]> git.lizzy.rs Git - rust.git/blob - src/librustc_resolve/lib.rs
Reintroduce special pretty-printing for `$crate` when it's necessary for proc macros
[rust.git] / src / librustc_resolve / lib.rs
1 // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 #![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
12        html_favicon_url = "https://doc.rust-lang.org/favicon.ico",
13        html_root_url = "https://doc.rust-lang.org/nightly/")]
14
15 #![feature(crate_visibility_modifier)]
16 #![feature(label_break_value)]
17 #![feature(nll)]
18 #![feature(rustc_diagnostic_macros)]
19 #![feature(slice_sort_by_cached_key)]
20
21 #[macro_use]
22 extern crate bitflags;
23 #[macro_use]
24 extern crate log;
25 #[macro_use]
26 extern crate syntax;
27 extern crate syntax_pos;
28 extern crate rustc_errors as errors;
29 extern crate arena;
30 #[macro_use]
31 extern crate rustc;
32 extern crate rustc_data_structures;
33 extern crate rustc_metadata;
34
35 pub use rustc::hir::def::{Namespace, PerNS};
36
37 use self::TypeParameters::*;
38 use self::RibKind::*;
39
40 use rustc::hir::map::{Definitions, DefCollector};
41 use rustc::hir::{self, PrimTy, Bool, Char, Float, Int, Uint, Str};
42 use rustc::middle::cstore::CrateStore;
43 use rustc::session::Session;
44 use rustc::lint;
45 use rustc::hir::def::*;
46 use rustc::hir::def::Namespace::*;
47 use rustc::hir::def_id::{CRATE_DEF_INDEX, LOCAL_CRATE, DefId};
48 use rustc::hir::{Freevar, FreevarMap, TraitCandidate, TraitMap, GlobMap};
49 use rustc::session::config::nightly_options;
50 use rustc::ty;
51 use rustc::util::nodemap::{NodeMap, NodeSet, FxHashMap, FxHashSet, DefIdMap};
52
53 use rustc_metadata::creader::CrateLoader;
54 use rustc_metadata::cstore::CStore;
55
56 use syntax::source_map::SourceMap;
57 use syntax::ext::hygiene::{Mark, Transparency, SyntaxContext};
58 use syntax::ast::{self, Name, NodeId, Ident, FloatTy, IntTy, UintTy};
59 use syntax::ext::base::SyntaxExtension;
60 use syntax::ext::base::Determinacy::{self, Determined, Undetermined};
61 use syntax::ext::base::MacroKind;
62 use syntax::symbol::{Symbol, keywords};
63 use syntax::util::lev_distance::find_best_match_for_name;
64
65 use syntax::visit::{self, FnKind, Visitor};
66 use syntax::attr;
67 use syntax::ast::{CRATE_NODE_ID, Arm, IsAsync, BindingMode, Block, Crate, Expr, ExprKind};
68 use syntax::ast::{FnDecl, ForeignItem, ForeignItemKind, GenericParamKind, Generics};
69 use syntax::ast::{Item, ItemKind, ImplItem, ImplItemKind};
70 use syntax::ast::{Label, Local, Mutability, Pat, PatKind, Path};
71 use syntax::ast::{QSelf, TraitItemKind, TraitRef, Ty, TyKind};
72 use syntax::ptr::P;
73
74 use syntax_pos::{Span, DUMMY_SP, MultiSpan};
75 use errors::{Applicability, DiagnosticBuilder, DiagnosticId};
76
77 use std::cell::{Cell, RefCell};
78 use std::{cmp, fmt, iter, ptr};
79 use std::collections::BTreeSet;
80 use std::mem::replace;
81 use rustc_data_structures::ptr_key::PtrKey;
82 use rustc_data_structures::sync::Lrc;
83
84 use resolve_imports::{ImportDirective, ImportDirectiveSubclass, NameResolution, ImportResolver};
85 use macros::{InvocationData, LegacyBinding, ParentScope};
86
87 // N.B., this module needs to be declared first so diagnostics are
88 // registered before they are used.
89 mod diagnostics;
90 mod error_reporting;
91 mod macros;
92 mod check_unused;
93 mod build_reduced_graph;
94 mod resolve_imports;
95
96 fn is_known_tool(name: Name) -> bool {
97     ["clippy", "rustfmt"].contains(&&*name.as_str())
98 }
99
100 enum Weak {
101     Yes,
102     No,
103 }
104
105 enum ScopeSet {
106     Import(Namespace),
107     AbsolutePath(Namespace),
108     Macro(MacroKind),
109     Module,
110 }
111
112 /// A free importable items suggested in case of resolution failure.
113 struct ImportSuggestion {
114     path: Path,
115 }
116
117 /// A field or associated item from self type suggested in case of resolution failure.
118 enum AssocSuggestion {
119     Field,
120     MethodWithSelf,
121     AssocItem,
122 }
123
124 #[derive(Eq)]
125 struct BindingError {
126     name: Name,
127     origin: BTreeSet<Span>,
128     target: BTreeSet<Span>,
129 }
130
131 impl PartialOrd for BindingError {
132     fn partial_cmp(&self, other: &BindingError) -> Option<cmp::Ordering> {
133         Some(self.cmp(other))
134     }
135 }
136
137 impl PartialEq for BindingError {
138     fn eq(&self, other: &BindingError) -> bool {
139         self.name == other.name
140     }
141 }
142
143 impl Ord for BindingError {
144     fn cmp(&self, other: &BindingError) -> cmp::Ordering {
145         self.name.cmp(&other.name)
146     }
147 }
148
149 enum ResolutionError<'a> {
150     /// error E0401: can't use type parameters from outer function
151     TypeParametersFromOuterFunction(Def),
152     /// error E0403: the name is already used for a type parameter in this type parameter list
153     NameAlreadyUsedInTypeParameterList(Name, &'a Span),
154     /// error E0407: method is not a member of trait
155     MethodNotMemberOfTrait(Name, &'a str),
156     /// error E0437: type is not a member of trait
157     TypeNotMemberOfTrait(Name, &'a str),
158     /// error E0438: const is not a member of trait
159     ConstNotMemberOfTrait(Name, &'a str),
160     /// error E0408: variable `{}` is not bound in all patterns
161     VariableNotBoundInPattern(&'a BindingError),
162     /// error E0409: variable `{}` is bound in inconsistent ways within the same match arm
163     VariableBoundWithDifferentMode(Name, Span),
164     /// error E0415: identifier is bound more than once in this parameter list
165     IdentifierBoundMoreThanOnceInParameterList(&'a str),
166     /// error E0416: identifier is bound more than once in the same pattern
167     IdentifierBoundMoreThanOnceInSamePattern(&'a str),
168     /// error E0426: use of undeclared label
169     UndeclaredLabel(&'a str, Option<Name>),
170     /// error E0429: `self` imports are only allowed within a { } list
171     SelfImportsOnlyAllowedWithin,
172     /// error E0430: `self` import can only appear once in the list
173     SelfImportCanOnlyAppearOnceInTheList,
174     /// error E0431: `self` import can only appear in an import list with a non-empty prefix
175     SelfImportOnlyInImportListWithNonEmptyPrefix,
176     /// error E0433: failed to resolve
177     FailedToResolve(&'a str),
178     /// error E0434: can't capture dynamic environment in a fn item
179     CannotCaptureDynamicEnvironmentInFnItem,
180     /// error E0435: attempt to use a non-constant value in a constant
181     AttemptToUseNonConstantValueInConstant,
182     /// error E0530: X bindings cannot shadow Ys
183     BindingShadowsSomethingUnacceptable(&'a str, Name, &'a NameBinding<'a>),
184     /// error E0128: type parameters with a default cannot use forward declared identifiers
185     ForwardDeclaredTyParam,
186 }
187
188 /// Combines an error with provided span and emits it
189 ///
190 /// This takes the error provided, combines it with the span and any additional spans inside the
191 /// error and emits it.
192 fn resolve_error<'sess, 'a>(resolver: &'sess Resolver,
193                             span: Span,
194                             resolution_error: ResolutionError<'a>) {
195     resolve_struct_error(resolver, span, resolution_error).emit();
196 }
197
198 fn resolve_struct_error<'sess, 'a>(resolver: &'sess Resolver,
199                                    span: Span,
200                                    resolution_error: ResolutionError<'a>)
201                                    -> DiagnosticBuilder<'sess> {
202     match resolution_error {
203         ResolutionError::TypeParametersFromOuterFunction(outer_def) => {
204             let mut err = struct_span_err!(resolver.session,
205                                            span,
206                                            E0401,
207                                            "can't use type parameters from outer function");
208             err.span_label(span, "use of type variable from outer function");
209
210             let cm = resolver.session.source_map();
211             match outer_def {
212                 Def::SelfTy(maybe_trait_defid, maybe_impl_defid) => {
213                     if let Some(impl_span) = maybe_impl_defid.and_then(|def_id| {
214                         resolver.definitions.opt_span(def_id)
215                     }) {
216                         err.span_label(
217                             reduce_impl_span_to_impl_keyword(cm, impl_span),
218                             "`Self` type implicitly declared here, by this `impl`",
219                         );
220                     }
221                     match (maybe_trait_defid, maybe_impl_defid) {
222                         (Some(_), None) => {
223                             err.span_label(span, "can't use `Self` here");
224                         }
225                         (_, Some(_)) => {
226                             err.span_label(span, "use a type here instead");
227                         }
228                         (None, None) => bug!("`impl` without trait nor type?"),
229                     }
230                     return err;
231                 },
232                 Def::TyParam(typaram_defid) => {
233                     if let Some(typaram_span) = resolver.definitions.opt_span(typaram_defid) {
234                         err.span_label(typaram_span, "type variable from outer function");
235                     }
236                 },
237                 _ => {
238                     bug!("TypeParametersFromOuterFunction should only be used with Def::SelfTy or \
239                          Def::TyParam")
240                 }
241             }
242
243             // Try to retrieve the span of the function signature and generate a new message with
244             // a local type parameter
245             let sugg_msg = "try using a local type parameter instead";
246             if let Some((sugg_span, new_snippet)) = cm.generate_local_type_param_snippet(span) {
247                 // Suggest the modification to the user
248                 err.span_suggestion_with_applicability(
249                     sugg_span,
250                     sugg_msg,
251                     new_snippet,
252                     Applicability::MachineApplicable,
253                 );
254             } else if let Some(sp) = cm.generate_fn_name_span(span) {
255                 err.span_label(sp, "try adding a local type parameter in this method instead");
256             } else {
257                 err.help("try using a local type parameter instead");
258             }
259
260             err
261         }
262         ResolutionError::NameAlreadyUsedInTypeParameterList(name, first_use_span) => {
263              let mut err = struct_span_err!(resolver.session,
264                                             span,
265                                             E0403,
266                                             "the name `{}` is already used for a type parameter \
267                                             in this type parameter list",
268                                             name);
269              err.span_label(span, "already used");
270              err.span_label(first_use_span.clone(), format!("first use of `{}`", name));
271              err
272         }
273         ResolutionError::MethodNotMemberOfTrait(method, trait_) => {
274             let mut err = struct_span_err!(resolver.session,
275                                            span,
276                                            E0407,
277                                            "method `{}` is not a member of trait `{}`",
278                                            method,
279                                            trait_);
280             err.span_label(span, format!("not a member of trait `{}`", trait_));
281             err
282         }
283         ResolutionError::TypeNotMemberOfTrait(type_, trait_) => {
284             let mut err = struct_span_err!(resolver.session,
285                              span,
286                              E0437,
287                              "type `{}` is not a member of trait `{}`",
288                              type_,
289                              trait_);
290             err.span_label(span, format!("not a member of trait `{}`", trait_));
291             err
292         }
293         ResolutionError::ConstNotMemberOfTrait(const_, trait_) => {
294             let mut err = struct_span_err!(resolver.session,
295                              span,
296                              E0438,
297                              "const `{}` is not a member of trait `{}`",
298                              const_,
299                              trait_);
300             err.span_label(span, format!("not a member of trait `{}`", trait_));
301             err
302         }
303         ResolutionError::VariableNotBoundInPattern(binding_error) => {
304             let target_sp = binding_error.target.iter().cloned().collect::<Vec<_>>();
305             let msp = MultiSpan::from_spans(target_sp.clone());
306             let msg = format!("variable `{}` is not bound in all patterns", binding_error.name);
307             let mut err = resolver.session.struct_span_err_with_code(
308                 msp,
309                 &msg,
310                 DiagnosticId::Error("E0408".into()),
311             );
312             for sp in target_sp {
313                 err.span_label(sp, format!("pattern doesn't bind `{}`", binding_error.name));
314             }
315             let origin_sp = binding_error.origin.iter().cloned();
316             for sp in origin_sp {
317                 err.span_label(sp, "variable not in all patterns");
318             }
319             err
320         }
321         ResolutionError::VariableBoundWithDifferentMode(variable_name,
322                                                         first_binding_span) => {
323             let mut err = struct_span_err!(resolver.session,
324                              span,
325                              E0409,
326                              "variable `{}` is bound in inconsistent \
327                              ways within the same match arm",
328                              variable_name);
329             err.span_label(span, "bound in different ways");
330             err.span_label(first_binding_span, "first binding");
331             err
332         }
333         ResolutionError::IdentifierBoundMoreThanOnceInParameterList(identifier) => {
334             let mut err = struct_span_err!(resolver.session,
335                              span,
336                              E0415,
337                              "identifier `{}` is bound more than once in this parameter list",
338                              identifier);
339             err.span_label(span, "used as parameter more than once");
340             err
341         }
342         ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(identifier) => {
343             let mut err = struct_span_err!(resolver.session,
344                              span,
345                              E0416,
346                              "identifier `{}` is bound more than once in the same pattern",
347                              identifier);
348             err.span_label(span, "used in a pattern more than once");
349             err
350         }
351         ResolutionError::UndeclaredLabel(name, lev_candidate) => {
352             let mut err = struct_span_err!(resolver.session,
353                                            span,
354                                            E0426,
355                                            "use of undeclared label `{}`",
356                                            name);
357             if let Some(lev_candidate) = lev_candidate {
358                 err.span_label(span, format!("did you mean `{}`?", lev_candidate));
359             } else {
360                 err.span_label(span, format!("undeclared label `{}`", name));
361             }
362             err
363         }
364         ResolutionError::SelfImportsOnlyAllowedWithin => {
365             struct_span_err!(resolver.session,
366                              span,
367                              E0429,
368                              "{}",
369                              "`self` imports are only allowed within a { } list")
370         }
371         ResolutionError::SelfImportCanOnlyAppearOnceInTheList => {
372             let mut err = struct_span_err!(resolver.session, span, E0430,
373                                            "`self` import can only appear once in an import list");
374             err.span_label(span, "can only appear once in an import list");
375             err
376         }
377         ResolutionError::SelfImportOnlyInImportListWithNonEmptyPrefix => {
378             let mut err = struct_span_err!(resolver.session, span, E0431,
379                                            "`self` import can only appear in an import list with \
380                                             a non-empty prefix");
381             err.span_label(span, "can only appear in an import list with a non-empty prefix");
382             err
383         }
384         ResolutionError::FailedToResolve(msg) => {
385             let mut err = struct_span_err!(resolver.session, span, E0433,
386                                            "failed to resolve: {}", msg);
387             err.span_label(span, msg);
388             err
389         }
390         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem => {
391             let mut err = struct_span_err!(resolver.session,
392                                            span,
393                                            E0434,
394                                            "{}",
395                                            "can't capture dynamic environment in a fn item");
396             err.help("use the `|| { ... }` closure form instead");
397             err
398         }
399         ResolutionError::AttemptToUseNonConstantValueInConstant => {
400             let mut err = struct_span_err!(resolver.session, span, E0435,
401                                            "attempt to use a non-constant value in a constant");
402             err.span_label(span, "non-constant value");
403             err
404         }
405         ResolutionError::BindingShadowsSomethingUnacceptable(what_binding, name, binding) => {
406             let shadows_what = binding.descr();
407             let mut err = struct_span_err!(resolver.session, span, E0530, "{}s cannot shadow {}s",
408                                            what_binding, shadows_what);
409             err.span_label(span, format!("cannot be named the same as {} {}",
410                                          binding.article(), shadows_what));
411             let participle = if binding.is_import() { "imported" } else { "defined" };
412             let msg = format!("the {} `{}` is {} here", shadows_what, name, participle);
413             err.span_label(binding.span, msg);
414             err
415         }
416         ResolutionError::ForwardDeclaredTyParam => {
417             let mut err = struct_span_err!(resolver.session, span, E0128,
418                                            "type parameters with a default cannot use \
419                                             forward declared identifiers");
420             err.span_label(
421                 span, "defaulted type parameters cannot be forward declared".to_string());
422             err
423         }
424     }
425 }
426
427 /// Adjust the impl span so that just the `impl` keyword is taken by removing
428 /// everything after `<` (`"impl<T> Iterator for A<T> {}" -> "impl"`) and
429 /// everything after the first whitespace (`"impl Iterator for A" -> "impl"`)
430 ///
431 /// Attention: The method used is very fragile since it essentially duplicates the work of the
432 /// parser. If you need to use this function or something similar, please consider updating the
433 /// source_map functions and this function to something more robust.
434 fn reduce_impl_span_to_impl_keyword(cm: &SourceMap, impl_span: Span) -> Span {
435     let impl_span = cm.span_until_char(impl_span, '<');
436     let impl_span = cm.span_until_whitespace(impl_span);
437     impl_span
438 }
439
440 #[derive(Copy, Clone, Debug)]
441 struct BindingInfo {
442     span: Span,
443     binding_mode: BindingMode,
444 }
445
446 /// Map from the name in a pattern to its binding mode.
447 type BindingMap = FxHashMap<Ident, BindingInfo>;
448
449 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
450 enum PatternSource {
451     Match,
452     IfLet,
453     WhileLet,
454     Let,
455     For,
456     FnParam,
457 }
458
459 impl PatternSource {
460     fn descr(self) -> &'static str {
461         match self {
462             PatternSource::Match => "match binding",
463             PatternSource::IfLet => "if let binding",
464             PatternSource::WhileLet => "while let binding",
465             PatternSource::Let => "let binding",
466             PatternSource::For => "for binding",
467             PatternSource::FnParam => "function parameter",
468         }
469     }
470 }
471
472 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
473 enum AliasPossibility {
474     No,
475     Maybe,
476 }
477
478 #[derive(Copy, Clone, Debug)]
479 enum PathSource<'a> {
480     // Type paths `Path`.
481     Type,
482     // Trait paths in bounds or impls.
483     Trait(AliasPossibility),
484     // Expression paths `path`, with optional parent context.
485     Expr(Option<&'a Expr>),
486     // Paths in path patterns `Path`.
487     Pat,
488     // Paths in struct expressions and patterns `Path { .. }`.
489     Struct,
490     // Paths in tuple struct patterns `Path(..)`.
491     TupleStruct,
492     // `m::A::B` in `<T as m::A>::B::C`.
493     TraitItem(Namespace),
494     // Path in `pub(path)`
495     Visibility,
496 }
497
498 impl<'a> PathSource<'a> {
499     fn namespace(self) -> Namespace {
500         match self {
501             PathSource::Type | PathSource::Trait(_) | PathSource::Struct |
502             PathSource::Visibility => TypeNS,
503             PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct => ValueNS,
504             PathSource::TraitItem(ns) => ns,
505         }
506     }
507
508     fn global_by_default(self) -> bool {
509         match self {
510             PathSource::Visibility => true,
511             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
512             PathSource::Struct | PathSource::TupleStruct |
513             PathSource::Trait(_) | PathSource::TraitItem(..) => false,
514         }
515     }
516
517     fn defer_to_typeck(self) -> bool {
518         match self {
519             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
520             PathSource::Struct | PathSource::TupleStruct => true,
521             PathSource::Trait(_) | PathSource::TraitItem(..) |
522             PathSource::Visibility => false,
523         }
524     }
525
526     fn descr_expected(self) -> &'static str {
527         match self {
528             PathSource::Type => "type",
529             PathSource::Trait(_) => "trait",
530             PathSource::Pat => "unit struct/variant or constant",
531             PathSource::Struct => "struct, variant or union type",
532             PathSource::TupleStruct => "tuple struct/variant",
533             PathSource::Visibility => "module",
534             PathSource::TraitItem(ns) => match ns {
535                 TypeNS => "associated type",
536                 ValueNS => "method or associated constant",
537                 MacroNS => bug!("associated macro"),
538             },
539             PathSource::Expr(parent) => match parent.map(|p| &p.node) {
540                 // "function" here means "anything callable" rather than `Def::Fn`,
541                 // this is not precise but usually more helpful than just "value".
542                 Some(&ExprKind::Call(..)) => "function",
543                 _ => "value",
544             },
545         }
546     }
547
548     fn is_expected(self, def: Def) -> bool {
549         match self {
550             PathSource::Type => match def {
551                 Def::Struct(..) | Def::Union(..) | Def::Enum(..) |
552                 Def::Trait(..) | Def::TraitAlias(..) | Def::TyAlias(..) |
553                 Def::AssociatedTy(..) | Def::PrimTy(..) | Def::TyParam(..) |
554                 Def::SelfTy(..) | Def::Existential(..) |
555                 Def::ForeignTy(..) => true,
556                 _ => false,
557             },
558             PathSource::Trait(AliasPossibility::No) => match def {
559                 Def::Trait(..) => true,
560                 _ => false,
561             },
562             PathSource::Trait(AliasPossibility::Maybe) => match def {
563                 Def::Trait(..) => true,
564                 Def::TraitAlias(..) => true,
565                 _ => false,
566             },
567             PathSource::Expr(..) => match def {
568                 Def::StructCtor(_, CtorKind::Const) | Def::StructCtor(_, CtorKind::Fn) |
569                 Def::VariantCtor(_, CtorKind::Const) | Def::VariantCtor(_, CtorKind::Fn) |
570                 Def::Const(..) | Def::Static(..) | Def::Local(..) | Def::Upvar(..) |
571                 Def::Fn(..) | Def::Method(..) | Def::AssociatedConst(..) |
572                 Def::SelfCtor(..) => true,
573                 _ => false,
574             },
575             PathSource::Pat => match def {
576                 Def::StructCtor(_, CtorKind::Const) |
577                 Def::VariantCtor(_, CtorKind::Const) |
578                 Def::Const(..) | Def::AssociatedConst(..) |
579                 Def::SelfCtor(..) => true,
580                 _ => false,
581             },
582             PathSource::TupleStruct => match def {
583                 Def::StructCtor(_, CtorKind::Fn) |
584                 Def::VariantCtor(_, CtorKind::Fn) |
585                 Def::SelfCtor(..) => true,
586                 _ => false,
587             },
588             PathSource::Struct => match def {
589                 Def::Struct(..) | Def::Union(..) | Def::Variant(..) |
590                 Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => true,
591                 _ => false,
592             },
593             PathSource::TraitItem(ns) => match def {
594                 Def::AssociatedConst(..) | Def::Method(..) if ns == ValueNS => true,
595                 Def::AssociatedTy(..) if ns == TypeNS => true,
596                 _ => false,
597             },
598             PathSource::Visibility => match def {
599                 Def::Mod(..) => true,
600                 _ => false,
601             },
602         }
603     }
604
605     fn error_code(self, has_unexpected_resolution: bool) -> &'static str {
606         __diagnostic_used!(E0404);
607         __diagnostic_used!(E0405);
608         __diagnostic_used!(E0412);
609         __diagnostic_used!(E0422);
610         __diagnostic_used!(E0423);
611         __diagnostic_used!(E0425);
612         __diagnostic_used!(E0531);
613         __diagnostic_used!(E0532);
614         __diagnostic_used!(E0573);
615         __diagnostic_used!(E0574);
616         __diagnostic_used!(E0575);
617         __diagnostic_used!(E0576);
618         __diagnostic_used!(E0577);
619         __diagnostic_used!(E0578);
620         match (self, has_unexpected_resolution) {
621             (PathSource::Trait(_), true) => "E0404",
622             (PathSource::Trait(_), false) => "E0405",
623             (PathSource::Type, true) => "E0573",
624             (PathSource::Type, false) => "E0412",
625             (PathSource::Struct, true) => "E0574",
626             (PathSource::Struct, false) => "E0422",
627             (PathSource::Expr(..), true) => "E0423",
628             (PathSource::Expr(..), false) => "E0425",
629             (PathSource::Pat, true) | (PathSource::TupleStruct, true) => "E0532",
630             (PathSource::Pat, false) | (PathSource::TupleStruct, false) => "E0531",
631             (PathSource::TraitItem(..), true) => "E0575",
632             (PathSource::TraitItem(..), false) => "E0576",
633             (PathSource::Visibility, true) => "E0577",
634             (PathSource::Visibility, false) => "E0578",
635         }
636     }
637 }
638
639 // A minimal representation of a path segment. We use this in resolve because
640 // we synthesize 'path segments' which don't have the rest of an AST or HIR
641 // `PathSegment`.
642 #[derive(Clone, Copy, Debug)]
643 pub struct Segment {
644     ident: Ident,
645     id: Option<NodeId>,
646 }
647
648 impl Segment {
649     fn from_path(path: &Path) -> Vec<Segment> {
650         path.segments.iter().map(|s| s.into()).collect()
651     }
652
653     fn from_ident(ident: Ident) -> Segment {
654         Segment {
655             ident,
656             id: None,
657         }
658     }
659
660     fn names_to_string(segments: &[Segment]) -> String {
661         names_to_string(&segments.iter()
662                             .map(|seg| seg.ident)
663                             .collect::<Vec<_>>())
664     }
665 }
666
667 impl<'a> From<&'a ast::PathSegment> for Segment {
668     fn from(seg: &'a ast::PathSegment) -> Segment {
669         Segment {
670             ident: seg.ident,
671             id: Some(seg.id),
672         }
673     }
674 }
675
676 struct UsePlacementFinder {
677     target_module: NodeId,
678     span: Option<Span>,
679     found_use: bool,
680 }
681
682 impl UsePlacementFinder {
683     fn check(krate: &Crate, target_module: NodeId) -> (Option<Span>, bool) {
684         let mut finder = UsePlacementFinder {
685             target_module,
686             span: None,
687             found_use: false,
688         };
689         visit::walk_crate(&mut finder, krate);
690         (finder.span, finder.found_use)
691     }
692 }
693
694 impl<'tcx> Visitor<'tcx> for UsePlacementFinder {
695     fn visit_mod(
696         &mut self,
697         module: &'tcx ast::Mod,
698         _: Span,
699         _: &[ast::Attribute],
700         node_id: NodeId,
701     ) {
702         if self.span.is_some() {
703             return;
704         }
705         if node_id != self.target_module {
706             visit::walk_mod(self, module);
707             return;
708         }
709         // find a use statement
710         for item in &module.items {
711             match item.node {
712                 ItemKind::Use(..) => {
713                     // don't suggest placing a use before the prelude
714                     // import or other generated ones
715                     if item.span.ctxt().outer().expn_info().is_none() {
716                         self.span = Some(item.span.shrink_to_lo());
717                         self.found_use = true;
718                         return;
719                     }
720                 },
721                 // don't place use before extern crate
722                 ItemKind::ExternCrate(_) => {}
723                 // but place them before the first other item
724                 _ => if self.span.map_or(true, |span| item.span < span ) {
725                     if item.span.ctxt().outer().expn_info().is_none() {
726                         // don't insert between attributes and an item
727                         if item.attrs.is_empty() {
728                             self.span = Some(item.span.shrink_to_lo());
729                         } else {
730                             // find the first attribute on the item
731                             for attr in &item.attrs {
732                                 if self.span.map_or(true, |span| attr.span < span) {
733                                     self.span = Some(attr.span.shrink_to_lo());
734                                 }
735                             }
736                         }
737                     }
738                 },
739             }
740         }
741     }
742 }
743
744 /// This thing walks the whole crate in DFS manner, visiting each item, resolving names as it goes.
745 impl<'a, 'tcx> Visitor<'tcx> for Resolver<'a> {
746     fn visit_item(&mut self, item: &'tcx Item) {
747         self.resolve_item(item);
748     }
749     fn visit_arm(&mut self, arm: &'tcx Arm) {
750         self.resolve_arm(arm);
751     }
752     fn visit_block(&mut self, block: &'tcx Block) {
753         self.resolve_block(block);
754     }
755     fn visit_anon_const(&mut self, constant: &'tcx ast::AnonConst) {
756         self.with_constant_rib(|this| {
757             visit::walk_anon_const(this, constant);
758         });
759     }
760     fn visit_expr(&mut self, expr: &'tcx Expr) {
761         self.resolve_expr(expr, None);
762     }
763     fn visit_local(&mut self, local: &'tcx Local) {
764         self.resolve_local(local);
765     }
766     fn visit_ty(&mut self, ty: &'tcx Ty) {
767         match ty.node {
768             TyKind::Path(ref qself, ref path) => {
769                 self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
770             }
771             TyKind::ImplicitSelf => {
772                 let self_ty = keywords::SelfUpper.ident();
773                 let def = self.resolve_ident_in_lexical_scope(self_ty, TypeNS, Some(ty.id), ty.span)
774                               .map_or(Def::Err, |d| d.def());
775                 self.record_def(ty.id, PathResolution::new(def));
776             }
777             _ => (),
778         }
779         visit::walk_ty(self, ty);
780     }
781     fn visit_poly_trait_ref(&mut self,
782                             tref: &'tcx ast::PolyTraitRef,
783                             m: &'tcx ast::TraitBoundModifier) {
784         self.smart_resolve_path(tref.trait_ref.ref_id, None,
785                                 &tref.trait_ref.path, PathSource::Trait(AliasPossibility::Maybe));
786         visit::walk_poly_trait_ref(self, tref, m);
787     }
788     fn visit_foreign_item(&mut self, foreign_item: &'tcx ForeignItem) {
789         let type_parameters = match foreign_item.node {
790             ForeignItemKind::Fn(_, ref generics) => {
791                 HasTypeParameters(generics, ItemRibKind)
792             }
793             ForeignItemKind::Static(..) => NoTypeParameters,
794             ForeignItemKind::Ty => NoTypeParameters,
795             ForeignItemKind::Macro(..) => NoTypeParameters,
796         };
797         self.with_type_parameter_rib(type_parameters, |this| {
798             visit::walk_foreign_item(this, foreign_item);
799         });
800     }
801     fn visit_fn(&mut self,
802                 function_kind: FnKind<'tcx>,
803                 declaration: &'tcx FnDecl,
804                 _: Span,
805                 node_id: NodeId)
806     {
807         let (rib_kind, asyncness) = match function_kind {
808             FnKind::ItemFn(_, ref header, ..) =>
809                 (ItemRibKind, header.asyncness),
810             FnKind::Method(_, ref sig, _, _) =>
811                 (TraitOrImplItemRibKind, sig.header.asyncness),
812             FnKind::Closure(_) =>
813                 // Async closures aren't resolved through `visit_fn`-- they're
814                 // processed separately
815                 (ClosureRibKind(node_id), IsAsync::NotAsync),
816         };
817
818         // Create a value rib for the function.
819         self.ribs[ValueNS].push(Rib::new(rib_kind));
820
821         // Create a label rib for the function.
822         self.label_ribs.push(Rib::new(rib_kind));
823
824         // Add each argument to the rib.
825         let mut bindings_list = FxHashMap::default();
826         for argument in &declaration.inputs {
827             self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
828
829             self.visit_ty(&argument.ty);
830
831             debug!("(resolving function) recorded argument");
832         }
833         visit::walk_fn_ret_ty(self, &declaration.output);
834
835         // Resolve the function body, potentially inside the body of an async closure
836         if let IsAsync::Async { closure_id, .. } = asyncness {
837             let rib_kind = ClosureRibKind(closure_id);
838             self.ribs[ValueNS].push(Rib::new(rib_kind));
839             self.label_ribs.push(Rib::new(rib_kind));
840         }
841
842         match function_kind {
843             FnKind::ItemFn(.., body) |
844             FnKind::Method(.., body) => {
845                 self.visit_block(body);
846             }
847             FnKind::Closure(body) => {
848                 self.visit_expr(body);
849             }
850         };
851
852         // Leave the body of the async closure
853         if asyncness.is_async() {
854             self.label_ribs.pop();
855             self.ribs[ValueNS].pop();
856         }
857
858         debug!("(resolving function) leaving function");
859
860         self.label_ribs.pop();
861         self.ribs[ValueNS].pop();
862     }
863     fn visit_generics(&mut self, generics: &'tcx Generics) {
864         // For type parameter defaults, we have to ban access
865         // to following type parameters, as the Substs can only
866         // provide previous type parameters as they're built. We
867         // put all the parameters on the ban list and then remove
868         // them one by one as they are processed and become available.
869         let mut default_ban_rib = Rib::new(ForwardTyParamBanRibKind);
870         let mut found_default = false;
871         default_ban_rib.bindings.extend(generics.params.iter()
872             .filter_map(|param| match param.kind {
873                 GenericParamKind::Lifetime { .. } => None,
874                 GenericParamKind::Type { ref default, .. } => {
875                     found_default |= default.is_some();
876                     if found_default {
877                         Some((Ident::with_empty_ctxt(param.ident.name), Def::Err))
878                     } else {
879                         None
880                     }
881                 }
882             }));
883
884         for param in &generics.params {
885             match param.kind {
886                 GenericParamKind::Lifetime { .. } => self.visit_generic_param(param),
887                 GenericParamKind::Type { ref default, .. } => {
888                     for bound in &param.bounds {
889                         self.visit_param_bound(bound);
890                     }
891
892                     if let Some(ref ty) = default {
893                         self.ribs[TypeNS].push(default_ban_rib);
894                         self.visit_ty(ty);
895                         default_ban_rib = self.ribs[TypeNS].pop().unwrap();
896                     }
897
898                     // Allow all following defaults to refer to this type parameter.
899                     default_ban_rib.bindings.remove(&Ident::with_empty_ctxt(param.ident.name));
900                 }
901             }
902         }
903         for p in &generics.where_clause.predicates {
904             self.visit_where_predicate(p);
905         }
906     }
907 }
908
909 #[derive(Copy, Clone)]
910 enum TypeParameters<'a, 'b> {
911     NoTypeParameters,
912     HasTypeParameters(// Type parameters.
913                       &'b Generics,
914
915                       // The kind of the rib used for type parameters.
916                       RibKind<'a>),
917 }
918
919 /// The rib kind controls the translation of local
920 /// definitions (`Def::Local`) to upvars (`Def::Upvar`).
921 #[derive(Copy, Clone, Debug)]
922 enum RibKind<'a> {
923     /// No translation needs to be applied.
924     NormalRibKind,
925
926     /// We passed through a closure scope at the given node ID.
927     /// Translate upvars as appropriate.
928     ClosureRibKind(NodeId /* func id */),
929
930     /// We passed through an impl or trait and are now in one of its
931     /// methods or associated types. Allow references to ty params that impl or trait
932     /// binds. Disallow any other upvars (including other ty params that are
933     /// upvars).
934     TraitOrImplItemRibKind,
935
936     /// We passed through an item scope. Disallow upvars.
937     ItemRibKind,
938
939     /// We're in a constant item. Can't refer to dynamic stuff.
940     ConstantItemRibKind,
941
942     /// We passed through a module.
943     ModuleRibKind(Module<'a>),
944
945     /// We passed through a `macro_rules!` statement
946     MacroDefinition(DefId),
947
948     /// All bindings in this rib are type parameters that can't be used
949     /// from the default of a type parameter because they're not declared
950     /// before said type parameter. Also see the `visit_generics` override.
951     ForwardTyParamBanRibKind,
952 }
953
954 /// One local scope.
955 ///
956 /// A rib represents a scope names can live in. Note that these appear in many places, not just
957 /// around braces. At any place where the list of accessible names (of the given namespace)
958 /// changes or a new restrictions on the name accessibility are introduced, a new rib is put onto a
959 /// stack. This may be, for example, a `let` statement (because it introduces variables), a macro,
960 /// etc.
961 ///
962 /// Different [rib kinds](enum.RibKind) are transparent for different names.
963 ///
964 /// The resolution keeps a separate stack of ribs as it traverses the AST for each namespace. When
965 /// resolving, the name is looked up from inside out.
966 #[derive(Debug)]
967 struct Rib<'a> {
968     bindings: FxHashMap<Ident, Def>,
969     kind: RibKind<'a>,
970 }
971
972 impl<'a> Rib<'a> {
973     fn new(kind: RibKind<'a>) -> Rib<'a> {
974         Rib {
975             bindings: Default::default(),
976             kind,
977         }
978     }
979 }
980
981 /// An intermediate resolution result.
982 ///
983 /// This refers to the thing referred by a name. The difference between `Def` and `Item` is that
984 /// items are visible in their whole block, while defs only from the place they are defined
985 /// forward.
986 enum LexicalScopeBinding<'a> {
987     Item(&'a NameBinding<'a>),
988     Def(Def),
989 }
990
991 impl<'a> LexicalScopeBinding<'a> {
992     fn item(self) -> Option<&'a NameBinding<'a>> {
993         match self {
994             LexicalScopeBinding::Item(binding) => Some(binding),
995             _ => None,
996         }
997     }
998
999     fn def(self) -> Def {
1000         match self {
1001             LexicalScopeBinding::Item(binding) => binding.def(),
1002             LexicalScopeBinding::Def(def) => def,
1003         }
1004     }
1005 }
1006
1007 #[derive(Copy, Clone, Debug)]
1008 enum ModuleOrUniformRoot<'a> {
1009     /// Regular module.
1010     Module(Module<'a>),
1011
1012     /// Virtual module that denotes resolution in crate root with fallback to extern prelude.
1013     CrateRootAndExternPrelude,
1014
1015     /// Virtual module that denotes resolution in extern prelude.
1016     /// Used for paths starting with `::` on 2018 edition or `extern::`.
1017     ExternPrelude,
1018
1019     /// Virtual module that denotes resolution in current scope.
1020     /// Used only for resolving single-segment imports. The reason it exists is that import paths
1021     /// are always split into two parts, the first of which should be some kind of module.
1022     CurrentScope,
1023 }
1024
1025 impl<'a> PartialEq for ModuleOrUniformRoot<'a> {
1026     fn eq(&self, other: &Self) -> bool {
1027         match (*self, *other) {
1028             (ModuleOrUniformRoot::Module(lhs),
1029              ModuleOrUniformRoot::Module(rhs)) => ptr::eq(lhs, rhs),
1030             (ModuleOrUniformRoot::CrateRootAndExternPrelude,
1031              ModuleOrUniformRoot::CrateRootAndExternPrelude) |
1032             (ModuleOrUniformRoot::ExternPrelude, ModuleOrUniformRoot::ExternPrelude) |
1033             (ModuleOrUniformRoot::CurrentScope, ModuleOrUniformRoot::CurrentScope) => true,
1034             _ => false,
1035         }
1036     }
1037 }
1038
1039 #[derive(Clone, Debug)]
1040 enum PathResult<'a> {
1041     Module(ModuleOrUniformRoot<'a>),
1042     NonModule(PathResolution),
1043     Indeterminate,
1044     Failed(Span, String, bool /* is the error from the last segment? */),
1045 }
1046
1047 enum ModuleKind {
1048     /// An anonymous module, eg. just a block.
1049     ///
1050     /// ```
1051     /// fn main() {
1052     ///     fn f() {} // (1)
1053     ///     { // This is an anonymous module
1054     ///         f(); // This resolves to (2) as we are inside the block.
1055     ///         fn f() {} // (2)
1056     ///     }
1057     ///     f(); // Resolves to (1)
1058     /// }
1059     /// ```
1060     Block(NodeId),
1061     /// Any module with a name.
1062     ///
1063     /// This could be:
1064     ///
1065     /// * A normal module â€’ either `mod from_file;` or `mod from_block { }`.
1066     /// * A trait or an enum (it implicitly contains associated types, methods and variant
1067     ///   constructors).
1068     Def(Def, Name),
1069 }
1070
1071 /// One node in the tree of modules.
1072 pub struct ModuleData<'a> {
1073     parent: Option<Module<'a>>,
1074     kind: ModuleKind,
1075
1076     // The def id of the closest normal module (`mod`) ancestor (including this module).
1077     normal_ancestor_id: DefId,
1078
1079     resolutions: RefCell<FxHashMap<(Ident, Namespace), &'a RefCell<NameResolution<'a>>>>,
1080     single_segment_macro_resolutions: RefCell<Vec<(Ident, MacroKind, ParentScope<'a>,
1081                                                    Option<&'a NameBinding<'a>>)>>,
1082     multi_segment_macro_resolutions: RefCell<Vec<(Vec<Segment>, Span, MacroKind, ParentScope<'a>,
1083                                                   Option<Def>)>>,
1084     builtin_attrs: RefCell<Vec<(Ident, ParentScope<'a>)>>,
1085
1086     // Macro invocations that can expand into items in this module.
1087     unresolved_invocations: RefCell<FxHashSet<Mark>>,
1088
1089     no_implicit_prelude: bool,
1090
1091     glob_importers: RefCell<Vec<&'a ImportDirective<'a>>>,
1092     globs: RefCell<Vec<&'a ImportDirective<'a>>>,
1093
1094     // Used to memoize the traits in this module for faster searches through all traits in scope.
1095     traits: RefCell<Option<Box<[(Ident, &'a NameBinding<'a>)]>>>,
1096
1097     // Whether this module is populated. If not populated, any attempt to
1098     // access the children must be preceded with a
1099     // `populate_module_if_necessary` call.
1100     populated: Cell<bool>,
1101
1102     /// Span of the module itself. Used for error reporting.
1103     span: Span,
1104
1105     expansion: Mark,
1106 }
1107
1108 type Module<'a> = &'a ModuleData<'a>;
1109
1110 impl<'a> ModuleData<'a> {
1111     fn new(parent: Option<Module<'a>>,
1112            kind: ModuleKind,
1113            normal_ancestor_id: DefId,
1114            expansion: Mark,
1115            span: Span) -> Self {
1116         ModuleData {
1117             parent,
1118             kind,
1119             normal_ancestor_id,
1120             resolutions: Default::default(),
1121             single_segment_macro_resolutions: RefCell::new(Vec::new()),
1122             multi_segment_macro_resolutions: RefCell::new(Vec::new()),
1123             builtin_attrs: RefCell::new(Vec::new()),
1124             unresolved_invocations: Default::default(),
1125             no_implicit_prelude: false,
1126             glob_importers: RefCell::new(Vec::new()),
1127             globs: RefCell::new(Vec::new()),
1128             traits: RefCell::new(None),
1129             populated: Cell::new(normal_ancestor_id.is_local()),
1130             span,
1131             expansion,
1132         }
1133     }
1134
1135     fn for_each_child<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1136         for (&(ident, ns), name_resolution) in self.resolutions.borrow().iter() {
1137             name_resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1138         }
1139     }
1140
1141     fn for_each_child_stable<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1142         let resolutions = self.resolutions.borrow();
1143         let mut resolutions = resolutions.iter().collect::<Vec<_>>();
1144         resolutions.sort_by_cached_key(|&(&(ident, ns), _)| (ident.as_str(), ns));
1145         for &(&(ident, ns), &resolution) in resolutions.iter() {
1146             resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1147         }
1148     }
1149
1150     fn def(&self) -> Option<Def> {
1151         match self.kind {
1152             ModuleKind::Def(def, _) => Some(def),
1153             _ => None,
1154         }
1155     }
1156
1157     fn def_id(&self) -> Option<DefId> {
1158         self.def().as_ref().map(Def::def_id)
1159     }
1160
1161     // `self` resolves to the first module ancestor that `is_normal`.
1162     fn is_normal(&self) -> bool {
1163         match self.kind {
1164             ModuleKind::Def(Def::Mod(_), _) => true,
1165             _ => false,
1166         }
1167     }
1168
1169     fn is_trait(&self) -> bool {
1170         match self.kind {
1171             ModuleKind::Def(Def::Trait(_), _) => true,
1172             _ => false,
1173         }
1174     }
1175
1176     fn nearest_item_scope(&'a self) -> Module<'a> {
1177         if self.is_trait() { self.parent.unwrap() } else { self }
1178     }
1179
1180     fn is_ancestor_of(&self, mut other: &Self) -> bool {
1181         while !ptr::eq(self, other) {
1182             if let Some(parent) = other.parent {
1183                 other = parent;
1184             } else {
1185                 return false;
1186             }
1187         }
1188         true
1189     }
1190 }
1191
1192 impl<'a> fmt::Debug for ModuleData<'a> {
1193     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1194         write!(f, "{:?}", self.def())
1195     }
1196 }
1197
1198 /// Records a possibly-private value, type, or module definition.
1199 #[derive(Clone, Debug)]
1200 pub struct NameBinding<'a> {
1201     kind: NameBindingKind<'a>,
1202     expansion: Mark,
1203     span: Span,
1204     vis: ty::Visibility,
1205 }
1206
1207 pub trait ToNameBinding<'a> {
1208     fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a>;
1209 }
1210
1211 impl<'a> ToNameBinding<'a> for &'a NameBinding<'a> {
1212     fn to_name_binding(self, _: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> {
1213         self
1214     }
1215 }
1216
1217 #[derive(Clone, Debug)]
1218 enum NameBindingKind<'a> {
1219     Def(Def, /* is_macro_export */ bool),
1220     Module(Module<'a>),
1221     Import {
1222         binding: &'a NameBinding<'a>,
1223         directive: &'a ImportDirective<'a>,
1224         used: Cell<bool>,
1225     },
1226     Ambiguity {
1227         kind: AmbiguityKind,
1228         b1: &'a NameBinding<'a>,
1229         b2: &'a NameBinding<'a>,
1230     }
1231 }
1232
1233 struct PrivacyError<'a>(Span, Ident, &'a NameBinding<'a>);
1234
1235 struct UseError<'a> {
1236     err: DiagnosticBuilder<'a>,
1237     /// Attach `use` statements for these candidates
1238     candidates: Vec<ImportSuggestion>,
1239     /// The node id of the module to place the use statements in
1240     node_id: NodeId,
1241     /// Whether the diagnostic should state that it's "better"
1242     better: bool,
1243 }
1244
1245 #[derive(Clone, Copy, PartialEq, Debug)]
1246 enum AmbiguityKind {
1247     Import,
1248     AbsolutePath,
1249     BuiltinAttr,
1250     DeriveHelper,
1251     LegacyHelperVsPrelude,
1252     LegacyVsModern,
1253     GlobVsOuter,
1254     GlobVsGlob,
1255     GlobVsExpanded,
1256     MoreExpandedVsOuter,
1257 }
1258
1259 impl AmbiguityKind {
1260     fn descr(self) -> &'static str {
1261         match self {
1262             AmbiguityKind::Import =>
1263                 "name vs any other name during import resolution",
1264             AmbiguityKind::AbsolutePath =>
1265                 "name in the crate root vs extern crate during absolute path resolution",
1266             AmbiguityKind::BuiltinAttr =>
1267                 "built-in attribute vs any other name",
1268             AmbiguityKind::DeriveHelper =>
1269                 "derive helper attribute vs any other name",
1270             AmbiguityKind::LegacyHelperVsPrelude =>
1271                 "legacy plugin helper attribute vs name from prelude",
1272             AmbiguityKind::LegacyVsModern =>
1273                 "`macro_rules` vs non-`macro_rules` from other module",
1274             AmbiguityKind::GlobVsOuter =>
1275                 "glob import vs any other name from outer scope during import/macro resolution",
1276             AmbiguityKind::GlobVsGlob =>
1277                 "glob import vs glob import in the same module",
1278             AmbiguityKind::GlobVsExpanded =>
1279                 "glob import vs macro-expanded name in the same \
1280                  module during import/macro resolution",
1281             AmbiguityKind::MoreExpandedVsOuter =>
1282                 "macro-expanded name vs less macro-expanded name \
1283                  from outer scope during import/macro resolution",
1284         }
1285     }
1286 }
1287
1288 /// Miscellaneous bits of metadata for better ambiguity error reporting.
1289 #[derive(Clone, Copy, PartialEq)]
1290 enum AmbiguityErrorMisc {
1291     SuggestCrate,
1292     SuggestSelf,
1293     FromPrelude,
1294     None,
1295 }
1296
1297 struct AmbiguityError<'a> {
1298     kind: AmbiguityKind,
1299     ident: Ident,
1300     b1: &'a NameBinding<'a>,
1301     b2: &'a NameBinding<'a>,
1302     misc1: AmbiguityErrorMisc,
1303     misc2: AmbiguityErrorMisc,
1304 }
1305
1306 impl<'a> NameBinding<'a> {
1307     fn module(&self) -> Option<Module<'a>> {
1308         match self.kind {
1309             NameBindingKind::Module(module) => Some(module),
1310             NameBindingKind::Import { binding, .. } => binding.module(),
1311             _ => None,
1312         }
1313     }
1314
1315     fn def(&self) -> Def {
1316         match self.kind {
1317             NameBindingKind::Def(def, _) => def,
1318             NameBindingKind::Module(module) => module.def().unwrap(),
1319             NameBindingKind::Import { binding, .. } => binding.def(),
1320             NameBindingKind::Ambiguity { .. } => Def::Err,
1321         }
1322     }
1323
1324     fn def_ignoring_ambiguity(&self) -> Def {
1325         match self.kind {
1326             NameBindingKind::Import { binding, .. } => binding.def_ignoring_ambiguity(),
1327             NameBindingKind::Ambiguity { b1, .. } => b1.def_ignoring_ambiguity(),
1328             _ => self.def(),
1329         }
1330     }
1331
1332     // We sometimes need to treat variants as `pub` for backwards compatibility
1333     fn pseudo_vis(&self) -> ty::Visibility {
1334         if self.is_variant() && self.def().def_id().is_local() {
1335             ty::Visibility::Public
1336         } else {
1337             self.vis
1338         }
1339     }
1340
1341     fn is_variant(&self) -> bool {
1342         match self.kind {
1343             NameBindingKind::Def(Def::Variant(..), _) |
1344             NameBindingKind::Def(Def::VariantCtor(..), _) => true,
1345             _ => false,
1346         }
1347     }
1348
1349     fn is_extern_crate(&self) -> bool {
1350         match self.kind {
1351             NameBindingKind::Import {
1352                 directive: &ImportDirective {
1353                     subclass: ImportDirectiveSubclass::ExternCrate { .. }, ..
1354                 }, ..
1355             } => true,
1356             NameBindingKind::Module(
1357                 &ModuleData { kind: ModuleKind::Def(Def::Mod(def_id), _), .. }
1358             ) => def_id.index == CRATE_DEF_INDEX,
1359             _ => false,
1360         }
1361     }
1362
1363     fn is_import(&self) -> bool {
1364         match self.kind {
1365             NameBindingKind::Import { .. } => true,
1366             _ => false,
1367         }
1368     }
1369
1370     fn is_glob_import(&self) -> bool {
1371         match self.kind {
1372             NameBindingKind::Import { directive, .. } => directive.is_glob(),
1373             NameBindingKind::Ambiguity { b1, .. } => b1.is_glob_import(),
1374             _ => false,
1375         }
1376     }
1377
1378     fn is_importable(&self) -> bool {
1379         match self.def() {
1380             Def::AssociatedConst(..) | Def::Method(..) | Def::AssociatedTy(..) => false,
1381             _ => true,
1382         }
1383     }
1384
1385     fn is_macro_def(&self) -> bool {
1386         match self.kind {
1387             NameBindingKind::Def(Def::Macro(..), _) => true,
1388             _ => false,
1389         }
1390     }
1391
1392     fn macro_kind(&self) -> Option<MacroKind> {
1393         match self.def_ignoring_ambiguity() {
1394             Def::Macro(_, kind) => Some(kind),
1395             Def::NonMacroAttr(..) => Some(MacroKind::Attr),
1396             _ => None,
1397         }
1398     }
1399
1400     fn descr(&self) -> &'static str {
1401         if self.is_extern_crate() { "extern crate" } else { self.def().kind_name() }
1402     }
1403
1404     fn article(&self) -> &'static str {
1405         if self.is_extern_crate() { "an" } else { self.def().article() }
1406     }
1407
1408     // Suppose that we resolved macro invocation with `invoc_parent_expansion` to binding `binding`
1409     // at some expansion round `max(invoc, binding)` when they both emerged from macros.
1410     // Then this function returns `true` if `self` may emerge from a macro *after* that
1411     // in some later round and screw up our previously found resolution.
1412     // See more detailed explanation in
1413     // https://github.com/rust-lang/rust/pull/53778#issuecomment-419224049
1414     fn may_appear_after(&self, invoc_parent_expansion: Mark, binding: &NameBinding) -> bool {
1415         // self > max(invoc, binding) => !(self <= invoc || self <= binding)
1416         // Expansions are partially ordered, so "may appear after" is an inversion of
1417         // "certainly appears before or simultaneously" and includes unordered cases.
1418         let self_parent_expansion = self.expansion;
1419         let other_parent_expansion = binding.expansion;
1420         let certainly_before_other_or_simultaneously =
1421             other_parent_expansion.is_descendant_of(self_parent_expansion);
1422         let certainly_before_invoc_or_simultaneously =
1423             invoc_parent_expansion.is_descendant_of(self_parent_expansion);
1424         !(certainly_before_other_or_simultaneously || certainly_before_invoc_or_simultaneously)
1425     }
1426 }
1427
1428 /// Interns the names of the primitive types.
1429 ///
1430 /// All other types are defined somewhere and possibly imported, but the primitive ones need
1431 /// special handling, since they have no place of origin.
1432 #[derive(Default)]
1433 struct PrimitiveTypeTable {
1434     primitive_types: FxHashMap<Name, PrimTy>,
1435 }
1436
1437 impl PrimitiveTypeTable {
1438     fn new() -> PrimitiveTypeTable {
1439         let mut table = PrimitiveTypeTable::default();
1440
1441         table.intern("bool", Bool);
1442         table.intern("char", Char);
1443         table.intern("f32", Float(FloatTy::F32));
1444         table.intern("f64", Float(FloatTy::F64));
1445         table.intern("isize", Int(IntTy::Isize));
1446         table.intern("i8", Int(IntTy::I8));
1447         table.intern("i16", Int(IntTy::I16));
1448         table.intern("i32", Int(IntTy::I32));
1449         table.intern("i64", Int(IntTy::I64));
1450         table.intern("i128", Int(IntTy::I128));
1451         table.intern("str", Str);
1452         table.intern("usize", Uint(UintTy::Usize));
1453         table.intern("u8", Uint(UintTy::U8));
1454         table.intern("u16", Uint(UintTy::U16));
1455         table.intern("u32", Uint(UintTy::U32));
1456         table.intern("u64", Uint(UintTy::U64));
1457         table.intern("u128", Uint(UintTy::U128));
1458         table
1459     }
1460
1461     fn intern(&mut self, string: &str, primitive_type: PrimTy) {
1462         self.primitive_types.insert(Symbol::intern(string), primitive_type);
1463     }
1464 }
1465
1466 #[derive(Default, Clone)]
1467 pub struct ExternPreludeEntry<'a> {
1468     extern_crate_item: Option<&'a NameBinding<'a>>,
1469     pub introduced_by_item: bool,
1470 }
1471
1472 /// The main resolver class.
1473 ///
1474 /// This is the visitor that walks the whole crate.
1475 pub struct Resolver<'a> {
1476     session: &'a Session,
1477     cstore: &'a CStore,
1478
1479     pub definitions: Definitions,
1480
1481     graph_root: Module<'a>,
1482
1483     prelude: Option<Module<'a>>,
1484     pub extern_prelude: FxHashMap<Ident, ExternPreludeEntry<'a>>,
1485
1486     /// n.b. This is used only for better diagnostics, not name resolution itself.
1487     has_self: FxHashSet<DefId>,
1488
1489     /// Names of fields of an item `DefId` accessible with dot syntax.
1490     /// Used for hints during error reporting.
1491     field_names: FxHashMap<DefId, Vec<Name>>,
1492
1493     /// All imports known to succeed or fail.
1494     determined_imports: Vec<&'a ImportDirective<'a>>,
1495
1496     /// All non-determined imports.
1497     indeterminate_imports: Vec<&'a ImportDirective<'a>>,
1498
1499     /// The module that represents the current item scope.
1500     current_module: Module<'a>,
1501
1502     /// The current set of local scopes for types and values.
1503     /// FIXME #4948: Reuse ribs to avoid allocation.
1504     ribs: PerNS<Vec<Rib<'a>>>,
1505
1506     /// The current set of local scopes, for labels.
1507     label_ribs: Vec<Rib<'a>>,
1508
1509     /// The trait that the current context can refer to.
1510     current_trait_ref: Option<(Module<'a>, TraitRef)>,
1511
1512     /// The current self type if inside an impl (used for better errors).
1513     current_self_type: Option<Ty>,
1514
1515     /// The current self item if inside an ADT (used for better errors).
1516     current_self_item: Option<NodeId>,
1517
1518     /// FIXME: Refactor things so that these fields are passed through arguments and not resolver.
1519     /// We are resolving a last import segment during import validation.
1520     last_import_segment: bool,
1521     /// This binding should be ignored during in-module resolution, so that we don't get
1522     /// "self-confirming" import resolutions during import validation.
1523     blacklisted_binding: Option<&'a NameBinding<'a>>,
1524
1525     /// The idents for the primitive types.
1526     primitive_type_table: PrimitiveTypeTable,
1527
1528     def_map: DefMap,
1529     import_map: ImportMap,
1530     pub freevars: FreevarMap,
1531     freevars_seen: NodeMap<NodeMap<usize>>,
1532     pub export_map: ExportMap,
1533     pub trait_map: TraitMap,
1534
1535     /// A map from nodes to anonymous modules.
1536     /// Anonymous modules are pseudo-modules that are implicitly created around items
1537     /// contained within blocks.
1538     ///
1539     /// For example, if we have this:
1540     ///
1541     ///  fn f() {
1542     ///      fn g() {
1543     ///          ...
1544     ///      }
1545     ///  }
1546     ///
1547     /// There will be an anonymous module created around `g` with the ID of the
1548     /// entry block for `f`.
1549     block_map: NodeMap<Module<'a>>,
1550     module_map: FxHashMap<DefId, Module<'a>>,
1551     extern_module_map: FxHashMap<(DefId, bool /* MacrosOnly? */), Module<'a>>,
1552     binding_parent_modules: FxHashMap<PtrKey<'a, NameBinding<'a>>, Module<'a>>,
1553
1554     pub make_glob_map: bool,
1555     /// Maps imports to the names of items actually imported (this actually maps
1556     /// all imports, but only glob imports are actually interesting).
1557     pub glob_map: GlobMap,
1558
1559     used_imports: FxHashSet<(NodeId, Namespace)>,
1560     pub maybe_unused_trait_imports: NodeSet,
1561     pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
1562
1563     /// A list of labels as of yet unused. Labels will be removed from this map when
1564     /// they are used (in a `break` or `continue` statement)
1565     pub unused_labels: FxHashMap<NodeId, Span>,
1566
1567     /// privacy errors are delayed until the end in order to deduplicate them
1568     privacy_errors: Vec<PrivacyError<'a>>,
1569     /// ambiguity errors are delayed for deduplication
1570     ambiguity_errors: Vec<AmbiguityError<'a>>,
1571     /// `use` injections are delayed for better placement and deduplication
1572     use_injections: Vec<UseError<'a>>,
1573     /// crate-local macro expanded `macro_export` referred to by a module-relative path
1574     macro_expanded_macro_export_errors: BTreeSet<(Span, Span)>,
1575
1576     arenas: &'a ResolverArenas<'a>,
1577     dummy_binding: &'a NameBinding<'a>,
1578
1579     crate_loader: &'a mut CrateLoader<'a>,
1580     macro_names: FxHashSet<Ident>,
1581     builtin_macros: FxHashMap<Name, &'a NameBinding<'a>>,
1582     macro_use_prelude: FxHashMap<Name, &'a NameBinding<'a>>,
1583     pub all_macros: FxHashMap<Name, Def>,
1584     macro_map: FxHashMap<DefId, Lrc<SyntaxExtension>>,
1585     macro_defs: FxHashMap<Mark, DefId>,
1586     local_macro_def_scopes: FxHashMap<NodeId, Module<'a>>,
1587     pub found_unresolved_macro: bool,
1588
1589     /// List of crate local macros that we need to warn about as being unused.
1590     /// Right now this only includes macro_rules! macros, and macros 2.0.
1591     unused_macros: FxHashSet<DefId>,
1592
1593     /// Maps the `Mark` of an expansion to its containing module or block.
1594     invocations: FxHashMap<Mark, &'a InvocationData<'a>>,
1595
1596     /// Avoid duplicated errors for "name already defined".
1597     name_already_seen: FxHashMap<Name, Span>,
1598
1599     potentially_unused_imports: Vec<&'a ImportDirective<'a>>,
1600
1601     /// This table maps struct IDs into struct constructor IDs,
1602     /// it's not used during normal resolution, only for better error reporting.
1603     struct_constructors: DefIdMap<(Def, ty::Visibility)>,
1604
1605     /// Only used for better errors on `fn(): fn()`
1606     current_type_ascription: Vec<Span>,
1607
1608     injected_crate: Option<Module<'a>>,
1609 }
1610
1611 /// Nothing really interesting here, it just provides memory for the rest of the crate.
1612 #[derive(Default)]
1613 pub struct ResolverArenas<'a> {
1614     modules: arena::TypedArena<ModuleData<'a>>,
1615     local_modules: RefCell<Vec<Module<'a>>>,
1616     name_bindings: arena::TypedArena<NameBinding<'a>>,
1617     import_directives: arena::TypedArena<ImportDirective<'a>>,
1618     name_resolutions: arena::TypedArena<RefCell<NameResolution<'a>>>,
1619     invocation_data: arena::TypedArena<InvocationData<'a>>,
1620     legacy_bindings: arena::TypedArena<LegacyBinding<'a>>,
1621 }
1622
1623 impl<'a> ResolverArenas<'a> {
1624     fn alloc_module(&'a self, module: ModuleData<'a>) -> Module<'a> {
1625         let module = self.modules.alloc(module);
1626         if module.def_id().map(|def_id| def_id.is_local()).unwrap_or(true) {
1627             self.local_modules.borrow_mut().push(module);
1628         }
1629         module
1630     }
1631     fn local_modules(&'a self) -> ::std::cell::Ref<'a, Vec<Module<'a>>> {
1632         self.local_modules.borrow()
1633     }
1634     fn alloc_name_binding(&'a self, name_binding: NameBinding<'a>) -> &'a NameBinding<'a> {
1635         self.name_bindings.alloc(name_binding)
1636     }
1637     fn alloc_import_directive(&'a self, import_directive: ImportDirective<'a>)
1638                               -> &'a ImportDirective {
1639         self.import_directives.alloc(import_directive)
1640     }
1641     fn alloc_name_resolution(&'a self) -> &'a RefCell<NameResolution<'a>> {
1642         self.name_resolutions.alloc(Default::default())
1643     }
1644     fn alloc_invocation_data(&'a self, expansion_data: InvocationData<'a>)
1645                              -> &'a InvocationData<'a> {
1646         self.invocation_data.alloc(expansion_data)
1647     }
1648     fn alloc_legacy_binding(&'a self, binding: LegacyBinding<'a>) -> &'a LegacyBinding<'a> {
1649         self.legacy_bindings.alloc(binding)
1650     }
1651 }
1652
1653 impl<'a, 'b: 'a> ty::DefIdTree for &'a Resolver<'b> {
1654     fn parent(self, id: DefId) -> Option<DefId> {
1655         match id.krate {
1656             LOCAL_CRATE => self.definitions.def_key(id.index).parent,
1657             _ => self.cstore.def_key(id).parent,
1658         }.map(|index| DefId { index, ..id })
1659     }
1660 }
1661
1662 /// This interface is used through the AST→HIR step, to embed full paths into the HIR. After that
1663 /// the resolver is no longer needed as all the relevant information is inline.
1664 impl<'a> hir::lowering::Resolver for Resolver<'a> {
1665     fn resolve_hir_path(
1666         &mut self,
1667         path: &ast::Path,
1668         is_value: bool,
1669     ) -> hir::Path {
1670         self.resolve_hir_path_cb(path, is_value,
1671                                  |resolver, span, error| resolve_error(resolver, span, error))
1672     }
1673
1674     fn resolve_str_path(
1675         &mut self,
1676         span: Span,
1677         crate_root: Option<&str>,
1678         components: &[&str],
1679         is_value: bool
1680     ) -> hir::Path {
1681         let segments = iter::once(keywords::PathRoot.ident())
1682             .chain(
1683                 crate_root.into_iter()
1684                     .chain(components.iter().cloned())
1685                     .map(Ident::from_str)
1686             ).map(|i| self.new_ast_path_segment(i)).collect::<Vec<_>>();
1687
1688
1689         let path = ast::Path {
1690             span,
1691             segments,
1692         };
1693
1694         self.resolve_hir_path(&path, is_value)
1695     }
1696
1697     fn get_resolution(&mut self, id: NodeId) -> Option<PathResolution> {
1698         self.def_map.get(&id).cloned()
1699     }
1700
1701     fn get_import(&mut self, id: NodeId) -> PerNS<Option<PathResolution>> {
1702         self.import_map.get(&id).cloned().unwrap_or_default()
1703     }
1704
1705     fn definitions(&mut self) -> &mut Definitions {
1706         &mut self.definitions
1707     }
1708 }
1709
1710 impl<'a> Resolver<'a> {
1711     /// Rustdoc uses this to resolve things in a recoverable way. ResolutionError<'a>
1712     /// isn't something that can be returned because it can't be made to live that long,
1713     /// and also it's a private type. Fortunately rustdoc doesn't need to know the error,
1714     /// just that an error occurred.
1715     pub fn resolve_str_path_error(&mut self, span: Span, path_str: &str, is_value: bool)
1716         -> Result<hir::Path, ()> {
1717         use std::iter;
1718         let mut errored = false;
1719
1720         let path = if path_str.starts_with("::") {
1721             ast::Path {
1722                 span,
1723                 segments: iter::once(keywords::PathRoot.ident())
1724                     .chain({
1725                         path_str.split("::").skip(1).map(Ident::from_str)
1726                     })
1727                     .map(|i| self.new_ast_path_segment(i))
1728                     .collect(),
1729             }
1730         } else {
1731             ast::Path {
1732                 span,
1733                 segments: path_str
1734                     .split("::")
1735                     .map(Ident::from_str)
1736                     .map(|i| self.new_ast_path_segment(i))
1737                     .collect(),
1738             }
1739         };
1740         let path = self.resolve_hir_path_cb(&path, is_value, |_, _, _| errored = true);
1741         if errored || path.def == Def::Err {
1742             Err(())
1743         } else {
1744             Ok(path)
1745         }
1746     }
1747
1748     /// resolve_hir_path, but takes a callback in case there was an error
1749     fn resolve_hir_path_cb<F>(
1750         &mut self,
1751         path: &ast::Path,
1752         is_value: bool,
1753         error_callback: F,
1754     ) -> hir::Path
1755         where F: for<'c, 'b> FnOnce(&'c mut Resolver, Span, ResolutionError<'b>)
1756     {
1757         let namespace = if is_value { ValueNS } else { TypeNS };
1758         let span = path.span;
1759         let segments = &path.segments;
1760         let path = Segment::from_path(&path);
1761         // FIXME (Manishearth): Intra doc links won't get warned of epoch changes
1762         let def = match self.resolve_path_without_parent_scope(&path, Some(namespace), true,
1763                                                                span, CrateLint::No) {
1764             PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
1765                 module.def().unwrap(),
1766             PathResult::NonModule(path_res) if path_res.unresolved_segments() == 0 =>
1767                 path_res.base_def(),
1768             PathResult::NonModule(..) => {
1769                 let msg = "type-relative paths are not supported in this context";
1770                 error_callback(self, span, ResolutionError::FailedToResolve(msg));
1771                 Def::Err
1772             }
1773             PathResult::Module(..) | PathResult::Indeterminate => unreachable!(),
1774             PathResult::Failed(span, msg, _) => {
1775                 error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1776                 Def::Err
1777             }
1778         };
1779
1780         let segments: Vec<_> = segments.iter().map(|seg| {
1781             let mut hir_seg = hir::PathSegment::from_ident(seg.ident);
1782             hir_seg.def = Some(self.def_map.get(&seg.id).map_or(Def::Err, |p| p.base_def()));
1783             hir_seg
1784         }).collect();
1785         hir::Path {
1786             span,
1787             def,
1788             segments: segments.into(),
1789         }
1790     }
1791
1792     fn new_ast_path_segment(&self, ident: Ident) -> ast::PathSegment {
1793         let mut seg = ast::PathSegment::from_ident(ident);
1794         seg.id = self.session.next_node_id();
1795         seg
1796     }
1797 }
1798
1799 impl<'a> Resolver<'a> {
1800     pub fn new(session: &'a Session,
1801                cstore: &'a CStore,
1802                krate: &Crate,
1803                crate_name: &str,
1804                make_glob_map: MakeGlobMap,
1805                crate_loader: &'a mut CrateLoader<'a>,
1806                arenas: &'a ResolverArenas<'a>)
1807                -> Resolver<'a> {
1808         let root_def_id = DefId::local(CRATE_DEF_INDEX);
1809         let root_module_kind = ModuleKind::Def(Def::Mod(root_def_id), keywords::Invalid.name());
1810         let graph_root = arenas.alloc_module(ModuleData {
1811             no_implicit_prelude: attr::contains_name(&krate.attrs, "no_implicit_prelude"),
1812             ..ModuleData::new(None, root_module_kind, root_def_id, Mark::root(), krate.span)
1813         });
1814         let mut module_map = FxHashMap::default();
1815         module_map.insert(DefId::local(CRATE_DEF_INDEX), graph_root);
1816
1817         let mut definitions = Definitions::new();
1818         DefCollector::new(&mut definitions, Mark::root())
1819             .collect_root(crate_name, session.local_crate_disambiguator());
1820
1821         let mut extern_prelude: FxHashMap<Ident, ExternPreludeEntry> =
1822             session.opts.externs.iter().map(|kv| (Ident::from_str(kv.0), Default::default()))
1823                                        .collect();
1824
1825         if !attr::contains_name(&krate.attrs, "no_core") {
1826             extern_prelude.insert(Ident::from_str("core"), Default::default());
1827             if !attr::contains_name(&krate.attrs, "no_std") {
1828                 extern_prelude.insert(Ident::from_str("std"), Default::default());
1829                 if session.rust_2018() {
1830                     extern_prelude.insert(Ident::from_str("meta"), Default::default());
1831                 }
1832             }
1833         }
1834
1835         let mut invocations = FxHashMap::default();
1836         invocations.insert(Mark::root(),
1837                            arenas.alloc_invocation_data(InvocationData::root(graph_root)));
1838
1839         let mut macro_defs = FxHashMap::default();
1840         macro_defs.insert(Mark::root(), root_def_id);
1841
1842         Resolver {
1843             session,
1844
1845             cstore,
1846
1847             definitions,
1848
1849             // The outermost module has def ID 0; this is not reflected in the
1850             // AST.
1851             graph_root,
1852             prelude: None,
1853             extern_prelude,
1854
1855             has_self: FxHashSet::default(),
1856             field_names: FxHashMap::default(),
1857
1858             determined_imports: Vec::new(),
1859             indeterminate_imports: Vec::new(),
1860
1861             current_module: graph_root,
1862             ribs: PerNS {
1863                 value_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1864                 type_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1865                 macro_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1866             },
1867             label_ribs: Vec::new(),
1868
1869             current_trait_ref: None,
1870             current_self_type: None,
1871             current_self_item: None,
1872             last_import_segment: false,
1873             blacklisted_binding: None,
1874
1875             primitive_type_table: PrimitiveTypeTable::new(),
1876
1877             def_map: Default::default(),
1878             import_map: Default::default(),
1879             freevars: Default::default(),
1880             freevars_seen: Default::default(),
1881             export_map: FxHashMap::default(),
1882             trait_map: Default::default(),
1883             module_map,
1884             block_map: Default::default(),
1885             extern_module_map: FxHashMap::default(),
1886             binding_parent_modules: FxHashMap::default(),
1887
1888             make_glob_map: make_glob_map == MakeGlobMap::Yes,
1889             glob_map: Default::default(),
1890
1891             used_imports: FxHashSet::default(),
1892             maybe_unused_trait_imports: Default::default(),
1893             maybe_unused_extern_crates: Vec::new(),
1894
1895             unused_labels: FxHashMap::default(),
1896
1897             privacy_errors: Vec::new(),
1898             ambiguity_errors: Vec::new(),
1899             use_injections: Vec::new(),
1900             macro_expanded_macro_export_errors: BTreeSet::new(),
1901
1902             arenas,
1903             dummy_binding: arenas.alloc_name_binding(NameBinding {
1904                 kind: NameBindingKind::Def(Def::Err, false),
1905                 expansion: Mark::root(),
1906                 span: DUMMY_SP,
1907                 vis: ty::Visibility::Public,
1908             }),
1909
1910             crate_loader,
1911             macro_names: FxHashSet::default(),
1912             builtin_macros: FxHashMap::default(),
1913             macro_use_prelude: FxHashMap::default(),
1914             all_macros: FxHashMap::default(),
1915             macro_map: FxHashMap::default(),
1916             invocations,
1917             macro_defs,
1918             local_macro_def_scopes: FxHashMap::default(),
1919             name_already_seen: FxHashMap::default(),
1920             potentially_unused_imports: Vec::new(),
1921             struct_constructors: Default::default(),
1922             found_unresolved_macro: false,
1923             unused_macros: FxHashSet::default(),
1924             current_type_ascription: Vec::new(),
1925             injected_crate: None,
1926         }
1927     }
1928
1929     pub fn arenas() -> ResolverArenas<'a> {
1930         Default::default()
1931     }
1932
1933     /// Runs the function on each namespace.
1934     fn per_ns<F: FnMut(&mut Self, Namespace)>(&mut self, mut f: F) {
1935         f(self, TypeNS);
1936         f(self, ValueNS);
1937         f(self, MacroNS);
1938     }
1939
1940     fn macro_def(&self, mut ctxt: SyntaxContext) -> DefId {
1941         loop {
1942             match self.macro_defs.get(&ctxt.outer()) {
1943                 Some(&def_id) => return def_id,
1944                 None => ctxt.remove_mark(),
1945             };
1946         }
1947     }
1948
1949     /// Entry point to crate resolution.
1950     pub fn resolve_crate(&mut self, krate: &Crate) {
1951         ImportResolver { resolver: self }.finalize_imports();
1952         self.current_module = self.graph_root;
1953         self.finalize_current_module_macro_resolutions();
1954
1955         visit::walk_crate(self, krate);
1956
1957         check_unused::check_crate(self, krate);
1958         self.report_errors(krate);
1959         self.crate_loader.postprocess(krate);
1960     }
1961
1962     fn new_module(
1963         &self,
1964         parent: Module<'a>,
1965         kind: ModuleKind,
1966         normal_ancestor_id: DefId,
1967         expansion: Mark,
1968         span: Span,
1969     ) -> Module<'a> {
1970         let module = ModuleData::new(Some(parent), kind, normal_ancestor_id, expansion, span);
1971         self.arenas.alloc_module(module)
1972     }
1973
1974     fn record_use(&mut self, ident: Ident, ns: Namespace,
1975                   used_binding: &'a NameBinding<'a>, is_lexical_scope: bool) {
1976         match used_binding.kind {
1977             NameBindingKind::Import { directive, binding, ref used } if !used.get() => {
1978                 // Avoid marking `extern crate` items that refer to a name from extern prelude,
1979                 // but not introduce it, as used if they are accessed from lexical scope.
1980                 if is_lexical_scope {
1981                     if let Some(entry) = self.extern_prelude.get(&ident.modern()) {
1982                         if let Some(crate_item) = entry.extern_crate_item {
1983                             if ptr::eq(used_binding, crate_item) && !entry.introduced_by_item {
1984                                 return;
1985                             }
1986                         }
1987                     }
1988                 }
1989                 used.set(true);
1990                 directive.used.set(true);
1991                 self.used_imports.insert((directive.id, ns));
1992                 self.add_to_glob_map(directive.id, ident);
1993                 self.record_use(ident, ns, binding, false);
1994             }
1995             NameBindingKind::Ambiguity { kind, b1, b2 } => {
1996                 self.ambiguity_errors.push(AmbiguityError {
1997                     kind, ident, b1, b2,
1998                     misc1: AmbiguityErrorMisc::None,
1999                     misc2: AmbiguityErrorMisc::None,
2000                 });
2001             }
2002             _ => {}
2003         }
2004     }
2005
2006     fn add_to_glob_map(&mut self, id: NodeId, ident: Ident) {
2007         if self.make_glob_map {
2008             self.glob_map.entry(id).or_default().insert(ident.name);
2009         }
2010     }
2011
2012     /// This resolves the identifier `ident` in the namespace `ns` in the current lexical scope.
2013     /// More specifically, we proceed up the hierarchy of scopes and return the binding for
2014     /// `ident` in the first scope that defines it (or None if no scopes define it).
2015     ///
2016     /// A block's items are above its local variables in the scope hierarchy, regardless of where
2017     /// the items are defined in the block. For example,
2018     /// ```rust
2019     /// fn f() {
2020     ///    g(); // Since there are no local variables in scope yet, this resolves to the item.
2021     ///    let g = || {};
2022     ///    fn g() {}
2023     ///    g(); // This resolves to the local variable `g` since it shadows the item.
2024     /// }
2025     /// ```
2026     ///
2027     /// Invariant: This must only be called during main resolution, not during
2028     /// import resolution.
2029     fn resolve_ident_in_lexical_scope(&mut self,
2030                                       mut ident: Ident,
2031                                       ns: Namespace,
2032                                       record_used_id: Option<NodeId>,
2033                                       path_span: Span)
2034                                       -> Option<LexicalScopeBinding<'a>> {
2035         let record_used = record_used_id.is_some();
2036         assert!(ns == TypeNS  || ns == ValueNS);
2037         if ns == TypeNS {
2038             ident.span = if ident.name == keywords::SelfUpper.name() {
2039                 // FIXME(jseyfried) improve `Self` hygiene
2040                 ident.span.with_ctxt(SyntaxContext::empty())
2041             } else {
2042                 ident.span.modern()
2043             }
2044         } else {
2045             ident = ident.modern_and_legacy();
2046         }
2047
2048         // Walk backwards up the ribs in scope.
2049         let mut module = self.graph_root;
2050         for i in (0 .. self.ribs[ns].len()).rev() {
2051             if let Some(def) = self.ribs[ns][i].bindings.get(&ident).cloned() {
2052                 // The ident resolves to a type parameter or local variable.
2053                 return Some(LexicalScopeBinding::Def(
2054                     self.adjust_local_def(ns, i, def, record_used, path_span)
2055                 ));
2056             }
2057
2058             module = match self.ribs[ns][i].kind {
2059                 ModuleRibKind(module) => module,
2060                 MacroDefinition(def) if def == self.macro_def(ident.span.ctxt()) => {
2061                     // If an invocation of this macro created `ident`, give up on `ident`
2062                     // and switch to `ident`'s source from the macro definition.
2063                     ident.span.remove_mark();
2064                     continue
2065                 }
2066                 _ => continue,
2067             };
2068
2069             let item = self.resolve_ident_in_module_unadjusted(
2070                 ModuleOrUniformRoot::Module(module),
2071                 ident,
2072                 ns,
2073                 record_used,
2074                 path_span,
2075             );
2076             if let Ok(binding) = item {
2077                 // The ident resolves to an item.
2078                 return Some(LexicalScopeBinding::Item(binding));
2079             }
2080
2081             match module.kind {
2082                 ModuleKind::Block(..) => {}, // We can see through blocks
2083                 _ => break,
2084             }
2085         }
2086
2087         ident.span = ident.span.modern();
2088         let mut poisoned = None;
2089         loop {
2090             let opt_module = if let Some(node_id) = record_used_id {
2091                 self.hygienic_lexical_parent_with_compatibility_fallback(module, &mut ident.span,
2092                                                                          node_id, &mut poisoned)
2093             } else {
2094                 self.hygienic_lexical_parent(module, &mut ident.span)
2095             };
2096             module = unwrap_or!(opt_module, break);
2097             let orig_current_module = self.current_module;
2098             self.current_module = module; // Lexical resolutions can never be a privacy error.
2099             let result = self.resolve_ident_in_module_unadjusted(
2100                 ModuleOrUniformRoot::Module(module),
2101                 ident,
2102                 ns,
2103                 record_used,
2104                 path_span,
2105             );
2106             self.current_module = orig_current_module;
2107
2108             match result {
2109                 Ok(binding) => {
2110                     if let Some(node_id) = poisoned {
2111                         self.session.buffer_lint_with_diagnostic(
2112                             lint::builtin::PROC_MACRO_DERIVE_RESOLUTION_FALLBACK,
2113                             node_id, ident.span,
2114                             &format!("cannot find {} `{}` in this scope", ns.descr(), ident),
2115                             lint::builtin::BuiltinLintDiagnostics::
2116                                 ProcMacroDeriveResolutionFallback(ident.span),
2117                         );
2118                     }
2119                     return Some(LexicalScopeBinding::Item(binding))
2120                 }
2121                 Err(Determined) => continue,
2122                 Err(Undetermined) =>
2123                     span_bug!(ident.span, "undetermined resolution during main resolution pass"),
2124             }
2125         }
2126
2127         if !module.no_implicit_prelude {
2128             if ns == TypeNS {
2129                 if let Some(binding) = self.extern_prelude_get(ident, !record_used) {
2130                     return Some(LexicalScopeBinding::Item(binding));
2131                 }
2132             }
2133             if ns == TypeNS && is_known_tool(ident.name) {
2134                 let binding = (Def::ToolMod, ty::Visibility::Public,
2135                                DUMMY_SP, Mark::root()).to_name_binding(self.arenas);
2136                 return Some(LexicalScopeBinding::Item(binding));
2137             }
2138             if let Some(prelude) = self.prelude {
2139                 if let Ok(binding) = self.resolve_ident_in_module_unadjusted(
2140                     ModuleOrUniformRoot::Module(prelude),
2141                     ident,
2142                     ns,
2143                     false,
2144                     path_span,
2145                 ) {
2146                     return Some(LexicalScopeBinding::Item(binding));
2147                 }
2148             }
2149         }
2150
2151         None
2152     }
2153
2154     fn hygienic_lexical_parent(&mut self, module: Module<'a>, span: &mut Span)
2155                                -> Option<Module<'a>> {
2156         if !module.expansion.is_descendant_of(span.ctxt().outer()) {
2157             return Some(self.macro_def_scope(span.remove_mark()));
2158         }
2159
2160         if let ModuleKind::Block(..) = module.kind {
2161             return Some(module.parent.unwrap());
2162         }
2163
2164         None
2165     }
2166
2167     fn hygienic_lexical_parent_with_compatibility_fallback(&mut self, module: Module<'a>,
2168                                                            span: &mut Span, node_id: NodeId,
2169                                                            poisoned: &mut Option<NodeId>)
2170                                                            -> Option<Module<'a>> {
2171         if let module @ Some(..) = self.hygienic_lexical_parent(module, span) {
2172             return module;
2173         }
2174
2175         // We need to support the next case under a deprecation warning
2176         // ```
2177         // struct MyStruct;
2178         // ---- begin: this comes from a proc macro derive
2179         // mod implementation_details {
2180         //     // Note that `MyStruct` is not in scope here.
2181         //     impl SomeTrait for MyStruct { ... }
2182         // }
2183         // ---- end
2184         // ```
2185         // So we have to fall back to the module's parent during lexical resolution in this case.
2186         if let Some(parent) = module.parent {
2187             // Inner module is inside the macro, parent module is outside of the macro.
2188             if module.expansion != parent.expansion &&
2189             module.expansion.is_descendant_of(parent.expansion) {
2190                 // The macro is a proc macro derive
2191                 if module.expansion.looks_like_proc_macro_derive() {
2192                     if parent.expansion.is_descendant_of(span.ctxt().outer()) {
2193                         *poisoned = Some(node_id);
2194                         return module.parent;
2195                     }
2196                 }
2197             }
2198         }
2199
2200         None
2201     }
2202
2203     fn resolve_ident_in_module(
2204         &mut self,
2205         module: ModuleOrUniformRoot<'a>,
2206         ident: Ident,
2207         ns: Namespace,
2208         parent_scope: Option<&ParentScope<'a>>,
2209         record_used: bool,
2210         path_span: Span
2211     ) -> Result<&'a NameBinding<'a>, Determinacy> {
2212         self.resolve_ident_in_module_ext(
2213             module, ident, ns, parent_scope, record_used, path_span
2214         ).map_err(|(determinacy, _)| determinacy)
2215     }
2216
2217     fn resolve_ident_in_module_ext(
2218         &mut self,
2219         module: ModuleOrUniformRoot<'a>,
2220         mut ident: Ident,
2221         ns: Namespace,
2222         parent_scope: Option<&ParentScope<'a>>,
2223         record_used: bool,
2224         path_span: Span
2225     ) -> Result<&'a NameBinding<'a>, (Determinacy, Weak)> {
2226         let orig_current_module = self.current_module;
2227         match module {
2228             ModuleOrUniformRoot::Module(module) => {
2229                 ident.span = ident.span.modern();
2230                 if let Some(def) = ident.span.adjust(module.expansion) {
2231                     self.current_module = self.macro_def_scope(def);
2232                 }
2233             }
2234             ModuleOrUniformRoot::ExternPrelude => {
2235                 ident.span = ident.span.modern();
2236                 ident.span.adjust(Mark::root());
2237             }
2238             ModuleOrUniformRoot::CrateRootAndExternPrelude |
2239             ModuleOrUniformRoot::CurrentScope => {
2240                 // No adjustments
2241             }
2242         }
2243         let result = self.resolve_ident_in_module_unadjusted_ext(
2244             module, ident, ns, parent_scope, false, record_used, path_span,
2245         );
2246         self.current_module = orig_current_module;
2247         result
2248     }
2249
2250     fn resolve_crate_root(&mut self, ident: Ident) -> Module<'a> {
2251         let mut ctxt = ident.span.ctxt();
2252         let mark = if ident.name == keywords::DollarCrate.name() {
2253             // When resolving `$crate` from a `macro_rules!` invoked in a `macro`,
2254             // we don't want to pretend that the `macro_rules!` definition is in the `macro`
2255             // as described in `SyntaxContext::apply_mark`, so we ignore prepended modern marks.
2256             // FIXME: This is only a guess and it doesn't work correctly for `macro_rules!`
2257             // definitions actually produced by `macro` and `macro` definitions produced by
2258             // `macro_rules!`, but at least such configurations are not stable yet.
2259             ctxt = ctxt.modern_and_legacy();
2260             let mut iter = ctxt.marks().into_iter().rev().peekable();
2261             let mut result = None;
2262             // Find the last modern mark from the end if it exists.
2263             while let Some(&(mark, transparency)) = iter.peek() {
2264                 if transparency == Transparency::Opaque {
2265                     result = Some(mark);
2266                     iter.next();
2267                 } else {
2268                     break;
2269                 }
2270             }
2271             // Then find the last legacy mark from the end if it exists.
2272             for (mark, transparency) in iter {
2273                 if transparency == Transparency::SemiTransparent {
2274                     result = Some(mark);
2275                 } else {
2276                     break;
2277                 }
2278             }
2279             result
2280         } else {
2281             ctxt = ctxt.modern();
2282             ctxt.adjust(Mark::root())
2283         };
2284         let module = match mark {
2285             Some(def) => self.macro_def_scope(def),
2286             None => return self.graph_root,
2287         };
2288         self.get_module(DefId { index: CRATE_DEF_INDEX, ..module.normal_ancestor_id })
2289     }
2290
2291     fn resolve_self(&mut self, ctxt: &mut SyntaxContext, module: Module<'a>) -> Module<'a> {
2292         let mut module = self.get_module(module.normal_ancestor_id);
2293         while module.span.ctxt().modern() != *ctxt {
2294             let parent = module.parent.unwrap_or_else(|| self.macro_def_scope(ctxt.remove_mark()));
2295             module = self.get_module(parent.normal_ancestor_id);
2296         }
2297         module
2298     }
2299
2300     // AST resolution
2301     //
2302     // We maintain a list of value ribs and type ribs.
2303     //
2304     // Simultaneously, we keep track of the current position in the module
2305     // graph in the `current_module` pointer. When we go to resolve a name in
2306     // the value or type namespaces, we first look through all the ribs and
2307     // then query the module graph. When we resolve a name in the module
2308     // namespace, we can skip all the ribs (since nested modules are not
2309     // allowed within blocks in Rust) and jump straight to the current module
2310     // graph node.
2311     //
2312     // Named implementations are handled separately. When we find a method
2313     // call, we consult the module node to find all of the implementations in
2314     // scope. This information is lazily cached in the module node. We then
2315     // generate a fake "implementation scope" containing all the
2316     // implementations thus found, for compatibility with old resolve pass.
2317
2318     pub fn with_scope<F, T>(&mut self, id: NodeId, f: F) -> T
2319         where F: FnOnce(&mut Resolver) -> T
2320     {
2321         let id = self.definitions.local_def_id(id);
2322         let module = self.module_map.get(&id).cloned(); // clones a reference
2323         if let Some(module) = module {
2324             // Move down in the graph.
2325             let orig_module = replace(&mut self.current_module, module);
2326             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(module)));
2327             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(module)));
2328
2329             self.finalize_current_module_macro_resolutions();
2330             let ret = f(self);
2331
2332             self.current_module = orig_module;
2333             self.ribs[ValueNS].pop();
2334             self.ribs[TypeNS].pop();
2335             ret
2336         } else {
2337             f(self)
2338         }
2339     }
2340
2341     /// Searches the current set of local scopes for labels. Returns the first non-None label that
2342     /// is returned by the given predicate function
2343     ///
2344     /// Stops after meeting a closure.
2345     fn search_label<P, R>(&self, mut ident: Ident, pred: P) -> Option<R>
2346         where P: Fn(&Rib, Ident) -> Option<R>
2347     {
2348         for rib in self.label_ribs.iter().rev() {
2349             match rib.kind {
2350                 NormalRibKind => {}
2351                 // If an invocation of this macro created `ident`, give up on `ident`
2352                 // and switch to `ident`'s source from the macro definition.
2353                 MacroDefinition(def) => {
2354                     if def == self.macro_def(ident.span.ctxt()) {
2355                         ident.span.remove_mark();
2356                     }
2357                 }
2358                 _ => {
2359                     // Do not resolve labels across function boundary
2360                     return None;
2361                 }
2362             }
2363             let r = pred(rib, ident);
2364             if r.is_some() {
2365                 return r;
2366             }
2367         }
2368         None
2369     }
2370
2371     fn resolve_adt(&mut self, item: &Item, generics: &Generics) {
2372         self.with_current_self_item(item, |this| {
2373             this.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2374                 let item_def_id = this.definitions.local_def_id(item.id);
2375                 this.with_self_rib(Def::SelfTy(None, Some(item_def_id)), |this| {
2376                     visit::walk_item(this, item);
2377                 });
2378             });
2379         });
2380     }
2381
2382     fn future_proof_import(&mut self, use_tree: &ast::UseTree) {
2383         let segments = &use_tree.prefix.segments;
2384         if !segments.is_empty() {
2385             let ident = segments[0].ident;
2386             if ident.is_path_segment_keyword() || ident.span.rust_2015() {
2387                 return;
2388             }
2389
2390             let nss = match use_tree.kind {
2391                 ast::UseTreeKind::Simple(..) if segments.len() == 1 => &[TypeNS, ValueNS][..],
2392                 _ => &[TypeNS],
2393             };
2394             for &ns in nss {
2395                 if let Some(LexicalScopeBinding::Def(..)) =
2396                         self.resolve_ident_in_lexical_scope(ident, ns, None, use_tree.prefix.span) {
2397                     let what = if ns == TypeNS { "type parameters" } else { "local variables" };
2398                     self.session.span_err(ident.span, &format!("imports cannot refer to {}", what));
2399                 }
2400             }
2401         } else if let ast::UseTreeKind::Nested(use_trees) = &use_tree.kind {
2402             for (use_tree, _) in use_trees {
2403                 self.future_proof_import(use_tree);
2404             }
2405         }
2406     }
2407
2408     fn resolve_item(&mut self, item: &Item) {
2409         let name = item.ident.name;
2410         debug!("(resolving item) resolving {}", name);
2411
2412         match item.node {
2413             ItemKind::Ty(_, ref generics) |
2414             ItemKind::Fn(_, _, ref generics, _) |
2415             ItemKind::Existential(_, ref generics) => {
2416                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind),
2417                                              |this| visit::walk_item(this, item));
2418             }
2419
2420             ItemKind::Enum(_, ref generics) |
2421             ItemKind::Struct(_, ref generics) |
2422             ItemKind::Union(_, ref generics) => {
2423                 self.resolve_adt(item, generics);
2424             }
2425
2426             ItemKind::Impl(.., ref generics, ref opt_trait_ref, ref self_type, ref impl_items) =>
2427                 self.resolve_implementation(generics,
2428                                             opt_trait_ref,
2429                                             &self_type,
2430                                             item.id,
2431                                             impl_items),
2432
2433             ItemKind::Trait(.., ref generics, ref bounds, ref trait_items) => {
2434                 // Create a new rib for the trait-wide type parameters.
2435                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2436                     let local_def_id = this.definitions.local_def_id(item.id);
2437                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2438                         this.visit_generics(generics);
2439                         walk_list!(this, visit_param_bound, bounds);
2440
2441                         for trait_item in trait_items {
2442                             let type_parameters = HasTypeParameters(&trait_item.generics,
2443                                                                     TraitOrImplItemRibKind);
2444                             this.with_type_parameter_rib(type_parameters, |this| {
2445                                 match trait_item.node {
2446                                     TraitItemKind::Const(ref ty, ref default) => {
2447                                         this.visit_ty(ty);
2448
2449                                         // Only impose the restrictions of
2450                                         // ConstRibKind for an actual constant
2451                                         // expression in a provided default.
2452                                         if let Some(ref expr) = *default{
2453                                             this.with_constant_rib(|this| {
2454                                                 this.visit_expr(expr);
2455                                             });
2456                                         }
2457                                     }
2458                                     TraitItemKind::Method(_, _) => {
2459                                         visit::walk_trait_item(this, trait_item)
2460                                     }
2461                                     TraitItemKind::Type(..) => {
2462                                         visit::walk_trait_item(this, trait_item)
2463                                     }
2464                                     TraitItemKind::Macro(_) => {
2465                                         panic!("unexpanded macro in resolve!")
2466                                     }
2467                                 };
2468                             });
2469                         }
2470                     });
2471                 });
2472             }
2473
2474             ItemKind::TraitAlias(ref generics, ref bounds) => {
2475                 // Create a new rib for the trait-wide type parameters.
2476                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2477                     let local_def_id = this.definitions.local_def_id(item.id);
2478                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2479                         this.visit_generics(generics);
2480                         walk_list!(this, visit_param_bound, bounds);
2481                     });
2482                 });
2483             }
2484
2485             ItemKind::Mod(_) | ItemKind::ForeignMod(_) => {
2486                 self.with_scope(item.id, |this| {
2487                     visit::walk_item(this, item);
2488                 });
2489             }
2490
2491             ItemKind::Static(ref ty, _, ref expr) |
2492             ItemKind::Const(ref ty, ref expr) => {
2493                 self.with_item_rib(|this| {
2494                     this.visit_ty(ty);
2495                     this.with_constant_rib(|this| {
2496                         this.visit_expr(expr);
2497                     });
2498                 });
2499             }
2500
2501             ItemKind::Use(ref use_tree) => {
2502                 self.future_proof_import(use_tree);
2503             }
2504
2505             ItemKind::ExternCrate(..) |
2506             ItemKind::MacroDef(..) | ItemKind::GlobalAsm(..) => {
2507                 // do nothing, these are just around to be encoded
2508             }
2509
2510             ItemKind::Mac(_) => panic!("unexpanded macro in resolve!"),
2511         }
2512     }
2513
2514     fn with_type_parameter_rib<'b, F>(&'b mut self, type_parameters: TypeParameters<'a, 'b>, f: F)
2515         where F: FnOnce(&mut Resolver)
2516     {
2517         match type_parameters {
2518             HasTypeParameters(generics, rib_kind) => {
2519                 let mut function_type_rib = Rib::new(rib_kind);
2520                 let mut seen_bindings = FxHashMap::default();
2521                 for param in &generics.params {
2522                     match param.kind {
2523                         GenericParamKind::Lifetime { .. } => {}
2524                         GenericParamKind::Type { .. } => {
2525                             let ident = param.ident.modern();
2526                             debug!("with_type_parameter_rib: {}", param.id);
2527
2528                             if seen_bindings.contains_key(&ident) {
2529                                 let span = seen_bindings.get(&ident).unwrap();
2530                                 let err = ResolutionError::NameAlreadyUsedInTypeParameterList(
2531                                     ident.name,
2532                                     span,
2533                                 );
2534                                 resolve_error(self, param.ident.span, err);
2535                             }
2536                             seen_bindings.entry(ident).or_insert(param.ident.span);
2537
2538                         // Plain insert (no renaming).
2539                         let def = Def::TyParam(self.definitions.local_def_id(param.id));
2540                             function_type_rib.bindings.insert(ident, def);
2541                             self.record_def(param.id, PathResolution::new(def));
2542                         }
2543                     }
2544                 }
2545                 self.ribs[TypeNS].push(function_type_rib);
2546             }
2547
2548             NoTypeParameters => {
2549                 // Nothing to do.
2550             }
2551         }
2552
2553         f(self);
2554
2555         if let HasTypeParameters(..) = type_parameters {
2556             self.ribs[TypeNS].pop();
2557         }
2558     }
2559
2560     fn with_label_rib<F>(&mut self, f: F)
2561         where F: FnOnce(&mut Resolver)
2562     {
2563         self.label_ribs.push(Rib::new(NormalRibKind));
2564         f(self);
2565         self.label_ribs.pop();
2566     }
2567
2568     fn with_item_rib<F>(&mut self, f: F)
2569         where F: FnOnce(&mut Resolver)
2570     {
2571         self.ribs[ValueNS].push(Rib::new(ItemRibKind));
2572         self.ribs[TypeNS].push(Rib::new(ItemRibKind));
2573         f(self);
2574         self.ribs[TypeNS].pop();
2575         self.ribs[ValueNS].pop();
2576     }
2577
2578     fn with_constant_rib<F>(&mut self, f: F)
2579         where F: FnOnce(&mut Resolver)
2580     {
2581         self.ribs[ValueNS].push(Rib::new(ConstantItemRibKind));
2582         self.label_ribs.push(Rib::new(ConstantItemRibKind));
2583         f(self);
2584         self.label_ribs.pop();
2585         self.ribs[ValueNS].pop();
2586     }
2587
2588     fn with_current_self_type<T, F>(&mut self, self_type: &Ty, f: F) -> T
2589         where F: FnOnce(&mut Resolver) -> T
2590     {
2591         // Handle nested impls (inside fn bodies)
2592         let previous_value = replace(&mut self.current_self_type, Some(self_type.clone()));
2593         let result = f(self);
2594         self.current_self_type = previous_value;
2595         result
2596     }
2597
2598     fn with_current_self_item<T, F>(&mut self, self_item: &Item, f: F) -> T
2599         where F: FnOnce(&mut Resolver) -> T
2600     {
2601         let previous_value = replace(&mut self.current_self_item, Some(self_item.id));
2602         let result = f(self);
2603         self.current_self_item = previous_value;
2604         result
2605     }
2606
2607     /// This is called to resolve a trait reference from an `impl` (i.e., `impl Trait for Foo`)
2608     fn with_optional_trait_ref<T, F>(&mut self, opt_trait_ref: Option<&TraitRef>, f: F) -> T
2609         where F: FnOnce(&mut Resolver, Option<DefId>) -> T
2610     {
2611         let mut new_val = None;
2612         let mut new_id = None;
2613         if let Some(trait_ref) = opt_trait_ref {
2614             let path: Vec<_> = Segment::from_path(&trait_ref.path);
2615             let def = self.smart_resolve_path_fragment(
2616                 trait_ref.ref_id,
2617                 None,
2618                 &path,
2619                 trait_ref.path.span,
2620                 PathSource::Trait(AliasPossibility::No),
2621                 CrateLint::SimplePath(trait_ref.ref_id),
2622             ).base_def();
2623             if def != Def::Err {
2624                 new_id = Some(def.def_id());
2625                 let span = trait_ref.path.span;
2626                 if let PathResult::Module(ModuleOrUniformRoot::Module(module)) =
2627                     self.resolve_path_without_parent_scope(
2628                         &path,
2629                         Some(TypeNS),
2630                         false,
2631                         span,
2632                         CrateLint::SimplePath(trait_ref.ref_id),
2633                     )
2634                 {
2635                     new_val = Some((module, trait_ref.clone()));
2636                 }
2637             }
2638         }
2639         let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
2640         let result = f(self, new_id);
2641         self.current_trait_ref = original_trait_ref;
2642         result
2643     }
2644
2645     fn with_self_rib<F>(&mut self, self_def: Def, f: F)
2646         where F: FnOnce(&mut Resolver)
2647     {
2648         let mut self_type_rib = Rib::new(NormalRibKind);
2649
2650         // plain insert (no renaming, types are not currently hygienic....)
2651         self_type_rib.bindings.insert(keywords::SelfUpper.ident(), self_def);
2652         self.ribs[TypeNS].push(self_type_rib);
2653         f(self);
2654         self.ribs[TypeNS].pop();
2655     }
2656
2657     fn with_self_struct_ctor_rib<F>(&mut self, impl_id: DefId, f: F)
2658         where F: FnOnce(&mut Resolver)
2659     {
2660         let self_def = Def::SelfCtor(impl_id);
2661         let mut self_type_rib = Rib::new(NormalRibKind);
2662         self_type_rib.bindings.insert(keywords::SelfUpper.ident(), self_def);
2663         self.ribs[ValueNS].push(self_type_rib);
2664         f(self);
2665         self.ribs[ValueNS].pop();
2666     }
2667
2668     fn resolve_implementation(&mut self,
2669                               generics: &Generics,
2670                               opt_trait_reference: &Option<TraitRef>,
2671                               self_type: &Ty,
2672                               item_id: NodeId,
2673                               impl_items: &[ImplItem]) {
2674         // If applicable, create a rib for the type parameters.
2675         self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2676             // Dummy self type for better errors if `Self` is used in the trait path.
2677             this.with_self_rib(Def::SelfTy(None, None), |this| {
2678                 // Resolve the trait reference, if necessary.
2679                 this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| {
2680                     let item_def_id = this.definitions.local_def_id(item_id);
2681                     this.with_self_rib(Def::SelfTy(trait_id, Some(item_def_id)), |this| {
2682                         if let Some(trait_ref) = opt_trait_reference.as_ref() {
2683                             // Resolve type arguments in the trait path.
2684                             visit::walk_trait_ref(this, trait_ref);
2685                         }
2686                         // Resolve the self type.
2687                         this.visit_ty(self_type);
2688                         // Resolve the type parameters.
2689                         this.visit_generics(generics);
2690                         // Resolve the items within the impl.
2691                         this.with_current_self_type(self_type, |this| {
2692                             this.with_self_struct_ctor_rib(item_def_id, |this| {
2693                                 for impl_item in impl_items {
2694                                     this.resolve_visibility(&impl_item.vis);
2695
2696                                     // We also need a new scope for the impl item type parameters.
2697                                     let type_parameters = HasTypeParameters(&impl_item.generics,
2698                                                                             TraitOrImplItemRibKind);
2699                                     this.with_type_parameter_rib(type_parameters, |this| {
2700                                         use self::ResolutionError::*;
2701                                         match impl_item.node {
2702                                             ImplItemKind::Const(..) => {
2703                                                 // If this is a trait impl, ensure the const
2704                                                 // exists in trait
2705                                                 this.check_trait_item(impl_item.ident,
2706                                                                       ValueNS,
2707                                                                       impl_item.span,
2708                                                     |n, s| ConstNotMemberOfTrait(n, s));
2709                                                 this.with_constant_rib(|this|
2710                                                     visit::walk_impl_item(this, impl_item)
2711                                                 );
2712                                             }
2713                                             ImplItemKind::Method(..) => {
2714                                                 // If this is a trait impl, ensure the method
2715                                                 // exists in trait
2716                                                 this.check_trait_item(impl_item.ident,
2717                                                                       ValueNS,
2718                                                                       impl_item.span,
2719                                                     |n, s| MethodNotMemberOfTrait(n, s));
2720
2721                                                 visit::walk_impl_item(this, impl_item);
2722                                             }
2723                                             ImplItemKind::Type(ref ty) => {
2724                                                 // If this is a trait impl, ensure the type
2725                                                 // exists in trait
2726                                                 this.check_trait_item(impl_item.ident,
2727                                                                       TypeNS,
2728                                                                       impl_item.span,
2729                                                     |n, s| TypeNotMemberOfTrait(n, s));
2730
2731                                                 this.visit_ty(ty);
2732                                             }
2733                                             ImplItemKind::Existential(ref bounds) => {
2734                                                 // If this is a trait impl, ensure the type
2735                                                 // exists in trait
2736                                                 this.check_trait_item(impl_item.ident,
2737                                                                       TypeNS,
2738                                                                       impl_item.span,
2739                                                     |n, s| TypeNotMemberOfTrait(n, s));
2740
2741                                                 for bound in bounds {
2742                                                     this.visit_param_bound(bound);
2743                                                 }
2744                                             }
2745                                             ImplItemKind::Macro(_) =>
2746                                                 panic!("unexpanded macro in resolve!"),
2747                                         }
2748                                     });
2749                                 }
2750                             });
2751                         });
2752                     });
2753                 });
2754             });
2755         });
2756     }
2757
2758     fn check_trait_item<F>(&mut self, ident: Ident, ns: Namespace, span: Span, err: F)
2759         where F: FnOnce(Name, &str) -> ResolutionError
2760     {
2761         // If there is a TraitRef in scope for an impl, then the method must be in the
2762         // trait.
2763         if let Some((module, _)) = self.current_trait_ref {
2764             if self.resolve_ident_in_module(
2765                 ModuleOrUniformRoot::Module(module),
2766                 ident,
2767                 ns,
2768                 None,
2769                 false,
2770                 span,
2771             ).is_err() {
2772                 let path = &self.current_trait_ref.as_ref().unwrap().1.path;
2773                 resolve_error(self, span, err(ident.name, &path_names_to_string(path)));
2774             }
2775         }
2776     }
2777
2778     fn resolve_local(&mut self, local: &Local) {
2779         // Resolve the type.
2780         walk_list!(self, visit_ty, &local.ty);
2781
2782         // Resolve the initializer.
2783         walk_list!(self, visit_expr, &local.init);
2784
2785         // Resolve the pattern.
2786         self.resolve_pattern(&local.pat, PatternSource::Let, &mut FxHashMap::default());
2787     }
2788
2789     // build a map from pattern identifiers to binding-info's.
2790     // this is done hygienically. This could arise for a macro
2791     // that expands into an or-pattern where one 'x' was from the
2792     // user and one 'x' came from the macro.
2793     fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
2794         let mut binding_map = FxHashMap::default();
2795
2796         pat.walk(&mut |pat| {
2797             if let PatKind::Ident(binding_mode, ident, ref sub_pat) = pat.node {
2798                 if sub_pat.is_some() || match self.def_map.get(&pat.id).map(|res| res.base_def()) {
2799                     Some(Def::Local(..)) => true,
2800                     _ => false,
2801                 } {
2802                     let binding_info = BindingInfo { span: ident.span, binding_mode: binding_mode };
2803                     binding_map.insert(ident, binding_info);
2804                 }
2805             }
2806             true
2807         });
2808
2809         binding_map
2810     }
2811
2812     // check that all of the arms in an or-pattern have exactly the
2813     // same set of bindings, with the same binding modes for each.
2814     fn check_consistent_bindings(&mut self, pats: &[P<Pat>]) {
2815         if pats.is_empty() {
2816             return;
2817         }
2818
2819         let mut missing_vars = FxHashMap::default();
2820         let mut inconsistent_vars = FxHashMap::default();
2821         for (i, p) in pats.iter().enumerate() {
2822             let map_i = self.binding_mode_map(&p);
2823
2824             for (j, q) in pats.iter().enumerate() {
2825                 if i == j {
2826                     continue;
2827                 }
2828
2829                 let map_j = self.binding_mode_map(&q);
2830                 for (&key, &binding_i) in &map_i {
2831                     if map_j.is_empty() {                   // Account for missing bindings when
2832                         let binding_error = missing_vars    // map_j has none.
2833                             .entry(key.name)
2834                             .or_insert(BindingError {
2835                                 name: key.name,
2836                                 origin: BTreeSet::new(),
2837                                 target: BTreeSet::new(),
2838                             });
2839                         binding_error.origin.insert(binding_i.span);
2840                         binding_error.target.insert(q.span);
2841                     }
2842                     for (&key_j, &binding_j) in &map_j {
2843                         match map_i.get(&key_j) {
2844                             None => {  // missing binding
2845                                 let binding_error = missing_vars
2846                                     .entry(key_j.name)
2847                                     .or_insert(BindingError {
2848                                         name: key_j.name,
2849                                         origin: BTreeSet::new(),
2850                                         target: BTreeSet::new(),
2851                                     });
2852                                 binding_error.origin.insert(binding_j.span);
2853                                 binding_error.target.insert(p.span);
2854                             }
2855                             Some(binding_i) => {  // check consistent binding
2856                                 if binding_i.binding_mode != binding_j.binding_mode {
2857                                     inconsistent_vars
2858                                         .entry(key.name)
2859                                         .or_insert((binding_j.span, binding_i.span));
2860                                 }
2861                             }
2862                         }
2863                     }
2864                 }
2865             }
2866         }
2867         let mut missing_vars = missing_vars.iter().collect::<Vec<_>>();
2868         missing_vars.sort();
2869         for (_, v) in missing_vars {
2870             resolve_error(self,
2871                           *v.origin.iter().next().unwrap(),
2872                           ResolutionError::VariableNotBoundInPattern(v));
2873         }
2874         let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
2875         inconsistent_vars.sort();
2876         for (name, v) in inconsistent_vars {
2877             resolve_error(self, v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
2878         }
2879     }
2880
2881     fn resolve_arm(&mut self, arm: &Arm) {
2882         self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2883
2884         let mut bindings_list = FxHashMap::default();
2885         for pattern in &arm.pats {
2886             self.resolve_pattern(&pattern, PatternSource::Match, &mut bindings_list);
2887         }
2888
2889         // This has to happen *after* we determine which pat_idents are variants.
2890         self.check_consistent_bindings(&arm.pats);
2891
2892         if let Some(ast::Guard::If(ref expr)) = arm.guard {
2893             self.visit_expr(expr)
2894         }
2895         self.visit_expr(&arm.body);
2896
2897         self.ribs[ValueNS].pop();
2898     }
2899
2900     fn resolve_block(&mut self, block: &Block) {
2901         debug!("(resolving block) entering block");
2902         // Move down in the graph, if there's an anonymous module rooted here.
2903         let orig_module = self.current_module;
2904         let anonymous_module = self.block_map.get(&block.id).cloned(); // clones a reference
2905
2906         let mut num_macro_definition_ribs = 0;
2907         if let Some(anonymous_module) = anonymous_module {
2908             debug!("(resolving block) found anonymous module, moving down");
2909             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2910             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2911             self.current_module = anonymous_module;
2912             self.finalize_current_module_macro_resolutions();
2913         } else {
2914             self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2915         }
2916
2917         // Descend into the block.
2918         for stmt in &block.stmts {
2919             if let ast::StmtKind::Item(ref item) = stmt.node {
2920                 if let ast::ItemKind::MacroDef(..) = item.node {
2921                     num_macro_definition_ribs += 1;
2922                     let def = self.definitions.local_def_id(item.id);
2923                     self.ribs[ValueNS].push(Rib::new(MacroDefinition(def)));
2924                     self.label_ribs.push(Rib::new(MacroDefinition(def)));
2925                 }
2926             }
2927
2928             self.visit_stmt(stmt);
2929         }
2930
2931         // Move back up.
2932         self.current_module = orig_module;
2933         for _ in 0 .. num_macro_definition_ribs {
2934             self.ribs[ValueNS].pop();
2935             self.label_ribs.pop();
2936         }
2937         self.ribs[ValueNS].pop();
2938         if anonymous_module.is_some() {
2939             self.ribs[TypeNS].pop();
2940         }
2941         debug!("(resolving block) leaving block");
2942     }
2943
2944     fn fresh_binding(&mut self,
2945                      ident: Ident,
2946                      pat_id: NodeId,
2947                      outer_pat_id: NodeId,
2948                      pat_src: PatternSource,
2949                      bindings: &mut FxHashMap<Ident, NodeId>)
2950                      -> PathResolution {
2951         // Add the binding to the local ribs, if it
2952         // doesn't already exist in the bindings map. (We
2953         // must not add it if it's in the bindings map
2954         // because that breaks the assumptions later
2955         // passes make about or-patterns.)
2956         let ident = ident.modern_and_legacy();
2957         let mut def = Def::Local(pat_id);
2958         match bindings.get(&ident).cloned() {
2959             Some(id) if id == outer_pat_id => {
2960                 // `Variant(a, a)`, error
2961                 resolve_error(
2962                     self,
2963                     ident.span,
2964                     ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(
2965                         &ident.as_str())
2966                 );
2967             }
2968             Some(..) if pat_src == PatternSource::FnParam => {
2969                 // `fn f(a: u8, a: u8)`, error
2970                 resolve_error(
2971                     self,
2972                     ident.span,
2973                     ResolutionError::IdentifierBoundMoreThanOnceInParameterList(
2974                         &ident.as_str())
2975                 );
2976             }
2977             Some(..) if pat_src == PatternSource::Match ||
2978                         pat_src == PatternSource::IfLet ||
2979                         pat_src == PatternSource::WhileLet => {
2980                 // `Variant1(a) | Variant2(a)`, ok
2981                 // Reuse definition from the first `a`.
2982                 def = self.ribs[ValueNS].last_mut().unwrap().bindings[&ident];
2983             }
2984             Some(..) => {
2985                 span_bug!(ident.span, "two bindings with the same name from \
2986                                        unexpected pattern source {:?}", pat_src);
2987             }
2988             None => {
2989                 // A completely fresh binding, add to the lists if it's valid.
2990                 if ident.name != keywords::Invalid.name() {
2991                     bindings.insert(ident, outer_pat_id);
2992                     self.ribs[ValueNS].last_mut().unwrap().bindings.insert(ident, def);
2993                 }
2994             }
2995         }
2996
2997         PathResolution::new(def)
2998     }
2999
3000     fn resolve_pattern(&mut self,
3001                        pat: &Pat,
3002                        pat_src: PatternSource,
3003                        // Maps idents to the node ID for the
3004                        // outermost pattern that binds them.
3005                        bindings: &mut FxHashMap<Ident, NodeId>) {
3006         // Visit all direct subpatterns of this pattern.
3007         let outer_pat_id = pat.id;
3008         pat.walk(&mut |pat| {
3009             debug!("resolve_pattern pat={:?} node={:?}", pat, pat.node);
3010             match pat.node {
3011                 PatKind::Ident(bmode, ident, ref opt_pat) => {
3012                     // First try to resolve the identifier as some existing
3013                     // entity, then fall back to a fresh binding.
3014                     let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS,
3015                                                                       None, pat.span)
3016                                       .and_then(LexicalScopeBinding::item);
3017                     let resolution = binding.map(NameBinding::def).and_then(|def| {
3018                         let is_syntactic_ambiguity = opt_pat.is_none() &&
3019                             bmode == BindingMode::ByValue(Mutability::Immutable);
3020                         match def {
3021                             Def::StructCtor(_, CtorKind::Const) |
3022                             Def::VariantCtor(_, CtorKind::Const) |
3023                             Def::Const(..) if is_syntactic_ambiguity => {
3024                                 // Disambiguate in favor of a unit struct/variant
3025                                 // or constant pattern.
3026                                 self.record_use(ident, ValueNS, binding.unwrap(), false);
3027                                 Some(PathResolution::new(def))
3028                             }
3029                             Def::StructCtor(..) | Def::VariantCtor(..) |
3030                             Def::Const(..) | Def::Static(..) => {
3031                                 // This is unambiguously a fresh binding, either syntactically
3032                                 // (e.g., `IDENT @ PAT` or `ref IDENT`) or because `IDENT` resolves
3033                                 // to something unusable as a pattern (e.g., constructor function),
3034                                 // but we still conservatively report an error, see
3035                                 // issues/33118#issuecomment-233962221 for one reason why.
3036                                 resolve_error(
3037                                     self,
3038                                     ident.span,
3039                                     ResolutionError::BindingShadowsSomethingUnacceptable(
3040                                         pat_src.descr(), ident.name, binding.unwrap())
3041                                 );
3042                                 None
3043                             }
3044                             Def::Fn(..) | Def::Err => {
3045                                 // These entities are explicitly allowed
3046                                 // to be shadowed by fresh bindings.
3047                                 None
3048                             }
3049                             def => {
3050                                 span_bug!(ident.span, "unexpected definition for an \
3051                                                        identifier in pattern: {:?}", def);
3052                             }
3053                         }
3054                     }).unwrap_or_else(|| {
3055                         self.fresh_binding(ident, pat.id, outer_pat_id, pat_src, bindings)
3056                     });
3057
3058                     self.record_def(pat.id, resolution);
3059                 }
3060
3061                 PatKind::TupleStruct(ref path, ..) => {
3062                     self.smart_resolve_path(pat.id, None, path, PathSource::TupleStruct);
3063                 }
3064
3065                 PatKind::Path(ref qself, ref path) => {
3066                     self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
3067                 }
3068
3069                 PatKind::Struct(ref path, ..) => {
3070                     self.smart_resolve_path(pat.id, None, path, PathSource::Struct);
3071                 }
3072
3073                 _ => {}
3074             }
3075             true
3076         });
3077
3078         visit::walk_pat(self, pat);
3079     }
3080
3081     // High-level and context dependent path resolution routine.
3082     // Resolves the path and records the resolution into definition map.
3083     // If resolution fails tries several techniques to find likely
3084     // resolution candidates, suggest imports or other help, and report
3085     // errors in user friendly way.
3086     fn smart_resolve_path(&mut self,
3087                           id: NodeId,
3088                           qself: Option<&QSelf>,
3089                           path: &Path,
3090                           source: PathSource)
3091                           -> PathResolution {
3092         self.smart_resolve_path_with_crate_lint(id, qself, path, source, CrateLint::SimplePath(id))
3093     }
3094
3095     /// A variant of `smart_resolve_path` where you also specify extra
3096     /// information about where the path came from; this extra info is
3097     /// sometimes needed for the lint that recommends rewriting
3098     /// absolute paths to `crate`, so that it knows how to frame the
3099     /// suggestion. If you are just resolving a path like `foo::bar`
3100     /// that appears...somewhere, though, then you just want
3101     /// `CrateLint::SimplePath`, which is what `smart_resolve_path`
3102     /// already provides.
3103     fn smart_resolve_path_with_crate_lint(
3104         &mut self,
3105         id: NodeId,
3106         qself: Option<&QSelf>,
3107         path: &Path,
3108         source: PathSource,
3109         crate_lint: CrateLint
3110     ) -> PathResolution {
3111         self.smart_resolve_path_fragment(
3112             id,
3113             qself,
3114             &Segment::from_path(path),
3115             path.span,
3116             source,
3117             crate_lint,
3118         )
3119     }
3120
3121     fn smart_resolve_path_fragment(&mut self,
3122                                    id: NodeId,
3123                                    qself: Option<&QSelf>,
3124                                    path: &[Segment],
3125                                    span: Span,
3126                                    source: PathSource,
3127                                    crate_lint: CrateLint)
3128                                    -> PathResolution {
3129         let ident_span = path.last().map_or(span, |ident| ident.ident.span);
3130         let ns = source.namespace();
3131         let is_expected = &|def| source.is_expected(def);
3132         let is_enum_variant = &|def| if let Def::Variant(..) = def { true } else { false };
3133
3134         // Base error is amended with one short label and possibly some longer helps/notes.
3135         let report_errors = |this: &mut Self, def: Option<Def>| {
3136             // Make the base error.
3137             let expected = source.descr_expected();
3138             let path_str = Segment::names_to_string(path);
3139             let item_str = path.last().unwrap().ident;
3140             let code = source.error_code(def.is_some());
3141             let (base_msg, fallback_label, base_span) = if let Some(def) = def {
3142                 (format!("expected {}, found {} `{}`", expected, def.kind_name(), path_str),
3143                  format!("not a {}", expected),
3144                  span)
3145             } else {
3146                 let item_span = path.last().unwrap().ident.span;
3147                 let (mod_prefix, mod_str) = if path.len() == 1 {
3148                     (String::new(), "this scope".to_string())
3149                 } else if path.len() == 2 && path[0].ident.name == keywords::PathRoot.name() {
3150                     (String::new(), "the crate root".to_string())
3151                 } else {
3152                     let mod_path = &path[..path.len() - 1];
3153                     let mod_prefix = match this.resolve_path_without_parent_scope(
3154                         mod_path, Some(TypeNS), false, span, CrateLint::No
3155                     ) {
3156                         PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3157                             module.def(),
3158                         _ => None,
3159                     }.map_or(String::new(), |def| format!("{} ", def.kind_name()));
3160                     (mod_prefix, format!("`{}`", Segment::names_to_string(mod_path)))
3161                 };
3162                 (format!("cannot find {} `{}` in {}{}", expected, item_str, mod_prefix, mod_str),
3163                  format!("not found in {}", mod_str),
3164                  item_span)
3165             };
3166
3167             let code = DiagnosticId::Error(code.into());
3168             let mut err = this.session.struct_span_err_with_code(base_span, &base_msg, code);
3169
3170             // Emit help message for fake-self from other languages like `this`(javascript)
3171             if ["this", "my"].contains(&&*item_str.as_str())
3172                 && this.self_value_is_available(path[0].ident.span, span) {
3173                 err.span_suggestion_with_applicability(
3174                     span,
3175                     "did you mean",
3176                     "self".to_string(),
3177                     Applicability::MaybeIncorrect,
3178                 );
3179             }
3180
3181             // Emit special messages for unresolved `Self` and `self`.
3182             if is_self_type(path, ns) {
3183                 __diagnostic_used!(E0411);
3184                 err.code(DiagnosticId::Error("E0411".into()));
3185                 err.span_label(span, format!("`Self` is only available in impls, traits, \
3186                                               and type definitions"));
3187                 return (err, Vec::new());
3188             }
3189             if is_self_value(path, ns) {
3190                 debug!("smart_resolve_path_fragment E0424 source:{:?}", source);
3191
3192                 __diagnostic_used!(E0424);
3193                 err.code(DiagnosticId::Error("E0424".into()));
3194                 err.span_label(span, match source {
3195                     PathSource::Pat => {
3196                         format!("`self` value is a keyword \
3197                                 and may not be bound to \
3198                                 variables or shadowed")
3199                     }
3200                     _ => {
3201                         format!("`self` value is a keyword \
3202                                 only available in methods \
3203                                 with `self` parameter")
3204                     }
3205                 });
3206                 return (err, Vec::new());
3207             }
3208
3209             // Try to lookup the name in more relaxed fashion for better error reporting.
3210             let ident = path.last().unwrap().ident;
3211             let candidates = this.lookup_import_candidates(ident, ns, is_expected);
3212             if candidates.is_empty() && is_expected(Def::Enum(DefId::local(CRATE_DEF_INDEX))) {
3213                 let enum_candidates =
3214                     this.lookup_import_candidates(ident, ns, is_enum_variant);
3215                 let mut enum_candidates = enum_candidates.iter()
3216                     .map(|suggestion| import_candidate_to_paths(&suggestion)).collect::<Vec<_>>();
3217                 enum_candidates.sort();
3218                 for (sp, variant_path, enum_path) in enum_candidates {
3219                     if sp.is_dummy() {
3220                         let msg = format!("there is an enum variant `{}`, \
3221                                            try using `{}`?",
3222                                           variant_path,
3223                                           enum_path);
3224                         err.help(&msg);
3225                     } else {
3226                         err.span_suggestion_with_applicability(
3227                             span,
3228                             "you can try using the variant's enum",
3229                             enum_path,
3230                             Applicability::MachineApplicable,
3231                         );
3232                     }
3233                 }
3234             }
3235             if path.len() == 1 && this.self_type_is_available(span) {
3236                 if let Some(candidate) = this.lookup_assoc_candidate(ident, ns, is_expected) {
3237                     let self_is_available = this.self_value_is_available(path[0].ident.span, span);
3238                     match candidate {
3239                         AssocSuggestion::Field => {
3240                             err.span_suggestion_with_applicability(
3241                                 span,
3242                                 "try",
3243                                 format!("self.{}", path_str),
3244                                 Applicability::MachineApplicable,
3245                             );
3246                             if !self_is_available {
3247                                 err.span_label(span, format!("`self` value is a keyword \
3248                                                                only available in \
3249                                                                methods with `self` parameter"));
3250                             }
3251                         }
3252                         AssocSuggestion::MethodWithSelf if self_is_available => {
3253                             err.span_suggestion_with_applicability(
3254                                 span,
3255                                 "try",
3256                                 format!("self.{}", path_str),
3257                                 Applicability::MachineApplicable,
3258                             );
3259                         }
3260                         AssocSuggestion::MethodWithSelf | AssocSuggestion::AssocItem => {
3261                             err.span_suggestion_with_applicability(
3262                                 span,
3263                                 "try",
3264                                 format!("Self::{}", path_str),
3265                                 Applicability::MachineApplicable,
3266                             );
3267                         }
3268                     }
3269                     return (err, candidates);
3270                 }
3271             }
3272
3273             let mut levenshtein_worked = false;
3274
3275             // Try Levenshtein algorithm.
3276             if let Some(candidate) = this.lookup_typo_candidate(path, ns, is_expected, span) {
3277                 err.span_label(ident_span, format!("did you mean `{}`?", candidate));
3278                 levenshtein_worked = true;
3279             }
3280
3281             // Try context dependent help if relaxed lookup didn't work.
3282             if let Some(def) = def {
3283                 match (def, source) {
3284                     (Def::Macro(..), _) => {
3285                         err.span_label(span, format!("did you mean `{}!(...)`?", path_str));
3286                         return (err, candidates);
3287                     }
3288                     (Def::TyAlias(..), PathSource::Trait(_)) => {
3289                         err.span_label(span, "type aliases cannot be used as traits");
3290                         if nightly_options::is_nightly_build() {
3291                             err.note("did you mean to use a trait alias?");
3292                         }
3293                         return (err, candidates);
3294                     }
3295                     (Def::Mod(..), PathSource::Expr(Some(parent))) => match parent.node {
3296                         ExprKind::Field(_, ident) => {
3297                             err.span_label(parent.span, format!("did you mean `{}::{}`?",
3298                                                                  path_str, ident));
3299                             return (err, candidates);
3300                         }
3301                         ExprKind::MethodCall(ref segment, ..) => {
3302                             err.span_label(parent.span, format!("did you mean `{}::{}(...)`?",
3303                                                                  path_str, segment.ident));
3304                             return (err, candidates);
3305                         }
3306                         _ => {}
3307                     },
3308                     (Def::Enum(..), PathSource::TupleStruct)
3309                         | (Def::Enum(..), PathSource::Expr(..))  => {
3310                         if let Some(variants) = this.collect_enum_variants(def) {
3311                             err.note(&format!("did you mean to use one \
3312                                                of the following variants?\n{}",
3313                                 variants.iter()
3314                                     .map(|suggestion| path_names_to_string(suggestion))
3315                                     .map(|suggestion| format!("- `{}`", suggestion))
3316                                     .collect::<Vec<_>>()
3317                                     .join("\n")));
3318
3319                         } else {
3320                             err.note("did you mean to use one of the enum's variants?");
3321                         }
3322                         return (err, candidates);
3323                     },
3324                     (Def::Struct(def_id), _) if ns == ValueNS => {
3325                         if let Some((ctor_def, ctor_vis))
3326                                 = this.struct_constructors.get(&def_id).cloned() {
3327                             let accessible_ctor = this.is_accessible(ctor_vis);
3328                             if is_expected(ctor_def) && !accessible_ctor {
3329                                 err.span_label(span, format!("constructor is not visible \
3330                                                               here due to private fields"));
3331                             }
3332                         } else {
3333                             // HACK(estebank): find a better way to figure out that this was a
3334                             // parser issue where a struct literal is being used on an expression
3335                             // where a brace being opened means a block is being started. Look
3336                             // ahead for the next text to see if `span` is followed by a `{`.
3337                             let sm = this.session.source_map();
3338                             let mut sp = span;
3339                             loop {
3340                                 sp = sm.next_point(sp);
3341                                 match sm.span_to_snippet(sp) {
3342                                     Ok(ref snippet) => {
3343                                         if snippet.chars().any(|c| { !c.is_whitespace() }) {
3344                                             break;
3345                                         }
3346                                     }
3347                                     _ => break,
3348                                 }
3349                             }
3350                             let followed_by_brace = match sm.span_to_snippet(sp) {
3351                                 Ok(ref snippet) if snippet == "{" => true,
3352                                 _ => false,
3353                             };
3354                             match source {
3355                                 PathSource::Expr(Some(parent)) => {
3356                                     match parent.node {
3357                                         ExprKind::MethodCall(ref path_assignment, _)  => {
3358                                             err.span_suggestion_with_applicability(
3359                                                 sm.start_point(parent.span)
3360                                                   .to(path_assignment.ident.span),
3361                                                 "use `::` to access an associated function",
3362                                                 format!("{}::{}",
3363                                                         path_str,
3364                                                         path_assignment.ident),
3365                                                 Applicability::MaybeIncorrect
3366                                             );
3367                                             return (err, candidates);
3368                                         },
3369                                         _ => {
3370                                             err.span_label(
3371                                                 span,
3372                                                 format!("did you mean `{} {{ /* fields */ }}`?",
3373                                                         path_str),
3374                                             );
3375                                             return (err, candidates);
3376                                         },
3377                                     }
3378                                 },
3379                                 PathSource::Expr(None) if followed_by_brace == true => {
3380                                     err.span_label(
3381                                         span,
3382                                         format!("did you mean `({} {{ /* fields */ }})`?",
3383                                                 path_str),
3384                                     );
3385                                     return (err, candidates);
3386                                 },
3387                                 _ => {
3388                                     err.span_label(
3389                                         span,
3390                                         format!("did you mean `{} {{ /* fields */ }}`?",
3391                                                 path_str),
3392                                     );
3393                                     return (err, candidates);
3394                                 },
3395                             }
3396                         }
3397                         return (err, candidates);
3398                     }
3399                     (Def::Union(..), _) |
3400                     (Def::Variant(..), _) |
3401                     (Def::VariantCtor(_, CtorKind::Fictive), _) if ns == ValueNS => {
3402                         err.span_label(span, format!("did you mean `{} {{ /* fields */ }}`?",
3403                                                      path_str));
3404                         return (err, candidates);
3405                     }
3406                     (Def::SelfTy(..), _) if ns == ValueNS => {
3407                         err.span_label(span, fallback_label);
3408                         err.note("can't use `Self` as a constructor, you must use the \
3409                                   implemented struct");
3410                         return (err, candidates);
3411                     }
3412                     (Def::TyAlias(_), _) | (Def::AssociatedTy(..), _) if ns == ValueNS => {
3413                         err.note("can't use a type alias as a constructor");
3414                         return (err, candidates);
3415                     }
3416                     _ => {}
3417                 }
3418             }
3419
3420             // Fallback label.
3421             if !levenshtein_worked {
3422                 err.span_label(base_span, fallback_label);
3423                 this.type_ascription_suggestion(&mut err, base_span);
3424             }
3425             (err, candidates)
3426         };
3427         let report_errors = |this: &mut Self, def: Option<Def>| {
3428             let (err, candidates) = report_errors(this, def);
3429             let def_id = this.current_module.normal_ancestor_id;
3430             let node_id = this.definitions.as_local_node_id(def_id).unwrap();
3431             let better = def.is_some();
3432             this.use_injections.push(UseError { err, candidates, node_id, better });
3433             err_path_resolution()
3434         };
3435
3436         let resolution = match self.resolve_qpath_anywhere(
3437             id,
3438             qself,
3439             path,
3440             ns,
3441             span,
3442             source.defer_to_typeck(),
3443             source.global_by_default(),
3444             crate_lint,
3445         ) {
3446             Some(resolution) if resolution.unresolved_segments() == 0 => {
3447                 if is_expected(resolution.base_def()) || resolution.base_def() == Def::Err {
3448                     resolution
3449                 } else {
3450                     // Add a temporary hack to smooth the transition to new struct ctor
3451                     // visibility rules. See #38932 for more details.
3452                     let mut res = None;
3453                     if let Def::Struct(def_id) = resolution.base_def() {
3454                         if let Some((ctor_def, ctor_vis))
3455                                 = self.struct_constructors.get(&def_id).cloned() {
3456                             if is_expected(ctor_def) && self.is_accessible(ctor_vis) {
3457                                 let lint = lint::builtin::LEGACY_CONSTRUCTOR_VISIBILITY;
3458                                 self.session.buffer_lint(lint, id, span,
3459                                     "private struct constructors are not usable through \
3460                                      re-exports in outer modules",
3461                                 );
3462                                 res = Some(PathResolution::new(ctor_def));
3463                             }
3464                         }
3465                     }
3466
3467                     res.unwrap_or_else(|| report_errors(self, Some(resolution.base_def())))
3468                 }
3469             }
3470             Some(resolution) if source.defer_to_typeck() => {
3471                 // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
3472                 // or `<T>::A::B`. If `B` should be resolved in value namespace then
3473                 // it needs to be added to the trait map.
3474                 if ns == ValueNS {
3475                     let item_name = path.last().unwrap().ident;
3476                     let traits = self.get_traits_containing_item(item_name, ns);
3477                     self.trait_map.insert(id, traits);
3478                 }
3479                 resolution
3480             }
3481             _ => report_errors(self, None)
3482         };
3483
3484         if let PathSource::TraitItem(..) = source {} else {
3485             // Avoid recording definition of `A::B` in `<T as A>::B::C`.
3486             self.record_def(id, resolution);
3487         }
3488         resolution
3489     }
3490
3491     fn type_ascription_suggestion(&self,
3492                                   err: &mut DiagnosticBuilder,
3493                                   base_span: Span) {
3494         debug!("type_ascription_suggetion {:?}", base_span);
3495         let cm = self.session.source_map();
3496         debug!("self.current_type_ascription {:?}", self.current_type_ascription);
3497         if let Some(sp) = self.current_type_ascription.last() {
3498             let mut sp = *sp;
3499             loop {  // try to find the `:`, bail on first non-':'/non-whitespace
3500                 sp = cm.next_point(sp);
3501                 if let Ok(snippet) = cm.span_to_snippet(sp.to(cm.next_point(sp))) {
3502                     debug!("snippet {:?}", snippet);
3503                     let line_sp = cm.lookup_char_pos(sp.hi()).line;
3504                     let line_base_sp = cm.lookup_char_pos(base_span.lo()).line;
3505                     debug!("{:?} {:?}", line_sp, line_base_sp);
3506                     if snippet == ":" {
3507                         err.span_label(base_span,
3508                                        "expecting a type here because of type ascription");
3509                         if line_sp != line_base_sp {
3510                             err.span_suggestion_short_with_applicability(
3511                                 sp,
3512                                 "did you mean to use `;` here instead?",
3513                                 ";".to_string(),
3514                                 Applicability::MaybeIncorrect,
3515                             );
3516                         }
3517                         break;
3518                     } else if !snippet.trim().is_empty() {
3519                         debug!("tried to find type ascription `:` token, couldn't find it");
3520                         break;
3521                     }
3522                 } else {
3523                     break;
3524                 }
3525             }
3526         }
3527     }
3528
3529     fn self_type_is_available(&mut self, span: Span) -> bool {
3530         let binding = self.resolve_ident_in_lexical_scope(keywords::SelfUpper.ident(),
3531                                                           TypeNS, None, span);
3532         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3533     }
3534
3535     fn self_value_is_available(&mut self, self_span: Span, path_span: Span) -> bool {
3536         let ident = Ident::new(keywords::SelfLower.name(), self_span);
3537         let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, None, path_span);
3538         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3539     }
3540
3541     // Resolve in alternative namespaces if resolution in the primary namespace fails.
3542     fn resolve_qpath_anywhere(&mut self,
3543                               id: NodeId,
3544                               qself: Option<&QSelf>,
3545                               path: &[Segment],
3546                               primary_ns: Namespace,
3547                               span: Span,
3548                               defer_to_typeck: bool,
3549                               global_by_default: bool,
3550                               crate_lint: CrateLint)
3551                               -> Option<PathResolution> {
3552         let mut fin_res = None;
3553         // FIXME: can't resolve paths in macro namespace yet, macros are
3554         // processed by the little special hack below.
3555         for (i, ns) in [primary_ns, TypeNS, ValueNS, /*MacroNS*/].iter().cloned().enumerate() {
3556             if i == 0 || ns != primary_ns {
3557                 match self.resolve_qpath(id, qself, path, ns, span, global_by_default, crate_lint) {
3558                     // If defer_to_typeck, then resolution > no resolution,
3559                     // otherwise full resolution > partial resolution > no resolution.
3560                     Some(res) if res.unresolved_segments() == 0 || defer_to_typeck =>
3561                         return Some(res),
3562                     res => if fin_res.is_none() { fin_res = res },
3563                 };
3564             }
3565         }
3566         if primary_ns != MacroNS &&
3567            (self.macro_names.contains(&path[0].ident.modern()) ||
3568             self.builtin_macros.get(&path[0].ident.name).cloned()
3569                                .and_then(NameBinding::macro_kind) == Some(MacroKind::Bang) ||
3570             self.macro_use_prelude.get(&path[0].ident.name).cloned()
3571                                   .and_then(NameBinding::macro_kind) == Some(MacroKind::Bang)) {
3572             // Return some dummy definition, it's enough for error reporting.
3573             return Some(
3574                 PathResolution::new(Def::Macro(DefId::local(CRATE_DEF_INDEX), MacroKind::Bang))
3575             );
3576         }
3577         fin_res
3578     }
3579
3580     /// Handles paths that may refer to associated items.
3581     fn resolve_qpath(&mut self,
3582                      id: NodeId,
3583                      qself: Option<&QSelf>,
3584                      path: &[Segment],
3585                      ns: Namespace,
3586                      span: Span,
3587                      global_by_default: bool,
3588                      crate_lint: CrateLint)
3589                      -> Option<PathResolution> {
3590         debug!(
3591             "resolve_qpath(id={:?}, qself={:?}, path={:?}, \
3592              ns={:?}, span={:?}, global_by_default={:?})",
3593             id,
3594             qself,
3595             path,
3596             ns,
3597             span,
3598             global_by_default,
3599         );
3600
3601         if let Some(qself) = qself {
3602             if qself.position == 0 {
3603                 // This is a case like `<T>::B`, where there is no
3604                 // trait to resolve.  In that case, we leave the `B`
3605                 // segment to be resolved by type-check.
3606                 return Some(PathResolution::with_unresolved_segments(
3607                     Def::Mod(DefId::local(CRATE_DEF_INDEX)), path.len()
3608                 ));
3609             }
3610
3611             // Make sure `A::B` in `<T as A::B>::C` is a trait item.
3612             //
3613             // Currently, `path` names the full item (`A::B::C`, in
3614             // our example).  so we extract the prefix of that that is
3615             // the trait (the slice upto and including
3616             // `qself.position`). And then we recursively resolve that,
3617             // but with `qself` set to `None`.
3618             //
3619             // However, setting `qself` to none (but not changing the
3620             // span) loses the information about where this path
3621             // *actually* appears, so for the purposes of the crate
3622             // lint we pass along information that this is the trait
3623             // name from a fully qualified path, and this also
3624             // contains the full span (the `CrateLint::QPathTrait`).
3625             let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
3626             let res = self.smart_resolve_path_fragment(
3627                 id,
3628                 None,
3629                 &path[..=qself.position],
3630                 span,
3631                 PathSource::TraitItem(ns),
3632                 CrateLint::QPathTrait {
3633                     qpath_id: id,
3634                     qpath_span: qself.path_span,
3635                 },
3636             );
3637
3638             // The remaining segments (the `C` in our example) will
3639             // have to be resolved by type-check, since that requires doing
3640             // trait resolution.
3641             return Some(PathResolution::with_unresolved_segments(
3642                 res.base_def(), res.unresolved_segments() + path.len() - qself.position - 1
3643             ));
3644         }
3645
3646         let result = match self.resolve_path_without_parent_scope(
3647             &path,
3648             Some(ns),
3649             true,
3650             span,
3651             crate_lint,
3652         ) {
3653             PathResult::NonModule(path_res) => path_res,
3654             PathResult::Module(ModuleOrUniformRoot::Module(module)) if !module.is_normal() => {
3655                 PathResolution::new(module.def().unwrap())
3656             }
3657             // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
3658             // don't report an error right away, but try to fallback to a primitive type.
3659             // So, we are still able to successfully resolve something like
3660             //
3661             // use std::u8; // bring module u8 in scope
3662             // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
3663             //     u8::max_value() // OK, resolves to associated function <u8>::max_value,
3664             //                     // not to non-existent std::u8::max_value
3665             // }
3666             //
3667             // Such behavior is required for backward compatibility.
3668             // The same fallback is used when `a` resolves to nothing.
3669             PathResult::Module(ModuleOrUniformRoot::Module(_)) |
3670             PathResult::Failed(..)
3671                     if (ns == TypeNS || path.len() > 1) &&
3672                        self.primitive_type_table.primitive_types
3673                            .contains_key(&path[0].ident.name) => {
3674                 let prim = self.primitive_type_table.primitive_types[&path[0].ident.name];
3675                 PathResolution::with_unresolved_segments(Def::PrimTy(prim), path.len() - 1)
3676             }
3677             PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3678                 PathResolution::new(module.def().unwrap()),
3679             PathResult::Failed(span, msg, false) => {
3680                 resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
3681                 err_path_resolution()
3682             }
3683             PathResult::Module(..) | PathResult::Failed(..) => return None,
3684             PathResult::Indeterminate => bug!("indetermined path result in resolve_qpath"),
3685         };
3686
3687         if path.len() > 1 && !global_by_default && result.base_def() != Def::Err &&
3688            path[0].ident.name != keywords::PathRoot.name() &&
3689            path[0].ident.name != keywords::DollarCrate.name() {
3690             let unqualified_result = {
3691                 match self.resolve_path_without_parent_scope(
3692                     &[*path.last().unwrap()],
3693                     Some(ns),
3694                     false,
3695                     span,
3696                     CrateLint::No,
3697                 ) {
3698                     PathResult::NonModule(path_res) => path_res.base_def(),
3699                     PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3700                         module.def().unwrap(),
3701                     _ => return Some(result),
3702                 }
3703             };
3704             if result.base_def() == unqualified_result {
3705                 let lint = lint::builtin::UNUSED_QUALIFICATIONS;
3706                 self.session.buffer_lint(lint, id, span, "unnecessary qualification")
3707             }
3708         }
3709
3710         Some(result)
3711     }
3712
3713     fn resolve_path_without_parent_scope(
3714         &mut self,
3715         path: &[Segment],
3716         opt_ns: Option<Namespace>, // `None` indicates a module path in import
3717         record_used: bool,
3718         path_span: Span,
3719         crate_lint: CrateLint,
3720     ) -> PathResult<'a> {
3721         // Macro and import paths must have full parent scope available during resolution,
3722         // other paths will do okay with parent module alone.
3723         assert!(opt_ns != None && opt_ns != Some(MacroNS));
3724         let parent_scope = ParentScope { module: self.current_module, ..self.dummy_parent_scope() };
3725         self.resolve_path(path, opt_ns, &parent_scope, record_used, path_span, crate_lint)
3726     }
3727
3728     fn resolve_path(
3729         &mut self,
3730         path: &[Segment],
3731         opt_ns: Option<Namespace>, // `None` indicates a module path in import
3732         parent_scope: &ParentScope<'a>,
3733         record_used: bool,
3734         path_span: Span,
3735         crate_lint: CrateLint,
3736     ) -> PathResult<'a> {
3737         let mut module = None;
3738         let mut allow_super = true;
3739         let mut second_binding = None;
3740         self.current_module = parent_scope.module;
3741
3742         debug!(
3743             "resolve_path(path={:?}, opt_ns={:?}, record_used={:?}, \
3744              path_span={:?}, crate_lint={:?})",
3745             path,
3746             opt_ns,
3747             record_used,
3748             path_span,
3749             crate_lint,
3750         );
3751
3752         for (i, &Segment { ident, id }) in path.iter().enumerate() {
3753             debug!("resolve_path ident {} {:?} {:?}", i, ident, id);
3754             let record_segment_def = |this: &mut Self, def| {
3755                 if record_used {
3756                     if let Some(id) = id {
3757                         if !this.def_map.contains_key(&id) {
3758                             assert!(id != ast::DUMMY_NODE_ID, "Trying to resolve dummy id");
3759                             this.record_def(id, PathResolution::new(def));
3760                         }
3761                     }
3762                 }
3763             };
3764
3765             let is_last = i == path.len() - 1;
3766             let ns = if is_last { opt_ns.unwrap_or(TypeNS) } else { TypeNS };
3767             let name = ident.name;
3768
3769             allow_super &= ns == TypeNS &&
3770                 (name == keywords::SelfLower.name() ||
3771                  name == keywords::Super.name());
3772
3773             if ns == TypeNS {
3774                 if allow_super && name == keywords::Super.name() {
3775                     let mut ctxt = ident.span.ctxt().modern();
3776                     let self_module = match i {
3777                         0 => Some(self.resolve_self(&mut ctxt, self.current_module)),
3778                         _ => match module {
3779                             Some(ModuleOrUniformRoot::Module(module)) => Some(module),
3780                             _ => None,
3781                         },
3782                     };
3783                     if let Some(self_module) = self_module {
3784                         if let Some(parent) = self_module.parent {
3785                             module = Some(ModuleOrUniformRoot::Module(
3786                                 self.resolve_self(&mut ctxt, parent)));
3787                             continue;
3788                         }
3789                     }
3790                     let msg = "there are too many initial `super`s.".to_string();
3791                     return PathResult::Failed(ident.span, msg, false);
3792                 }
3793                 if i == 0 {
3794                     if name == keywords::SelfLower.name() {
3795                         let mut ctxt = ident.span.ctxt().modern();
3796                         module = Some(ModuleOrUniformRoot::Module(
3797                             self.resolve_self(&mut ctxt, self.current_module)));
3798                         continue;
3799                     }
3800                     if name == keywords::Extern.name() ||
3801                        name == keywords::PathRoot.name() && ident.span.rust_2018() {
3802                         module = Some(ModuleOrUniformRoot::ExternPrelude);
3803                         continue;
3804                     }
3805                     if name == keywords::PathRoot.name() &&
3806                        ident.span.rust_2015() && self.session.rust_2018() {
3807                         // `::a::b` from 2015 macro on 2018 global edition
3808                         module = Some(ModuleOrUniformRoot::CrateRootAndExternPrelude);
3809                         continue;
3810                     }
3811                     if name == keywords::PathRoot.name() ||
3812                        name == keywords::Crate.name() ||
3813                        name == keywords::DollarCrate.name() {
3814                         // `::a::b`, `crate::a::b` or `$crate::a::b`
3815                         module = Some(ModuleOrUniformRoot::Module(
3816                             self.resolve_crate_root(ident)));
3817                         continue;
3818                     }
3819                 }
3820             }
3821
3822             // Report special messages for path segment keywords in wrong positions.
3823             if ident.is_path_segment_keyword() && i != 0 {
3824                 let name_str = if name == keywords::PathRoot.name() {
3825                     "crate root".to_string()
3826                 } else {
3827                     format!("`{}`", name)
3828                 };
3829                 let msg = if i == 1 && path[0].ident.name == keywords::PathRoot.name() {
3830                     format!("global paths cannot start with {}", name_str)
3831                 } else {
3832                     format!("{} in paths can only be used in start position", name_str)
3833                 };
3834                 return PathResult::Failed(ident.span, msg, false);
3835             }
3836
3837             let binding = if let Some(module) = module {
3838                 self.resolve_ident_in_module(module, ident, ns, None, record_used, path_span)
3839             } else if opt_ns.is_none() || opt_ns == Some(MacroNS) {
3840                 assert!(ns == TypeNS);
3841                 let scopes = if opt_ns.is_none() { ScopeSet::Import(ns) } else { ScopeSet::Module };
3842                 self.early_resolve_ident_in_lexical_scope(ident, scopes, parent_scope, record_used,
3843                                                           record_used, path_span)
3844             } else {
3845                 let record_used_id =
3846                     if record_used { crate_lint.node_id().or(Some(CRATE_NODE_ID)) } else { None };
3847                 match self.resolve_ident_in_lexical_scope(ident, ns, record_used_id, path_span) {
3848                     // we found a locally-imported or available item/module
3849                     Some(LexicalScopeBinding::Item(binding)) => Ok(binding),
3850                     // we found a local variable or type param
3851                     Some(LexicalScopeBinding::Def(def))
3852                             if opt_ns == Some(TypeNS) || opt_ns == Some(ValueNS) => {
3853                         record_segment_def(self, def);
3854                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3855                             def, path.len() - 1
3856                         ));
3857                     }
3858                     _ => Err(Determinacy::determined(record_used)),
3859                 }
3860             };
3861
3862             match binding {
3863                 Ok(binding) => {
3864                     if i == 1 {
3865                         second_binding = Some(binding);
3866                     }
3867                     let def = binding.def();
3868                     let maybe_assoc = opt_ns != Some(MacroNS) && PathSource::Type.is_expected(def);
3869                     if let Some(next_module) = binding.module() {
3870                         module = Some(ModuleOrUniformRoot::Module(next_module));
3871                         record_segment_def(self, def);
3872                     } else if def == Def::ToolMod && i + 1 != path.len() {
3873                         let def = Def::NonMacroAttr(NonMacroAttrKind::Tool);
3874                         return PathResult::NonModule(PathResolution::new(def));
3875                     } else if def == Def::Err {
3876                         return PathResult::NonModule(err_path_resolution());
3877                     } else if opt_ns.is_some() && (is_last || maybe_assoc) {
3878                         self.lint_if_path_starts_with_module(
3879                             crate_lint,
3880                             path,
3881                             path_span,
3882                             second_binding,
3883                         );
3884                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3885                             def, path.len() - i - 1
3886                         ));
3887                     } else {
3888                         return PathResult::Failed(ident.span,
3889                                                   format!("not a module `{}`", ident),
3890                                                   is_last);
3891                     }
3892                 }
3893                 Err(Undetermined) => return PathResult::Indeterminate,
3894                 Err(Determined) => {
3895                     if let Some(ModuleOrUniformRoot::Module(module)) = module {
3896                         if opt_ns.is_some() && !module.is_normal() {
3897                             return PathResult::NonModule(PathResolution::with_unresolved_segments(
3898                                 module.def().unwrap(), path.len() - i
3899                             ));
3900                         }
3901                     }
3902                     let module_def = match module {
3903                         Some(ModuleOrUniformRoot::Module(module)) => module.def(),
3904                         _ => None,
3905                     };
3906                     let msg = if module_def == self.graph_root.def() {
3907                         let is_mod = |def| match def { Def::Mod(..) => true, _ => false };
3908                         let mut candidates =
3909                             self.lookup_import_candidates(ident, TypeNS, is_mod);
3910                         candidates.sort_by_cached_key(|c| {
3911                             (c.path.segments.len(), c.path.to_string())
3912                         });
3913                         if let Some(candidate) = candidates.get(0) {
3914                             format!("did you mean `{}`?", candidate.path)
3915                         } else {
3916                             format!("maybe a missing `extern crate {};`?", ident)
3917                         }
3918                     } else if i == 0 {
3919                         format!("use of undeclared type or module `{}`", ident)
3920                     } else {
3921                         format!("could not find `{}` in `{}`", ident, path[i - 1].ident)
3922                     };
3923                     return PathResult::Failed(ident.span, msg, is_last);
3924                 }
3925             }
3926         }
3927
3928         self.lint_if_path_starts_with_module(crate_lint, path, path_span, second_binding);
3929
3930         PathResult::Module(match module {
3931             Some(module) => module,
3932             None if path.is_empty() => ModuleOrUniformRoot::CurrentScope,
3933             _ => span_bug!(path_span, "resolve_path: non-empty path `{:?}` has no module", path),
3934         })
3935     }
3936
3937     fn lint_if_path_starts_with_module(
3938         &self,
3939         crate_lint: CrateLint,
3940         path: &[Segment],
3941         path_span: Span,
3942         second_binding: Option<&NameBinding>,
3943     ) {
3944         let (diag_id, diag_span) = match crate_lint {
3945             CrateLint::No => return,
3946             CrateLint::SimplePath(id) => (id, path_span),
3947             CrateLint::UsePath { root_id, root_span } => (root_id, root_span),
3948             CrateLint::QPathTrait { qpath_id, qpath_span } => (qpath_id, qpath_span),
3949         };
3950
3951         let first_name = match path.get(0) {
3952             // In the 2018 edition this lint is a hard error, so nothing to do
3953             Some(seg) if seg.ident.span.rust_2015() && self.session.rust_2015() => seg.ident.name,
3954             _ => return,
3955         };
3956
3957         // We're only interested in `use` paths which should start with
3958         // `{{root}}` or `extern` currently.
3959         if first_name != keywords::Extern.name() && first_name != keywords::PathRoot.name() {
3960             return
3961         }
3962
3963         match path.get(1) {
3964             // If this import looks like `crate::...` it's already good
3965             Some(Segment { ident, .. }) if ident.name == keywords::Crate.name() => return,
3966             // Otherwise go below to see if it's an extern crate
3967             Some(_) => {}
3968             // If the path has length one (and it's `PathRoot` most likely)
3969             // then we don't know whether we're gonna be importing a crate or an
3970             // item in our crate. Defer this lint to elsewhere
3971             None => return,
3972         }
3973
3974         // If the first element of our path was actually resolved to an
3975         // `ExternCrate` (also used for `crate::...`) then no need to issue a
3976         // warning, this looks all good!
3977         if let Some(binding) = second_binding {
3978             if let NameBindingKind::Import { directive: d, .. } = binding.kind {
3979                 // Careful: we still want to rewrite paths from
3980                 // renamed extern crates.
3981                 if let ImportDirectiveSubclass::ExternCrate { source: None, .. } = d.subclass {
3982                     return
3983                 }
3984             }
3985         }
3986
3987         let diag = lint::builtin::BuiltinLintDiagnostics
3988             ::AbsPathWithModule(diag_span);
3989         self.session.buffer_lint_with_diagnostic(
3990             lint::builtin::ABSOLUTE_PATHS_NOT_STARTING_WITH_CRATE,
3991             diag_id, diag_span,
3992             "absolute paths must start with `self`, `super`, \
3993             `crate`, or an external crate name in the 2018 edition",
3994             diag);
3995     }
3996
3997     // Resolve a local definition, potentially adjusting for closures.
3998     fn adjust_local_def(&mut self,
3999                         ns: Namespace,
4000                         rib_index: usize,
4001                         mut def: Def,
4002                         record_used: bool,
4003                         span: Span) -> Def {
4004         let ribs = &self.ribs[ns][rib_index + 1..];
4005
4006         // An invalid forward use of a type parameter from a previous default.
4007         if let ForwardTyParamBanRibKind = self.ribs[ns][rib_index].kind {
4008             if record_used {
4009                 resolve_error(self, span, ResolutionError::ForwardDeclaredTyParam);
4010             }
4011             assert_eq!(def, Def::Err);
4012             return Def::Err;
4013         }
4014
4015         match def {
4016             Def::Upvar(..) => {
4017                 span_bug!(span, "unexpected {:?} in bindings", def)
4018             }
4019             Def::Local(node_id) => {
4020                 for rib in ribs {
4021                     match rib.kind {
4022                         NormalRibKind | ModuleRibKind(..) | MacroDefinition(..) |
4023                         ForwardTyParamBanRibKind => {
4024                             // Nothing to do. Continue.
4025                         }
4026                         ClosureRibKind(function_id) => {
4027                             let prev_def = def;
4028
4029                             let seen = self.freevars_seen
4030                                            .entry(function_id)
4031                                            .or_default();
4032                             if let Some(&index) = seen.get(&node_id) {
4033                                 def = Def::Upvar(node_id, index, function_id);
4034                                 continue;
4035                             }
4036                             let vec = self.freevars
4037                                           .entry(function_id)
4038                                           .or_default();
4039                             let depth = vec.len();
4040                             def = Def::Upvar(node_id, depth, function_id);
4041
4042                             if record_used {
4043                                 vec.push(Freevar {
4044                                     def: prev_def,
4045                                     span,
4046                                 });
4047                                 seen.insert(node_id, depth);
4048                             }
4049                         }
4050                         ItemRibKind | TraitOrImplItemRibKind => {
4051                             // This was an attempt to access an upvar inside a
4052                             // named function item. This is not allowed, so we
4053                             // report an error.
4054                             if record_used {
4055                                 resolve_error(self, span,
4056                                     ResolutionError::CannotCaptureDynamicEnvironmentInFnItem);
4057                             }
4058                             return Def::Err;
4059                         }
4060                         ConstantItemRibKind => {
4061                             // Still doesn't deal with upvars
4062                             if record_used {
4063                                 resolve_error(self, span,
4064                                     ResolutionError::AttemptToUseNonConstantValueInConstant);
4065                             }
4066                             return Def::Err;
4067                         }
4068                     }
4069                 }
4070             }
4071             Def::TyParam(..) | Def::SelfTy(..) => {
4072                 for rib in ribs {
4073                     match rib.kind {
4074                         NormalRibKind | TraitOrImplItemRibKind | ClosureRibKind(..) |
4075                         ModuleRibKind(..) | MacroDefinition(..) | ForwardTyParamBanRibKind |
4076                         ConstantItemRibKind => {
4077                             // Nothing to do. Continue.
4078                         }
4079                         ItemRibKind => {
4080                             // This was an attempt to use a type parameter outside
4081                             // its scope.
4082                             if record_used {
4083                                 resolve_error(self, span,
4084                                     ResolutionError::TypeParametersFromOuterFunction(def));
4085                             }
4086                             return Def::Err;
4087                         }
4088                     }
4089                 }
4090             }
4091             _ => {}
4092         }
4093         def
4094     }
4095
4096     fn lookup_assoc_candidate<FilterFn>(&mut self,
4097                                         ident: Ident,
4098                                         ns: Namespace,
4099                                         filter_fn: FilterFn)
4100                                         -> Option<AssocSuggestion>
4101         where FilterFn: Fn(Def) -> bool
4102     {
4103         fn extract_node_id(t: &Ty) -> Option<NodeId> {
4104             match t.node {
4105                 TyKind::Path(None, _) => Some(t.id),
4106                 TyKind::Rptr(_, ref mut_ty) => extract_node_id(&mut_ty.ty),
4107                 // This doesn't handle the remaining `Ty` variants as they are not
4108                 // that commonly the self_type, it might be interesting to provide
4109                 // support for those in future.
4110                 _ => None,
4111             }
4112         }
4113
4114         // Fields are generally expected in the same contexts as locals.
4115         if filter_fn(Def::Local(ast::DUMMY_NODE_ID)) {
4116             if let Some(node_id) = self.current_self_type.as_ref().and_then(extract_node_id) {
4117                 // Look for a field with the same name in the current self_type.
4118                 if let Some(resolution) = self.def_map.get(&node_id) {
4119                     match resolution.base_def() {
4120                         Def::Struct(did) | Def::Union(did)
4121                                 if resolution.unresolved_segments() == 0 => {
4122                             if let Some(field_names) = self.field_names.get(&did) {
4123                                 if field_names.iter().any(|&field_name| ident.name == field_name) {
4124                                     return Some(AssocSuggestion::Field);
4125                                 }
4126                             }
4127                         }
4128                         _ => {}
4129                     }
4130                 }
4131             }
4132         }
4133
4134         // Look for associated items in the current trait.
4135         if let Some((module, _)) = self.current_trait_ref {
4136             if let Ok(binding) = self.resolve_ident_in_module(
4137                     ModuleOrUniformRoot::Module(module),
4138                     ident,
4139                     ns,
4140                     None,
4141                     false,
4142                     module.span,
4143                 ) {
4144                 let def = binding.def();
4145                 if filter_fn(def) {
4146                     return Some(if self.has_self.contains(&def.def_id()) {
4147                         AssocSuggestion::MethodWithSelf
4148                     } else {
4149                         AssocSuggestion::AssocItem
4150                     });
4151                 }
4152             }
4153         }
4154
4155         None
4156     }
4157
4158     fn lookup_typo_candidate<FilterFn>(&mut self,
4159                                        path: &[Segment],
4160                                        ns: Namespace,
4161                                        filter_fn: FilterFn,
4162                                        span: Span)
4163                                        -> Option<Symbol>
4164         where FilterFn: Fn(Def) -> bool
4165     {
4166         let add_module_candidates = |module: Module, names: &mut Vec<Name>| {
4167             for (&(ident, _), resolution) in module.resolutions.borrow().iter() {
4168                 if let Some(binding) = resolution.borrow().binding {
4169                     if filter_fn(binding.def()) {
4170                         names.push(ident.name);
4171                     }
4172                 }
4173             }
4174         };
4175
4176         let mut names = Vec::new();
4177         if path.len() == 1 {
4178             // Search in lexical scope.
4179             // Walk backwards up the ribs in scope and collect candidates.
4180             for rib in self.ribs[ns].iter().rev() {
4181                 // Locals and type parameters
4182                 for (ident, def) in &rib.bindings {
4183                     if filter_fn(*def) {
4184                         names.push(ident.name);
4185                     }
4186                 }
4187                 // Items in scope
4188                 if let ModuleRibKind(module) = rib.kind {
4189                     // Items from this module
4190                     add_module_candidates(module, &mut names);
4191
4192                     if let ModuleKind::Block(..) = module.kind {
4193                         // We can see through blocks
4194                     } else {
4195                         // Items from the prelude
4196                         if !module.no_implicit_prelude {
4197                             names.extend(self.extern_prelude.iter().map(|(ident, _)| ident.name));
4198                             if let Some(prelude) = self.prelude {
4199                                 add_module_candidates(prelude, &mut names);
4200                             }
4201                         }
4202                         break;
4203                     }
4204                 }
4205             }
4206             // Add primitive types to the mix
4207             if filter_fn(Def::PrimTy(Bool)) {
4208                 names.extend(
4209                     self.primitive_type_table.primitive_types.iter().map(|(name, _)| name)
4210                 )
4211             }
4212         } else {
4213             // Search in module.
4214             let mod_path = &path[..path.len() - 1];
4215             if let PathResult::Module(module) = self.resolve_path_without_parent_scope(
4216                 mod_path, Some(TypeNS), false, span, CrateLint::No
4217             ) {
4218                 if let ModuleOrUniformRoot::Module(module) = module {
4219                     add_module_candidates(module, &mut names);
4220                 }
4221             }
4222         }
4223
4224         let name = path[path.len() - 1].ident.name;
4225         // Make sure error reporting is deterministic.
4226         names.sort_by_cached_key(|name| name.as_str());
4227         match find_best_match_for_name(names.iter(), &name.as_str(), None) {
4228             Some(found) if found != name => Some(found),
4229             _ => None,
4230         }
4231     }
4232
4233     fn with_resolved_label<F>(&mut self, label: Option<Label>, id: NodeId, f: F)
4234         where F: FnOnce(&mut Resolver)
4235     {
4236         if let Some(label) = label {
4237             self.unused_labels.insert(id, label.ident.span);
4238             let def = Def::Label(id);
4239             self.with_label_rib(|this| {
4240                 let ident = label.ident.modern_and_legacy();
4241                 this.label_ribs.last_mut().unwrap().bindings.insert(ident, def);
4242                 f(this);
4243             });
4244         } else {
4245             f(self);
4246         }
4247     }
4248
4249     fn resolve_labeled_block(&mut self, label: Option<Label>, id: NodeId, block: &Block) {
4250         self.with_resolved_label(label, id, |this| this.visit_block(block));
4251     }
4252
4253     fn resolve_expr(&mut self, expr: &Expr, parent: Option<&Expr>) {
4254         // First, record candidate traits for this expression if it could
4255         // result in the invocation of a method call.
4256
4257         self.record_candidate_traits_for_expr_if_necessary(expr);
4258
4259         // Next, resolve the node.
4260         match expr.node {
4261             ExprKind::Path(ref qself, ref path) => {
4262                 self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
4263                 visit::walk_expr(self, expr);
4264             }
4265
4266             ExprKind::Struct(ref path, ..) => {
4267                 self.smart_resolve_path(expr.id, None, path, PathSource::Struct);
4268                 visit::walk_expr(self, expr);
4269             }
4270
4271             ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
4272                 let def = self.search_label(label.ident, |rib, ident| {
4273                     rib.bindings.get(&ident.modern_and_legacy()).cloned()
4274                 });
4275                 match def {
4276                     None => {
4277                         // Search again for close matches...
4278                         // Picks the first label that is "close enough", which is not necessarily
4279                         // the closest match
4280                         let close_match = self.search_label(label.ident, |rib, ident| {
4281                             let names = rib.bindings.iter().map(|(id, _)| &id.name);
4282                             find_best_match_for_name(names, &*ident.as_str(), None)
4283                         });
4284                         self.record_def(expr.id, err_path_resolution());
4285                         resolve_error(self,
4286                                       label.ident.span,
4287                                       ResolutionError::UndeclaredLabel(&label.ident.as_str(),
4288                                                                        close_match));
4289                     }
4290                     Some(Def::Label(id)) => {
4291                         // Since this def is a label, it is never read.
4292                         self.record_def(expr.id, PathResolution::new(Def::Label(id)));
4293                         self.unused_labels.remove(&id);
4294                     }
4295                     Some(_) => {
4296                         span_bug!(expr.span, "label wasn't mapped to a label def!");
4297                     }
4298                 }
4299
4300                 // visit `break` argument if any
4301                 visit::walk_expr(self, expr);
4302             }
4303
4304             ExprKind::IfLet(ref pats, ref subexpression, ref if_block, ref optional_else) => {
4305                 self.visit_expr(subexpression);
4306
4307                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
4308                 let mut bindings_list = FxHashMap::default();
4309                 for pat in pats {
4310                     self.resolve_pattern(pat, PatternSource::IfLet, &mut bindings_list);
4311                 }
4312                 // This has to happen *after* we determine which pat_idents are variants
4313                 self.check_consistent_bindings(pats);
4314                 self.visit_block(if_block);
4315                 self.ribs[ValueNS].pop();
4316
4317                 optional_else.as_ref().map(|expr| self.visit_expr(expr));
4318             }
4319
4320             ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),
4321
4322             ExprKind::While(ref subexpression, ref block, label) => {
4323                 self.with_resolved_label(label, expr.id, |this| {
4324                     this.visit_expr(subexpression);
4325                     this.visit_block(block);
4326                 });
4327             }
4328
4329             ExprKind::WhileLet(ref pats, ref subexpression, ref block, label) => {
4330                 self.with_resolved_label(label, expr.id, |this| {
4331                     this.visit_expr(subexpression);
4332                     this.ribs[ValueNS].push(Rib::new(NormalRibKind));
4333                     let mut bindings_list = FxHashMap::default();
4334                     for pat in pats {
4335                         this.resolve_pattern(pat, PatternSource::WhileLet, &mut bindings_list);
4336                     }
4337                     // This has to happen *after* we determine which pat_idents are variants.
4338                     this.check_consistent_bindings(pats);
4339                     this.visit_block(block);
4340                     this.ribs[ValueNS].pop();
4341                 });
4342             }
4343
4344             ExprKind::ForLoop(ref pattern, ref subexpression, ref block, label) => {
4345                 self.visit_expr(subexpression);
4346                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
4347                 self.resolve_pattern(pattern, PatternSource::For, &mut FxHashMap::default());
4348
4349                 self.resolve_labeled_block(label, expr.id, block);
4350
4351                 self.ribs[ValueNS].pop();
4352             }
4353
4354             ExprKind::Block(ref block, label) => self.resolve_labeled_block(label, block.id, block),
4355
4356             // Equivalent to `visit::walk_expr` + passing some context to children.
4357             ExprKind::Field(ref subexpression, _) => {
4358                 self.resolve_expr(subexpression, Some(expr));
4359             }
4360             ExprKind::MethodCall(ref segment, ref arguments) => {
4361                 let mut arguments = arguments.iter();
4362                 self.resolve_expr(arguments.next().unwrap(), Some(expr));
4363                 for argument in arguments {
4364                     self.resolve_expr(argument, None);
4365                 }
4366                 self.visit_path_segment(expr.span, segment);
4367             }
4368
4369             ExprKind::Call(ref callee, ref arguments) => {
4370                 self.resolve_expr(callee, Some(expr));
4371                 for argument in arguments {
4372                     self.resolve_expr(argument, None);
4373                 }
4374             }
4375             ExprKind::Type(ref type_expr, _) => {
4376                 self.current_type_ascription.push(type_expr.span);
4377                 visit::walk_expr(self, expr);
4378                 self.current_type_ascription.pop();
4379             }
4380             // Resolve the body of async exprs inside the async closure to which they desugar
4381             ExprKind::Async(_, async_closure_id, ref block) => {
4382                 let rib_kind = ClosureRibKind(async_closure_id);
4383                 self.ribs[ValueNS].push(Rib::new(rib_kind));
4384                 self.label_ribs.push(Rib::new(rib_kind));
4385                 self.visit_block(&block);
4386                 self.label_ribs.pop();
4387                 self.ribs[ValueNS].pop();
4388             }
4389             // `async |x| ...` gets desugared to `|x| future_from_generator(|| ...)`, so we need to
4390             // resolve the arguments within the proper scopes so that usages of them inside the
4391             // closure are detected as upvars rather than normal closure arg usages.
4392             ExprKind::Closure(
4393                 _, IsAsync::Async { closure_id: inner_closure_id, .. }, _,
4394                 ref fn_decl, ref body, _span,
4395             ) => {
4396                 let rib_kind = ClosureRibKind(expr.id);
4397                 self.ribs[ValueNS].push(Rib::new(rib_kind));
4398                 self.label_ribs.push(Rib::new(rib_kind));
4399                 // Resolve arguments:
4400                 let mut bindings_list = FxHashMap::default();
4401                 for argument in &fn_decl.inputs {
4402                     self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
4403                     self.visit_ty(&argument.ty);
4404                 }
4405                 // No need to resolve return type-- the outer closure return type is
4406                 // FunctionRetTy::Default
4407
4408                 // Now resolve the inner closure
4409                 {
4410                     let rib_kind = ClosureRibKind(inner_closure_id);
4411                     self.ribs[ValueNS].push(Rib::new(rib_kind));
4412                     self.label_ribs.push(Rib::new(rib_kind));
4413                     // No need to resolve arguments: the inner closure has none.
4414                     // Resolve the return type:
4415                     visit::walk_fn_ret_ty(self, &fn_decl.output);
4416                     // Resolve the body
4417                     self.visit_expr(body);
4418                     self.label_ribs.pop();
4419                     self.ribs[ValueNS].pop();
4420                 }
4421                 self.label_ribs.pop();
4422                 self.ribs[ValueNS].pop();
4423             }
4424             _ => {
4425                 visit::walk_expr(self, expr);
4426             }
4427         }
4428     }
4429
4430     fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &Expr) {
4431         match expr.node {
4432             ExprKind::Field(_, ident) => {
4433                 // FIXME(#6890): Even though you can't treat a method like a
4434                 // field, we need to add any trait methods we find that match
4435                 // the field name so that we can do some nice error reporting
4436                 // later on in typeck.
4437                 let traits = self.get_traits_containing_item(ident, ValueNS);
4438                 self.trait_map.insert(expr.id, traits);
4439             }
4440             ExprKind::MethodCall(ref segment, ..) => {
4441                 debug!("(recording candidate traits for expr) recording traits for {}",
4442                        expr.id);
4443                 let traits = self.get_traits_containing_item(segment.ident, ValueNS);
4444                 self.trait_map.insert(expr.id, traits);
4445             }
4446             _ => {
4447                 // Nothing to do.
4448             }
4449         }
4450     }
4451
4452     fn get_traits_containing_item(&mut self, mut ident: Ident, ns: Namespace)
4453                                   -> Vec<TraitCandidate> {
4454         debug!("(getting traits containing item) looking for '{}'", ident.name);
4455
4456         let mut found_traits = Vec::new();
4457         // Look for the current trait.
4458         if let Some((module, _)) = self.current_trait_ref {
4459             if self.resolve_ident_in_module(
4460                 ModuleOrUniformRoot::Module(module),
4461                 ident,
4462                 ns,
4463                 None,
4464                 false,
4465                 module.span,
4466             ).is_ok() {
4467                 let def_id = module.def_id().unwrap();
4468                 found_traits.push(TraitCandidate { def_id: def_id, import_id: None });
4469             }
4470         }
4471
4472         ident.span = ident.span.modern();
4473         let mut search_module = self.current_module;
4474         loop {
4475             self.get_traits_in_module_containing_item(ident, ns, search_module, &mut found_traits);
4476             search_module = unwrap_or!(
4477                 self.hygienic_lexical_parent(search_module, &mut ident.span), break
4478             );
4479         }
4480
4481         if let Some(prelude) = self.prelude {
4482             if !search_module.no_implicit_prelude {
4483                 self.get_traits_in_module_containing_item(ident, ns, prelude, &mut found_traits);
4484             }
4485         }
4486
4487         found_traits
4488     }
4489
4490     fn get_traits_in_module_containing_item(&mut self,
4491                                             ident: Ident,
4492                                             ns: Namespace,
4493                                             module: Module<'a>,
4494                                             found_traits: &mut Vec<TraitCandidate>) {
4495         assert!(ns == TypeNS || ns == ValueNS);
4496         let mut traits = module.traits.borrow_mut();
4497         if traits.is_none() {
4498             let mut collected_traits = Vec::new();
4499             module.for_each_child(|name, ns, binding| {
4500                 if ns != TypeNS { return }
4501                 if let Def::Trait(_) = binding.def() {
4502                     collected_traits.push((name, binding));
4503                 }
4504             });
4505             *traits = Some(collected_traits.into_boxed_slice());
4506         }
4507
4508         for &(trait_name, binding) in traits.as_ref().unwrap().iter() {
4509             let module = binding.module().unwrap();
4510             let mut ident = ident;
4511             if ident.span.glob_adjust(module.expansion, binding.span.ctxt().modern()).is_none() {
4512                 continue
4513             }
4514             if self.resolve_ident_in_module_unadjusted(
4515                 ModuleOrUniformRoot::Module(module),
4516                 ident,
4517                 ns,
4518                 false,
4519                 module.span,
4520             ).is_ok() {
4521                 let import_id = match binding.kind {
4522                     NameBindingKind::Import { directive, .. } => {
4523                         self.maybe_unused_trait_imports.insert(directive.id);
4524                         self.add_to_glob_map(directive.id, trait_name);
4525                         Some(directive.id)
4526                     }
4527                     _ => None,
4528                 };
4529                 let trait_def_id = module.def_id().unwrap();
4530                 found_traits.push(TraitCandidate { def_id: trait_def_id, import_id: import_id });
4531             }
4532         }
4533     }
4534
4535     fn lookup_import_candidates_from_module<FilterFn>(&mut self,
4536                                           lookup_ident: Ident,
4537                                           namespace: Namespace,
4538                                           start_module: &'a ModuleData<'a>,
4539                                           crate_name: Ident,
4540                                           filter_fn: FilterFn)
4541                                           -> Vec<ImportSuggestion>
4542         where FilterFn: Fn(Def) -> bool
4543     {
4544         let mut candidates = Vec::new();
4545         let mut seen_modules = FxHashSet::default();
4546         let not_local_module = crate_name != keywords::Crate.ident();
4547         let mut worklist = vec![(start_module, Vec::<ast::PathSegment>::new(), not_local_module)];
4548
4549         while let Some((in_module,
4550                         path_segments,
4551                         in_module_is_extern)) = worklist.pop() {
4552             self.populate_module_if_necessary(in_module);
4553
4554             // We have to visit module children in deterministic order to avoid
4555             // instabilities in reported imports (#43552).
4556             in_module.for_each_child_stable(|ident, ns, name_binding| {
4557                 // avoid imports entirely
4558                 if name_binding.is_import() && !name_binding.is_extern_crate() { return; }
4559                 // avoid non-importable candidates as well
4560                 if !name_binding.is_importable() { return; }
4561
4562                 // collect results based on the filter function
4563                 if ident.name == lookup_ident.name && ns == namespace {
4564                     if filter_fn(name_binding.def()) {
4565                         // create the path
4566                         let mut segms = path_segments.clone();
4567                         if lookup_ident.span.rust_2018() {
4568                             // crate-local absolute paths start with `crate::` in edition 2018
4569                             // FIXME: may also be stabilized for Rust 2015 (Issues #45477, #44660)
4570                             segms.insert(
4571                                 0, ast::PathSegment::from_ident(crate_name)
4572                             );
4573                         }
4574
4575                         segms.push(ast::PathSegment::from_ident(ident));
4576                         let path = Path {
4577                             span: name_binding.span,
4578                             segments: segms,
4579                         };
4580                         // the entity is accessible in the following cases:
4581                         // 1. if it's defined in the same crate, it's always
4582                         // accessible (since private entities can be made public)
4583                         // 2. if it's defined in another crate, it's accessible
4584                         // only if both the module is public and the entity is
4585                         // declared as public (due to pruning, we don't explore
4586                         // outside crate private modules => no need to check this)
4587                         if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
4588                             candidates.push(ImportSuggestion { path });
4589                         }
4590                     }
4591                 }
4592
4593                 // collect submodules to explore
4594                 if let Some(module) = name_binding.module() {
4595                     // form the path
4596                     let mut path_segments = path_segments.clone();
4597                     path_segments.push(ast::PathSegment::from_ident(ident));
4598
4599                     let is_extern_crate_that_also_appears_in_prelude =
4600                         name_binding.is_extern_crate() &&
4601                         lookup_ident.span.rust_2018();
4602
4603                     let is_visible_to_user =
4604                         !in_module_is_extern || name_binding.vis == ty::Visibility::Public;
4605
4606                     if !is_extern_crate_that_also_appears_in_prelude && is_visible_to_user {
4607                         // add the module to the lookup
4608                         let is_extern = in_module_is_extern || name_binding.is_extern_crate();
4609                         if seen_modules.insert(module.def_id().unwrap()) {
4610                             worklist.push((module, path_segments, is_extern));
4611                         }
4612                     }
4613                 }
4614             })
4615         }
4616
4617         candidates
4618     }
4619
4620     /// When name resolution fails, this method can be used to look up candidate
4621     /// entities with the expected name. It allows filtering them using the
4622     /// supplied predicate (which should be used to only accept the types of
4623     /// definitions expected e.g., traits). The lookup spans across all crates.
4624     ///
4625     /// NOTE: The method does not look into imports, but this is not a problem,
4626     /// since we report the definitions (thus, the de-aliased imports).
4627     fn lookup_import_candidates<FilterFn>(&mut self,
4628                                           lookup_ident: Ident,
4629                                           namespace: Namespace,
4630                                           filter_fn: FilterFn)
4631                                           -> Vec<ImportSuggestion>
4632         where FilterFn: Fn(Def) -> bool
4633     {
4634         let mut suggestions = self.lookup_import_candidates_from_module(
4635             lookup_ident, namespace, self.graph_root, keywords::Crate.ident(), &filter_fn);
4636
4637         if lookup_ident.span.rust_2018() {
4638             let extern_prelude_names = self.extern_prelude.clone();
4639             for (ident, _) in extern_prelude_names.into_iter() {
4640                 if let Some(crate_id) = self.crate_loader.maybe_process_path_extern(ident.name,
4641                                                                                     ident.span) {
4642                     let crate_root = self.get_module(DefId {
4643                         krate: crate_id,
4644                         index: CRATE_DEF_INDEX,
4645                     });
4646                     self.populate_module_if_necessary(&crate_root);
4647
4648                     suggestions.extend(self.lookup_import_candidates_from_module(
4649                         lookup_ident, namespace, crate_root, ident, &filter_fn));
4650                 }
4651             }
4652         }
4653
4654         suggestions
4655     }
4656
4657     fn find_module(&mut self,
4658                    module_def: Def)
4659                    -> Option<(Module<'a>, ImportSuggestion)>
4660     {
4661         let mut result = None;
4662         let mut seen_modules = FxHashSet::default();
4663         let mut worklist = vec![(self.graph_root, Vec::new())];
4664
4665         while let Some((in_module, path_segments)) = worklist.pop() {
4666             // abort if the module is already found
4667             if result.is_some() { break; }
4668
4669             self.populate_module_if_necessary(in_module);
4670
4671             in_module.for_each_child_stable(|ident, _, name_binding| {
4672                 // abort if the module is already found or if name_binding is private external
4673                 if result.is_some() || !name_binding.vis.is_visible_locally() {
4674                     return
4675                 }
4676                 if let Some(module) = name_binding.module() {
4677                     // form the path
4678                     let mut path_segments = path_segments.clone();
4679                     path_segments.push(ast::PathSegment::from_ident(ident));
4680                     if module.def() == Some(module_def) {
4681                         let path = Path {
4682                             span: name_binding.span,
4683                             segments: path_segments,
4684                         };
4685                         result = Some((module, ImportSuggestion { path }));
4686                     } else {
4687                         // add the module to the lookup
4688                         if seen_modules.insert(module.def_id().unwrap()) {
4689                             worklist.push((module, path_segments));
4690                         }
4691                     }
4692                 }
4693             });
4694         }
4695
4696         result
4697     }
4698
4699     fn collect_enum_variants(&mut self, enum_def: Def) -> Option<Vec<Path>> {
4700         if let Def::Enum(..) = enum_def {} else {
4701             panic!("Non-enum def passed to collect_enum_variants: {:?}", enum_def)
4702         }
4703
4704         self.find_module(enum_def).map(|(enum_module, enum_import_suggestion)| {
4705             self.populate_module_if_necessary(enum_module);
4706
4707             let mut variants = Vec::new();
4708             enum_module.for_each_child_stable(|ident, _, name_binding| {
4709                 if let Def::Variant(..) = name_binding.def() {
4710                     let mut segms = enum_import_suggestion.path.segments.clone();
4711                     segms.push(ast::PathSegment::from_ident(ident));
4712                     variants.push(Path {
4713                         span: name_binding.span,
4714                         segments: segms,
4715                     });
4716                 }
4717             });
4718             variants
4719         })
4720     }
4721
4722     fn record_def(&mut self, node_id: NodeId, resolution: PathResolution) {
4723         debug!("(recording def) recording {:?} for {}", resolution, node_id);
4724         if let Some(prev_res) = self.def_map.insert(node_id, resolution) {
4725             panic!("path resolved multiple times ({:?} before, {:?} now)", prev_res, resolution);
4726         }
4727     }
4728
4729     fn resolve_visibility(&mut self, vis: &ast::Visibility) -> ty::Visibility {
4730         match vis.node {
4731             ast::VisibilityKind::Public => ty::Visibility::Public,
4732             ast::VisibilityKind::Crate(..) => {
4733                 ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX))
4734             }
4735             ast::VisibilityKind::Inherited => {
4736                 ty::Visibility::Restricted(self.current_module.normal_ancestor_id)
4737             }
4738             ast::VisibilityKind::Restricted { ref path, id, .. } => {
4739                 // For visibilities we are not ready to provide correct implementation of "uniform
4740                 // paths" right now, so on 2018 edition we only allow module-relative paths for now.
4741                 // On 2015 edition visibilities are resolved as crate-relative by default,
4742                 // so we are prepending a root segment if necessary.
4743                 let ident = path.segments.get(0).expect("empty path in visibility").ident;
4744                 let crate_root = if ident.is_path_segment_keyword() {
4745                     None
4746                 } else if ident.span.rust_2018() {
4747                     let msg = "relative paths are not supported in visibilities on 2018 edition";
4748                     self.session.struct_span_err(ident.span, msg)
4749                                 .span_suggestion(path.span, "try", format!("crate::{}", path))
4750                                 .emit();
4751                     return ty::Visibility::Public;
4752                 } else {
4753                     let ctxt = ident.span.ctxt();
4754                     Some(Segment::from_ident(Ident::new(
4755                         keywords::PathRoot.name(), path.span.shrink_to_lo().with_ctxt(ctxt)
4756                     )))
4757                 };
4758
4759                 let segments = crate_root.into_iter()
4760                     .chain(path.segments.iter().map(|seg| seg.into())).collect::<Vec<_>>();
4761                 let def = self.smart_resolve_path_fragment(
4762                     id,
4763                     None,
4764                     &segments,
4765                     path.span,
4766                     PathSource::Visibility,
4767                     CrateLint::SimplePath(id),
4768                 ).base_def();
4769                 if def == Def::Err {
4770                     ty::Visibility::Public
4771                 } else {
4772                     let vis = ty::Visibility::Restricted(def.def_id());
4773                     if self.is_accessible(vis) {
4774                         vis
4775                     } else {
4776                         self.session.span_err(path.span, "visibilities can only be restricted \
4777                                                           to ancestor modules");
4778                         ty::Visibility::Public
4779                     }
4780                 }
4781             }
4782         }
4783     }
4784
4785     fn is_accessible(&self, vis: ty::Visibility) -> bool {
4786         vis.is_accessible_from(self.current_module.normal_ancestor_id, self)
4787     }
4788
4789     fn is_accessible_from(&self, vis: ty::Visibility, module: Module<'a>) -> bool {
4790         vis.is_accessible_from(module.normal_ancestor_id, self)
4791     }
4792
4793     fn set_binding_parent_module(&mut self, binding: &'a NameBinding<'a>, module: Module<'a>) {
4794         if let Some(old_module) = self.binding_parent_modules.insert(PtrKey(binding), module) {
4795             if !ptr::eq(module, old_module) {
4796                 span_bug!(binding.span, "parent module is reset for binding");
4797             }
4798         }
4799     }
4800
4801     fn disambiguate_legacy_vs_modern(
4802         &self,
4803         legacy: &'a NameBinding<'a>,
4804         modern: &'a NameBinding<'a>,
4805     ) -> bool {
4806         // Some non-controversial subset of ambiguities "modern macro name" vs "macro_rules"
4807         // is disambiguated to mitigate regressions from macro modularization.
4808         // Scoping for `macro_rules` behaves like scoping for `let` at module level, in general.
4809         match (self.binding_parent_modules.get(&PtrKey(legacy)),
4810                self.binding_parent_modules.get(&PtrKey(modern))) {
4811             (Some(legacy), Some(modern)) =>
4812                 legacy.normal_ancestor_id == modern.normal_ancestor_id &&
4813                 modern.is_ancestor_of(legacy),
4814             _ => false,
4815         }
4816     }
4817
4818     fn binding_description(&self, b: &NameBinding, ident: Ident, from_prelude: bool) -> String {
4819         if b.span.is_dummy() {
4820             let add_built_in = match b.def() {
4821                 // These already contain the "built-in" prefix or look bad with it.
4822                 Def::NonMacroAttr(..) | Def::PrimTy(..) | Def::ToolMod => false,
4823                 _ => true,
4824             };
4825             let (built_in, from) = if from_prelude {
4826                 ("", " from prelude")
4827             } else if b.is_extern_crate() && !b.is_import() &&
4828                         self.session.opts.externs.get(&ident.as_str()).is_some() {
4829                 ("", " passed with `--extern`")
4830             } else if add_built_in {
4831                 (" built-in", "")
4832             } else {
4833                 ("", "")
4834             };
4835
4836             let article = if built_in.is_empty() { b.article() } else { "a" };
4837             format!("{a}{built_in} {thing}{from}",
4838                     a = article, thing = b.descr(), built_in = built_in, from = from)
4839         } else {
4840             let introduced = if b.is_import() { "imported" } else { "defined" };
4841             format!("the {thing} {introduced} here",
4842                     thing = b.descr(), introduced = introduced)
4843         }
4844     }
4845
4846     fn report_ambiguity_error(&self, ambiguity_error: &AmbiguityError) {
4847         let AmbiguityError { kind, ident, b1, b2, misc1, misc2 } = *ambiguity_error;
4848         let (b1, b2, misc1, misc2, swapped) = if b2.span.is_dummy() && !b1.span.is_dummy() {
4849             // We have to print the span-less alternative first, otherwise formatting looks bad.
4850             (b2, b1, misc2, misc1, true)
4851         } else {
4852             (b1, b2, misc1, misc2, false)
4853         };
4854
4855         let mut err = struct_span_err!(self.session, ident.span, E0659,
4856                                        "`{ident}` is ambiguous ({why})",
4857                                        ident = ident, why = kind.descr());
4858         err.span_label(ident.span, "ambiguous name");
4859
4860         let mut could_refer_to = |b: &NameBinding, misc: AmbiguityErrorMisc, also: &str| {
4861             let what = self.binding_description(b, ident, misc == AmbiguityErrorMisc::FromPrelude);
4862             let note_msg = format!("`{ident}` could{also} refer to {what}",
4863                                    ident = ident, also = also, what = what);
4864
4865             let mut help_msgs = Vec::new();
4866             if b.is_glob_import() && (kind == AmbiguityKind::GlobVsGlob ||
4867                                       kind == AmbiguityKind::GlobVsExpanded ||
4868                                       kind == AmbiguityKind::GlobVsOuter &&
4869                                       swapped != also.is_empty()) {
4870                 help_msgs.push(format!("consider adding an explicit import of \
4871                                         `{ident}` to disambiguate", ident = ident))
4872             }
4873             if b.is_extern_crate() && ident.span.rust_2018() {
4874                 help_msgs.push(format!(
4875                     "use `::{ident}` to refer to this {thing} unambiguously",
4876                     ident = ident, thing = b.descr(),
4877                 ))
4878             }
4879             if misc == AmbiguityErrorMisc::SuggestCrate {
4880                 help_msgs.push(format!(
4881                     "use `crate::{ident}` to refer to this {thing} unambiguously",
4882                     ident = ident, thing = b.descr(),
4883                 ))
4884             } else if misc == AmbiguityErrorMisc::SuggestSelf {
4885                 help_msgs.push(format!(
4886                     "use `self::{ident}` to refer to this {thing} unambiguously",
4887                     ident = ident, thing = b.descr(),
4888                 ))
4889             }
4890
4891             if b.span.is_dummy() {
4892                 err.note(&note_msg);
4893             } else {
4894                 err.span_note(b.span, &note_msg);
4895             }
4896             for (i, help_msg) in help_msgs.iter().enumerate() {
4897                 let or = if i == 0 { "" } else { "or " };
4898                 err.help(&format!("{}{}", or, help_msg));
4899             }
4900         };
4901
4902         could_refer_to(b1, misc1, "");
4903         could_refer_to(b2, misc2, " also");
4904         err.emit();
4905     }
4906
4907     fn report_errors(&mut self, krate: &Crate) {
4908         self.report_with_use_injections(krate);
4909
4910         for &(span_use, span_def) in &self.macro_expanded_macro_export_errors {
4911             let msg = "macro-expanded `macro_export` macros from the current crate \
4912                        cannot be referred to by absolute paths";
4913             self.session.buffer_lint_with_diagnostic(
4914                 lint::builtin::MACRO_EXPANDED_MACRO_EXPORTS_ACCESSED_BY_ABSOLUTE_PATHS,
4915                 CRATE_NODE_ID, span_use, msg,
4916                 lint::builtin::BuiltinLintDiagnostics::
4917                     MacroExpandedMacroExportsAccessedByAbsolutePaths(span_def),
4918             );
4919         }
4920
4921         for ambiguity_error in &self.ambiguity_errors {
4922             self.report_ambiguity_error(ambiguity_error);
4923         }
4924
4925         let mut reported_spans = FxHashSet::default();
4926         for &PrivacyError(dedup_span, ident, binding) in &self.privacy_errors {
4927             if reported_spans.insert(dedup_span) {
4928                 span_err!(self.session, ident.span, E0603, "{} `{}` is private",
4929                           binding.descr(), ident.name);
4930             }
4931         }
4932     }
4933
4934     fn report_with_use_injections(&mut self, krate: &Crate) {
4935         for UseError { mut err, candidates, node_id, better } in self.use_injections.drain(..) {
4936             let (span, found_use) = UsePlacementFinder::check(krate, node_id);
4937             if !candidates.is_empty() {
4938                 show_candidates(&mut err, span, &candidates, better, found_use);
4939             }
4940             err.emit();
4941         }
4942     }
4943
4944     fn report_conflict<'b>(&mut self,
4945                        parent: Module,
4946                        ident: Ident,
4947                        ns: Namespace,
4948                        new_binding: &NameBinding<'b>,
4949                        old_binding: &NameBinding<'b>) {
4950         // Error on the second of two conflicting names
4951         if old_binding.span.lo() > new_binding.span.lo() {
4952             return self.report_conflict(parent, ident, ns, old_binding, new_binding);
4953         }
4954
4955         let container = match parent.kind {
4956             ModuleKind::Def(Def::Mod(_), _) => "module",
4957             ModuleKind::Def(Def::Trait(_), _) => "trait",
4958             ModuleKind::Block(..) => "block",
4959             _ => "enum",
4960         };
4961
4962         let old_noun = match old_binding.is_import() {
4963             true => "import",
4964             false => "definition",
4965         };
4966
4967         let new_participle = match new_binding.is_import() {
4968             true => "imported",
4969             false => "defined",
4970         };
4971
4972         let (name, span) = (ident.name, self.session.source_map().def_span(new_binding.span));
4973
4974         if let Some(s) = self.name_already_seen.get(&name) {
4975             if s == &span {
4976                 return;
4977             }
4978         }
4979
4980         let old_kind = match (ns, old_binding.module()) {
4981             (ValueNS, _) => "value",
4982             (MacroNS, _) => "macro",
4983             (TypeNS, _) if old_binding.is_extern_crate() => "extern crate",
4984             (TypeNS, Some(module)) if module.is_normal() => "module",
4985             (TypeNS, Some(module)) if module.is_trait() => "trait",
4986             (TypeNS, _) => "type",
4987         };
4988
4989         let msg = format!("the name `{}` is defined multiple times", name);
4990
4991         let mut err = match (old_binding.is_extern_crate(), new_binding.is_extern_crate()) {
4992             (true, true) => struct_span_err!(self.session, span, E0259, "{}", msg),
4993             (true, _) | (_, true) => match new_binding.is_import() && old_binding.is_import() {
4994                 true => struct_span_err!(self.session, span, E0254, "{}", msg),
4995                 false => struct_span_err!(self.session, span, E0260, "{}", msg),
4996             },
4997             _ => match (old_binding.is_import(), new_binding.is_import()) {
4998                 (false, false) => struct_span_err!(self.session, span, E0428, "{}", msg),
4999                 (true, true) => struct_span_err!(self.session, span, E0252, "{}", msg),
5000                 _ => struct_span_err!(self.session, span, E0255, "{}", msg),
5001             },
5002         };
5003
5004         err.note(&format!("`{}` must be defined only once in the {} namespace of this {}",
5005                           name,
5006                           ns.descr(),
5007                           container));
5008
5009         err.span_label(span, format!("`{}` re{} here", name, new_participle));
5010         if !old_binding.span.is_dummy() {
5011             err.span_label(self.session.source_map().def_span(old_binding.span),
5012                            format!("previous {} of the {} `{}` here", old_noun, old_kind, name));
5013         }
5014
5015         // See https://github.com/rust-lang/rust/issues/32354
5016         if old_binding.is_import() || new_binding.is_import() {
5017             let binding = if new_binding.is_import() && !new_binding.span.is_dummy() {
5018                 new_binding
5019             } else {
5020                 old_binding
5021             };
5022
5023             let cm = self.session.source_map();
5024             let rename_msg = "you can use `as` to change the binding name of the import";
5025
5026             if let (
5027                 Ok(snippet),
5028                 NameBindingKind::Import { directive, ..},
5029                 _dummy @ false,
5030             ) = (
5031                 cm.span_to_snippet(binding.span),
5032                 binding.kind.clone(),
5033                 binding.span.is_dummy(),
5034             ) {
5035                 let suggested_name = if name.as_str().chars().next().unwrap().is_uppercase() {
5036                     format!("Other{}", name)
5037                 } else {
5038                     format!("other_{}", name)
5039                 };
5040
5041                 err.span_suggestion_with_applicability(
5042                     binding.span,
5043                     &rename_msg,
5044                     match directive.subclass {
5045                         ImportDirectiveSubclass::SingleImport { type_ns_only: true, .. } =>
5046                             format!("self as {}", suggested_name),
5047                         ImportDirectiveSubclass::SingleImport { source, .. } =>
5048                             format!(
5049                                 "{} as {}{}",
5050                                 &snippet[..((source.span.hi().0 - binding.span.lo().0) as usize)],
5051                                 suggested_name,
5052                                 if snippet.ends_with(";") {
5053                                     ";"
5054                                 } else {
5055                                     ""
5056                                 }
5057                             ),
5058                         ImportDirectiveSubclass::ExternCrate { source, target, .. } =>
5059                             format!(
5060                                 "extern crate {} as {};",
5061                                 source.unwrap_or(target.name),
5062                                 suggested_name,
5063                             ),
5064                         _ => unreachable!(),
5065                     },
5066                     Applicability::MaybeIncorrect,
5067                 );
5068             } else {
5069                 err.span_label(binding.span, rename_msg);
5070             }
5071         }
5072
5073         err.emit();
5074         self.name_already_seen.insert(name, span);
5075     }
5076
5077     fn extern_prelude_get(&mut self, ident: Ident, speculative: bool)
5078                           -> Option<&'a NameBinding<'a>> {
5079         if ident.is_path_segment_keyword() {
5080             // Make sure `self`, `super` etc produce an error when passed to here.
5081             return None;
5082         }
5083         self.extern_prelude.get(&ident.modern()).cloned().and_then(|entry| {
5084             if let Some(binding) = entry.extern_crate_item {
5085                 Some(binding)
5086             } else {
5087                 let crate_id = if !speculative {
5088                     self.crate_loader.process_path_extern(ident.name, ident.span)
5089                 } else if let Some(crate_id) =
5090                         self.crate_loader.maybe_process_path_extern(ident.name, ident.span) {
5091                     crate_id
5092                 } else {
5093                     return None;
5094                 };
5095                 let crate_root = self.get_module(DefId { krate: crate_id, index: CRATE_DEF_INDEX });
5096                 self.populate_module_if_necessary(&crate_root);
5097                 Some((crate_root, ty::Visibility::Public, DUMMY_SP, Mark::root())
5098                     .to_name_binding(self.arenas))
5099             }
5100         })
5101     }
5102 }
5103
5104 fn is_self_type(path: &[Segment], namespace: Namespace) -> bool {
5105     namespace == TypeNS && path.len() == 1 && path[0].ident.name == keywords::SelfUpper.name()
5106 }
5107
5108 fn is_self_value(path: &[Segment], namespace: Namespace) -> bool {
5109     namespace == ValueNS && path.len() == 1 && path[0].ident.name == keywords::SelfLower.name()
5110 }
5111
5112 fn names_to_string(idents: &[Ident]) -> String {
5113     let mut result = String::new();
5114     for (i, ident) in idents.iter()
5115                             .filter(|ident| ident.name != keywords::PathRoot.name())
5116                             .enumerate() {
5117         if i > 0 {
5118             result.push_str("::");
5119         }
5120         result.push_str(&ident.as_str());
5121     }
5122     result
5123 }
5124
5125 fn path_names_to_string(path: &Path) -> String {
5126     names_to_string(&path.segments.iter()
5127                         .map(|seg| seg.ident)
5128                         .collect::<Vec<_>>())
5129 }
5130
5131 /// Get the path for an enum and the variant from an `ImportSuggestion` for an enum variant.
5132 fn import_candidate_to_paths(suggestion: &ImportSuggestion) -> (Span, String, String) {
5133     let variant_path = &suggestion.path;
5134     let variant_path_string = path_names_to_string(variant_path);
5135
5136     let path_len = suggestion.path.segments.len();
5137     let enum_path = ast::Path {
5138         span: suggestion.path.span,
5139         segments: suggestion.path.segments[0..path_len - 1].to_vec(),
5140     };
5141     let enum_path_string = path_names_to_string(&enum_path);
5142
5143     (suggestion.path.span, variant_path_string, enum_path_string)
5144 }
5145
5146
5147 /// When an entity with a given name is not available in scope, we search for
5148 /// entities with that name in all crates. This method allows outputting the
5149 /// results of this search in a programmer-friendly way
5150 fn show_candidates(err: &mut DiagnosticBuilder,
5151                    // This is `None` if all placement locations are inside expansions
5152                    span: Option<Span>,
5153                    candidates: &[ImportSuggestion],
5154                    better: bool,
5155                    found_use: bool) {
5156
5157     // we want consistent results across executions, but candidates are produced
5158     // by iterating through a hash map, so make sure they are ordered:
5159     let mut path_strings: Vec<_> =
5160         candidates.into_iter().map(|c| path_names_to_string(&c.path)).collect();
5161     path_strings.sort();
5162
5163     let better = if better { "better " } else { "" };
5164     let msg_diff = match path_strings.len() {
5165         1 => " is found in another module, you can import it",
5166         _ => "s are found in other modules, you can import them",
5167     };
5168     let msg = format!("possible {}candidate{} into scope", better, msg_diff);
5169
5170     if let Some(span) = span {
5171         for candidate in &mut path_strings {
5172             // produce an additional newline to separate the new use statement
5173             // from the directly following item.
5174             let additional_newline = if found_use {
5175                 ""
5176             } else {
5177                 "\n"
5178             };
5179             *candidate = format!("use {};\n{}", candidate, additional_newline);
5180         }
5181
5182         err.span_suggestions_with_applicability(
5183             span,
5184             &msg,
5185             path_strings.into_iter(),
5186             Applicability::Unspecified,
5187         );
5188     } else {
5189         let mut msg = msg;
5190         msg.push(':');
5191         for candidate in path_strings {
5192             msg.push('\n');
5193             msg.push_str(&candidate);
5194         }
5195     }
5196 }
5197
5198 /// A somewhat inefficient routine to obtain the name of a module.
5199 fn module_to_string(module: Module) -> Option<String> {
5200     let mut names = Vec::new();
5201
5202     fn collect_mod(names: &mut Vec<Ident>, module: Module) {
5203         if let ModuleKind::Def(_, name) = module.kind {
5204             if let Some(parent) = module.parent {
5205                 names.push(Ident::with_empty_ctxt(name));
5206                 collect_mod(names, parent);
5207             }
5208         } else {
5209             // danger, shouldn't be ident?
5210             names.push(Ident::from_str("<opaque>"));
5211             collect_mod(names, module.parent.unwrap());
5212         }
5213     }
5214     collect_mod(&mut names, module);
5215
5216     if names.is_empty() {
5217         return None;
5218     }
5219     Some(names_to_string(&names.into_iter()
5220                         .rev()
5221                         .collect::<Vec<_>>()))
5222 }
5223
5224 fn err_path_resolution() -> PathResolution {
5225     PathResolution::new(Def::Err)
5226 }
5227
5228 #[derive(PartialEq,Copy, Clone)]
5229 pub enum MakeGlobMap {
5230     Yes,
5231     No,
5232 }
5233
5234 #[derive(Copy, Clone, Debug)]
5235 enum CrateLint {
5236     /// Do not issue the lint
5237     No,
5238
5239     /// This lint applies to some random path like `impl ::foo::Bar`
5240     /// or whatever. In this case, we can take the span of that path.
5241     SimplePath(NodeId),
5242
5243     /// This lint comes from a `use` statement. In this case, what we
5244     /// care about really is the *root* `use` statement; e.g., if we
5245     /// have nested things like `use a::{b, c}`, we care about the
5246     /// `use a` part.
5247     UsePath { root_id: NodeId, root_span: Span },
5248
5249     /// This is the "trait item" from a fully qualified path. For example,
5250     /// we might be resolving  `X::Y::Z` from a path like `<T as X::Y>::Z`.
5251     /// The `path_span` is the span of the to the trait itself (`X::Y`).
5252     QPathTrait { qpath_id: NodeId, qpath_span: Span },
5253 }
5254
5255 impl CrateLint {
5256     fn node_id(&self) -> Option<NodeId> {
5257         match *self {
5258             CrateLint::No => None,
5259             CrateLint::SimplePath(id) |
5260             CrateLint::UsePath { root_id: id, .. } |
5261             CrateLint::QPathTrait { qpath_id: id, .. } => Some(id),
5262         }
5263     }
5264 }
5265
5266 __build_diagnostic_array! { librustc_resolve, DIAGNOSTICS }