F>(&mut self, label: Option<Label>, id: NodeId, f: F)
4258         where F: FnOnce(&mut Resolver<'_>)
4259     {
4260         if let Some(label) = label {
4261             self.unused_labels.insert(id, label.ident.span);
4262             self.with_label_rib(|this| {
4263                 let ident = label.ident.modern_and_legacy();
4264                 this.label_ribs.last_mut().unwrap().bindings.insert(ident, id);
4265                 f(this);
4266             });
4267         } else {
4268             f(self);
4269         }
4270     }
4271
4272     fn resolve_labeled_block(&mut self, label: Option<Label>, id: NodeId, block: &Block) {
4273         self.with_resolved_label(label, id, |this| this.visit_block(block));
4274     }
4275
4276     fn resolve_expr(&mut self, expr: &Expr, parent: Option<&Expr>) {
4277         // First, record candidate traits for this expression if it could
4278         // result in the invocation of a method call.
4279
4280         self.record_candidate_traits_for_expr_if_necessary(expr);
4281
4282         // Next, resolve the node.
4283         match expr.node {
4284             ExprKind::Path(ref qself, ref path) => {
4285                 self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
4286                 visit::walk_expr(self, expr);
4287             }
4288
4289             ExprKind::Struct(ref path, ..) => {
4290                 self.smart_resolve_path(expr.id, None, path, PathSource::Struct);
4291                 visit::walk_expr(self, expr);
4292             }
4293
4294             ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
4295                 let node_id = self.search_label(label.ident, |rib, ident| {
4296                     rib.bindings.get(&ident.modern_and_legacy()).cloned()
4297                 });
4298                 match node_id {
4299                     None => {
4300                         // Search again for close matches...
4301                         // Picks the first label that is "close enough", which is not necessarily
4302                         // the closest match
4303                         let close_match = self.search_label(label.ident, |rib, ident| {
4304                             let names = rib.bindings.iter().filter_map(|(id, _)| {
4305                                 if id.span.ctxt() == label.ident.span.ctxt() {
4306                                     Some(&id.name)
4307                                 } else {
4308                                     None
4309                                 }
4310                             });
4311                             find_best_match_for_name(names, &*ident.as_str(), None)
4312                         });
4313                         self.record_partial_res(expr.id, PartialRes::new(Res::Err));
4314                         resolve_error(self,
4315                                       label.ident.span,
4316                                       ResolutionError::UndeclaredLabel(&label.ident.as_str(),
4317                                                                        close_match));
4318                     }
4319                     Some(node_id) => {
4320                         // Since this res is a label, it is never read.
4321                         self.label_res_map.insert(expr.id, node_id);
4322                         self.unused_labels.remove(&node_id);
4323                     }
4324                 }
4325
4326                 // visit `break` argument if any
4327                 visit::walk_expr(self, expr);
4328             }
4329
4330             ExprKind::IfLet(ref pats, ref subexpression, ref if_block, ref optional_else) => {
4331                 self.visit_expr(subexpression);
4332
4333                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
4334                 let mut bindings_list = FxHashMap::default();
4335                 for pat in pats {
4336                     self.resolve_pattern(pat, PatternSource::IfLet, &mut bindings_list);
4337                 }
4338                 // This has to happen *after* we determine which pat_idents are variants
4339                 self.check_consistent_bindings(pats);
4340                 self.visit_block(if_block);
4341                 self.ribs[ValueNS].pop();
4342
4343                 optional_else.as_ref().map(|expr| self.visit_expr(expr));
4344             }
4345
4346             ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),
4347
4348             ExprKind::While(ref subexpression, ref block, label) => {
4349                 self.with_resolved_label(label, expr.id, |this| {
4350                     this.visit_expr(subexpression);
4351                     this.visit_block(block);
4352                 });
4353             }
4354
4355             ExprKind::WhileLet(ref pats, ref subexpression, ref block, label) => {
4356                 self.with_resolved_label(label, expr.id, |this| {
4357                     this.visit_expr(subexpression);
4358                     this.ribs[ValueNS].push(Rib::new(NormalRibKind));
4359                     let mut bindings_list = FxHashMap::default();
4360                     for pat in pats {
4361                         this.resolve_pattern(pat, PatternSource::WhileLet, &mut bindings_list);
4362                     }
4363                     // This has to happen *after* we determine which pat_idents are variants.
4364                     this.check_consistent_bindings(pats);
4365                     this.visit_block(block);
4366                     this.ribs[ValueNS].pop();
4367                 });
4368             }
4369
4370             ExprKind::ForLoop(ref pattern, ref subexpression, ref block, label) => {
4371                 self.visit_expr(subexpression);
4372                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
4373                 self.resolve_pattern(pattern, PatternSource::For, &mut FxHashMap::default());
4374
4375                 self.resolve_labeled_block(label, expr.id, block);
4376
4377                 self.ribs[ValueNS].pop();
4378             }
4379
4380             ExprKind::Block(ref block, label) => self.resolve_labeled_block(label, block.id, block),
4381
4382             // Equivalent to `visit::walk_expr` + passing some context to children.
4383             ExprKind::Field(ref subexpression, _) => {
4384                 self.resolve_expr(subexpression, Some(expr));
4385             }
4386             ExprKind::MethodCall(ref segment, ref arguments) => {
4387                 let mut arguments = arguments.iter();
4388                 self.resolve_expr(arguments.next().unwrap(), Some(expr));
4389                 for argument in arguments {
4390                     self.resolve_expr(argument, None);
4391                 }
4392                 self.visit_path_segment(expr.span, segment);
4393             }
4394
4395             ExprKind::Call(ref callee, ref arguments) => {
4396                 self.resolve_expr(callee, Some(expr));
4397                 for argument in arguments {
4398                     self.resolve_expr(argument, None);
4399                 }
4400             }
4401             ExprKind::Type(ref type_expr, _) => {
4402                 self.current_type_ascription.push(type_expr.span);
4403                 visit::walk_expr(self, expr);
4404                 self.current_type_ascription.pop();
4405             }
4406             // `async |x| ...` gets desugared to `|x| future_from_generator(|| ...)`, so we need to
4407             // resolve the arguments within the proper scopes so that usages of them inside the
4408             // closure are detected as upvars rather than normal closure arg usages.
4409             ExprKind::Closure(
4410                 _, IsAsync::Async { .. }, _,
4411                 ref fn_decl, ref body, _span,
4412             ) => {
4413                 let rib_kind = NormalRibKind;
4414                 self.ribs[ValueNS].push(Rib::new(rib_kind));
4415                 // Resolve arguments:
4416                 let mut bindings_list = FxHashMap::default();
4417                 for argument in &fn_decl.inputs {
4418                     self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
4419                     self.visit_ty(&argument.ty);
4420                 }
4421                 // No need to resolve return type-- the outer closure return type is
4422                 // FunctionRetTy::Default
4423
4424                 // Now resolve the inner closure
4425                 {
4426                     // No need to resolve arguments: the inner closure has none.
4427                     // Resolve the return type:
4428                     visit::walk_fn_ret_ty(self, &fn_decl.output);
4429                     // Resolve the body
4430                     self.visit_expr(body);
4431                 }
4432                 self.ribs[ValueNS].pop();
4433             }
4434             _ => {
4435                 visit::walk_expr(self, expr);
4436             }
4437         }
4438     }
4439
4440     fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &Expr) {
4441         match expr.node {
4442             ExprKind::Field(_, ident) => {
4443                 // FIXME(#6890): Even though you can't treat a method like a
4444                 // field, we need to add any trait methods we find that match
4445                 // the field name so that we can do some nice error reporting
4446                 // later on in typeck.
4447                 let traits = self.get_traits_containing_item(ident, ValueNS);
4448                 self.trait_map.insert(expr.id, traits);
4449             }
4450             ExprKind::MethodCall(ref segment, ..) => {
4451                 debug!("(recording candidate traits for expr) recording traits for {}",
4452                        expr.id);
4453                 let traits = self.get_traits_containing_item(segment.ident, ValueNS);
4454                 self.trait_map.insert(expr.id, traits);
4455             }
4456             _ => {
4457                 // Nothing to do.
4458             }
4459         }
4460     }
4461
4462     fn get_traits_containing_item(&mut self, mut ident: Ident, ns: Namespace)
4463                                   -> Vec<TraitCandidate> {
4464         debug!("(getting traits containing item) looking for '{}'", ident.name);
4465
4466         let mut found_traits = Vec::new();
4467         // Look for the current trait.
4468         if let Some((module, _)) = self.current_trait_ref {
4469             if self.resolve_ident_in_module(
4470                 ModuleOrUniformRoot::Module(module),
4471                 ident,
4472                 ns,
4473                 None,
4474                 false,
4475                 module.span,
4476             ).is_ok() {
4477                 let def_id = module.def_id().unwrap();
4478                 found_traits.push(TraitCandidate { def_id: def_id, import_ids: smallvec![] });
4479             }
4480         }
4481
4482         ident.span = ident.span.modern();
4483         let mut search_module = self.current_module;
4484         loop {
4485             self.get_traits_in_module_containing_item(ident, ns, search_module, &mut found_traits);
4486             search_module = unwrap_or!(
4487                 self.hygienic_lexical_parent(search_module, &mut ident.span), break
4488             );
4489         }
4490
4491         if let Some(prelude) = self.prelude {
4492             if !search_module.no_implicit_prelude {
4493                 self.get_traits_in_module_containing_item(ident, ns, prelude, &mut found_traits);
4494             }
4495         }
4496
4497         found_traits
4498     }
4499
4500     fn get_traits_in_module_containing_item(&mut self,
4501                                             ident: Ident,
4502                                             ns: Namespace,
4503                                             module: Module<'a>,
4504                                             found_traits: &mut Vec<TraitCandidate>) {
4505         assert!(ns == TypeNS || ns == ValueNS);
4506         let mut traits = module.traits.borrow_mut();
4507         if traits.is_none() {
4508             let mut collected_traits = Vec::new();
4509             module.for_each_child(|name, ns, binding| {
4510                 if ns != TypeNS { return }
4511                 match binding.res() {
4512                     Res::Def(DefKind::Trait, _) |
4513                     Res::Def(DefKind::TraitAlias, _) => collected_traits.push((name, binding)),
4514                     _ => (),
4515                 }
4516             });
4517             *traits = Some(collected_traits.into_boxed_slice());
4518         }
4519
4520         for &(trait_name, binding) in traits.as_ref().unwrap().iter() {
4521             // Traits have pseudo-modules that can be used to search for the given ident.
4522             if let Some(module) = binding.module() {
4523                 let mut ident = ident;
4524                 if ident.span.glob_adjust(
4525                     module.expansion,
4526                     binding.span,
4527                 ).is_none() {
4528                     continue
4529                 }
4530                 if self.resolve_ident_in_module_unadjusted(
4531                     ModuleOrUniformRoot::Module(module),
4532                     ident,
4533                     ns,
4534                     false,
4535                     module.span,
4536                 ).is_ok() {
4537                     let import_ids = self.find_transitive_imports(&binding.kind, trait_name);
4538                     let trait_def_id = module.def_id().unwrap();
4539                     found_traits.push(TraitCandidate { def_id: trait_def_id, import_ids });
4540                 }
4541             } else if let Res::Def(DefKind::TraitAlias, _) = binding.res() {
4542                 // For now, just treat all trait aliases as possible candidates, since we don't
4543                 // know if the ident is somewhere in the transitive bounds.
4544                 let import_ids = self.find_transitive_imports(&binding.kind, trait_name);
4545                 let trait_def_id = binding.res().def_id();
4546                 found_traits.push(TraitCandidate { def_id: trait_def_id, import_ids });
4547             } else {
4548                 bug!("candidate is not trait or trait alias?")
4549             }
4550         }
4551     }
4552
4553     fn find_transitive_imports(&mut self, mut kind: &NameBindingKind<'_>,
4554                                trait_name: Ident) -> SmallVec<[NodeId; 1]> {
4555         let mut import_ids = smallvec![];
4556         while let NameBindingKind::Import { directive, binding, .. } = kind {
4557             self.maybe_unused_trait_imports.insert(directive.id);
4558             self.add_to_glob_map(&directive, trait_name);
4559             import_ids.push(directive.id);
4560             kind = &binding.kind;
4561         };
4562         import_ids
4563     }
4564
4565     fn lookup_import_candidates_from_module<FilterFn>(&mut self,
4566                                           lookup_ident: Ident,
4567                                           namespace: Namespace,
4568                                           start_module: &'a ModuleData<'a>,
4569                                           crate_name: Ident,
4570                                           filter_fn: FilterFn)
4571                                           -> Vec<ImportSuggestion>
4572         where FilterFn: Fn(Res) -> bool
4573     {
4574         let mut candidates = Vec::new();
4575         let mut seen_modules = FxHashSet::default();
4576         let not_local_module = crate_name.name != kw::Crate;
4577         let mut worklist = vec![(start_module, Vec::<ast::PathSegment>::new(), not_local_module)];
4578
4579         while let Some((in_module,
4580                         path_segments,
4581                         in_module_is_extern)) = worklist.pop() {
4582             self.populate_module_if_necessary(in_module);
4583
4584             // We have to visit module children in deterministic order to avoid
4585             // instabilities in reported imports (#43552).
4586             in_module.for_each_child_stable(|ident, ns, name_binding| {
4587                 // avoid imports entirely
4588                 if name_binding.is_import() && !name_binding.is_extern_crate() { return; }
4589                 // avoid non-importable candidates as well
4590                 if !name_binding.is_importable() { return; }
4591
4592                 // collect results based on the filter function
4593                 if ident.name == lookup_ident.name && ns == namespace {
4594                     let res = name_binding.res();
4595                     if filter_fn(res) {
4596                         // create the path
4597                         let mut segms = path_segments.clone();
4598                         if lookup_ident.span.rust_2018() {
4599                             // crate-local absolute paths start with `crate::` in edition 2018
4600                             // FIXME: may also be stabilized for Rust 2015 (Issues #45477, #44660)
4601                             segms.insert(
4602                                 0, ast::PathSegment::from_ident(crate_name)
4603                             );
4604                         }
4605
4606                         segms.push(ast::PathSegment::from_ident(ident));
4607                         let path = Path {
4608                             span: name_binding.span,
4609                             segments: segms,
4610                         };
4611                         // the entity is accessible in the following cases:
4612                         // 1. if it's defined in the same crate, it's always
4613                         // accessible (since private entities can be made public)
4614                         // 2. if it's defined in another crate, it's accessible
4615                         // only if both the module is public and the entity is
4616                         // declared as public (due to pruning, we don't explore
4617                         // outside crate private modules => no need to check this)
4618                         if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
4619                             let did = match res {
4620                                 Res::Def(DefKind::Ctor(..), did) => self.parent(did),
4621                                 _ => res.opt_def_id(),
4622                             };
4623                             candidates.push(ImportSuggestion { did, path });
4624                         }
4625                     }
4626                 }
4627
4628                 // collect submodules to explore
4629                 if let Some(module) = name_binding.module() {
4630                     // form the path
4631                     let mut path_segments = path_segments.clone();
4632                     path_segments.push(ast::PathSegment::from_ident(ident));
4633
4634                     let is_extern_crate_that_also_appears_in_prelude =
4635                         name_binding.is_extern_crate() &&
4636                         lookup_ident.span.rust_2018();
4637
4638                     let is_visible_to_user =
4639                         !in_module_is_extern || name_binding.vis == ty::Visibility::Public;
4640
4641                     if !is_extern_crate_that_also_appears_in_prelude && is_visible_to_user {
4642                         // add the module to the lookup
4643                         let is_extern = in_module_is_extern || name_binding.is_extern_crate();
4644                         if seen_modules.insert(module.def_id().unwrap()) {
4645                             worklist.push((module, path_segments, is_extern));
4646                         }
4647                     }
4648                 }
4649             })
4650         }
4651
4652         candidates
4653     }
4654
4655     /// When name resolution fails, this method can be used to look up candidate
4656     /// entities with the expected name. It allows filtering them using the
4657     /// supplied predicate (which should be used to only accept the types of
4658     /// definitions expected, e.g., traits). The lookup spans across all crates.
4659     ///
4660     /// N.B., the method does not look into imports, but this is not a problem,
4661     /// since we report the definitions (thus, the de-aliased imports).
4662     fn lookup_import_candidates<FilterFn>(&mut self,
4663                                           lookup_ident: Ident,
4664                                           namespace: Namespace,
4665                                           filter_fn: FilterFn)
4666                                           -> Vec<ImportSuggestion>
4667         where FilterFn: Fn(Res) -> bool
4668     {
4669         let mut suggestions = self.lookup_import_candidates_from_module(
4670             lookup_ident, namespace, self.graph_root, Ident::with_empty_ctxt(kw::Crate), &filter_fn
4671         );
4672
4673         if lookup_ident.span.rust_2018() {
4674             let extern_prelude_names = self.extern_prelude.clone();
4675             for (ident, _) in extern_prelude_names.into_iter() {
4676                 if let Some(crate_id) = self.crate_loader.maybe_process_path_extern(ident.name,
4677                                                                                     ident.span) {
4678                     let crate_root = self.get_module(DefId {
4679                         krate: crate_id,
4680                         index: CRATE_DEF_INDEX,
4681                     });
4682                     self.populate_module_if_necessary(&crate_root);
4683
4684                     suggestions.extend(self.lookup_import_candidates_from_module(
4685                         lookup_ident, namespace, crate_root, ident, &filter_fn));
4686                 }
4687             }
4688         }
4689
4690         suggestions
4691     }
4692
4693     fn find_module(&mut self, def_id: DefId) -> Option<(Module<'a>, ImportSuggestion)> {
4694         let mut result = None;
4695         let mut seen_modules = FxHashSet::default();
4696         let mut worklist = vec![(self.graph_root, Vec::new())];
4697
4698         while let Some((in_module, path_segments)) = worklist.pop() {
4699             // abort if the module is already found
4700             if result.is_some() { break; }
4701
4702             self.populate_module_if_necessary(in_module);
4703
4704             in_module.for_each_child_stable(|ident, _, name_binding| {
4705                 // abort if the module is already found or if name_binding is private external
4706                 if result.is_some() || !name_binding.vis.is_visible_locally() {
4707                     return
4708                 }
4709                 if let Some(module) = name_binding.module() {
4710                     // form the path
4711                     let mut path_segments = path_segments.clone();
4712                     path_segments.push(ast::PathSegment::from_ident(ident));
4713                     let module_def_id = module.def_id().unwrap();
4714                     if module_def_id == def_id {
4715                         let path = Path {
4716                             span: name_binding.span,
4717                             segments: path_segments,
4718                         };
4719                         result = Some((module, ImportSuggestion { did: Some(def_id), path }));
4720                     } else {
4721                         // add the module to the lookup
4722                         if seen_modules.insert(module_def_id) {
4723                             worklist.push((module, path_segments));
4724                         }
4725                     }
4726                 }
4727             });
4728         }
4729
4730         result
4731     }
4732
4733     fn collect_enum_variants(&mut self, def_id: DefId) -> Option<Vec<Path>> {
4734         self.find_module(def_id).map(|(enum_module, enum_import_suggestion)| {
4735             self.populate_module_if_necessary(enum_module);
4736
4737             let mut variants = Vec::new();
4738             enum_module.for_each_child_stable(|ident, _, name_binding| {
4739                 if let Res::Def(DefKind::Variant, _) = name_binding.res() {
4740                     let mut segms = enum_import_suggestion.path.segments.clone();
4741                     segms.push(ast::PathSegment::from_ident(ident));
4742                     variants.push(Path {
4743                         span: name_binding.span,
4744                         segments: segms,
4745                     });
4746                 }
4747             });
4748             variants
4749         })
4750     }
4751
4752     fn record_partial_res(&mut self, node_id: NodeId, resolution: PartialRes) {
4753         debug!("(recording res) recording {:?} for {}", resolution, node_id);
4754         if let Some(prev_res) = self.partial_res_map.insert(node_id, resolution) {
4755             panic!("path resolved multiple times ({:?} before, {:?} now)", prev_res, resolution);
4756         }
4757     }
4758
4759     fn resolve_visibility(&mut self, vis: &ast::Visibility) -> ty::Visibility {
4760         match vis.node {
4761             ast::VisibilityKind::Public => ty::Visibility::Public,
4762             ast::VisibilityKind::Crate(..) => {
4763                 ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX))
4764             }
4765             ast::VisibilityKind::Inherited => {
4766                 ty::Visibility::Restricted(self.current_module.normal_ancestor_id)
4767             }
4768             ast::VisibilityKind::Restricted { ref path, id, .. } => {
4769                 // For visibilities we are not ready to provide correct implementation of "uniform
4770                 // paths" right now, so on 2018 edition we only allow module-relative paths for now.
4771                 // On 2015 edition visibilities are resolved as crate-relative by default,
4772                 // so we are prepending a root segment if necessary.
4773                 let ident = path.segments.get(0).expect("empty path in visibility").ident;
4774                 let crate_root = if ident.is_path_segment_keyword() {
4775                     None
4776                 } else if ident.span.rust_2018() {
4777                     let msg = "relative paths are not supported in visibilities on 2018 edition";
4778                     self.session.struct_span_err(ident.span, msg)
4779                         .span_suggestion(
4780                             path.span,
4781                             "try",
4782                             format!("crate::{}", path),
4783                             Applicability::MaybeIncorrect,
4784                         )
4785                         .emit();
4786                     return ty::Visibility::Public;
4787                 } else {
4788                     let ctxt = ident.span.ctxt();
4789                     Some(Segment::from_ident(Ident::new(
4790                         kw::PathRoot, path.span.shrink_to_lo().with_ctxt(ctxt)
4791                     )))
4792                 };
4793
4794                 let segments = crate_root.into_iter()
4795                     .chain(path.segments.iter().map(|seg| seg.into())).collect::<Vec<_>>();
4796                 let res = self.smart_resolve_path_fragment(
4797                     id,
4798                     None,
4799                     &segments,
4800                     path.span,
4801                     PathSource::Visibility,
4802                     CrateLint::SimplePath(id),
4803                 ).base_res();
4804                 if res == Res::Err {
4805                     ty::Visibility::Public
4806                 } else {
4807                     let vis = ty::Visibility::Restricted(res.def_id());
4808                     if self.is_accessible(vis) {
4809                         vis
4810                     } else {
4811                         self.session.span_err(path.span, "visibilities can only be restricted \
4812                                                           to ancestor modules");
4813                         ty::Visibility::Public
4814                     }
4815                 }
4816             }
4817         }
4818     }
4819
4820     fn is_accessible(&self, vis: ty::Visibility) -> bool {
4821         vis.is_accessible_from(self.current_module.normal_ancestor_id, self)
4822     }
4823
4824     fn is_accessible_from(&self, vis: ty::Visibility, module: Module<'a>) -> bool {
4825         vis.is_accessible_from(module.normal_ancestor_id, self)
4826     }
4827
4828     fn set_binding_parent_module(&mut self, binding: &'a NameBinding<'a>, module: Module<'a>) {
4829         if let Some(old_module) = self.binding_parent_modules.insert(PtrKey(binding), module) {
4830             if !ptr::eq(module, old_module) {
4831                 span_bug!(binding.span, "parent module is reset for binding");
4832             }
4833         }
4834     }
4835
4836     fn disambiguate_legacy_vs_modern(
4837         &self,
4838         legacy: &'a NameBinding<'a>,
4839         modern: &'a NameBinding<'a>,
4840     ) -> bool {
4841         // Some non-controversial subset of ambiguities "modern macro name" vs "macro_rules"
4842         // is disambiguated to mitigate regressions from macro modularization.
4843         // Scoping for `macro_rules` behaves like scoping for `let` at module level, in general.
4844         match (self.binding_parent_modules.get(&PtrKey(legacy)),
4845                self.binding_parent_modules.get(&PtrKey(modern))) {
4846             (Some(legacy), Some(modern)) =>
4847                 legacy.normal_ancestor_id == modern.normal_ancestor_id &&
4848                 modern.is_ancestor_of(legacy),
4849             _ => false,
4850         }
4851     }
4852
4853     fn binding_description(&self, b: &NameBinding<'_>, ident: Ident, from_prelude: bool) -> String {
4854         if b.span.is_dummy() {
4855             let add_built_in = match b.res() {
4856                 // These already contain the "built-in" prefix or look bad with it.
4857                 Res::NonMacroAttr(..) | Res::PrimTy(..) | Res::ToolMod => false,
4858                 _ => true,
4859             };
4860             let (built_in, from) = if from_prelude {
4861                 ("", " from prelude")
4862             } else if b.is_extern_crate() && !b.is_import() &&
4863                         self.session.opts.externs.get(&ident.as_str()).is_some() {
4864                 ("", " passed with `--extern`")
4865             } else if add_built_in {
4866                 (" built-in", "")
4867             } else {
4868                 ("", "")
4869             };
4870
4871             let article = if built_in.is_empty() { b.article() } else { "a" };
4872             format!("{a}{built_in} {thing}{from}",
4873                     a = article, thing = b.descr(), built_in = built_in, from = from)
4874         } else {
4875             let introduced = if b.is_import() { "imported" } else { "defined" };
4876             format!("the {thing} {introduced} here",
4877                     thing = b.descr(), introduced = introduced)
4878         }
4879     }
4880
4881     fn report_ambiguity_error(&self, ambiguity_error: &AmbiguityError<'_>) {
4882         let AmbiguityError { kind, ident, b1, b2, misc1, misc2 } = *ambiguity_error;
4883         let (b1, b2, misc1, misc2, swapped) = if b2.span.is_dummy() && !b1.span.is_dummy() {
4884             // We have to print the span-less alternative first, otherwise formatting looks bad.
4885             (b2, b1, misc2, misc1, true)
4886         } else {
4887             (b1, b2, misc1, misc2, false)
4888         };
4889
4890         let mut err = struct_span_err!(self.session, ident.span, E0659,
4891                                        "`{ident}` is ambiguous ({why})",
4892                                        ident = ident, why = kind.descr());
4893         err.span_label(ident.span, "ambiguous name");
4894
4895         let mut could_refer_to = |b: &NameBinding<'_>, misc: AmbiguityErrorMisc, also: &str| {
4896             let what = self.binding_description(b, ident, misc == AmbiguityErrorMisc::FromPrelude);
4897             let note_msg = format!("`{ident}` could{also} refer to {what}",
4898                                    ident = ident, also = also, what = what);
4899
4900             let mut help_msgs = Vec::new();
4901             if b.is_glob_import() && (kind == AmbiguityKind::GlobVsGlob ||
4902                                       kind == AmbiguityKind::GlobVsExpanded ||
4903                                       kind == AmbiguityKind::GlobVsOuter &&
4904                                       swapped != also.is_empty()) {
4905                 help_msgs.push(format!("consider adding an explicit import of \
4906                                         `{ident}` to disambiguate", ident = ident))
4907             }
4908             if b.is_extern_crate() && ident.span.rust_2018() {
4909                 help_msgs.push(format!(
4910                     "use `::{ident}` to refer to this {thing} unambiguously",
4911                     ident = ident, thing = b.descr(),
4912                 ))
4913             }
4914             if misc == AmbiguityErrorMisc::SuggestCrate {
4915                 help_msgs.push(format!(
4916                     "use `crate::{ident}` to refer to this {thing} unambiguously",
4917                     ident = ident, thing = b.descr(),
4918                 ))
4919             } else if misc == AmbiguityErrorMisc::SuggestSelf {
4920                 help_msgs.push(format!(
4921                     "use `self::{ident}` to refer to this {thing} unambiguously",
4922                     ident = ident, thing = b.descr(),
4923                 ))
4924             }
4925
4926             err.span_note(b.span, &note_msg);
4927             for (i, help_msg) in help_msgs.iter().enumerate() {
4928                 let or = if i == 0 { "" } else { "or " };
4929                 err.help(&format!("{}{}", or, help_msg));
4930             }
4931         };
4932
4933         could_refer_to(b1, misc1, "");
4934         could_refer_to(b2, misc2, " also");
4935         err.emit();
4936     }
4937
4938     fn report_errors(&mut self, krate: &Crate) {
4939         self.report_with_use_injections(krate);
4940
4941         for &(span_use, span_def) in &self.macro_expanded_macro_export_errors {
4942             let msg = "macro-expanded `macro_export` macros from the current crate \
4943                        cannot be referred to by absolute paths";
4944             self.session.buffer_lint_with_diagnostic(
4945                 lint::builtin::MACRO_EXPANDED_MACRO_EXPORTS_ACCESSED_BY_ABSOLUTE_PATHS,
4946                 CRATE_NODE_ID, span_use, msg,
4947                 lint::builtin::BuiltinLintDiagnostics::
4948                     MacroExpandedMacroExportsAccessedByAbsolutePaths(span_def),
4949             );
4950         }
4951
4952         for ambiguity_error in &self.ambiguity_errors {
4953             self.report_ambiguity_error(ambiguity_error);
4954         }
4955
4956         let mut reported_spans = FxHashSet::default();
4957         for &PrivacyError(dedup_span, ident, binding) in &self.privacy_errors {
4958             if reported_spans.insert(dedup_span) {
4959                 span_err!(self.session, ident.span, E0603, "{} `{}` is private",
4960                           binding.descr(), ident.name);
4961             }
4962         }
4963     }
4964
4965     fn report_with_use_injections(&mut self, krate: &Crate) {
4966         for UseError { mut err, candidates, node_id, better } in self.use_injections.drain(..) {
4967             let (span, found_use) = UsePlacementFinder::check(krate, node_id);
4968             if !candidates.is_empty() {
4969                 show_candidates(&mut err, span, &candidates, better, found_use);
4970             }
4971             err.emit();
4972         }
4973     }
4974
4975     fn report_conflict<'b>(&mut self,
4976                        parent: Module<'_>,
4977                        ident: Ident,
4978                        ns: Namespace,
4979                        new_binding: &NameBinding<'b>,
4980                        old_binding: &NameBinding<'b>) {
4981         // Error on the second of two conflicting names
4982         if old_binding.span.lo() > new_binding.span.lo() {
4983             return self.report_conflict(parent, ident, ns, old_binding, new_binding);
4984         }
4985
4986         let container = match parent.kind {
4987             ModuleKind::Def(DefKind::Mod, _, _) => "module",
4988             ModuleKind::Def(DefKind::Trait, _, _) => "trait",
4989             ModuleKind::Block(..) => "block",
4990             _ => "enum",
4991         };
4992
4993         let old_noun = match old_binding.is_import() {
4994             true => "import",
4995             false => "definition",
4996         };
4997
4998         let new_participle = match new_binding.is_import() {
4999             true => "imported",
5000             false => "defined",
5001         };
5002
5003         let (name, span) = (ident.name, self.session.source_map().def_span(new_binding.span));
5004
5005         if let Some(s) = self.name_already_seen.get(&name) {
5006             if s == &span {
5007                 return;
5008             }
5009         }
5010
5011         let old_kind = match (ns, old_binding.module()) {
5012             (ValueNS, _) => "value",
5013             (MacroNS, _) => "macro",
5014             (TypeNS, _) if old_binding.is_extern_crate() => "extern crate",
5015             (TypeNS, Some(module)) if module.is_normal() => "module",
5016             (TypeNS, Some(module)) if module.is_trait() => "trait",
5017             (TypeNS, _) => "type",
5018         };
5019
5020         let msg = format!("the name `{}` is defined multiple times", name);
5021
5022         let mut err = match (old_binding.is_extern_crate(), new_binding.is_extern_crate()) {
5023             (true, true) => struct_span_err!(self.session, span, E0259, "{}", msg),
5024             (true, _) | (_, true) => match new_binding.is_import() && old_binding.is_import() {
5025                 true => struct_span_err!(self.session, span, E0254, "{}", msg),
5026                 false => struct_span_err!(self.session, span, E0260, "{}", msg),
5027             },
5028             _ => match (old_binding.is_import(), new_binding.is_import()) {
5029                 (false, false) => struct_span_err!(self.session, span, E0428, "{}", msg),
5030                 (true, true) => struct_span_err!(self.session, span, E0252, "{}", msg),
5031                 _ => struct_span_err!(self.session, span, E0255, "{}", msg),
5032             },
5033         };
5034
5035         err.note(&format!("`{}` must be defined only once in the {} namespace of this {}",
5036                           name,
5037                           ns.descr(),
5038                           container));
5039
5040         err.span_label(span, format!("`{}` re{} here", name, new_participle));
5041         err.span_label(
5042             self.session.source_map().def_span(old_binding.span),
5043             format!("previous {} of the {} `{}` here", old_noun, old_kind, name),
5044         );
5045
5046         // See https://github.com/rust-lang/rust/issues/32354
5047         use NameBindingKind::Import;
5048         let directive = match (&new_binding.kind, &old_binding.kind) {
5049             // If there are two imports where one or both have attributes then prefer removing the
5050             // import without attributes.
5051             (Import { directive: new, .. }, Import { directive: old, .. }) if {
5052                 !new_binding.span.is_dummy() && !old_binding.span.is_dummy() &&
5053                     (new.has_attributes || old.has_attributes)
5054             } => {
5055                 if old.has_attributes {
5056                     Some((new, new_binding.span, true))
5057                 } else {
5058                     Some((old, old_binding.span, true))
5059                 }
5060             },
5061             // Otherwise prioritize the new binding.
5062             (Import { directive, .. }, other) if !new_binding.span.is_dummy() =>
5063                 Some((directive, new_binding.span, other.is_import())),
5064             (other, Import { directive, .. }) if !old_binding.span.is_dummy() =>
5065                 Some((directive, old_binding.span, other.is_import())),
5066             _ => None,
5067         };
5068
5069         // Check if the target of the use for both bindings is the same.
5070         let duplicate = new_binding.res().opt_def_id() == old_binding.res().opt_def_id();
5071         let has_dummy_span = new_binding.span.is_dummy() || old_binding.span.is_dummy();
5072         let from_item = self.extern_prelude.get(&ident)
5073             .map(|entry| entry.introduced_by_item)
5074             .unwrap_or(true);
5075         // Only suggest removing an import if both bindings are to the same def, if both spans
5076         // aren't dummy spans. Further, if both bindings are imports, then the ident must have
5077         // been introduced by a item.
5078         let should_remove_import = duplicate && !has_dummy_span &&
5079             ((new_binding.is_extern_crate() || old_binding.is_extern_crate()) || from_item);
5080
5081         match directive {
5082             Some((directive, span, true)) if should_remove_import && directive.is_nested() =>
5083                 self.add_suggestion_for_duplicate_nested_use(&mut err, directive, span),
5084             Some((directive, _, true)) if should_remove_import && !directive.is_glob() => {
5085                 // Simple case - remove the entire import. Due to the above match arm, this can
5086                 // only be a single use so just remove it entirely.
5087                 err.tool_only_span_suggestion(
5088                     directive.use_span_with_attributes,
5089                     "remove unnecessary import",
5090                     String::new(),
5091                     Applicability::MaybeIncorrect,
5092                 );
5093             },
5094             Some((directive, span, _)) =>
5095                 self.add_suggestion_for_rename_of_use(&mut err, name, directive, span),
5096             _ => {},
5097         }
5098
5099         err.emit();
5100         self.name_already_seen.insert(name, span);
5101     }
5102
5103     /// This function adds a suggestion to change the binding name of a new import that conflicts
5104     /// with an existing import.
5105     ///
5106     /// ```ignore (diagnostic)
5107     /// help: you can use `as` to change the binding name of the import
5108     ///    |
5109     /// LL | use foo::bar as other_bar;
5110     ///    |     ^^^^^^^^^^^^^^^^^^^^^
5111     /// ```
5112     fn add_suggestion_for_rename_of_use(
5113         &self,
5114         err: &mut DiagnosticBuilder<'_>,
5115         name: Symbol,
5116         directive: &ImportDirective<'_>,
5117         binding_span: Span,
5118     ) {
5119         let suggested_name = if name.as_str().chars().next().unwrap().is_uppercase() {
5120             format!("Other{}", name)
5121         } else {
5122             format!("other_{}", name)
5123         };
5124
5125         let mut suggestion = None;
5126         match directive.subclass {
5127             ImportDirectiveSubclass::SingleImport { type_ns_only: true, .. } =>
5128                 suggestion = Some(format!("self as {}", suggested_name)),
5129             ImportDirectiveSubclass::SingleImport { source, .. } => {
5130                 if let Some(pos) = source.span.hi().0.checked_sub(binding_span.lo().0)
5131                                                      .map(|pos| pos as usize) {
5132                     if let Ok(snippet) = self.session.source_map()
5133                                                      .span_to_snippet(binding_span) {
5134                         if pos <= snippet.len() {
5135                             suggestion = Some(format!(
5136                                 "{} as {}{}",
5137                                 &snippet[..pos],
5138                                 suggested_name,
5139                                 if snippet.ends_with(";") { ";" } else { "" }
5140                             ))
5141                         }
5142                     }
5143                 }
5144             }
5145             ImportDirectiveSubclass::ExternCrate { source, target, .. } =>
5146                 suggestion = Some(format!(
5147                     "extern crate {} as {};",
5148                     source.unwrap_or(target.name),
5149                     suggested_name,
5150                 )),
5151             _ => unreachable!(),
5152         }
5153
5154         let rename_msg = "you can use `as` to change the binding name of the import";
5155         if let Some(suggestion) = suggestion {
5156             err.span_suggestion(
5157                 binding_span,
5158                 rename_msg,
5159                 suggestion,
5160                 Applicability::MaybeIncorrect,
5161             );
5162         } else {
5163             err.span_label(binding_span, rename_msg);
5164         }
5165     }
5166
5167     /// This function adds a suggestion to remove a unnecessary binding from an import that is
5168     /// nested. In the following example, this function will be invoked to remove the `a` binding
5169     /// in the second use statement:
5170     ///
5171     /// ```ignore (diagnostic)
5172     /// use issue_52891::a;
5173     /// use issue_52891::{d, a, e};
5174     /// ```
5175     ///
5176     /// The following suggestion will be added:
5177     ///
5178     /// ```ignore (diagnostic)
5179     /// use issue_52891::{d, a, e};
5180     ///                      ^-- help: remove unnecessary import
5181     /// ```
5182     ///
5183     /// If the nested use contains only one import then the suggestion will remove the entire
5184     /// line.
5185     ///
5186     /// It is expected that the directive provided is a nested import - this isn't checked by the
5187     /// function. If this invariant is not upheld, this function's behaviour will be unexpected
5188     /// as characters expected by span manipulations won't be present.
5189     fn add_suggestion_for_duplicate_nested_use(
5190         &self,
5191         err: &mut DiagnosticBuilder<'_>,
5192         directive: &ImportDirective<'_>,
5193         binding_span: Span,
5194     ) {
5195         assert!(directive.is_nested());
5196         let message = "remove unnecessary import";
5197
5198         // Two examples will be used to illustrate the span manipulations we're doing:
5199         //
5200         // - Given `use issue_52891::{d, a, e};` where `a` is a duplicate then `binding_span` is
5201         //   `a` and `directive.use_span` is `issue_52891::{d, a, e};`.
5202         // - Given `use issue_52891::{d, e, a};` where `a` is a duplicate then `binding_span` is
5203         //   `a` and `directive.use_span` is `issue_52891::{d, e, a};`.
5204
5205         let (found_closing_brace, span) = find_span_of_binding_until_next_binding(
5206             self.session, binding_span, directive.use_span,
5207         );
5208
5209         // If there was a closing brace then identify the span to remove any trailing commas from
5210         // previous imports.
5211         if found_closing_brace {
5212             if let Some(span) = extend_span_to_previous_binding(self.session, span) {
5213                 err.tool_only_span_suggestion(span, message, String::new(),
5214                                               Applicability::MaybeIncorrect);
5215             } else {
5216                 // Remove the entire line if we cannot extend the span back, this indicates a
5217                 // `issue_52891::{self}` case.
5218                 err.span_suggestion(directive.use_span_with_attributes, message, String::new(),
5219                                     Applicability::MaybeIncorrect);
5220             }
5221
5222             return;
5223         }
5224
5225         err.span_suggestion(span, message, String::new(), Applicability::MachineApplicable);
5226     }
5227
5228     fn extern_prelude_get(&mut self, ident: Ident, speculative: bool)
5229                           -> Option<&'a NameBinding<'a>> {
5230         if ident.is_path_segment_keyword() {
5231             // Make sure `self`, `super` etc produce an error when passed to here.
5232             return None;
5233         }
5234         self.extern_prelude.get(&ident.modern()).cloned().and_then(|entry| {
5235             if let Some(binding) = entry.extern_crate_item {
5236                 if !speculative && entry.introduced_by_item {
5237                     self.record_use(ident, TypeNS, binding, false);
5238                 }
5239                 Some(binding)
5240             } else {
5241                 let crate_id = if !speculative {
5242                     self.crate_loader.process_path_extern(ident.name, ident.span)
5243                 } else if let Some(crate_id) =
5244                         self.crate_loader.maybe_process_path_extern(ident.name, ident.span) {
5245                     crate_id
5246                 } else {
5247                     return None;
5248                 };
5249                 let crate_root = self.get_module(DefId { krate: crate_id, index: CRATE_DEF_INDEX });
5250                 self.populate_module_if_necessary(&crate_root);
5251                 Some((crate_root, ty::Visibility::Public, DUMMY_SP, Mark::root())
5252                     .to_name_binding(self.arenas))
5253             }
5254         })
5255     }
5256 }
5257
5258 fn is_self_type(path: &[Segment], namespace: Namespace) -> bool {
5259     namespace == TypeNS && path.len() == 1 && path[0].ident.name == kw::SelfUpper
5260 }
5261
5262 fn is_self_value(path: &[Segment], namespace: Namespace) -> bool {
5263     namespace == ValueNS && path.len() == 1 && path[0].ident.name == kw::SelfLower
5264 }
5265
5266 fn names_to_string(idents: &[Ident]) -> String {
5267     let mut result = String::new();
5268     for (i, ident) in idents.iter()
5269                             .filter(|ident| ident.name != kw::PathRoot)
5270                             .enumerate() {
5271         if i > 0 {
5272             result.push_str("::");
5273         }
5274         result.push_str(&ident.as_str());
5275     }
5276     result
5277 }
5278
5279 fn path_names_to_string(path: &Path) -> String {
5280     names_to_string(&path.segments.iter()
5281                         .map(|seg| seg.ident)
5282                         .collect::<Vec<_>>())
5283 }
5284
5285 /// Gets the stringified path for an enum from an `ImportSuggestion` for an enum variant.
5286 fn import_candidate_to_enum_paths(suggestion: &ImportSuggestion) -> (String, String) {
5287     let variant_path = &suggestion.path;
5288     let variant_path_string = path_names_to_string(variant_path);
5289
5290     let path_len = suggestion.path.segments.len();
5291     let enum_path = ast::Path {
5292         span: suggestion.path.span,
5293         segments: suggestion.path.segments[0..path_len - 1].to_vec(),
5294     };
5295     let enum_path_string = path_names_to_string(&enum_path);
5296
5297     (variant_path_string, enum_path_string)
5298 }
5299
5300 /// When an entity with a given name is not available in scope, we search for
5301 /// entities with that name in all crates. This method allows outputting the
5302 /// results of this search in a programmer-friendly way
5303 fn show_candidates(err: &mut DiagnosticBuilder<'_>,
5304                    // This is `None` if all placement locations are inside expansions
5305                    span: Option<Span>,
5306                    candidates: &[ImportSuggestion],
5307                    better: bool,
5308                    found_use: bool) {
5309
5310     // we want consistent results across executions, but candidates are produced
5311     // by iterating through a hash map, so make sure they are ordered:
5312     let mut path_strings: Vec<_> =
5313         candidates.into_iter().map(|c| path_names_to_string(&c.path)).collect();
5314     path_strings.sort();
5315
5316     let better = if better { "better " } else { "" };
5317     let msg_diff = match path_strings.len() {
5318         1 => " is found in another module, you can import it",
5319         _ => "s are found in other modules, you can import them",
5320     };
5321     let msg = format!("possible {}candidate{} into scope", better, msg_diff);
5322
5323     if let Some(span) = span {
5324         for candidate in &mut path_strings {
5325             // produce an additional newline to separate the new use statement
5326             // from the directly following item.
5327             let additional_newline = if found_use {
5328                 ""
5329             } else {
5330                 "\n"
5331             };
5332             *candidate = format!("use {};\n{}", candidate, additional_newline);
5333         }
5334
5335         err.span_suggestions(
5336             span,
5337             &msg,
5338             path_strings.into_iter(),
5339             Applicability::Unspecified,
5340         );
5341     } else {
5342         let mut msg = msg;
5343         msg.push(':');
5344         for candidate in path_strings {
5345             msg.push('\n');
5346             msg.push_str(&candidate);
5347         }
5348     }
5349 }
5350
5351 /// A somewhat inefficient routine to obtain the name of a module.
5352 fn module_to_string(module: Module<'_>) -> Option<String> {
5353     let mut names = Vec::new();
5354
5355     fn collect_mod(names: &mut Vec<Ident>, module: Module<'_>) {
5356         if let ModuleKind::Def(.., name) = module.kind {
5357             if let Some(parent) = module.parent {
5358                 names.push(Ident::with_empty_ctxt(name));
5359                 collect_mod(names, parent);
5360             }
5361         } else {
5362             // danger, shouldn't be ident?
5363             names.push(Ident::from_str("<opaque>"));
5364             collect_mod(names, module.parent.unwrap());
5365         }
5366     }
5367     collect_mod(&mut names, module);
5368
5369     if names.is_empty() {
5370         return None;
5371     }
5372     Some(names_to_string(&names.into_iter()
5373                         .rev()
5374                         .collect::<Vec<_>>()))
5375 }
5376
5377 #[derive(Copy, Clone, Debug)]
5378 enum CrateLint {
5379     /// Do not issue the lint.
5380     No,
5381
5382     /// This lint applies to some arbitrary path; e.g., `impl ::foo::Bar`.
5383     /// In this case, we can take the span of that path.
5384     SimplePath(NodeId),
5385
5386     /// This lint comes from a `use` statement. In this case, what we
5387     /// care about really is the *root* `use` statement; e.g., if we
5388     /// have nested things like `use a::{b, c}`, we care about the
5389     /// `use a` part.
5390     UsePath { root_id: NodeId, root_span: Span },
5391
5392     /// This is the "trait item" from a fully qualified path. For example,
5393     /// we might be resolving  `X::Y::Z` from a path like `<T as X::Y>::Z`.
5394     /// The `path_span` is the span of the to the trait itself (`X::Y`).
5395     QPathTrait { qpath_id: NodeId, qpath_span: Span },
5396 }
5397
5398 impl CrateLint {
5399     fn node_id(&self) -> Option<NodeId> {
5400         match *self {
5401             CrateLint::No => None,
5402             CrateLint::SimplePath(id) |
5403             CrateLint::UsePath { root_id: id, .. } |
5404             CrateLint::QPathTrait { qpath_id: id, .. } => Some(id),
5405         }
5406     }
5407 }
5408
5409 __build_diagnostic_array! { librustc_resolve, DIAGNOSTICS }