]> git.lizzy.rs Git - rust.git/blob - src/librustc_resolve/lib.rs
8cf3c0f8843a855787c116e60e986abfa7958b34
[rust.git] / src / librustc_resolve / lib.rs
1 // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 #![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
12        html_favicon_url = "https://doc.rust-lang.org/favicon.ico",
13        html_root_url = "https://doc.rust-lang.org/nightly/")]
14
15 #![feature(crate_visibility_modifier)]
16 #![feature(nll)]
17 #![feature(rustc_diagnostic_macros)]
18 #![feature(slice_sort_by_cached_key)]
19
20 #[macro_use]
21 extern crate bitflags;
22 #[macro_use]
23 extern crate log;
24 #[macro_use]
25 extern crate syntax;
26 extern crate syntax_pos;
27 extern crate rustc_errors as errors;
28 extern crate arena;
29 #[macro_use]
30 extern crate rustc;
31 extern crate rustc_data_structures;
32 extern crate rustc_metadata;
33
34 pub use rustc::hir::def::{Namespace, PerNS};
35
36 use self::TypeParameters::*;
37 use self::RibKind::*;
38
39 use rustc::hir::map::{Definitions, DefCollector};
40 use rustc::hir::{self, PrimTy, Bool, Char, Float, Int, Uint, Str};
41 use rustc::middle::cstore::CrateStore;
42 use rustc::session::Session;
43 use rustc::lint;
44 use rustc::hir::def::*;
45 use rustc::hir::def::Namespace::*;
46 use rustc::hir::def_id::{CRATE_DEF_INDEX, LOCAL_CRATE, DefId};
47 use rustc::hir::{Freevar, FreevarMap, TraitCandidate, TraitMap, GlobMap};
48 use rustc::session::config::nightly_options;
49 use rustc::ty;
50 use rustc::util::nodemap::{NodeMap, NodeSet, FxHashMap, FxHashSet, DefIdMap};
51
52 use rustc_metadata::creader::CrateLoader;
53 use rustc_metadata::cstore::CStore;
54
55 use syntax::source_map::SourceMap;
56 use syntax::ext::hygiene::{Mark, Transparency, SyntaxContext};
57 use syntax::ast::{self, Name, NodeId, Ident, FloatTy, IntTy, UintTy};
58 use syntax::ext::base::SyntaxExtension;
59 use syntax::ext::base::Determinacy::{self, Determined, Undetermined};
60 use syntax::ext::base::MacroKind;
61 use syntax::symbol::{Symbol, keywords};
62 use syntax::util::lev_distance::find_best_match_for_name;
63
64 use syntax::visit::{self, FnKind, Visitor};
65 use syntax::attr;
66 use syntax::ast::{CRATE_NODE_ID, Arm, IsAsync, BindingMode, Block, Crate, Expr, ExprKind};
67 use syntax::ast::{FnDecl, ForeignItem, ForeignItemKind, GenericParamKind, Generics};
68 use syntax::ast::{Item, ItemKind, ImplItem, ImplItemKind};
69 use syntax::ast::{Label, Local, Mutability, Pat, PatKind, Path};
70 use syntax::ast::{QSelf, TraitItemKind, TraitRef, Ty, TyKind};
71 use syntax::ptr::P;
72
73 use syntax_pos::{Span, DUMMY_SP, MultiSpan};
74 use errors::{Applicability, DiagnosticBuilder, DiagnosticId};
75
76 use std::cell::{Cell, RefCell};
77 use std::{cmp, fmt, iter, ptr};
78 use std::collections::BTreeSet;
79 use std::mem::replace;
80 use rustc_data_structures::ptr_key::PtrKey;
81 use rustc_data_structures::sync::Lrc;
82
83 use resolve_imports::{ImportDirective, ImportDirectiveSubclass, NameResolution, ImportResolver};
84 use macros::{InvocationData, LegacyBinding, ParentScope};
85
86 // NB: This module needs to be declared first so diagnostics are
87 // registered before they are used.
88 mod diagnostics;
89 mod error_reporting;
90 mod macros;
91 mod check_unused;
92 mod build_reduced_graph;
93 mod resolve_imports;
94
95 fn is_known_tool(name: Name) -> bool {
96     ["clippy", "rustfmt"].contains(&&*name.as_str())
97 }
98
99 /// A free importable items suggested in case of resolution failure.
100 struct ImportSuggestion {
101     path: Path,
102 }
103
104 /// A field or associated item from self type suggested in case of resolution failure.
105 enum AssocSuggestion {
106     Field,
107     MethodWithSelf,
108     AssocItem,
109 }
110
111 #[derive(Eq)]
112 struct BindingError {
113     name: Name,
114     origin: BTreeSet<Span>,
115     target: BTreeSet<Span>,
116 }
117
118 impl PartialOrd for BindingError {
119     fn partial_cmp(&self, other: &BindingError) -> Option<cmp::Ordering> {
120         Some(self.cmp(other))
121     }
122 }
123
124 impl PartialEq for BindingError {
125     fn eq(&self, other: &BindingError) -> bool {
126         self.name == other.name
127     }
128 }
129
130 impl Ord for BindingError {
131     fn cmp(&self, other: &BindingError) -> cmp::Ordering {
132         self.name.cmp(&other.name)
133     }
134 }
135
136 enum ResolutionError<'a> {
137     /// error E0401: can't use type parameters from outer function
138     TypeParametersFromOuterFunction(Def),
139     /// error E0403: the name is already used for a type parameter in this type parameter list
140     NameAlreadyUsedInTypeParameterList(Name, &'a Span),
141     /// error E0407: method is not a member of trait
142     MethodNotMemberOfTrait(Name, &'a str),
143     /// error E0437: type is not a member of trait
144     TypeNotMemberOfTrait(Name, &'a str),
145     /// error E0438: const is not a member of trait
146     ConstNotMemberOfTrait(Name, &'a str),
147     /// error E0408: variable `{}` is not bound in all patterns
148     VariableNotBoundInPattern(&'a BindingError),
149     /// error E0409: variable `{}` is bound in inconsistent ways within the same match arm
150     VariableBoundWithDifferentMode(Name, Span),
151     /// error E0415: identifier is bound more than once in this parameter list
152     IdentifierBoundMoreThanOnceInParameterList(&'a str),
153     /// error E0416: identifier is bound more than once in the same pattern
154     IdentifierBoundMoreThanOnceInSamePattern(&'a str),
155     /// error E0426: use of undeclared label
156     UndeclaredLabel(&'a str, Option<Name>),
157     /// error E0429: `self` imports are only allowed within a { } list
158     SelfImportsOnlyAllowedWithin,
159     /// error E0430: `self` import can only appear once in the list
160     SelfImportCanOnlyAppearOnceInTheList,
161     /// error E0431: `self` import can only appear in an import list with a non-empty prefix
162     SelfImportOnlyInImportListWithNonEmptyPrefix,
163     /// error E0433: failed to resolve
164     FailedToResolve(&'a str),
165     /// error E0434: can't capture dynamic environment in a fn item
166     CannotCaptureDynamicEnvironmentInFnItem,
167     /// error E0435: attempt to use a non-constant value in a constant
168     AttemptToUseNonConstantValueInConstant,
169     /// error E0530: X bindings cannot shadow Ys
170     BindingShadowsSomethingUnacceptable(&'a str, Name, &'a NameBinding<'a>),
171     /// error E0128: type parameters with a default cannot use forward declared identifiers
172     ForwardDeclaredTyParam,
173 }
174
175 /// Combines an error with provided span and emits it
176 ///
177 /// This takes the error provided, combines it with the span and any additional spans inside the
178 /// error and emits it.
179 fn resolve_error<'sess, 'a>(resolver: &'sess Resolver,
180                             span: Span,
181                             resolution_error: ResolutionError<'a>) {
182     resolve_struct_error(resolver, span, resolution_error).emit();
183 }
184
185 fn resolve_struct_error<'sess, 'a>(resolver: &'sess Resolver,
186                                    span: Span,
187                                    resolution_error: ResolutionError<'a>)
188                                    -> DiagnosticBuilder<'sess> {
189     match resolution_error {
190         ResolutionError::TypeParametersFromOuterFunction(outer_def) => {
191             let mut err = struct_span_err!(resolver.session,
192                                            span,
193                                            E0401,
194                                            "can't use type parameters from outer function");
195             err.span_label(span, "use of type variable from outer function");
196
197             let cm = resolver.session.source_map();
198             match outer_def {
199                 Def::SelfTy(maybe_trait_defid, maybe_impl_defid) => {
200                     if let Some(impl_span) = maybe_impl_defid.and_then(|def_id| {
201                         resolver.definitions.opt_span(def_id)
202                     }) {
203                         err.span_label(
204                             reduce_impl_span_to_impl_keyword(cm, impl_span),
205                             "`Self` type implicitly declared here, by this `impl`",
206                         );
207                     }
208                     match (maybe_trait_defid, maybe_impl_defid) {
209                         (Some(_), None) => {
210                             err.span_label(span, "can't use `Self` here");
211                         }
212                         (_, Some(_)) => {
213                             err.span_label(span, "use a type here instead");
214                         }
215                         (None, None) => bug!("`impl` without trait nor type?"),
216                     }
217                     return err;
218                 },
219                 Def::TyParam(typaram_defid) => {
220                     if let Some(typaram_span) = resolver.definitions.opt_span(typaram_defid) {
221                         err.span_label(typaram_span, "type variable from outer function");
222                     }
223                 },
224                 _ => {
225                     bug!("TypeParametersFromOuterFunction should only be used with Def::SelfTy or \
226                          Def::TyParam")
227                 }
228             }
229
230             // Try to retrieve the span of the function signature and generate a new message with
231             // a local type parameter
232             let sugg_msg = "try using a local type parameter instead";
233             if let Some((sugg_span, new_snippet)) = cm.generate_local_type_param_snippet(span) {
234                 // Suggest the modification to the user
235                 err.span_suggestion_with_applicability(
236                     sugg_span,
237                     sugg_msg,
238                     new_snippet,
239                     Applicability::MachineApplicable,
240                 );
241             } else if let Some(sp) = cm.generate_fn_name_span(span) {
242                 err.span_label(sp, "try adding a local type parameter in this method instead");
243             } else {
244                 err.help("try using a local type parameter instead");
245             }
246
247             err
248         }
249         ResolutionError::NameAlreadyUsedInTypeParameterList(name, first_use_span) => {
250              let mut err = struct_span_err!(resolver.session,
251                                             span,
252                                             E0403,
253                                             "the name `{}` is already used for a type parameter \
254                                             in this type parameter list",
255                                             name);
256              err.span_label(span, "already used");
257              err.span_label(first_use_span.clone(), format!("first use of `{}`", name));
258              err
259         }
260         ResolutionError::MethodNotMemberOfTrait(method, trait_) => {
261             let mut err = struct_span_err!(resolver.session,
262                                            span,
263                                            E0407,
264                                            "method `{}` is not a member of trait `{}`",
265                                            method,
266                                            trait_);
267             err.span_label(span, format!("not a member of trait `{}`", trait_));
268             err
269         }
270         ResolutionError::TypeNotMemberOfTrait(type_, trait_) => {
271             let mut err = struct_span_err!(resolver.session,
272                              span,
273                              E0437,
274                              "type `{}` is not a member of trait `{}`",
275                              type_,
276                              trait_);
277             err.span_label(span, format!("not a member of trait `{}`", trait_));
278             err
279         }
280         ResolutionError::ConstNotMemberOfTrait(const_, trait_) => {
281             let mut err = struct_span_err!(resolver.session,
282                              span,
283                              E0438,
284                              "const `{}` is not a member of trait `{}`",
285                              const_,
286                              trait_);
287             err.span_label(span, format!("not a member of trait `{}`", trait_));
288             err
289         }
290         ResolutionError::VariableNotBoundInPattern(binding_error) => {
291             let target_sp = binding_error.target.iter().cloned().collect::<Vec<_>>();
292             let msp = MultiSpan::from_spans(target_sp.clone());
293             let msg = format!("variable `{}` is not bound in all patterns", binding_error.name);
294             let mut err = resolver.session.struct_span_err_with_code(
295                 msp,
296                 &msg,
297                 DiagnosticId::Error("E0408".into()),
298             );
299             for sp in target_sp {
300                 err.span_label(sp, format!("pattern doesn't bind `{}`", binding_error.name));
301             }
302             let origin_sp = binding_error.origin.iter().cloned();
303             for sp in origin_sp {
304                 err.span_label(sp, "variable not in all patterns");
305             }
306             err
307         }
308         ResolutionError::VariableBoundWithDifferentMode(variable_name,
309                                                         first_binding_span) => {
310             let mut err = struct_span_err!(resolver.session,
311                              span,
312                              E0409,
313                              "variable `{}` is bound in inconsistent \
314                              ways within the same match arm",
315                              variable_name);
316             err.span_label(span, "bound in different ways");
317             err.span_label(first_binding_span, "first binding");
318             err
319         }
320         ResolutionError::IdentifierBoundMoreThanOnceInParameterList(identifier) => {
321             let mut err = struct_span_err!(resolver.session,
322                              span,
323                              E0415,
324                              "identifier `{}` is bound more than once in this parameter list",
325                              identifier);
326             err.span_label(span, "used as parameter more than once");
327             err
328         }
329         ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(identifier) => {
330             let mut err = struct_span_err!(resolver.session,
331                              span,
332                              E0416,
333                              "identifier `{}` is bound more than once in the same pattern",
334                              identifier);
335             err.span_label(span, "used in a pattern more than once");
336             err
337         }
338         ResolutionError::UndeclaredLabel(name, lev_candidate) => {
339             let mut err = struct_span_err!(resolver.session,
340                                            span,
341                                            E0426,
342                                            "use of undeclared label `{}`",
343                                            name);
344             if let Some(lev_candidate) = lev_candidate {
345                 err.span_label(span, format!("did you mean `{}`?", lev_candidate));
346             } else {
347                 err.span_label(span, format!("undeclared label `{}`", name));
348             }
349             err
350         }
351         ResolutionError::SelfImportsOnlyAllowedWithin => {
352             struct_span_err!(resolver.session,
353                              span,
354                              E0429,
355                              "{}",
356                              "`self` imports are only allowed within a { } list")
357         }
358         ResolutionError::SelfImportCanOnlyAppearOnceInTheList => {
359             let mut err = struct_span_err!(resolver.session, span, E0430,
360                                            "`self` import can only appear once in an import list");
361             err.span_label(span, "can only appear once in an import list");
362             err
363         }
364         ResolutionError::SelfImportOnlyInImportListWithNonEmptyPrefix => {
365             let mut err = struct_span_err!(resolver.session, span, E0431,
366                                            "`self` import can only appear in an import list with \
367                                             a non-empty prefix");
368             err.span_label(span, "can only appear in an import list with a non-empty prefix");
369             err
370         }
371         ResolutionError::FailedToResolve(msg) => {
372             let mut err = struct_span_err!(resolver.session, span, E0433,
373                                            "failed to resolve. {}", msg);
374             err.span_label(span, msg);
375             err
376         }
377         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem => {
378             let mut err = struct_span_err!(resolver.session,
379                                            span,
380                                            E0434,
381                                            "{}",
382                                            "can't capture dynamic environment in a fn item");
383             err.help("use the `|| { ... }` closure form instead");
384             err
385         }
386         ResolutionError::AttemptToUseNonConstantValueInConstant => {
387             let mut err = struct_span_err!(resolver.session, span, E0435,
388                                            "attempt to use a non-constant value in a constant");
389             err.span_label(span, "non-constant value");
390             err
391         }
392         ResolutionError::BindingShadowsSomethingUnacceptable(what_binding, name, binding) => {
393             let shadows_what = PathResolution::new(binding.def()).kind_name();
394             let mut err = struct_span_err!(resolver.session,
395                                            span,
396                                            E0530,
397                                            "{}s cannot shadow {}s", what_binding, shadows_what);
398             err.span_label(span, format!("cannot be named the same as a {}", shadows_what));
399             let participle = if binding.is_import() { "imported" } else { "defined" };
400             let msg = format!("a {} `{}` is {} here", shadows_what, name, participle);
401             err.span_label(binding.span, msg);
402             err
403         }
404         ResolutionError::ForwardDeclaredTyParam => {
405             let mut err = struct_span_err!(resolver.session, span, E0128,
406                                            "type parameters with a default cannot use \
407                                             forward declared identifiers");
408             err.span_label(
409                 span, "defaulted type parameters cannot be forward declared".to_string());
410             err
411         }
412     }
413 }
414
415 /// Adjust the impl span so that just the `impl` keyword is taken by removing
416 /// everything after `<` (`"impl<T> Iterator for A<T> {}" -> "impl"`) and
417 /// everything after the first whitespace (`"impl Iterator for A" -> "impl"`)
418 ///
419 /// Attention: The method used is very fragile since it essentially duplicates the work of the
420 /// parser. If you need to use this function or something similar, please consider updating the
421 /// source_map functions and this function to something more robust.
422 fn reduce_impl_span_to_impl_keyword(cm: &SourceMap, impl_span: Span) -> Span {
423     let impl_span = cm.span_until_char(impl_span, '<');
424     let impl_span = cm.span_until_whitespace(impl_span);
425     impl_span
426 }
427
428 #[derive(Copy, Clone, Debug)]
429 struct BindingInfo {
430     span: Span,
431     binding_mode: BindingMode,
432 }
433
434 /// Map from the name in a pattern to its binding mode.
435 type BindingMap = FxHashMap<Ident, BindingInfo>;
436
437 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
438 enum PatternSource {
439     Match,
440     IfLet,
441     WhileLet,
442     Let,
443     For,
444     FnParam,
445 }
446
447 impl PatternSource {
448     fn descr(self) -> &'static str {
449         match self {
450             PatternSource::Match => "match binding",
451             PatternSource::IfLet => "if let binding",
452             PatternSource::WhileLet => "while let binding",
453             PatternSource::Let => "let binding",
454             PatternSource::For => "for binding",
455             PatternSource::FnParam => "function parameter",
456         }
457     }
458 }
459
460 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
461 enum AliasPossibility {
462     No,
463     Maybe,
464 }
465
466 #[derive(Copy, Clone, Debug)]
467 enum PathSource<'a> {
468     // Type paths `Path`.
469     Type,
470     // Trait paths in bounds or impls.
471     Trait(AliasPossibility),
472     // Expression paths `path`, with optional parent context.
473     Expr(Option<&'a Expr>),
474     // Paths in path patterns `Path`.
475     Pat,
476     // Paths in struct expressions and patterns `Path { .. }`.
477     Struct,
478     // Paths in tuple struct patterns `Path(..)`.
479     TupleStruct,
480     // `m::A::B` in `<T as m::A>::B::C`.
481     TraitItem(Namespace),
482     // Path in `pub(path)`
483     Visibility,
484     // Path in `use a::b::{...};`
485     ImportPrefix,
486 }
487
488 impl<'a> PathSource<'a> {
489     fn namespace(self) -> Namespace {
490         match self {
491             PathSource::Type | PathSource::Trait(_) | PathSource::Struct |
492             PathSource::Visibility | PathSource::ImportPrefix => TypeNS,
493             PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct => ValueNS,
494             PathSource::TraitItem(ns) => ns,
495         }
496     }
497
498     fn global_by_default(self) -> bool {
499         match self {
500             PathSource::Visibility | PathSource::ImportPrefix => true,
501             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
502             PathSource::Struct | PathSource::TupleStruct |
503             PathSource::Trait(_) | PathSource::TraitItem(..) => false,
504         }
505     }
506
507     fn defer_to_typeck(self) -> bool {
508         match self {
509             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
510             PathSource::Struct | PathSource::TupleStruct => true,
511             PathSource::Trait(_) | PathSource::TraitItem(..) |
512             PathSource::Visibility | PathSource::ImportPrefix => false,
513         }
514     }
515
516     fn descr_expected(self) -> &'static str {
517         match self {
518             PathSource::Type => "type",
519             PathSource::Trait(_) => "trait",
520             PathSource::Pat => "unit struct/variant or constant",
521             PathSource::Struct => "struct, variant or union type",
522             PathSource::TupleStruct => "tuple struct/variant",
523             PathSource::Visibility => "module",
524             PathSource::ImportPrefix => "module or enum",
525             PathSource::TraitItem(ns) => match ns {
526                 TypeNS => "associated type",
527                 ValueNS => "method or associated constant",
528                 MacroNS => bug!("associated macro"),
529             },
530             PathSource::Expr(parent) => match parent.map(|p| &p.node) {
531                 // "function" here means "anything callable" rather than `Def::Fn`,
532                 // this is not precise but usually more helpful than just "value".
533                 Some(&ExprKind::Call(..)) => "function",
534                 _ => "value",
535             },
536         }
537     }
538
539     fn is_expected(self, def: Def) -> bool {
540         match self {
541             PathSource::Type => match def {
542                 Def::Struct(..) | Def::Union(..) | Def::Enum(..) |
543                 Def::Trait(..) | Def::TyAlias(..) | Def::AssociatedTy(..) |
544                 Def::PrimTy(..) | Def::TyParam(..) | Def::SelfTy(..) |
545                 Def::Existential(..) |
546                 Def::ForeignTy(..) => true,
547                 _ => false,
548             },
549             PathSource::Trait(AliasPossibility::No) => match def {
550                 Def::Trait(..) => true,
551                 _ => false,
552             },
553             PathSource::Trait(AliasPossibility::Maybe) => match def {
554                 Def::Trait(..) => true,
555                 Def::TraitAlias(..) => true,
556                 _ => false,
557             },
558             PathSource::Expr(..) => match def {
559                 Def::StructCtor(_, CtorKind::Const) | Def::StructCtor(_, CtorKind::Fn) |
560                 Def::VariantCtor(_, CtorKind::Const) | Def::VariantCtor(_, CtorKind::Fn) |
561                 Def::Const(..) | Def::Static(..) | Def::Local(..) | Def::Upvar(..) |
562                 Def::Fn(..) | Def::Method(..) | Def::AssociatedConst(..) |
563                 Def::SelfCtor(..) => true,
564                 _ => false,
565             },
566             PathSource::Pat => match def {
567                 Def::StructCtor(_, CtorKind::Const) |
568                 Def::VariantCtor(_, CtorKind::Const) |
569                 Def::Const(..) | Def::AssociatedConst(..) |
570                 Def::SelfCtor(..) => true,
571                 _ => false,
572             },
573             PathSource::TupleStruct => match def {
574                 Def::StructCtor(_, CtorKind::Fn) |
575                 Def::VariantCtor(_, CtorKind::Fn) |
576                 Def::SelfCtor(..) => true,
577                 _ => false,
578             },
579             PathSource::Struct => match def {
580                 Def::Struct(..) | Def::Union(..) | Def::Variant(..) |
581                 Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => true,
582                 _ => false,
583             },
584             PathSource::TraitItem(ns) => match def {
585                 Def::AssociatedConst(..) | Def::Method(..) if ns == ValueNS => true,
586                 Def::AssociatedTy(..) if ns == TypeNS => true,
587                 _ => false,
588             },
589             PathSource::ImportPrefix => match def {
590                 Def::Mod(..) | Def::Enum(..) => true,
591                 _ => false,
592             },
593             PathSource::Visibility => match def {
594                 Def::Mod(..) => true,
595                 _ => false,
596             },
597         }
598     }
599
600     fn error_code(self, has_unexpected_resolution: bool) -> &'static str {
601         __diagnostic_used!(E0404);
602         __diagnostic_used!(E0405);
603         __diagnostic_used!(E0412);
604         __diagnostic_used!(E0422);
605         __diagnostic_used!(E0423);
606         __diagnostic_used!(E0425);
607         __diagnostic_used!(E0531);
608         __diagnostic_used!(E0532);
609         __diagnostic_used!(E0573);
610         __diagnostic_used!(E0574);
611         __diagnostic_used!(E0575);
612         __diagnostic_used!(E0576);
613         __diagnostic_used!(E0577);
614         __diagnostic_used!(E0578);
615         match (self, has_unexpected_resolution) {
616             (PathSource::Trait(_), true) => "E0404",
617             (PathSource::Trait(_), false) => "E0405",
618             (PathSource::Type, true) => "E0573",
619             (PathSource::Type, false) => "E0412",
620             (PathSource::Struct, true) => "E0574",
621             (PathSource::Struct, false) => "E0422",
622             (PathSource::Expr(..), true) => "E0423",
623             (PathSource::Expr(..), false) => "E0425",
624             (PathSource::Pat, true) | (PathSource::TupleStruct, true) => "E0532",
625             (PathSource::Pat, false) | (PathSource::TupleStruct, false) => "E0531",
626             (PathSource::TraitItem(..), true) => "E0575",
627             (PathSource::TraitItem(..), false) => "E0576",
628             (PathSource::Visibility, true) | (PathSource::ImportPrefix, true) => "E0577",
629             (PathSource::Visibility, false) | (PathSource::ImportPrefix, false) => "E0578",
630         }
631     }
632 }
633
634 struct UsePlacementFinder {
635     target_module: NodeId,
636     span: Option<Span>,
637     found_use: bool,
638 }
639
640 impl UsePlacementFinder {
641     fn check(krate: &Crate, target_module: NodeId) -> (Option<Span>, bool) {
642         let mut finder = UsePlacementFinder {
643             target_module,
644             span: None,
645             found_use: false,
646         };
647         visit::walk_crate(&mut finder, krate);
648         (finder.span, finder.found_use)
649     }
650 }
651
652 impl<'tcx> Visitor<'tcx> for UsePlacementFinder {
653     fn visit_mod(
654         &mut self,
655         module: &'tcx ast::Mod,
656         _: Span,
657         _: &[ast::Attribute],
658         node_id: NodeId,
659     ) {
660         if self.span.is_some() {
661             return;
662         }
663         if node_id != self.target_module {
664             visit::walk_mod(self, module);
665             return;
666         }
667         // find a use statement
668         for item in &module.items {
669             match item.node {
670                 ItemKind::Use(..) => {
671                     // don't suggest placing a use before the prelude
672                     // import or other generated ones
673                     if item.span.ctxt().outer().expn_info().is_none() {
674                         self.span = Some(item.span.shrink_to_lo());
675                         self.found_use = true;
676                         return;
677                     }
678                 },
679                 // don't place use before extern crate
680                 ItemKind::ExternCrate(_) => {}
681                 // but place them before the first other item
682                 _ => if self.span.map_or(true, |span| item.span < span ) {
683                     if item.span.ctxt().outer().expn_info().is_none() {
684                         // don't insert between attributes and an item
685                         if item.attrs.is_empty() {
686                             self.span = Some(item.span.shrink_to_lo());
687                         } else {
688                             // find the first attribute on the item
689                             for attr in &item.attrs {
690                                 if self.span.map_or(true, |span| attr.span < span) {
691                                     self.span = Some(attr.span.shrink_to_lo());
692                                 }
693                             }
694                         }
695                     }
696                 },
697             }
698         }
699     }
700 }
701
702 /// This thing walks the whole crate in DFS manner, visiting each item, resolving names as it goes.
703 impl<'a, 'tcx, 'cl> Visitor<'tcx> for Resolver<'a, 'cl> {
704     fn visit_item(&mut self, item: &'tcx Item) {
705         self.resolve_item(item);
706     }
707     fn visit_arm(&mut self, arm: &'tcx Arm) {
708         self.resolve_arm(arm);
709     }
710     fn visit_block(&mut self, block: &'tcx Block) {
711         self.resolve_block(block);
712     }
713     fn visit_anon_const(&mut self, constant: &'tcx ast::AnonConst) {
714         self.with_constant_rib(|this| {
715             visit::walk_anon_const(this, constant);
716         });
717     }
718     fn visit_expr(&mut self, expr: &'tcx Expr) {
719         self.resolve_expr(expr, None);
720     }
721     fn visit_local(&mut self, local: &'tcx Local) {
722         self.resolve_local(local);
723     }
724     fn visit_ty(&mut self, ty: &'tcx Ty) {
725         match ty.node {
726             TyKind::Path(ref qself, ref path) => {
727                 self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
728             }
729             TyKind::ImplicitSelf => {
730                 let self_ty = keywords::SelfType.ident();
731                 let def = self.resolve_ident_in_lexical_scope(self_ty, TypeNS, Some(ty.id), ty.span)
732                               .map_or(Def::Err, |d| d.def());
733                 self.record_def(ty.id, PathResolution::new(def));
734             }
735             _ => (),
736         }
737         visit::walk_ty(self, ty);
738     }
739     fn visit_poly_trait_ref(&mut self,
740                             tref: &'tcx ast::PolyTraitRef,
741                             m: &'tcx ast::TraitBoundModifier) {
742         self.smart_resolve_path(tref.trait_ref.ref_id, None,
743                                 &tref.trait_ref.path, PathSource::Trait(AliasPossibility::Maybe));
744         visit::walk_poly_trait_ref(self, tref, m);
745     }
746     fn visit_foreign_item(&mut self, foreign_item: &'tcx ForeignItem) {
747         let type_parameters = match foreign_item.node {
748             ForeignItemKind::Fn(_, ref generics) => {
749                 HasTypeParameters(generics, ItemRibKind)
750             }
751             ForeignItemKind::Static(..) => NoTypeParameters,
752             ForeignItemKind::Ty => NoTypeParameters,
753             ForeignItemKind::Macro(..) => NoTypeParameters,
754         };
755         self.with_type_parameter_rib(type_parameters, |this| {
756             visit::walk_foreign_item(this, foreign_item);
757         });
758     }
759     fn visit_fn(&mut self,
760                 function_kind: FnKind<'tcx>,
761                 declaration: &'tcx FnDecl,
762                 _: Span,
763                 node_id: NodeId)
764     {
765         let (rib_kind, asyncness) = match function_kind {
766             FnKind::ItemFn(_, ref header, ..) =>
767                 (ItemRibKind, header.asyncness),
768             FnKind::Method(_, ref sig, _, _) =>
769                 (TraitOrImplItemRibKind, sig.header.asyncness),
770             FnKind::Closure(_) =>
771                 // Async closures aren't resolved through `visit_fn`-- they're
772                 // processed separately
773                 (ClosureRibKind(node_id), IsAsync::NotAsync),
774         };
775
776         // Create a value rib for the function.
777         self.ribs[ValueNS].push(Rib::new(rib_kind));
778
779         // Create a label rib for the function.
780         self.label_ribs.push(Rib::new(rib_kind));
781
782         // Add each argument to the rib.
783         let mut bindings_list = FxHashMap();
784         for argument in &declaration.inputs {
785             self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
786
787             self.visit_ty(&argument.ty);
788
789             debug!("(resolving function) recorded argument");
790         }
791         visit::walk_fn_ret_ty(self, &declaration.output);
792
793         // Resolve the function body, potentially inside the body of an async closure
794         if let IsAsync::Async { closure_id, .. } = asyncness {
795             let rib_kind = ClosureRibKind(closure_id);
796             self.ribs[ValueNS].push(Rib::new(rib_kind));
797             self.label_ribs.push(Rib::new(rib_kind));
798         }
799
800         match function_kind {
801             FnKind::ItemFn(.., body) |
802             FnKind::Method(.., body) => {
803                 self.visit_block(body);
804             }
805             FnKind::Closure(body) => {
806                 self.visit_expr(body);
807             }
808         };
809
810         // Leave the body of the async closure
811         if asyncness.is_async() {
812             self.label_ribs.pop();
813             self.ribs[ValueNS].pop();
814         }
815
816         debug!("(resolving function) leaving function");
817
818         self.label_ribs.pop();
819         self.ribs[ValueNS].pop();
820     }
821     fn visit_generics(&mut self, generics: &'tcx Generics) {
822         // For type parameter defaults, we have to ban access
823         // to following type parameters, as the Substs can only
824         // provide previous type parameters as they're built. We
825         // put all the parameters on the ban list and then remove
826         // them one by one as they are processed and become available.
827         let mut default_ban_rib = Rib::new(ForwardTyParamBanRibKind);
828         let mut found_default = false;
829         default_ban_rib.bindings.extend(generics.params.iter()
830             .filter_map(|param| match param.kind {
831                 GenericParamKind::Lifetime { .. } => None,
832                 GenericParamKind::Type { ref default, .. } => {
833                     found_default |= default.is_some();
834                     if found_default {
835                         Some((Ident::with_empty_ctxt(param.ident.name), Def::Err))
836                     } else {
837                         None
838                     }
839                 }
840             }));
841
842         for param in &generics.params {
843             match param.kind {
844                 GenericParamKind::Lifetime { .. } => self.visit_generic_param(param),
845                 GenericParamKind::Type { ref default, .. } => {
846                     for bound in &param.bounds {
847                         self.visit_param_bound(bound);
848                     }
849
850                     if let Some(ref ty) = default {
851                         self.ribs[TypeNS].push(default_ban_rib);
852                         self.visit_ty(ty);
853                         default_ban_rib = self.ribs[TypeNS].pop().unwrap();
854                     }
855
856                     // Allow all following defaults to refer to this type parameter.
857                     default_ban_rib.bindings.remove(&Ident::with_empty_ctxt(param.ident.name));
858                 }
859             }
860         }
861         for p in &generics.where_clause.predicates {
862             self.visit_where_predicate(p);
863         }
864     }
865 }
866
867 #[derive(Copy, Clone)]
868 enum TypeParameters<'a, 'b> {
869     NoTypeParameters,
870     HasTypeParameters(// Type parameters.
871                       &'b Generics,
872
873                       // The kind of the rib used for type parameters.
874                       RibKind<'a>),
875 }
876
877 /// The rib kind controls the translation of local
878 /// definitions (`Def::Local`) to upvars (`Def::Upvar`).
879 #[derive(Copy, Clone, Debug)]
880 enum RibKind<'a> {
881     /// No translation needs to be applied.
882     NormalRibKind,
883
884     /// We passed through a closure scope at the given node ID.
885     /// Translate upvars as appropriate.
886     ClosureRibKind(NodeId /* func id */),
887
888     /// We passed through an impl or trait and are now in one of its
889     /// methods or associated types. Allow references to ty params that impl or trait
890     /// binds. Disallow any other upvars (including other ty params that are
891     /// upvars).
892     TraitOrImplItemRibKind,
893
894     /// We passed through an item scope. Disallow upvars.
895     ItemRibKind,
896
897     /// We're in a constant item. Can't refer to dynamic stuff.
898     ConstantItemRibKind,
899
900     /// We passed through a module.
901     ModuleRibKind(Module<'a>),
902
903     /// We passed through a `macro_rules!` statement
904     MacroDefinition(DefId),
905
906     /// All bindings in this rib are type parameters that can't be used
907     /// from the default of a type parameter because they're not declared
908     /// before said type parameter. Also see the `visit_generics` override.
909     ForwardTyParamBanRibKind,
910 }
911
912 /// One local scope.
913 ///
914 /// A rib represents a scope names can live in. Note that these appear in many places, not just
915 /// around braces. At any place where the list of accessible names (of the given namespace)
916 /// changes or a new restrictions on the name accessibility are introduced, a new rib is put onto a
917 /// stack. This may be, for example, a `let` statement (because it introduces variables), a macro,
918 /// etc.
919 ///
920 /// Different [rib kinds](enum.RibKind) are transparent for different names.
921 ///
922 /// The resolution keeps a separate stack of ribs as it traverses the AST for each namespace. When
923 /// resolving, the name is looked up from inside out.
924 #[derive(Debug)]
925 struct Rib<'a> {
926     bindings: FxHashMap<Ident, Def>,
927     kind: RibKind<'a>,
928 }
929
930 impl<'a> Rib<'a> {
931     fn new(kind: RibKind<'a>) -> Rib<'a> {
932         Rib {
933             bindings: FxHashMap(),
934             kind,
935         }
936     }
937 }
938
939 /// An intermediate resolution result.
940 ///
941 /// This refers to the thing referred by a name. The difference between `Def` and `Item` is that
942 /// items are visible in their whole block, while defs only from the place they are defined
943 /// forward.
944 enum LexicalScopeBinding<'a> {
945     Item(&'a NameBinding<'a>),
946     Def(Def),
947 }
948
949 impl<'a> LexicalScopeBinding<'a> {
950     fn item(self) -> Option<&'a NameBinding<'a>> {
951         match self {
952             LexicalScopeBinding::Item(binding) => Some(binding),
953             _ => None,
954         }
955     }
956
957     fn def(self) -> Def {
958         match self {
959             LexicalScopeBinding::Item(binding) => binding.def(),
960             LexicalScopeBinding::Def(def) => def,
961         }
962     }
963 }
964
965 #[derive(Copy, Clone, Debug)]
966 pub enum ModuleOrUniformRoot<'a> {
967     /// Regular module.
968     Module(Module<'a>),
969
970     /// The `{{root}}` (`CrateRoot` aka "global") / `extern` initial segment
971     /// in which external crates resolve, and also `crate` (only in `{{root}}`,
972     /// but *not* `extern`), in the Rust 2018 edition.
973     UniformRoot(Name),
974 }
975
976 #[derive(Clone, Debug)]
977 enum PathResult<'a> {
978     Module(ModuleOrUniformRoot<'a>),
979     NonModule(PathResolution),
980     Indeterminate,
981     Failed(Span, String, bool /* is the error from the last segment? */),
982 }
983
984 enum ModuleKind {
985     /// An anonymous module, eg. just a block.
986     ///
987     /// ```
988     /// fn main() {
989     ///     fn f() {} // (1)
990     ///     { // This is an anonymous module
991     ///         f(); // This resolves to (2) as we are inside the block.
992     ///         fn f() {} // (2)
993     ///     }
994     ///     f(); // Resolves to (1)
995     /// }
996     /// ```
997     Block(NodeId),
998     /// Any module with a name.
999     ///
1000     /// This could be:
1001     ///
1002     /// * A normal module â€’ either `mod from_file;` or `mod from_block { }`.
1003     /// * A trait or an enum (it implicitly contains associated types, methods and variant
1004     ///   constructors).
1005     Def(Def, Name),
1006 }
1007
1008 /// One node in the tree of modules.
1009 pub struct ModuleData<'a> {
1010     parent: Option<Module<'a>>,
1011     kind: ModuleKind,
1012
1013     // The def id of the closest normal module (`mod`) ancestor (including this module).
1014     normal_ancestor_id: DefId,
1015
1016     resolutions: RefCell<FxHashMap<(Ident, Namespace), &'a RefCell<NameResolution<'a>>>>,
1017     legacy_macro_resolutions: RefCell<Vec<(Ident, MacroKind, ParentScope<'a>,
1018                                            Option<&'a NameBinding<'a>>)>>,
1019     macro_resolutions: RefCell<Vec<(Box<[Ident]>, Span)>>,
1020     builtin_attrs: RefCell<Vec<(Ident, ParentScope<'a>)>>,
1021
1022     // Macro invocations that can expand into items in this module.
1023     unresolved_invocations: RefCell<FxHashSet<Mark>>,
1024
1025     no_implicit_prelude: bool,
1026
1027     glob_importers: RefCell<Vec<&'a ImportDirective<'a>>>,
1028     globs: RefCell<Vec<&'a ImportDirective<'a>>>,
1029
1030     // Used to memoize the traits in this module for faster searches through all traits in scope.
1031     traits: RefCell<Option<Box<[(Ident, &'a NameBinding<'a>)]>>>,
1032
1033     // Whether this module is populated. If not populated, any attempt to
1034     // access the children must be preceded with a
1035     // `populate_module_if_necessary` call.
1036     populated: Cell<bool>,
1037
1038     /// Span of the module itself. Used for error reporting.
1039     span: Span,
1040
1041     expansion: Mark,
1042 }
1043
1044 type Module<'a> = &'a ModuleData<'a>;
1045
1046 impl<'a> ModuleData<'a> {
1047     fn new(parent: Option<Module<'a>>,
1048            kind: ModuleKind,
1049            normal_ancestor_id: DefId,
1050            expansion: Mark,
1051            span: Span) -> Self {
1052         ModuleData {
1053             parent,
1054             kind,
1055             normal_ancestor_id,
1056             resolutions: RefCell::new(FxHashMap()),
1057             legacy_macro_resolutions: RefCell::new(Vec::new()),
1058             macro_resolutions: RefCell::new(Vec::new()),
1059             builtin_attrs: RefCell::new(Vec::new()),
1060             unresolved_invocations: RefCell::new(FxHashSet()),
1061             no_implicit_prelude: false,
1062             glob_importers: RefCell::new(Vec::new()),
1063             globs: RefCell::new(Vec::new()),
1064             traits: RefCell::new(None),
1065             populated: Cell::new(normal_ancestor_id.is_local()),
1066             span,
1067             expansion,
1068         }
1069     }
1070
1071     fn for_each_child<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1072         for (&(ident, ns), name_resolution) in self.resolutions.borrow().iter() {
1073             name_resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1074         }
1075     }
1076
1077     fn for_each_child_stable<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1078         let resolutions = self.resolutions.borrow();
1079         let mut resolutions = resolutions.iter().collect::<Vec<_>>();
1080         resolutions.sort_by_cached_key(|&(&(ident, ns), _)| (ident.as_str(), ns));
1081         for &(&(ident, ns), &resolution) in resolutions.iter() {
1082             resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1083         }
1084     }
1085
1086     fn def(&self) -> Option<Def> {
1087         match self.kind {
1088             ModuleKind::Def(def, _) => Some(def),
1089             _ => None,
1090         }
1091     }
1092
1093     fn def_id(&self) -> Option<DefId> {
1094         self.def().as_ref().map(Def::def_id)
1095     }
1096
1097     // `self` resolves to the first module ancestor that `is_normal`.
1098     fn is_normal(&self) -> bool {
1099         match self.kind {
1100             ModuleKind::Def(Def::Mod(_), _) => true,
1101             _ => false,
1102         }
1103     }
1104
1105     fn is_trait(&self) -> bool {
1106         match self.kind {
1107             ModuleKind::Def(Def::Trait(_), _) => true,
1108             _ => false,
1109         }
1110     }
1111
1112     fn is_local(&self) -> bool {
1113         self.normal_ancestor_id.is_local()
1114     }
1115
1116     fn nearest_item_scope(&'a self) -> Module<'a> {
1117         if self.is_trait() { self.parent.unwrap() } else { self }
1118     }
1119
1120     fn is_ancestor_of(&self, mut other: &Self) -> bool {
1121         while !ptr::eq(self, other) {
1122             if let Some(parent) = other.parent {
1123                 other = parent;
1124             } else {
1125                 return false;
1126             }
1127         }
1128         true
1129     }
1130 }
1131
1132 impl<'a> fmt::Debug for ModuleData<'a> {
1133     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1134         write!(f, "{:?}", self.def())
1135     }
1136 }
1137
1138 /// Records a possibly-private value, type, or module definition.
1139 #[derive(Clone, Debug)]
1140 pub struct NameBinding<'a> {
1141     kind: NameBindingKind<'a>,
1142     expansion: Mark,
1143     span: Span,
1144     vis: ty::Visibility,
1145 }
1146
1147 pub trait ToNameBinding<'a> {
1148     fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a>;
1149 }
1150
1151 impl<'a> ToNameBinding<'a> for &'a NameBinding<'a> {
1152     fn to_name_binding(self, _: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> {
1153         self
1154     }
1155 }
1156
1157 #[derive(Clone, Debug)]
1158 enum NameBindingKind<'a> {
1159     Def(Def, /* is_macro_export */ bool),
1160     Module(Module<'a>),
1161     Import {
1162         binding: &'a NameBinding<'a>,
1163         directive: &'a ImportDirective<'a>,
1164         used: Cell<bool>,
1165     },
1166     Ambiguity {
1167         b1: &'a NameBinding<'a>,
1168         b2: &'a NameBinding<'a>,
1169     }
1170 }
1171
1172 struct PrivacyError<'a>(Span, Name, &'a NameBinding<'a>);
1173
1174 struct UseError<'a> {
1175     err: DiagnosticBuilder<'a>,
1176     /// Attach `use` statements for these candidates
1177     candidates: Vec<ImportSuggestion>,
1178     /// The node id of the module to place the use statements in
1179     node_id: NodeId,
1180     /// Whether the diagnostic should state that it's "better"
1181     better: bool,
1182 }
1183
1184 struct AmbiguityError<'a> {
1185     ident: Ident,
1186     b1: &'a NameBinding<'a>,
1187     b2: &'a NameBinding<'a>,
1188 }
1189
1190 impl<'a> NameBinding<'a> {
1191     fn module(&self) -> Option<Module<'a>> {
1192         match self.kind {
1193             NameBindingKind::Module(module) => Some(module),
1194             NameBindingKind::Import { binding, .. } => binding.module(),
1195             _ => None,
1196         }
1197     }
1198
1199     fn def(&self) -> Def {
1200         match self.kind {
1201             NameBindingKind::Def(def, _) => def,
1202             NameBindingKind::Module(module) => module.def().unwrap(),
1203             NameBindingKind::Import { binding, .. } => binding.def(),
1204             NameBindingKind::Ambiguity { .. } => Def::Err,
1205         }
1206     }
1207
1208     fn def_ignoring_ambiguity(&self) -> Def {
1209         match self.kind {
1210             NameBindingKind::Import { binding, .. } => binding.def_ignoring_ambiguity(),
1211             NameBindingKind::Ambiguity { b1, .. } => b1.def_ignoring_ambiguity(),
1212             _ => self.def(),
1213         }
1214     }
1215
1216     // We sometimes need to treat variants as `pub` for backwards compatibility
1217     fn pseudo_vis(&self) -> ty::Visibility {
1218         if self.is_variant() && self.def().def_id().is_local() {
1219             ty::Visibility::Public
1220         } else {
1221             self.vis
1222         }
1223     }
1224
1225     fn is_variant(&self) -> bool {
1226         match self.kind {
1227             NameBindingKind::Def(Def::Variant(..), _) |
1228             NameBindingKind::Def(Def::VariantCtor(..), _) => true,
1229             _ => false,
1230         }
1231     }
1232
1233     fn is_extern_crate(&self) -> bool {
1234         match self.kind {
1235             NameBindingKind::Import {
1236                 directive: &ImportDirective {
1237                     subclass: ImportDirectiveSubclass::ExternCrate(_), ..
1238                 }, ..
1239             } => true,
1240             _ => false,
1241         }
1242     }
1243
1244     fn is_import(&self) -> bool {
1245         match self.kind {
1246             NameBindingKind::Import { .. } => true,
1247             _ => false,
1248         }
1249     }
1250
1251     fn is_renamed_extern_crate(&self) -> bool {
1252         if let NameBindingKind::Import { directive, ..} = self.kind {
1253             if let ImportDirectiveSubclass::ExternCrate(Some(_)) = directive.subclass {
1254                 return true;
1255             }
1256         }
1257         false
1258     }
1259
1260     fn is_glob_import(&self) -> bool {
1261         match self.kind {
1262             NameBindingKind::Import { directive, .. } => directive.is_glob(),
1263             NameBindingKind::Ambiguity { b1, .. } => b1.is_glob_import(),
1264             _ => false,
1265         }
1266     }
1267
1268     fn is_importable(&self) -> bool {
1269         match self.def() {
1270             Def::AssociatedConst(..) | Def::Method(..) | Def::AssociatedTy(..) => false,
1271             _ => true,
1272         }
1273     }
1274
1275     fn is_macro_def(&self) -> bool {
1276         match self.kind {
1277             NameBindingKind::Def(Def::Macro(..), _) => true,
1278             _ => false,
1279         }
1280     }
1281
1282     fn macro_kind(&self) -> Option<MacroKind> {
1283         match self.def_ignoring_ambiguity() {
1284             Def::Macro(_, kind) => Some(kind),
1285             Def::NonMacroAttr(..) => Some(MacroKind::Attr),
1286             _ => None,
1287         }
1288     }
1289
1290     fn descr(&self) -> &'static str {
1291         if self.is_extern_crate() { "extern crate" } else { self.def().kind_name() }
1292     }
1293
1294     // Suppose that we resolved macro invocation with `invoc_parent_expansion` to binding `binding`
1295     // at some expansion round `max(invoc, binding)` when they both emerged from macros.
1296     // Then this function returns `true` if `self` may emerge from a macro *after* that
1297     // in some later round and screw up our previously found resolution.
1298     // See more detailed explanation in
1299     // https://github.com/rust-lang/rust/pull/53778#issuecomment-419224049
1300     fn may_appear_after(&self, invoc_parent_expansion: Mark, binding: &NameBinding) -> bool {
1301         // self > max(invoc, binding) => !(self <= invoc || self <= binding)
1302         // Expansions are partially ordered, so "may appear after" is an inversion of
1303         // "certainly appears before or simultaneously" and includes unordered cases.
1304         let self_parent_expansion = self.expansion;
1305         let other_parent_expansion = binding.expansion;
1306         let certainly_before_other_or_simultaneously =
1307             other_parent_expansion.is_descendant_of(self_parent_expansion);
1308         let certainly_before_invoc_or_simultaneously =
1309             invoc_parent_expansion.is_descendant_of(self_parent_expansion);
1310         !(certainly_before_other_or_simultaneously || certainly_before_invoc_or_simultaneously)
1311     }
1312 }
1313
1314 /// Interns the names of the primitive types.
1315 ///
1316 /// All other types are defined somewhere and possibly imported, but the primitive ones need
1317 /// special handling, since they have no place of origin.
1318 struct PrimitiveTypeTable {
1319     primitive_types: FxHashMap<Name, PrimTy>,
1320 }
1321
1322 impl PrimitiveTypeTable {
1323     fn new() -> PrimitiveTypeTable {
1324         let mut table = PrimitiveTypeTable { primitive_types: FxHashMap() };
1325
1326         table.intern("bool", Bool);
1327         table.intern("char", Char);
1328         table.intern("f32", Float(FloatTy::F32));
1329         table.intern("f64", Float(FloatTy::F64));
1330         table.intern("isize", Int(IntTy::Isize));
1331         table.intern("i8", Int(IntTy::I8));
1332         table.intern("i16", Int(IntTy::I16));
1333         table.intern("i32", Int(IntTy::I32));
1334         table.intern("i64", Int(IntTy::I64));
1335         table.intern("i128", Int(IntTy::I128));
1336         table.intern("str", Str);
1337         table.intern("usize", Uint(UintTy::Usize));
1338         table.intern("u8", Uint(UintTy::U8));
1339         table.intern("u16", Uint(UintTy::U16));
1340         table.intern("u32", Uint(UintTy::U32));
1341         table.intern("u64", Uint(UintTy::U64));
1342         table.intern("u128", Uint(UintTy::U128));
1343         table
1344     }
1345
1346     fn intern(&mut self, string: &str, primitive_type: PrimTy) {
1347         self.primitive_types.insert(Symbol::intern(string), primitive_type);
1348     }
1349 }
1350
1351 /// The main resolver class.
1352 ///
1353 /// This is the visitor that walks the whole crate.
1354 pub struct Resolver<'a, 'b: 'a> {
1355     session: &'a Session,
1356     cstore: &'a CStore,
1357
1358     pub definitions: Definitions,
1359
1360     graph_root: Module<'a>,
1361
1362     prelude: Option<Module<'a>>,
1363     pub extern_prelude: FxHashSet<Name>,
1364
1365     /// n.b. This is used only for better diagnostics, not name resolution itself.
1366     has_self: FxHashSet<DefId>,
1367
1368     /// Names of fields of an item `DefId` accessible with dot syntax.
1369     /// Used for hints during error reporting.
1370     field_names: FxHashMap<DefId, Vec<Name>>,
1371
1372     /// All imports known to succeed or fail.
1373     determined_imports: Vec<&'a ImportDirective<'a>>,
1374
1375     /// All non-determined imports.
1376     indeterminate_imports: Vec<&'a ImportDirective<'a>>,
1377
1378     /// The module that represents the current item scope.
1379     current_module: Module<'a>,
1380
1381     /// The current set of local scopes for types and values.
1382     /// FIXME #4948: Reuse ribs to avoid allocation.
1383     ribs: PerNS<Vec<Rib<'a>>>,
1384
1385     /// The current set of local scopes, for labels.
1386     label_ribs: Vec<Rib<'a>>,
1387
1388     /// The trait that the current context can refer to.
1389     current_trait_ref: Option<(Module<'a>, TraitRef)>,
1390
1391     /// The current self type if inside an impl (used for better errors).
1392     current_self_type: Option<Ty>,
1393
1394     /// The current self item if inside an ADT (used for better errors).
1395     current_self_item: Option<NodeId>,
1396
1397     /// The idents for the primitive types.
1398     primitive_type_table: PrimitiveTypeTable,
1399
1400     def_map: DefMap,
1401     import_map: ImportMap,
1402     pub freevars: FreevarMap,
1403     freevars_seen: NodeMap<NodeMap<usize>>,
1404     pub export_map: ExportMap,
1405     pub trait_map: TraitMap,
1406
1407     /// A map from nodes to anonymous modules.
1408     /// Anonymous modules are pseudo-modules that are implicitly created around items
1409     /// contained within blocks.
1410     ///
1411     /// For example, if we have this:
1412     ///
1413     ///  fn f() {
1414     ///      fn g() {
1415     ///          ...
1416     ///      }
1417     ///  }
1418     ///
1419     /// There will be an anonymous module created around `g` with the ID of the
1420     /// entry block for `f`.
1421     block_map: NodeMap<Module<'a>>,
1422     module_map: FxHashMap<DefId, Module<'a>>,
1423     extern_module_map: FxHashMap<(DefId, bool /* MacrosOnly? */), Module<'a>>,
1424     binding_parent_modules: FxHashMap<PtrKey<'a, NameBinding<'a>>, Module<'a>>,
1425
1426     pub make_glob_map: bool,
1427     /// Maps imports to the names of items actually imported (this actually maps
1428     /// all imports, but only glob imports are actually interesting).
1429     pub glob_map: GlobMap,
1430
1431     used_imports: FxHashSet<(NodeId, Namespace)>,
1432     pub maybe_unused_trait_imports: NodeSet,
1433     pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
1434
1435     /// A list of labels as of yet unused. Labels will be removed from this map when
1436     /// they are used (in a `break` or `continue` statement)
1437     pub unused_labels: FxHashMap<NodeId, Span>,
1438
1439     /// privacy errors are delayed until the end in order to deduplicate them
1440     privacy_errors: Vec<PrivacyError<'a>>,
1441     /// ambiguity errors are delayed for deduplication
1442     ambiguity_errors: Vec<AmbiguityError<'a>>,
1443     /// `use` injections are delayed for better placement and deduplication
1444     use_injections: Vec<UseError<'a>>,
1445     /// crate-local macro expanded `macro_export` referred to by a module-relative path
1446     macro_expanded_macro_export_errors: BTreeSet<(Span, Span)>,
1447
1448     arenas: &'a ResolverArenas<'a>,
1449     dummy_binding: &'a NameBinding<'a>,
1450
1451     crate_loader: &'a mut CrateLoader<'b>,
1452     macro_names: FxHashSet<Ident>,
1453     builtin_macros: FxHashMap<Name, &'a NameBinding<'a>>,
1454     macro_use_prelude: FxHashMap<Name, &'a NameBinding<'a>>,
1455     pub all_macros: FxHashMap<Name, Def>,
1456     macro_map: FxHashMap<DefId, Lrc<SyntaxExtension>>,
1457     macro_defs: FxHashMap<Mark, DefId>,
1458     local_macro_def_scopes: FxHashMap<NodeId, Module<'a>>,
1459     pub whitelisted_legacy_custom_derives: Vec<Name>,
1460     pub found_unresolved_macro: bool,
1461
1462     /// List of crate local macros that we need to warn about as being unused.
1463     /// Right now this only includes macro_rules! macros, and macros 2.0.
1464     unused_macros: FxHashSet<DefId>,
1465
1466     /// Maps the `Mark` of an expansion to its containing module or block.
1467     invocations: FxHashMap<Mark, &'a InvocationData<'a>>,
1468
1469     /// Avoid duplicated errors for "name already defined".
1470     name_already_seen: FxHashMap<Name, Span>,
1471
1472     potentially_unused_imports: Vec<&'a ImportDirective<'a>>,
1473
1474     /// This table maps struct IDs into struct constructor IDs,
1475     /// it's not used during normal resolution, only for better error reporting.
1476     struct_constructors: DefIdMap<(Def, ty::Visibility)>,
1477
1478     /// Only used for better errors on `fn(): fn()`
1479     current_type_ascription: Vec<Span>,
1480
1481     injected_crate: Option<Module<'a>>,
1482 }
1483
1484 /// Nothing really interesting here, it just provides memory for the rest of the crate.
1485 pub struct ResolverArenas<'a> {
1486     modules: arena::TypedArena<ModuleData<'a>>,
1487     local_modules: RefCell<Vec<Module<'a>>>,
1488     name_bindings: arena::TypedArena<NameBinding<'a>>,
1489     import_directives: arena::TypedArena<ImportDirective<'a>>,
1490     name_resolutions: arena::TypedArena<RefCell<NameResolution<'a>>>,
1491     invocation_data: arena::TypedArena<InvocationData<'a>>,
1492     legacy_bindings: arena::TypedArena<LegacyBinding<'a>>,
1493 }
1494
1495 impl<'a> ResolverArenas<'a> {
1496     fn alloc_module(&'a self, module: ModuleData<'a>) -> Module<'a> {
1497         let module = self.modules.alloc(module);
1498         if module.def_id().map(|def_id| def_id.is_local()).unwrap_or(true) {
1499             self.local_modules.borrow_mut().push(module);
1500         }
1501         module
1502     }
1503     fn local_modules(&'a self) -> ::std::cell::Ref<'a, Vec<Module<'a>>> {
1504         self.local_modules.borrow()
1505     }
1506     fn alloc_name_binding(&'a self, name_binding: NameBinding<'a>) -> &'a NameBinding<'a> {
1507         self.name_bindings.alloc(name_binding)
1508     }
1509     fn alloc_import_directive(&'a self, import_directive: ImportDirective<'a>)
1510                               -> &'a ImportDirective {
1511         self.import_directives.alloc(import_directive)
1512     }
1513     fn alloc_name_resolution(&'a self) -> &'a RefCell<NameResolution<'a>> {
1514         self.name_resolutions.alloc(Default::default())
1515     }
1516     fn alloc_invocation_data(&'a self, expansion_data: InvocationData<'a>)
1517                              -> &'a InvocationData<'a> {
1518         self.invocation_data.alloc(expansion_data)
1519     }
1520     fn alloc_legacy_binding(&'a self, binding: LegacyBinding<'a>) -> &'a LegacyBinding<'a> {
1521         self.legacy_bindings.alloc(binding)
1522     }
1523 }
1524
1525 impl<'a, 'b: 'a, 'cl: 'b> ty::DefIdTree for &'a Resolver<'b, 'cl> {
1526     fn parent(self, id: DefId) -> Option<DefId> {
1527         match id.krate {
1528             LOCAL_CRATE => self.definitions.def_key(id.index).parent,
1529             _ => self.cstore.def_key(id).parent,
1530         }.map(|index| DefId { index, ..id })
1531     }
1532 }
1533
1534 /// This interface is used through the AST→HIR step, to embed full paths into the HIR. After that
1535 /// the resolver is no longer needed as all the relevant information is inline.
1536 impl<'a, 'cl> hir::lowering::Resolver for Resolver<'a, 'cl> {
1537     fn resolve_hir_path(&mut self, path: &mut hir::Path, is_value: bool) {
1538         self.resolve_hir_path_cb(path, is_value,
1539                                  |resolver, span, error| resolve_error(resolver, span, error))
1540     }
1541
1542     fn resolve_str_path(
1543         &mut self,
1544         span: Span,
1545         crate_root: Option<&str>,
1546         components: &[&str],
1547         args: Option<P<hir::GenericArgs>>,
1548         is_value: bool
1549     ) -> hir::Path {
1550         let mut segments = iter::once(keywords::CrateRoot.ident())
1551             .chain(
1552                 crate_root.into_iter()
1553                     .chain(components.iter().cloned())
1554                     .map(Ident::from_str)
1555             ).map(hir::PathSegment::from_ident).collect::<Vec<_>>();
1556
1557         if let Some(args) = args {
1558             let ident = segments.last().unwrap().ident;
1559             *segments.last_mut().unwrap() = hir::PathSegment {
1560                 ident,
1561                 args: Some(args),
1562                 infer_types: true,
1563             };
1564         }
1565
1566         let mut path = hir::Path {
1567             span,
1568             def: Def::Err,
1569             segments: segments.into(),
1570         };
1571
1572         self.resolve_hir_path(&mut path, is_value);
1573         path
1574     }
1575
1576     fn get_resolution(&mut self, id: NodeId) -> Option<PathResolution> {
1577         self.def_map.get(&id).cloned()
1578     }
1579
1580     fn get_import(&mut self, id: NodeId) -> PerNS<Option<PathResolution>> {
1581         self.import_map.get(&id).cloned().unwrap_or_default()
1582     }
1583
1584     fn definitions(&mut self) -> &mut Definitions {
1585         &mut self.definitions
1586     }
1587 }
1588
1589 impl<'a, 'crateloader> Resolver<'a, 'crateloader> {
1590     /// Rustdoc uses this to resolve things in a recoverable way. ResolutionError<'a>
1591     /// isn't something that can be returned because it can't be made to live that long,
1592     /// and also it's a private type. Fortunately rustdoc doesn't need to know the error,
1593     /// just that an error occurred.
1594     pub fn resolve_str_path_error(&mut self, span: Span, path_str: &str, is_value: bool)
1595         -> Result<hir::Path, ()> {
1596         use std::iter;
1597         let mut errored = false;
1598
1599         let mut path = if path_str.starts_with("::") {
1600             hir::Path {
1601                 span,
1602                 def: Def::Err,
1603                 segments: iter::once(keywords::CrateRoot.ident()).chain({
1604                     path_str.split("::").skip(1).map(Ident::from_str)
1605                 }).map(hir::PathSegment::from_ident).collect(),
1606             }
1607         } else {
1608             hir::Path {
1609                 span,
1610                 def: Def::Err,
1611                 segments: path_str.split("::").map(Ident::from_str)
1612                                   .map(hir::PathSegment::from_ident).collect(),
1613             }
1614         };
1615         self.resolve_hir_path_cb(&mut path, is_value, |_, _, _| errored = true);
1616         if errored || path.def == Def::Err {
1617             Err(())
1618         } else {
1619             Ok(path)
1620         }
1621     }
1622
1623     /// resolve_hir_path, but takes a callback in case there was an error
1624     fn resolve_hir_path_cb<F>(&mut self, path: &mut hir::Path, is_value: bool, error_callback: F)
1625         where F: for<'c, 'b> FnOnce(&'c mut Resolver, Span, ResolutionError<'b>)
1626     {
1627         let namespace = if is_value { ValueNS } else { TypeNS };
1628         let hir::Path { ref segments, span, ref mut def } = *path;
1629         let path: Vec<_> = segments.iter().map(|seg| seg.ident).collect();
1630         // FIXME (Manishearth): Intra doc links won't get warned of epoch changes
1631         match self.resolve_path(None, &path, Some(namespace), true, span, CrateLint::No) {
1632             PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
1633                 *def = module.def().unwrap(),
1634             PathResult::NonModule(path_res) if path_res.unresolved_segments() == 0 =>
1635                 *def = path_res.base_def(),
1636             PathResult::NonModule(..) => match self.resolve_path(
1637                 None,
1638                 &path,
1639                 None,
1640                 true,
1641                 span,
1642                 CrateLint::No,
1643             ) {
1644                 PathResult::Failed(span, msg, _) => {
1645                     error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1646                 }
1647                 _ => {}
1648             },
1649             PathResult::Module(ModuleOrUniformRoot::UniformRoot(_)) |
1650             PathResult::Indeterminate => unreachable!(),
1651             PathResult::Failed(span, msg, _) => {
1652                 error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1653             }
1654         }
1655     }
1656 }
1657
1658 impl<'a, 'crateloader: 'a> Resolver<'a, 'crateloader> {
1659     pub fn new(session: &'a Session,
1660                cstore: &'a CStore,
1661                krate: &Crate,
1662                crate_name: &str,
1663                make_glob_map: MakeGlobMap,
1664                crate_loader: &'a mut CrateLoader<'crateloader>,
1665                arenas: &'a ResolverArenas<'a>)
1666                -> Resolver<'a, 'crateloader> {
1667         let root_def_id = DefId::local(CRATE_DEF_INDEX);
1668         let root_module_kind = ModuleKind::Def(Def::Mod(root_def_id), keywords::Invalid.name());
1669         let graph_root = arenas.alloc_module(ModuleData {
1670             no_implicit_prelude: attr::contains_name(&krate.attrs, "no_implicit_prelude"),
1671             ..ModuleData::new(None, root_module_kind, root_def_id, Mark::root(), krate.span)
1672         });
1673         let mut module_map = FxHashMap();
1674         module_map.insert(DefId::local(CRATE_DEF_INDEX), graph_root);
1675
1676         let mut definitions = Definitions::new();
1677         DefCollector::new(&mut definitions, Mark::root())
1678             .collect_root(crate_name, session.local_crate_disambiguator());
1679
1680         let mut extern_prelude: FxHashSet<Name> =
1681             session.opts.externs.iter().map(|kv| Symbol::intern(kv.0)).collect();
1682
1683         // HACK(eddyb) this ignore the `no_{core,std}` attributes.
1684         // FIXME(eddyb) warn (elsewhere) if core/std is used with `no_{core,std}`.
1685         // if !attr::contains_name(&krate.attrs, "no_core") {
1686         // if !attr::contains_name(&krate.attrs, "no_std") {
1687         extern_prelude.insert(Symbol::intern("core"));
1688         extern_prelude.insert(Symbol::intern("std"));
1689         extern_prelude.insert(Symbol::intern("meta"));
1690
1691         let mut invocations = FxHashMap();
1692         invocations.insert(Mark::root(),
1693                            arenas.alloc_invocation_data(InvocationData::root(graph_root)));
1694
1695         let mut macro_defs = FxHashMap();
1696         macro_defs.insert(Mark::root(), root_def_id);
1697
1698         Resolver {
1699             session,
1700
1701             cstore,
1702
1703             definitions,
1704
1705             // The outermost module has def ID 0; this is not reflected in the
1706             // AST.
1707             graph_root,
1708             prelude: None,
1709             extern_prelude,
1710
1711             has_self: FxHashSet(),
1712             field_names: FxHashMap(),
1713
1714             determined_imports: Vec::new(),
1715             indeterminate_imports: Vec::new(),
1716
1717             current_module: graph_root,
1718             ribs: PerNS {
1719                 value_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1720                 type_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1721                 macro_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1722             },
1723             label_ribs: Vec::new(),
1724
1725             current_trait_ref: None,
1726             current_self_type: None,
1727             current_self_item: None,
1728
1729             primitive_type_table: PrimitiveTypeTable::new(),
1730
1731             def_map: NodeMap(),
1732             import_map: NodeMap(),
1733             freevars: NodeMap(),
1734             freevars_seen: NodeMap(),
1735             export_map: FxHashMap(),
1736             trait_map: NodeMap(),
1737             module_map,
1738             block_map: NodeMap(),
1739             extern_module_map: FxHashMap(),
1740             binding_parent_modules: FxHashMap(),
1741
1742             make_glob_map: make_glob_map == MakeGlobMap::Yes,
1743             glob_map: NodeMap(),
1744
1745             used_imports: FxHashSet(),
1746             maybe_unused_trait_imports: NodeSet(),
1747             maybe_unused_extern_crates: Vec::new(),
1748
1749             unused_labels: FxHashMap(),
1750
1751             privacy_errors: Vec::new(),
1752             ambiguity_errors: Vec::new(),
1753             use_injections: Vec::new(),
1754             macro_expanded_macro_export_errors: BTreeSet::new(),
1755
1756             arenas,
1757             dummy_binding: arenas.alloc_name_binding(NameBinding {
1758                 kind: NameBindingKind::Def(Def::Err, false),
1759                 expansion: Mark::root(),
1760                 span: DUMMY_SP,
1761                 vis: ty::Visibility::Public,
1762             }),
1763
1764             crate_loader,
1765             macro_names: FxHashSet(),
1766             builtin_macros: FxHashMap(),
1767             macro_use_prelude: FxHashMap(),
1768             all_macros: FxHashMap(),
1769             macro_map: FxHashMap(),
1770             invocations,
1771             macro_defs,
1772             local_macro_def_scopes: FxHashMap(),
1773             name_already_seen: FxHashMap(),
1774             whitelisted_legacy_custom_derives: Vec::new(),
1775             potentially_unused_imports: Vec::new(),
1776             struct_constructors: DefIdMap(),
1777             found_unresolved_macro: false,
1778             unused_macros: FxHashSet(),
1779             current_type_ascription: Vec::new(),
1780             injected_crate: None,
1781         }
1782     }
1783
1784     pub fn arenas() -> ResolverArenas<'a> {
1785         ResolverArenas {
1786             modules: arena::TypedArena::new(),
1787             local_modules: RefCell::new(Vec::new()),
1788             name_bindings: arena::TypedArena::new(),
1789             import_directives: arena::TypedArena::new(),
1790             name_resolutions: arena::TypedArena::new(),
1791             invocation_data: arena::TypedArena::new(),
1792             legacy_bindings: arena::TypedArena::new(),
1793         }
1794     }
1795
1796     /// Runs the function on each namespace.
1797     fn per_ns<F: FnMut(&mut Self, Namespace)>(&mut self, mut f: F) {
1798         f(self, TypeNS);
1799         f(self, ValueNS);
1800         f(self, MacroNS);
1801     }
1802
1803     fn macro_def(&self, mut ctxt: SyntaxContext) -> DefId {
1804         loop {
1805             match self.macro_defs.get(&ctxt.outer()) {
1806                 Some(&def_id) => return def_id,
1807                 None => ctxt.remove_mark(),
1808             };
1809         }
1810     }
1811
1812     /// Entry point to crate resolution.
1813     pub fn resolve_crate(&mut self, krate: &Crate) {
1814         ImportResolver { resolver: self }.finalize_imports();
1815         self.current_module = self.graph_root;
1816         self.finalize_current_module_macro_resolutions();
1817
1818         visit::walk_crate(self, krate);
1819
1820         check_unused::check_crate(self, krate);
1821         self.report_errors(krate);
1822         self.crate_loader.postprocess(krate);
1823     }
1824
1825     fn new_module(
1826         &self,
1827         parent: Module<'a>,
1828         kind: ModuleKind,
1829         normal_ancestor_id: DefId,
1830         expansion: Mark,
1831         span: Span,
1832     ) -> Module<'a> {
1833         let module = ModuleData::new(Some(parent), kind, normal_ancestor_id, expansion, span);
1834         self.arenas.alloc_module(module)
1835     }
1836
1837     fn record_use(&mut self, ident: Ident, ns: Namespace, binding: &'a NameBinding<'a>)
1838                   -> bool /* true if an error was reported */ {
1839         match binding.kind {
1840             NameBindingKind::Import { directive, binding, ref used }
1841                     if !used.get() => {
1842                 used.set(true);
1843                 directive.used.set(true);
1844                 self.used_imports.insert((directive.id, ns));
1845                 self.add_to_glob_map(directive.id, ident);
1846                 self.record_use(ident, ns, binding)
1847             }
1848             NameBindingKind::Import { .. } => false,
1849             NameBindingKind::Ambiguity { b1, b2 } => {
1850                 self.ambiguity_errors.push(AmbiguityError { ident, b1, b2 });
1851                 true
1852             }
1853             _ => false
1854         }
1855     }
1856
1857     fn add_to_glob_map(&mut self, id: NodeId, ident: Ident) {
1858         if self.make_glob_map {
1859             self.glob_map.entry(id).or_default().insert(ident.name);
1860         }
1861     }
1862
1863     /// This resolves the identifier `ident` in the namespace `ns` in the current lexical scope.
1864     /// More specifically, we proceed up the hierarchy of scopes and return the binding for
1865     /// `ident` in the first scope that defines it (or None if no scopes define it).
1866     ///
1867     /// A block's items are above its local variables in the scope hierarchy, regardless of where
1868     /// the items are defined in the block. For example,
1869     /// ```rust
1870     /// fn f() {
1871     ///    g(); // Since there are no local variables in scope yet, this resolves to the item.
1872     ///    let g = || {};
1873     ///    fn g() {}
1874     ///    g(); // This resolves to the local variable `g` since it shadows the item.
1875     /// }
1876     /// ```
1877     ///
1878     /// Invariant: This must only be called during main resolution, not during
1879     /// import resolution.
1880     fn resolve_ident_in_lexical_scope(&mut self,
1881                                       mut ident: Ident,
1882                                       ns: Namespace,
1883                                       record_used_id: Option<NodeId>,
1884                                       path_span: Span)
1885                                       -> Option<LexicalScopeBinding<'a>> {
1886         let record_used = record_used_id.is_some();
1887         assert!(ns == TypeNS  || ns == ValueNS);
1888         if ns == TypeNS {
1889             ident.span = if ident.name == keywords::SelfType.name() {
1890                 // FIXME(jseyfried) improve `Self` hygiene
1891                 ident.span.with_ctxt(SyntaxContext::empty())
1892             } else {
1893                 ident.span.modern()
1894             }
1895         } else {
1896             ident = ident.modern_and_legacy();
1897         }
1898
1899         // Walk backwards up the ribs in scope.
1900         let mut module = self.graph_root;
1901         for i in (0 .. self.ribs[ns].len()).rev() {
1902             if let Some(def) = self.ribs[ns][i].bindings.get(&ident).cloned() {
1903                 // The ident resolves to a type parameter or local variable.
1904                 return Some(LexicalScopeBinding::Def(
1905                     self.adjust_local_def(ns, i, def, record_used, path_span)
1906                 ));
1907             }
1908
1909             module = match self.ribs[ns][i].kind {
1910                 ModuleRibKind(module) => module,
1911                 MacroDefinition(def) if def == self.macro_def(ident.span.ctxt()) => {
1912                     // If an invocation of this macro created `ident`, give up on `ident`
1913                     // and switch to `ident`'s source from the macro definition.
1914                     ident.span.remove_mark();
1915                     continue
1916                 }
1917                 _ => continue,
1918             };
1919
1920             let item = self.resolve_ident_in_module_unadjusted(
1921                 ModuleOrUniformRoot::Module(module),
1922                 ident,
1923                 ns,
1924                 false,
1925                 record_used,
1926                 path_span,
1927             );
1928             if let Ok(binding) = item {
1929                 // The ident resolves to an item.
1930                 return Some(LexicalScopeBinding::Item(binding));
1931             }
1932
1933             match module.kind {
1934                 ModuleKind::Block(..) => {}, // We can see through blocks
1935                 _ => break,
1936             }
1937         }
1938
1939         ident.span = ident.span.modern();
1940         let mut poisoned = None;
1941         loop {
1942             let opt_module = if let Some(node_id) = record_used_id {
1943                 self.hygienic_lexical_parent_with_compatibility_fallback(module, &mut ident.span,
1944                                                                          node_id, &mut poisoned)
1945             } else {
1946                 self.hygienic_lexical_parent(module, &mut ident.span)
1947             };
1948             module = unwrap_or!(opt_module, break);
1949             let orig_current_module = self.current_module;
1950             self.current_module = module; // Lexical resolutions can never be a privacy error.
1951             let result = self.resolve_ident_in_module_unadjusted(
1952                 ModuleOrUniformRoot::Module(module),
1953                 ident,
1954                 ns,
1955                 false,
1956                 record_used,
1957                 path_span,
1958             );
1959             self.current_module = orig_current_module;
1960
1961             match result {
1962                 Ok(binding) => {
1963                     if let Some(node_id) = poisoned {
1964                         self.session.buffer_lint_with_diagnostic(
1965                             lint::builtin::PROC_MACRO_DERIVE_RESOLUTION_FALLBACK,
1966                             node_id, ident.span,
1967                             &format!("cannot find {} `{}` in this scope", ns.descr(), ident),
1968                             lint::builtin::BuiltinLintDiagnostics::
1969                                 ProcMacroDeriveResolutionFallback(ident.span),
1970                         );
1971                     }
1972                     return Some(LexicalScopeBinding::Item(binding))
1973                 }
1974                 Err(Determined) => continue,
1975                 Err(Undetermined) =>
1976                     span_bug!(ident.span, "undetermined resolution during main resolution pass"),
1977             }
1978         }
1979
1980         if !module.no_implicit_prelude {
1981             // `record_used` means that we don't try to load crates during speculative resolution
1982             if record_used && ns == TypeNS && self.extern_prelude.contains(&ident.name) {
1983                 let crate_id = self.crate_loader.process_path_extern(ident.name, ident.span);
1984                 let crate_root = self.get_module(DefId { krate: crate_id, index: CRATE_DEF_INDEX });
1985                 self.populate_module_if_necessary(&crate_root);
1986
1987                 let binding = (crate_root, ty::Visibility::Public,
1988                                ident.span, Mark::root()).to_name_binding(self.arenas);
1989                 return Some(LexicalScopeBinding::Item(binding));
1990             }
1991             if ns == TypeNS && is_known_tool(ident.name) {
1992                 let binding = (Def::ToolMod, ty::Visibility::Public,
1993                                ident.span, Mark::root()).to_name_binding(self.arenas);
1994                 return Some(LexicalScopeBinding::Item(binding));
1995             }
1996             if let Some(prelude) = self.prelude {
1997                 if let Ok(binding) = self.resolve_ident_in_module_unadjusted(
1998                     ModuleOrUniformRoot::Module(prelude),
1999                     ident,
2000                     ns,
2001                     false,
2002                     false,
2003                     path_span,
2004                 ) {
2005                     return Some(LexicalScopeBinding::Item(binding));
2006                 }
2007             }
2008         }
2009
2010         None
2011     }
2012
2013     fn hygienic_lexical_parent(&mut self, module: Module<'a>, span: &mut Span)
2014                                -> Option<Module<'a>> {
2015         if !module.expansion.is_descendant_of(span.ctxt().outer()) {
2016             return Some(self.macro_def_scope(span.remove_mark()));
2017         }
2018
2019         if let ModuleKind::Block(..) = module.kind {
2020             return Some(module.parent.unwrap());
2021         }
2022
2023         None
2024     }
2025
2026     fn hygienic_lexical_parent_with_compatibility_fallback(&mut self, module: Module<'a>,
2027                                                            span: &mut Span, node_id: NodeId,
2028                                                            poisoned: &mut Option<NodeId>)
2029                                                            -> Option<Module<'a>> {
2030         if let module @ Some(..) = self.hygienic_lexical_parent(module, span) {
2031             return module;
2032         }
2033
2034         // We need to support the next case under a deprecation warning
2035         // ```
2036         // struct MyStruct;
2037         // ---- begin: this comes from a proc macro derive
2038         // mod implementation_details {
2039         //     // Note that `MyStruct` is not in scope here.
2040         //     impl SomeTrait for MyStruct { ... }
2041         // }
2042         // ---- end
2043         // ```
2044         // So we have to fall back to the module's parent during lexical resolution in this case.
2045         if let Some(parent) = module.parent {
2046             // Inner module is inside the macro, parent module is outside of the macro.
2047             if module.expansion != parent.expansion &&
2048             module.expansion.is_descendant_of(parent.expansion) {
2049                 // The macro is a proc macro derive
2050                 if module.expansion.looks_like_proc_macro_derive() {
2051                     if parent.expansion.is_descendant_of(span.ctxt().outer()) {
2052                         *poisoned = Some(node_id);
2053                         return module.parent;
2054                     }
2055                 }
2056             }
2057         }
2058
2059         None
2060     }
2061
2062     fn resolve_ident_in_module(&mut self,
2063                                module: ModuleOrUniformRoot<'a>,
2064                                mut ident: Ident,
2065                                ns: Namespace,
2066                                record_used: bool,
2067                                span: Span)
2068                                -> Result<&'a NameBinding<'a>, Determinacy> {
2069         ident.span = ident.span.modern();
2070         let orig_current_module = self.current_module;
2071         if let ModuleOrUniformRoot::Module(module) = module {
2072             if let Some(def) = ident.span.adjust(module.expansion) {
2073                 self.current_module = self.macro_def_scope(def);
2074             }
2075         }
2076         let result = self.resolve_ident_in_module_unadjusted(
2077             module, ident, ns, false, record_used, span,
2078         );
2079         self.current_module = orig_current_module;
2080         result
2081     }
2082
2083     fn resolve_crate_root(&mut self, ident: Ident) -> Module<'a> {
2084         let mut ctxt = ident.span.ctxt();
2085         let mark = if ident.name == keywords::DollarCrate.name() {
2086             // When resolving `$crate` from a `macro_rules!` invoked in a `macro`,
2087             // we don't want to pretend that the `macro_rules!` definition is in the `macro`
2088             // as described in `SyntaxContext::apply_mark`, so we ignore prepended modern marks.
2089             // FIXME: This is only a guess and it doesn't work correctly for `macro_rules!`
2090             // definitions actually produced by `macro` and `macro` definitions produced by
2091             // `macro_rules!`, but at least such configurations are not stable yet.
2092             ctxt = ctxt.modern_and_legacy();
2093             let mut iter = ctxt.marks().into_iter().rev().peekable();
2094             let mut result = None;
2095             // Find the last modern mark from the end if it exists.
2096             while let Some(&(mark, transparency)) = iter.peek() {
2097                 if transparency == Transparency::Opaque {
2098                     result = Some(mark);
2099                     iter.next();
2100                 } else {
2101                     break;
2102                 }
2103             }
2104             // Then find the last legacy mark from the end if it exists.
2105             for (mark, transparency) in iter {
2106                 if transparency == Transparency::SemiTransparent {
2107                     result = Some(mark);
2108                 } else {
2109                     break;
2110                 }
2111             }
2112             result
2113         } else {
2114             ctxt = ctxt.modern();
2115             ctxt.adjust(Mark::root())
2116         };
2117         let module = match mark {
2118             Some(def) => self.macro_def_scope(def),
2119             None => return self.graph_root,
2120         };
2121         self.get_module(DefId { index: CRATE_DEF_INDEX, ..module.normal_ancestor_id })
2122     }
2123
2124     fn resolve_self(&mut self, ctxt: &mut SyntaxContext, module: Module<'a>) -> Module<'a> {
2125         let mut module = self.get_module(module.normal_ancestor_id);
2126         while module.span.ctxt().modern() != *ctxt {
2127             let parent = module.parent.unwrap_or_else(|| self.macro_def_scope(ctxt.remove_mark()));
2128             module = self.get_module(parent.normal_ancestor_id);
2129         }
2130         module
2131     }
2132
2133     // AST resolution
2134     //
2135     // We maintain a list of value ribs and type ribs.
2136     //
2137     // Simultaneously, we keep track of the current position in the module
2138     // graph in the `current_module` pointer. When we go to resolve a name in
2139     // the value or type namespaces, we first look through all the ribs and
2140     // then query the module graph. When we resolve a name in the module
2141     // namespace, we can skip all the ribs (since nested modules are not
2142     // allowed within blocks in Rust) and jump straight to the current module
2143     // graph node.
2144     //
2145     // Named implementations are handled separately. When we find a method
2146     // call, we consult the module node to find all of the implementations in
2147     // scope. This information is lazily cached in the module node. We then
2148     // generate a fake "implementation scope" containing all the
2149     // implementations thus found, for compatibility with old resolve pass.
2150
2151     pub fn with_scope<F, T>(&mut self, id: NodeId, f: F) -> T
2152         where F: FnOnce(&mut Resolver) -> T
2153     {
2154         let id = self.definitions.local_def_id(id);
2155         let module = self.module_map.get(&id).cloned(); // clones a reference
2156         if let Some(module) = module {
2157             // Move down in the graph.
2158             let orig_module = replace(&mut self.current_module, module);
2159             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(module)));
2160             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(module)));
2161
2162             self.finalize_current_module_macro_resolutions();
2163             let ret = f(self);
2164
2165             self.current_module = orig_module;
2166             self.ribs[ValueNS].pop();
2167             self.ribs[TypeNS].pop();
2168             ret
2169         } else {
2170             f(self)
2171         }
2172     }
2173
2174     /// Searches the current set of local scopes for labels. Returns the first non-None label that
2175     /// is returned by the given predicate function
2176     ///
2177     /// Stops after meeting a closure.
2178     fn search_label<P, R>(&self, mut ident: Ident, pred: P) -> Option<R>
2179         where P: Fn(&Rib, Ident) -> Option<R>
2180     {
2181         for rib in self.label_ribs.iter().rev() {
2182             match rib.kind {
2183                 NormalRibKind => {}
2184                 // If an invocation of this macro created `ident`, give up on `ident`
2185                 // and switch to `ident`'s source from the macro definition.
2186                 MacroDefinition(def) => {
2187                     if def == self.macro_def(ident.span.ctxt()) {
2188                         ident.span.remove_mark();
2189                     }
2190                 }
2191                 _ => {
2192                     // Do not resolve labels across function boundary
2193                     return None;
2194                 }
2195             }
2196             let r = pred(rib, ident);
2197             if r.is_some() {
2198                 return r;
2199             }
2200         }
2201         None
2202     }
2203
2204     fn resolve_adt(&mut self, item: &Item, generics: &Generics) {
2205         self.with_current_self_item(item, |this| {
2206             this.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2207                 let item_def_id = this.definitions.local_def_id(item.id);
2208                 if this.session.features_untracked().self_in_typedefs {
2209                     this.with_self_rib(Def::SelfTy(None, Some(item_def_id)), |this| {
2210                         visit::walk_item(this, item);
2211                     });
2212                 } else {
2213                     visit::walk_item(this, item);
2214                 }
2215             });
2216         });
2217     }
2218
2219     fn resolve_item(&mut self, item: &Item) {
2220         let name = item.ident.name;
2221         debug!("(resolving item) resolving {}", name);
2222
2223         match item.node {
2224             ItemKind::Ty(_, ref generics) |
2225             ItemKind::Fn(_, _, ref generics, _) |
2226             ItemKind::Existential(_, ref generics) => {
2227                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind),
2228                                              |this| visit::walk_item(this, item));
2229             }
2230
2231             ItemKind::Enum(_, ref generics) |
2232             ItemKind::Struct(_, ref generics) |
2233             ItemKind::Union(_, ref generics) => {
2234                 self.resolve_adt(item, generics);
2235             }
2236
2237             ItemKind::Impl(.., ref generics, ref opt_trait_ref, ref self_type, ref impl_items) =>
2238                 self.resolve_implementation(generics,
2239                                             opt_trait_ref,
2240                                             &self_type,
2241                                             item.id,
2242                                             impl_items),
2243
2244             ItemKind::Trait(.., ref generics, ref bounds, ref trait_items) => {
2245                 // Create a new rib for the trait-wide type parameters.
2246                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2247                     let local_def_id = this.definitions.local_def_id(item.id);
2248                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2249                         this.visit_generics(generics);
2250                         walk_list!(this, visit_param_bound, bounds);
2251
2252                         for trait_item in trait_items {
2253                             let type_parameters = HasTypeParameters(&trait_item.generics,
2254                                                                     TraitOrImplItemRibKind);
2255                             this.with_type_parameter_rib(type_parameters, |this| {
2256                                 match trait_item.node {
2257                                     TraitItemKind::Const(ref ty, ref default) => {
2258                                         this.visit_ty(ty);
2259
2260                                         // Only impose the restrictions of
2261                                         // ConstRibKind for an actual constant
2262                                         // expression in a provided default.
2263                                         if let Some(ref expr) = *default{
2264                                             this.with_constant_rib(|this| {
2265                                                 this.visit_expr(expr);
2266                                             });
2267                                         }
2268                                     }
2269                                     TraitItemKind::Method(_, _) => {
2270                                         visit::walk_trait_item(this, trait_item)
2271                                     }
2272                                     TraitItemKind::Type(..) => {
2273                                         visit::walk_trait_item(this, trait_item)
2274                                     }
2275                                     TraitItemKind::Macro(_) => {
2276                                         panic!("unexpanded macro in resolve!")
2277                                     }
2278                                 };
2279                             });
2280                         }
2281                     });
2282                 });
2283             }
2284
2285             ItemKind::TraitAlias(ref generics, ref bounds) => {
2286                 // Create a new rib for the trait-wide type parameters.
2287                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2288                     let local_def_id = this.definitions.local_def_id(item.id);
2289                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2290                         this.visit_generics(generics);
2291                         walk_list!(this, visit_param_bound, bounds);
2292                     });
2293                 });
2294             }
2295
2296             ItemKind::Mod(_) | ItemKind::ForeignMod(_) => {
2297                 self.with_scope(item.id, |this| {
2298                     visit::walk_item(this, item);
2299                 });
2300             }
2301
2302             ItemKind::Static(ref ty, _, ref expr) |
2303             ItemKind::Const(ref ty, ref expr) => {
2304                 self.with_item_rib(|this| {
2305                     this.visit_ty(ty);
2306                     this.with_constant_rib(|this| {
2307                         this.visit_expr(expr);
2308                     });
2309                 });
2310             }
2311
2312             ItemKind::Use(ref use_tree) => {
2313                 // Imports are resolved as global by default, add starting root segment.
2314                 let path = Path {
2315                     segments: use_tree.prefix.make_root().into_iter().collect(),
2316                     span: use_tree.span,
2317                 };
2318                 self.resolve_use_tree(item.id, use_tree.span, item.id, use_tree, &path);
2319             }
2320
2321             ItemKind::ExternCrate(_) | ItemKind::MacroDef(..) | ItemKind::GlobalAsm(_) => {
2322                 // do nothing, these are just around to be encoded
2323             }
2324
2325             ItemKind::Mac(_) => panic!("unexpanded macro in resolve!"),
2326         }
2327     }
2328
2329     /// For the most part, use trees are desugared into `ImportDirective` instances
2330     /// when building the reduced graph (see `build_reduced_graph_for_use_tree`). But
2331     /// there is one special case we handle here: an empty nested import like
2332     /// `a::{b::{}}`, which desugares into...no import directives.
2333     fn resolve_use_tree(
2334         &mut self,
2335         root_id: NodeId,
2336         root_span: Span,
2337         id: NodeId,
2338         use_tree: &ast::UseTree,
2339         prefix: &Path,
2340     ) {
2341         match use_tree.kind {
2342             ast::UseTreeKind::Nested(ref items) => {
2343                 let path = Path {
2344                     segments: prefix.segments
2345                         .iter()
2346                         .chain(use_tree.prefix.segments.iter())
2347                         .cloned()
2348                         .collect(),
2349                     span: prefix.span.to(use_tree.prefix.span),
2350                 };
2351
2352                 if items.len() == 0 {
2353                     // Resolve prefix of an import with empty braces (issue #28388).
2354                     self.smart_resolve_path_with_crate_lint(
2355                         id,
2356                         None,
2357                         &path,
2358                         PathSource::ImportPrefix,
2359                         CrateLint::UsePath { root_id, root_span },
2360                     );
2361                 } else {
2362                     for &(ref tree, nested_id) in items {
2363                         self.resolve_use_tree(root_id, root_span, nested_id, tree, &path);
2364                     }
2365                 }
2366             }
2367             ast::UseTreeKind::Simple(..) => {},
2368             ast::UseTreeKind::Glob => {},
2369         }
2370     }
2371
2372     fn with_type_parameter_rib<'b, F>(&'b mut self, type_parameters: TypeParameters<'a, 'b>, f: F)
2373         where F: FnOnce(&mut Resolver)
2374     {
2375         match type_parameters {
2376             HasTypeParameters(generics, rib_kind) => {
2377                 let mut function_type_rib = Rib::new(rib_kind);
2378                 let mut seen_bindings = FxHashMap();
2379                 for param in &generics.params {
2380                     match param.kind {
2381                         GenericParamKind::Lifetime { .. } => {}
2382                         GenericParamKind::Type { .. } => {
2383                             let ident = param.ident.modern();
2384                             debug!("with_type_parameter_rib: {}", param.id);
2385
2386                             if seen_bindings.contains_key(&ident) {
2387                                 let span = seen_bindings.get(&ident).unwrap();
2388                                 let err = ResolutionError::NameAlreadyUsedInTypeParameterList(
2389                                     ident.name,
2390                                     span,
2391                                 );
2392                                 resolve_error(self, param.ident.span, err);
2393                             }
2394                             seen_bindings.entry(ident).or_insert(param.ident.span);
2395
2396                         // Plain insert (no renaming).
2397                         let def = Def::TyParam(self.definitions.local_def_id(param.id));
2398                             function_type_rib.bindings.insert(ident, def);
2399                             self.record_def(param.id, PathResolution::new(def));
2400                         }
2401                     }
2402                 }
2403                 self.ribs[TypeNS].push(function_type_rib);
2404             }
2405
2406             NoTypeParameters => {
2407                 // Nothing to do.
2408             }
2409         }
2410
2411         f(self);
2412
2413         if let HasTypeParameters(..) = type_parameters {
2414             self.ribs[TypeNS].pop();
2415         }
2416     }
2417
2418     fn with_label_rib<F>(&mut self, f: F)
2419         where F: FnOnce(&mut Resolver)
2420     {
2421         self.label_ribs.push(Rib::new(NormalRibKind));
2422         f(self);
2423         self.label_ribs.pop();
2424     }
2425
2426     fn with_item_rib<F>(&mut self, f: F)
2427         where F: FnOnce(&mut Resolver)
2428     {
2429         self.ribs[ValueNS].push(Rib::new(ItemRibKind));
2430         self.ribs[TypeNS].push(Rib::new(ItemRibKind));
2431         f(self);
2432         self.ribs[TypeNS].pop();
2433         self.ribs[ValueNS].pop();
2434     }
2435
2436     fn with_constant_rib<F>(&mut self, f: F)
2437         where F: FnOnce(&mut Resolver)
2438     {
2439         self.ribs[ValueNS].push(Rib::new(ConstantItemRibKind));
2440         self.label_ribs.push(Rib::new(ConstantItemRibKind));
2441         f(self);
2442         self.label_ribs.pop();
2443         self.ribs[ValueNS].pop();
2444     }
2445
2446     fn with_current_self_type<T, F>(&mut self, self_type: &Ty, f: F) -> T
2447         where F: FnOnce(&mut Resolver) -> T
2448     {
2449         // Handle nested impls (inside fn bodies)
2450         let previous_value = replace(&mut self.current_self_type, Some(self_type.clone()));
2451         let result = f(self);
2452         self.current_self_type = previous_value;
2453         result
2454     }
2455
2456     fn with_current_self_item<T, F>(&mut self, self_item: &Item, f: F) -> T
2457         where F: FnOnce(&mut Resolver) -> T
2458     {
2459         let previous_value = replace(&mut self.current_self_item, Some(self_item.id));
2460         let result = f(self);
2461         self.current_self_item = previous_value;
2462         result
2463     }
2464
2465     /// This is called to resolve a trait reference from an `impl` (i.e. `impl Trait for Foo`)
2466     fn with_optional_trait_ref<T, F>(&mut self, opt_trait_ref: Option<&TraitRef>, f: F) -> T
2467         where F: FnOnce(&mut Resolver, Option<DefId>) -> T
2468     {
2469         let mut new_val = None;
2470         let mut new_id = None;
2471         if let Some(trait_ref) = opt_trait_ref {
2472             let path: Vec<_> = trait_ref.path.segments.iter()
2473                 .map(|seg| seg.ident)
2474                 .collect();
2475             let def = self.smart_resolve_path_fragment(
2476                 trait_ref.ref_id,
2477                 None,
2478                 &path,
2479                 trait_ref.path.span,
2480                 PathSource::Trait(AliasPossibility::No),
2481                 CrateLint::SimplePath(trait_ref.ref_id),
2482             ).base_def();
2483             if def != Def::Err {
2484                 new_id = Some(def.def_id());
2485                 let span = trait_ref.path.span;
2486                 if let PathResult::Module(ModuleOrUniformRoot::Module(module)) =
2487                     self.resolve_path(
2488                         None,
2489                         &path,
2490                         None,
2491                         false,
2492                         span,
2493                         CrateLint::SimplePath(trait_ref.ref_id),
2494                     )
2495                 {
2496                     new_val = Some((module, trait_ref.clone()));
2497                 }
2498             }
2499         }
2500         let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
2501         let result = f(self, new_id);
2502         self.current_trait_ref = original_trait_ref;
2503         result
2504     }
2505
2506     fn with_self_rib<F>(&mut self, self_def: Def, f: F)
2507         where F: FnOnce(&mut Resolver)
2508     {
2509         let mut self_type_rib = Rib::new(NormalRibKind);
2510
2511         // plain insert (no renaming, types are not currently hygienic....)
2512         self_type_rib.bindings.insert(keywords::SelfType.ident(), self_def);
2513         self.ribs[TypeNS].push(self_type_rib);
2514         f(self);
2515         self.ribs[TypeNS].pop();
2516     }
2517
2518     fn with_self_struct_ctor_rib<F>(&mut self, impl_id: DefId, f: F)
2519         where F: FnOnce(&mut Resolver)
2520     {
2521         let self_def = Def::SelfCtor(impl_id);
2522         let mut self_type_rib = Rib::new(NormalRibKind);
2523         self_type_rib.bindings.insert(keywords::SelfType.ident(), self_def);
2524         self.ribs[ValueNS].push(self_type_rib);
2525         f(self);
2526         self.ribs[ValueNS].pop();
2527     }
2528
2529     fn resolve_implementation(&mut self,
2530                               generics: &Generics,
2531                               opt_trait_reference: &Option<TraitRef>,
2532                               self_type: &Ty,
2533                               item_id: NodeId,
2534                               impl_items: &[ImplItem]) {
2535         // If applicable, create a rib for the type parameters.
2536         self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2537             // Dummy self type for better errors if `Self` is used in the trait path.
2538             this.with_self_rib(Def::SelfTy(None, None), |this| {
2539                 // Resolve the trait reference, if necessary.
2540                 this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| {
2541                     let item_def_id = this.definitions.local_def_id(item_id);
2542                     this.with_self_rib(Def::SelfTy(trait_id, Some(item_def_id)), |this| {
2543                         if let Some(trait_ref) = opt_trait_reference.as_ref() {
2544                             // Resolve type arguments in the trait path.
2545                             visit::walk_trait_ref(this, trait_ref);
2546                         }
2547                         // Resolve the self type.
2548                         this.visit_ty(self_type);
2549                         // Resolve the type parameters.
2550                         this.visit_generics(generics);
2551                         // Resolve the items within the impl.
2552                         this.with_current_self_type(self_type, |this| {
2553                             this.with_self_struct_ctor_rib(item_def_id, |this| {
2554                                 for impl_item in impl_items {
2555                                     this.resolve_visibility(&impl_item.vis);
2556
2557                                     // We also need a new scope for the impl item type parameters.
2558                                     let type_parameters = HasTypeParameters(&impl_item.generics,
2559                                                                             TraitOrImplItemRibKind);
2560                                     this.with_type_parameter_rib(type_parameters, |this| {
2561                                         use self::ResolutionError::*;
2562                                         match impl_item.node {
2563                                             ImplItemKind::Const(..) => {
2564                                                 // If this is a trait impl, ensure the const
2565                                                 // exists in trait
2566                                                 this.check_trait_item(impl_item.ident,
2567                                                                       ValueNS,
2568                                                                       impl_item.span,
2569                                                     |n, s| ConstNotMemberOfTrait(n, s));
2570                                                 this.with_constant_rib(|this|
2571                                                     visit::walk_impl_item(this, impl_item)
2572                                                 );
2573                                             }
2574                                             ImplItemKind::Method(..) => {
2575                                                 // If this is a trait impl, ensure the method
2576                                                 // exists in trait
2577                                                 this.check_trait_item(impl_item.ident,
2578                                                                       ValueNS,
2579                                                                       impl_item.span,
2580                                                     |n, s| MethodNotMemberOfTrait(n, s));
2581
2582                                                 visit::walk_impl_item(this, impl_item);
2583                                             }
2584                                             ImplItemKind::Type(ref ty) => {
2585                                                 // If this is a trait impl, ensure the type
2586                                                 // exists in trait
2587                                                 this.check_trait_item(impl_item.ident,
2588                                                                       TypeNS,
2589                                                                       impl_item.span,
2590                                                     |n, s| TypeNotMemberOfTrait(n, s));
2591
2592                                                 this.visit_ty(ty);
2593                                             }
2594                                             ImplItemKind::Existential(ref bounds) => {
2595                                                 // If this is a trait impl, ensure the type
2596                                                 // exists in trait
2597                                                 this.check_trait_item(impl_item.ident,
2598                                                                       TypeNS,
2599                                                                       impl_item.span,
2600                                                     |n, s| TypeNotMemberOfTrait(n, s));
2601
2602                                                 for bound in bounds {
2603                                                     this.visit_param_bound(bound);
2604                                                 }
2605                                             }
2606                                             ImplItemKind::Macro(_) =>
2607                                                 panic!("unexpanded macro in resolve!"),
2608                                         }
2609                                     });
2610                                 }
2611                             });
2612                         });
2613                     });
2614                 });
2615             });
2616         });
2617     }
2618
2619     fn check_trait_item<F>(&mut self, ident: Ident, ns: Namespace, span: Span, err: F)
2620         where F: FnOnce(Name, &str) -> ResolutionError
2621     {
2622         // If there is a TraitRef in scope for an impl, then the method must be in the
2623         // trait.
2624         if let Some((module, _)) = self.current_trait_ref {
2625             if self.resolve_ident_in_module(
2626                 ModuleOrUniformRoot::Module(module),
2627                 ident,
2628                 ns,
2629                 false,
2630                 span,
2631             ).is_err() {
2632                 let path = &self.current_trait_ref.as_ref().unwrap().1.path;
2633                 resolve_error(self, span, err(ident.name, &path_names_to_string(path)));
2634             }
2635         }
2636     }
2637
2638     fn resolve_local(&mut self, local: &Local) {
2639         // Resolve the type.
2640         walk_list!(self, visit_ty, &local.ty);
2641
2642         // Resolve the initializer.
2643         walk_list!(self, visit_expr, &local.init);
2644
2645         // Resolve the pattern.
2646         self.resolve_pattern(&local.pat, PatternSource::Let, &mut FxHashMap());
2647     }
2648
2649     // build a map from pattern identifiers to binding-info's.
2650     // this is done hygienically. This could arise for a macro
2651     // that expands into an or-pattern where one 'x' was from the
2652     // user and one 'x' came from the macro.
2653     fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
2654         let mut binding_map = FxHashMap();
2655
2656         pat.walk(&mut |pat| {
2657             if let PatKind::Ident(binding_mode, ident, ref sub_pat) = pat.node {
2658                 if sub_pat.is_some() || match self.def_map.get(&pat.id).map(|res| res.base_def()) {
2659                     Some(Def::Local(..)) => true,
2660                     _ => false,
2661                 } {
2662                     let binding_info = BindingInfo { span: ident.span, binding_mode: binding_mode };
2663                     binding_map.insert(ident, binding_info);
2664                 }
2665             }
2666             true
2667         });
2668
2669         binding_map
2670     }
2671
2672     // check that all of the arms in an or-pattern have exactly the
2673     // same set of bindings, with the same binding modes for each.
2674     fn check_consistent_bindings(&mut self, pats: &[P<Pat>]) {
2675         if pats.is_empty() {
2676             return;
2677         }
2678
2679         let mut missing_vars = FxHashMap();
2680         let mut inconsistent_vars = FxHashMap();
2681         for (i, p) in pats.iter().enumerate() {
2682             let map_i = self.binding_mode_map(&p);
2683
2684             for (j, q) in pats.iter().enumerate() {
2685                 if i == j {
2686                     continue;
2687                 }
2688
2689                 let map_j = self.binding_mode_map(&q);
2690                 for (&key, &binding_i) in &map_i {
2691                     if map_j.len() == 0 {                   // Account for missing bindings when
2692                         let binding_error = missing_vars    // map_j has none.
2693                             .entry(key.name)
2694                             .or_insert(BindingError {
2695                                 name: key.name,
2696                                 origin: BTreeSet::new(),
2697                                 target: BTreeSet::new(),
2698                             });
2699                         binding_error.origin.insert(binding_i.span);
2700                         binding_error.target.insert(q.span);
2701                     }
2702                     for (&key_j, &binding_j) in &map_j {
2703                         match map_i.get(&key_j) {
2704                             None => {  // missing binding
2705                                 let binding_error = missing_vars
2706                                     .entry(key_j.name)
2707                                     .or_insert(BindingError {
2708                                         name: key_j.name,
2709                                         origin: BTreeSet::new(),
2710                                         target: BTreeSet::new(),
2711                                     });
2712                                 binding_error.origin.insert(binding_j.span);
2713                                 binding_error.target.insert(p.span);
2714                             }
2715                             Some(binding_i) => {  // check consistent binding
2716                                 if binding_i.binding_mode != binding_j.binding_mode {
2717                                     inconsistent_vars
2718                                         .entry(key.name)
2719                                         .or_insert((binding_j.span, binding_i.span));
2720                                 }
2721                             }
2722                         }
2723                     }
2724                 }
2725             }
2726         }
2727         let mut missing_vars = missing_vars.iter().collect::<Vec<_>>();
2728         missing_vars.sort();
2729         for (_, v) in missing_vars {
2730             resolve_error(self,
2731                           *v.origin.iter().next().unwrap(),
2732                           ResolutionError::VariableNotBoundInPattern(v));
2733         }
2734         let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
2735         inconsistent_vars.sort();
2736         for (name, v) in inconsistent_vars {
2737             resolve_error(self, v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
2738         }
2739     }
2740
2741     fn resolve_arm(&mut self, arm: &Arm) {
2742         self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2743
2744         let mut bindings_list = FxHashMap();
2745         for pattern in &arm.pats {
2746             self.resolve_pattern(&pattern, PatternSource::Match, &mut bindings_list);
2747         }
2748
2749         // This has to happen *after* we determine which pat_idents are variants
2750         self.check_consistent_bindings(&arm.pats);
2751
2752         match arm.guard {
2753             Some(ast::Guard::If(ref expr)) => self.visit_expr(expr),
2754             _ => {}
2755         }
2756         self.visit_expr(&arm.body);
2757
2758         self.ribs[ValueNS].pop();
2759     }
2760
2761     fn resolve_block(&mut self, block: &Block) {
2762         debug!("(resolving block) entering block");
2763         // Move down in the graph, if there's an anonymous module rooted here.
2764         let orig_module = self.current_module;
2765         let anonymous_module = self.block_map.get(&block.id).cloned(); // clones a reference
2766
2767         let mut num_macro_definition_ribs = 0;
2768         if let Some(anonymous_module) = anonymous_module {
2769             debug!("(resolving block) found anonymous module, moving down");
2770             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2771             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2772             self.current_module = anonymous_module;
2773             self.finalize_current_module_macro_resolutions();
2774         } else {
2775             self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2776         }
2777
2778         // Descend into the block.
2779         for stmt in &block.stmts {
2780             if let ast::StmtKind::Item(ref item) = stmt.node {
2781                 if let ast::ItemKind::MacroDef(..) = item.node {
2782                     num_macro_definition_ribs += 1;
2783                     let def = self.definitions.local_def_id(item.id);
2784                     self.ribs[ValueNS].push(Rib::new(MacroDefinition(def)));
2785                     self.label_ribs.push(Rib::new(MacroDefinition(def)));
2786                 }
2787             }
2788
2789             self.visit_stmt(stmt);
2790         }
2791
2792         // Move back up.
2793         self.current_module = orig_module;
2794         for _ in 0 .. num_macro_definition_ribs {
2795             self.ribs[ValueNS].pop();
2796             self.label_ribs.pop();
2797         }
2798         self.ribs[ValueNS].pop();
2799         if anonymous_module.is_some() {
2800             self.ribs[TypeNS].pop();
2801         }
2802         debug!("(resolving block) leaving block");
2803     }
2804
2805     fn fresh_binding(&mut self,
2806                      ident: Ident,
2807                      pat_id: NodeId,
2808                      outer_pat_id: NodeId,
2809                      pat_src: PatternSource,
2810                      bindings: &mut FxHashMap<Ident, NodeId>)
2811                      -> PathResolution {
2812         // Add the binding to the local ribs, if it
2813         // doesn't already exist in the bindings map. (We
2814         // must not add it if it's in the bindings map
2815         // because that breaks the assumptions later
2816         // passes make about or-patterns.)
2817         let ident = ident.modern_and_legacy();
2818         let mut def = Def::Local(pat_id);
2819         match bindings.get(&ident).cloned() {
2820             Some(id) if id == outer_pat_id => {
2821                 // `Variant(a, a)`, error
2822                 resolve_error(
2823                     self,
2824                     ident.span,
2825                     ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(
2826                         &ident.as_str())
2827                 );
2828             }
2829             Some(..) if pat_src == PatternSource::FnParam => {
2830                 // `fn f(a: u8, a: u8)`, error
2831                 resolve_error(
2832                     self,
2833                     ident.span,
2834                     ResolutionError::IdentifierBoundMoreThanOnceInParameterList(
2835                         &ident.as_str())
2836                 );
2837             }
2838             Some(..) if pat_src == PatternSource::Match ||
2839                         pat_src == PatternSource::IfLet ||
2840                         pat_src == PatternSource::WhileLet => {
2841                 // `Variant1(a) | Variant2(a)`, ok
2842                 // Reuse definition from the first `a`.
2843                 def = self.ribs[ValueNS].last_mut().unwrap().bindings[&ident];
2844             }
2845             Some(..) => {
2846                 span_bug!(ident.span, "two bindings with the same name from \
2847                                        unexpected pattern source {:?}", pat_src);
2848             }
2849             None => {
2850                 // A completely fresh binding, add to the lists if it's valid.
2851                 if ident.name != keywords::Invalid.name() {
2852                     bindings.insert(ident, outer_pat_id);
2853                     self.ribs[ValueNS].last_mut().unwrap().bindings.insert(ident, def);
2854                 }
2855             }
2856         }
2857
2858         PathResolution::new(def)
2859     }
2860
2861     fn resolve_pattern(&mut self,
2862                        pat: &Pat,
2863                        pat_src: PatternSource,
2864                        // Maps idents to the node ID for the
2865                        // outermost pattern that binds them.
2866                        bindings: &mut FxHashMap<Ident, NodeId>) {
2867         // Visit all direct subpatterns of this pattern.
2868         let outer_pat_id = pat.id;
2869         pat.walk(&mut |pat| {
2870             match pat.node {
2871                 PatKind::Ident(bmode, ident, ref opt_pat) => {
2872                     // First try to resolve the identifier as some existing
2873                     // entity, then fall back to a fresh binding.
2874                     let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS,
2875                                                                       None, pat.span)
2876                                       .and_then(LexicalScopeBinding::item);
2877                     let resolution = binding.map(NameBinding::def).and_then(|def| {
2878                         let is_syntactic_ambiguity = opt_pat.is_none() &&
2879                             bmode == BindingMode::ByValue(Mutability::Immutable);
2880                         match def {
2881                             Def::StructCtor(_, CtorKind::Const) |
2882                             Def::VariantCtor(_, CtorKind::Const) |
2883                             Def::Const(..) if is_syntactic_ambiguity => {
2884                                 // Disambiguate in favor of a unit struct/variant
2885                                 // or constant pattern.
2886                                 self.record_use(ident, ValueNS, binding.unwrap());
2887                                 Some(PathResolution::new(def))
2888                             }
2889                             Def::StructCtor(..) | Def::VariantCtor(..) |
2890                             Def::Const(..) | Def::Static(..) => {
2891                                 // This is unambiguously a fresh binding, either syntactically
2892                                 // (e.g. `IDENT @ PAT` or `ref IDENT`) or because `IDENT` resolves
2893                                 // to something unusable as a pattern (e.g. constructor function),
2894                                 // but we still conservatively report an error, see
2895                                 // issues/33118#issuecomment-233962221 for one reason why.
2896                                 resolve_error(
2897                                     self,
2898                                     ident.span,
2899                                     ResolutionError::BindingShadowsSomethingUnacceptable(
2900                                         pat_src.descr(), ident.name, binding.unwrap())
2901                                 );
2902                                 None
2903                             }
2904                             Def::Fn(..) | Def::Err => {
2905                                 // These entities are explicitly allowed
2906                                 // to be shadowed by fresh bindings.
2907                                 None
2908                             }
2909                             def => {
2910                                 span_bug!(ident.span, "unexpected definition for an \
2911                                                        identifier in pattern: {:?}", def);
2912                             }
2913                         }
2914                     }).unwrap_or_else(|| {
2915                         self.fresh_binding(ident, pat.id, outer_pat_id, pat_src, bindings)
2916                     });
2917
2918                     self.record_def(pat.id, resolution);
2919                 }
2920
2921                 PatKind::TupleStruct(ref path, ..) => {
2922                     self.smart_resolve_path(pat.id, None, path, PathSource::TupleStruct);
2923                 }
2924
2925                 PatKind::Path(ref qself, ref path) => {
2926                     self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
2927                 }
2928
2929                 PatKind::Struct(ref path, ..) => {
2930                     self.smart_resolve_path(pat.id, None, path, PathSource::Struct);
2931                 }
2932
2933                 _ => {}
2934             }
2935             true
2936         });
2937
2938         visit::walk_pat(self, pat);
2939     }
2940
2941     // High-level and context dependent path resolution routine.
2942     // Resolves the path and records the resolution into definition map.
2943     // If resolution fails tries several techniques to find likely
2944     // resolution candidates, suggest imports or other help, and report
2945     // errors in user friendly way.
2946     fn smart_resolve_path(&mut self,
2947                           id: NodeId,
2948                           qself: Option<&QSelf>,
2949                           path: &Path,
2950                           source: PathSource)
2951                           -> PathResolution {
2952         self.smart_resolve_path_with_crate_lint(id, qself, path, source, CrateLint::SimplePath(id))
2953     }
2954
2955     /// A variant of `smart_resolve_path` where you also specify extra
2956     /// information about where the path came from; this extra info is
2957     /// sometimes needed for the lint that recommends rewriting
2958     /// absolute paths to `crate`, so that it knows how to frame the
2959     /// suggestion. If you are just resolving a path like `foo::bar`
2960     /// that appears...somewhere, though, then you just want
2961     /// `CrateLint::SimplePath`, which is what `smart_resolve_path`
2962     /// already provides.
2963     fn smart_resolve_path_with_crate_lint(
2964         &mut self,
2965         id: NodeId,
2966         qself: Option<&QSelf>,
2967         path: &Path,
2968         source: PathSource,
2969         crate_lint: CrateLint
2970     ) -> PathResolution {
2971         let segments = &path.segments.iter()
2972             .map(|seg| seg.ident)
2973             .collect::<Vec<_>>();
2974         self.smart_resolve_path_fragment(id, qself, segments, path.span, source, crate_lint)
2975     }
2976
2977     fn smart_resolve_path_fragment(&mut self,
2978                                    id: NodeId,
2979                                    qself: Option<&QSelf>,
2980                                    path: &[Ident],
2981                                    span: Span,
2982                                    source: PathSource,
2983                                    crate_lint: CrateLint)
2984                                    -> PathResolution {
2985         let ident_span = path.last().map_or(span, |ident| ident.span);
2986         let ns = source.namespace();
2987         let is_expected = &|def| source.is_expected(def);
2988         let is_enum_variant = &|def| if let Def::Variant(..) = def { true } else { false };
2989
2990         // Base error is amended with one short label and possibly some longer helps/notes.
2991         let report_errors = |this: &mut Self, def: Option<Def>| {
2992             // Make the base error.
2993             let expected = source.descr_expected();
2994             let path_str = names_to_string(path);
2995             let item_str = path[path.len() - 1];
2996             let code = source.error_code(def.is_some());
2997             let (base_msg, fallback_label, base_span) = if let Some(def) = def {
2998                 (format!("expected {}, found {} `{}`", expected, def.kind_name(), path_str),
2999                  format!("not a {}", expected),
3000                  span)
3001             } else {
3002                 let item_span = path[path.len() - 1].span;
3003                 let (mod_prefix, mod_str) = if path.len() == 1 {
3004                     (String::new(), "this scope".to_string())
3005                 } else if path.len() == 2 && path[0].name == keywords::CrateRoot.name() {
3006                     (String::new(), "the crate root".to_string())
3007                 } else {
3008                     let mod_path = &path[..path.len() - 1];
3009                     let mod_prefix = match this.resolve_path(None, mod_path, Some(TypeNS),
3010                                                              false, span, CrateLint::No) {
3011                         PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3012                             module.def(),
3013                         _ => None,
3014                     }.map_or(String::new(), |def| format!("{} ", def.kind_name()));
3015                     (mod_prefix, format!("`{}`", names_to_string(mod_path)))
3016                 };
3017                 (format!("cannot find {} `{}` in {}{}", expected, item_str, mod_prefix, mod_str),
3018                  format!("not found in {}", mod_str),
3019                  item_span)
3020             };
3021             let code = DiagnosticId::Error(code.into());
3022             let mut err = this.session.struct_span_err_with_code(base_span, &base_msg, code);
3023
3024             // Emit help message for fake-self from other languages like `this`(javascript)
3025             let fake_self: Vec<Ident> = ["this", "my"].iter().map(
3026                 |s| Ident::from_str(*s)
3027             ).collect();
3028             if fake_self.contains(&item_str)
3029                 && this.self_value_is_available(path[0].span, span) {
3030                 err.span_suggestion_with_applicability(
3031                     span,
3032                     "did you mean",
3033                     "self".to_string(),
3034                     Applicability::MaybeIncorrect,
3035                 );
3036             }
3037
3038             // Emit special messages for unresolved `Self` and `self`.
3039             if is_self_type(path, ns) {
3040                 __diagnostic_used!(E0411);
3041                 err.code(DiagnosticId::Error("E0411".into()));
3042                 let available_in = if this.session.features_untracked().self_in_typedefs {
3043                     "impls, traits, and type definitions"
3044                 } else {
3045                     "traits and impls"
3046                 };
3047                 err.span_label(span, format!("`Self` is only available in {}", available_in));
3048                 if this.current_self_item.is_some() && nightly_options::is_nightly_build() {
3049                     err.help("add #![feature(self_in_typedefs)] to the crate attributes \
3050                               to enable");
3051                 }
3052                 return (err, Vec::new());
3053             }
3054             if is_self_value(path, ns) {
3055                 __diagnostic_used!(E0424);
3056                 err.code(DiagnosticId::Error("E0424".into()));
3057                 err.span_label(span, format!("`self` value is a keyword \
3058                                                only available in \
3059                                                methods with `self` parameter"));
3060                 return (err, Vec::new());
3061             }
3062
3063             // Try to lookup the name in more relaxed fashion for better error reporting.
3064             let ident = *path.last().unwrap();
3065             let candidates = this.lookup_import_candidates(ident.name, ns, is_expected);
3066             if candidates.is_empty() && is_expected(Def::Enum(DefId::local(CRATE_DEF_INDEX))) {
3067                 let enum_candidates =
3068                     this.lookup_import_candidates(ident.name, ns, is_enum_variant);
3069                 let mut enum_candidates = enum_candidates.iter()
3070                     .map(|suggestion| import_candidate_to_paths(&suggestion)).collect::<Vec<_>>();
3071                 enum_candidates.sort();
3072                 for (sp, variant_path, enum_path) in enum_candidates {
3073                     if sp.is_dummy() {
3074                         let msg = format!("there is an enum variant `{}`, \
3075                                         try using `{}`?",
3076                                         variant_path,
3077                                         enum_path);
3078                         err.help(&msg);
3079                     } else {
3080                         err.span_suggestion_with_applicability(
3081                             span,
3082                             "you can try using the variant's enum",
3083                             enum_path,
3084                             Applicability::MachineApplicable,
3085                         );
3086                     }
3087                 }
3088             }
3089             if path.len() == 1 && this.self_type_is_available(span) {
3090                 if let Some(candidate) = this.lookup_assoc_candidate(ident, ns, is_expected) {
3091                     let self_is_available = this.self_value_is_available(path[0].span, span);
3092                     match candidate {
3093                         AssocSuggestion::Field => {
3094                             err.span_suggestion_with_applicability(
3095                                 span,
3096                                 "try",
3097                                 format!("self.{}", path_str),
3098                                 Applicability::MachineApplicable,
3099                             );
3100                             if !self_is_available {
3101                                 err.span_label(span, format!("`self` value is a keyword \
3102                                                                only available in \
3103                                                                methods with `self` parameter"));
3104                             }
3105                         }
3106                         AssocSuggestion::MethodWithSelf if self_is_available => {
3107                             err.span_suggestion_with_applicability(
3108                                 span,
3109                                 "try",
3110                                 format!("self.{}", path_str),
3111                                 Applicability::MachineApplicable,
3112                             );
3113                         }
3114                         AssocSuggestion::MethodWithSelf | AssocSuggestion::AssocItem => {
3115                             err.span_suggestion_with_applicability(
3116                                 span,
3117                                 "try",
3118                                 format!("Self::{}", path_str),
3119                                 Applicability::MachineApplicable,
3120                             );
3121                         }
3122                     }
3123                     return (err, candidates);
3124                 }
3125             }
3126
3127             let mut levenshtein_worked = false;
3128
3129             // Try Levenshtein.
3130             if let Some(candidate) = this.lookup_typo_candidate(path, ns, is_expected, span) {
3131                 err.span_label(ident_span, format!("did you mean `{}`?", candidate));
3132                 levenshtein_worked = true;
3133             }
3134
3135             // Try context dependent help if relaxed lookup didn't work.
3136             if let Some(def) = def {
3137                 match (def, source) {
3138                     (Def::Macro(..), _) => {
3139                         err.span_label(span, format!("did you mean `{}!(...)`?", path_str));
3140                         return (err, candidates);
3141                     }
3142                     (Def::TyAlias(..), PathSource::Trait(_)) => {
3143                         err.span_label(span, "type aliases cannot be used for traits");
3144                         return (err, candidates);
3145                     }
3146                     (Def::Mod(..), PathSource::Expr(Some(parent))) => match parent.node {
3147                         ExprKind::Field(_, ident) => {
3148                             err.span_label(parent.span, format!("did you mean `{}::{}`?",
3149                                                                  path_str, ident));
3150                             return (err, candidates);
3151                         }
3152                         ExprKind::MethodCall(ref segment, ..) => {
3153                             err.span_label(parent.span, format!("did you mean `{}::{}(...)`?",
3154                                                                  path_str, segment.ident));
3155                             return (err, candidates);
3156                         }
3157                         _ => {}
3158                     },
3159                     (Def::Enum(..), PathSource::TupleStruct)
3160                         | (Def::Enum(..), PathSource::Expr(..))  => {
3161                         if let Some(variants) = this.collect_enum_variants(def) {
3162                             err.note(&format!("did you mean to use one \
3163                                                of the following variants?\n{}",
3164                                 variants.iter()
3165                                     .map(|suggestion| path_names_to_string(suggestion))
3166                                     .map(|suggestion| format!("- `{}`", suggestion))
3167                                     .collect::<Vec<_>>()
3168                                     .join("\n")));
3169
3170                         } else {
3171                             err.note("did you mean to use one of the enum's variants?");
3172                         }
3173                         return (err, candidates);
3174                     },
3175                     (Def::Struct(def_id), _) if ns == ValueNS => {
3176                         if let Some((ctor_def, ctor_vis))
3177                                 = this.struct_constructors.get(&def_id).cloned() {
3178                             let accessible_ctor = this.is_accessible(ctor_vis);
3179                             if is_expected(ctor_def) && !accessible_ctor {
3180                                 err.span_label(span, format!("constructor is not visible \
3181                                                               here due to private fields"));
3182                             }
3183                         } else {
3184                             // HACK(estebank): find a better way to figure out that this was a
3185                             // parser issue where a struct literal is being used on an expression
3186                             // where a brace being opened means a block is being started. Look
3187                             // ahead for the next text to see if `span` is followed by a `{`.
3188                             let sm = this.session.source_map();
3189                             let mut sp = span;
3190                             loop {
3191                                 sp = sm.next_point(sp);
3192                                 match sm.span_to_snippet(sp) {
3193                                     Ok(ref snippet) => {
3194                                         if snippet.chars().any(|c| { !c.is_whitespace() }) {
3195                                             break;
3196                                         }
3197                                     }
3198                                     _ => break,
3199                                 }
3200                             }
3201                             let followed_by_brace = match sm.span_to_snippet(sp) {
3202                                 Ok(ref snippet) if snippet == "{" => true,
3203                                 _ => false,
3204                             };
3205                             match source {
3206                                 PathSource::Expr(Some(parent)) => {
3207                                     match parent.node {
3208                                         ExprKind::MethodCall(ref path_assignment, _)  => {
3209                                             err.span_suggestion_with_applicability(
3210                                                 sm.start_point(parent.span)
3211                                                   .to(path_assignment.ident.span),
3212                                                 "use `::` to access an associated function",
3213                                                 format!("{}::{}",
3214                                                         path_str,
3215                                                         path_assignment.ident),
3216                                                 Applicability::MaybeIncorrect
3217                                             );
3218                                             return (err, candidates);
3219                                         },
3220                                         _ => {
3221                                             err.span_label(
3222                                                 span,
3223                                                 format!("did you mean `{} {{ /* fields */ }}`?",
3224                                                         path_str),
3225                                             );
3226                                             return (err, candidates);
3227                                         },
3228                                     }
3229                                 },
3230                                 PathSource::Expr(None) if followed_by_brace == true => {
3231                                     err.span_label(
3232                                         span,
3233                                         format!("did you mean `({} {{ /* fields */ }})`?",
3234                                                 path_str),
3235                                     );
3236                                     return (err, candidates);
3237                                 },
3238                                 _ => {
3239                                     err.span_label(
3240                                         span,
3241                                         format!("did you mean `{} {{ /* fields */ }}`?",
3242                                                 path_str),
3243                                     );
3244                                     return (err, candidates);
3245                                 },
3246                             }
3247                         }
3248                         return (err, candidates);
3249                     }
3250                     (Def::Union(..), _) |
3251                     (Def::Variant(..), _) |
3252                     (Def::VariantCtor(_, CtorKind::Fictive), _) if ns == ValueNS => {
3253                         err.span_label(span, format!("did you mean `{} {{ /* fields */ }}`?",
3254                                                      path_str));
3255                         return (err, candidates);
3256                     }
3257                     (Def::SelfTy(..), _) if ns == ValueNS => {
3258                         err.span_label(span, fallback_label);
3259                         err.note("can't use `Self` as a constructor, you must use the \
3260                                   implemented struct");
3261                         return (err, candidates);
3262                     }
3263                     (Def::TyAlias(_), _) | (Def::AssociatedTy(..), _) if ns == ValueNS => {
3264                         err.note("can't use a type alias as a constructor");
3265                         return (err, candidates);
3266                     }
3267                     _ => {}
3268                 }
3269             }
3270
3271             // Fallback label.
3272             if !levenshtein_worked {
3273                 err.span_label(base_span, fallback_label);
3274                 this.type_ascription_suggestion(&mut err, base_span);
3275             }
3276             (err, candidates)
3277         };
3278         let report_errors = |this: &mut Self, def: Option<Def>| {
3279             let (err, candidates) = report_errors(this, def);
3280             let def_id = this.current_module.normal_ancestor_id;
3281             let node_id = this.definitions.as_local_node_id(def_id).unwrap();
3282             let better = def.is_some();
3283             this.use_injections.push(UseError { err, candidates, node_id, better });
3284             err_path_resolution()
3285         };
3286
3287         let resolution = match self.resolve_qpath_anywhere(
3288             id,
3289             qself,
3290             path,
3291             ns,
3292             span,
3293             source.defer_to_typeck(),
3294             source.global_by_default(),
3295             crate_lint,
3296         ) {
3297             Some(resolution) if resolution.unresolved_segments() == 0 => {
3298                 if is_expected(resolution.base_def()) || resolution.base_def() == Def::Err {
3299                     resolution
3300                 } else {
3301                     // Add a temporary hack to smooth the transition to new struct ctor
3302                     // visibility rules. See #38932 for more details.
3303                     let mut res = None;
3304                     if let Def::Struct(def_id) = resolution.base_def() {
3305                         if let Some((ctor_def, ctor_vis))
3306                                 = self.struct_constructors.get(&def_id).cloned() {
3307                             if is_expected(ctor_def) && self.is_accessible(ctor_vis) {
3308                                 let lint = lint::builtin::LEGACY_CONSTRUCTOR_VISIBILITY;
3309                                 self.session.buffer_lint(lint, id, span,
3310                                     "private struct constructors are not usable through \
3311                                      re-exports in outer modules",
3312                                 );
3313                                 res = Some(PathResolution::new(ctor_def));
3314                             }
3315                         }
3316                     }
3317
3318                     res.unwrap_or_else(|| report_errors(self, Some(resolution.base_def())))
3319                 }
3320             }
3321             Some(resolution) if source.defer_to_typeck() => {
3322                 // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
3323                 // or `<T>::A::B`. If `B` should be resolved in value namespace then
3324                 // it needs to be added to the trait map.
3325                 if ns == ValueNS {
3326                     let item_name = *path.last().unwrap();
3327                     let traits = self.get_traits_containing_item(item_name, ns);
3328                     self.trait_map.insert(id, traits);
3329                 }
3330                 resolution
3331             }
3332             _ => report_errors(self, None)
3333         };
3334
3335         if let PathSource::TraitItem(..) = source {} else {
3336             // Avoid recording definition of `A::B` in `<T as A>::B::C`.
3337             self.record_def(id, resolution);
3338         }
3339         resolution
3340     }
3341
3342     fn type_ascription_suggestion(&self,
3343                                   err: &mut DiagnosticBuilder,
3344                                   base_span: Span) {
3345         debug!("type_ascription_suggetion {:?}", base_span);
3346         let cm = self.session.source_map();
3347         debug!("self.current_type_ascription {:?}", self.current_type_ascription);
3348         if let Some(sp) = self.current_type_ascription.last() {
3349             let mut sp = *sp;
3350             loop {  // try to find the `:`, bail on first non-':'/non-whitespace
3351                 sp = cm.next_point(sp);
3352                 if let Ok(snippet) = cm.span_to_snippet(sp.to(cm.next_point(sp))) {
3353                     debug!("snippet {:?}", snippet);
3354                     let line_sp = cm.lookup_char_pos(sp.hi()).line;
3355                     let line_base_sp = cm.lookup_char_pos(base_span.lo()).line;
3356                     debug!("{:?} {:?}", line_sp, line_base_sp);
3357                     if snippet == ":" {
3358                         err.span_label(base_span,
3359                                        "expecting a type here because of type ascription");
3360                         if line_sp != line_base_sp {
3361                             err.span_suggestion_short_with_applicability(
3362                                 sp,
3363                                 "did you mean to use `;` here instead?",
3364                                 ";".to_string(),
3365                                 Applicability::MaybeIncorrect,
3366                             );
3367                         }
3368                         break;
3369                     } else if snippet.trim().len() != 0  {
3370                         debug!("tried to find type ascription `:` token, couldn't find it");
3371                         break;
3372                     }
3373                 } else {
3374                     break;
3375                 }
3376             }
3377         }
3378     }
3379
3380     fn self_type_is_available(&mut self, span: Span) -> bool {
3381         let binding = self.resolve_ident_in_lexical_scope(keywords::SelfType.ident(),
3382                                                           TypeNS, None, span);
3383         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3384     }
3385
3386     fn self_value_is_available(&mut self, self_span: Span, path_span: Span) -> bool {
3387         let ident = Ident::new(keywords::SelfValue.name(), self_span);
3388         let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, None, path_span);
3389         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3390     }
3391
3392     // Resolve in alternative namespaces if resolution in the primary namespace fails.
3393     fn resolve_qpath_anywhere(&mut self,
3394                               id: NodeId,
3395                               qself: Option<&QSelf>,
3396                               path: &[Ident],
3397                               primary_ns: Namespace,
3398                               span: Span,
3399                               defer_to_typeck: bool,
3400                               global_by_default: bool,
3401                               crate_lint: CrateLint)
3402                               -> Option<PathResolution> {
3403         let mut fin_res = None;
3404         // FIXME: can't resolve paths in macro namespace yet, macros are
3405         // processed by the little special hack below.
3406         for (i, ns) in [primary_ns, TypeNS, ValueNS, /*MacroNS*/].iter().cloned().enumerate() {
3407             if i == 0 || ns != primary_ns {
3408                 match self.resolve_qpath(id, qself, path, ns, span, global_by_default, crate_lint) {
3409                     // If defer_to_typeck, then resolution > no resolution,
3410                     // otherwise full resolution > partial resolution > no resolution.
3411                     Some(res) if res.unresolved_segments() == 0 || defer_to_typeck =>
3412                         return Some(res),
3413                     res => if fin_res.is_none() { fin_res = res },
3414                 };
3415             }
3416         }
3417         if primary_ns != MacroNS &&
3418            (self.macro_names.contains(&path[0].modern()) ||
3419             self.builtin_macros.get(&path[0].name).cloned()
3420                                .and_then(NameBinding::macro_kind) == Some(MacroKind::Bang) ||
3421             self.macro_use_prelude.get(&path[0].name).cloned()
3422                                   .and_then(NameBinding::macro_kind) == Some(MacroKind::Bang)) {
3423             // Return some dummy definition, it's enough for error reporting.
3424             return Some(
3425                 PathResolution::new(Def::Macro(DefId::local(CRATE_DEF_INDEX), MacroKind::Bang))
3426             );
3427         }
3428         fin_res
3429     }
3430
3431     /// Handles paths that may refer to associated items.
3432     fn resolve_qpath(&mut self,
3433                      id: NodeId,
3434                      qself: Option<&QSelf>,
3435                      path: &[Ident],
3436                      ns: Namespace,
3437                      span: Span,
3438                      global_by_default: bool,
3439                      crate_lint: CrateLint)
3440                      -> Option<PathResolution> {
3441         debug!(
3442             "resolve_qpath(id={:?}, qself={:?}, path={:?}, \
3443              ns={:?}, span={:?}, global_by_default={:?})",
3444             id,
3445             qself,
3446             path,
3447             ns,
3448             span,
3449             global_by_default,
3450         );
3451
3452         if let Some(qself) = qself {
3453             if qself.position == 0 {
3454                 // This is a case like `<T>::B`, where there is no
3455                 // trait to resolve.  In that case, we leave the `B`
3456                 // segment to be resolved by type-check.
3457                 return Some(PathResolution::with_unresolved_segments(
3458                     Def::Mod(DefId::local(CRATE_DEF_INDEX)), path.len()
3459                 ));
3460             }
3461
3462             // Make sure `A::B` in `<T as A::B>::C` is a trait item.
3463             //
3464             // Currently, `path` names the full item (`A::B::C`, in
3465             // our example).  so we extract the prefix of that that is
3466             // the trait (the slice upto and including
3467             // `qself.position`). And then we recursively resolve that,
3468             // but with `qself` set to `None`.
3469             //
3470             // However, setting `qself` to none (but not changing the
3471             // span) loses the information about where this path
3472             // *actually* appears, so for the purposes of the crate
3473             // lint we pass along information that this is the trait
3474             // name from a fully qualified path, and this also
3475             // contains the full span (the `CrateLint::QPathTrait`).
3476             let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
3477             let res = self.smart_resolve_path_fragment(
3478                 id,
3479                 None,
3480                 &path[..qself.position + 1],
3481                 span,
3482                 PathSource::TraitItem(ns),
3483                 CrateLint::QPathTrait {
3484                     qpath_id: id,
3485                     qpath_span: qself.path_span,
3486                 },
3487             );
3488
3489             // The remaining segments (the `C` in our example) will
3490             // have to be resolved by type-check, since that requires doing
3491             // trait resolution.
3492             return Some(PathResolution::with_unresolved_segments(
3493                 res.base_def(), res.unresolved_segments() + path.len() - qself.position - 1
3494             ));
3495         }
3496
3497         let result = match self.resolve_path(
3498             None,
3499             &path,
3500             Some(ns),
3501             true,
3502             span,
3503             crate_lint,
3504         ) {
3505             PathResult::NonModule(path_res) => path_res,
3506             PathResult::Module(ModuleOrUniformRoot::Module(module)) if !module.is_normal() => {
3507                 PathResolution::new(module.def().unwrap())
3508             }
3509             // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
3510             // don't report an error right away, but try to fallback to a primitive type.
3511             // So, we are still able to successfully resolve something like
3512             //
3513             // use std::u8; // bring module u8 in scope
3514             // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
3515             //     u8::max_value() // OK, resolves to associated function <u8>::max_value,
3516             //                     // not to non-existent std::u8::max_value
3517             // }
3518             //
3519             // Such behavior is required for backward compatibility.
3520             // The same fallback is used when `a` resolves to nothing.
3521             PathResult::Module(ModuleOrUniformRoot::Module(_)) |
3522             PathResult::Failed(..)
3523                     if (ns == TypeNS || path.len() > 1) &&
3524                        self.primitive_type_table.primitive_types
3525                            .contains_key(&path[0].name) => {
3526                 let prim = self.primitive_type_table.primitive_types[&path[0].name];
3527                 PathResolution::with_unresolved_segments(Def::PrimTy(prim), path.len() - 1)
3528             }
3529             PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3530                 PathResolution::new(module.def().unwrap()),
3531             PathResult::Failed(span, msg, false) => {
3532                 resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
3533                 err_path_resolution()
3534             }
3535             PathResult::Module(ModuleOrUniformRoot::UniformRoot(_)) |
3536             PathResult::Failed(..) => return None,
3537             PathResult::Indeterminate => bug!("indetermined path result in resolve_qpath"),
3538         };
3539
3540         if path.len() > 1 && !global_by_default && result.base_def() != Def::Err &&
3541            path[0].name != keywords::CrateRoot.name() &&
3542            path[0].name != keywords::DollarCrate.name() {
3543             let unqualified_result = {
3544                 match self.resolve_path(
3545                     None,
3546                     &[*path.last().unwrap()],
3547                     Some(ns),
3548                     false,
3549                     span,
3550                     CrateLint::No,
3551                 ) {
3552                     PathResult::NonModule(path_res) => path_res.base_def(),
3553                     PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3554                         module.def().unwrap(),
3555                     _ => return Some(result),
3556                 }
3557             };
3558             if result.base_def() == unqualified_result {
3559                 let lint = lint::builtin::UNUSED_QUALIFICATIONS;
3560                 self.session.buffer_lint(lint, id, span, "unnecessary qualification")
3561             }
3562         }
3563
3564         Some(result)
3565     }
3566
3567     fn resolve_path(
3568         &mut self,
3569         base_module: Option<ModuleOrUniformRoot<'a>>,
3570         path: &[Ident],
3571         opt_ns: Option<Namespace>, // `None` indicates a module path
3572         record_used: bool,
3573         path_span: Span,
3574         crate_lint: CrateLint,
3575     ) -> PathResult<'a> {
3576         let parent_scope = ParentScope { module: self.current_module, ..self.dummy_parent_scope() };
3577         self.resolve_path_with_parent_scope(base_module, path, opt_ns, &parent_scope,
3578                                             record_used, path_span, crate_lint)
3579     }
3580
3581     fn resolve_path_with_parent_scope(
3582         &mut self,
3583         base_module: Option<ModuleOrUniformRoot<'a>>,
3584         path: &[Ident],
3585         opt_ns: Option<Namespace>, // `None` indicates a module path
3586         parent_scope: &ParentScope<'a>,
3587         record_used: bool,
3588         path_span: Span,
3589         crate_lint: CrateLint,
3590     ) -> PathResult<'a> {
3591         let mut module = base_module;
3592         let mut allow_super = true;
3593         let mut second_binding = None;
3594         self.current_module = parent_scope.module;
3595
3596         debug!(
3597             "resolve_path(path={:?}, opt_ns={:?}, record_used={:?}, \
3598              path_span={:?}, crate_lint={:?})",
3599             path,
3600             opt_ns,
3601             record_used,
3602             path_span,
3603             crate_lint,
3604         );
3605
3606         for (i, &ident) in path.iter().enumerate() {
3607             debug!("resolve_path ident {} {:?}", i, ident);
3608             let is_last = i == path.len() - 1;
3609             let ns = if is_last { opt_ns.unwrap_or(TypeNS) } else { TypeNS };
3610             let name = ident.name;
3611
3612             allow_super &= ns == TypeNS &&
3613                 (name == keywords::SelfValue.name() ||
3614                  name == keywords::Super.name());
3615
3616             if ns == TypeNS {
3617                 if allow_super && name == keywords::Super.name() {
3618                     let mut ctxt = ident.span.ctxt().modern();
3619                     let self_module = match i {
3620                         0 => Some(self.resolve_self(&mut ctxt, self.current_module)),
3621                         _ => match module {
3622                             Some(ModuleOrUniformRoot::Module(module)) => Some(module),
3623                             _ => None,
3624                         },
3625                     };
3626                     if let Some(self_module) = self_module {
3627                         if let Some(parent) = self_module.parent {
3628                             module = Some(ModuleOrUniformRoot::Module(
3629                                 self.resolve_self(&mut ctxt, parent)));
3630                             continue;
3631                         }
3632                     }
3633                     let msg = "There are too many initial `super`s.".to_string();
3634                     return PathResult::Failed(ident.span, msg, false);
3635                 }
3636                 if i == 0 {
3637                     if name == keywords::SelfValue.name() {
3638                         let mut ctxt = ident.span.ctxt().modern();
3639                         module = Some(ModuleOrUniformRoot::Module(
3640                             self.resolve_self(&mut ctxt, self.current_module)));
3641                         continue;
3642                     }
3643                     if name == keywords::Extern.name() ||
3644                        name == keywords::CrateRoot.name() &&
3645                        self.session.rust_2018() {
3646                         module = Some(ModuleOrUniformRoot::UniformRoot(name));
3647                         continue;
3648                     }
3649                     if name == keywords::CrateRoot.name() ||
3650                        name == keywords::Crate.name() ||
3651                        name == keywords::DollarCrate.name() {
3652                         // `::a::b`, `crate::a::b` or `$crate::a::b`
3653                         module = Some(ModuleOrUniformRoot::Module(
3654                             self.resolve_crate_root(ident)));
3655                         continue;
3656                     }
3657                 }
3658             }
3659
3660             // Report special messages for path segment keywords in wrong positions.
3661             if ident.is_path_segment_keyword() && i != 0 {
3662                 let name_str = if name == keywords::CrateRoot.name() {
3663                     "crate root".to_string()
3664                 } else {
3665                     format!("`{}`", name)
3666                 };
3667                 let msg = if i == 1 && path[0].name == keywords::CrateRoot.name() {
3668                     format!("global paths cannot start with {}", name_str)
3669                 } else {
3670                     format!("{} in paths can only be used in start position", name_str)
3671                 };
3672                 return PathResult::Failed(ident.span, msg, false);
3673             }
3674
3675             let binding = if let Some(module) = module {
3676                 self.resolve_ident_in_module(module, ident, ns, record_used, path_span)
3677             } else if opt_ns == Some(MacroNS) {
3678                 assert!(ns == TypeNS);
3679                 self.early_resolve_ident_in_lexical_scope(ident, ns, None, parent_scope,
3680                                                           record_used, record_used, path_span)
3681             } else {
3682                 let record_used_id =
3683                     if record_used { crate_lint.node_id().or(Some(CRATE_NODE_ID)) } else { None };
3684                 match self.resolve_ident_in_lexical_scope(ident, ns, record_used_id, path_span) {
3685                     // we found a locally-imported or available item/module
3686                     Some(LexicalScopeBinding::Item(binding)) => Ok(binding),
3687                     // we found a local variable or type param
3688                     Some(LexicalScopeBinding::Def(def))
3689                             if opt_ns == Some(TypeNS) || opt_ns == Some(ValueNS) => {
3690                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3691                             def, path.len() - 1
3692                         ));
3693                     }
3694                     _ => Err(if record_used { Determined } else { Undetermined }),
3695                 }
3696             };
3697
3698             match binding {
3699                 Ok(binding) => {
3700                     if i == 1 {
3701                         second_binding = Some(binding);
3702                     }
3703                     let def = binding.def();
3704                     let maybe_assoc = opt_ns != Some(MacroNS) && PathSource::Type.is_expected(def);
3705                     if let Some(next_module) = binding.module() {
3706                         module = Some(ModuleOrUniformRoot::Module(next_module));
3707                     } else if def == Def::ToolMod && i + 1 != path.len() {
3708                         let def = Def::NonMacroAttr(NonMacroAttrKind::Tool);
3709                         return PathResult::NonModule(PathResolution::new(def));
3710                     } else if def == Def::Err {
3711                         return PathResult::NonModule(err_path_resolution());
3712                     } else if opt_ns.is_some() && (is_last || maybe_assoc) {
3713                         self.lint_if_path_starts_with_module(
3714                             crate_lint,
3715                             path,
3716                             path_span,
3717                             second_binding,
3718                         );
3719                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3720                             def, path.len() - i - 1
3721                         ));
3722                     } else {
3723                         return PathResult::Failed(ident.span,
3724                                                   format!("Not a module `{}`", ident),
3725                                                   is_last);
3726                     }
3727                 }
3728                 Err(Undetermined) => return PathResult::Indeterminate,
3729                 Err(Determined) => {
3730                     if let Some(ModuleOrUniformRoot::Module(module)) = module {
3731                         if opt_ns.is_some() && !module.is_normal() {
3732                             return PathResult::NonModule(PathResolution::with_unresolved_segments(
3733                                 module.def().unwrap(), path.len() - i
3734                             ));
3735                         }
3736                     }
3737                     let module_def = match module {
3738                         Some(ModuleOrUniformRoot::Module(module)) => module.def(),
3739                         _ => None,
3740                     };
3741                     let msg = if module_def == self.graph_root.def() {
3742                         let is_mod = |def| match def { Def::Mod(..) => true, _ => false };
3743                         let mut candidates =
3744                             self.lookup_import_candidates(name, TypeNS, is_mod);
3745                         candidates.sort_by_cached_key(|c| {
3746                             (c.path.segments.len(), c.path.to_string())
3747                         });
3748                         if let Some(candidate) = candidates.get(0) {
3749                             format!("Did you mean `{}`?", candidate.path)
3750                         } else {
3751                             format!("Maybe a missing `extern crate {};`?", ident)
3752                         }
3753                     } else if i == 0 {
3754                         format!("Use of undeclared type or module `{}`", ident)
3755                     } else {
3756                         format!("Could not find `{}` in `{}`", ident, path[i - 1])
3757                     };
3758                     return PathResult::Failed(ident.span, msg, is_last);
3759                 }
3760             }
3761         }
3762
3763         self.lint_if_path_starts_with_module(crate_lint, path, path_span, second_binding);
3764
3765         PathResult::Module(module.unwrap_or_else(|| {
3766             span_bug!(path_span, "resolve_path: empty(?) path {:?} has no module", path);
3767         }))
3768
3769     }
3770
3771     fn lint_if_path_starts_with_module(
3772         &self,
3773         crate_lint: CrateLint,
3774         path: &[Ident],
3775         path_span: Span,
3776         second_binding: Option<&NameBinding>,
3777     ) {
3778         // In the 2018 edition this lint is a hard error, so nothing to do
3779         if self.session.rust_2018() {
3780             return
3781         }
3782
3783         let (diag_id, diag_span) = match crate_lint {
3784             CrateLint::No => return,
3785             CrateLint::SimplePath(id) => (id, path_span),
3786             CrateLint::UsePath { root_id, root_span } => (root_id, root_span),
3787             CrateLint::QPathTrait { qpath_id, qpath_span } => (qpath_id, qpath_span),
3788         };
3789
3790         let first_name = match path.get(0) {
3791             Some(ident) => ident.name,
3792             None => return,
3793         };
3794
3795         // We're only interested in `use` paths which should start with
3796         // `{{root}}` or `extern` currently.
3797         if first_name != keywords::Extern.name() && first_name != keywords::CrateRoot.name() {
3798             return
3799         }
3800
3801         match path.get(1) {
3802             // If this import looks like `crate::...` it's already good
3803             Some(ident) if ident.name == keywords::Crate.name() => return,
3804             // Otherwise go below to see if it's an extern crate
3805             Some(_) => {}
3806             // If the path has length one (and it's `CrateRoot` most likely)
3807             // then we don't know whether we're gonna be importing a crate or an
3808             // item in our crate. Defer this lint to elsewhere
3809             None => return,
3810         }
3811
3812         // If the first element of our path was actually resolved to an
3813         // `ExternCrate` (also used for `crate::...`) then no need to issue a
3814         // warning, this looks all good!
3815         if let Some(binding) = second_binding {
3816             if let NameBindingKind::Import { directive: d, .. } = binding.kind {
3817                 // Careful: we still want to rewrite paths from
3818                 // renamed extern crates.
3819                 if let ImportDirectiveSubclass::ExternCrate(None) = d.subclass {
3820                     return
3821                 }
3822             }
3823         }
3824
3825         let diag = lint::builtin::BuiltinLintDiagnostics
3826             ::AbsPathWithModule(diag_span);
3827         self.session.buffer_lint_with_diagnostic(
3828             lint::builtin::ABSOLUTE_PATHS_NOT_STARTING_WITH_CRATE,
3829             diag_id, diag_span,
3830             "absolute paths must start with `self`, `super`, \
3831             `crate`, or an external crate name in the 2018 edition",
3832             diag);
3833     }
3834
3835     // Resolve a local definition, potentially adjusting for closures.
3836     fn adjust_local_def(&mut self,
3837                         ns: Namespace,
3838                         rib_index: usize,
3839                         mut def: Def,
3840                         record_used: bool,
3841                         span: Span) -> Def {
3842         let ribs = &self.ribs[ns][rib_index + 1..];
3843
3844         // An invalid forward use of a type parameter from a previous default.
3845         if let ForwardTyParamBanRibKind = self.ribs[ns][rib_index].kind {
3846             if record_used {
3847                 resolve_error(self, span, ResolutionError::ForwardDeclaredTyParam);
3848             }
3849             assert_eq!(def, Def::Err);
3850             return Def::Err;
3851         }
3852
3853         match def {
3854             Def::Upvar(..) => {
3855                 span_bug!(span, "unexpected {:?} in bindings", def)
3856             }
3857             Def::Local(node_id) => {
3858                 for rib in ribs {
3859                     match rib.kind {
3860                         NormalRibKind | ModuleRibKind(..) | MacroDefinition(..) |
3861                         ForwardTyParamBanRibKind => {
3862                             // Nothing to do. Continue.
3863                         }
3864                         ClosureRibKind(function_id) => {
3865                             let prev_def = def;
3866
3867                             let seen = self.freevars_seen
3868                                            .entry(function_id)
3869                                            .or_default();
3870                             if let Some(&index) = seen.get(&node_id) {
3871                                 def = Def::Upvar(node_id, index, function_id);
3872                                 continue;
3873                             }
3874                             let vec = self.freevars
3875                                           .entry(function_id)
3876                                           .or_default();
3877                             let depth = vec.len();
3878                             def = Def::Upvar(node_id, depth, function_id);
3879
3880                             if record_used {
3881                                 vec.push(Freevar {
3882                                     def: prev_def,
3883                                     span,
3884                                 });
3885                                 seen.insert(node_id, depth);
3886                             }
3887                         }
3888                         ItemRibKind | TraitOrImplItemRibKind => {
3889                             // This was an attempt to access an upvar inside a
3890                             // named function item. This is not allowed, so we
3891                             // report an error.
3892                             if record_used {
3893                                 resolve_error(self, span,
3894                                         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem);
3895                             }
3896                             return Def::Err;
3897                         }
3898                         ConstantItemRibKind => {
3899                             // Still doesn't deal with upvars
3900                             if record_used {
3901                                 resolve_error(self, span,
3902                                         ResolutionError::AttemptToUseNonConstantValueInConstant);
3903                             }
3904                             return Def::Err;
3905                         }
3906                     }
3907                 }
3908             }
3909             Def::TyParam(..) | Def::SelfTy(..) => {
3910                 for rib in ribs {
3911                     match rib.kind {
3912                         NormalRibKind | TraitOrImplItemRibKind | ClosureRibKind(..) |
3913                         ModuleRibKind(..) | MacroDefinition(..) | ForwardTyParamBanRibKind |
3914                         ConstantItemRibKind => {
3915                             // Nothing to do. Continue.
3916                         }
3917                         ItemRibKind => {
3918                             // This was an attempt to use a type parameter outside
3919                             // its scope.
3920                             if record_used {
3921                                 resolve_error(self, span,
3922                                     ResolutionError::TypeParametersFromOuterFunction(def));
3923                             }
3924                             return Def::Err;
3925                         }
3926                     }
3927                 }
3928             }
3929             _ => {}
3930         }
3931         return def;
3932     }
3933
3934     fn lookup_assoc_candidate<FilterFn>(&mut self,
3935                                         ident: Ident,
3936                                         ns: Namespace,
3937                                         filter_fn: FilterFn)
3938                                         -> Option<AssocSuggestion>
3939         where FilterFn: Fn(Def) -> bool
3940     {
3941         fn extract_node_id(t: &Ty) -> Option<NodeId> {
3942             match t.node {
3943                 TyKind::Path(None, _) => Some(t.id),
3944                 TyKind::Rptr(_, ref mut_ty) => extract_node_id(&mut_ty.ty),
3945                 // This doesn't handle the remaining `Ty` variants as they are not
3946                 // that commonly the self_type, it might be interesting to provide
3947                 // support for those in future.
3948                 _ => None,
3949             }
3950         }
3951
3952         // Fields are generally expected in the same contexts as locals.
3953         if filter_fn(Def::Local(ast::DUMMY_NODE_ID)) {
3954             if let Some(node_id) = self.current_self_type.as_ref().and_then(extract_node_id) {
3955                 // Look for a field with the same name in the current self_type.
3956                 if let Some(resolution) = self.def_map.get(&node_id) {
3957                     match resolution.base_def() {
3958                         Def::Struct(did) | Def::Union(did)
3959                                 if resolution.unresolved_segments() == 0 => {
3960                             if let Some(field_names) = self.field_names.get(&did) {
3961                                 if field_names.iter().any(|&field_name| ident.name == field_name) {
3962                                     return Some(AssocSuggestion::Field);
3963                                 }
3964                             }
3965                         }
3966                         _ => {}
3967                     }
3968                 }
3969             }
3970         }
3971
3972         // Look for associated items in the current trait.
3973         if let Some((module, _)) = self.current_trait_ref {
3974             if let Ok(binding) = self.resolve_ident_in_module(
3975                     ModuleOrUniformRoot::Module(module),
3976                     ident,
3977                     ns,
3978                     false,
3979                     module.span,
3980                 ) {
3981                 let def = binding.def();
3982                 if filter_fn(def) {
3983                     return Some(if self.has_self.contains(&def.def_id()) {
3984                         AssocSuggestion::MethodWithSelf
3985                     } else {
3986                         AssocSuggestion::AssocItem
3987                     });
3988                 }
3989             }
3990         }
3991
3992         None
3993     }
3994
3995     fn lookup_typo_candidate<FilterFn>(&mut self,
3996                                        path: &[Ident],
3997                                        ns: Namespace,
3998                                        filter_fn: FilterFn,
3999                                        span: Span)
4000                                        -> Option<Symbol>
4001         where FilterFn: Fn(Def) -> bool
4002     {
4003         let add_module_candidates = |module: Module, names: &mut Vec<Name>| {
4004             for (&(ident, _), resolution) in module.resolutions.borrow().iter() {
4005                 if let Some(binding) = resolution.borrow().binding {
4006                     if filter_fn(binding.def()) {
4007                         names.push(ident.name);
4008                     }
4009                 }
4010             }
4011         };
4012
4013         let mut names = Vec::new();
4014         if path.len() == 1 {
4015             // Search in lexical scope.
4016             // Walk backwards up the ribs in scope and collect candidates.
4017             for rib in self.ribs[ns].iter().rev() {
4018                 // Locals and type parameters
4019                 for (ident, def) in &rib.bindings {
4020                     if filter_fn(*def) {
4021                         names.push(ident.name);
4022                     }
4023                 }
4024                 // Items in scope
4025                 if let ModuleRibKind(module) = rib.kind {
4026                     // Items from this module
4027                     add_module_candidates(module, &mut names);
4028
4029                     if let ModuleKind::Block(..) = module.kind {
4030                         // We can see through blocks
4031                     } else {
4032                         // Items from the prelude
4033                         if !module.no_implicit_prelude {
4034                             names.extend(self.extern_prelude.iter().cloned());
4035                             if let Some(prelude) = self.prelude {
4036                                 add_module_candidates(prelude, &mut names);
4037                             }
4038                         }
4039                         break;
4040                     }
4041                 }
4042             }
4043             // Add primitive types to the mix
4044             if filter_fn(Def::PrimTy(Bool)) {
4045                 names.extend(
4046                     self.primitive_type_table.primitive_types.iter().map(|(name, _)| name)
4047                 )
4048             }
4049         } else {
4050             // Search in module.
4051             let mod_path = &path[..path.len() - 1];
4052             if let PathResult::Module(module) = self.resolve_path(None, mod_path, Some(TypeNS),
4053                                                                   false, span, CrateLint::No) {
4054                 if let ModuleOrUniformRoot::Module(module) = module {
4055                     add_module_candidates(module, &mut names);
4056                 }
4057             }
4058         }
4059
4060         let name = path[path.len() - 1].name;
4061         // Make sure error reporting is deterministic.
4062         names.sort_by_cached_key(|name| name.as_str());
4063         match find_best_match_for_name(names.iter(), &name.as_str(), None) {
4064             Some(found) if found != name => Some(found),
4065             _ => None,
4066         }
4067     }
4068
4069     fn with_resolved_label<F>(&mut self, label: Option<Label>, id: NodeId, f: F)
4070         where F: FnOnce(&mut Resolver)
4071     {
4072         if let Some(label) = label {
4073             self.unused_labels.insert(id, label.ident.span);
4074             let def = Def::Label(id);
4075             self.with_label_rib(|this| {
4076                 let ident = label.ident.modern_and_legacy();
4077                 this.label_ribs.last_mut().unwrap().bindings.insert(ident, def);
4078                 f(this);
4079             });
4080         } else {
4081             f(self);
4082         }
4083     }
4084
4085     fn resolve_labeled_block(&mut self, label: Option<Label>, id: NodeId, block: &Block) {
4086         self.with_resolved_label(label, id, |this| this.visit_block(block));
4087     }
4088
4089     fn resolve_expr(&mut self, expr: &Expr, parent: Option<&Expr>) {
4090         // First, record candidate traits for this expression if it could
4091         // result in the invocation of a method call.
4092
4093         self.record_candidate_traits_for_expr_if_necessary(expr);
4094
4095         // Next, resolve the node.
4096         match expr.node {
4097             ExprKind::Path(ref qself, ref path) => {
4098                 self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
4099                 visit::walk_expr(self, expr);
4100             }
4101
4102             ExprKind::Struct(ref path, ..) => {
4103                 self.smart_resolve_path(expr.id, None, path, PathSource::Struct);
4104                 visit::walk_expr(self, expr);
4105             }
4106
4107             ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
4108                 let def = self.search_label(label.ident, |rib, ident| {
4109                     rib.bindings.get(&ident.modern_and_legacy()).cloned()
4110                 });
4111                 match def {
4112                     None => {
4113                         // Search again for close matches...
4114                         // Picks the first label that is "close enough", which is not necessarily
4115                         // the closest match
4116                         let close_match = self.search_label(label.ident, |rib, ident| {
4117                             let names = rib.bindings.iter().map(|(id, _)| &id.name);
4118                             find_best_match_for_name(names, &*ident.as_str(), None)
4119                         });
4120                         self.record_def(expr.id, err_path_resolution());
4121                         resolve_error(self,
4122                                       label.ident.span,
4123                                       ResolutionError::UndeclaredLabel(&label.ident.as_str(),
4124                                                                        close_match));
4125                     }
4126                     Some(Def::Label(id)) => {
4127                         // Since this def is a label, it is never read.
4128                         self.record_def(expr.id, PathResolution::new(Def::Label(id)));
4129                         self.unused_labels.remove(&id);
4130                     }
4131                     Some(_) => {
4132                         span_bug!(expr.span, "label wasn't mapped to a label def!");
4133                     }
4134                 }
4135
4136                 // visit `break` argument if any
4137                 visit::walk_expr(self, expr);
4138             }
4139
4140             ExprKind::IfLet(ref pats, ref subexpression, ref if_block, ref optional_else) => {
4141                 self.visit_expr(subexpression);
4142
4143                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
4144                 let mut bindings_list = FxHashMap();
4145                 for pat in pats {
4146                     self.resolve_pattern(pat, PatternSource::IfLet, &mut bindings_list);
4147                 }
4148                 // This has to happen *after* we determine which pat_idents are variants
4149                 self.check_consistent_bindings(pats);
4150                 self.visit_block(if_block);
4151                 self.ribs[ValueNS].pop();
4152
4153                 optional_else.as_ref().map(|expr| self.visit_expr(expr));
4154             }
4155
4156             ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),
4157
4158             ExprKind::While(ref subexpression, ref block, label) => {
4159                 self.with_resolved_label(label, expr.id, |this| {
4160                     this.visit_expr(subexpression);
4161                     this.visit_block(block);
4162                 });
4163             }
4164
4165             ExprKind::WhileLet(ref pats, ref subexpression, ref block, label) => {
4166                 self.with_resolved_label(label, expr.id, |this| {
4167                     this.visit_expr(subexpression);
4168                     this.ribs[ValueNS].push(Rib::new(NormalRibKind));
4169                     let mut bindings_list = FxHashMap();
4170                     for pat in pats {
4171                         this.resolve_pattern(pat, PatternSource::WhileLet, &mut bindings_list);
4172                     }
4173                     // This has to happen *after* we determine which pat_idents are variants
4174                     this.check_consistent_bindings(pats);
4175                     this.visit_block(block);
4176                     this.ribs[ValueNS].pop();
4177                 });
4178             }
4179
4180             ExprKind::ForLoop(ref pattern, ref subexpression, ref block, label) => {
4181                 self.visit_expr(subexpression);
4182                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
4183                 self.resolve_pattern(pattern, PatternSource::For, &mut FxHashMap());
4184
4185                 self.resolve_labeled_block(label, expr.id, block);
4186
4187                 self.ribs[ValueNS].pop();
4188             }
4189
4190             ExprKind::Block(ref block, label) => self.resolve_labeled_block(label, block.id, block),
4191
4192             // Equivalent to `visit::walk_expr` + passing some context to children.
4193             ExprKind::Field(ref subexpression, _) => {
4194                 self.resolve_expr(subexpression, Some(expr));
4195             }
4196             ExprKind::MethodCall(ref segment, ref arguments) => {
4197                 let mut arguments = arguments.iter();
4198                 self.resolve_expr(arguments.next().unwrap(), Some(expr));
4199                 for argument in arguments {
4200                     self.resolve_expr(argument, None);
4201                 }
4202                 self.visit_path_segment(expr.span, segment);
4203             }
4204
4205             ExprKind::Call(ref callee, ref arguments) => {
4206                 self.resolve_expr(callee, Some(expr));
4207                 for argument in arguments {
4208                     self.resolve_expr(argument, None);
4209                 }
4210             }
4211             ExprKind::Type(ref type_expr, _) => {
4212                 self.current_type_ascription.push(type_expr.span);
4213                 visit::walk_expr(self, expr);
4214                 self.current_type_ascription.pop();
4215             }
4216             // Resolve the body of async exprs inside the async closure to which they desugar
4217             ExprKind::Async(_, async_closure_id, ref block) => {
4218                 let rib_kind = ClosureRibKind(async_closure_id);
4219                 self.ribs[ValueNS].push(Rib::new(rib_kind));
4220                 self.label_ribs.push(Rib::new(rib_kind));
4221                 self.visit_block(&block);
4222                 self.label_ribs.pop();
4223                 self.ribs[ValueNS].pop();
4224             }
4225             // `async |x| ...` gets desugared to `|x| future_from_generator(|| ...)`, so we need to
4226             // resolve the arguments within the proper scopes so that usages of them inside the
4227             // closure are detected as upvars rather than normal closure arg usages.
4228             ExprKind::Closure(
4229                 _, IsAsync::Async { closure_id: inner_closure_id, .. }, _,
4230                 ref fn_decl, ref body, _span,
4231             ) => {
4232                 let rib_kind = ClosureRibKind(expr.id);
4233                 self.ribs[ValueNS].push(Rib::new(rib_kind));
4234                 self.label_ribs.push(Rib::new(rib_kind));
4235                 // Resolve arguments:
4236                 let mut bindings_list = FxHashMap();
4237                 for argument in &fn_decl.inputs {
4238                     self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
4239                     self.visit_ty(&argument.ty);
4240                 }
4241                 // No need to resolve return type-- the outer closure return type is
4242                 // FunctionRetTy::Default
4243
4244                 // Now resolve the inner closure
4245                 {
4246                     let rib_kind = ClosureRibKind(inner_closure_id);
4247                     self.ribs[ValueNS].push(Rib::new(rib_kind));
4248                     self.label_ribs.push(Rib::new(rib_kind));
4249                     // No need to resolve arguments: the inner closure has none.
4250                     // Resolve the return type:
4251                     visit::walk_fn_ret_ty(self, &fn_decl.output);
4252                     // Resolve the body
4253                     self.visit_expr(body);
4254                     self.label_ribs.pop();
4255                     self.ribs[ValueNS].pop();
4256                 }
4257                 self.label_ribs.pop();
4258                 self.ribs[ValueNS].pop();
4259             }
4260             _ => {
4261                 visit::walk_expr(self, expr);
4262             }
4263         }
4264     }
4265
4266     fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &Expr) {
4267         match expr.node {
4268             ExprKind::Field(_, ident) => {
4269                 // FIXME(#6890): Even though you can't treat a method like a
4270                 // field, we need to add any trait methods we find that match
4271                 // the field name so that we can do some nice error reporting
4272                 // later on in typeck.
4273                 let traits = self.get_traits_containing_item(ident, ValueNS);
4274                 self.trait_map.insert(expr.id, traits);
4275             }
4276             ExprKind::MethodCall(ref segment, ..) => {
4277                 debug!("(recording candidate traits for expr) recording traits for {}",
4278                        expr.id);
4279                 let traits = self.get_traits_containing_item(segment.ident, ValueNS);
4280                 self.trait_map.insert(expr.id, traits);
4281             }
4282             _ => {
4283                 // Nothing to do.
4284             }
4285         }
4286     }
4287
4288     fn get_traits_containing_item(&mut self, mut ident: Ident, ns: Namespace)
4289                                   -> Vec<TraitCandidate> {
4290         debug!("(getting traits containing item) looking for '{}'", ident.name);
4291
4292         let mut found_traits = Vec::new();
4293         // Look for the current trait.
4294         if let Some((module, _)) = self.current_trait_ref {
4295             if self.resolve_ident_in_module(
4296                 ModuleOrUniformRoot::Module(module),
4297                 ident,
4298                 ns,
4299                 false,
4300                 module.span,
4301             ).is_ok() {
4302                 let def_id = module.def_id().unwrap();
4303                 found_traits.push(TraitCandidate { def_id: def_id, import_id: None });
4304             }
4305         }
4306
4307         ident.span = ident.span.modern();
4308         let mut search_module = self.current_module;
4309         loop {
4310             self.get_traits_in_module_containing_item(ident, ns, search_module, &mut found_traits);
4311             search_module = unwrap_or!(
4312                 self.hygienic_lexical_parent(search_module, &mut ident.span), break
4313             );
4314         }
4315
4316         if let Some(prelude) = self.prelude {
4317             if !search_module.no_implicit_prelude {
4318                 self.get_traits_in_module_containing_item(ident, ns, prelude, &mut found_traits);
4319             }
4320         }
4321
4322         found_traits
4323     }
4324
4325     fn get_traits_in_module_containing_item(&mut self,
4326                                             ident: Ident,
4327                                             ns: Namespace,
4328                                             module: Module<'a>,
4329                                             found_traits: &mut Vec<TraitCandidate>) {
4330         assert!(ns == TypeNS || ns == ValueNS);
4331         let mut traits = module.traits.borrow_mut();
4332         if traits.is_none() {
4333             let mut collected_traits = Vec::new();
4334             module.for_each_child(|name, ns, binding| {
4335                 if ns != TypeNS { return }
4336                 if let Def::Trait(_) = binding.def() {
4337                     collected_traits.push((name, binding));
4338                 }
4339             });
4340             *traits = Some(collected_traits.into_boxed_slice());
4341         }
4342
4343         for &(trait_name, binding) in traits.as_ref().unwrap().iter() {
4344             let module = binding.module().unwrap();
4345             let mut ident = ident;
4346             if ident.span.glob_adjust(module.expansion, binding.span.ctxt().modern()).is_none() {
4347                 continue
4348             }
4349             if self.resolve_ident_in_module_unadjusted(
4350                 ModuleOrUniformRoot::Module(module),
4351                 ident,
4352                 ns,
4353                 false,
4354                 false,
4355                 module.span,
4356             ).is_ok() {
4357                 let import_id = match binding.kind {
4358                     NameBindingKind::Import { directive, .. } => {
4359                         self.maybe_unused_trait_imports.insert(directive.id);
4360                         self.add_to_glob_map(directive.id, trait_name);
4361                         Some(directive.id)
4362                     }
4363                     _ => None,
4364                 };
4365                 let trait_def_id = module.def_id().unwrap();
4366                 found_traits.push(TraitCandidate { def_id: trait_def_id, import_id: import_id });
4367             }
4368         }
4369     }
4370
4371     fn lookup_import_candidates_from_module<FilterFn>(&mut self,
4372                                           lookup_name: Name,
4373                                           namespace: Namespace,
4374                                           start_module: &'a ModuleData<'a>,
4375                                           crate_name: Ident,
4376                                           filter_fn: FilterFn)
4377                                           -> Vec<ImportSuggestion>
4378         where FilterFn: Fn(Def) -> bool
4379     {
4380         let mut candidates = Vec::new();
4381         let mut worklist = Vec::new();
4382         let mut seen_modules = FxHashSet();
4383         let not_local_module = crate_name != keywords::Crate.ident();
4384         worklist.push((start_module, Vec::<ast::PathSegment>::new(), not_local_module));
4385
4386         while let Some((in_module,
4387                         path_segments,
4388                         in_module_is_extern)) = worklist.pop() {
4389             self.populate_module_if_necessary(in_module);
4390
4391             // We have to visit module children in deterministic order to avoid
4392             // instabilities in reported imports (#43552).
4393             in_module.for_each_child_stable(|ident, ns, name_binding| {
4394                 // avoid imports entirely
4395                 if name_binding.is_import() && !name_binding.is_extern_crate() { return; }
4396                 // avoid non-importable candidates as well
4397                 if !name_binding.is_importable() { return; }
4398
4399                 // collect results based on the filter function
4400                 if ident.name == lookup_name && ns == namespace {
4401                     if filter_fn(name_binding.def()) {
4402                         // create the path
4403                         let mut segms = path_segments.clone();
4404                         if self.session.rust_2018() {
4405                             // crate-local absolute paths start with `crate::` in edition 2018
4406                             // FIXME: may also be stabilized for Rust 2015 (Issues #45477, #44660)
4407                             segms.insert(
4408                                 0, ast::PathSegment::from_ident(crate_name)
4409                             );
4410                         }
4411
4412                         segms.push(ast::PathSegment::from_ident(ident));
4413                         let path = Path {
4414                             span: name_binding.span,
4415                             segments: segms,
4416                         };
4417                         // the entity is accessible in the following cases:
4418                         // 1. if it's defined in the same crate, it's always
4419                         // accessible (since private entities can be made public)
4420                         // 2. if it's defined in another crate, it's accessible
4421                         // only if both the module is public and the entity is
4422                         // declared as public (due to pruning, we don't explore
4423                         // outside crate private modules => no need to check this)
4424                         if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
4425                             candidates.push(ImportSuggestion { path: path });
4426                         }
4427                     }
4428                 }
4429
4430                 // collect submodules to explore
4431                 if let Some(module) = name_binding.module() {
4432                     // form the path
4433                     let mut path_segments = path_segments.clone();
4434                     path_segments.push(ast::PathSegment::from_ident(ident));
4435
4436                     let is_extern_crate_that_also_appears_in_prelude =
4437                         name_binding.is_extern_crate() &&
4438                         self.session.rust_2018();
4439
4440                     let is_visible_to_user =
4441                         !in_module_is_extern || name_binding.vis == ty::Visibility::Public;
4442
4443                     if !is_extern_crate_that_also_appears_in_prelude && is_visible_to_user {
4444                         // add the module to the lookup
4445                         let is_extern = in_module_is_extern || name_binding.is_extern_crate();
4446                         if seen_modules.insert(module.def_id().unwrap()) {
4447                             worklist.push((module, path_segments, is_extern));
4448                         }
4449                     }
4450                 }
4451             })
4452         }
4453
4454         candidates
4455     }
4456
4457     /// When name resolution fails, this method can be used to look up candidate
4458     /// entities with the expected name. It allows filtering them using the
4459     /// supplied predicate (which should be used to only accept the types of
4460     /// definitions expected e.g. traits). The lookup spans across all crates.
4461     ///
4462     /// NOTE: The method does not look into imports, but this is not a problem,
4463     /// since we report the definitions (thus, the de-aliased imports).
4464     fn lookup_import_candidates<FilterFn>(&mut self,
4465                                           lookup_name: Name,
4466                                           namespace: Namespace,
4467                                           filter_fn: FilterFn)
4468                                           -> Vec<ImportSuggestion>
4469         where FilterFn: Fn(Def) -> bool
4470     {
4471         let mut suggestions = vec![];
4472
4473         suggestions.extend(
4474             self.lookup_import_candidates_from_module(
4475                 lookup_name, namespace, self.graph_root, keywords::Crate.ident(), &filter_fn
4476             )
4477         );
4478
4479         if self.session.rust_2018() {
4480             let extern_prelude_names = self.extern_prelude.clone();
4481             for &name in extern_prelude_names.iter() {
4482                 let ident = Ident::with_empty_ctxt(name);
4483                 match self.crate_loader.maybe_process_path_extern(name, ident.span) {
4484                     Some(crate_id) => {
4485                         let crate_root = self.get_module(DefId {
4486                             krate: crate_id,
4487                             index: CRATE_DEF_INDEX,
4488                         });
4489                         self.populate_module_if_necessary(&crate_root);
4490
4491                         suggestions.extend(
4492                             self.lookup_import_candidates_from_module(
4493                                 lookup_name, namespace, crate_root, ident, &filter_fn
4494                             )
4495                         );
4496                     }
4497                     None => {}
4498                 }
4499             }
4500         }
4501
4502         suggestions
4503     }
4504
4505     fn find_module(&mut self,
4506                    module_def: Def)
4507                    -> Option<(Module<'a>, ImportSuggestion)>
4508     {
4509         let mut result = None;
4510         let mut worklist = Vec::new();
4511         let mut seen_modules = FxHashSet();
4512         worklist.push((self.graph_root, Vec::new()));
4513
4514         while let Some((in_module, path_segments)) = worklist.pop() {
4515             // abort if the module is already found
4516             if result.is_some() { break; }
4517
4518             self.populate_module_if_necessary(in_module);
4519
4520             in_module.for_each_child_stable(|ident, _, name_binding| {
4521                 // abort if the module is already found or if name_binding is private external
4522                 if result.is_some() || !name_binding.vis.is_visible_locally() {
4523                     return
4524                 }
4525                 if let Some(module) = name_binding.module() {
4526                     // form the path
4527                     let mut path_segments = path_segments.clone();
4528                     path_segments.push(ast::PathSegment::from_ident(ident));
4529                     if module.def() == Some(module_def) {
4530                         let path = Path {
4531                             span: name_binding.span,
4532                             segments: path_segments,
4533                         };
4534                         result = Some((module, ImportSuggestion { path: path }));
4535                     } else {
4536                         // add the module to the lookup
4537                         if seen_modules.insert(module.def_id().unwrap()) {
4538                             worklist.push((module, path_segments));
4539                         }
4540                     }
4541                 }
4542             });
4543         }
4544
4545         result
4546     }
4547
4548     fn collect_enum_variants(&mut self, enum_def: Def) -> Option<Vec<Path>> {
4549         if let Def::Enum(..) = enum_def {} else {
4550             panic!("Non-enum def passed to collect_enum_variants: {:?}", enum_def)
4551         }
4552
4553         self.find_module(enum_def).map(|(enum_module, enum_import_suggestion)| {
4554             self.populate_module_if_necessary(enum_module);
4555
4556             let mut variants = Vec::new();
4557             enum_module.for_each_child_stable(|ident, _, name_binding| {
4558                 if let Def::Variant(..) = name_binding.def() {
4559                     let mut segms = enum_import_suggestion.path.segments.clone();
4560                     segms.push(ast::PathSegment::from_ident(ident));
4561                     variants.push(Path {
4562                         span: name_binding.span,
4563                         segments: segms,
4564                     });
4565                 }
4566             });
4567             variants
4568         })
4569     }
4570
4571     fn record_def(&mut self, node_id: NodeId, resolution: PathResolution) {
4572         debug!("(recording def) recording {:?} for {}", resolution, node_id);
4573         if let Some(prev_res) = self.def_map.insert(node_id, resolution) {
4574             panic!("path resolved multiple times ({:?} before, {:?} now)", prev_res, resolution);
4575         }
4576     }
4577
4578     fn resolve_visibility(&mut self, vis: &ast::Visibility) -> ty::Visibility {
4579         match vis.node {
4580             ast::VisibilityKind::Public => ty::Visibility::Public,
4581             ast::VisibilityKind::Crate(..) => {
4582                 ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX))
4583             }
4584             ast::VisibilityKind::Inherited => {
4585                 ty::Visibility::Restricted(self.current_module.normal_ancestor_id)
4586             }
4587             ast::VisibilityKind::Restricted { ref path, id, .. } => {
4588                 // Visibilities are resolved as global by default, add starting root segment.
4589                 let segments = path.make_root().iter().chain(path.segments.iter())
4590                     .map(|seg| seg.ident)
4591                     .collect::<Vec<_>>();
4592                 let def = self.smart_resolve_path_fragment(
4593                     id,
4594                     None,
4595                     &segments,
4596                     path.span,
4597                     PathSource::Visibility,
4598                     CrateLint::SimplePath(id),
4599                 ).base_def();
4600                 if def == Def::Err {
4601                     ty::Visibility::Public
4602                 } else {
4603                     let vis = ty::Visibility::Restricted(def.def_id());
4604                     if self.is_accessible(vis) {
4605                         vis
4606                     } else {
4607                         self.session.span_err(path.span, "visibilities can only be restricted \
4608                                                           to ancestor modules");
4609                         ty::Visibility::Public
4610                     }
4611                 }
4612             }
4613         }
4614     }
4615
4616     fn is_accessible(&self, vis: ty::Visibility) -> bool {
4617         vis.is_accessible_from(self.current_module.normal_ancestor_id, self)
4618     }
4619
4620     fn is_accessible_from(&self, vis: ty::Visibility, module: Module<'a>) -> bool {
4621         vis.is_accessible_from(module.normal_ancestor_id, self)
4622     }
4623
4624     fn set_binding_parent_module(&mut self, binding: &'a NameBinding<'a>, module: Module<'a>) {
4625         if let Some(old_module) = self.binding_parent_modules.insert(PtrKey(binding), module) {
4626             if !ptr::eq(module, old_module) {
4627                 span_bug!(binding.span, "parent module is reset for binding");
4628             }
4629         }
4630     }
4631
4632     fn disambiguate_legacy_vs_modern(
4633         &self,
4634         legacy: &'a NameBinding<'a>,
4635         modern: &'a NameBinding<'a>,
4636     ) -> bool {
4637         // Some non-controversial subset of ambiguities "modern macro name" vs "macro_rules"
4638         // is disambiguated to mitigate regressions from macro modularization.
4639         // Scoping for `macro_rules` behaves like scoping for `let` at module level, in general.
4640         match (self.binding_parent_modules.get(&PtrKey(legacy)),
4641                self.binding_parent_modules.get(&PtrKey(modern))) {
4642             (Some(legacy), Some(modern)) =>
4643                 legacy.normal_ancestor_id == modern.normal_ancestor_id &&
4644                 modern.is_ancestor_of(legacy),
4645             _ => false,
4646         }
4647     }
4648
4649     fn report_ambiguity_error(&self, ident: Ident, b1: &NameBinding, b2: &NameBinding) {
4650         let participle = |is_import: bool| if is_import { "imported" } else { "defined" };
4651         let msg1 =
4652             format!("`{}` could refer to the name {} here", ident, participle(b1.is_import()));
4653         let msg2 =
4654             format!("`{}` could also refer to the name {} here", ident, participle(b2.is_import()));
4655         let note = if b1.expansion != Mark::root() {
4656             Some(if let Def::Macro(..) = b1.def() {
4657                 format!("macro-expanded {} do not shadow",
4658                         if b1.is_import() { "macro imports" } else { "macros" })
4659             } else {
4660                 format!("macro-expanded {} do not shadow when used in a macro invocation path",
4661                         if b1.is_import() { "imports" } else { "items" })
4662             })
4663         } else if b1.is_glob_import() {
4664             Some(format!("consider adding an explicit import of `{}` to disambiguate", ident))
4665         } else {
4666             None
4667         };
4668
4669         let mut err = struct_span_err!(self.session, ident.span, E0659, "`{}` is ambiguous", ident);
4670         err.span_label(ident.span, "ambiguous name");
4671         err.span_note(b1.span, &msg1);
4672         match b2.def() {
4673             Def::Macro(..) if b2.span.is_dummy() =>
4674                 err.note(&format!("`{}` is also a builtin macro", ident)),
4675             _ => err.span_note(b2.span, &msg2),
4676         };
4677         if let Some(note) = note {
4678             err.note(&note);
4679         }
4680         err.emit();
4681     }
4682
4683     fn report_errors(&mut self, krate: &Crate) {
4684         self.report_with_use_injections(krate);
4685         let mut reported_spans = FxHashSet();
4686
4687         for &(span_use, span_def) in &self.macro_expanded_macro_export_errors {
4688             let msg = "macro-expanded `macro_export` macros from the current crate \
4689                        cannot be referred to by absolute paths";
4690             self.session.buffer_lint_with_diagnostic(
4691                 lint::builtin::MACRO_EXPANDED_MACRO_EXPORTS_ACCESSED_BY_ABSOLUTE_PATHS,
4692                 CRATE_NODE_ID, span_use, msg,
4693                 lint::builtin::BuiltinLintDiagnostics::
4694                     MacroExpandedMacroExportsAccessedByAbsolutePaths(span_def),
4695             );
4696         }
4697
4698         for &AmbiguityError { ident, b1, b2 } in &self.ambiguity_errors {
4699             if reported_spans.insert(ident.span) {
4700                 self.report_ambiguity_error(ident, b1, b2);
4701             }
4702         }
4703
4704         for &PrivacyError(span, name, binding) in &self.privacy_errors {
4705             if !reported_spans.insert(span) { continue }
4706             span_err!(self.session, span, E0603, "{} `{}` is private", binding.descr(), name);
4707         }
4708     }
4709
4710     fn report_with_use_injections(&mut self, krate: &Crate) {
4711         for UseError { mut err, candidates, node_id, better } in self.use_injections.drain(..) {
4712             let (span, found_use) = UsePlacementFinder::check(krate, node_id);
4713             if !candidates.is_empty() {
4714                 show_candidates(&mut err, span, &candidates, better, found_use);
4715             }
4716             err.emit();
4717         }
4718     }
4719
4720     fn report_conflict<'b>(&mut self,
4721                        parent: Module,
4722                        ident: Ident,
4723                        ns: Namespace,
4724                        new_binding: &NameBinding<'b>,
4725                        old_binding: &NameBinding<'b>) {
4726         // Error on the second of two conflicting names
4727         if old_binding.span.lo() > new_binding.span.lo() {
4728             return self.report_conflict(parent, ident, ns, old_binding, new_binding);
4729         }
4730
4731         let container = match parent.kind {
4732             ModuleKind::Def(Def::Mod(_), _) => "module",
4733             ModuleKind::Def(Def::Trait(_), _) => "trait",
4734             ModuleKind::Block(..) => "block",
4735             _ => "enum",
4736         };
4737
4738         let old_noun = match old_binding.is_import() {
4739             true => "import",
4740             false => "definition",
4741         };
4742
4743         let new_participle = match new_binding.is_import() {
4744             true => "imported",
4745             false => "defined",
4746         };
4747
4748         let (name, span) = (ident.name, self.session.source_map().def_span(new_binding.span));
4749
4750         if let Some(s) = self.name_already_seen.get(&name) {
4751             if s == &span {
4752                 return;
4753             }
4754         }
4755
4756         let old_kind = match (ns, old_binding.module()) {
4757             (ValueNS, _) => "value",
4758             (MacroNS, _) => "macro",
4759             (TypeNS, _) if old_binding.is_extern_crate() => "extern crate",
4760             (TypeNS, Some(module)) if module.is_normal() => "module",
4761             (TypeNS, Some(module)) if module.is_trait() => "trait",
4762             (TypeNS, _) => "type",
4763         };
4764
4765         let msg = format!("the name `{}` is defined multiple times", name);
4766
4767         let mut err = match (old_binding.is_extern_crate(), new_binding.is_extern_crate()) {
4768             (true, true) => struct_span_err!(self.session, span, E0259, "{}", msg),
4769             (true, _) | (_, true) => match new_binding.is_import() && old_binding.is_import() {
4770                 true => struct_span_err!(self.session, span, E0254, "{}", msg),
4771                 false => struct_span_err!(self.session, span, E0260, "{}", msg),
4772             },
4773             _ => match (old_binding.is_import(), new_binding.is_import()) {
4774                 (false, false) => struct_span_err!(self.session, span, E0428, "{}", msg),
4775                 (true, true) => struct_span_err!(self.session, span, E0252, "{}", msg),
4776                 _ => struct_span_err!(self.session, span, E0255, "{}", msg),
4777             },
4778         };
4779
4780         err.note(&format!("`{}` must be defined only once in the {} namespace of this {}",
4781                           name,
4782                           ns.descr(),
4783                           container));
4784
4785         err.span_label(span, format!("`{}` re{} here", name, new_participle));
4786         if !old_binding.span.is_dummy() {
4787             err.span_label(self.session.source_map().def_span(old_binding.span),
4788                            format!("previous {} of the {} `{}` here", old_noun, old_kind, name));
4789         }
4790
4791         // See https://github.com/rust-lang/rust/issues/32354
4792         if old_binding.is_import() || new_binding.is_import() {
4793             let binding = if new_binding.is_import() && !new_binding.span.is_dummy() {
4794                 new_binding
4795             } else {
4796                 old_binding
4797             };
4798
4799             let cm = self.session.source_map();
4800             let rename_msg = "You can use `as` to change the binding name of the import";
4801
4802             if let (Ok(snippet), false) = (cm.span_to_snippet(binding.span),
4803                                            binding.is_renamed_extern_crate()) {
4804                 let suggested_name = if name.as_str().chars().next().unwrap().is_uppercase() {
4805                     format!("Other{}", name)
4806                 } else {
4807                     format!("other_{}", name)
4808                 };
4809
4810                 err.span_suggestion_with_applicability(
4811                     binding.span,
4812                     rename_msg,
4813                     if snippet.ends_with(';') {
4814                         format!("{} as {};", &snippet[..snippet.len() - 1], suggested_name)
4815                     } else {
4816                         format!("{} as {}", snippet, suggested_name)
4817                     },
4818                     Applicability::MachineApplicable,
4819                 );
4820             } else {
4821                 err.span_label(binding.span, rename_msg);
4822             }
4823         }
4824
4825         err.emit();
4826         self.name_already_seen.insert(name, span);
4827     }
4828 }
4829
4830 fn is_self_type(path: &[Ident], namespace: Namespace) -> bool {
4831     namespace == TypeNS && path.len() == 1 && path[0].name == keywords::SelfType.name()
4832 }
4833
4834 fn is_self_value(path: &[Ident], namespace: Namespace) -> bool {
4835     namespace == ValueNS && path.len() == 1 && path[0].name == keywords::SelfValue.name()
4836 }
4837
4838 fn names_to_string(idents: &[Ident]) -> String {
4839     let mut result = String::new();
4840     for (i, ident) in idents.iter()
4841                             .filter(|ident| ident.name != keywords::CrateRoot.name())
4842                             .enumerate() {
4843         if i > 0 {
4844             result.push_str("::");
4845         }
4846         result.push_str(&ident.as_str());
4847     }
4848     result
4849 }
4850
4851 fn path_names_to_string(path: &Path) -> String {
4852     names_to_string(&path.segments.iter()
4853                         .map(|seg| seg.ident)
4854                         .collect::<Vec<_>>())
4855 }
4856
4857 /// Get the path for an enum and the variant from an `ImportSuggestion` for an enum variant.
4858 fn import_candidate_to_paths(suggestion: &ImportSuggestion) -> (Span, String, String) {
4859     let variant_path = &suggestion.path;
4860     let variant_path_string = path_names_to_string(variant_path);
4861
4862     let path_len = suggestion.path.segments.len();
4863     let enum_path = ast::Path {
4864         span: suggestion.path.span,
4865         segments: suggestion.path.segments[0..path_len - 1].to_vec(),
4866     };
4867     let enum_path_string = path_names_to_string(&enum_path);
4868
4869     (suggestion.path.span, variant_path_string, enum_path_string)
4870 }
4871
4872
4873 /// When an entity with a given name is not available in scope, we search for
4874 /// entities with that name in all crates. This method allows outputting the
4875 /// results of this search in a programmer-friendly way
4876 fn show_candidates(err: &mut DiagnosticBuilder,
4877                    // This is `None` if all placement locations are inside expansions
4878                    span: Option<Span>,
4879                    candidates: &[ImportSuggestion],
4880                    better: bool,
4881                    found_use: bool) {
4882
4883     // we want consistent results across executions, but candidates are produced
4884     // by iterating through a hash map, so make sure they are ordered:
4885     let mut path_strings: Vec<_> =
4886         candidates.into_iter().map(|c| path_names_to_string(&c.path)).collect();
4887     path_strings.sort();
4888
4889     let better = if better { "better " } else { "" };
4890     let msg_diff = match path_strings.len() {
4891         1 => " is found in another module, you can import it",
4892         _ => "s are found in other modules, you can import them",
4893     };
4894     let msg = format!("possible {}candidate{} into scope", better, msg_diff);
4895
4896     if let Some(span) = span {
4897         for candidate in &mut path_strings {
4898             // produce an additional newline to separate the new use statement
4899             // from the directly following item.
4900             let additional_newline = if found_use {
4901                 ""
4902             } else {
4903                 "\n"
4904             };
4905             *candidate = format!("use {};\n{}", candidate, additional_newline);
4906         }
4907
4908         err.span_suggestions_with_applicability(
4909             span,
4910             &msg,
4911             path_strings,
4912             Applicability::Unspecified,
4913         );
4914     } else {
4915         let mut msg = msg;
4916         msg.push(':');
4917         for candidate in path_strings {
4918             msg.push('\n');
4919             msg.push_str(&candidate);
4920         }
4921     }
4922 }
4923
4924 /// A somewhat inefficient routine to obtain the name of a module.
4925 fn module_to_string(module: Module) -> Option<String> {
4926     let mut names = Vec::new();
4927
4928     fn collect_mod(names: &mut Vec<Ident>, module: Module) {
4929         if let ModuleKind::Def(_, name) = module.kind {
4930             if let Some(parent) = module.parent {
4931                 names.push(Ident::with_empty_ctxt(name));
4932                 collect_mod(names, parent);
4933             }
4934         } else {
4935             // danger, shouldn't be ident?
4936             names.push(Ident::from_str("<opaque>"));
4937             collect_mod(names, module.parent.unwrap());
4938         }
4939     }
4940     collect_mod(&mut names, module);
4941
4942     if names.is_empty() {
4943         return None;
4944     }
4945     Some(names_to_string(&names.into_iter()
4946                         .rev()
4947                         .collect::<Vec<_>>()))
4948 }
4949
4950 fn err_path_resolution() -> PathResolution {
4951     PathResolution::new(Def::Err)
4952 }
4953
4954 #[derive(PartialEq,Copy, Clone)]
4955 pub enum MakeGlobMap {
4956     Yes,
4957     No,
4958 }
4959
4960 #[derive(Copy, Clone, Debug)]
4961 enum CrateLint {
4962     /// Do not issue the lint
4963     No,
4964
4965     /// This lint applies to some random path like `impl ::foo::Bar`
4966     /// or whatever. In this case, we can take the span of that path.
4967     SimplePath(NodeId),
4968
4969     /// This lint comes from a `use` statement. In this case, what we
4970     /// care about really is the *root* `use` statement; e.g., if we
4971     /// have nested things like `use a::{b, c}`, we care about the
4972     /// `use a` part.
4973     UsePath { root_id: NodeId, root_span: Span },
4974
4975     /// This is the "trait item" from a fully qualified path. For example,
4976     /// we might be resolving  `X::Y::Z` from a path like `<T as X::Y>::Z`.
4977     /// The `path_span` is the span of the to the trait itself (`X::Y`).
4978     QPathTrait { qpath_id: NodeId, qpath_span: Span },
4979 }
4980
4981 impl CrateLint {
4982     fn node_id(&self) -> Option<NodeId> {
4983         match *self {
4984             CrateLint::No => None,
4985             CrateLint::SimplePath(id) |
4986             CrateLint::UsePath { root_id: id, .. } |
4987             CrateLint::QPathTrait { qpath_id: id, .. } => Some(id),
4988         }
4989     }
4990 }
4991
4992 __build_diagnostic_array! { librustc_resolve, DIAGNOSTICS }