]> git.lizzy.rs Git - rust.git/blob - src/librustc_resolve/lib.rs
992ea12ffa2b14c44dde94f4fdfc303ac356d791
[rust.git] / src / librustc_resolve / lib.rs
1 // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 #![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
12       html_favicon_url = "https://doc.rust-lang.org/favicon.ico",
13       html_root_url = "https://doc.rust-lang.org/nightly/")]
14
15 #![feature(crate_visibility_modifier)]
16 #![cfg_attr(not(stage0), feature(nll))]
17 #![feature(rustc_diagnostic_macros)]
18 #![feature(slice_sort_by_cached_key)]
19
20 #[macro_use]
21 extern crate log;
22 #[macro_use]
23 extern crate syntax;
24 extern crate syntax_pos;
25 extern crate rustc_errors as errors;
26 extern crate arena;
27 #[macro_use]
28 extern crate rustc;
29 extern crate rustc_data_structures;
30 extern crate rustc_metadata;
31
32 pub use rustc::hir::def::{Namespace, PerNS};
33
34 use self::TypeParameters::*;
35 use self::RibKind::*;
36
37 use rustc::hir::map::{Definitions, DefCollector};
38 use rustc::hir::{self, PrimTy, TyBool, TyChar, TyFloat, TyInt, TyUint, TyStr};
39 use rustc::middle::cstore::CrateStore;
40 use rustc::session::Session;
41 use rustc::lint;
42 use rustc::hir::def::*;
43 use rustc::hir::def::Namespace::*;
44 use rustc::hir::def_id::{CRATE_DEF_INDEX, LOCAL_CRATE, DefId};
45 use rustc::ty;
46 use rustc::hir::{Freevar, FreevarMap, TraitCandidate, TraitMap, GlobMap};
47 use rustc::util::nodemap::{NodeMap, NodeSet, FxHashMap, FxHashSet, DefIdMap};
48
49 use rustc_metadata::creader::CrateLoader;
50 use rustc_metadata::cstore::CStore;
51
52 use syntax::codemap::CodeMap;
53 use syntax::ext::hygiene::{Mark, Transparency, SyntaxContext};
54 use syntax::ast::{self, Name, NodeId, Ident, FloatTy, IntTy, UintTy};
55 use syntax::ext::base::SyntaxExtension;
56 use syntax::ext::base::Determinacy::{self, Determined, Undetermined};
57 use syntax::ext::base::MacroKind;
58 use syntax::symbol::{Symbol, keywords};
59 use syntax::util::lev_distance::find_best_match_for_name;
60
61 use syntax::visit::{self, FnKind, Visitor};
62 use syntax::attr;
63 use syntax::ast::{CRATE_NODE_ID, Arm, IsAsync, BindingMode, Block, Crate, Expr, ExprKind};
64 use syntax::ast::{FnDecl, ForeignItem, ForeignItemKind, GenericParamKind, Generics};
65 use syntax::ast::{Item, ItemKind, ImplItem, ImplItemKind};
66 use syntax::ast::{Label, Local, Mutability, Pat, PatKind, Path};
67 use syntax::ast::{QSelf, TraitItemKind, TraitRef, Ty, TyKind};
68 use syntax::feature_gate::{feature_err, GateIssue};
69 use syntax::ptr::P;
70
71 use syntax_pos::{Span, DUMMY_SP, MultiSpan};
72 use errors::{DiagnosticBuilder, DiagnosticId};
73
74 use std::cell::{Cell, RefCell};
75 use std::cmp;
76 use std::collections::BTreeSet;
77 use std::fmt;
78 use std::iter;
79 use std::mem::replace;
80 use rustc_data_structures::sync::Lrc;
81
82 use resolve_imports::{ImportDirective, ImportDirectiveSubclass, NameResolution, ImportResolver};
83 use macros::{InvocationData, LegacyBinding, LegacyScope, MacroBinding};
84
85 // NB: This module needs to be declared first so diagnostics are
86 // registered before they are used.
87 mod diagnostics;
88
89 mod macros;
90 mod check_unused;
91 mod build_reduced_graph;
92 mod resolve_imports;
93
94 fn is_known_tool(name: Name) -> bool {
95     ["clippy", "rustfmt"].contains(&&*name.as_str())
96 }
97
98 /// A free importable items suggested in case of resolution failure.
99 struct ImportSuggestion {
100     path: Path,
101 }
102
103 /// A field or associated item from self type suggested in case of resolution failure.
104 enum AssocSuggestion {
105     Field,
106     MethodWithSelf,
107     AssocItem,
108 }
109
110 #[derive(Eq)]
111 struct BindingError {
112     name: Name,
113     origin: BTreeSet<Span>,
114     target: BTreeSet<Span>,
115 }
116
117 impl PartialOrd for BindingError {
118     fn partial_cmp(&self, other: &BindingError) -> Option<cmp::Ordering> {
119         Some(self.cmp(other))
120     }
121 }
122
123 impl PartialEq for BindingError {
124     fn eq(&self, other: &BindingError) -> bool {
125         self.name == other.name
126     }
127 }
128
129 impl Ord for BindingError {
130     fn cmp(&self, other: &BindingError) -> cmp::Ordering {
131         self.name.cmp(&other.name)
132     }
133 }
134
135 enum ResolutionError<'a> {
136     /// error E0401: can't use type parameters from outer function
137     TypeParametersFromOuterFunction(Def),
138     /// error E0403: the name is already used for a type parameter in this type parameter list
139     NameAlreadyUsedInTypeParameterList(Name, &'a Span),
140     /// error E0407: method is not a member of trait
141     MethodNotMemberOfTrait(Name, &'a str),
142     /// error E0437: type is not a member of trait
143     TypeNotMemberOfTrait(Name, &'a str),
144     /// error E0438: const is not a member of trait
145     ConstNotMemberOfTrait(Name, &'a str),
146     /// error E0408: variable `{}` is not bound in all patterns
147     VariableNotBoundInPattern(&'a BindingError),
148     /// error E0409: variable `{}` is bound in inconsistent ways within the same match arm
149     VariableBoundWithDifferentMode(Name, Span),
150     /// error E0415: identifier is bound more than once in this parameter list
151     IdentifierBoundMoreThanOnceInParameterList(&'a str),
152     /// error E0416: identifier is bound more than once in the same pattern
153     IdentifierBoundMoreThanOnceInSamePattern(&'a str),
154     /// error E0426: use of undeclared label
155     UndeclaredLabel(&'a str, Option<Name>),
156     /// error E0429: `self` imports are only allowed within a { } list
157     SelfImportsOnlyAllowedWithin,
158     /// error E0430: `self` import can only appear once in the list
159     SelfImportCanOnlyAppearOnceInTheList,
160     /// error E0431: `self` import can only appear in an import list with a non-empty prefix
161     SelfImportOnlyInImportListWithNonEmptyPrefix,
162     /// error E0432: unresolved import
163     UnresolvedImport(Option<(Span, &'a str, &'a str)>),
164     /// error E0433: failed to resolve
165     FailedToResolve(&'a str),
166     /// error E0434: can't capture dynamic environment in a fn item
167     CannotCaptureDynamicEnvironmentInFnItem,
168     /// error E0435: attempt to use a non-constant value in a constant
169     AttemptToUseNonConstantValueInConstant,
170     /// error E0530: X bindings cannot shadow Ys
171     BindingShadowsSomethingUnacceptable(&'a str, Name, &'a NameBinding<'a>),
172     /// error E0128: type parameters with a default cannot use forward declared identifiers
173     ForwardDeclaredTyParam,
174 }
175
176 /// Combines an error with provided span and emits it
177 ///
178 /// This takes the error provided, combines it with the span and any additional spans inside the
179 /// error and emits it.
180 fn resolve_error<'sess, 'a>(resolver: &'sess Resolver,
181                             span: Span,
182                             resolution_error: ResolutionError<'a>) {
183     resolve_struct_error(resolver, span, resolution_error).emit();
184 }
185
186 fn resolve_struct_error<'sess, 'a>(resolver: &'sess Resolver,
187                                    span: Span,
188                                    resolution_error: ResolutionError<'a>)
189                                    -> DiagnosticBuilder<'sess> {
190     match resolution_error {
191         ResolutionError::TypeParametersFromOuterFunction(outer_def) => {
192             let mut err = struct_span_err!(resolver.session,
193                                            span,
194                                            E0401,
195                                            "can't use type parameters from outer function");
196             err.span_label(span, "use of type variable from outer function");
197
198             let cm = resolver.session.codemap();
199             match outer_def {
200                 Def::SelfTy(_, maybe_impl_defid) => {
201                     if let Some(impl_span) = maybe_impl_defid.map_or(None,
202                             |def_id| resolver.definitions.opt_span(def_id)) {
203                         err.span_label(reduce_impl_span_to_impl_keyword(cm, impl_span),
204                                     "`Self` type implicitely declared here, on the `impl`");
205                     }
206                 },
207                 Def::TyParam(typaram_defid) => {
208                     if let Some(typaram_span) = resolver.definitions.opt_span(typaram_defid) {
209                         err.span_label(typaram_span, "type variable from outer function");
210                     }
211                 },
212                 _ => {
213                     bug!("TypeParametersFromOuterFunction should only be used with Def::SelfTy or \
214                          Def::TyParam")
215                 }
216             }
217
218             // Try to retrieve the span of the function signature and generate a new message with
219             // a local type parameter
220             let sugg_msg = "try using a local type parameter instead";
221             if let Some((sugg_span, new_snippet)) = cm.generate_local_type_param_snippet(span) {
222                 // Suggest the modification to the user
223                 err.span_suggestion(sugg_span,
224                                     sugg_msg,
225                                     new_snippet);
226             } else if let Some(sp) = cm.generate_fn_name_span(span) {
227                 err.span_label(sp, "try adding a local type parameter in this method instead");
228             } else {
229                 err.help("try using a local type parameter instead");
230             }
231
232             err
233         }
234         ResolutionError::NameAlreadyUsedInTypeParameterList(name, first_use_span) => {
235              let mut err = struct_span_err!(resolver.session,
236                                             span,
237                                             E0403,
238                                             "the name `{}` is already used for a type parameter \
239                                             in this type parameter list",
240                                             name);
241              err.span_label(span, "already used");
242              err.span_label(first_use_span.clone(), format!("first use of `{}`", name));
243              err
244         }
245         ResolutionError::MethodNotMemberOfTrait(method, trait_) => {
246             let mut err = struct_span_err!(resolver.session,
247                                            span,
248                                            E0407,
249                                            "method `{}` is not a member of trait `{}`",
250                                            method,
251                                            trait_);
252             err.span_label(span, format!("not a member of trait `{}`", trait_));
253             err
254         }
255         ResolutionError::TypeNotMemberOfTrait(type_, trait_) => {
256             let mut err = struct_span_err!(resolver.session,
257                              span,
258                              E0437,
259                              "type `{}` is not a member of trait `{}`",
260                              type_,
261                              trait_);
262             err.span_label(span, format!("not a member of trait `{}`", trait_));
263             err
264         }
265         ResolutionError::ConstNotMemberOfTrait(const_, trait_) => {
266             let mut err = struct_span_err!(resolver.session,
267                              span,
268                              E0438,
269                              "const `{}` is not a member of trait `{}`",
270                              const_,
271                              trait_);
272             err.span_label(span, format!("not a member of trait `{}`", trait_));
273             err
274         }
275         ResolutionError::VariableNotBoundInPattern(binding_error) => {
276             let target_sp = binding_error.target.iter().cloned().collect::<Vec<_>>();
277             let msp = MultiSpan::from_spans(target_sp.clone());
278             let msg = format!("variable `{}` is not bound in all patterns", binding_error.name);
279             let mut err = resolver.session.struct_span_err_with_code(
280                 msp,
281                 &msg,
282                 DiagnosticId::Error("E0408".into()),
283             );
284             for sp in target_sp {
285                 err.span_label(sp, format!("pattern doesn't bind `{}`", binding_error.name));
286             }
287             let origin_sp = binding_error.origin.iter().cloned();
288             for sp in origin_sp {
289                 err.span_label(sp, "variable not in all patterns");
290             }
291             err
292         }
293         ResolutionError::VariableBoundWithDifferentMode(variable_name,
294                                                         first_binding_span) => {
295             let mut err = struct_span_err!(resolver.session,
296                              span,
297                              E0409,
298                              "variable `{}` is bound in inconsistent \
299                              ways within the same match arm",
300                              variable_name);
301             err.span_label(span, "bound in different ways");
302             err.span_label(first_binding_span, "first binding");
303             err
304         }
305         ResolutionError::IdentifierBoundMoreThanOnceInParameterList(identifier) => {
306             let mut err = struct_span_err!(resolver.session,
307                              span,
308                              E0415,
309                              "identifier `{}` is bound more than once in this parameter list",
310                              identifier);
311             err.span_label(span, "used as parameter more than once");
312             err
313         }
314         ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(identifier) => {
315             let mut err = struct_span_err!(resolver.session,
316                              span,
317                              E0416,
318                              "identifier `{}` is bound more than once in the same pattern",
319                              identifier);
320             err.span_label(span, "used in a pattern more than once");
321             err
322         }
323         ResolutionError::UndeclaredLabel(name, lev_candidate) => {
324             let mut err = struct_span_err!(resolver.session,
325                                            span,
326                                            E0426,
327                                            "use of undeclared label `{}`",
328                                            name);
329             if let Some(lev_candidate) = lev_candidate {
330                 err.span_label(span, format!("did you mean `{}`?", lev_candidate));
331             } else {
332                 err.span_label(span, format!("undeclared label `{}`", name));
333             }
334             err
335         }
336         ResolutionError::SelfImportsOnlyAllowedWithin => {
337             struct_span_err!(resolver.session,
338                              span,
339                              E0429,
340                              "{}",
341                              "`self` imports are only allowed within a { } list")
342         }
343         ResolutionError::SelfImportCanOnlyAppearOnceInTheList => {
344             let mut err = struct_span_err!(resolver.session, span, E0430,
345                                            "`self` import can only appear once in an import list");
346             err.span_label(span, "can only appear once in an import list");
347             err
348         }
349         ResolutionError::SelfImportOnlyInImportListWithNonEmptyPrefix => {
350             let mut err = struct_span_err!(resolver.session, span, E0431,
351                                            "`self` import can only appear in an import list with \
352                                             a non-empty prefix");
353             err.span_label(span, "can only appear in an import list with a non-empty prefix");
354             err
355         }
356         ResolutionError::UnresolvedImport(name) => {
357             let (span, msg) = match name {
358                 Some((sp, n, _)) => (sp, format!("unresolved import `{}`", n)),
359                 None => (span, "unresolved import".to_owned()),
360             };
361             let mut err = struct_span_err!(resolver.session, span, E0432, "{}", msg);
362             if let Some((_, _, p)) = name {
363                 err.span_label(span, p);
364             }
365             err
366         }
367         ResolutionError::FailedToResolve(msg) => {
368             let mut err = struct_span_err!(resolver.session, span, E0433,
369                                            "failed to resolve. {}", msg);
370             err.span_label(span, msg);
371             err
372         }
373         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem => {
374             let mut err = struct_span_err!(resolver.session,
375                                            span,
376                                            E0434,
377                                            "{}",
378                                            "can't capture dynamic environment in a fn item");
379             err.help("use the `|| { ... }` closure form instead");
380             err
381         }
382         ResolutionError::AttemptToUseNonConstantValueInConstant => {
383             let mut err = struct_span_err!(resolver.session, span, E0435,
384                                            "attempt to use a non-constant value in a constant");
385             err.span_label(span, "non-constant value");
386             err
387         }
388         ResolutionError::BindingShadowsSomethingUnacceptable(what_binding, name, binding) => {
389             let shadows_what = PathResolution::new(binding.def()).kind_name();
390             let mut err = struct_span_err!(resolver.session,
391                                            span,
392                                            E0530,
393                                            "{}s cannot shadow {}s", what_binding, shadows_what);
394             err.span_label(span, format!("cannot be named the same as a {}", shadows_what));
395             let participle = if binding.is_import() { "imported" } else { "defined" };
396             let msg = format!("a {} `{}` is {} here", shadows_what, name, participle);
397             err.span_label(binding.span, msg);
398             err
399         }
400         ResolutionError::ForwardDeclaredTyParam => {
401             let mut err = struct_span_err!(resolver.session, span, E0128,
402                                            "type parameters with a default cannot use \
403                                             forward declared identifiers");
404             err.span_label(
405                 span, "defaulted type parameters cannot be forward declared".to_string());
406             err
407         }
408     }
409 }
410
411 /// Adjust the impl span so that just the `impl` keyword is taken by removing
412 /// everything after `<` (`"impl<T> Iterator for A<T> {}" -> "impl"`) and
413 /// everything after the first whitespace (`"impl Iterator for A" -> "impl"`)
414 ///
415 /// Attention: The method used is very fragile since it essentially duplicates the work of the
416 /// parser. If you need to use this function or something similar, please consider updating the
417 /// codemap functions and this function to something more robust.
418 fn reduce_impl_span_to_impl_keyword(cm: &CodeMap, impl_span: Span) -> Span {
419     let impl_span = cm.span_until_char(impl_span, '<');
420     let impl_span = cm.span_until_whitespace(impl_span);
421     impl_span
422 }
423
424 #[derive(Copy, Clone, Debug)]
425 struct BindingInfo {
426     span: Span,
427     binding_mode: BindingMode,
428 }
429
430 /// Map from the name in a pattern to its binding mode.
431 type BindingMap = FxHashMap<Ident, BindingInfo>;
432
433 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
434 enum PatternSource {
435     Match,
436     IfLet,
437     WhileLet,
438     Let,
439     For,
440     FnParam,
441 }
442
443 impl PatternSource {
444     fn descr(self) -> &'static str {
445         match self {
446             PatternSource::Match => "match binding",
447             PatternSource::IfLet => "if let binding",
448             PatternSource::WhileLet => "while let binding",
449             PatternSource::Let => "let binding",
450             PatternSource::For => "for binding",
451             PatternSource::FnParam => "function parameter",
452         }
453     }
454 }
455
456 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
457 enum AliasPossibility {
458     No,
459     Maybe,
460 }
461
462 #[derive(Copy, Clone, Debug)]
463 enum PathSource<'a> {
464     // Type paths `Path`.
465     Type,
466     // Trait paths in bounds or impls.
467     Trait(AliasPossibility),
468     // Expression paths `path`, with optional parent context.
469     Expr(Option<&'a Expr>),
470     // Paths in path patterns `Path`.
471     Pat,
472     // Paths in struct expressions and patterns `Path { .. }`.
473     Struct,
474     // Paths in tuple struct patterns `Path(..)`.
475     TupleStruct,
476     // `m::A::B` in `<T as m::A>::B::C`.
477     TraitItem(Namespace),
478     // Path in `pub(path)`
479     Visibility,
480     // Path in `use a::b::{...};`
481     ImportPrefix,
482 }
483
484 impl<'a> PathSource<'a> {
485     fn namespace(self) -> Namespace {
486         match self {
487             PathSource::Type | PathSource::Trait(_) | PathSource::Struct |
488             PathSource::Visibility | PathSource::ImportPrefix => TypeNS,
489             PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct => ValueNS,
490             PathSource::TraitItem(ns) => ns,
491         }
492     }
493
494     fn global_by_default(self) -> bool {
495         match self {
496             PathSource::Visibility | PathSource::ImportPrefix => true,
497             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
498             PathSource::Struct | PathSource::TupleStruct |
499             PathSource::Trait(_) | PathSource::TraitItem(..) => false,
500         }
501     }
502
503     fn defer_to_typeck(self) -> bool {
504         match self {
505             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
506             PathSource::Struct | PathSource::TupleStruct => true,
507             PathSource::Trait(_) | PathSource::TraitItem(..) |
508             PathSource::Visibility | PathSource::ImportPrefix => false,
509         }
510     }
511
512     fn descr_expected(self) -> &'static str {
513         match self {
514             PathSource::Type => "type",
515             PathSource::Trait(_) => "trait",
516             PathSource::Pat => "unit struct/variant or constant",
517             PathSource::Struct => "struct, variant or union type",
518             PathSource::TupleStruct => "tuple struct/variant",
519             PathSource::Visibility => "module",
520             PathSource::ImportPrefix => "module or enum",
521             PathSource::TraitItem(ns) => match ns {
522                 TypeNS => "associated type",
523                 ValueNS => "method or associated constant",
524                 MacroNS => bug!("associated macro"),
525             },
526             PathSource::Expr(parent) => match parent.map(|p| &p.node) {
527                 // "function" here means "anything callable" rather than `Def::Fn`,
528                 // this is not precise but usually more helpful than just "value".
529                 Some(&ExprKind::Call(..)) => "function",
530                 _ => "value",
531             },
532         }
533     }
534
535     fn is_expected(self, def: Def) -> bool {
536         match self {
537             PathSource::Type => match def {
538                 Def::Struct(..) | Def::Union(..) | Def::Enum(..) |
539                 Def::Trait(..) | Def::TyAlias(..) | Def::AssociatedTy(..) |
540                 Def::PrimTy(..) | Def::TyParam(..) | Def::SelfTy(..) |
541                 Def::Existential(..) |
542                 Def::TyForeign(..) => true,
543                 _ => false,
544             },
545             PathSource::Trait(AliasPossibility::No) => match def {
546                 Def::Trait(..) => true,
547                 _ => false,
548             },
549             PathSource::Trait(AliasPossibility::Maybe) => match def {
550                 Def::Trait(..) => true,
551                 Def::TraitAlias(..) => true,
552                 _ => false,
553             },
554             PathSource::Expr(..) => match def {
555                 Def::StructCtor(_, CtorKind::Const) | Def::StructCtor(_, CtorKind::Fn) |
556                 Def::VariantCtor(_, CtorKind::Const) | Def::VariantCtor(_, CtorKind::Fn) |
557                 Def::Const(..) | Def::Static(..) | Def::Local(..) | Def::Upvar(..) |
558                 Def::Fn(..) | Def::Method(..) | Def::AssociatedConst(..) => true,
559                 _ => false,
560             },
561             PathSource::Pat => match def {
562                 Def::StructCtor(_, CtorKind::Const) |
563                 Def::VariantCtor(_, CtorKind::Const) |
564                 Def::Const(..) | Def::AssociatedConst(..) => true,
565                 _ => false,
566             },
567             PathSource::TupleStruct => match def {
568                 Def::StructCtor(_, CtorKind::Fn) | Def::VariantCtor(_, CtorKind::Fn) => true,
569                 _ => false,
570             },
571             PathSource::Struct => match def {
572                 Def::Struct(..) | Def::Union(..) | Def::Variant(..) |
573                 Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => true,
574                 _ => false,
575             },
576             PathSource::TraitItem(ns) => match def {
577                 Def::AssociatedConst(..) | Def::Method(..) if ns == ValueNS => true,
578                 Def::AssociatedTy(..) if ns == TypeNS => true,
579                 _ => false,
580             },
581             PathSource::ImportPrefix => match def {
582                 Def::Mod(..) | Def::Enum(..) => true,
583                 _ => false,
584             },
585             PathSource::Visibility => match def {
586                 Def::Mod(..) => true,
587                 _ => false,
588             },
589         }
590     }
591
592     fn error_code(self, has_unexpected_resolution: bool) -> &'static str {
593         __diagnostic_used!(E0404);
594         __diagnostic_used!(E0405);
595         __diagnostic_used!(E0412);
596         __diagnostic_used!(E0422);
597         __diagnostic_used!(E0423);
598         __diagnostic_used!(E0425);
599         __diagnostic_used!(E0531);
600         __diagnostic_used!(E0532);
601         __diagnostic_used!(E0573);
602         __diagnostic_used!(E0574);
603         __diagnostic_used!(E0575);
604         __diagnostic_used!(E0576);
605         __diagnostic_used!(E0577);
606         __diagnostic_used!(E0578);
607         match (self, has_unexpected_resolution) {
608             (PathSource::Trait(_), true) => "E0404",
609             (PathSource::Trait(_), false) => "E0405",
610             (PathSource::Type, true) => "E0573",
611             (PathSource::Type, false) => "E0412",
612             (PathSource::Struct, true) => "E0574",
613             (PathSource::Struct, false) => "E0422",
614             (PathSource::Expr(..), true) => "E0423",
615             (PathSource::Expr(..), false) => "E0425",
616             (PathSource::Pat, true) | (PathSource::TupleStruct, true) => "E0532",
617             (PathSource::Pat, false) | (PathSource::TupleStruct, false) => "E0531",
618             (PathSource::TraitItem(..), true) => "E0575",
619             (PathSource::TraitItem(..), false) => "E0576",
620             (PathSource::Visibility, true) | (PathSource::ImportPrefix, true) => "E0577",
621             (PathSource::Visibility, false) | (PathSource::ImportPrefix, false) => "E0578",
622         }
623     }
624 }
625
626 struct UsePlacementFinder {
627     target_module: NodeId,
628     span: Option<Span>,
629     found_use: bool,
630 }
631
632 impl UsePlacementFinder {
633     fn check(krate: &Crate, target_module: NodeId) -> (Option<Span>, bool) {
634         let mut finder = UsePlacementFinder {
635             target_module,
636             span: None,
637             found_use: false,
638         };
639         visit::walk_crate(&mut finder, krate);
640         (finder.span, finder.found_use)
641     }
642 }
643
644 impl<'tcx> Visitor<'tcx> for UsePlacementFinder {
645     fn visit_mod(
646         &mut self,
647         module: &'tcx ast::Mod,
648         _: Span,
649         _: &[ast::Attribute],
650         node_id: NodeId,
651     ) {
652         if self.span.is_some() {
653             return;
654         }
655         if node_id != self.target_module {
656             visit::walk_mod(self, module);
657             return;
658         }
659         // find a use statement
660         for item in &module.items {
661             match item.node {
662                 ItemKind::Use(..) => {
663                     // don't suggest placing a use before the prelude
664                     // import or other generated ones
665                     if item.span.ctxt().outer().expn_info().is_none() {
666                         self.span = Some(item.span.shrink_to_lo());
667                         self.found_use = true;
668                         return;
669                     }
670                 },
671                 // don't place use before extern crate
672                 ItemKind::ExternCrate(_) => {}
673                 // but place them before the first other item
674                 _ => if self.span.map_or(true, |span| item.span < span ) {
675                     if item.span.ctxt().outer().expn_info().is_none() {
676                         // don't insert between attributes and an item
677                         if item.attrs.is_empty() {
678                             self.span = Some(item.span.shrink_to_lo());
679                         } else {
680                             // find the first attribute on the item
681                             for attr in &item.attrs {
682                                 if self.span.map_or(true, |span| attr.span < span) {
683                                     self.span = Some(attr.span.shrink_to_lo());
684                                 }
685                             }
686                         }
687                     }
688                 },
689             }
690         }
691     }
692 }
693
694 /// This thing walks the whole crate in DFS manner, visiting each item, resolving names as it goes.
695 impl<'a, 'tcx, 'cl> Visitor<'tcx> for Resolver<'a, 'cl> {
696     fn visit_item(&mut self, item: &'tcx Item) {
697         self.resolve_item(item);
698     }
699     fn visit_arm(&mut self, arm: &'tcx Arm) {
700         self.resolve_arm(arm);
701     }
702     fn visit_block(&mut self, block: &'tcx Block) {
703         self.resolve_block(block);
704     }
705     fn visit_anon_const(&mut self, constant: &'tcx ast::AnonConst) {
706         self.with_constant_rib(|this| {
707             visit::walk_anon_const(this, constant);
708         });
709     }
710     fn visit_expr(&mut self, expr: &'tcx Expr) {
711         self.resolve_expr(expr, None);
712     }
713     fn visit_local(&mut self, local: &'tcx Local) {
714         self.resolve_local(local);
715     }
716     fn visit_ty(&mut self, ty: &'tcx Ty) {
717         match ty.node {
718             TyKind::Path(ref qself, ref path) => {
719                 self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
720             }
721             TyKind::ImplicitSelf => {
722                 let self_ty = keywords::SelfType.ident();
723                 let def = self.resolve_ident_in_lexical_scope(self_ty, TypeNS, Some(ty.id), ty.span)
724                               .map_or(Def::Err, |d| d.def());
725                 self.record_def(ty.id, PathResolution::new(def));
726             }
727             _ => (),
728         }
729         visit::walk_ty(self, ty);
730     }
731     fn visit_poly_trait_ref(&mut self,
732                             tref: &'tcx ast::PolyTraitRef,
733                             m: &'tcx ast::TraitBoundModifier) {
734         self.smart_resolve_path(tref.trait_ref.ref_id, None,
735                                 &tref.trait_ref.path, PathSource::Trait(AliasPossibility::Maybe));
736         visit::walk_poly_trait_ref(self, tref, m);
737     }
738     fn visit_foreign_item(&mut self, foreign_item: &'tcx ForeignItem) {
739         let type_parameters = match foreign_item.node {
740             ForeignItemKind::Fn(_, ref generics) => {
741                 HasTypeParameters(generics, ItemRibKind)
742             }
743             ForeignItemKind::Static(..) => NoTypeParameters,
744             ForeignItemKind::Ty => NoTypeParameters,
745             ForeignItemKind::Macro(..) => NoTypeParameters,
746         };
747         self.with_type_parameter_rib(type_parameters, |this| {
748             visit::walk_foreign_item(this, foreign_item);
749         });
750     }
751     fn visit_fn(&mut self,
752                 function_kind: FnKind<'tcx>,
753                 declaration: &'tcx FnDecl,
754                 _: Span,
755                 node_id: NodeId)
756     {
757         let (rib_kind, asyncness) = match function_kind {
758             FnKind::ItemFn(_, ref header, ..) =>
759                 (ItemRibKind, header.asyncness),
760             FnKind::Method(_, ref sig, _, _) =>
761                 (TraitOrImplItemRibKind, sig.header.asyncness),
762             FnKind::Closure(_) =>
763                 // Async closures aren't resolved through `visit_fn`-- they're
764                 // processed separately
765                 (ClosureRibKind(node_id), IsAsync::NotAsync),
766         };
767
768         // Create a value rib for the function.
769         self.ribs[ValueNS].push(Rib::new(rib_kind));
770
771         // Create a label rib for the function.
772         self.label_ribs.push(Rib::new(rib_kind));
773
774         // Add each argument to the rib.
775         let mut bindings_list = FxHashMap();
776         for argument in &declaration.inputs {
777             self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
778
779             self.visit_ty(&argument.ty);
780
781             debug!("(resolving function) recorded argument");
782         }
783         visit::walk_fn_ret_ty(self, &declaration.output);
784
785         // Resolve the function body, potentially inside the body of an async closure
786         if let IsAsync::Async { closure_id, .. } = asyncness {
787             let rib_kind = ClosureRibKind(closure_id);
788             self.ribs[ValueNS].push(Rib::new(rib_kind));
789             self.label_ribs.push(Rib::new(rib_kind));
790         }
791
792         match function_kind {
793             FnKind::ItemFn(.., body) |
794             FnKind::Method(.., body) => {
795                 self.visit_block(body);
796             }
797             FnKind::Closure(body) => {
798                 self.visit_expr(body);
799             }
800         };
801
802         // Leave the body of the async closure
803         if asyncness.is_async() {
804             self.label_ribs.pop();
805             self.ribs[ValueNS].pop();
806         }
807
808         debug!("(resolving function) leaving function");
809
810         self.label_ribs.pop();
811         self.ribs[ValueNS].pop();
812     }
813     fn visit_generics(&mut self, generics: &'tcx Generics) {
814         // For type parameter defaults, we have to ban access
815         // to following type parameters, as the Substs can only
816         // provide previous type parameters as they're built. We
817         // put all the parameters on the ban list and then remove
818         // them one by one as they are processed and become available.
819         let mut default_ban_rib = Rib::new(ForwardTyParamBanRibKind);
820         let mut found_default = false;
821         default_ban_rib.bindings.extend(generics.params.iter()
822             .filter_map(|param| match param.kind {
823                 GenericParamKind::Lifetime { .. } => None,
824                 GenericParamKind::Type { ref default, .. } => {
825                     if found_default || default.is_some() {
826                         found_default = true;
827                         return Some((Ident::with_empty_ctxt(param.ident.name), Def::Err));
828                     }
829                     None
830                 }
831             }));
832
833         for param in &generics.params {
834             match param.kind {
835                 GenericParamKind::Lifetime { .. } => self.visit_generic_param(param),
836                 GenericParamKind::Type { ref default, .. } => {
837                     for bound in &param.bounds {
838                         self.visit_param_bound(bound);
839                     }
840
841                     if let Some(ref ty) = default {
842                         self.ribs[TypeNS].push(default_ban_rib);
843                         self.visit_ty(ty);
844                         default_ban_rib = self.ribs[TypeNS].pop().unwrap();
845                     }
846
847                     // Allow all following defaults to refer to this type parameter.
848                     default_ban_rib.bindings.remove(&Ident::with_empty_ctxt(param.ident.name));
849                 }
850             }
851         }
852         for p in &generics.where_clause.predicates {
853             self.visit_where_predicate(p);
854         }
855     }
856 }
857
858 #[derive(Copy, Clone)]
859 enum TypeParameters<'a, 'b> {
860     NoTypeParameters,
861     HasTypeParameters(// Type parameters.
862                       &'b Generics,
863
864                       // The kind of the rib used for type parameters.
865                       RibKind<'a>),
866 }
867
868 /// The rib kind controls the translation of local
869 /// definitions (`Def::Local`) to upvars (`Def::Upvar`).
870 #[derive(Copy, Clone, Debug)]
871 enum RibKind<'a> {
872     /// No translation needs to be applied.
873     NormalRibKind,
874
875     /// We passed through a closure scope at the given node ID.
876     /// Translate upvars as appropriate.
877     ClosureRibKind(NodeId /* func id */),
878
879     /// We passed through an impl or trait and are now in one of its
880     /// methods or associated types. Allow references to ty params that impl or trait
881     /// binds. Disallow any other upvars (including other ty params that are
882     /// upvars).
883     TraitOrImplItemRibKind,
884
885     /// We passed through an item scope. Disallow upvars.
886     ItemRibKind,
887
888     /// We're in a constant item. Can't refer to dynamic stuff.
889     ConstantItemRibKind,
890
891     /// We passed through a module.
892     ModuleRibKind(Module<'a>),
893
894     /// We passed through a `macro_rules!` statement
895     MacroDefinition(DefId),
896
897     /// All bindings in this rib are type parameters that can't be used
898     /// from the default of a type parameter because they're not declared
899     /// before said type parameter. Also see the `visit_generics` override.
900     ForwardTyParamBanRibKind,
901 }
902
903 /// One local scope.
904 ///
905 /// A rib represents a scope names can live in. Note that these appear in many places, not just
906 /// around braces. At any place where the list of accessible names (of the given namespace)
907 /// changes or a new restrictions on the name accessibility are introduced, a new rib is put onto a
908 /// stack. This may be, for example, a `let` statement (because it introduces variables), a macro,
909 /// etc.
910 ///
911 /// Different [rib kinds](enum.RibKind) are transparent for different names.
912 ///
913 /// The resolution keeps a separate stack of ribs as it traverses the AST for each namespace. When
914 /// resolving, the name is looked up from inside out.
915 #[derive(Debug)]
916 struct Rib<'a> {
917     bindings: FxHashMap<Ident, Def>,
918     kind: RibKind<'a>,
919 }
920
921 impl<'a> Rib<'a> {
922     fn new(kind: RibKind<'a>) -> Rib<'a> {
923         Rib {
924             bindings: FxHashMap(),
925             kind,
926         }
927     }
928 }
929
930 /// An intermediate resolution result.
931 ///
932 /// This refers to the thing referred by a name. The difference between `Def` and `Item` is that
933 /// items are visible in their whole block, while defs only from the place they are defined
934 /// forward.
935 enum LexicalScopeBinding<'a> {
936     Item(&'a NameBinding<'a>),
937     Def(Def),
938 }
939
940 impl<'a> LexicalScopeBinding<'a> {
941     fn item(self) -> Option<&'a NameBinding<'a>> {
942         match self {
943             LexicalScopeBinding::Item(binding) => Some(binding),
944             _ => None,
945         }
946     }
947
948     fn def(self) -> Def {
949         match self {
950             LexicalScopeBinding::Item(binding) => binding.def(),
951             LexicalScopeBinding::Def(def) => def,
952         }
953     }
954 }
955
956 #[derive(Copy, Clone, Debug)]
957 pub enum ModuleOrUniformRoot<'a> {
958     /// Regular module.
959     Module(Module<'a>),
960
961     /// The `{{root}}` (`CrateRoot` aka "global") / `extern` initial segment
962     /// in which external crates resolve, and also `crate` (only in `{{root}}`,
963     /// but *not* `extern`), in the Rust 2018 edition.
964     UniformRoot(Name),
965 }
966
967 #[derive(Clone, Debug)]
968 enum PathResult<'a> {
969     Module(ModuleOrUniformRoot<'a>),
970     NonModule(PathResolution),
971     Indeterminate,
972     Failed(Span, String, bool /* is the error from the last segment? */),
973 }
974
975 enum ModuleKind {
976     /// An anonymous module, eg. just a block.
977     ///
978     /// ```
979     /// fn main() {
980     ///     fn f() {} // (1)
981     ///     { // This is an anonymous module
982     ///         f(); // This resolves to (2) as we are inside the block.
983     ///         fn f() {} // (2)
984     ///     }
985     ///     f(); // Resolves to (1)
986     /// }
987     /// ```
988     Block(NodeId),
989     /// Any module with a name.
990     ///
991     /// This could be:
992     ///
993     /// * A normal module â€’ either `mod from_file;` or `mod from_block { }`.
994     /// * A trait or an enum (it implicitly contains associated types, methods and variant
995     ///   constructors).
996     Def(Def, Name),
997 }
998
999 /// One node in the tree of modules.
1000 pub struct ModuleData<'a> {
1001     parent: Option<Module<'a>>,
1002     kind: ModuleKind,
1003
1004     // The def id of the closest normal module (`mod`) ancestor (including this module).
1005     normal_ancestor_id: DefId,
1006
1007     resolutions: RefCell<FxHashMap<(Ident, Namespace), &'a RefCell<NameResolution<'a>>>>,
1008     legacy_macro_resolutions: RefCell<Vec<(Mark, Ident, MacroKind, Option<Def>)>>,
1009     macro_resolutions: RefCell<Vec<(Box<[Ident]>, Span)>>,
1010
1011     // Macro invocations that can expand into items in this module.
1012     unresolved_invocations: RefCell<FxHashSet<Mark>>,
1013
1014     no_implicit_prelude: bool,
1015
1016     glob_importers: RefCell<Vec<&'a ImportDirective<'a>>>,
1017     globs: RefCell<Vec<&'a ImportDirective<'a>>>,
1018
1019     // Used to memoize the traits in this module for faster searches through all traits in scope.
1020     traits: RefCell<Option<Box<[(Ident, &'a NameBinding<'a>)]>>>,
1021
1022     // Whether this module is populated. If not populated, any attempt to
1023     // access the children must be preceded with a
1024     // `populate_module_if_necessary` call.
1025     populated: Cell<bool>,
1026
1027     /// Span of the module itself. Used for error reporting.
1028     span: Span,
1029
1030     expansion: Mark,
1031 }
1032
1033 type Module<'a> = &'a ModuleData<'a>;
1034
1035 impl<'a> ModuleData<'a> {
1036     fn new(parent: Option<Module<'a>>,
1037            kind: ModuleKind,
1038            normal_ancestor_id: DefId,
1039            expansion: Mark,
1040            span: Span) -> Self {
1041         ModuleData {
1042             parent,
1043             kind,
1044             normal_ancestor_id,
1045             resolutions: RefCell::new(FxHashMap()),
1046             legacy_macro_resolutions: RefCell::new(Vec::new()),
1047             macro_resolutions: RefCell::new(Vec::new()),
1048             unresolved_invocations: RefCell::new(FxHashSet()),
1049             no_implicit_prelude: false,
1050             glob_importers: RefCell::new(Vec::new()),
1051             globs: RefCell::new(Vec::new()),
1052             traits: RefCell::new(None),
1053             populated: Cell::new(normal_ancestor_id.is_local()),
1054             span,
1055             expansion,
1056         }
1057     }
1058
1059     fn for_each_child<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1060         for (&(ident, ns), name_resolution) in self.resolutions.borrow().iter() {
1061             name_resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1062         }
1063     }
1064
1065     fn for_each_child_stable<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1066         let resolutions = self.resolutions.borrow();
1067         let mut resolutions = resolutions.iter().collect::<Vec<_>>();
1068         resolutions.sort_by_cached_key(|&(&(ident, ns), _)| (ident.as_str(), ns));
1069         for &(&(ident, ns), &resolution) in resolutions.iter() {
1070             resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1071         }
1072     }
1073
1074     fn def(&self) -> Option<Def> {
1075         match self.kind {
1076             ModuleKind::Def(def, _) => Some(def),
1077             _ => None,
1078         }
1079     }
1080
1081     fn def_id(&self) -> Option<DefId> {
1082         self.def().as_ref().map(Def::def_id)
1083     }
1084
1085     // `self` resolves to the first module ancestor that `is_normal`.
1086     fn is_normal(&self) -> bool {
1087         match self.kind {
1088             ModuleKind::Def(Def::Mod(_), _) => true,
1089             _ => false,
1090         }
1091     }
1092
1093     fn is_trait(&self) -> bool {
1094         match self.kind {
1095             ModuleKind::Def(Def::Trait(_), _) => true,
1096             _ => false,
1097         }
1098     }
1099
1100     fn is_local(&self) -> bool {
1101         self.normal_ancestor_id.is_local()
1102     }
1103
1104     fn nearest_item_scope(&'a self) -> Module<'a> {
1105         if self.is_trait() { self.parent.unwrap() } else { self }
1106     }
1107 }
1108
1109 impl<'a> fmt::Debug for ModuleData<'a> {
1110     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1111         write!(f, "{:?}", self.def())
1112     }
1113 }
1114
1115 /// Records a possibly-private value, type, or module definition.
1116 #[derive(Clone, Debug)]
1117 pub struct NameBinding<'a> {
1118     kind: NameBindingKind<'a>,
1119     expansion: Mark,
1120     span: Span,
1121     vis: ty::Visibility,
1122 }
1123
1124 pub trait ToNameBinding<'a> {
1125     fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a>;
1126 }
1127
1128 impl<'a> ToNameBinding<'a> for &'a NameBinding<'a> {
1129     fn to_name_binding(self, _: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> {
1130         self
1131     }
1132 }
1133
1134 #[derive(Clone, Debug)]
1135 enum NameBindingKind<'a> {
1136     Def(Def, /* is_macro_export */ bool),
1137     Module(Module<'a>),
1138     Import {
1139         binding: &'a NameBinding<'a>,
1140         directive: &'a ImportDirective<'a>,
1141         used: Cell<bool>,
1142     },
1143     Ambiguity {
1144         b1: &'a NameBinding<'a>,
1145         b2: &'a NameBinding<'a>,
1146     }
1147 }
1148
1149 struct PrivacyError<'a>(Span, Name, &'a NameBinding<'a>);
1150
1151 struct UseError<'a> {
1152     err: DiagnosticBuilder<'a>,
1153     /// Attach `use` statements for these candidates
1154     candidates: Vec<ImportSuggestion>,
1155     /// The node id of the module to place the use statements in
1156     node_id: NodeId,
1157     /// Whether the diagnostic should state that it's "better"
1158     better: bool,
1159 }
1160
1161 struct AmbiguityError<'a> {
1162     span: Span,
1163     name: Name,
1164     lexical: bool,
1165     b1: &'a NameBinding<'a>,
1166     b2: &'a NameBinding<'a>,
1167 }
1168
1169 impl<'a> NameBinding<'a> {
1170     fn module(&self) -> Option<Module<'a>> {
1171         match self.kind {
1172             NameBindingKind::Module(module) => Some(module),
1173             NameBindingKind::Import { binding, .. } => binding.module(),
1174             _ => None,
1175         }
1176     }
1177
1178     fn def(&self) -> Def {
1179         match self.kind {
1180             NameBindingKind::Def(def, _) => def,
1181             NameBindingKind::Module(module) => module.def().unwrap(),
1182             NameBindingKind::Import { binding, .. } => binding.def(),
1183             NameBindingKind::Ambiguity { .. } => Def::Err,
1184         }
1185     }
1186
1187     fn def_ignoring_ambiguity(&self) -> Def {
1188         match self.kind {
1189             NameBindingKind::Import { binding, .. } => binding.def_ignoring_ambiguity(),
1190             NameBindingKind::Ambiguity { b1, .. } => b1.def_ignoring_ambiguity(),
1191             _ => self.def(),
1192         }
1193     }
1194
1195     fn get_macro<'b: 'a>(&self, resolver: &mut Resolver<'a, 'b>) -> Lrc<SyntaxExtension> {
1196         resolver.get_macro(self.def_ignoring_ambiguity())
1197     }
1198
1199     // We sometimes need to treat variants as `pub` for backwards compatibility
1200     fn pseudo_vis(&self) -> ty::Visibility {
1201         if self.is_variant() && self.def().def_id().is_local() {
1202             ty::Visibility::Public
1203         } else {
1204             self.vis
1205         }
1206     }
1207
1208     fn is_variant(&self) -> bool {
1209         match self.kind {
1210             NameBindingKind::Def(Def::Variant(..), _) |
1211             NameBindingKind::Def(Def::VariantCtor(..), _) => true,
1212             _ => false,
1213         }
1214     }
1215
1216     fn is_extern_crate(&self) -> bool {
1217         match self.kind {
1218             NameBindingKind::Import {
1219                 directive: &ImportDirective {
1220                     subclass: ImportDirectiveSubclass::ExternCrate(_), ..
1221                 }, ..
1222             } => true,
1223             _ => false,
1224         }
1225     }
1226
1227     fn is_import(&self) -> bool {
1228         match self.kind {
1229             NameBindingKind::Import { .. } => true,
1230             _ => false,
1231         }
1232     }
1233
1234     fn is_renamed_extern_crate(&self) -> bool {
1235         if let NameBindingKind::Import { directive, ..} = self.kind {
1236             if let ImportDirectiveSubclass::ExternCrate(Some(_)) = directive.subclass {
1237                 return true;
1238             }
1239         }
1240         false
1241     }
1242
1243     fn is_glob_import(&self) -> bool {
1244         match self.kind {
1245             NameBindingKind::Import { directive, .. } => directive.is_glob(),
1246             NameBindingKind::Ambiguity { b1, .. } => b1.is_glob_import(),
1247             _ => false,
1248         }
1249     }
1250
1251     fn is_importable(&self) -> bool {
1252         match self.def() {
1253             Def::AssociatedConst(..) | Def::Method(..) | Def::AssociatedTy(..) => false,
1254             _ => true,
1255         }
1256     }
1257
1258     fn is_macro_def(&self) -> bool {
1259         match self.kind {
1260             NameBindingKind::Def(Def::Macro(..), _) => true,
1261             _ => false,
1262         }
1263     }
1264
1265     fn descr(&self) -> &'static str {
1266         if self.is_extern_crate() { "extern crate" } else { self.def().kind_name() }
1267     }
1268 }
1269
1270 /// Interns the names of the primitive types.
1271 ///
1272 /// All other types are defined somewhere and possibly imported, but the primitive ones need
1273 /// special handling, since they have no place of origin.
1274 struct PrimitiveTypeTable {
1275     primitive_types: FxHashMap<Name, PrimTy>,
1276 }
1277
1278 impl PrimitiveTypeTable {
1279     fn new() -> PrimitiveTypeTable {
1280         let mut table = PrimitiveTypeTable { primitive_types: FxHashMap() };
1281
1282         table.intern("bool", TyBool);
1283         table.intern("char", TyChar);
1284         table.intern("f32", TyFloat(FloatTy::F32));
1285         table.intern("f64", TyFloat(FloatTy::F64));
1286         table.intern("isize", TyInt(IntTy::Isize));
1287         table.intern("i8", TyInt(IntTy::I8));
1288         table.intern("i16", TyInt(IntTy::I16));
1289         table.intern("i32", TyInt(IntTy::I32));
1290         table.intern("i64", TyInt(IntTy::I64));
1291         table.intern("i128", TyInt(IntTy::I128));
1292         table.intern("str", TyStr);
1293         table.intern("usize", TyUint(UintTy::Usize));
1294         table.intern("u8", TyUint(UintTy::U8));
1295         table.intern("u16", TyUint(UintTy::U16));
1296         table.intern("u32", TyUint(UintTy::U32));
1297         table.intern("u64", TyUint(UintTy::U64));
1298         table.intern("u128", TyUint(UintTy::U128));
1299         table
1300     }
1301
1302     fn intern(&mut self, string: &str, primitive_type: PrimTy) {
1303         self.primitive_types.insert(Symbol::intern(string), primitive_type);
1304     }
1305 }
1306
1307 /// The main resolver class.
1308 ///
1309 /// This is the visitor that walks the whole crate.
1310 pub struct Resolver<'a, 'b: 'a> {
1311     session: &'a Session,
1312     cstore: &'a CStore,
1313
1314     pub definitions: Definitions,
1315
1316     graph_root: Module<'a>,
1317
1318     prelude: Option<Module<'a>>,
1319     extern_prelude: FxHashSet<Name>,
1320
1321     /// n.b. This is used only for better diagnostics, not name resolution itself.
1322     has_self: FxHashSet<DefId>,
1323
1324     /// Names of fields of an item `DefId` accessible with dot syntax.
1325     /// Used for hints during error reporting.
1326     field_names: FxHashMap<DefId, Vec<Name>>,
1327
1328     /// All imports known to succeed or fail.
1329     determined_imports: Vec<&'a ImportDirective<'a>>,
1330
1331     /// All non-determined imports.
1332     indeterminate_imports: Vec<&'a ImportDirective<'a>>,
1333
1334     /// The module that represents the current item scope.
1335     current_module: Module<'a>,
1336
1337     /// The current set of local scopes for types and values.
1338     /// FIXME #4948: Reuse ribs to avoid allocation.
1339     ribs: PerNS<Vec<Rib<'a>>>,
1340
1341     /// The current set of local scopes, for labels.
1342     label_ribs: Vec<Rib<'a>>,
1343
1344     /// The trait that the current context can refer to.
1345     current_trait_ref: Option<(Module<'a>, TraitRef)>,
1346
1347     /// The current self type if inside an impl (used for better errors).
1348     current_self_type: Option<Ty>,
1349
1350     /// The idents for the primitive types.
1351     primitive_type_table: PrimitiveTypeTable,
1352
1353     def_map: DefMap,
1354     import_map: ImportMap,
1355     pub freevars: FreevarMap,
1356     freevars_seen: NodeMap<NodeMap<usize>>,
1357     pub export_map: ExportMap,
1358     pub trait_map: TraitMap,
1359
1360     /// A map from nodes to anonymous modules.
1361     /// Anonymous modules are pseudo-modules that are implicitly created around items
1362     /// contained within blocks.
1363     ///
1364     /// For example, if we have this:
1365     ///
1366     ///  fn f() {
1367     ///      fn g() {
1368     ///          ...
1369     ///      }
1370     ///  }
1371     ///
1372     /// There will be an anonymous module created around `g` with the ID of the
1373     /// entry block for `f`.
1374     block_map: NodeMap<Module<'a>>,
1375     module_map: FxHashMap<DefId, Module<'a>>,
1376     extern_module_map: FxHashMap<(DefId, bool /* MacrosOnly? */), Module<'a>>,
1377
1378     pub make_glob_map: bool,
1379     /// Maps imports to the names of items actually imported (this actually maps
1380     /// all imports, but only glob imports are actually interesting).
1381     pub glob_map: GlobMap,
1382
1383     used_imports: FxHashSet<(NodeId, Namespace)>,
1384     pub maybe_unused_trait_imports: NodeSet,
1385     pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
1386
1387     /// A list of labels as of yet unused. Labels will be removed from this map when
1388     /// they are used (in a `break` or `continue` statement)
1389     pub unused_labels: FxHashMap<NodeId, Span>,
1390
1391     /// privacy errors are delayed until the end in order to deduplicate them
1392     privacy_errors: Vec<PrivacyError<'a>>,
1393     /// ambiguity errors are delayed for deduplication
1394     ambiguity_errors: Vec<AmbiguityError<'a>>,
1395     /// `use` injections are delayed for better placement and deduplication
1396     use_injections: Vec<UseError<'a>>,
1397     /// `use` injections for proc macros wrongly imported with #[macro_use]
1398     proc_mac_errors: Vec<macros::ProcMacError>,
1399     /// crate-local macro expanded `macro_export` referred to by a module-relative path
1400     macro_expanded_macro_export_errors: BTreeSet<(Span, Span)>,
1401
1402     gated_errors: FxHashSet<Span>,
1403     disallowed_shadowing: Vec<&'a LegacyBinding<'a>>,
1404
1405     arenas: &'a ResolverArenas<'a>,
1406     dummy_binding: &'a NameBinding<'a>,
1407     /// true if `#![feature(use_extern_macros)]`
1408     use_extern_macros: bool,
1409
1410     crate_loader: &'a mut CrateLoader<'b>,
1411     macro_names: FxHashSet<Ident>,
1412     macro_prelude: FxHashMap<Name, &'a NameBinding<'a>>,
1413     pub all_macros: FxHashMap<Name, Def>,
1414     lexical_macro_resolutions: Vec<(Ident, &'a Cell<LegacyScope<'a>>)>,
1415     macro_map: FxHashMap<DefId, Lrc<SyntaxExtension>>,
1416     macro_defs: FxHashMap<Mark, DefId>,
1417     local_macro_def_scopes: FxHashMap<NodeId, Module<'a>>,
1418     macro_exports: Vec<Export>, // FIXME: Remove when `use_extern_macros` is stabilized
1419     pub whitelisted_legacy_custom_derives: Vec<Name>,
1420     pub found_unresolved_macro: bool,
1421
1422     /// List of crate local macros that we need to warn about as being unused.
1423     /// Right now this only includes macro_rules! macros, and macros 2.0.
1424     unused_macros: FxHashSet<DefId>,
1425
1426     /// Maps the `Mark` of an expansion to its containing module or block.
1427     invocations: FxHashMap<Mark, &'a InvocationData<'a>>,
1428
1429     /// Avoid duplicated errors for "name already defined".
1430     name_already_seen: FxHashMap<Name, Span>,
1431
1432     /// A set of procedural macros imported by `#[macro_use]` that have already been warned about
1433     warned_proc_macros: FxHashSet<Name>,
1434
1435     potentially_unused_imports: Vec<&'a ImportDirective<'a>>,
1436
1437     /// This table maps struct IDs into struct constructor IDs,
1438     /// it's not used during normal resolution, only for better error reporting.
1439     struct_constructors: DefIdMap<(Def, ty::Visibility)>,
1440
1441     /// Only used for better errors on `fn(): fn()`
1442     current_type_ascription: Vec<Span>,
1443
1444     injected_crate: Option<Module<'a>>,
1445
1446     /// Only supposed to be used by rustdoc, otherwise should be false.
1447     pub ignore_extern_prelude_feature: bool,
1448 }
1449
1450 /// Nothing really interesting here, it just provides memory for the rest of the crate.
1451 pub struct ResolverArenas<'a> {
1452     modules: arena::TypedArena<ModuleData<'a>>,
1453     local_modules: RefCell<Vec<Module<'a>>>,
1454     name_bindings: arena::TypedArena<NameBinding<'a>>,
1455     import_directives: arena::TypedArena<ImportDirective<'a>>,
1456     name_resolutions: arena::TypedArena<RefCell<NameResolution<'a>>>,
1457     invocation_data: arena::TypedArena<InvocationData<'a>>,
1458     legacy_bindings: arena::TypedArena<LegacyBinding<'a>>,
1459 }
1460
1461 impl<'a> ResolverArenas<'a> {
1462     fn alloc_module(&'a self, module: ModuleData<'a>) -> Module<'a> {
1463         let module = self.modules.alloc(module);
1464         if module.def_id().map(|def_id| def_id.is_local()).unwrap_or(true) {
1465             self.local_modules.borrow_mut().push(module);
1466         }
1467         module
1468     }
1469     fn local_modules(&'a self) -> ::std::cell::Ref<'a, Vec<Module<'a>>> {
1470         self.local_modules.borrow()
1471     }
1472     fn alloc_name_binding(&'a self, name_binding: NameBinding<'a>) -> &'a NameBinding<'a> {
1473         self.name_bindings.alloc(name_binding)
1474     }
1475     fn alloc_import_directive(&'a self, import_directive: ImportDirective<'a>)
1476                               -> &'a ImportDirective {
1477         self.import_directives.alloc(import_directive)
1478     }
1479     fn alloc_name_resolution(&'a self) -> &'a RefCell<NameResolution<'a>> {
1480         self.name_resolutions.alloc(Default::default())
1481     }
1482     fn alloc_invocation_data(&'a self, expansion_data: InvocationData<'a>)
1483                              -> &'a InvocationData<'a> {
1484         self.invocation_data.alloc(expansion_data)
1485     }
1486     fn alloc_legacy_binding(&'a self, binding: LegacyBinding<'a>) -> &'a LegacyBinding<'a> {
1487         self.legacy_bindings.alloc(binding)
1488     }
1489 }
1490
1491 impl<'a, 'b: 'a, 'cl: 'b> ty::DefIdTree for &'a Resolver<'b, 'cl> {
1492     fn parent(self, id: DefId) -> Option<DefId> {
1493         match id.krate {
1494             LOCAL_CRATE => self.definitions.def_key(id.index).parent,
1495             _ => self.cstore.def_key(id).parent,
1496         }.map(|index| DefId { index, ..id })
1497     }
1498 }
1499
1500 /// This interface is used through the AST→HIR step, to embed full paths into the HIR. After that
1501 /// the resolver is no longer needed as all the relevant information is inline.
1502 impl<'a, 'cl> hir::lowering::Resolver for Resolver<'a, 'cl> {
1503     fn resolve_hir_path(&mut self, path: &mut hir::Path, is_value: bool) {
1504         self.resolve_hir_path_cb(path, is_value,
1505                                  |resolver, span, error| resolve_error(resolver, span, error))
1506     }
1507
1508     fn resolve_str_path(
1509         &mut self,
1510         span: Span,
1511         crate_root: Option<&str>,
1512         components: &[&str],
1513         args: Option<P<hir::GenericArgs>>,
1514         is_value: bool
1515     ) -> hir::Path {
1516         let mut segments = iter::once(keywords::CrateRoot.ident())
1517             .chain(
1518                 crate_root.into_iter()
1519                     .chain(components.iter().cloned())
1520                     .map(Ident::from_str)
1521             ).map(hir::PathSegment::from_ident).collect::<Vec<_>>();
1522
1523         if let Some(args) = args {
1524             let ident = segments.last().unwrap().ident;
1525             *segments.last_mut().unwrap() = hir::PathSegment {
1526                 ident,
1527                 args: Some(args),
1528                 infer_types: true,
1529             };
1530         }
1531
1532         let mut path = hir::Path {
1533             span,
1534             def: Def::Err,
1535             segments: segments.into(),
1536         };
1537
1538         self.resolve_hir_path(&mut path, is_value);
1539         path
1540     }
1541
1542     fn get_resolution(&mut self, id: NodeId) -> Option<PathResolution> {
1543         self.def_map.get(&id).cloned()
1544     }
1545
1546     fn get_import(&mut self, id: NodeId) -> PerNS<Option<PathResolution>> {
1547         self.import_map.get(&id).cloned().unwrap_or_default()
1548     }
1549
1550     fn definitions(&mut self) -> &mut Definitions {
1551         &mut self.definitions
1552     }
1553 }
1554
1555 impl<'a, 'crateloader> Resolver<'a, 'crateloader> {
1556     /// Rustdoc uses this to resolve things in a recoverable way. ResolutionError<'a>
1557     /// isn't something that can be returned because it can't be made to live that long,
1558     /// and also it's a private type. Fortunately rustdoc doesn't need to know the error,
1559     /// just that an error occurred.
1560     pub fn resolve_str_path_error(&mut self, span: Span, path_str: &str, is_value: bool)
1561         -> Result<hir::Path, ()> {
1562         use std::iter;
1563         let mut errored = false;
1564
1565         let mut path = if path_str.starts_with("::") {
1566             hir::Path {
1567                 span,
1568                 def: Def::Err,
1569                 segments: iter::once(keywords::CrateRoot.ident()).chain({
1570                     path_str.split("::").skip(1).map(Ident::from_str)
1571                 }).map(hir::PathSegment::from_ident).collect(),
1572             }
1573         } else {
1574             hir::Path {
1575                 span,
1576                 def: Def::Err,
1577                 segments: path_str.split("::").map(Ident::from_str)
1578                                   .map(hir::PathSegment::from_ident).collect(),
1579             }
1580         };
1581         self.resolve_hir_path_cb(&mut path, is_value, |_, _, _| errored = true);
1582         if errored || path.def == Def::Err {
1583             Err(())
1584         } else {
1585             Ok(path)
1586         }
1587     }
1588
1589     /// resolve_hir_path, but takes a callback in case there was an error
1590     fn resolve_hir_path_cb<F>(&mut self, path: &mut hir::Path, is_value: bool, error_callback: F)
1591         where F: for<'c, 'b> FnOnce(&'c mut Resolver, Span, ResolutionError<'b>)
1592     {
1593         let namespace = if is_value { ValueNS } else { TypeNS };
1594         let hir::Path { ref segments, span, ref mut def } = *path;
1595         let path: Vec<_> = segments.iter().map(|seg| seg.ident).collect();
1596         // FIXME (Manishearth): Intra doc links won't get warned of epoch changes
1597         match self.resolve_path(None, &path, Some(namespace), true, span, CrateLint::No) {
1598             PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
1599                 *def = module.def().unwrap(),
1600             PathResult::NonModule(path_res) if path_res.unresolved_segments() == 0 =>
1601                 *def = path_res.base_def(),
1602             PathResult::NonModule(..) => match self.resolve_path(
1603                 None,
1604                 &path,
1605                 None,
1606                 true,
1607                 span,
1608                 CrateLint::No,
1609             ) {
1610                 PathResult::Failed(span, msg, _) => {
1611                     error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1612                 }
1613                 _ => {}
1614             },
1615             PathResult::Module(ModuleOrUniformRoot::UniformRoot(_)) |
1616             PathResult::Indeterminate => unreachable!(),
1617             PathResult::Failed(span, msg, _) => {
1618                 error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1619             }
1620         }
1621     }
1622 }
1623
1624 impl<'a, 'crateloader: 'a> Resolver<'a, 'crateloader> {
1625     pub fn new(session: &'a Session,
1626                cstore: &'a CStore,
1627                krate: &Crate,
1628                crate_name: &str,
1629                make_glob_map: MakeGlobMap,
1630                crate_loader: &'a mut CrateLoader<'crateloader>,
1631                arenas: &'a ResolverArenas<'a>)
1632                -> Resolver<'a, 'crateloader> {
1633         let root_def_id = DefId::local(CRATE_DEF_INDEX);
1634         let root_module_kind = ModuleKind::Def(Def::Mod(root_def_id), keywords::Invalid.name());
1635         let graph_root = arenas.alloc_module(ModuleData {
1636             no_implicit_prelude: attr::contains_name(&krate.attrs, "no_implicit_prelude"),
1637             ..ModuleData::new(None, root_module_kind, root_def_id, Mark::root(), krate.span)
1638         });
1639         let mut module_map = FxHashMap();
1640         module_map.insert(DefId::local(CRATE_DEF_INDEX), graph_root);
1641
1642         let mut definitions = Definitions::new();
1643         DefCollector::new(&mut definitions, Mark::root())
1644             .collect_root(crate_name, session.local_crate_disambiguator());
1645
1646         let mut extern_prelude: FxHashSet<Name> =
1647             session.opts.externs.iter().map(|kv| Symbol::intern(kv.0)).collect();
1648         if !attr::contains_name(&krate.attrs, "no_core") {
1649             if !attr::contains_name(&krate.attrs, "no_std") {
1650                 extern_prelude.insert(Symbol::intern("std"));
1651             } else {
1652                 extern_prelude.insert(Symbol::intern("core"));
1653             }
1654         }
1655
1656         let mut invocations = FxHashMap();
1657         invocations.insert(Mark::root(),
1658                            arenas.alloc_invocation_data(InvocationData::root(graph_root)));
1659
1660         let features = session.features_untracked();
1661
1662         let mut macro_defs = FxHashMap();
1663         macro_defs.insert(Mark::root(), root_def_id);
1664
1665         Resolver {
1666             session,
1667
1668             cstore,
1669
1670             definitions,
1671
1672             // The outermost module has def ID 0; this is not reflected in the
1673             // AST.
1674             graph_root,
1675             prelude: None,
1676             extern_prelude,
1677
1678             has_self: FxHashSet(),
1679             field_names: FxHashMap(),
1680
1681             determined_imports: Vec::new(),
1682             indeterminate_imports: Vec::new(),
1683
1684             current_module: graph_root,
1685             ribs: PerNS {
1686                 value_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1687                 type_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1688                 macro_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1689             },
1690             label_ribs: Vec::new(),
1691
1692             current_trait_ref: None,
1693             current_self_type: None,
1694
1695             primitive_type_table: PrimitiveTypeTable::new(),
1696
1697             def_map: NodeMap(),
1698             import_map: NodeMap(),
1699             freevars: NodeMap(),
1700             freevars_seen: NodeMap(),
1701             export_map: FxHashMap(),
1702             trait_map: NodeMap(),
1703             module_map,
1704             block_map: NodeMap(),
1705             extern_module_map: FxHashMap(),
1706
1707             make_glob_map: make_glob_map == MakeGlobMap::Yes,
1708             glob_map: NodeMap(),
1709
1710             used_imports: FxHashSet(),
1711             maybe_unused_trait_imports: NodeSet(),
1712             maybe_unused_extern_crates: Vec::new(),
1713
1714             unused_labels: FxHashMap(),
1715
1716             privacy_errors: Vec::new(),
1717             ambiguity_errors: Vec::new(),
1718             use_injections: Vec::new(),
1719             proc_mac_errors: Vec::new(),
1720             gated_errors: FxHashSet(),
1721             disallowed_shadowing: Vec::new(),
1722             macro_expanded_macro_export_errors: BTreeSet::new(),
1723
1724             arenas,
1725             dummy_binding: arenas.alloc_name_binding(NameBinding {
1726                 kind: NameBindingKind::Def(Def::Err, false),
1727                 expansion: Mark::root(),
1728                 span: DUMMY_SP,
1729                 vis: ty::Visibility::Public,
1730             }),
1731
1732             use_extern_macros: features.use_extern_macros(),
1733
1734             crate_loader,
1735             macro_names: FxHashSet(),
1736             macro_prelude: FxHashMap(),
1737             all_macros: FxHashMap(),
1738             lexical_macro_resolutions: Vec::new(),
1739             macro_map: FxHashMap(),
1740             macro_exports: Vec::new(),
1741             invocations,
1742             macro_defs,
1743             local_macro_def_scopes: FxHashMap(),
1744             name_already_seen: FxHashMap(),
1745             whitelisted_legacy_custom_derives: Vec::new(),
1746             warned_proc_macros: FxHashSet(),
1747             potentially_unused_imports: Vec::new(),
1748             struct_constructors: DefIdMap(),
1749             found_unresolved_macro: false,
1750             unused_macros: FxHashSet(),
1751             current_type_ascription: Vec::new(),
1752             injected_crate: None,
1753             ignore_extern_prelude_feature: false,
1754         }
1755     }
1756
1757     pub fn arenas() -> ResolverArenas<'a> {
1758         ResolverArenas {
1759             modules: arena::TypedArena::new(),
1760             local_modules: RefCell::new(Vec::new()),
1761             name_bindings: arena::TypedArena::new(),
1762             import_directives: arena::TypedArena::new(),
1763             name_resolutions: arena::TypedArena::new(),
1764             invocation_data: arena::TypedArena::new(),
1765             legacy_bindings: arena::TypedArena::new(),
1766         }
1767     }
1768
1769     /// Runs the function on each namespace.
1770     fn per_ns<F: FnMut(&mut Self, Namespace)>(&mut self, mut f: F) {
1771         f(self, TypeNS);
1772         f(self, ValueNS);
1773         if self.use_extern_macros {
1774             f(self, MacroNS);
1775         }
1776     }
1777
1778     fn macro_def(&self, mut ctxt: SyntaxContext) -> DefId {
1779         loop {
1780             match self.macro_defs.get(&ctxt.outer()) {
1781                 Some(&def_id) => return def_id,
1782                 None => ctxt.remove_mark(),
1783             };
1784         }
1785     }
1786
1787     /// Entry point to crate resolution.
1788     pub fn resolve_crate(&mut self, krate: &Crate) {
1789         ImportResolver { resolver: self }.finalize_imports();
1790         self.current_module = self.graph_root;
1791         self.finalize_current_module_macro_resolutions();
1792
1793         visit::walk_crate(self, krate);
1794
1795         check_unused::check_crate(self, krate);
1796         self.report_errors(krate);
1797         self.crate_loader.postprocess(krate);
1798     }
1799
1800     fn new_module(
1801         &self,
1802         parent: Module<'a>,
1803         kind: ModuleKind,
1804         normal_ancestor_id: DefId,
1805         expansion: Mark,
1806         span: Span,
1807     ) -> Module<'a> {
1808         let module = ModuleData::new(Some(parent), kind, normal_ancestor_id, expansion, span);
1809         self.arenas.alloc_module(module)
1810     }
1811
1812     fn record_use(&mut self, ident: Ident, ns: Namespace, binding: &'a NameBinding<'a>, span: Span)
1813                   -> bool /* true if an error was reported */ {
1814         match binding.kind {
1815             NameBindingKind::Import { directive, binding, ref used }
1816                     if !used.get() => {
1817                 used.set(true);
1818                 directive.used.set(true);
1819                 self.used_imports.insert((directive.id, ns));
1820                 self.add_to_glob_map(directive.id, ident);
1821                 self.record_use(ident, ns, binding, span)
1822             }
1823             NameBindingKind::Import { .. } => false,
1824             NameBindingKind::Ambiguity { b1, b2 } => {
1825                 self.ambiguity_errors.push(AmbiguityError {
1826                     span, name: ident.name, lexical: false, b1, b2,
1827                 });
1828                 true
1829             }
1830             _ => false
1831         }
1832     }
1833
1834     fn add_to_glob_map(&mut self, id: NodeId, ident: Ident) {
1835         if self.make_glob_map {
1836             self.glob_map.entry(id).or_insert_with(FxHashSet).insert(ident.name);
1837         }
1838     }
1839
1840     /// This resolves the identifier `ident` in the namespace `ns` in the current lexical scope.
1841     /// More specifically, we proceed up the hierarchy of scopes and return the binding for
1842     /// `ident` in the first scope that defines it (or None if no scopes define it).
1843     ///
1844     /// A block's items are above its local variables in the scope hierarchy, regardless of where
1845     /// the items are defined in the block. For example,
1846     /// ```rust
1847     /// fn f() {
1848     ///    g(); // Since there are no local variables in scope yet, this resolves to the item.
1849     ///    let g = || {};
1850     ///    fn g() {}
1851     ///    g(); // This resolves to the local variable `g` since it shadows the item.
1852     /// }
1853     /// ```
1854     ///
1855     /// Invariant: This must only be called during main resolution, not during
1856     /// import resolution.
1857     fn resolve_ident_in_lexical_scope(&mut self,
1858                                       mut ident: Ident,
1859                                       ns: Namespace,
1860                                       record_used_id: Option<NodeId>,
1861                                       path_span: Span)
1862                                       -> Option<LexicalScopeBinding<'a>> {
1863         let record_used = record_used_id.is_some();
1864         assert!(ns == TypeNS  || ns == ValueNS);
1865         if ns == TypeNS {
1866             ident.span = if ident.name == keywords::SelfType.name() {
1867                 // FIXME(jseyfried) improve `Self` hygiene
1868                 ident.span.with_ctxt(SyntaxContext::empty())
1869             } else {
1870                 ident.span.modern()
1871             }
1872         } else {
1873             ident = ident.modern_and_legacy();
1874         }
1875
1876         // Walk backwards up the ribs in scope.
1877         let mut module = self.graph_root;
1878         for i in (0 .. self.ribs[ns].len()).rev() {
1879             if let Some(def) = self.ribs[ns][i].bindings.get(&ident).cloned() {
1880                 // The ident resolves to a type parameter or local variable.
1881                 return Some(LexicalScopeBinding::Def(
1882                     self.adjust_local_def(ns, i, def, record_used, path_span)
1883                 ));
1884             }
1885
1886             module = match self.ribs[ns][i].kind {
1887                 ModuleRibKind(module) => module,
1888                 MacroDefinition(def) if def == self.macro_def(ident.span.ctxt()) => {
1889                     // If an invocation of this macro created `ident`, give up on `ident`
1890                     // and switch to `ident`'s source from the macro definition.
1891                     ident.span.remove_mark();
1892                     continue
1893                 }
1894                 _ => continue,
1895             };
1896
1897             let item = self.resolve_ident_in_module_unadjusted(
1898                 ModuleOrUniformRoot::Module(module),
1899                 ident,
1900                 ns,
1901                 false,
1902                 record_used,
1903                 path_span,
1904             );
1905             if let Ok(binding) = item {
1906                 // The ident resolves to an item.
1907                 return Some(LexicalScopeBinding::Item(binding));
1908             }
1909
1910             match module.kind {
1911                 ModuleKind::Block(..) => {}, // We can see through blocks
1912                 _ => break,
1913             }
1914         }
1915
1916         ident.span = ident.span.modern();
1917         loop {
1918             let (opt_module, poisoned) = if let Some(node_id) = record_used_id {
1919                 self.hygienic_lexical_parent_with_compatibility_fallback(module, &mut ident.span,
1920                                                                          node_id)
1921             } else {
1922                 (self.hygienic_lexical_parent(module, &mut ident.span), None)
1923             };
1924             module = unwrap_or!(opt_module, break);
1925             let orig_current_module = self.current_module;
1926             self.current_module = module; // Lexical resolutions can never be a privacy error.
1927             let result = self.resolve_ident_in_module_unadjusted(
1928                 ModuleOrUniformRoot::Module(module),
1929                 ident,
1930                 ns,
1931                 false,
1932                 record_used,
1933                 path_span,
1934             );
1935             self.current_module = orig_current_module;
1936
1937             match result {
1938                 Ok(binding) => {
1939                     if let Some(node_id) = poisoned {
1940                         self.session.buffer_lint_with_diagnostic(
1941                             lint::builtin::PROC_MACRO_DERIVE_RESOLUTION_FALLBACK,
1942                             node_id, ident.span,
1943                             &format!("cannot find {} `{}` in this scope", ns.descr(), ident),
1944                             lint::builtin::BuiltinLintDiagnostics::
1945                                 ProcMacroDeriveResolutionFallback(ident.span),
1946                         );
1947                     }
1948                     return Some(LexicalScopeBinding::Item(binding))
1949                 }
1950                 _ if poisoned.is_some() => break,
1951                 Err(Determined) => continue,
1952                 Err(Undetermined) =>
1953                     span_bug!(ident.span, "undetermined resolution during main resolution pass"),
1954             }
1955         }
1956
1957         if !module.no_implicit_prelude {
1958             // `record_used` means that we don't try to load crates during speculative resolution
1959             if record_used && ns == TypeNS && self.extern_prelude.contains(&ident.name) {
1960                 if !self.session.features_untracked().extern_prelude &&
1961                    !self.ignore_extern_prelude_feature {
1962                     feature_err(&self.session.parse_sess, "extern_prelude",
1963                                 ident.span, GateIssue::Language,
1964                                 "access to extern crates through prelude is experimental").emit();
1965                 }
1966
1967                 let crate_id = self.crate_loader.process_path_extern(ident.name, ident.span);
1968                 let crate_root = self.get_module(DefId { krate: crate_id, index: CRATE_DEF_INDEX });
1969                 self.populate_module_if_necessary(crate_root);
1970
1971                 let binding = (crate_root, ty::Visibility::Public,
1972                                ident.span, Mark::root()).to_name_binding(self.arenas);
1973                 return Some(LexicalScopeBinding::Item(binding));
1974             }
1975             if ns == TypeNS && is_known_tool(ident.name) {
1976                 let binding = (Def::ToolMod, ty::Visibility::Public,
1977                                ident.span, Mark::root()).to_name_binding(self.arenas);
1978                 return Some(LexicalScopeBinding::Item(binding));
1979             }
1980             if let Some(prelude) = self.prelude {
1981                 if let Ok(binding) = self.resolve_ident_in_module_unadjusted(
1982                     ModuleOrUniformRoot::Module(prelude),
1983                     ident,
1984                     ns,
1985                     false,
1986                     false,
1987                     path_span,
1988                 ) {
1989                     return Some(LexicalScopeBinding::Item(binding));
1990                 }
1991             }
1992         }
1993
1994         None
1995     }
1996
1997     fn hygienic_lexical_parent(&mut self, module: Module<'a>, span: &mut Span)
1998                                -> Option<Module<'a>> {
1999         if !module.expansion.is_descendant_of(span.ctxt().outer()) {
2000             return Some(self.macro_def_scope(span.remove_mark()));
2001         }
2002
2003         if let ModuleKind::Block(..) = module.kind {
2004             return Some(module.parent.unwrap());
2005         }
2006
2007         None
2008     }
2009
2010     fn hygienic_lexical_parent_with_compatibility_fallback(
2011         &mut self, module: Module<'a>, span: &mut Span, node_id: NodeId
2012     ) -> (Option<Module<'a>>, /* poisoned */ Option<NodeId>)
2013     {
2014         if let module @ Some(..) = self.hygienic_lexical_parent(module, span) {
2015             return (module, None);
2016         }
2017
2018         // We need to support the next case under a deprecation warning
2019         // ```
2020         // struct MyStruct;
2021         // ---- begin: this comes from a proc macro derive
2022         // mod implementation_details {
2023         //     // Note that `MyStruct` is not in scope here.
2024         //     impl SomeTrait for MyStruct { ... }
2025         // }
2026         // ---- end
2027         // ```
2028         // So we have to fall back to the module's parent during lexical resolution in this case.
2029         if let Some(parent) = module.parent {
2030             // Inner module is inside the macro, parent module is outside of the macro.
2031             if module.expansion != parent.expansion &&
2032             module.expansion.is_descendant_of(parent.expansion) {
2033                 // The macro is a proc macro derive
2034                 if module.expansion.looks_like_proc_macro_derive() {
2035                     if parent.expansion.is_descendant_of(span.ctxt().outer()) {
2036                         return (module.parent, Some(node_id));
2037                     }
2038                 }
2039             }
2040         }
2041
2042         (None, None)
2043     }
2044
2045     fn resolve_ident_in_module(&mut self,
2046                                module: ModuleOrUniformRoot<'a>,
2047                                mut ident: Ident,
2048                                ns: Namespace,
2049                                record_used: bool,
2050                                span: Span)
2051                                -> Result<&'a NameBinding<'a>, Determinacy> {
2052         ident.span = ident.span.modern();
2053         let orig_current_module = self.current_module;
2054         if let ModuleOrUniformRoot::Module(module) = module {
2055             if let Some(def) = ident.span.adjust(module.expansion) {
2056                 self.current_module = self.macro_def_scope(def);
2057             }
2058         }
2059         let result = self.resolve_ident_in_module_unadjusted(
2060             module, ident, ns, false, record_used, span,
2061         );
2062         self.current_module = orig_current_module;
2063         result
2064     }
2065
2066     fn resolve_crate_root(&mut self, ident: Ident) -> Module<'a> {
2067         let mut ctxt = ident.span.ctxt();
2068         let mark = if ident.name == keywords::DollarCrate.name() {
2069             // When resolving `$crate` from a `macro_rules!` invoked in a `macro`,
2070             // we don't want to pretend that the `macro_rules!` definition is in the `macro`
2071             // as described in `SyntaxContext::apply_mark`, so we ignore prepended modern marks.
2072             // FIXME: This is only a guess and it doesn't work correctly for `macro_rules!`
2073             // definitions actually produced by `macro` and `macro` definitions produced by
2074             // `macro_rules!`, but at least such configurations are not stable yet.
2075             ctxt = ctxt.modern_and_legacy();
2076             let mut iter = ctxt.marks().into_iter().rev().peekable();
2077             let mut result = None;
2078             // Find the last modern mark from the end if it exists.
2079             while let Some(&(mark, transparency)) = iter.peek() {
2080                 if transparency == Transparency::Opaque {
2081                     result = Some(mark);
2082                     iter.next();
2083                 } else {
2084                     break;
2085                 }
2086             }
2087             // Then find the last legacy mark from the end if it exists.
2088             for (mark, transparency) in iter {
2089                 if transparency == Transparency::SemiTransparent {
2090                     result = Some(mark);
2091                 } else {
2092                     break;
2093                 }
2094             }
2095             result
2096         } else {
2097             ctxt = ctxt.modern();
2098             ctxt.adjust(Mark::root())
2099         };
2100         let module = match mark {
2101             Some(def) => self.macro_def_scope(def),
2102             None => return self.graph_root,
2103         };
2104         self.get_module(DefId { index: CRATE_DEF_INDEX, ..module.normal_ancestor_id })
2105     }
2106
2107     fn resolve_self(&mut self, ctxt: &mut SyntaxContext, module: Module<'a>) -> Module<'a> {
2108         let mut module = self.get_module(module.normal_ancestor_id);
2109         while module.span.ctxt().modern() != *ctxt {
2110             let parent = module.parent.unwrap_or_else(|| self.macro_def_scope(ctxt.remove_mark()));
2111             module = self.get_module(parent.normal_ancestor_id);
2112         }
2113         module
2114     }
2115
2116     // AST resolution
2117     //
2118     // We maintain a list of value ribs and type ribs.
2119     //
2120     // Simultaneously, we keep track of the current position in the module
2121     // graph in the `current_module` pointer. When we go to resolve a name in
2122     // the value or type namespaces, we first look through all the ribs and
2123     // then query the module graph. When we resolve a name in the module
2124     // namespace, we can skip all the ribs (since nested modules are not
2125     // allowed within blocks in Rust) and jump straight to the current module
2126     // graph node.
2127     //
2128     // Named implementations are handled separately. When we find a method
2129     // call, we consult the module node to find all of the implementations in
2130     // scope. This information is lazily cached in the module node. We then
2131     // generate a fake "implementation scope" containing all the
2132     // implementations thus found, for compatibility with old resolve pass.
2133
2134     pub fn with_scope<F, T>(&mut self, id: NodeId, f: F) -> T
2135         where F: FnOnce(&mut Resolver) -> T
2136     {
2137         let id = self.definitions.local_def_id(id);
2138         let module = self.module_map.get(&id).cloned(); // clones a reference
2139         if let Some(module) = module {
2140             // Move down in the graph.
2141             let orig_module = replace(&mut self.current_module, module);
2142             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(module)));
2143             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(module)));
2144
2145             self.finalize_current_module_macro_resolutions();
2146             let ret = f(self);
2147
2148             self.current_module = orig_module;
2149             self.ribs[ValueNS].pop();
2150             self.ribs[TypeNS].pop();
2151             ret
2152         } else {
2153             f(self)
2154         }
2155     }
2156
2157     /// Searches the current set of local scopes for labels. Returns the first non-None label that
2158     /// is returned by the given predicate function
2159     ///
2160     /// Stops after meeting a closure.
2161     fn search_label<P, R>(&self, mut ident: Ident, pred: P) -> Option<R>
2162         where P: Fn(&Rib, Ident) -> Option<R>
2163     {
2164         for rib in self.label_ribs.iter().rev() {
2165             match rib.kind {
2166                 NormalRibKind => {}
2167                 // If an invocation of this macro created `ident`, give up on `ident`
2168                 // and switch to `ident`'s source from the macro definition.
2169                 MacroDefinition(def) => {
2170                     if def == self.macro_def(ident.span.ctxt()) {
2171                         ident.span.remove_mark();
2172                     }
2173                 }
2174                 _ => {
2175                     // Do not resolve labels across function boundary
2176                     return None;
2177                 }
2178             }
2179             let r = pred(rib, ident);
2180             if r.is_some() {
2181                 return r;
2182             }
2183         }
2184         None
2185     }
2186
2187     fn resolve_item(&mut self, item: &Item) {
2188         let name = item.ident.name;
2189
2190         debug!("(resolving item) resolving {}", name);
2191
2192         self.check_proc_macro_attrs(&item.attrs);
2193
2194         match item.node {
2195             ItemKind::Enum(_, ref generics) |
2196             ItemKind::Ty(_, ref generics) |
2197             ItemKind::Existential(_, ref generics) |
2198             ItemKind::Struct(_, ref generics) |
2199             ItemKind::Union(_, ref generics) |
2200             ItemKind::Fn(_, _, ref generics, _) => {
2201                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind),
2202                                          |this| visit::walk_item(this, item));
2203             }
2204
2205             ItemKind::Impl(.., ref generics, ref opt_trait_ref, ref self_type, ref impl_items) =>
2206                 self.resolve_implementation(generics,
2207                                             opt_trait_ref,
2208                                             &self_type,
2209                                             item.id,
2210                                             impl_items),
2211
2212             ItemKind::Trait(.., ref generics, ref bounds, ref trait_items) => {
2213                 // Create a new rib for the trait-wide type parameters.
2214                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2215                     let local_def_id = this.definitions.local_def_id(item.id);
2216                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2217                         this.visit_generics(generics);
2218                         walk_list!(this, visit_param_bound, bounds);
2219
2220                         for trait_item in trait_items {
2221                             this.check_proc_macro_attrs(&trait_item.attrs);
2222
2223                             let type_parameters = HasTypeParameters(&trait_item.generics,
2224                                                                     TraitOrImplItemRibKind);
2225                             this.with_type_parameter_rib(type_parameters, |this| {
2226                                 match trait_item.node {
2227                                     TraitItemKind::Const(ref ty, ref default) => {
2228                                         this.visit_ty(ty);
2229
2230                                         // Only impose the restrictions of
2231                                         // ConstRibKind for an actual constant
2232                                         // expression in a provided default.
2233                                         if let Some(ref expr) = *default{
2234                                             this.with_constant_rib(|this| {
2235                                                 this.visit_expr(expr);
2236                                             });
2237                                         }
2238                                     }
2239                                     TraitItemKind::Method(_, _) => {
2240                                         visit::walk_trait_item(this, trait_item)
2241                                     }
2242                                     TraitItemKind::Type(..) => {
2243                                         visit::walk_trait_item(this, trait_item)
2244                                     }
2245                                     TraitItemKind::Macro(_) => {
2246                                         panic!("unexpanded macro in resolve!")
2247                                     }
2248                                 };
2249                             });
2250                         }
2251                     });
2252                 });
2253             }
2254
2255             ItemKind::TraitAlias(ref generics, ref bounds) => {
2256                 // Create a new rib for the trait-wide type parameters.
2257                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2258                     let local_def_id = this.definitions.local_def_id(item.id);
2259                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2260                         this.visit_generics(generics);
2261                         walk_list!(this, visit_param_bound, bounds);
2262                     });
2263                 });
2264             }
2265
2266             ItemKind::Mod(_) | ItemKind::ForeignMod(_) => {
2267                 self.with_scope(item.id, |this| {
2268                     visit::walk_item(this, item);
2269                 });
2270             }
2271
2272             ItemKind::Static(ref ty, _, ref expr) |
2273             ItemKind::Const(ref ty, ref expr) => {
2274                 self.with_item_rib(|this| {
2275                     this.visit_ty(ty);
2276                     this.with_constant_rib(|this| {
2277                         this.visit_expr(expr);
2278                     });
2279                 });
2280             }
2281
2282             ItemKind::Use(ref use_tree) => {
2283                 // Imports are resolved as global by default, add starting root segment.
2284                 let path = Path {
2285                     segments: use_tree.prefix.make_root().into_iter().collect(),
2286                     span: use_tree.span,
2287                 };
2288                 self.resolve_use_tree(item.id, use_tree.span, item.id, use_tree, &path);
2289             }
2290
2291             ItemKind::ExternCrate(_) | ItemKind::MacroDef(..) | ItemKind::GlobalAsm(_) => {
2292                 // do nothing, these are just around to be encoded
2293             }
2294
2295             ItemKind::Mac(_) => panic!("unexpanded macro in resolve!"),
2296         }
2297     }
2298
2299     /// For the most part, use trees are desugared into `ImportDirective` instances
2300     /// when building the reduced graph (see `build_reduced_graph_for_use_tree`). But
2301     /// there is one special case we handle here: an empty nested import like
2302     /// `a::{b::{}}`, which desugares into...no import directives.
2303     fn resolve_use_tree(
2304         &mut self,
2305         root_id: NodeId,
2306         root_span: Span,
2307         id: NodeId,
2308         use_tree: &ast::UseTree,
2309         prefix: &Path,
2310     ) {
2311         match use_tree.kind {
2312             ast::UseTreeKind::Nested(ref items) => {
2313                 let path = Path {
2314                     segments: prefix.segments
2315                         .iter()
2316                         .chain(use_tree.prefix.segments.iter())
2317                         .cloned()
2318                         .collect(),
2319                     span: prefix.span.to(use_tree.prefix.span),
2320                 };
2321
2322                 if items.len() == 0 {
2323                     // Resolve prefix of an import with empty braces (issue #28388).
2324                     self.smart_resolve_path_with_crate_lint(
2325                         id,
2326                         None,
2327                         &path,
2328                         PathSource::ImportPrefix,
2329                         CrateLint::UsePath { root_id, root_span },
2330                     );
2331                 } else {
2332                     for &(ref tree, nested_id) in items {
2333                         self.resolve_use_tree(root_id, root_span, nested_id, tree, &path);
2334                     }
2335                 }
2336             }
2337             ast::UseTreeKind::Simple(..) => {},
2338             ast::UseTreeKind::Glob => {},
2339         }
2340     }
2341
2342     fn with_type_parameter_rib<'b, F>(&'b mut self, type_parameters: TypeParameters<'a, 'b>, f: F)
2343         where F: FnOnce(&mut Resolver)
2344     {
2345         match type_parameters {
2346             HasTypeParameters(generics, rib_kind) => {
2347                 let mut function_type_rib = Rib::new(rib_kind);
2348                 let mut seen_bindings = FxHashMap();
2349                 generics.params.iter().for_each(|param| match param.kind {
2350                     GenericParamKind::Lifetime { .. } => {}
2351                     GenericParamKind::Type { .. } => {
2352                         let ident = param.ident.modern();
2353                         debug!("with_type_parameter_rib: {}", param.id);
2354
2355                         if seen_bindings.contains_key(&ident) {
2356                             let span = seen_bindings.get(&ident).unwrap();
2357                             let err = ResolutionError::NameAlreadyUsedInTypeParameterList(
2358                                 ident.name,
2359                                 span,
2360                             );
2361                             resolve_error(self, param.ident.span, err);
2362                         }
2363                         seen_bindings.entry(ident).or_insert(param.ident.span);
2364
2365                     // Plain insert (no renaming).
2366                     let def = Def::TyParam(self.definitions.local_def_id(param.id));
2367                         function_type_rib.bindings.insert(ident, def);
2368                         self.record_def(param.id, PathResolution::new(def));
2369                     }
2370                 });
2371                 self.ribs[TypeNS].push(function_type_rib);
2372             }
2373
2374             NoTypeParameters => {
2375                 // Nothing to do.
2376             }
2377         }
2378
2379         f(self);
2380
2381         if let HasTypeParameters(..) = type_parameters {
2382             self.ribs[TypeNS].pop();
2383         }
2384     }
2385
2386     fn with_label_rib<F>(&mut self, f: F)
2387         where F: FnOnce(&mut Resolver)
2388     {
2389         self.label_ribs.push(Rib::new(NormalRibKind));
2390         f(self);
2391         self.label_ribs.pop();
2392     }
2393
2394     fn with_item_rib<F>(&mut self, f: F)
2395         where F: FnOnce(&mut Resolver)
2396     {
2397         self.ribs[ValueNS].push(Rib::new(ItemRibKind));
2398         self.ribs[TypeNS].push(Rib::new(ItemRibKind));
2399         f(self);
2400         self.ribs[TypeNS].pop();
2401         self.ribs[ValueNS].pop();
2402     }
2403
2404     fn with_constant_rib<F>(&mut self, f: F)
2405         where F: FnOnce(&mut Resolver)
2406     {
2407         self.ribs[ValueNS].push(Rib::new(ConstantItemRibKind));
2408         self.label_ribs.push(Rib::new(ConstantItemRibKind));
2409         f(self);
2410         self.label_ribs.pop();
2411         self.ribs[ValueNS].pop();
2412     }
2413
2414     fn with_current_self_type<T, F>(&mut self, self_type: &Ty, f: F) -> T
2415         where F: FnOnce(&mut Resolver) -> T
2416     {
2417         // Handle nested impls (inside fn bodies)
2418         let previous_value = replace(&mut self.current_self_type, Some(self_type.clone()));
2419         let result = f(self);
2420         self.current_self_type = previous_value;
2421         result
2422     }
2423
2424     /// This is called to resolve a trait reference from an `impl` (i.e. `impl Trait for Foo`)
2425     fn with_optional_trait_ref<T, F>(&mut self, opt_trait_ref: Option<&TraitRef>, f: F) -> T
2426         where F: FnOnce(&mut Resolver, Option<DefId>) -> T
2427     {
2428         let mut new_val = None;
2429         let mut new_id = None;
2430         if let Some(trait_ref) = opt_trait_ref {
2431             let path: Vec<_> = trait_ref.path.segments.iter()
2432                 .map(|seg| seg.ident)
2433                 .collect();
2434             let def = self.smart_resolve_path_fragment(
2435                 trait_ref.ref_id,
2436                 None,
2437                 &path,
2438                 trait_ref.path.span,
2439                 PathSource::Trait(AliasPossibility::No),
2440                 CrateLint::SimplePath(trait_ref.ref_id),
2441             ).base_def();
2442             if def != Def::Err {
2443                 new_id = Some(def.def_id());
2444                 let span = trait_ref.path.span;
2445                 if let PathResult::Module(ModuleOrUniformRoot::Module(module)) =
2446                     self.resolve_path(
2447                         None,
2448                         &path,
2449                         None,
2450                         false,
2451                         span,
2452                         CrateLint::SimplePath(trait_ref.ref_id),
2453                     )
2454                 {
2455                     new_val = Some((module, trait_ref.clone()));
2456                 }
2457             }
2458         }
2459         let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
2460         let result = f(self, new_id);
2461         self.current_trait_ref = original_trait_ref;
2462         result
2463     }
2464
2465     fn with_self_rib<F>(&mut self, self_def: Def, f: F)
2466         where F: FnOnce(&mut Resolver)
2467     {
2468         let mut self_type_rib = Rib::new(NormalRibKind);
2469
2470         // plain insert (no renaming, types are not currently hygienic....)
2471         self_type_rib.bindings.insert(keywords::SelfType.ident(), self_def);
2472         self.ribs[TypeNS].push(self_type_rib);
2473         f(self);
2474         self.ribs[TypeNS].pop();
2475     }
2476
2477     fn resolve_implementation(&mut self,
2478                               generics: &Generics,
2479                               opt_trait_reference: &Option<TraitRef>,
2480                               self_type: &Ty,
2481                               item_id: NodeId,
2482                               impl_items: &[ImplItem]) {
2483         // If applicable, create a rib for the type parameters.
2484         self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2485             // Dummy self type for better errors if `Self` is used in the trait path.
2486             this.with_self_rib(Def::SelfTy(None, None), |this| {
2487                 // Resolve the trait reference, if necessary.
2488                 this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| {
2489                     let item_def_id = this.definitions.local_def_id(item_id);
2490                     this.with_self_rib(Def::SelfTy(trait_id, Some(item_def_id)), |this| {
2491                         if let Some(trait_ref) = opt_trait_reference.as_ref() {
2492                             // Resolve type arguments in trait path
2493                             visit::walk_trait_ref(this, trait_ref);
2494                         }
2495                         // Resolve the self type.
2496                         this.visit_ty(self_type);
2497                         // Resolve the type parameters.
2498                         this.visit_generics(generics);
2499                         this.with_current_self_type(self_type, |this| {
2500                             for impl_item in impl_items {
2501                                 this.check_proc_macro_attrs(&impl_item.attrs);
2502                                 this.resolve_visibility(&impl_item.vis);
2503
2504                                 // We also need a new scope for the impl item type parameters.
2505                                 let type_parameters = HasTypeParameters(&impl_item.generics,
2506                                                                         TraitOrImplItemRibKind);
2507                                 this.with_type_parameter_rib(type_parameters, |this| {
2508                                     use self::ResolutionError::*;
2509                                     match impl_item.node {
2510                                         ImplItemKind::Const(..) => {
2511                                             // If this is a trait impl, ensure the const
2512                                             // exists in trait
2513                                             this.check_trait_item(impl_item.ident,
2514                                                                 ValueNS,
2515                                                                 impl_item.span,
2516                                                 |n, s| ConstNotMemberOfTrait(n, s));
2517                                             this.with_constant_rib(|this|
2518                                                 visit::walk_impl_item(this, impl_item)
2519                                             );
2520                                         }
2521                                         ImplItemKind::Method(..) => {
2522                                             // If this is a trait impl, ensure the method
2523                                             // exists in trait
2524                                             this.check_trait_item(impl_item.ident,
2525                                                                 ValueNS,
2526                                                                 impl_item.span,
2527                                                 |n, s| MethodNotMemberOfTrait(n, s));
2528
2529                                             visit::walk_impl_item(this, impl_item);
2530                                         }
2531                                         ImplItemKind::Type(ref ty) => {
2532                                             // If this is a trait impl, ensure the type
2533                                             // exists in trait
2534                                             this.check_trait_item(impl_item.ident,
2535                                                                 TypeNS,
2536                                                                 impl_item.span,
2537                                                 |n, s| TypeNotMemberOfTrait(n, s));
2538
2539                                             this.visit_ty(ty);
2540                                         }
2541                                         ImplItemKind::Existential(ref bounds) => {
2542                                             // If this is a trait impl, ensure the type
2543                                             // exists in trait
2544                                             this.check_trait_item(impl_item.ident,
2545                                                                 TypeNS,
2546                                                                 impl_item.span,
2547                                                 |n, s| TypeNotMemberOfTrait(n, s));
2548
2549                                             for bound in bounds {
2550                                                 this.visit_param_bound(bound);
2551                                             }
2552                                         }
2553                                         ImplItemKind::Macro(_) =>
2554                                             panic!("unexpanded macro in resolve!"),
2555                                     }
2556                                 });
2557                             }
2558                         });
2559                     });
2560                 });
2561             });
2562         });
2563     }
2564
2565     fn check_trait_item<F>(&mut self, ident: Ident, ns: Namespace, span: Span, err: F)
2566         where F: FnOnce(Name, &str) -> ResolutionError
2567     {
2568         // If there is a TraitRef in scope for an impl, then the method must be in the
2569         // trait.
2570         if let Some((module, _)) = self.current_trait_ref {
2571             if self.resolve_ident_in_module(
2572                 ModuleOrUniformRoot::Module(module),
2573                 ident,
2574                 ns,
2575                 false,
2576                 span,
2577             ).is_err() {
2578                 let path = &self.current_trait_ref.as_ref().unwrap().1.path;
2579                 resolve_error(self, span, err(ident.name, &path_names_to_string(path)));
2580             }
2581         }
2582     }
2583
2584     fn resolve_local(&mut self, local: &Local) {
2585         // Resolve the type.
2586         walk_list!(self, visit_ty, &local.ty);
2587
2588         // Resolve the initializer.
2589         walk_list!(self, visit_expr, &local.init);
2590
2591         // Resolve the pattern.
2592         self.resolve_pattern(&local.pat, PatternSource::Let, &mut FxHashMap());
2593     }
2594
2595     // build a map from pattern identifiers to binding-info's.
2596     // this is done hygienically. This could arise for a macro
2597     // that expands into an or-pattern where one 'x' was from the
2598     // user and one 'x' came from the macro.
2599     fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
2600         let mut binding_map = FxHashMap();
2601
2602         pat.walk(&mut |pat| {
2603             if let PatKind::Ident(binding_mode, ident, ref sub_pat) = pat.node {
2604                 if sub_pat.is_some() || match self.def_map.get(&pat.id).map(|res| res.base_def()) {
2605                     Some(Def::Local(..)) => true,
2606                     _ => false,
2607                 } {
2608                     let binding_info = BindingInfo { span: ident.span, binding_mode: binding_mode };
2609                     binding_map.insert(ident, binding_info);
2610                 }
2611             }
2612             true
2613         });
2614
2615         binding_map
2616     }
2617
2618     // check that all of the arms in an or-pattern have exactly the
2619     // same set of bindings, with the same binding modes for each.
2620     fn check_consistent_bindings(&mut self, pats: &[P<Pat>]) {
2621         if pats.is_empty() {
2622             return;
2623         }
2624
2625         let mut missing_vars = FxHashMap();
2626         let mut inconsistent_vars = FxHashMap();
2627         for (i, p) in pats.iter().enumerate() {
2628             let map_i = self.binding_mode_map(&p);
2629
2630             for (j, q) in pats.iter().enumerate() {
2631                 if i == j {
2632                     continue;
2633                 }
2634
2635                 let map_j = self.binding_mode_map(&q);
2636                 for (&key, &binding_i) in &map_i {
2637                     if map_j.len() == 0 {                   // Account for missing bindings when
2638                         let binding_error = missing_vars    // map_j has none.
2639                             .entry(key.name)
2640                             .or_insert(BindingError {
2641                                 name: key.name,
2642                                 origin: BTreeSet::new(),
2643                                 target: BTreeSet::new(),
2644                             });
2645                         binding_error.origin.insert(binding_i.span);
2646                         binding_error.target.insert(q.span);
2647                     }
2648                     for (&key_j, &binding_j) in &map_j {
2649                         match map_i.get(&key_j) {
2650                             None => {  // missing binding
2651                                 let binding_error = missing_vars
2652                                     .entry(key_j.name)
2653                                     .or_insert(BindingError {
2654                                         name: key_j.name,
2655                                         origin: BTreeSet::new(),
2656                                         target: BTreeSet::new(),
2657                                     });
2658                                 binding_error.origin.insert(binding_j.span);
2659                                 binding_error.target.insert(p.span);
2660                             }
2661                             Some(binding_i) => {  // check consistent binding
2662                                 if binding_i.binding_mode != binding_j.binding_mode {
2663                                     inconsistent_vars
2664                                         .entry(key.name)
2665                                         .or_insert((binding_j.span, binding_i.span));
2666                                 }
2667                             }
2668                         }
2669                     }
2670                 }
2671             }
2672         }
2673         let mut missing_vars = missing_vars.iter().collect::<Vec<_>>();
2674         missing_vars.sort();
2675         for (_, v) in missing_vars {
2676             resolve_error(self,
2677                           *v.origin.iter().next().unwrap(),
2678                           ResolutionError::VariableNotBoundInPattern(v));
2679         }
2680         let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
2681         inconsistent_vars.sort();
2682         for (name, v) in inconsistent_vars {
2683             resolve_error(self, v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
2684         }
2685     }
2686
2687     fn resolve_arm(&mut self, arm: &Arm) {
2688         self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2689
2690         let mut bindings_list = FxHashMap();
2691         for pattern in &arm.pats {
2692             self.resolve_pattern(&pattern, PatternSource::Match, &mut bindings_list);
2693         }
2694
2695         // This has to happen *after* we determine which pat_idents are variants
2696         self.check_consistent_bindings(&arm.pats);
2697
2698         walk_list!(self, visit_expr, &arm.guard);
2699         self.visit_expr(&arm.body);
2700
2701         self.ribs[ValueNS].pop();
2702     }
2703
2704     fn resolve_block(&mut self, block: &Block) {
2705         debug!("(resolving block) entering block");
2706         // Move down in the graph, if there's an anonymous module rooted here.
2707         let orig_module = self.current_module;
2708         let anonymous_module = self.block_map.get(&block.id).cloned(); // clones a reference
2709
2710         let mut num_macro_definition_ribs = 0;
2711         if let Some(anonymous_module) = anonymous_module {
2712             debug!("(resolving block) found anonymous module, moving down");
2713             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2714             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2715             self.current_module = anonymous_module;
2716             self.finalize_current_module_macro_resolutions();
2717         } else {
2718             self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2719         }
2720
2721         // Descend into the block.
2722         for stmt in &block.stmts {
2723             if let ast::StmtKind::Item(ref item) = stmt.node {
2724                 if let ast::ItemKind::MacroDef(..) = item.node {
2725                     num_macro_definition_ribs += 1;
2726                     let def = self.definitions.local_def_id(item.id);
2727                     self.ribs[ValueNS].push(Rib::new(MacroDefinition(def)));
2728                     self.label_ribs.push(Rib::new(MacroDefinition(def)));
2729                 }
2730             }
2731
2732             self.visit_stmt(stmt);
2733         }
2734
2735         // Move back up.
2736         self.current_module = orig_module;
2737         for _ in 0 .. num_macro_definition_ribs {
2738             self.ribs[ValueNS].pop();
2739             self.label_ribs.pop();
2740         }
2741         self.ribs[ValueNS].pop();
2742         if anonymous_module.is_some() {
2743             self.ribs[TypeNS].pop();
2744         }
2745         debug!("(resolving block) leaving block");
2746     }
2747
2748     fn fresh_binding(&mut self,
2749                      ident: Ident,
2750                      pat_id: NodeId,
2751                      outer_pat_id: NodeId,
2752                      pat_src: PatternSource,
2753                      bindings: &mut FxHashMap<Ident, NodeId>)
2754                      -> PathResolution {
2755         // Add the binding to the local ribs, if it
2756         // doesn't already exist in the bindings map. (We
2757         // must not add it if it's in the bindings map
2758         // because that breaks the assumptions later
2759         // passes make about or-patterns.)
2760         let ident = ident.modern_and_legacy();
2761         let mut def = Def::Local(pat_id);
2762         match bindings.get(&ident).cloned() {
2763             Some(id) if id == outer_pat_id => {
2764                 // `Variant(a, a)`, error
2765                 resolve_error(
2766                     self,
2767                     ident.span,
2768                     ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(
2769                         &ident.as_str())
2770                 );
2771             }
2772             Some(..) if pat_src == PatternSource::FnParam => {
2773                 // `fn f(a: u8, a: u8)`, error
2774                 resolve_error(
2775                     self,
2776                     ident.span,
2777                     ResolutionError::IdentifierBoundMoreThanOnceInParameterList(
2778                         &ident.as_str())
2779                 );
2780             }
2781             Some(..) if pat_src == PatternSource::Match ||
2782                         pat_src == PatternSource::IfLet ||
2783                         pat_src == PatternSource::WhileLet => {
2784                 // `Variant1(a) | Variant2(a)`, ok
2785                 // Reuse definition from the first `a`.
2786                 def = self.ribs[ValueNS].last_mut().unwrap().bindings[&ident];
2787             }
2788             Some(..) => {
2789                 span_bug!(ident.span, "two bindings with the same name from \
2790                                        unexpected pattern source {:?}", pat_src);
2791             }
2792             None => {
2793                 // A completely fresh binding, add to the lists if it's valid.
2794                 if ident.name != keywords::Invalid.name() {
2795                     bindings.insert(ident, outer_pat_id);
2796                     self.ribs[ValueNS].last_mut().unwrap().bindings.insert(ident, def);
2797                 }
2798             }
2799         }
2800
2801         PathResolution::new(def)
2802     }
2803
2804     fn resolve_pattern(&mut self,
2805                        pat: &Pat,
2806                        pat_src: PatternSource,
2807                        // Maps idents to the node ID for the
2808                        // outermost pattern that binds them.
2809                        bindings: &mut FxHashMap<Ident, NodeId>) {
2810         // Visit all direct subpatterns of this pattern.
2811         let outer_pat_id = pat.id;
2812         pat.walk(&mut |pat| {
2813             match pat.node {
2814                 PatKind::Ident(bmode, ident, ref opt_pat) => {
2815                     // First try to resolve the identifier as some existing
2816                     // entity, then fall back to a fresh binding.
2817                     let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS,
2818                                                                       None, pat.span)
2819                                       .and_then(LexicalScopeBinding::item);
2820                     let resolution = binding.map(NameBinding::def).and_then(|def| {
2821                         let is_syntactic_ambiguity = opt_pat.is_none() &&
2822                             bmode == BindingMode::ByValue(Mutability::Immutable);
2823                         match def {
2824                             Def::StructCtor(_, CtorKind::Const) |
2825                             Def::VariantCtor(_, CtorKind::Const) |
2826                             Def::Const(..) if is_syntactic_ambiguity => {
2827                                 // Disambiguate in favor of a unit struct/variant
2828                                 // or constant pattern.
2829                                 self.record_use(ident, ValueNS, binding.unwrap(), ident.span);
2830                                 Some(PathResolution::new(def))
2831                             }
2832                             Def::StructCtor(..) | Def::VariantCtor(..) |
2833                             Def::Const(..) | Def::Static(..) => {
2834                                 // This is unambiguously a fresh binding, either syntactically
2835                                 // (e.g. `IDENT @ PAT` or `ref IDENT`) or because `IDENT` resolves
2836                                 // to something unusable as a pattern (e.g. constructor function),
2837                                 // but we still conservatively report an error, see
2838                                 // issues/33118#issuecomment-233962221 for one reason why.
2839                                 resolve_error(
2840                                     self,
2841                                     ident.span,
2842                                     ResolutionError::BindingShadowsSomethingUnacceptable(
2843                                         pat_src.descr(), ident.name, binding.unwrap())
2844                                 );
2845                                 None
2846                             }
2847                             Def::Fn(..) | Def::Err => {
2848                                 // These entities are explicitly allowed
2849                                 // to be shadowed by fresh bindings.
2850                                 None
2851                             }
2852                             def => {
2853                                 span_bug!(ident.span, "unexpected definition for an \
2854                                                        identifier in pattern: {:?}", def);
2855                             }
2856                         }
2857                     }).unwrap_or_else(|| {
2858                         self.fresh_binding(ident, pat.id, outer_pat_id, pat_src, bindings)
2859                     });
2860
2861                     self.record_def(pat.id, resolution);
2862                 }
2863
2864                 PatKind::TupleStruct(ref path, ..) => {
2865                     self.smart_resolve_path(pat.id, None, path, PathSource::TupleStruct);
2866                 }
2867
2868                 PatKind::Path(ref qself, ref path) => {
2869                     self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
2870                 }
2871
2872                 PatKind::Struct(ref path, ..) => {
2873                     self.smart_resolve_path(pat.id, None, path, PathSource::Struct);
2874                 }
2875
2876                 _ => {}
2877             }
2878             true
2879         });
2880
2881         visit::walk_pat(self, pat);
2882     }
2883
2884     // High-level and context dependent path resolution routine.
2885     // Resolves the path and records the resolution into definition map.
2886     // If resolution fails tries several techniques to find likely
2887     // resolution candidates, suggest imports or other help, and report
2888     // errors in user friendly way.
2889     fn smart_resolve_path(&mut self,
2890                           id: NodeId,
2891                           qself: Option<&QSelf>,
2892                           path: &Path,
2893                           source: PathSource)
2894                           -> PathResolution {
2895         self.smart_resolve_path_with_crate_lint(id, qself, path, source, CrateLint::SimplePath(id))
2896     }
2897
2898     /// A variant of `smart_resolve_path` where you also specify extra
2899     /// information about where the path came from; this extra info is
2900     /// sometimes needed for the lint that recommends rewriting
2901     /// absolute paths to `crate`, so that it knows how to frame the
2902     /// suggestion. If you are just resolving a path like `foo::bar`
2903     /// that appears...somewhere, though, then you just want
2904     /// `CrateLint::SimplePath`, which is what `smart_resolve_path`
2905     /// already provides.
2906     fn smart_resolve_path_with_crate_lint(
2907         &mut self,
2908         id: NodeId,
2909         qself: Option<&QSelf>,
2910         path: &Path,
2911         source: PathSource,
2912         crate_lint: CrateLint
2913     ) -> PathResolution {
2914         let segments = &path.segments.iter()
2915             .map(|seg| seg.ident)
2916             .collect::<Vec<_>>();
2917         self.smart_resolve_path_fragment(id, qself, segments, path.span, source, crate_lint)
2918     }
2919
2920     fn smart_resolve_path_fragment(&mut self,
2921                                    id: NodeId,
2922                                    qself: Option<&QSelf>,
2923                                    path: &[Ident],
2924                                    span: Span,
2925                                    source: PathSource,
2926                                    crate_lint: CrateLint)
2927                                    -> PathResolution {
2928         let ident_span = path.last().map_or(span, |ident| ident.span);
2929         let ns = source.namespace();
2930         let is_expected = &|def| source.is_expected(def);
2931         let is_enum_variant = &|def| if let Def::Variant(..) = def { true } else { false };
2932
2933         // Base error is amended with one short label and possibly some longer helps/notes.
2934         let report_errors = |this: &mut Self, def: Option<Def>| {
2935             // Make the base error.
2936             let expected = source.descr_expected();
2937             let path_str = names_to_string(path);
2938             let code = source.error_code(def.is_some());
2939             let (base_msg, fallback_label, base_span) = if let Some(def) = def {
2940                 (format!("expected {}, found {} `{}`", expected, def.kind_name(), path_str),
2941                  format!("not a {}", expected),
2942                  span)
2943             } else {
2944                 let item_str = path[path.len() - 1];
2945                 let item_span = path[path.len() - 1].span;
2946                 let (mod_prefix, mod_str) = if path.len() == 1 {
2947                     (String::new(), "this scope".to_string())
2948                 } else if path.len() == 2 && path[0].name == keywords::CrateRoot.name() {
2949                     (String::new(), "the crate root".to_string())
2950                 } else {
2951                     let mod_path = &path[..path.len() - 1];
2952                     let mod_prefix = match this.resolve_path(None, mod_path, Some(TypeNS),
2953                                                              false, span, CrateLint::No) {
2954                         PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
2955                             module.def(),
2956                         _ => None,
2957                     }.map_or(String::new(), |def| format!("{} ", def.kind_name()));
2958                     (mod_prefix, format!("`{}`", names_to_string(mod_path)))
2959                 };
2960                 (format!("cannot find {} `{}` in {}{}", expected, item_str, mod_prefix, mod_str),
2961                  format!("not found in {}", mod_str),
2962                  item_span)
2963             };
2964             let code = DiagnosticId::Error(code.into());
2965             let mut err = this.session.struct_span_err_with_code(base_span, &base_msg, code);
2966
2967             // Emit special messages for unresolved `Self` and `self`.
2968             if is_self_type(path, ns) {
2969                 __diagnostic_used!(E0411);
2970                 err.code(DiagnosticId::Error("E0411".into()));
2971                 err.span_label(span, "`Self` is only available in traits and impls");
2972                 return (err, Vec::new());
2973             }
2974             if is_self_value(path, ns) {
2975                 __diagnostic_used!(E0424);
2976                 err.code(DiagnosticId::Error("E0424".into()));
2977                 err.span_label(span, format!("`self` value is only available in \
2978                                                methods with `self` parameter"));
2979                 return (err, Vec::new());
2980             }
2981
2982             // Try to lookup the name in more relaxed fashion for better error reporting.
2983             let ident = *path.last().unwrap();
2984             let candidates = this.lookup_import_candidates(ident.name, ns, is_expected);
2985             if candidates.is_empty() && is_expected(Def::Enum(DefId::local(CRATE_DEF_INDEX))) {
2986                 let enum_candidates =
2987                     this.lookup_import_candidates(ident.name, ns, is_enum_variant);
2988                 let mut enum_candidates = enum_candidates.iter()
2989                     .map(|suggestion| import_candidate_to_paths(&suggestion)).collect::<Vec<_>>();
2990                 enum_candidates.sort();
2991                 for (sp, variant_path, enum_path) in enum_candidates {
2992                     if sp.is_dummy() {
2993                         let msg = format!("there is an enum variant `{}`, \
2994                                         try using `{}`?",
2995                                         variant_path,
2996                                         enum_path);
2997                         err.help(&msg);
2998                     } else {
2999                         err.span_suggestion(span, "you can try using the variant's enum",
3000                                             enum_path);
3001                     }
3002                 }
3003             }
3004             if path.len() == 1 && this.self_type_is_available(span) {
3005                 if let Some(candidate) = this.lookup_assoc_candidate(ident, ns, is_expected) {
3006                     let self_is_available = this.self_value_is_available(path[0].span, span);
3007                     match candidate {
3008                         AssocSuggestion::Field => {
3009                             err.span_suggestion(span, "try",
3010                                                 format!("self.{}", path_str));
3011                             if !self_is_available {
3012                                 err.span_label(span, format!("`self` value is only available in \
3013                                                                methods with `self` parameter"));
3014                             }
3015                         }
3016                         AssocSuggestion::MethodWithSelf if self_is_available => {
3017                             err.span_suggestion(span, "try",
3018                                                 format!("self.{}", path_str));
3019                         }
3020                         AssocSuggestion::MethodWithSelf | AssocSuggestion::AssocItem => {
3021                             err.span_suggestion(span, "try",
3022                                                 format!("Self::{}", path_str));
3023                         }
3024                     }
3025                     return (err, candidates);
3026                 }
3027             }
3028
3029             let mut levenshtein_worked = false;
3030
3031             // Try Levenshtein.
3032             if let Some(candidate) = this.lookup_typo_candidate(path, ns, is_expected, span) {
3033                 err.span_label(ident_span, format!("did you mean `{}`?", candidate));
3034                 levenshtein_worked = true;
3035             }
3036
3037             // Try context dependent help if relaxed lookup didn't work.
3038             if let Some(def) = def {
3039                 match (def, source) {
3040                     (Def::Macro(..), _) => {
3041                         err.span_label(span, format!("did you mean `{}!(...)`?", path_str));
3042                         return (err, candidates);
3043                     }
3044                     (Def::TyAlias(..), PathSource::Trait(_)) => {
3045                         err.span_label(span, "type aliases cannot be used for traits");
3046                         return (err, candidates);
3047                     }
3048                     (Def::Mod(..), PathSource::Expr(Some(parent))) => match parent.node {
3049                         ExprKind::Field(_, ident) => {
3050                             err.span_label(parent.span, format!("did you mean `{}::{}`?",
3051                                                                  path_str, ident));
3052                             return (err, candidates);
3053                         }
3054                         ExprKind::MethodCall(ref segment, ..) => {
3055                             err.span_label(parent.span, format!("did you mean `{}::{}(...)`?",
3056                                                                  path_str, segment.ident));
3057                             return (err, candidates);
3058                         }
3059                         _ => {}
3060                     },
3061                     (Def::Enum(..), PathSource::TupleStruct)
3062                         | (Def::Enum(..), PathSource::Expr(..))  => {
3063                         if let Some(variants) = this.collect_enum_variants(def) {
3064                             err.note(&format!("did you mean to use one \
3065                                                of the following variants?\n{}",
3066                                 variants.iter()
3067                                     .map(|suggestion| path_names_to_string(suggestion))
3068                                     .map(|suggestion| format!("- `{}`", suggestion))
3069                                     .collect::<Vec<_>>()
3070                                     .join("\n")));
3071
3072                         } else {
3073                             err.note("did you mean to use one of the enum's variants?");
3074                         }
3075                         return (err, candidates);
3076                     },
3077                     (Def::Struct(def_id), _) if ns == ValueNS => {
3078                         if let Some((ctor_def, ctor_vis))
3079                                 = this.struct_constructors.get(&def_id).cloned() {
3080                             let accessible_ctor = this.is_accessible(ctor_vis);
3081                             if is_expected(ctor_def) && !accessible_ctor {
3082                                 err.span_label(span, format!("constructor is not visible \
3083                                                               here due to private fields"));
3084                             }
3085                         } else {
3086                             // HACK(estebank): find a better way to figure out that this was a
3087                             // parser issue where a struct literal is being used on an expression
3088                             // where a brace being opened means a block is being started. Look
3089                             // ahead for the next text to see if `span` is followed by a `{`.
3090                             let cm = this.session.codemap();
3091                             let mut sp = span;
3092                             loop {
3093                                 sp = cm.next_point(sp);
3094                                 match cm.span_to_snippet(sp) {
3095                                     Ok(ref snippet) => {
3096                                         if snippet.chars().any(|c| { !c.is_whitespace() }) {
3097                                             break;
3098                                         }
3099                                     }
3100                                     _ => break,
3101                                 }
3102                             }
3103                             let followed_by_brace = match cm.span_to_snippet(sp) {
3104                                 Ok(ref snippet) if snippet == "{" => true,
3105                                 _ => false,
3106                             };
3107                             if let (PathSource::Expr(None), true) = (source, followed_by_brace) {
3108                                 err.span_label(
3109                                     span,
3110                                     format!("did you mean `({} {{ /* fields */ }})`?", path_str),
3111                                 );
3112                             } else {
3113                                 err.span_label(
3114                                     span,
3115                                     format!("did you mean `{} {{ /* fields */ }}`?", path_str),
3116                                 );
3117                             }
3118                         }
3119                         return (err, candidates);
3120                     }
3121                     (Def::Union(..), _) |
3122                     (Def::Variant(..), _) |
3123                     (Def::VariantCtor(_, CtorKind::Fictive), _) if ns == ValueNS => {
3124                         err.span_label(span, format!("did you mean `{} {{ /* fields */ }}`?",
3125                                                      path_str));
3126                         return (err, candidates);
3127                     }
3128                     (Def::SelfTy(..), _) if ns == ValueNS => {
3129                         err.span_label(span, fallback_label);
3130                         err.note("can't use `Self` as a constructor, you must use the \
3131                                   implemented struct");
3132                         return (err, candidates);
3133                     }
3134                     (Def::TyAlias(_), _) | (Def::AssociatedTy(..), _) if ns == ValueNS => {
3135                         err.note("can't use a type alias as a constructor");
3136                         return (err, candidates);
3137                     }
3138                     _ => {}
3139                 }
3140             }
3141
3142             // Fallback label.
3143             if !levenshtein_worked {
3144                 err.span_label(base_span, fallback_label);
3145                 this.type_ascription_suggestion(&mut err, base_span);
3146             }
3147             (err, candidates)
3148         };
3149         let report_errors = |this: &mut Self, def: Option<Def>| {
3150             let (err, candidates) = report_errors(this, def);
3151             let def_id = this.current_module.normal_ancestor_id;
3152             let node_id = this.definitions.as_local_node_id(def_id).unwrap();
3153             let better = def.is_some();
3154             this.use_injections.push(UseError { err, candidates, node_id, better });
3155             err_path_resolution()
3156         };
3157
3158         let resolution = match self.resolve_qpath_anywhere(
3159             id,
3160             qself,
3161             path,
3162             ns,
3163             span,
3164             source.defer_to_typeck(),
3165             source.global_by_default(),
3166             crate_lint,
3167         ) {
3168             Some(resolution) if resolution.unresolved_segments() == 0 => {
3169                 if is_expected(resolution.base_def()) || resolution.base_def() == Def::Err {
3170                     resolution
3171                 } else {
3172                     // Add a temporary hack to smooth the transition to new struct ctor
3173                     // visibility rules. See #38932 for more details.
3174                     let mut res = None;
3175                     if let Def::Struct(def_id) = resolution.base_def() {
3176                         if let Some((ctor_def, ctor_vis))
3177                                 = self.struct_constructors.get(&def_id).cloned() {
3178                             if is_expected(ctor_def) && self.is_accessible(ctor_vis) {
3179                                 let lint = lint::builtin::LEGACY_CONSTRUCTOR_VISIBILITY;
3180                                 self.session.buffer_lint(lint, id, span,
3181                                     "private struct constructors are not usable through \
3182                                      re-exports in outer modules",
3183                                 );
3184                                 res = Some(PathResolution::new(ctor_def));
3185                             }
3186                         }
3187                     }
3188
3189                     res.unwrap_or_else(|| report_errors(self, Some(resolution.base_def())))
3190                 }
3191             }
3192             Some(resolution) if source.defer_to_typeck() => {
3193                 // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
3194                 // or `<T>::A::B`. If `B` should be resolved in value namespace then
3195                 // it needs to be added to the trait map.
3196                 if ns == ValueNS {
3197                     let item_name = *path.last().unwrap();
3198                     let traits = self.get_traits_containing_item(item_name, ns);
3199                     self.trait_map.insert(id, traits);
3200                 }
3201                 resolution
3202             }
3203             _ => report_errors(self, None)
3204         };
3205
3206         if let PathSource::TraitItem(..) = source {} else {
3207             // Avoid recording definition of `A::B` in `<T as A>::B::C`.
3208             self.record_def(id, resolution);
3209         }
3210         resolution
3211     }
3212
3213     fn type_ascription_suggestion(&self,
3214                                   err: &mut DiagnosticBuilder,
3215                                   base_span: Span) {
3216         debug!("type_ascription_suggetion {:?}", base_span);
3217         let cm = self.session.codemap();
3218         debug!("self.current_type_ascription {:?}", self.current_type_ascription);
3219         if let Some(sp) = self.current_type_ascription.last() {
3220             let mut sp = *sp;
3221             loop {  // try to find the `:`, bail on first non-':'/non-whitespace
3222                 sp = cm.next_point(sp);
3223                 if let Ok(snippet) = cm.span_to_snippet(sp.to(cm.next_point(sp))) {
3224                     debug!("snippet {:?}", snippet);
3225                     let line_sp = cm.lookup_char_pos(sp.hi()).line;
3226                     let line_base_sp = cm.lookup_char_pos(base_span.lo()).line;
3227                     debug!("{:?} {:?}", line_sp, line_base_sp);
3228                     if snippet == ":" {
3229                         err.span_label(base_span,
3230                                        "expecting a type here because of type ascription");
3231                         if line_sp != line_base_sp {
3232                             err.span_suggestion_short(sp,
3233                                                       "did you mean to use `;` here instead?",
3234                                                       ";".to_string());
3235                         }
3236                         break;
3237                     } else if snippet.trim().len() != 0  {
3238                         debug!("tried to find type ascription `:` token, couldn't find it");
3239                         break;
3240                     }
3241                 } else {
3242                     break;
3243                 }
3244             }
3245         }
3246     }
3247
3248     fn self_type_is_available(&mut self, span: Span) -> bool {
3249         let binding = self.resolve_ident_in_lexical_scope(keywords::SelfType.ident(),
3250                                                           TypeNS, None, span);
3251         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3252     }
3253
3254     fn self_value_is_available(&mut self, self_span: Span, path_span: Span) -> bool {
3255         let ident = Ident::new(keywords::SelfValue.name(), self_span);
3256         let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, None, path_span);
3257         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3258     }
3259
3260     // Resolve in alternative namespaces if resolution in the primary namespace fails.
3261     fn resolve_qpath_anywhere(&mut self,
3262                               id: NodeId,
3263                               qself: Option<&QSelf>,
3264                               path: &[Ident],
3265                               primary_ns: Namespace,
3266                               span: Span,
3267                               defer_to_typeck: bool,
3268                               global_by_default: bool,
3269                               crate_lint: CrateLint)
3270                               -> Option<PathResolution> {
3271         let mut fin_res = None;
3272         // FIXME: can't resolve paths in macro namespace yet, macros are
3273         // processed by the little special hack below.
3274         for (i, ns) in [primary_ns, TypeNS, ValueNS, /*MacroNS*/].iter().cloned().enumerate() {
3275             if i == 0 || ns != primary_ns {
3276                 match self.resolve_qpath(id, qself, path, ns, span, global_by_default, crate_lint) {
3277                     // If defer_to_typeck, then resolution > no resolution,
3278                     // otherwise full resolution > partial resolution > no resolution.
3279                     Some(res) if res.unresolved_segments() == 0 || defer_to_typeck =>
3280                         return Some(res),
3281                     res => if fin_res.is_none() { fin_res = res },
3282                 };
3283             }
3284         }
3285         let is_global = self.macro_prelude.get(&path[0].name).cloned()
3286             .map(|binding| binding.get_macro(self).kind() == MacroKind::Bang).unwrap_or(false);
3287         if primary_ns != MacroNS && (is_global ||
3288                                      self.macro_names.contains(&path[0].modern())) {
3289             // Return some dummy definition, it's enough for error reporting.
3290             return Some(
3291                 PathResolution::new(Def::Macro(DefId::local(CRATE_DEF_INDEX), MacroKind::Bang))
3292             );
3293         }
3294         fin_res
3295     }
3296
3297     /// Handles paths that may refer to associated items.
3298     fn resolve_qpath(&mut self,
3299                      id: NodeId,
3300                      qself: Option<&QSelf>,
3301                      path: &[Ident],
3302                      ns: Namespace,
3303                      span: Span,
3304                      global_by_default: bool,
3305                      crate_lint: CrateLint)
3306                      -> Option<PathResolution> {
3307         debug!(
3308             "resolve_qpath(id={:?}, qself={:?}, path={:?}, \
3309              ns={:?}, span={:?}, global_by_default={:?})",
3310             id,
3311             qself,
3312             path,
3313             ns,
3314             span,
3315             global_by_default,
3316         );
3317
3318         if let Some(qself) = qself {
3319             if qself.position == 0 {
3320                 // This is a case like `<T>::B`, where there is no
3321                 // trait to resolve.  In that case, we leave the `B`
3322                 // segment to be resolved by type-check.
3323                 return Some(PathResolution::with_unresolved_segments(
3324                     Def::Mod(DefId::local(CRATE_DEF_INDEX)), path.len()
3325                 ));
3326             }
3327
3328             // Make sure `A::B` in `<T as A::B>::C` is a trait item.
3329             //
3330             // Currently, `path` names the full item (`A::B::C`, in
3331             // our example).  so we extract the prefix of that that is
3332             // the trait (the slice upto and including
3333             // `qself.position`). And then we recursively resolve that,
3334             // but with `qself` set to `None`.
3335             //
3336             // However, setting `qself` to none (but not changing the
3337             // span) loses the information about where this path
3338             // *actually* appears, so for the purposes of the crate
3339             // lint we pass along information that this is the trait
3340             // name from a fully qualified path, and this also
3341             // contains the full span (the `CrateLint::QPathTrait`).
3342             let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
3343             let res = self.smart_resolve_path_fragment(
3344                 id,
3345                 None,
3346                 &path[..qself.position + 1],
3347                 span,
3348                 PathSource::TraitItem(ns),
3349                 CrateLint::QPathTrait {
3350                     qpath_id: id,
3351                     qpath_span: qself.path_span,
3352                 },
3353             );
3354
3355             // The remaining segments (the `C` in our example) will
3356             // have to be resolved by type-check, since that requires doing
3357             // trait resolution.
3358             return Some(PathResolution::with_unresolved_segments(
3359                 res.base_def(), res.unresolved_segments() + path.len() - qself.position - 1
3360             ));
3361         }
3362
3363         let result = match self.resolve_path(
3364             None,
3365             &path,
3366             Some(ns),
3367             true,
3368             span,
3369             crate_lint,
3370         ) {
3371             PathResult::NonModule(path_res) => path_res,
3372             PathResult::Module(ModuleOrUniformRoot::Module(module)) if !module.is_normal() => {
3373                 PathResolution::new(module.def().unwrap())
3374             }
3375             // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
3376             // don't report an error right away, but try to fallback to a primitive type.
3377             // So, we are still able to successfully resolve something like
3378             //
3379             // use std::u8; // bring module u8 in scope
3380             // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
3381             //     u8::max_value() // OK, resolves to associated function <u8>::max_value,
3382             //                     // not to non-existent std::u8::max_value
3383             // }
3384             //
3385             // Such behavior is required for backward compatibility.
3386             // The same fallback is used when `a` resolves to nothing.
3387             PathResult::Module(ModuleOrUniformRoot::Module(_)) |
3388             PathResult::Failed(..)
3389                     if (ns == TypeNS || path.len() > 1) &&
3390                        self.primitive_type_table.primitive_types
3391                            .contains_key(&path[0].name) => {
3392                 let prim = self.primitive_type_table.primitive_types[&path[0].name];
3393                 PathResolution::with_unresolved_segments(Def::PrimTy(prim), path.len() - 1)
3394             }
3395             PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3396                 PathResolution::new(module.def().unwrap()),
3397             PathResult::Failed(span, msg, false) => {
3398                 resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
3399                 err_path_resolution()
3400             }
3401             PathResult::Module(ModuleOrUniformRoot::UniformRoot(_)) |
3402             PathResult::Failed(..) => return None,
3403             PathResult::Indeterminate => bug!("indetermined path result in resolve_qpath"),
3404         };
3405
3406         if path.len() > 1 && !global_by_default && result.base_def() != Def::Err &&
3407            path[0].name != keywords::CrateRoot.name() &&
3408            path[0].name != keywords::DollarCrate.name() {
3409             let unqualified_result = {
3410                 match self.resolve_path(
3411                     None,
3412                     &[*path.last().unwrap()],
3413                     Some(ns),
3414                     false,
3415                     span,
3416                     CrateLint::No,
3417                 ) {
3418                     PathResult::NonModule(path_res) => path_res.base_def(),
3419                     PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3420                         module.def().unwrap(),
3421                     _ => return Some(result),
3422                 }
3423             };
3424             if result.base_def() == unqualified_result {
3425                 let lint = lint::builtin::UNUSED_QUALIFICATIONS;
3426                 self.session.buffer_lint(lint, id, span, "unnecessary qualification")
3427             }
3428         }
3429
3430         Some(result)
3431     }
3432
3433     fn resolve_path(
3434         &mut self,
3435         base_module: Option<ModuleOrUniformRoot<'a>>,
3436         path: &[Ident],
3437         opt_ns: Option<Namespace>, // `None` indicates a module path
3438         record_used: bool,
3439         path_span: Span,
3440         crate_lint: CrateLint,
3441     ) -> PathResult<'a> {
3442         let mut module = base_module;
3443         let mut allow_super = true;
3444         let mut second_binding = None;
3445
3446         debug!(
3447             "resolve_path(path={:?}, opt_ns={:?}, record_used={:?}, \
3448              path_span={:?}, crate_lint={:?})",
3449             path,
3450             opt_ns,
3451             record_used,
3452             path_span,
3453             crate_lint,
3454         );
3455
3456         for (i, &ident) in path.iter().enumerate() {
3457             debug!("resolve_path ident {} {:?}", i, ident);
3458             let is_last = i == path.len() - 1;
3459             let ns = if is_last { opt_ns.unwrap_or(TypeNS) } else { TypeNS };
3460             let name = ident.name;
3461
3462             if i == 0 && ns == TypeNS && name == keywords::SelfValue.name() {
3463                 let mut ctxt = ident.span.ctxt().modern();
3464                 module = Some(ModuleOrUniformRoot::Module(
3465                     self.resolve_self(&mut ctxt, self.current_module)));
3466                 continue
3467             } else if allow_super && ns == TypeNS && name == keywords::Super.name() {
3468                 let mut ctxt = ident.span.ctxt().modern();
3469                 let self_module_parent = match i {
3470                     0 => self.resolve_self(&mut ctxt, self.current_module).parent,
3471                     _ => match module {
3472                         Some(ModuleOrUniformRoot::Module(module)) => module.parent,
3473                         _ => None,
3474                     },
3475                 };
3476                 if let Some(parent) = self_module_parent {
3477                     module = Some(ModuleOrUniformRoot::Module(
3478                         self.resolve_self(&mut ctxt, parent)));
3479                     continue
3480                 } else {
3481                     let msg = "There are too many initial `super`s.".to_string();
3482                     return PathResult::Failed(ident.span, msg, false);
3483                 }
3484             }
3485             allow_super = false;
3486
3487             if ns == TypeNS {
3488                 if i == 0 {
3489                     if name == keywords::Extern.name() ||
3490                        name == keywords::CrateRoot.name() &&
3491                        self.session.features_untracked().extern_absolute_paths &&
3492                        self.session.rust_2018() {
3493                         module = Some(ModuleOrUniformRoot::UniformRoot(name));
3494                         continue;
3495                     }
3496                 }
3497                 if (i == 0 && name == keywords::CrateRoot.name()) ||
3498                    (i == 0 && name == keywords::Crate.name()) ||
3499                    (i == 0 && name == keywords::DollarCrate.name()) ||
3500                    (i == 1 && name == keywords::Crate.name() &&
3501                               path[0].name == keywords::CrateRoot.name()) {
3502                     // `::a::b`, `crate::a::b`, `::crate::a::b` or `$crate::a::b`
3503                     module = Some(ModuleOrUniformRoot::Module(
3504                         self.resolve_crate_root(ident)));
3505                     continue
3506                 }
3507             }
3508
3509             // Report special messages for path segment keywords in wrong positions.
3510             if name == keywords::CrateRoot.name() && i != 0 ||
3511                name == keywords::DollarCrate.name() && i != 0 ||
3512                name == keywords::SelfValue.name() && i != 0 ||
3513                name == keywords::SelfType.name() && i != 0 ||
3514                name == keywords::Super.name() && i != 0 ||
3515                name == keywords::Extern.name() && i != 0 ||
3516                // we allow crate::foo and ::crate::foo but nothing else
3517                name == keywords::Crate.name() && i > 1 &&
3518                     path[0].name != keywords::CrateRoot.name() ||
3519                name == keywords::Crate.name() && path.len() == 1 {
3520                 let name_str = if name == keywords::CrateRoot.name() {
3521                     "crate root".to_string()
3522                 } else {
3523                     format!("`{}`", name)
3524                 };
3525                 let msg = if i == 1 && path[0].name == keywords::CrateRoot.name() {
3526                     format!("global paths cannot start with {}", name_str)
3527                 } else {
3528                     format!("{} in paths can only be used in start position", name_str)
3529                 };
3530                 return PathResult::Failed(ident.span, msg, false);
3531             }
3532
3533             let binding = if let Some(module) = module {
3534                 self.resolve_ident_in_module(module, ident, ns, record_used, path_span)
3535             } else if opt_ns == Some(MacroNS) {
3536                 assert!(ns == TypeNS);
3537                 self.resolve_lexical_macro_path_segment(ident, ns, record_used, record_used,
3538                                                         false, path_span).map(MacroBinding::binding)
3539             } else {
3540                 let record_used_id =
3541                     if record_used { crate_lint.node_id().or(Some(CRATE_NODE_ID)) } else { None };
3542                 match self.resolve_ident_in_lexical_scope(ident, ns, record_used_id, path_span) {
3543                     // we found a locally-imported or available item/module
3544                     Some(LexicalScopeBinding::Item(binding)) => Ok(binding),
3545                     // we found a local variable or type param
3546                     Some(LexicalScopeBinding::Def(def))
3547                             if opt_ns == Some(TypeNS) || opt_ns == Some(ValueNS) => {
3548                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3549                             def, path.len() - 1
3550                         ));
3551                     }
3552                     _ => Err(if record_used { Determined } else { Undetermined }),
3553                 }
3554             };
3555
3556             match binding {
3557                 Ok(binding) => {
3558                     if i == 1 {
3559                         second_binding = Some(binding);
3560                     }
3561                     let def = binding.def();
3562                     let maybe_assoc = opt_ns != Some(MacroNS) && PathSource::Type.is_expected(def);
3563                     if let Some(next_module) = binding.module() {
3564                         module = Some(ModuleOrUniformRoot::Module(next_module));
3565                     } else if def == Def::ToolMod && i + 1 != path.len() {
3566                         let def = Def::NonMacroAttr(NonMacroAttrKind::Tool);
3567                         return PathResult::NonModule(PathResolution::new(def));
3568                     } else if def == Def::Err {
3569                         return PathResult::NonModule(err_path_resolution());
3570                     } else if opt_ns.is_some() && (is_last || maybe_assoc) {
3571                         self.lint_if_path_starts_with_module(
3572                             crate_lint,
3573                             path,
3574                             path_span,
3575                             second_binding,
3576                         );
3577                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3578                             def, path.len() - i - 1
3579                         ));
3580                     } else {
3581                         return PathResult::Failed(ident.span,
3582                                                   format!("Not a module `{}`", ident),
3583                                                   is_last);
3584                     }
3585                 }
3586                 Err(Undetermined) => return PathResult::Indeterminate,
3587                 Err(Determined) => {
3588                     if let Some(ModuleOrUniformRoot::Module(module)) = module {
3589                         if opt_ns.is_some() && !module.is_normal() {
3590                             return PathResult::NonModule(PathResolution::with_unresolved_segments(
3591                                 module.def().unwrap(), path.len() - i
3592                             ));
3593                         }
3594                     }
3595                     let module_def = match module {
3596                         Some(ModuleOrUniformRoot::Module(module)) => module.def(),
3597                         _ => None,
3598                     };
3599                     let msg = if module_def == self.graph_root.def() {
3600                         let is_mod = |def| match def { Def::Mod(..) => true, _ => false };
3601                         let mut candidates =
3602                             self.lookup_import_candidates(name, TypeNS, is_mod);
3603                         candidates.sort_by_cached_key(|c| {
3604                             (c.path.segments.len(), c.path.to_string())
3605                         });
3606                         if let Some(candidate) = candidates.get(0) {
3607                             format!("Did you mean `{}`?", candidate.path)
3608                         } else {
3609                             format!("Maybe a missing `extern crate {};`?", ident)
3610                         }
3611                     } else if i == 0 {
3612                         format!("Use of undeclared type or module `{}`", ident)
3613                     } else {
3614                         format!("Could not find `{}` in `{}`", ident, path[i - 1])
3615                     };
3616                     return PathResult::Failed(ident.span, msg, is_last);
3617                 }
3618             }
3619         }
3620
3621         self.lint_if_path_starts_with_module(crate_lint, path, path_span, second_binding);
3622
3623         PathResult::Module(module.unwrap_or_else(|| {
3624             span_bug!(path_span, "resolve_path: empty(?) path {:?} has no module", path);
3625         }))
3626
3627     }
3628
3629     fn lint_if_path_starts_with_module(
3630         &self,
3631         crate_lint: CrateLint,
3632         path: &[Ident],
3633         path_span: Span,
3634         second_binding: Option<&NameBinding>,
3635     ) {
3636         // In the 2018 edition this lint is a hard error, so nothing to do
3637         if self.session.rust_2018() {
3638             return
3639         }
3640
3641         // In the 2015 edition there's no use in emitting lints unless the
3642         // crate's already enabled the feature that we're going to suggest
3643         if !self.session.features_untracked().crate_in_paths {
3644             return
3645         }
3646
3647         let (diag_id, diag_span) = match crate_lint {
3648             CrateLint::No => return,
3649             CrateLint::SimplePath(id) => (id, path_span),
3650             CrateLint::UsePath { root_id, root_span } => (root_id, root_span),
3651             CrateLint::QPathTrait { qpath_id, qpath_span } => (qpath_id, qpath_span),
3652         };
3653
3654         let first_name = match path.get(0) {
3655             Some(ident) => ident.name,
3656             None => return,
3657         };
3658
3659         // We're only interested in `use` paths which should start with
3660         // `{{root}}` or `extern` currently.
3661         if first_name != keywords::Extern.name() && first_name != keywords::CrateRoot.name() {
3662             return
3663         }
3664
3665         match path.get(1) {
3666             // If this import looks like `crate::...` it's already good
3667             Some(ident) if ident.name == keywords::Crate.name() => return,
3668             // Otherwise go below to see if it's an extern crate
3669             Some(_) => {}
3670             // If the path has length one (and it's `CrateRoot` most likely)
3671             // then we don't know whether we're gonna be importing a crate or an
3672             // item in our crate. Defer this lint to elsewhere
3673             None => return,
3674         }
3675
3676         // If the first element of our path was actually resolved to an
3677         // `ExternCrate` (also used for `crate::...`) then no need to issue a
3678         // warning, this looks all good!
3679         if let Some(binding) = second_binding {
3680             if let NameBindingKind::Import { directive: d, .. } = binding.kind {
3681                 // Careful: we still want to rewrite paths from
3682                 // renamed extern crates.
3683                 if let ImportDirectiveSubclass::ExternCrate(None) = d.subclass {
3684                     return
3685                 }
3686             }
3687         }
3688
3689         let diag = lint::builtin::BuiltinLintDiagnostics
3690             ::AbsPathWithModule(diag_span);
3691         self.session.buffer_lint_with_diagnostic(
3692             lint::builtin::ABSOLUTE_PATHS_NOT_STARTING_WITH_CRATE,
3693             diag_id, diag_span,
3694             "absolute paths must start with `self`, `super`, \
3695             `crate`, or an external crate name in the 2018 edition",
3696             diag);
3697     }
3698
3699     // Resolve a local definition, potentially adjusting for closures.
3700     fn adjust_local_def(&mut self,
3701                         ns: Namespace,
3702                         rib_index: usize,
3703                         mut def: Def,
3704                         record_used: bool,
3705                         span: Span) -> Def {
3706         let ribs = &self.ribs[ns][rib_index + 1..];
3707
3708         // An invalid forward use of a type parameter from a previous default.
3709         if let ForwardTyParamBanRibKind = self.ribs[ns][rib_index].kind {
3710             if record_used {
3711                 resolve_error(self, span, ResolutionError::ForwardDeclaredTyParam);
3712             }
3713             assert_eq!(def, Def::Err);
3714             return Def::Err;
3715         }
3716
3717         match def {
3718             Def::Upvar(..) => {
3719                 span_bug!(span, "unexpected {:?} in bindings", def)
3720             }
3721             Def::Local(node_id) => {
3722                 for rib in ribs {
3723                     match rib.kind {
3724                         NormalRibKind | ModuleRibKind(..) | MacroDefinition(..) |
3725                         ForwardTyParamBanRibKind => {
3726                             // Nothing to do. Continue.
3727                         }
3728                         ClosureRibKind(function_id) => {
3729                             let prev_def = def;
3730
3731                             let seen = self.freevars_seen
3732                                            .entry(function_id)
3733                                            .or_insert_with(|| NodeMap());
3734                             if let Some(&index) = seen.get(&node_id) {
3735                                 def = Def::Upvar(node_id, index, function_id);
3736                                 continue;
3737                             }
3738                             let vec = self.freevars
3739                                           .entry(function_id)
3740                                           .or_insert_with(|| vec![]);
3741                             let depth = vec.len();
3742                             def = Def::Upvar(node_id, depth, function_id);
3743
3744                             if record_used {
3745                                 vec.push(Freevar {
3746                                     def: prev_def,
3747                                     span,
3748                                 });
3749                                 seen.insert(node_id, depth);
3750                             }
3751                         }
3752                         ItemRibKind | TraitOrImplItemRibKind => {
3753                             // This was an attempt to access an upvar inside a
3754                             // named function item. This is not allowed, so we
3755                             // report an error.
3756                             if record_used {
3757                                 resolve_error(self, span,
3758                                         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem);
3759                             }
3760                             return Def::Err;
3761                         }
3762                         ConstantItemRibKind => {
3763                             // Still doesn't deal with upvars
3764                             if record_used {
3765                                 resolve_error(self, span,
3766                                         ResolutionError::AttemptToUseNonConstantValueInConstant);
3767                             }
3768                             return Def::Err;
3769                         }
3770                     }
3771                 }
3772             }
3773             Def::TyParam(..) | Def::SelfTy(..) => {
3774                 for rib in ribs {
3775                     match rib.kind {
3776                         NormalRibKind | TraitOrImplItemRibKind | ClosureRibKind(..) |
3777                         ModuleRibKind(..) | MacroDefinition(..) | ForwardTyParamBanRibKind |
3778                         ConstantItemRibKind => {
3779                             // Nothing to do. Continue.
3780                         }
3781                         ItemRibKind => {
3782                             // This was an attempt to use a type parameter outside
3783                             // its scope.
3784                             if record_used {
3785                                 resolve_error(self, span,
3786                                     ResolutionError::TypeParametersFromOuterFunction(def));
3787                             }
3788                             return Def::Err;
3789                         }
3790                     }
3791                 }
3792             }
3793             _ => {}
3794         }
3795         return def;
3796     }
3797
3798     fn lookup_assoc_candidate<FilterFn>(&mut self,
3799                                         ident: Ident,
3800                                         ns: Namespace,
3801                                         filter_fn: FilterFn)
3802                                         -> Option<AssocSuggestion>
3803         where FilterFn: Fn(Def) -> bool
3804     {
3805         fn extract_node_id(t: &Ty) -> Option<NodeId> {
3806             match t.node {
3807                 TyKind::Path(None, _) => Some(t.id),
3808                 TyKind::Rptr(_, ref mut_ty) => extract_node_id(&mut_ty.ty),
3809                 // This doesn't handle the remaining `Ty` variants as they are not
3810                 // that commonly the self_type, it might be interesting to provide
3811                 // support for those in future.
3812                 _ => None,
3813             }
3814         }
3815
3816         // Fields are generally expected in the same contexts as locals.
3817         if filter_fn(Def::Local(ast::DUMMY_NODE_ID)) {
3818             if let Some(node_id) = self.current_self_type.as_ref().and_then(extract_node_id) {
3819                 // Look for a field with the same name in the current self_type.
3820                 if let Some(resolution) = self.def_map.get(&node_id) {
3821                     match resolution.base_def() {
3822                         Def::Struct(did) | Def::Union(did)
3823                                 if resolution.unresolved_segments() == 0 => {
3824                             if let Some(field_names) = self.field_names.get(&did) {
3825                                 if field_names.iter().any(|&field_name| ident.name == field_name) {
3826                                     return Some(AssocSuggestion::Field);
3827                                 }
3828                             }
3829                         }
3830                         _ => {}
3831                     }
3832                 }
3833             }
3834         }
3835
3836         // Look for associated items in the current trait.
3837         if let Some((module, _)) = self.current_trait_ref {
3838             if let Ok(binding) = self.resolve_ident_in_module(
3839                     ModuleOrUniformRoot::Module(module),
3840                     ident,
3841                     ns,
3842                     false,
3843                     module.span,
3844                 ) {
3845                 let def = binding.def();
3846                 if filter_fn(def) {
3847                     return Some(if self.has_self.contains(&def.def_id()) {
3848                         AssocSuggestion::MethodWithSelf
3849                     } else {
3850                         AssocSuggestion::AssocItem
3851                     });
3852                 }
3853             }
3854         }
3855
3856         None
3857     }
3858
3859     fn lookup_typo_candidate<FilterFn>(&mut self,
3860                                        path: &[Ident],
3861                                        ns: Namespace,
3862                                        filter_fn: FilterFn,
3863                                        span: Span)
3864                                        -> Option<Symbol>
3865         where FilterFn: Fn(Def) -> bool
3866     {
3867         let add_module_candidates = |module: Module, names: &mut Vec<Name>| {
3868             for (&(ident, _), resolution) in module.resolutions.borrow().iter() {
3869                 if let Some(binding) = resolution.borrow().binding {
3870                     if filter_fn(binding.def()) {
3871                         names.push(ident.name);
3872                     }
3873                 }
3874             }
3875         };
3876
3877         let mut names = Vec::new();
3878         if path.len() == 1 {
3879             // Search in lexical scope.
3880             // Walk backwards up the ribs in scope and collect candidates.
3881             for rib in self.ribs[ns].iter().rev() {
3882                 // Locals and type parameters
3883                 for (ident, def) in &rib.bindings {
3884                     if filter_fn(*def) {
3885                         names.push(ident.name);
3886                     }
3887                 }
3888                 // Items in scope
3889                 if let ModuleRibKind(module) = rib.kind {
3890                     // Items from this module
3891                     add_module_candidates(module, &mut names);
3892
3893                     if let ModuleKind::Block(..) = module.kind {
3894                         // We can see through blocks
3895                     } else {
3896                         // Items from the prelude
3897                         if !module.no_implicit_prelude {
3898                             names.extend(self.extern_prelude.iter().cloned());
3899                             if let Some(prelude) = self.prelude {
3900                                 add_module_candidates(prelude, &mut names);
3901                             }
3902                         }
3903                         break;
3904                     }
3905                 }
3906             }
3907             // Add primitive types to the mix
3908             if filter_fn(Def::PrimTy(TyBool)) {
3909                 names.extend(
3910                     self.primitive_type_table.primitive_types.iter().map(|(name, _)| name)
3911                 )
3912             }
3913         } else {
3914             // Search in module.
3915             let mod_path = &path[..path.len() - 1];
3916             if let PathResult::Module(module) = self.resolve_path(None, mod_path, Some(TypeNS),
3917                                                                   false, span, CrateLint::No) {
3918                 if let ModuleOrUniformRoot::Module(module) = module {
3919                     add_module_candidates(module, &mut names);
3920                 }
3921             }
3922         }
3923
3924         let name = path[path.len() - 1].name;
3925         // Make sure error reporting is deterministic.
3926         names.sort_by_cached_key(|name| name.as_str());
3927         match find_best_match_for_name(names.iter(), &name.as_str(), None) {
3928             Some(found) if found != name => Some(found),
3929             _ => None,
3930         }
3931     }
3932
3933     fn with_resolved_label<F>(&mut self, label: Option<Label>, id: NodeId, f: F)
3934         where F: FnOnce(&mut Resolver)
3935     {
3936         if let Some(label) = label {
3937             self.unused_labels.insert(id, label.ident.span);
3938             let def = Def::Label(id);
3939             self.with_label_rib(|this| {
3940                 let ident = label.ident.modern_and_legacy();
3941                 this.label_ribs.last_mut().unwrap().bindings.insert(ident, def);
3942                 f(this);
3943             });
3944         } else {
3945             f(self);
3946         }
3947     }
3948
3949     fn resolve_labeled_block(&mut self, label: Option<Label>, id: NodeId, block: &Block) {
3950         self.with_resolved_label(label, id, |this| this.visit_block(block));
3951     }
3952
3953     fn resolve_expr(&mut self, expr: &Expr, parent: Option<&Expr>) {
3954         // First, record candidate traits for this expression if it could
3955         // result in the invocation of a method call.
3956
3957         self.record_candidate_traits_for_expr_if_necessary(expr);
3958
3959         // Next, resolve the node.
3960         match expr.node {
3961             ExprKind::Path(ref qself, ref path) => {
3962                 self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
3963                 visit::walk_expr(self, expr);
3964             }
3965
3966             ExprKind::Struct(ref path, ..) => {
3967                 self.smart_resolve_path(expr.id, None, path, PathSource::Struct);
3968                 visit::walk_expr(self, expr);
3969             }
3970
3971             ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
3972                 let def = self.search_label(label.ident, |rib, ident| {
3973                     rib.bindings.get(&ident.modern_and_legacy()).cloned()
3974                 });
3975                 match def {
3976                     None => {
3977                         // Search again for close matches...
3978                         // Picks the first label that is "close enough", which is not necessarily
3979                         // the closest match
3980                         let close_match = self.search_label(label.ident, |rib, ident| {
3981                             let names = rib.bindings.iter().map(|(id, _)| &id.name);
3982                             find_best_match_for_name(names, &*ident.as_str(), None)
3983                         });
3984                         self.record_def(expr.id, err_path_resolution());
3985                         resolve_error(self,
3986                                       label.ident.span,
3987                                       ResolutionError::UndeclaredLabel(&label.ident.as_str(),
3988                                                                        close_match));
3989                     }
3990                     Some(Def::Label(id)) => {
3991                         // Since this def is a label, it is never read.
3992                         self.record_def(expr.id, PathResolution::new(Def::Label(id)));
3993                         self.unused_labels.remove(&id);
3994                     }
3995                     Some(_) => {
3996                         span_bug!(expr.span, "label wasn't mapped to a label def!");
3997                     }
3998                 }
3999
4000                 // visit `break` argument if any
4001                 visit::walk_expr(self, expr);
4002             }
4003
4004             ExprKind::IfLet(ref pats, ref subexpression, ref if_block, ref optional_else) => {
4005                 self.visit_expr(subexpression);
4006
4007                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
4008                 let mut bindings_list = FxHashMap();
4009                 for pat in pats {
4010                     self.resolve_pattern(pat, PatternSource::IfLet, &mut bindings_list);
4011                 }
4012                 // This has to happen *after* we determine which pat_idents are variants
4013                 self.check_consistent_bindings(pats);
4014                 self.visit_block(if_block);
4015                 self.ribs[ValueNS].pop();
4016
4017                 optional_else.as_ref().map(|expr| self.visit_expr(expr));
4018             }
4019
4020             ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),
4021
4022             ExprKind::While(ref subexpression, ref block, label) => {
4023                 self.with_resolved_label(label, expr.id, |this| {
4024                     this.visit_expr(subexpression);
4025                     this.visit_block(block);
4026                 });
4027             }
4028
4029             ExprKind::WhileLet(ref pats, ref subexpression, ref block, label) => {
4030                 self.with_resolved_label(label, expr.id, |this| {
4031                     this.visit_expr(subexpression);
4032                     this.ribs[ValueNS].push(Rib::new(NormalRibKind));
4033                     let mut bindings_list = FxHashMap();
4034                     for pat in pats {
4035                         this.resolve_pattern(pat, PatternSource::WhileLet, &mut bindings_list);
4036                     }
4037                     // This has to happen *after* we determine which pat_idents are variants
4038                     this.check_consistent_bindings(pats);
4039                     this.visit_block(block);
4040                     this.ribs[ValueNS].pop();
4041                 });
4042             }
4043
4044             ExprKind::ForLoop(ref pattern, ref subexpression, ref block, label) => {
4045                 self.visit_expr(subexpression);
4046                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
4047                 self.resolve_pattern(pattern, PatternSource::For, &mut FxHashMap());
4048
4049                 self.resolve_labeled_block(label, expr.id, block);
4050
4051                 self.ribs[ValueNS].pop();
4052             }
4053
4054             ExprKind::Block(ref block, label) => self.resolve_labeled_block(label, block.id, block),
4055
4056             // Equivalent to `visit::walk_expr` + passing some context to children.
4057             ExprKind::Field(ref subexpression, _) => {
4058                 self.resolve_expr(subexpression, Some(expr));
4059             }
4060             ExprKind::MethodCall(ref segment, ref arguments) => {
4061                 let mut arguments = arguments.iter();
4062                 self.resolve_expr(arguments.next().unwrap(), Some(expr));
4063                 for argument in arguments {
4064                     self.resolve_expr(argument, None);
4065                 }
4066                 self.visit_path_segment(expr.span, segment);
4067             }
4068
4069             ExprKind::Call(ref callee, ref arguments) => {
4070                 self.resolve_expr(callee, Some(expr));
4071                 for argument in arguments {
4072                     self.resolve_expr(argument, None);
4073                 }
4074             }
4075             ExprKind::Type(ref type_expr, _) => {
4076                 self.current_type_ascription.push(type_expr.span);
4077                 visit::walk_expr(self, expr);
4078                 self.current_type_ascription.pop();
4079             }
4080             // Resolve the body of async exprs inside the async closure to which they desugar
4081             ExprKind::Async(_, async_closure_id, ref block) => {
4082                 let rib_kind = ClosureRibKind(async_closure_id);
4083                 self.ribs[ValueNS].push(Rib::new(rib_kind));
4084                 self.label_ribs.push(Rib::new(rib_kind));
4085                 self.visit_block(&block);
4086                 self.label_ribs.pop();
4087                 self.ribs[ValueNS].pop();
4088             }
4089             // `async |x| ...` gets desugared to `|x| future_from_generator(|| ...)`, so we need to
4090             // resolve the arguments within the proper scopes so that usages of them inside the
4091             // closure are detected as upvars rather than normal closure arg usages.
4092             ExprKind::Closure(
4093                 _, IsAsync::Async { closure_id: inner_closure_id, .. }, _,
4094                 ref fn_decl, ref body, _span,
4095             ) => {
4096                 let rib_kind = ClosureRibKind(expr.id);
4097                 self.ribs[ValueNS].push(Rib::new(rib_kind));
4098                 self.label_ribs.push(Rib::new(rib_kind));
4099                 // Resolve arguments:
4100                 let mut bindings_list = FxHashMap();
4101                 for argument in &fn_decl.inputs {
4102                     self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
4103                     self.visit_ty(&argument.ty);
4104                 }
4105                 // No need to resolve return type-- the outer closure return type is
4106                 // FunctionRetTy::Default
4107
4108                 // Now resolve the inner closure
4109                 {
4110                     let rib_kind = ClosureRibKind(inner_closure_id);
4111                     self.ribs[ValueNS].push(Rib::new(rib_kind));
4112                     self.label_ribs.push(Rib::new(rib_kind));
4113                     // No need to resolve arguments: the inner closure has none.
4114                     // Resolve the return type:
4115                     visit::walk_fn_ret_ty(self, &fn_decl.output);
4116                     // Resolve the body
4117                     self.visit_expr(body);
4118                     self.label_ribs.pop();
4119                     self.ribs[ValueNS].pop();
4120                 }
4121                 self.label_ribs.pop();
4122                 self.ribs[ValueNS].pop();
4123             }
4124             _ => {
4125                 visit::walk_expr(self, expr);
4126             }
4127         }
4128     }
4129
4130     fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &Expr) {
4131         match expr.node {
4132             ExprKind::Field(_, ident) => {
4133                 // FIXME(#6890): Even though you can't treat a method like a
4134                 // field, we need to add any trait methods we find that match
4135                 // the field name so that we can do some nice error reporting
4136                 // later on in typeck.
4137                 let traits = self.get_traits_containing_item(ident, ValueNS);
4138                 self.trait_map.insert(expr.id, traits);
4139             }
4140             ExprKind::MethodCall(ref segment, ..) => {
4141                 debug!("(recording candidate traits for expr) recording traits for {}",
4142                        expr.id);
4143                 let traits = self.get_traits_containing_item(segment.ident, ValueNS);
4144                 self.trait_map.insert(expr.id, traits);
4145             }
4146             _ => {
4147                 // Nothing to do.
4148             }
4149         }
4150     }
4151
4152     fn get_traits_containing_item(&mut self, mut ident: Ident, ns: Namespace)
4153                                   -> Vec<TraitCandidate> {
4154         debug!("(getting traits containing item) looking for '{}'", ident.name);
4155
4156         let mut found_traits = Vec::new();
4157         // Look for the current trait.
4158         if let Some((module, _)) = self.current_trait_ref {
4159             if self.resolve_ident_in_module(
4160                 ModuleOrUniformRoot::Module(module),
4161                 ident,
4162                 ns,
4163                 false,
4164                 module.span,
4165             ).is_ok() {
4166                 let def_id = module.def_id().unwrap();
4167                 found_traits.push(TraitCandidate { def_id: def_id, import_id: None });
4168             }
4169         }
4170
4171         ident.span = ident.span.modern();
4172         let mut search_module = self.current_module;
4173         loop {
4174             self.get_traits_in_module_containing_item(ident, ns, search_module, &mut found_traits);
4175             search_module = unwrap_or!(
4176                 self.hygienic_lexical_parent(search_module, &mut ident.span), break
4177             );
4178         }
4179
4180         if let Some(prelude) = self.prelude {
4181             if !search_module.no_implicit_prelude {
4182                 self.get_traits_in_module_containing_item(ident, ns, prelude, &mut found_traits);
4183             }
4184         }
4185
4186         found_traits
4187     }
4188
4189     fn get_traits_in_module_containing_item(&mut self,
4190                                             ident: Ident,
4191                                             ns: Namespace,
4192                                             module: Module<'a>,
4193                                             found_traits: &mut Vec<TraitCandidate>) {
4194         assert!(ns == TypeNS || ns == ValueNS);
4195         let mut traits = module.traits.borrow_mut();
4196         if traits.is_none() {
4197             let mut collected_traits = Vec::new();
4198             module.for_each_child(|name, ns, binding| {
4199                 if ns != TypeNS { return }
4200                 if let Def::Trait(_) = binding.def() {
4201                     collected_traits.push((name, binding));
4202                 }
4203             });
4204             *traits = Some(collected_traits.into_boxed_slice());
4205         }
4206
4207         for &(trait_name, binding) in traits.as_ref().unwrap().iter() {
4208             let module = binding.module().unwrap();
4209             let mut ident = ident;
4210             if ident.span.glob_adjust(module.expansion, binding.span.ctxt().modern()).is_none() {
4211                 continue
4212             }
4213             if self.resolve_ident_in_module_unadjusted(
4214                 ModuleOrUniformRoot::Module(module),
4215                 ident,
4216                 ns,
4217                 false,
4218                 false,
4219                 module.span,
4220             ).is_ok() {
4221                 let import_id = match binding.kind {
4222                     NameBindingKind::Import { directive, .. } => {
4223                         self.maybe_unused_trait_imports.insert(directive.id);
4224                         self.add_to_glob_map(directive.id, trait_name);
4225                         Some(directive.id)
4226                     }
4227                     _ => None,
4228                 };
4229                 let trait_def_id = module.def_id().unwrap();
4230                 found_traits.push(TraitCandidate { def_id: trait_def_id, import_id: import_id });
4231             }
4232         }
4233     }
4234
4235     /// When name resolution fails, this method can be used to look up candidate
4236     /// entities with the expected name. It allows filtering them using the
4237     /// supplied predicate (which should be used to only accept the types of
4238     /// definitions expected e.g. traits). The lookup spans across all crates.
4239     ///
4240     /// NOTE: The method does not look into imports, but this is not a problem,
4241     /// since we report the definitions (thus, the de-aliased imports).
4242     fn lookup_import_candidates<FilterFn>(&mut self,
4243                                           lookup_name: Name,
4244                                           namespace: Namespace,
4245                                           filter_fn: FilterFn)
4246                                           -> Vec<ImportSuggestion>
4247         where FilterFn: Fn(Def) -> bool
4248     {
4249         let mut candidates = Vec::new();
4250         let mut worklist = Vec::new();
4251         let mut seen_modules = FxHashSet();
4252         worklist.push((self.graph_root, Vec::new(), false));
4253
4254         while let Some((in_module,
4255                         path_segments,
4256                         in_module_is_extern)) = worklist.pop() {
4257             self.populate_module_if_necessary(in_module);
4258
4259             // We have to visit module children in deterministic order to avoid
4260             // instabilities in reported imports (#43552).
4261             in_module.for_each_child_stable(|ident, ns, name_binding| {
4262                 // avoid imports entirely
4263                 if name_binding.is_import() && !name_binding.is_extern_crate() { return; }
4264                 // avoid non-importable candidates as well
4265                 if !name_binding.is_importable() { return; }
4266
4267                 // collect results based on the filter function
4268                 if ident.name == lookup_name && ns == namespace {
4269                     if filter_fn(name_binding.def()) {
4270                         // create the path
4271                         let mut segms = if self.session.rust_2018() && !in_module_is_extern {
4272                             // crate-local absolute paths start with `crate::` in edition 2018
4273                             // FIXME: may also be stabilized for Rust 2015 (Issues #45477, #44660)
4274                             let mut full_segms = vec![
4275                                 ast::PathSegment::from_ident(keywords::Crate.ident())
4276                             ];
4277                             full_segms.extend(path_segments.clone());
4278                             full_segms
4279                         } else {
4280                             path_segments.clone()
4281                         };
4282
4283                         segms.push(ast::PathSegment::from_ident(ident));
4284                         let path = Path {
4285                             span: name_binding.span,
4286                             segments: segms,
4287                         };
4288                         // the entity is accessible in the following cases:
4289                         // 1. if it's defined in the same crate, it's always
4290                         // accessible (since private entities can be made public)
4291                         // 2. if it's defined in another crate, it's accessible
4292                         // only if both the module is public and the entity is
4293                         // declared as public (due to pruning, we don't explore
4294                         // outside crate private modules => no need to check this)
4295                         if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
4296                             candidates.push(ImportSuggestion { path: path });
4297                         }
4298                     }
4299                 }
4300
4301                 // collect submodules to explore
4302                 if let Some(module) = name_binding.module() {
4303                     // form the path
4304                     let mut path_segments = path_segments.clone();
4305                     path_segments.push(ast::PathSegment::from_ident(ident));
4306
4307                     if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
4308                         // add the module to the lookup
4309                         let is_extern = in_module_is_extern || name_binding.is_extern_crate();
4310                         if seen_modules.insert(module.def_id().unwrap()) {
4311                             worklist.push((module, path_segments, is_extern));
4312                         }
4313                     }
4314                 }
4315             })
4316         }
4317
4318         candidates
4319     }
4320
4321     fn find_module(&mut self,
4322                    module_def: Def)
4323                    -> Option<(Module<'a>, ImportSuggestion)>
4324     {
4325         let mut result = None;
4326         let mut worklist = Vec::new();
4327         let mut seen_modules = FxHashSet();
4328         worklist.push((self.graph_root, Vec::new()));
4329
4330         while let Some((in_module, path_segments)) = worklist.pop() {
4331             // abort if the module is already found
4332             if result.is_some() { break; }
4333
4334             self.populate_module_if_necessary(in_module);
4335
4336             in_module.for_each_child_stable(|ident, _, name_binding| {
4337                 // abort if the module is already found or if name_binding is private external
4338                 if result.is_some() || !name_binding.vis.is_visible_locally() {
4339                     return
4340                 }
4341                 if let Some(module) = name_binding.module() {
4342                     // form the path
4343                     let mut path_segments = path_segments.clone();
4344                     path_segments.push(ast::PathSegment::from_ident(ident));
4345                     if module.def() == Some(module_def) {
4346                         let path = Path {
4347                             span: name_binding.span,
4348                             segments: path_segments,
4349                         };
4350                         result = Some((module, ImportSuggestion { path: path }));
4351                     } else {
4352                         // add the module to the lookup
4353                         if seen_modules.insert(module.def_id().unwrap()) {
4354                             worklist.push((module, path_segments));
4355                         }
4356                     }
4357                 }
4358             });
4359         }
4360
4361         result
4362     }
4363
4364     fn collect_enum_variants(&mut self, enum_def: Def) -> Option<Vec<Path>> {
4365         if let Def::Enum(..) = enum_def {} else {
4366             panic!("Non-enum def passed to collect_enum_variants: {:?}", enum_def)
4367         }
4368
4369         self.find_module(enum_def).map(|(enum_module, enum_import_suggestion)| {
4370             self.populate_module_if_necessary(enum_module);
4371
4372             let mut variants = Vec::new();
4373             enum_module.for_each_child_stable(|ident, _, name_binding| {
4374                 if let Def::Variant(..) = name_binding.def() {
4375                     let mut segms = enum_import_suggestion.path.segments.clone();
4376                     segms.push(ast::PathSegment::from_ident(ident));
4377                     variants.push(Path {
4378                         span: name_binding.span,
4379                         segments: segms,
4380                     });
4381                 }
4382             });
4383             variants
4384         })
4385     }
4386
4387     fn record_def(&mut self, node_id: NodeId, resolution: PathResolution) {
4388         debug!("(recording def) recording {:?} for {}", resolution, node_id);
4389         if let Some(prev_res) = self.def_map.insert(node_id, resolution) {
4390             panic!("path resolved multiple times ({:?} before, {:?} now)", prev_res, resolution);
4391         }
4392     }
4393
4394     fn resolve_visibility(&mut self, vis: &ast::Visibility) -> ty::Visibility {
4395         match vis.node {
4396             ast::VisibilityKind::Public => ty::Visibility::Public,
4397             ast::VisibilityKind::Crate(..) => {
4398                 ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX))
4399             }
4400             ast::VisibilityKind::Inherited => {
4401                 ty::Visibility::Restricted(self.current_module.normal_ancestor_id)
4402             }
4403             ast::VisibilityKind::Restricted { ref path, id, .. } => {
4404                 // Visibilities are resolved as global by default, add starting root segment.
4405                 let segments = path.make_root().iter().chain(path.segments.iter())
4406                     .map(|seg| seg.ident)
4407                     .collect::<Vec<_>>();
4408                 let def = self.smart_resolve_path_fragment(
4409                     id,
4410                     None,
4411                     &segments,
4412                     path.span,
4413                     PathSource::Visibility,
4414                     CrateLint::SimplePath(id),
4415                 ).base_def();
4416                 if def == Def::Err {
4417                     ty::Visibility::Public
4418                 } else {
4419                     let vis = ty::Visibility::Restricted(def.def_id());
4420                     if self.is_accessible(vis) {
4421                         vis
4422                     } else {
4423                         self.session.span_err(path.span, "visibilities can only be restricted \
4424                                                           to ancestor modules");
4425                         ty::Visibility::Public
4426                     }
4427                 }
4428             }
4429         }
4430     }
4431
4432     fn is_accessible(&self, vis: ty::Visibility) -> bool {
4433         vis.is_accessible_from(self.current_module.normal_ancestor_id, self)
4434     }
4435
4436     fn is_accessible_from(&self, vis: ty::Visibility, module: Module<'a>) -> bool {
4437         vis.is_accessible_from(module.normal_ancestor_id, self)
4438     }
4439
4440     fn report_errors(&mut self, krate: &Crate) {
4441         self.report_shadowing_errors();
4442         self.report_with_use_injections(krate);
4443         self.report_proc_macro_import(krate);
4444         let mut reported_spans = FxHashSet();
4445
4446         for &(span_use, span_def) in &self.macro_expanded_macro_export_errors {
4447             let msg = "macro-expanded `macro_export` macros from the current crate \
4448                        cannot be referred to by absolute paths";
4449             self.session.struct_span_err(span_use, msg)
4450                         .span_note(span_def, "the macro is defined here")
4451                         .emit();
4452         }
4453
4454         for &AmbiguityError { span, name, b1, b2, lexical } in &self.ambiguity_errors {
4455             if !reported_spans.insert(span) { continue }
4456             let participle = |binding: &NameBinding| {
4457                 if binding.is_import() { "imported" } else { "defined" }
4458             };
4459             let msg1 = format!("`{}` could refer to the name {} here", name, participle(b1));
4460             let msg2 = format!("`{}` could also refer to the name {} here", name, participle(b2));
4461             let note = if b1.expansion == Mark::root() || !lexical && b1.is_glob_import() {
4462                 format!("consider adding an explicit import of `{}` to disambiguate", name)
4463             } else if let Def::Macro(..) = b1.def() {
4464                 format!("macro-expanded {} do not shadow",
4465                         if b1.is_import() { "macro imports" } else { "macros" })
4466             } else {
4467                 format!("macro-expanded {} do not shadow when used in a macro invocation path",
4468                         if b1.is_import() { "imports" } else { "items" })
4469             };
4470
4471             let mut err = struct_span_err!(self.session, span, E0659, "`{}` is ambiguous", name);
4472             err.span_note(b1.span, &msg1);
4473             match b2.def() {
4474                 Def::Macro(..) if b2.span.is_dummy() =>
4475                     err.note(&format!("`{}` is also a builtin macro", name)),
4476                 _ => err.span_note(b2.span, &msg2),
4477             };
4478             err.note(&note).emit();
4479         }
4480
4481         for &PrivacyError(span, name, binding) in &self.privacy_errors {
4482             if !reported_spans.insert(span) { continue }
4483             span_err!(self.session, span, E0603, "{} `{}` is private", binding.descr(), name);
4484         }
4485     }
4486
4487     fn report_with_use_injections(&mut self, krate: &Crate) {
4488         for UseError { mut err, candidates, node_id, better } in self.use_injections.drain(..) {
4489             let (span, found_use) = UsePlacementFinder::check(krate, node_id);
4490             if !candidates.is_empty() {
4491                 show_candidates(&mut err, span, &candidates, better, found_use);
4492             }
4493             err.emit();
4494         }
4495     }
4496
4497     fn report_shadowing_errors(&mut self) {
4498         for (ident, scope) in replace(&mut self.lexical_macro_resolutions, Vec::new()) {
4499             self.resolve_legacy_scope(scope, ident, true);
4500         }
4501
4502         let mut reported_errors = FxHashSet();
4503         for binding in replace(&mut self.disallowed_shadowing, Vec::new()) {
4504             if self.resolve_legacy_scope(&binding.parent, binding.ident, false).is_some() &&
4505                reported_errors.insert((binding.ident, binding.span)) {
4506                 let msg = format!("`{}` is already in scope", binding.ident);
4507                 self.session.struct_span_err(binding.span, &msg)
4508                     .note("macro-expanded `macro_rules!`s may not shadow \
4509                            existing macros (see RFC 1560)")
4510                     .emit();
4511             }
4512         }
4513     }
4514
4515     fn report_conflict<'b>(&mut self,
4516                        parent: Module,
4517                        ident: Ident,
4518                        ns: Namespace,
4519                        new_binding: &NameBinding<'b>,
4520                        old_binding: &NameBinding<'b>) {
4521         // Error on the second of two conflicting names
4522         if old_binding.span.lo() > new_binding.span.lo() {
4523             return self.report_conflict(parent, ident, ns, old_binding, new_binding);
4524         }
4525
4526         let container = match parent.kind {
4527             ModuleKind::Def(Def::Mod(_), _) => "module",
4528             ModuleKind::Def(Def::Trait(_), _) => "trait",
4529             ModuleKind::Block(..) => "block",
4530             _ => "enum",
4531         };
4532
4533         let old_noun = match old_binding.is_import() {
4534             true => "import",
4535             false => "definition",
4536         };
4537
4538         let new_participle = match new_binding.is_import() {
4539             true => "imported",
4540             false => "defined",
4541         };
4542
4543         let (name, span) = (ident.name, self.session.codemap().def_span(new_binding.span));
4544
4545         if let Some(s) = self.name_already_seen.get(&name) {
4546             if s == &span {
4547                 return;
4548             }
4549         }
4550
4551         let old_kind = match (ns, old_binding.module()) {
4552             (ValueNS, _) => "value",
4553             (MacroNS, _) => "macro",
4554             (TypeNS, _) if old_binding.is_extern_crate() => "extern crate",
4555             (TypeNS, Some(module)) if module.is_normal() => "module",
4556             (TypeNS, Some(module)) if module.is_trait() => "trait",
4557             (TypeNS, _) => "type",
4558         };
4559
4560         let msg = format!("the name `{}` is defined multiple times", name);
4561
4562         let mut err = match (old_binding.is_extern_crate(), new_binding.is_extern_crate()) {
4563             (true, true) => struct_span_err!(self.session, span, E0259, "{}", msg),
4564             (true, _) | (_, true) => match new_binding.is_import() && old_binding.is_import() {
4565                 true => struct_span_err!(self.session, span, E0254, "{}", msg),
4566                 false => struct_span_err!(self.session, span, E0260, "{}", msg),
4567             },
4568             _ => match (old_binding.is_import(), new_binding.is_import()) {
4569                 (false, false) => struct_span_err!(self.session, span, E0428, "{}", msg),
4570                 (true, true) => struct_span_err!(self.session, span, E0252, "{}", msg),
4571                 _ => struct_span_err!(self.session, span, E0255, "{}", msg),
4572             },
4573         };
4574
4575         err.note(&format!("`{}` must be defined only once in the {} namespace of this {}",
4576                           name,
4577                           ns.descr(),
4578                           container));
4579
4580         err.span_label(span, format!("`{}` re{} here", name, new_participle));
4581         if !old_binding.span.is_dummy() {
4582             err.span_label(self.session.codemap().def_span(old_binding.span),
4583                            format!("previous {} of the {} `{}` here", old_noun, old_kind, name));
4584         }
4585
4586         // See https://github.com/rust-lang/rust/issues/32354
4587         if old_binding.is_import() || new_binding.is_import() {
4588             let binding = if new_binding.is_import() && !new_binding.span.is_dummy() {
4589                 new_binding
4590             } else {
4591                 old_binding
4592             };
4593
4594             let cm = self.session.codemap();
4595             let rename_msg = "You can use `as` to change the binding name of the import";
4596
4597             if let (Ok(snippet), false) = (cm.span_to_snippet(binding.span),
4598                                            binding.is_renamed_extern_crate()) {
4599                 let suggested_name = if name.as_str().chars().next().unwrap().is_uppercase() {
4600                     format!("Other{}", name)
4601                 } else {
4602                     format!("other_{}", name)
4603                 };
4604
4605                 err.span_suggestion(binding.span,
4606                                     rename_msg,
4607                                     if snippet.ends_with(';') {
4608                                         format!("{} as {};",
4609                                                 &snippet[..snippet.len()-1],
4610                                                 suggested_name)
4611                                     } else {
4612                                         format!("{} as {}", snippet, suggested_name)
4613                                     });
4614             } else {
4615                 err.span_label(binding.span, rename_msg);
4616             }
4617         }
4618
4619         err.emit();
4620         self.name_already_seen.insert(name, span);
4621     }
4622
4623     fn check_proc_macro_attrs(&mut self, attrs: &[ast::Attribute]) {
4624         if self.use_extern_macros { return; }
4625
4626         for attr in attrs {
4627             if attr.path.segments.len() > 1 {
4628                 continue
4629             }
4630             let ident = attr.path.segments[0].ident;
4631             let result = self.resolve_lexical_macro_path_segment(ident,
4632                                                                  MacroNS,
4633                                                                  false,
4634                                                                  false,
4635                                                                  true,
4636                                                                  attr.path.span);
4637             if let Ok(binding) = result {
4638                 if let SyntaxExtension::AttrProcMacro(..) = *binding.binding().get_macro(self) {
4639                     attr::mark_known(attr);
4640
4641                     let msg = "attribute procedural macros are experimental";
4642                     let feature = "use_extern_macros";
4643
4644                     feature_err(&self.session.parse_sess, feature,
4645                                 attr.span, GateIssue::Language, msg)
4646                         .span_label(binding.span(), "procedural macro imported here")
4647                         .emit();
4648                 }
4649             }
4650         }
4651     }
4652 }
4653
4654 fn is_self_type(path: &[Ident], namespace: Namespace) -> bool {
4655     namespace == TypeNS && path.len() == 1 && path[0].name == keywords::SelfType.name()
4656 }
4657
4658 fn is_self_value(path: &[Ident], namespace: Namespace) -> bool {
4659     namespace == ValueNS && path.len() == 1 && path[0].name == keywords::SelfValue.name()
4660 }
4661
4662 fn names_to_string(idents: &[Ident]) -> String {
4663     let mut result = String::new();
4664     for (i, ident) in idents.iter()
4665                             .filter(|ident| ident.name != keywords::CrateRoot.name())
4666                             .enumerate() {
4667         if i > 0 {
4668             result.push_str("::");
4669         }
4670         result.push_str(&ident.as_str());
4671     }
4672     result
4673 }
4674
4675 fn path_names_to_string(path: &Path) -> String {
4676     names_to_string(&path.segments.iter()
4677                         .map(|seg| seg.ident)
4678                         .collect::<Vec<_>>())
4679 }
4680
4681 /// Get the path for an enum and the variant from an `ImportSuggestion` for an enum variant.
4682 fn import_candidate_to_paths(suggestion: &ImportSuggestion) -> (Span, String, String) {
4683     let variant_path = &suggestion.path;
4684     let variant_path_string = path_names_to_string(variant_path);
4685
4686     let path_len = suggestion.path.segments.len();
4687     let enum_path = ast::Path {
4688         span: suggestion.path.span,
4689         segments: suggestion.path.segments[0..path_len - 1].to_vec(),
4690     };
4691     let enum_path_string = path_names_to_string(&enum_path);
4692
4693     (suggestion.path.span, variant_path_string, enum_path_string)
4694 }
4695
4696
4697 /// When an entity with a given name is not available in scope, we search for
4698 /// entities with that name in all crates. This method allows outputting the
4699 /// results of this search in a programmer-friendly way
4700 fn show_candidates(err: &mut DiagnosticBuilder,
4701                    // This is `None` if all placement locations are inside expansions
4702                    span: Option<Span>,
4703                    candidates: &[ImportSuggestion],
4704                    better: bool,
4705                    found_use: bool) {
4706
4707     // we want consistent results across executions, but candidates are produced
4708     // by iterating through a hash map, so make sure they are ordered:
4709     let mut path_strings: Vec<_> =
4710         candidates.into_iter().map(|c| path_names_to_string(&c.path)).collect();
4711     path_strings.sort();
4712
4713     let better = if better { "better " } else { "" };
4714     let msg_diff = match path_strings.len() {
4715         1 => " is found in another module, you can import it",
4716         _ => "s are found in other modules, you can import them",
4717     };
4718     let msg = format!("possible {}candidate{} into scope", better, msg_diff);
4719
4720     if let Some(span) = span {
4721         for candidate in &mut path_strings {
4722             // produce an additional newline to separate the new use statement
4723             // from the directly following item.
4724             let additional_newline = if found_use {
4725                 ""
4726             } else {
4727                 "\n"
4728             };
4729             *candidate = format!("use {};\n{}", candidate, additional_newline);
4730         }
4731
4732         err.span_suggestions(span, &msg, path_strings);
4733     } else {
4734         let mut msg = msg;
4735         msg.push(':');
4736         for candidate in path_strings {
4737             msg.push('\n');
4738             msg.push_str(&candidate);
4739         }
4740     }
4741 }
4742
4743 /// A somewhat inefficient routine to obtain the name of a module.
4744 fn module_to_string(module: Module) -> Option<String> {
4745     let mut names = Vec::new();
4746
4747     fn collect_mod(names: &mut Vec<Ident>, module: Module) {
4748         if let ModuleKind::Def(_, name) = module.kind {
4749             if let Some(parent) = module.parent {
4750                 names.push(Ident::with_empty_ctxt(name));
4751                 collect_mod(names, parent);
4752             }
4753         } else {
4754             // danger, shouldn't be ident?
4755             names.push(Ident::from_str("<opaque>"));
4756             collect_mod(names, module.parent.unwrap());
4757         }
4758     }
4759     collect_mod(&mut names, module);
4760
4761     if names.is_empty() {
4762         return None;
4763     }
4764     Some(names_to_string(&names.into_iter()
4765                         .rev()
4766                         .collect::<Vec<_>>()))
4767 }
4768
4769 fn err_path_resolution() -> PathResolution {
4770     PathResolution::new(Def::Err)
4771 }
4772
4773 #[derive(PartialEq,Copy, Clone)]
4774 pub enum MakeGlobMap {
4775     Yes,
4776     No,
4777 }
4778
4779 #[derive(Copy, Clone, Debug)]
4780 enum CrateLint {
4781     /// Do not issue the lint
4782     No,
4783
4784     /// This lint applies to some random path like `impl ::foo::Bar`
4785     /// or whatever. In this case, we can take the span of that path.
4786     SimplePath(NodeId),
4787
4788     /// This lint comes from a `use` statement. In this case, what we
4789     /// care about really is the *root* `use` statement; e.g., if we
4790     /// have nested things like `use a::{b, c}`, we care about the
4791     /// `use a` part.
4792     UsePath { root_id: NodeId, root_span: Span },
4793
4794     /// This is the "trait item" from a fully qualified path. For example,
4795     /// we might be resolving  `X::Y::Z` from a path like `<T as X::Y>::Z`.
4796     /// The `path_span` is the span of the to the trait itself (`X::Y`).
4797     QPathTrait { qpath_id: NodeId, qpath_span: Span },
4798 }
4799
4800 impl CrateLint {
4801     fn node_id(&self) -> Option<NodeId> {
4802         match *self {
4803             CrateLint::No => None,
4804             CrateLint::SimplePath(id) |
4805             CrateLint::UsePath { root_id: id, .. } |
4806             CrateLint::QPathTrait { qpath_id: id, .. } => Some(id),
4807         }
4808     }
4809 }
4810
4811 __build_diagnostic_array! { librustc_resolve, DIAGNOSTICS }