]> git.lizzy.rs Git - rust.git/blob - src/librustc_resolve/lib.rs
resolve: Put different parent scopes into a single structure
[rust.git] / src / librustc_resolve / lib.rs
1 // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 #![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
12        html_favicon_url = "https://doc.rust-lang.org/favicon.ico",
13        html_root_url = "https://doc.rust-lang.org/nightly/")]
14
15 #![feature(crate_visibility_modifier)]
16 #![cfg_attr(not(stage0), feature(nll))]
17 #![feature(rustc_diagnostic_macros)]
18 #![feature(slice_sort_by_cached_key)]
19
20 #[macro_use]
21 extern crate log;
22 #[macro_use]
23 extern crate syntax;
24 extern crate syntax_pos;
25 extern crate rustc_errors as errors;
26 extern crate arena;
27 #[macro_use]
28 extern crate rustc;
29 extern crate rustc_data_structures;
30 extern crate rustc_metadata;
31
32 pub use rustc::hir::def::{Namespace, PerNS};
33
34 use self::TypeParameters::*;
35 use self::RibKind::*;
36
37 use rustc::hir::map::{Definitions, DefCollector};
38 use rustc::hir::{self, PrimTy, Bool, Char, Float, Int, Uint, Str};
39 use rustc::middle::cstore::CrateStore;
40 use rustc::session::Session;
41 use rustc::lint;
42 use rustc::hir::def::*;
43 use rustc::hir::def::Namespace::*;
44 use rustc::hir::def_id::{CRATE_DEF_INDEX, LOCAL_CRATE, DefId};
45 use rustc::ty;
46 use rustc::hir::{Freevar, FreevarMap, TraitCandidate, TraitMap, GlobMap};
47 use rustc::util::nodemap::{NodeMap, NodeSet, FxHashMap, FxHashSet, DefIdMap};
48
49 use rustc_metadata::creader::CrateLoader;
50 use rustc_metadata::cstore::CStore;
51
52 use syntax::source_map::SourceMap;
53 use syntax::ext::hygiene::{Mark, Transparency, SyntaxContext};
54 use syntax::ast::{self, Name, NodeId, Ident, FloatTy, IntTy, UintTy};
55 use syntax::ext::base::SyntaxExtension;
56 use syntax::ext::base::Determinacy::{self, Determined, Undetermined};
57 use syntax::ext::base::MacroKind;
58 use syntax::symbol::{Symbol, keywords};
59 use syntax::util::lev_distance::find_best_match_for_name;
60
61 use syntax::visit::{self, FnKind, Visitor};
62 use syntax::attr;
63 use syntax::ast::{CRATE_NODE_ID, Arm, IsAsync, BindingMode, Block, Crate, Expr, ExprKind};
64 use syntax::ast::{FnDecl, ForeignItem, ForeignItemKind, GenericParamKind, Generics};
65 use syntax::ast::{Item, ItemKind, ImplItem, ImplItemKind};
66 use syntax::ast::{Label, Local, Mutability, Pat, PatKind, Path};
67 use syntax::ast::{QSelf, TraitItemKind, TraitRef, Ty, TyKind};
68 use syntax::feature_gate::{feature_err, GateIssue};
69 use syntax::ptr::P;
70
71 use syntax_pos::{Span, DUMMY_SP, MultiSpan};
72 use errors::{Applicability, DiagnosticBuilder, DiagnosticId};
73
74 use std::cell::{Cell, RefCell};
75 use std::cmp;
76 use std::collections::BTreeSet;
77 use std::fmt;
78 use std::iter;
79 use std::mem::replace;
80 use rustc_data_structures::sync::Lrc;
81
82 use resolve_imports::{ImportDirective, ImportDirectiveSubclass, NameResolution, ImportResolver};
83 use macros::{InvocationData, LegacyBinding, ParentScope};
84
85 // NB: This module needs to be declared first so diagnostics are
86 // registered before they are used.
87 mod diagnostics;
88
89 mod macros;
90 mod check_unused;
91 mod build_reduced_graph;
92 mod resolve_imports;
93
94 fn is_known_tool(name: Name) -> bool {
95     ["clippy", "rustfmt"].contains(&&*name.as_str())
96 }
97
98 /// A free importable items suggested in case of resolution failure.
99 struct ImportSuggestion {
100     path: Path,
101 }
102
103 /// A field or associated item from self type suggested in case of resolution failure.
104 enum AssocSuggestion {
105     Field,
106     MethodWithSelf,
107     AssocItem,
108 }
109
110 #[derive(Eq)]
111 struct BindingError {
112     name: Name,
113     origin: BTreeSet<Span>,
114     target: BTreeSet<Span>,
115 }
116
117 impl PartialOrd for BindingError {
118     fn partial_cmp(&self, other: &BindingError) -> Option<cmp::Ordering> {
119         Some(self.cmp(other))
120     }
121 }
122
123 impl PartialEq for BindingError {
124     fn eq(&self, other: &BindingError) -> bool {
125         self.name == other.name
126     }
127 }
128
129 impl Ord for BindingError {
130     fn cmp(&self, other: &BindingError) -> cmp::Ordering {
131         self.name.cmp(&other.name)
132     }
133 }
134
135 enum ResolutionError<'a> {
136     /// error E0401: can't use type parameters from outer function
137     TypeParametersFromOuterFunction(Def),
138     /// error E0403: the name is already used for a type parameter in this type parameter list
139     NameAlreadyUsedInTypeParameterList(Name, &'a Span),
140     /// error E0407: method is not a member of trait
141     MethodNotMemberOfTrait(Name, &'a str),
142     /// error E0437: type is not a member of trait
143     TypeNotMemberOfTrait(Name, &'a str),
144     /// error E0438: const is not a member of trait
145     ConstNotMemberOfTrait(Name, &'a str),
146     /// error E0408: variable `{}` is not bound in all patterns
147     VariableNotBoundInPattern(&'a BindingError),
148     /// error E0409: variable `{}` is bound in inconsistent ways within the same match arm
149     VariableBoundWithDifferentMode(Name, Span),
150     /// error E0415: identifier is bound more than once in this parameter list
151     IdentifierBoundMoreThanOnceInParameterList(&'a str),
152     /// error E0416: identifier is bound more than once in the same pattern
153     IdentifierBoundMoreThanOnceInSamePattern(&'a str),
154     /// error E0426: use of undeclared label
155     UndeclaredLabel(&'a str, Option<Name>),
156     /// error E0429: `self` imports are only allowed within a { } list
157     SelfImportsOnlyAllowedWithin,
158     /// error E0430: `self` import can only appear once in the list
159     SelfImportCanOnlyAppearOnceInTheList,
160     /// error E0431: `self` import can only appear in an import list with a non-empty prefix
161     SelfImportOnlyInImportListWithNonEmptyPrefix,
162     /// error E0433: failed to resolve
163     FailedToResolve(&'a str),
164     /// error E0434: can't capture dynamic environment in a fn item
165     CannotCaptureDynamicEnvironmentInFnItem,
166     /// error E0435: attempt to use a non-constant value in a constant
167     AttemptToUseNonConstantValueInConstant,
168     /// error E0530: X bindings cannot shadow Ys
169     BindingShadowsSomethingUnacceptable(&'a str, Name, &'a NameBinding<'a>),
170     /// error E0128: type parameters with a default cannot use forward declared identifiers
171     ForwardDeclaredTyParam,
172 }
173
174 /// Combines an error with provided span and emits it
175 ///
176 /// This takes the error provided, combines it with the span and any additional spans inside the
177 /// error and emits it.
178 fn resolve_error<'sess, 'a>(resolver: &'sess Resolver,
179                             span: Span,
180                             resolution_error: ResolutionError<'a>) {
181     resolve_struct_error(resolver, span, resolution_error).emit();
182 }
183
184 fn resolve_struct_error<'sess, 'a>(resolver: &'sess Resolver,
185                                    span: Span,
186                                    resolution_error: ResolutionError<'a>)
187                                    -> DiagnosticBuilder<'sess> {
188     match resolution_error {
189         ResolutionError::TypeParametersFromOuterFunction(outer_def) => {
190             let mut err = struct_span_err!(resolver.session,
191                                            span,
192                                            E0401,
193                                            "can't use type parameters from outer function");
194             err.span_label(span, "use of type variable from outer function");
195
196             let cm = resolver.session.source_map();
197             match outer_def {
198                 Def::SelfTy(maybe_trait_defid, maybe_impl_defid) => {
199                     if let Some(impl_span) = maybe_impl_defid.and_then(|def_id| {
200                         resolver.definitions.opt_span(def_id)
201                     }) {
202                         err.span_label(
203                             reduce_impl_span_to_impl_keyword(cm, impl_span),
204                             "`Self` type implicitly declared here, by this `impl`",
205                         );
206                     }
207                     match (maybe_trait_defid, maybe_impl_defid) {
208                         (Some(_), None) => {
209                             err.span_label(span, "can't use `Self` here");
210                         }
211                         (_, Some(_)) => {
212                             err.span_label(span, "use a type here instead");
213                         }
214                         (None, None) => bug!("`impl` without trait nor type?"),
215                     }
216                     return err;
217                 },
218                 Def::TyParam(typaram_defid) => {
219                     if let Some(typaram_span) = resolver.definitions.opt_span(typaram_defid) {
220                         err.span_label(typaram_span, "type variable from outer function");
221                     }
222                 },
223                 _ => {
224                     bug!("TypeParametersFromOuterFunction should only be used with Def::SelfTy or \
225                          Def::TyParam")
226                 }
227             }
228
229             // Try to retrieve the span of the function signature and generate a new message with
230             // a local type parameter
231             let sugg_msg = "try using a local type parameter instead";
232             if let Some((sugg_span, new_snippet)) = cm.generate_local_type_param_snippet(span) {
233                 // Suggest the modification to the user
234                 err.span_suggestion_with_applicability(
235                     sugg_span,
236                     sugg_msg,
237                     new_snippet,
238                     Applicability::MachineApplicable,
239                 );
240             } else if let Some(sp) = cm.generate_fn_name_span(span) {
241                 err.span_label(sp, "try adding a local type parameter in this method instead");
242             } else {
243                 err.help("try using a local type parameter instead");
244             }
245
246             err
247         }
248         ResolutionError::NameAlreadyUsedInTypeParameterList(name, first_use_span) => {
249              let mut err = struct_span_err!(resolver.session,
250                                             span,
251                                             E0403,
252                                             "the name `{}` is already used for a type parameter \
253                                             in this type parameter list",
254                                             name);
255              err.span_label(span, "already used");
256              err.span_label(first_use_span.clone(), format!("first use of `{}`", name));
257              err
258         }
259         ResolutionError::MethodNotMemberOfTrait(method, trait_) => {
260             let mut err = struct_span_err!(resolver.session,
261                                            span,
262                                            E0407,
263                                            "method `{}` is not a member of trait `{}`",
264                                            method,
265                                            trait_);
266             err.span_label(span, format!("not a member of trait `{}`", trait_));
267             err
268         }
269         ResolutionError::TypeNotMemberOfTrait(type_, trait_) => {
270             let mut err = struct_span_err!(resolver.session,
271                              span,
272                              E0437,
273                              "type `{}` is not a member of trait `{}`",
274                              type_,
275                              trait_);
276             err.span_label(span, format!("not a member of trait `{}`", trait_));
277             err
278         }
279         ResolutionError::ConstNotMemberOfTrait(const_, trait_) => {
280             let mut err = struct_span_err!(resolver.session,
281                              span,
282                              E0438,
283                              "const `{}` is not a member of trait `{}`",
284                              const_,
285                              trait_);
286             err.span_label(span, format!("not a member of trait `{}`", trait_));
287             err
288         }
289         ResolutionError::VariableNotBoundInPattern(binding_error) => {
290             let target_sp = binding_error.target.iter().cloned().collect::<Vec<_>>();
291             let msp = MultiSpan::from_spans(target_sp.clone());
292             let msg = format!("variable `{}` is not bound in all patterns", binding_error.name);
293             let mut err = resolver.session.struct_span_err_with_code(
294                 msp,
295                 &msg,
296                 DiagnosticId::Error("E0408".into()),
297             );
298             for sp in target_sp {
299                 err.span_label(sp, format!("pattern doesn't bind `{}`", binding_error.name));
300             }
301             let origin_sp = binding_error.origin.iter().cloned();
302             for sp in origin_sp {
303                 err.span_label(sp, "variable not in all patterns");
304             }
305             err
306         }
307         ResolutionError::VariableBoundWithDifferentMode(variable_name,
308                                                         first_binding_span) => {
309             let mut err = struct_span_err!(resolver.session,
310                              span,
311                              E0409,
312                              "variable `{}` is bound in inconsistent \
313                              ways within the same match arm",
314                              variable_name);
315             err.span_label(span, "bound in different ways");
316             err.span_label(first_binding_span, "first binding");
317             err
318         }
319         ResolutionError::IdentifierBoundMoreThanOnceInParameterList(identifier) => {
320             let mut err = struct_span_err!(resolver.session,
321                              span,
322                              E0415,
323                              "identifier `{}` is bound more than once in this parameter list",
324                              identifier);
325             err.span_label(span, "used as parameter more than once");
326             err
327         }
328         ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(identifier) => {
329             let mut err = struct_span_err!(resolver.session,
330                              span,
331                              E0416,
332                              "identifier `{}` is bound more than once in the same pattern",
333                              identifier);
334             err.span_label(span, "used in a pattern more than once");
335             err
336         }
337         ResolutionError::UndeclaredLabel(name, lev_candidate) => {
338             let mut err = struct_span_err!(resolver.session,
339                                            span,
340                                            E0426,
341                                            "use of undeclared label `{}`",
342                                            name);
343             if let Some(lev_candidate) = lev_candidate {
344                 err.span_label(span, format!("did you mean `{}`?", lev_candidate));
345             } else {
346                 err.span_label(span, format!("undeclared label `{}`", name));
347             }
348             err
349         }
350         ResolutionError::SelfImportsOnlyAllowedWithin => {
351             struct_span_err!(resolver.session,
352                              span,
353                              E0429,
354                              "{}",
355                              "`self` imports are only allowed within a { } list")
356         }
357         ResolutionError::SelfImportCanOnlyAppearOnceInTheList => {
358             let mut err = struct_span_err!(resolver.session, span, E0430,
359                                            "`self` import can only appear once in an import list");
360             err.span_label(span, "can only appear once in an import list");
361             err
362         }
363         ResolutionError::SelfImportOnlyInImportListWithNonEmptyPrefix => {
364             let mut err = struct_span_err!(resolver.session, span, E0431,
365                                            "`self` import can only appear in an import list with \
366                                             a non-empty prefix");
367             err.span_label(span, "can only appear in an import list with a non-empty prefix");
368             err
369         }
370         ResolutionError::FailedToResolve(msg) => {
371             let mut err = struct_span_err!(resolver.session, span, E0433,
372                                            "failed to resolve. {}", msg);
373             err.span_label(span, msg);
374             err
375         }
376         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem => {
377             let mut err = struct_span_err!(resolver.session,
378                                            span,
379                                            E0434,
380                                            "{}",
381                                            "can't capture dynamic environment in a fn item");
382             err.help("use the `|| { ... }` closure form instead");
383             err
384         }
385         ResolutionError::AttemptToUseNonConstantValueInConstant => {
386             let mut err = struct_span_err!(resolver.session, span, E0435,
387                                            "attempt to use a non-constant value in a constant");
388             err.span_label(span, "non-constant value");
389             err
390         }
391         ResolutionError::BindingShadowsSomethingUnacceptable(what_binding, name, binding) => {
392             let shadows_what = PathResolution::new(binding.def()).kind_name();
393             let mut err = struct_span_err!(resolver.session,
394                                            span,
395                                            E0530,
396                                            "{}s cannot shadow {}s", what_binding, shadows_what);
397             err.span_label(span, format!("cannot be named the same as a {}", shadows_what));
398             let participle = if binding.is_import() { "imported" } else { "defined" };
399             let msg = format!("a {} `{}` is {} here", shadows_what, name, participle);
400             err.span_label(binding.span, msg);
401             err
402         }
403         ResolutionError::ForwardDeclaredTyParam => {
404             let mut err = struct_span_err!(resolver.session, span, E0128,
405                                            "type parameters with a default cannot use \
406                                             forward declared identifiers");
407             err.span_label(
408                 span, "defaulted type parameters cannot be forward declared".to_string());
409             err
410         }
411     }
412 }
413
414 /// Adjust the impl span so that just the `impl` keyword is taken by removing
415 /// everything after `<` (`"impl<T> Iterator for A<T> {}" -> "impl"`) and
416 /// everything after the first whitespace (`"impl Iterator for A" -> "impl"`)
417 ///
418 /// Attention: The method used is very fragile since it essentially duplicates the work of the
419 /// parser. If you need to use this function or something similar, please consider updating the
420 /// source_map functions and this function to something more robust.
421 fn reduce_impl_span_to_impl_keyword(cm: &SourceMap, impl_span: Span) -> Span {
422     let impl_span = cm.span_until_char(impl_span, '<');
423     let impl_span = cm.span_until_whitespace(impl_span);
424     impl_span
425 }
426
427 #[derive(Copy, Clone, Debug)]
428 struct BindingInfo {
429     span: Span,
430     binding_mode: BindingMode,
431 }
432
433 /// Map from the name in a pattern to its binding mode.
434 type BindingMap = FxHashMap<Ident, BindingInfo>;
435
436 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
437 enum PatternSource {
438     Match,
439     IfLet,
440     WhileLet,
441     Let,
442     For,
443     FnParam,
444 }
445
446 impl PatternSource {
447     fn descr(self) -> &'static str {
448         match self {
449             PatternSource::Match => "match binding",
450             PatternSource::IfLet => "if let binding",
451             PatternSource::WhileLet => "while let binding",
452             PatternSource::Let => "let binding",
453             PatternSource::For => "for binding",
454             PatternSource::FnParam => "function parameter",
455         }
456     }
457 }
458
459 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
460 enum AliasPossibility {
461     No,
462     Maybe,
463 }
464
465 #[derive(Copy, Clone, Debug)]
466 enum PathSource<'a> {
467     // Type paths `Path`.
468     Type,
469     // Trait paths in bounds or impls.
470     Trait(AliasPossibility),
471     // Expression paths `path`, with optional parent context.
472     Expr(Option<&'a Expr>),
473     // Paths in path patterns `Path`.
474     Pat,
475     // Paths in struct expressions and patterns `Path { .. }`.
476     Struct,
477     // Paths in tuple struct patterns `Path(..)`.
478     TupleStruct,
479     // `m::A::B` in `<T as m::A>::B::C`.
480     TraitItem(Namespace),
481     // Path in `pub(path)`
482     Visibility,
483     // Path in `use a::b::{...};`
484     ImportPrefix,
485 }
486
487 impl<'a> PathSource<'a> {
488     fn namespace(self) -> Namespace {
489         match self {
490             PathSource::Type | PathSource::Trait(_) | PathSource::Struct |
491             PathSource::Visibility | PathSource::ImportPrefix => TypeNS,
492             PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct => ValueNS,
493             PathSource::TraitItem(ns) => ns,
494         }
495     }
496
497     fn global_by_default(self) -> bool {
498         match self {
499             PathSource::Visibility | PathSource::ImportPrefix => true,
500             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
501             PathSource::Struct | PathSource::TupleStruct |
502             PathSource::Trait(_) | PathSource::TraitItem(..) => false,
503         }
504     }
505
506     fn defer_to_typeck(self) -> bool {
507         match self {
508             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
509             PathSource::Struct | PathSource::TupleStruct => true,
510             PathSource::Trait(_) | PathSource::TraitItem(..) |
511             PathSource::Visibility | PathSource::ImportPrefix => false,
512         }
513     }
514
515     fn descr_expected(self) -> &'static str {
516         match self {
517             PathSource::Type => "type",
518             PathSource::Trait(_) => "trait",
519             PathSource::Pat => "unit struct/variant or constant",
520             PathSource::Struct => "struct, variant or union type",
521             PathSource::TupleStruct => "tuple struct/variant",
522             PathSource::Visibility => "module",
523             PathSource::ImportPrefix => "module or enum",
524             PathSource::TraitItem(ns) => match ns {
525                 TypeNS => "associated type",
526                 ValueNS => "method or associated constant",
527                 MacroNS => bug!("associated macro"),
528             },
529             PathSource::Expr(parent) => match parent.map(|p| &p.node) {
530                 // "function" here means "anything callable" rather than `Def::Fn`,
531                 // this is not precise but usually more helpful than just "value".
532                 Some(&ExprKind::Call(..)) => "function",
533                 _ => "value",
534             },
535         }
536     }
537
538     fn is_expected(self, def: Def) -> bool {
539         match self {
540             PathSource::Type => match def {
541                 Def::Struct(..) | Def::Union(..) | Def::Enum(..) |
542                 Def::Trait(..) | Def::TyAlias(..) | Def::AssociatedTy(..) |
543                 Def::PrimTy(..) | Def::TyParam(..) | Def::SelfTy(..) |
544                 Def::Existential(..) |
545                 Def::ForeignTy(..) => true,
546                 _ => false,
547             },
548             PathSource::Trait(AliasPossibility::No) => match def {
549                 Def::Trait(..) => true,
550                 _ => false,
551             },
552             PathSource::Trait(AliasPossibility::Maybe) => match def {
553                 Def::Trait(..) => true,
554                 Def::TraitAlias(..) => true,
555                 _ => false,
556             },
557             PathSource::Expr(..) => match def {
558                 Def::StructCtor(_, CtorKind::Const) | Def::StructCtor(_, CtorKind::Fn) |
559                 Def::VariantCtor(_, CtorKind::Const) | Def::VariantCtor(_, CtorKind::Fn) |
560                 Def::Const(..) | Def::Static(..) | Def::Local(..) | Def::Upvar(..) |
561                 Def::Fn(..) | Def::Method(..) | Def::AssociatedConst(..) => true,
562                 _ => false,
563             },
564             PathSource::Pat => match def {
565                 Def::StructCtor(_, CtorKind::Const) |
566                 Def::VariantCtor(_, CtorKind::Const) |
567                 Def::Const(..) | Def::AssociatedConst(..) => true,
568                 _ => false,
569             },
570             PathSource::TupleStruct => match def {
571                 Def::StructCtor(_, CtorKind::Fn) | Def::VariantCtor(_, CtorKind::Fn) => true,
572                 _ => false,
573             },
574             PathSource::Struct => match def {
575                 Def::Struct(..) | Def::Union(..) | Def::Variant(..) |
576                 Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => true,
577                 _ => false,
578             },
579             PathSource::TraitItem(ns) => match def {
580                 Def::AssociatedConst(..) | Def::Method(..) if ns == ValueNS => true,
581                 Def::AssociatedTy(..) if ns == TypeNS => true,
582                 _ => false,
583             },
584             PathSource::ImportPrefix => match def {
585                 Def::Mod(..) | Def::Enum(..) => true,
586                 _ => false,
587             },
588             PathSource::Visibility => match def {
589                 Def::Mod(..) => true,
590                 _ => false,
591             },
592         }
593     }
594
595     fn error_code(self, has_unexpected_resolution: bool) -> &'static str {
596         __diagnostic_used!(E0404);
597         __diagnostic_used!(E0405);
598         __diagnostic_used!(E0412);
599         __diagnostic_used!(E0422);
600         __diagnostic_used!(E0423);
601         __diagnostic_used!(E0425);
602         __diagnostic_used!(E0531);
603         __diagnostic_used!(E0532);
604         __diagnostic_used!(E0573);
605         __diagnostic_used!(E0574);
606         __diagnostic_used!(E0575);
607         __diagnostic_used!(E0576);
608         __diagnostic_used!(E0577);
609         __diagnostic_used!(E0578);
610         match (self, has_unexpected_resolution) {
611             (PathSource::Trait(_), true) => "E0404",
612             (PathSource::Trait(_), false) => "E0405",
613             (PathSource::Type, true) => "E0573",
614             (PathSource::Type, false) => "E0412",
615             (PathSource::Struct, true) => "E0574",
616             (PathSource::Struct, false) => "E0422",
617             (PathSource::Expr(..), true) => "E0423",
618             (PathSource::Expr(..), false) => "E0425",
619             (PathSource::Pat, true) | (PathSource::TupleStruct, true) => "E0532",
620             (PathSource::Pat, false) | (PathSource::TupleStruct, false) => "E0531",
621             (PathSource::TraitItem(..), true) => "E0575",
622             (PathSource::TraitItem(..), false) => "E0576",
623             (PathSource::Visibility, true) | (PathSource::ImportPrefix, true) => "E0577",
624             (PathSource::Visibility, false) | (PathSource::ImportPrefix, false) => "E0578",
625         }
626     }
627 }
628
629 struct UsePlacementFinder {
630     target_module: NodeId,
631     span: Option<Span>,
632     found_use: bool,
633 }
634
635 impl UsePlacementFinder {
636     fn check(krate: &Crate, target_module: NodeId) -> (Option<Span>, bool) {
637         let mut finder = UsePlacementFinder {
638             target_module,
639             span: None,
640             found_use: false,
641         };
642         visit::walk_crate(&mut finder, krate);
643         (finder.span, finder.found_use)
644     }
645 }
646
647 impl<'tcx> Visitor<'tcx> for UsePlacementFinder {
648     fn visit_mod(
649         &mut self,
650         module: &'tcx ast::Mod,
651         _: Span,
652         _: &[ast::Attribute],
653         node_id: NodeId,
654     ) {
655         if self.span.is_some() {
656             return;
657         }
658         if node_id != self.target_module {
659             visit::walk_mod(self, module);
660             return;
661         }
662         // find a use statement
663         for item in &module.items {
664             match item.node {
665                 ItemKind::Use(..) => {
666                     // don't suggest placing a use before the prelude
667                     // import or other generated ones
668                     if item.span.ctxt().outer().expn_info().is_none() {
669                         self.span = Some(item.span.shrink_to_lo());
670                         self.found_use = true;
671                         return;
672                     }
673                 },
674                 // don't place use before extern crate
675                 ItemKind::ExternCrate(_) => {}
676                 // but place them before the first other item
677                 _ => if self.span.map_or(true, |span| item.span < span ) {
678                     if item.span.ctxt().outer().expn_info().is_none() {
679                         // don't insert between attributes and an item
680                         if item.attrs.is_empty() {
681                             self.span = Some(item.span.shrink_to_lo());
682                         } else {
683                             // find the first attribute on the item
684                             for attr in &item.attrs {
685                                 if self.span.map_or(true, |span| attr.span < span) {
686                                     self.span = Some(attr.span.shrink_to_lo());
687                                 }
688                             }
689                         }
690                     }
691                 },
692             }
693         }
694     }
695 }
696
697 /// This thing walks the whole crate in DFS manner, visiting each item, resolving names as it goes.
698 impl<'a, 'tcx, 'cl> Visitor<'tcx> for Resolver<'a, 'cl> {
699     fn visit_item(&mut self, item: &'tcx Item) {
700         self.resolve_item(item);
701     }
702     fn visit_arm(&mut self, arm: &'tcx Arm) {
703         self.resolve_arm(arm);
704     }
705     fn visit_block(&mut self, block: &'tcx Block) {
706         self.resolve_block(block);
707     }
708     fn visit_anon_const(&mut self, constant: &'tcx ast::AnonConst) {
709         self.with_constant_rib(|this| {
710             visit::walk_anon_const(this, constant);
711         });
712     }
713     fn visit_expr(&mut self, expr: &'tcx Expr) {
714         self.resolve_expr(expr, None);
715     }
716     fn visit_local(&mut self, local: &'tcx Local) {
717         self.resolve_local(local);
718     }
719     fn visit_ty(&mut self, ty: &'tcx Ty) {
720         match ty.node {
721             TyKind::Path(ref qself, ref path) => {
722                 self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
723             }
724             TyKind::ImplicitSelf => {
725                 let self_ty = keywords::SelfType.ident();
726                 let def = self.resolve_ident_in_lexical_scope(self_ty, TypeNS, Some(ty.id), ty.span)
727                               .map_or(Def::Err, |d| d.def());
728                 self.record_def(ty.id, PathResolution::new(def));
729             }
730             _ => (),
731         }
732         visit::walk_ty(self, ty);
733     }
734     fn visit_poly_trait_ref(&mut self,
735                             tref: &'tcx ast::PolyTraitRef,
736                             m: &'tcx ast::TraitBoundModifier) {
737         self.smart_resolve_path(tref.trait_ref.ref_id, None,
738                                 &tref.trait_ref.path, PathSource::Trait(AliasPossibility::Maybe));
739         visit::walk_poly_trait_ref(self, tref, m);
740     }
741     fn visit_foreign_item(&mut self, foreign_item: &'tcx ForeignItem) {
742         let type_parameters = match foreign_item.node {
743             ForeignItemKind::Fn(_, ref generics) => {
744                 HasTypeParameters(generics, ItemRibKind)
745             }
746             ForeignItemKind::Static(..) => NoTypeParameters,
747             ForeignItemKind::Ty => NoTypeParameters,
748             ForeignItemKind::Macro(..) => NoTypeParameters,
749         };
750         self.with_type_parameter_rib(type_parameters, |this| {
751             visit::walk_foreign_item(this, foreign_item);
752         });
753     }
754     fn visit_fn(&mut self,
755                 function_kind: FnKind<'tcx>,
756                 declaration: &'tcx FnDecl,
757                 _: Span,
758                 node_id: NodeId)
759     {
760         let (rib_kind, asyncness) = match function_kind {
761             FnKind::ItemFn(_, ref header, ..) =>
762                 (ItemRibKind, header.asyncness),
763             FnKind::Method(_, ref sig, _, _) =>
764                 (TraitOrImplItemRibKind, sig.header.asyncness),
765             FnKind::Closure(_) =>
766                 // Async closures aren't resolved through `visit_fn`-- they're
767                 // processed separately
768                 (ClosureRibKind(node_id), IsAsync::NotAsync),
769         };
770
771         // Create a value rib for the function.
772         self.ribs[ValueNS].push(Rib::new(rib_kind));
773
774         // Create a label rib for the function.
775         self.label_ribs.push(Rib::new(rib_kind));
776
777         // Add each argument to the rib.
778         let mut bindings_list = FxHashMap();
779         for argument in &declaration.inputs {
780             self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
781
782             self.visit_ty(&argument.ty);
783
784             debug!("(resolving function) recorded argument");
785         }
786         visit::walk_fn_ret_ty(self, &declaration.output);
787
788         // Resolve the function body, potentially inside the body of an async closure
789         if let IsAsync::Async { closure_id, .. } = asyncness {
790             let rib_kind = ClosureRibKind(closure_id);
791             self.ribs[ValueNS].push(Rib::new(rib_kind));
792             self.label_ribs.push(Rib::new(rib_kind));
793         }
794
795         match function_kind {
796             FnKind::ItemFn(.., body) |
797             FnKind::Method(.., body) => {
798                 self.visit_block(body);
799             }
800             FnKind::Closure(body) => {
801                 self.visit_expr(body);
802             }
803         };
804
805         // Leave the body of the async closure
806         if asyncness.is_async() {
807             self.label_ribs.pop();
808             self.ribs[ValueNS].pop();
809         }
810
811         debug!("(resolving function) leaving function");
812
813         self.label_ribs.pop();
814         self.ribs[ValueNS].pop();
815     }
816     fn visit_generics(&mut self, generics: &'tcx Generics) {
817         // For type parameter defaults, we have to ban access
818         // to following type parameters, as the Substs can only
819         // provide previous type parameters as they're built. We
820         // put all the parameters on the ban list and then remove
821         // them one by one as they are processed and become available.
822         let mut default_ban_rib = Rib::new(ForwardTyParamBanRibKind);
823         let mut found_default = false;
824         default_ban_rib.bindings.extend(generics.params.iter()
825             .filter_map(|param| match param.kind {
826                 GenericParamKind::Lifetime { .. } => None,
827                 GenericParamKind::Type { ref default, .. } => {
828                     found_default |= default.is_some();
829                     if found_default {
830                         Some((Ident::with_empty_ctxt(param.ident.name), Def::Err))
831                     } else {
832                         None
833                     }
834                 }
835             }));
836
837         for param in &generics.params {
838             match param.kind {
839                 GenericParamKind::Lifetime { .. } => self.visit_generic_param(param),
840                 GenericParamKind::Type { ref default, .. } => {
841                     for bound in &param.bounds {
842                         self.visit_param_bound(bound);
843                     }
844
845                     if let Some(ref ty) = default {
846                         self.ribs[TypeNS].push(default_ban_rib);
847                         self.visit_ty(ty);
848                         default_ban_rib = self.ribs[TypeNS].pop().unwrap();
849                     }
850
851                     // Allow all following defaults to refer to this type parameter.
852                     default_ban_rib.bindings.remove(&Ident::with_empty_ctxt(param.ident.name));
853                 }
854             }
855         }
856         for p in &generics.where_clause.predicates {
857             self.visit_where_predicate(p);
858         }
859     }
860 }
861
862 #[derive(Copy, Clone)]
863 enum TypeParameters<'a, 'b> {
864     NoTypeParameters,
865     HasTypeParameters(// Type parameters.
866                       &'b Generics,
867
868                       // The kind of the rib used for type parameters.
869                       RibKind<'a>),
870 }
871
872 /// The rib kind controls the translation of local
873 /// definitions (`Def::Local`) to upvars (`Def::Upvar`).
874 #[derive(Copy, Clone, Debug)]
875 enum RibKind<'a> {
876     /// No translation needs to be applied.
877     NormalRibKind,
878
879     /// We passed through a closure scope at the given node ID.
880     /// Translate upvars as appropriate.
881     ClosureRibKind(NodeId /* func id */),
882
883     /// We passed through an impl or trait and are now in one of its
884     /// methods or associated types. Allow references to ty params that impl or trait
885     /// binds. Disallow any other upvars (including other ty params that are
886     /// upvars).
887     TraitOrImplItemRibKind,
888
889     /// We passed through an item scope. Disallow upvars.
890     ItemRibKind,
891
892     /// We're in a constant item. Can't refer to dynamic stuff.
893     ConstantItemRibKind,
894
895     /// We passed through a module.
896     ModuleRibKind(Module<'a>),
897
898     /// We passed through a `macro_rules!` statement
899     MacroDefinition(DefId),
900
901     /// All bindings in this rib are type parameters that can't be used
902     /// from the default of a type parameter because they're not declared
903     /// before said type parameter. Also see the `visit_generics` override.
904     ForwardTyParamBanRibKind,
905 }
906
907 /// One local scope.
908 ///
909 /// A rib represents a scope names can live in. Note that these appear in many places, not just
910 /// around braces. At any place where the list of accessible names (of the given namespace)
911 /// changes or a new restrictions on the name accessibility are introduced, a new rib is put onto a
912 /// stack. This may be, for example, a `let` statement (because it introduces variables), a macro,
913 /// etc.
914 ///
915 /// Different [rib kinds](enum.RibKind) are transparent for different names.
916 ///
917 /// The resolution keeps a separate stack of ribs as it traverses the AST for each namespace. When
918 /// resolving, the name is looked up from inside out.
919 #[derive(Debug)]
920 struct Rib<'a> {
921     bindings: FxHashMap<Ident, Def>,
922     kind: RibKind<'a>,
923 }
924
925 impl<'a> Rib<'a> {
926     fn new(kind: RibKind<'a>) -> Rib<'a> {
927         Rib {
928             bindings: FxHashMap(),
929             kind,
930         }
931     }
932 }
933
934 /// An intermediate resolution result.
935 ///
936 /// This refers to the thing referred by a name. The difference between `Def` and `Item` is that
937 /// items are visible in their whole block, while defs only from the place they are defined
938 /// forward.
939 enum LexicalScopeBinding<'a> {
940     Item(&'a NameBinding<'a>),
941     Def(Def),
942 }
943
944 impl<'a> LexicalScopeBinding<'a> {
945     fn item(self) -> Option<&'a NameBinding<'a>> {
946         match self {
947             LexicalScopeBinding::Item(binding) => Some(binding),
948             _ => None,
949         }
950     }
951
952     fn def(self) -> Def {
953         match self {
954             LexicalScopeBinding::Item(binding) => binding.def(),
955             LexicalScopeBinding::Def(def) => def,
956         }
957     }
958 }
959
960 #[derive(Copy, Clone, Debug)]
961 pub enum ModuleOrUniformRoot<'a> {
962     /// Regular module.
963     Module(Module<'a>),
964
965     /// The `{{root}}` (`CrateRoot` aka "global") / `extern` initial segment
966     /// in which external crates resolve, and also `crate` (only in `{{root}}`,
967     /// but *not* `extern`), in the Rust 2018 edition.
968     UniformRoot(Name),
969 }
970
971 #[derive(Clone, Debug)]
972 enum PathResult<'a> {
973     Module(ModuleOrUniformRoot<'a>),
974     NonModule(PathResolution),
975     Indeterminate,
976     Failed(Span, String, bool /* is the error from the last segment? */),
977 }
978
979 enum ModuleKind {
980     /// An anonymous module, eg. just a block.
981     ///
982     /// ```
983     /// fn main() {
984     ///     fn f() {} // (1)
985     ///     { // This is an anonymous module
986     ///         f(); // This resolves to (2) as we are inside the block.
987     ///         fn f() {} // (2)
988     ///     }
989     ///     f(); // Resolves to (1)
990     /// }
991     /// ```
992     Block(NodeId),
993     /// Any module with a name.
994     ///
995     /// This could be:
996     ///
997     /// * A normal module â€’ either `mod from_file;` or `mod from_block { }`.
998     /// * A trait or an enum (it implicitly contains associated types, methods and variant
999     ///   constructors).
1000     Def(Def, Name),
1001 }
1002
1003 /// One node in the tree of modules.
1004 pub struct ModuleData<'a> {
1005     parent: Option<Module<'a>>,
1006     kind: ModuleKind,
1007
1008     // The def id of the closest normal module (`mod`) ancestor (including this module).
1009     normal_ancestor_id: DefId,
1010
1011     resolutions: RefCell<FxHashMap<(Ident, Namespace), &'a RefCell<NameResolution<'a>>>>,
1012     legacy_macro_resolutions: RefCell<Vec<(Ident, MacroKind, ParentScope<'a>, Option<Def>)>>,
1013     macro_resolutions: RefCell<Vec<(Box<[Ident]>, Span)>>,
1014     builtin_attrs: RefCell<Vec<(Ident, ParentScope<'a>)>>,
1015
1016     // Macro invocations that can expand into items in this module.
1017     unresolved_invocations: RefCell<FxHashSet<Mark>>,
1018
1019     no_implicit_prelude: bool,
1020
1021     glob_importers: RefCell<Vec<&'a ImportDirective<'a>>>,
1022     globs: RefCell<Vec<&'a ImportDirective<'a>>>,
1023
1024     // Used to memoize the traits in this module for faster searches through all traits in scope.
1025     traits: RefCell<Option<Box<[(Ident, &'a NameBinding<'a>)]>>>,
1026
1027     // Whether this module is populated. If not populated, any attempt to
1028     // access the children must be preceded with a
1029     // `populate_module_if_necessary` call.
1030     populated: Cell<bool>,
1031
1032     /// Span of the module itself. Used for error reporting.
1033     span: Span,
1034
1035     expansion: Mark,
1036 }
1037
1038 type Module<'a> = &'a ModuleData<'a>;
1039
1040 impl<'a> ModuleData<'a> {
1041     fn new(parent: Option<Module<'a>>,
1042            kind: ModuleKind,
1043            normal_ancestor_id: DefId,
1044            expansion: Mark,
1045            span: Span) -> Self {
1046         ModuleData {
1047             parent,
1048             kind,
1049             normal_ancestor_id,
1050             resolutions: RefCell::new(FxHashMap()),
1051             legacy_macro_resolutions: RefCell::new(Vec::new()),
1052             macro_resolutions: RefCell::new(Vec::new()),
1053             builtin_attrs: RefCell::new(Vec::new()),
1054             unresolved_invocations: RefCell::new(FxHashSet()),
1055             no_implicit_prelude: false,
1056             glob_importers: RefCell::new(Vec::new()),
1057             globs: RefCell::new(Vec::new()),
1058             traits: RefCell::new(None),
1059             populated: Cell::new(normal_ancestor_id.is_local()),
1060             span,
1061             expansion,
1062         }
1063     }
1064
1065     fn for_each_child<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1066         for (&(ident, ns), name_resolution) in self.resolutions.borrow().iter() {
1067             name_resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1068         }
1069     }
1070
1071     fn for_each_child_stable<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1072         let resolutions = self.resolutions.borrow();
1073         let mut resolutions = resolutions.iter().collect::<Vec<_>>();
1074         resolutions.sort_by_cached_key(|&(&(ident, ns), _)| (ident.as_str(), ns));
1075         for &(&(ident, ns), &resolution) in resolutions.iter() {
1076             resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1077         }
1078     }
1079
1080     fn def(&self) -> Option<Def> {
1081         match self.kind {
1082             ModuleKind::Def(def, _) => Some(def),
1083             _ => None,
1084         }
1085     }
1086
1087     fn def_id(&self) -> Option<DefId> {
1088         self.def().as_ref().map(Def::def_id)
1089     }
1090
1091     // `self` resolves to the first module ancestor that `is_normal`.
1092     fn is_normal(&self) -> bool {
1093         match self.kind {
1094             ModuleKind::Def(Def::Mod(_), _) => true,
1095             _ => false,
1096         }
1097     }
1098
1099     fn is_trait(&self) -> bool {
1100         match self.kind {
1101             ModuleKind::Def(Def::Trait(_), _) => true,
1102             _ => false,
1103         }
1104     }
1105
1106     fn is_local(&self) -> bool {
1107         self.normal_ancestor_id.is_local()
1108     }
1109
1110     fn nearest_item_scope(&'a self) -> Module<'a> {
1111         if self.is_trait() { self.parent.unwrap() } else { self }
1112     }
1113 }
1114
1115 impl<'a> fmt::Debug for ModuleData<'a> {
1116     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1117         write!(f, "{:?}", self.def())
1118     }
1119 }
1120
1121 /// Records a possibly-private value, type, or module definition.
1122 #[derive(Clone, Debug)]
1123 pub struct NameBinding<'a> {
1124     kind: NameBindingKind<'a>,
1125     expansion: Mark,
1126     span: Span,
1127     vis: ty::Visibility,
1128 }
1129
1130 pub trait ToNameBinding<'a> {
1131     fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a>;
1132 }
1133
1134 impl<'a> ToNameBinding<'a> for &'a NameBinding<'a> {
1135     fn to_name_binding(self, _: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> {
1136         self
1137     }
1138 }
1139
1140 #[derive(Clone, Debug)]
1141 enum NameBindingKind<'a> {
1142     Def(Def, /* is_macro_export */ bool),
1143     Module(Module<'a>),
1144     Import {
1145         binding: &'a NameBinding<'a>,
1146         directive: &'a ImportDirective<'a>,
1147         used: Cell<bool>,
1148     },
1149     Ambiguity {
1150         b1: &'a NameBinding<'a>,
1151         b2: &'a NameBinding<'a>,
1152     }
1153 }
1154
1155 struct PrivacyError<'a>(Span, Name, &'a NameBinding<'a>);
1156
1157 struct UseError<'a> {
1158     err: DiagnosticBuilder<'a>,
1159     /// Attach `use` statements for these candidates
1160     candidates: Vec<ImportSuggestion>,
1161     /// The node id of the module to place the use statements in
1162     node_id: NodeId,
1163     /// Whether the diagnostic should state that it's "better"
1164     better: bool,
1165 }
1166
1167 struct AmbiguityError<'a> {
1168     ident: Ident,
1169     b1: &'a NameBinding<'a>,
1170     b2: &'a NameBinding<'a>,
1171 }
1172
1173 impl<'a> NameBinding<'a> {
1174     fn module(&self) -> Option<Module<'a>> {
1175         match self.kind {
1176             NameBindingKind::Module(module) => Some(module),
1177             NameBindingKind::Import { binding, .. } => binding.module(),
1178             _ => None,
1179         }
1180     }
1181
1182     fn def(&self) -> Def {
1183         match self.kind {
1184             NameBindingKind::Def(def, _) => def,
1185             NameBindingKind::Module(module) => module.def().unwrap(),
1186             NameBindingKind::Import { binding, .. } => binding.def(),
1187             NameBindingKind::Ambiguity { .. } => Def::Err,
1188         }
1189     }
1190
1191     fn def_ignoring_ambiguity(&self) -> Def {
1192         match self.kind {
1193             NameBindingKind::Import { binding, .. } => binding.def_ignoring_ambiguity(),
1194             NameBindingKind::Ambiguity { b1, .. } => b1.def_ignoring_ambiguity(),
1195             _ => self.def(),
1196         }
1197     }
1198
1199     fn get_macro<'b: 'a>(&self, resolver: &mut Resolver<'a, 'b>) -> Lrc<SyntaxExtension> {
1200         resolver.get_macro(self.def_ignoring_ambiguity())
1201     }
1202
1203     // We sometimes need to treat variants as `pub` for backwards compatibility
1204     fn pseudo_vis(&self) -> ty::Visibility {
1205         if self.is_variant() && self.def().def_id().is_local() {
1206             ty::Visibility::Public
1207         } else {
1208             self.vis
1209         }
1210     }
1211
1212     fn is_variant(&self) -> bool {
1213         match self.kind {
1214             NameBindingKind::Def(Def::Variant(..), _) |
1215             NameBindingKind::Def(Def::VariantCtor(..), _) => true,
1216             _ => false,
1217         }
1218     }
1219
1220     fn is_extern_crate(&self) -> bool {
1221         match self.kind {
1222             NameBindingKind::Import {
1223                 directive: &ImportDirective {
1224                     subclass: ImportDirectiveSubclass::ExternCrate(_), ..
1225                 }, ..
1226             } => true,
1227             _ => false,
1228         }
1229     }
1230
1231     fn is_import(&self) -> bool {
1232         match self.kind {
1233             NameBindingKind::Import { .. } => true,
1234             _ => false,
1235         }
1236     }
1237
1238     fn is_renamed_extern_crate(&self) -> bool {
1239         if let NameBindingKind::Import { directive, ..} = self.kind {
1240             if let ImportDirectiveSubclass::ExternCrate(Some(_)) = directive.subclass {
1241                 return true;
1242             }
1243         }
1244         false
1245     }
1246
1247     fn is_glob_import(&self) -> bool {
1248         match self.kind {
1249             NameBindingKind::Import { directive, .. } => directive.is_glob(),
1250             NameBindingKind::Ambiguity { b1, .. } => b1.is_glob_import(),
1251             _ => false,
1252         }
1253     }
1254
1255     fn is_importable(&self) -> bool {
1256         match self.def() {
1257             Def::AssociatedConst(..) | Def::Method(..) | Def::AssociatedTy(..) => false,
1258             _ => true,
1259         }
1260     }
1261
1262     fn is_macro_def(&self) -> bool {
1263         match self.kind {
1264             NameBindingKind::Def(Def::Macro(..), _) => true,
1265             _ => false,
1266         }
1267     }
1268
1269     fn macro_kind(&self) -> Option<MacroKind> {
1270         match self.def_ignoring_ambiguity() {
1271             Def::Macro(_, kind) => Some(kind),
1272             Def::NonMacroAttr(..) => Some(MacroKind::Attr),
1273             _ => None,
1274         }
1275     }
1276
1277     fn descr(&self) -> &'static str {
1278         if self.is_extern_crate() { "extern crate" } else { self.def().kind_name() }
1279     }
1280
1281     // Suppose that we resolved macro invocation with `invoc_parent_expansion` to binding `binding`
1282     // at some expansion round `max(invoc, binding)` when they both emerged from macros.
1283     // Then this function returns `true` if `self` may emerge from a macro *after* that
1284     // in some later round and screw up our previously found resolution.
1285     // See more detailed explanation in
1286     // https://github.com/rust-lang/rust/pull/53778#issuecomment-419224049
1287     fn may_appear_after(&self, invoc_parent_expansion: Mark, binding: &NameBinding) -> bool {
1288         // self > max(invoc, binding) => !(self <= invoc || self <= binding)
1289         // Expansions are partially ordered, so "may appear after" is an inversion of
1290         // "certainly appears before or simultaneously" and includes unordered cases.
1291         let self_parent_expansion = self.expansion;
1292         let other_parent_expansion = binding.expansion;
1293         let certainly_before_other_or_simultaneously =
1294             other_parent_expansion.is_descendant_of(self_parent_expansion);
1295         let certainly_before_invoc_or_simultaneously =
1296             invoc_parent_expansion.is_descendant_of(self_parent_expansion);
1297         !(certainly_before_other_or_simultaneously || certainly_before_invoc_or_simultaneously)
1298     }
1299 }
1300
1301 /// Interns the names of the primitive types.
1302 ///
1303 /// All other types are defined somewhere and possibly imported, but the primitive ones need
1304 /// special handling, since they have no place of origin.
1305 struct PrimitiveTypeTable {
1306     primitive_types: FxHashMap<Name, PrimTy>,
1307 }
1308
1309 impl PrimitiveTypeTable {
1310     fn new() -> PrimitiveTypeTable {
1311         let mut table = PrimitiveTypeTable { primitive_types: FxHashMap() };
1312
1313         table.intern("bool", Bool);
1314         table.intern("char", Char);
1315         table.intern("f32", Float(FloatTy::F32));
1316         table.intern("f64", Float(FloatTy::F64));
1317         table.intern("isize", Int(IntTy::Isize));
1318         table.intern("i8", Int(IntTy::I8));
1319         table.intern("i16", Int(IntTy::I16));
1320         table.intern("i32", Int(IntTy::I32));
1321         table.intern("i64", Int(IntTy::I64));
1322         table.intern("i128", Int(IntTy::I128));
1323         table.intern("str", Str);
1324         table.intern("usize", Uint(UintTy::Usize));
1325         table.intern("u8", Uint(UintTy::U8));
1326         table.intern("u16", Uint(UintTy::U16));
1327         table.intern("u32", Uint(UintTy::U32));
1328         table.intern("u64", Uint(UintTy::U64));
1329         table.intern("u128", Uint(UintTy::U128));
1330         table
1331     }
1332
1333     fn intern(&mut self, string: &str, primitive_type: PrimTy) {
1334         self.primitive_types.insert(Symbol::intern(string), primitive_type);
1335     }
1336 }
1337
1338 /// The main resolver class.
1339 ///
1340 /// This is the visitor that walks the whole crate.
1341 pub struct Resolver<'a, 'b: 'a> {
1342     session: &'a Session,
1343     cstore: &'a CStore,
1344
1345     pub definitions: Definitions,
1346
1347     graph_root: Module<'a>,
1348
1349     prelude: Option<Module<'a>>,
1350     extern_prelude: FxHashSet<Name>,
1351
1352     /// n.b. This is used only for better diagnostics, not name resolution itself.
1353     has_self: FxHashSet<DefId>,
1354
1355     /// Names of fields of an item `DefId` accessible with dot syntax.
1356     /// Used for hints during error reporting.
1357     field_names: FxHashMap<DefId, Vec<Name>>,
1358
1359     /// All imports known to succeed or fail.
1360     determined_imports: Vec<&'a ImportDirective<'a>>,
1361
1362     /// All non-determined imports.
1363     indeterminate_imports: Vec<&'a ImportDirective<'a>>,
1364
1365     /// The module that represents the current item scope.
1366     current_module: Module<'a>,
1367
1368     /// The current set of local scopes for types and values.
1369     /// FIXME #4948: Reuse ribs to avoid allocation.
1370     ribs: PerNS<Vec<Rib<'a>>>,
1371
1372     /// The current set of local scopes, for labels.
1373     label_ribs: Vec<Rib<'a>>,
1374
1375     /// The trait that the current context can refer to.
1376     current_trait_ref: Option<(Module<'a>, TraitRef)>,
1377
1378     /// The current self type if inside an impl (used for better errors).
1379     current_self_type: Option<Ty>,
1380
1381     /// The idents for the primitive types.
1382     primitive_type_table: PrimitiveTypeTable,
1383
1384     def_map: DefMap,
1385     import_map: ImportMap,
1386     pub freevars: FreevarMap,
1387     freevars_seen: NodeMap<NodeMap<usize>>,
1388     pub export_map: ExportMap,
1389     pub trait_map: TraitMap,
1390
1391     /// A map from nodes to anonymous modules.
1392     /// Anonymous modules are pseudo-modules that are implicitly created around items
1393     /// contained within blocks.
1394     ///
1395     /// For example, if we have this:
1396     ///
1397     ///  fn f() {
1398     ///      fn g() {
1399     ///          ...
1400     ///      }
1401     ///  }
1402     ///
1403     /// There will be an anonymous module created around `g` with the ID of the
1404     /// entry block for `f`.
1405     block_map: NodeMap<Module<'a>>,
1406     module_map: FxHashMap<DefId, Module<'a>>,
1407     extern_module_map: FxHashMap<(DefId, bool /* MacrosOnly? */), Module<'a>>,
1408
1409     pub make_glob_map: bool,
1410     /// Maps imports to the names of items actually imported (this actually maps
1411     /// all imports, but only glob imports are actually interesting).
1412     pub glob_map: GlobMap,
1413
1414     used_imports: FxHashSet<(NodeId, Namespace)>,
1415     pub maybe_unused_trait_imports: NodeSet,
1416     pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
1417
1418     /// A list of labels as of yet unused. Labels will be removed from this map when
1419     /// they are used (in a `break` or `continue` statement)
1420     pub unused_labels: FxHashMap<NodeId, Span>,
1421
1422     /// privacy errors are delayed until the end in order to deduplicate them
1423     privacy_errors: Vec<PrivacyError<'a>>,
1424     /// ambiguity errors are delayed for deduplication
1425     ambiguity_errors: Vec<AmbiguityError<'a>>,
1426     /// `use` injections are delayed for better placement and deduplication
1427     use_injections: Vec<UseError<'a>>,
1428     /// `use` injections for proc macros wrongly imported with #[macro_use]
1429     proc_mac_errors: Vec<macros::ProcMacError>,
1430     /// crate-local macro expanded `macro_export` referred to by a module-relative path
1431     macro_expanded_macro_export_errors: BTreeSet<(Span, Span)>,
1432
1433     arenas: &'a ResolverArenas<'a>,
1434     dummy_binding: &'a NameBinding<'a>,
1435
1436     crate_loader: &'a mut CrateLoader<'b>,
1437     macro_names: FxHashSet<Ident>,
1438     builtin_macros: FxHashMap<Name, &'a NameBinding<'a>>,
1439     macro_use_prelude: FxHashMap<Name, &'a NameBinding<'a>>,
1440     pub all_macros: FxHashMap<Name, Def>,
1441     macro_map: FxHashMap<DefId, Lrc<SyntaxExtension>>,
1442     macro_defs: FxHashMap<Mark, DefId>,
1443     local_macro_def_scopes: FxHashMap<NodeId, Module<'a>>,
1444     pub whitelisted_legacy_custom_derives: Vec<Name>,
1445     pub found_unresolved_macro: bool,
1446
1447     /// List of crate local macros that we need to warn about as being unused.
1448     /// Right now this only includes macro_rules! macros, and macros 2.0.
1449     unused_macros: FxHashSet<DefId>,
1450
1451     /// Maps the `Mark` of an expansion to its containing module or block.
1452     invocations: FxHashMap<Mark, &'a InvocationData<'a>>,
1453
1454     /// Avoid duplicated errors for "name already defined".
1455     name_already_seen: FxHashMap<Name, Span>,
1456
1457     /// A set of procedural macros imported by `#[macro_use]` that have already been warned about
1458     warned_proc_macros: FxHashSet<Name>,
1459
1460     potentially_unused_imports: Vec<&'a ImportDirective<'a>>,
1461
1462     /// This table maps struct IDs into struct constructor IDs,
1463     /// it's not used during normal resolution, only for better error reporting.
1464     struct_constructors: DefIdMap<(Def, ty::Visibility)>,
1465
1466     /// Only used for better errors on `fn(): fn()`
1467     current_type_ascription: Vec<Span>,
1468
1469     injected_crate: Option<Module<'a>>,
1470
1471     /// Only supposed to be used by rustdoc, otherwise should be false.
1472     pub ignore_extern_prelude_feature: bool,
1473 }
1474
1475 /// Nothing really interesting here, it just provides memory for the rest of the crate.
1476 pub struct ResolverArenas<'a> {
1477     modules: arena::TypedArena<ModuleData<'a>>,
1478     local_modules: RefCell<Vec<Module<'a>>>,
1479     name_bindings: arena::TypedArena<NameBinding<'a>>,
1480     import_directives: arena::TypedArena<ImportDirective<'a>>,
1481     name_resolutions: arena::TypedArena<RefCell<NameResolution<'a>>>,
1482     invocation_data: arena::TypedArena<InvocationData<'a>>,
1483     legacy_bindings: arena::TypedArena<LegacyBinding<'a>>,
1484 }
1485
1486 impl<'a> ResolverArenas<'a> {
1487     fn alloc_module(&'a self, module: ModuleData<'a>) -> Module<'a> {
1488         let module = self.modules.alloc(module);
1489         if module.def_id().map(|def_id| def_id.is_local()).unwrap_or(true) {
1490             self.local_modules.borrow_mut().push(module);
1491         }
1492         module
1493     }
1494     fn local_modules(&'a self) -> ::std::cell::Ref<'a, Vec<Module<'a>>> {
1495         self.local_modules.borrow()
1496     }
1497     fn alloc_name_binding(&'a self, name_binding: NameBinding<'a>) -> &'a NameBinding<'a> {
1498         self.name_bindings.alloc(name_binding)
1499     }
1500     fn alloc_import_directive(&'a self, import_directive: ImportDirective<'a>)
1501                               -> &'a ImportDirective {
1502         self.import_directives.alloc(import_directive)
1503     }
1504     fn alloc_name_resolution(&'a self) -> &'a RefCell<NameResolution<'a>> {
1505         self.name_resolutions.alloc(Default::default())
1506     }
1507     fn alloc_invocation_data(&'a self, expansion_data: InvocationData<'a>)
1508                              -> &'a InvocationData<'a> {
1509         self.invocation_data.alloc(expansion_data)
1510     }
1511     fn alloc_legacy_binding(&'a self, binding: LegacyBinding<'a>) -> &'a LegacyBinding<'a> {
1512         self.legacy_bindings.alloc(binding)
1513     }
1514 }
1515
1516 impl<'a, 'b: 'a, 'cl: 'b> ty::DefIdTree for &'a Resolver<'b, 'cl> {
1517     fn parent(self, id: DefId) -> Option<DefId> {
1518         match id.krate {
1519             LOCAL_CRATE => self.definitions.def_key(id.index).parent,
1520             _ => self.cstore.def_key(id).parent,
1521         }.map(|index| DefId { index, ..id })
1522     }
1523 }
1524
1525 /// This interface is used through the AST→HIR step, to embed full paths into the HIR. After that
1526 /// the resolver is no longer needed as all the relevant information is inline.
1527 impl<'a, 'cl> hir::lowering::Resolver for Resolver<'a, 'cl> {
1528     fn resolve_hir_path(&mut self, path: &mut hir::Path, is_value: bool) {
1529         self.resolve_hir_path_cb(path, is_value,
1530                                  |resolver, span, error| resolve_error(resolver, span, error))
1531     }
1532
1533     fn resolve_str_path(
1534         &mut self,
1535         span: Span,
1536         crate_root: Option<&str>,
1537         components: &[&str],
1538         args: Option<P<hir::GenericArgs>>,
1539         is_value: bool
1540     ) -> hir::Path {
1541         let mut segments = iter::once(keywords::CrateRoot.ident())
1542             .chain(
1543                 crate_root.into_iter()
1544                     .chain(components.iter().cloned())
1545                     .map(Ident::from_str)
1546             ).map(hir::PathSegment::from_ident).collect::<Vec<_>>();
1547
1548         if let Some(args) = args {
1549             let ident = segments.last().unwrap().ident;
1550             *segments.last_mut().unwrap() = hir::PathSegment {
1551                 ident,
1552                 args: Some(args),
1553                 infer_types: true,
1554             };
1555         }
1556
1557         let mut path = hir::Path {
1558             span,
1559             def: Def::Err,
1560             segments: segments.into(),
1561         };
1562
1563         self.resolve_hir_path(&mut path, is_value);
1564         path
1565     }
1566
1567     fn get_resolution(&mut self, id: NodeId) -> Option<PathResolution> {
1568         self.def_map.get(&id).cloned()
1569     }
1570
1571     fn get_import(&mut self, id: NodeId) -> PerNS<Option<PathResolution>> {
1572         self.import_map.get(&id).cloned().unwrap_or_default()
1573     }
1574
1575     fn definitions(&mut self) -> &mut Definitions {
1576         &mut self.definitions
1577     }
1578 }
1579
1580 impl<'a, 'crateloader> Resolver<'a, 'crateloader> {
1581     /// Rustdoc uses this to resolve things in a recoverable way. ResolutionError<'a>
1582     /// isn't something that can be returned because it can't be made to live that long,
1583     /// and also it's a private type. Fortunately rustdoc doesn't need to know the error,
1584     /// just that an error occurred.
1585     pub fn resolve_str_path_error(&mut self, span: Span, path_str: &str, is_value: bool)
1586         -> Result<hir::Path, ()> {
1587         use std::iter;
1588         let mut errored = false;
1589
1590         let mut path = if path_str.starts_with("::") {
1591             hir::Path {
1592                 span,
1593                 def: Def::Err,
1594                 segments: iter::once(keywords::CrateRoot.ident()).chain({
1595                     path_str.split("::").skip(1).map(Ident::from_str)
1596                 }).map(hir::PathSegment::from_ident).collect(),
1597             }
1598         } else {
1599             hir::Path {
1600                 span,
1601                 def: Def::Err,
1602                 segments: path_str.split("::").map(Ident::from_str)
1603                                   .map(hir::PathSegment::from_ident).collect(),
1604             }
1605         };
1606         self.resolve_hir_path_cb(&mut path, is_value, |_, _, _| errored = true);
1607         if errored || path.def == Def::Err {
1608             Err(())
1609         } else {
1610             Ok(path)
1611         }
1612     }
1613
1614     /// resolve_hir_path, but takes a callback in case there was an error
1615     fn resolve_hir_path_cb<F>(&mut self, path: &mut hir::Path, is_value: bool, error_callback: F)
1616         where F: for<'c, 'b> FnOnce(&'c mut Resolver, Span, ResolutionError<'b>)
1617     {
1618         let namespace = if is_value { ValueNS } else { TypeNS };
1619         let hir::Path { ref segments, span, ref mut def } = *path;
1620         let path: Vec<_> = segments.iter().map(|seg| seg.ident).collect();
1621         // FIXME (Manishearth): Intra doc links won't get warned of epoch changes
1622         match self.resolve_path(None, &path, Some(namespace), true, span, CrateLint::No) {
1623             PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
1624                 *def = module.def().unwrap(),
1625             PathResult::NonModule(path_res) if path_res.unresolved_segments() == 0 =>
1626                 *def = path_res.base_def(),
1627             PathResult::NonModule(..) => match self.resolve_path(
1628                 None,
1629                 &path,
1630                 None,
1631                 true,
1632                 span,
1633                 CrateLint::No,
1634             ) {
1635                 PathResult::Failed(span, msg, _) => {
1636                     error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1637                 }
1638                 _ => {}
1639             },
1640             PathResult::Module(ModuleOrUniformRoot::UniformRoot(_)) |
1641             PathResult::Indeterminate => unreachable!(),
1642             PathResult::Failed(span, msg, _) => {
1643                 error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1644             }
1645         }
1646     }
1647 }
1648
1649 impl<'a, 'crateloader: 'a> Resolver<'a, 'crateloader> {
1650     pub fn new(session: &'a Session,
1651                cstore: &'a CStore,
1652                krate: &Crate,
1653                crate_name: &str,
1654                make_glob_map: MakeGlobMap,
1655                crate_loader: &'a mut CrateLoader<'crateloader>,
1656                arenas: &'a ResolverArenas<'a>)
1657                -> Resolver<'a, 'crateloader> {
1658         let root_def_id = DefId::local(CRATE_DEF_INDEX);
1659         let root_module_kind = ModuleKind::Def(Def::Mod(root_def_id), keywords::Invalid.name());
1660         let graph_root = arenas.alloc_module(ModuleData {
1661             no_implicit_prelude: attr::contains_name(&krate.attrs, "no_implicit_prelude"),
1662             ..ModuleData::new(None, root_module_kind, root_def_id, Mark::root(), krate.span)
1663         });
1664         let mut module_map = FxHashMap();
1665         module_map.insert(DefId::local(CRATE_DEF_INDEX), graph_root);
1666
1667         let mut definitions = Definitions::new();
1668         DefCollector::new(&mut definitions, Mark::root())
1669             .collect_root(crate_name, session.local_crate_disambiguator());
1670
1671         let mut extern_prelude: FxHashSet<Name> =
1672             session.opts.externs.iter().map(|kv| Symbol::intern(kv.0)).collect();
1673         if !attr::contains_name(&krate.attrs, "no_core") {
1674             if !attr::contains_name(&krate.attrs, "no_std") {
1675                 extern_prelude.insert(Symbol::intern("std"));
1676             } else {
1677                 extern_prelude.insert(Symbol::intern("core"));
1678             }
1679         }
1680
1681         let mut invocations = FxHashMap();
1682         invocations.insert(Mark::root(),
1683                            arenas.alloc_invocation_data(InvocationData::root(graph_root)));
1684
1685         let mut macro_defs = FxHashMap();
1686         macro_defs.insert(Mark::root(), root_def_id);
1687
1688         Resolver {
1689             session,
1690
1691             cstore,
1692
1693             definitions,
1694
1695             // The outermost module has def ID 0; this is not reflected in the
1696             // AST.
1697             graph_root,
1698             prelude: None,
1699             extern_prelude,
1700
1701             has_self: FxHashSet(),
1702             field_names: FxHashMap(),
1703
1704             determined_imports: Vec::new(),
1705             indeterminate_imports: Vec::new(),
1706
1707             current_module: graph_root,
1708             ribs: PerNS {
1709                 value_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1710                 type_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1711                 macro_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1712             },
1713             label_ribs: Vec::new(),
1714
1715             current_trait_ref: None,
1716             current_self_type: None,
1717
1718             primitive_type_table: PrimitiveTypeTable::new(),
1719
1720             def_map: NodeMap(),
1721             import_map: NodeMap(),
1722             freevars: NodeMap(),
1723             freevars_seen: NodeMap(),
1724             export_map: FxHashMap(),
1725             trait_map: NodeMap(),
1726             module_map,
1727             block_map: NodeMap(),
1728             extern_module_map: FxHashMap(),
1729
1730             make_glob_map: make_glob_map == MakeGlobMap::Yes,
1731             glob_map: NodeMap(),
1732
1733             used_imports: FxHashSet(),
1734             maybe_unused_trait_imports: NodeSet(),
1735             maybe_unused_extern_crates: Vec::new(),
1736
1737             unused_labels: FxHashMap(),
1738
1739             privacy_errors: Vec::new(),
1740             ambiguity_errors: Vec::new(),
1741             use_injections: Vec::new(),
1742             proc_mac_errors: Vec::new(),
1743             macro_expanded_macro_export_errors: BTreeSet::new(),
1744
1745             arenas,
1746             dummy_binding: arenas.alloc_name_binding(NameBinding {
1747                 kind: NameBindingKind::Def(Def::Err, false),
1748                 expansion: Mark::root(),
1749                 span: DUMMY_SP,
1750                 vis: ty::Visibility::Public,
1751             }),
1752
1753             crate_loader,
1754             macro_names: FxHashSet(),
1755             builtin_macros: FxHashMap(),
1756             macro_use_prelude: FxHashMap(),
1757             all_macros: FxHashMap(),
1758             macro_map: FxHashMap(),
1759             invocations,
1760             macro_defs,
1761             local_macro_def_scopes: FxHashMap(),
1762             name_already_seen: FxHashMap(),
1763             whitelisted_legacy_custom_derives: Vec::new(),
1764             warned_proc_macros: FxHashSet(),
1765             potentially_unused_imports: Vec::new(),
1766             struct_constructors: DefIdMap(),
1767             found_unresolved_macro: false,
1768             unused_macros: FxHashSet(),
1769             current_type_ascription: Vec::new(),
1770             injected_crate: None,
1771             ignore_extern_prelude_feature: false,
1772         }
1773     }
1774
1775     pub fn arenas() -> ResolverArenas<'a> {
1776         ResolverArenas {
1777             modules: arena::TypedArena::new(),
1778             local_modules: RefCell::new(Vec::new()),
1779             name_bindings: arena::TypedArena::new(),
1780             import_directives: arena::TypedArena::new(),
1781             name_resolutions: arena::TypedArena::new(),
1782             invocation_data: arena::TypedArena::new(),
1783             legacy_bindings: arena::TypedArena::new(),
1784         }
1785     }
1786
1787     /// Runs the function on each namespace.
1788     fn per_ns<F: FnMut(&mut Self, Namespace)>(&mut self, mut f: F) {
1789         f(self, TypeNS);
1790         f(self, ValueNS);
1791         f(self, MacroNS);
1792     }
1793
1794     fn macro_def(&self, mut ctxt: SyntaxContext) -> DefId {
1795         loop {
1796             match self.macro_defs.get(&ctxt.outer()) {
1797                 Some(&def_id) => return def_id,
1798                 None => ctxt.remove_mark(),
1799             };
1800         }
1801     }
1802
1803     /// Entry point to crate resolution.
1804     pub fn resolve_crate(&mut self, krate: &Crate) {
1805         ImportResolver { resolver: self }.finalize_imports();
1806         self.current_module = self.graph_root;
1807         self.finalize_current_module_macro_resolutions();
1808
1809         visit::walk_crate(self, krate);
1810
1811         check_unused::check_crate(self, krate);
1812         self.report_errors(krate);
1813         self.crate_loader.postprocess(krate);
1814     }
1815
1816     fn new_module(
1817         &self,
1818         parent: Module<'a>,
1819         kind: ModuleKind,
1820         normal_ancestor_id: DefId,
1821         expansion: Mark,
1822         span: Span,
1823     ) -> Module<'a> {
1824         let module = ModuleData::new(Some(parent), kind, normal_ancestor_id, expansion, span);
1825         self.arenas.alloc_module(module)
1826     }
1827
1828     fn record_use(&mut self, ident: Ident, ns: Namespace, binding: &'a NameBinding<'a>)
1829                   -> bool /* true if an error was reported */ {
1830         match binding.kind {
1831             NameBindingKind::Import { directive, binding, ref used }
1832                     if !used.get() => {
1833                 used.set(true);
1834                 directive.used.set(true);
1835                 self.used_imports.insert((directive.id, ns));
1836                 self.add_to_glob_map(directive.id, ident);
1837                 self.record_use(ident, ns, binding)
1838             }
1839             NameBindingKind::Import { .. } => false,
1840             NameBindingKind::Ambiguity { b1, b2 } => {
1841                 self.ambiguity_errors.push(AmbiguityError { ident, b1, b2 });
1842                 true
1843             }
1844             _ => false
1845         }
1846     }
1847
1848     fn add_to_glob_map(&mut self, id: NodeId, ident: Ident) {
1849         if self.make_glob_map {
1850             self.glob_map.entry(id).or_default().insert(ident.name);
1851         }
1852     }
1853
1854     /// This resolves the identifier `ident` in the namespace `ns` in the current lexical scope.
1855     /// More specifically, we proceed up the hierarchy of scopes and return the binding for
1856     /// `ident` in the first scope that defines it (or None if no scopes define it).
1857     ///
1858     /// A block's items are above its local variables in the scope hierarchy, regardless of where
1859     /// the items are defined in the block. For example,
1860     /// ```rust
1861     /// fn f() {
1862     ///    g(); // Since there are no local variables in scope yet, this resolves to the item.
1863     ///    let g = || {};
1864     ///    fn g() {}
1865     ///    g(); // This resolves to the local variable `g` since it shadows the item.
1866     /// }
1867     /// ```
1868     ///
1869     /// Invariant: This must only be called during main resolution, not during
1870     /// import resolution.
1871     fn resolve_ident_in_lexical_scope(&mut self,
1872                                       mut ident: Ident,
1873                                       ns: Namespace,
1874                                       record_used_id: Option<NodeId>,
1875                                       path_span: Span)
1876                                       -> Option<LexicalScopeBinding<'a>> {
1877         let record_used = record_used_id.is_some();
1878         assert!(ns == TypeNS  || ns == ValueNS);
1879         if ns == TypeNS {
1880             ident.span = if ident.name == keywords::SelfType.name() {
1881                 // FIXME(jseyfried) improve `Self` hygiene
1882                 ident.span.with_ctxt(SyntaxContext::empty())
1883             } else {
1884                 ident.span.modern()
1885             }
1886         } else {
1887             ident = ident.modern_and_legacy();
1888         }
1889
1890         // Walk backwards up the ribs in scope.
1891         let mut module = self.graph_root;
1892         for i in (0 .. self.ribs[ns].len()).rev() {
1893             if let Some(def) = self.ribs[ns][i].bindings.get(&ident).cloned() {
1894                 // The ident resolves to a type parameter or local variable.
1895                 return Some(LexicalScopeBinding::Def(
1896                     self.adjust_local_def(ns, i, def, record_used, path_span)
1897                 ));
1898             }
1899
1900             module = match self.ribs[ns][i].kind {
1901                 ModuleRibKind(module) => module,
1902                 MacroDefinition(def) if def == self.macro_def(ident.span.ctxt()) => {
1903                     // If an invocation of this macro created `ident`, give up on `ident`
1904                     // and switch to `ident`'s source from the macro definition.
1905                     ident.span.remove_mark();
1906                     continue
1907                 }
1908                 _ => continue,
1909             };
1910
1911             let item = self.resolve_ident_in_module_unadjusted(
1912                 ModuleOrUniformRoot::Module(module),
1913                 ident,
1914                 ns,
1915                 false,
1916                 record_used,
1917                 path_span,
1918             );
1919             if let Ok(binding) = item {
1920                 // The ident resolves to an item.
1921                 return Some(LexicalScopeBinding::Item(binding));
1922             }
1923
1924             match module.kind {
1925                 ModuleKind::Block(..) => {}, // We can see through blocks
1926                 _ => break,
1927             }
1928         }
1929
1930         ident.span = ident.span.modern();
1931         let mut poisoned = None;
1932         loop {
1933             let opt_module = if let Some(node_id) = record_used_id {
1934                 self.hygienic_lexical_parent_with_compatibility_fallback(module, &mut ident.span,
1935                                                                          node_id, &mut poisoned)
1936             } else {
1937                 self.hygienic_lexical_parent(module, &mut ident.span)
1938             };
1939             module = unwrap_or!(opt_module, break);
1940             let orig_current_module = self.current_module;
1941             self.current_module = module; // Lexical resolutions can never be a privacy error.
1942             let result = self.resolve_ident_in_module_unadjusted(
1943                 ModuleOrUniformRoot::Module(module),
1944                 ident,
1945                 ns,
1946                 false,
1947                 record_used,
1948                 path_span,
1949             );
1950             self.current_module = orig_current_module;
1951
1952             match result {
1953                 Ok(binding) => {
1954                     if let Some(node_id) = poisoned {
1955                         self.session.buffer_lint_with_diagnostic(
1956                             lint::builtin::PROC_MACRO_DERIVE_RESOLUTION_FALLBACK,
1957                             node_id, ident.span,
1958                             &format!("cannot find {} `{}` in this scope", ns.descr(), ident),
1959                             lint::builtin::BuiltinLintDiagnostics::
1960                                 ProcMacroDeriveResolutionFallback(ident.span),
1961                         );
1962                     }
1963                     return Some(LexicalScopeBinding::Item(binding))
1964                 }
1965                 Err(Determined) => continue,
1966                 Err(Undetermined) =>
1967                     span_bug!(ident.span, "undetermined resolution during main resolution pass"),
1968             }
1969         }
1970
1971         if !module.no_implicit_prelude {
1972             // `record_used` means that we don't try to load crates during speculative resolution
1973             if record_used && ns == TypeNS && self.extern_prelude.contains(&ident.name) {
1974                 if !self.session.features_untracked().extern_prelude &&
1975                    !self.ignore_extern_prelude_feature {
1976                     feature_err(&self.session.parse_sess, "extern_prelude",
1977                                 ident.span, GateIssue::Language,
1978                                 "access to extern crates through prelude is experimental").emit();
1979                 }
1980
1981                 let crate_root = self.load_extern_prelude_crate_if_needed(ident);
1982
1983                 let binding = (crate_root, ty::Visibility::Public,
1984                                ident.span, Mark::root()).to_name_binding(self.arenas);
1985                 return Some(LexicalScopeBinding::Item(binding));
1986             }
1987             if ns == TypeNS && is_known_tool(ident.name) {
1988                 let binding = (Def::ToolMod, ty::Visibility::Public,
1989                                ident.span, Mark::root()).to_name_binding(self.arenas);
1990                 return Some(LexicalScopeBinding::Item(binding));
1991             }
1992             if let Some(prelude) = self.prelude {
1993                 if let Ok(binding) = self.resolve_ident_in_module_unadjusted(
1994                     ModuleOrUniformRoot::Module(prelude),
1995                     ident,
1996                     ns,
1997                     false,
1998                     false,
1999                     path_span,
2000                 ) {
2001                     return Some(LexicalScopeBinding::Item(binding));
2002                 }
2003             }
2004         }
2005
2006         None
2007     }
2008
2009     fn load_extern_prelude_crate_if_needed(&mut self, ident: Ident) -> Module<'a> {
2010         let crate_id = self.crate_loader.process_path_extern(ident.name, ident.span);
2011         let crate_root = self.get_module(DefId { krate: crate_id, index: CRATE_DEF_INDEX });
2012         self.populate_module_if_necessary(&crate_root);
2013         crate_root
2014     }
2015
2016     fn hygienic_lexical_parent(&mut self, module: Module<'a>, span: &mut Span)
2017                                -> Option<Module<'a>> {
2018         if !module.expansion.is_descendant_of(span.ctxt().outer()) {
2019             return Some(self.macro_def_scope(span.remove_mark()));
2020         }
2021
2022         if let ModuleKind::Block(..) = module.kind {
2023             return Some(module.parent.unwrap());
2024         }
2025
2026         None
2027     }
2028
2029     fn hygienic_lexical_parent_with_compatibility_fallback(&mut self, module: Module<'a>,
2030                                                            span: &mut Span, node_id: NodeId,
2031                                                            poisoned: &mut Option<NodeId>)
2032                                                            -> Option<Module<'a>> {
2033         if let module @ Some(..) = self.hygienic_lexical_parent(module, span) {
2034             return module;
2035         }
2036
2037         // We need to support the next case under a deprecation warning
2038         // ```
2039         // struct MyStruct;
2040         // ---- begin: this comes from a proc macro derive
2041         // mod implementation_details {
2042         //     // Note that `MyStruct` is not in scope here.
2043         //     impl SomeTrait for MyStruct { ... }
2044         // }
2045         // ---- end
2046         // ```
2047         // So we have to fall back to the module's parent during lexical resolution in this case.
2048         if let Some(parent) = module.parent {
2049             // Inner module is inside the macro, parent module is outside of the macro.
2050             if module.expansion != parent.expansion &&
2051             module.expansion.is_descendant_of(parent.expansion) {
2052                 // The macro is a proc macro derive
2053                 if module.expansion.looks_like_proc_macro_derive() {
2054                     if parent.expansion.is_descendant_of(span.ctxt().outer()) {
2055                         *poisoned = Some(node_id);
2056                         return module.parent;
2057                     }
2058                 }
2059             }
2060         }
2061
2062         None
2063     }
2064
2065     fn resolve_ident_in_module(&mut self,
2066                                module: ModuleOrUniformRoot<'a>,
2067                                mut ident: Ident,
2068                                ns: Namespace,
2069                                record_used: bool,
2070                                span: Span)
2071                                -> Result<&'a NameBinding<'a>, Determinacy> {
2072         ident.span = ident.span.modern();
2073         let orig_current_module = self.current_module;
2074         if let ModuleOrUniformRoot::Module(module) = module {
2075             if let Some(def) = ident.span.adjust(module.expansion) {
2076                 self.current_module = self.macro_def_scope(def);
2077             }
2078         }
2079         let result = self.resolve_ident_in_module_unadjusted(
2080             module, ident, ns, false, record_used, span,
2081         );
2082         self.current_module = orig_current_module;
2083         result
2084     }
2085
2086     fn resolve_crate_root(&mut self, ident: Ident) -> Module<'a> {
2087         let mut ctxt = ident.span.ctxt();
2088         let mark = if ident.name == keywords::DollarCrate.name() {
2089             // When resolving `$crate` from a `macro_rules!` invoked in a `macro`,
2090             // we don't want to pretend that the `macro_rules!` definition is in the `macro`
2091             // as described in `SyntaxContext::apply_mark`, so we ignore prepended modern marks.
2092             // FIXME: This is only a guess and it doesn't work correctly for `macro_rules!`
2093             // definitions actually produced by `macro` and `macro` definitions produced by
2094             // `macro_rules!`, but at least such configurations are not stable yet.
2095             ctxt = ctxt.modern_and_legacy();
2096             let mut iter = ctxt.marks().into_iter().rev().peekable();
2097             let mut result = None;
2098             // Find the last modern mark from the end if it exists.
2099             while let Some(&(mark, transparency)) = iter.peek() {
2100                 if transparency == Transparency::Opaque {
2101                     result = Some(mark);
2102                     iter.next();
2103                 } else {
2104                     break;
2105                 }
2106             }
2107             // Then find the last legacy mark from the end if it exists.
2108             for (mark, transparency) in iter {
2109                 if transparency == Transparency::SemiTransparent {
2110                     result = Some(mark);
2111                 } else {
2112                     break;
2113                 }
2114             }
2115             result
2116         } else {
2117             ctxt = ctxt.modern();
2118             ctxt.adjust(Mark::root())
2119         };
2120         let module = match mark {
2121             Some(def) => self.macro_def_scope(def),
2122             None => return self.graph_root,
2123         };
2124         self.get_module(DefId { index: CRATE_DEF_INDEX, ..module.normal_ancestor_id })
2125     }
2126
2127     fn resolve_self(&mut self, ctxt: &mut SyntaxContext, module: Module<'a>) -> Module<'a> {
2128         let mut module = self.get_module(module.normal_ancestor_id);
2129         while module.span.ctxt().modern() != *ctxt {
2130             let parent = module.parent.unwrap_or_else(|| self.macro_def_scope(ctxt.remove_mark()));
2131             module = self.get_module(parent.normal_ancestor_id);
2132         }
2133         module
2134     }
2135
2136     // AST resolution
2137     //
2138     // We maintain a list of value ribs and type ribs.
2139     //
2140     // Simultaneously, we keep track of the current position in the module
2141     // graph in the `current_module` pointer. When we go to resolve a name in
2142     // the value or type namespaces, we first look through all the ribs and
2143     // then query the module graph. When we resolve a name in the module
2144     // namespace, we can skip all the ribs (since nested modules are not
2145     // allowed within blocks in Rust) and jump straight to the current module
2146     // graph node.
2147     //
2148     // Named implementations are handled separately. When we find a method
2149     // call, we consult the module node to find all of the implementations in
2150     // scope. This information is lazily cached in the module node. We then
2151     // generate a fake "implementation scope" containing all the
2152     // implementations thus found, for compatibility with old resolve pass.
2153
2154     pub fn with_scope<F, T>(&mut self, id: NodeId, f: F) -> T
2155         where F: FnOnce(&mut Resolver) -> T
2156     {
2157         let id = self.definitions.local_def_id(id);
2158         let module = self.module_map.get(&id).cloned(); // clones a reference
2159         if let Some(module) = module {
2160             // Move down in the graph.
2161             let orig_module = replace(&mut self.current_module, module);
2162             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(module)));
2163             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(module)));
2164
2165             self.finalize_current_module_macro_resolutions();
2166             let ret = f(self);
2167
2168             self.current_module = orig_module;
2169             self.ribs[ValueNS].pop();
2170             self.ribs[TypeNS].pop();
2171             ret
2172         } else {
2173             f(self)
2174         }
2175     }
2176
2177     /// Searches the current set of local scopes for labels. Returns the first non-None label that
2178     /// is returned by the given predicate function
2179     ///
2180     /// Stops after meeting a closure.
2181     fn search_label<P, R>(&self, mut ident: Ident, pred: P) -> Option<R>
2182         where P: Fn(&Rib, Ident) -> Option<R>
2183     {
2184         for rib in self.label_ribs.iter().rev() {
2185             match rib.kind {
2186                 NormalRibKind => {}
2187                 // If an invocation of this macro created `ident`, give up on `ident`
2188                 // and switch to `ident`'s source from the macro definition.
2189                 MacroDefinition(def) => {
2190                     if def == self.macro_def(ident.span.ctxt()) {
2191                         ident.span.remove_mark();
2192                     }
2193                 }
2194                 _ => {
2195                     // Do not resolve labels across function boundary
2196                     return None;
2197                 }
2198             }
2199             let r = pred(rib, ident);
2200             if r.is_some() {
2201                 return r;
2202             }
2203         }
2204         None
2205     }
2206
2207     fn resolve_item(&mut self, item: &Item) {
2208         let name = item.ident.name;
2209         debug!("(resolving item) resolving {}", name);
2210
2211         match item.node {
2212             ItemKind::Ty(_, ref generics) |
2213             ItemKind::Fn(_, _, ref generics, _) |
2214             ItemKind::Existential(_, ref generics) => {
2215                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind),
2216                                              |this| visit::walk_item(this, item));
2217             }
2218
2219             ItemKind::Enum(_, ref generics) |
2220             ItemKind::Struct(_, ref generics) |
2221             ItemKind::Union(_, ref generics) => {
2222                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2223                     let item_def_id = this.definitions.local_def_id(item.id);
2224                     if this.session.features_untracked().self_in_typedefs {
2225                         this.with_self_rib(Def::SelfTy(None, Some(item_def_id)), |this| {
2226                             visit::walk_item(this, item);
2227                         });
2228                     } else {
2229                         visit::walk_item(this, item);
2230                     }
2231                 });
2232             }
2233
2234             ItemKind::Impl(.., ref generics, ref opt_trait_ref, ref self_type, ref impl_items) =>
2235                 self.resolve_implementation(generics,
2236                                             opt_trait_ref,
2237                                             &self_type,
2238                                             item.id,
2239                                             impl_items),
2240
2241             ItemKind::Trait(.., ref generics, ref bounds, ref trait_items) => {
2242                 // Create a new rib for the trait-wide type parameters.
2243                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2244                     let local_def_id = this.definitions.local_def_id(item.id);
2245                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2246                         this.visit_generics(generics);
2247                         walk_list!(this, visit_param_bound, bounds);
2248
2249                         for trait_item in trait_items {
2250                             let type_parameters = HasTypeParameters(&trait_item.generics,
2251                                                                     TraitOrImplItemRibKind);
2252                             this.with_type_parameter_rib(type_parameters, |this| {
2253                                 match trait_item.node {
2254                                     TraitItemKind::Const(ref ty, ref default) => {
2255                                         this.visit_ty(ty);
2256
2257                                         // Only impose the restrictions of
2258                                         // ConstRibKind for an actual constant
2259                                         // expression in a provided default.
2260                                         if let Some(ref expr) = *default{
2261                                             this.with_constant_rib(|this| {
2262                                                 this.visit_expr(expr);
2263                                             });
2264                                         }
2265                                     }
2266                                     TraitItemKind::Method(_, _) => {
2267                                         visit::walk_trait_item(this, trait_item)
2268                                     }
2269                                     TraitItemKind::Type(..) => {
2270                                         visit::walk_trait_item(this, trait_item)
2271                                     }
2272                                     TraitItemKind::Macro(_) => {
2273                                         panic!("unexpanded macro in resolve!")
2274                                     }
2275                                 };
2276                             });
2277                         }
2278                     });
2279                 });
2280             }
2281
2282             ItemKind::TraitAlias(ref generics, ref bounds) => {
2283                 // Create a new rib for the trait-wide type parameters.
2284                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2285                     let local_def_id = this.definitions.local_def_id(item.id);
2286                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2287                         this.visit_generics(generics);
2288                         walk_list!(this, visit_param_bound, bounds);
2289                     });
2290                 });
2291             }
2292
2293             ItemKind::Mod(_) | ItemKind::ForeignMod(_) => {
2294                 self.with_scope(item.id, |this| {
2295                     visit::walk_item(this, item);
2296                 });
2297             }
2298
2299             ItemKind::Static(ref ty, _, ref expr) |
2300             ItemKind::Const(ref ty, ref expr) => {
2301                 self.with_item_rib(|this| {
2302                     this.visit_ty(ty);
2303                     this.with_constant_rib(|this| {
2304                         this.visit_expr(expr);
2305                     });
2306                 });
2307             }
2308
2309             ItemKind::Use(ref use_tree) => {
2310                 // Imports are resolved as global by default, add starting root segment.
2311                 let path = Path {
2312                     segments: use_tree.prefix.make_root().into_iter().collect(),
2313                     span: use_tree.span,
2314                 };
2315                 self.resolve_use_tree(item.id, use_tree.span, item.id, use_tree, &path);
2316             }
2317
2318             ItemKind::ExternCrate(_) | ItemKind::MacroDef(..) | ItemKind::GlobalAsm(_) => {
2319                 // do nothing, these are just around to be encoded
2320             }
2321
2322             ItemKind::Mac(_) => panic!("unexpanded macro in resolve!"),
2323         }
2324     }
2325
2326     /// For the most part, use trees are desugared into `ImportDirective` instances
2327     /// when building the reduced graph (see `build_reduced_graph_for_use_tree`). But
2328     /// there is one special case we handle here: an empty nested import like
2329     /// `a::{b::{}}`, which desugares into...no import directives.
2330     fn resolve_use_tree(
2331         &mut self,
2332         root_id: NodeId,
2333         root_span: Span,
2334         id: NodeId,
2335         use_tree: &ast::UseTree,
2336         prefix: &Path,
2337     ) {
2338         match use_tree.kind {
2339             ast::UseTreeKind::Nested(ref items) => {
2340                 let path = Path {
2341                     segments: prefix.segments
2342                         .iter()
2343                         .chain(use_tree.prefix.segments.iter())
2344                         .cloned()
2345                         .collect(),
2346                     span: prefix.span.to(use_tree.prefix.span),
2347                 };
2348
2349                 if items.len() == 0 {
2350                     // Resolve prefix of an import with empty braces (issue #28388).
2351                     self.smart_resolve_path_with_crate_lint(
2352                         id,
2353                         None,
2354                         &path,
2355                         PathSource::ImportPrefix,
2356                         CrateLint::UsePath { root_id, root_span },
2357                     );
2358                 } else {
2359                     for &(ref tree, nested_id) in items {
2360                         self.resolve_use_tree(root_id, root_span, nested_id, tree, &path);
2361                     }
2362                 }
2363             }
2364             ast::UseTreeKind::Simple(..) => {},
2365             ast::UseTreeKind::Glob => {},
2366         }
2367     }
2368
2369     fn with_type_parameter_rib<'b, F>(&'b mut self, type_parameters: TypeParameters<'a, 'b>, f: F)
2370         where F: FnOnce(&mut Resolver)
2371     {
2372         match type_parameters {
2373             HasTypeParameters(generics, rib_kind) => {
2374                 let mut function_type_rib = Rib::new(rib_kind);
2375                 let mut seen_bindings = FxHashMap();
2376                 for param in &generics.params {
2377                     match param.kind {
2378                         GenericParamKind::Lifetime { .. } => {}
2379                         GenericParamKind::Type { .. } => {
2380                             let ident = param.ident.modern();
2381                             debug!("with_type_parameter_rib: {}", param.id);
2382
2383                             if seen_bindings.contains_key(&ident) {
2384                                 let span = seen_bindings.get(&ident).unwrap();
2385                                 let err = ResolutionError::NameAlreadyUsedInTypeParameterList(
2386                                     ident.name,
2387                                     span,
2388                                 );
2389                                 resolve_error(self, param.ident.span, err);
2390                             }
2391                             seen_bindings.entry(ident).or_insert(param.ident.span);
2392
2393                         // Plain insert (no renaming).
2394                         let def = Def::TyParam(self.definitions.local_def_id(param.id));
2395                             function_type_rib.bindings.insert(ident, def);
2396                             self.record_def(param.id, PathResolution::new(def));
2397                         }
2398                     }
2399                 }
2400                 self.ribs[TypeNS].push(function_type_rib);
2401             }
2402
2403             NoTypeParameters => {
2404                 // Nothing to do.
2405             }
2406         }
2407
2408         f(self);
2409
2410         if let HasTypeParameters(..) = type_parameters {
2411             self.ribs[TypeNS].pop();
2412         }
2413     }
2414
2415     fn with_label_rib<F>(&mut self, f: F)
2416         where F: FnOnce(&mut Resolver)
2417     {
2418         self.label_ribs.push(Rib::new(NormalRibKind));
2419         f(self);
2420         self.label_ribs.pop();
2421     }
2422
2423     fn with_item_rib<F>(&mut self, f: F)
2424         where F: FnOnce(&mut Resolver)
2425     {
2426         self.ribs[ValueNS].push(Rib::new(ItemRibKind));
2427         self.ribs[TypeNS].push(Rib::new(ItemRibKind));
2428         f(self);
2429         self.ribs[TypeNS].pop();
2430         self.ribs[ValueNS].pop();
2431     }
2432
2433     fn with_constant_rib<F>(&mut self, f: F)
2434         where F: FnOnce(&mut Resolver)
2435     {
2436         self.ribs[ValueNS].push(Rib::new(ConstantItemRibKind));
2437         self.label_ribs.push(Rib::new(ConstantItemRibKind));
2438         f(self);
2439         self.label_ribs.pop();
2440         self.ribs[ValueNS].pop();
2441     }
2442
2443     fn with_current_self_type<T, F>(&mut self, self_type: &Ty, f: F) -> T
2444         where F: FnOnce(&mut Resolver) -> T
2445     {
2446         // Handle nested impls (inside fn bodies)
2447         let previous_value = replace(&mut self.current_self_type, Some(self_type.clone()));
2448         let result = f(self);
2449         self.current_self_type = previous_value;
2450         result
2451     }
2452
2453     /// This is called to resolve a trait reference from an `impl` (i.e. `impl Trait for Foo`)
2454     fn with_optional_trait_ref<T, F>(&mut self, opt_trait_ref: Option<&TraitRef>, f: F) -> T
2455         where F: FnOnce(&mut Resolver, Option<DefId>) -> T
2456     {
2457         let mut new_val = None;
2458         let mut new_id = None;
2459         if let Some(trait_ref) = opt_trait_ref {
2460             let path: Vec<_> = trait_ref.path.segments.iter()
2461                 .map(|seg| seg.ident)
2462                 .collect();
2463             let def = self.smart_resolve_path_fragment(
2464                 trait_ref.ref_id,
2465                 None,
2466                 &path,
2467                 trait_ref.path.span,
2468                 PathSource::Trait(AliasPossibility::No),
2469                 CrateLint::SimplePath(trait_ref.ref_id),
2470             ).base_def();
2471             if def != Def::Err {
2472                 new_id = Some(def.def_id());
2473                 let span = trait_ref.path.span;
2474                 if let PathResult::Module(ModuleOrUniformRoot::Module(module)) =
2475                     self.resolve_path(
2476                         None,
2477                         &path,
2478                         None,
2479                         false,
2480                         span,
2481                         CrateLint::SimplePath(trait_ref.ref_id),
2482                     )
2483                 {
2484                     new_val = Some((module, trait_ref.clone()));
2485                 }
2486             }
2487         }
2488         let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
2489         let result = f(self, new_id);
2490         self.current_trait_ref = original_trait_ref;
2491         result
2492     }
2493
2494     fn with_self_rib<F>(&mut self, self_def: Def, f: F)
2495         where F: FnOnce(&mut Resolver)
2496     {
2497         let mut self_type_rib = Rib::new(NormalRibKind);
2498
2499         // plain insert (no renaming, types are not currently hygienic....)
2500         self_type_rib.bindings.insert(keywords::SelfType.ident(), self_def);
2501         self.ribs[TypeNS].push(self_type_rib);
2502         f(self);
2503         self.ribs[TypeNS].pop();
2504     }
2505
2506     fn resolve_implementation(&mut self,
2507                               generics: &Generics,
2508                               opt_trait_reference: &Option<TraitRef>,
2509                               self_type: &Ty,
2510                               item_id: NodeId,
2511                               impl_items: &[ImplItem]) {
2512         // If applicable, create a rib for the type parameters.
2513         self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2514             // Dummy self type for better errors if `Self` is used in the trait path.
2515             this.with_self_rib(Def::SelfTy(None, None), |this| {
2516                 // Resolve the trait reference, if necessary.
2517                 this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| {
2518                     let item_def_id = this.definitions.local_def_id(item_id);
2519                     this.with_self_rib(Def::SelfTy(trait_id, Some(item_def_id)), |this| {
2520                         if let Some(trait_ref) = opt_trait_reference.as_ref() {
2521                             // Resolve type arguments in the trait path.
2522                             visit::walk_trait_ref(this, trait_ref);
2523                         }
2524                         // Resolve the self type.
2525                         this.visit_ty(self_type);
2526                         // Resolve the type parameters.
2527                         this.visit_generics(generics);
2528                         // Resolve the items within the impl.
2529                         this.with_current_self_type(self_type, |this| {
2530                             for impl_item in impl_items {
2531                                 this.resolve_visibility(&impl_item.vis);
2532
2533                                 // We also need a new scope for the impl item type parameters.
2534                                 let type_parameters = HasTypeParameters(&impl_item.generics,
2535                                                                         TraitOrImplItemRibKind);
2536                                 this.with_type_parameter_rib(type_parameters, |this| {
2537                                     use self::ResolutionError::*;
2538                                     match impl_item.node {
2539                                         ImplItemKind::Const(..) => {
2540                                             // If this is a trait impl, ensure the const
2541                                             // exists in trait
2542                                             this.check_trait_item(impl_item.ident,
2543                                                                   ValueNS,
2544                                                                   impl_item.span,
2545                                                 |n, s| ConstNotMemberOfTrait(n, s));
2546                                             this.with_constant_rib(|this|
2547                                                 visit::walk_impl_item(this, impl_item)
2548                                             );
2549                                         }
2550                                         ImplItemKind::Method(..) => {
2551                                             // If this is a trait impl, ensure the method
2552                                             // exists in trait
2553                                             this.check_trait_item(impl_item.ident,
2554                                                                   ValueNS,
2555                                                                   impl_item.span,
2556                                                 |n, s| MethodNotMemberOfTrait(n, s));
2557
2558                                             visit::walk_impl_item(this, impl_item);
2559                                         }
2560                                         ImplItemKind::Type(ref ty) => {
2561                                             // If this is a trait impl, ensure the type
2562                                             // exists in trait
2563                                             this.check_trait_item(impl_item.ident,
2564                                                                   TypeNS,
2565                                                                   impl_item.span,
2566                                                 |n, s| TypeNotMemberOfTrait(n, s));
2567
2568                                             this.visit_ty(ty);
2569                                         }
2570                                         ImplItemKind::Existential(ref bounds) => {
2571                                             // If this is a trait impl, ensure the type
2572                                             // exists in trait
2573                                             this.check_trait_item(impl_item.ident,
2574                                                                   TypeNS,
2575                                                                   impl_item.span,
2576                                                 |n, s| TypeNotMemberOfTrait(n, s));
2577
2578                                             for bound in bounds {
2579                                                 this.visit_param_bound(bound);
2580                                             }
2581                                         }
2582                                         ImplItemKind::Macro(_) =>
2583                                             panic!("unexpanded macro in resolve!"),
2584                                     }
2585                                 });
2586                             }
2587                         });
2588                     });
2589                 });
2590             });
2591         });
2592     }
2593
2594     fn check_trait_item<F>(&mut self, ident: Ident, ns: Namespace, span: Span, err: F)
2595         where F: FnOnce(Name, &str) -> ResolutionError
2596     {
2597         // If there is a TraitRef in scope for an impl, then the method must be in the
2598         // trait.
2599         if let Some((module, _)) = self.current_trait_ref {
2600             if self.resolve_ident_in_module(
2601                 ModuleOrUniformRoot::Module(module),
2602                 ident,
2603                 ns,
2604                 false,
2605                 span,
2606             ).is_err() {
2607                 let path = &self.current_trait_ref.as_ref().unwrap().1.path;
2608                 resolve_error(self, span, err(ident.name, &path_names_to_string(path)));
2609             }
2610         }
2611     }
2612
2613     fn resolve_local(&mut self, local: &Local) {
2614         // Resolve the type.
2615         walk_list!(self, visit_ty, &local.ty);
2616
2617         // Resolve the initializer.
2618         walk_list!(self, visit_expr, &local.init);
2619
2620         // Resolve the pattern.
2621         self.resolve_pattern(&local.pat, PatternSource::Let, &mut FxHashMap());
2622     }
2623
2624     // build a map from pattern identifiers to binding-info's.
2625     // this is done hygienically. This could arise for a macro
2626     // that expands into an or-pattern where one 'x' was from the
2627     // user and one 'x' came from the macro.
2628     fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
2629         let mut binding_map = FxHashMap();
2630
2631         pat.walk(&mut |pat| {
2632             if let PatKind::Ident(binding_mode, ident, ref sub_pat) = pat.node {
2633                 if sub_pat.is_some() || match self.def_map.get(&pat.id).map(|res| res.base_def()) {
2634                     Some(Def::Local(..)) => true,
2635                     _ => false,
2636                 } {
2637                     let binding_info = BindingInfo { span: ident.span, binding_mode: binding_mode };
2638                     binding_map.insert(ident, binding_info);
2639                 }
2640             }
2641             true
2642         });
2643
2644         binding_map
2645     }
2646
2647     // check that all of the arms in an or-pattern have exactly the
2648     // same set of bindings, with the same binding modes for each.
2649     fn check_consistent_bindings(&mut self, pats: &[P<Pat>]) {
2650         if pats.is_empty() {
2651             return;
2652         }
2653
2654         let mut missing_vars = FxHashMap();
2655         let mut inconsistent_vars = FxHashMap();
2656         for (i, p) in pats.iter().enumerate() {
2657             let map_i = self.binding_mode_map(&p);
2658
2659             for (j, q) in pats.iter().enumerate() {
2660                 if i == j {
2661                     continue;
2662                 }
2663
2664                 let map_j = self.binding_mode_map(&q);
2665                 for (&key, &binding_i) in &map_i {
2666                     if map_j.len() == 0 {                   // Account for missing bindings when
2667                         let binding_error = missing_vars    // map_j has none.
2668                             .entry(key.name)
2669                             .or_insert(BindingError {
2670                                 name: key.name,
2671                                 origin: BTreeSet::new(),
2672                                 target: BTreeSet::new(),
2673                             });
2674                         binding_error.origin.insert(binding_i.span);
2675                         binding_error.target.insert(q.span);
2676                     }
2677                     for (&key_j, &binding_j) in &map_j {
2678                         match map_i.get(&key_j) {
2679                             None => {  // missing binding
2680                                 let binding_error = missing_vars
2681                                     .entry(key_j.name)
2682                                     .or_insert(BindingError {
2683                                         name: key_j.name,
2684                                         origin: BTreeSet::new(),
2685                                         target: BTreeSet::new(),
2686                                     });
2687                                 binding_error.origin.insert(binding_j.span);
2688                                 binding_error.target.insert(p.span);
2689                             }
2690                             Some(binding_i) => {  // check consistent binding
2691                                 if binding_i.binding_mode != binding_j.binding_mode {
2692                                     inconsistent_vars
2693                                         .entry(key.name)
2694                                         .or_insert((binding_j.span, binding_i.span));
2695                                 }
2696                             }
2697                         }
2698                     }
2699                 }
2700             }
2701         }
2702         let mut missing_vars = missing_vars.iter().collect::<Vec<_>>();
2703         missing_vars.sort();
2704         for (_, v) in missing_vars {
2705             resolve_error(self,
2706                           *v.origin.iter().next().unwrap(),
2707                           ResolutionError::VariableNotBoundInPattern(v));
2708         }
2709         let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
2710         inconsistent_vars.sort();
2711         for (name, v) in inconsistent_vars {
2712             resolve_error(self, v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
2713         }
2714     }
2715
2716     fn resolve_arm(&mut self, arm: &Arm) {
2717         self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2718
2719         let mut bindings_list = FxHashMap();
2720         for pattern in &arm.pats {
2721             self.resolve_pattern(&pattern, PatternSource::Match, &mut bindings_list);
2722         }
2723
2724         // This has to happen *after* we determine which pat_idents are variants
2725         self.check_consistent_bindings(&arm.pats);
2726
2727         match arm.guard {
2728             Some(ast::Guard::If(ref expr)) => self.visit_expr(expr),
2729             _ => {}
2730         }
2731         self.visit_expr(&arm.body);
2732
2733         self.ribs[ValueNS].pop();
2734     }
2735
2736     fn resolve_block(&mut self, block: &Block) {
2737         debug!("(resolving block) entering block");
2738         // Move down in the graph, if there's an anonymous module rooted here.
2739         let orig_module = self.current_module;
2740         let anonymous_module = self.block_map.get(&block.id).cloned(); // clones a reference
2741
2742         let mut num_macro_definition_ribs = 0;
2743         if let Some(anonymous_module) = anonymous_module {
2744             debug!("(resolving block) found anonymous module, moving down");
2745             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2746             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2747             self.current_module = anonymous_module;
2748             self.finalize_current_module_macro_resolutions();
2749         } else {
2750             self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2751         }
2752
2753         // Descend into the block.
2754         for stmt in &block.stmts {
2755             if let ast::StmtKind::Item(ref item) = stmt.node {
2756                 if let ast::ItemKind::MacroDef(..) = item.node {
2757                     num_macro_definition_ribs += 1;
2758                     let def = self.definitions.local_def_id(item.id);
2759                     self.ribs[ValueNS].push(Rib::new(MacroDefinition(def)));
2760                     self.label_ribs.push(Rib::new(MacroDefinition(def)));
2761                 }
2762             }
2763
2764             self.visit_stmt(stmt);
2765         }
2766
2767         // Move back up.
2768         self.current_module = orig_module;
2769         for _ in 0 .. num_macro_definition_ribs {
2770             self.ribs[ValueNS].pop();
2771             self.label_ribs.pop();
2772         }
2773         self.ribs[ValueNS].pop();
2774         if anonymous_module.is_some() {
2775             self.ribs[TypeNS].pop();
2776         }
2777         debug!("(resolving block) leaving block");
2778     }
2779
2780     fn fresh_binding(&mut self,
2781                      ident: Ident,
2782                      pat_id: NodeId,
2783                      outer_pat_id: NodeId,
2784                      pat_src: PatternSource,
2785                      bindings: &mut FxHashMap<Ident, NodeId>)
2786                      -> PathResolution {
2787         // Add the binding to the local ribs, if it
2788         // doesn't already exist in the bindings map. (We
2789         // must not add it if it's in the bindings map
2790         // because that breaks the assumptions later
2791         // passes make about or-patterns.)
2792         let ident = ident.modern_and_legacy();
2793         let mut def = Def::Local(pat_id);
2794         match bindings.get(&ident).cloned() {
2795             Some(id) if id == outer_pat_id => {
2796                 // `Variant(a, a)`, error
2797                 resolve_error(
2798                     self,
2799                     ident.span,
2800                     ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(
2801                         &ident.as_str())
2802                 );
2803             }
2804             Some(..) if pat_src == PatternSource::FnParam => {
2805                 // `fn f(a: u8, a: u8)`, error
2806                 resolve_error(
2807                     self,
2808                     ident.span,
2809                     ResolutionError::IdentifierBoundMoreThanOnceInParameterList(
2810                         &ident.as_str())
2811                 );
2812             }
2813             Some(..) if pat_src == PatternSource::Match ||
2814                         pat_src == PatternSource::IfLet ||
2815                         pat_src == PatternSource::WhileLet => {
2816                 // `Variant1(a) | Variant2(a)`, ok
2817                 // Reuse definition from the first `a`.
2818                 def = self.ribs[ValueNS].last_mut().unwrap().bindings[&ident];
2819             }
2820             Some(..) => {
2821                 span_bug!(ident.span, "two bindings with the same name from \
2822                                        unexpected pattern source {:?}", pat_src);
2823             }
2824             None => {
2825                 // A completely fresh binding, add to the lists if it's valid.
2826                 if ident.name != keywords::Invalid.name() {
2827                     bindings.insert(ident, outer_pat_id);
2828                     self.ribs[ValueNS].last_mut().unwrap().bindings.insert(ident, def);
2829                 }
2830             }
2831         }
2832
2833         PathResolution::new(def)
2834     }
2835
2836     fn resolve_pattern(&mut self,
2837                        pat: &Pat,
2838                        pat_src: PatternSource,
2839                        // Maps idents to the node ID for the
2840                        // outermost pattern that binds them.
2841                        bindings: &mut FxHashMap<Ident, NodeId>) {
2842         // Visit all direct subpatterns of this pattern.
2843         let outer_pat_id = pat.id;
2844         pat.walk(&mut |pat| {
2845             match pat.node {
2846                 PatKind::Ident(bmode, ident, ref opt_pat) => {
2847                     // First try to resolve the identifier as some existing
2848                     // entity, then fall back to a fresh binding.
2849                     let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS,
2850                                                                       None, pat.span)
2851                                       .and_then(LexicalScopeBinding::item);
2852                     let resolution = binding.map(NameBinding::def).and_then(|def| {
2853                         let is_syntactic_ambiguity = opt_pat.is_none() &&
2854                             bmode == BindingMode::ByValue(Mutability::Immutable);
2855                         match def {
2856                             Def::StructCtor(_, CtorKind::Const) |
2857                             Def::VariantCtor(_, CtorKind::Const) |
2858                             Def::Const(..) if is_syntactic_ambiguity => {
2859                                 // Disambiguate in favor of a unit struct/variant
2860                                 // or constant pattern.
2861                                 self.record_use(ident, ValueNS, binding.unwrap());
2862                                 Some(PathResolution::new(def))
2863                             }
2864                             Def::StructCtor(..) | Def::VariantCtor(..) |
2865                             Def::Const(..) | Def::Static(..) => {
2866                                 // This is unambiguously a fresh binding, either syntactically
2867                                 // (e.g. `IDENT @ PAT` or `ref IDENT`) or because `IDENT` resolves
2868                                 // to something unusable as a pattern (e.g. constructor function),
2869                                 // but we still conservatively report an error, see
2870                                 // issues/33118#issuecomment-233962221 for one reason why.
2871                                 resolve_error(
2872                                     self,
2873                                     ident.span,
2874                                     ResolutionError::BindingShadowsSomethingUnacceptable(
2875                                         pat_src.descr(), ident.name, binding.unwrap())
2876                                 );
2877                                 None
2878                             }
2879                             Def::Fn(..) | Def::Err => {
2880                                 // These entities are explicitly allowed
2881                                 // to be shadowed by fresh bindings.
2882                                 None
2883                             }
2884                             def => {
2885                                 span_bug!(ident.span, "unexpected definition for an \
2886                                                        identifier in pattern: {:?}", def);
2887                             }
2888                         }
2889                     }).unwrap_or_else(|| {
2890                         self.fresh_binding(ident, pat.id, outer_pat_id, pat_src, bindings)
2891                     });
2892
2893                     self.record_def(pat.id, resolution);
2894                 }
2895
2896                 PatKind::TupleStruct(ref path, ..) => {
2897                     self.smart_resolve_path(pat.id, None, path, PathSource::TupleStruct);
2898                 }
2899
2900                 PatKind::Path(ref qself, ref path) => {
2901                     self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
2902                 }
2903
2904                 PatKind::Struct(ref path, ..) => {
2905                     self.smart_resolve_path(pat.id, None, path, PathSource::Struct);
2906                 }
2907
2908                 _ => {}
2909             }
2910             true
2911         });
2912
2913         visit::walk_pat(self, pat);
2914     }
2915
2916     // High-level and context dependent path resolution routine.
2917     // Resolves the path and records the resolution into definition map.
2918     // If resolution fails tries several techniques to find likely
2919     // resolution candidates, suggest imports or other help, and report
2920     // errors in user friendly way.
2921     fn smart_resolve_path(&mut self,
2922                           id: NodeId,
2923                           qself: Option<&QSelf>,
2924                           path: &Path,
2925                           source: PathSource)
2926                           -> PathResolution {
2927         self.smart_resolve_path_with_crate_lint(id, qself, path, source, CrateLint::SimplePath(id))
2928     }
2929
2930     /// A variant of `smart_resolve_path` where you also specify extra
2931     /// information about where the path came from; this extra info is
2932     /// sometimes needed for the lint that recommends rewriting
2933     /// absolute paths to `crate`, so that it knows how to frame the
2934     /// suggestion. If you are just resolving a path like `foo::bar`
2935     /// that appears...somewhere, though, then you just want
2936     /// `CrateLint::SimplePath`, which is what `smart_resolve_path`
2937     /// already provides.
2938     fn smart_resolve_path_with_crate_lint(
2939         &mut self,
2940         id: NodeId,
2941         qself: Option<&QSelf>,
2942         path: &Path,
2943         source: PathSource,
2944         crate_lint: CrateLint
2945     ) -> PathResolution {
2946         let segments = &path.segments.iter()
2947             .map(|seg| seg.ident)
2948             .collect::<Vec<_>>();
2949         self.smart_resolve_path_fragment(id, qself, segments, path.span, source, crate_lint)
2950     }
2951
2952     fn smart_resolve_path_fragment(&mut self,
2953                                    id: NodeId,
2954                                    qself: Option<&QSelf>,
2955                                    path: &[Ident],
2956                                    span: Span,
2957                                    source: PathSource,
2958                                    crate_lint: CrateLint)
2959                                    -> PathResolution {
2960         let ident_span = path.last().map_or(span, |ident| ident.span);
2961         let ns = source.namespace();
2962         let is_expected = &|def| source.is_expected(def);
2963         let is_enum_variant = &|def| if let Def::Variant(..) = def { true } else { false };
2964
2965         // Base error is amended with one short label and possibly some longer helps/notes.
2966         let report_errors = |this: &mut Self, def: Option<Def>| {
2967             // Make the base error.
2968             let expected = source.descr_expected();
2969             let path_str = names_to_string(path);
2970             let code = source.error_code(def.is_some());
2971             let (base_msg, fallback_label, base_span) = if let Some(def) = def {
2972                 (format!("expected {}, found {} `{}`", expected, def.kind_name(), path_str),
2973                  format!("not a {}", expected),
2974                  span)
2975             } else {
2976                 let item_str = path[path.len() - 1];
2977                 let item_span = path[path.len() - 1].span;
2978                 let (mod_prefix, mod_str) = if path.len() == 1 {
2979                     (String::new(), "this scope".to_string())
2980                 } else if path.len() == 2 && path[0].name == keywords::CrateRoot.name() {
2981                     (String::new(), "the crate root".to_string())
2982                 } else {
2983                     let mod_path = &path[..path.len() - 1];
2984                     let mod_prefix = match this.resolve_path(None, mod_path, Some(TypeNS),
2985                                                              false, span, CrateLint::No) {
2986                         PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
2987                             module.def(),
2988                         _ => None,
2989                     }.map_or(String::new(), |def| format!("{} ", def.kind_name()));
2990                     (mod_prefix, format!("`{}`", names_to_string(mod_path)))
2991                 };
2992                 (format!("cannot find {} `{}` in {}{}", expected, item_str, mod_prefix, mod_str),
2993                  format!("not found in {}", mod_str),
2994                  item_span)
2995             };
2996             let code = DiagnosticId::Error(code.into());
2997             let mut err = this.session.struct_span_err_with_code(base_span, &base_msg, code);
2998
2999             // Emit special messages for unresolved `Self` and `self`.
3000             if is_self_type(path, ns) {
3001                 __diagnostic_used!(E0411);
3002                 err.code(DiagnosticId::Error("E0411".into()));
3003                 let available_in = if this.session.features_untracked().self_in_typedefs {
3004                     "impls, traits, and type definitions"
3005                 } else {
3006                     "traits and impls"
3007                 };
3008                 err.span_label(span, format!("`Self` is only available in {}", available_in));
3009                 return (err, Vec::new());
3010             }
3011             if is_self_value(path, ns) {
3012                 __diagnostic_used!(E0424);
3013                 err.code(DiagnosticId::Error("E0424".into()));
3014                 err.span_label(span, format!("`self` value is only available in \
3015                                                methods with `self` parameter"));
3016                 return (err, Vec::new());
3017             }
3018
3019             // Try to lookup the name in more relaxed fashion for better error reporting.
3020             let ident = *path.last().unwrap();
3021             let candidates = this.lookup_import_candidates(ident.name, ns, is_expected);
3022             if candidates.is_empty() && is_expected(Def::Enum(DefId::local(CRATE_DEF_INDEX))) {
3023                 let enum_candidates =
3024                     this.lookup_import_candidates(ident.name, ns, is_enum_variant);
3025                 let mut enum_candidates = enum_candidates.iter()
3026                     .map(|suggestion| import_candidate_to_paths(&suggestion)).collect::<Vec<_>>();
3027                 enum_candidates.sort();
3028                 for (sp, variant_path, enum_path) in enum_candidates {
3029                     if sp.is_dummy() {
3030                         let msg = format!("there is an enum variant `{}`, \
3031                                         try using `{}`?",
3032                                         variant_path,
3033                                         enum_path);
3034                         err.help(&msg);
3035                     } else {
3036                         err.span_suggestion_with_applicability(
3037                             span,
3038                             "you can try using the variant's enum",
3039                             enum_path,
3040                             Applicability::MachineApplicable,
3041                         );
3042                     }
3043                 }
3044             }
3045             if path.len() == 1 && this.self_type_is_available(span) {
3046                 if let Some(candidate) = this.lookup_assoc_candidate(ident, ns, is_expected) {
3047                     let self_is_available = this.self_value_is_available(path[0].span, span);
3048                     match candidate {
3049                         AssocSuggestion::Field => {
3050                             err.span_suggestion_with_applicability(
3051                                 span,
3052                                 "try",
3053                                 format!("self.{}", path_str),
3054                                 Applicability::MachineApplicable,
3055                             );
3056                             if !self_is_available {
3057                                 err.span_label(span, format!("`self` value is only available in \
3058                                                                methods with `self` parameter"));
3059                             }
3060                         }
3061                         AssocSuggestion::MethodWithSelf if self_is_available => {
3062                             err.span_suggestion_with_applicability(
3063                                 span,
3064                                 "try",
3065                                 format!("self.{}", path_str),
3066                                 Applicability::MachineApplicable,
3067                             );
3068                         }
3069                         AssocSuggestion::MethodWithSelf | AssocSuggestion::AssocItem => {
3070                             err.span_suggestion_with_applicability(
3071                                 span,
3072                                 "try",
3073                                 format!("Self::{}", path_str),
3074                                 Applicability::MachineApplicable,
3075                             );
3076                         }
3077                     }
3078                     return (err, candidates);
3079                 }
3080             }
3081
3082             let mut levenshtein_worked = false;
3083
3084             // Try Levenshtein.
3085             if let Some(candidate) = this.lookup_typo_candidate(path, ns, is_expected, span) {
3086                 err.span_label(ident_span, format!("did you mean `{}`?", candidate));
3087                 levenshtein_worked = true;
3088             }
3089
3090             // Try context dependent help if relaxed lookup didn't work.
3091             if let Some(def) = def {
3092                 match (def, source) {
3093                     (Def::Macro(..), _) => {
3094                         err.span_label(span, format!("did you mean `{}!(...)`?", path_str));
3095                         return (err, candidates);
3096                     }
3097                     (Def::TyAlias(..), PathSource::Trait(_)) => {
3098                         err.span_label(span, "type aliases cannot be used for traits");
3099                         return (err, candidates);
3100                     }
3101                     (Def::Mod(..), PathSource::Expr(Some(parent))) => match parent.node {
3102                         ExprKind::Field(_, ident) => {
3103                             err.span_label(parent.span, format!("did you mean `{}::{}`?",
3104                                                                  path_str, ident));
3105                             return (err, candidates);
3106                         }
3107                         ExprKind::MethodCall(ref segment, ..) => {
3108                             err.span_label(parent.span, format!("did you mean `{}::{}(...)`?",
3109                                                                  path_str, segment.ident));
3110                             return (err, candidates);
3111                         }
3112                         _ => {}
3113                     },
3114                     (Def::Enum(..), PathSource::TupleStruct)
3115                         | (Def::Enum(..), PathSource::Expr(..))  => {
3116                         if let Some(variants) = this.collect_enum_variants(def) {
3117                             err.note(&format!("did you mean to use one \
3118                                                of the following variants?\n{}",
3119                                 variants.iter()
3120                                     .map(|suggestion| path_names_to_string(suggestion))
3121                                     .map(|suggestion| format!("- `{}`", suggestion))
3122                                     .collect::<Vec<_>>()
3123                                     .join("\n")));
3124
3125                         } else {
3126                             err.note("did you mean to use one of the enum's variants?");
3127                         }
3128                         return (err, candidates);
3129                     },
3130                     (Def::Struct(def_id), _) if ns == ValueNS => {
3131                         if let Some((ctor_def, ctor_vis))
3132                                 = this.struct_constructors.get(&def_id).cloned() {
3133                             let accessible_ctor = this.is_accessible(ctor_vis);
3134                             if is_expected(ctor_def) && !accessible_ctor {
3135                                 err.span_label(span, format!("constructor is not visible \
3136                                                               here due to private fields"));
3137                             }
3138                         } else {
3139                             // HACK(estebank): find a better way to figure out that this was a
3140                             // parser issue where a struct literal is being used on an expression
3141                             // where a brace being opened means a block is being started. Look
3142                             // ahead for the next text to see if `span` is followed by a `{`.
3143                             let cm = this.session.source_map();
3144                             let mut sp = span;
3145                             loop {
3146                                 sp = cm.next_point(sp);
3147                                 match cm.span_to_snippet(sp) {
3148                                     Ok(ref snippet) => {
3149                                         if snippet.chars().any(|c| { !c.is_whitespace() }) {
3150                                             break;
3151                                         }
3152                                     }
3153                                     _ => break,
3154                                 }
3155                             }
3156                             let followed_by_brace = match cm.span_to_snippet(sp) {
3157                                 Ok(ref snippet) if snippet == "{" => true,
3158                                 _ => false,
3159                             };
3160                             if let (PathSource::Expr(None), true) = (source, followed_by_brace) {
3161                                 err.span_label(
3162                                     span,
3163                                     format!("did you mean `({} {{ /* fields */ }})`?", path_str),
3164                                 );
3165                             } else {
3166                                 err.span_label(
3167                                     span,
3168                                     format!("did you mean `{} {{ /* fields */ }}`?", path_str),
3169                                 );
3170                             }
3171                         }
3172                         return (err, candidates);
3173                     }
3174                     (Def::Union(..), _) |
3175                     (Def::Variant(..), _) |
3176                     (Def::VariantCtor(_, CtorKind::Fictive), _) if ns == ValueNS => {
3177                         err.span_label(span, format!("did you mean `{} {{ /* fields */ }}`?",
3178                                                      path_str));
3179                         return (err, candidates);
3180                     }
3181                     (Def::SelfTy(..), _) if ns == ValueNS => {
3182                         err.span_label(span, fallback_label);
3183                         err.note("can't use `Self` as a constructor, you must use the \
3184                                   implemented struct");
3185                         return (err, candidates);
3186                     }
3187                     (Def::TyAlias(_), _) | (Def::AssociatedTy(..), _) if ns == ValueNS => {
3188                         err.note("can't use a type alias as a constructor");
3189                         return (err, candidates);
3190                     }
3191                     _ => {}
3192                 }
3193             }
3194
3195             // Fallback label.
3196             if !levenshtein_worked {
3197                 err.span_label(base_span, fallback_label);
3198                 this.type_ascription_suggestion(&mut err, base_span);
3199             }
3200             (err, candidates)
3201         };
3202         let report_errors = |this: &mut Self, def: Option<Def>| {
3203             let (err, candidates) = report_errors(this, def);
3204             let def_id = this.current_module.normal_ancestor_id;
3205             let node_id = this.definitions.as_local_node_id(def_id).unwrap();
3206             let better = def.is_some();
3207             this.use_injections.push(UseError { err, candidates, node_id, better });
3208             err_path_resolution()
3209         };
3210
3211         let resolution = match self.resolve_qpath_anywhere(
3212             id,
3213             qself,
3214             path,
3215             ns,
3216             span,
3217             source.defer_to_typeck(),
3218             source.global_by_default(),
3219             crate_lint,
3220         ) {
3221             Some(resolution) if resolution.unresolved_segments() == 0 => {
3222                 if is_expected(resolution.base_def()) || resolution.base_def() == Def::Err {
3223                     resolution
3224                 } else {
3225                     // Add a temporary hack to smooth the transition to new struct ctor
3226                     // visibility rules. See #38932 for more details.
3227                     let mut res = None;
3228                     if let Def::Struct(def_id) = resolution.base_def() {
3229                         if let Some((ctor_def, ctor_vis))
3230                                 = self.struct_constructors.get(&def_id).cloned() {
3231                             if is_expected(ctor_def) && self.is_accessible(ctor_vis) {
3232                                 let lint = lint::builtin::LEGACY_CONSTRUCTOR_VISIBILITY;
3233                                 self.session.buffer_lint(lint, id, span,
3234                                     "private struct constructors are not usable through \
3235                                      re-exports in outer modules",
3236                                 );
3237                                 res = Some(PathResolution::new(ctor_def));
3238                             }
3239                         }
3240                     }
3241
3242                     res.unwrap_or_else(|| report_errors(self, Some(resolution.base_def())))
3243                 }
3244             }
3245             Some(resolution) if source.defer_to_typeck() => {
3246                 // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
3247                 // or `<T>::A::B`. If `B` should be resolved in value namespace then
3248                 // it needs to be added to the trait map.
3249                 if ns == ValueNS {
3250                     let item_name = *path.last().unwrap();
3251                     let traits = self.get_traits_containing_item(item_name, ns);
3252                     self.trait_map.insert(id, traits);
3253                 }
3254                 resolution
3255             }
3256             _ => report_errors(self, None)
3257         };
3258
3259         if let PathSource::TraitItem(..) = source {} else {
3260             // Avoid recording definition of `A::B` in `<T as A>::B::C`.
3261             self.record_def(id, resolution);
3262         }
3263         resolution
3264     }
3265
3266     fn type_ascription_suggestion(&self,
3267                                   err: &mut DiagnosticBuilder,
3268                                   base_span: Span) {
3269         debug!("type_ascription_suggetion {:?}", base_span);
3270         let cm = self.session.source_map();
3271         debug!("self.current_type_ascription {:?}", self.current_type_ascription);
3272         if let Some(sp) = self.current_type_ascription.last() {
3273             let mut sp = *sp;
3274             loop {  // try to find the `:`, bail on first non-':'/non-whitespace
3275                 sp = cm.next_point(sp);
3276                 if let Ok(snippet) = cm.span_to_snippet(sp.to(cm.next_point(sp))) {
3277                     debug!("snippet {:?}", snippet);
3278                     let line_sp = cm.lookup_char_pos(sp.hi()).line;
3279                     let line_base_sp = cm.lookup_char_pos(base_span.lo()).line;
3280                     debug!("{:?} {:?}", line_sp, line_base_sp);
3281                     if snippet == ":" {
3282                         err.span_label(base_span,
3283                                        "expecting a type here because of type ascription");
3284                         if line_sp != line_base_sp {
3285                             err.span_suggestion_short(sp,
3286                                                       "did you mean to use `;` here instead?",
3287                                                       ";".to_string());
3288                         }
3289                         break;
3290                     } else if snippet.trim().len() != 0  {
3291                         debug!("tried to find type ascription `:` token, couldn't find it");
3292                         break;
3293                     }
3294                 } else {
3295                     break;
3296                 }
3297             }
3298         }
3299     }
3300
3301     fn self_type_is_available(&mut self, span: Span) -> bool {
3302         let binding = self.resolve_ident_in_lexical_scope(keywords::SelfType.ident(),
3303                                                           TypeNS, None, span);
3304         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3305     }
3306
3307     fn self_value_is_available(&mut self, self_span: Span, path_span: Span) -> bool {
3308         let ident = Ident::new(keywords::SelfValue.name(), self_span);
3309         let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, None, path_span);
3310         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3311     }
3312
3313     // Resolve in alternative namespaces if resolution in the primary namespace fails.
3314     fn resolve_qpath_anywhere(&mut self,
3315                               id: NodeId,
3316                               qself: Option<&QSelf>,
3317                               path: &[Ident],
3318                               primary_ns: Namespace,
3319                               span: Span,
3320                               defer_to_typeck: bool,
3321                               global_by_default: bool,
3322                               crate_lint: CrateLint)
3323                               -> Option<PathResolution> {
3324         let mut fin_res = None;
3325         // FIXME: can't resolve paths in macro namespace yet, macros are
3326         // processed by the little special hack below.
3327         for (i, ns) in [primary_ns, TypeNS, ValueNS, /*MacroNS*/].iter().cloned().enumerate() {
3328             if i == 0 || ns != primary_ns {
3329                 match self.resolve_qpath(id, qself, path, ns, span, global_by_default, crate_lint) {
3330                     // If defer_to_typeck, then resolution > no resolution,
3331                     // otherwise full resolution > partial resolution > no resolution.
3332                     Some(res) if res.unresolved_segments() == 0 || defer_to_typeck =>
3333                         return Some(res),
3334                     res => if fin_res.is_none() { fin_res = res },
3335                 };
3336             }
3337         }
3338         if primary_ns != MacroNS &&
3339            (self.macro_names.contains(&path[0].modern()) ||
3340             self.builtin_macros.get(&path[0].name).cloned()
3341                                .and_then(NameBinding::macro_kind) == Some(MacroKind::Bang) ||
3342             self.macro_use_prelude.get(&path[0].name).cloned()
3343                                   .and_then(NameBinding::macro_kind) == Some(MacroKind::Bang)) {
3344             // Return some dummy definition, it's enough for error reporting.
3345             return Some(
3346                 PathResolution::new(Def::Macro(DefId::local(CRATE_DEF_INDEX), MacroKind::Bang))
3347             );
3348         }
3349         fin_res
3350     }
3351
3352     /// Handles paths that may refer to associated items.
3353     fn resolve_qpath(&mut self,
3354                      id: NodeId,
3355                      qself: Option<&QSelf>,
3356                      path: &[Ident],
3357                      ns: Namespace,
3358                      span: Span,
3359                      global_by_default: bool,
3360                      crate_lint: CrateLint)
3361                      -> Option<PathResolution> {
3362         debug!(
3363             "resolve_qpath(id={:?}, qself={:?}, path={:?}, \
3364              ns={:?}, span={:?}, global_by_default={:?})",
3365             id,
3366             qself,
3367             path,
3368             ns,
3369             span,
3370             global_by_default,
3371         );
3372
3373         if let Some(qself) = qself {
3374             if qself.position == 0 {
3375                 // This is a case like `<T>::B`, where there is no
3376                 // trait to resolve.  In that case, we leave the `B`
3377                 // segment to be resolved by type-check.
3378                 return Some(PathResolution::with_unresolved_segments(
3379                     Def::Mod(DefId::local(CRATE_DEF_INDEX)), path.len()
3380                 ));
3381             }
3382
3383             // Make sure `A::B` in `<T as A::B>::C` is a trait item.
3384             //
3385             // Currently, `path` names the full item (`A::B::C`, in
3386             // our example).  so we extract the prefix of that that is
3387             // the trait (the slice upto and including
3388             // `qself.position`). And then we recursively resolve that,
3389             // but with `qself` set to `None`.
3390             //
3391             // However, setting `qself` to none (but not changing the
3392             // span) loses the information about where this path
3393             // *actually* appears, so for the purposes of the crate
3394             // lint we pass along information that this is the trait
3395             // name from a fully qualified path, and this also
3396             // contains the full span (the `CrateLint::QPathTrait`).
3397             let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
3398             let res = self.smart_resolve_path_fragment(
3399                 id,
3400                 None,
3401                 &path[..qself.position + 1],
3402                 span,
3403                 PathSource::TraitItem(ns),
3404                 CrateLint::QPathTrait {
3405                     qpath_id: id,
3406                     qpath_span: qself.path_span,
3407                 },
3408             );
3409
3410             // The remaining segments (the `C` in our example) will
3411             // have to be resolved by type-check, since that requires doing
3412             // trait resolution.
3413             return Some(PathResolution::with_unresolved_segments(
3414                 res.base_def(), res.unresolved_segments() + path.len() - qself.position - 1
3415             ));
3416         }
3417
3418         let result = match self.resolve_path(
3419             None,
3420             &path,
3421             Some(ns),
3422             true,
3423             span,
3424             crate_lint,
3425         ) {
3426             PathResult::NonModule(path_res) => path_res,
3427             PathResult::Module(ModuleOrUniformRoot::Module(module)) if !module.is_normal() => {
3428                 PathResolution::new(module.def().unwrap())
3429             }
3430             // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
3431             // don't report an error right away, but try to fallback to a primitive type.
3432             // So, we are still able to successfully resolve something like
3433             //
3434             // use std::u8; // bring module u8 in scope
3435             // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
3436             //     u8::max_value() // OK, resolves to associated function <u8>::max_value,
3437             //                     // not to non-existent std::u8::max_value
3438             // }
3439             //
3440             // Such behavior is required for backward compatibility.
3441             // The same fallback is used when `a` resolves to nothing.
3442             PathResult::Module(ModuleOrUniformRoot::Module(_)) |
3443             PathResult::Failed(..)
3444                     if (ns == TypeNS || path.len() > 1) &&
3445                        self.primitive_type_table.primitive_types
3446                            .contains_key(&path[0].name) => {
3447                 let prim = self.primitive_type_table.primitive_types[&path[0].name];
3448                 PathResolution::with_unresolved_segments(Def::PrimTy(prim), path.len() - 1)
3449             }
3450             PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3451                 PathResolution::new(module.def().unwrap()),
3452             PathResult::Failed(span, msg, false) => {
3453                 resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
3454                 err_path_resolution()
3455             }
3456             PathResult::Module(ModuleOrUniformRoot::UniformRoot(_)) |
3457             PathResult::Failed(..) => return None,
3458             PathResult::Indeterminate => bug!("indetermined path result in resolve_qpath"),
3459         };
3460
3461         if path.len() > 1 && !global_by_default && result.base_def() != Def::Err &&
3462            path[0].name != keywords::CrateRoot.name() &&
3463            path[0].name != keywords::DollarCrate.name() {
3464             let unqualified_result = {
3465                 match self.resolve_path(
3466                     None,
3467                     &[*path.last().unwrap()],
3468                     Some(ns),
3469                     false,
3470                     span,
3471                     CrateLint::No,
3472                 ) {
3473                     PathResult::NonModule(path_res) => path_res.base_def(),
3474                     PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3475                         module.def().unwrap(),
3476                     _ => return Some(result),
3477                 }
3478             };
3479             if result.base_def() == unqualified_result {
3480                 let lint = lint::builtin::UNUSED_QUALIFICATIONS;
3481                 self.session.buffer_lint(lint, id, span, "unnecessary qualification")
3482             }
3483         }
3484
3485         Some(result)
3486     }
3487
3488     fn resolve_path(
3489         &mut self,
3490         base_module: Option<ModuleOrUniformRoot<'a>>,
3491         path: &[Ident],
3492         opt_ns: Option<Namespace>, // `None` indicates a module path
3493         record_used: bool,
3494         path_span: Span,
3495         crate_lint: CrateLint,
3496     ) -> PathResult<'a> {
3497         let parent_scope = ParentScope { module: self.current_module, ..self.dummy_parent_scope() };
3498         self.resolve_path_with_parent_scope(base_module, path, opt_ns, &parent_scope,
3499                                             record_used, path_span, crate_lint)
3500     }
3501
3502     fn resolve_path_with_parent_scope(
3503         &mut self,
3504         base_module: Option<ModuleOrUniformRoot<'a>>,
3505         path: &[Ident],
3506         opt_ns: Option<Namespace>, // `None` indicates a module path
3507         parent_scope: &ParentScope<'a>,
3508         record_used: bool,
3509         path_span: Span,
3510         crate_lint: CrateLint,
3511     ) -> PathResult<'a> {
3512         let mut module = base_module;
3513         let mut allow_super = true;
3514         let mut second_binding = None;
3515         self.current_module = parent_scope.module;
3516
3517         debug!(
3518             "resolve_path(path={:?}, opt_ns={:?}, record_used={:?}, \
3519              path_span={:?}, crate_lint={:?})",
3520             path,
3521             opt_ns,
3522             record_used,
3523             path_span,
3524             crate_lint,
3525         );
3526
3527         for (i, &ident) in path.iter().enumerate() {
3528             debug!("resolve_path ident {} {:?}", i, ident);
3529             let is_last = i == path.len() - 1;
3530             let ns = if is_last { opt_ns.unwrap_or(TypeNS) } else { TypeNS };
3531             let name = ident.name;
3532
3533             allow_super &= ns == TypeNS &&
3534                 (name == keywords::SelfValue.name() ||
3535                  name == keywords::Super.name());
3536
3537             if ns == TypeNS {
3538                 if allow_super && name == keywords::Super.name() {
3539                     let mut ctxt = ident.span.ctxt().modern();
3540                     let self_module = match i {
3541                         0 => Some(self.resolve_self(&mut ctxt, self.current_module)),
3542                         _ => match module {
3543                             Some(ModuleOrUniformRoot::Module(module)) => Some(module),
3544                             _ => None,
3545                         },
3546                     };
3547                     if let Some(self_module) = self_module {
3548                         if let Some(parent) = self_module.parent {
3549                             module = Some(ModuleOrUniformRoot::Module(
3550                                 self.resolve_self(&mut ctxt, parent)));
3551                             continue;
3552                         }
3553                     }
3554                     let msg = "There are too many initial `super`s.".to_string();
3555                     return PathResult::Failed(ident.span, msg, false);
3556                 }
3557                 if i == 0 {
3558                     if name == keywords::SelfValue.name() {
3559                         let mut ctxt = ident.span.ctxt().modern();
3560                         module = Some(ModuleOrUniformRoot::Module(
3561                             self.resolve_self(&mut ctxt, self.current_module)));
3562                         continue;
3563                     }
3564                     if name == keywords::Extern.name() ||
3565                        name == keywords::CrateRoot.name() &&
3566                        self.session.features_untracked().extern_absolute_paths &&
3567                        self.session.rust_2018() {
3568                         module = Some(ModuleOrUniformRoot::UniformRoot(name));
3569                         continue;
3570                     }
3571                     if name == keywords::CrateRoot.name() ||
3572                        name == keywords::Crate.name() ||
3573                        name == keywords::DollarCrate.name() {
3574                         // `::a::b`, `crate::a::b` or `$crate::a::b`
3575                         module = Some(ModuleOrUniformRoot::Module(
3576                             self.resolve_crate_root(ident)));
3577                         continue;
3578                     }
3579                 }
3580             }
3581
3582             // Report special messages for path segment keywords in wrong positions.
3583             if ident.is_path_segment_keyword() && i != 0 {
3584                 let name_str = if name == keywords::CrateRoot.name() {
3585                     "crate root".to_string()
3586                 } else {
3587                     format!("`{}`", name)
3588                 };
3589                 let msg = if i == 1 && path[0].name == keywords::CrateRoot.name() {
3590                     format!("global paths cannot start with {}", name_str)
3591                 } else {
3592                     format!("{} in paths can only be used in start position", name_str)
3593                 };
3594                 return PathResult::Failed(ident.span, msg, false);
3595             }
3596
3597             let binding = if let Some(module) = module {
3598                 self.resolve_ident_in_module(module, ident, ns, record_used, path_span)
3599             } else if opt_ns == Some(MacroNS) {
3600                 assert!(ns == TypeNS);
3601                 self.resolve_lexical_macro_path_segment(ident, ns, None, parent_scope, record_used,
3602                                                         record_used, path_span).map(|(b, _)| b)
3603             } else {
3604                 let record_used_id =
3605                     if record_used { crate_lint.node_id().or(Some(CRATE_NODE_ID)) } else { None };
3606                 match self.resolve_ident_in_lexical_scope(ident, ns, record_used_id, path_span) {
3607                     // we found a locally-imported or available item/module
3608                     Some(LexicalScopeBinding::Item(binding)) => Ok(binding),
3609                     // we found a local variable or type param
3610                     Some(LexicalScopeBinding::Def(def))
3611                             if opt_ns == Some(TypeNS) || opt_ns == Some(ValueNS) => {
3612                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3613                             def, path.len() - 1
3614                         ));
3615                     }
3616                     _ => Err(if record_used { Determined } else { Undetermined }),
3617                 }
3618             };
3619
3620             match binding {
3621                 Ok(binding) => {
3622                     if i == 1 {
3623                         second_binding = Some(binding);
3624                     }
3625                     let def = binding.def();
3626                     let maybe_assoc = opt_ns != Some(MacroNS) && PathSource::Type.is_expected(def);
3627                     if let Some(next_module) = binding.module() {
3628                         module = Some(ModuleOrUniformRoot::Module(next_module));
3629                     } else if def == Def::ToolMod && i + 1 != path.len() {
3630                         let def = Def::NonMacroAttr(NonMacroAttrKind::Tool);
3631                         return PathResult::NonModule(PathResolution::new(def));
3632                     } else if def == Def::Err {
3633                         return PathResult::NonModule(err_path_resolution());
3634                     } else if opt_ns.is_some() && (is_last || maybe_assoc) {
3635                         self.lint_if_path_starts_with_module(
3636                             crate_lint,
3637                             path,
3638                             path_span,
3639                             second_binding,
3640                         );
3641                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3642                             def, path.len() - i - 1
3643                         ));
3644                     } else {
3645                         return PathResult::Failed(ident.span,
3646                                                   format!("Not a module `{}`", ident),
3647                                                   is_last);
3648                     }
3649                 }
3650                 Err(Undetermined) => return PathResult::Indeterminate,
3651                 Err(Determined) => {
3652                     if let Some(ModuleOrUniformRoot::Module(module)) = module {
3653                         if opt_ns.is_some() && !module.is_normal() {
3654                             return PathResult::NonModule(PathResolution::with_unresolved_segments(
3655                                 module.def().unwrap(), path.len() - i
3656                             ));
3657                         }
3658                     }
3659                     let module_def = match module {
3660                         Some(ModuleOrUniformRoot::Module(module)) => module.def(),
3661                         _ => None,
3662                     };
3663                     let msg = if module_def == self.graph_root.def() {
3664                         let is_mod = |def| match def { Def::Mod(..) => true, _ => false };
3665                         let mut candidates =
3666                             self.lookup_import_candidates(name, TypeNS, is_mod);
3667                         candidates.sort_by_cached_key(|c| {
3668                             (c.path.segments.len(), c.path.to_string())
3669                         });
3670                         if let Some(candidate) = candidates.get(0) {
3671                             format!("Did you mean `{}`?", candidate.path)
3672                         } else {
3673                             format!("Maybe a missing `extern crate {};`?", ident)
3674                         }
3675                     } else if i == 0 {
3676                         format!("Use of undeclared type or module `{}`", ident)
3677                     } else {
3678                         format!("Could not find `{}` in `{}`", ident, path[i - 1])
3679                     };
3680                     return PathResult::Failed(ident.span, msg, is_last);
3681                 }
3682             }
3683         }
3684
3685         self.lint_if_path_starts_with_module(crate_lint, path, path_span, second_binding);
3686
3687         PathResult::Module(module.unwrap_or_else(|| {
3688             span_bug!(path_span, "resolve_path: empty(?) path {:?} has no module", path);
3689         }))
3690
3691     }
3692
3693     fn lint_if_path_starts_with_module(
3694         &self,
3695         crate_lint: CrateLint,
3696         path: &[Ident],
3697         path_span: Span,
3698         second_binding: Option<&NameBinding>,
3699     ) {
3700         // In the 2018 edition this lint is a hard error, so nothing to do
3701         if self.session.rust_2018() {
3702             return
3703         }
3704
3705         // In the 2015 edition there's no use in emitting lints unless the
3706         // crate's already enabled the feature that we're going to suggest
3707         if !self.session.features_untracked().crate_in_paths {
3708             return
3709         }
3710
3711         let (diag_id, diag_span) = match crate_lint {
3712             CrateLint::No => return,
3713             CrateLint::SimplePath(id) => (id, path_span),
3714             CrateLint::UsePath { root_id, root_span } => (root_id, root_span),
3715             CrateLint::QPathTrait { qpath_id, qpath_span } => (qpath_id, qpath_span),
3716         };
3717
3718         let first_name = match path.get(0) {
3719             Some(ident) => ident.name,
3720             None => return,
3721         };
3722
3723         // We're only interested in `use` paths which should start with
3724         // `{{root}}` or `extern` currently.
3725         if first_name != keywords::Extern.name() && first_name != keywords::CrateRoot.name() {
3726             return
3727         }
3728
3729         match path.get(1) {
3730             // If this import looks like `crate::...` it's already good
3731             Some(ident) if ident.name == keywords::Crate.name() => return,
3732             // Otherwise go below to see if it's an extern crate
3733             Some(_) => {}
3734             // If the path has length one (and it's `CrateRoot` most likely)
3735             // then we don't know whether we're gonna be importing a crate or an
3736             // item in our crate. Defer this lint to elsewhere
3737             None => return,
3738         }
3739
3740         // If the first element of our path was actually resolved to an
3741         // `ExternCrate` (also used for `crate::...`) then no need to issue a
3742         // warning, this looks all good!
3743         if let Some(binding) = second_binding {
3744             if let NameBindingKind::Import { directive: d, .. } = binding.kind {
3745                 // Careful: we still want to rewrite paths from
3746                 // renamed extern crates.
3747                 if let ImportDirectiveSubclass::ExternCrate(None) = d.subclass {
3748                     return
3749                 }
3750             }
3751         }
3752
3753         let diag = lint::builtin::BuiltinLintDiagnostics
3754             ::AbsPathWithModule(diag_span);
3755         self.session.buffer_lint_with_diagnostic(
3756             lint::builtin::ABSOLUTE_PATHS_NOT_STARTING_WITH_CRATE,
3757             diag_id, diag_span,
3758             "absolute paths must start with `self`, `super`, \
3759             `crate`, or an external crate name in the 2018 edition",
3760             diag);
3761     }
3762
3763     // Resolve a local definition, potentially adjusting for closures.
3764     fn adjust_local_def(&mut self,
3765                         ns: Namespace,
3766                         rib_index: usize,
3767                         mut def: Def,
3768                         record_used: bool,
3769                         span: Span) -> Def {
3770         let ribs = &self.ribs[ns][rib_index + 1..];
3771
3772         // An invalid forward use of a type parameter from a previous default.
3773         if let ForwardTyParamBanRibKind = self.ribs[ns][rib_index].kind {
3774             if record_used {
3775                 resolve_error(self, span, ResolutionError::ForwardDeclaredTyParam);
3776             }
3777             assert_eq!(def, Def::Err);
3778             return Def::Err;
3779         }
3780
3781         match def {
3782             Def::Upvar(..) => {
3783                 span_bug!(span, "unexpected {:?} in bindings", def)
3784             }
3785             Def::Local(node_id) => {
3786                 for rib in ribs {
3787                     match rib.kind {
3788                         NormalRibKind | ModuleRibKind(..) | MacroDefinition(..) |
3789                         ForwardTyParamBanRibKind => {
3790                             // Nothing to do. Continue.
3791                         }
3792                         ClosureRibKind(function_id) => {
3793                             let prev_def = def;
3794
3795                             let seen = self.freevars_seen
3796                                            .entry(function_id)
3797                                            .or_default();
3798                             if let Some(&index) = seen.get(&node_id) {
3799                                 def = Def::Upvar(node_id, index, function_id);
3800                                 continue;
3801                             }
3802                             let vec = self.freevars
3803                                           .entry(function_id)
3804                                           .or_default();
3805                             let depth = vec.len();
3806                             def = Def::Upvar(node_id, depth, function_id);
3807
3808                             if record_used {
3809                                 vec.push(Freevar {
3810                                     def: prev_def,
3811                                     span,
3812                                 });
3813                                 seen.insert(node_id, depth);
3814                             }
3815                         }
3816                         ItemRibKind | TraitOrImplItemRibKind => {
3817                             // This was an attempt to access an upvar inside a
3818                             // named function item. This is not allowed, so we
3819                             // report an error.
3820                             if record_used {
3821                                 resolve_error(self, span,
3822                                         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem);
3823                             }
3824                             return Def::Err;
3825                         }
3826                         ConstantItemRibKind => {
3827                             // Still doesn't deal with upvars
3828                             if record_used {
3829                                 resolve_error(self, span,
3830                                         ResolutionError::AttemptToUseNonConstantValueInConstant);
3831                             }
3832                             return Def::Err;
3833                         }
3834                     }
3835                 }
3836             }
3837             Def::TyParam(..) | Def::SelfTy(..) => {
3838                 for rib in ribs {
3839                     match rib.kind {
3840                         NormalRibKind | TraitOrImplItemRibKind | ClosureRibKind(..) |
3841                         ModuleRibKind(..) | MacroDefinition(..) | ForwardTyParamBanRibKind |
3842                         ConstantItemRibKind => {
3843                             // Nothing to do. Continue.
3844                         }
3845                         ItemRibKind => {
3846                             // This was an attempt to use a type parameter outside
3847                             // its scope.
3848                             if record_used {
3849                                 resolve_error(self, span,
3850                                     ResolutionError::TypeParametersFromOuterFunction(def));
3851                             }
3852                             return Def::Err;
3853                         }
3854                     }
3855                 }
3856             }
3857             _ => {}
3858         }
3859         return def;
3860     }
3861
3862     fn lookup_assoc_candidate<FilterFn>(&mut self,
3863                                         ident: Ident,
3864                                         ns: Namespace,
3865                                         filter_fn: FilterFn)
3866                                         -> Option<AssocSuggestion>
3867         where FilterFn: Fn(Def) -> bool
3868     {
3869         fn extract_node_id(t: &Ty) -> Option<NodeId> {
3870             match t.node {
3871                 TyKind::Path(None, _) => Some(t.id),
3872                 TyKind::Rptr(_, ref mut_ty) => extract_node_id(&mut_ty.ty),
3873                 // This doesn't handle the remaining `Ty` variants as they are not
3874                 // that commonly the self_type, it might be interesting to provide
3875                 // support for those in future.
3876                 _ => None,
3877             }
3878         }
3879
3880         // Fields are generally expected in the same contexts as locals.
3881         if filter_fn(Def::Local(ast::DUMMY_NODE_ID)) {
3882             if let Some(node_id) = self.current_self_type.as_ref().and_then(extract_node_id) {
3883                 // Look for a field with the same name in the current self_type.
3884                 if let Some(resolution) = self.def_map.get(&node_id) {
3885                     match resolution.base_def() {
3886                         Def::Struct(did) | Def::Union(did)
3887                                 if resolution.unresolved_segments() == 0 => {
3888                             if let Some(field_names) = self.field_names.get(&did) {
3889                                 if field_names.iter().any(|&field_name| ident.name == field_name) {
3890                                     return Some(AssocSuggestion::Field);
3891                                 }
3892                             }
3893                         }
3894                         _ => {}
3895                     }
3896                 }
3897             }
3898         }
3899
3900         // Look for associated items in the current trait.
3901         if let Some((module, _)) = self.current_trait_ref {
3902             if let Ok(binding) = self.resolve_ident_in_module(
3903                     ModuleOrUniformRoot::Module(module),
3904                     ident,
3905                     ns,
3906                     false,
3907                     module.span,
3908                 ) {
3909                 let def = binding.def();
3910                 if filter_fn(def) {
3911                     return Some(if self.has_self.contains(&def.def_id()) {
3912                         AssocSuggestion::MethodWithSelf
3913                     } else {
3914                         AssocSuggestion::AssocItem
3915                     });
3916                 }
3917             }
3918         }
3919
3920         None
3921     }
3922
3923     fn lookup_typo_candidate<FilterFn>(&mut self,
3924                                        path: &[Ident],
3925                                        ns: Namespace,
3926                                        filter_fn: FilterFn,
3927                                        span: Span)
3928                                        -> Option<Symbol>
3929         where FilterFn: Fn(Def) -> bool
3930     {
3931         let add_module_candidates = |module: Module, names: &mut Vec<Name>| {
3932             for (&(ident, _), resolution) in module.resolutions.borrow().iter() {
3933                 if let Some(binding) = resolution.borrow().binding {
3934                     if filter_fn(binding.def()) {
3935                         names.push(ident.name);
3936                     }
3937                 }
3938             }
3939         };
3940
3941         let mut names = Vec::new();
3942         if path.len() == 1 {
3943             // Search in lexical scope.
3944             // Walk backwards up the ribs in scope and collect candidates.
3945             for rib in self.ribs[ns].iter().rev() {
3946                 // Locals and type parameters
3947                 for (ident, def) in &rib.bindings {
3948                     if filter_fn(*def) {
3949                         names.push(ident.name);
3950                     }
3951                 }
3952                 // Items in scope
3953                 if let ModuleRibKind(module) = rib.kind {
3954                     // Items from this module
3955                     add_module_candidates(module, &mut names);
3956
3957                     if let ModuleKind::Block(..) = module.kind {
3958                         // We can see through blocks
3959                     } else {
3960                         // Items from the prelude
3961                         if !module.no_implicit_prelude {
3962                             names.extend(self.extern_prelude.iter().cloned());
3963                             if let Some(prelude) = self.prelude {
3964                                 add_module_candidates(prelude, &mut names);
3965                             }
3966                         }
3967                         break;
3968                     }
3969                 }
3970             }
3971             // Add primitive types to the mix
3972             if filter_fn(Def::PrimTy(Bool)) {
3973                 names.extend(
3974                     self.primitive_type_table.primitive_types.iter().map(|(name, _)| name)
3975                 )
3976             }
3977         } else {
3978             // Search in module.
3979             let mod_path = &path[..path.len() - 1];
3980             if let PathResult::Module(module) = self.resolve_path(None, mod_path, Some(TypeNS),
3981                                                                   false, span, CrateLint::No) {
3982                 if let ModuleOrUniformRoot::Module(module) = module {
3983                     add_module_candidates(module, &mut names);
3984                 }
3985             }
3986         }
3987
3988         let name = path[path.len() - 1].name;
3989         // Make sure error reporting is deterministic.
3990         names.sort_by_cached_key(|name| name.as_str());
3991         match find_best_match_for_name(names.iter(), &name.as_str(), None) {
3992             Some(found) if found != name => Some(found),
3993             _ => None,
3994         }
3995     }
3996
3997     fn with_resolved_label<F>(&mut self, label: Option<Label>, id: NodeId, f: F)
3998         where F: FnOnce(&mut Resolver)
3999     {
4000         if let Some(label) = label {
4001             self.unused_labels.insert(id, label.ident.span);
4002             let def = Def::Label(id);
4003             self.with_label_rib(|this| {
4004                 let ident = label.ident.modern_and_legacy();
4005                 this.label_ribs.last_mut().unwrap().bindings.insert(ident, def);
4006                 f(this);
4007             });
4008         } else {
4009             f(self);
4010         }
4011     }
4012
4013     fn resolve_labeled_block(&mut self, label: Option<Label>, id: NodeId, block: &Block) {
4014         self.with_resolved_label(label, id, |this| this.visit_block(block));
4015     }
4016
4017     fn resolve_expr(&mut self, expr: &Expr, parent: Option<&Expr>) {
4018         // First, record candidate traits for this expression if it could
4019         // result in the invocation of a method call.
4020
4021         self.record_candidate_traits_for_expr_if_necessary(expr);
4022
4023         // Next, resolve the node.
4024         match expr.node {
4025             ExprKind::Path(ref qself, ref path) => {
4026                 self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
4027                 visit::walk_expr(self, expr);
4028             }
4029
4030             ExprKind::Struct(ref path, ..) => {
4031                 self.smart_resolve_path(expr.id, None, path, PathSource::Struct);
4032                 visit::walk_expr(self, expr);
4033             }
4034
4035             ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
4036                 let def = self.search_label(label.ident, |rib, ident| {
4037                     rib.bindings.get(&ident.modern_and_legacy()).cloned()
4038                 });
4039                 match def {
4040                     None => {
4041                         // Search again for close matches...
4042                         // Picks the first label that is "close enough", which is not necessarily
4043                         // the closest match
4044                         let close_match = self.search_label(label.ident, |rib, ident| {
4045                             let names = rib.bindings.iter().map(|(id, _)| &id.name);
4046                             find_best_match_for_name(names, &*ident.as_str(), None)
4047                         });
4048                         self.record_def(expr.id, err_path_resolution());
4049                         resolve_error(self,
4050                                       label.ident.span,
4051                                       ResolutionError::UndeclaredLabel(&label.ident.as_str(),
4052                                                                        close_match));
4053                     }
4054                     Some(Def::Label(id)) => {
4055                         // Since this def is a label, it is never read.
4056                         self.record_def(expr.id, PathResolution::new(Def::Label(id)));
4057                         self.unused_labels.remove(&id);
4058                     }
4059                     Some(_) => {
4060                         span_bug!(expr.span, "label wasn't mapped to a label def!");
4061                     }
4062                 }
4063
4064                 // visit `break` argument if any
4065                 visit::walk_expr(self, expr);
4066             }
4067
4068             ExprKind::IfLet(ref pats, ref subexpression, ref if_block, ref optional_else) => {
4069                 self.visit_expr(subexpression);
4070
4071                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
4072                 let mut bindings_list = FxHashMap();
4073                 for pat in pats {
4074                     self.resolve_pattern(pat, PatternSource::IfLet, &mut bindings_list);
4075                 }
4076                 // This has to happen *after* we determine which pat_idents are variants
4077                 self.check_consistent_bindings(pats);
4078                 self.visit_block(if_block);
4079                 self.ribs[ValueNS].pop();
4080
4081                 optional_else.as_ref().map(|expr| self.visit_expr(expr));
4082             }
4083
4084             ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),
4085
4086             ExprKind::While(ref subexpression, ref block, label) => {
4087                 self.with_resolved_label(label, expr.id, |this| {
4088                     this.visit_expr(subexpression);
4089                     this.visit_block(block);
4090                 });
4091             }
4092
4093             ExprKind::WhileLet(ref pats, ref subexpression, ref block, label) => {
4094                 self.with_resolved_label(label, expr.id, |this| {
4095                     this.visit_expr(subexpression);
4096                     this.ribs[ValueNS].push(Rib::new(NormalRibKind));
4097                     let mut bindings_list = FxHashMap();
4098                     for pat in pats {
4099                         this.resolve_pattern(pat, PatternSource::WhileLet, &mut bindings_list);
4100                     }
4101                     // This has to happen *after* we determine which pat_idents are variants
4102                     this.check_consistent_bindings(pats);
4103                     this.visit_block(block);
4104                     this.ribs[ValueNS].pop();
4105                 });
4106             }
4107
4108             ExprKind::ForLoop(ref pattern, ref subexpression, ref block, label) => {
4109                 self.visit_expr(subexpression);
4110                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
4111                 self.resolve_pattern(pattern, PatternSource::For, &mut FxHashMap());
4112
4113                 self.resolve_labeled_block(label, expr.id, block);
4114
4115                 self.ribs[ValueNS].pop();
4116             }
4117
4118             ExprKind::Block(ref block, label) => self.resolve_labeled_block(label, block.id, block),
4119
4120             // Equivalent to `visit::walk_expr` + passing some context to children.
4121             ExprKind::Field(ref subexpression, _) => {
4122                 self.resolve_expr(subexpression, Some(expr));
4123             }
4124             ExprKind::MethodCall(ref segment, ref arguments) => {
4125                 let mut arguments = arguments.iter();
4126                 self.resolve_expr(arguments.next().unwrap(), Some(expr));
4127                 for argument in arguments {
4128                     self.resolve_expr(argument, None);
4129                 }
4130                 self.visit_path_segment(expr.span, segment);
4131             }
4132
4133             ExprKind::Call(ref callee, ref arguments) => {
4134                 self.resolve_expr(callee, Some(expr));
4135                 for argument in arguments {
4136                     self.resolve_expr(argument, None);
4137                 }
4138             }
4139             ExprKind::Type(ref type_expr, _) => {
4140                 self.current_type_ascription.push(type_expr.span);
4141                 visit::walk_expr(self, expr);
4142                 self.current_type_ascription.pop();
4143             }
4144             // Resolve the body of async exprs inside the async closure to which they desugar
4145             ExprKind::Async(_, async_closure_id, ref block) => {
4146                 let rib_kind = ClosureRibKind(async_closure_id);
4147                 self.ribs[ValueNS].push(Rib::new(rib_kind));
4148                 self.label_ribs.push(Rib::new(rib_kind));
4149                 self.visit_block(&block);
4150                 self.label_ribs.pop();
4151                 self.ribs[ValueNS].pop();
4152             }
4153             // `async |x| ...` gets desugared to `|x| future_from_generator(|| ...)`, so we need to
4154             // resolve the arguments within the proper scopes so that usages of them inside the
4155             // closure are detected as upvars rather than normal closure arg usages.
4156             ExprKind::Closure(
4157                 _, IsAsync::Async { closure_id: inner_closure_id, .. }, _,
4158                 ref fn_decl, ref body, _span,
4159             ) => {
4160                 let rib_kind = ClosureRibKind(expr.id);
4161                 self.ribs[ValueNS].push(Rib::new(rib_kind));
4162                 self.label_ribs.push(Rib::new(rib_kind));
4163                 // Resolve arguments:
4164                 let mut bindings_list = FxHashMap();
4165                 for argument in &fn_decl.inputs {
4166                     self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
4167                     self.visit_ty(&argument.ty);
4168                 }
4169                 // No need to resolve return type-- the outer closure return type is
4170                 // FunctionRetTy::Default
4171
4172                 // Now resolve the inner closure
4173                 {
4174                     let rib_kind = ClosureRibKind(inner_closure_id);
4175                     self.ribs[ValueNS].push(Rib::new(rib_kind));
4176                     self.label_ribs.push(Rib::new(rib_kind));
4177                     // No need to resolve arguments: the inner closure has none.
4178                     // Resolve the return type:
4179                     visit::walk_fn_ret_ty(self, &fn_decl.output);
4180                     // Resolve the body
4181                     self.visit_expr(body);
4182                     self.label_ribs.pop();
4183                     self.ribs[ValueNS].pop();
4184                 }
4185                 self.label_ribs.pop();
4186                 self.ribs[ValueNS].pop();
4187             }
4188             _ => {
4189                 visit::walk_expr(self, expr);
4190             }
4191         }
4192     }
4193
4194     fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &Expr) {
4195         match expr.node {
4196             ExprKind::Field(_, ident) => {
4197                 // FIXME(#6890): Even though you can't treat a method like a
4198                 // field, we need to add any trait methods we find that match
4199                 // the field name so that we can do some nice error reporting
4200                 // later on in typeck.
4201                 let traits = self.get_traits_containing_item(ident, ValueNS);
4202                 self.trait_map.insert(expr.id, traits);
4203             }
4204             ExprKind::MethodCall(ref segment, ..) => {
4205                 debug!("(recording candidate traits for expr) recording traits for {}",
4206                        expr.id);
4207                 let traits = self.get_traits_containing_item(segment.ident, ValueNS);
4208                 self.trait_map.insert(expr.id, traits);
4209             }
4210             _ => {
4211                 // Nothing to do.
4212             }
4213         }
4214     }
4215
4216     fn get_traits_containing_item(&mut self, mut ident: Ident, ns: Namespace)
4217                                   -> Vec<TraitCandidate> {
4218         debug!("(getting traits containing item) looking for '{}'", ident.name);
4219
4220         let mut found_traits = Vec::new();
4221         // Look for the current trait.
4222         if let Some((module, _)) = self.current_trait_ref {
4223             if self.resolve_ident_in_module(
4224                 ModuleOrUniformRoot::Module(module),
4225                 ident,
4226                 ns,
4227                 false,
4228                 module.span,
4229             ).is_ok() {
4230                 let def_id = module.def_id().unwrap();
4231                 found_traits.push(TraitCandidate { def_id: def_id, import_id: None });
4232             }
4233         }
4234
4235         ident.span = ident.span.modern();
4236         let mut search_module = self.current_module;
4237         loop {
4238             self.get_traits_in_module_containing_item(ident, ns, search_module, &mut found_traits);
4239             search_module = unwrap_or!(
4240                 self.hygienic_lexical_parent(search_module, &mut ident.span), break
4241             );
4242         }
4243
4244         if let Some(prelude) = self.prelude {
4245             if !search_module.no_implicit_prelude {
4246                 self.get_traits_in_module_containing_item(ident, ns, prelude, &mut found_traits);
4247             }
4248         }
4249
4250         found_traits
4251     }
4252
4253     fn get_traits_in_module_containing_item(&mut self,
4254                                             ident: Ident,
4255                                             ns: Namespace,
4256                                             module: Module<'a>,
4257                                             found_traits: &mut Vec<TraitCandidate>) {
4258         assert!(ns == TypeNS || ns == ValueNS);
4259         let mut traits = module.traits.borrow_mut();
4260         if traits.is_none() {
4261             let mut collected_traits = Vec::new();
4262             module.for_each_child(|name, ns, binding| {
4263                 if ns != TypeNS { return }
4264                 if let Def::Trait(_) = binding.def() {
4265                     collected_traits.push((name, binding));
4266                 }
4267             });
4268             *traits = Some(collected_traits.into_boxed_slice());
4269         }
4270
4271         for &(trait_name, binding) in traits.as_ref().unwrap().iter() {
4272             let module = binding.module().unwrap();
4273             let mut ident = ident;
4274             if ident.span.glob_adjust(module.expansion, binding.span.ctxt().modern()).is_none() {
4275                 continue
4276             }
4277             if self.resolve_ident_in_module_unadjusted(
4278                 ModuleOrUniformRoot::Module(module),
4279                 ident,
4280                 ns,
4281                 false,
4282                 false,
4283                 module.span,
4284             ).is_ok() {
4285                 let import_id = match binding.kind {
4286                     NameBindingKind::Import { directive, .. } => {
4287                         self.maybe_unused_trait_imports.insert(directive.id);
4288                         self.add_to_glob_map(directive.id, trait_name);
4289                         Some(directive.id)
4290                     }
4291                     _ => None,
4292                 };
4293                 let trait_def_id = module.def_id().unwrap();
4294                 found_traits.push(TraitCandidate { def_id: trait_def_id, import_id: import_id });
4295             }
4296         }
4297     }
4298
4299     fn lookup_import_candidates_from_module<FilterFn>(&mut self,
4300                                           lookup_name: Name,
4301                                           namespace: Namespace,
4302                                           start_module: &'a ModuleData<'a>,
4303                                           crate_name: Ident,
4304                                           filter_fn: FilterFn)
4305                                           -> Vec<ImportSuggestion>
4306         where FilterFn: Fn(Def) -> bool
4307     {
4308         let mut candidates = Vec::new();
4309         let mut worklist = Vec::new();
4310         let mut seen_modules = FxHashSet();
4311         let not_local_module = crate_name != keywords::Crate.ident();
4312         worklist.push((start_module, Vec::<ast::PathSegment>::new(), not_local_module));
4313
4314         while let Some((in_module,
4315                         path_segments,
4316                         in_module_is_extern)) = worklist.pop() {
4317             self.populate_module_if_necessary(in_module);
4318
4319             // We have to visit module children in deterministic order to avoid
4320             // instabilities in reported imports (#43552).
4321             in_module.for_each_child_stable(|ident, ns, name_binding| {
4322                 // avoid imports entirely
4323                 if name_binding.is_import() && !name_binding.is_extern_crate() { return; }
4324                 // avoid non-importable candidates as well
4325                 if !name_binding.is_importable() { return; }
4326
4327                 // collect results based on the filter function
4328                 if ident.name == lookup_name && ns == namespace {
4329                     if filter_fn(name_binding.def()) {
4330                         // create the path
4331                         let mut segms = path_segments.clone();
4332                         if self.session.rust_2018() {
4333                             // crate-local absolute paths start with `crate::` in edition 2018
4334                             // FIXME: may also be stabilized for Rust 2015 (Issues #45477, #44660)
4335                             segms.insert(
4336                                 0, ast::PathSegment::from_ident(crate_name)
4337                             );
4338                         }
4339
4340                         segms.push(ast::PathSegment::from_ident(ident));
4341                         let path = Path {
4342                             span: name_binding.span,
4343                             segments: segms,
4344                         };
4345                         // the entity is accessible in the following cases:
4346                         // 1. if it's defined in the same crate, it's always
4347                         // accessible (since private entities can be made public)
4348                         // 2. if it's defined in another crate, it's accessible
4349                         // only if both the module is public and the entity is
4350                         // declared as public (due to pruning, we don't explore
4351                         // outside crate private modules => no need to check this)
4352                         if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
4353                             candidates.push(ImportSuggestion { path: path });
4354                         }
4355                     }
4356                 }
4357
4358                 // collect submodules to explore
4359                 if let Some(module) = name_binding.module() {
4360                     // form the path
4361                     let mut path_segments = path_segments.clone();
4362                     path_segments.push(ast::PathSegment::from_ident(ident));
4363
4364                     let is_extern_crate_that_also_appears_in_prelude =
4365                         name_binding.is_extern_crate() &&
4366                         self.session.rust_2018();
4367
4368                     let is_visible_to_user =
4369                         !in_module_is_extern || name_binding.vis == ty::Visibility::Public;
4370
4371                     if !is_extern_crate_that_also_appears_in_prelude && is_visible_to_user {
4372                         // add the module to the lookup
4373                         let is_extern = in_module_is_extern || name_binding.is_extern_crate();
4374                         if seen_modules.insert(module.def_id().unwrap()) {
4375                             worklist.push((module, path_segments, is_extern));
4376                         }
4377                     }
4378                 }
4379             })
4380         }
4381
4382         candidates
4383     }
4384
4385     /// When name resolution fails, this method can be used to look up candidate
4386     /// entities with the expected name. It allows filtering them using the
4387     /// supplied predicate (which should be used to only accept the types of
4388     /// definitions expected e.g. traits). The lookup spans across all crates.
4389     ///
4390     /// NOTE: The method does not look into imports, but this is not a problem,
4391     /// since we report the definitions (thus, the de-aliased imports).
4392     fn lookup_import_candidates<FilterFn>(&mut self,
4393                                           lookup_name: Name,
4394                                           namespace: Namespace,
4395                                           filter_fn: FilterFn)
4396                                           -> Vec<ImportSuggestion>
4397         where FilterFn: Fn(Def) -> bool
4398     {
4399         let mut suggestions = vec![];
4400
4401         suggestions.extend(
4402             self.lookup_import_candidates_from_module(
4403                 lookup_name, namespace, self.graph_root, keywords::Crate.ident(), &filter_fn
4404             )
4405         );
4406
4407         if self.session.features_untracked().extern_prelude {
4408             let extern_prelude_names = self.extern_prelude.clone();
4409             for &krate_name in extern_prelude_names.iter() {
4410                 let krate_ident = Ident::with_empty_ctxt(krate_name);
4411                 let external_prelude_module = self.load_extern_prelude_crate_if_needed(krate_ident);
4412
4413                 suggestions.extend(
4414                     self.lookup_import_candidates_from_module(
4415                         lookup_name, namespace, external_prelude_module, krate_ident, &filter_fn
4416                     )
4417                 );
4418             }
4419         }
4420
4421         suggestions
4422     }
4423
4424     fn find_module(&mut self,
4425                    module_def: Def)
4426                    -> Option<(Module<'a>, ImportSuggestion)>
4427     {
4428         let mut result = None;
4429         let mut worklist = Vec::new();
4430         let mut seen_modules = FxHashSet();
4431         worklist.push((self.graph_root, Vec::new()));
4432
4433         while let Some((in_module, path_segments)) = worklist.pop() {
4434             // abort if the module is already found
4435             if result.is_some() { break; }
4436
4437             self.populate_module_if_necessary(in_module);
4438
4439             in_module.for_each_child_stable(|ident, _, name_binding| {
4440                 // abort if the module is already found or if name_binding is private external
4441                 if result.is_some() || !name_binding.vis.is_visible_locally() {
4442                     return
4443                 }
4444                 if let Some(module) = name_binding.module() {
4445                     // form the path
4446                     let mut path_segments = path_segments.clone();
4447                     path_segments.push(ast::PathSegment::from_ident(ident));
4448                     if module.def() == Some(module_def) {
4449                         let path = Path {
4450                             span: name_binding.span,
4451                             segments: path_segments,
4452                         };
4453                         result = Some((module, ImportSuggestion { path: path }));
4454                     } else {
4455                         // add the module to the lookup
4456                         if seen_modules.insert(module.def_id().unwrap()) {
4457                             worklist.push((module, path_segments));
4458                         }
4459                     }
4460                 }
4461             });
4462         }
4463
4464         result
4465     }
4466
4467     fn collect_enum_variants(&mut self, enum_def: Def) -> Option<Vec<Path>> {
4468         if let Def::Enum(..) = enum_def {} else {
4469             panic!("Non-enum def passed to collect_enum_variants: {:?}", enum_def)
4470         }
4471
4472         self.find_module(enum_def).map(|(enum_module, enum_import_suggestion)| {
4473             self.populate_module_if_necessary(enum_module);
4474
4475             let mut variants = Vec::new();
4476             enum_module.for_each_child_stable(|ident, _, name_binding| {
4477                 if let Def::Variant(..) = name_binding.def() {
4478                     let mut segms = enum_import_suggestion.path.segments.clone();
4479                     segms.push(ast::PathSegment::from_ident(ident));
4480                     variants.push(Path {
4481                         span: name_binding.span,
4482                         segments: segms,
4483                     });
4484                 }
4485             });
4486             variants
4487         })
4488     }
4489
4490     fn record_def(&mut self, node_id: NodeId, resolution: PathResolution) {
4491         debug!("(recording def) recording {:?} for {}", resolution, node_id);
4492         if let Some(prev_res) = self.def_map.insert(node_id, resolution) {
4493             panic!("path resolved multiple times ({:?} before, {:?} now)", prev_res, resolution);
4494         }
4495     }
4496
4497     fn resolve_visibility(&mut self, vis: &ast::Visibility) -> ty::Visibility {
4498         match vis.node {
4499             ast::VisibilityKind::Public => ty::Visibility::Public,
4500             ast::VisibilityKind::Crate(..) => {
4501                 ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX))
4502             }
4503             ast::VisibilityKind::Inherited => {
4504                 ty::Visibility::Restricted(self.current_module.normal_ancestor_id)
4505             }
4506             ast::VisibilityKind::Restricted { ref path, id, .. } => {
4507                 // Visibilities are resolved as global by default, add starting root segment.
4508                 let segments = path.make_root().iter().chain(path.segments.iter())
4509                     .map(|seg| seg.ident)
4510                     .collect::<Vec<_>>();
4511                 let def = self.smart_resolve_path_fragment(
4512                     id,
4513                     None,
4514                     &segments,
4515                     path.span,
4516                     PathSource::Visibility,
4517                     CrateLint::SimplePath(id),
4518                 ).base_def();
4519                 if def == Def::Err {
4520                     ty::Visibility::Public
4521                 } else {
4522                     let vis = ty::Visibility::Restricted(def.def_id());
4523                     if self.is_accessible(vis) {
4524                         vis
4525                     } else {
4526                         self.session.span_err(path.span, "visibilities can only be restricted \
4527                                                           to ancestor modules");
4528                         ty::Visibility::Public
4529                     }
4530                 }
4531             }
4532         }
4533     }
4534
4535     fn is_accessible(&self, vis: ty::Visibility) -> bool {
4536         vis.is_accessible_from(self.current_module.normal_ancestor_id, self)
4537     }
4538
4539     fn is_accessible_from(&self, vis: ty::Visibility, module: Module<'a>) -> bool {
4540         vis.is_accessible_from(module.normal_ancestor_id, self)
4541     }
4542
4543     fn report_ambiguity_error(&self, ident: Ident, b1: &NameBinding, b2: &NameBinding) {
4544         let participle = |is_import: bool| if is_import { "imported" } else { "defined" };
4545         let msg1 =
4546             format!("`{}` could refer to the name {} here", ident, participle(b1.is_import()));
4547         let msg2 =
4548             format!("`{}` could also refer to the name {} here", ident, participle(b2.is_import()));
4549         let note = if b1.expansion != Mark::root() {
4550             Some(if let Def::Macro(..) = b1.def() {
4551                 format!("macro-expanded {} do not shadow",
4552                         if b1.is_import() { "macro imports" } else { "macros" })
4553             } else {
4554                 format!("macro-expanded {} do not shadow when used in a macro invocation path",
4555                         if b1.is_import() { "imports" } else { "items" })
4556             })
4557         } else if b1.is_glob_import() {
4558             Some(format!("consider adding an explicit import of `{}` to disambiguate", ident))
4559         } else {
4560             None
4561         };
4562
4563         let mut err = struct_span_err!(self.session, ident.span, E0659, "`{}` is ambiguous", ident);
4564         err.span_label(ident.span, "ambiguous name");
4565         err.span_note(b1.span, &msg1);
4566         match b2.def() {
4567             Def::Macro(..) if b2.span.is_dummy() =>
4568                 err.note(&format!("`{}` is also a builtin macro", ident)),
4569             _ => err.span_note(b2.span, &msg2),
4570         };
4571         if let Some(note) = note {
4572             err.note(&note);
4573         }
4574         err.emit();
4575     }
4576
4577     fn report_errors(&mut self, krate: &Crate) {
4578         self.report_with_use_injections(krate);
4579         self.report_proc_macro_import(krate);
4580         let mut reported_spans = FxHashSet();
4581
4582         for &(span_use, span_def) in &self.macro_expanded_macro_export_errors {
4583             let msg = "macro-expanded `macro_export` macros from the current crate \
4584                        cannot be referred to by absolute paths";
4585             self.session.buffer_lint_with_diagnostic(
4586                 lint::builtin::MACRO_EXPANDED_MACRO_EXPORTS_ACCESSED_BY_ABSOLUTE_PATHS,
4587                 CRATE_NODE_ID, span_use, msg,
4588                 lint::builtin::BuiltinLintDiagnostics::
4589                     MacroExpandedMacroExportsAccessedByAbsolutePaths(span_def),
4590             );
4591         }
4592
4593         for &AmbiguityError { ident, b1, b2 } in &self.ambiguity_errors {
4594             if reported_spans.insert(ident.span) {
4595                 self.report_ambiguity_error(ident, b1, b2);
4596             }
4597         }
4598
4599         for &PrivacyError(span, name, binding) in &self.privacy_errors {
4600             if !reported_spans.insert(span) { continue }
4601             span_err!(self.session, span, E0603, "{} `{}` is private", binding.descr(), name);
4602         }
4603     }
4604
4605     fn report_with_use_injections(&mut self, krate: &Crate) {
4606         for UseError { mut err, candidates, node_id, better } in self.use_injections.drain(..) {
4607             let (span, found_use) = UsePlacementFinder::check(krate, node_id);
4608             if !candidates.is_empty() {
4609                 show_candidates(&mut err, span, &candidates, better, found_use);
4610             }
4611             err.emit();
4612         }
4613     }
4614
4615     fn report_conflict<'b>(&mut self,
4616                        parent: Module,
4617                        ident: Ident,
4618                        ns: Namespace,
4619                        new_binding: &NameBinding<'b>,
4620                        old_binding: &NameBinding<'b>) {
4621         // Error on the second of two conflicting names
4622         if old_binding.span.lo() > new_binding.span.lo() {
4623             return self.report_conflict(parent, ident, ns, old_binding, new_binding);
4624         }
4625
4626         let container = match parent.kind {
4627             ModuleKind::Def(Def::Mod(_), _) => "module",
4628             ModuleKind::Def(Def::Trait(_), _) => "trait",
4629             ModuleKind::Block(..) => "block",
4630             _ => "enum",
4631         };
4632
4633         let old_noun = match old_binding.is_import() {
4634             true => "import",
4635             false => "definition",
4636         };
4637
4638         let new_participle = match new_binding.is_import() {
4639             true => "imported",
4640             false => "defined",
4641         };
4642
4643         let (name, span) = (ident.name, self.session.source_map().def_span(new_binding.span));
4644
4645         if let Some(s) = self.name_already_seen.get(&name) {
4646             if s == &span {
4647                 return;
4648             }
4649         }
4650
4651         let old_kind = match (ns, old_binding.module()) {
4652             (ValueNS, _) => "value",
4653             (MacroNS, _) => "macro",
4654             (TypeNS, _) if old_binding.is_extern_crate() => "extern crate",
4655             (TypeNS, Some(module)) if module.is_normal() => "module",
4656             (TypeNS, Some(module)) if module.is_trait() => "trait",
4657             (TypeNS, _) => "type",
4658         };
4659
4660         let msg = format!("the name `{}` is defined multiple times", name);
4661
4662         let mut err = match (old_binding.is_extern_crate(), new_binding.is_extern_crate()) {
4663             (true, true) => struct_span_err!(self.session, span, E0259, "{}", msg),
4664             (true, _) | (_, true) => match new_binding.is_import() && old_binding.is_import() {
4665                 true => struct_span_err!(self.session, span, E0254, "{}", msg),
4666                 false => struct_span_err!(self.session, span, E0260, "{}", msg),
4667             },
4668             _ => match (old_binding.is_import(), new_binding.is_import()) {
4669                 (false, false) => struct_span_err!(self.session, span, E0428, "{}", msg),
4670                 (true, true) => struct_span_err!(self.session, span, E0252, "{}", msg),
4671                 _ => struct_span_err!(self.session, span, E0255, "{}", msg),
4672             },
4673         };
4674
4675         err.note(&format!("`{}` must be defined only once in the {} namespace of this {}",
4676                           name,
4677                           ns.descr(),
4678                           container));
4679
4680         err.span_label(span, format!("`{}` re{} here", name, new_participle));
4681         if !old_binding.span.is_dummy() {
4682             err.span_label(self.session.source_map().def_span(old_binding.span),
4683                            format!("previous {} of the {} `{}` here", old_noun, old_kind, name));
4684         }
4685
4686         // See https://github.com/rust-lang/rust/issues/32354
4687         if old_binding.is_import() || new_binding.is_import() {
4688             let binding = if new_binding.is_import() && !new_binding.span.is_dummy() {
4689                 new_binding
4690             } else {
4691                 old_binding
4692             };
4693
4694             let cm = self.session.source_map();
4695             let rename_msg = "You can use `as` to change the binding name of the import";
4696
4697             if let (Ok(snippet), false) = (cm.span_to_snippet(binding.span),
4698                                            binding.is_renamed_extern_crate()) {
4699                 let suggested_name = if name.as_str().chars().next().unwrap().is_uppercase() {
4700                     format!("Other{}", name)
4701                 } else {
4702                     format!("other_{}", name)
4703                 };
4704
4705                 err.span_suggestion_with_applicability(
4706                     binding.span,
4707                     rename_msg,
4708                     if snippet.ends_with(';') {
4709                         format!("{} as {};", &snippet[..snippet.len() - 1], suggested_name)
4710                     } else {
4711                         format!("{} as {}", snippet, suggested_name)
4712                     },
4713                     Applicability::MachineApplicable,
4714                 );
4715             } else {
4716                 err.span_label(binding.span, rename_msg);
4717             }
4718         }
4719
4720         err.emit();
4721         self.name_already_seen.insert(name, span);
4722     }
4723 }
4724
4725 fn is_self_type(path: &[Ident], namespace: Namespace) -> bool {
4726     namespace == TypeNS && path.len() == 1 && path[0].name == keywords::SelfType.name()
4727 }
4728
4729 fn is_self_value(path: &[Ident], namespace: Namespace) -> bool {
4730     namespace == ValueNS && path.len() == 1 && path[0].name == keywords::SelfValue.name()
4731 }
4732
4733 fn names_to_string(idents: &[Ident]) -> String {
4734     let mut result = String::new();
4735     for (i, ident) in idents.iter()
4736                             .filter(|ident| ident.name != keywords::CrateRoot.name())
4737                             .enumerate() {
4738         if i > 0 {
4739             result.push_str("::");
4740         }
4741         result.push_str(&ident.as_str());
4742     }
4743     result
4744 }
4745
4746 fn path_names_to_string(path: &Path) -> String {
4747     names_to_string(&path.segments.iter()
4748                         .map(|seg| seg.ident)
4749                         .collect::<Vec<_>>())
4750 }
4751
4752 /// Get the path for an enum and the variant from an `ImportSuggestion` for an enum variant.
4753 fn import_candidate_to_paths(suggestion: &ImportSuggestion) -> (Span, String, String) {
4754     let variant_path = &suggestion.path;
4755     let variant_path_string = path_names_to_string(variant_path);
4756
4757     let path_len = suggestion.path.segments.len();
4758     let enum_path = ast::Path {
4759         span: suggestion.path.span,
4760         segments: suggestion.path.segments[0..path_len - 1].to_vec(),
4761     };
4762     let enum_path_string = path_names_to_string(&enum_path);
4763
4764     (suggestion.path.span, variant_path_string, enum_path_string)
4765 }
4766
4767
4768 /// When an entity with a given name is not available in scope, we search for
4769 /// entities with that name in all crates. This method allows outputting the
4770 /// results of this search in a programmer-friendly way
4771 fn show_candidates(err: &mut DiagnosticBuilder,
4772                    // This is `None` if all placement locations are inside expansions
4773                    span: Option<Span>,
4774                    candidates: &[ImportSuggestion],
4775                    better: bool,
4776                    found_use: bool) {
4777
4778     // we want consistent results across executions, but candidates are produced
4779     // by iterating through a hash map, so make sure they are ordered:
4780     let mut path_strings: Vec<_> =
4781         candidates.into_iter().map(|c| path_names_to_string(&c.path)).collect();
4782     path_strings.sort();
4783
4784     let better = if better { "better " } else { "" };
4785     let msg_diff = match path_strings.len() {
4786         1 => " is found in another module, you can import it",
4787         _ => "s are found in other modules, you can import them",
4788     };
4789     let msg = format!("possible {}candidate{} into scope", better, msg_diff);
4790
4791     if let Some(span) = span {
4792         for candidate in &mut path_strings {
4793             // produce an additional newline to separate the new use statement
4794             // from the directly following item.
4795             let additional_newline = if found_use {
4796                 ""
4797             } else {
4798                 "\n"
4799             };
4800             *candidate = format!("use {};\n{}", candidate, additional_newline);
4801         }
4802
4803         err.span_suggestions(span, &msg, path_strings);
4804     } else {
4805         let mut msg = msg;
4806         msg.push(':');
4807         for candidate in path_strings {
4808             msg.push('\n');
4809             msg.push_str(&candidate);
4810         }
4811     }
4812 }
4813
4814 /// A somewhat inefficient routine to obtain the name of a module.
4815 fn module_to_string(module: Module) -> Option<String> {
4816     let mut names = Vec::new();
4817
4818     fn collect_mod(names: &mut Vec<Ident>, module: Module) {
4819         if let ModuleKind::Def(_, name) = module.kind {
4820             if let Some(parent) = module.parent {
4821                 names.push(Ident::with_empty_ctxt(name));
4822                 collect_mod(names, parent);
4823             }
4824         } else {
4825             // danger, shouldn't be ident?
4826             names.push(Ident::from_str("<opaque>"));
4827             collect_mod(names, module.parent.unwrap());
4828         }
4829     }
4830     collect_mod(&mut names, module);
4831
4832     if names.is_empty() {
4833         return None;
4834     }
4835     Some(names_to_string(&names.into_iter()
4836                         .rev()
4837                         .collect::<Vec<_>>()))
4838 }
4839
4840 fn err_path_resolution() -> PathResolution {
4841     PathResolution::new(Def::Err)
4842 }
4843
4844 #[derive(PartialEq,Copy, Clone)]
4845 pub enum MakeGlobMap {
4846     Yes,
4847     No,
4848 }
4849
4850 #[derive(Copy, Clone, Debug)]
4851 enum CrateLint {
4852     /// Do not issue the lint
4853     No,
4854
4855     /// This lint applies to some random path like `impl ::foo::Bar`
4856     /// or whatever. In this case, we can take the span of that path.
4857     SimplePath(NodeId),
4858
4859     /// This lint comes from a `use` statement. In this case, what we
4860     /// care about really is the *root* `use` statement; e.g., if we
4861     /// have nested things like `use a::{b, c}`, we care about the
4862     /// `use a` part.
4863     UsePath { root_id: NodeId, root_span: Span },
4864
4865     /// This is the "trait item" from a fully qualified path. For example,
4866     /// we might be resolving  `X::Y::Z` from a path like `<T as X::Y>::Z`.
4867     /// The `path_span` is the span of the to the trait itself (`X::Y`).
4868     QPathTrait { qpath_id: NodeId, qpath_span: Span },
4869 }
4870
4871 impl CrateLint {
4872     fn node_id(&self) -> Option<NodeId> {
4873         match *self {
4874             CrateLint::No => None,
4875             CrateLint::SimplePath(id) |
4876             CrateLint::UsePath { root_id: id, .. } |
4877             CrateLint::QPathTrait { qpath_id: id, .. } => Some(id),
4878         }
4879     }
4880 }
4881
4882 __build_diagnostic_array! { librustc_resolve, DIAGNOSTICS }