]> git.lizzy.rs Git - rust.git/blob - src/librustc_resolve/lib.rs
6d8ca09935cff3ae4f1139e99bda83b28316578c
[rust.git] / src / librustc_resolve / lib.rs
1 // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 #![crate_name = "rustc_resolve"]
12 #![crate_type = "dylib"]
13 #![crate_type = "rlib"]
14 #![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
15       html_favicon_url = "https://doc.rust-lang.org/favicon.ico",
16       html_root_url = "https://doc.rust-lang.org/nightly/")]
17 #![deny(warnings)]
18
19 #![feature(associated_consts)]
20 #![feature(rustc_diagnostic_macros)]
21
22 #![cfg_attr(stage0, unstable(feature = "rustc_private", issue = "27812"))]
23 #![cfg_attr(stage0, feature(rustc_private))]
24 #![cfg_attr(stage0, feature(staged_api))]
25
26 #[macro_use]
27 extern crate log;
28 #[macro_use]
29 extern crate syntax;
30 extern crate syntax_pos;
31 extern crate rustc_errors as errors;
32 extern crate arena;
33 #[macro_use]
34 extern crate rustc;
35
36 use self::Namespace::*;
37 use self::TypeParameters::*;
38 use self::RibKind::*;
39
40 use rustc::hir::map::{Definitions, DefCollector};
41 use rustc::hir::{self, PrimTy, TyBool, TyChar, TyFloat, TyInt, TyUint, TyStr};
42 use rustc::middle::cstore::CrateLoader;
43 use rustc::session::Session;
44 use rustc::lint;
45 use rustc::hir::def::*;
46 use rustc::hir::def_id::{CrateNum, CRATE_DEF_INDEX, LOCAL_CRATE, DefId};
47 use rustc::ty;
48 use rustc::hir::{Freevar, FreevarMap, TraitCandidate, TraitMap, GlobMap};
49 use rustc::util::nodemap::{NodeMap, NodeSet, FxHashMap, FxHashSet, DefIdMap};
50
51 use syntax::ext::hygiene::{Mark, SyntaxContext};
52 use syntax::ast::{self, Name, NodeId, Ident, SpannedIdent, FloatTy, IntTy, UintTy};
53 use syntax::ext::base::SyntaxExtension;
54 use syntax::ext::base::Determinacy::{Determined, Undetermined};
55 use syntax::ext::base::MacroKind;
56 use syntax::symbol::{Symbol, keywords};
57 use syntax::util::lev_distance::find_best_match_for_name;
58
59 use syntax::visit::{self, FnKind, Visitor};
60 use syntax::attr;
61 use syntax::ast::{Arm, BindingMode, Block, Crate, Expr, ExprKind};
62 use syntax::ast::{FnDecl, ForeignItem, ForeignItemKind, Generics};
63 use syntax::ast::{Item, ItemKind, ImplItem, ImplItemKind};
64 use syntax::ast::{Local, Mutability, Pat, PatKind, Path};
65 use syntax::ast::{QSelf, TraitItemKind, TraitRef, Ty, TyKind};
66 use syntax::feature_gate::{feature_err, emit_feature_err, GateIssue};
67
68 use syntax_pos::{Span, DUMMY_SP, MultiSpan};
69 use errors::DiagnosticBuilder;
70
71 use std::cell::{Cell, RefCell};
72 use std::cmp;
73 use std::collections::BTreeSet;
74 use std::fmt;
75 use std::mem::replace;
76 use std::rc::Rc;
77
78 use resolve_imports::{ImportDirective, ImportDirectiveSubclass, NameResolution, ImportResolver};
79 use macros::{InvocationData, LegacyBinding, LegacyScope, MacroBinding};
80
81 // NB: This module needs to be declared first so diagnostics are
82 // registered before they are used.
83 mod diagnostics;
84
85 mod macros;
86 mod check_unused;
87 mod build_reduced_graph;
88 mod resolve_imports;
89
90 /// A free importable items suggested in case of resolution failure.
91 struct ImportSuggestion {
92     path: Path,
93 }
94
95 /// A field or associated item from self type suggested in case of resolution failure.
96 enum AssocSuggestion {
97     Field,
98     MethodWithSelf,
99     AssocItem,
100 }
101
102 #[derive(Eq)]
103 struct BindingError {
104     name: Name,
105     origin: BTreeSet<Span>,
106     target: BTreeSet<Span>,
107 }
108
109 impl PartialOrd for BindingError {
110     fn partial_cmp(&self, other: &BindingError) -> Option<cmp::Ordering> {
111         Some(self.cmp(other))
112     }
113 }
114
115 impl PartialEq for BindingError {
116     fn eq(&self, other: &BindingError) -> bool {
117         self.name == other.name
118     }
119 }
120
121 impl Ord for BindingError {
122     fn cmp(&self, other: &BindingError) -> cmp::Ordering {
123         self.name.cmp(&other.name)
124     }
125 }
126
127 enum ResolutionError<'a> {
128     /// error E0401: can't use type parameters from outer function
129     TypeParametersFromOuterFunction,
130     /// error E0403: the name is already used for a type parameter in this type parameter list
131     NameAlreadyUsedInTypeParameterList(Name, &'a Span),
132     /// error E0407: method is not a member of trait
133     MethodNotMemberOfTrait(Name, &'a str),
134     /// error E0437: type is not a member of trait
135     TypeNotMemberOfTrait(Name, &'a str),
136     /// error E0438: const is not a member of trait
137     ConstNotMemberOfTrait(Name, &'a str),
138     /// error E0408: variable `{}` is not bound in all patterns
139     VariableNotBoundInPattern(&'a BindingError),
140     /// error E0409: variable `{}` is bound in inconsistent ways within the same match arm
141     VariableBoundWithDifferentMode(Name, Span),
142     /// error E0415: identifier is bound more than once in this parameter list
143     IdentifierBoundMoreThanOnceInParameterList(&'a str),
144     /// error E0416: identifier is bound more than once in the same pattern
145     IdentifierBoundMoreThanOnceInSamePattern(&'a str),
146     /// error E0426: use of undeclared label
147     UndeclaredLabel(&'a str),
148     /// error E0429: `self` imports are only allowed within a { } list
149     SelfImportsOnlyAllowedWithin,
150     /// error E0430: `self` import can only appear once in the list
151     SelfImportCanOnlyAppearOnceInTheList,
152     /// error E0431: `self` import can only appear in an import list with a non-empty prefix
153     SelfImportOnlyInImportListWithNonEmptyPrefix,
154     /// error E0432: unresolved import
155     UnresolvedImport(Option<(&'a str, &'a str)>),
156     /// error E0433: failed to resolve
157     FailedToResolve(&'a str),
158     /// error E0434: can't capture dynamic environment in a fn item
159     CannotCaptureDynamicEnvironmentInFnItem,
160     /// error E0435: attempt to use a non-constant value in a constant
161     AttemptToUseNonConstantValueInConstant,
162     /// error E0530: X bindings cannot shadow Ys
163     BindingShadowsSomethingUnacceptable(&'a str, Name, &'a NameBinding<'a>),
164     /// error E0128: type parameters with a default cannot use forward declared identifiers
165     ForwardDeclaredTyParam,
166 }
167
168 fn resolve_error<'sess, 'a>(resolver: &'sess Resolver,
169                             span: Span,
170                             resolution_error: ResolutionError<'a>) {
171     resolve_struct_error(resolver, span, resolution_error).emit();
172 }
173
174 fn resolve_struct_error<'sess, 'a>(resolver: &'sess Resolver,
175                                    span: Span,
176                                    resolution_error: ResolutionError<'a>)
177                                    -> DiagnosticBuilder<'sess> {
178     match resolution_error {
179         ResolutionError::TypeParametersFromOuterFunction => {
180             let mut err = struct_span_err!(resolver.session,
181                                            span,
182                                            E0401,
183                                            "can't use type parameters from outer function; \
184                                            try using a local type parameter instead");
185             err.span_label(span, "use of type variable from outer function");
186             err
187         }
188         ResolutionError::NameAlreadyUsedInTypeParameterList(name, first_use_span) => {
189              let mut err = struct_span_err!(resolver.session,
190                                             span,
191                                             E0403,
192                                             "the name `{}` is already used for a type parameter \
193                                             in this type parameter list",
194                                             name);
195              err.span_label(span, "already used");
196              err.span_label(first_use_span.clone(), format!("first use of `{}`", name));
197              err
198         }
199         ResolutionError::MethodNotMemberOfTrait(method, trait_) => {
200             let mut err = struct_span_err!(resolver.session,
201                                            span,
202                                            E0407,
203                                            "method `{}` is not a member of trait `{}`",
204                                            method,
205                                            trait_);
206             err.span_label(span, format!("not a member of trait `{}`", trait_));
207             err
208         }
209         ResolutionError::TypeNotMemberOfTrait(type_, trait_) => {
210             let mut err = struct_span_err!(resolver.session,
211                              span,
212                              E0437,
213                              "type `{}` is not a member of trait `{}`",
214                              type_,
215                              trait_);
216             err.span_label(span, format!("not a member of trait `{}`", trait_));
217             err
218         }
219         ResolutionError::ConstNotMemberOfTrait(const_, trait_) => {
220             let mut err = struct_span_err!(resolver.session,
221                              span,
222                              E0438,
223                              "const `{}` is not a member of trait `{}`",
224                              const_,
225                              trait_);
226             err.span_label(span, format!("not a member of trait `{}`", trait_));
227             err
228         }
229         ResolutionError::VariableNotBoundInPattern(binding_error) => {
230             let target_sp = binding_error.target.iter().map(|x| *x).collect::<Vec<_>>();
231             let msp = MultiSpan::from_spans(target_sp.clone());
232             let msg = format!("variable `{}` is not bound in all patterns", binding_error.name);
233             let mut err = resolver.session.struct_span_err_with_code(msp, &msg, "E0408");
234             for sp in target_sp {
235                 err.span_label(sp, format!("pattern doesn't bind `{}`", binding_error.name));
236             }
237             let origin_sp = binding_error.origin.iter().map(|x| *x).collect::<Vec<_>>();
238             for sp in origin_sp {
239                 err.span_label(sp, "variable not in all patterns");
240             }
241             err
242         }
243         ResolutionError::VariableBoundWithDifferentMode(variable_name,
244                                                         first_binding_span) => {
245             let mut err = struct_span_err!(resolver.session,
246                              span,
247                              E0409,
248                              "variable `{}` is bound in inconsistent \
249                              ways within the same match arm",
250                              variable_name);
251             err.span_label(span, "bound in different ways");
252             err.span_label(first_binding_span, "first binding");
253             err
254         }
255         ResolutionError::IdentifierBoundMoreThanOnceInParameterList(identifier) => {
256             let mut err = struct_span_err!(resolver.session,
257                              span,
258                              E0415,
259                              "identifier `{}` is bound more than once in this parameter list",
260                              identifier);
261             err.span_label(span, "used as parameter more than once");
262             err
263         }
264         ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(identifier) => {
265             let mut err = struct_span_err!(resolver.session,
266                              span,
267                              E0416,
268                              "identifier `{}` is bound more than once in the same pattern",
269                              identifier);
270             err.span_label(span, "used in a pattern more than once");
271             err
272         }
273         ResolutionError::UndeclaredLabel(name) => {
274             let mut err = struct_span_err!(resolver.session,
275                                            span,
276                                            E0426,
277                                            "use of undeclared label `{}`",
278                                            name);
279             err.span_label(span, format!("undeclared label `{}`", name));
280             err
281         }
282         ResolutionError::SelfImportsOnlyAllowedWithin => {
283             struct_span_err!(resolver.session,
284                              span,
285                              E0429,
286                              "{}",
287                              "`self` imports are only allowed within a { } list")
288         }
289         ResolutionError::SelfImportCanOnlyAppearOnceInTheList => {
290             struct_span_err!(resolver.session,
291                              span,
292                              E0430,
293                              "`self` import can only appear once in the list")
294         }
295         ResolutionError::SelfImportOnlyInImportListWithNonEmptyPrefix => {
296             struct_span_err!(resolver.session,
297                              span,
298                              E0431,
299                              "`self` import can only appear in an import list with a \
300                               non-empty prefix")
301         }
302         ResolutionError::UnresolvedImport(name) => {
303             let msg = match name {
304                 Some((n, _)) => format!("unresolved import `{}`", n),
305                 None => "unresolved import".to_owned(),
306             };
307             let mut err = struct_span_err!(resolver.session, span, E0432, "{}", msg);
308             if let Some((_, p)) = name {
309                 err.span_label(span, p);
310             }
311             err
312         }
313         ResolutionError::FailedToResolve(msg) => {
314             let mut err = struct_span_err!(resolver.session, span, E0433,
315                                            "failed to resolve. {}", msg);
316             err.span_label(span, msg);
317             err
318         }
319         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem => {
320             struct_span_err!(resolver.session,
321                              span,
322                              E0434,
323                              "{}",
324                              "can't capture dynamic environment in a fn item; use the || { ... } \
325                               closure form instead")
326         }
327         ResolutionError::AttemptToUseNonConstantValueInConstant => {
328             let mut err = struct_span_err!(resolver.session,
329                              span,
330                              E0435,
331                              "attempt to use a non-constant value in a constant");
332             err.span_label(span, "non-constant used with constant");
333             err
334         }
335         ResolutionError::BindingShadowsSomethingUnacceptable(what_binding, name, binding) => {
336             let shadows_what = PathResolution::new(binding.def()).kind_name();
337             let mut err = struct_span_err!(resolver.session,
338                                            span,
339                                            E0530,
340                                            "{}s cannot shadow {}s", what_binding, shadows_what);
341             err.span_label(span, format!("cannot be named the same as a {}", shadows_what));
342             let participle = if binding.is_import() { "imported" } else { "defined" };
343             let msg = format!("a {} `{}` is {} here", shadows_what, name, participle);
344             err.span_label(binding.span, msg);
345             err
346         }
347         ResolutionError::ForwardDeclaredTyParam => {
348             let mut err = struct_span_err!(resolver.session, span, E0128,
349                                            "type parameters with a default cannot use \
350                                             forward declared identifiers");
351             err.span_label(span, format!("defaulted type parameters \
352                                            cannot be forward declared"));
353             err
354         }
355     }
356 }
357
358 #[derive(Copy, Clone, Debug)]
359 struct BindingInfo {
360     span: Span,
361     binding_mode: BindingMode,
362 }
363
364 // Map from the name in a pattern to its binding mode.
365 type BindingMap = FxHashMap<Ident, BindingInfo>;
366
367 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
368 enum PatternSource {
369     Match,
370     IfLet,
371     WhileLet,
372     Let,
373     For,
374     FnParam,
375 }
376
377 impl PatternSource {
378     fn is_refutable(self) -> bool {
379         match self {
380             PatternSource::Match | PatternSource::IfLet | PatternSource::WhileLet => true,
381             PatternSource::Let | PatternSource::For | PatternSource::FnParam  => false,
382         }
383     }
384     fn descr(self) -> &'static str {
385         match self {
386             PatternSource::Match => "match binding",
387             PatternSource::IfLet => "if let binding",
388             PatternSource::WhileLet => "while let binding",
389             PatternSource::Let => "let binding",
390             PatternSource::For => "for binding",
391             PatternSource::FnParam => "function parameter",
392         }
393     }
394 }
395
396 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
397 enum PathSource<'a> {
398     // Type paths `Path`.
399     Type,
400     // Trait paths in bounds or impls.
401     Trait,
402     // Expression paths `path`, with optional parent context.
403     Expr(Option<&'a Expr>),
404     // Paths in path patterns `Path`.
405     Pat,
406     // Paths in struct expressions and patterns `Path { .. }`.
407     Struct,
408     // Paths in tuple struct patterns `Path(..)`.
409     TupleStruct,
410     // `m::A::B` in `<T as m::A>::B::C`.
411     TraitItem(Namespace),
412     // Path in `pub(path)`
413     Visibility,
414     // Path in `use a::b::{...};`
415     ImportPrefix,
416 }
417
418 impl<'a> PathSource<'a> {
419     fn namespace(self) -> Namespace {
420         match self {
421             PathSource::Type | PathSource::Trait | PathSource::Struct |
422             PathSource::Visibility | PathSource::ImportPrefix => TypeNS,
423             PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct => ValueNS,
424             PathSource::TraitItem(ns) => ns,
425         }
426     }
427
428     fn global_by_default(self) -> bool {
429         match self {
430             PathSource::Visibility | PathSource::ImportPrefix => true,
431             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
432             PathSource::Struct | PathSource::TupleStruct |
433             PathSource::Trait | PathSource::TraitItem(..) => false,
434         }
435     }
436
437     fn defer_to_typeck(self) -> bool {
438         match self {
439             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
440             PathSource::Struct | PathSource::TupleStruct => true,
441             PathSource::Trait | PathSource::TraitItem(..) |
442             PathSource::Visibility | PathSource::ImportPrefix => false,
443         }
444     }
445
446     fn descr_expected(self) -> &'static str {
447         match self {
448             PathSource::Type => "type",
449             PathSource::Trait => "trait",
450             PathSource::Pat => "unit struct/variant or constant",
451             PathSource::Struct => "struct, variant or union type",
452             PathSource::TupleStruct => "tuple struct/variant",
453             PathSource::Visibility => "module",
454             PathSource::ImportPrefix => "module or enum",
455             PathSource::TraitItem(ns) => match ns {
456                 TypeNS => "associated type",
457                 ValueNS => "method or associated constant",
458                 MacroNS => bug!("associated macro"),
459             },
460             PathSource::Expr(parent) => match parent.map(|p| &p.node) {
461                 // "function" here means "anything callable" rather than `Def::Fn`,
462                 // this is not precise but usually more helpful than just "value".
463                 Some(&ExprKind::Call(..)) => "function",
464                 _ => "value",
465             },
466         }
467     }
468
469     fn is_expected(self, def: Def) -> bool {
470         match self {
471             PathSource::Type => match def {
472                 Def::Struct(..) | Def::Union(..) | Def::Enum(..) |
473                 Def::Trait(..) | Def::TyAlias(..) | Def::AssociatedTy(..) |
474                 Def::PrimTy(..) | Def::TyParam(..) | Def::SelfTy(..) => true,
475                 _ => false,
476             },
477             PathSource::Trait => match def {
478                 Def::Trait(..) => true,
479                 _ => false,
480             },
481             PathSource::Expr(..) => match def {
482                 Def::StructCtor(_, CtorKind::Const) | Def::StructCtor(_, CtorKind::Fn) |
483                 Def::VariantCtor(_, CtorKind::Const) | Def::VariantCtor(_, CtorKind::Fn) |
484                 Def::Const(..) | Def::Static(..) | Def::Local(..) | Def::Upvar(..) |
485                 Def::Fn(..) | Def::Method(..) | Def::AssociatedConst(..) => true,
486                 _ => false,
487             },
488             PathSource::Pat => match def {
489                 Def::StructCtor(_, CtorKind::Const) |
490                 Def::VariantCtor(_, CtorKind::Const) |
491                 Def::Const(..) | Def::AssociatedConst(..) => true,
492                 _ => false,
493             },
494             PathSource::TupleStruct => match def {
495                 Def::StructCtor(_, CtorKind::Fn) | Def::VariantCtor(_, CtorKind::Fn) => true,
496                 _ => false,
497             },
498             PathSource::Struct => match def {
499                 Def::Struct(..) | Def::Union(..) | Def::Variant(..) |
500                 Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => true,
501                 _ => false,
502             },
503             PathSource::TraitItem(ns) => match def {
504                 Def::AssociatedConst(..) | Def::Method(..) if ns == ValueNS => true,
505                 Def::AssociatedTy(..) if ns == TypeNS => true,
506                 _ => false,
507             },
508             PathSource::ImportPrefix => match def {
509                 Def::Mod(..) | Def::Enum(..) => true,
510                 _ => false,
511             },
512             PathSource::Visibility => match def {
513                 Def::Mod(..) => true,
514                 _ => false,
515             },
516         }
517     }
518
519     fn error_code(self, has_unexpected_resolution: bool) -> &'static str {
520         __diagnostic_used!(E0404);
521         __diagnostic_used!(E0405);
522         __diagnostic_used!(E0412);
523         __diagnostic_used!(E0422);
524         __diagnostic_used!(E0423);
525         __diagnostic_used!(E0425);
526         __diagnostic_used!(E0531);
527         __diagnostic_used!(E0532);
528         __diagnostic_used!(E0573);
529         __diagnostic_used!(E0574);
530         __diagnostic_used!(E0575);
531         __diagnostic_used!(E0576);
532         __diagnostic_used!(E0577);
533         __diagnostic_used!(E0578);
534         match (self, has_unexpected_resolution) {
535             (PathSource::Trait, true) => "E0404",
536             (PathSource::Trait, false) => "E0405",
537             (PathSource::Type, true) => "E0573",
538             (PathSource::Type, false) => "E0412",
539             (PathSource::Struct, true) => "E0574",
540             (PathSource::Struct, false) => "E0422",
541             (PathSource::Expr(..), true) => "E0423",
542             (PathSource::Expr(..), false) => "E0425",
543             (PathSource::Pat, true) | (PathSource::TupleStruct, true) => "E0532",
544             (PathSource::Pat, false) | (PathSource::TupleStruct, false) => "E0531",
545             (PathSource::TraitItem(..), true) => "E0575",
546             (PathSource::TraitItem(..), false) => "E0576",
547             (PathSource::Visibility, true) | (PathSource::ImportPrefix, true) => "E0577",
548             (PathSource::Visibility, false) | (PathSource::ImportPrefix, false) => "E0578",
549         }
550     }
551 }
552
553 #[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
554 pub enum Namespace {
555     TypeNS,
556     ValueNS,
557     MacroNS,
558 }
559
560 #[derive(Clone, Default, Debug)]
561 pub struct PerNS<T> {
562     value_ns: T,
563     type_ns: T,
564     macro_ns: Option<T>,
565 }
566
567 impl<T> ::std::ops::Index<Namespace> for PerNS<T> {
568     type Output = T;
569     fn index(&self, ns: Namespace) -> &T {
570         match ns {
571             ValueNS => &self.value_ns,
572             TypeNS => &self.type_ns,
573             MacroNS => self.macro_ns.as_ref().unwrap(),
574         }
575     }
576 }
577
578 impl<T> ::std::ops::IndexMut<Namespace> for PerNS<T> {
579     fn index_mut(&mut self, ns: Namespace) -> &mut T {
580         match ns {
581             ValueNS => &mut self.value_ns,
582             TypeNS => &mut self.type_ns,
583             MacroNS => self.macro_ns.as_mut().unwrap(),
584         }
585     }
586 }
587
588 impl<'a, 'tcx> Visitor<'tcx> for Resolver<'a> {
589     fn visit_item(&mut self, item: &'tcx Item) {
590         self.resolve_item(item);
591     }
592     fn visit_arm(&mut self, arm: &'tcx Arm) {
593         self.resolve_arm(arm);
594     }
595     fn visit_block(&mut self, block: &'tcx Block) {
596         self.resolve_block(block);
597     }
598     fn visit_expr(&mut self, expr: &'tcx Expr) {
599         self.resolve_expr(expr, None);
600     }
601     fn visit_local(&mut self, local: &'tcx Local) {
602         self.resolve_local(local);
603     }
604     fn visit_ty(&mut self, ty: &'tcx Ty) {
605         if let TyKind::Path(ref qself, ref path) = ty.node {
606             self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
607         } else if let TyKind::ImplicitSelf = ty.node {
608             let self_ty = keywords::SelfType.ident();
609             let def = self.resolve_ident_in_lexical_scope(self_ty, TypeNS, true, ty.span)
610                           .map_or(Def::Err, |d| d.def());
611             self.record_def(ty.id, PathResolution::new(def));
612         } else if let TyKind::Array(ref element, ref length) = ty.node {
613             self.visit_ty(element);
614             self.with_constant_rib(|this| {
615                 this.visit_expr(length);
616             });
617             return;
618         }
619         visit::walk_ty(self, ty);
620     }
621     fn visit_poly_trait_ref(&mut self,
622                             tref: &'tcx ast::PolyTraitRef,
623                             m: &'tcx ast::TraitBoundModifier) {
624         self.smart_resolve_path(tref.trait_ref.ref_id, None,
625                                 &tref.trait_ref.path, PathSource::Trait);
626         visit::walk_poly_trait_ref(self, tref, m);
627     }
628     fn visit_variant(&mut self,
629                      variant: &'tcx ast::Variant,
630                      generics: &'tcx Generics,
631                      item_id: ast::NodeId) {
632         if let Some(ref dis_expr) = variant.node.disr_expr {
633             // resolve the discriminator expr as a constant
634             self.with_constant_rib(|this| {
635                 this.visit_expr(dis_expr);
636             });
637         }
638
639         // `visit::walk_variant` without the discriminant expression.
640         self.visit_variant_data(&variant.node.data,
641                                 variant.node.name,
642                                 generics,
643                                 item_id,
644                                 variant.span);
645     }
646     fn visit_foreign_item(&mut self, foreign_item: &'tcx ForeignItem) {
647         let type_parameters = match foreign_item.node {
648             ForeignItemKind::Fn(_, ref generics) => {
649                 HasTypeParameters(generics, ItemRibKind)
650             }
651             ForeignItemKind::Static(..) => NoTypeParameters,
652         };
653         self.with_type_parameter_rib(type_parameters, |this| {
654             visit::walk_foreign_item(this, foreign_item);
655         });
656     }
657     fn visit_fn(&mut self,
658                 function_kind: FnKind<'tcx>,
659                 declaration: &'tcx FnDecl,
660                 _: Span,
661                 node_id: NodeId) {
662         let rib_kind = match function_kind {
663             FnKind::ItemFn(_, generics, ..) => {
664                 self.visit_generics(generics);
665                 ItemRibKind
666             }
667             FnKind::Method(_, sig, _, _) => {
668                 self.visit_generics(&sig.generics);
669                 MethodRibKind(!sig.decl.has_self())
670             }
671             FnKind::Closure(_) => ClosureRibKind(node_id),
672         };
673
674         // Create a value rib for the function.
675         self.ribs[ValueNS].push(Rib::new(rib_kind));
676
677         // Create a label rib for the function.
678         self.label_ribs.push(Rib::new(rib_kind));
679
680         // Add each argument to the rib.
681         let mut bindings_list = FxHashMap();
682         for argument in &declaration.inputs {
683             self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
684
685             self.visit_ty(&argument.ty);
686
687             debug!("(resolving function) recorded argument");
688         }
689         visit::walk_fn_ret_ty(self, &declaration.output);
690
691         // Resolve the function body.
692         match function_kind {
693             FnKind::ItemFn(.., body) |
694             FnKind::Method(.., body) => {
695                 self.visit_block(body);
696             }
697             FnKind::Closure(body) => {
698                 self.visit_expr(body);
699             }
700         };
701
702         debug!("(resolving function) leaving function");
703
704         self.label_ribs.pop();
705         self.ribs[ValueNS].pop();
706     }
707     fn visit_generics(&mut self, generics: &'tcx Generics) {
708         // For type parameter defaults, we have to ban access
709         // to following type parameters, as the Substs can only
710         // provide previous type parameters as they're built.
711         let mut default_ban_rib = Rib::new(ForwardTyParamBanRibKind);
712         default_ban_rib.bindings.extend(generics.ty_params.iter()
713             .skip_while(|p| p.default.is_none())
714             .map(|p| (Ident::with_empty_ctxt(p.ident.name), Def::Err)));
715
716         for param in &generics.ty_params {
717             for bound in &param.bounds {
718                 self.visit_ty_param_bound(bound);
719             }
720
721             if let Some(ref ty) = param.default {
722                 self.ribs[TypeNS].push(default_ban_rib);
723                 self.visit_ty(ty);
724                 default_ban_rib = self.ribs[TypeNS].pop().unwrap();
725             }
726
727             // Allow all following defaults to refer to this type parameter.
728             default_ban_rib.bindings.remove(&Ident::with_empty_ctxt(param.ident.name));
729         }
730         for lt in &generics.lifetimes { self.visit_lifetime_def(lt); }
731         for p in &generics.where_clause.predicates { self.visit_where_predicate(p); }
732     }
733 }
734
735 pub type ErrorMessage = Option<(Span, String)>;
736
737 #[derive(Copy, Clone)]
738 enum TypeParameters<'a, 'b> {
739     NoTypeParameters,
740     HasTypeParameters(// Type parameters.
741                       &'b Generics,
742
743                       // The kind of the rib used for type parameters.
744                       RibKind<'a>),
745 }
746
747 // The rib kind controls the translation of local
748 // definitions (`Def::Local`) to upvars (`Def::Upvar`).
749 #[derive(Copy, Clone, Debug)]
750 enum RibKind<'a> {
751     // No translation needs to be applied.
752     NormalRibKind,
753
754     // We passed through a closure scope at the given node ID.
755     // Translate upvars as appropriate.
756     ClosureRibKind(NodeId /* func id */),
757
758     // We passed through an impl or trait and are now in one of its
759     // methods. Allow references to ty params that impl or trait
760     // binds. Disallow any other upvars (including other ty params that are
761     // upvars).
762     //
763     // The boolean value represents the fact that this method is static or not.
764     MethodRibKind(bool),
765
766     // We passed through an item scope. Disallow upvars.
767     ItemRibKind,
768
769     // We're in a constant item. Can't refer to dynamic stuff.
770     ConstantItemRibKind,
771
772     // We passed through a module.
773     ModuleRibKind(Module<'a>),
774
775     // We passed through a `macro_rules!` statement
776     MacroDefinition(DefId),
777
778     // All bindings in this rib are type parameters that can't be used
779     // from the default of a type parameter because they're not declared
780     // before said type parameter. Also see the `visit_generics` override.
781     ForwardTyParamBanRibKind,
782 }
783
784 /// One local scope.
785 #[derive(Debug)]
786 struct Rib<'a> {
787     bindings: FxHashMap<Ident, Def>,
788     kind: RibKind<'a>,
789 }
790
791 impl<'a> Rib<'a> {
792     fn new(kind: RibKind<'a>) -> Rib<'a> {
793         Rib {
794             bindings: FxHashMap(),
795             kind: kind,
796         }
797     }
798 }
799
800 enum LexicalScopeBinding<'a> {
801     Item(&'a NameBinding<'a>),
802     Def(Def),
803 }
804
805 impl<'a> LexicalScopeBinding<'a> {
806     fn item(self) -> Option<&'a NameBinding<'a>> {
807         match self {
808             LexicalScopeBinding::Item(binding) => Some(binding),
809             _ => None,
810         }
811     }
812
813     fn def(self) -> Def {
814         match self {
815             LexicalScopeBinding::Item(binding) => binding.def(),
816             LexicalScopeBinding::Def(def) => def,
817         }
818     }
819 }
820
821 #[derive(Clone)]
822 enum PathResult<'a> {
823     Module(Module<'a>),
824     NonModule(PathResolution),
825     Indeterminate,
826     Failed(String, bool /* is the error from the last segment? */),
827 }
828
829 enum ModuleKind {
830     Block(NodeId),
831     Def(Def, Name),
832 }
833
834 /// One node in the tree of modules.
835 pub struct ModuleData<'a> {
836     parent: Option<Module<'a>>,
837     kind: ModuleKind,
838
839     // The def id of the closest normal module (`mod`) ancestor (including this module).
840     normal_ancestor_id: DefId,
841
842     resolutions: RefCell<FxHashMap<(Ident, Namespace), &'a RefCell<NameResolution<'a>>>>,
843     legacy_macro_resolutions: RefCell<Vec<(Mark, Ident, Span, MacroKind)>>,
844     macro_resolutions: RefCell<Vec<(Box<[Ident]>, Span)>>,
845
846     // Macro invocations that can expand into items in this module.
847     unresolved_invocations: RefCell<FxHashSet<Mark>>,
848
849     no_implicit_prelude: bool,
850
851     glob_importers: RefCell<Vec<&'a ImportDirective<'a>>>,
852     globs: RefCell<Vec<&'a ImportDirective<'a>>>,
853
854     // Used to memoize the traits in this module for faster searches through all traits in scope.
855     traits: RefCell<Option<Box<[(Ident, &'a NameBinding<'a>)]>>>,
856
857     // Whether this module is populated. If not populated, any attempt to
858     // access the children must be preceded with a
859     // `populate_module_if_necessary` call.
860     populated: Cell<bool>,
861
862     /// Span of the module itself. Used for error reporting.
863     span: Span,
864 }
865
866 pub type Module<'a> = &'a ModuleData<'a>;
867
868 impl<'a> ModuleData<'a> {
869     fn new(parent: Option<Module<'a>>,
870            kind: ModuleKind,
871            normal_ancestor_id: DefId,
872            span: Span) -> Self {
873         ModuleData {
874             parent: parent,
875             kind: kind,
876             normal_ancestor_id: normal_ancestor_id,
877             resolutions: RefCell::new(FxHashMap()),
878             legacy_macro_resolutions: RefCell::new(Vec::new()),
879             macro_resolutions: RefCell::new(Vec::new()),
880             unresolved_invocations: RefCell::new(FxHashSet()),
881             no_implicit_prelude: false,
882             glob_importers: RefCell::new(Vec::new()),
883             globs: RefCell::new((Vec::new())),
884             traits: RefCell::new(None),
885             populated: Cell::new(normal_ancestor_id.is_local()),
886             span: span,
887         }
888     }
889
890     fn for_each_child<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
891         for (&(ident, ns), name_resolution) in self.resolutions.borrow().iter() {
892             name_resolution.borrow().binding.map(|binding| f(ident, ns, binding));
893         }
894     }
895
896     fn def(&self) -> Option<Def> {
897         match self.kind {
898             ModuleKind::Def(def, _) => Some(def),
899             _ => None,
900         }
901     }
902
903     fn def_id(&self) -> Option<DefId> {
904         self.def().as_ref().map(Def::def_id)
905     }
906
907     // `self` resolves to the first module ancestor that `is_normal`.
908     fn is_normal(&self) -> bool {
909         match self.kind {
910             ModuleKind::Def(Def::Mod(_), _) => true,
911             _ => false,
912         }
913     }
914
915     fn is_trait(&self) -> bool {
916         match self.kind {
917             ModuleKind::Def(Def::Trait(_), _) => true,
918             _ => false,
919         }
920     }
921
922     fn is_local(&self) -> bool {
923         self.normal_ancestor_id.is_local()
924     }
925
926     fn nearest_item_scope(&'a self) -> Module<'a> {
927         if self.is_trait() { self.parent.unwrap() } else { self }
928     }
929 }
930
931 impl<'a> fmt::Debug for ModuleData<'a> {
932     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
933         write!(f, "{:?}", self.def())
934     }
935 }
936
937 // Records a possibly-private value, type, or module definition.
938 #[derive(Clone, Debug)]
939 pub struct NameBinding<'a> {
940     kind: NameBindingKind<'a>,
941     expansion: Mark,
942     span: Span,
943     vis: ty::Visibility,
944 }
945
946 pub trait ToNameBinding<'a> {
947     fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a>;
948 }
949
950 impl<'a> ToNameBinding<'a> for &'a NameBinding<'a> {
951     fn to_name_binding(self, _: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> {
952         self
953     }
954 }
955
956 #[derive(Clone, Debug)]
957 enum NameBindingKind<'a> {
958     Def(Def),
959     Module(Module<'a>),
960     Import {
961         binding: &'a NameBinding<'a>,
962         directive: &'a ImportDirective<'a>,
963         used: Cell<bool>,
964         legacy_self_import: bool,
965     },
966     Ambiguity {
967         b1: &'a NameBinding<'a>,
968         b2: &'a NameBinding<'a>,
969         legacy: bool,
970     }
971 }
972
973 struct PrivacyError<'a>(Span, Name, &'a NameBinding<'a>);
974
975 struct AmbiguityError<'a> {
976     span: Span,
977     name: Name,
978     lexical: bool,
979     b1: &'a NameBinding<'a>,
980     b2: &'a NameBinding<'a>,
981     legacy: bool,
982 }
983
984 impl<'a> NameBinding<'a> {
985     fn module(&self) -> Option<Module<'a>> {
986         match self.kind {
987             NameBindingKind::Module(module) => Some(module),
988             NameBindingKind::Import { binding, .. } => binding.module(),
989             NameBindingKind::Ambiguity { legacy: true, b1, .. } => b1.module(),
990             _ => None,
991         }
992     }
993
994     fn def(&self) -> Def {
995         match self.kind {
996             NameBindingKind::Def(def) => def,
997             NameBindingKind::Module(module) => module.def().unwrap(),
998             NameBindingKind::Import { binding, .. } => binding.def(),
999             NameBindingKind::Ambiguity { legacy: true, b1, .. } => b1.def(),
1000             NameBindingKind::Ambiguity { .. } => Def::Err,
1001         }
1002     }
1003
1004     fn def_ignoring_ambiguity(&self) -> Def {
1005         match self.kind {
1006             NameBindingKind::Import { binding, .. } => binding.def_ignoring_ambiguity(),
1007             NameBindingKind::Ambiguity { b1, .. } => b1.def_ignoring_ambiguity(),
1008             _ => self.def(),
1009         }
1010     }
1011
1012     fn get_macro(&self, resolver: &mut Resolver<'a>) -> Rc<SyntaxExtension> {
1013         resolver.get_macro(self.def_ignoring_ambiguity())
1014     }
1015
1016     // We sometimes need to treat variants as `pub` for backwards compatibility
1017     fn pseudo_vis(&self) -> ty::Visibility {
1018         if self.is_variant() { ty::Visibility::Public } else { self.vis }
1019     }
1020
1021     fn is_variant(&self) -> bool {
1022         match self.kind {
1023             NameBindingKind::Def(Def::Variant(..)) |
1024             NameBindingKind::Def(Def::VariantCtor(..)) => true,
1025             _ => false,
1026         }
1027     }
1028
1029     fn is_extern_crate(&self) -> bool {
1030         match self.kind {
1031             NameBindingKind::Import {
1032                 directive: &ImportDirective {
1033                     subclass: ImportDirectiveSubclass::ExternCrate, ..
1034                 }, ..
1035             } => true,
1036             _ => false,
1037         }
1038     }
1039
1040     fn is_import(&self) -> bool {
1041         match self.kind {
1042             NameBindingKind::Import { .. } => true,
1043             _ => false,
1044         }
1045     }
1046
1047     fn is_glob_import(&self) -> bool {
1048         match self.kind {
1049             NameBindingKind::Import { directive, .. } => directive.is_glob(),
1050             NameBindingKind::Ambiguity { b1, .. } => b1.is_glob_import(),
1051             _ => false,
1052         }
1053     }
1054
1055     fn is_importable(&self) -> bool {
1056         match self.def() {
1057             Def::AssociatedConst(..) | Def::Method(..) | Def::AssociatedTy(..) => false,
1058             _ => true,
1059         }
1060     }
1061
1062     fn is_macro_def(&self) -> bool {
1063         match self.kind {
1064             NameBindingKind::Def(Def::Macro(..)) => true,
1065             _ => false,
1066         }
1067     }
1068 }
1069
1070 /// Interns the names of the primitive types.
1071 struct PrimitiveTypeTable {
1072     primitive_types: FxHashMap<Name, PrimTy>,
1073 }
1074
1075 impl PrimitiveTypeTable {
1076     fn new() -> PrimitiveTypeTable {
1077         let mut table = PrimitiveTypeTable { primitive_types: FxHashMap() };
1078
1079         table.intern("bool", TyBool);
1080         table.intern("char", TyChar);
1081         table.intern("f32", TyFloat(FloatTy::F32));
1082         table.intern("f64", TyFloat(FloatTy::F64));
1083         table.intern("isize", TyInt(IntTy::Is));
1084         table.intern("i8", TyInt(IntTy::I8));
1085         table.intern("i16", TyInt(IntTy::I16));
1086         table.intern("i32", TyInt(IntTy::I32));
1087         table.intern("i64", TyInt(IntTy::I64));
1088         table.intern("i128", TyInt(IntTy::I128));
1089         table.intern("str", TyStr);
1090         table.intern("usize", TyUint(UintTy::Us));
1091         table.intern("u8", TyUint(UintTy::U8));
1092         table.intern("u16", TyUint(UintTy::U16));
1093         table.intern("u32", TyUint(UintTy::U32));
1094         table.intern("u64", TyUint(UintTy::U64));
1095         table.intern("u128", TyUint(UintTy::U128));
1096         table
1097     }
1098
1099     fn intern(&mut self, string: &str, primitive_type: PrimTy) {
1100         self.primitive_types.insert(Symbol::intern(string), primitive_type);
1101     }
1102 }
1103
1104 /// The main resolver class.
1105 pub struct Resolver<'a> {
1106     session: &'a Session,
1107
1108     pub definitions: Definitions,
1109
1110     graph_root: Module<'a>,
1111
1112     prelude: Option<Module<'a>>,
1113
1114     // n.b. This is used only for better diagnostics, not name resolution itself.
1115     has_self: FxHashSet<DefId>,
1116
1117     // Names of fields of an item `DefId` accessible with dot syntax.
1118     // Used for hints during error reporting.
1119     field_names: FxHashMap<DefId, Vec<Name>>,
1120
1121     // All imports known to succeed or fail.
1122     determined_imports: Vec<&'a ImportDirective<'a>>,
1123
1124     // All non-determined imports.
1125     indeterminate_imports: Vec<&'a ImportDirective<'a>>,
1126
1127     // The module that represents the current item scope.
1128     current_module: Module<'a>,
1129
1130     // The current set of local scopes for types and values.
1131     // FIXME #4948: Reuse ribs to avoid allocation.
1132     ribs: PerNS<Vec<Rib<'a>>>,
1133
1134     // The current set of local scopes, for labels.
1135     label_ribs: Vec<Rib<'a>>,
1136
1137     // The trait that the current context can refer to.
1138     current_trait_ref: Option<(Module<'a>, TraitRef)>,
1139
1140     // The current self type if inside an impl (used for better errors).
1141     current_self_type: Option<Ty>,
1142
1143     // The idents for the primitive types.
1144     primitive_type_table: PrimitiveTypeTable,
1145
1146     def_map: DefMap,
1147     pub freevars: FreevarMap,
1148     freevars_seen: NodeMap<NodeMap<usize>>,
1149     pub export_map: ExportMap,
1150     pub trait_map: TraitMap,
1151
1152     // A map from nodes to anonymous modules.
1153     // Anonymous modules are pseudo-modules that are implicitly created around items
1154     // contained within blocks.
1155     //
1156     // For example, if we have this:
1157     //
1158     //  fn f() {
1159     //      fn g() {
1160     //          ...
1161     //      }
1162     //  }
1163     //
1164     // There will be an anonymous module created around `g` with the ID of the
1165     // entry block for `f`.
1166     block_map: NodeMap<Module<'a>>,
1167     module_map: FxHashMap<DefId, Module<'a>>,
1168     extern_crate_roots: FxHashMap<(CrateNum, bool /* MacrosOnly? */), Module<'a>>,
1169
1170     pub make_glob_map: bool,
1171     // Maps imports to the names of items actually imported (this actually maps
1172     // all imports, but only glob imports are actually interesting).
1173     pub glob_map: GlobMap,
1174
1175     used_imports: FxHashSet<(NodeId, Namespace)>,
1176     pub maybe_unused_trait_imports: NodeSet,
1177
1178     privacy_errors: Vec<PrivacyError<'a>>,
1179     ambiguity_errors: Vec<AmbiguityError<'a>>,
1180     gated_errors: FxHashSet<Span>,
1181     disallowed_shadowing: Vec<&'a LegacyBinding<'a>>,
1182
1183     arenas: &'a ResolverArenas<'a>,
1184     dummy_binding: &'a NameBinding<'a>,
1185     use_extern_macros: bool, // true if `#![feature(use_extern_macros)]`
1186
1187     crate_loader: &'a mut CrateLoader,
1188     macro_names: FxHashSet<Name>,
1189     global_macros: FxHashMap<Name, &'a NameBinding<'a>>,
1190     lexical_macro_resolutions: Vec<(Name, &'a Cell<LegacyScope<'a>>)>,
1191     macro_map: FxHashMap<DefId, Rc<SyntaxExtension>>,
1192     macro_defs: FxHashMap<Mark, DefId>,
1193     local_macro_def_scopes: FxHashMap<NodeId, Module<'a>>,
1194     macro_exports: Vec<Export>,
1195     pub whitelisted_legacy_custom_derives: Vec<Name>,
1196     pub found_unresolved_macro: bool,
1197
1198     // List of crate local macros that we need to warn about as being unused.
1199     // Right now this only includes macro_rules! macros.
1200     unused_macros: FxHashSet<DefId>,
1201
1202     // Maps the `Mark` of an expansion to its containing module or block.
1203     invocations: FxHashMap<Mark, &'a InvocationData<'a>>,
1204
1205     // Avoid duplicated errors for "name already defined".
1206     name_already_seen: FxHashMap<Name, Span>,
1207
1208     // If `#![feature(proc_macro)]` is set
1209     proc_macro_enabled: bool,
1210
1211     // A set of procedural macros imported by `#[macro_use]` that have already been warned about
1212     warned_proc_macros: FxHashSet<Name>,
1213
1214     potentially_unused_imports: Vec<&'a ImportDirective<'a>>,
1215
1216     // This table maps struct IDs into struct constructor IDs,
1217     // it's not used during normal resolution, only for better error reporting.
1218     struct_constructors: DefIdMap<(Def, ty::Visibility)>,
1219 }
1220
1221 pub struct ResolverArenas<'a> {
1222     modules: arena::TypedArena<ModuleData<'a>>,
1223     local_modules: RefCell<Vec<Module<'a>>>,
1224     name_bindings: arena::TypedArena<NameBinding<'a>>,
1225     import_directives: arena::TypedArena<ImportDirective<'a>>,
1226     name_resolutions: arena::TypedArena<RefCell<NameResolution<'a>>>,
1227     invocation_data: arena::TypedArena<InvocationData<'a>>,
1228     legacy_bindings: arena::TypedArena<LegacyBinding<'a>>,
1229 }
1230
1231 impl<'a> ResolverArenas<'a> {
1232     fn alloc_module(&'a self, module: ModuleData<'a>) -> Module<'a> {
1233         let module = self.modules.alloc(module);
1234         if module.def_id().map(|def_id| def_id.is_local()).unwrap_or(true) {
1235             self.local_modules.borrow_mut().push(module);
1236         }
1237         module
1238     }
1239     fn local_modules(&'a self) -> ::std::cell::Ref<'a, Vec<Module<'a>>> {
1240         self.local_modules.borrow()
1241     }
1242     fn alloc_name_binding(&'a self, name_binding: NameBinding<'a>) -> &'a NameBinding<'a> {
1243         self.name_bindings.alloc(name_binding)
1244     }
1245     fn alloc_import_directive(&'a self, import_directive: ImportDirective<'a>)
1246                               -> &'a ImportDirective {
1247         self.import_directives.alloc(import_directive)
1248     }
1249     fn alloc_name_resolution(&'a self) -> &'a RefCell<NameResolution<'a>> {
1250         self.name_resolutions.alloc(Default::default())
1251     }
1252     fn alloc_invocation_data(&'a self, expansion_data: InvocationData<'a>)
1253                              -> &'a InvocationData<'a> {
1254         self.invocation_data.alloc(expansion_data)
1255     }
1256     fn alloc_legacy_binding(&'a self, binding: LegacyBinding<'a>) -> &'a LegacyBinding<'a> {
1257         self.legacy_bindings.alloc(binding)
1258     }
1259 }
1260
1261 impl<'a, 'b: 'a> ty::DefIdTree for &'a Resolver<'b> {
1262     fn parent(self, id: DefId) -> Option<DefId> {
1263         match id.krate {
1264             LOCAL_CRATE => self.definitions.def_key(id.index).parent,
1265             _ => self.session.cstore.def_key(id).parent,
1266         }.map(|index| DefId { index: index, ..id })
1267     }
1268 }
1269
1270 impl<'a> hir::lowering::Resolver for Resolver<'a> {
1271     fn resolve_hir_path(&mut self, path: &mut hir::Path, is_value: bool) {
1272         let namespace = if is_value { ValueNS } else { TypeNS };
1273         let hir::Path { ref segments, span, ref mut def } = *path;
1274         let path: Vec<_> = segments.iter().map(|seg| Ident::with_empty_ctxt(seg.name)).collect();
1275         match self.resolve_path(&path, Some(namespace), true, span) {
1276             PathResult::Module(module) => *def = module.def().unwrap(),
1277             PathResult::NonModule(path_res) if path_res.unresolved_segments() == 0 =>
1278                 *def = path_res.base_def(),
1279             PathResult::NonModule(..) => match self.resolve_path(&path, None, true, span) {
1280                 PathResult::Failed(msg, _) => {
1281                     resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
1282                 }
1283                 _ => {}
1284             },
1285             PathResult::Indeterminate => unreachable!(),
1286             PathResult::Failed(msg, _) => {
1287                 resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
1288             }
1289         }
1290     }
1291
1292     fn get_resolution(&mut self, id: NodeId) -> Option<PathResolution> {
1293         self.def_map.get(&id).cloned()
1294     }
1295
1296     fn definitions(&mut self) -> &mut Definitions {
1297         &mut self.definitions
1298     }
1299 }
1300
1301 impl<'a> Resolver<'a> {
1302     pub fn new(session: &'a Session,
1303                krate: &Crate,
1304                crate_name: &str,
1305                make_glob_map: MakeGlobMap,
1306                crate_loader: &'a mut CrateLoader,
1307                arenas: &'a ResolverArenas<'a>)
1308                -> Resolver<'a> {
1309         let root_def_id = DefId::local(CRATE_DEF_INDEX);
1310         let root_module_kind = ModuleKind::Def(Def::Mod(root_def_id), keywords::Invalid.name());
1311         let graph_root = arenas.alloc_module(ModuleData {
1312             no_implicit_prelude: attr::contains_name(&krate.attrs, "no_implicit_prelude"),
1313             ..ModuleData::new(None, root_module_kind, root_def_id, krate.span)
1314         });
1315         let mut module_map = FxHashMap();
1316         module_map.insert(DefId::local(CRATE_DEF_INDEX), graph_root);
1317
1318         let mut definitions = Definitions::new();
1319         DefCollector::new(&mut definitions)
1320             .collect_root(crate_name, &session.local_crate_disambiguator().as_str());
1321
1322         let mut invocations = FxHashMap();
1323         invocations.insert(Mark::root(),
1324                            arenas.alloc_invocation_data(InvocationData::root(graph_root)));
1325
1326         let features = session.features.borrow();
1327
1328         let mut macro_defs = FxHashMap();
1329         macro_defs.insert(Mark::root(), root_def_id);
1330
1331         Resolver {
1332             session: session,
1333
1334             definitions: definitions,
1335
1336             // The outermost module has def ID 0; this is not reflected in the
1337             // AST.
1338             graph_root: graph_root,
1339             prelude: None,
1340
1341             has_self: FxHashSet(),
1342             field_names: FxHashMap(),
1343
1344             determined_imports: Vec::new(),
1345             indeterminate_imports: Vec::new(),
1346
1347             current_module: graph_root,
1348             ribs: PerNS {
1349                 value_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1350                 type_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1351                 macro_ns: Some(vec![Rib::new(ModuleRibKind(graph_root))]),
1352             },
1353             label_ribs: Vec::new(),
1354
1355             current_trait_ref: None,
1356             current_self_type: None,
1357
1358             primitive_type_table: PrimitiveTypeTable::new(),
1359
1360             def_map: NodeMap(),
1361             freevars: NodeMap(),
1362             freevars_seen: NodeMap(),
1363             export_map: NodeMap(),
1364             trait_map: NodeMap(),
1365             module_map: module_map,
1366             block_map: NodeMap(),
1367             extern_crate_roots: FxHashMap(),
1368
1369             make_glob_map: make_glob_map == MakeGlobMap::Yes,
1370             glob_map: NodeMap(),
1371
1372             used_imports: FxHashSet(),
1373             maybe_unused_trait_imports: NodeSet(),
1374
1375             privacy_errors: Vec::new(),
1376             ambiguity_errors: Vec::new(),
1377             gated_errors: FxHashSet(),
1378             disallowed_shadowing: Vec::new(),
1379
1380             arenas: arenas,
1381             dummy_binding: arenas.alloc_name_binding(NameBinding {
1382                 kind: NameBindingKind::Def(Def::Err),
1383                 expansion: Mark::root(),
1384                 span: DUMMY_SP,
1385                 vis: ty::Visibility::Public,
1386             }),
1387
1388             // The `proc_macro` and `decl_macro` features imply `use_extern_macros`
1389             use_extern_macros:
1390                 features.use_extern_macros || features.proc_macro || features.decl_macro,
1391
1392             crate_loader: crate_loader,
1393             macro_names: FxHashSet(),
1394             global_macros: FxHashMap(),
1395             lexical_macro_resolutions: Vec::new(),
1396             macro_map: FxHashMap(),
1397             macro_exports: Vec::new(),
1398             invocations: invocations,
1399             macro_defs: macro_defs,
1400             local_macro_def_scopes: FxHashMap(),
1401             name_already_seen: FxHashMap(),
1402             whitelisted_legacy_custom_derives: Vec::new(),
1403             proc_macro_enabled: features.proc_macro,
1404             warned_proc_macros: FxHashSet(),
1405             potentially_unused_imports: Vec::new(),
1406             struct_constructors: DefIdMap(),
1407             found_unresolved_macro: false,
1408             unused_macros: FxHashSet(),
1409         }
1410     }
1411
1412     pub fn arenas() -> ResolverArenas<'a> {
1413         ResolverArenas {
1414             modules: arena::TypedArena::new(),
1415             local_modules: RefCell::new(Vec::new()),
1416             name_bindings: arena::TypedArena::new(),
1417             import_directives: arena::TypedArena::new(),
1418             name_resolutions: arena::TypedArena::new(),
1419             invocation_data: arena::TypedArena::new(),
1420             legacy_bindings: arena::TypedArena::new(),
1421         }
1422     }
1423
1424     fn per_ns<T, F: FnMut(&mut Self, Namespace) -> T>(&mut self, mut f: F) -> PerNS<T> {
1425         PerNS {
1426             type_ns: f(self, TypeNS),
1427             value_ns: f(self, ValueNS),
1428             macro_ns: match self.use_extern_macros {
1429                 true => Some(f(self, MacroNS)),
1430                 false => None,
1431             },
1432         }
1433     }
1434
1435     /// Entry point to crate resolution.
1436     pub fn resolve_crate(&mut self, krate: &Crate) {
1437         ImportResolver { resolver: self }.finalize_imports();
1438         self.current_module = self.graph_root;
1439         self.finalize_current_module_macro_resolutions();
1440         visit::walk_crate(self, krate);
1441
1442         check_unused::check_crate(self, krate);
1443         self.report_errors();
1444         self.crate_loader.postprocess(krate);
1445     }
1446
1447     fn new_module(
1448         &self,
1449         parent: Module<'a>,
1450         kind: ModuleKind,
1451         normal_ancestor_id: DefId,
1452         span: Span,
1453     ) -> Module<'a> {
1454         self.arenas.alloc_module(ModuleData::new(Some(parent), kind, normal_ancestor_id, span))
1455     }
1456
1457     fn record_use(&mut self, ident: Ident, ns: Namespace, binding: &'a NameBinding<'a>, span: Span)
1458                   -> bool /* true if an error was reported */ {
1459         match binding.kind {
1460             NameBindingKind::Import { directive, binding, ref used, legacy_self_import }
1461                     if !used.get() => {
1462                 used.set(true);
1463                 directive.used.set(true);
1464                 if legacy_self_import {
1465                     self.warn_legacy_self_import(directive);
1466                     return false;
1467                 }
1468                 self.used_imports.insert((directive.id, ns));
1469                 self.add_to_glob_map(directive.id, ident);
1470                 self.record_use(ident, ns, binding, span)
1471             }
1472             NameBindingKind::Import { .. } => false,
1473             NameBindingKind::Ambiguity { b1, b2, legacy } => {
1474                 self.ambiguity_errors.push(AmbiguityError {
1475                     span: span, name: ident.name, lexical: false, b1: b1, b2: b2, legacy: legacy,
1476                 });
1477                 if legacy {
1478                     self.record_use(ident, ns, b1, span);
1479                 }
1480                 !legacy
1481             }
1482             _ => false
1483         }
1484     }
1485
1486     fn add_to_glob_map(&mut self, id: NodeId, ident: Ident) {
1487         if self.make_glob_map {
1488             self.glob_map.entry(id).or_insert_with(FxHashSet).insert(ident.name);
1489         }
1490     }
1491
1492     /// This resolves the identifier `ident` in the namespace `ns` in the current lexical scope.
1493     /// More specifically, we proceed up the hierarchy of scopes and return the binding for
1494     /// `ident` in the first scope that defines it (or None if no scopes define it).
1495     ///
1496     /// A block's items are above its local variables in the scope hierarchy, regardless of where
1497     /// the items are defined in the block. For example,
1498     /// ```rust
1499     /// fn f() {
1500     ///    g(); // Since there are no local variables in scope yet, this resolves to the item.
1501     ///    let g = || {};
1502     ///    fn g() {}
1503     ///    g(); // This resolves to the local variable `g` since it shadows the item.
1504     /// }
1505     /// ```
1506     ///
1507     /// Invariant: This must only be called during main resolution, not during
1508     /// import resolution.
1509     fn resolve_ident_in_lexical_scope(&mut self,
1510                                       mut ident: Ident,
1511                                       ns: Namespace,
1512                                       record_used: bool,
1513                                       path_span: Span)
1514                                       -> Option<LexicalScopeBinding<'a>> {
1515         if ns == TypeNS {
1516             ident = ident.unhygienize();
1517         }
1518
1519         // Walk backwards up the ribs in scope.
1520         for i in (0 .. self.ribs[ns].len()).rev() {
1521             if let Some(def) = self.ribs[ns][i].bindings.get(&ident).cloned() {
1522                 // The ident resolves to a type parameter or local variable.
1523                 return Some(LexicalScopeBinding::Def(
1524                     self.adjust_local_def(ns, i, def, record_used, path_span)
1525                 ));
1526             }
1527
1528             if let ModuleRibKind(module) = self.ribs[ns][i].kind {
1529                 let item = self.resolve_ident_in_module(module, ident, ns, false,
1530                                                         record_used, path_span);
1531                 if let Ok(binding) = item {
1532                     // The ident resolves to an item.
1533                     return Some(LexicalScopeBinding::Item(binding));
1534                 }
1535
1536                 if let ModuleKind::Block(..) = module.kind { // We can see through blocks
1537                 } else if !module.no_implicit_prelude {
1538                     return self.prelude.and_then(|prelude| {
1539                         self.resolve_ident_in_module(prelude, ident, ns, false,
1540                                                      false, path_span).ok()
1541                     }).map(LexicalScopeBinding::Item)
1542                 } else {
1543                     return None;
1544                 }
1545             }
1546
1547             if let MacroDefinition(def) = self.ribs[ns][i].kind {
1548                 // If an invocation of this macro created `ident`, give up on `ident`
1549                 // and switch to `ident`'s source from the macro definition.
1550                 let ctxt_data = ident.ctxt.data();
1551                 if def == self.macro_defs[&ctxt_data.outer_mark] {
1552                     ident.ctxt = ctxt_data.prev_ctxt;
1553                 }
1554             }
1555         }
1556
1557         None
1558     }
1559
1560     fn resolve_crate_var(&mut self, crate_var_ctxt: SyntaxContext, span: Span) -> Module<'a> {
1561         let mut ctxt_data = crate_var_ctxt.data();
1562         while ctxt_data.prev_ctxt != SyntaxContext::empty() {
1563             ctxt_data = ctxt_data.prev_ctxt.data();
1564         }
1565         let module = self.macro_def_scope(ctxt_data.outer_mark, span);
1566         if module.is_local() { self.graph_root } else { module }
1567     }
1568
1569     // AST resolution
1570     //
1571     // We maintain a list of value ribs and type ribs.
1572     //
1573     // Simultaneously, we keep track of the current position in the module
1574     // graph in the `current_module` pointer. When we go to resolve a name in
1575     // the value or type namespaces, we first look through all the ribs and
1576     // then query the module graph. When we resolve a name in the module
1577     // namespace, we can skip all the ribs (since nested modules are not
1578     // allowed within blocks in Rust) and jump straight to the current module
1579     // graph node.
1580     //
1581     // Named implementations are handled separately. When we find a method
1582     // call, we consult the module node to find all of the implementations in
1583     // scope. This information is lazily cached in the module node. We then
1584     // generate a fake "implementation scope" containing all the
1585     // implementations thus found, for compatibility with old resolve pass.
1586
1587     fn with_scope<F>(&mut self, id: NodeId, f: F)
1588         where F: FnOnce(&mut Resolver)
1589     {
1590         let id = self.definitions.local_def_id(id);
1591         let module = self.module_map.get(&id).cloned(); // clones a reference
1592         if let Some(module) = module {
1593             // Move down in the graph.
1594             let orig_module = replace(&mut self.current_module, module);
1595             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(module)));
1596             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(module)));
1597
1598             self.finalize_current_module_macro_resolutions();
1599             f(self);
1600
1601             self.current_module = orig_module;
1602             self.ribs[ValueNS].pop();
1603             self.ribs[TypeNS].pop();
1604         } else {
1605             f(self);
1606         }
1607     }
1608
1609     /// Searches the current set of local scopes for labels.
1610     /// Stops after meeting a closure.
1611     fn search_label(&self, mut ident: Ident) -> Option<Def> {
1612         for rib in self.label_ribs.iter().rev() {
1613             match rib.kind {
1614                 NormalRibKind => {
1615                     // Continue
1616                 }
1617                 MacroDefinition(def) => {
1618                     // If an invocation of this macro created `ident`, give up on `ident`
1619                     // and switch to `ident`'s source from the macro definition.
1620                     let ctxt_data = ident.ctxt.data();
1621                     if def == self.macro_defs[&ctxt_data.outer_mark] {
1622                         ident.ctxt = ctxt_data.prev_ctxt;
1623                     }
1624                 }
1625                 _ => {
1626                     // Do not resolve labels across function boundary
1627                     return None;
1628                 }
1629             }
1630             let result = rib.bindings.get(&ident).cloned();
1631             if result.is_some() {
1632                 return result;
1633             }
1634         }
1635         None
1636     }
1637
1638     fn resolve_item(&mut self, item: &Item) {
1639         let name = item.ident.name;
1640
1641         debug!("(resolving item) resolving {}", name);
1642
1643         self.check_proc_macro_attrs(&item.attrs);
1644
1645         match item.node {
1646             ItemKind::Enum(_, ref generics) |
1647             ItemKind::Ty(_, ref generics) |
1648             ItemKind::Struct(_, ref generics) |
1649             ItemKind::Union(_, ref generics) |
1650             ItemKind::Fn(.., ref generics, _) => {
1651                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind),
1652                                              |this| visit::walk_item(this, item));
1653             }
1654
1655             ItemKind::DefaultImpl(_, ref trait_ref) => {
1656                 self.with_optional_trait_ref(Some(trait_ref), |this, _| {
1657                     // Resolve type arguments in trait path
1658                     visit::walk_trait_ref(this, trait_ref);
1659                 });
1660             }
1661             ItemKind::Impl(.., ref generics, ref opt_trait_ref, ref self_type, ref impl_items) =>
1662                 self.resolve_implementation(generics,
1663                                             opt_trait_ref,
1664                                             &self_type,
1665                                             item.id,
1666                                             impl_items),
1667
1668             ItemKind::Trait(_, ref generics, ref bounds, ref trait_items) => {
1669                 // Create a new rib for the trait-wide type parameters.
1670                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
1671                     let local_def_id = this.definitions.local_def_id(item.id);
1672                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
1673                         this.visit_generics(generics);
1674                         walk_list!(this, visit_ty_param_bound, bounds);
1675
1676                         for trait_item in trait_items {
1677                             this.check_proc_macro_attrs(&trait_item.attrs);
1678
1679                             match trait_item.node {
1680                                 TraitItemKind::Const(ref ty, ref default) => {
1681                                     this.visit_ty(ty);
1682
1683                                     // Only impose the restrictions of
1684                                     // ConstRibKind for an actual constant
1685                                     // expression in a provided default.
1686                                     if let Some(ref expr) = *default{
1687                                         this.with_constant_rib(|this| {
1688                                             this.visit_expr(expr);
1689                                         });
1690                                     }
1691                                 }
1692                                 TraitItemKind::Method(ref sig, _) => {
1693                                     let type_parameters =
1694                                         HasTypeParameters(&sig.generics,
1695                                                           MethodRibKind(!sig.decl.has_self()));
1696                                     this.with_type_parameter_rib(type_parameters, |this| {
1697                                         visit::walk_trait_item(this, trait_item)
1698                                     });
1699                                 }
1700                                 TraitItemKind::Type(..) => {
1701                                     this.with_type_parameter_rib(NoTypeParameters, |this| {
1702                                         visit::walk_trait_item(this, trait_item)
1703                                     });
1704                                 }
1705                                 TraitItemKind::Macro(_) => panic!("unexpanded macro in resolve!"),
1706                             };
1707                         }
1708                     });
1709                 });
1710             }
1711
1712             ItemKind::Mod(_) | ItemKind::ForeignMod(_) => {
1713                 self.with_scope(item.id, |this| {
1714                     visit::walk_item(this, item);
1715                 });
1716             }
1717
1718             ItemKind::Static(ref ty, _, ref expr) |
1719             ItemKind::Const(ref ty, ref expr) => {
1720                 self.with_item_rib(|this| {
1721                     this.visit_ty(ty);
1722                     this.with_constant_rib(|this| {
1723                         this.visit_expr(expr);
1724                     });
1725                 });
1726             }
1727
1728             ItemKind::Use(ref view_path) => {
1729                 match view_path.node {
1730                     ast::ViewPathList(ref prefix, ref items) if items.is_empty() => {
1731                         // Resolve prefix of an import with empty braces (issue #28388).
1732                         self.smart_resolve_path(item.id, None, prefix, PathSource::ImportPrefix);
1733                     }
1734                     _ => {}
1735                 }
1736             }
1737
1738             ItemKind::ExternCrate(_) | ItemKind::MacroDef(..) | ItemKind::GlobalAsm(_)=> {
1739                 // do nothing, these are just around to be encoded
1740             }
1741
1742             ItemKind::Mac(_) => panic!("unexpanded macro in resolve!"),
1743         }
1744     }
1745
1746     fn with_type_parameter_rib<'b, F>(&'b mut self, type_parameters: TypeParameters<'a, 'b>, f: F)
1747         where F: FnOnce(&mut Resolver)
1748     {
1749         match type_parameters {
1750             HasTypeParameters(generics, rib_kind) => {
1751                 let mut function_type_rib = Rib::new(rib_kind);
1752                 let mut seen_bindings = FxHashMap();
1753                 for type_parameter in &generics.ty_params {
1754                     let ident = type_parameter.ident.unhygienize();
1755                     debug!("with_type_parameter_rib: {}", type_parameter.id);
1756
1757                     if seen_bindings.contains_key(&ident) {
1758                         let span = seen_bindings.get(&ident).unwrap();
1759                         let err =
1760                             ResolutionError::NameAlreadyUsedInTypeParameterList(ident.name, span);
1761                         resolve_error(self, type_parameter.span, err);
1762                     }
1763                     seen_bindings.entry(ident).or_insert(type_parameter.span);
1764
1765                     // plain insert (no renaming)
1766                     let def_id = self.definitions.local_def_id(type_parameter.id);
1767                     let def = Def::TyParam(def_id);
1768                     function_type_rib.bindings.insert(ident, def);
1769                     self.record_def(type_parameter.id, PathResolution::new(def));
1770                 }
1771                 self.ribs[TypeNS].push(function_type_rib);
1772             }
1773
1774             NoTypeParameters => {
1775                 // Nothing to do.
1776             }
1777         }
1778
1779         f(self);
1780
1781         if let HasTypeParameters(..) = type_parameters {
1782             self.ribs[TypeNS].pop();
1783         }
1784     }
1785
1786     fn with_label_rib<F>(&mut self, f: F)
1787         where F: FnOnce(&mut Resolver)
1788     {
1789         self.label_ribs.push(Rib::new(NormalRibKind));
1790         f(self);
1791         self.label_ribs.pop();
1792     }
1793
1794     fn with_item_rib<F>(&mut self, f: F)
1795         where F: FnOnce(&mut Resolver)
1796     {
1797         self.ribs[ValueNS].push(Rib::new(ItemRibKind));
1798         self.ribs[TypeNS].push(Rib::new(ItemRibKind));
1799         f(self);
1800         self.ribs[TypeNS].pop();
1801         self.ribs[ValueNS].pop();
1802     }
1803
1804     fn with_constant_rib<F>(&mut self, f: F)
1805         where F: FnOnce(&mut Resolver)
1806     {
1807         self.ribs[ValueNS].push(Rib::new(ConstantItemRibKind));
1808         f(self);
1809         self.ribs[ValueNS].pop();
1810     }
1811
1812     fn with_current_self_type<T, F>(&mut self, self_type: &Ty, f: F) -> T
1813         where F: FnOnce(&mut Resolver) -> T
1814     {
1815         // Handle nested impls (inside fn bodies)
1816         let previous_value = replace(&mut self.current_self_type, Some(self_type.clone()));
1817         let result = f(self);
1818         self.current_self_type = previous_value;
1819         result
1820     }
1821
1822     fn with_optional_trait_ref<T, F>(&mut self, opt_trait_ref: Option<&TraitRef>, f: F) -> T
1823         where F: FnOnce(&mut Resolver, Option<DefId>) -> T
1824     {
1825         let mut new_val = None;
1826         let mut new_id = None;
1827         if let Some(trait_ref) = opt_trait_ref {
1828             let path: Vec<_> = trait_ref.path.segments.iter().map(|seg| seg.identifier).collect();
1829             let def = self.smart_resolve_path_fragment(trait_ref.ref_id,
1830                                                        None,
1831                                                        &path,
1832                                                        trait_ref.path.span,
1833                                                        trait_ref.path.segments.last().unwrap().span,
1834                                                        PathSource::Trait)
1835                 .base_def();
1836             if def != Def::Err {
1837                 new_id = Some(def.def_id());
1838                 let span = trait_ref.path.span;
1839                 if let PathResult::Module(module) = self.resolve_path(&path, None, false, span) {
1840                     new_val = Some((module, trait_ref.clone()));
1841                 }
1842             }
1843         }
1844         let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
1845         let result = f(self, new_id);
1846         self.current_trait_ref = original_trait_ref;
1847         result
1848     }
1849
1850     fn with_self_rib<F>(&mut self, self_def: Def, f: F)
1851         where F: FnOnce(&mut Resolver)
1852     {
1853         let mut self_type_rib = Rib::new(NormalRibKind);
1854
1855         // plain insert (no renaming, types are not currently hygienic....)
1856         self_type_rib.bindings.insert(keywords::SelfType.ident(), self_def);
1857         self.ribs[TypeNS].push(self_type_rib);
1858         f(self);
1859         self.ribs[TypeNS].pop();
1860     }
1861
1862     fn resolve_implementation(&mut self,
1863                               generics: &Generics,
1864                               opt_trait_reference: &Option<TraitRef>,
1865                               self_type: &Ty,
1866                               item_id: NodeId,
1867                               impl_items: &[ImplItem]) {
1868         // If applicable, create a rib for the type parameters.
1869         self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
1870             // Dummy self type for better errors if `Self` is used in the trait path.
1871             this.with_self_rib(Def::SelfTy(None, None), |this| {
1872                 // Resolve the trait reference, if necessary.
1873                 this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| {
1874                     let item_def_id = this.definitions.local_def_id(item_id);
1875                     this.with_self_rib(Def::SelfTy(trait_id, Some(item_def_id)), |this| {
1876                         if let Some(trait_ref) = opt_trait_reference.as_ref() {
1877                             // Resolve type arguments in trait path
1878                             visit::walk_trait_ref(this, trait_ref);
1879                         }
1880                         // Resolve the self type.
1881                         this.visit_ty(self_type);
1882                         // Resolve the type parameters.
1883                         this.visit_generics(generics);
1884                         this.with_current_self_type(self_type, |this| {
1885                             for impl_item in impl_items {
1886                                 this.check_proc_macro_attrs(&impl_item.attrs);
1887                                 this.resolve_visibility(&impl_item.vis);
1888                                 match impl_item.node {
1889                                     ImplItemKind::Const(..) => {
1890                                         // If this is a trait impl, ensure the const
1891                                         // exists in trait
1892                                         this.check_trait_item(impl_item.ident,
1893                                                             ValueNS,
1894                                                             impl_item.span,
1895                                             |n, s| ResolutionError::ConstNotMemberOfTrait(n, s));
1896                                         visit::walk_impl_item(this, impl_item);
1897                                     }
1898                                     ImplItemKind::Method(ref sig, _) => {
1899                                         // If this is a trait impl, ensure the method
1900                                         // exists in trait
1901                                         this.check_trait_item(impl_item.ident,
1902                                                             ValueNS,
1903                                                             impl_item.span,
1904                                             |n, s| ResolutionError::MethodNotMemberOfTrait(n, s));
1905
1906                                         // We also need a new scope for the method-
1907                                         // specific type parameters.
1908                                         let type_parameters =
1909                                             HasTypeParameters(&sig.generics,
1910                                                             MethodRibKind(!sig.decl.has_self()));
1911                                         this.with_type_parameter_rib(type_parameters, |this| {
1912                                             visit::walk_impl_item(this, impl_item);
1913                                         });
1914                                     }
1915                                     ImplItemKind::Type(ref ty) => {
1916                                         // If this is a trait impl, ensure the type
1917                                         // exists in trait
1918                                         this.check_trait_item(impl_item.ident,
1919                                                             TypeNS,
1920                                                             impl_item.span,
1921                                             |n, s| ResolutionError::TypeNotMemberOfTrait(n, s));
1922
1923                                         this.visit_ty(ty);
1924                                     }
1925                                     ImplItemKind::Macro(_) =>
1926                                         panic!("unexpanded macro in resolve!"),
1927                                 }
1928                             }
1929                         });
1930                     });
1931                 });
1932             });
1933         });
1934     }
1935
1936     fn check_trait_item<F>(&mut self, ident: Ident, ns: Namespace, span: Span, err: F)
1937         where F: FnOnce(Name, &str) -> ResolutionError
1938     {
1939         // If there is a TraitRef in scope for an impl, then the method must be in the
1940         // trait.
1941         if let Some((module, _)) = self.current_trait_ref {
1942             if self.resolve_ident_in_module(module, ident, ns, false, false, span).is_err() {
1943                 let path = &self.current_trait_ref.as_ref().unwrap().1.path;
1944                 resolve_error(self, span, err(ident.name, &path_names_to_string(path)));
1945             }
1946         }
1947     }
1948
1949     fn resolve_local(&mut self, local: &Local) {
1950         // Resolve the type.
1951         walk_list!(self, visit_ty, &local.ty);
1952
1953         // Resolve the initializer.
1954         walk_list!(self, visit_expr, &local.init);
1955
1956         // Resolve the pattern.
1957         self.resolve_pattern(&local.pat, PatternSource::Let, &mut FxHashMap());
1958     }
1959
1960     // build a map from pattern identifiers to binding-info's.
1961     // this is done hygienically. This could arise for a macro
1962     // that expands into an or-pattern where one 'x' was from the
1963     // user and one 'x' came from the macro.
1964     fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
1965         let mut binding_map = FxHashMap();
1966
1967         pat.walk(&mut |pat| {
1968             if let PatKind::Ident(binding_mode, ident, ref sub_pat) = pat.node {
1969                 if sub_pat.is_some() || match self.def_map.get(&pat.id).map(|res| res.base_def()) {
1970                     Some(Def::Local(..)) => true,
1971                     _ => false,
1972                 } {
1973                     let binding_info = BindingInfo { span: ident.span, binding_mode: binding_mode };
1974                     binding_map.insert(ident.node, binding_info);
1975                 }
1976             }
1977             true
1978         });
1979
1980         binding_map
1981     }
1982
1983     // check that all of the arms in an or-pattern have exactly the
1984     // same set of bindings, with the same binding modes for each.
1985     fn check_consistent_bindings(&mut self, arm: &Arm) {
1986         if arm.pats.is_empty() {
1987             return;
1988         }
1989
1990         let mut missing_vars = FxHashMap();
1991         let mut inconsistent_vars = FxHashMap();
1992         for (i, p) in arm.pats.iter().enumerate() {
1993             let map_i = self.binding_mode_map(&p);
1994
1995             for (j, q) in arm.pats.iter().enumerate() {
1996                 if i == j {
1997                     continue;
1998                 }
1999
2000                 let map_j = self.binding_mode_map(&q);
2001                 for (&key, &binding_i) in &map_i {
2002                     if map_j.len() == 0 {                   // Account for missing bindings when
2003                         let binding_error = missing_vars    // map_j has none.
2004                             .entry(key.name)
2005                             .or_insert(BindingError {
2006                                 name: key.name,
2007                                 origin: BTreeSet::new(),
2008                                 target: BTreeSet::new(),
2009                             });
2010                         binding_error.origin.insert(binding_i.span);
2011                         binding_error.target.insert(q.span);
2012                     }
2013                     for (&key_j, &binding_j) in &map_j {
2014                         match map_i.get(&key_j) {
2015                             None => {  // missing binding
2016                                 let binding_error = missing_vars
2017                                     .entry(key_j.name)
2018                                     .or_insert(BindingError {
2019                                         name: key_j.name,
2020                                         origin: BTreeSet::new(),
2021                                         target: BTreeSet::new(),
2022                                     });
2023                                 binding_error.origin.insert(binding_j.span);
2024                                 binding_error.target.insert(p.span);
2025                             }
2026                             Some(binding_i) => {  // check consistent binding
2027                                 if binding_i.binding_mode != binding_j.binding_mode {
2028                                     inconsistent_vars
2029                                         .entry(key.name)
2030                                         .or_insert((binding_j.span, binding_i.span));
2031                                 }
2032                             }
2033                         }
2034                     }
2035                 }
2036             }
2037         }
2038         let mut missing_vars = missing_vars.iter().collect::<Vec<_>>();
2039         missing_vars.sort();
2040         for (_, v) in missing_vars {
2041             resolve_error(self,
2042                           *v.origin.iter().next().unwrap(),
2043                           ResolutionError::VariableNotBoundInPattern(v));
2044         }
2045         let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
2046         inconsistent_vars.sort();
2047         for (name, v) in inconsistent_vars {
2048             resolve_error(self, v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
2049         }
2050     }
2051
2052     fn resolve_arm(&mut self, arm: &Arm) {
2053         self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2054
2055         let mut bindings_list = FxHashMap();
2056         for pattern in &arm.pats {
2057             self.resolve_pattern(&pattern, PatternSource::Match, &mut bindings_list);
2058         }
2059
2060         // This has to happen *after* we determine which
2061         // pat_idents are variants
2062         self.check_consistent_bindings(arm);
2063
2064         walk_list!(self, visit_expr, &arm.guard);
2065         self.visit_expr(&arm.body);
2066
2067         self.ribs[ValueNS].pop();
2068     }
2069
2070     fn resolve_block(&mut self, block: &Block) {
2071         debug!("(resolving block) entering block");
2072         // Move down in the graph, if there's an anonymous module rooted here.
2073         let orig_module = self.current_module;
2074         let anonymous_module = self.block_map.get(&block.id).cloned(); // clones a reference
2075
2076         let mut num_macro_definition_ribs = 0;
2077         if let Some(anonymous_module) = anonymous_module {
2078             debug!("(resolving block) found anonymous module, moving down");
2079             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2080             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2081             self.current_module = anonymous_module;
2082             self.finalize_current_module_macro_resolutions();
2083         } else {
2084             self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2085         }
2086
2087         // Descend into the block.
2088         for stmt in &block.stmts {
2089             if let ast::StmtKind::Item(ref item) = stmt.node {
2090                 if let ast::ItemKind::MacroDef(..) = item.node {
2091                     num_macro_definition_ribs += 1;
2092                     let def = self.definitions.local_def_id(item.id);
2093                     self.ribs[ValueNS].push(Rib::new(MacroDefinition(def)));
2094                     self.label_ribs.push(Rib::new(MacroDefinition(def)));
2095                 }
2096             }
2097
2098             self.visit_stmt(stmt);
2099         }
2100
2101         // Move back up.
2102         self.current_module = orig_module;
2103         for _ in 0 .. num_macro_definition_ribs {
2104             self.ribs[ValueNS].pop();
2105             self.label_ribs.pop();
2106         }
2107         self.ribs[ValueNS].pop();
2108         if let Some(_) = anonymous_module {
2109             self.ribs[TypeNS].pop();
2110         }
2111         debug!("(resolving block) leaving block");
2112     }
2113
2114     fn fresh_binding(&mut self,
2115                      ident: &SpannedIdent,
2116                      pat_id: NodeId,
2117                      outer_pat_id: NodeId,
2118                      pat_src: PatternSource,
2119                      bindings: &mut FxHashMap<Ident, NodeId>)
2120                      -> PathResolution {
2121         // Add the binding to the local ribs, if it
2122         // doesn't already exist in the bindings map. (We
2123         // must not add it if it's in the bindings map
2124         // because that breaks the assumptions later
2125         // passes make about or-patterns.)
2126         let mut def = Def::Local(self.definitions.local_def_id(pat_id));
2127         match bindings.get(&ident.node).cloned() {
2128             Some(id) if id == outer_pat_id => {
2129                 // `Variant(a, a)`, error
2130                 resolve_error(
2131                     self,
2132                     ident.span,
2133                     ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(
2134                         &ident.node.name.as_str())
2135                 );
2136             }
2137             Some(..) if pat_src == PatternSource::FnParam => {
2138                 // `fn f(a: u8, a: u8)`, error
2139                 resolve_error(
2140                     self,
2141                     ident.span,
2142                     ResolutionError::IdentifierBoundMoreThanOnceInParameterList(
2143                         &ident.node.name.as_str())
2144                 );
2145             }
2146             Some(..) if pat_src == PatternSource::Match => {
2147                 // `Variant1(a) | Variant2(a)`, ok
2148                 // Reuse definition from the first `a`.
2149                 def = self.ribs[ValueNS].last_mut().unwrap().bindings[&ident.node];
2150             }
2151             Some(..) => {
2152                 span_bug!(ident.span, "two bindings with the same name from \
2153                                        unexpected pattern source {:?}", pat_src);
2154             }
2155             None => {
2156                 // A completely fresh binding, add to the lists if it's valid.
2157                 if ident.node.name != keywords::Invalid.name() {
2158                     bindings.insert(ident.node, outer_pat_id);
2159                     self.ribs[ValueNS].last_mut().unwrap().bindings.insert(ident.node, def);
2160                 }
2161             }
2162         }
2163
2164         PathResolution::new(def)
2165     }
2166
2167     fn resolve_pattern(&mut self,
2168                        pat: &Pat,
2169                        pat_src: PatternSource,
2170                        // Maps idents to the node ID for the
2171                        // outermost pattern that binds them.
2172                        bindings: &mut FxHashMap<Ident, NodeId>) {
2173         // Visit all direct subpatterns of this pattern.
2174         let outer_pat_id = pat.id;
2175         pat.walk(&mut |pat| {
2176             match pat.node {
2177                 PatKind::Ident(bmode, ref ident, ref opt_pat) => {
2178                     // First try to resolve the identifier as some existing
2179                     // entity, then fall back to a fresh binding.
2180                     let binding = self.resolve_ident_in_lexical_scope(ident.node, ValueNS,
2181                                                                       false, pat.span)
2182                                       .and_then(LexicalScopeBinding::item);
2183                     let resolution = binding.map(NameBinding::def).and_then(|def| {
2184                         let always_binding = !pat_src.is_refutable() || opt_pat.is_some() ||
2185                                              bmode != BindingMode::ByValue(Mutability::Immutable);
2186                         match def {
2187                             Def::StructCtor(_, CtorKind::Const) |
2188                             Def::VariantCtor(_, CtorKind::Const) |
2189                             Def::Const(..) if !always_binding => {
2190                                 // A unit struct/variant or constant pattern.
2191                                 self.record_use(ident.node, ValueNS, binding.unwrap(), ident.span);
2192                                 Some(PathResolution::new(def))
2193                             }
2194                             Def::StructCtor(..) | Def::VariantCtor(..) |
2195                             Def::Const(..) | Def::Static(..) => {
2196                                 // A fresh binding that shadows something unacceptable.
2197                                 resolve_error(
2198                                     self,
2199                                     ident.span,
2200                                     ResolutionError::BindingShadowsSomethingUnacceptable(
2201                                         pat_src.descr(), ident.node.name, binding.unwrap())
2202                                 );
2203                                 None
2204                             }
2205                             Def::Local(..) | Def::Upvar(..) | Def::Fn(..) | Def::Err => {
2206                                 // These entities are explicitly allowed
2207                                 // to be shadowed by fresh bindings.
2208                                 None
2209                             }
2210                             def => {
2211                                 span_bug!(ident.span, "unexpected definition for an \
2212                                                        identifier in pattern: {:?}", def);
2213                             }
2214                         }
2215                     }).unwrap_or_else(|| {
2216                         self.fresh_binding(ident, pat.id, outer_pat_id, pat_src, bindings)
2217                     });
2218
2219                     self.record_def(pat.id, resolution);
2220                 }
2221
2222                 PatKind::TupleStruct(ref path, ..) => {
2223                     self.smart_resolve_path(pat.id, None, path, PathSource::TupleStruct);
2224                 }
2225
2226                 PatKind::Path(ref qself, ref path) => {
2227                     self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
2228                 }
2229
2230                 PatKind::Struct(ref path, ..) => {
2231                     self.smart_resolve_path(pat.id, None, path, PathSource::Struct);
2232                 }
2233
2234                 _ => {}
2235             }
2236             true
2237         });
2238
2239         visit::walk_pat(self, pat);
2240     }
2241
2242     // High-level and context dependent path resolution routine.
2243     // Resolves the path and records the resolution into definition map.
2244     // If resolution fails tries several techniques to find likely
2245     // resolution candidates, suggest imports or other help, and report
2246     // errors in user friendly way.
2247     fn smart_resolve_path(&mut self,
2248                           id: NodeId,
2249                           qself: Option<&QSelf>,
2250                           path: &Path,
2251                           source: PathSource)
2252                           -> PathResolution {
2253         let segments = &path.segments.iter().map(|seg| seg.identifier).collect::<Vec<_>>();
2254         let ident_span = path.segments.last().map_or(path.span, |seg| seg.span);
2255         self.smart_resolve_path_fragment(id, qself, segments, path.span, ident_span, source)
2256     }
2257
2258     fn smart_resolve_path_fragment(&mut self,
2259                                    id: NodeId,
2260                                    qself: Option<&QSelf>,
2261                                    path: &[Ident],
2262                                    span: Span,
2263                                    ident_span: Span,
2264                                    source: PathSource)
2265                                    -> PathResolution {
2266         let ns = source.namespace();
2267         let is_expected = &|def| source.is_expected(def);
2268         let is_enum_variant = &|def| if let Def::Variant(..) = def { true } else { false };
2269
2270         // Base error is amended with one short label and possibly some longer helps/notes.
2271         let report_errors = |this: &mut Self, def: Option<Def>| {
2272             // Make the base error.
2273             let expected = source.descr_expected();
2274             let path_str = names_to_string(path);
2275             let code = source.error_code(def.is_some());
2276             let (base_msg, fallback_label, base_span) = if let Some(def) = def {
2277                 (format!("expected {}, found {} `{}`", expected, def.kind_name(), path_str),
2278                  format!("not a {}", expected), span)
2279             } else {
2280                 let item_str = path[path.len() - 1];
2281                 let (mod_prefix, mod_str) = if path.len() == 1 {
2282                     (format!(""), format!("this scope"))
2283                 } else if path.len() == 2 && path[0].name == keywords::CrateRoot.name() {
2284                     (format!(""), format!("the crate root"))
2285                 } else {
2286                     let mod_path = &path[..path.len() - 1];
2287                     let mod_prefix = match this.resolve_path(mod_path, Some(TypeNS), false, span) {
2288                         PathResult::Module(module) => module.def(),
2289                         _ => None,
2290                     }.map_or(format!(""), |def| format!("{} ", def.kind_name()));
2291                     (mod_prefix, format!("`{}`", names_to_string(mod_path)))
2292                 };
2293                 (format!("cannot find {} `{}` in {}{}", expected, item_str, mod_prefix, mod_str),
2294                  format!("not found in {}", mod_str), ident_span)
2295             };
2296             let mut err = this.session.struct_span_err_with_code(base_span, &base_msg, code);
2297
2298             // Emit special messages for unresolved `Self` and `self`.
2299             if is_self_type(path, ns) {
2300                 __diagnostic_used!(E0411);
2301                 err.code("E0411".into());
2302                 err.span_label(span, "`Self` is only available in traits and impls");
2303                 return err;
2304             }
2305             if is_self_value(path, ns) {
2306                 __diagnostic_used!(E0424);
2307                 err.code("E0424".into());
2308                 err.span_label(span, format!("`self` value is only available in \
2309                                                methods with `self` parameter"));
2310                 return err;
2311             }
2312
2313             // Try to lookup the name in more relaxed fashion for better error reporting.
2314             let ident = *path.last().unwrap();
2315             let candidates = this.lookup_import_candidates(ident.name, ns, is_expected);
2316             if !candidates.is_empty() {
2317                 let mut module_span = this.current_module.span;
2318                 module_span.hi = module_span.lo;
2319                 // Report import candidates as help and proceed searching for labels.
2320                 show_candidates(&mut err, module_span, &candidates, def.is_some());
2321             } else if is_expected(Def::Enum(DefId::local(CRATE_DEF_INDEX))) {
2322                 let enum_candidates =
2323                     this.lookup_import_candidates(ident.name, ns, is_enum_variant);
2324                 let mut enum_candidates = enum_candidates.iter()
2325                     .map(|suggestion| import_candidate_to_paths(&suggestion)).collect::<Vec<_>>();
2326                 enum_candidates.sort();
2327                 for (sp, variant_path, enum_path) in enum_candidates {
2328                     let msg = format!("there is an enum variant `{}`, did you mean to use `{}`?",
2329                                       variant_path,
2330                                       enum_path);
2331                     if sp == DUMMY_SP {
2332                         err.help(&msg);
2333                     } else {
2334                         err.span_help(sp, &msg);
2335                     }
2336                 }
2337             }
2338             if path.len() == 1 && this.self_type_is_available(span) {
2339                 if let Some(candidate) = this.lookup_assoc_candidate(ident, ns, is_expected) {
2340                     let self_is_available = this.self_value_is_available(path[0].ctxt, span);
2341                     match candidate {
2342                         AssocSuggestion::Field => {
2343                             err.span_label(span, format!("did you mean `self.{}`?", path_str));
2344                             if !self_is_available {
2345                                 err.span_label(span, format!("`self` value is only available in \
2346                                                                methods with `self` parameter"));
2347                             }
2348                         }
2349                         AssocSuggestion::MethodWithSelf if self_is_available => {
2350                             err.span_label(span, format!("did you mean `self.{}(...)`?",
2351                                                            path_str));
2352                         }
2353                         AssocSuggestion::MethodWithSelf | AssocSuggestion::AssocItem => {
2354                             err.span_label(span, format!("did you mean `Self::{}`?", path_str));
2355                         }
2356                     }
2357                     return err;
2358                 }
2359             }
2360
2361             let mut levenshtein_worked = false;
2362
2363             // Try Levenshtein.
2364             if let Some(candidate) = this.lookup_typo_candidate(path, ns, is_expected, span) {
2365                 err.span_label(ident_span, format!("did you mean `{}`?", candidate));
2366                 levenshtein_worked = true;
2367             }
2368
2369             // Try context dependent help if relaxed lookup didn't work.
2370             if let Some(def) = def {
2371                 match (def, source) {
2372                     (Def::Macro(..), _) => {
2373                         err.span_label(span, format!("did you mean `{}!(...)`?", path_str));
2374                         return err;
2375                     }
2376                     (Def::TyAlias(..), PathSource::Trait) => {
2377                         err.span_label(span, "type aliases cannot be used for traits");
2378                         return err;
2379                     }
2380                     (Def::Mod(..), PathSource::Expr(Some(parent))) => match parent.node {
2381                         ExprKind::Field(_, ident) => {
2382                             err.span_label(parent.span, format!("did you mean `{}::{}`?",
2383                                                                  path_str, ident.node));
2384                             return err;
2385                         }
2386                         ExprKind::MethodCall(ident, ..) => {
2387                             err.span_label(parent.span, format!("did you mean `{}::{}(...)`?",
2388                                                                  path_str, ident.node));
2389                             return err;
2390                         }
2391                         _ => {}
2392                     },
2393                     _ if ns == ValueNS && is_struct_like(def) => {
2394                         if let Def::Struct(def_id) = def {
2395                             if let Some((ctor_def, ctor_vis))
2396                                     = this.struct_constructors.get(&def_id).cloned() {
2397                                 if is_expected(ctor_def) && !this.is_accessible(ctor_vis) {
2398                                     err.span_label(span, format!("constructor is not visible \
2399                                                                    here due to private fields"));
2400                                 }
2401                             }
2402                         }
2403                         err.span_label(span, format!("did you mean `{} {{ /* fields */ }}`?",
2404                                                        path_str));
2405                         return err;
2406                     }
2407                     _ => {}
2408                 }
2409             }
2410
2411             // Fallback label.
2412             if !levenshtein_worked {
2413                 err.span_label(base_span, fallback_label);
2414             }
2415             err
2416         };
2417         let report_errors = |this: &mut Self, def: Option<Def>| {
2418             report_errors(this, def).emit();
2419             err_path_resolution()
2420         };
2421
2422         let resolution = match self.resolve_qpath_anywhere(id, qself, path, ns, span,
2423                                                            source.defer_to_typeck(),
2424                                                            source.global_by_default()) {
2425             Some(resolution) if resolution.unresolved_segments() == 0 => {
2426                 if is_expected(resolution.base_def()) || resolution.base_def() == Def::Err {
2427                     resolution
2428                 } else {
2429                     // Add a temporary hack to smooth the transition to new struct ctor
2430                     // visibility rules. See #38932 for more details.
2431                     let mut res = None;
2432                     if let Def::Struct(def_id) = resolution.base_def() {
2433                         if let Some((ctor_def, ctor_vis))
2434                                 = self.struct_constructors.get(&def_id).cloned() {
2435                             if is_expected(ctor_def) && self.is_accessible(ctor_vis) {
2436                                 let lint = lint::builtin::LEGACY_CONSTRUCTOR_VISIBILITY;
2437                                 self.session.add_lint(lint, id, span,
2438                                     "private struct constructors are not usable through \
2439                                      reexports in outer modules".to_string());
2440                                 res = Some(PathResolution::new(ctor_def));
2441                             }
2442                         }
2443                     }
2444
2445                     res.unwrap_or_else(|| report_errors(self, Some(resolution.base_def())))
2446                 }
2447             }
2448             Some(resolution) if source.defer_to_typeck() => {
2449                 // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
2450                 // or `<T>::A::B`. If `B` should be resolved in value namespace then
2451                 // it needs to be added to the trait map.
2452                 if ns == ValueNS {
2453                     let item_name = *path.last().unwrap();
2454                     let traits = self.get_traits_containing_item(item_name, ns);
2455                     self.trait_map.insert(id, traits);
2456                 }
2457                 resolution
2458             }
2459             _ => report_errors(self, None)
2460         };
2461
2462         if let PathSource::TraitItem(..) = source {} else {
2463             // Avoid recording definition of `A::B` in `<T as A>::B::C`.
2464             self.record_def(id, resolution);
2465         }
2466         resolution
2467     }
2468
2469     fn self_type_is_available(&mut self, span: Span) -> bool {
2470         let binding = self.resolve_ident_in_lexical_scope(keywords::SelfType.ident(),
2471                                                           TypeNS, false, span);
2472         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
2473     }
2474
2475     fn self_value_is_available(&mut self, ctxt: SyntaxContext, span: Span) -> bool {
2476         let ident = Ident { name: keywords::SelfValue.name(), ctxt: ctxt };
2477         let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, false, span);
2478         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
2479     }
2480
2481     // Resolve in alternative namespaces if resolution in the primary namespace fails.
2482     fn resolve_qpath_anywhere(&mut self,
2483                               id: NodeId,
2484                               qself: Option<&QSelf>,
2485                               path: &[Ident],
2486                               primary_ns: Namespace,
2487                               span: Span,
2488                               defer_to_typeck: bool,
2489                               global_by_default: bool)
2490                               -> Option<PathResolution> {
2491         let mut fin_res = None;
2492         // FIXME: can't resolve paths in macro namespace yet, macros are
2493         // processed by the little special hack below.
2494         for (i, ns) in [primary_ns, TypeNS, ValueNS, /*MacroNS*/].iter().cloned().enumerate() {
2495             if i == 0 || ns != primary_ns {
2496                 match self.resolve_qpath(id, qself, path, ns, span, global_by_default) {
2497                     // If defer_to_typeck, then resolution > no resolution,
2498                     // otherwise full resolution > partial resolution > no resolution.
2499                     Some(res) if res.unresolved_segments() == 0 || defer_to_typeck =>
2500                         return Some(res),
2501                     res => if fin_res.is_none() { fin_res = res },
2502                 };
2503             }
2504         }
2505         let is_global = self.global_macros.get(&path[0].name).cloned()
2506             .map(|binding| binding.get_macro(self).kind() == MacroKind::Bang).unwrap_or(false);
2507         if primary_ns != MacroNS && (is_global || self.macro_names.contains(&path[0].name)) {
2508             // Return some dummy definition, it's enough for error reporting.
2509             return Some(
2510                 PathResolution::new(Def::Macro(DefId::local(CRATE_DEF_INDEX), MacroKind::Bang))
2511             );
2512         }
2513         fin_res
2514     }
2515
2516     /// Handles paths that may refer to associated items.
2517     fn resolve_qpath(&mut self,
2518                      id: NodeId,
2519                      qself: Option<&QSelf>,
2520                      path: &[Ident],
2521                      ns: Namespace,
2522                      span: Span,
2523                      global_by_default: bool)
2524                      -> Option<PathResolution> {
2525         if let Some(qself) = qself {
2526             if qself.position == 0 {
2527                 // FIXME: Create some fake resolution that can't possibly be a type.
2528                 return Some(PathResolution::with_unresolved_segments(
2529                     Def::Mod(DefId::local(CRATE_DEF_INDEX)), path.len()
2530                 ));
2531             }
2532             // Make sure `A::B` in `<T as A>::B::C` is a trait item.
2533             let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
2534             let res = self.smart_resolve_path_fragment(id, None, &path[..qself.position + 1],
2535                                                        span, span, PathSource::TraitItem(ns));
2536             return Some(PathResolution::with_unresolved_segments(
2537                 res.base_def(), res.unresolved_segments() + path.len() - qself.position - 1
2538             ));
2539         }
2540
2541         let result = match self.resolve_path(&path, Some(ns), true, span) {
2542             PathResult::NonModule(path_res) => path_res,
2543             PathResult::Module(module) if !module.is_normal() => {
2544                 PathResolution::new(module.def().unwrap())
2545             }
2546             // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
2547             // don't report an error right away, but try to fallback to a primitive type.
2548             // So, we are still able to successfully resolve something like
2549             //
2550             // use std::u8; // bring module u8 in scope
2551             // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
2552             //     u8::max_value() // OK, resolves to associated function <u8>::max_value,
2553             //                     // not to non-existent std::u8::max_value
2554             // }
2555             //
2556             // Such behavior is required for backward compatibility.
2557             // The same fallback is used when `a` resolves to nothing.
2558             PathResult::Module(..) | PathResult::Failed(..)
2559                     if (ns == TypeNS || path.len() > 1) &&
2560                        self.primitive_type_table.primitive_types.contains_key(&path[0].name) => {
2561                 let prim = self.primitive_type_table.primitive_types[&path[0].name];
2562                 match prim {
2563                     TyUint(UintTy::U128) | TyInt(IntTy::I128) => {
2564                         if !self.session.features.borrow().i128_type {
2565                             emit_feature_err(&self.session.parse_sess,
2566                                                 "i128_type", span, GateIssue::Language,
2567                                                 "128-bit type is unstable");
2568
2569                         }
2570                     }
2571                     _ => {}
2572                 }
2573                 PathResolution::with_unresolved_segments(Def::PrimTy(prim), path.len() - 1)
2574             }
2575             PathResult::Module(module) => PathResolution::new(module.def().unwrap()),
2576             PathResult::Failed(msg, false) => {
2577                 resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
2578                 err_path_resolution()
2579             }
2580             PathResult::Failed(..) => return None,
2581             PathResult::Indeterminate => bug!("indetermined path result in resolve_qpath"),
2582         };
2583
2584         if path.len() > 1 && !global_by_default && result.base_def() != Def::Err &&
2585            path[0].name != keywords::CrateRoot.name() && path[0].name != "$crate" {
2586             let unqualified_result = {
2587                 match self.resolve_path(&[*path.last().unwrap()], Some(ns), false, span) {
2588                     PathResult::NonModule(path_res) => path_res.base_def(),
2589                     PathResult::Module(module) => module.def().unwrap(),
2590                     _ => return Some(result),
2591                 }
2592             };
2593             if result.base_def() == unqualified_result {
2594                 let lint = lint::builtin::UNUSED_QUALIFICATIONS;
2595                 self.session.add_lint(lint, id, span, "unnecessary qualification".to_string());
2596             }
2597         }
2598
2599         Some(result)
2600     }
2601
2602     fn resolve_path(&mut self,
2603                     path: &[Ident],
2604                     opt_ns: Option<Namespace>, // `None` indicates a module path
2605                     record_used: bool,
2606                     path_span: Span)
2607                     -> PathResult<'a> {
2608         let mut module = None;
2609         let mut allow_super = true;
2610
2611         for (i, &ident) in path.iter().enumerate() {
2612             let is_last = i == path.len() - 1;
2613             let ns = if is_last { opt_ns.unwrap_or(TypeNS) } else { TypeNS };
2614
2615             if i == 0 && ns == TypeNS && ident.name == keywords::SelfValue.name() {
2616                 module = Some(self.module_map[&self.current_module.normal_ancestor_id]);
2617                 continue
2618             } else if allow_super && ns == TypeNS && ident.name == keywords::Super.name() {
2619                 let current_module = if i == 0 { self.current_module } else { module.unwrap() };
2620                 let self_module = self.module_map[&current_module.normal_ancestor_id];
2621                 if let Some(parent) = self_module.parent {
2622                     module = Some(self.module_map[&parent.normal_ancestor_id]);
2623                     continue
2624                 } else {
2625                     let msg = "There are too many initial `super`s.".to_string();
2626                     return PathResult::Failed(msg, false);
2627                 }
2628             }
2629             allow_super = false;
2630
2631             if i == 0 && ns == TypeNS && ident.name == keywords::CrateRoot.name() {
2632                 module = Some(self.graph_root);
2633                 continue
2634             } else if i == 0 && ns == TypeNS && ident.name == "$crate" {
2635                 module = Some(self.resolve_crate_var(ident.ctxt, path_span));
2636                 continue
2637             }
2638
2639             let binding = if let Some(module) = module {
2640                 self.resolve_ident_in_module(module, ident, ns, false, record_used, path_span)
2641             } else if opt_ns == Some(MacroNS) {
2642                 self.resolve_lexical_macro_path_segment(ident, ns, record_used, path_span)
2643                     .map(MacroBinding::binding)
2644             } else {
2645                 match self.resolve_ident_in_lexical_scope(ident, ns, record_used, path_span) {
2646                     Some(LexicalScopeBinding::Item(binding)) => Ok(binding),
2647                     Some(LexicalScopeBinding::Def(def))
2648                             if opt_ns == Some(TypeNS) || opt_ns == Some(ValueNS) => {
2649                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
2650                             def, path.len() - 1
2651                         ));
2652                     }
2653                     _ => Err(if record_used { Determined } else { Undetermined }),
2654                 }
2655             };
2656
2657             match binding {
2658                 Ok(binding) => {
2659                     let def = binding.def();
2660                     let maybe_assoc = opt_ns != Some(MacroNS) && PathSource::Type.is_expected(def);
2661                     if let Some(next_module) = binding.module() {
2662                         module = Some(next_module);
2663                     } else if def == Def::Err {
2664                         return PathResult::NonModule(err_path_resolution());
2665                     } else if opt_ns.is_some() && (is_last || maybe_assoc) {
2666                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
2667                             def, path.len() - i - 1
2668                         ));
2669                     } else {
2670                         return PathResult::Failed(format!("Not a module `{}`", ident), is_last);
2671                     }
2672                 }
2673                 Err(Undetermined) => return PathResult::Indeterminate,
2674                 Err(Determined) => {
2675                     if let Some(module) = module {
2676                         if opt_ns.is_some() && !module.is_normal() {
2677                             return PathResult::NonModule(PathResolution::with_unresolved_segments(
2678                                 module.def().unwrap(), path.len() - i
2679                             ));
2680                         }
2681                     }
2682                     let msg = if module.and_then(ModuleData::def) == self.graph_root.def() {
2683                         let is_mod = |def| match def { Def::Mod(..) => true, _ => false };
2684                         let mut candidates =
2685                             self.lookup_import_candidates(ident.name, TypeNS, is_mod);
2686                         candidates.sort_by_key(|c| (c.path.segments.len(), c.path.to_string()));
2687                         if let Some(candidate) = candidates.get(0) {
2688                             format!("Did you mean `{}`?", candidate.path)
2689                         } else {
2690                             format!("Maybe a missing `extern crate {};`?", ident)
2691                         }
2692                     } else if i == 0 {
2693                         format!("Use of undeclared type or module `{}`", ident)
2694                     } else {
2695                         format!("Could not find `{}` in `{}`", ident, path[i - 1])
2696                     };
2697                     return PathResult::Failed(msg, is_last);
2698                 }
2699             }
2700         }
2701
2702         PathResult::Module(module.unwrap_or(self.graph_root))
2703     }
2704
2705     // Resolve a local definition, potentially adjusting for closures.
2706     fn adjust_local_def(&mut self,
2707                         ns: Namespace,
2708                         rib_index: usize,
2709                         mut def: Def,
2710                         record_used: bool,
2711                         span: Span) -> Def {
2712         let ribs = &self.ribs[ns][rib_index + 1..];
2713
2714         // An invalid forward use of a type parameter from a previous default.
2715         if let ForwardTyParamBanRibKind = self.ribs[ns][rib_index].kind {
2716             if record_used {
2717                 resolve_error(self, span,
2718                         ResolutionError::ForwardDeclaredTyParam);
2719             }
2720             assert_eq!(def, Def::Err);
2721             return Def::Err;
2722         }
2723
2724         match def {
2725             Def::Upvar(..) => {
2726                 span_bug!(span, "unexpected {:?} in bindings", def)
2727             }
2728             Def::Local(def_id) => {
2729                 for rib in ribs {
2730                     match rib.kind {
2731                         NormalRibKind | ModuleRibKind(..) | MacroDefinition(..) |
2732                         ForwardTyParamBanRibKind => {
2733                             // Nothing to do. Continue.
2734                         }
2735                         ClosureRibKind(function_id) => {
2736                             let prev_def = def;
2737                             let node_id = self.definitions.as_local_node_id(def_id).unwrap();
2738
2739                             let seen = self.freevars_seen
2740                                            .entry(function_id)
2741                                            .or_insert_with(|| NodeMap());
2742                             if let Some(&index) = seen.get(&node_id) {
2743                                 def = Def::Upvar(def_id, index, function_id);
2744                                 continue;
2745                             }
2746                             let vec = self.freevars
2747                                           .entry(function_id)
2748                                           .or_insert_with(|| vec![]);
2749                             let depth = vec.len();
2750                             def = Def::Upvar(def_id, depth, function_id);
2751
2752                             if record_used {
2753                                 vec.push(Freevar {
2754                                     def: prev_def,
2755                                     span: span,
2756                                 });
2757                                 seen.insert(node_id, depth);
2758                             }
2759                         }
2760                         ItemRibKind | MethodRibKind(_) => {
2761                             // This was an attempt to access an upvar inside a
2762                             // named function item. This is not allowed, so we
2763                             // report an error.
2764                             if record_used {
2765                                 resolve_error(self, span,
2766                                         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem);
2767                             }
2768                             return Def::Err;
2769                         }
2770                         ConstantItemRibKind => {
2771                             // Still doesn't deal with upvars
2772                             if record_used {
2773                                 resolve_error(self, span,
2774                                         ResolutionError::AttemptToUseNonConstantValueInConstant);
2775                             }
2776                             return Def::Err;
2777                         }
2778                     }
2779                 }
2780             }
2781             Def::TyParam(..) | Def::SelfTy(..) => {
2782                 for rib in ribs {
2783                     match rib.kind {
2784                         NormalRibKind | MethodRibKind(_) | ClosureRibKind(..) |
2785                         ModuleRibKind(..) | MacroDefinition(..) | ForwardTyParamBanRibKind |
2786                         ConstantItemRibKind => {
2787                             // Nothing to do. Continue.
2788                         }
2789                         ItemRibKind => {
2790                             // This was an attempt to use a type parameter outside
2791                             // its scope.
2792                             if record_used {
2793                                 resolve_error(self, span,
2794                                               ResolutionError::TypeParametersFromOuterFunction);
2795                             }
2796                             return Def::Err;
2797                         }
2798                     }
2799                 }
2800             }
2801             _ => {}
2802         }
2803         return def;
2804     }
2805
2806     // Calls `f` with a `Resolver` whose current lexical scope is `module`'s lexical scope,
2807     // i.e. the module's items and the prelude (unless the module is `#[no_implicit_prelude]`).
2808     // FIXME #34673: This needs testing.
2809     pub fn with_module_lexical_scope<T, F>(&mut self, module: Module<'a>, f: F) -> T
2810         where F: FnOnce(&mut Resolver<'a>) -> T,
2811     {
2812         self.with_empty_ribs(|this| {
2813             this.ribs[ValueNS].push(Rib::new(ModuleRibKind(module)));
2814             this.ribs[TypeNS].push(Rib::new(ModuleRibKind(module)));
2815             f(this)
2816         })
2817     }
2818
2819     fn with_empty_ribs<T, F>(&mut self, f: F) -> T
2820         where F: FnOnce(&mut Resolver<'a>) -> T,
2821     {
2822         let ribs = replace(&mut self.ribs, PerNS::<Vec<Rib>>::default());
2823         let label_ribs = replace(&mut self.label_ribs, Vec::new());
2824
2825         let result = f(self);
2826         self.ribs = ribs;
2827         self.label_ribs = label_ribs;
2828         result
2829     }
2830
2831     fn lookup_assoc_candidate<FilterFn>(&mut self,
2832                                         ident: Ident,
2833                                         ns: Namespace,
2834                                         filter_fn: FilterFn)
2835                                         -> Option<AssocSuggestion>
2836         where FilterFn: Fn(Def) -> bool
2837     {
2838         fn extract_node_id(t: &Ty) -> Option<NodeId> {
2839             match t.node {
2840                 TyKind::Path(None, _) => Some(t.id),
2841                 TyKind::Rptr(_, ref mut_ty) => extract_node_id(&mut_ty.ty),
2842                 // This doesn't handle the remaining `Ty` variants as they are not
2843                 // that commonly the self_type, it might be interesting to provide
2844                 // support for those in future.
2845                 _ => None,
2846             }
2847         }
2848
2849         // Fields are generally expected in the same contexts as locals.
2850         if filter_fn(Def::Local(DefId::local(CRATE_DEF_INDEX))) {
2851             if let Some(node_id) = self.current_self_type.as_ref().and_then(extract_node_id) {
2852                 // Look for a field with the same name in the current self_type.
2853                 if let Some(resolution) = self.def_map.get(&node_id) {
2854                     match resolution.base_def() {
2855                         Def::Struct(did) | Def::Union(did)
2856                                 if resolution.unresolved_segments() == 0 => {
2857                             if let Some(field_names) = self.field_names.get(&did) {
2858                                 if field_names.iter().any(|&field_name| ident.name == field_name) {
2859                                     return Some(AssocSuggestion::Field);
2860                                 }
2861                             }
2862                         }
2863                         _ => {}
2864                     }
2865                 }
2866             }
2867         }
2868
2869         // Look for associated items in the current trait.
2870         if let Some((module, _)) = self.current_trait_ref {
2871             if let Ok(binding) =
2872                     self.resolve_ident_in_module(module, ident, ns, false, false, module.span) {
2873                 let def = binding.def();
2874                 if filter_fn(def) {
2875                     return Some(if self.has_self.contains(&def.def_id()) {
2876                         AssocSuggestion::MethodWithSelf
2877                     } else {
2878                         AssocSuggestion::AssocItem
2879                     });
2880                 }
2881             }
2882         }
2883
2884         None
2885     }
2886
2887     fn lookup_typo_candidate<FilterFn>(&mut self,
2888                                        path: &[Ident],
2889                                        ns: Namespace,
2890                                        filter_fn: FilterFn,
2891                                        span: Span)
2892                                        -> Option<Symbol>
2893         where FilterFn: Fn(Def) -> bool
2894     {
2895         let add_module_candidates = |module: Module, names: &mut Vec<Name>| {
2896             for (&(ident, _), resolution) in module.resolutions.borrow().iter() {
2897                 if let Some(binding) = resolution.borrow().binding {
2898                     if filter_fn(binding.def()) {
2899                         names.push(ident.name);
2900                     }
2901                 }
2902             }
2903         };
2904
2905         let mut names = Vec::new();
2906         if path.len() == 1 {
2907             // Search in lexical scope.
2908             // Walk backwards up the ribs in scope and collect candidates.
2909             for rib in self.ribs[ns].iter().rev() {
2910                 // Locals and type parameters
2911                 for (ident, def) in &rib.bindings {
2912                     if filter_fn(*def) {
2913                         names.push(ident.name);
2914                     }
2915                 }
2916                 // Items in scope
2917                 if let ModuleRibKind(module) = rib.kind {
2918                     // Items from this module
2919                     add_module_candidates(module, &mut names);
2920
2921                     if let ModuleKind::Block(..) = module.kind {
2922                         // We can see through blocks
2923                     } else {
2924                         // Items from the prelude
2925                         if let Some(prelude) = self.prelude {
2926                             if !module.no_implicit_prelude {
2927                                 add_module_candidates(prelude, &mut names);
2928                             }
2929                         }
2930                         break;
2931                     }
2932                 }
2933             }
2934             // Add primitive types to the mix
2935             if filter_fn(Def::PrimTy(TyBool)) {
2936                 for (name, _) in &self.primitive_type_table.primitive_types {
2937                     names.push(*name);
2938                 }
2939             }
2940         } else {
2941             // Search in module.
2942             let mod_path = &path[..path.len() - 1];
2943             if let PathResult::Module(module) = self.resolve_path(mod_path, Some(TypeNS),
2944                                                                   false, span) {
2945                 add_module_candidates(module, &mut names);
2946             }
2947         }
2948
2949         let name = path[path.len() - 1].name;
2950         // Make sure error reporting is deterministic.
2951         names.sort_by_key(|name| name.as_str());
2952         match find_best_match_for_name(names.iter(), &name.as_str(), None) {
2953             Some(found) if found != name => Some(found),
2954             _ => None,
2955         }
2956     }
2957
2958     fn with_resolved_label<F>(&mut self, label: Option<SpannedIdent>, id: NodeId, f: F)
2959         where F: FnOnce(&mut Resolver)
2960     {
2961         if let Some(label) = label {
2962             let def = Def::Label(id);
2963             self.with_label_rib(|this| {
2964                 this.label_ribs.last_mut().unwrap().bindings.insert(label.node, def);
2965                 f(this);
2966             });
2967         } else {
2968             f(self);
2969         }
2970     }
2971
2972     fn resolve_labeled_block(&mut self, label: Option<SpannedIdent>, id: NodeId, block: &Block) {
2973         self.with_resolved_label(label, id, |this| this.visit_block(block));
2974     }
2975
2976     fn resolve_expr(&mut self, expr: &Expr, parent: Option<&Expr>) {
2977         // First, record candidate traits for this expression if it could
2978         // result in the invocation of a method call.
2979
2980         self.record_candidate_traits_for_expr_if_necessary(expr);
2981
2982         // Next, resolve the node.
2983         match expr.node {
2984             ExprKind::Path(ref qself, ref path) => {
2985                 self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
2986                 visit::walk_expr(self, expr);
2987             }
2988
2989             ExprKind::Struct(ref path, ..) => {
2990                 self.smart_resolve_path(expr.id, None, path, PathSource::Struct);
2991                 visit::walk_expr(self, expr);
2992             }
2993
2994             ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
2995                 match self.search_label(label.node) {
2996                     None => {
2997                         self.record_def(expr.id, err_path_resolution());
2998                         resolve_error(self,
2999                                       label.span,
3000                                       ResolutionError::UndeclaredLabel(&label.node.name.as_str()));
3001                     }
3002                     Some(def @ Def::Label(_)) => {
3003                         // Since this def is a label, it is never read.
3004                         self.record_def(expr.id, PathResolution::new(def));
3005                     }
3006                     Some(_) => {
3007                         span_bug!(expr.span, "label wasn't mapped to a label def!");
3008                     }
3009                 }
3010
3011                 // visit `break` argument if any
3012                 visit::walk_expr(self, expr);
3013             }
3014
3015             ExprKind::IfLet(ref pattern, ref subexpression, ref if_block, ref optional_else) => {
3016                 self.visit_expr(subexpression);
3017
3018                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
3019                 self.resolve_pattern(pattern, PatternSource::IfLet, &mut FxHashMap());
3020                 self.visit_block(if_block);
3021                 self.ribs[ValueNS].pop();
3022
3023                 optional_else.as_ref().map(|expr| self.visit_expr(expr));
3024             }
3025
3026             ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),
3027
3028             ExprKind::While(ref subexpression, ref block, label) => {
3029                 self.with_resolved_label(label, expr.id, |this| {
3030                     this.visit_expr(subexpression);
3031                     this.visit_block(block);
3032                 });
3033             }
3034
3035             ExprKind::WhileLet(ref pattern, ref subexpression, ref block, label) => {
3036                 self.with_resolved_label(label, expr.id, |this| {
3037                     this.visit_expr(subexpression);
3038                     this.ribs[ValueNS].push(Rib::new(NormalRibKind));
3039                     this.resolve_pattern(pattern, PatternSource::WhileLet, &mut FxHashMap());
3040                     this.visit_block(block);
3041                     this.ribs[ValueNS].pop();
3042                 });
3043             }
3044
3045             ExprKind::ForLoop(ref pattern, ref subexpression, ref block, label) => {
3046                 self.visit_expr(subexpression);
3047                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
3048                 self.resolve_pattern(pattern, PatternSource::For, &mut FxHashMap());
3049
3050                 self.resolve_labeled_block(label, expr.id, block);
3051
3052                 self.ribs[ValueNS].pop();
3053             }
3054
3055             // Equivalent to `visit::walk_expr` + passing some context to children.
3056             ExprKind::Field(ref subexpression, _) => {
3057                 self.resolve_expr(subexpression, Some(expr));
3058             }
3059             ExprKind::MethodCall(_, ref types, ref arguments) => {
3060                 let mut arguments = arguments.iter();
3061                 self.resolve_expr(arguments.next().unwrap(), Some(expr));
3062                 for argument in arguments {
3063                     self.resolve_expr(argument, None);
3064                 }
3065                 for ty in types.iter() {
3066                     self.visit_ty(ty);
3067                 }
3068             }
3069
3070             ExprKind::Repeat(ref element, ref count) => {
3071                 self.visit_expr(element);
3072                 self.with_constant_rib(|this| {
3073                     this.visit_expr(count);
3074                 });
3075             }
3076             ExprKind::Call(ref callee, ref arguments) => {
3077                 self.resolve_expr(callee, Some(expr));
3078                 for argument in arguments {
3079                     self.resolve_expr(argument, None);
3080                 }
3081             }
3082
3083             _ => {
3084                 visit::walk_expr(self, expr);
3085             }
3086         }
3087     }
3088
3089     fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &Expr) {
3090         match expr.node {
3091             ExprKind::Field(_, name) => {
3092                 // FIXME(#6890): Even though you can't treat a method like a
3093                 // field, we need to add any trait methods we find that match
3094                 // the field name so that we can do some nice error reporting
3095                 // later on in typeck.
3096                 let traits = self.get_traits_containing_item(name.node, ValueNS);
3097                 self.trait_map.insert(expr.id, traits);
3098             }
3099             ExprKind::MethodCall(name, ..) => {
3100                 debug!("(recording candidate traits for expr) recording traits for {}",
3101                        expr.id);
3102                 let traits = self.get_traits_containing_item(name.node, ValueNS);
3103                 self.trait_map.insert(expr.id, traits);
3104             }
3105             _ => {
3106                 // Nothing to do.
3107             }
3108         }
3109     }
3110
3111     fn get_traits_containing_item(&mut self, ident: Ident, ns: Namespace) -> Vec<TraitCandidate> {
3112         debug!("(getting traits containing item) looking for '{}'", ident.name);
3113
3114         let mut found_traits = Vec::new();
3115         // Look for the current trait.
3116         if let Some((module, _)) = self.current_trait_ref {
3117             if self.resolve_ident_in_module(module, ident, ns, false, false, module.span).is_ok() {
3118                 let def_id = module.def_id().unwrap();
3119                 found_traits.push(TraitCandidate { def_id: def_id, import_id: None });
3120             }
3121         }
3122
3123         let mut search_module = self.current_module;
3124         loop {
3125             self.get_traits_in_module_containing_item(ident, ns, search_module, &mut found_traits);
3126             match search_module.kind {
3127                 ModuleKind::Block(..) => search_module = search_module.parent.unwrap(),
3128                 _ => break,
3129             }
3130         }
3131
3132         if let Some(prelude) = self.prelude {
3133             if !search_module.no_implicit_prelude {
3134                 self.get_traits_in_module_containing_item(ident, ns, prelude, &mut found_traits);
3135             }
3136         }
3137
3138         found_traits
3139     }
3140
3141     fn get_traits_in_module_containing_item(&mut self,
3142                                             ident: Ident,
3143                                             ns: Namespace,
3144                                             module: Module<'a>,
3145                                             found_traits: &mut Vec<TraitCandidate>) {
3146         let mut traits = module.traits.borrow_mut();
3147         if traits.is_none() {
3148             let mut collected_traits = Vec::new();
3149             module.for_each_child(|name, ns, binding| {
3150                 if ns != TypeNS { return }
3151                 if let Def::Trait(_) = binding.def() {
3152                     collected_traits.push((name, binding));
3153                 }
3154             });
3155             *traits = Some(collected_traits.into_boxed_slice());
3156         }
3157
3158         for &(trait_name, binding) in traits.as_ref().unwrap().iter() {
3159             let module = binding.module().unwrap();
3160             if self.resolve_ident_in_module(module, ident, ns, false, false, module.span).is_ok() {
3161                 let import_id = match binding.kind {
3162                     NameBindingKind::Import { directive, .. } => {
3163                         self.maybe_unused_trait_imports.insert(directive.id);
3164                         self.add_to_glob_map(directive.id, trait_name);
3165                         Some(directive.id)
3166                     }
3167                     _ => None,
3168                 };
3169                 let trait_def_id = module.def_id().unwrap();
3170                 found_traits.push(TraitCandidate { def_id: trait_def_id, import_id: import_id });
3171             }
3172         }
3173     }
3174
3175     /// When name resolution fails, this method can be used to look up candidate
3176     /// entities with the expected name. It allows filtering them using the
3177     /// supplied predicate (which should be used to only accept the types of
3178     /// definitions expected e.g. traits). The lookup spans across all crates.
3179     ///
3180     /// NOTE: The method does not look into imports, but this is not a problem,
3181     /// since we report the definitions (thus, the de-aliased imports).
3182     fn lookup_import_candidates<FilterFn>(&mut self,
3183                                           lookup_name: Name,
3184                                           namespace: Namespace,
3185                                           filter_fn: FilterFn)
3186                                           -> Vec<ImportSuggestion>
3187         where FilterFn: Fn(Def) -> bool
3188     {
3189         let mut candidates = Vec::new();
3190         let mut worklist = Vec::new();
3191         let mut seen_modules = FxHashSet();
3192         worklist.push((self.graph_root, Vec::new(), false));
3193
3194         while let Some((in_module,
3195                         path_segments,
3196                         in_module_is_extern)) = worklist.pop() {
3197             self.populate_module_if_necessary(in_module);
3198
3199             in_module.for_each_child(|ident, ns, name_binding| {
3200
3201                 // avoid imports entirely
3202                 if name_binding.is_import() && !name_binding.is_extern_crate() { return; }
3203                 // avoid non-importable candidates as well
3204                 if !name_binding.is_importable() { return; }
3205
3206                 // collect results based on the filter function
3207                 if ident.name == lookup_name && ns == namespace {
3208                     if filter_fn(name_binding.def()) {
3209                         // create the path
3210                         let mut segms = path_segments.clone();
3211                         segms.push(ast::PathSegment::from_ident(ident, name_binding.span));
3212                         let path = Path {
3213                             span: name_binding.span,
3214                             segments: segms,
3215                         };
3216                         // the entity is accessible in the following cases:
3217                         // 1. if it's defined in the same crate, it's always
3218                         // accessible (since private entities can be made public)
3219                         // 2. if it's defined in another crate, it's accessible
3220                         // only if both the module is public and the entity is
3221                         // declared as public (due to pruning, we don't explore
3222                         // outside crate private modules => no need to check this)
3223                         if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
3224                             candidates.push(ImportSuggestion { path: path });
3225                         }
3226                     }
3227                 }
3228
3229                 // collect submodules to explore
3230                 if let Some(module) = name_binding.module() {
3231                     // form the path
3232                     let mut path_segments = path_segments.clone();
3233                     path_segments.push(ast::PathSegment::from_ident(ident, name_binding.span));
3234
3235                     if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
3236                         // add the module to the lookup
3237                         let is_extern = in_module_is_extern || name_binding.is_extern_crate();
3238                         if seen_modules.insert(module.def_id().unwrap()) {
3239                             worklist.push((module, path_segments, is_extern));
3240                         }
3241                     }
3242                 }
3243             })
3244         }
3245
3246         candidates
3247     }
3248
3249     fn record_def(&mut self, node_id: NodeId, resolution: PathResolution) {
3250         debug!("(recording def) recording {:?} for {}", resolution, node_id);
3251         if let Some(prev_res) = self.def_map.insert(node_id, resolution) {
3252             panic!("path resolved multiple times ({:?} before, {:?} now)", prev_res, resolution);
3253         }
3254     }
3255
3256     fn resolve_visibility(&mut self, vis: &ast::Visibility) -> ty::Visibility {
3257         match *vis {
3258             ast::Visibility::Public => ty::Visibility::Public,
3259             ast::Visibility::Crate(..) => ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX)),
3260             ast::Visibility::Inherited => {
3261                 ty::Visibility::Restricted(self.current_module.normal_ancestor_id)
3262             }
3263             ast::Visibility::Restricted { ref path, id } => {
3264                 let def = self.smart_resolve_path(id, None, path,
3265                                                   PathSource::Visibility).base_def();
3266                 if def == Def::Err {
3267                     ty::Visibility::Public
3268                 } else {
3269                     let vis = ty::Visibility::Restricted(def.def_id());
3270                     if self.is_accessible(vis) {
3271                         vis
3272                     } else {
3273                         self.session.span_err(path.span, "visibilities can only be restricted \
3274                                                           to ancestor modules");
3275                         ty::Visibility::Public
3276                     }
3277                 }
3278             }
3279         }
3280     }
3281
3282     fn is_accessible(&self, vis: ty::Visibility) -> bool {
3283         vis.is_accessible_from(self.current_module.normal_ancestor_id, self)
3284     }
3285
3286     fn is_accessible_from(&self, vis: ty::Visibility, module: Module<'a>) -> bool {
3287         vis.is_accessible_from(module.normal_ancestor_id, self)
3288     }
3289
3290     fn report_errors(&mut self) {
3291         self.report_shadowing_errors();
3292         let mut reported_spans = FxHashSet();
3293
3294         for &AmbiguityError { span, name, b1, b2, lexical, legacy } in &self.ambiguity_errors {
3295             if !reported_spans.insert(span) { continue }
3296             let participle = |binding: &NameBinding| {
3297                 if binding.is_import() { "imported" } else { "defined" }
3298             };
3299             let msg1 = format!("`{}` could refer to the name {} here", name, participle(b1));
3300             let msg2 = format!("`{}` could also refer to the name {} here", name, participle(b2));
3301             let note = if b1.expansion == Mark::root() || !lexical && b1.is_glob_import() {
3302                 format!("consider adding an explicit import of `{}` to disambiguate", name)
3303             } else if let Def::Macro(..) = b1.def() {
3304                 format!("macro-expanded {} do not shadow",
3305                         if b1.is_import() { "macro imports" } else { "macros" })
3306             } else {
3307                 format!("macro-expanded {} do not shadow when used in a macro invocation path",
3308                         if b1.is_import() { "imports" } else { "items" })
3309             };
3310             if legacy {
3311                 let id = match b2.kind {
3312                     NameBindingKind::Import { directive, .. } => directive.id,
3313                     _ => unreachable!(),
3314                 };
3315                 let mut span = MultiSpan::from_span(span);
3316                 span.push_span_label(b1.span, msg1);
3317                 span.push_span_label(b2.span, msg2);
3318                 let msg = format!("`{}` is ambiguous", name);
3319                 self.session.add_lint(lint::builtin::LEGACY_IMPORTS, id, span, msg);
3320             } else {
3321                 let mut err =
3322                     self.session.struct_span_err(span, &format!("`{}` is ambiguous", name));
3323                 err.span_note(b1.span, &msg1);
3324                 match b2.def() {
3325                     Def::Macro(..) if b2.span == DUMMY_SP =>
3326                         err.note(&format!("`{}` is also a builtin macro", name)),
3327                     _ => err.span_note(b2.span, &msg2),
3328                 };
3329                 err.note(&note).emit();
3330             }
3331         }
3332
3333         for &PrivacyError(span, name, binding) in &self.privacy_errors {
3334             if !reported_spans.insert(span) { continue }
3335             if binding.is_extern_crate() {
3336                 // Warn when using an inaccessible extern crate.
3337                 let node_id = match binding.kind {
3338                     NameBindingKind::Import { directive, .. } => directive.id,
3339                     _ => unreachable!(),
3340                 };
3341                 let msg = format!("extern crate `{}` is private", name);
3342                 self.session.add_lint(lint::builtin::INACCESSIBLE_EXTERN_CRATE, node_id, span, msg);
3343             } else {
3344                 let def = binding.def();
3345                 self.session.span_err(span, &format!("{} `{}` is private", def.kind_name(), name));
3346             }
3347         }
3348     }
3349
3350     fn report_shadowing_errors(&mut self) {
3351         for (name, scope) in replace(&mut self.lexical_macro_resolutions, Vec::new()) {
3352             self.resolve_legacy_scope(scope, name, true);
3353         }
3354
3355         let mut reported_errors = FxHashSet();
3356         for binding in replace(&mut self.disallowed_shadowing, Vec::new()) {
3357             if self.resolve_legacy_scope(&binding.parent, binding.name, false).is_some() &&
3358                reported_errors.insert((binding.name, binding.span)) {
3359                 let msg = format!("`{}` is already in scope", binding.name);
3360                 self.session.struct_span_err(binding.span, &msg)
3361                     .note("macro-expanded `macro_rules!`s may not shadow \
3362                            existing macros (see RFC 1560)")
3363                     .emit();
3364             }
3365         }
3366     }
3367
3368     fn report_conflict(&mut self,
3369                        parent: Module,
3370                        ident: Ident,
3371                        ns: Namespace,
3372                        binding: &NameBinding,
3373                        old_binding: &NameBinding) {
3374         // Error on the second of two conflicting names
3375         if old_binding.span.lo > binding.span.lo {
3376             return self.report_conflict(parent, ident, ns, old_binding, binding);
3377         }
3378
3379         let container = match parent.kind {
3380             ModuleKind::Def(Def::Mod(_), _) => "module",
3381             ModuleKind::Def(Def::Trait(_), _) => "trait",
3382             ModuleKind::Block(..) => "block",
3383             _ => "enum",
3384         };
3385
3386         let (participle, noun) = match old_binding.is_import() {
3387             true => ("imported", "import"),
3388             false => ("defined", "definition"),
3389         };
3390
3391         let (name, span) = (ident.name, binding.span);
3392
3393         if let Some(s) = self.name_already_seen.get(&name) {
3394             if s == &span {
3395                 return;
3396             }
3397         }
3398
3399         let msg = {
3400             let kind = match (ns, old_binding.module()) {
3401                 (ValueNS, _) => "a value",
3402                 (MacroNS, _) => "a macro",
3403                 (TypeNS, _) if old_binding.is_extern_crate() => "an extern crate",
3404                 (TypeNS, Some(module)) if module.is_normal() => "a module",
3405                 (TypeNS, Some(module)) if module.is_trait() => "a trait",
3406                 (TypeNS, _) => "a type",
3407             };
3408             format!("{} named `{}` has already been {} in this {}",
3409                     kind, name, participle, container)
3410         };
3411
3412         let mut err = match (old_binding.is_extern_crate(), binding.is_extern_crate()) {
3413             (true, true) => struct_span_err!(self.session, span, E0259, "{}", msg),
3414             (true, _) | (_, true) => match binding.is_import() && old_binding.is_import() {
3415                 true => struct_span_err!(self.session, span, E0254, "{}", msg),
3416                 false => struct_span_err!(self.session, span, E0260, "{}", msg),
3417             },
3418             _ => match (old_binding.is_import(), binding.is_import()) {
3419                 (false, false) => struct_span_err!(self.session, span, E0428, "{}", msg),
3420                 (true, true) => struct_span_err!(self.session, span, E0252, "{}", msg),
3421                 _ => struct_span_err!(self.session, span, E0255, "{}", msg),
3422             },
3423         };
3424
3425         err.span_label(span, format!("`{}` already {}", name, participle));
3426         if old_binding.span != syntax_pos::DUMMY_SP {
3427             err.span_label(old_binding.span, format!("previous {} of `{}` here", noun, name));
3428         }
3429         err.emit();
3430         self.name_already_seen.insert(name, span);
3431     }
3432
3433     fn warn_legacy_self_import(&self, directive: &'a ImportDirective<'a>) {
3434         let (id, span) = (directive.id, directive.span);
3435         let msg = "`self` no longer imports values".to_string();
3436         self.session.add_lint(lint::builtin::LEGACY_IMPORTS, id, span, msg);
3437     }
3438
3439     fn check_proc_macro_attrs(&mut self, attrs: &[ast::Attribute]) {
3440         if self.proc_macro_enabled { return; }
3441
3442         for attr in attrs {
3443             if attr.path.segments.len() > 1 {
3444                 continue
3445             }
3446             let ident = attr.path.segments[0].identifier;
3447             let result = self.resolve_lexical_macro_path_segment(ident,
3448                                                                  MacroNS,
3449                                                                  false,
3450                                                                  attr.path.span);
3451             if let Ok(binding) = result {
3452                 if let SyntaxExtension::AttrProcMacro(..) = *binding.binding().get_macro(self) {
3453                     attr::mark_known(attr);
3454
3455                     let msg = "attribute procedural macros are experimental";
3456                     let feature = "proc_macro";
3457
3458                     feature_err(&self.session.parse_sess, feature,
3459                                 attr.span, GateIssue::Language, msg)
3460                         .span_note(binding.span(), "procedural macro imported here")
3461                         .emit();
3462                 }
3463             }
3464         }
3465     }
3466 }
3467
3468 fn is_struct_like(def: Def) -> bool {
3469     match def {
3470         Def::VariantCtor(_, CtorKind::Fictive) => true,
3471         _ => PathSource::Struct.is_expected(def),
3472     }
3473 }
3474
3475 fn is_self_type(path: &[Ident], namespace: Namespace) -> bool {
3476     namespace == TypeNS && path.len() == 1 && path[0].name == keywords::SelfType.name()
3477 }
3478
3479 fn is_self_value(path: &[Ident], namespace: Namespace) -> bool {
3480     namespace == ValueNS && path.len() == 1 && path[0].name == keywords::SelfValue.name()
3481 }
3482
3483 fn names_to_string(idents: &[Ident]) -> String {
3484     let mut result = String::new();
3485     for (i, ident) in idents.iter().filter(|i| i.name != keywords::CrateRoot.name()).enumerate() {
3486         if i > 0 {
3487             result.push_str("::");
3488         }
3489         result.push_str(&ident.name.as_str());
3490     }
3491     result
3492 }
3493
3494 fn path_names_to_string(path: &Path) -> String {
3495     names_to_string(&path.segments.iter().map(|seg| seg.identifier).collect::<Vec<_>>())
3496 }
3497
3498 /// Get the path for an enum and the variant from an `ImportSuggestion` for an enum variant.
3499 fn import_candidate_to_paths(suggestion: &ImportSuggestion) -> (Span, String, String) {
3500     let variant_path = &suggestion.path;
3501     let variant_path_string = path_names_to_string(variant_path);
3502
3503     let path_len = suggestion.path.segments.len();
3504     let enum_path = ast::Path {
3505         span: suggestion.path.span,
3506         segments: suggestion.path.segments[0..path_len - 1].to_vec(),
3507     };
3508     let enum_path_string = path_names_to_string(&enum_path);
3509
3510     (suggestion.path.span, variant_path_string, enum_path_string)
3511 }
3512
3513
3514 /// When an entity with a given name is not available in scope, we search for
3515 /// entities with that name in all crates. This method allows outputting the
3516 /// results of this search in a programmer-friendly way
3517 fn show_candidates(err: &mut DiagnosticBuilder,
3518                    span: Span,
3519                    candidates: &[ImportSuggestion],
3520                    better: bool) {
3521
3522     // we want consistent results across executions, but candidates are produced
3523     // by iterating through a hash map, so make sure they are ordered:
3524     let mut path_strings: Vec<_> =
3525         candidates.into_iter().map(|c| path_names_to_string(&c.path)).collect();
3526     path_strings.sort();
3527
3528     let better = if better { "better " } else { "" };
3529     let msg_diff = match path_strings.len() {
3530         1 => " is found in another module, you can import it",
3531         _ => "s are found in other modules, you can import them",
3532     };
3533     let msg = format!("possible {}candidate{} into scope", better, msg_diff);
3534
3535     for candidate in &mut path_strings {
3536         *candidate = format!("use {};\n", candidate);
3537     }
3538
3539     err.span_suggestions(span, &msg, path_strings);
3540 }
3541
3542 /// A somewhat inefficient routine to obtain the name of a module.
3543 fn module_to_string(module: Module) -> String {
3544     let mut names = Vec::new();
3545
3546     fn collect_mod(names: &mut Vec<Ident>, module: Module) {
3547         if let ModuleKind::Def(_, name) = module.kind {
3548             if let Some(parent) = module.parent {
3549                 names.push(Ident::with_empty_ctxt(name));
3550                 collect_mod(names, parent);
3551             }
3552         } else {
3553             // danger, shouldn't be ident?
3554             names.push(Ident::from_str("<opaque>"));
3555             collect_mod(names, module.parent.unwrap());
3556         }
3557     }
3558     collect_mod(&mut names, module);
3559
3560     if names.is_empty() {
3561         return "???".to_string();
3562     }
3563     names_to_string(&names.into_iter().rev().collect::<Vec<_>>())
3564 }
3565
3566 fn err_path_resolution() -> PathResolution {
3567     PathResolution::new(Def::Err)
3568 }
3569
3570 #[derive(PartialEq,Copy, Clone)]
3571 pub enum MakeGlobMap {
3572     Yes,
3573     No,
3574 }
3575
3576 __build_diagnostic_array! { librustc_resolve, DIAGNOSTICS }