]> git.lizzy.rs Git - rust.git/blob - src/librustc_resolve/lib.rs
Auto merge of #56926 - alexcrichton:update-stdsimd, r=TimNN
[rust.git] / src / librustc_resolve / lib.rs
1 // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 #![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
12        html_favicon_url = "https://doc.rust-lang.org/favicon.ico",
13        html_root_url = "https://doc.rust-lang.org/nightly/")]
14
15 #![feature(crate_visibility_modifier)]
16 #![feature(label_break_value)]
17 #![feature(nll)]
18 #![feature(rustc_diagnostic_macros)]
19 #![feature(slice_sort_by_cached_key)]
20
21 #![recursion_limit="256"]
22
23 #[macro_use]
24 extern crate bitflags;
25 #[macro_use]
26 extern crate log;
27 #[macro_use]
28 extern crate syntax;
29 extern crate syntax_pos;
30 extern crate rustc_errors as errors;
31 extern crate arena;
32 #[macro_use]
33 extern crate rustc;
34 extern crate rustc_data_structures;
35 extern crate rustc_metadata;
36
37 pub use rustc::hir::def::{Namespace, PerNS};
38
39 use self::TypeParameters::*;
40 use self::RibKind::*;
41
42 use rustc::hir::map::{Definitions, DefCollector};
43 use rustc::hir::{self, PrimTy, Bool, Char, Float, Int, Uint, Str};
44 use rustc::middle::cstore::CrateStore;
45 use rustc::session::Session;
46 use rustc::lint;
47 use rustc::hir::def::*;
48 use rustc::hir::def::Namespace::*;
49 use rustc::hir::def_id::{CRATE_DEF_INDEX, LOCAL_CRATE, DefId};
50 use rustc::hir::{Freevar, FreevarMap, TraitCandidate, TraitMap, GlobMap};
51 use rustc::session::config::nightly_options;
52 use rustc::ty;
53 use rustc::util::nodemap::{NodeMap, NodeSet, FxHashMap, FxHashSet, DefIdMap};
54
55 use rustc_metadata::creader::CrateLoader;
56 use rustc_metadata::cstore::CStore;
57
58 use syntax::source_map::SourceMap;
59 use syntax::ext::hygiene::{Mark, Transparency, SyntaxContext};
60 use syntax::ast::{self, Name, NodeId, Ident, FloatTy, IntTy, UintTy};
61 use syntax::ext::base::SyntaxExtension;
62 use syntax::ext::base::Determinacy::{self, Determined, Undetermined};
63 use syntax::ext::base::MacroKind;
64 use syntax::symbol::{Symbol, keywords};
65 use syntax::util::lev_distance::find_best_match_for_name;
66
67 use syntax::visit::{self, FnKind, Visitor};
68 use syntax::attr;
69 use syntax::ast::{CRATE_NODE_ID, Arm, IsAsync, BindingMode, Block, Crate, Expr, ExprKind};
70 use syntax::ast::{FnDecl, ForeignItem, ForeignItemKind, GenericParamKind, Generics};
71 use syntax::ast::{Item, ItemKind, ImplItem, ImplItemKind};
72 use syntax::ast::{Label, Local, Mutability, Pat, PatKind, Path};
73 use syntax::ast::{QSelf, TraitItemKind, TraitRef, Ty, TyKind};
74 use syntax::ptr::P;
75
76 use syntax_pos::{Span, DUMMY_SP, MultiSpan};
77 use errors::{Applicability, DiagnosticBuilder, DiagnosticId};
78
79 use std::cell::{Cell, RefCell};
80 use std::{cmp, fmt, iter, ptr};
81 use std::collections::BTreeSet;
82 use std::mem::replace;
83 use rustc_data_structures::ptr_key::PtrKey;
84 use rustc_data_structures::sync::Lrc;
85
86 use resolve_imports::{ImportDirective, ImportDirectiveSubclass, NameResolution, ImportResolver};
87 use macros::{InvocationData, LegacyBinding, ParentScope};
88
89 // N.B., this module needs to be declared first so diagnostics are
90 // registered before they are used.
91 mod diagnostics;
92 mod error_reporting;
93 mod macros;
94 mod check_unused;
95 mod build_reduced_graph;
96 mod resolve_imports;
97
98 fn is_known_tool(name: Name) -> bool {
99     ["clippy", "rustfmt"].contains(&&*name.as_str())
100 }
101
102 enum Weak {
103     Yes,
104     No,
105 }
106
107 enum ScopeSet {
108     Import(Namespace),
109     AbsolutePath(Namespace),
110     Macro(MacroKind),
111     Module,
112 }
113
114 /// A free importable items suggested in case of resolution failure.
115 struct ImportSuggestion {
116     path: Path,
117 }
118
119 /// A field or associated item from self type suggested in case of resolution failure.
120 enum AssocSuggestion {
121     Field,
122     MethodWithSelf,
123     AssocItem,
124 }
125
126 #[derive(Eq)]
127 struct BindingError {
128     name: Name,
129     origin: BTreeSet<Span>,
130     target: BTreeSet<Span>,
131 }
132
133 impl PartialOrd for BindingError {
134     fn partial_cmp(&self, other: &BindingError) -> Option<cmp::Ordering> {
135         Some(self.cmp(other))
136     }
137 }
138
139 impl PartialEq for BindingError {
140     fn eq(&self, other: &BindingError) -> bool {
141         self.name == other.name
142     }
143 }
144
145 impl Ord for BindingError {
146     fn cmp(&self, other: &BindingError) -> cmp::Ordering {
147         self.name.cmp(&other.name)
148     }
149 }
150
151 enum ResolutionError<'a> {
152     /// error E0401: can't use type parameters from outer function
153     TypeParametersFromOuterFunction(Def),
154     /// error E0403: the name is already used for a type parameter in this type parameter list
155     NameAlreadyUsedInTypeParameterList(Name, &'a Span),
156     /// error E0407: method is not a member of trait
157     MethodNotMemberOfTrait(Name, &'a str),
158     /// error E0437: type is not a member of trait
159     TypeNotMemberOfTrait(Name, &'a str),
160     /// error E0438: const is not a member of trait
161     ConstNotMemberOfTrait(Name, &'a str),
162     /// error E0408: variable `{}` is not bound in all patterns
163     VariableNotBoundInPattern(&'a BindingError),
164     /// error E0409: variable `{}` is bound in inconsistent ways within the same match arm
165     VariableBoundWithDifferentMode(Name, Span),
166     /// error E0415: identifier is bound more than once in this parameter list
167     IdentifierBoundMoreThanOnceInParameterList(&'a str),
168     /// error E0416: identifier is bound more than once in the same pattern
169     IdentifierBoundMoreThanOnceInSamePattern(&'a str),
170     /// error E0426: use of undeclared label
171     UndeclaredLabel(&'a str, Option<Name>),
172     /// error E0429: `self` imports are only allowed within a { } list
173     SelfImportsOnlyAllowedWithin,
174     /// error E0430: `self` import can only appear once in the list
175     SelfImportCanOnlyAppearOnceInTheList,
176     /// error E0431: `self` import can only appear in an import list with a non-empty prefix
177     SelfImportOnlyInImportListWithNonEmptyPrefix,
178     /// error E0433: failed to resolve
179     FailedToResolve(&'a str),
180     /// error E0434: can't capture dynamic environment in a fn item
181     CannotCaptureDynamicEnvironmentInFnItem,
182     /// error E0435: attempt to use a non-constant value in a constant
183     AttemptToUseNonConstantValueInConstant,
184     /// error E0530: X bindings cannot shadow Ys
185     BindingShadowsSomethingUnacceptable(&'a str, Name, &'a NameBinding<'a>),
186     /// error E0128: type parameters with a default cannot use forward declared identifiers
187     ForwardDeclaredTyParam,
188 }
189
190 /// Combines an error with provided span and emits it
191 ///
192 /// This takes the error provided, combines it with the span and any additional spans inside the
193 /// error and emits it.
194 fn resolve_error<'sess, 'a>(resolver: &'sess Resolver,
195                             span: Span,
196                             resolution_error: ResolutionError<'a>) {
197     resolve_struct_error(resolver, span, resolution_error).emit();
198 }
199
200 fn resolve_struct_error<'sess, 'a>(resolver: &'sess Resolver,
201                                    span: Span,
202                                    resolution_error: ResolutionError<'a>)
203                                    -> DiagnosticBuilder<'sess> {
204     match resolution_error {
205         ResolutionError::TypeParametersFromOuterFunction(outer_def) => {
206             let mut err = struct_span_err!(resolver.session,
207                                            span,
208                                            E0401,
209                                            "can't use type parameters from outer function");
210             err.span_label(span, "use of type variable from outer function");
211
212             let cm = resolver.session.source_map();
213             match outer_def {
214                 Def::SelfTy(maybe_trait_defid, maybe_impl_defid) => {
215                     if let Some(impl_span) = maybe_impl_defid.and_then(|def_id| {
216                         resolver.definitions.opt_span(def_id)
217                     }) {
218                         err.span_label(
219                             reduce_impl_span_to_impl_keyword(cm, impl_span),
220                             "`Self` type implicitly declared here, by this `impl`",
221                         );
222                     }
223                     match (maybe_trait_defid, maybe_impl_defid) {
224                         (Some(_), None) => {
225                             err.span_label(span, "can't use `Self` here");
226                         }
227                         (_, Some(_)) => {
228                             err.span_label(span, "use a type here instead");
229                         }
230                         (None, None) => bug!("`impl` without trait nor type?"),
231                     }
232                     return err;
233                 },
234                 Def::TyParam(typaram_defid) => {
235                     if let Some(typaram_span) = resolver.definitions.opt_span(typaram_defid) {
236                         err.span_label(typaram_span, "type variable from outer function");
237                     }
238                 },
239                 _ => {
240                     bug!("TypeParametersFromOuterFunction should only be used with Def::SelfTy or \
241                          Def::TyParam")
242                 }
243             }
244
245             // Try to retrieve the span of the function signature and generate a new message with
246             // a local type parameter
247             let sugg_msg = "try using a local type parameter instead";
248             if let Some((sugg_span, new_snippet)) = cm.generate_local_type_param_snippet(span) {
249                 // Suggest the modification to the user
250                 err.span_suggestion_with_applicability(
251                     sugg_span,
252                     sugg_msg,
253                     new_snippet,
254                     Applicability::MachineApplicable,
255                 );
256             } else if let Some(sp) = cm.generate_fn_name_span(span) {
257                 err.span_label(sp, "try adding a local type parameter in this method instead");
258             } else {
259                 err.help("try using a local type parameter instead");
260             }
261
262             err
263         }
264         ResolutionError::NameAlreadyUsedInTypeParameterList(name, first_use_span) => {
265              let mut err = struct_span_err!(resolver.session,
266                                             span,
267                                             E0403,
268                                             "the name `{}` is already used for a type parameter \
269                                             in this type parameter list",
270                                             name);
271              err.span_label(span, "already used");
272              err.span_label(first_use_span.clone(), format!("first use of `{}`", name));
273              err
274         }
275         ResolutionError::MethodNotMemberOfTrait(method, trait_) => {
276             let mut err = struct_span_err!(resolver.session,
277                                            span,
278                                            E0407,
279                                            "method `{}` is not a member of trait `{}`",
280                                            method,
281                                            trait_);
282             err.span_label(span, format!("not a member of trait `{}`", trait_));
283             err
284         }
285         ResolutionError::TypeNotMemberOfTrait(type_, trait_) => {
286             let mut err = struct_span_err!(resolver.session,
287                              span,
288                              E0437,
289                              "type `{}` is not a member of trait `{}`",
290                              type_,
291                              trait_);
292             err.span_label(span, format!("not a member of trait `{}`", trait_));
293             err
294         }
295         ResolutionError::ConstNotMemberOfTrait(const_, trait_) => {
296             let mut err = struct_span_err!(resolver.session,
297                              span,
298                              E0438,
299                              "const `{}` is not a member of trait `{}`",
300                              const_,
301                              trait_);
302             err.span_label(span, format!("not a member of trait `{}`", trait_));
303             err
304         }
305         ResolutionError::VariableNotBoundInPattern(binding_error) => {
306             let target_sp = binding_error.target.iter().cloned().collect::<Vec<_>>();
307             let msp = MultiSpan::from_spans(target_sp.clone());
308             let msg = format!("variable `{}` is not bound in all patterns", binding_error.name);
309             let mut err = resolver.session.struct_span_err_with_code(
310                 msp,
311                 &msg,
312                 DiagnosticId::Error("E0408".into()),
313             );
314             for sp in target_sp {
315                 err.span_label(sp, format!("pattern doesn't bind `{}`", binding_error.name));
316             }
317             let origin_sp = binding_error.origin.iter().cloned();
318             for sp in origin_sp {
319                 err.span_label(sp, "variable not in all patterns");
320             }
321             err
322         }
323         ResolutionError::VariableBoundWithDifferentMode(variable_name,
324                                                         first_binding_span) => {
325             let mut err = struct_span_err!(resolver.session,
326                              span,
327                              E0409,
328                              "variable `{}` is bound in inconsistent \
329                              ways within the same match arm",
330                              variable_name);
331             err.span_label(span, "bound in different ways");
332             err.span_label(first_binding_span, "first binding");
333             err
334         }
335         ResolutionError::IdentifierBoundMoreThanOnceInParameterList(identifier) => {
336             let mut err = struct_span_err!(resolver.session,
337                              span,
338                              E0415,
339                              "identifier `{}` is bound more than once in this parameter list",
340                              identifier);
341             err.span_label(span, "used as parameter more than once");
342             err
343         }
344         ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(identifier) => {
345             let mut err = struct_span_err!(resolver.session,
346                              span,
347                              E0416,
348                              "identifier `{}` is bound more than once in the same pattern",
349                              identifier);
350             err.span_label(span, "used in a pattern more than once");
351             err
352         }
353         ResolutionError::UndeclaredLabel(name, lev_candidate) => {
354             let mut err = struct_span_err!(resolver.session,
355                                            span,
356                                            E0426,
357                                            "use of undeclared label `{}`",
358                                            name);
359             if let Some(lev_candidate) = lev_candidate {
360                 err.span_label(span, format!("did you mean `{}`?", lev_candidate));
361             } else {
362                 err.span_label(span, format!("undeclared label `{}`", name));
363             }
364             err
365         }
366         ResolutionError::SelfImportsOnlyAllowedWithin => {
367             struct_span_err!(resolver.session,
368                              span,
369                              E0429,
370                              "{}",
371                              "`self` imports are only allowed within a { } list")
372         }
373         ResolutionError::SelfImportCanOnlyAppearOnceInTheList => {
374             let mut err = struct_span_err!(resolver.session, span, E0430,
375                                            "`self` import can only appear once in an import list");
376             err.span_label(span, "can only appear once in an import list");
377             err
378         }
379         ResolutionError::SelfImportOnlyInImportListWithNonEmptyPrefix => {
380             let mut err = struct_span_err!(resolver.session, span, E0431,
381                                            "`self` import can only appear in an import list with \
382                                             a non-empty prefix");
383             err.span_label(span, "can only appear in an import list with a non-empty prefix");
384             err
385         }
386         ResolutionError::FailedToResolve(msg) => {
387             let mut err = struct_span_err!(resolver.session, span, E0433,
388                                            "failed to resolve: {}", msg);
389             err.span_label(span, msg);
390             err
391         }
392         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem => {
393             let mut err = struct_span_err!(resolver.session,
394                                            span,
395                                            E0434,
396                                            "{}",
397                                            "can't capture dynamic environment in a fn item");
398             err.help("use the `|| { ... }` closure form instead");
399             err
400         }
401         ResolutionError::AttemptToUseNonConstantValueInConstant => {
402             let mut err = struct_span_err!(resolver.session, span, E0435,
403                                            "attempt to use a non-constant value in a constant");
404             err.span_label(span, "non-constant value");
405             err
406         }
407         ResolutionError::BindingShadowsSomethingUnacceptable(what_binding, name, binding) => {
408             let shadows_what = binding.descr();
409             let mut err = struct_span_err!(resolver.session, span, E0530, "{}s cannot shadow {}s",
410                                            what_binding, shadows_what);
411             err.span_label(span, format!("cannot be named the same as {} {}",
412                                          binding.article(), shadows_what));
413             let participle = if binding.is_import() { "imported" } else { "defined" };
414             let msg = format!("the {} `{}` is {} here", shadows_what, name, participle);
415             err.span_label(binding.span, msg);
416             err
417         }
418         ResolutionError::ForwardDeclaredTyParam => {
419             let mut err = struct_span_err!(resolver.session, span, E0128,
420                                            "type parameters with a default cannot use \
421                                             forward declared identifiers");
422             err.span_label(
423                 span, "defaulted type parameters cannot be forward declared".to_string());
424             err
425         }
426     }
427 }
428
429 /// Adjust the impl span so that just the `impl` keyword is taken by removing
430 /// everything after `<` (`"impl<T> Iterator for A<T> {}" -> "impl"`) and
431 /// everything after the first whitespace (`"impl Iterator for A" -> "impl"`)
432 ///
433 /// Attention: The method used is very fragile since it essentially duplicates the work of the
434 /// parser. If you need to use this function or something similar, please consider updating the
435 /// source_map functions and this function to something more robust.
436 fn reduce_impl_span_to_impl_keyword(cm: &SourceMap, impl_span: Span) -> Span {
437     let impl_span = cm.span_until_char(impl_span, '<');
438     let impl_span = cm.span_until_whitespace(impl_span);
439     impl_span
440 }
441
442 #[derive(Copy, Clone, Debug)]
443 struct BindingInfo {
444     span: Span,
445     binding_mode: BindingMode,
446 }
447
448 /// Map from the name in a pattern to its binding mode.
449 type BindingMap = FxHashMap<Ident, BindingInfo>;
450
451 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
452 enum PatternSource {
453     Match,
454     IfLet,
455     WhileLet,
456     Let,
457     For,
458     FnParam,
459 }
460
461 impl PatternSource {
462     fn descr(self) -> &'static str {
463         match self {
464             PatternSource::Match => "match binding",
465             PatternSource::IfLet => "if let binding",
466             PatternSource::WhileLet => "while let binding",
467             PatternSource::Let => "let binding",
468             PatternSource::For => "for binding",
469             PatternSource::FnParam => "function parameter",
470         }
471     }
472 }
473
474 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
475 enum AliasPossibility {
476     No,
477     Maybe,
478 }
479
480 #[derive(Copy, Clone, Debug)]
481 enum PathSource<'a> {
482     // Type paths `Path`.
483     Type,
484     // Trait paths in bounds or impls.
485     Trait(AliasPossibility),
486     // Expression paths `path`, with optional parent context.
487     Expr(Option<&'a Expr>),
488     // Paths in path patterns `Path`.
489     Pat,
490     // Paths in struct expressions and patterns `Path { .. }`.
491     Struct,
492     // Paths in tuple struct patterns `Path(..)`.
493     TupleStruct,
494     // `m::A::B` in `<T as m::A>::B::C`.
495     TraitItem(Namespace),
496     // Path in `pub(path)`
497     Visibility,
498 }
499
500 impl<'a> PathSource<'a> {
501     fn namespace(self) -> Namespace {
502         match self {
503             PathSource::Type | PathSource::Trait(_) | PathSource::Struct |
504             PathSource::Visibility => TypeNS,
505             PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct => ValueNS,
506             PathSource::TraitItem(ns) => ns,
507         }
508     }
509
510     fn global_by_default(self) -> bool {
511         match self {
512             PathSource::Visibility => true,
513             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
514             PathSource::Struct | PathSource::TupleStruct |
515             PathSource::Trait(_) | PathSource::TraitItem(..) => false,
516         }
517     }
518
519     fn defer_to_typeck(self) -> bool {
520         match self {
521             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
522             PathSource::Struct | PathSource::TupleStruct => true,
523             PathSource::Trait(_) | PathSource::TraitItem(..) |
524             PathSource::Visibility => false,
525         }
526     }
527
528     fn descr_expected(self) -> &'static str {
529         match self {
530             PathSource::Type => "type",
531             PathSource::Trait(_) => "trait",
532             PathSource::Pat => "unit struct/variant or constant",
533             PathSource::Struct => "struct, variant or union type",
534             PathSource::TupleStruct => "tuple struct/variant",
535             PathSource::Visibility => "module",
536             PathSource::TraitItem(ns) => match ns {
537                 TypeNS => "associated type",
538                 ValueNS => "method or associated constant",
539                 MacroNS => bug!("associated macro"),
540             },
541             PathSource::Expr(parent) => match parent.map(|p| &p.node) {
542                 // "function" here means "anything callable" rather than `Def::Fn`,
543                 // this is not precise but usually more helpful than just "value".
544                 Some(&ExprKind::Call(..)) => "function",
545                 _ => "value",
546             },
547         }
548     }
549
550     fn is_expected(self, def: Def) -> bool {
551         match self {
552             PathSource::Type => match def {
553                 Def::Struct(..) | Def::Union(..) | Def::Enum(..) |
554                 Def::Trait(..) | Def::TraitAlias(..) | Def::TyAlias(..) |
555                 Def::AssociatedTy(..) | Def::PrimTy(..) | Def::TyParam(..) |
556                 Def::SelfTy(..) | Def::Existential(..) |
557                 Def::ForeignTy(..) => true,
558                 _ => false,
559             },
560             PathSource::Trait(AliasPossibility::No) => match def {
561                 Def::Trait(..) => true,
562                 _ => false,
563             },
564             PathSource::Trait(AliasPossibility::Maybe) => match def {
565                 Def::Trait(..) => true,
566                 Def::TraitAlias(..) => true,
567                 _ => false,
568             },
569             PathSource::Expr(..) => match def {
570                 Def::StructCtor(_, CtorKind::Const) | Def::StructCtor(_, CtorKind::Fn) |
571                 Def::VariantCtor(_, CtorKind::Const) | Def::VariantCtor(_, CtorKind::Fn) |
572                 Def::Const(..) | Def::Static(..) | Def::Local(..) | Def::Upvar(..) |
573                 Def::Fn(..) | Def::Method(..) | Def::AssociatedConst(..) |
574                 Def::SelfCtor(..) => true,
575                 _ => false,
576             },
577             PathSource::Pat => match def {
578                 Def::StructCtor(_, CtorKind::Const) |
579                 Def::VariantCtor(_, CtorKind::Const) |
580                 Def::Const(..) | Def::AssociatedConst(..) |
581                 Def::SelfCtor(..) => true,
582                 _ => false,
583             },
584             PathSource::TupleStruct => match def {
585                 Def::StructCtor(_, CtorKind::Fn) |
586                 Def::VariantCtor(_, CtorKind::Fn) |
587                 Def::SelfCtor(..) => true,
588                 _ => false,
589             },
590             PathSource::Struct => match def {
591                 Def::Struct(..) | Def::Union(..) | Def::Variant(..) |
592                 Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => true,
593                 _ => false,
594             },
595             PathSource::TraitItem(ns) => match def {
596                 Def::AssociatedConst(..) | Def::Method(..) if ns == ValueNS => true,
597                 Def::AssociatedTy(..) if ns == TypeNS => true,
598                 _ => false,
599             },
600             PathSource::Visibility => match def {
601                 Def::Mod(..) => true,
602                 _ => false,
603             },
604         }
605     }
606
607     fn error_code(self, has_unexpected_resolution: bool) -> &'static str {
608         __diagnostic_used!(E0404);
609         __diagnostic_used!(E0405);
610         __diagnostic_used!(E0412);
611         __diagnostic_used!(E0422);
612         __diagnostic_used!(E0423);
613         __diagnostic_used!(E0425);
614         __diagnostic_used!(E0531);
615         __diagnostic_used!(E0532);
616         __diagnostic_used!(E0573);
617         __diagnostic_used!(E0574);
618         __diagnostic_used!(E0575);
619         __diagnostic_used!(E0576);
620         __diagnostic_used!(E0577);
621         __diagnostic_used!(E0578);
622         match (self, has_unexpected_resolution) {
623             (PathSource::Trait(_), true) => "E0404",
624             (PathSource::Trait(_), false) => "E0405",
625             (PathSource::Type, true) => "E0573",
626             (PathSource::Type, false) => "E0412",
627             (PathSource::Struct, true) => "E0574",
628             (PathSource::Struct, false) => "E0422",
629             (PathSource::Expr(..), true) => "E0423",
630             (PathSource::Expr(..), false) => "E0425",
631             (PathSource::Pat, true) | (PathSource::TupleStruct, true) => "E0532",
632             (PathSource::Pat, false) | (PathSource::TupleStruct, false) => "E0531",
633             (PathSource::TraitItem(..), true) => "E0575",
634             (PathSource::TraitItem(..), false) => "E0576",
635             (PathSource::Visibility, true) => "E0577",
636             (PathSource::Visibility, false) => "E0578",
637         }
638     }
639 }
640
641 // A minimal representation of a path segment. We use this in resolve because
642 // we synthesize 'path segments' which don't have the rest of an AST or HIR
643 // `PathSegment`.
644 #[derive(Clone, Copy, Debug)]
645 pub struct Segment {
646     ident: Ident,
647     id: Option<NodeId>,
648 }
649
650 impl Segment {
651     fn from_path(path: &Path) -> Vec<Segment> {
652         path.segments.iter().map(|s| s.into()).collect()
653     }
654
655     fn from_ident(ident: Ident) -> Segment {
656         Segment {
657             ident,
658             id: None,
659         }
660     }
661
662     fn names_to_string(segments: &[Segment]) -> String {
663         names_to_string(&segments.iter()
664                             .map(|seg| seg.ident)
665                             .collect::<Vec<_>>())
666     }
667 }
668
669 impl<'a> From<&'a ast::PathSegment> for Segment {
670     fn from(seg: &'a ast::PathSegment) -> Segment {
671         Segment {
672             ident: seg.ident,
673             id: Some(seg.id),
674         }
675     }
676 }
677
678 struct UsePlacementFinder {
679     target_module: NodeId,
680     span: Option<Span>,
681     found_use: bool,
682 }
683
684 impl UsePlacementFinder {
685     fn check(krate: &Crate, target_module: NodeId) -> (Option<Span>, bool) {
686         let mut finder = UsePlacementFinder {
687             target_module,
688             span: None,
689             found_use: false,
690         };
691         visit::walk_crate(&mut finder, krate);
692         (finder.span, finder.found_use)
693     }
694 }
695
696 impl<'tcx> Visitor<'tcx> for UsePlacementFinder {
697     fn visit_mod(
698         &mut self,
699         module: &'tcx ast::Mod,
700         _: Span,
701         _: &[ast::Attribute],
702         node_id: NodeId,
703     ) {
704         if self.span.is_some() {
705             return;
706         }
707         if node_id != self.target_module {
708             visit::walk_mod(self, module);
709             return;
710         }
711         // find a use statement
712         for item in &module.items {
713             match item.node {
714                 ItemKind::Use(..) => {
715                     // don't suggest placing a use before the prelude
716                     // import or other generated ones
717                     if item.span.ctxt().outer().expn_info().is_none() {
718                         self.span = Some(item.span.shrink_to_lo());
719                         self.found_use = true;
720                         return;
721                     }
722                 },
723                 // don't place use before extern crate
724                 ItemKind::ExternCrate(_) => {}
725                 // but place them before the first other item
726                 _ => if self.span.map_or(true, |span| item.span < span ) {
727                     if item.span.ctxt().outer().expn_info().is_none() {
728                         // don't insert between attributes and an item
729                         if item.attrs.is_empty() {
730                             self.span = Some(item.span.shrink_to_lo());
731                         } else {
732                             // find the first attribute on the item
733                             for attr in &item.attrs {
734                                 if self.span.map_or(true, |span| attr.span < span) {
735                                     self.span = Some(attr.span.shrink_to_lo());
736                                 }
737                             }
738                         }
739                     }
740                 },
741             }
742         }
743     }
744 }
745
746 /// This thing walks the whole crate in DFS manner, visiting each item, resolving names as it goes.
747 impl<'a, 'tcx> Visitor<'tcx> for Resolver<'a> {
748     fn visit_item(&mut self, item: &'tcx Item) {
749         self.resolve_item(item);
750     }
751     fn visit_arm(&mut self, arm: &'tcx Arm) {
752         self.resolve_arm(arm);
753     }
754     fn visit_block(&mut self, block: &'tcx Block) {
755         self.resolve_block(block);
756     }
757     fn visit_anon_const(&mut self, constant: &'tcx ast::AnonConst) {
758         self.with_constant_rib(|this| {
759             visit::walk_anon_const(this, constant);
760         });
761     }
762     fn visit_expr(&mut self, expr: &'tcx Expr) {
763         self.resolve_expr(expr, None);
764     }
765     fn visit_local(&mut self, local: &'tcx Local) {
766         self.resolve_local(local);
767     }
768     fn visit_ty(&mut self, ty: &'tcx Ty) {
769         match ty.node {
770             TyKind::Path(ref qself, ref path) => {
771                 self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
772             }
773             TyKind::ImplicitSelf => {
774                 let self_ty = keywords::SelfUpper.ident();
775                 let def = self.resolve_ident_in_lexical_scope(self_ty, TypeNS, Some(ty.id), ty.span)
776                               .map_or(Def::Err, |d| d.def());
777                 self.record_def(ty.id, PathResolution::new(def));
778             }
779             _ => (),
780         }
781         visit::walk_ty(self, ty);
782     }
783     fn visit_poly_trait_ref(&mut self,
784                             tref: &'tcx ast::PolyTraitRef,
785                             m: &'tcx ast::TraitBoundModifier) {
786         self.smart_resolve_path(tref.trait_ref.ref_id, None,
787                                 &tref.trait_ref.path, PathSource::Trait(AliasPossibility::Maybe));
788         visit::walk_poly_trait_ref(self, tref, m);
789     }
790     fn visit_foreign_item(&mut self, foreign_item: &'tcx ForeignItem) {
791         let type_parameters = match foreign_item.node {
792             ForeignItemKind::Fn(_, ref generics) => {
793                 HasTypeParameters(generics, ItemRibKind)
794             }
795             ForeignItemKind::Static(..) => NoTypeParameters,
796             ForeignItemKind::Ty => NoTypeParameters,
797             ForeignItemKind::Macro(..) => NoTypeParameters,
798         };
799         self.with_type_parameter_rib(type_parameters, |this| {
800             visit::walk_foreign_item(this, foreign_item);
801         });
802     }
803     fn visit_fn(&mut self,
804                 function_kind: FnKind<'tcx>,
805                 declaration: &'tcx FnDecl,
806                 _: Span,
807                 node_id: NodeId)
808     {
809         let (rib_kind, asyncness) = match function_kind {
810             FnKind::ItemFn(_, ref header, ..) =>
811                 (ItemRibKind, header.asyncness),
812             FnKind::Method(_, ref sig, _, _) =>
813                 (TraitOrImplItemRibKind, sig.header.asyncness),
814             FnKind::Closure(_) =>
815                 // Async closures aren't resolved through `visit_fn`-- they're
816                 // processed separately
817                 (ClosureRibKind(node_id), IsAsync::NotAsync),
818         };
819
820         // Create a value rib for the function.
821         self.ribs[ValueNS].push(Rib::new(rib_kind));
822
823         // Create a label rib for the function.
824         self.label_ribs.push(Rib::new(rib_kind));
825
826         // Add each argument to the rib.
827         let mut bindings_list = FxHashMap::default();
828         for argument in &declaration.inputs {
829             self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
830
831             self.visit_ty(&argument.ty);
832
833             debug!("(resolving function) recorded argument");
834         }
835         visit::walk_fn_ret_ty(self, &declaration.output);
836
837         // Resolve the function body, potentially inside the body of an async closure
838         if let IsAsync::Async { closure_id, .. } = asyncness {
839             let rib_kind = ClosureRibKind(closure_id);
840             self.ribs[ValueNS].push(Rib::new(rib_kind));
841             self.label_ribs.push(Rib::new(rib_kind));
842         }
843
844         match function_kind {
845             FnKind::ItemFn(.., body) |
846             FnKind::Method(.., body) => {
847                 self.visit_block(body);
848             }
849             FnKind::Closure(body) => {
850                 self.visit_expr(body);
851             }
852         };
853
854         // Leave the body of the async closure
855         if asyncness.is_async() {
856             self.label_ribs.pop();
857             self.ribs[ValueNS].pop();
858         }
859
860         debug!("(resolving function) leaving function");
861
862         self.label_ribs.pop();
863         self.ribs[ValueNS].pop();
864     }
865     fn visit_generics(&mut self, generics: &'tcx Generics) {
866         // For type parameter defaults, we have to ban access
867         // to following type parameters, as the Substs can only
868         // provide previous type parameters as they're built. We
869         // put all the parameters on the ban list and then remove
870         // them one by one as they are processed and become available.
871         let mut default_ban_rib = Rib::new(ForwardTyParamBanRibKind);
872         let mut found_default = false;
873         default_ban_rib.bindings.extend(generics.params.iter()
874             .filter_map(|param| match param.kind {
875                 GenericParamKind::Lifetime { .. } => None,
876                 GenericParamKind::Type { ref default, .. } => {
877                     found_default |= default.is_some();
878                     if found_default {
879                         Some((Ident::with_empty_ctxt(param.ident.name), Def::Err))
880                     } else {
881                         None
882                     }
883                 }
884             }));
885
886         for param in &generics.params {
887             match param.kind {
888                 GenericParamKind::Lifetime { .. } => self.visit_generic_param(param),
889                 GenericParamKind::Type { ref default, .. } => {
890                     for bound in &param.bounds {
891                         self.visit_param_bound(bound);
892                     }
893
894                     if let Some(ref ty) = default {
895                         self.ribs[TypeNS].push(default_ban_rib);
896                         self.visit_ty(ty);
897                         default_ban_rib = self.ribs[TypeNS].pop().unwrap();
898                     }
899
900                     // Allow all following defaults to refer to this type parameter.
901                     default_ban_rib.bindings.remove(&Ident::with_empty_ctxt(param.ident.name));
902                 }
903             }
904         }
905         for p in &generics.where_clause.predicates {
906             self.visit_where_predicate(p);
907         }
908     }
909 }
910
911 #[derive(Copy, Clone)]
912 enum TypeParameters<'a, 'b> {
913     NoTypeParameters,
914     HasTypeParameters(// Type parameters.
915                       &'b Generics,
916
917                       // The kind of the rib used for type parameters.
918                       RibKind<'a>),
919 }
920
921 /// The rib kind controls the translation of local
922 /// definitions (`Def::Local`) to upvars (`Def::Upvar`).
923 #[derive(Copy, Clone, Debug)]
924 enum RibKind<'a> {
925     /// No translation needs to be applied.
926     NormalRibKind,
927
928     /// We passed through a closure scope at the given node ID.
929     /// Translate upvars as appropriate.
930     ClosureRibKind(NodeId /* func id */),
931
932     /// We passed through an impl or trait and are now in one of its
933     /// methods or associated types. Allow references to ty params that impl or trait
934     /// binds. Disallow any other upvars (including other ty params that are
935     /// upvars).
936     TraitOrImplItemRibKind,
937
938     /// We passed through an item scope. Disallow upvars.
939     ItemRibKind,
940
941     /// We're in a constant item. Can't refer to dynamic stuff.
942     ConstantItemRibKind,
943
944     /// We passed through a module.
945     ModuleRibKind(Module<'a>),
946
947     /// We passed through a `macro_rules!` statement
948     MacroDefinition(DefId),
949
950     /// All bindings in this rib are type parameters that can't be used
951     /// from the default of a type parameter because they're not declared
952     /// before said type parameter. Also see the `visit_generics` override.
953     ForwardTyParamBanRibKind,
954 }
955
956 /// One local scope.
957 ///
958 /// A rib represents a scope names can live in. Note that these appear in many places, not just
959 /// around braces. At any place where the list of accessible names (of the given namespace)
960 /// changes or a new restrictions on the name accessibility are introduced, a new rib is put onto a
961 /// stack. This may be, for example, a `let` statement (because it introduces variables), a macro,
962 /// etc.
963 ///
964 /// Different [rib kinds](enum.RibKind) are transparent for different names.
965 ///
966 /// The resolution keeps a separate stack of ribs as it traverses the AST for each namespace. When
967 /// resolving, the name is looked up from inside out.
968 #[derive(Debug)]
969 struct Rib<'a> {
970     bindings: FxHashMap<Ident, Def>,
971     kind: RibKind<'a>,
972 }
973
974 impl<'a> Rib<'a> {
975     fn new(kind: RibKind<'a>) -> Rib<'a> {
976         Rib {
977             bindings: Default::default(),
978             kind,
979         }
980     }
981 }
982
983 /// An intermediate resolution result.
984 ///
985 /// This refers to the thing referred by a name. The difference between `Def` and `Item` is that
986 /// items are visible in their whole block, while defs only from the place they are defined
987 /// forward.
988 enum LexicalScopeBinding<'a> {
989     Item(&'a NameBinding<'a>),
990     Def(Def),
991 }
992
993 impl<'a> LexicalScopeBinding<'a> {
994     fn item(self) -> Option<&'a NameBinding<'a>> {
995         match self {
996             LexicalScopeBinding::Item(binding) => Some(binding),
997             _ => None,
998         }
999     }
1000
1001     fn def(self) -> Def {
1002         match self {
1003             LexicalScopeBinding::Item(binding) => binding.def(),
1004             LexicalScopeBinding::Def(def) => def,
1005         }
1006     }
1007 }
1008
1009 #[derive(Copy, Clone, Debug)]
1010 enum ModuleOrUniformRoot<'a> {
1011     /// Regular module.
1012     Module(Module<'a>),
1013
1014     /// Virtual module that denotes resolution in crate root with fallback to extern prelude.
1015     CrateRootAndExternPrelude,
1016
1017     /// Virtual module that denotes resolution in extern prelude.
1018     /// Used for paths starting with `::` on 2018 edition or `extern::`.
1019     ExternPrelude,
1020
1021     /// Virtual module that denotes resolution in current scope.
1022     /// Used only for resolving single-segment imports. The reason it exists is that import paths
1023     /// are always split into two parts, the first of which should be some kind of module.
1024     CurrentScope,
1025 }
1026
1027 impl<'a> PartialEq for ModuleOrUniformRoot<'a> {
1028     fn eq(&self, other: &Self) -> bool {
1029         match (*self, *other) {
1030             (ModuleOrUniformRoot::Module(lhs),
1031              ModuleOrUniformRoot::Module(rhs)) => ptr::eq(lhs, rhs),
1032             (ModuleOrUniformRoot::CrateRootAndExternPrelude,
1033              ModuleOrUniformRoot::CrateRootAndExternPrelude) |
1034             (ModuleOrUniformRoot::ExternPrelude, ModuleOrUniformRoot::ExternPrelude) |
1035             (ModuleOrUniformRoot::CurrentScope, ModuleOrUniformRoot::CurrentScope) => true,
1036             _ => false,
1037         }
1038     }
1039 }
1040
1041 #[derive(Clone, Debug)]
1042 enum PathResult<'a> {
1043     Module(ModuleOrUniformRoot<'a>),
1044     NonModule(PathResolution),
1045     Indeterminate,
1046     Failed(Span, String, bool /* is the error from the last segment? */),
1047 }
1048
1049 enum ModuleKind {
1050     /// An anonymous module, eg. just a block.
1051     ///
1052     /// ```
1053     /// fn main() {
1054     ///     fn f() {} // (1)
1055     ///     { // This is an anonymous module
1056     ///         f(); // This resolves to (2) as we are inside the block.
1057     ///         fn f() {} // (2)
1058     ///     }
1059     ///     f(); // Resolves to (1)
1060     /// }
1061     /// ```
1062     Block(NodeId),
1063     /// Any module with a name.
1064     ///
1065     /// This could be:
1066     ///
1067     /// * A normal module â€’ either `mod from_file;` or `mod from_block { }`.
1068     /// * A trait or an enum (it implicitly contains associated types, methods and variant
1069     ///   constructors).
1070     Def(Def, Name),
1071 }
1072
1073 /// One node in the tree of modules.
1074 pub struct ModuleData<'a> {
1075     parent: Option<Module<'a>>,
1076     kind: ModuleKind,
1077
1078     // The def id of the closest normal module (`mod`) ancestor (including this module).
1079     normal_ancestor_id: DefId,
1080
1081     resolutions: RefCell<FxHashMap<(Ident, Namespace), &'a RefCell<NameResolution<'a>>>>,
1082     single_segment_macro_resolutions: RefCell<Vec<(Ident, MacroKind, ParentScope<'a>,
1083                                                    Option<&'a NameBinding<'a>>)>>,
1084     multi_segment_macro_resolutions: RefCell<Vec<(Vec<Segment>, Span, MacroKind, ParentScope<'a>,
1085                                                   Option<Def>)>>,
1086     builtin_attrs: RefCell<Vec<(Ident, ParentScope<'a>)>>,
1087
1088     // Macro invocations that can expand into items in this module.
1089     unresolved_invocations: RefCell<FxHashSet<Mark>>,
1090
1091     no_implicit_prelude: bool,
1092
1093     glob_importers: RefCell<Vec<&'a ImportDirective<'a>>>,
1094     globs: RefCell<Vec<&'a ImportDirective<'a>>>,
1095
1096     // Used to memoize the traits in this module for faster searches through all traits in scope.
1097     traits: RefCell<Option<Box<[(Ident, &'a NameBinding<'a>)]>>>,
1098
1099     // Whether this module is populated. If not populated, any attempt to
1100     // access the children must be preceded with a
1101     // `populate_module_if_necessary` call.
1102     populated: Cell<bool>,
1103
1104     /// Span of the module itself. Used for error reporting.
1105     span: Span,
1106
1107     expansion: Mark,
1108 }
1109
1110 type Module<'a> = &'a ModuleData<'a>;
1111
1112 impl<'a> ModuleData<'a> {
1113     fn new(parent: Option<Module<'a>>,
1114            kind: ModuleKind,
1115            normal_ancestor_id: DefId,
1116            expansion: Mark,
1117            span: Span) -> Self {
1118         ModuleData {
1119             parent,
1120             kind,
1121             normal_ancestor_id,
1122             resolutions: Default::default(),
1123             single_segment_macro_resolutions: RefCell::new(Vec::new()),
1124             multi_segment_macro_resolutions: RefCell::new(Vec::new()),
1125             builtin_attrs: RefCell::new(Vec::new()),
1126             unresolved_invocations: Default::default(),
1127             no_implicit_prelude: false,
1128             glob_importers: RefCell::new(Vec::new()),
1129             globs: RefCell::new(Vec::new()),
1130             traits: RefCell::new(None),
1131             populated: Cell::new(normal_ancestor_id.is_local()),
1132             span,
1133             expansion,
1134         }
1135     }
1136
1137     fn for_each_child<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1138         for (&(ident, ns), name_resolution) in self.resolutions.borrow().iter() {
1139             name_resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1140         }
1141     }
1142
1143     fn for_each_child_stable<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1144         let resolutions = self.resolutions.borrow();
1145         let mut resolutions = resolutions.iter().collect::<Vec<_>>();
1146         resolutions.sort_by_cached_key(|&(&(ident, ns), _)| (ident.as_str(), ns));
1147         for &(&(ident, ns), &resolution) in resolutions.iter() {
1148             resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1149         }
1150     }
1151
1152     fn def(&self) -> Option<Def> {
1153         match self.kind {
1154             ModuleKind::Def(def, _) => Some(def),
1155             _ => None,
1156         }
1157     }
1158
1159     fn def_id(&self) -> Option<DefId> {
1160         self.def().as_ref().map(Def::def_id)
1161     }
1162
1163     // `self` resolves to the first module ancestor that `is_normal`.
1164     fn is_normal(&self) -> bool {
1165         match self.kind {
1166             ModuleKind::Def(Def::Mod(_), _) => true,
1167             _ => false,
1168         }
1169     }
1170
1171     fn is_trait(&self) -> bool {
1172         match self.kind {
1173             ModuleKind::Def(Def::Trait(_), _) => true,
1174             _ => false,
1175         }
1176     }
1177
1178     fn nearest_item_scope(&'a self) -> Module<'a> {
1179         if self.is_trait() { self.parent.unwrap() } else { self }
1180     }
1181
1182     fn is_ancestor_of(&self, mut other: &Self) -> bool {
1183         while !ptr::eq(self, other) {
1184             if let Some(parent) = other.parent {
1185                 other = parent;
1186             } else {
1187                 return false;
1188             }
1189         }
1190         true
1191     }
1192 }
1193
1194 impl<'a> fmt::Debug for ModuleData<'a> {
1195     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1196         write!(f, "{:?}", self.def())
1197     }
1198 }
1199
1200 /// Records a possibly-private value, type, or module definition.
1201 #[derive(Clone, Debug)]
1202 pub struct NameBinding<'a> {
1203     kind: NameBindingKind<'a>,
1204     expansion: Mark,
1205     span: Span,
1206     vis: ty::Visibility,
1207 }
1208
1209 pub trait ToNameBinding<'a> {
1210     fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a>;
1211 }
1212
1213 impl<'a> ToNameBinding<'a> for &'a NameBinding<'a> {
1214     fn to_name_binding(self, _: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> {
1215         self
1216     }
1217 }
1218
1219 #[derive(Clone, Debug)]
1220 enum NameBindingKind<'a> {
1221     Def(Def, /* is_macro_export */ bool),
1222     Module(Module<'a>),
1223     Import {
1224         binding: &'a NameBinding<'a>,
1225         directive: &'a ImportDirective<'a>,
1226         used: Cell<bool>,
1227     },
1228     Ambiguity {
1229         kind: AmbiguityKind,
1230         b1: &'a NameBinding<'a>,
1231         b2: &'a NameBinding<'a>,
1232     }
1233 }
1234
1235 struct PrivacyError<'a>(Span, Ident, &'a NameBinding<'a>);
1236
1237 struct UseError<'a> {
1238     err: DiagnosticBuilder<'a>,
1239     /// Attach `use` statements for these candidates
1240     candidates: Vec<ImportSuggestion>,
1241     /// The node id of the module to place the use statements in
1242     node_id: NodeId,
1243     /// Whether the diagnostic should state that it's "better"
1244     better: bool,
1245 }
1246
1247 #[derive(Clone, Copy, PartialEq, Debug)]
1248 enum AmbiguityKind {
1249     Import,
1250     AbsolutePath,
1251     BuiltinAttr,
1252     DeriveHelper,
1253     LegacyHelperVsPrelude,
1254     LegacyVsModern,
1255     GlobVsOuter,
1256     GlobVsGlob,
1257     GlobVsExpanded,
1258     MoreExpandedVsOuter,
1259 }
1260
1261 impl AmbiguityKind {
1262     fn descr(self) -> &'static str {
1263         match self {
1264             AmbiguityKind::Import =>
1265                 "name vs any other name during import resolution",
1266             AmbiguityKind::AbsolutePath =>
1267                 "name in the crate root vs extern crate during absolute path resolution",
1268             AmbiguityKind::BuiltinAttr =>
1269                 "built-in attribute vs any other name",
1270             AmbiguityKind::DeriveHelper =>
1271                 "derive helper attribute vs any other name",
1272             AmbiguityKind::LegacyHelperVsPrelude =>
1273                 "legacy plugin helper attribute vs name from prelude",
1274             AmbiguityKind::LegacyVsModern =>
1275                 "`macro_rules` vs non-`macro_rules` from other module",
1276             AmbiguityKind::GlobVsOuter =>
1277                 "glob import vs any other name from outer scope during import/macro resolution",
1278             AmbiguityKind::GlobVsGlob =>
1279                 "glob import vs glob import in the same module",
1280             AmbiguityKind::GlobVsExpanded =>
1281                 "glob import vs macro-expanded name in the same \
1282                  module during import/macro resolution",
1283             AmbiguityKind::MoreExpandedVsOuter =>
1284                 "macro-expanded name vs less macro-expanded name \
1285                  from outer scope during import/macro resolution",
1286         }
1287     }
1288 }
1289
1290 /// Miscellaneous bits of metadata for better ambiguity error reporting.
1291 #[derive(Clone, Copy, PartialEq)]
1292 enum AmbiguityErrorMisc {
1293     SuggestCrate,
1294     SuggestSelf,
1295     FromPrelude,
1296     None,
1297 }
1298
1299 struct AmbiguityError<'a> {
1300     kind: AmbiguityKind,
1301     ident: Ident,
1302     b1: &'a NameBinding<'a>,
1303     b2: &'a NameBinding<'a>,
1304     misc1: AmbiguityErrorMisc,
1305     misc2: AmbiguityErrorMisc,
1306 }
1307
1308 impl<'a> NameBinding<'a> {
1309     fn module(&self) -> Option<Module<'a>> {
1310         match self.kind {
1311             NameBindingKind::Module(module) => Some(module),
1312             NameBindingKind::Import { binding, .. } => binding.module(),
1313             _ => None,
1314         }
1315     }
1316
1317     fn def(&self) -> Def {
1318         match self.kind {
1319             NameBindingKind::Def(def, _) => def,
1320             NameBindingKind::Module(module) => module.def().unwrap(),
1321             NameBindingKind::Import { binding, .. } => binding.def(),
1322             NameBindingKind::Ambiguity { .. } => Def::Err,
1323         }
1324     }
1325
1326     fn def_ignoring_ambiguity(&self) -> Def {
1327         match self.kind {
1328             NameBindingKind::Import { binding, .. } => binding.def_ignoring_ambiguity(),
1329             NameBindingKind::Ambiguity { b1, .. } => b1.def_ignoring_ambiguity(),
1330             _ => self.def(),
1331         }
1332     }
1333
1334     // We sometimes need to treat variants as `pub` for backwards compatibility
1335     fn pseudo_vis(&self) -> ty::Visibility {
1336         if self.is_variant() && self.def().def_id().is_local() {
1337             ty::Visibility::Public
1338         } else {
1339             self.vis
1340         }
1341     }
1342
1343     fn is_variant(&self) -> bool {
1344         match self.kind {
1345             NameBindingKind::Def(Def::Variant(..), _) |
1346             NameBindingKind::Def(Def::VariantCtor(..), _) => true,
1347             _ => false,
1348         }
1349     }
1350
1351     fn is_extern_crate(&self) -> bool {
1352         match self.kind {
1353             NameBindingKind::Import {
1354                 directive: &ImportDirective {
1355                     subclass: ImportDirectiveSubclass::ExternCrate { .. }, ..
1356                 }, ..
1357             } => true,
1358             NameBindingKind::Module(
1359                 &ModuleData { kind: ModuleKind::Def(Def::Mod(def_id), _), .. }
1360             ) => def_id.index == CRATE_DEF_INDEX,
1361             _ => false,
1362         }
1363     }
1364
1365     fn is_import(&self) -> bool {
1366         match self.kind {
1367             NameBindingKind::Import { .. } => true,
1368             _ => false,
1369         }
1370     }
1371
1372     fn is_glob_import(&self) -> bool {
1373         match self.kind {
1374             NameBindingKind::Import { directive, .. } => directive.is_glob(),
1375             NameBindingKind::Ambiguity { b1, .. } => b1.is_glob_import(),
1376             _ => false,
1377         }
1378     }
1379
1380     fn is_importable(&self) -> bool {
1381         match self.def() {
1382             Def::AssociatedConst(..) | Def::Method(..) | Def::AssociatedTy(..) => false,
1383             _ => true,
1384         }
1385     }
1386
1387     fn is_macro_def(&self) -> bool {
1388         match self.kind {
1389             NameBindingKind::Def(Def::Macro(..), _) => true,
1390             _ => false,
1391         }
1392     }
1393
1394     fn macro_kind(&self) -> Option<MacroKind> {
1395         match self.def_ignoring_ambiguity() {
1396             Def::Macro(_, kind) => Some(kind),
1397             Def::NonMacroAttr(..) => Some(MacroKind::Attr),
1398             _ => None,
1399         }
1400     }
1401
1402     fn descr(&self) -> &'static str {
1403         if self.is_extern_crate() { "extern crate" } else { self.def().kind_name() }
1404     }
1405
1406     fn article(&self) -> &'static str {
1407         if self.is_extern_crate() { "an" } else { self.def().article() }
1408     }
1409
1410     // Suppose that we resolved macro invocation with `invoc_parent_expansion` to binding `binding`
1411     // at some expansion round `max(invoc, binding)` when they both emerged from macros.
1412     // Then this function returns `true` if `self` may emerge from a macro *after* that
1413     // in some later round and screw up our previously found resolution.
1414     // See more detailed explanation in
1415     // https://github.com/rust-lang/rust/pull/53778#issuecomment-419224049
1416     fn may_appear_after(&self, invoc_parent_expansion: Mark, binding: &NameBinding) -> bool {
1417         // self > max(invoc, binding) => !(self <= invoc || self <= binding)
1418         // Expansions are partially ordered, so "may appear after" is an inversion of
1419         // "certainly appears before or simultaneously" and includes unordered cases.
1420         let self_parent_expansion = self.expansion;
1421         let other_parent_expansion = binding.expansion;
1422         let certainly_before_other_or_simultaneously =
1423             other_parent_expansion.is_descendant_of(self_parent_expansion);
1424         let certainly_before_invoc_or_simultaneously =
1425             invoc_parent_expansion.is_descendant_of(self_parent_expansion);
1426         !(certainly_before_other_or_simultaneously || certainly_before_invoc_or_simultaneously)
1427     }
1428 }
1429
1430 /// Interns the names of the primitive types.
1431 ///
1432 /// All other types are defined somewhere and possibly imported, but the primitive ones need
1433 /// special handling, since they have no place of origin.
1434 #[derive(Default)]
1435 struct PrimitiveTypeTable {
1436     primitive_types: FxHashMap<Name, PrimTy>,
1437 }
1438
1439 impl PrimitiveTypeTable {
1440     fn new() -> PrimitiveTypeTable {
1441         let mut table = PrimitiveTypeTable::default();
1442
1443         table.intern("bool", Bool);
1444         table.intern("char", Char);
1445         table.intern("f32", Float(FloatTy::F32));
1446         table.intern("f64", Float(FloatTy::F64));
1447         table.intern("isize", Int(IntTy::Isize));
1448         table.intern("i8", Int(IntTy::I8));
1449         table.intern("i16", Int(IntTy::I16));
1450         table.intern("i32", Int(IntTy::I32));
1451         table.intern("i64", Int(IntTy::I64));
1452         table.intern("i128", Int(IntTy::I128));
1453         table.intern("str", Str);
1454         table.intern("usize", Uint(UintTy::Usize));
1455         table.intern("u8", Uint(UintTy::U8));
1456         table.intern("u16", Uint(UintTy::U16));
1457         table.intern("u32", Uint(UintTy::U32));
1458         table.intern("u64", Uint(UintTy::U64));
1459         table.intern("u128", Uint(UintTy::U128));
1460         table
1461     }
1462
1463     fn intern(&mut self, string: &str, primitive_type: PrimTy) {
1464         self.primitive_types.insert(Symbol::intern(string), primitive_type);
1465     }
1466 }
1467
1468 #[derive(Default, Clone)]
1469 pub struct ExternPreludeEntry<'a> {
1470     extern_crate_item: Option<&'a NameBinding<'a>>,
1471     pub introduced_by_item: bool,
1472 }
1473
1474 /// The main resolver class.
1475 ///
1476 /// This is the visitor that walks the whole crate.
1477 pub struct Resolver<'a> {
1478     session: &'a Session,
1479     cstore: &'a CStore,
1480
1481     pub definitions: Definitions,
1482
1483     graph_root: Module<'a>,
1484
1485     prelude: Option<Module<'a>>,
1486     pub extern_prelude: FxHashMap<Ident, ExternPreludeEntry<'a>>,
1487
1488     /// n.b. This is used only for better diagnostics, not name resolution itself.
1489     has_self: FxHashSet<DefId>,
1490
1491     /// Names of fields of an item `DefId` accessible with dot syntax.
1492     /// Used for hints during error reporting.
1493     field_names: FxHashMap<DefId, Vec<Name>>,
1494
1495     /// All imports known to succeed or fail.
1496     determined_imports: Vec<&'a ImportDirective<'a>>,
1497
1498     /// All non-determined imports.
1499     indeterminate_imports: Vec<&'a ImportDirective<'a>>,
1500
1501     /// The module that represents the current item scope.
1502     current_module: Module<'a>,
1503
1504     /// The current set of local scopes for types and values.
1505     /// FIXME #4948: Reuse ribs to avoid allocation.
1506     ribs: PerNS<Vec<Rib<'a>>>,
1507
1508     /// The current set of local scopes, for labels.
1509     label_ribs: Vec<Rib<'a>>,
1510
1511     /// The trait that the current context can refer to.
1512     current_trait_ref: Option<(Module<'a>, TraitRef)>,
1513
1514     /// The current self type if inside an impl (used for better errors).
1515     current_self_type: Option<Ty>,
1516
1517     /// The current self item if inside an ADT (used for better errors).
1518     current_self_item: Option<NodeId>,
1519
1520     /// FIXME: Refactor things so that these fields are passed through arguments and not resolver.
1521     /// We are resolving a last import segment during import validation.
1522     last_import_segment: bool,
1523     /// This binding should be ignored during in-module resolution, so that we don't get
1524     /// "self-confirming" import resolutions during import validation.
1525     blacklisted_binding: Option<&'a NameBinding<'a>>,
1526
1527     /// The idents for the primitive types.
1528     primitive_type_table: PrimitiveTypeTable,
1529
1530     def_map: DefMap,
1531     import_map: ImportMap,
1532     pub freevars: FreevarMap,
1533     freevars_seen: NodeMap<NodeMap<usize>>,
1534     pub export_map: ExportMap,
1535     pub trait_map: TraitMap,
1536
1537     /// A map from nodes to anonymous modules.
1538     /// Anonymous modules are pseudo-modules that are implicitly created around items
1539     /// contained within blocks.
1540     ///
1541     /// For example, if we have this:
1542     ///
1543     ///  fn f() {
1544     ///      fn g() {
1545     ///          ...
1546     ///      }
1547     ///  }
1548     ///
1549     /// There will be an anonymous module created around `g` with the ID of the
1550     /// entry block for `f`.
1551     block_map: NodeMap<Module<'a>>,
1552     module_map: FxHashMap<DefId, Module<'a>>,
1553     extern_module_map: FxHashMap<(DefId, bool /* MacrosOnly? */), Module<'a>>,
1554     binding_parent_modules: FxHashMap<PtrKey<'a, NameBinding<'a>>, Module<'a>>,
1555
1556     pub make_glob_map: bool,
1557     /// Maps imports to the names of items actually imported (this actually maps
1558     /// all imports, but only glob imports are actually interesting).
1559     pub glob_map: GlobMap,
1560
1561     used_imports: FxHashSet<(NodeId, Namespace)>,
1562     pub maybe_unused_trait_imports: NodeSet,
1563     pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
1564
1565     /// A list of labels as of yet unused. Labels will be removed from this map when
1566     /// they are used (in a `break` or `continue` statement)
1567     pub unused_labels: FxHashMap<NodeId, Span>,
1568
1569     /// privacy errors are delayed until the end in order to deduplicate them
1570     privacy_errors: Vec<PrivacyError<'a>>,
1571     /// ambiguity errors are delayed for deduplication
1572     ambiguity_errors: Vec<AmbiguityError<'a>>,
1573     /// `use` injections are delayed for better placement and deduplication
1574     use_injections: Vec<UseError<'a>>,
1575     /// crate-local macro expanded `macro_export` referred to by a module-relative path
1576     macro_expanded_macro_export_errors: BTreeSet<(Span, Span)>,
1577
1578     arenas: &'a ResolverArenas<'a>,
1579     dummy_binding: &'a NameBinding<'a>,
1580
1581     crate_loader: &'a mut CrateLoader<'a>,
1582     macro_names: FxHashSet<Ident>,
1583     builtin_macros: FxHashMap<Name, &'a NameBinding<'a>>,
1584     macro_use_prelude: FxHashMap<Name, &'a NameBinding<'a>>,
1585     pub all_macros: FxHashMap<Name, Def>,
1586     macro_map: FxHashMap<DefId, Lrc<SyntaxExtension>>,
1587     macro_defs: FxHashMap<Mark, DefId>,
1588     local_macro_def_scopes: FxHashMap<NodeId, Module<'a>>,
1589     pub found_unresolved_macro: bool,
1590
1591     /// List of crate local macros that we need to warn about as being unused.
1592     /// Right now this only includes macro_rules! macros, and macros 2.0.
1593     unused_macros: FxHashSet<DefId>,
1594
1595     /// Maps the `Mark` of an expansion to its containing module or block.
1596     invocations: FxHashMap<Mark, &'a InvocationData<'a>>,
1597
1598     /// Avoid duplicated errors for "name already defined".
1599     name_already_seen: FxHashMap<Name, Span>,
1600
1601     potentially_unused_imports: Vec<&'a ImportDirective<'a>>,
1602
1603     /// This table maps struct IDs into struct constructor IDs,
1604     /// it's not used during normal resolution, only for better error reporting.
1605     struct_constructors: DefIdMap<(Def, ty::Visibility)>,
1606
1607     /// Only used for better errors on `fn(): fn()`
1608     current_type_ascription: Vec<Span>,
1609
1610     injected_crate: Option<Module<'a>>,
1611 }
1612
1613 /// Nothing really interesting here, it just provides memory for the rest of the crate.
1614 #[derive(Default)]
1615 pub struct ResolverArenas<'a> {
1616     modules: arena::TypedArena<ModuleData<'a>>,
1617     local_modules: RefCell<Vec<Module<'a>>>,
1618     name_bindings: arena::TypedArena<NameBinding<'a>>,
1619     import_directives: arena::TypedArena<ImportDirective<'a>>,
1620     name_resolutions: arena::TypedArena<RefCell<NameResolution<'a>>>,
1621     invocation_data: arena::TypedArena<InvocationData<'a>>,
1622     legacy_bindings: arena::TypedArena<LegacyBinding<'a>>,
1623 }
1624
1625 impl<'a> ResolverArenas<'a> {
1626     fn alloc_module(&'a self, module: ModuleData<'a>) -> Module<'a> {
1627         let module = self.modules.alloc(module);
1628         if module.def_id().map(|def_id| def_id.is_local()).unwrap_or(true) {
1629             self.local_modules.borrow_mut().push(module);
1630         }
1631         module
1632     }
1633     fn local_modules(&'a self) -> ::std::cell::Ref<'a, Vec<Module<'a>>> {
1634         self.local_modules.borrow()
1635     }
1636     fn alloc_name_binding(&'a self, name_binding: NameBinding<'a>) -> &'a NameBinding<'a> {
1637         self.name_bindings.alloc(name_binding)
1638     }
1639     fn alloc_import_directive(&'a self, import_directive: ImportDirective<'a>)
1640                               -> &'a ImportDirective {
1641         self.import_directives.alloc(import_directive)
1642     }
1643     fn alloc_name_resolution(&'a self) -> &'a RefCell<NameResolution<'a>> {
1644         self.name_resolutions.alloc(Default::default())
1645     }
1646     fn alloc_invocation_data(&'a self, expansion_data: InvocationData<'a>)
1647                              -> &'a InvocationData<'a> {
1648         self.invocation_data.alloc(expansion_data)
1649     }
1650     fn alloc_legacy_binding(&'a self, binding: LegacyBinding<'a>) -> &'a LegacyBinding<'a> {
1651         self.legacy_bindings.alloc(binding)
1652     }
1653 }
1654
1655 impl<'a, 'b: 'a> ty::DefIdTree for &'a Resolver<'b> {
1656     fn parent(self, id: DefId) -> Option<DefId> {
1657         match id.krate {
1658             LOCAL_CRATE => self.definitions.def_key(id.index).parent,
1659             _ => self.cstore.def_key(id).parent,
1660         }.map(|index| DefId { index, ..id })
1661     }
1662 }
1663
1664 /// This interface is used through the AST→HIR step, to embed full paths into the HIR. After that
1665 /// the resolver is no longer needed as all the relevant information is inline.
1666 impl<'a> hir::lowering::Resolver for Resolver<'a> {
1667     fn resolve_hir_path(
1668         &mut self,
1669         path: &ast::Path,
1670         is_value: bool,
1671     ) -> hir::Path {
1672         self.resolve_hir_path_cb(path, is_value,
1673                                  |resolver, span, error| resolve_error(resolver, span, error))
1674     }
1675
1676     fn resolve_str_path(
1677         &mut self,
1678         span: Span,
1679         crate_root: Option<&str>,
1680         components: &[&str],
1681         is_value: bool
1682     ) -> hir::Path {
1683         let segments = iter::once(keywords::PathRoot.ident())
1684             .chain(
1685                 crate_root.into_iter()
1686                     .chain(components.iter().cloned())
1687                     .map(Ident::from_str)
1688             ).map(|i| self.new_ast_path_segment(i)).collect::<Vec<_>>();
1689
1690
1691         let path = ast::Path {
1692             span,
1693             segments,
1694         };
1695
1696         self.resolve_hir_path(&path, is_value)
1697     }
1698
1699     fn get_resolution(&mut self, id: NodeId) -> Option<PathResolution> {
1700         self.def_map.get(&id).cloned()
1701     }
1702
1703     fn get_import(&mut self, id: NodeId) -> PerNS<Option<PathResolution>> {
1704         self.import_map.get(&id).cloned().unwrap_or_default()
1705     }
1706
1707     fn definitions(&mut self) -> &mut Definitions {
1708         &mut self.definitions
1709     }
1710 }
1711
1712 impl<'a> Resolver<'a> {
1713     /// Rustdoc uses this to resolve things in a recoverable way. ResolutionError<'a>
1714     /// isn't something that can be returned because it can't be made to live that long,
1715     /// and also it's a private type. Fortunately rustdoc doesn't need to know the error,
1716     /// just that an error occurred.
1717     pub fn resolve_str_path_error(&mut self, span: Span, path_str: &str, is_value: bool)
1718         -> Result<hir::Path, ()> {
1719         use std::iter;
1720         let mut errored = false;
1721
1722         let path = if path_str.starts_with("::") {
1723             ast::Path {
1724                 span,
1725                 segments: iter::once(keywords::PathRoot.ident())
1726                     .chain({
1727                         path_str.split("::").skip(1).map(Ident::from_str)
1728                     })
1729                     .map(|i| self.new_ast_path_segment(i))
1730                     .collect(),
1731             }
1732         } else {
1733             ast::Path {
1734                 span,
1735                 segments: path_str
1736                     .split("::")
1737                     .map(Ident::from_str)
1738                     .map(|i| self.new_ast_path_segment(i))
1739                     .collect(),
1740             }
1741         };
1742         let path = self.resolve_hir_path_cb(&path, is_value, |_, _, _| errored = true);
1743         if errored || path.def == Def::Err {
1744             Err(())
1745         } else {
1746             Ok(path)
1747         }
1748     }
1749
1750     /// resolve_hir_path, but takes a callback in case there was an error
1751     fn resolve_hir_path_cb<F>(
1752         &mut self,
1753         path: &ast::Path,
1754         is_value: bool,
1755         error_callback: F,
1756     ) -> hir::Path
1757         where F: for<'c, 'b> FnOnce(&'c mut Resolver, Span, ResolutionError<'b>)
1758     {
1759         let namespace = if is_value { ValueNS } else { TypeNS };
1760         let span = path.span;
1761         let segments = &path.segments;
1762         let path = Segment::from_path(&path);
1763         // FIXME (Manishearth): Intra doc links won't get warned of epoch changes
1764         let def = match self.resolve_path_without_parent_scope(&path, Some(namespace), true,
1765                                                                span, CrateLint::No) {
1766             PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
1767                 module.def().unwrap(),
1768             PathResult::NonModule(path_res) if path_res.unresolved_segments() == 0 =>
1769                 path_res.base_def(),
1770             PathResult::NonModule(..) => {
1771                 let msg = "type-relative paths are not supported in this context";
1772                 error_callback(self, span, ResolutionError::FailedToResolve(msg));
1773                 Def::Err
1774             }
1775             PathResult::Module(..) | PathResult::Indeterminate => unreachable!(),
1776             PathResult::Failed(span, msg, _) => {
1777                 error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1778                 Def::Err
1779             }
1780         };
1781
1782         let segments: Vec<_> = segments.iter().map(|seg| {
1783             let mut hir_seg = hir::PathSegment::from_ident(seg.ident);
1784             hir_seg.def = Some(self.def_map.get(&seg.id).map_or(Def::Err, |p| p.base_def()));
1785             hir_seg
1786         }).collect();
1787         hir::Path {
1788             span,
1789             def,
1790             segments: segments.into(),
1791         }
1792     }
1793
1794     fn new_ast_path_segment(&self, ident: Ident) -> ast::PathSegment {
1795         let mut seg = ast::PathSegment::from_ident(ident);
1796         seg.id = self.session.next_node_id();
1797         seg
1798     }
1799 }
1800
1801 impl<'a> Resolver<'a> {
1802     pub fn new(session: &'a Session,
1803                cstore: &'a CStore,
1804                krate: &Crate,
1805                crate_name: &str,
1806                make_glob_map: MakeGlobMap,
1807                crate_loader: &'a mut CrateLoader<'a>,
1808                arenas: &'a ResolverArenas<'a>)
1809                -> Resolver<'a> {
1810         let root_def_id = DefId::local(CRATE_DEF_INDEX);
1811         let root_module_kind = ModuleKind::Def(Def::Mod(root_def_id), keywords::Invalid.name());
1812         let graph_root = arenas.alloc_module(ModuleData {
1813             no_implicit_prelude: attr::contains_name(&krate.attrs, "no_implicit_prelude"),
1814             ..ModuleData::new(None, root_module_kind, root_def_id, Mark::root(), krate.span)
1815         });
1816         let mut module_map = FxHashMap::default();
1817         module_map.insert(DefId::local(CRATE_DEF_INDEX), graph_root);
1818
1819         let mut definitions = Definitions::new();
1820         DefCollector::new(&mut definitions, Mark::root())
1821             .collect_root(crate_name, session.local_crate_disambiguator());
1822
1823         let mut extern_prelude: FxHashMap<Ident, ExternPreludeEntry> =
1824             session.opts.externs.iter().map(|kv| (Ident::from_str(kv.0), Default::default()))
1825                                        .collect();
1826
1827         if !attr::contains_name(&krate.attrs, "no_core") {
1828             extern_prelude.insert(Ident::from_str("core"), Default::default());
1829             if !attr::contains_name(&krate.attrs, "no_std") {
1830                 extern_prelude.insert(Ident::from_str("std"), Default::default());
1831                 if session.rust_2018() {
1832                     extern_prelude.insert(Ident::from_str("meta"), Default::default());
1833                 }
1834             }
1835         }
1836
1837         let mut invocations = FxHashMap::default();
1838         invocations.insert(Mark::root(),
1839                            arenas.alloc_invocation_data(InvocationData::root(graph_root)));
1840
1841         let mut macro_defs = FxHashMap::default();
1842         macro_defs.insert(Mark::root(), root_def_id);
1843
1844         Resolver {
1845             session,
1846
1847             cstore,
1848
1849             definitions,
1850
1851             // The outermost module has def ID 0; this is not reflected in the
1852             // AST.
1853             graph_root,
1854             prelude: None,
1855             extern_prelude,
1856
1857             has_self: FxHashSet::default(),
1858             field_names: FxHashMap::default(),
1859
1860             determined_imports: Vec::new(),
1861             indeterminate_imports: Vec::new(),
1862
1863             current_module: graph_root,
1864             ribs: PerNS {
1865                 value_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1866                 type_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1867                 macro_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1868             },
1869             label_ribs: Vec::new(),
1870
1871             current_trait_ref: None,
1872             current_self_type: None,
1873             current_self_item: None,
1874             last_import_segment: false,
1875             blacklisted_binding: None,
1876
1877             primitive_type_table: PrimitiveTypeTable::new(),
1878
1879             def_map: Default::default(),
1880             import_map: Default::default(),
1881             freevars: Default::default(),
1882             freevars_seen: Default::default(),
1883             export_map: FxHashMap::default(),
1884             trait_map: Default::default(),
1885             module_map,
1886             block_map: Default::default(),
1887             extern_module_map: FxHashMap::default(),
1888             binding_parent_modules: FxHashMap::default(),
1889
1890             make_glob_map: make_glob_map == MakeGlobMap::Yes,
1891             glob_map: Default::default(),
1892
1893             used_imports: FxHashSet::default(),
1894             maybe_unused_trait_imports: Default::default(),
1895             maybe_unused_extern_crates: Vec::new(),
1896
1897             unused_labels: FxHashMap::default(),
1898
1899             privacy_errors: Vec::new(),
1900             ambiguity_errors: Vec::new(),
1901             use_injections: Vec::new(),
1902             macro_expanded_macro_export_errors: BTreeSet::new(),
1903
1904             arenas,
1905             dummy_binding: arenas.alloc_name_binding(NameBinding {
1906                 kind: NameBindingKind::Def(Def::Err, false),
1907                 expansion: Mark::root(),
1908                 span: DUMMY_SP,
1909                 vis: ty::Visibility::Public,
1910             }),
1911
1912             crate_loader,
1913             macro_names: FxHashSet::default(),
1914             builtin_macros: FxHashMap::default(),
1915             macro_use_prelude: FxHashMap::default(),
1916             all_macros: FxHashMap::default(),
1917             macro_map: FxHashMap::default(),
1918             invocations,
1919             macro_defs,
1920             local_macro_def_scopes: FxHashMap::default(),
1921             name_already_seen: FxHashMap::default(),
1922             potentially_unused_imports: Vec::new(),
1923             struct_constructors: Default::default(),
1924             found_unresolved_macro: false,
1925             unused_macros: FxHashSet::default(),
1926             current_type_ascription: Vec::new(),
1927             injected_crate: None,
1928         }
1929     }
1930
1931     pub fn arenas() -> ResolverArenas<'a> {
1932         Default::default()
1933     }
1934
1935     /// Runs the function on each namespace.
1936     fn per_ns<F: FnMut(&mut Self, Namespace)>(&mut self, mut f: F) {
1937         f(self, TypeNS);
1938         f(self, ValueNS);
1939         f(self, MacroNS);
1940     }
1941
1942     fn macro_def(&self, mut ctxt: SyntaxContext) -> DefId {
1943         loop {
1944             match self.macro_defs.get(&ctxt.outer()) {
1945                 Some(&def_id) => return def_id,
1946                 None => ctxt.remove_mark(),
1947             };
1948         }
1949     }
1950
1951     /// Entry point to crate resolution.
1952     pub fn resolve_crate(&mut self, krate: &Crate) {
1953         ImportResolver { resolver: self }.finalize_imports();
1954         self.current_module = self.graph_root;
1955         self.finalize_current_module_macro_resolutions();
1956
1957         visit::walk_crate(self, krate);
1958
1959         check_unused::check_crate(self, krate);
1960         self.report_errors(krate);
1961         self.crate_loader.postprocess(krate);
1962     }
1963
1964     fn new_module(
1965         &self,
1966         parent: Module<'a>,
1967         kind: ModuleKind,
1968         normal_ancestor_id: DefId,
1969         expansion: Mark,
1970         span: Span,
1971     ) -> Module<'a> {
1972         let module = ModuleData::new(Some(parent), kind, normal_ancestor_id, expansion, span);
1973         self.arenas.alloc_module(module)
1974     }
1975
1976     fn record_use(&mut self, ident: Ident, ns: Namespace,
1977                   used_binding: &'a NameBinding<'a>, is_lexical_scope: bool) {
1978         match used_binding.kind {
1979             NameBindingKind::Import { directive, binding, ref used } if !used.get() => {
1980                 // Avoid marking `extern crate` items that refer to a name from extern prelude,
1981                 // but not introduce it, as used if they are accessed from lexical scope.
1982                 if is_lexical_scope {
1983                     if let Some(entry) = self.extern_prelude.get(&ident.modern()) {
1984                         if let Some(crate_item) = entry.extern_crate_item {
1985                             if ptr::eq(used_binding, crate_item) && !entry.introduced_by_item {
1986                                 return;
1987                             }
1988                         }
1989                     }
1990                 }
1991                 used.set(true);
1992                 directive.used.set(true);
1993                 self.used_imports.insert((directive.id, ns));
1994                 self.add_to_glob_map(directive.id, ident);
1995                 self.record_use(ident, ns, binding, false);
1996             }
1997             NameBindingKind::Ambiguity { kind, b1, b2 } => {
1998                 self.ambiguity_errors.push(AmbiguityError {
1999                     kind, ident, b1, b2,
2000                     misc1: AmbiguityErrorMisc::None,
2001                     misc2: AmbiguityErrorMisc::None,
2002                 });
2003             }
2004             _ => {}
2005         }
2006     }
2007
2008     fn add_to_glob_map(&mut self, id: NodeId, ident: Ident) {
2009         if self.make_glob_map {
2010             self.glob_map.entry(id).or_default().insert(ident.name);
2011         }
2012     }
2013
2014     /// This resolves the identifier `ident` in the namespace `ns` in the current lexical scope.
2015     /// More specifically, we proceed up the hierarchy of scopes and return the binding for
2016     /// `ident` in the first scope that defines it (or None if no scopes define it).
2017     ///
2018     /// A block's items are above its local variables in the scope hierarchy, regardless of where
2019     /// the items are defined in the block. For example,
2020     /// ```rust
2021     /// fn f() {
2022     ///    g(); // Since there are no local variables in scope yet, this resolves to the item.
2023     ///    let g = || {};
2024     ///    fn g() {}
2025     ///    g(); // This resolves to the local variable `g` since it shadows the item.
2026     /// }
2027     /// ```
2028     ///
2029     /// Invariant: This must only be called during main resolution, not during
2030     /// import resolution.
2031     fn resolve_ident_in_lexical_scope(&mut self,
2032                                       mut ident: Ident,
2033                                       ns: Namespace,
2034                                       record_used_id: Option<NodeId>,
2035                                       path_span: Span)
2036                                       -> Option<LexicalScopeBinding<'a>> {
2037         let record_used = record_used_id.is_some();
2038         assert!(ns == TypeNS  || ns == ValueNS);
2039         if ns == TypeNS {
2040             ident.span = if ident.name == keywords::SelfUpper.name() {
2041                 // FIXME(jseyfried) improve `Self` hygiene
2042                 ident.span.with_ctxt(SyntaxContext::empty())
2043             } else {
2044                 ident.span.modern()
2045             }
2046         } else {
2047             ident = ident.modern_and_legacy();
2048         }
2049
2050         // Walk backwards up the ribs in scope.
2051         let mut module = self.graph_root;
2052         for i in (0 .. self.ribs[ns].len()).rev() {
2053             if let Some(def) = self.ribs[ns][i].bindings.get(&ident).cloned() {
2054                 // The ident resolves to a type parameter or local variable.
2055                 return Some(LexicalScopeBinding::Def(
2056                     self.adjust_local_def(ns, i, def, record_used, path_span)
2057                 ));
2058             }
2059
2060             module = match self.ribs[ns][i].kind {
2061                 ModuleRibKind(module) => module,
2062                 MacroDefinition(def) if def == self.macro_def(ident.span.ctxt()) => {
2063                     // If an invocation of this macro created `ident`, give up on `ident`
2064                     // and switch to `ident`'s source from the macro definition.
2065                     ident.span.remove_mark();
2066                     continue
2067                 }
2068                 _ => continue,
2069             };
2070
2071             let item = self.resolve_ident_in_module_unadjusted(
2072                 ModuleOrUniformRoot::Module(module),
2073                 ident,
2074                 ns,
2075                 record_used,
2076                 path_span,
2077             );
2078             if let Ok(binding) = item {
2079                 // The ident resolves to an item.
2080                 return Some(LexicalScopeBinding::Item(binding));
2081             }
2082
2083             match module.kind {
2084                 ModuleKind::Block(..) => {}, // We can see through blocks
2085                 _ => break,
2086             }
2087         }
2088
2089         ident.span = ident.span.modern();
2090         let mut poisoned = None;
2091         loop {
2092             let opt_module = if let Some(node_id) = record_used_id {
2093                 self.hygienic_lexical_parent_with_compatibility_fallback(module, &mut ident.span,
2094                                                                          node_id, &mut poisoned)
2095             } else {
2096                 self.hygienic_lexical_parent(module, &mut ident.span)
2097             };
2098             module = unwrap_or!(opt_module, break);
2099             let orig_current_module = self.current_module;
2100             self.current_module = module; // Lexical resolutions can never be a privacy error.
2101             let result = self.resolve_ident_in_module_unadjusted(
2102                 ModuleOrUniformRoot::Module(module),
2103                 ident,
2104                 ns,
2105                 record_used,
2106                 path_span,
2107             );
2108             self.current_module = orig_current_module;
2109
2110             match result {
2111                 Ok(binding) => {
2112                     if let Some(node_id) = poisoned {
2113                         self.session.buffer_lint_with_diagnostic(
2114                             lint::builtin::PROC_MACRO_DERIVE_RESOLUTION_FALLBACK,
2115                             node_id, ident.span,
2116                             &format!("cannot find {} `{}` in this scope", ns.descr(), ident),
2117                             lint::builtin::BuiltinLintDiagnostics::
2118                                 ProcMacroDeriveResolutionFallback(ident.span),
2119                         );
2120                     }
2121                     return Some(LexicalScopeBinding::Item(binding))
2122                 }
2123                 Err(Determined) => continue,
2124                 Err(Undetermined) =>
2125                     span_bug!(ident.span, "undetermined resolution during main resolution pass"),
2126             }
2127         }
2128
2129         if !module.no_implicit_prelude {
2130             if ns == TypeNS {
2131                 if let Some(binding) = self.extern_prelude_get(ident, !record_used) {
2132                     return Some(LexicalScopeBinding::Item(binding));
2133                 }
2134             }
2135             if ns == TypeNS && is_known_tool(ident.name) {
2136                 let binding = (Def::ToolMod, ty::Visibility::Public,
2137                                DUMMY_SP, Mark::root()).to_name_binding(self.arenas);
2138                 return Some(LexicalScopeBinding::Item(binding));
2139             }
2140             if let Some(prelude) = self.prelude {
2141                 if let Ok(binding) = self.resolve_ident_in_module_unadjusted(
2142                     ModuleOrUniformRoot::Module(prelude),
2143                     ident,
2144                     ns,
2145                     false,
2146                     path_span,
2147                 ) {
2148                     return Some(LexicalScopeBinding::Item(binding));
2149                 }
2150             }
2151         }
2152
2153         None
2154     }
2155
2156     fn hygienic_lexical_parent(&mut self, module: Module<'a>, span: &mut Span)
2157                                -> Option<Module<'a>> {
2158         if !module.expansion.is_descendant_of(span.ctxt().outer()) {
2159             return Some(self.macro_def_scope(span.remove_mark()));
2160         }
2161
2162         if let ModuleKind::Block(..) = module.kind {
2163             return Some(module.parent.unwrap());
2164         }
2165
2166         None
2167     }
2168
2169     fn hygienic_lexical_parent_with_compatibility_fallback(&mut self, module: Module<'a>,
2170                                                            span: &mut Span, node_id: NodeId,
2171                                                            poisoned: &mut Option<NodeId>)
2172                                                            -> Option<Module<'a>> {
2173         if let module @ Some(..) = self.hygienic_lexical_parent(module, span) {
2174             return module;
2175         }
2176
2177         // We need to support the next case under a deprecation warning
2178         // ```
2179         // struct MyStruct;
2180         // ---- begin: this comes from a proc macro derive
2181         // mod implementation_details {
2182         //     // Note that `MyStruct` is not in scope here.
2183         //     impl SomeTrait for MyStruct { ... }
2184         // }
2185         // ---- end
2186         // ```
2187         // So we have to fall back to the module's parent during lexical resolution in this case.
2188         if let Some(parent) = module.parent {
2189             // Inner module is inside the macro, parent module is outside of the macro.
2190             if module.expansion != parent.expansion &&
2191             module.expansion.is_descendant_of(parent.expansion) {
2192                 // The macro is a proc macro derive
2193                 if module.expansion.looks_like_proc_macro_derive() {
2194                     if parent.expansion.is_descendant_of(span.ctxt().outer()) {
2195                         *poisoned = Some(node_id);
2196                         return module.parent;
2197                     }
2198                 }
2199             }
2200         }
2201
2202         None
2203     }
2204
2205     fn resolve_ident_in_module(
2206         &mut self,
2207         module: ModuleOrUniformRoot<'a>,
2208         ident: Ident,
2209         ns: Namespace,
2210         parent_scope: Option<&ParentScope<'a>>,
2211         record_used: bool,
2212         path_span: Span
2213     ) -> Result<&'a NameBinding<'a>, Determinacy> {
2214         self.resolve_ident_in_module_ext(
2215             module, ident, ns, parent_scope, record_used, path_span
2216         ).map_err(|(determinacy, _)| determinacy)
2217     }
2218
2219     fn resolve_ident_in_module_ext(
2220         &mut self,
2221         module: ModuleOrUniformRoot<'a>,
2222         mut ident: Ident,
2223         ns: Namespace,
2224         parent_scope: Option<&ParentScope<'a>>,
2225         record_used: bool,
2226         path_span: Span
2227     ) -> Result<&'a NameBinding<'a>, (Determinacy, Weak)> {
2228         let orig_current_module = self.current_module;
2229         match module {
2230             ModuleOrUniformRoot::Module(module) => {
2231                 ident.span = ident.span.modern();
2232                 if let Some(def) = ident.span.adjust(module.expansion) {
2233                     self.current_module = self.macro_def_scope(def);
2234                 }
2235             }
2236             ModuleOrUniformRoot::ExternPrelude => {
2237                 ident.span = ident.span.modern();
2238                 ident.span.adjust(Mark::root());
2239             }
2240             ModuleOrUniformRoot::CrateRootAndExternPrelude |
2241             ModuleOrUniformRoot::CurrentScope => {
2242                 // No adjustments
2243             }
2244         }
2245         let result = self.resolve_ident_in_module_unadjusted_ext(
2246             module, ident, ns, parent_scope, false, record_used, path_span,
2247         );
2248         self.current_module = orig_current_module;
2249         result
2250     }
2251
2252     fn resolve_crate_root(&mut self, ident: Ident) -> Module<'a> {
2253         let mut ctxt = ident.span.ctxt();
2254         let mark = if ident.name == keywords::DollarCrate.name() {
2255             // When resolving `$crate` from a `macro_rules!` invoked in a `macro`,
2256             // we don't want to pretend that the `macro_rules!` definition is in the `macro`
2257             // as described in `SyntaxContext::apply_mark`, so we ignore prepended modern marks.
2258             // FIXME: This is only a guess and it doesn't work correctly for `macro_rules!`
2259             // definitions actually produced by `macro` and `macro` definitions produced by
2260             // `macro_rules!`, but at least such configurations are not stable yet.
2261             ctxt = ctxt.modern_and_legacy();
2262             let mut iter = ctxt.marks().into_iter().rev().peekable();
2263             let mut result = None;
2264             // Find the last modern mark from the end if it exists.
2265             while let Some(&(mark, transparency)) = iter.peek() {
2266                 if transparency == Transparency::Opaque {
2267                     result = Some(mark);
2268                     iter.next();
2269                 } else {
2270                     break;
2271                 }
2272             }
2273             // Then find the last legacy mark from the end if it exists.
2274             for (mark, transparency) in iter {
2275                 if transparency == Transparency::SemiTransparent {
2276                     result = Some(mark);
2277                 } else {
2278                     break;
2279                 }
2280             }
2281             result
2282         } else {
2283             ctxt = ctxt.modern();
2284             ctxt.adjust(Mark::root())
2285         };
2286         let module = match mark {
2287             Some(def) => self.macro_def_scope(def),
2288             None => return self.graph_root,
2289         };
2290         self.get_module(DefId { index: CRATE_DEF_INDEX, ..module.normal_ancestor_id })
2291     }
2292
2293     fn resolve_self(&mut self, ctxt: &mut SyntaxContext, module: Module<'a>) -> Module<'a> {
2294         let mut module = self.get_module(module.normal_ancestor_id);
2295         while module.span.ctxt().modern() != *ctxt {
2296             let parent = module.parent.unwrap_or_else(|| self.macro_def_scope(ctxt.remove_mark()));
2297             module = self.get_module(parent.normal_ancestor_id);
2298         }
2299         module
2300     }
2301
2302     // AST resolution
2303     //
2304     // We maintain a list of value ribs and type ribs.
2305     //
2306     // Simultaneously, we keep track of the current position in the module
2307     // graph in the `current_module` pointer. When we go to resolve a name in
2308     // the value or type namespaces, we first look through all the ribs and
2309     // then query the module graph. When we resolve a name in the module
2310     // namespace, we can skip all the ribs (since nested modules are not
2311     // allowed within blocks in Rust) and jump straight to the current module
2312     // graph node.
2313     //
2314     // Named implementations are handled separately. When we find a method
2315     // call, we consult the module node to find all of the implementations in
2316     // scope. This information is lazily cached in the module node. We then
2317     // generate a fake "implementation scope" containing all the
2318     // implementations thus found, for compatibility with old resolve pass.
2319
2320     pub fn with_scope<F, T>(&mut self, id: NodeId, f: F) -> T
2321         where F: FnOnce(&mut Resolver) -> T
2322     {
2323         let id = self.definitions.local_def_id(id);
2324         let module = self.module_map.get(&id).cloned(); // clones a reference
2325         if let Some(module) = module {
2326             // Move down in the graph.
2327             let orig_module = replace(&mut self.current_module, module);
2328             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(module)));
2329             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(module)));
2330
2331             self.finalize_current_module_macro_resolutions();
2332             let ret = f(self);
2333
2334             self.current_module = orig_module;
2335             self.ribs[ValueNS].pop();
2336             self.ribs[TypeNS].pop();
2337             ret
2338         } else {
2339             f(self)
2340         }
2341     }
2342
2343     /// Searches the current set of local scopes for labels. Returns the first non-None label that
2344     /// is returned by the given predicate function
2345     ///
2346     /// Stops after meeting a closure.
2347     fn search_label<P, R>(&self, mut ident: Ident, pred: P) -> Option<R>
2348         where P: Fn(&Rib, Ident) -> Option<R>
2349     {
2350         for rib in self.label_ribs.iter().rev() {
2351             match rib.kind {
2352                 NormalRibKind => {}
2353                 // If an invocation of this macro created `ident`, give up on `ident`
2354                 // and switch to `ident`'s source from the macro definition.
2355                 MacroDefinition(def) => {
2356                     if def == self.macro_def(ident.span.ctxt()) {
2357                         ident.span.remove_mark();
2358                     }
2359                 }
2360                 _ => {
2361                     // Do not resolve labels across function boundary
2362                     return None;
2363                 }
2364             }
2365             let r = pred(rib, ident);
2366             if r.is_some() {
2367                 return r;
2368             }
2369         }
2370         None
2371     }
2372
2373     fn resolve_adt(&mut self, item: &Item, generics: &Generics) {
2374         self.with_current_self_item(item, |this| {
2375             this.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2376                 let item_def_id = this.definitions.local_def_id(item.id);
2377                 this.with_self_rib(Def::SelfTy(None, Some(item_def_id)), |this| {
2378                     visit::walk_item(this, item);
2379                 });
2380             });
2381         });
2382     }
2383
2384     fn future_proof_import(&mut self, use_tree: &ast::UseTree) {
2385         let segments = &use_tree.prefix.segments;
2386         if !segments.is_empty() {
2387             let ident = segments[0].ident;
2388             if ident.is_path_segment_keyword() || ident.span.rust_2015() {
2389                 return;
2390             }
2391
2392             let nss = match use_tree.kind {
2393                 ast::UseTreeKind::Simple(..) if segments.len() == 1 => &[TypeNS, ValueNS][..],
2394                 _ => &[TypeNS],
2395             };
2396             for &ns in nss {
2397                 if let Some(LexicalScopeBinding::Def(..)) =
2398                         self.resolve_ident_in_lexical_scope(ident, ns, None, use_tree.prefix.span) {
2399                     let what = if ns == TypeNS { "type parameters" } else { "local variables" };
2400                     self.session.span_err(ident.span, &format!("imports cannot refer to {}", what));
2401                 }
2402             }
2403         } else if let ast::UseTreeKind::Nested(use_trees) = &use_tree.kind {
2404             for (use_tree, _) in use_trees {
2405                 self.future_proof_import(use_tree);
2406             }
2407         }
2408     }
2409
2410     fn resolve_item(&mut self, item: &Item) {
2411         let name = item.ident.name;
2412         debug!("(resolving item) resolving {}", name);
2413
2414         match item.node {
2415             ItemKind::Ty(_, ref generics) |
2416             ItemKind::Fn(_, _, ref generics, _) |
2417             ItemKind::Existential(_, ref generics) => {
2418                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind),
2419                                              |this| visit::walk_item(this, item));
2420             }
2421
2422             ItemKind::Enum(_, ref generics) |
2423             ItemKind::Struct(_, ref generics) |
2424             ItemKind::Union(_, ref generics) => {
2425                 self.resolve_adt(item, generics);
2426             }
2427
2428             ItemKind::Impl(.., ref generics, ref opt_trait_ref, ref self_type, ref impl_items) =>
2429                 self.resolve_implementation(generics,
2430                                             opt_trait_ref,
2431                                             &self_type,
2432                                             item.id,
2433                                             impl_items),
2434
2435             ItemKind::Trait(.., ref generics, ref bounds, ref trait_items) => {
2436                 // Create a new rib for the trait-wide type parameters.
2437                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2438                     let local_def_id = this.definitions.local_def_id(item.id);
2439                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2440                         this.visit_generics(generics);
2441                         walk_list!(this, visit_param_bound, bounds);
2442
2443                         for trait_item in trait_items {
2444                             let type_parameters = HasTypeParameters(&trait_item.generics,
2445                                                                     TraitOrImplItemRibKind);
2446                             this.with_type_parameter_rib(type_parameters, |this| {
2447                                 match trait_item.node {
2448                                     TraitItemKind::Const(ref ty, ref default) => {
2449                                         this.visit_ty(ty);
2450
2451                                         // Only impose the restrictions of
2452                                         // ConstRibKind for an actual constant
2453                                         // expression in a provided default.
2454                                         if let Some(ref expr) = *default{
2455                                             this.with_constant_rib(|this| {
2456                                                 this.visit_expr(expr);
2457                                             });
2458                                         }
2459                                     }
2460                                     TraitItemKind::Method(_, _) => {
2461                                         visit::walk_trait_item(this, trait_item)
2462                                     }
2463                                     TraitItemKind::Type(..) => {
2464                                         visit::walk_trait_item(this, trait_item)
2465                                     }
2466                                     TraitItemKind::Macro(_) => {
2467                                         panic!("unexpanded macro in resolve!")
2468                                     }
2469                                 };
2470                             });
2471                         }
2472                     });
2473                 });
2474             }
2475
2476             ItemKind::TraitAlias(ref generics, ref bounds) => {
2477                 // Create a new rib for the trait-wide type parameters.
2478                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2479                     let local_def_id = this.definitions.local_def_id(item.id);
2480                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2481                         this.visit_generics(generics);
2482                         walk_list!(this, visit_param_bound, bounds);
2483                     });
2484                 });
2485             }
2486
2487             ItemKind::Mod(_) | ItemKind::ForeignMod(_) => {
2488                 self.with_scope(item.id, |this| {
2489                     visit::walk_item(this, item);
2490                 });
2491             }
2492
2493             ItemKind::Static(ref ty, _, ref expr) |
2494             ItemKind::Const(ref ty, ref expr) => {
2495                 self.with_item_rib(|this| {
2496                     this.visit_ty(ty);
2497                     this.with_constant_rib(|this| {
2498                         this.visit_expr(expr);
2499                     });
2500                 });
2501             }
2502
2503             ItemKind::Use(ref use_tree) => {
2504                 self.future_proof_import(use_tree);
2505             }
2506
2507             ItemKind::ExternCrate(..) |
2508             ItemKind::MacroDef(..) | ItemKind::GlobalAsm(..) => {
2509                 // do nothing, these are just around to be encoded
2510             }
2511
2512             ItemKind::Mac(_) => panic!("unexpanded macro in resolve!"),
2513         }
2514     }
2515
2516     fn with_type_parameter_rib<'b, F>(&'b mut self, type_parameters: TypeParameters<'a, 'b>, f: F)
2517         where F: FnOnce(&mut Resolver)
2518     {
2519         match type_parameters {
2520             HasTypeParameters(generics, rib_kind) => {
2521                 let mut function_type_rib = Rib::new(rib_kind);
2522                 let mut seen_bindings = FxHashMap::default();
2523                 for param in &generics.params {
2524                     match param.kind {
2525                         GenericParamKind::Lifetime { .. } => {}
2526                         GenericParamKind::Type { .. } => {
2527                             let ident = param.ident.modern();
2528                             debug!("with_type_parameter_rib: {}", param.id);
2529
2530                             if seen_bindings.contains_key(&ident) {
2531                                 let span = seen_bindings.get(&ident).unwrap();
2532                                 let err = ResolutionError::NameAlreadyUsedInTypeParameterList(
2533                                     ident.name,
2534                                     span,
2535                                 );
2536                                 resolve_error(self, param.ident.span, err);
2537                             }
2538                             seen_bindings.entry(ident).or_insert(param.ident.span);
2539
2540                         // Plain insert (no renaming).
2541                         let def = Def::TyParam(self.definitions.local_def_id(param.id));
2542                             function_type_rib.bindings.insert(ident, def);
2543                             self.record_def(param.id, PathResolution::new(def));
2544                         }
2545                     }
2546                 }
2547                 self.ribs[TypeNS].push(function_type_rib);
2548             }
2549
2550             NoTypeParameters => {
2551                 // Nothing to do.
2552             }
2553         }
2554
2555         f(self);
2556
2557         if let HasTypeParameters(..) = type_parameters {
2558             self.ribs[TypeNS].pop();
2559         }
2560     }
2561
2562     fn with_label_rib<F>(&mut self, f: F)
2563         where F: FnOnce(&mut Resolver)
2564     {
2565         self.label_ribs.push(Rib::new(NormalRibKind));
2566         f(self);
2567         self.label_ribs.pop();
2568     }
2569
2570     fn with_item_rib<F>(&mut self, f: F)
2571         where F: FnOnce(&mut Resolver)
2572     {
2573         self.ribs[ValueNS].push(Rib::new(ItemRibKind));
2574         self.ribs[TypeNS].push(Rib::new(ItemRibKind));
2575         f(self);
2576         self.ribs[TypeNS].pop();
2577         self.ribs[ValueNS].pop();
2578     }
2579
2580     fn with_constant_rib<F>(&mut self, f: F)
2581         where F: FnOnce(&mut Resolver)
2582     {
2583         self.ribs[ValueNS].push(Rib::new(ConstantItemRibKind));
2584         self.label_ribs.push(Rib::new(ConstantItemRibKind));
2585         f(self);
2586         self.label_ribs.pop();
2587         self.ribs[ValueNS].pop();
2588     }
2589
2590     fn with_current_self_type<T, F>(&mut self, self_type: &Ty, f: F) -> T
2591         where F: FnOnce(&mut Resolver) -> T
2592     {
2593         // Handle nested impls (inside fn bodies)
2594         let previous_value = replace(&mut self.current_self_type, Some(self_type.clone()));
2595         let result = f(self);
2596         self.current_self_type = previous_value;
2597         result
2598     }
2599
2600     fn with_current_self_item<T, F>(&mut self, self_item: &Item, f: F) -> T
2601         where F: FnOnce(&mut Resolver) -> T
2602     {
2603         let previous_value = replace(&mut self.current_self_item, Some(self_item.id));
2604         let result = f(self);
2605         self.current_self_item = previous_value;
2606         result
2607     }
2608
2609     /// This is called to resolve a trait reference from an `impl` (i.e., `impl Trait for Foo`)
2610     fn with_optional_trait_ref<T, F>(&mut self, opt_trait_ref: Option<&TraitRef>, f: F) -> T
2611         where F: FnOnce(&mut Resolver, Option<DefId>) -> T
2612     {
2613         let mut new_val = None;
2614         let mut new_id = None;
2615         if let Some(trait_ref) = opt_trait_ref {
2616             let path: Vec<_> = Segment::from_path(&trait_ref.path);
2617             let def = self.smart_resolve_path_fragment(
2618                 trait_ref.ref_id,
2619                 None,
2620                 &path,
2621                 trait_ref.path.span,
2622                 PathSource::Trait(AliasPossibility::No),
2623                 CrateLint::SimplePath(trait_ref.ref_id),
2624             ).base_def();
2625             if def != Def::Err {
2626                 new_id = Some(def.def_id());
2627                 let span = trait_ref.path.span;
2628                 if let PathResult::Module(ModuleOrUniformRoot::Module(module)) =
2629                     self.resolve_path_without_parent_scope(
2630                         &path,
2631                         Some(TypeNS),
2632                         false,
2633                         span,
2634                         CrateLint::SimplePath(trait_ref.ref_id),
2635                     )
2636                 {
2637                     new_val = Some((module, trait_ref.clone()));
2638                 }
2639             }
2640         }
2641         let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
2642         let result = f(self, new_id);
2643         self.current_trait_ref = original_trait_ref;
2644         result
2645     }
2646
2647     fn with_self_rib<F>(&mut self, self_def: Def, f: F)
2648         where F: FnOnce(&mut Resolver)
2649     {
2650         let mut self_type_rib = Rib::new(NormalRibKind);
2651
2652         // plain insert (no renaming, types are not currently hygienic....)
2653         self_type_rib.bindings.insert(keywords::SelfUpper.ident(), self_def);
2654         self.ribs[TypeNS].push(self_type_rib);
2655         f(self);
2656         self.ribs[TypeNS].pop();
2657     }
2658
2659     fn with_self_struct_ctor_rib<F>(&mut self, impl_id: DefId, f: F)
2660         where F: FnOnce(&mut Resolver)
2661     {
2662         let self_def = Def::SelfCtor(impl_id);
2663         let mut self_type_rib = Rib::new(NormalRibKind);
2664         self_type_rib.bindings.insert(keywords::SelfUpper.ident(), self_def);
2665         self.ribs[ValueNS].push(self_type_rib);
2666         f(self);
2667         self.ribs[ValueNS].pop();
2668     }
2669
2670     fn resolve_implementation(&mut self,
2671                               generics: &Generics,
2672                               opt_trait_reference: &Option<TraitRef>,
2673                               self_type: &Ty,
2674                               item_id: NodeId,
2675                               impl_items: &[ImplItem]) {
2676         // If applicable, create a rib for the type parameters.
2677         self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2678             // Dummy self type for better errors if `Self` is used in the trait path.
2679             this.with_self_rib(Def::SelfTy(None, None), |this| {
2680                 // Resolve the trait reference, if necessary.
2681                 this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| {
2682                     let item_def_id = this.definitions.local_def_id(item_id);
2683                     this.with_self_rib(Def::SelfTy(trait_id, Some(item_def_id)), |this| {
2684                         if let Some(trait_ref) = opt_trait_reference.as_ref() {
2685                             // Resolve type arguments in the trait path.
2686                             visit::walk_trait_ref(this, trait_ref);
2687                         }
2688                         // Resolve the self type.
2689                         this.visit_ty(self_type);
2690                         // Resolve the type parameters.
2691                         this.visit_generics(generics);
2692                         // Resolve the items within the impl.
2693                         this.with_current_self_type(self_type, |this| {
2694                             this.with_self_struct_ctor_rib(item_def_id, |this| {
2695                                 for impl_item in impl_items {
2696                                     this.resolve_visibility(&impl_item.vis);
2697
2698                                     // We also need a new scope for the impl item type parameters.
2699                                     let type_parameters = HasTypeParameters(&impl_item.generics,
2700                                                                             TraitOrImplItemRibKind);
2701                                     this.with_type_parameter_rib(type_parameters, |this| {
2702                                         use self::ResolutionError::*;
2703                                         match impl_item.node {
2704                                             ImplItemKind::Const(..) => {
2705                                                 // If this is a trait impl, ensure the const
2706                                                 // exists in trait
2707                                                 this.check_trait_item(impl_item.ident,
2708                                                                       ValueNS,
2709                                                                       impl_item.span,
2710                                                     |n, s| ConstNotMemberOfTrait(n, s));
2711                                                 this.with_constant_rib(|this|
2712                                                     visit::walk_impl_item(this, impl_item)
2713                                                 );
2714                                             }
2715                                             ImplItemKind::Method(..) => {
2716                                                 // If this is a trait impl, ensure the method
2717                                                 // exists in trait
2718                                                 this.check_trait_item(impl_item.ident,
2719                                                                       ValueNS,
2720                                                                       impl_item.span,
2721                                                     |n, s| MethodNotMemberOfTrait(n, s));
2722
2723                                                 visit::walk_impl_item(this, impl_item);
2724                                             }
2725                                             ImplItemKind::Type(ref ty) => {
2726                                                 // If this is a trait impl, ensure the type
2727                                                 // exists in trait
2728                                                 this.check_trait_item(impl_item.ident,
2729                                                                       TypeNS,
2730                                                                       impl_item.span,
2731                                                     |n, s| TypeNotMemberOfTrait(n, s));
2732
2733                                                 this.visit_ty(ty);
2734                                             }
2735                                             ImplItemKind::Existential(ref bounds) => {
2736                                                 // If this is a trait impl, ensure the type
2737                                                 // exists in trait
2738                                                 this.check_trait_item(impl_item.ident,
2739                                                                       TypeNS,
2740                                                                       impl_item.span,
2741                                                     |n, s| TypeNotMemberOfTrait(n, s));
2742
2743                                                 for bound in bounds {
2744                                                     this.visit_param_bound(bound);
2745                                                 }
2746                                             }
2747                                             ImplItemKind::Macro(_) =>
2748                                                 panic!("unexpanded macro in resolve!"),
2749                                         }
2750                                     });
2751                                 }
2752                             });
2753                         });
2754                     });
2755                 });
2756             });
2757         });
2758     }
2759
2760     fn check_trait_item<F>(&mut self, ident: Ident, ns: Namespace, span: Span, err: F)
2761         where F: FnOnce(Name, &str) -> ResolutionError
2762     {
2763         // If there is a TraitRef in scope for an impl, then the method must be in the
2764         // trait.
2765         if let Some((module, _)) = self.current_trait_ref {
2766             if self.resolve_ident_in_module(
2767                 ModuleOrUniformRoot::Module(module),
2768                 ident,
2769                 ns,
2770                 None,
2771                 false,
2772                 span,
2773             ).is_err() {
2774                 let path = &self.current_trait_ref.as_ref().unwrap().1.path;
2775                 resolve_error(self, span, err(ident.name, &path_names_to_string(path)));
2776             }
2777         }
2778     }
2779
2780     fn resolve_local(&mut self, local: &Local) {
2781         // Resolve the type.
2782         walk_list!(self, visit_ty, &local.ty);
2783
2784         // Resolve the initializer.
2785         walk_list!(self, visit_expr, &local.init);
2786
2787         // Resolve the pattern.
2788         self.resolve_pattern(&local.pat, PatternSource::Let, &mut FxHashMap::default());
2789     }
2790
2791     // build a map from pattern identifiers to binding-info's.
2792     // this is done hygienically. This could arise for a macro
2793     // that expands into an or-pattern where one 'x' was from the
2794     // user and one 'x' came from the macro.
2795     fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
2796         let mut binding_map = FxHashMap::default();
2797
2798         pat.walk(&mut |pat| {
2799             if let PatKind::Ident(binding_mode, ident, ref sub_pat) = pat.node {
2800                 if sub_pat.is_some() || match self.def_map.get(&pat.id).map(|res| res.base_def()) {
2801                     Some(Def::Local(..)) => true,
2802                     _ => false,
2803                 } {
2804                     let binding_info = BindingInfo { span: ident.span, binding_mode: binding_mode };
2805                     binding_map.insert(ident, binding_info);
2806                 }
2807             }
2808             true
2809         });
2810
2811         binding_map
2812     }
2813
2814     // check that all of the arms in an or-pattern have exactly the
2815     // same set of bindings, with the same binding modes for each.
2816     fn check_consistent_bindings(&mut self, pats: &[P<Pat>]) {
2817         if pats.is_empty() {
2818             return;
2819         }
2820
2821         let mut missing_vars = FxHashMap::default();
2822         let mut inconsistent_vars = FxHashMap::default();
2823         for (i, p) in pats.iter().enumerate() {
2824             let map_i = self.binding_mode_map(&p);
2825
2826             for (j, q) in pats.iter().enumerate() {
2827                 if i == j {
2828                     continue;
2829                 }
2830
2831                 let map_j = self.binding_mode_map(&q);
2832                 for (&key, &binding_i) in &map_i {
2833                     if map_j.is_empty() {                   // Account for missing bindings when
2834                         let binding_error = missing_vars    // map_j has none.
2835                             .entry(key.name)
2836                             .or_insert(BindingError {
2837                                 name: key.name,
2838                                 origin: BTreeSet::new(),
2839                                 target: BTreeSet::new(),
2840                             });
2841                         binding_error.origin.insert(binding_i.span);
2842                         binding_error.target.insert(q.span);
2843                     }
2844                     for (&key_j, &binding_j) in &map_j {
2845                         match map_i.get(&key_j) {
2846                             None => {  // missing binding
2847                                 let binding_error = missing_vars
2848                                     .entry(key_j.name)
2849                                     .or_insert(BindingError {
2850                                         name: key_j.name,
2851                                         origin: BTreeSet::new(),
2852                                         target: BTreeSet::new(),
2853                                     });
2854                                 binding_error.origin.insert(binding_j.span);
2855                                 binding_error.target.insert(p.span);
2856                             }
2857                             Some(binding_i) => {  // check consistent binding
2858                                 if binding_i.binding_mode != binding_j.binding_mode {
2859                                     inconsistent_vars
2860                                         .entry(key.name)
2861                                         .or_insert((binding_j.span, binding_i.span));
2862                                 }
2863                             }
2864                         }
2865                     }
2866                 }
2867             }
2868         }
2869         let mut missing_vars = missing_vars.iter().collect::<Vec<_>>();
2870         missing_vars.sort();
2871         for (_, v) in missing_vars {
2872             resolve_error(self,
2873                           *v.origin.iter().next().unwrap(),
2874                           ResolutionError::VariableNotBoundInPattern(v));
2875         }
2876         let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
2877         inconsistent_vars.sort();
2878         for (name, v) in inconsistent_vars {
2879             resolve_error(self, v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
2880         }
2881     }
2882
2883     fn resolve_arm(&mut self, arm: &Arm) {
2884         self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2885
2886         let mut bindings_list = FxHashMap::default();
2887         for pattern in &arm.pats {
2888             self.resolve_pattern(&pattern, PatternSource::Match, &mut bindings_list);
2889         }
2890
2891         // This has to happen *after* we determine which pat_idents are variants.
2892         self.check_consistent_bindings(&arm.pats);
2893
2894         if let Some(ast::Guard::If(ref expr)) = arm.guard {
2895             self.visit_expr(expr)
2896         }
2897         self.visit_expr(&arm.body);
2898
2899         self.ribs[ValueNS].pop();
2900     }
2901
2902     fn resolve_block(&mut self, block: &Block) {
2903         debug!("(resolving block) entering block");
2904         // Move down in the graph, if there's an anonymous module rooted here.
2905         let orig_module = self.current_module;
2906         let anonymous_module = self.block_map.get(&block.id).cloned(); // clones a reference
2907
2908         let mut num_macro_definition_ribs = 0;
2909         if let Some(anonymous_module) = anonymous_module {
2910             debug!("(resolving block) found anonymous module, moving down");
2911             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2912             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2913             self.current_module = anonymous_module;
2914             self.finalize_current_module_macro_resolutions();
2915         } else {
2916             self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2917         }
2918
2919         // Descend into the block.
2920         for stmt in &block.stmts {
2921             if let ast::StmtKind::Item(ref item) = stmt.node {
2922                 if let ast::ItemKind::MacroDef(..) = item.node {
2923                     num_macro_definition_ribs += 1;
2924                     let def = self.definitions.local_def_id(item.id);
2925                     self.ribs[ValueNS].push(Rib::new(MacroDefinition(def)));
2926                     self.label_ribs.push(Rib::new(MacroDefinition(def)));
2927                 }
2928             }
2929
2930             self.visit_stmt(stmt);
2931         }
2932
2933         // Move back up.
2934         self.current_module = orig_module;
2935         for _ in 0 .. num_macro_definition_ribs {
2936             self.ribs[ValueNS].pop();
2937             self.label_ribs.pop();
2938         }
2939         self.ribs[ValueNS].pop();
2940         if anonymous_module.is_some() {
2941             self.ribs[TypeNS].pop();
2942         }
2943         debug!("(resolving block) leaving block");
2944     }
2945
2946     fn fresh_binding(&mut self,
2947                      ident: Ident,
2948                      pat_id: NodeId,
2949                      outer_pat_id: NodeId,
2950                      pat_src: PatternSource,
2951                      bindings: &mut FxHashMap<Ident, NodeId>)
2952                      -> PathResolution {
2953         // Add the binding to the local ribs, if it
2954         // doesn't already exist in the bindings map. (We
2955         // must not add it if it's in the bindings map
2956         // because that breaks the assumptions later
2957         // passes make about or-patterns.)
2958         let ident = ident.modern_and_legacy();
2959         let mut def = Def::Local(pat_id);
2960         match bindings.get(&ident).cloned() {
2961             Some(id) if id == outer_pat_id => {
2962                 // `Variant(a, a)`, error
2963                 resolve_error(
2964                     self,
2965                     ident.span,
2966                     ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(
2967                         &ident.as_str())
2968                 );
2969             }
2970             Some(..) if pat_src == PatternSource::FnParam => {
2971                 // `fn f(a: u8, a: u8)`, error
2972                 resolve_error(
2973                     self,
2974                     ident.span,
2975                     ResolutionError::IdentifierBoundMoreThanOnceInParameterList(
2976                         &ident.as_str())
2977                 );
2978             }
2979             Some(..) if pat_src == PatternSource::Match ||
2980                         pat_src == PatternSource::IfLet ||
2981                         pat_src == PatternSource::WhileLet => {
2982                 // `Variant1(a) | Variant2(a)`, ok
2983                 // Reuse definition from the first `a`.
2984                 def = self.ribs[ValueNS].last_mut().unwrap().bindings[&ident];
2985             }
2986             Some(..) => {
2987                 span_bug!(ident.span, "two bindings with the same name from \
2988                                        unexpected pattern source {:?}", pat_src);
2989             }
2990             None => {
2991                 // A completely fresh binding, add to the lists if it's valid.
2992                 if ident.name != keywords::Invalid.name() {
2993                     bindings.insert(ident, outer_pat_id);
2994                     self.ribs[ValueNS].last_mut().unwrap().bindings.insert(ident, def);
2995                 }
2996             }
2997         }
2998
2999         PathResolution::new(def)
3000     }
3001
3002     fn resolve_pattern(&mut self,
3003                        pat: &Pat,
3004                        pat_src: PatternSource,
3005                        // Maps idents to the node ID for the
3006                        // outermost pattern that binds them.
3007                        bindings: &mut FxHashMap<Ident, NodeId>) {
3008         // Visit all direct subpatterns of this pattern.
3009         let outer_pat_id = pat.id;
3010         pat.walk(&mut |pat| {
3011             debug!("resolve_pattern pat={:?} node={:?}", pat, pat.node);
3012             match pat.node {
3013                 PatKind::Ident(bmode, ident, ref opt_pat) => {
3014                     // First try to resolve the identifier as some existing
3015                     // entity, then fall back to a fresh binding.
3016                     let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS,
3017                                                                       None, pat.span)
3018                                       .and_then(LexicalScopeBinding::item);
3019                     let resolution = binding.map(NameBinding::def).and_then(|def| {
3020                         let is_syntactic_ambiguity = opt_pat.is_none() &&
3021                             bmode == BindingMode::ByValue(Mutability::Immutable);
3022                         match def {
3023                             Def::StructCtor(_, CtorKind::Const) |
3024                             Def::VariantCtor(_, CtorKind::Const) |
3025                             Def::Const(..) if is_syntactic_ambiguity => {
3026                                 // Disambiguate in favor of a unit struct/variant
3027                                 // or constant pattern.
3028                                 self.record_use(ident, ValueNS, binding.unwrap(), false);
3029                                 Some(PathResolution::new(def))
3030                             }
3031                             Def::StructCtor(..) | Def::VariantCtor(..) |
3032                             Def::Const(..) | Def::Static(..) => {
3033                                 // This is unambiguously a fresh binding, either syntactically
3034                                 // (e.g., `IDENT @ PAT` or `ref IDENT`) or because `IDENT` resolves
3035                                 // to something unusable as a pattern (e.g., constructor function),
3036                                 // but we still conservatively report an error, see
3037                                 // issues/33118#issuecomment-233962221 for one reason why.
3038                                 resolve_error(
3039                                     self,
3040                                     ident.span,
3041                                     ResolutionError::BindingShadowsSomethingUnacceptable(
3042                                         pat_src.descr(), ident.name, binding.unwrap())
3043                                 );
3044                                 None
3045                             }
3046                             Def::Fn(..) | Def::Err => {
3047                                 // These entities are explicitly allowed
3048                                 // to be shadowed by fresh bindings.
3049                                 None
3050                             }
3051                             def => {
3052                                 span_bug!(ident.span, "unexpected definition for an \
3053                                                        identifier in pattern: {:?}", def);
3054                             }
3055                         }
3056                     }).unwrap_or_else(|| {
3057                         self.fresh_binding(ident, pat.id, outer_pat_id, pat_src, bindings)
3058                     });
3059
3060                     self.record_def(pat.id, resolution);
3061                 }
3062
3063                 PatKind::TupleStruct(ref path, ..) => {
3064                     self.smart_resolve_path(pat.id, None, path, PathSource::TupleStruct);
3065                 }
3066
3067                 PatKind::Path(ref qself, ref path) => {
3068                     self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
3069                 }
3070
3071                 PatKind::Struct(ref path, ..) => {
3072                     self.smart_resolve_path(pat.id, None, path, PathSource::Struct);
3073                 }
3074
3075                 _ => {}
3076             }
3077             true
3078         });
3079
3080         visit::walk_pat(self, pat);
3081     }
3082
3083     // High-level and context dependent path resolution routine.
3084     // Resolves the path and records the resolution into definition map.
3085     // If resolution fails tries several techniques to find likely
3086     // resolution candidates, suggest imports or other help, and report
3087     // errors in user friendly way.
3088     fn smart_resolve_path(&mut self,
3089                           id: NodeId,
3090                           qself: Option<&QSelf>,
3091                           path: &Path,
3092                           source: PathSource)
3093                           -> PathResolution {
3094         self.smart_resolve_path_with_crate_lint(id, qself, path, source, CrateLint::SimplePath(id))
3095     }
3096
3097     /// A variant of `smart_resolve_path` where you also specify extra
3098     /// information about where the path came from; this extra info is
3099     /// sometimes needed for the lint that recommends rewriting
3100     /// absolute paths to `crate`, so that it knows how to frame the
3101     /// suggestion. If you are just resolving a path like `foo::bar`
3102     /// that appears...somewhere, though, then you just want
3103     /// `CrateLint::SimplePath`, which is what `smart_resolve_path`
3104     /// already provides.
3105     fn smart_resolve_path_with_crate_lint(
3106         &mut self,
3107         id: NodeId,
3108         qself: Option<&QSelf>,
3109         path: &Path,
3110         source: PathSource,
3111         crate_lint: CrateLint
3112     ) -> PathResolution {
3113         self.smart_resolve_path_fragment(
3114             id,
3115             qself,
3116             &Segment::from_path(path),
3117             path.span,
3118             source,
3119             crate_lint,
3120         )
3121     }
3122
3123     fn smart_resolve_path_fragment(&mut self,
3124                                    id: NodeId,
3125                                    qself: Option<&QSelf>,
3126                                    path: &[Segment],
3127                                    span: Span,
3128                                    source: PathSource,
3129                                    crate_lint: CrateLint)
3130                                    -> PathResolution {
3131         let ident_span = path.last().map_or(span, |ident| ident.ident.span);
3132         let ns = source.namespace();
3133         let is_expected = &|def| source.is_expected(def);
3134         let is_enum_variant = &|def| if let Def::Variant(..) = def { true } else { false };
3135
3136         // Base error is amended with one short label and possibly some longer helps/notes.
3137         let report_errors = |this: &mut Self, def: Option<Def>| {
3138             // Make the base error.
3139             let expected = source.descr_expected();
3140             let path_str = Segment::names_to_string(path);
3141             let item_str = path.last().unwrap().ident;
3142             let code = source.error_code(def.is_some());
3143             let (base_msg, fallback_label, base_span) = if let Some(def) = def {
3144                 (format!("expected {}, found {} `{}`", expected, def.kind_name(), path_str),
3145                  format!("not a {}", expected),
3146                  span)
3147             } else {
3148                 let item_span = path.last().unwrap().ident.span;
3149                 let (mod_prefix, mod_str) = if path.len() == 1 {
3150                     (String::new(), "this scope".to_string())
3151                 } else if path.len() == 2 && path[0].ident.name == keywords::PathRoot.name() {
3152                     (String::new(), "the crate root".to_string())
3153                 } else {
3154                     let mod_path = &path[..path.len() - 1];
3155                     let mod_prefix = match this.resolve_path_without_parent_scope(
3156                         mod_path, Some(TypeNS), false, span, CrateLint::No
3157                     ) {
3158                         PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3159                             module.def(),
3160                         _ => None,
3161                     }.map_or(String::new(), |def| format!("{} ", def.kind_name()));
3162                     (mod_prefix, format!("`{}`", Segment::names_to_string(mod_path)))
3163                 };
3164                 (format!("cannot find {} `{}` in {}{}", expected, item_str, mod_prefix, mod_str),
3165                  format!("not found in {}", mod_str),
3166                  item_span)
3167             };
3168
3169             let code = DiagnosticId::Error(code.into());
3170             let mut err = this.session.struct_span_err_with_code(base_span, &base_msg, code);
3171
3172             // Emit help message for fake-self from other languages like `this`(javascript)
3173             if ["this", "my"].contains(&&*item_str.as_str())
3174                 && this.self_value_is_available(path[0].ident.span, span) {
3175                 err.span_suggestion_with_applicability(
3176                     span,
3177                     "did you mean",
3178                     "self".to_string(),
3179                     Applicability::MaybeIncorrect,
3180                 );
3181             }
3182
3183             // Emit special messages for unresolved `Self` and `self`.
3184             if is_self_type(path, ns) {
3185                 __diagnostic_used!(E0411);
3186                 err.code(DiagnosticId::Error("E0411".into()));
3187                 err.span_label(span, format!("`Self` is only available in impls, traits, \
3188                                               and type definitions"));
3189                 return (err, Vec::new());
3190             }
3191             if is_self_value(path, ns) {
3192                 debug!("smart_resolve_path_fragment E0424 source:{:?}", source);
3193
3194                 __diagnostic_used!(E0424);
3195                 err.code(DiagnosticId::Error("E0424".into()));
3196                 err.span_label(span, match source {
3197                     PathSource::Pat => {
3198                         format!("`self` value is a keyword \
3199                                 and may not be bound to \
3200                                 variables or shadowed")
3201                     }
3202                     _ => {
3203                         format!("`self` value is a keyword \
3204                                 only available in methods \
3205                                 with `self` parameter")
3206                     }
3207                 });
3208                 return (err, Vec::new());
3209             }
3210
3211             // Try to lookup the name in more relaxed fashion for better error reporting.
3212             let ident = path.last().unwrap().ident;
3213             let candidates = this.lookup_import_candidates(ident, ns, is_expected);
3214             if candidates.is_empty() && is_expected(Def::Enum(DefId::local(CRATE_DEF_INDEX))) {
3215                 let enum_candidates =
3216                     this.lookup_import_candidates(ident, ns, is_enum_variant);
3217                 let mut enum_candidates = enum_candidates.iter()
3218                     .map(|suggestion| {
3219                         import_candidate_to_enum_paths(&suggestion)
3220                     }).collect::<Vec<_>>();
3221                 enum_candidates.sort();
3222
3223                 if !enum_candidates.is_empty() {
3224                     // contextualize for E0412 "cannot find type", but don't belabor the point
3225                     // (that it's a variant) for E0573 "expected type, found variant"
3226                     let preamble = if def.is_none() {
3227                         let others = match enum_candidates.len() {
3228                             1 => String::new(),
3229                             2 => " and 1 other".to_owned(),
3230                             n => format!(" and {} others", n)
3231                         };
3232                         format!("there is an enum variant `{}`{}; ",
3233                                 enum_candidates[0].0, others)
3234                     } else {
3235                         String::new()
3236                     };
3237                     let msg = format!("{}try using the variant's enum", preamble);
3238
3239                     err.span_suggestions_with_applicability(
3240                         span,
3241                         &msg,
3242                         enum_candidates.into_iter()
3243                             .map(|(_variant_path, enum_ty_path)| enum_ty_path)
3244                             // variants reëxported in prelude doesn't mean `prelude::v1` is the
3245                             // type name! FIXME: is there a more principled way to do this that
3246                             // would work for other reëxports?
3247                             .filter(|enum_ty_path| enum_ty_path != "std::prelude::v1")
3248                             // also say `Option` rather than `std::prelude::v1::Option`
3249                             .map(|enum_ty_path| {
3250                                 // FIXME #56861: DRYer prelude filtering
3251                                 enum_ty_path.trim_start_matches("std::prelude::v1::").to_owned()
3252                             }),
3253                         Applicability::MachineApplicable,
3254                     );
3255                 }
3256             }
3257             if path.len() == 1 && this.self_type_is_available(span) {
3258                 if let Some(candidate) = this.lookup_assoc_candidate(ident, ns, is_expected) {
3259                     let self_is_available = this.self_value_is_available(path[0].ident.span, span);
3260                     match candidate {
3261                         AssocSuggestion::Field => {
3262                             err.span_suggestion_with_applicability(
3263                                 span,
3264                                 "try",
3265                                 format!("self.{}", path_str),
3266                                 Applicability::MachineApplicable,
3267                             );
3268                             if !self_is_available {
3269                                 err.span_label(span, format!("`self` value is a keyword \
3270                                                                only available in \
3271                                                                methods with `self` parameter"));
3272                             }
3273                         }
3274                         AssocSuggestion::MethodWithSelf if self_is_available => {
3275                             err.span_suggestion_with_applicability(
3276                                 span,
3277                                 "try",
3278                                 format!("self.{}", path_str),
3279                                 Applicability::MachineApplicable,
3280                             );
3281                         }
3282                         AssocSuggestion::MethodWithSelf | AssocSuggestion::AssocItem => {
3283                             err.span_suggestion_with_applicability(
3284                                 span,
3285                                 "try",
3286                                 format!("Self::{}", path_str),
3287                                 Applicability::MachineApplicable,
3288                             );
3289                         }
3290                     }
3291                     return (err, candidates);
3292                 }
3293             }
3294
3295             let mut levenshtein_worked = false;
3296
3297             // Try Levenshtein algorithm.
3298             if let Some(candidate) = this.lookup_typo_candidate(path, ns, is_expected, span) {
3299                 err.span_label(ident_span, format!("did you mean `{}`?", candidate));
3300                 levenshtein_worked = true;
3301             }
3302
3303             // Try context dependent help if relaxed lookup didn't work.
3304             if let Some(def) = def {
3305                 match (def, source) {
3306                     (Def::Macro(..), _) => {
3307                         err.span_label(span, format!("did you mean `{}!(...)`?", path_str));
3308                         return (err, candidates);
3309                     }
3310                     (Def::TyAlias(..), PathSource::Trait(_)) => {
3311                         err.span_label(span, "type aliases cannot be used as traits");
3312                         if nightly_options::is_nightly_build() {
3313                             err.note("did you mean to use a trait alias?");
3314                         }
3315                         return (err, candidates);
3316                     }
3317                     (Def::Mod(..), PathSource::Expr(Some(parent))) => match parent.node {
3318                         ExprKind::Field(_, ident) => {
3319                             err.span_label(parent.span, format!("did you mean `{}::{}`?",
3320                                                                  path_str, ident));
3321                             return (err, candidates);
3322                         }
3323                         ExprKind::MethodCall(ref segment, ..) => {
3324                             err.span_label(parent.span, format!("did you mean `{}::{}(...)`?",
3325                                                                  path_str, segment.ident));
3326                             return (err, candidates);
3327                         }
3328                         _ => {}
3329                     },
3330                     (Def::Enum(..), PathSource::TupleStruct)
3331                         | (Def::Enum(..), PathSource::Expr(..))  => {
3332                         if let Some(variants) = this.collect_enum_variants(def) {
3333                             err.note(&format!("did you mean to use one \
3334                                                of the following variants?\n{}",
3335                                 variants.iter()
3336                                     .map(|suggestion| path_names_to_string(suggestion))
3337                                     .map(|suggestion| format!("- `{}`", suggestion))
3338                                     .collect::<Vec<_>>()
3339                                     .join("\n")));
3340
3341                         } else {
3342                             err.note("did you mean to use one of the enum's variants?");
3343                         }
3344                         return (err, candidates);
3345                     },
3346                     (Def::Struct(def_id), _) if ns == ValueNS => {
3347                         if let Some((ctor_def, ctor_vis))
3348                                 = this.struct_constructors.get(&def_id).cloned() {
3349                             let accessible_ctor = this.is_accessible(ctor_vis);
3350                             if is_expected(ctor_def) && !accessible_ctor {
3351                                 err.span_label(span, format!("constructor is not visible \
3352                                                               here due to private fields"));
3353                             }
3354                         } else {
3355                             // HACK(estebank): find a better way to figure out that this was a
3356                             // parser issue where a struct literal is being used on an expression
3357                             // where a brace being opened means a block is being started. Look
3358                             // ahead for the next text to see if `span` is followed by a `{`.
3359                             let sm = this.session.source_map();
3360                             let mut sp = span;
3361                             loop {
3362                                 sp = sm.next_point(sp);
3363                                 match sm.span_to_snippet(sp) {
3364                                     Ok(ref snippet) => {
3365                                         if snippet.chars().any(|c| { !c.is_whitespace() }) {
3366                                             break;
3367                                         }
3368                                     }
3369                                     _ => break,
3370                                 }
3371                             }
3372                             let followed_by_brace = match sm.span_to_snippet(sp) {
3373                                 Ok(ref snippet) if snippet == "{" => true,
3374                                 _ => false,
3375                             };
3376                             match source {
3377                                 PathSource::Expr(Some(parent)) => {
3378                                     match parent.node {
3379                                         ExprKind::MethodCall(ref path_assignment, _)  => {
3380                                             err.span_suggestion_with_applicability(
3381                                                 sm.start_point(parent.span)
3382                                                   .to(path_assignment.ident.span),
3383                                                 "use `::` to access an associated function",
3384                                                 format!("{}::{}",
3385                                                         path_str,
3386                                                         path_assignment.ident),
3387                                                 Applicability::MaybeIncorrect
3388                                             );
3389                                             return (err, candidates);
3390                                         },
3391                                         _ => {
3392                                             err.span_label(
3393                                                 span,
3394                                                 format!("did you mean `{} {{ /* fields */ }}`?",
3395                                                         path_str),
3396                                             );
3397                                             return (err, candidates);
3398                                         },
3399                                     }
3400                                 },
3401                                 PathSource::Expr(None) if followed_by_brace == true => {
3402                                     err.span_label(
3403                                         span,
3404                                         format!("did you mean `({} {{ /* fields */ }})`?",
3405                                                 path_str),
3406                                     );
3407                                     return (err, candidates);
3408                                 },
3409                                 _ => {
3410                                     err.span_label(
3411                                         span,
3412                                         format!("did you mean `{} {{ /* fields */ }}`?",
3413                                                 path_str),
3414                                     );
3415                                     return (err, candidates);
3416                                 },
3417                             }
3418                         }
3419                         return (err, candidates);
3420                     }
3421                     (Def::Union(..), _) |
3422                     (Def::Variant(..), _) |
3423                     (Def::VariantCtor(_, CtorKind::Fictive), _) if ns == ValueNS => {
3424                         err.span_label(span, format!("did you mean `{} {{ /* fields */ }}`?",
3425                                                      path_str));
3426                         return (err, candidates);
3427                     }
3428                     (Def::SelfTy(..), _) if ns == ValueNS => {
3429                         err.span_label(span, fallback_label);
3430                         err.note("can't use `Self` as a constructor, you must use the \
3431                                   implemented struct");
3432                         return (err, candidates);
3433                     }
3434                     (Def::TyAlias(_), _) | (Def::AssociatedTy(..), _) if ns == ValueNS => {
3435                         err.note("can't use a type alias as a constructor");
3436                         return (err, candidates);
3437                     }
3438                     _ => {}
3439                 }
3440             }
3441
3442             // Fallback label.
3443             if !levenshtein_worked {
3444                 err.span_label(base_span, fallback_label);
3445                 this.type_ascription_suggestion(&mut err, base_span);
3446             }
3447             (err, candidates)
3448         };
3449         let report_errors = |this: &mut Self, def: Option<Def>| {
3450             let (err, candidates) = report_errors(this, def);
3451             let def_id = this.current_module.normal_ancestor_id;
3452             let node_id = this.definitions.as_local_node_id(def_id).unwrap();
3453             let better = def.is_some();
3454             this.use_injections.push(UseError { err, candidates, node_id, better });
3455             err_path_resolution()
3456         };
3457
3458         let resolution = match self.resolve_qpath_anywhere(
3459             id,
3460             qself,
3461             path,
3462             ns,
3463             span,
3464             source.defer_to_typeck(),
3465             source.global_by_default(),
3466             crate_lint,
3467         ) {
3468             Some(resolution) if resolution.unresolved_segments() == 0 => {
3469                 if is_expected(resolution.base_def()) || resolution.base_def() == Def::Err {
3470                     resolution
3471                 } else {
3472                     // Add a temporary hack to smooth the transition to new struct ctor
3473                     // visibility rules. See #38932 for more details.
3474                     let mut res = None;
3475                     if let Def::Struct(def_id) = resolution.base_def() {
3476                         if let Some((ctor_def, ctor_vis))
3477                                 = self.struct_constructors.get(&def_id).cloned() {
3478                             if is_expected(ctor_def) && self.is_accessible(ctor_vis) {
3479                                 let lint = lint::builtin::LEGACY_CONSTRUCTOR_VISIBILITY;
3480                                 self.session.buffer_lint(lint, id, span,
3481                                     "private struct constructors are not usable through \
3482                                      re-exports in outer modules",
3483                                 );
3484                                 res = Some(PathResolution::new(ctor_def));
3485                             }
3486                         }
3487                     }
3488
3489                     res.unwrap_or_else(|| report_errors(self, Some(resolution.base_def())))
3490                 }
3491             }
3492             Some(resolution) if source.defer_to_typeck() => {
3493                 // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
3494                 // or `<T>::A::B`. If `B` should be resolved in value namespace then
3495                 // it needs to be added to the trait map.
3496                 if ns == ValueNS {
3497                     let item_name = path.last().unwrap().ident;
3498                     let traits = self.get_traits_containing_item(item_name, ns);
3499                     self.trait_map.insert(id, traits);
3500                 }
3501                 resolution
3502             }
3503             _ => report_errors(self, None)
3504         };
3505
3506         if let PathSource::TraitItem(..) = source {} else {
3507             // Avoid recording definition of `A::B` in `<T as A>::B::C`.
3508             self.record_def(id, resolution);
3509         }
3510         resolution
3511     }
3512
3513     fn type_ascription_suggestion(&self,
3514                                   err: &mut DiagnosticBuilder,
3515                                   base_span: Span) {
3516         debug!("type_ascription_suggetion {:?}", base_span);
3517         let cm = self.session.source_map();
3518         debug!("self.current_type_ascription {:?}", self.current_type_ascription);
3519         if let Some(sp) = self.current_type_ascription.last() {
3520             let mut sp = *sp;
3521             loop {  // try to find the `:`, bail on first non-':'/non-whitespace
3522                 sp = cm.next_point(sp);
3523                 if let Ok(snippet) = cm.span_to_snippet(sp.to(cm.next_point(sp))) {
3524                     debug!("snippet {:?}", snippet);
3525                     let line_sp = cm.lookup_char_pos(sp.hi()).line;
3526                     let line_base_sp = cm.lookup_char_pos(base_span.lo()).line;
3527                     debug!("{:?} {:?}", line_sp, line_base_sp);
3528                     if snippet == ":" {
3529                         err.span_label(base_span,
3530                                        "expecting a type here because of type ascription");
3531                         if line_sp != line_base_sp {
3532                             err.span_suggestion_short_with_applicability(
3533                                 sp,
3534                                 "did you mean to use `;` here instead?",
3535                                 ";".to_string(),
3536                                 Applicability::MaybeIncorrect,
3537                             );
3538                         }
3539                         break;
3540                     } else if !snippet.trim().is_empty() {
3541                         debug!("tried to find type ascription `:` token, couldn't find it");
3542                         break;
3543                     }
3544                 } else {
3545                     break;
3546                 }
3547             }
3548         }
3549     }
3550
3551     fn self_type_is_available(&mut self, span: Span) -> bool {
3552         let binding = self.resolve_ident_in_lexical_scope(keywords::SelfUpper.ident(),
3553                                                           TypeNS, None, span);
3554         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3555     }
3556
3557     fn self_value_is_available(&mut self, self_span: Span, path_span: Span) -> bool {
3558         let ident = Ident::new(keywords::SelfLower.name(), self_span);
3559         let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, None, path_span);
3560         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3561     }
3562
3563     // Resolve in alternative namespaces if resolution in the primary namespace fails.
3564     fn resolve_qpath_anywhere(&mut self,
3565                               id: NodeId,
3566                               qself: Option<&QSelf>,
3567                               path: &[Segment],
3568                               primary_ns: Namespace,
3569                               span: Span,
3570                               defer_to_typeck: bool,
3571                               global_by_default: bool,
3572                               crate_lint: CrateLint)
3573                               -> Option<PathResolution> {
3574         let mut fin_res = None;
3575         // FIXME: can't resolve paths in macro namespace yet, macros are
3576         // processed by the little special hack below.
3577         for (i, ns) in [primary_ns, TypeNS, ValueNS, /*MacroNS*/].iter().cloned().enumerate() {
3578             if i == 0 || ns != primary_ns {
3579                 match self.resolve_qpath(id, qself, path, ns, span, global_by_default, crate_lint) {
3580                     // If defer_to_typeck, then resolution > no resolution,
3581                     // otherwise full resolution > partial resolution > no resolution.
3582                     Some(res) if res.unresolved_segments() == 0 || defer_to_typeck =>
3583                         return Some(res),
3584                     res => if fin_res.is_none() { fin_res = res },
3585                 };
3586             }
3587         }
3588         if primary_ns != MacroNS &&
3589            (self.macro_names.contains(&path[0].ident.modern()) ||
3590             self.builtin_macros.get(&path[0].ident.name).cloned()
3591                                .and_then(NameBinding::macro_kind) == Some(MacroKind::Bang) ||
3592             self.macro_use_prelude.get(&path[0].ident.name).cloned()
3593                                   .and_then(NameBinding::macro_kind) == Some(MacroKind::Bang)) {
3594             // Return some dummy definition, it's enough for error reporting.
3595             return Some(
3596                 PathResolution::new(Def::Macro(DefId::local(CRATE_DEF_INDEX), MacroKind::Bang))
3597             );
3598         }
3599         fin_res
3600     }
3601
3602     /// Handles paths that may refer to associated items.
3603     fn resolve_qpath(&mut self,
3604                      id: NodeId,
3605                      qself: Option<&QSelf>,
3606                      path: &[Segment],
3607                      ns: Namespace,
3608                      span: Span,
3609                      global_by_default: bool,
3610                      crate_lint: CrateLint)
3611                      -> Option<PathResolution> {
3612         debug!(
3613             "resolve_qpath(id={:?}, qself={:?}, path={:?}, \
3614              ns={:?}, span={:?}, global_by_default={:?})",
3615             id,
3616             qself,
3617             path,
3618             ns,
3619             span,
3620             global_by_default,
3621         );
3622
3623         if let Some(qself) = qself {
3624             if qself.position == 0 {
3625                 // This is a case like `<T>::B`, where there is no
3626                 // trait to resolve.  In that case, we leave the `B`
3627                 // segment to be resolved by type-check.
3628                 return Some(PathResolution::with_unresolved_segments(
3629                     Def::Mod(DefId::local(CRATE_DEF_INDEX)), path.len()
3630                 ));
3631             }
3632
3633             // Make sure `A::B` in `<T as A::B>::C` is a trait item.
3634             //
3635             // Currently, `path` names the full item (`A::B::C`, in
3636             // our example).  so we extract the prefix of that that is
3637             // the trait (the slice upto and including
3638             // `qself.position`). And then we recursively resolve that,
3639             // but with `qself` set to `None`.
3640             //
3641             // However, setting `qself` to none (but not changing the
3642             // span) loses the information about where this path
3643             // *actually* appears, so for the purposes of the crate
3644             // lint we pass along information that this is the trait
3645             // name from a fully qualified path, and this also
3646             // contains the full span (the `CrateLint::QPathTrait`).
3647             let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
3648             let res = self.smart_resolve_path_fragment(
3649                 id,
3650                 None,
3651                 &path[..=qself.position],
3652                 span,
3653                 PathSource::TraitItem(ns),
3654                 CrateLint::QPathTrait {
3655                     qpath_id: id,
3656                     qpath_span: qself.path_span,
3657                 },
3658             );
3659
3660             // The remaining segments (the `C` in our example) will
3661             // have to be resolved by type-check, since that requires doing
3662             // trait resolution.
3663             return Some(PathResolution::with_unresolved_segments(
3664                 res.base_def(), res.unresolved_segments() + path.len() - qself.position - 1
3665             ));
3666         }
3667
3668         let result = match self.resolve_path_without_parent_scope(
3669             &path,
3670             Some(ns),
3671             true,
3672             span,
3673             crate_lint,
3674         ) {
3675             PathResult::NonModule(path_res) => path_res,
3676             PathResult::Module(ModuleOrUniformRoot::Module(module)) if !module.is_normal() => {
3677                 PathResolution::new(module.def().unwrap())
3678             }
3679             // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
3680             // don't report an error right away, but try to fallback to a primitive type.
3681             // So, we are still able to successfully resolve something like
3682             //
3683             // use std::u8; // bring module u8 in scope
3684             // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
3685             //     u8::max_value() // OK, resolves to associated function <u8>::max_value,
3686             //                     // not to non-existent std::u8::max_value
3687             // }
3688             //
3689             // Such behavior is required for backward compatibility.
3690             // The same fallback is used when `a` resolves to nothing.
3691             PathResult::Module(ModuleOrUniformRoot::Module(_)) |
3692             PathResult::Failed(..)
3693                     if (ns == TypeNS || path.len() > 1) &&
3694                        self.primitive_type_table.primitive_types
3695                            .contains_key(&path[0].ident.name) => {
3696                 let prim = self.primitive_type_table.primitive_types[&path[0].ident.name];
3697                 PathResolution::with_unresolved_segments(Def::PrimTy(prim), path.len() - 1)
3698             }
3699             PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3700                 PathResolution::new(module.def().unwrap()),
3701             PathResult::Failed(span, msg, false) => {
3702                 resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
3703                 err_path_resolution()
3704             }
3705             PathResult::Module(..) | PathResult::Failed(..) => return None,
3706             PathResult::Indeterminate => bug!("indetermined path result in resolve_qpath"),
3707         };
3708
3709         if path.len() > 1 && !global_by_default && result.base_def() != Def::Err &&
3710            path[0].ident.name != keywords::PathRoot.name() &&
3711            path[0].ident.name != keywords::DollarCrate.name() {
3712             let unqualified_result = {
3713                 match self.resolve_path_without_parent_scope(
3714                     &[*path.last().unwrap()],
3715                     Some(ns),
3716                     false,
3717                     span,
3718                     CrateLint::No,
3719                 ) {
3720                     PathResult::NonModule(path_res) => path_res.base_def(),
3721                     PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3722                         module.def().unwrap(),
3723                     _ => return Some(result),
3724                 }
3725             };
3726             if result.base_def() == unqualified_result {
3727                 let lint = lint::builtin::UNUSED_QUALIFICATIONS;
3728                 self.session.buffer_lint(lint, id, span, "unnecessary qualification")
3729             }
3730         }
3731
3732         Some(result)
3733     }
3734
3735     fn resolve_path_without_parent_scope(
3736         &mut self,
3737         path: &[Segment],
3738         opt_ns: Option<Namespace>, // `None` indicates a module path in import
3739         record_used: bool,
3740         path_span: Span,
3741         crate_lint: CrateLint,
3742     ) -> PathResult<'a> {
3743         // Macro and import paths must have full parent scope available during resolution,
3744         // other paths will do okay with parent module alone.
3745         assert!(opt_ns != None && opt_ns != Some(MacroNS));
3746         let parent_scope = ParentScope { module: self.current_module, ..self.dummy_parent_scope() };
3747         self.resolve_path(path, opt_ns, &parent_scope, record_used, path_span, crate_lint)
3748     }
3749
3750     fn resolve_path(
3751         &mut self,
3752         path: &[Segment],
3753         opt_ns: Option<Namespace>, // `None` indicates a module path in import
3754         parent_scope: &ParentScope<'a>,
3755         record_used: bool,
3756         path_span: Span,
3757         crate_lint: CrateLint,
3758     ) -> PathResult<'a> {
3759         let mut module = None;
3760         let mut allow_super = true;
3761         let mut second_binding = None;
3762         self.current_module = parent_scope.module;
3763
3764         debug!(
3765             "resolve_path(path={:?}, opt_ns={:?}, record_used={:?}, \
3766              path_span={:?}, crate_lint={:?})",
3767             path,
3768             opt_ns,
3769             record_used,
3770             path_span,
3771             crate_lint,
3772         );
3773
3774         for (i, &Segment { ident, id }) in path.iter().enumerate() {
3775             debug!("resolve_path ident {} {:?} {:?}", i, ident, id);
3776             let record_segment_def = |this: &mut Self, def| {
3777                 if record_used {
3778                     if let Some(id) = id {
3779                         if !this.def_map.contains_key(&id) {
3780                             assert!(id != ast::DUMMY_NODE_ID, "Trying to resolve dummy id");
3781                             this.record_def(id, PathResolution::new(def));
3782                         }
3783                     }
3784                 }
3785             };
3786
3787             let is_last = i == path.len() - 1;
3788             let ns = if is_last { opt_ns.unwrap_or(TypeNS) } else { TypeNS };
3789             let name = ident.name;
3790
3791             allow_super &= ns == TypeNS &&
3792                 (name == keywords::SelfLower.name() ||
3793                  name == keywords::Super.name());
3794
3795             if ns == TypeNS {
3796                 if allow_super && name == keywords::Super.name() {
3797                     let mut ctxt = ident.span.ctxt().modern();
3798                     let self_module = match i {
3799                         0 => Some(self.resolve_self(&mut ctxt, self.current_module)),
3800                         _ => match module {
3801                             Some(ModuleOrUniformRoot::Module(module)) => Some(module),
3802                             _ => None,
3803                         },
3804                     };
3805                     if let Some(self_module) = self_module {
3806                         if let Some(parent) = self_module.parent {
3807                             module = Some(ModuleOrUniformRoot::Module(
3808                                 self.resolve_self(&mut ctxt, parent)));
3809                             continue;
3810                         }
3811                     }
3812                     let msg = "there are too many initial `super`s.".to_string();
3813                     return PathResult::Failed(ident.span, msg, false);
3814                 }
3815                 if i == 0 {
3816                     if name == keywords::SelfLower.name() {
3817                         let mut ctxt = ident.span.ctxt().modern();
3818                         module = Some(ModuleOrUniformRoot::Module(
3819                             self.resolve_self(&mut ctxt, self.current_module)));
3820                         continue;
3821                     }
3822                     if name == keywords::Extern.name() ||
3823                        name == keywords::PathRoot.name() && ident.span.rust_2018() {
3824                         module = Some(ModuleOrUniformRoot::ExternPrelude);
3825                         continue;
3826                     }
3827                     if name == keywords::PathRoot.name() &&
3828                        ident.span.rust_2015() && self.session.rust_2018() {
3829                         // `::a::b` from 2015 macro on 2018 global edition
3830                         module = Some(ModuleOrUniformRoot::CrateRootAndExternPrelude);
3831                         continue;
3832                     }
3833                     if name == keywords::PathRoot.name() ||
3834                        name == keywords::Crate.name() ||
3835                        name == keywords::DollarCrate.name() {
3836                         // `::a::b`, `crate::a::b` or `$crate::a::b`
3837                         module = Some(ModuleOrUniformRoot::Module(
3838                             self.resolve_crate_root(ident)));
3839                         continue;
3840                     }
3841                 }
3842             }
3843
3844             // Report special messages for path segment keywords in wrong positions.
3845             if ident.is_path_segment_keyword() && i != 0 {
3846                 let name_str = if name == keywords::PathRoot.name() {
3847                     "crate root".to_string()
3848                 } else {
3849                     format!("`{}`", name)
3850                 };
3851                 let msg = if i == 1 && path[0].ident.name == keywords::PathRoot.name() {
3852                     format!("global paths cannot start with {}", name_str)
3853                 } else {
3854                     format!("{} in paths can only be used in start position", name_str)
3855                 };
3856                 return PathResult::Failed(ident.span, msg, false);
3857             }
3858
3859             let binding = if let Some(module) = module {
3860                 self.resolve_ident_in_module(module, ident, ns, None, record_used, path_span)
3861             } else if opt_ns.is_none() || opt_ns == Some(MacroNS) {
3862                 assert!(ns == TypeNS);
3863                 let scopes = if opt_ns.is_none() { ScopeSet::Import(ns) } else { ScopeSet::Module };
3864                 self.early_resolve_ident_in_lexical_scope(ident, scopes, parent_scope, record_used,
3865                                                           record_used, path_span)
3866             } else {
3867                 let record_used_id =
3868                     if record_used { crate_lint.node_id().or(Some(CRATE_NODE_ID)) } else { None };
3869                 match self.resolve_ident_in_lexical_scope(ident, ns, record_used_id, path_span) {
3870                     // we found a locally-imported or available item/module
3871                     Some(LexicalScopeBinding::Item(binding)) => Ok(binding),
3872                     // we found a local variable or type param
3873                     Some(LexicalScopeBinding::Def(def))
3874                             if opt_ns == Some(TypeNS) || opt_ns == Some(ValueNS) => {
3875                         record_segment_def(self, def);
3876                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3877                             def, path.len() - 1
3878                         ));
3879                     }
3880                     _ => Err(Determinacy::determined(record_used)),
3881                 }
3882             };
3883
3884             match binding {
3885                 Ok(binding) => {
3886                     if i == 1 {
3887                         second_binding = Some(binding);
3888                     }
3889                     let def = binding.def();
3890                     let maybe_assoc = opt_ns != Some(MacroNS) && PathSource::Type.is_expected(def);
3891                     if let Some(next_module) = binding.module() {
3892                         module = Some(ModuleOrUniformRoot::Module(next_module));
3893                         record_segment_def(self, def);
3894                     } else if def == Def::ToolMod && i + 1 != path.len() {
3895                         let def = Def::NonMacroAttr(NonMacroAttrKind::Tool);
3896                         return PathResult::NonModule(PathResolution::new(def));
3897                     } else if def == Def::Err {
3898                         return PathResult::NonModule(err_path_resolution());
3899                     } else if opt_ns.is_some() && (is_last || maybe_assoc) {
3900                         self.lint_if_path_starts_with_module(
3901                             crate_lint,
3902                             path,
3903                             path_span,
3904                             second_binding,
3905                         );
3906                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3907                             def, path.len() - i - 1
3908                         ));
3909                     } else {
3910                         return PathResult::Failed(ident.span,
3911                                                   format!("not a module `{}`", ident),
3912                                                   is_last);
3913                     }
3914                 }
3915                 Err(Undetermined) => return PathResult::Indeterminate,
3916                 Err(Determined) => {
3917                     if let Some(ModuleOrUniformRoot::Module(module)) = module {
3918                         if opt_ns.is_some() && !module.is_normal() {
3919                             return PathResult::NonModule(PathResolution::with_unresolved_segments(
3920                                 module.def().unwrap(), path.len() - i
3921                             ));
3922                         }
3923                     }
3924                     let module_def = match module {
3925                         Some(ModuleOrUniformRoot::Module(module)) => module.def(),
3926                         _ => None,
3927                     };
3928                     let msg = if module_def == self.graph_root.def() {
3929                         let is_mod = |def| match def { Def::Mod(..) => true, _ => false };
3930                         let mut candidates =
3931                             self.lookup_import_candidates(ident, TypeNS, is_mod);
3932                         candidates.sort_by_cached_key(|c| {
3933                             (c.path.segments.len(), c.path.to_string())
3934                         });
3935                         if let Some(candidate) = candidates.get(0) {
3936                             format!("did you mean `{}`?", candidate.path)
3937                         } else {
3938                             format!("maybe a missing `extern crate {};`?", ident)
3939                         }
3940                     } else if i == 0 {
3941                         format!("use of undeclared type or module `{}`", ident)
3942                     } else {
3943                         format!("could not find `{}` in `{}`", ident, path[i - 1].ident)
3944                     };
3945                     return PathResult::Failed(ident.span, msg, is_last);
3946                 }
3947             }
3948         }
3949
3950         self.lint_if_path_starts_with_module(crate_lint, path, path_span, second_binding);
3951
3952         PathResult::Module(match module {
3953             Some(module) => module,
3954             None if path.is_empty() => ModuleOrUniformRoot::CurrentScope,
3955             _ => span_bug!(path_span, "resolve_path: non-empty path `{:?}` has no module", path),
3956         })
3957     }
3958
3959     fn lint_if_path_starts_with_module(
3960         &self,
3961         crate_lint: CrateLint,
3962         path: &[Segment],
3963         path_span: Span,
3964         second_binding: Option<&NameBinding>,
3965     ) {
3966         let (diag_id, diag_span) = match crate_lint {
3967             CrateLint::No => return,
3968             CrateLint::SimplePath(id) => (id, path_span),
3969             CrateLint::UsePath { root_id, root_span } => (root_id, root_span),
3970             CrateLint::QPathTrait { qpath_id, qpath_span } => (qpath_id, qpath_span),
3971         };
3972
3973         let first_name = match path.get(0) {
3974             // In the 2018 edition this lint is a hard error, so nothing to do
3975             Some(seg) if seg.ident.span.rust_2015() && self.session.rust_2015() => seg.ident.name,
3976             _ => return,
3977         };
3978
3979         // We're only interested in `use` paths which should start with
3980         // `{{root}}` or `extern` currently.
3981         if first_name != keywords::Extern.name() && first_name != keywords::PathRoot.name() {
3982             return
3983         }
3984
3985         match path.get(1) {
3986             // If this import looks like `crate::...` it's already good
3987             Some(Segment { ident, .. }) if ident.name == keywords::Crate.name() => return,
3988             // Otherwise go below to see if it's an extern crate
3989             Some(_) => {}
3990             // If the path has length one (and it's `PathRoot` most likely)
3991             // then we don't know whether we're gonna be importing a crate or an
3992             // item in our crate. Defer this lint to elsewhere
3993             None => return,
3994         }
3995
3996         // If the first element of our path was actually resolved to an
3997         // `ExternCrate` (also used for `crate::...`) then no need to issue a
3998         // warning, this looks all good!
3999         if let Some(binding) = second_binding {
4000             if let NameBindingKind::Import { directive: d, .. } = binding.kind {
4001                 // Careful: we still want to rewrite paths from
4002                 // renamed extern crates.
4003                 if let ImportDirectiveSubclass::ExternCrate { source: None, .. } = d.subclass {
4004                     return
4005                 }
4006             }
4007         }
4008
4009         let diag = lint::builtin::BuiltinLintDiagnostics
4010             ::AbsPathWithModule(diag_span);
4011         self.session.buffer_lint_with_diagnostic(
4012             lint::builtin::ABSOLUTE_PATHS_NOT_STARTING_WITH_CRATE,
4013             diag_id, diag_span,
4014             "absolute paths must start with `self`, `super`, \
4015             `crate`, or an external crate name in the 2018 edition",
4016             diag);
4017     }
4018
4019     // Resolve a local definition, potentially adjusting for closures.
4020     fn adjust_local_def(&mut self,
4021                         ns: Namespace,
4022                         rib_index: usize,
4023                         mut def: Def,
4024                         record_used: bool,
4025                         span: Span) -> Def {
4026         let ribs = &self.ribs[ns][rib_index + 1..];
4027
4028         // An invalid forward use of a type parameter from a previous default.
4029         if let ForwardTyParamBanRibKind = self.ribs[ns][rib_index].kind {
4030             if record_used {
4031                 resolve_error(self, span, ResolutionError::ForwardDeclaredTyParam);
4032             }
4033             assert_eq!(def, Def::Err);
4034             return Def::Err;
4035         }
4036
4037         match def {
4038             Def::Upvar(..) => {
4039                 span_bug!(span, "unexpected {:?} in bindings", def)
4040             }
4041             Def::Local(node_id) => {
4042                 for rib in ribs {
4043                     match rib.kind {
4044                         NormalRibKind | ModuleRibKind(..) | MacroDefinition(..) |
4045                         ForwardTyParamBanRibKind => {
4046                             // Nothing to do. Continue.
4047                         }
4048                         ClosureRibKind(function_id) => {
4049                             let prev_def = def;
4050
4051                             let seen = self.freevars_seen
4052                                            .entry(function_id)
4053                                            .or_default();
4054                             if let Some(&index) = seen.get(&node_id) {
4055                                 def = Def::Upvar(node_id, index, function_id);
4056                                 continue;
4057                             }
4058                             let vec = self.freevars
4059                                           .entry(function_id)
4060                                           .or_default();
4061                             let depth = vec.len();
4062                             def = Def::Upvar(node_id, depth, function_id);
4063
4064                             if record_used {
4065                                 vec.push(Freevar {
4066                                     def: prev_def,
4067                                     span,
4068                                 });
4069                                 seen.insert(node_id, depth);
4070                             }
4071                         }
4072                         ItemRibKind | TraitOrImplItemRibKind => {
4073                             // This was an attempt to access an upvar inside a
4074                             // named function item. This is not allowed, so we
4075                             // report an error.
4076                             if record_used {
4077                                 resolve_error(self, span,
4078                                     ResolutionError::CannotCaptureDynamicEnvironmentInFnItem);
4079                             }
4080                             return Def::Err;
4081                         }
4082                         ConstantItemRibKind => {
4083                             // Still doesn't deal with upvars
4084                             if record_used {
4085                                 resolve_error(self, span,
4086                                     ResolutionError::AttemptToUseNonConstantValueInConstant);
4087                             }
4088                             return Def::Err;
4089                         }
4090                     }
4091                 }
4092             }
4093             Def::TyParam(..) | Def::SelfTy(..) => {
4094                 for rib in ribs {
4095                     match rib.kind {
4096                         NormalRibKind | TraitOrImplItemRibKind | ClosureRibKind(..) |
4097                         ModuleRibKind(..) | MacroDefinition(..) | ForwardTyParamBanRibKind |
4098                         ConstantItemRibKind => {
4099                             // Nothing to do. Continue.
4100                         }
4101                         ItemRibKind => {
4102                             // This was an attempt to use a type parameter outside
4103                             // its scope.
4104                             if record_used {
4105                                 resolve_error(self, span,
4106                                     ResolutionError::TypeParametersFromOuterFunction(def));
4107                             }
4108                             return Def::Err;
4109                         }
4110                     }
4111                 }
4112             }
4113             _ => {}
4114         }
4115         def
4116     }
4117
4118     fn lookup_assoc_candidate<FilterFn>(&mut self,
4119                                         ident: Ident,
4120                                         ns: Namespace,
4121                                         filter_fn: FilterFn)
4122                                         -> Option<AssocSuggestion>
4123         where FilterFn: Fn(Def) -> bool
4124     {
4125         fn extract_node_id(t: &Ty) -> Option<NodeId> {
4126             match t.node {
4127                 TyKind::Path(None, _) => Some(t.id),
4128                 TyKind::Rptr(_, ref mut_ty) => extract_node_id(&mut_ty.ty),
4129                 // This doesn't handle the remaining `Ty` variants as they are not
4130                 // that commonly the self_type, it might be interesting to provide
4131                 // support for those in future.
4132                 _ => None,
4133             }
4134         }
4135
4136         // Fields are generally expected in the same contexts as locals.
4137         if filter_fn(Def::Local(ast::DUMMY_NODE_ID)) {
4138             if let Some(node_id) = self.current_self_type.as_ref().and_then(extract_node_id) {
4139                 // Look for a field with the same name in the current self_type.
4140                 if let Some(resolution) = self.def_map.get(&node_id) {
4141                     match resolution.base_def() {
4142                         Def::Struct(did) | Def::Union(did)
4143                                 if resolution.unresolved_segments() == 0 => {
4144                             if let Some(field_names) = self.field_names.get(&did) {
4145                                 if field_names.iter().any(|&field_name| ident.name == field_name) {
4146                                     return Some(AssocSuggestion::Field);
4147                                 }
4148                             }
4149                         }
4150                         _ => {}
4151                     }
4152                 }
4153             }
4154         }
4155
4156         // Look for associated items in the current trait.
4157         if let Some((module, _)) = self.current_trait_ref {
4158             if let Ok(binding) = self.resolve_ident_in_module(
4159                     ModuleOrUniformRoot::Module(module),
4160                     ident,
4161                     ns,
4162                     None,
4163                     false,
4164                     module.span,
4165                 ) {
4166                 let def = binding.def();
4167                 if filter_fn(def) {
4168                     return Some(if self.has_self.contains(&def.def_id()) {
4169                         AssocSuggestion::MethodWithSelf
4170                     } else {
4171                         AssocSuggestion::AssocItem
4172                     });
4173                 }
4174             }
4175         }
4176
4177         None
4178     }
4179
4180     fn lookup_typo_candidate<FilterFn>(&mut self,
4181                                        path: &[Segment],
4182                                        ns: Namespace,
4183                                        filter_fn: FilterFn,
4184                                        span: Span)
4185                                        -> Option<Symbol>
4186         where FilterFn: Fn(Def) -> bool
4187     {
4188         let add_module_candidates = |module: Module, names: &mut Vec<Name>| {
4189             for (&(ident, _), resolution) in module.resolutions.borrow().iter() {
4190                 if let Some(binding) = resolution.borrow().binding {
4191                     if filter_fn(binding.def()) {
4192                         names.push(ident.name);
4193                     }
4194                 }
4195             }
4196         };
4197
4198         let mut names = Vec::new();
4199         if path.len() == 1 {
4200             // Search in lexical scope.
4201             // Walk backwards up the ribs in scope and collect candidates.
4202             for rib in self.ribs[ns].iter().rev() {
4203                 // Locals and type parameters
4204                 for (ident, def) in &rib.bindings {
4205                     if filter_fn(*def) {
4206                         names.push(ident.name);
4207                     }
4208                 }
4209                 // Items in scope
4210                 if let ModuleRibKind(module) = rib.kind {
4211                     // Items from this module
4212                     add_module_candidates(module, &mut names);
4213
4214                     if let ModuleKind::Block(..) = module.kind {
4215                         // We can see through blocks
4216                     } else {
4217                         // Items from the prelude
4218                         if !module.no_implicit_prelude {
4219                             names.extend(self.extern_prelude.iter().map(|(ident, _)| ident.name));
4220                             if let Some(prelude) = self.prelude {
4221                                 add_module_candidates(prelude, &mut names);
4222                             }
4223                         }
4224                         break;
4225                     }
4226                 }
4227             }
4228             // Add primitive types to the mix
4229             if filter_fn(Def::PrimTy(Bool)) {
4230                 names.extend(
4231                     self.primitive_type_table.primitive_types.iter().map(|(name, _)| name)
4232                 )
4233             }
4234         } else {
4235             // Search in module.
4236             let mod_path = &path[..path.len() - 1];
4237             if let PathResult::Module(module) = self.resolve_path_without_parent_scope(
4238                 mod_path, Some(TypeNS), false, span, CrateLint::No
4239             ) {
4240                 if let ModuleOrUniformRoot::Module(module) = module {
4241                     add_module_candidates(module, &mut names);
4242                 }
4243             }
4244         }
4245
4246         let name = path[path.len() - 1].ident.name;
4247         // Make sure error reporting is deterministic.
4248         names.sort_by_cached_key(|name| name.as_str());
4249         match find_best_match_for_name(names.iter(), &name.as_str(), None) {
4250             Some(found) if found != name => Some(found),
4251             _ => None,
4252         }
4253     }
4254
4255     fn with_resolved_label<F>(&mut self, label: Option<Label>, id: NodeId, f: F)
4256         where F: FnOnce(&mut Resolver)
4257     {
4258         if let Some(label) = label {
4259             self.unused_labels.insert(id, label.ident.span);
4260             let def = Def::Label(id);
4261             self.with_label_rib(|this| {
4262                 let ident = label.ident.modern_and_legacy();
4263                 this.label_ribs.last_mut().unwrap().bindings.insert(ident, def);
4264                 f(this);
4265             });
4266         } else {
4267             f(self);
4268         }
4269     }
4270
4271     fn resolve_labeled_block(&mut self, label: Option<Label>, id: NodeId, block: &Block) {
4272         self.with_resolved_label(label, id, |this| this.visit_block(block));
4273     }
4274
4275     fn resolve_expr(&mut self, expr: &Expr, parent: Option<&Expr>) {
4276         // First, record candidate traits for this expression if it could
4277         // result in the invocation of a method call.
4278
4279         self.record_candidate_traits_for_expr_if_necessary(expr);
4280
4281         // Next, resolve the node.
4282         match expr.node {
4283             ExprKind::Path(ref qself, ref path) => {
4284                 self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
4285                 visit::walk_expr(self, expr);
4286             }
4287
4288             ExprKind::Struct(ref path, ..) => {
4289                 self.smart_resolve_path(expr.id, None, path, PathSource::Struct);
4290                 visit::walk_expr(self, expr);
4291             }
4292
4293             ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
4294                 let def = self.search_label(label.ident, |rib, ident| {
4295                     rib.bindings.get(&ident.modern_and_legacy()).cloned()
4296                 });
4297                 match def {
4298                     None => {
4299                         // Search again for close matches...
4300                         // Picks the first label that is "close enough", which is not necessarily
4301                         // the closest match
4302                         let close_match = self.search_label(label.ident, |rib, ident| {
4303                             let names = rib.bindings.iter().map(|(id, _)| &id.name);
4304                             find_best_match_for_name(names, &*ident.as_str(), None)
4305                         });
4306                         self.record_def(expr.id, err_path_resolution());
4307                         resolve_error(self,
4308                                       label.ident.span,
4309                                       ResolutionError::UndeclaredLabel(&label.ident.as_str(),
4310                                                                        close_match));
4311                     }
4312                     Some(Def::Label(id)) => {
4313                         // Since this def is a label, it is never read.
4314                         self.record_def(expr.id, PathResolution::new(Def::Label(id)));
4315                         self.unused_labels.remove(&id);
4316                     }
4317                     Some(_) => {
4318                         span_bug!(expr.span, "label wasn't mapped to a label def!");
4319                     }
4320                 }
4321
4322                 // visit `break` argument if any
4323                 visit::walk_expr(self, expr);
4324             }
4325
4326             ExprKind::IfLet(ref pats, ref subexpression, ref if_block, ref optional_else) => {
4327                 self.visit_expr(subexpression);
4328
4329                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
4330                 let mut bindings_list = FxHashMap::default();
4331                 for pat in pats {
4332                     self.resolve_pattern(pat, PatternSource::IfLet, &mut bindings_list);
4333                 }
4334                 // This has to happen *after* we determine which pat_idents are variants
4335                 self.check_consistent_bindings(pats);
4336                 self.visit_block(if_block);
4337                 self.ribs[ValueNS].pop();
4338
4339                 optional_else.as_ref().map(|expr| self.visit_expr(expr));
4340             }
4341
4342             ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),
4343
4344             ExprKind::While(ref subexpression, ref block, label) => {
4345                 self.with_resolved_label(label, expr.id, |this| {
4346                     this.visit_expr(subexpression);
4347                     this.visit_block(block);
4348                 });
4349             }
4350
4351             ExprKind::WhileLet(ref pats, ref subexpression, ref block, label) => {
4352                 self.with_resolved_label(label, expr.id, |this| {
4353                     this.visit_expr(subexpression);
4354                     this.ribs[ValueNS].push(Rib::new(NormalRibKind));
4355                     let mut bindings_list = FxHashMap::default();
4356                     for pat in pats {
4357                         this.resolve_pattern(pat, PatternSource::WhileLet, &mut bindings_list);
4358                     }
4359                     // This has to happen *after* we determine which pat_idents are variants.
4360                     this.check_consistent_bindings(pats);
4361                     this.visit_block(block);
4362                     this.ribs[ValueNS].pop();
4363                 });
4364             }
4365
4366             ExprKind::ForLoop(ref pattern, ref subexpression, ref block, label) => {
4367                 self.visit_expr(subexpression);
4368                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
4369                 self.resolve_pattern(pattern, PatternSource::For, &mut FxHashMap::default());
4370
4371                 self.resolve_labeled_block(label, expr.id, block);
4372
4373                 self.ribs[ValueNS].pop();
4374             }
4375
4376             ExprKind::Block(ref block, label) => self.resolve_labeled_block(label, block.id, block),
4377
4378             // Equivalent to `visit::walk_expr` + passing some context to children.
4379             ExprKind::Field(ref subexpression, _) => {
4380                 self.resolve_expr(subexpression, Some(expr));
4381             }
4382             ExprKind::MethodCall(ref segment, ref arguments) => {
4383                 let mut arguments = arguments.iter();
4384                 self.resolve_expr(arguments.next().unwrap(), Some(expr));
4385                 for argument in arguments {
4386                     self.resolve_expr(argument, None);
4387                 }
4388                 self.visit_path_segment(expr.span, segment);
4389             }
4390
4391             ExprKind::Call(ref callee, ref arguments) => {
4392                 self.resolve_expr(callee, Some(expr));
4393                 for argument in arguments {
4394                     self.resolve_expr(argument, None);
4395                 }
4396             }
4397             ExprKind::Type(ref type_expr, _) => {
4398                 self.current_type_ascription.push(type_expr.span);
4399                 visit::walk_expr(self, expr);
4400                 self.current_type_ascription.pop();
4401             }
4402             // Resolve the body of async exprs inside the async closure to which they desugar
4403             ExprKind::Async(_, async_closure_id, ref block) => {
4404                 let rib_kind = ClosureRibKind(async_closure_id);
4405                 self.ribs[ValueNS].push(Rib::new(rib_kind));
4406                 self.label_ribs.push(Rib::new(rib_kind));
4407                 self.visit_block(&block);
4408                 self.label_ribs.pop();
4409                 self.ribs[ValueNS].pop();
4410             }
4411             // `async |x| ...` gets desugared to `|x| future_from_generator(|| ...)`, so we need to
4412             // resolve the arguments within the proper scopes so that usages of them inside the
4413             // closure are detected as upvars rather than normal closure arg usages.
4414             ExprKind::Closure(
4415                 _, IsAsync::Async { closure_id: inner_closure_id, .. }, _,
4416                 ref fn_decl, ref body, _span,
4417             ) => {
4418                 let rib_kind = ClosureRibKind(expr.id);
4419                 self.ribs[ValueNS].push(Rib::new(rib_kind));
4420                 self.label_ribs.push(Rib::new(rib_kind));
4421                 // Resolve arguments:
4422                 let mut bindings_list = FxHashMap::default();
4423                 for argument in &fn_decl.inputs {
4424                     self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
4425                     self.visit_ty(&argument.ty);
4426                 }
4427                 // No need to resolve return type-- the outer closure return type is
4428                 // FunctionRetTy::Default
4429
4430                 // Now resolve the inner closure
4431                 {
4432                     let rib_kind = ClosureRibKind(inner_closure_id);
4433                     self.ribs[ValueNS].push(Rib::new(rib_kind));
4434                     self.label_ribs.push(Rib::new(rib_kind));
4435                     // No need to resolve arguments: the inner closure has none.
4436                     // Resolve the return type:
4437                     visit::walk_fn_ret_ty(self, &fn_decl.output);
4438                     // Resolve the body
4439                     self.visit_expr(body);
4440                     self.label_ribs.pop();
4441                     self.ribs[ValueNS].pop();
4442                 }
4443                 self.label_ribs.pop();
4444                 self.ribs[ValueNS].pop();
4445             }
4446             _ => {
4447                 visit::walk_expr(self, expr);
4448             }
4449         }
4450     }
4451
4452     fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &Expr) {
4453         match expr.node {
4454             ExprKind::Field(_, ident) => {
4455                 // FIXME(#6890): Even though you can't treat a method like a
4456                 // field, we need to add any trait methods we find that match
4457                 // the field name so that we can do some nice error reporting
4458                 // later on in typeck.
4459                 let traits = self.get_traits_containing_item(ident, ValueNS);
4460                 self.trait_map.insert(expr.id, traits);
4461             }
4462             ExprKind::MethodCall(ref segment, ..) => {
4463                 debug!("(recording candidate traits for expr) recording traits for {}",
4464                        expr.id);
4465                 let traits = self.get_traits_containing_item(segment.ident, ValueNS);
4466                 self.trait_map.insert(expr.id, traits);
4467             }
4468             _ => {
4469                 // Nothing to do.
4470             }
4471         }
4472     }
4473
4474     fn get_traits_containing_item(&mut self, mut ident: Ident, ns: Namespace)
4475                                   -> Vec<TraitCandidate> {
4476         debug!("(getting traits containing item) looking for '{}'", ident.name);
4477
4478         let mut found_traits = Vec::new();
4479         // Look for the current trait.
4480         if let Some((module, _)) = self.current_trait_ref {
4481             if self.resolve_ident_in_module(
4482                 ModuleOrUniformRoot::Module(module),
4483                 ident,
4484                 ns,
4485                 None,
4486                 false,
4487                 module.span,
4488             ).is_ok() {
4489                 let def_id = module.def_id().unwrap();
4490                 found_traits.push(TraitCandidate { def_id: def_id, import_id: None });
4491             }
4492         }
4493
4494         ident.span = ident.span.modern();
4495         let mut search_module = self.current_module;
4496         loop {
4497             self.get_traits_in_module_containing_item(ident, ns, search_module, &mut found_traits);
4498             search_module = unwrap_or!(
4499                 self.hygienic_lexical_parent(search_module, &mut ident.span), break
4500             );
4501         }
4502
4503         if let Some(prelude) = self.prelude {
4504             if !search_module.no_implicit_prelude {
4505                 self.get_traits_in_module_containing_item(ident, ns, prelude, &mut found_traits);
4506             }
4507         }
4508
4509         found_traits
4510     }
4511
4512     fn get_traits_in_module_containing_item(&mut self,
4513                                             ident: Ident,
4514                                             ns: Namespace,
4515                                             module: Module<'a>,
4516                                             found_traits: &mut Vec<TraitCandidate>) {
4517         assert!(ns == TypeNS || ns == ValueNS);
4518         let mut traits = module.traits.borrow_mut();
4519         if traits.is_none() {
4520             let mut collected_traits = Vec::new();
4521             module.for_each_child(|name, ns, binding| {
4522                 if ns != TypeNS { return }
4523                 if let Def::Trait(_) = binding.def() {
4524                     collected_traits.push((name, binding));
4525                 }
4526             });
4527             *traits = Some(collected_traits.into_boxed_slice());
4528         }
4529
4530         for &(trait_name, binding) in traits.as_ref().unwrap().iter() {
4531             let module = binding.module().unwrap();
4532             let mut ident = ident;
4533             if ident.span.glob_adjust(module.expansion, binding.span.ctxt().modern()).is_none() {
4534                 continue
4535             }
4536             if self.resolve_ident_in_module_unadjusted(
4537                 ModuleOrUniformRoot::Module(module),
4538                 ident,
4539                 ns,
4540                 false,
4541                 module.span,
4542             ).is_ok() {
4543                 let import_id = match binding.kind {
4544                     NameBindingKind::Import { directive, .. } => {
4545                         self.maybe_unused_trait_imports.insert(directive.id);
4546                         self.add_to_glob_map(directive.id, trait_name);
4547                         Some(directive.id)
4548                     }
4549                     _ => None,
4550                 };
4551                 let trait_def_id = module.def_id().unwrap();
4552                 found_traits.push(TraitCandidate { def_id: trait_def_id, import_id: import_id });
4553             }
4554         }
4555     }
4556
4557     fn lookup_import_candidates_from_module<FilterFn>(&mut self,
4558                                           lookup_ident: Ident,
4559                                           namespace: Namespace,
4560                                           start_module: &'a ModuleData<'a>,
4561                                           crate_name: Ident,
4562                                           filter_fn: FilterFn)
4563                                           -> Vec<ImportSuggestion>
4564         where FilterFn: Fn(Def) -> bool
4565     {
4566         let mut candidates = Vec::new();
4567         let mut seen_modules = FxHashSet::default();
4568         let not_local_module = crate_name != keywords::Crate.ident();
4569         let mut worklist = vec![(start_module, Vec::<ast::PathSegment>::new(), not_local_module)];
4570
4571         while let Some((in_module,
4572                         path_segments,
4573                         in_module_is_extern)) = worklist.pop() {
4574             self.populate_module_if_necessary(in_module);
4575
4576             // We have to visit module children in deterministic order to avoid
4577             // instabilities in reported imports (#43552).
4578             in_module.for_each_child_stable(|ident, ns, name_binding| {
4579                 // avoid imports entirely
4580                 if name_binding.is_import() && !name_binding.is_extern_crate() { return; }
4581                 // avoid non-importable candidates as well
4582                 if !name_binding.is_importable() { return; }
4583
4584                 // collect results based on the filter function
4585                 if ident.name == lookup_ident.name && ns == namespace {
4586                     if filter_fn(name_binding.def()) {
4587                         // create the path
4588                         let mut segms = path_segments.clone();
4589                         if lookup_ident.span.rust_2018() {
4590                             // crate-local absolute paths start with `crate::` in edition 2018
4591                             // FIXME: may also be stabilized for Rust 2015 (Issues #45477, #44660)
4592                             segms.insert(
4593                                 0, ast::PathSegment::from_ident(crate_name)
4594                             );
4595                         }
4596
4597                         segms.push(ast::PathSegment::from_ident(ident));
4598                         let path = Path {
4599                             span: name_binding.span,
4600                             segments: segms,
4601                         };
4602                         // the entity is accessible in the following cases:
4603                         // 1. if it's defined in the same crate, it's always
4604                         // accessible (since private entities can be made public)
4605                         // 2. if it's defined in another crate, it's accessible
4606                         // only if both the module is public and the entity is
4607                         // declared as public (due to pruning, we don't explore
4608                         // outside crate private modules => no need to check this)
4609                         if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
4610                             candidates.push(ImportSuggestion { path });
4611                         }
4612                     }
4613                 }
4614
4615                 // collect submodules to explore
4616                 if let Some(module) = name_binding.module() {
4617                     // form the path
4618                     let mut path_segments = path_segments.clone();
4619                     path_segments.push(ast::PathSegment::from_ident(ident));
4620
4621                     let is_extern_crate_that_also_appears_in_prelude =
4622                         name_binding.is_extern_crate() &&
4623                         lookup_ident.span.rust_2018();
4624
4625                     let is_visible_to_user =
4626                         !in_module_is_extern || name_binding.vis == ty::Visibility::Public;
4627
4628                     if !is_extern_crate_that_also_appears_in_prelude && is_visible_to_user {
4629                         // add the module to the lookup
4630                         let is_extern = in_module_is_extern || name_binding.is_extern_crate();
4631                         if seen_modules.insert(module.def_id().unwrap()) {
4632                             worklist.push((module, path_segments, is_extern));
4633                         }
4634                     }
4635                 }
4636             })
4637         }
4638
4639         candidates
4640     }
4641
4642     /// When name resolution fails, this method can be used to look up candidate
4643     /// entities with the expected name. It allows filtering them using the
4644     /// supplied predicate (which should be used to only accept the types of
4645     /// definitions expected e.g., traits). The lookup spans across all crates.
4646     ///
4647     /// NOTE: The method does not look into imports, but this is not a problem,
4648     /// since we report the definitions (thus, the de-aliased imports).
4649     fn lookup_import_candidates<FilterFn>(&mut self,
4650                                           lookup_ident: Ident,
4651                                           namespace: Namespace,
4652                                           filter_fn: FilterFn)
4653                                           -> Vec<ImportSuggestion>
4654         where FilterFn: Fn(Def) -> bool
4655     {
4656         let mut suggestions = self.lookup_import_candidates_from_module(
4657             lookup_ident, namespace, self.graph_root, keywords::Crate.ident(), &filter_fn);
4658
4659         if lookup_ident.span.rust_2018() {
4660             let extern_prelude_names = self.extern_prelude.clone();
4661             for (ident, _) in extern_prelude_names.into_iter() {
4662                 if let Some(crate_id) = self.crate_loader.maybe_process_path_extern(ident.name,
4663                                                                                     ident.span) {
4664                     let crate_root = self.get_module(DefId {
4665                         krate: crate_id,
4666                         index: CRATE_DEF_INDEX,
4667                     });
4668                     self.populate_module_if_necessary(&crate_root);
4669
4670                     suggestions.extend(self.lookup_import_candidates_from_module(
4671                         lookup_ident, namespace, crate_root, ident, &filter_fn));
4672                 }
4673             }
4674         }
4675
4676         suggestions
4677     }
4678
4679     fn find_module(&mut self,
4680                    module_def: Def)
4681                    -> Option<(Module<'a>, ImportSuggestion)>
4682     {
4683         let mut result = None;
4684         let mut seen_modules = FxHashSet::default();
4685         let mut worklist = vec![(self.graph_root, Vec::new())];
4686
4687         while let Some((in_module, path_segments)) = worklist.pop() {
4688             // abort if the module is already found
4689             if result.is_some() { break; }
4690
4691             self.populate_module_if_necessary(in_module);
4692
4693             in_module.for_each_child_stable(|ident, _, name_binding| {
4694                 // abort if the module is already found or if name_binding is private external
4695                 if result.is_some() || !name_binding.vis.is_visible_locally() {
4696                     return
4697                 }
4698                 if let Some(module) = name_binding.module() {
4699                     // form the path
4700                     let mut path_segments = path_segments.clone();
4701                     path_segments.push(ast::PathSegment::from_ident(ident));
4702                     if module.def() == Some(module_def) {
4703                         let path = Path {
4704                             span: name_binding.span,
4705                             segments: path_segments,
4706                         };
4707                         result = Some((module, ImportSuggestion { path }));
4708                     } else {
4709                         // add the module to the lookup
4710                         if seen_modules.insert(module.def_id().unwrap()) {
4711                             worklist.push((module, path_segments));
4712                         }
4713                     }
4714                 }
4715             });
4716         }
4717
4718         result
4719     }
4720
4721     fn collect_enum_variants(&mut self, enum_def: Def) -> Option<Vec<Path>> {
4722         if let Def::Enum(..) = enum_def {} else {
4723             panic!("Non-enum def passed to collect_enum_variants: {:?}", enum_def)
4724         }
4725
4726         self.find_module(enum_def).map(|(enum_module, enum_import_suggestion)| {
4727             self.populate_module_if_necessary(enum_module);
4728
4729             let mut variants = Vec::new();
4730             enum_module.for_each_child_stable(|ident, _, name_binding| {
4731                 if let Def::Variant(..) = name_binding.def() {
4732                     let mut segms = enum_import_suggestion.path.segments.clone();
4733                     segms.push(ast::PathSegment::from_ident(ident));
4734                     variants.push(Path {
4735                         span: name_binding.span,
4736                         segments: segms,
4737                     });
4738                 }
4739             });
4740             variants
4741         })
4742     }
4743
4744     fn record_def(&mut self, node_id: NodeId, resolution: PathResolution) {
4745         debug!("(recording def) recording {:?} for {}", resolution, node_id);
4746         if let Some(prev_res) = self.def_map.insert(node_id, resolution) {
4747             panic!("path resolved multiple times ({:?} before, {:?} now)", prev_res, resolution);
4748         }
4749     }
4750
4751     fn resolve_visibility(&mut self, vis: &ast::Visibility) -> ty::Visibility {
4752         match vis.node {
4753             ast::VisibilityKind::Public => ty::Visibility::Public,
4754             ast::VisibilityKind::Crate(..) => {
4755                 ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX))
4756             }
4757             ast::VisibilityKind::Inherited => {
4758                 ty::Visibility::Restricted(self.current_module.normal_ancestor_id)
4759             }
4760             ast::VisibilityKind::Restricted { ref path, id, .. } => {
4761                 // For visibilities we are not ready to provide correct implementation of "uniform
4762                 // paths" right now, so on 2018 edition we only allow module-relative paths for now.
4763                 // On 2015 edition visibilities are resolved as crate-relative by default,
4764                 // so we are prepending a root segment if necessary.
4765                 let ident = path.segments.get(0).expect("empty path in visibility").ident;
4766                 let crate_root = if ident.is_path_segment_keyword() {
4767                     None
4768                 } else if ident.span.rust_2018() {
4769                     let msg = "relative paths are not supported in visibilities on 2018 edition";
4770                     self.session.struct_span_err(ident.span, msg)
4771                                 .span_suggestion(path.span, "try", format!("crate::{}", path))
4772                                 .emit();
4773                     return ty::Visibility::Public;
4774                 } else {
4775                     let ctxt = ident.span.ctxt();
4776                     Some(Segment::from_ident(Ident::new(
4777                         keywords::PathRoot.name(), path.span.shrink_to_lo().with_ctxt(ctxt)
4778                     )))
4779                 };
4780
4781                 let segments = crate_root.into_iter()
4782                     .chain(path.segments.iter().map(|seg| seg.into())).collect::<Vec<_>>();
4783                 let def = self.smart_resolve_path_fragment(
4784                     id,
4785                     None,
4786                     &segments,
4787                     path.span,
4788                     PathSource::Visibility,
4789                     CrateLint::SimplePath(id),
4790                 ).base_def();
4791                 if def == Def::Err {
4792                     ty::Visibility::Public
4793                 } else {
4794                     let vis = ty::Visibility::Restricted(def.def_id());
4795                     if self.is_accessible(vis) {
4796                         vis
4797                     } else {
4798                         self.session.span_err(path.span, "visibilities can only be restricted \
4799                                                           to ancestor modules");
4800                         ty::Visibility::Public
4801                     }
4802                 }
4803             }
4804         }
4805     }
4806
4807     fn is_accessible(&self, vis: ty::Visibility) -> bool {
4808         vis.is_accessible_from(self.current_module.normal_ancestor_id, self)
4809     }
4810
4811     fn is_accessible_from(&self, vis: ty::Visibility, module: Module<'a>) -> bool {
4812         vis.is_accessible_from(module.normal_ancestor_id, self)
4813     }
4814
4815     fn set_binding_parent_module(&mut self, binding: &'a NameBinding<'a>, module: Module<'a>) {
4816         if let Some(old_module) = self.binding_parent_modules.insert(PtrKey(binding), module) {
4817             if !ptr::eq(module, old_module) {
4818                 span_bug!(binding.span, "parent module is reset for binding");
4819             }
4820         }
4821     }
4822
4823     fn disambiguate_legacy_vs_modern(
4824         &self,
4825         legacy: &'a NameBinding<'a>,
4826         modern: &'a NameBinding<'a>,
4827     ) -> bool {
4828         // Some non-controversial subset of ambiguities "modern macro name" vs "macro_rules"
4829         // is disambiguated to mitigate regressions from macro modularization.
4830         // Scoping for `macro_rules` behaves like scoping for `let` at module level, in general.
4831         match (self.binding_parent_modules.get(&PtrKey(legacy)),
4832                self.binding_parent_modules.get(&PtrKey(modern))) {
4833             (Some(legacy), Some(modern)) =>
4834                 legacy.normal_ancestor_id == modern.normal_ancestor_id &&
4835                 modern.is_ancestor_of(legacy),
4836             _ => false,
4837         }
4838     }
4839
4840     fn binding_description(&self, b: &NameBinding, ident: Ident, from_prelude: bool) -> String {
4841         if b.span.is_dummy() {
4842             let add_built_in = match b.def() {
4843                 // These already contain the "built-in" prefix or look bad with it.
4844                 Def::NonMacroAttr(..) | Def::PrimTy(..) | Def::ToolMod => false,
4845                 _ => true,
4846             };
4847             let (built_in, from) = if from_prelude {
4848                 ("", " from prelude")
4849             } else if b.is_extern_crate() && !b.is_import() &&
4850                         self.session.opts.externs.get(&ident.as_str()).is_some() {
4851                 ("", " passed with `--extern`")
4852             } else if add_built_in {
4853                 (" built-in", "")
4854             } else {
4855                 ("", "")
4856             };
4857
4858             let article = if built_in.is_empty() { b.article() } else { "a" };
4859             format!("{a}{built_in} {thing}{from}",
4860                     a = article, thing = b.descr(), built_in = built_in, from = from)
4861         } else {
4862             let introduced = if b.is_import() { "imported" } else { "defined" };
4863             format!("the {thing} {introduced} here",
4864                     thing = b.descr(), introduced = introduced)
4865         }
4866     }
4867
4868     fn report_ambiguity_error(&self, ambiguity_error: &AmbiguityError) {
4869         let AmbiguityError { kind, ident, b1, b2, misc1, misc2 } = *ambiguity_error;
4870         let (b1, b2, misc1, misc2, swapped) = if b2.span.is_dummy() && !b1.span.is_dummy() {
4871             // We have to print the span-less alternative first, otherwise formatting looks bad.
4872             (b2, b1, misc2, misc1, true)
4873         } else {
4874             (b1, b2, misc1, misc2, false)
4875         };
4876
4877         let mut err = struct_span_err!(self.session, ident.span, E0659,
4878                                        "`{ident}` is ambiguous ({why})",
4879                                        ident = ident, why = kind.descr());
4880         err.span_label(ident.span, "ambiguous name");
4881
4882         let mut could_refer_to = |b: &NameBinding, misc: AmbiguityErrorMisc, also: &str| {
4883             let what = self.binding_description(b, ident, misc == AmbiguityErrorMisc::FromPrelude);
4884             let note_msg = format!("`{ident}` could{also} refer to {what}",
4885                                    ident = ident, also = also, what = what);
4886
4887             let mut help_msgs = Vec::new();
4888             if b.is_glob_import() && (kind == AmbiguityKind::GlobVsGlob ||
4889                                       kind == AmbiguityKind::GlobVsExpanded ||
4890                                       kind == AmbiguityKind::GlobVsOuter &&
4891                                       swapped != also.is_empty()) {
4892                 help_msgs.push(format!("consider adding an explicit import of \
4893                                         `{ident}` to disambiguate", ident = ident))
4894             }
4895             if b.is_extern_crate() && ident.span.rust_2018() {
4896                 help_msgs.push(format!(
4897                     "use `::{ident}` to refer to this {thing} unambiguously",
4898                     ident = ident, thing = b.descr(),
4899                 ))
4900             }
4901             if misc == AmbiguityErrorMisc::SuggestCrate {
4902                 help_msgs.push(format!(
4903                     "use `crate::{ident}` to refer to this {thing} unambiguously",
4904                     ident = ident, thing = b.descr(),
4905                 ))
4906             } else if misc == AmbiguityErrorMisc::SuggestSelf {
4907                 help_msgs.push(format!(
4908                     "use `self::{ident}` to refer to this {thing} unambiguously",
4909                     ident = ident, thing = b.descr(),
4910                 ))
4911             }
4912
4913             if b.span.is_dummy() {
4914                 err.note(&note_msg);
4915             } else {
4916                 err.span_note(b.span, &note_msg);
4917             }
4918             for (i, help_msg) in help_msgs.iter().enumerate() {
4919                 let or = if i == 0 { "" } else { "or " };
4920                 err.help(&format!("{}{}", or, help_msg));
4921             }
4922         };
4923
4924         could_refer_to(b1, misc1, "");
4925         could_refer_to(b2, misc2, " also");
4926         err.emit();
4927     }
4928
4929     fn report_errors(&mut self, krate: &Crate) {
4930         self.report_with_use_injections(krate);
4931
4932         for &(span_use, span_def) in &self.macro_expanded_macro_export_errors {
4933             let msg = "macro-expanded `macro_export` macros from the current crate \
4934                        cannot be referred to by absolute paths";
4935             self.session.buffer_lint_with_diagnostic(
4936                 lint::builtin::MACRO_EXPANDED_MACRO_EXPORTS_ACCESSED_BY_ABSOLUTE_PATHS,
4937                 CRATE_NODE_ID, span_use, msg,
4938                 lint::builtin::BuiltinLintDiagnostics::
4939                     MacroExpandedMacroExportsAccessedByAbsolutePaths(span_def),
4940             );
4941         }
4942
4943         for ambiguity_error in &self.ambiguity_errors {
4944             self.report_ambiguity_error(ambiguity_error);
4945         }
4946
4947         let mut reported_spans = FxHashSet::default();
4948         for &PrivacyError(dedup_span, ident, binding) in &self.privacy_errors {
4949             if reported_spans.insert(dedup_span) {
4950                 span_err!(self.session, ident.span, E0603, "{} `{}` is private",
4951                           binding.descr(), ident.name);
4952             }
4953         }
4954     }
4955
4956     fn report_with_use_injections(&mut self, krate: &Crate) {
4957         for UseError { mut err, candidates, node_id, better } in self.use_injections.drain(..) {
4958             let (span, found_use) = UsePlacementFinder::check(krate, node_id);
4959             if !candidates.is_empty() {
4960                 show_candidates(&mut err, span, &candidates, better, found_use);
4961             }
4962             err.emit();
4963         }
4964     }
4965
4966     fn report_conflict<'b>(&mut self,
4967                        parent: Module,
4968                        ident: Ident,
4969                        ns: Namespace,
4970                        new_binding: &NameBinding<'b>,
4971                        old_binding: &NameBinding<'b>) {
4972         // Error on the second of two conflicting names
4973         if old_binding.span.lo() > new_binding.span.lo() {
4974             return self.report_conflict(parent, ident, ns, old_binding, new_binding);
4975         }
4976
4977         let container = match parent.kind {
4978             ModuleKind::Def(Def::Mod(_), _) => "module",
4979             ModuleKind::Def(Def::Trait(_), _) => "trait",
4980             ModuleKind::Block(..) => "block",
4981             _ => "enum",
4982         };
4983
4984         let old_noun = match old_binding.is_import() {
4985             true => "import",
4986             false => "definition",
4987         };
4988
4989         let new_participle = match new_binding.is_import() {
4990             true => "imported",
4991             false => "defined",
4992         };
4993
4994         let (name, span) = (ident.name, self.session.source_map().def_span(new_binding.span));
4995
4996         if let Some(s) = self.name_already_seen.get(&name) {
4997             if s == &span {
4998                 return;
4999             }
5000         }
5001
5002         let old_kind = match (ns, old_binding.module()) {
5003             (ValueNS, _) => "value",
5004             (MacroNS, _) => "macro",
5005             (TypeNS, _) if old_binding.is_extern_crate() => "extern crate",
5006             (TypeNS, Some(module)) if module.is_normal() => "module",
5007             (TypeNS, Some(module)) if module.is_trait() => "trait",
5008             (TypeNS, _) => "type",
5009         };
5010
5011         let msg = format!("the name `{}` is defined multiple times", name);
5012
5013         let mut err = match (old_binding.is_extern_crate(), new_binding.is_extern_crate()) {
5014             (true, true) => struct_span_err!(self.session, span, E0259, "{}", msg),
5015             (true, _) | (_, true) => match new_binding.is_import() && old_binding.is_import() {
5016                 true => struct_span_err!(self.session, span, E0254, "{}", msg),
5017                 false => struct_span_err!(self.session, span, E0260, "{}", msg),
5018             },
5019             _ => match (old_binding.is_import(), new_binding.is_import()) {
5020                 (false, false) => struct_span_err!(self.session, span, E0428, "{}", msg),
5021                 (true, true) => struct_span_err!(self.session, span, E0252, "{}", msg),
5022                 _ => struct_span_err!(self.session, span, E0255, "{}", msg),
5023             },
5024         };
5025
5026         err.note(&format!("`{}` must be defined only once in the {} namespace of this {}",
5027                           name,
5028                           ns.descr(),
5029                           container));
5030
5031         err.span_label(span, format!("`{}` re{} here", name, new_participle));
5032         if !old_binding.span.is_dummy() {
5033             err.span_label(self.session.source_map().def_span(old_binding.span),
5034                            format!("previous {} of the {} `{}` here", old_noun, old_kind, name));
5035         }
5036
5037         // See https://github.com/rust-lang/rust/issues/32354
5038         if old_binding.is_import() || new_binding.is_import() {
5039             let binding = if new_binding.is_import() && !new_binding.span.is_dummy() {
5040                 new_binding
5041             } else {
5042                 old_binding
5043             };
5044
5045             let cm = self.session.source_map();
5046             let rename_msg = "you can use `as` to change the binding name of the import";
5047
5048             if let (
5049                 Ok(snippet),
5050                 NameBindingKind::Import { directive, ..},
5051                 _dummy @ false,
5052             ) = (
5053                 cm.span_to_snippet(binding.span),
5054                 binding.kind.clone(),
5055                 binding.span.is_dummy(),
5056             ) {
5057                 let suggested_name = if name.as_str().chars().next().unwrap().is_uppercase() {
5058                     format!("Other{}", name)
5059                 } else {
5060                     format!("other_{}", name)
5061                 };
5062
5063                 err.span_suggestion_with_applicability(
5064                     binding.span,
5065                     &rename_msg,
5066                     match directive.subclass {
5067                         ImportDirectiveSubclass::SingleImport { type_ns_only: true, .. } =>
5068                             format!("self as {}", suggested_name),
5069                         ImportDirectiveSubclass::SingleImport { source, .. } =>
5070                             format!(
5071                                 "{} as {}{}",
5072                                 &snippet[..((source.span.hi().0 - binding.span.lo().0) as usize)],
5073                                 suggested_name,
5074                                 if snippet.ends_with(";") {
5075                                     ";"
5076                                 } else {
5077                                     ""
5078                                 }
5079                             ),
5080                         ImportDirectiveSubclass::ExternCrate { source, target, .. } =>
5081                             format!(
5082                                 "extern crate {} as {};",
5083                                 source.unwrap_or(target.name),
5084                                 suggested_name,
5085                             ),
5086                         _ => unreachable!(),
5087                     },
5088                     Applicability::MaybeIncorrect,
5089                 );
5090             } else {
5091                 err.span_label(binding.span, rename_msg);
5092             }
5093         }
5094
5095         err.emit();
5096         self.name_already_seen.insert(name, span);
5097     }
5098
5099     fn extern_prelude_get(&mut self, ident: Ident, speculative: bool)
5100                           -> Option<&'a NameBinding<'a>> {
5101         if ident.is_path_segment_keyword() {
5102             // Make sure `self`, `super` etc produce an error when passed to here.
5103             return None;
5104         }
5105         self.extern_prelude.get(&ident.modern()).cloned().and_then(|entry| {
5106             if let Some(binding) = entry.extern_crate_item {
5107                 Some(binding)
5108             } else {
5109                 let crate_id = if !speculative {
5110                     self.crate_loader.process_path_extern(ident.name, ident.span)
5111                 } else if let Some(crate_id) =
5112                         self.crate_loader.maybe_process_path_extern(ident.name, ident.span) {
5113                     crate_id
5114                 } else {
5115                     return None;
5116                 };
5117                 let crate_root = self.get_module(DefId { krate: crate_id, index: CRATE_DEF_INDEX });
5118                 self.populate_module_if_necessary(&crate_root);
5119                 Some((crate_root, ty::Visibility::Public, DUMMY_SP, Mark::root())
5120                     .to_name_binding(self.arenas))
5121             }
5122         })
5123     }
5124 }
5125
5126 fn is_self_type(path: &[Segment], namespace: Namespace) -> bool {
5127     namespace == TypeNS && path.len() == 1 && path[0].ident.name == keywords::SelfUpper.name()
5128 }
5129
5130 fn is_self_value(path: &[Segment], namespace: Namespace) -> bool {
5131     namespace == ValueNS && path.len() == 1 && path[0].ident.name == keywords::SelfLower.name()
5132 }
5133
5134 fn names_to_string(idents: &[Ident]) -> String {
5135     let mut result = String::new();
5136     for (i, ident) in idents.iter()
5137                             .filter(|ident| ident.name != keywords::PathRoot.name())
5138                             .enumerate() {
5139         if i > 0 {
5140             result.push_str("::");
5141         }
5142         result.push_str(&ident.as_str());
5143     }
5144     result
5145 }
5146
5147 fn path_names_to_string(path: &Path) -> String {
5148     names_to_string(&path.segments.iter()
5149                         .map(|seg| seg.ident)
5150                         .collect::<Vec<_>>())
5151 }
5152
5153 /// Get the stringified path for an enum from an `ImportSuggestion` for an enum variant.
5154 fn import_candidate_to_enum_paths(suggestion: &ImportSuggestion) -> (String, String) {
5155     let variant_path = &suggestion.path;
5156     let variant_path_string = path_names_to_string(variant_path);
5157
5158     let path_len = suggestion.path.segments.len();
5159     let enum_path = ast::Path {
5160         span: suggestion.path.span,
5161         segments: suggestion.path.segments[0..path_len - 1].to_vec(),
5162     };
5163     let enum_path_string = path_names_to_string(&enum_path);
5164
5165     (variant_path_string, enum_path_string)
5166 }
5167
5168
5169 /// When an entity with a given name is not available in scope, we search for
5170 /// entities with that name in all crates. This method allows outputting the
5171 /// results of this search in a programmer-friendly way
5172 fn show_candidates(err: &mut DiagnosticBuilder,
5173                    // This is `None` if all placement locations are inside expansions
5174                    span: Option<Span>,
5175                    candidates: &[ImportSuggestion],
5176                    better: bool,
5177                    found_use: bool) {
5178
5179     // we want consistent results across executions, but candidates are produced
5180     // by iterating through a hash map, so make sure they are ordered:
5181     let mut path_strings: Vec<_> =
5182         candidates.into_iter().map(|c| path_names_to_string(&c.path)).collect();
5183     path_strings.sort();
5184
5185     let better = if better { "better " } else { "" };
5186     let msg_diff = match path_strings.len() {
5187         1 => " is found in another module, you can import it",
5188         _ => "s are found in other modules, you can import them",
5189     };
5190     let msg = format!("possible {}candidate{} into scope", better, msg_diff);
5191
5192     if let Some(span) = span {
5193         for candidate in &mut path_strings {
5194             // produce an additional newline to separate the new use statement
5195             // from the directly following item.
5196             let additional_newline = if found_use {
5197                 ""
5198             } else {
5199                 "\n"
5200             };
5201             *candidate = format!("use {};\n{}", candidate, additional_newline);
5202         }
5203
5204         err.span_suggestions_with_applicability(
5205             span,
5206             &msg,
5207             path_strings.into_iter(),
5208             Applicability::Unspecified,
5209         );
5210     } else {
5211         let mut msg = msg;
5212         msg.push(':');
5213         for candidate in path_strings {
5214             msg.push('\n');
5215             msg.push_str(&candidate);
5216         }
5217     }
5218 }
5219
5220 /// A somewhat inefficient routine to obtain the name of a module.
5221 fn module_to_string(module: Module) -> Option<String> {
5222     let mut names = Vec::new();
5223
5224     fn collect_mod(names: &mut Vec<Ident>, module: Module) {
5225         if let ModuleKind::Def(_, name) = module.kind {
5226             if let Some(parent) = module.parent {
5227                 names.push(Ident::with_empty_ctxt(name));
5228                 collect_mod(names, parent);
5229             }
5230         } else {
5231             // danger, shouldn't be ident?
5232             names.push(Ident::from_str("<opaque>"));
5233             collect_mod(names, module.parent.unwrap());
5234         }
5235     }
5236     collect_mod(&mut names, module);
5237
5238     if names.is_empty() {
5239         return None;
5240     }
5241     Some(names_to_string(&names.into_iter()
5242                         .rev()
5243                         .collect::<Vec<_>>()))
5244 }
5245
5246 fn err_path_resolution() -> PathResolution {
5247     PathResolution::new(Def::Err)
5248 }
5249
5250 #[derive(PartialEq,Copy, Clone)]
5251 pub enum MakeGlobMap {
5252     Yes,
5253     No,
5254 }
5255
5256 #[derive(Copy, Clone, Debug)]
5257 enum CrateLint {
5258     /// Do not issue the lint
5259     No,
5260
5261     /// This lint applies to some random path like `impl ::foo::Bar`
5262     /// or whatever. In this case, we can take the span of that path.
5263     SimplePath(NodeId),
5264
5265     /// This lint comes from a `use` statement. In this case, what we
5266     /// care about really is the *root* `use` statement; e.g., if we
5267     /// have nested things like `use a::{b, c}`, we care about the
5268     /// `use a` part.
5269     UsePath { root_id: NodeId, root_span: Span },
5270
5271     /// This is the "trait item" from a fully qualified path. For example,
5272     /// we might be resolving  `X::Y::Z` from a path like `<T as X::Y>::Z`.
5273     /// The `path_span` is the span of the to the trait itself (`X::Y`).
5274     QPathTrait { qpath_id: NodeId, qpath_span: Span },
5275 }
5276
5277 impl CrateLint {
5278     fn node_id(&self) -> Option<NodeId> {
5279         match *self {
5280             CrateLint::No => None,
5281             CrateLint::SimplePath(id) |
5282             CrateLint::UsePath { root_id: id, .. } |
5283             CrateLint::QPathTrait { qpath_id: id, .. } => Some(id),
5284         }
5285     }
5286 }
5287
5288 __build_diagnostic_array! { librustc_resolve, DIAGNOSTICS }