]> git.lizzy.rs Git - rust.git/blob - src/librustc_resolve/lib.rs
Implement existential types
[rust.git] / src / librustc_resolve / lib.rs
1 // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 #![deny(bare_trait_objects)]
12
13 #![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
14       html_favicon_url = "https://doc.rust-lang.org/favicon.ico",
15       html_root_url = "https://doc.rust-lang.org/nightly/")]
16
17 #![feature(crate_visibility_modifier)]
18 #![feature(rustc_diagnostic_macros)]
19 #![feature(slice_sort_by_cached_key)]
20
21 #[macro_use]
22 extern crate log;
23 #[macro_use]
24 extern crate syntax;
25 extern crate syntax_pos;
26 extern crate rustc_errors as errors;
27 extern crate arena;
28 #[macro_use]
29 extern crate rustc;
30 extern crate rustc_data_structures;
31
32 pub use rustc::hir::def::{Namespace, PerNS};
33
34 use self::TypeParameters::*;
35 use self::RibKind::*;
36
37 use rustc::hir::map::{Definitions, DefCollector};
38 use rustc::hir::{self, PrimTy, TyBool, TyChar, TyFloat, TyInt, TyUint, TyStr};
39 use rustc::middle::cstore::{CrateStore, CrateLoader};
40 use rustc::session::Session;
41 use rustc::lint;
42 use rustc::hir::def::*;
43 use rustc::hir::def::Namespace::*;
44 use rustc::hir::def_id::{CRATE_DEF_INDEX, LOCAL_CRATE, DefId};
45 use rustc::ty;
46 use rustc::hir::{Freevar, FreevarMap, TraitCandidate, TraitMap, GlobMap};
47 use rustc::util::nodemap::{NodeMap, NodeSet, FxHashMap, FxHashSet, DefIdMap};
48
49 use syntax::codemap::CodeMap;
50 use syntax::ext::hygiene::{Mark, Transparency, SyntaxContext};
51 use syntax::ast::{self, Name, NodeId, Ident, FloatTy, IntTy, UintTy};
52 use syntax::ext::base::SyntaxExtension;
53 use syntax::ext::base::Determinacy::{self, Determined, Undetermined};
54 use syntax::ext::base::MacroKind;
55 use syntax::symbol::{Symbol, keywords};
56 use syntax::util::lev_distance::find_best_match_for_name;
57
58 use syntax::visit::{self, FnKind, Visitor};
59 use syntax::attr;
60 use syntax::ast::{CRATE_NODE_ID, Arm, IsAsync, BindingMode, Block, Crate, Expr, ExprKind};
61 use syntax::ast::{FnDecl, ForeignItem, ForeignItemKind, GenericParamKind, Generics};
62 use syntax::ast::{Item, ItemKind, ImplItem, ImplItemKind};
63 use syntax::ast::{Label, Local, Mutability, Pat, PatKind, Path};
64 use syntax::ast::{QSelf, TraitItemKind, TraitRef, Ty, TyKind};
65 use syntax::feature_gate::{feature_err, GateIssue};
66 use syntax::ptr::P;
67
68 use syntax_pos::{Span, DUMMY_SP, MultiSpan};
69 use errors::{DiagnosticBuilder, DiagnosticId};
70
71 use std::cell::{Cell, RefCell};
72 use std::cmp;
73 use std::collections::BTreeSet;
74 use std::fmt;
75 use std::iter;
76 use std::mem::replace;
77 use rustc_data_structures::sync::Lrc;
78
79 use resolve_imports::{ImportDirective, ImportDirectiveSubclass, NameResolution, ImportResolver};
80 use macros::{InvocationData, LegacyBinding, LegacyScope, MacroBinding};
81
82 // NB: This module needs to be declared first so diagnostics are
83 // registered before they are used.
84 mod diagnostics;
85
86 mod macros;
87 mod check_unused;
88 mod build_reduced_graph;
89 mod resolve_imports;
90
91 /// A free importable items suggested in case of resolution failure.
92 struct ImportSuggestion {
93     path: Path,
94 }
95
96 /// A field or associated item from self type suggested in case of resolution failure.
97 enum AssocSuggestion {
98     Field,
99     MethodWithSelf,
100     AssocItem,
101 }
102
103 #[derive(Eq)]
104 struct BindingError {
105     name: Name,
106     origin: BTreeSet<Span>,
107     target: BTreeSet<Span>,
108 }
109
110 impl PartialOrd for BindingError {
111     fn partial_cmp(&self, other: &BindingError) -> Option<cmp::Ordering> {
112         Some(self.cmp(other))
113     }
114 }
115
116 impl PartialEq for BindingError {
117     fn eq(&self, other: &BindingError) -> bool {
118         self.name == other.name
119     }
120 }
121
122 impl Ord for BindingError {
123     fn cmp(&self, other: &BindingError) -> cmp::Ordering {
124         self.name.cmp(&other.name)
125     }
126 }
127
128 enum ResolutionError<'a> {
129     /// error E0401: can't use type parameters from outer function
130     TypeParametersFromOuterFunction(Def),
131     /// error E0403: the name is already used for a type parameter in this type parameter list
132     NameAlreadyUsedInTypeParameterList(Name, &'a Span),
133     /// error E0407: method is not a member of trait
134     MethodNotMemberOfTrait(Name, &'a str),
135     /// error E0437: type is not a member of trait
136     TypeNotMemberOfTrait(Name, &'a str),
137     /// error E0438: const is not a member of trait
138     ConstNotMemberOfTrait(Name, &'a str),
139     /// error E0408: variable `{}` is not bound in all patterns
140     VariableNotBoundInPattern(&'a BindingError),
141     /// error E0409: variable `{}` is bound in inconsistent ways within the same match arm
142     VariableBoundWithDifferentMode(Name, Span),
143     /// error E0415: identifier is bound more than once in this parameter list
144     IdentifierBoundMoreThanOnceInParameterList(&'a str),
145     /// error E0416: identifier is bound more than once in the same pattern
146     IdentifierBoundMoreThanOnceInSamePattern(&'a str),
147     /// error E0426: use of undeclared label
148     UndeclaredLabel(&'a str, Option<Name>),
149     /// error E0429: `self` imports are only allowed within a { } list
150     SelfImportsOnlyAllowedWithin,
151     /// error E0430: `self` import can only appear once in the list
152     SelfImportCanOnlyAppearOnceInTheList,
153     /// error E0431: `self` import can only appear in an import list with a non-empty prefix
154     SelfImportOnlyInImportListWithNonEmptyPrefix,
155     /// error E0432: unresolved import
156     UnresolvedImport(Option<(Span, &'a str, &'a str)>),
157     /// error E0433: failed to resolve
158     FailedToResolve(&'a str),
159     /// error E0434: can't capture dynamic environment in a fn item
160     CannotCaptureDynamicEnvironmentInFnItem,
161     /// error E0435: attempt to use a non-constant value in a constant
162     AttemptToUseNonConstantValueInConstant,
163     /// error E0530: X bindings cannot shadow Ys
164     BindingShadowsSomethingUnacceptable(&'a str, Name, &'a NameBinding<'a>),
165     /// error E0128: type parameters with a default cannot use forward declared identifiers
166     ForwardDeclaredTyParam,
167 }
168
169 /// Combines an error with provided span and emits it
170 ///
171 /// This takes the error provided, combines it with the span and any additional spans inside the
172 /// error and emits it.
173 fn resolve_error<'sess, 'a>(resolver: &'sess Resolver,
174                             span: Span,
175                             resolution_error: ResolutionError<'a>) {
176     resolve_struct_error(resolver, span, resolution_error).emit();
177 }
178
179 fn resolve_struct_error<'sess, 'a>(resolver: &'sess Resolver,
180                                    span: Span,
181                                    resolution_error: ResolutionError<'a>)
182                                    -> DiagnosticBuilder<'sess> {
183     match resolution_error {
184         ResolutionError::TypeParametersFromOuterFunction(outer_def) => {
185             let mut err = struct_span_err!(resolver.session,
186                                            span,
187                                            E0401,
188                                            "can't use type parameters from outer function");
189             err.span_label(span, "use of type variable from outer function");
190
191             let cm = resolver.session.codemap();
192             match outer_def {
193                 Def::SelfTy(_, maybe_impl_defid) => {
194                     if let Some(impl_span) = maybe_impl_defid.map_or(None,
195                             |def_id| resolver.definitions.opt_span(def_id)) {
196                         err.span_label(reduce_impl_span_to_impl_keyword(cm, impl_span),
197                                     "`Self` type implicitely declared here, on the `impl`");
198                     }
199                 },
200                 Def::TyParam(typaram_defid) => {
201                     if let Some(typaram_span) = resolver.definitions.opt_span(typaram_defid) {
202                         err.span_label(typaram_span, "type variable from outer function");
203                     }
204                 },
205                 Def::Mod(..) | Def::Struct(..) | Def::Union(..) | Def::Enum(..) | Def::Variant(..) |
206                 Def::Trait(..) | Def::TyAlias(..) | Def::TyForeign(..) | Def::TraitAlias(..) |
207                 Def::AssociatedTy(..) | Def::PrimTy(..) | Def::Fn(..) | Def::Const(..) |
208                 Def::Static(..) | Def::StructCtor(..) | Def::VariantCtor(..) | Def::Method(..) |
209                 Def::AssociatedConst(..) | Def::Local(..) | Def::Upvar(..) | Def::Label(..) |
210                 Def::Existential(..) | Def::AssociatedExistential(..) |
211                 Def::Macro(..) | Def::GlobalAsm(..) | Def::Err =>
212                     bug!("TypeParametersFromOuterFunction should only be used with Def::SelfTy or \
213                          Def::TyParam")
214             }
215
216             // Try to retrieve the span of the function signature and generate a new message with
217             // a local type parameter
218             let sugg_msg = "try using a local type parameter instead";
219             if let Some((sugg_span, new_snippet)) = cm.generate_local_type_param_snippet(span) {
220                 // Suggest the modification to the user
221                 err.span_suggestion(sugg_span,
222                                     sugg_msg,
223                                     new_snippet);
224             } else if let Some(sp) = cm.generate_fn_name_span(span) {
225                 err.span_label(sp, "try adding a local type parameter in this method instead");
226             } else {
227                 err.help("try using a local type parameter instead");
228             }
229
230             err
231         }
232         ResolutionError::NameAlreadyUsedInTypeParameterList(name, first_use_span) => {
233              let mut err = struct_span_err!(resolver.session,
234                                             span,
235                                             E0403,
236                                             "the name `{}` is already used for a type parameter \
237                                             in this type parameter list",
238                                             name);
239              err.span_label(span, "already used");
240              err.span_label(first_use_span.clone(), format!("first use of `{}`", name));
241              err
242         }
243         ResolutionError::MethodNotMemberOfTrait(method, trait_) => {
244             let mut err = struct_span_err!(resolver.session,
245                                            span,
246                                            E0407,
247                                            "method `{}` is not a member of trait `{}`",
248                                            method,
249                                            trait_);
250             err.span_label(span, format!("not a member of trait `{}`", trait_));
251             err
252         }
253         ResolutionError::TypeNotMemberOfTrait(type_, trait_) => {
254             let mut err = struct_span_err!(resolver.session,
255                              span,
256                              E0437,
257                              "type `{}` is not a member of trait `{}`",
258                              type_,
259                              trait_);
260             err.span_label(span, format!("not a member of trait `{}`", trait_));
261             err
262         }
263         ResolutionError::ConstNotMemberOfTrait(const_, trait_) => {
264             let mut err = struct_span_err!(resolver.session,
265                              span,
266                              E0438,
267                              "const `{}` is not a member of trait `{}`",
268                              const_,
269                              trait_);
270             err.span_label(span, format!("not a member of trait `{}`", trait_));
271             err
272         }
273         ResolutionError::VariableNotBoundInPattern(binding_error) => {
274             let target_sp = binding_error.target.iter().map(|x| *x).collect::<Vec<_>>();
275             let msp = MultiSpan::from_spans(target_sp.clone());
276             let msg = format!("variable `{}` is not bound in all patterns", binding_error.name);
277             let mut err = resolver.session.struct_span_err_with_code(
278                 msp,
279                 &msg,
280                 DiagnosticId::Error("E0408".into()),
281             );
282             for sp in target_sp {
283                 err.span_label(sp, format!("pattern doesn't bind `{}`", binding_error.name));
284             }
285             let origin_sp = binding_error.origin.iter().map(|x| *x).collect::<Vec<_>>();
286             for sp in origin_sp {
287                 err.span_label(sp, "variable not in all patterns");
288             }
289             err
290         }
291         ResolutionError::VariableBoundWithDifferentMode(variable_name,
292                                                         first_binding_span) => {
293             let mut err = struct_span_err!(resolver.session,
294                              span,
295                              E0409,
296                              "variable `{}` is bound in inconsistent \
297                              ways within the same match arm",
298                              variable_name);
299             err.span_label(span, "bound in different ways");
300             err.span_label(first_binding_span, "first binding");
301             err
302         }
303         ResolutionError::IdentifierBoundMoreThanOnceInParameterList(identifier) => {
304             let mut err = struct_span_err!(resolver.session,
305                              span,
306                              E0415,
307                              "identifier `{}` is bound more than once in this parameter list",
308                              identifier);
309             err.span_label(span, "used as parameter more than once");
310             err
311         }
312         ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(identifier) => {
313             let mut err = struct_span_err!(resolver.session,
314                              span,
315                              E0416,
316                              "identifier `{}` is bound more than once in the same pattern",
317                              identifier);
318             err.span_label(span, "used in a pattern more than once");
319             err
320         }
321         ResolutionError::UndeclaredLabel(name, lev_candidate) => {
322             let mut err = struct_span_err!(resolver.session,
323                                            span,
324                                            E0426,
325                                            "use of undeclared label `{}`",
326                                            name);
327             if let Some(lev_candidate) = lev_candidate {
328                 err.span_label(span, format!("did you mean `{}`?", lev_candidate));
329             } else {
330                 err.span_label(span, format!("undeclared label `{}`", name));
331             }
332             err
333         }
334         ResolutionError::SelfImportsOnlyAllowedWithin => {
335             struct_span_err!(resolver.session,
336                              span,
337                              E0429,
338                              "{}",
339                              "`self` imports are only allowed within a { } list")
340         }
341         ResolutionError::SelfImportCanOnlyAppearOnceInTheList => {
342             let mut err = struct_span_err!(resolver.session, span, E0430,
343                                            "`self` import can only appear once in an import list");
344             err.span_label(span, "can only appear once in an import list");
345             err
346         }
347         ResolutionError::SelfImportOnlyInImportListWithNonEmptyPrefix => {
348             let mut err = struct_span_err!(resolver.session, span, E0431,
349                                            "`self` import can only appear in an import list with \
350                                             a non-empty prefix");
351             err.span_label(span, "can only appear in an import list with a non-empty prefix");
352             err
353         }
354         ResolutionError::UnresolvedImport(name) => {
355             let (span, msg) = match name {
356                 Some((sp, n, _)) => (sp, format!("unresolved import `{}`", n)),
357                 None => (span, "unresolved import".to_owned()),
358             };
359             let mut err = struct_span_err!(resolver.session, span, E0432, "{}", msg);
360             if let Some((_, _, p)) = name {
361                 err.span_label(span, p);
362             }
363             err
364         }
365         ResolutionError::FailedToResolve(msg) => {
366             let mut err = struct_span_err!(resolver.session, span, E0433,
367                                            "failed to resolve. {}", msg);
368             err.span_label(span, msg);
369             err
370         }
371         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem => {
372             let mut err = struct_span_err!(resolver.session,
373                                            span,
374                                            E0434,
375                                            "{}",
376                                            "can't capture dynamic environment in a fn item");
377             err.help("use the `|| { ... }` closure form instead");
378             err
379         }
380         ResolutionError::AttemptToUseNonConstantValueInConstant => {
381             let mut err = struct_span_err!(resolver.session, span, E0435,
382                                            "attempt to use a non-constant value in a constant");
383             err.span_label(span, "non-constant value");
384             err
385         }
386         ResolutionError::BindingShadowsSomethingUnacceptable(what_binding, name, binding) => {
387             let shadows_what = PathResolution::new(binding.def()).kind_name();
388             let mut err = struct_span_err!(resolver.session,
389                                            span,
390                                            E0530,
391                                            "{}s cannot shadow {}s", what_binding, shadows_what);
392             err.span_label(span, format!("cannot be named the same as a {}", shadows_what));
393             let participle = if binding.is_import() { "imported" } else { "defined" };
394             let msg = format!("a {} `{}` is {} here", shadows_what, name, participle);
395             err.span_label(binding.span, msg);
396             err
397         }
398         ResolutionError::ForwardDeclaredTyParam => {
399             let mut err = struct_span_err!(resolver.session, span, E0128,
400                                            "type parameters with a default cannot use \
401                                             forward declared identifiers");
402             err.span_label(span, format!("defaulted type parameters cannot be forward declared"));
403             err
404         }
405     }
406 }
407
408 /// Adjust the impl span so that just the `impl` keyword is taken by removing
409 /// everything after `<` (`"impl<T> Iterator for A<T> {}" -> "impl"`) and
410 /// everything after the first whitespace (`"impl Iterator for A" -> "impl"`)
411 ///
412 /// Attention: The method used is very fragile since it essentially duplicates the work of the
413 /// parser. If you need to use this function or something similar, please consider updating the
414 /// codemap functions and this function to something more robust.
415 fn reduce_impl_span_to_impl_keyword(cm: &CodeMap, impl_span: Span) -> Span {
416     let impl_span = cm.span_until_char(impl_span, '<');
417     let impl_span = cm.span_until_whitespace(impl_span);
418     impl_span
419 }
420
421 #[derive(Copy, Clone, Debug)]
422 struct BindingInfo {
423     span: Span,
424     binding_mode: BindingMode,
425 }
426
427 /// Map from the name in a pattern to its binding mode.
428 type BindingMap = FxHashMap<Ident, BindingInfo>;
429
430 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
431 enum PatternSource {
432     Match,
433     IfLet,
434     WhileLet,
435     Let,
436     For,
437     FnParam,
438 }
439
440 impl PatternSource {
441     fn descr(self) -> &'static str {
442         match self {
443             PatternSource::Match => "match binding",
444             PatternSource::IfLet => "if let binding",
445             PatternSource::WhileLet => "while let binding",
446             PatternSource::Let => "let binding",
447             PatternSource::For => "for binding",
448             PatternSource::FnParam => "function parameter",
449         }
450     }
451 }
452
453 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
454 enum AliasPossibility {
455     No,
456     Maybe,
457 }
458
459 #[derive(Copy, Clone, Debug)]
460 enum PathSource<'a> {
461     // Type paths `Path`.
462     Type,
463     // Trait paths in bounds or impls.
464     Trait(AliasPossibility),
465     // Expression paths `path`, with optional parent context.
466     Expr(Option<&'a Expr>),
467     // Paths in path patterns `Path`.
468     Pat,
469     // Paths in struct expressions and patterns `Path { .. }`.
470     Struct,
471     // Paths in tuple struct patterns `Path(..)`.
472     TupleStruct,
473     // `m::A::B` in `<T as m::A>::B::C`.
474     TraitItem(Namespace),
475     // Path in `pub(path)`
476     Visibility,
477     // Path in `use a::b::{...};`
478     ImportPrefix,
479 }
480
481 impl<'a> PathSource<'a> {
482     fn namespace(self) -> Namespace {
483         match self {
484             PathSource::Type | PathSource::Trait(_) | PathSource::Struct |
485             PathSource::Visibility | PathSource::ImportPrefix => TypeNS,
486             PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct => ValueNS,
487             PathSource::TraitItem(ns) => ns,
488         }
489     }
490
491     fn global_by_default(self) -> bool {
492         match self {
493             PathSource::Visibility | PathSource::ImportPrefix => true,
494             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
495             PathSource::Struct | PathSource::TupleStruct |
496             PathSource::Trait(_) | PathSource::TraitItem(..) => false,
497         }
498     }
499
500     fn defer_to_typeck(self) -> bool {
501         match self {
502             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
503             PathSource::Struct | PathSource::TupleStruct => true,
504             PathSource::Trait(_) | PathSource::TraitItem(..) |
505             PathSource::Visibility | PathSource::ImportPrefix => false,
506         }
507     }
508
509     fn descr_expected(self) -> &'static str {
510         match self {
511             PathSource::Type => "type",
512             PathSource::Trait(_) => "trait",
513             PathSource::Pat => "unit struct/variant or constant",
514             PathSource::Struct => "struct, variant or union type",
515             PathSource::TupleStruct => "tuple struct/variant",
516             PathSource::Visibility => "module",
517             PathSource::ImportPrefix => "module or enum",
518             PathSource::TraitItem(ns) => match ns {
519                 TypeNS => "associated type",
520                 ValueNS => "method or associated constant",
521                 MacroNS => bug!("associated macro"),
522             },
523             PathSource::Expr(parent) => match parent.map(|p| &p.node) {
524                 // "function" here means "anything callable" rather than `Def::Fn`,
525                 // this is not precise but usually more helpful than just "value".
526                 Some(&ExprKind::Call(..)) => "function",
527                 _ => "value",
528             },
529         }
530     }
531
532     fn is_expected(self, def: Def) -> bool {
533         match self {
534             PathSource::Type => match def {
535                 Def::Struct(..) | Def::Union(..) | Def::Enum(..) |
536                 Def::Trait(..) | Def::TyAlias(..) | Def::AssociatedTy(..) |
537                 Def::PrimTy(..) | Def::TyParam(..) | Def::SelfTy(..) |
538                 Def::Existential(..) |
539                 Def::TyForeign(..) => true,
540                 _ => false,
541             },
542             PathSource::Trait(AliasPossibility::No) => match def {
543                 Def::Trait(..) => true,
544                 _ => false,
545             },
546             PathSource::Trait(AliasPossibility::Maybe) => match def {
547                 Def::Trait(..) => true,
548                 Def::TraitAlias(..) => true,
549                 _ => false,
550             },
551             PathSource::Expr(..) => match def {
552                 Def::StructCtor(_, CtorKind::Const) | Def::StructCtor(_, CtorKind::Fn) |
553                 Def::VariantCtor(_, CtorKind::Const) | Def::VariantCtor(_, CtorKind::Fn) |
554                 Def::Const(..) | Def::Static(..) | Def::Local(..) | Def::Upvar(..) |
555                 Def::Fn(..) | Def::Method(..) | Def::AssociatedConst(..) => true,
556                 _ => false,
557             },
558             PathSource::Pat => match def {
559                 Def::StructCtor(_, CtorKind::Const) |
560                 Def::VariantCtor(_, CtorKind::Const) |
561                 Def::Const(..) | Def::AssociatedConst(..) => true,
562                 _ => false,
563             },
564             PathSource::TupleStruct => match def {
565                 Def::StructCtor(_, CtorKind::Fn) | Def::VariantCtor(_, CtorKind::Fn) => true,
566                 _ => false,
567             },
568             PathSource::Struct => match def {
569                 Def::Struct(..) | Def::Union(..) | Def::Variant(..) |
570                 Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => true,
571                 _ => false,
572             },
573             PathSource::TraitItem(ns) => match def {
574                 Def::AssociatedConst(..) | Def::Method(..) if ns == ValueNS => true,
575                 Def::AssociatedTy(..) if ns == TypeNS => true,
576                 _ => false,
577             },
578             PathSource::ImportPrefix => match def {
579                 Def::Mod(..) | Def::Enum(..) => true,
580                 _ => false,
581             },
582             PathSource::Visibility => match def {
583                 Def::Mod(..) => true,
584                 _ => false,
585             },
586         }
587     }
588
589     fn error_code(self, has_unexpected_resolution: bool) -> &'static str {
590         __diagnostic_used!(E0404);
591         __diagnostic_used!(E0405);
592         __diagnostic_used!(E0412);
593         __diagnostic_used!(E0422);
594         __diagnostic_used!(E0423);
595         __diagnostic_used!(E0425);
596         __diagnostic_used!(E0531);
597         __diagnostic_used!(E0532);
598         __diagnostic_used!(E0573);
599         __diagnostic_used!(E0574);
600         __diagnostic_used!(E0575);
601         __diagnostic_used!(E0576);
602         __diagnostic_used!(E0577);
603         __diagnostic_used!(E0578);
604         match (self, has_unexpected_resolution) {
605             (PathSource::Trait(_), true) => "E0404",
606             (PathSource::Trait(_), false) => "E0405",
607             (PathSource::Type, true) => "E0573",
608             (PathSource::Type, false) => "E0412",
609             (PathSource::Struct, true) => "E0574",
610             (PathSource::Struct, false) => "E0422",
611             (PathSource::Expr(..), true) => "E0423",
612             (PathSource::Expr(..), false) => "E0425",
613             (PathSource::Pat, true) | (PathSource::TupleStruct, true) => "E0532",
614             (PathSource::Pat, false) | (PathSource::TupleStruct, false) => "E0531",
615             (PathSource::TraitItem(..), true) => "E0575",
616             (PathSource::TraitItem(..), false) => "E0576",
617             (PathSource::Visibility, true) | (PathSource::ImportPrefix, true) => "E0577",
618             (PathSource::Visibility, false) | (PathSource::ImportPrefix, false) => "E0578",
619         }
620     }
621 }
622
623 struct UsePlacementFinder {
624     target_module: NodeId,
625     span: Option<Span>,
626     found_use: bool,
627 }
628
629 impl UsePlacementFinder {
630     fn check(krate: &Crate, target_module: NodeId) -> (Option<Span>, bool) {
631         let mut finder = UsePlacementFinder {
632             target_module,
633             span: None,
634             found_use: false,
635         };
636         visit::walk_crate(&mut finder, krate);
637         (finder.span, finder.found_use)
638     }
639 }
640
641 impl<'tcx> Visitor<'tcx> for UsePlacementFinder {
642     fn visit_mod(
643         &mut self,
644         module: &'tcx ast::Mod,
645         _: Span,
646         _: &[ast::Attribute],
647         node_id: NodeId,
648     ) {
649         if self.span.is_some() {
650             return;
651         }
652         if node_id != self.target_module {
653             visit::walk_mod(self, module);
654             return;
655         }
656         // find a use statement
657         for item in &module.items {
658             match item.node {
659                 ItemKind::Use(..) => {
660                     // don't suggest placing a use before the prelude
661                     // import or other generated ones
662                     if item.span.ctxt().outer().expn_info().is_none() {
663                         self.span = Some(item.span.shrink_to_lo());
664                         self.found_use = true;
665                         return;
666                     }
667                 },
668                 // don't place use before extern crate
669                 ItemKind::ExternCrate(_) => {}
670                 // but place them before the first other item
671                 _ => if self.span.map_or(true, |span| item.span < span ) {
672                     if item.span.ctxt().outer().expn_info().is_none() {
673                         // don't insert between attributes and an item
674                         if item.attrs.is_empty() {
675                             self.span = Some(item.span.shrink_to_lo());
676                         } else {
677                             // find the first attribute on the item
678                             for attr in &item.attrs {
679                                 if self.span.map_or(true, |span| attr.span < span) {
680                                     self.span = Some(attr.span.shrink_to_lo());
681                                 }
682                             }
683                         }
684                     }
685                 },
686             }
687         }
688     }
689 }
690
691 /// This thing walks the whole crate in DFS manner, visiting each item, resolving names as it goes.
692 impl<'a, 'tcx> Visitor<'tcx> for Resolver<'a> {
693     fn visit_item(&mut self, item: &'tcx Item) {
694         self.resolve_item(item);
695     }
696     fn visit_arm(&mut self, arm: &'tcx Arm) {
697         self.resolve_arm(arm);
698     }
699     fn visit_block(&mut self, block: &'tcx Block) {
700         self.resolve_block(block);
701     }
702     fn visit_anon_const(&mut self, constant: &'tcx ast::AnonConst) {
703         self.with_constant_rib(|this| {
704             visit::walk_anon_const(this, constant);
705         });
706     }
707     fn visit_expr(&mut self, expr: &'tcx Expr) {
708         self.resolve_expr(expr, None);
709     }
710     fn visit_local(&mut self, local: &'tcx Local) {
711         self.resolve_local(local);
712     }
713     fn visit_ty(&mut self, ty: &'tcx Ty) {
714         match ty.node {
715             TyKind::Path(ref qself, ref path) => {
716                 self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
717             }
718             TyKind::ImplicitSelf => {
719                 let self_ty = keywords::SelfType.ident();
720                 let def = self.resolve_ident_in_lexical_scope(self_ty, TypeNS, true, ty.span)
721                               .map_or(Def::Err, |d| d.def());
722                 self.record_def(ty.id, PathResolution::new(def));
723             }
724             _ => (),
725         }
726         visit::walk_ty(self, ty);
727     }
728     fn visit_poly_trait_ref(&mut self,
729                             tref: &'tcx ast::PolyTraitRef,
730                             m: &'tcx ast::TraitBoundModifier) {
731         self.smart_resolve_path(tref.trait_ref.ref_id, None,
732                                 &tref.trait_ref.path, PathSource::Trait(AliasPossibility::Maybe));
733         visit::walk_poly_trait_ref(self, tref, m);
734     }
735     fn visit_foreign_item(&mut self, foreign_item: &'tcx ForeignItem) {
736         let type_parameters = match foreign_item.node {
737             ForeignItemKind::Fn(_, ref generics) => {
738                 HasTypeParameters(generics, ItemRibKind)
739             }
740             ForeignItemKind::Static(..) => NoTypeParameters,
741             ForeignItemKind::Ty => NoTypeParameters,
742             ForeignItemKind::Macro(..) => NoTypeParameters,
743         };
744         self.with_type_parameter_rib(type_parameters, |this| {
745             visit::walk_foreign_item(this, foreign_item);
746         });
747     }
748     fn visit_fn(&mut self,
749                 function_kind: FnKind<'tcx>,
750                 declaration: &'tcx FnDecl,
751                 _: Span,
752                 node_id: NodeId)
753     {
754         let (rib_kind, asyncness) = match function_kind {
755             FnKind::ItemFn(_, ref header, ..) =>
756                 (ItemRibKind, header.asyncness),
757             FnKind::Method(_, ref sig, _, _) =>
758                 (TraitOrImplItemRibKind, sig.header.asyncness),
759             FnKind::Closure(_) =>
760                 // Async closures aren't resolved through `visit_fn`-- they're
761                 // processed separately
762                 (ClosureRibKind(node_id), IsAsync::NotAsync),
763         };
764
765         // Create a value rib for the function.
766         self.ribs[ValueNS].push(Rib::new(rib_kind));
767
768         // Create a label rib for the function.
769         self.label_ribs.push(Rib::new(rib_kind));
770
771         // Add each argument to the rib.
772         let mut bindings_list = FxHashMap();
773         for argument in &declaration.inputs {
774             self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
775
776             self.visit_ty(&argument.ty);
777
778             debug!("(resolving function) recorded argument");
779         }
780         visit::walk_fn_ret_ty(self, &declaration.output);
781
782         // Resolve the function body, potentially inside the body of an async closure
783         if let IsAsync::Async { closure_id, .. } = asyncness {
784             let rib_kind = ClosureRibKind(closure_id);
785             self.ribs[ValueNS].push(Rib::new(rib_kind));
786             self.label_ribs.push(Rib::new(rib_kind));
787         }
788
789         match function_kind {
790             FnKind::ItemFn(.., body) |
791             FnKind::Method(.., body) => {
792                 self.visit_block(body);
793             }
794             FnKind::Closure(body) => {
795                 self.visit_expr(body);
796             }
797         };
798
799         // Leave the body of the async closure
800         if asyncness.is_async() {
801             self.label_ribs.pop();
802             self.ribs[ValueNS].pop();
803         }
804
805         debug!("(resolving function) leaving function");
806
807         self.label_ribs.pop();
808         self.ribs[ValueNS].pop();
809     }
810     fn visit_generics(&mut self, generics: &'tcx Generics) {
811         // For type parameter defaults, we have to ban access
812         // to following type parameters, as the Substs can only
813         // provide previous type parameters as they're built. We
814         // put all the parameters on the ban list and then remove
815         // them one by one as they are processed and become available.
816         let mut default_ban_rib = Rib::new(ForwardTyParamBanRibKind);
817         let mut found_default = false;
818         default_ban_rib.bindings.extend(generics.params.iter()
819             .filter_map(|param| match param.kind {
820                 GenericParamKind::Lifetime { .. } => None,
821                 GenericParamKind::Type { ref default, .. } => {
822                     if found_default || default.is_some() {
823                         found_default = true;
824                         return Some((Ident::with_empty_ctxt(param.ident.name), Def::Err));
825                     }
826                     None
827                 }
828             }));
829
830         for param in &generics.params {
831             match param.kind {
832                 GenericParamKind::Lifetime { .. } => self.visit_generic_param(param),
833                 GenericParamKind::Type { ref default, .. } => {
834                     for bound in &param.bounds {
835                         self.visit_param_bound(bound);
836                     }
837
838                     if let Some(ref ty) = default {
839                         self.ribs[TypeNS].push(default_ban_rib);
840                         self.visit_ty(ty);
841                         default_ban_rib = self.ribs[TypeNS].pop().unwrap();
842                     }
843
844                     // Allow all following defaults to refer to this type parameter.
845                     default_ban_rib.bindings.remove(&Ident::with_empty_ctxt(param.ident.name));
846                 }
847             }
848         }
849         for p in &generics.where_clause.predicates {
850             self.visit_where_predicate(p);
851         }
852     }
853 }
854
855 #[derive(Copy, Clone)]
856 enum TypeParameters<'a, 'b> {
857     NoTypeParameters,
858     HasTypeParameters(// Type parameters.
859                       &'b Generics,
860
861                       // The kind of the rib used for type parameters.
862                       RibKind<'a>),
863 }
864
865 /// The rib kind controls the translation of local
866 /// definitions (`Def::Local`) to upvars (`Def::Upvar`).
867 #[derive(Copy, Clone, Debug)]
868 enum RibKind<'a> {
869     /// No translation needs to be applied.
870     NormalRibKind,
871
872     /// We passed through a closure scope at the given node ID.
873     /// Translate upvars as appropriate.
874     ClosureRibKind(NodeId /* func id */),
875
876     /// We passed through an impl or trait and are now in one of its
877     /// methods or associated types. Allow references to ty params that impl or trait
878     /// binds. Disallow any other upvars (including other ty params that are
879     /// upvars).
880     TraitOrImplItemRibKind,
881
882     /// We passed through an item scope. Disallow upvars.
883     ItemRibKind,
884
885     /// We're in a constant item. Can't refer to dynamic stuff.
886     ConstantItemRibKind,
887
888     /// We passed through a module.
889     ModuleRibKind(Module<'a>),
890
891     /// We passed through a `macro_rules!` statement
892     MacroDefinition(DefId),
893
894     /// All bindings in this rib are type parameters that can't be used
895     /// from the default of a type parameter because they're not declared
896     /// before said type parameter. Also see the `visit_generics` override.
897     ForwardTyParamBanRibKind,
898 }
899
900 /// One local scope.
901 ///
902 /// A rib represents a scope names can live in. Note that these appear in many places, not just
903 /// around braces. At any place where the list of accessible names (of the given namespace)
904 /// changes or a new restrictions on the name accessibility are introduced, a new rib is put onto a
905 /// stack. This may be, for example, a `let` statement (because it introduces variables), a macro,
906 /// etc.
907 ///
908 /// Different [rib kinds](enum.RibKind) are transparent for different names.
909 ///
910 /// The resolution keeps a separate stack of ribs as it traverses the AST for each namespace. When
911 /// resolving, the name is looked up from inside out.
912 #[derive(Debug)]
913 struct Rib<'a> {
914     bindings: FxHashMap<Ident, Def>,
915     kind: RibKind<'a>,
916 }
917
918 impl<'a> Rib<'a> {
919     fn new(kind: RibKind<'a>) -> Rib<'a> {
920         Rib {
921             bindings: FxHashMap(),
922             kind,
923         }
924     }
925 }
926
927 /// An intermediate resolution result.
928 ///
929 /// This refers to the thing referred by a name. The difference between `Def` and `Item` is that
930 /// items are visible in their whole block, while defs only from the place they are defined
931 /// forward.
932 enum LexicalScopeBinding<'a> {
933     Item(&'a NameBinding<'a>),
934     Def(Def),
935 }
936
937 impl<'a> LexicalScopeBinding<'a> {
938     fn item(self) -> Option<&'a NameBinding<'a>> {
939         match self {
940             LexicalScopeBinding::Item(binding) => Some(binding),
941             _ => None,
942         }
943     }
944
945     fn def(self) -> Def {
946         match self {
947             LexicalScopeBinding::Item(binding) => binding.def(),
948             LexicalScopeBinding::Def(def) => def,
949         }
950     }
951 }
952
953 #[derive(Clone, Debug)]
954 enum PathResult<'a> {
955     Module(Module<'a>),
956     NonModule(PathResolution),
957     Indeterminate,
958     Failed(Span, String, bool /* is the error from the last segment? */),
959 }
960
961 enum ModuleKind {
962     /// An anonymous module, eg. just a block.
963     ///
964     /// ```
965     /// fn main() {
966     ///     fn f() {} // (1)
967     ///     { // This is an anonymous module
968     ///         f(); // This resolves to (2) as we are inside the block.
969     ///         fn f() {} // (2)
970     ///     }
971     ///     f(); // Resolves to (1)
972     /// }
973     /// ```
974     Block(NodeId),
975     /// Any module with a name.
976     ///
977     /// This could be:
978     ///
979     /// * A normal module â€’ either `mod from_file;` or `mod from_block { }`.
980     /// * A trait or an enum (it implicitly contains associated types, methods and variant
981     ///   constructors).
982     Def(Def, Name),
983 }
984
985 /// One node in the tree of modules.
986 pub struct ModuleData<'a> {
987     parent: Option<Module<'a>>,
988     kind: ModuleKind,
989
990     // The def id of the closest normal module (`mod`) ancestor (including this module).
991     normal_ancestor_id: DefId,
992
993     resolutions: RefCell<FxHashMap<(Ident, Namespace), &'a RefCell<NameResolution<'a>>>>,
994     legacy_macro_resolutions: RefCell<Vec<(Mark, Ident, MacroKind, Option<Def>)>>,
995     macro_resolutions: RefCell<Vec<(Box<[Ident]>, Span)>>,
996
997     // Macro invocations that can expand into items in this module.
998     unresolved_invocations: RefCell<FxHashSet<Mark>>,
999
1000     no_implicit_prelude: bool,
1001
1002     glob_importers: RefCell<Vec<&'a ImportDirective<'a>>>,
1003     globs: RefCell<Vec<&'a ImportDirective<'a>>>,
1004
1005     // Used to memoize the traits in this module for faster searches through all traits in scope.
1006     traits: RefCell<Option<Box<[(Ident, &'a NameBinding<'a>)]>>>,
1007
1008     // Whether this module is populated. If not populated, any attempt to
1009     // access the children must be preceded with a
1010     // `populate_module_if_necessary` call.
1011     populated: Cell<bool>,
1012
1013     /// Span of the module itself. Used for error reporting.
1014     span: Span,
1015
1016     expansion: Mark,
1017 }
1018
1019 type Module<'a> = &'a ModuleData<'a>;
1020
1021 impl<'a> ModuleData<'a> {
1022     fn new(parent: Option<Module<'a>>,
1023            kind: ModuleKind,
1024            normal_ancestor_id: DefId,
1025            expansion: Mark,
1026            span: Span) -> Self {
1027         ModuleData {
1028             parent,
1029             kind,
1030             normal_ancestor_id,
1031             resolutions: RefCell::new(FxHashMap()),
1032             legacy_macro_resolutions: RefCell::new(Vec::new()),
1033             macro_resolutions: RefCell::new(Vec::new()),
1034             unresolved_invocations: RefCell::new(FxHashSet()),
1035             no_implicit_prelude: false,
1036             glob_importers: RefCell::new(Vec::new()),
1037             globs: RefCell::new(Vec::new()),
1038             traits: RefCell::new(None),
1039             populated: Cell::new(normal_ancestor_id.is_local()),
1040             span,
1041             expansion,
1042         }
1043     }
1044
1045     fn for_each_child<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1046         for (&(ident, ns), name_resolution) in self.resolutions.borrow().iter() {
1047             name_resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1048         }
1049     }
1050
1051     fn for_each_child_stable<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1052         let resolutions = self.resolutions.borrow();
1053         let mut resolutions = resolutions.iter().collect::<Vec<_>>();
1054         resolutions.sort_by_cached_key(|&(&(ident, ns), _)| (ident.as_str(), ns));
1055         for &(&(ident, ns), &resolution) in resolutions.iter() {
1056             resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1057         }
1058     }
1059
1060     fn def(&self) -> Option<Def> {
1061         match self.kind {
1062             ModuleKind::Def(def, _) => Some(def),
1063             _ => None,
1064         }
1065     }
1066
1067     fn def_id(&self) -> Option<DefId> {
1068         self.def().as_ref().map(Def::def_id)
1069     }
1070
1071     // `self` resolves to the first module ancestor that `is_normal`.
1072     fn is_normal(&self) -> bool {
1073         match self.kind {
1074             ModuleKind::Def(Def::Mod(_), _) => true,
1075             _ => false,
1076         }
1077     }
1078
1079     fn is_trait(&self) -> bool {
1080         match self.kind {
1081             ModuleKind::Def(Def::Trait(_), _) => true,
1082             _ => false,
1083         }
1084     }
1085
1086     fn is_local(&self) -> bool {
1087         self.normal_ancestor_id.is_local()
1088     }
1089
1090     fn nearest_item_scope(&'a self) -> Module<'a> {
1091         if self.is_trait() { self.parent.unwrap() } else { self }
1092     }
1093 }
1094
1095 impl<'a> fmt::Debug for ModuleData<'a> {
1096     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1097         write!(f, "{:?}", self.def())
1098     }
1099 }
1100
1101 /// Records a possibly-private value, type, or module definition.
1102 #[derive(Clone, Debug)]
1103 pub struct NameBinding<'a> {
1104     kind: NameBindingKind<'a>,
1105     expansion: Mark,
1106     span: Span,
1107     vis: ty::Visibility,
1108 }
1109
1110 pub trait ToNameBinding<'a> {
1111     fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a>;
1112 }
1113
1114 impl<'a> ToNameBinding<'a> for &'a NameBinding<'a> {
1115     fn to_name_binding(self, _: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> {
1116         self
1117     }
1118 }
1119
1120 #[derive(Clone, Debug)]
1121 enum NameBindingKind<'a> {
1122     Def(Def),
1123     Module(Module<'a>),
1124     Import {
1125         binding: &'a NameBinding<'a>,
1126         directive: &'a ImportDirective<'a>,
1127         used: Cell<bool>,
1128     },
1129     Ambiguity {
1130         b1: &'a NameBinding<'a>,
1131         b2: &'a NameBinding<'a>,
1132     }
1133 }
1134
1135 struct PrivacyError<'a>(Span, Name, &'a NameBinding<'a>);
1136
1137 struct UseError<'a> {
1138     err: DiagnosticBuilder<'a>,
1139     /// Attach `use` statements for these candidates
1140     candidates: Vec<ImportSuggestion>,
1141     /// The node id of the module to place the use statements in
1142     node_id: NodeId,
1143     /// Whether the diagnostic should state that it's "better"
1144     better: bool,
1145 }
1146
1147 struct AmbiguityError<'a> {
1148     span: Span,
1149     name: Name,
1150     lexical: bool,
1151     b1: &'a NameBinding<'a>,
1152     b2: &'a NameBinding<'a>,
1153 }
1154
1155 impl<'a> NameBinding<'a> {
1156     fn module(&self) -> Option<Module<'a>> {
1157         match self.kind {
1158             NameBindingKind::Module(module) => Some(module),
1159             NameBindingKind::Import { binding, .. } => binding.module(),
1160             _ => None,
1161         }
1162     }
1163
1164     fn def(&self) -> Def {
1165         match self.kind {
1166             NameBindingKind::Def(def) => def,
1167             NameBindingKind::Module(module) => module.def().unwrap(),
1168             NameBindingKind::Import { binding, .. } => binding.def(),
1169             NameBindingKind::Ambiguity { .. } => Def::Err,
1170         }
1171     }
1172
1173     fn def_ignoring_ambiguity(&self) -> Def {
1174         match self.kind {
1175             NameBindingKind::Import { binding, .. } => binding.def_ignoring_ambiguity(),
1176             NameBindingKind::Ambiguity { b1, .. } => b1.def_ignoring_ambiguity(),
1177             _ => self.def(),
1178         }
1179     }
1180
1181     fn get_macro(&self, resolver: &mut Resolver<'a>) -> Lrc<SyntaxExtension> {
1182         resolver.get_macro(self.def_ignoring_ambiguity())
1183     }
1184
1185     // We sometimes need to treat variants as `pub` for backwards compatibility
1186     fn pseudo_vis(&self) -> ty::Visibility {
1187         if self.is_variant() && self.def().def_id().is_local() {
1188             ty::Visibility::Public
1189         } else {
1190             self.vis
1191         }
1192     }
1193
1194     fn is_variant(&self) -> bool {
1195         match self.kind {
1196             NameBindingKind::Def(Def::Variant(..)) |
1197             NameBindingKind::Def(Def::VariantCtor(..)) => true,
1198             _ => false,
1199         }
1200     }
1201
1202     fn is_extern_crate(&self) -> bool {
1203         match self.kind {
1204             NameBindingKind::Import {
1205                 directive: &ImportDirective {
1206                     subclass: ImportDirectiveSubclass::ExternCrate(_), ..
1207                 }, ..
1208             } => true,
1209             _ => false,
1210         }
1211     }
1212
1213     fn is_import(&self) -> bool {
1214         match self.kind {
1215             NameBindingKind::Import { .. } => true,
1216             _ => false,
1217         }
1218     }
1219
1220     fn is_renamed_extern_crate(&self) -> bool {
1221         if let NameBindingKind::Import { directive, ..} = self.kind {
1222             if let ImportDirectiveSubclass::ExternCrate(Some(_)) = directive.subclass {
1223                 return true;
1224             }
1225         }
1226         false
1227     }
1228
1229     fn is_glob_import(&self) -> bool {
1230         match self.kind {
1231             NameBindingKind::Import { directive, .. } => directive.is_glob(),
1232             NameBindingKind::Ambiguity { b1, .. } => b1.is_glob_import(),
1233             _ => false,
1234         }
1235     }
1236
1237     fn is_importable(&self) -> bool {
1238         match self.def() {
1239             Def::AssociatedConst(..) | Def::Method(..) | Def::AssociatedTy(..) => false,
1240             _ => true,
1241         }
1242     }
1243
1244     fn is_macro_def(&self) -> bool {
1245         match self.kind {
1246             NameBindingKind::Def(Def::Macro(..)) => true,
1247             _ => false,
1248         }
1249     }
1250
1251     fn descr(&self) -> &'static str {
1252         if self.is_extern_crate() { "extern crate" } else { self.def().kind_name() }
1253     }
1254 }
1255
1256 /// Interns the names of the primitive types.
1257 ///
1258 /// All other types are defined somewhere and possibly imported, but the primitive ones need
1259 /// special handling, since they have no place of origin.
1260 struct PrimitiveTypeTable {
1261     primitive_types: FxHashMap<Name, PrimTy>,
1262 }
1263
1264 impl PrimitiveTypeTable {
1265     fn new() -> PrimitiveTypeTable {
1266         let mut table = PrimitiveTypeTable { primitive_types: FxHashMap() };
1267
1268         table.intern("bool", TyBool);
1269         table.intern("char", TyChar);
1270         table.intern("f32", TyFloat(FloatTy::F32));
1271         table.intern("f64", TyFloat(FloatTy::F64));
1272         table.intern("isize", TyInt(IntTy::Isize));
1273         table.intern("i8", TyInt(IntTy::I8));
1274         table.intern("i16", TyInt(IntTy::I16));
1275         table.intern("i32", TyInt(IntTy::I32));
1276         table.intern("i64", TyInt(IntTy::I64));
1277         table.intern("i128", TyInt(IntTy::I128));
1278         table.intern("str", TyStr);
1279         table.intern("usize", TyUint(UintTy::Usize));
1280         table.intern("u8", TyUint(UintTy::U8));
1281         table.intern("u16", TyUint(UintTy::U16));
1282         table.intern("u32", TyUint(UintTy::U32));
1283         table.intern("u64", TyUint(UintTy::U64));
1284         table.intern("u128", TyUint(UintTy::U128));
1285         table
1286     }
1287
1288     fn intern(&mut self, string: &str, primitive_type: PrimTy) {
1289         self.primitive_types.insert(Symbol::intern(string), primitive_type);
1290     }
1291 }
1292
1293 /// The main resolver class.
1294 ///
1295 /// This is the visitor that walks the whole crate.
1296 pub struct Resolver<'a> {
1297     session: &'a Session,
1298     cstore: &'a dyn CrateStore,
1299
1300     pub definitions: Definitions,
1301
1302     graph_root: Module<'a>,
1303
1304     prelude: Option<Module<'a>>,
1305     extern_prelude: FxHashSet<Name>,
1306
1307     /// n.b. This is used only for better diagnostics, not name resolution itself.
1308     has_self: FxHashSet<DefId>,
1309
1310     /// Names of fields of an item `DefId` accessible with dot syntax.
1311     /// Used for hints during error reporting.
1312     field_names: FxHashMap<DefId, Vec<Name>>,
1313
1314     /// All imports known to succeed or fail.
1315     determined_imports: Vec<&'a ImportDirective<'a>>,
1316
1317     /// All non-determined imports.
1318     indeterminate_imports: Vec<&'a ImportDirective<'a>>,
1319
1320     /// The module that represents the current item scope.
1321     current_module: Module<'a>,
1322
1323     /// The current set of local scopes for types and values.
1324     /// FIXME #4948: Reuse ribs to avoid allocation.
1325     ribs: PerNS<Vec<Rib<'a>>>,
1326
1327     /// The current set of local scopes, for labels.
1328     label_ribs: Vec<Rib<'a>>,
1329
1330     /// The trait that the current context can refer to.
1331     current_trait_ref: Option<(Module<'a>, TraitRef)>,
1332
1333     /// The current self type if inside an impl (used for better errors).
1334     current_self_type: Option<Ty>,
1335
1336     /// The idents for the primitive types.
1337     primitive_type_table: PrimitiveTypeTable,
1338
1339     def_map: DefMap,
1340     import_map: ImportMap,
1341     pub freevars: FreevarMap,
1342     freevars_seen: NodeMap<NodeMap<usize>>,
1343     pub export_map: ExportMap,
1344     pub trait_map: TraitMap,
1345
1346     /// A map from nodes to anonymous modules.
1347     /// Anonymous modules are pseudo-modules that are implicitly created around items
1348     /// contained within blocks.
1349     ///
1350     /// For example, if we have this:
1351     ///
1352     ///  fn f() {
1353     ///      fn g() {
1354     ///          ...
1355     ///      }
1356     ///  }
1357     ///
1358     /// There will be an anonymous module created around `g` with the ID of the
1359     /// entry block for `f`.
1360     block_map: NodeMap<Module<'a>>,
1361     module_map: FxHashMap<DefId, Module<'a>>,
1362     extern_module_map: FxHashMap<(DefId, bool /* MacrosOnly? */), Module<'a>>,
1363
1364     pub make_glob_map: bool,
1365     /// Maps imports to the names of items actually imported (this actually maps
1366     /// all imports, but only glob imports are actually interesting).
1367     pub glob_map: GlobMap,
1368
1369     used_imports: FxHashSet<(NodeId, Namespace)>,
1370     pub maybe_unused_trait_imports: NodeSet,
1371     pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
1372
1373     /// A list of labels as of yet unused. Labels will be removed from this map when
1374     /// they are used (in a `break` or `continue` statement)
1375     pub unused_labels: FxHashMap<NodeId, Span>,
1376
1377     /// privacy errors are delayed until the end in order to deduplicate them
1378     privacy_errors: Vec<PrivacyError<'a>>,
1379     /// ambiguity errors are delayed for deduplication
1380     ambiguity_errors: Vec<AmbiguityError<'a>>,
1381     /// `use` injections are delayed for better placement and deduplication
1382     use_injections: Vec<UseError<'a>>,
1383     /// `use` injections for proc macros wrongly imported with #[macro_use]
1384     proc_mac_errors: Vec<macros::ProcMacError>,
1385
1386     gated_errors: FxHashSet<Span>,
1387     disallowed_shadowing: Vec<&'a LegacyBinding<'a>>,
1388
1389     arenas: &'a ResolverArenas<'a>,
1390     dummy_binding: &'a NameBinding<'a>,
1391     /// true if `#![feature(use_extern_macros)]`
1392     use_extern_macros: bool,
1393
1394     crate_loader: &'a mut dyn CrateLoader,
1395     macro_names: FxHashSet<Ident>,
1396     global_macros: FxHashMap<Name, &'a NameBinding<'a>>,
1397     pub all_macros: FxHashMap<Name, Def>,
1398     lexical_macro_resolutions: Vec<(Ident, &'a Cell<LegacyScope<'a>>)>,
1399     macro_map: FxHashMap<DefId, Lrc<SyntaxExtension>>,
1400     macro_defs: FxHashMap<Mark, DefId>,
1401     local_macro_def_scopes: FxHashMap<NodeId, Module<'a>>,
1402     macro_exports: Vec<Export>,
1403     pub whitelisted_legacy_custom_derives: Vec<Name>,
1404     pub found_unresolved_macro: bool,
1405
1406     /// List of crate local macros that we need to warn about as being unused.
1407     /// Right now this only includes macro_rules! macros, and macros 2.0.
1408     unused_macros: FxHashSet<DefId>,
1409
1410     /// Maps the `Mark` of an expansion to its containing module or block.
1411     invocations: FxHashMap<Mark, &'a InvocationData<'a>>,
1412
1413     /// Avoid duplicated errors for "name already defined".
1414     name_already_seen: FxHashMap<Name, Span>,
1415
1416     /// A set of procedural macros imported by `#[macro_use]` that have already been warned about
1417     warned_proc_macros: FxHashSet<Name>,
1418
1419     potentially_unused_imports: Vec<&'a ImportDirective<'a>>,
1420
1421     /// This table maps struct IDs into struct constructor IDs,
1422     /// it's not used during normal resolution, only for better error reporting.
1423     struct_constructors: DefIdMap<(Def, ty::Visibility)>,
1424
1425     /// Only used for better errors on `fn(): fn()`
1426     current_type_ascription: Vec<Span>,
1427
1428     injected_crate: Option<Module<'a>>,
1429
1430     /// Only supposed to be used by rustdoc, otherwise should be false.
1431     pub ignore_extern_prelude_feature: bool,
1432 }
1433
1434 /// Nothing really interesting here, it just provides memory for the rest of the crate.
1435 pub struct ResolverArenas<'a> {
1436     modules: arena::TypedArena<ModuleData<'a>>,
1437     local_modules: RefCell<Vec<Module<'a>>>,
1438     name_bindings: arena::TypedArena<NameBinding<'a>>,
1439     import_directives: arena::TypedArena<ImportDirective<'a>>,
1440     name_resolutions: arena::TypedArena<RefCell<NameResolution<'a>>>,
1441     invocation_data: arena::TypedArena<InvocationData<'a>>,
1442     legacy_bindings: arena::TypedArena<LegacyBinding<'a>>,
1443 }
1444
1445 impl<'a> ResolverArenas<'a> {
1446     fn alloc_module(&'a self, module: ModuleData<'a>) -> Module<'a> {
1447         let module = self.modules.alloc(module);
1448         if module.def_id().map(|def_id| def_id.is_local()).unwrap_or(true) {
1449             self.local_modules.borrow_mut().push(module);
1450         }
1451         module
1452     }
1453     fn local_modules(&'a self) -> ::std::cell::Ref<'a, Vec<Module<'a>>> {
1454         self.local_modules.borrow()
1455     }
1456     fn alloc_name_binding(&'a self, name_binding: NameBinding<'a>) -> &'a NameBinding<'a> {
1457         self.name_bindings.alloc(name_binding)
1458     }
1459     fn alloc_import_directive(&'a self, import_directive: ImportDirective<'a>)
1460                               -> &'a ImportDirective {
1461         self.import_directives.alloc(import_directive)
1462     }
1463     fn alloc_name_resolution(&'a self) -> &'a RefCell<NameResolution<'a>> {
1464         self.name_resolutions.alloc(Default::default())
1465     }
1466     fn alloc_invocation_data(&'a self, expansion_data: InvocationData<'a>)
1467                              -> &'a InvocationData<'a> {
1468         self.invocation_data.alloc(expansion_data)
1469     }
1470     fn alloc_legacy_binding(&'a self, binding: LegacyBinding<'a>) -> &'a LegacyBinding<'a> {
1471         self.legacy_bindings.alloc(binding)
1472     }
1473 }
1474
1475 impl<'a, 'b: 'a> ty::DefIdTree for &'a Resolver<'b> {
1476     fn parent(self, id: DefId) -> Option<DefId> {
1477         match id.krate {
1478             LOCAL_CRATE => self.definitions.def_key(id.index).parent,
1479             _ => self.cstore.def_key(id).parent,
1480         }.map(|index| DefId { index, ..id })
1481     }
1482 }
1483
1484 /// This interface is used through the AST→HIR step, to embed full paths into the HIR. After that
1485 /// the resolver is no longer needed as all the relevant information is inline.
1486 impl<'a> hir::lowering::Resolver for Resolver<'a> {
1487     fn resolve_hir_path(&mut self, path: &mut hir::Path, is_value: bool) {
1488         self.resolve_hir_path_cb(path, is_value,
1489                                  |resolver, span, error| resolve_error(resolver, span, error))
1490     }
1491
1492     fn resolve_str_path(
1493         &mut self,
1494         span: Span,
1495         crate_root: Option<&str>,
1496         components: &[&str],
1497         args: Option<P<hir::GenericArgs>>,
1498         is_value: bool
1499     ) -> hir::Path {
1500         let mut segments = iter::once(keywords::CrateRoot.ident())
1501             .chain(
1502                 crate_root.into_iter()
1503                     .chain(components.iter().cloned())
1504                     .map(Ident::from_str)
1505             ).map(hir::PathSegment::from_ident).collect::<Vec<_>>();
1506
1507         if let Some(args) = args {
1508             let ident = segments.last().unwrap().ident;
1509             *segments.last_mut().unwrap() = hir::PathSegment {
1510                 ident,
1511                 args: Some(args),
1512                 infer_types: true,
1513             };
1514         }
1515
1516         let mut path = hir::Path {
1517             span,
1518             def: Def::Err,
1519             segments: segments.into(),
1520         };
1521
1522         self.resolve_hir_path(&mut path, is_value);
1523         path
1524     }
1525
1526     fn get_resolution(&mut self, id: NodeId) -> Option<PathResolution> {
1527         self.def_map.get(&id).cloned()
1528     }
1529
1530     fn get_import(&mut self, id: NodeId) -> PerNS<Option<PathResolution>> {
1531         self.import_map.get(&id).cloned().unwrap_or_default()
1532     }
1533
1534     fn definitions(&mut self) -> &mut Definitions {
1535         &mut self.definitions
1536     }
1537 }
1538
1539 impl<'a> Resolver<'a> {
1540     /// Rustdoc uses this to resolve things in a recoverable way. ResolutionError<'a>
1541     /// isn't something that can be returned because it can't be made to live that long,
1542     /// and also it's a private type. Fortunately rustdoc doesn't need to know the error,
1543     /// just that an error occurred.
1544     pub fn resolve_str_path_error(&mut self, span: Span, path_str: &str, is_value: bool)
1545         -> Result<hir::Path, ()> {
1546         use std::iter;
1547         let mut errored = false;
1548
1549         let mut path = if path_str.starts_with("::") {
1550             hir::Path {
1551                 span,
1552                 def: Def::Err,
1553                 segments: iter::once(keywords::CrateRoot.ident()).chain({
1554                     path_str.split("::").skip(1).map(Ident::from_str)
1555                 }).map(hir::PathSegment::from_ident).collect(),
1556             }
1557         } else {
1558             hir::Path {
1559                 span,
1560                 def: Def::Err,
1561                 segments: path_str.split("::").map(Ident::from_str)
1562                                   .map(hir::PathSegment::from_ident).collect(),
1563             }
1564         };
1565         self.resolve_hir_path_cb(&mut path, is_value, |_, _, _| errored = true);
1566         if errored || path.def == Def::Err {
1567             Err(())
1568         } else {
1569             Ok(path)
1570         }
1571     }
1572
1573     /// resolve_hir_path, but takes a callback in case there was an error
1574     fn resolve_hir_path_cb<F>(&mut self, path: &mut hir::Path, is_value: bool, error_callback: F)
1575         where F: for<'c, 'b> FnOnce(&'c mut Resolver, Span, ResolutionError<'b>)
1576     {
1577         let namespace = if is_value { ValueNS } else { TypeNS };
1578         let hir::Path { ref segments, span, ref mut def } = *path;
1579         let path: Vec<_> = segments.iter().map(|seg| seg.ident).collect();
1580         // FIXME (Manishearth): Intra doc links won't get warned of epoch changes
1581         match self.resolve_path(&path, Some(namespace), true, span, CrateLint::No) {
1582             PathResult::Module(module) => *def = module.def().unwrap(),
1583             PathResult::NonModule(path_res) if path_res.unresolved_segments() == 0 =>
1584                 *def = path_res.base_def(),
1585             PathResult::NonModule(..) => match self.resolve_path(
1586                 &path,
1587                 None,
1588                 true,
1589                 span,
1590                 CrateLint::No,
1591             ) {
1592                 PathResult::Failed(span, msg, _) => {
1593                     error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1594                 }
1595                 _ => {}
1596             },
1597             PathResult::Indeterminate => unreachable!(),
1598             PathResult::Failed(span, msg, _) => {
1599                 error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1600             }
1601         }
1602     }
1603 }
1604
1605 impl<'a> Resolver<'a> {
1606     pub fn new(session: &'a Session,
1607                cstore: &'a dyn CrateStore,
1608                krate: &Crate,
1609                crate_name: &str,
1610                make_glob_map: MakeGlobMap,
1611                crate_loader: &'a mut dyn CrateLoader,
1612                arenas: &'a ResolverArenas<'a>)
1613                -> Resolver<'a> {
1614         let root_def_id = DefId::local(CRATE_DEF_INDEX);
1615         let root_module_kind = ModuleKind::Def(Def::Mod(root_def_id), keywords::Invalid.name());
1616         let graph_root = arenas.alloc_module(ModuleData {
1617             no_implicit_prelude: attr::contains_name(&krate.attrs, "no_implicit_prelude"),
1618             ..ModuleData::new(None, root_module_kind, root_def_id, Mark::root(), krate.span)
1619         });
1620         let mut module_map = FxHashMap();
1621         module_map.insert(DefId::local(CRATE_DEF_INDEX), graph_root);
1622
1623         let mut definitions = Definitions::new();
1624         DefCollector::new(&mut definitions, Mark::root())
1625             .collect_root(crate_name, session.local_crate_disambiguator());
1626
1627         let mut extern_prelude: FxHashSet<Name> =
1628             session.opts.externs.iter().map(|kv| Symbol::intern(kv.0)).collect();
1629         if !attr::contains_name(&krate.attrs, "no_core") {
1630             if !attr::contains_name(&krate.attrs, "no_std") {
1631                 extern_prelude.insert(Symbol::intern("std"));
1632             } else {
1633                 extern_prelude.insert(Symbol::intern("core"));
1634             }
1635         }
1636
1637         let mut invocations = FxHashMap();
1638         invocations.insert(Mark::root(),
1639                            arenas.alloc_invocation_data(InvocationData::root(graph_root)));
1640
1641         let features = session.features_untracked();
1642
1643         let mut macro_defs = FxHashMap();
1644         macro_defs.insert(Mark::root(), root_def_id);
1645
1646         Resolver {
1647             session,
1648
1649             cstore,
1650
1651             definitions,
1652
1653             // The outermost module has def ID 0; this is not reflected in the
1654             // AST.
1655             graph_root,
1656             prelude: None,
1657             extern_prelude,
1658
1659             has_self: FxHashSet(),
1660             field_names: FxHashMap(),
1661
1662             determined_imports: Vec::new(),
1663             indeterminate_imports: Vec::new(),
1664
1665             current_module: graph_root,
1666             ribs: PerNS {
1667                 value_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1668                 type_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1669                 macro_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1670             },
1671             label_ribs: Vec::new(),
1672
1673             current_trait_ref: None,
1674             current_self_type: None,
1675
1676             primitive_type_table: PrimitiveTypeTable::new(),
1677
1678             def_map: NodeMap(),
1679             import_map: NodeMap(),
1680             freevars: NodeMap(),
1681             freevars_seen: NodeMap(),
1682             export_map: FxHashMap(),
1683             trait_map: NodeMap(),
1684             module_map,
1685             block_map: NodeMap(),
1686             extern_module_map: FxHashMap(),
1687
1688             make_glob_map: make_glob_map == MakeGlobMap::Yes,
1689             glob_map: NodeMap(),
1690
1691             used_imports: FxHashSet(),
1692             maybe_unused_trait_imports: NodeSet(),
1693             maybe_unused_extern_crates: Vec::new(),
1694
1695             unused_labels: FxHashMap(),
1696
1697             privacy_errors: Vec::new(),
1698             ambiguity_errors: Vec::new(),
1699             use_injections: Vec::new(),
1700             proc_mac_errors: Vec::new(),
1701             gated_errors: FxHashSet(),
1702             disallowed_shadowing: Vec::new(),
1703
1704             arenas,
1705             dummy_binding: arenas.alloc_name_binding(NameBinding {
1706                 kind: NameBindingKind::Def(Def::Err),
1707                 expansion: Mark::root(),
1708                 span: DUMMY_SP,
1709                 vis: ty::Visibility::Public,
1710             }),
1711
1712             // The `proc_macro` and `decl_macro` features imply `use_extern_macros`
1713             use_extern_macros:
1714                 features.use_extern_macros || features.decl_macro,
1715
1716             crate_loader,
1717             macro_names: FxHashSet(),
1718             global_macros: FxHashMap(),
1719             all_macros: FxHashMap(),
1720             lexical_macro_resolutions: Vec::new(),
1721             macro_map: FxHashMap(),
1722             macro_exports: Vec::new(),
1723             invocations,
1724             macro_defs,
1725             local_macro_def_scopes: FxHashMap(),
1726             name_already_seen: FxHashMap(),
1727             whitelisted_legacy_custom_derives: Vec::new(),
1728             warned_proc_macros: FxHashSet(),
1729             potentially_unused_imports: Vec::new(),
1730             struct_constructors: DefIdMap(),
1731             found_unresolved_macro: false,
1732             unused_macros: FxHashSet(),
1733             current_type_ascription: Vec::new(),
1734             injected_crate: None,
1735             ignore_extern_prelude_feature: false,
1736         }
1737     }
1738
1739     pub fn arenas() -> ResolverArenas<'a> {
1740         ResolverArenas {
1741             modules: arena::TypedArena::new(),
1742             local_modules: RefCell::new(Vec::new()),
1743             name_bindings: arena::TypedArena::new(),
1744             import_directives: arena::TypedArena::new(),
1745             name_resolutions: arena::TypedArena::new(),
1746             invocation_data: arena::TypedArena::new(),
1747             legacy_bindings: arena::TypedArena::new(),
1748         }
1749     }
1750
1751     /// Runs the function on each namespace.
1752     fn per_ns<F: FnMut(&mut Self, Namespace)>(&mut self, mut f: F) {
1753         f(self, TypeNS);
1754         f(self, ValueNS);
1755         if self.use_extern_macros {
1756             f(self, MacroNS);
1757         }
1758     }
1759
1760     fn macro_def(&self, mut ctxt: SyntaxContext) -> DefId {
1761         loop {
1762             match self.macro_defs.get(&ctxt.outer()) {
1763                 Some(&def_id) => return def_id,
1764                 None => ctxt.remove_mark(),
1765             };
1766         }
1767     }
1768
1769     /// Entry point to crate resolution.
1770     pub fn resolve_crate(&mut self, krate: &Crate) {
1771         ImportResolver { resolver: self }.finalize_imports();
1772         self.current_module = self.graph_root;
1773         self.finalize_current_module_macro_resolutions();
1774
1775         visit::walk_crate(self, krate);
1776
1777         check_unused::check_crate(self, krate);
1778         self.report_errors(krate);
1779         self.crate_loader.postprocess(krate);
1780     }
1781
1782     fn new_module(
1783         &self,
1784         parent: Module<'a>,
1785         kind: ModuleKind,
1786         normal_ancestor_id: DefId,
1787         expansion: Mark,
1788         span: Span,
1789     ) -> Module<'a> {
1790         let module = ModuleData::new(Some(parent), kind, normal_ancestor_id, expansion, span);
1791         self.arenas.alloc_module(module)
1792     }
1793
1794     fn record_use(&mut self, ident: Ident, ns: Namespace, binding: &'a NameBinding<'a>, span: Span)
1795                   -> bool /* true if an error was reported */ {
1796         match binding.kind {
1797             NameBindingKind::Import { directive, binding, ref used }
1798                     if !used.get() => {
1799                 used.set(true);
1800                 directive.used.set(true);
1801                 self.used_imports.insert((directive.id, ns));
1802                 self.add_to_glob_map(directive.id, ident);
1803                 self.record_use(ident, ns, binding, span)
1804             }
1805             NameBindingKind::Import { .. } => false,
1806             NameBindingKind::Ambiguity { b1, b2 } => {
1807                 self.ambiguity_errors.push(AmbiguityError {
1808                     span, name: ident.name, lexical: false, b1, b2,
1809                 });
1810                 true
1811             }
1812             _ => false
1813         }
1814     }
1815
1816     fn add_to_glob_map(&mut self, id: NodeId, ident: Ident) {
1817         if self.make_glob_map {
1818             self.glob_map.entry(id).or_insert_with(FxHashSet).insert(ident.name);
1819         }
1820     }
1821
1822     /// This resolves the identifier `ident` in the namespace `ns` in the current lexical scope.
1823     /// More specifically, we proceed up the hierarchy of scopes and return the binding for
1824     /// `ident` in the first scope that defines it (or None if no scopes define it).
1825     ///
1826     /// A block's items are above its local variables in the scope hierarchy, regardless of where
1827     /// the items are defined in the block. For example,
1828     /// ```rust
1829     /// fn f() {
1830     ///    g(); // Since there are no local variables in scope yet, this resolves to the item.
1831     ///    let g = || {};
1832     ///    fn g() {}
1833     ///    g(); // This resolves to the local variable `g` since it shadows the item.
1834     /// }
1835     /// ```
1836     ///
1837     /// Invariant: This must only be called during main resolution, not during
1838     /// import resolution.
1839     fn resolve_ident_in_lexical_scope(&mut self,
1840                                       mut ident: Ident,
1841                                       ns: Namespace,
1842                                       record_used: bool,
1843                                       path_span: Span)
1844                                       -> Option<LexicalScopeBinding<'a>> {
1845         if ns == TypeNS {
1846             ident.span = if ident.name == keywords::SelfType.name() {
1847                 // FIXME(jseyfried) improve `Self` hygiene
1848                 ident.span.with_ctxt(SyntaxContext::empty())
1849             } else {
1850                 ident.span.modern()
1851             }
1852         } else {
1853             ident = ident.modern_and_legacy();
1854         }
1855
1856         // Walk backwards up the ribs in scope.
1857         let mut module = self.graph_root;
1858         for i in (0 .. self.ribs[ns].len()).rev() {
1859             if let Some(def) = self.ribs[ns][i].bindings.get(&ident).cloned() {
1860                 // The ident resolves to a type parameter or local variable.
1861                 return Some(LexicalScopeBinding::Def(
1862                     self.adjust_local_def(ns, i, def, record_used, path_span)
1863                 ));
1864             }
1865
1866             module = match self.ribs[ns][i].kind {
1867                 ModuleRibKind(module) => module,
1868                 MacroDefinition(def) if def == self.macro_def(ident.span.ctxt()) => {
1869                     // If an invocation of this macro created `ident`, give up on `ident`
1870                     // and switch to `ident`'s source from the macro definition.
1871                     ident.span.remove_mark();
1872                     continue
1873                 }
1874                 _ => continue,
1875             };
1876
1877             let item = self.resolve_ident_in_module_unadjusted(
1878                 module, ident, ns, false, record_used, path_span,
1879             );
1880             if let Ok(binding) = item {
1881                 // The ident resolves to an item.
1882                 return Some(LexicalScopeBinding::Item(binding));
1883             }
1884
1885             match module.kind {
1886                 ModuleKind::Block(..) => {}, // We can see through blocks
1887                 _ => break,
1888             }
1889         }
1890
1891         ident.span = ident.span.modern();
1892         loop {
1893             let (opt_module, poisoned) = if record_used {
1894                 self.hygienic_lexical_parent_with_compatibility_fallback(module, &mut ident.span)
1895             } else {
1896                 (self.hygienic_lexical_parent(module, &mut ident.span), false)
1897             };
1898             module = unwrap_or!(opt_module, break);
1899             let orig_current_module = self.current_module;
1900             self.current_module = module; // Lexical resolutions can never be a privacy error.
1901             let result = self.resolve_ident_in_module_unadjusted(
1902                 module, ident, ns, false, record_used, path_span,
1903             );
1904             self.current_module = orig_current_module;
1905
1906             match result {
1907                 Ok(binding) => {
1908                     if poisoned {
1909                         self.session.buffer_lint_with_diagnostic(
1910                             lint::builtin::PROC_MACRO_DERIVE_RESOLUTION_FALLBACK,
1911                             CRATE_NODE_ID, ident.span,
1912                             &format!("cannot find {} `{}` in this scope", ns.descr(), ident),
1913                             lint::builtin::BuiltinLintDiagnostics::
1914                                 ProcMacroDeriveResolutionFallback(ident.span),
1915                         );
1916                     }
1917                     return Some(LexicalScopeBinding::Item(binding))
1918                 }
1919                 _ if poisoned => break,
1920                 Err(Undetermined) => return None,
1921                 Err(Determined) => {}
1922             }
1923         }
1924
1925         if !module.no_implicit_prelude {
1926             // `record_used` means that we don't try to load crates during speculative resolution
1927             if record_used && ns == TypeNS && self.extern_prelude.contains(&ident.name) {
1928                 if !self.session.features_untracked().extern_prelude &&
1929                    !self.ignore_extern_prelude_feature {
1930                     feature_err(&self.session.parse_sess, "extern_prelude",
1931                                 ident.span, GateIssue::Language,
1932                                 "access to extern crates through prelude is experimental").emit();
1933                 }
1934
1935                 let crate_id = self.crate_loader.process_path_extern(ident.name, ident.span);
1936                 let crate_root = self.get_module(DefId { krate: crate_id, index: CRATE_DEF_INDEX });
1937                 self.populate_module_if_necessary(crate_root);
1938
1939                 let binding = (crate_root, ty::Visibility::Public,
1940                                ident.span, Mark::root()).to_name_binding(self.arenas);
1941                 return Some(LexicalScopeBinding::Item(binding));
1942             }
1943             if let Some(prelude) = self.prelude {
1944                 if let Ok(binding) = self.resolve_ident_in_module_unadjusted(prelude, ident, ns,
1945                                                                         false, false, path_span) {
1946                     return Some(LexicalScopeBinding::Item(binding));
1947                 }
1948             }
1949         }
1950
1951         None
1952     }
1953
1954     fn hygienic_lexical_parent(&mut self, module: Module<'a>, span: &mut Span)
1955                                -> Option<Module<'a>> {
1956         if !module.expansion.is_descendant_of(span.ctxt().outer()) {
1957             return Some(self.macro_def_scope(span.remove_mark()));
1958         }
1959
1960         if let ModuleKind::Block(..) = module.kind {
1961             return Some(module.parent.unwrap());
1962         }
1963
1964         None
1965     }
1966
1967     fn hygienic_lexical_parent_with_compatibility_fallback(
1968         &mut self, module: Module<'a>, span: &mut Span) -> (Option<Module<'a>>, /* poisoned */ bool
1969     ) {
1970         if let module @ Some(..) = self.hygienic_lexical_parent(module, span) {
1971             return (module, false);
1972         }
1973
1974         // We need to support the next case under a deprecation warning
1975         // ```
1976         // struct MyStruct;
1977         // ---- begin: this comes from a proc macro derive
1978         // mod implementation_details {
1979         //     // Note that `MyStruct` is not in scope here.
1980         //     impl SomeTrait for MyStruct { ... }
1981         // }
1982         // ---- end
1983         // ```
1984         // So we have to fall back to the module's parent during lexical resolution in this case.
1985         if let Some(parent) = module.parent {
1986             // Inner module is inside the macro, parent module is outside of the macro.
1987             if module.expansion != parent.expansion &&
1988             module.expansion.is_descendant_of(parent.expansion) {
1989                 // The macro is a proc macro derive
1990                 if module.expansion.looks_like_proc_macro_derive() {
1991                     if parent.expansion.is_descendant_of(span.ctxt().outer()) {
1992                         return (module.parent, true);
1993                     }
1994                 }
1995             }
1996         }
1997
1998         (None, false)
1999     }
2000
2001     fn resolve_ident_in_module(&mut self,
2002                                module: Module<'a>,
2003                                mut ident: Ident,
2004                                ns: Namespace,
2005                                ignore_unresolved_invocations: bool,
2006                                record_used: bool,
2007                                span: Span)
2008                                -> Result<&'a NameBinding<'a>, Determinacy> {
2009         ident.span = ident.span.modern();
2010         let orig_current_module = self.current_module;
2011         if let Some(def) = ident.span.adjust(module.expansion) {
2012             self.current_module = self.macro_def_scope(def);
2013         }
2014         let result = self.resolve_ident_in_module_unadjusted(
2015             module, ident, ns, ignore_unresolved_invocations, record_used, span,
2016         );
2017         self.current_module = orig_current_module;
2018         result
2019     }
2020
2021     fn resolve_crate_root(&mut self, ident: Ident) -> Module<'a> {
2022         let mut ctxt = ident.span.ctxt();
2023         let mark = if ident.name == keywords::DollarCrate.name() {
2024             // When resolving `$crate` from a `macro_rules!` invoked in a `macro`,
2025             // we don't want to pretend that the `macro_rules!` definition is in the `macro`
2026             // as described in `SyntaxContext::apply_mark`, so we ignore prepended modern marks.
2027             // FIXME: This is only a guess and it doesn't work correctly for `macro_rules!`
2028             // definitions actually produced by `macro` and `macro` definitions produced by
2029             // `macro_rules!`, but at least such configurations are not stable yet.
2030             ctxt = ctxt.modern_and_legacy();
2031             let mut iter = ctxt.marks().into_iter().rev().peekable();
2032             let mut result = None;
2033             // Find the last modern mark from the end if it exists.
2034             while let Some(&(mark, transparency)) = iter.peek() {
2035                 if transparency == Transparency::Opaque {
2036                     result = Some(mark);
2037                     iter.next();
2038                 } else {
2039                     break;
2040                 }
2041             }
2042             // Then find the last legacy mark from the end if it exists.
2043             for (mark, transparency) in iter {
2044                 if transparency == Transparency::SemiTransparent {
2045                     result = Some(mark);
2046                 } else {
2047                     break;
2048                 }
2049             }
2050             result
2051         } else {
2052             ctxt = ctxt.modern();
2053             ctxt.adjust(Mark::root())
2054         };
2055         let module = match mark {
2056             Some(def) => self.macro_def_scope(def),
2057             None => return self.graph_root,
2058         };
2059         self.get_module(DefId { index: CRATE_DEF_INDEX, ..module.normal_ancestor_id })
2060     }
2061
2062     fn resolve_self(&mut self, ctxt: &mut SyntaxContext, module: Module<'a>) -> Module<'a> {
2063         let mut module = self.get_module(module.normal_ancestor_id);
2064         while module.span.ctxt().modern() != *ctxt {
2065             let parent = module.parent.unwrap_or_else(|| self.macro_def_scope(ctxt.remove_mark()));
2066             module = self.get_module(parent.normal_ancestor_id);
2067         }
2068         module
2069     }
2070
2071     // AST resolution
2072     //
2073     // We maintain a list of value ribs and type ribs.
2074     //
2075     // Simultaneously, we keep track of the current position in the module
2076     // graph in the `current_module` pointer. When we go to resolve a name in
2077     // the value or type namespaces, we first look through all the ribs and
2078     // then query the module graph. When we resolve a name in the module
2079     // namespace, we can skip all the ribs (since nested modules are not
2080     // allowed within blocks in Rust) and jump straight to the current module
2081     // graph node.
2082     //
2083     // Named implementations are handled separately. When we find a method
2084     // call, we consult the module node to find all of the implementations in
2085     // scope. This information is lazily cached in the module node. We then
2086     // generate a fake "implementation scope" containing all the
2087     // implementations thus found, for compatibility with old resolve pass.
2088
2089     pub fn with_scope<F, T>(&mut self, id: NodeId, f: F) -> T
2090         where F: FnOnce(&mut Resolver) -> T
2091     {
2092         let id = self.definitions.local_def_id(id);
2093         let module = self.module_map.get(&id).cloned(); // clones a reference
2094         if let Some(module) = module {
2095             // Move down in the graph.
2096             let orig_module = replace(&mut self.current_module, module);
2097             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(module)));
2098             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(module)));
2099
2100             self.finalize_current_module_macro_resolutions();
2101             let ret = f(self);
2102
2103             self.current_module = orig_module;
2104             self.ribs[ValueNS].pop();
2105             self.ribs[TypeNS].pop();
2106             ret
2107         } else {
2108             f(self)
2109         }
2110     }
2111
2112     /// Searches the current set of local scopes for labels. Returns the first non-None label that
2113     /// is returned by the given predicate function
2114     ///
2115     /// Stops after meeting a closure.
2116     fn search_label<P, R>(&self, mut ident: Ident, pred: P) -> Option<R>
2117         where P: Fn(&Rib, Ident) -> Option<R>
2118     {
2119         for rib in self.label_ribs.iter().rev() {
2120             match rib.kind {
2121                 NormalRibKind => {}
2122                 // If an invocation of this macro created `ident`, give up on `ident`
2123                 // and switch to `ident`'s source from the macro definition.
2124                 MacroDefinition(def) => {
2125                     if def == self.macro_def(ident.span.ctxt()) {
2126                         ident.span.remove_mark();
2127                     }
2128                 }
2129                 _ => {
2130                     // Do not resolve labels across function boundary
2131                     return None;
2132                 }
2133             }
2134             let r = pred(rib, ident);
2135             if r.is_some() {
2136                 return r;
2137             }
2138         }
2139         None
2140     }
2141
2142     fn resolve_item(&mut self, item: &Item) {
2143         let name = item.ident.name;
2144
2145         debug!("(resolving item) resolving {}", name);
2146
2147         self.check_proc_macro_attrs(&item.attrs);
2148
2149         match item.node {
2150             ItemKind::Enum(_, ref generics) |
2151             ItemKind::Ty(_, ref generics) |
2152             ItemKind::Existential(_, ref generics) |
2153             ItemKind::Struct(_, ref generics) |
2154             ItemKind::Union(_, ref generics) |
2155             ItemKind::Fn(_, _, ref generics, _) => {
2156                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind),
2157                                          |this| visit::walk_item(this, item));
2158             }
2159
2160             ItemKind::Impl(.., ref generics, ref opt_trait_ref, ref self_type, ref impl_items) =>
2161                 self.resolve_implementation(generics,
2162                                             opt_trait_ref,
2163                                             &self_type,
2164                                             item.id,
2165                                             impl_items),
2166
2167             ItemKind::Trait(.., ref generics, ref bounds, ref trait_items) => {
2168                 // Create a new rib for the trait-wide type parameters.
2169                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2170                     let local_def_id = this.definitions.local_def_id(item.id);
2171                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2172                         this.visit_generics(generics);
2173                         walk_list!(this, visit_param_bound, bounds);
2174
2175                         for trait_item in trait_items {
2176                             this.check_proc_macro_attrs(&trait_item.attrs);
2177
2178                             let type_parameters = HasTypeParameters(&trait_item.generics,
2179                                                                     TraitOrImplItemRibKind);
2180                             this.with_type_parameter_rib(type_parameters, |this| {
2181                                 match trait_item.node {
2182                                     TraitItemKind::Const(ref ty, ref default) => {
2183                                         this.visit_ty(ty);
2184
2185                                         // Only impose the restrictions of
2186                                         // ConstRibKind for an actual constant
2187                                         // expression in a provided default.
2188                                         if let Some(ref expr) = *default{
2189                                             this.with_constant_rib(|this| {
2190                                                 this.visit_expr(expr);
2191                                             });
2192                                         }
2193                                     }
2194                                     TraitItemKind::Method(_, _) => {
2195                                         visit::walk_trait_item(this, trait_item)
2196                                     }
2197                                     TraitItemKind::Type(..) => {
2198                                         visit::walk_trait_item(this, trait_item)
2199                                     }
2200                                     TraitItemKind::Macro(_) => {
2201                                         panic!("unexpanded macro in resolve!")
2202                                     }
2203                                 };
2204                             });
2205                         }
2206                     });
2207                 });
2208             }
2209
2210             ItemKind::TraitAlias(ref generics, ref bounds) => {
2211                 // Create a new rib for the trait-wide type parameters.
2212                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2213                     let local_def_id = this.definitions.local_def_id(item.id);
2214                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2215                         this.visit_generics(generics);
2216                         walk_list!(this, visit_param_bound, bounds);
2217                     });
2218                 });
2219             }
2220
2221             ItemKind::Mod(_) | ItemKind::ForeignMod(_) => {
2222                 self.with_scope(item.id, |this| {
2223                     visit::walk_item(this, item);
2224                 });
2225             }
2226
2227             ItemKind::Static(ref ty, _, ref expr) |
2228             ItemKind::Const(ref ty, ref expr) => {
2229                 self.with_item_rib(|this| {
2230                     this.visit_ty(ty);
2231                     this.with_constant_rib(|this| {
2232                         this.visit_expr(expr);
2233                     });
2234                 });
2235             }
2236
2237             ItemKind::Use(ref use_tree) => {
2238                 // Imports are resolved as global by default, add starting root segment.
2239                 let path = Path {
2240                     segments: use_tree.prefix.make_root().into_iter().collect(),
2241                     span: use_tree.span,
2242                 };
2243                 self.resolve_use_tree(item.id, use_tree.span, item.id, use_tree, &path);
2244             }
2245
2246             ItemKind::ExternCrate(_) | ItemKind::MacroDef(..) | ItemKind::GlobalAsm(_) => {
2247                 // do nothing, these are just around to be encoded
2248             }
2249
2250             ItemKind::Mac(_) => panic!("unexpanded macro in resolve!"),
2251         }
2252     }
2253
2254     /// For the most part, use trees are desugared into `ImportDirective` instances
2255     /// when building the reduced graph (see `build_reduced_graph_for_use_tree`). But
2256     /// there is one special case we handle here: an empty nested import like
2257     /// `a::{b::{}}`, which desugares into...no import directives.
2258     fn resolve_use_tree(
2259         &mut self,
2260         root_id: NodeId,
2261         root_span: Span,
2262         id: NodeId,
2263         use_tree: &ast::UseTree,
2264         prefix: &Path,
2265     ) {
2266         match use_tree.kind {
2267             ast::UseTreeKind::Nested(ref items) => {
2268                 let path = Path {
2269                     segments: prefix.segments
2270                         .iter()
2271                         .chain(use_tree.prefix.segments.iter())
2272                         .cloned()
2273                         .collect(),
2274                     span: prefix.span.to(use_tree.prefix.span),
2275                 };
2276
2277                 if items.len() == 0 {
2278                     // Resolve prefix of an import with empty braces (issue #28388).
2279                     self.smart_resolve_path_with_crate_lint(
2280                         id,
2281                         None,
2282                         &path,
2283                         PathSource::ImportPrefix,
2284                         CrateLint::UsePath { root_id, root_span },
2285                     );
2286                 } else {
2287                     for &(ref tree, nested_id) in items {
2288                         self.resolve_use_tree(root_id, root_span, nested_id, tree, &path);
2289                     }
2290                 }
2291             }
2292             ast::UseTreeKind::Simple(..) => {},
2293             ast::UseTreeKind::Glob => {},
2294         }
2295     }
2296
2297     fn with_type_parameter_rib<'b, F>(&'b mut self, type_parameters: TypeParameters<'a, 'b>, f: F)
2298         where F: FnOnce(&mut Resolver)
2299     {
2300         match type_parameters {
2301             HasTypeParameters(generics, rib_kind) => {
2302                 let mut function_type_rib = Rib::new(rib_kind);
2303                 let mut seen_bindings = FxHashMap();
2304                 generics.params.iter().for_each(|param| match param.kind {
2305                     GenericParamKind::Lifetime { .. } => {}
2306                     GenericParamKind::Type { .. } => {
2307                         let ident = param.ident.modern();
2308                         debug!("with_type_parameter_rib: {}", param.id);
2309
2310                         if seen_bindings.contains_key(&ident) {
2311                             let span = seen_bindings.get(&ident).unwrap();
2312                             let err = ResolutionError::NameAlreadyUsedInTypeParameterList(
2313                                 ident.name,
2314                                 span,
2315                             );
2316                             resolve_error(self, param.ident.span, err);
2317                         }
2318                         seen_bindings.entry(ident).or_insert(param.ident.span);
2319
2320                     // Plain insert (no renaming).
2321                     let def = Def::TyParam(self.definitions.local_def_id(param.id));
2322                         function_type_rib.bindings.insert(ident, def);
2323                         self.record_def(param.id, PathResolution::new(def));
2324                     }
2325                 });
2326                 self.ribs[TypeNS].push(function_type_rib);
2327             }
2328
2329             NoTypeParameters => {
2330                 // Nothing to do.
2331             }
2332         }
2333
2334         f(self);
2335
2336         if let HasTypeParameters(..) = type_parameters {
2337             self.ribs[TypeNS].pop();
2338         }
2339     }
2340
2341     fn with_label_rib<F>(&mut self, f: F)
2342         where F: FnOnce(&mut Resolver)
2343     {
2344         self.label_ribs.push(Rib::new(NormalRibKind));
2345         f(self);
2346         self.label_ribs.pop();
2347     }
2348
2349     fn with_item_rib<F>(&mut self, f: F)
2350         where F: FnOnce(&mut Resolver)
2351     {
2352         self.ribs[ValueNS].push(Rib::new(ItemRibKind));
2353         self.ribs[TypeNS].push(Rib::new(ItemRibKind));
2354         f(self);
2355         self.ribs[TypeNS].pop();
2356         self.ribs[ValueNS].pop();
2357     }
2358
2359     fn with_constant_rib<F>(&mut self, f: F)
2360         where F: FnOnce(&mut Resolver)
2361     {
2362         self.ribs[ValueNS].push(Rib::new(ConstantItemRibKind));
2363         f(self);
2364         self.ribs[ValueNS].pop();
2365     }
2366
2367     fn with_current_self_type<T, F>(&mut self, self_type: &Ty, f: F) -> T
2368         where F: FnOnce(&mut Resolver) -> T
2369     {
2370         // Handle nested impls (inside fn bodies)
2371         let previous_value = replace(&mut self.current_self_type, Some(self_type.clone()));
2372         let result = f(self);
2373         self.current_self_type = previous_value;
2374         result
2375     }
2376
2377     /// This is called to resolve a trait reference from an `impl` (i.e. `impl Trait for Foo`)
2378     fn with_optional_trait_ref<T, F>(&mut self, opt_trait_ref: Option<&TraitRef>, f: F) -> T
2379         where F: FnOnce(&mut Resolver, Option<DefId>) -> T
2380     {
2381         let mut new_val = None;
2382         let mut new_id = None;
2383         if let Some(trait_ref) = opt_trait_ref {
2384             let path: Vec<_> = trait_ref.path.segments.iter()
2385                 .map(|seg| seg.ident)
2386                 .collect();
2387             let def = self.smart_resolve_path_fragment(
2388                 trait_ref.ref_id,
2389                 None,
2390                 &path,
2391                 trait_ref.path.span,
2392                 PathSource::Trait(AliasPossibility::No),
2393                 CrateLint::SimplePath(trait_ref.ref_id),
2394             ).base_def();
2395             if def != Def::Err {
2396                 new_id = Some(def.def_id());
2397                 let span = trait_ref.path.span;
2398                 if let PathResult::Module(module) = self.resolve_path(
2399                     &path,
2400                     None,
2401                     false,
2402                     span,
2403                     CrateLint::SimplePath(trait_ref.ref_id),
2404                 ) {
2405                     new_val = Some((module, trait_ref.clone()));
2406                 }
2407             }
2408         }
2409         let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
2410         let result = f(self, new_id);
2411         self.current_trait_ref = original_trait_ref;
2412         result
2413     }
2414
2415     fn with_self_rib<F>(&mut self, self_def: Def, f: F)
2416         where F: FnOnce(&mut Resolver)
2417     {
2418         let mut self_type_rib = Rib::new(NormalRibKind);
2419
2420         // plain insert (no renaming, types are not currently hygienic....)
2421         self_type_rib.bindings.insert(keywords::SelfType.ident(), self_def);
2422         self.ribs[TypeNS].push(self_type_rib);
2423         f(self);
2424         self.ribs[TypeNS].pop();
2425     }
2426
2427     fn resolve_implementation(&mut self,
2428                               generics: &Generics,
2429                               opt_trait_reference: &Option<TraitRef>,
2430                               self_type: &Ty,
2431                               item_id: NodeId,
2432                               impl_items: &[ImplItem]) {
2433         // If applicable, create a rib for the type parameters.
2434         self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2435             // Dummy self type for better errors if `Self` is used in the trait path.
2436             this.with_self_rib(Def::SelfTy(None, None), |this| {
2437                 // Resolve the trait reference, if necessary.
2438                 this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| {
2439                     let item_def_id = this.definitions.local_def_id(item_id);
2440                     this.with_self_rib(Def::SelfTy(trait_id, Some(item_def_id)), |this| {
2441                         if let Some(trait_ref) = opt_trait_reference.as_ref() {
2442                             // Resolve type arguments in trait path
2443                             visit::walk_trait_ref(this, trait_ref);
2444                         }
2445                         // Resolve the self type.
2446                         this.visit_ty(self_type);
2447                         // Resolve the type parameters.
2448                         this.visit_generics(generics);
2449                         this.with_current_self_type(self_type, |this| {
2450                             for impl_item in impl_items {
2451                                 this.check_proc_macro_attrs(&impl_item.attrs);
2452                                 this.resolve_visibility(&impl_item.vis);
2453
2454                                 // We also need a new scope for the impl item type parameters.
2455                                 let type_parameters = HasTypeParameters(&impl_item.generics,
2456                                                                         TraitOrImplItemRibKind);
2457                                 this.with_type_parameter_rib(type_parameters, |this| {
2458                                     use self::ResolutionError::*;
2459                                     match impl_item.node {
2460                                         ImplItemKind::Const(..) => {
2461                                             // If this is a trait impl, ensure the const
2462                                             // exists in trait
2463                                             this.check_trait_item(impl_item.ident,
2464                                                                 ValueNS,
2465                                                                 impl_item.span,
2466                                                 |n, s| ConstNotMemberOfTrait(n, s));
2467                                             this.with_constant_rib(|this|
2468                                                 visit::walk_impl_item(this, impl_item)
2469                                             );
2470                                         }
2471                                         ImplItemKind::Method(..) => {
2472                                             // If this is a trait impl, ensure the method
2473                                             // exists in trait
2474                                             this.check_trait_item(impl_item.ident,
2475                                                                 ValueNS,
2476                                                                 impl_item.span,
2477                                                 |n, s| MethodNotMemberOfTrait(n, s));
2478
2479                                             visit::walk_impl_item(this, impl_item);
2480                                         }
2481                                         ImplItemKind::Type(ref ty) => {
2482                                             // If this is a trait impl, ensure the type
2483                                             // exists in trait
2484                                             this.check_trait_item(impl_item.ident,
2485                                                                 TypeNS,
2486                                                                 impl_item.span,
2487                                                 |n, s| TypeNotMemberOfTrait(n, s));
2488
2489                                             this.visit_ty(ty);
2490                                         }
2491                                         ImplItemKind::Existential(ref bounds) => {
2492                                             // If this is a trait impl, ensure the type
2493                                             // exists in trait
2494                                             this.check_trait_item(impl_item.ident,
2495                                                                 TypeNS,
2496                                                                 impl_item.span,
2497                                                 |n, s| TypeNotMemberOfTrait(n, s));
2498
2499                                             for bound in bounds {
2500                                                 this.visit_param_bound(bound);
2501                                             }
2502                                         }
2503                                         ImplItemKind::Macro(_) =>
2504                                             panic!("unexpanded macro in resolve!"),
2505                                     }
2506                                 });
2507                             }
2508                         });
2509                     });
2510                 });
2511             });
2512         });
2513     }
2514
2515     fn check_trait_item<F>(&mut self, ident: Ident, ns: Namespace, span: Span, err: F)
2516         where F: FnOnce(Name, &str) -> ResolutionError
2517     {
2518         // If there is a TraitRef in scope for an impl, then the method must be in the
2519         // trait.
2520         if let Some((module, _)) = self.current_trait_ref {
2521             if self.resolve_ident_in_module(module, ident, ns, false, false, span).is_err() {
2522                 let path = &self.current_trait_ref.as_ref().unwrap().1.path;
2523                 resolve_error(self, span, err(ident.name, &path_names_to_string(path)));
2524             }
2525         }
2526     }
2527
2528     fn resolve_local(&mut self, local: &Local) {
2529         // Resolve the type.
2530         walk_list!(self, visit_ty, &local.ty);
2531
2532         // Resolve the initializer.
2533         walk_list!(self, visit_expr, &local.init);
2534
2535         // Resolve the pattern.
2536         self.resolve_pattern(&local.pat, PatternSource::Let, &mut FxHashMap());
2537     }
2538
2539     // build a map from pattern identifiers to binding-info's.
2540     // this is done hygienically. This could arise for a macro
2541     // that expands into an or-pattern where one 'x' was from the
2542     // user and one 'x' came from the macro.
2543     fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
2544         let mut binding_map = FxHashMap();
2545
2546         pat.walk(&mut |pat| {
2547             if let PatKind::Ident(binding_mode, ident, ref sub_pat) = pat.node {
2548                 if sub_pat.is_some() || match self.def_map.get(&pat.id).map(|res| res.base_def()) {
2549                     Some(Def::Local(..)) => true,
2550                     _ => false,
2551                 } {
2552                     let binding_info = BindingInfo { span: ident.span, binding_mode: binding_mode };
2553                     binding_map.insert(ident, binding_info);
2554                 }
2555             }
2556             true
2557         });
2558
2559         binding_map
2560     }
2561
2562     // check that all of the arms in an or-pattern have exactly the
2563     // same set of bindings, with the same binding modes for each.
2564     fn check_consistent_bindings(&mut self, pats: &[P<Pat>]) {
2565         if pats.is_empty() {
2566             return;
2567         }
2568
2569         let mut missing_vars = FxHashMap();
2570         let mut inconsistent_vars = FxHashMap();
2571         for (i, p) in pats.iter().enumerate() {
2572             let map_i = self.binding_mode_map(&p);
2573
2574             for (j, q) in pats.iter().enumerate() {
2575                 if i == j {
2576                     continue;
2577                 }
2578
2579                 let map_j = self.binding_mode_map(&q);
2580                 for (&key, &binding_i) in &map_i {
2581                     if map_j.len() == 0 {                   // Account for missing bindings when
2582                         let binding_error = missing_vars    // map_j has none.
2583                             .entry(key.name)
2584                             .or_insert(BindingError {
2585                                 name: key.name,
2586                                 origin: BTreeSet::new(),
2587                                 target: BTreeSet::new(),
2588                             });
2589                         binding_error.origin.insert(binding_i.span);
2590                         binding_error.target.insert(q.span);
2591                     }
2592                     for (&key_j, &binding_j) in &map_j {
2593                         match map_i.get(&key_j) {
2594                             None => {  // missing binding
2595                                 let binding_error = missing_vars
2596                                     .entry(key_j.name)
2597                                     .or_insert(BindingError {
2598                                         name: key_j.name,
2599                                         origin: BTreeSet::new(),
2600                                         target: BTreeSet::new(),
2601                                     });
2602                                 binding_error.origin.insert(binding_j.span);
2603                                 binding_error.target.insert(p.span);
2604                             }
2605                             Some(binding_i) => {  // check consistent binding
2606                                 if binding_i.binding_mode != binding_j.binding_mode {
2607                                     inconsistent_vars
2608                                         .entry(key.name)
2609                                         .or_insert((binding_j.span, binding_i.span));
2610                                 }
2611                             }
2612                         }
2613                     }
2614                 }
2615             }
2616         }
2617         let mut missing_vars = missing_vars.iter().collect::<Vec<_>>();
2618         missing_vars.sort();
2619         for (_, v) in missing_vars {
2620             resolve_error(self,
2621                           *v.origin.iter().next().unwrap(),
2622                           ResolutionError::VariableNotBoundInPattern(v));
2623         }
2624         let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
2625         inconsistent_vars.sort();
2626         for (name, v) in inconsistent_vars {
2627             resolve_error(self, v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
2628         }
2629     }
2630
2631     fn resolve_arm(&mut self, arm: &Arm) {
2632         self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2633
2634         let mut bindings_list = FxHashMap();
2635         for pattern in &arm.pats {
2636             self.resolve_pattern(&pattern, PatternSource::Match, &mut bindings_list);
2637         }
2638
2639         // This has to happen *after* we determine which pat_idents are variants
2640         self.check_consistent_bindings(&arm.pats);
2641
2642         walk_list!(self, visit_expr, &arm.guard);
2643         self.visit_expr(&arm.body);
2644
2645         self.ribs[ValueNS].pop();
2646     }
2647
2648     fn resolve_block(&mut self, block: &Block) {
2649         debug!("(resolving block) entering block");
2650         // Move down in the graph, if there's an anonymous module rooted here.
2651         let orig_module = self.current_module;
2652         let anonymous_module = self.block_map.get(&block.id).cloned(); // clones a reference
2653
2654         let mut num_macro_definition_ribs = 0;
2655         if let Some(anonymous_module) = anonymous_module {
2656             debug!("(resolving block) found anonymous module, moving down");
2657             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2658             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2659             self.current_module = anonymous_module;
2660             self.finalize_current_module_macro_resolutions();
2661         } else {
2662             self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2663         }
2664
2665         // Descend into the block.
2666         for stmt in &block.stmts {
2667             if let ast::StmtKind::Item(ref item) = stmt.node {
2668                 if let ast::ItemKind::MacroDef(..) = item.node {
2669                     num_macro_definition_ribs += 1;
2670                     let def = self.definitions.local_def_id(item.id);
2671                     self.ribs[ValueNS].push(Rib::new(MacroDefinition(def)));
2672                     self.label_ribs.push(Rib::new(MacroDefinition(def)));
2673                 }
2674             }
2675
2676             self.visit_stmt(stmt);
2677         }
2678
2679         // Move back up.
2680         self.current_module = orig_module;
2681         for _ in 0 .. num_macro_definition_ribs {
2682             self.ribs[ValueNS].pop();
2683             self.label_ribs.pop();
2684         }
2685         self.ribs[ValueNS].pop();
2686         if let Some(_) = anonymous_module {
2687             self.ribs[TypeNS].pop();
2688         }
2689         debug!("(resolving block) leaving block");
2690     }
2691
2692     fn fresh_binding(&mut self,
2693                      ident: Ident,
2694                      pat_id: NodeId,
2695                      outer_pat_id: NodeId,
2696                      pat_src: PatternSource,
2697                      bindings: &mut FxHashMap<Ident, NodeId>)
2698                      -> PathResolution {
2699         // Add the binding to the local ribs, if it
2700         // doesn't already exist in the bindings map. (We
2701         // must not add it if it's in the bindings map
2702         // because that breaks the assumptions later
2703         // passes make about or-patterns.)
2704         let ident = ident.modern_and_legacy();
2705         let mut def = Def::Local(pat_id);
2706         match bindings.get(&ident).cloned() {
2707             Some(id) if id == outer_pat_id => {
2708                 // `Variant(a, a)`, error
2709                 resolve_error(
2710                     self,
2711                     ident.span,
2712                     ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(
2713                         &ident.as_str())
2714                 );
2715             }
2716             Some(..) if pat_src == PatternSource::FnParam => {
2717                 // `fn f(a: u8, a: u8)`, error
2718                 resolve_error(
2719                     self,
2720                     ident.span,
2721                     ResolutionError::IdentifierBoundMoreThanOnceInParameterList(
2722                         &ident.as_str())
2723                 );
2724             }
2725             Some(..) if pat_src == PatternSource::Match ||
2726                         pat_src == PatternSource::IfLet ||
2727                         pat_src == PatternSource::WhileLet => {
2728                 // `Variant1(a) | Variant2(a)`, ok
2729                 // Reuse definition from the first `a`.
2730                 def = self.ribs[ValueNS].last_mut().unwrap().bindings[&ident];
2731             }
2732             Some(..) => {
2733                 span_bug!(ident.span, "two bindings with the same name from \
2734                                        unexpected pattern source {:?}", pat_src);
2735             }
2736             None => {
2737                 // A completely fresh binding, add to the lists if it's valid.
2738                 if ident.name != keywords::Invalid.name() {
2739                     bindings.insert(ident, outer_pat_id);
2740                     self.ribs[ValueNS].last_mut().unwrap().bindings.insert(ident, def);
2741                 }
2742             }
2743         }
2744
2745         PathResolution::new(def)
2746     }
2747
2748     fn resolve_pattern(&mut self,
2749                        pat: &Pat,
2750                        pat_src: PatternSource,
2751                        // Maps idents to the node ID for the
2752                        // outermost pattern that binds them.
2753                        bindings: &mut FxHashMap<Ident, NodeId>) {
2754         // Visit all direct subpatterns of this pattern.
2755         let outer_pat_id = pat.id;
2756         pat.walk(&mut |pat| {
2757             match pat.node {
2758                 PatKind::Ident(bmode, ident, ref opt_pat) => {
2759                     // First try to resolve the identifier as some existing
2760                     // entity, then fall back to a fresh binding.
2761                     let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS,
2762                                                                       false, pat.span)
2763                                       .and_then(LexicalScopeBinding::item);
2764                     let resolution = binding.map(NameBinding::def).and_then(|def| {
2765                         let is_syntactic_ambiguity = opt_pat.is_none() &&
2766                             bmode == BindingMode::ByValue(Mutability::Immutable);
2767                         match def {
2768                             Def::StructCtor(_, CtorKind::Const) |
2769                             Def::VariantCtor(_, CtorKind::Const) |
2770                             Def::Const(..) if is_syntactic_ambiguity => {
2771                                 // Disambiguate in favor of a unit struct/variant
2772                                 // or constant pattern.
2773                                 self.record_use(ident, ValueNS, binding.unwrap(), ident.span);
2774                                 Some(PathResolution::new(def))
2775                             }
2776                             Def::StructCtor(..) | Def::VariantCtor(..) |
2777                             Def::Const(..) | Def::Static(..) => {
2778                                 // This is unambiguously a fresh binding, either syntactically
2779                                 // (e.g. `IDENT @ PAT` or `ref IDENT`) or because `IDENT` resolves
2780                                 // to something unusable as a pattern (e.g. constructor function),
2781                                 // but we still conservatively report an error, see
2782                                 // issues/33118#issuecomment-233962221 for one reason why.
2783                                 resolve_error(
2784                                     self,
2785                                     ident.span,
2786                                     ResolutionError::BindingShadowsSomethingUnacceptable(
2787                                         pat_src.descr(), ident.name, binding.unwrap())
2788                                 );
2789                                 None
2790                             }
2791                             Def::Fn(..) | Def::Err => {
2792                                 // These entities are explicitly allowed
2793                                 // to be shadowed by fresh bindings.
2794                                 None
2795                             }
2796                             def => {
2797                                 span_bug!(ident.span, "unexpected definition for an \
2798                                                        identifier in pattern: {:?}", def);
2799                             }
2800                         }
2801                     }).unwrap_or_else(|| {
2802                         self.fresh_binding(ident, pat.id, outer_pat_id, pat_src, bindings)
2803                     });
2804
2805                     self.record_def(pat.id, resolution);
2806                 }
2807
2808                 PatKind::TupleStruct(ref path, ..) => {
2809                     self.smart_resolve_path(pat.id, None, path, PathSource::TupleStruct);
2810                 }
2811
2812                 PatKind::Path(ref qself, ref path) => {
2813                     self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
2814                 }
2815
2816                 PatKind::Struct(ref path, ..) => {
2817                     self.smart_resolve_path(pat.id, None, path, PathSource::Struct);
2818                 }
2819
2820                 _ => {}
2821             }
2822             true
2823         });
2824
2825         visit::walk_pat(self, pat);
2826     }
2827
2828     // High-level and context dependent path resolution routine.
2829     // Resolves the path and records the resolution into definition map.
2830     // If resolution fails tries several techniques to find likely
2831     // resolution candidates, suggest imports or other help, and report
2832     // errors in user friendly way.
2833     fn smart_resolve_path(&mut self,
2834                           id: NodeId,
2835                           qself: Option<&QSelf>,
2836                           path: &Path,
2837                           source: PathSource)
2838                           -> PathResolution {
2839         self.smart_resolve_path_with_crate_lint(id, qself, path, source, CrateLint::SimplePath(id))
2840     }
2841
2842     /// A variant of `smart_resolve_path` where you also specify extra
2843     /// information about where the path came from; this extra info is
2844     /// sometimes needed for the lint that recommends rewriting
2845     /// absolute paths to `crate`, so that it knows how to frame the
2846     /// suggestion. If you are just resolving a path like `foo::bar`
2847     /// that appears...somewhere, though, then you just want
2848     /// `CrateLint::SimplePath`, which is what `smart_resolve_path`
2849     /// already provides.
2850     fn smart_resolve_path_with_crate_lint(
2851         &mut self,
2852         id: NodeId,
2853         qself: Option<&QSelf>,
2854         path: &Path,
2855         source: PathSource,
2856         crate_lint: CrateLint
2857     ) -> PathResolution {
2858         let segments = &path.segments.iter()
2859             .map(|seg| seg.ident)
2860             .collect::<Vec<_>>();
2861         self.smart_resolve_path_fragment(id, qself, segments, path.span, source, crate_lint)
2862     }
2863
2864     fn smart_resolve_path_fragment(&mut self,
2865                                    id: NodeId,
2866                                    qself: Option<&QSelf>,
2867                                    path: &[Ident],
2868                                    span: Span,
2869                                    source: PathSource,
2870                                    crate_lint: CrateLint)
2871                                    -> PathResolution {
2872         let ident_span = path.last().map_or(span, |ident| ident.span);
2873         let ns = source.namespace();
2874         let is_expected = &|def| source.is_expected(def);
2875         let is_enum_variant = &|def| if let Def::Variant(..) = def { true } else { false };
2876
2877         // Base error is amended with one short label and possibly some longer helps/notes.
2878         let report_errors = |this: &mut Self, def: Option<Def>| {
2879             // Make the base error.
2880             let expected = source.descr_expected();
2881             let path_str = names_to_string(path);
2882             let code = source.error_code(def.is_some());
2883             let (base_msg, fallback_label, base_span) = if let Some(def) = def {
2884                 (format!("expected {}, found {} `{}`", expected, def.kind_name(), path_str),
2885                  format!("not a {}", expected),
2886                  span)
2887             } else {
2888                 let item_str = path[path.len() - 1];
2889                 let item_span = path[path.len() - 1].span;
2890                 let (mod_prefix, mod_str) = if path.len() == 1 {
2891                     (format!(""), format!("this scope"))
2892                 } else if path.len() == 2 && path[0].name == keywords::CrateRoot.name() {
2893                     (format!(""), format!("the crate root"))
2894                 } else {
2895                     let mod_path = &path[..path.len() - 1];
2896                     let mod_prefix = match this.resolve_path(mod_path, Some(TypeNS),
2897                                                              false, span, CrateLint::No) {
2898                         PathResult::Module(module) => module.def(),
2899                         _ => None,
2900                     }.map_or(format!(""), |def| format!("{} ", def.kind_name()));
2901                     (mod_prefix, format!("`{}`", names_to_string(mod_path)))
2902                 };
2903                 (format!("cannot find {} `{}` in {}{}", expected, item_str, mod_prefix, mod_str),
2904                  format!("not found in {}", mod_str),
2905                  item_span)
2906             };
2907             let code = DiagnosticId::Error(code.into());
2908             let mut err = this.session.struct_span_err_with_code(base_span, &base_msg, code);
2909
2910             // Emit special messages for unresolved `Self` and `self`.
2911             if is_self_type(path, ns) {
2912                 __diagnostic_used!(E0411);
2913                 err.code(DiagnosticId::Error("E0411".into()));
2914                 err.span_label(span, "`Self` is only available in traits and impls");
2915                 return (err, Vec::new());
2916             }
2917             if is_self_value(path, ns) {
2918                 __diagnostic_used!(E0424);
2919                 err.code(DiagnosticId::Error("E0424".into()));
2920                 err.span_label(span, format!("`self` value is only available in \
2921                                                methods with `self` parameter"));
2922                 return (err, Vec::new());
2923             }
2924
2925             // Try to lookup the name in more relaxed fashion for better error reporting.
2926             let ident = *path.last().unwrap();
2927             let candidates = this.lookup_import_candidates(ident.name, ns, is_expected);
2928             if candidates.is_empty() && is_expected(Def::Enum(DefId::local(CRATE_DEF_INDEX))) {
2929                 let enum_candidates =
2930                     this.lookup_import_candidates(ident.name, ns, is_enum_variant);
2931                 let mut enum_candidates = enum_candidates.iter()
2932                     .map(|suggestion| import_candidate_to_paths(&suggestion)).collect::<Vec<_>>();
2933                 enum_candidates.sort();
2934                 for (sp, variant_path, enum_path) in enum_candidates {
2935                     if sp.is_dummy() {
2936                         let msg = format!("there is an enum variant `{}`, \
2937                                         try using `{}`?",
2938                                         variant_path,
2939                                         enum_path);
2940                         err.help(&msg);
2941                     } else {
2942                         err.span_suggestion(span, "you can try using the variant's enum",
2943                                             enum_path);
2944                     }
2945                 }
2946             }
2947             if path.len() == 1 && this.self_type_is_available(span) {
2948                 if let Some(candidate) = this.lookup_assoc_candidate(ident, ns, is_expected) {
2949                     let self_is_available = this.self_value_is_available(path[0].span, span);
2950                     match candidate {
2951                         AssocSuggestion::Field => {
2952                             err.span_suggestion(span, "try",
2953                                                 format!("self.{}", path_str));
2954                             if !self_is_available {
2955                                 err.span_label(span, format!("`self` value is only available in \
2956                                                                methods with `self` parameter"));
2957                             }
2958                         }
2959                         AssocSuggestion::MethodWithSelf if self_is_available => {
2960                             err.span_suggestion(span, "try",
2961                                                 format!("self.{}", path_str));
2962                         }
2963                         AssocSuggestion::MethodWithSelf | AssocSuggestion::AssocItem => {
2964                             err.span_suggestion(span, "try",
2965                                                 format!("Self::{}", path_str));
2966                         }
2967                     }
2968                     return (err, candidates);
2969                 }
2970             }
2971
2972             let mut levenshtein_worked = false;
2973
2974             // Try Levenshtein.
2975             if let Some(candidate) = this.lookup_typo_candidate(path, ns, is_expected, span) {
2976                 err.span_label(ident_span, format!("did you mean `{}`?", candidate));
2977                 levenshtein_worked = true;
2978             }
2979
2980             // Try context dependent help if relaxed lookup didn't work.
2981             if let Some(def) = def {
2982                 match (def, source) {
2983                     (Def::Macro(..), _) => {
2984                         err.span_label(span, format!("did you mean `{}!(...)`?", path_str));
2985                         return (err, candidates);
2986                     }
2987                     (Def::TyAlias(..), PathSource::Trait(_)) => {
2988                         err.span_label(span, "type aliases cannot be used for traits");
2989                         return (err, candidates);
2990                     }
2991                     (Def::Mod(..), PathSource::Expr(Some(parent))) => match parent.node {
2992                         ExprKind::Field(_, ident) => {
2993                             err.span_label(parent.span, format!("did you mean `{}::{}`?",
2994                                                                  path_str, ident));
2995                             return (err, candidates);
2996                         }
2997                         ExprKind::MethodCall(ref segment, ..) => {
2998                             err.span_label(parent.span, format!("did you mean `{}::{}(...)`?",
2999                                                                  path_str, segment.ident));
3000                             return (err, candidates);
3001                         }
3002                         _ => {}
3003                     },
3004                     (Def::Enum(..), PathSource::TupleStruct)
3005                         | (Def::Enum(..), PathSource::Expr(..))  => {
3006                         if let Some(variants) = this.collect_enum_variants(def) {
3007                             err.note(&format!("did you mean to use one \
3008                                                of the following variants?\n{}",
3009                                 variants.iter()
3010                                     .map(|suggestion| path_names_to_string(suggestion))
3011                                     .map(|suggestion| format!("- `{}`", suggestion))
3012                                     .collect::<Vec<_>>()
3013                                     .join("\n")));
3014
3015                         } else {
3016                             err.note("did you mean to use one of the enum's variants?");
3017                         }
3018                         return (err, candidates);
3019                     },
3020                     (Def::Struct(def_id), _) if ns == ValueNS => {
3021                         if let Some((ctor_def, ctor_vis))
3022                                 = this.struct_constructors.get(&def_id).cloned() {
3023                             let accessible_ctor = this.is_accessible(ctor_vis);
3024                             if is_expected(ctor_def) && !accessible_ctor {
3025                                 err.span_label(span, format!("constructor is not visible \
3026                                                               here due to private fields"));
3027                             }
3028                         } else {
3029                             // HACK(estebank): find a better way to figure out that this was a
3030                             // parser issue where a struct literal is being used on an expression
3031                             // where a brace being opened means a block is being started. Look
3032                             // ahead for the next text to see if `span` is followed by a `{`.
3033                             let cm = this.session.codemap();
3034                             let mut sp = span;
3035                             loop {
3036                                 sp = cm.next_point(sp);
3037                                 match cm.span_to_snippet(sp) {
3038                                     Ok(ref snippet) => {
3039                                         if snippet.chars().any(|c| { !c.is_whitespace() }) {
3040                                             break;
3041                                         }
3042                                     }
3043                                     _ => break,
3044                                 }
3045                             }
3046                             let followed_by_brace = match cm.span_to_snippet(sp) {
3047                                 Ok(ref snippet) if snippet == "{" => true,
3048                                 _ => false,
3049                             };
3050                             if let (PathSource::Expr(None), true) = (source, followed_by_brace) {
3051                                 err.span_label(
3052                                     span,
3053                                     format!("did you mean `({} {{ /* fields */ }})`?", path_str),
3054                                 );
3055                             } else {
3056                                 err.span_label(
3057                                     span,
3058                                     format!("did you mean `{} {{ /* fields */ }}`?", path_str),
3059                                 );
3060                             }
3061                         }
3062                         return (err, candidates);
3063                     }
3064                     (Def::Union(..), _) |
3065                     (Def::Variant(..), _) |
3066                     (Def::VariantCtor(_, CtorKind::Fictive), _) if ns == ValueNS => {
3067                         err.span_label(span, format!("did you mean `{} {{ /* fields */ }}`?",
3068                                                      path_str));
3069                         return (err, candidates);
3070                     }
3071                     (Def::SelfTy(..), _) if ns == ValueNS => {
3072                         err.span_label(span, fallback_label);
3073                         err.note("can't use `Self` as a constructor, you must use the \
3074                                   implemented struct");
3075                         return (err, candidates);
3076                     }
3077                     (Def::TyAlias(_), _) | (Def::AssociatedTy(..), _) if ns == ValueNS => {
3078                         err.note("can't use a type alias as a constructor");
3079                         return (err, candidates);
3080                     }
3081                     _ => {}
3082                 }
3083             }
3084
3085             // Fallback label.
3086             if !levenshtein_worked {
3087                 err.span_label(base_span, fallback_label);
3088                 this.type_ascription_suggestion(&mut err, base_span);
3089             }
3090             (err, candidates)
3091         };
3092         let report_errors = |this: &mut Self, def: Option<Def>| {
3093             let (err, candidates) = report_errors(this, def);
3094             let def_id = this.current_module.normal_ancestor_id;
3095             let node_id = this.definitions.as_local_node_id(def_id).unwrap();
3096             let better = def.is_some();
3097             this.use_injections.push(UseError { err, candidates, node_id, better });
3098             err_path_resolution()
3099         };
3100
3101         let resolution = match self.resolve_qpath_anywhere(
3102             id,
3103             qself,
3104             path,
3105             ns,
3106             span,
3107             source.defer_to_typeck(),
3108             source.global_by_default(),
3109             crate_lint,
3110         ) {
3111             Some(resolution) if resolution.unresolved_segments() == 0 => {
3112                 if is_expected(resolution.base_def()) || resolution.base_def() == Def::Err {
3113                     resolution
3114                 } else {
3115                     // Add a temporary hack to smooth the transition to new struct ctor
3116                     // visibility rules. See #38932 for more details.
3117                     let mut res = None;
3118                     if let Def::Struct(def_id) = resolution.base_def() {
3119                         if let Some((ctor_def, ctor_vis))
3120                                 = self.struct_constructors.get(&def_id).cloned() {
3121                             if is_expected(ctor_def) && self.is_accessible(ctor_vis) {
3122                                 let lint = lint::builtin::LEGACY_CONSTRUCTOR_VISIBILITY;
3123                                 self.session.buffer_lint(lint, id, span,
3124                                     "private struct constructors are not usable through \
3125                                      re-exports in outer modules",
3126                                 );
3127                                 res = Some(PathResolution::new(ctor_def));
3128                             }
3129                         }
3130                     }
3131
3132                     res.unwrap_or_else(|| report_errors(self, Some(resolution.base_def())))
3133                 }
3134             }
3135             Some(resolution) if source.defer_to_typeck() => {
3136                 // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
3137                 // or `<T>::A::B`. If `B` should be resolved in value namespace then
3138                 // it needs to be added to the trait map.
3139                 if ns == ValueNS {
3140                     let item_name = *path.last().unwrap();
3141                     let traits = self.get_traits_containing_item(item_name, ns);
3142                     self.trait_map.insert(id, traits);
3143                 }
3144                 resolution
3145             }
3146             _ => report_errors(self, None)
3147         };
3148
3149         if let PathSource::TraitItem(..) = source {} else {
3150             // Avoid recording definition of `A::B` in `<T as A>::B::C`.
3151             self.record_def(id, resolution);
3152         }
3153         resolution
3154     }
3155
3156     fn type_ascription_suggestion(&self,
3157                                   err: &mut DiagnosticBuilder,
3158                                   base_span: Span) {
3159         debug!("type_ascription_suggetion {:?}", base_span);
3160         let cm = self.session.codemap();
3161         debug!("self.current_type_ascription {:?}", self.current_type_ascription);
3162         if let Some(sp) = self.current_type_ascription.last() {
3163             let mut sp = *sp;
3164             loop {  // try to find the `:`, bail on first non-':'/non-whitespace
3165                 sp = cm.next_point(sp);
3166                 if let Ok(snippet) = cm.span_to_snippet(sp.to(cm.next_point(sp))) {
3167                     debug!("snippet {:?}", snippet);
3168                     let line_sp = cm.lookup_char_pos(sp.hi()).line;
3169                     let line_base_sp = cm.lookup_char_pos(base_span.lo()).line;
3170                     debug!("{:?} {:?}", line_sp, line_base_sp);
3171                     if snippet == ":" {
3172                         err.span_label(base_span,
3173                                        "expecting a type here because of type ascription");
3174                         if line_sp != line_base_sp {
3175                             err.span_suggestion_short(sp,
3176                                                       "did you mean to use `;` here instead?",
3177                                                       ";".to_string());
3178                         }
3179                         break;
3180                     } else if snippet.trim().len() != 0  {
3181                         debug!("tried to find type ascription `:` token, couldn't find it");
3182                         break;
3183                     }
3184                 } else {
3185                     break;
3186                 }
3187             }
3188         }
3189     }
3190
3191     fn self_type_is_available(&mut self, span: Span) -> bool {
3192         let binding = self.resolve_ident_in_lexical_scope(keywords::SelfType.ident(),
3193                                                           TypeNS, false, span);
3194         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3195     }
3196
3197     fn self_value_is_available(&mut self, self_span: Span, path_span: Span) -> bool {
3198         let ident = Ident::new(keywords::SelfValue.name(), self_span);
3199         let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, false, path_span);
3200         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3201     }
3202
3203     // Resolve in alternative namespaces if resolution in the primary namespace fails.
3204     fn resolve_qpath_anywhere(&mut self,
3205                               id: NodeId,
3206                               qself: Option<&QSelf>,
3207                               path: &[Ident],
3208                               primary_ns: Namespace,
3209                               span: Span,
3210                               defer_to_typeck: bool,
3211                               global_by_default: bool,
3212                               crate_lint: CrateLint)
3213                               -> Option<PathResolution> {
3214         let mut fin_res = None;
3215         // FIXME: can't resolve paths in macro namespace yet, macros are
3216         // processed by the little special hack below.
3217         for (i, ns) in [primary_ns, TypeNS, ValueNS, /*MacroNS*/].iter().cloned().enumerate() {
3218             if i == 0 || ns != primary_ns {
3219                 match self.resolve_qpath(id, qself, path, ns, span, global_by_default, crate_lint) {
3220                     // If defer_to_typeck, then resolution > no resolution,
3221                     // otherwise full resolution > partial resolution > no resolution.
3222                     Some(res) if res.unresolved_segments() == 0 || defer_to_typeck =>
3223                         return Some(res),
3224                     res => if fin_res.is_none() { fin_res = res },
3225                 };
3226             }
3227         }
3228         let is_global = self.global_macros.get(&path[0].name).cloned()
3229             .map(|binding| binding.get_macro(self).kind() == MacroKind::Bang).unwrap_or(false);
3230         if primary_ns != MacroNS && (is_global ||
3231                                      self.macro_names.contains(&path[0].modern())) {
3232             // Return some dummy definition, it's enough for error reporting.
3233             return Some(
3234                 PathResolution::new(Def::Macro(DefId::local(CRATE_DEF_INDEX), MacroKind::Bang))
3235             );
3236         }
3237         fin_res
3238     }
3239
3240     /// Handles paths that may refer to associated items.
3241     fn resolve_qpath(&mut self,
3242                      id: NodeId,
3243                      qself: Option<&QSelf>,
3244                      path: &[Ident],
3245                      ns: Namespace,
3246                      span: Span,
3247                      global_by_default: bool,
3248                      crate_lint: CrateLint)
3249                      -> Option<PathResolution> {
3250         debug!(
3251             "resolve_qpath(id={:?}, qself={:?}, path={:?}, \
3252              ns={:?}, span={:?}, global_by_default={:?})",
3253             id,
3254             qself,
3255             path,
3256             ns,
3257             span,
3258             global_by_default,
3259         );
3260
3261         if let Some(qself) = qself {
3262             if qself.position == 0 {
3263                 // This is a case like `<T>::B`, where there is no
3264                 // trait to resolve.  In that case, we leave the `B`
3265                 // segment to be resolved by type-check.
3266                 return Some(PathResolution::with_unresolved_segments(
3267                     Def::Mod(DefId::local(CRATE_DEF_INDEX)), path.len()
3268                 ));
3269             }
3270
3271             // Make sure `A::B` in `<T as A::B>::C` is a trait item.
3272             //
3273             // Currently, `path` names the full item (`A::B::C`, in
3274             // our example).  so we extract the prefix of that that is
3275             // the trait (the slice upto and including
3276             // `qself.position`). And then we recursively resolve that,
3277             // but with `qself` set to `None`.
3278             //
3279             // However, setting `qself` to none (but not changing the
3280             // span) loses the information about where this path
3281             // *actually* appears, so for the purposes of the crate
3282             // lint we pass along information that this is the trait
3283             // name from a fully qualified path, and this also
3284             // contains the full span (the `CrateLint::QPathTrait`).
3285             let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
3286             let res = self.smart_resolve_path_fragment(
3287                 id,
3288                 None,
3289                 &path[..qself.position + 1],
3290                 span,
3291                 PathSource::TraitItem(ns),
3292                 CrateLint::QPathTrait {
3293                     qpath_id: id,
3294                     qpath_span: qself.path_span,
3295                 },
3296             );
3297
3298             // The remaining segments (the `C` in our example) will
3299             // have to be resolved by type-check, since that requires doing
3300             // trait resolution.
3301             return Some(PathResolution::with_unresolved_segments(
3302                 res.base_def(), res.unresolved_segments() + path.len() - qself.position - 1
3303             ));
3304         }
3305
3306         let result = match self.resolve_path(
3307             &path,
3308             Some(ns),
3309             true,
3310             span,
3311             crate_lint,
3312         ) {
3313             PathResult::NonModule(path_res) => path_res,
3314             PathResult::Module(module) if !module.is_normal() => {
3315                 PathResolution::new(module.def().unwrap())
3316             }
3317             // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
3318             // don't report an error right away, but try to fallback to a primitive type.
3319             // So, we are still able to successfully resolve something like
3320             //
3321             // use std::u8; // bring module u8 in scope
3322             // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
3323             //     u8::max_value() // OK, resolves to associated function <u8>::max_value,
3324             //                     // not to non-existent std::u8::max_value
3325             // }
3326             //
3327             // Such behavior is required for backward compatibility.
3328             // The same fallback is used when `a` resolves to nothing.
3329             PathResult::Module(..) | PathResult::Failed(..)
3330                     if (ns == TypeNS || path.len() > 1) &&
3331                        self.primitive_type_table.primitive_types
3332                            .contains_key(&path[0].name) => {
3333                 let prim = self.primitive_type_table.primitive_types[&path[0].name];
3334                 PathResolution::with_unresolved_segments(Def::PrimTy(prim), path.len() - 1)
3335             }
3336             PathResult::Module(module) => PathResolution::new(module.def().unwrap()),
3337             PathResult::Failed(span, msg, false) => {
3338                 resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
3339                 err_path_resolution()
3340             }
3341             PathResult::Failed(..) => return None,
3342             PathResult::Indeterminate => bug!("indetermined path result in resolve_qpath"),
3343         };
3344
3345         if path.len() > 1 && !global_by_default && result.base_def() != Def::Err &&
3346            path[0].name != keywords::CrateRoot.name() &&
3347            path[0].name != keywords::DollarCrate.name() {
3348             let unqualified_result = {
3349                 match self.resolve_path(
3350                     &[*path.last().unwrap()],
3351                     Some(ns),
3352                     false,
3353                     span,
3354                     CrateLint::No,
3355                 ) {
3356                     PathResult::NonModule(path_res) => path_res.base_def(),
3357                     PathResult::Module(module) => module.def().unwrap(),
3358                     _ => return Some(result),
3359                 }
3360             };
3361             if result.base_def() == unqualified_result {
3362                 let lint = lint::builtin::UNUSED_QUALIFICATIONS;
3363                 self.session.buffer_lint(lint, id, span, "unnecessary qualification")
3364             }
3365         }
3366
3367         Some(result)
3368     }
3369
3370     fn resolve_path(
3371         &mut self,
3372         path: &[Ident],
3373         opt_ns: Option<Namespace>, // `None` indicates a module path
3374         record_used: bool,
3375         path_span: Span,
3376         crate_lint: CrateLint,
3377     ) -> PathResult<'a> {
3378         let mut module = None;
3379         let mut allow_super = true;
3380         let mut second_binding = None;
3381
3382         debug!(
3383             "resolve_path(path={:?}, opt_ns={:?}, record_used={:?}, \
3384              path_span={:?}, crate_lint={:?})",
3385             path,
3386             opt_ns,
3387             record_used,
3388             path_span,
3389             crate_lint,
3390         );
3391
3392         for (i, &ident) in path.iter().enumerate() {
3393             debug!("resolve_path ident {} {:?}", i, ident);
3394             let is_last = i == path.len() - 1;
3395             let ns = if is_last { opt_ns.unwrap_or(TypeNS) } else { TypeNS };
3396             let name = ident.name;
3397
3398             if i == 0 && ns == TypeNS && name == keywords::SelfValue.name() {
3399                 let mut ctxt = ident.span.ctxt().modern();
3400                 module = Some(self.resolve_self(&mut ctxt, self.current_module));
3401                 continue
3402             } else if allow_super && ns == TypeNS && name == keywords::Super.name() {
3403                 let mut ctxt = ident.span.ctxt().modern();
3404                 let self_module = match i {
3405                     0 => self.resolve_self(&mut ctxt, self.current_module),
3406                     _ => module.unwrap(),
3407                 };
3408                 if let Some(parent) = self_module.parent {
3409                     module = Some(self.resolve_self(&mut ctxt, parent));
3410                     continue
3411                 } else {
3412                     let msg = "There are too many initial `super`s.".to_string();
3413                     return PathResult::Failed(ident.span, msg, false);
3414                 }
3415             } else if i == 0 && ns == TypeNS && name == keywords::Extern.name() {
3416                 continue;
3417             }
3418             allow_super = false;
3419
3420             if ns == TypeNS {
3421                 if (i == 0 && name == keywords::CrateRoot.name()) ||
3422                    (i == 0 && name == keywords::Crate.name()) ||
3423                    (i == 0 && name == keywords::DollarCrate.name()) ||
3424                    (i == 1 && name == keywords::Crate.name() &&
3425                               path[0].name == keywords::CrateRoot.name()) {
3426                     // `::a::b`, `crate::a::b`, `::crate::a::b` or `$crate::a::b`
3427                     module = Some(self.resolve_crate_root(ident));
3428                     continue
3429                 } else if i == 1 && !ident.is_path_segment_keyword() {
3430                     let prev_name = path[0].name;
3431                     if prev_name == keywords::Extern.name() ||
3432                        prev_name == keywords::CrateRoot.name() &&
3433                        self.session.features_untracked().extern_absolute_paths &&
3434                        self.session.rust_2018() {
3435                         // `::extern_crate::a::b`
3436                         let crate_id = self.crate_loader.process_path_extern(name, ident.span);
3437                         let crate_root =
3438                             self.get_module(DefId { krate: crate_id, index: CRATE_DEF_INDEX });
3439                         self.populate_module_if_necessary(crate_root);
3440                         module = Some(crate_root);
3441                         continue
3442                     }
3443                 }
3444             }
3445
3446             // Report special messages for path segment keywords in wrong positions.
3447             if name == keywords::CrateRoot.name() && i != 0 ||
3448                name == keywords::DollarCrate.name() && i != 0 ||
3449                name == keywords::SelfValue.name() && i != 0 ||
3450                name == keywords::SelfType.name() && i != 0 ||
3451                name == keywords::Super.name() && i != 0 ||
3452                name == keywords::Extern.name() && i != 0 ||
3453                // we allow crate::foo and ::crate::foo but nothing else
3454                name == keywords::Crate.name() && i > 1 &&
3455                     path[0].name != keywords::CrateRoot.name() ||
3456                name == keywords::Crate.name() && path.len() == 1 {
3457                 let name_str = if name == keywords::CrateRoot.name() {
3458                     format!("crate root")
3459                 } else {
3460                     format!("`{}`", name)
3461                 };
3462                 let msg = if i == 1 && path[0].name == keywords::CrateRoot.name() {
3463                     format!("global paths cannot start with {}", name_str)
3464                 } else {
3465                     format!("{} in paths can only be used in start position", name_str)
3466                 };
3467                 return PathResult::Failed(ident.span, msg, false);
3468             }
3469
3470             let binding = if let Some(module) = module {
3471                 self.resolve_ident_in_module(module, ident, ns, false, record_used, path_span)
3472             } else if opt_ns == Some(MacroNS) {
3473                 self.resolve_lexical_macro_path_segment(ident, ns, record_used, path_span)
3474                     .map(MacroBinding::binding)
3475             } else {
3476                 match self.resolve_ident_in_lexical_scope(ident, ns, record_used, path_span) {
3477                     // we found a locally-imported or available item/module
3478                     Some(LexicalScopeBinding::Item(binding)) => Ok(binding),
3479                     // we found a local variable or type param
3480                     Some(LexicalScopeBinding::Def(def))
3481                             if opt_ns == Some(TypeNS) || opt_ns == Some(ValueNS) => {
3482                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3483                             def, path.len() - 1
3484                         ));
3485                     }
3486                     _ => Err(if record_used { Determined } else { Undetermined }),
3487                 }
3488             };
3489
3490             match binding {
3491                 Ok(binding) => {
3492                     if i == 1 {
3493                         second_binding = Some(binding);
3494                     }
3495                     let def = binding.def();
3496                     let maybe_assoc = opt_ns != Some(MacroNS) && PathSource::Type.is_expected(def);
3497                     if let Some(next_module) = binding.module() {
3498                         module = Some(next_module);
3499                     } else if def == Def::Err {
3500                         return PathResult::NonModule(err_path_resolution());
3501                     } else if opt_ns.is_some() && (is_last || maybe_assoc) {
3502                         self.lint_if_path_starts_with_module(
3503                             crate_lint,
3504                             path,
3505                             path_span,
3506                             second_binding,
3507                         );
3508                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3509                             def, path.len() - i - 1
3510                         ));
3511                     } else {
3512                         return PathResult::Failed(ident.span,
3513                                                   format!("Not a module `{}`", ident),
3514                                                   is_last);
3515                     }
3516                 }
3517                 Err(Undetermined) => return PathResult::Indeterminate,
3518                 Err(Determined) => {
3519                     if let Some(module) = module {
3520                         if opt_ns.is_some() && !module.is_normal() {
3521                             return PathResult::NonModule(PathResolution::with_unresolved_segments(
3522                                 module.def().unwrap(), path.len() - i
3523                             ));
3524                         }
3525                     }
3526                     let msg = if module.and_then(ModuleData::def) == self.graph_root.def() {
3527                         let is_mod = |def| match def { Def::Mod(..) => true, _ => false };
3528                         let mut candidates =
3529                             self.lookup_import_candidates(name, TypeNS, is_mod);
3530                         candidates.sort_by_cached_key(|c| {
3531                             (c.path.segments.len(), c.path.to_string())
3532                         });
3533                         if let Some(candidate) = candidates.get(0) {
3534                             format!("Did you mean `{}`?", candidate.path)
3535                         } else {
3536                             format!("Maybe a missing `extern crate {};`?", ident)
3537                         }
3538                     } else if i == 0 {
3539                         format!("Use of undeclared type or module `{}`", ident)
3540                     } else {
3541                         format!("Could not find `{}` in `{}`", ident, path[i - 1])
3542                     };
3543                     return PathResult::Failed(ident.span, msg, is_last);
3544                 }
3545             }
3546         }
3547
3548         self.lint_if_path_starts_with_module(crate_lint, path, path_span, second_binding);
3549
3550         PathResult::Module(module.unwrap_or(self.graph_root))
3551     }
3552
3553     fn lint_if_path_starts_with_module(
3554         &self,
3555         crate_lint: CrateLint,
3556         path: &[Ident],
3557         path_span: Span,
3558         second_binding: Option<&NameBinding>,
3559     ) {
3560         let (diag_id, diag_span) = match crate_lint {
3561             CrateLint::No => return,
3562             CrateLint::SimplePath(id) => (id, path_span),
3563             CrateLint::UsePath { root_id, root_span } => (root_id, root_span),
3564             CrateLint::QPathTrait { qpath_id, qpath_span } => (qpath_id, qpath_span),
3565         };
3566
3567         let first_name = match path.get(0) {
3568             Some(ident) => ident.name,
3569             None => return,
3570         };
3571
3572         // We're only interested in `use` paths which should start with
3573         // `{{root}}` or `extern` currently.
3574         if first_name != keywords::Extern.name() && first_name != keywords::CrateRoot.name() {
3575             return
3576         }
3577
3578         match path.get(1) {
3579             // If this import looks like `crate::...` it's already good
3580             Some(ident) if ident.name == keywords::Crate.name() => return,
3581             // Otherwise go below to see if it's an extern crate
3582             Some(_) => {}
3583             // If the path has length one (and it's `CrateRoot` most likely)
3584             // then we don't know whether we're gonna be importing a crate or an
3585             // item in our crate. Defer this lint to elsewhere
3586             None => return,
3587         }
3588
3589         // If the first element of our path was actually resolved to an
3590         // `ExternCrate` (also used for `crate::...`) then no need to issue a
3591         // warning, this looks all good!
3592         if let Some(binding) = second_binding {
3593             if let NameBindingKind::Import { directive: d, .. } = binding.kind {
3594                 // Careful: we still want to rewrite paths from
3595                 // renamed extern crates.
3596                 if let ImportDirectiveSubclass::ExternCrate(None) = d.subclass {
3597                     return
3598                 }
3599             }
3600         }
3601
3602         self.lint_path_starts_with_module(diag_id, diag_span);
3603     }
3604
3605     fn lint_path_starts_with_module(&self, id: NodeId, span: Span) {
3606         // In the 2018 edition this lint is a hard error, so nothing to do
3607         if self.session.rust_2018() {
3608             return
3609         }
3610         // In the 2015 edition there's no use in emitting lints unless the
3611         // crate's already enabled the feature that we're going to suggest
3612         if !self.session.features_untracked().crate_in_paths {
3613             return
3614         }
3615         let diag = lint::builtin::BuiltinLintDiagnostics
3616             ::AbsPathWithModule(span);
3617         self.session.buffer_lint_with_diagnostic(
3618             lint::builtin::ABSOLUTE_PATHS_NOT_STARTING_WITH_CRATE,
3619             id, span,
3620             "absolute paths must start with `self`, `super`, \
3621             `crate`, or an external crate name in the 2018 edition",
3622             diag);
3623     }
3624
3625     // Resolve a local definition, potentially adjusting for closures.
3626     fn adjust_local_def(&mut self,
3627                         ns: Namespace,
3628                         rib_index: usize,
3629                         mut def: Def,
3630                         record_used: bool,
3631                         span: Span) -> Def {
3632         let ribs = &self.ribs[ns][rib_index + 1..];
3633
3634         // An invalid forward use of a type parameter from a previous default.
3635         if let ForwardTyParamBanRibKind = self.ribs[ns][rib_index].kind {
3636             if record_used {
3637                 resolve_error(self, span, ResolutionError::ForwardDeclaredTyParam);
3638             }
3639             assert_eq!(def, Def::Err);
3640             return Def::Err;
3641         }
3642
3643         match def {
3644             Def::Upvar(..) => {
3645                 span_bug!(span, "unexpected {:?} in bindings", def)
3646             }
3647             Def::Local(node_id) => {
3648                 for rib in ribs {
3649                     match rib.kind {
3650                         NormalRibKind | ModuleRibKind(..) | MacroDefinition(..) |
3651                         ForwardTyParamBanRibKind => {
3652                             // Nothing to do. Continue.
3653                         }
3654                         ClosureRibKind(function_id) => {
3655                             let prev_def = def;
3656
3657                             let seen = self.freevars_seen
3658                                            .entry(function_id)
3659                                            .or_insert_with(|| NodeMap());
3660                             if let Some(&index) = seen.get(&node_id) {
3661                                 def = Def::Upvar(node_id, index, function_id);
3662                                 continue;
3663                             }
3664                             let vec = self.freevars
3665                                           .entry(function_id)
3666                                           .or_insert_with(|| vec![]);
3667                             let depth = vec.len();
3668                             def = Def::Upvar(node_id, depth, function_id);
3669
3670                             if record_used {
3671                                 vec.push(Freevar {
3672                                     def: prev_def,
3673                                     span,
3674                                 });
3675                                 seen.insert(node_id, depth);
3676                             }
3677                         }
3678                         ItemRibKind | TraitOrImplItemRibKind => {
3679                             // This was an attempt to access an upvar inside a
3680                             // named function item. This is not allowed, so we
3681                             // report an error.
3682                             if record_used {
3683                                 resolve_error(self, span,
3684                                         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem);
3685                             }
3686                             return Def::Err;
3687                         }
3688                         ConstantItemRibKind => {
3689                             // Still doesn't deal with upvars
3690                             if record_used {
3691                                 resolve_error(self, span,
3692                                         ResolutionError::AttemptToUseNonConstantValueInConstant);
3693                             }
3694                             return Def::Err;
3695                         }
3696                     }
3697                 }
3698             }
3699             Def::TyParam(..) | Def::SelfTy(..) => {
3700                 for rib in ribs {
3701                     match rib.kind {
3702                         NormalRibKind | TraitOrImplItemRibKind | ClosureRibKind(..) |
3703                         ModuleRibKind(..) | MacroDefinition(..) | ForwardTyParamBanRibKind |
3704                         ConstantItemRibKind => {
3705                             // Nothing to do. Continue.
3706                         }
3707                         ItemRibKind => {
3708                             // This was an attempt to use a type parameter outside
3709                             // its scope.
3710                             if record_used {
3711                                 resolve_error(self, span,
3712                                     ResolutionError::TypeParametersFromOuterFunction(def));
3713                             }
3714                             return Def::Err;
3715                         }
3716                     }
3717                 }
3718             }
3719             _ => {}
3720         }
3721         return def;
3722     }
3723
3724     fn lookup_assoc_candidate<FilterFn>(&mut self,
3725                                         ident: Ident,
3726                                         ns: Namespace,
3727                                         filter_fn: FilterFn)
3728                                         -> Option<AssocSuggestion>
3729         where FilterFn: Fn(Def) -> bool
3730     {
3731         fn extract_node_id(t: &Ty) -> Option<NodeId> {
3732             match t.node {
3733                 TyKind::Path(None, _) => Some(t.id),
3734                 TyKind::Rptr(_, ref mut_ty) => extract_node_id(&mut_ty.ty),
3735                 // This doesn't handle the remaining `Ty` variants as they are not
3736                 // that commonly the self_type, it might be interesting to provide
3737                 // support for those in future.
3738                 _ => None,
3739             }
3740         }
3741
3742         // Fields are generally expected in the same contexts as locals.
3743         if filter_fn(Def::Local(ast::DUMMY_NODE_ID)) {
3744             if let Some(node_id) = self.current_self_type.as_ref().and_then(extract_node_id) {
3745                 // Look for a field with the same name in the current self_type.
3746                 if let Some(resolution) = self.def_map.get(&node_id) {
3747                     match resolution.base_def() {
3748                         Def::Struct(did) | Def::Union(did)
3749                                 if resolution.unresolved_segments() == 0 => {
3750                             if let Some(field_names) = self.field_names.get(&did) {
3751                                 if field_names.iter().any(|&field_name| ident.name == field_name) {
3752                                     return Some(AssocSuggestion::Field);
3753                                 }
3754                             }
3755                         }
3756                         _ => {}
3757                     }
3758                 }
3759             }
3760         }
3761
3762         // Look for associated items in the current trait.
3763         if let Some((module, _)) = self.current_trait_ref {
3764             if let Ok(binding) =
3765                     self.resolve_ident_in_module(module, ident, ns, false, false, module.span) {
3766                 let def = binding.def();
3767                 if filter_fn(def) {
3768                     return Some(if self.has_self.contains(&def.def_id()) {
3769                         AssocSuggestion::MethodWithSelf
3770                     } else {
3771                         AssocSuggestion::AssocItem
3772                     });
3773                 }
3774             }
3775         }
3776
3777         None
3778     }
3779
3780     fn lookup_typo_candidate<FilterFn>(&mut self,
3781                                        path: &[Ident],
3782                                        ns: Namespace,
3783                                        filter_fn: FilterFn,
3784                                        span: Span)
3785                                        -> Option<Symbol>
3786         where FilterFn: Fn(Def) -> bool
3787     {
3788         let add_module_candidates = |module: Module, names: &mut Vec<Name>| {
3789             for (&(ident, _), resolution) in module.resolutions.borrow().iter() {
3790                 if let Some(binding) = resolution.borrow().binding {
3791                     if filter_fn(binding.def()) {
3792                         names.push(ident.name);
3793                     }
3794                 }
3795             }
3796         };
3797
3798         let mut names = Vec::new();
3799         if path.len() == 1 {
3800             // Search in lexical scope.
3801             // Walk backwards up the ribs in scope and collect candidates.
3802             for rib in self.ribs[ns].iter().rev() {
3803                 // Locals and type parameters
3804                 for (ident, def) in &rib.bindings {
3805                     if filter_fn(*def) {
3806                         names.push(ident.name);
3807                     }
3808                 }
3809                 // Items in scope
3810                 if let ModuleRibKind(module) = rib.kind {
3811                     // Items from this module
3812                     add_module_candidates(module, &mut names);
3813
3814                     if let ModuleKind::Block(..) = module.kind {
3815                         // We can see through blocks
3816                     } else {
3817                         // Items from the prelude
3818                         if !module.no_implicit_prelude {
3819                             names.extend(self.extern_prelude.iter().cloned());
3820                             if let Some(prelude) = self.prelude {
3821                                 add_module_candidates(prelude, &mut names);
3822                             }
3823                         }
3824                         break;
3825                     }
3826                 }
3827             }
3828             // Add primitive types to the mix
3829             if filter_fn(Def::PrimTy(TyBool)) {
3830                 for (name, _) in &self.primitive_type_table.primitive_types {
3831                     names.push(*name);
3832                 }
3833             }
3834         } else {
3835             // Search in module.
3836             let mod_path = &path[..path.len() - 1];
3837             if let PathResult::Module(module) = self.resolve_path(mod_path, Some(TypeNS),
3838                                                                   false, span, CrateLint::No) {
3839                 add_module_candidates(module, &mut names);
3840             }
3841         }
3842
3843         let name = path[path.len() - 1].name;
3844         // Make sure error reporting is deterministic.
3845         names.sort_by_cached_key(|name| name.as_str());
3846         match find_best_match_for_name(names.iter(), &name.as_str(), None) {
3847             Some(found) if found != name => Some(found),
3848             _ => None,
3849         }
3850     }
3851
3852     fn with_resolved_label<F>(&mut self, label: Option<Label>, id: NodeId, f: F)
3853         where F: FnOnce(&mut Resolver)
3854     {
3855         if let Some(label) = label {
3856             self.unused_labels.insert(id, label.ident.span);
3857             let def = Def::Label(id);
3858             self.with_label_rib(|this| {
3859                 let ident = label.ident.modern_and_legacy();
3860                 this.label_ribs.last_mut().unwrap().bindings.insert(ident, def);
3861                 f(this);
3862             });
3863         } else {
3864             f(self);
3865         }
3866     }
3867
3868     fn resolve_labeled_block(&mut self, label: Option<Label>, id: NodeId, block: &Block) {
3869         self.with_resolved_label(label, id, |this| this.visit_block(block));
3870     }
3871
3872     fn resolve_expr(&mut self, expr: &Expr, parent: Option<&Expr>) {
3873         // First, record candidate traits for this expression if it could
3874         // result in the invocation of a method call.
3875
3876         self.record_candidate_traits_for_expr_if_necessary(expr);
3877
3878         // Next, resolve the node.
3879         match expr.node {
3880             ExprKind::Path(ref qself, ref path) => {
3881                 self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
3882                 visit::walk_expr(self, expr);
3883             }
3884
3885             ExprKind::Struct(ref path, ..) => {
3886                 self.smart_resolve_path(expr.id, None, path, PathSource::Struct);
3887                 visit::walk_expr(self, expr);
3888             }
3889
3890             ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
3891                 let def = self.search_label(label.ident, |rib, ident| {
3892                     rib.bindings.get(&ident.modern_and_legacy()).cloned()
3893                 });
3894                 match def {
3895                     None => {
3896                         // Search again for close matches...
3897                         // Picks the first label that is "close enough", which is not necessarily
3898                         // the closest match
3899                         let close_match = self.search_label(label.ident, |rib, ident| {
3900                             let names = rib.bindings.iter().map(|(id, _)| &id.name);
3901                             find_best_match_for_name(names, &*ident.as_str(), None)
3902                         });
3903                         self.record_def(expr.id, err_path_resolution());
3904                         resolve_error(self,
3905                                       label.ident.span,
3906                                       ResolutionError::UndeclaredLabel(&label.ident.as_str(),
3907                                                                        close_match));
3908                     }
3909                     Some(Def::Label(id)) => {
3910                         // Since this def is a label, it is never read.
3911                         self.record_def(expr.id, PathResolution::new(Def::Label(id)));
3912                         self.unused_labels.remove(&id);
3913                     }
3914                     Some(_) => {
3915                         span_bug!(expr.span, "label wasn't mapped to a label def!");
3916                     }
3917                 }
3918
3919                 // visit `break` argument if any
3920                 visit::walk_expr(self, expr);
3921             }
3922
3923             ExprKind::IfLet(ref pats, ref subexpression, ref if_block, ref optional_else) => {
3924                 self.visit_expr(subexpression);
3925
3926                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
3927                 let mut bindings_list = FxHashMap();
3928                 for pat in pats {
3929                     self.resolve_pattern(pat, PatternSource::IfLet, &mut bindings_list);
3930                 }
3931                 // This has to happen *after* we determine which pat_idents are variants
3932                 self.check_consistent_bindings(pats);
3933                 self.visit_block(if_block);
3934                 self.ribs[ValueNS].pop();
3935
3936                 optional_else.as_ref().map(|expr| self.visit_expr(expr));
3937             }
3938
3939             ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),
3940
3941             ExprKind::While(ref subexpression, ref block, label) => {
3942                 self.with_resolved_label(label, expr.id, |this| {
3943                     this.visit_expr(subexpression);
3944                     this.visit_block(block);
3945                 });
3946             }
3947
3948             ExprKind::WhileLet(ref pats, ref subexpression, ref block, label) => {
3949                 self.with_resolved_label(label, expr.id, |this| {
3950                     this.visit_expr(subexpression);
3951                     this.ribs[ValueNS].push(Rib::new(NormalRibKind));
3952                     let mut bindings_list = FxHashMap();
3953                     for pat in pats {
3954                         this.resolve_pattern(pat, PatternSource::WhileLet, &mut bindings_list);
3955                     }
3956                     // This has to happen *after* we determine which pat_idents are variants
3957                     this.check_consistent_bindings(pats);
3958                     this.visit_block(block);
3959                     this.ribs[ValueNS].pop();
3960                 });
3961             }
3962
3963             ExprKind::ForLoop(ref pattern, ref subexpression, ref block, label) => {
3964                 self.visit_expr(subexpression);
3965                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
3966                 self.resolve_pattern(pattern, PatternSource::For, &mut FxHashMap());
3967
3968                 self.resolve_labeled_block(label, expr.id, block);
3969
3970                 self.ribs[ValueNS].pop();
3971             }
3972
3973             ExprKind::Block(ref block, label) => self.resolve_labeled_block(label, block.id, block),
3974
3975             // Equivalent to `visit::walk_expr` + passing some context to children.
3976             ExprKind::Field(ref subexpression, _) => {
3977                 self.resolve_expr(subexpression, Some(expr));
3978             }
3979             ExprKind::MethodCall(ref segment, ref arguments) => {
3980                 let mut arguments = arguments.iter();
3981                 self.resolve_expr(arguments.next().unwrap(), Some(expr));
3982                 for argument in arguments {
3983                     self.resolve_expr(argument, None);
3984                 }
3985                 self.visit_path_segment(expr.span, segment);
3986             }
3987
3988             ExprKind::Call(ref callee, ref arguments) => {
3989                 self.resolve_expr(callee, Some(expr));
3990                 for argument in arguments {
3991                     self.resolve_expr(argument, None);
3992                 }
3993             }
3994             ExprKind::Type(ref type_expr, _) => {
3995                 self.current_type_ascription.push(type_expr.span);
3996                 visit::walk_expr(self, expr);
3997                 self.current_type_ascription.pop();
3998             }
3999             // Resolve the body of async exprs inside the async closure to which they desugar
4000             ExprKind::Async(_, async_closure_id, ref block) => {
4001                 let rib_kind = ClosureRibKind(async_closure_id);
4002                 self.ribs[ValueNS].push(Rib::new(rib_kind));
4003                 self.label_ribs.push(Rib::new(rib_kind));
4004                 self.visit_block(&block);
4005                 self.label_ribs.pop();
4006                 self.ribs[ValueNS].pop();
4007             }
4008             // `async |x| ...` gets desugared to `|x| future_from_generator(|| ...)`, so we need to
4009             // resolve the arguments within the proper scopes so that usages of them inside the
4010             // closure are detected as upvars rather than normal closure arg usages.
4011             ExprKind::Closure(
4012                 _, IsAsync::Async { closure_id: inner_closure_id, .. }, _,
4013                 ref fn_decl, ref body, _span,
4014             ) => {
4015                 let rib_kind = ClosureRibKind(expr.id);
4016                 self.ribs[ValueNS].push(Rib::new(rib_kind));
4017                 self.label_ribs.push(Rib::new(rib_kind));
4018                 // Resolve arguments:
4019                 let mut bindings_list = FxHashMap();
4020                 for argument in &fn_decl.inputs {
4021                     self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
4022                     self.visit_ty(&argument.ty);
4023                 }
4024                 // No need to resolve return type-- the outer closure return type is
4025                 // FunctionRetTy::Default
4026
4027                 // Now resolve the inner closure
4028                 {
4029                     let rib_kind = ClosureRibKind(inner_closure_id);
4030                     self.ribs[ValueNS].push(Rib::new(rib_kind));
4031                     self.label_ribs.push(Rib::new(rib_kind));
4032                     // No need to resolve arguments: the inner closure has none.
4033                     // Resolve the return type:
4034                     visit::walk_fn_ret_ty(self, &fn_decl.output);
4035                     // Resolve the body
4036                     self.visit_expr(body);
4037                     self.label_ribs.pop();
4038                     self.ribs[ValueNS].pop();
4039                 }
4040                 self.label_ribs.pop();
4041                 self.ribs[ValueNS].pop();
4042             }
4043             _ => {
4044                 visit::walk_expr(self, expr);
4045             }
4046         }
4047     }
4048
4049     fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &Expr) {
4050         match expr.node {
4051             ExprKind::Field(_, ident) => {
4052                 // FIXME(#6890): Even though you can't treat a method like a
4053                 // field, we need to add any trait methods we find that match
4054                 // the field name so that we can do some nice error reporting
4055                 // later on in typeck.
4056                 let traits = self.get_traits_containing_item(ident, ValueNS);
4057                 self.trait_map.insert(expr.id, traits);
4058             }
4059             ExprKind::MethodCall(ref segment, ..) => {
4060                 debug!("(recording candidate traits for expr) recording traits for {}",
4061                        expr.id);
4062                 let traits = self.get_traits_containing_item(segment.ident, ValueNS);
4063                 self.trait_map.insert(expr.id, traits);
4064             }
4065             _ => {
4066                 // Nothing to do.
4067             }
4068         }
4069     }
4070
4071     fn get_traits_containing_item(&mut self, mut ident: Ident, ns: Namespace)
4072                                   -> Vec<TraitCandidate> {
4073         debug!("(getting traits containing item) looking for '{}'", ident.name);
4074
4075         let mut found_traits = Vec::new();
4076         // Look for the current trait.
4077         if let Some((module, _)) = self.current_trait_ref {
4078             if self.resolve_ident_in_module(module, ident, ns, false, false, module.span).is_ok() {
4079                 let def_id = module.def_id().unwrap();
4080                 found_traits.push(TraitCandidate { def_id: def_id, import_id: None });
4081             }
4082         }
4083
4084         ident.span = ident.span.modern();
4085         let mut search_module = self.current_module;
4086         loop {
4087             self.get_traits_in_module_containing_item(ident, ns, search_module, &mut found_traits);
4088             search_module = unwrap_or!(
4089                 self.hygienic_lexical_parent(search_module, &mut ident.span), break
4090             );
4091         }
4092
4093         if let Some(prelude) = self.prelude {
4094             if !search_module.no_implicit_prelude {
4095                 self.get_traits_in_module_containing_item(ident, ns, prelude, &mut found_traits);
4096             }
4097         }
4098
4099         found_traits
4100     }
4101
4102     fn get_traits_in_module_containing_item(&mut self,
4103                                             ident: Ident,
4104                                             ns: Namespace,
4105                                             module: Module<'a>,
4106                                             found_traits: &mut Vec<TraitCandidate>) {
4107         let mut traits = module.traits.borrow_mut();
4108         if traits.is_none() {
4109             let mut collected_traits = Vec::new();
4110             module.for_each_child(|name, ns, binding| {
4111                 if ns != TypeNS { return }
4112                 if let Def::Trait(_) = binding.def() {
4113                     collected_traits.push((name, binding));
4114                 }
4115             });
4116             *traits = Some(collected_traits.into_boxed_slice());
4117         }
4118
4119         for &(trait_name, binding) in traits.as_ref().unwrap().iter() {
4120             let module = binding.module().unwrap();
4121             let mut ident = ident;
4122             if ident.span.glob_adjust(module.expansion, binding.span.ctxt().modern()).is_none() {
4123                 continue
4124             }
4125             if self.resolve_ident_in_module_unadjusted(module, ident, ns, false, false, module.span)
4126                    .is_ok() {
4127                 let import_id = match binding.kind {
4128                     NameBindingKind::Import { directive, .. } => {
4129                         self.maybe_unused_trait_imports.insert(directive.id);
4130                         self.add_to_glob_map(directive.id, trait_name);
4131                         Some(directive.id)
4132                     }
4133                     _ => None,
4134                 };
4135                 let trait_def_id = module.def_id().unwrap();
4136                 found_traits.push(TraitCandidate { def_id: trait_def_id, import_id: import_id });
4137             }
4138         }
4139     }
4140
4141     /// When name resolution fails, this method can be used to look up candidate
4142     /// entities with the expected name. It allows filtering them using the
4143     /// supplied predicate (which should be used to only accept the types of
4144     /// definitions expected e.g. traits). The lookup spans across all crates.
4145     ///
4146     /// NOTE: The method does not look into imports, but this is not a problem,
4147     /// since we report the definitions (thus, the de-aliased imports).
4148     fn lookup_import_candidates<FilterFn>(&mut self,
4149                                           lookup_name: Name,
4150                                           namespace: Namespace,
4151                                           filter_fn: FilterFn)
4152                                           -> Vec<ImportSuggestion>
4153         where FilterFn: Fn(Def) -> bool
4154     {
4155         let mut candidates = Vec::new();
4156         let mut worklist = Vec::new();
4157         let mut seen_modules = FxHashSet();
4158         worklist.push((self.graph_root, Vec::new(), false));
4159
4160         while let Some((in_module,
4161                         path_segments,
4162                         in_module_is_extern)) = worklist.pop() {
4163             self.populate_module_if_necessary(in_module);
4164
4165             // We have to visit module children in deterministic order to avoid
4166             // instabilities in reported imports (#43552).
4167             in_module.for_each_child_stable(|ident, ns, name_binding| {
4168                 // avoid imports entirely
4169                 if name_binding.is_import() && !name_binding.is_extern_crate() { return; }
4170                 // avoid non-importable candidates as well
4171                 if !name_binding.is_importable() { return; }
4172
4173                 // collect results based on the filter function
4174                 if ident.name == lookup_name && ns == namespace {
4175                     if filter_fn(name_binding.def()) {
4176                         // create the path
4177                         let mut segms = if self.session.rust_2018() && !in_module_is_extern {
4178                             // crate-local absolute paths start with `crate::` in edition 2018
4179                             // FIXME: may also be stabilized for Rust 2015 (Issues #45477, #44660)
4180                             let mut full_segms = vec![
4181                                 ast::PathSegment::from_ident(keywords::Crate.ident())
4182                             ];
4183                             full_segms.extend(path_segments.clone());
4184                             full_segms
4185                         } else {
4186                             path_segments.clone()
4187                         };
4188
4189                         segms.push(ast::PathSegment::from_ident(ident));
4190                         let path = Path {
4191                             span: name_binding.span,
4192                             segments: segms,
4193                         };
4194                         // the entity is accessible in the following cases:
4195                         // 1. if it's defined in the same crate, it's always
4196                         // accessible (since private entities can be made public)
4197                         // 2. if it's defined in another crate, it's accessible
4198                         // only if both the module is public and the entity is
4199                         // declared as public (due to pruning, we don't explore
4200                         // outside crate private modules => no need to check this)
4201                         if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
4202                             candidates.push(ImportSuggestion { path: path });
4203                         }
4204                     }
4205                 }
4206
4207                 // collect submodules to explore
4208                 if let Some(module) = name_binding.module() {
4209                     // form the path
4210                     let mut path_segments = path_segments.clone();
4211                     path_segments.push(ast::PathSegment::from_ident(ident));
4212
4213                     if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
4214                         // add the module to the lookup
4215                         let is_extern = in_module_is_extern || name_binding.is_extern_crate();
4216                         if seen_modules.insert(module.def_id().unwrap()) {
4217                             worklist.push((module, path_segments, is_extern));
4218                         }
4219                     }
4220                 }
4221             })
4222         }
4223
4224         candidates
4225     }
4226
4227     fn find_module(&mut self,
4228                    module_def: Def)
4229                    -> Option<(Module<'a>, ImportSuggestion)>
4230     {
4231         let mut result = None;
4232         let mut worklist = Vec::new();
4233         let mut seen_modules = FxHashSet();
4234         worklist.push((self.graph_root, Vec::new()));
4235
4236         while let Some((in_module, path_segments)) = worklist.pop() {
4237             // abort if the module is already found
4238             if let Some(_) = result { break; }
4239
4240             self.populate_module_if_necessary(in_module);
4241
4242             in_module.for_each_child_stable(|ident, _, name_binding| {
4243                 // abort if the module is already found or if name_binding is private external
4244                 if result.is_some() || !name_binding.vis.is_visible_locally() {
4245                     return
4246                 }
4247                 if let Some(module) = name_binding.module() {
4248                     // form the path
4249                     let mut path_segments = path_segments.clone();
4250                     path_segments.push(ast::PathSegment::from_ident(ident));
4251                     if module.def() == Some(module_def) {
4252                         let path = Path {
4253                             span: name_binding.span,
4254                             segments: path_segments,
4255                         };
4256                         result = Some((module, ImportSuggestion { path: path }));
4257                     } else {
4258                         // add the module to the lookup
4259                         if seen_modules.insert(module.def_id().unwrap()) {
4260                             worklist.push((module, path_segments));
4261                         }
4262                     }
4263                 }
4264             });
4265         }
4266
4267         result
4268     }
4269
4270     fn collect_enum_variants(&mut self, enum_def: Def) -> Option<Vec<Path>> {
4271         if let Def::Enum(..) = enum_def {} else {
4272             panic!("Non-enum def passed to collect_enum_variants: {:?}", enum_def)
4273         }
4274
4275         self.find_module(enum_def).map(|(enum_module, enum_import_suggestion)| {
4276             self.populate_module_if_necessary(enum_module);
4277
4278             let mut variants = Vec::new();
4279             enum_module.for_each_child_stable(|ident, _, name_binding| {
4280                 if let Def::Variant(..) = name_binding.def() {
4281                     let mut segms = enum_import_suggestion.path.segments.clone();
4282                     segms.push(ast::PathSegment::from_ident(ident));
4283                     variants.push(Path {
4284                         span: name_binding.span,
4285                         segments: segms,
4286                     });
4287                 }
4288             });
4289             variants
4290         })
4291     }
4292
4293     fn record_def(&mut self, node_id: NodeId, resolution: PathResolution) {
4294         debug!("(recording def) recording {:?} for {}", resolution, node_id);
4295         if let Some(prev_res) = self.def_map.insert(node_id, resolution) {
4296             panic!("path resolved multiple times ({:?} before, {:?} now)", prev_res, resolution);
4297         }
4298     }
4299
4300     fn resolve_visibility(&mut self, vis: &ast::Visibility) -> ty::Visibility {
4301         match vis.node {
4302             ast::VisibilityKind::Public => ty::Visibility::Public,
4303             ast::VisibilityKind::Crate(..) => {
4304                 ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX))
4305             }
4306             ast::VisibilityKind::Inherited => {
4307                 ty::Visibility::Restricted(self.current_module.normal_ancestor_id)
4308             }
4309             ast::VisibilityKind::Restricted { ref path, id, .. } => {
4310                 // Visibilities are resolved as global by default, add starting root segment.
4311                 let segments = path.make_root().iter().chain(path.segments.iter())
4312                     .map(|seg| seg.ident)
4313                     .collect::<Vec<_>>();
4314                 let def = self.smart_resolve_path_fragment(
4315                     id,
4316                     None,
4317                     &segments,
4318                     path.span,
4319                     PathSource::Visibility,
4320                     CrateLint::SimplePath(id),
4321                 ).base_def();
4322                 if def == Def::Err {
4323                     ty::Visibility::Public
4324                 } else {
4325                     let vis = ty::Visibility::Restricted(def.def_id());
4326                     if self.is_accessible(vis) {
4327                         vis
4328                     } else {
4329                         self.session.span_err(path.span, "visibilities can only be restricted \
4330                                                           to ancestor modules");
4331                         ty::Visibility::Public
4332                     }
4333                 }
4334             }
4335         }
4336     }
4337
4338     fn is_accessible(&self, vis: ty::Visibility) -> bool {
4339         vis.is_accessible_from(self.current_module.normal_ancestor_id, self)
4340     }
4341
4342     fn is_accessible_from(&self, vis: ty::Visibility, module: Module<'a>) -> bool {
4343         vis.is_accessible_from(module.normal_ancestor_id, self)
4344     }
4345
4346     fn report_errors(&mut self, krate: &Crate) {
4347         self.report_shadowing_errors();
4348         self.report_with_use_injections(krate);
4349         self.report_proc_macro_import(krate);
4350         let mut reported_spans = FxHashSet();
4351
4352         for &AmbiguityError { span, name, b1, b2, lexical } in &self.ambiguity_errors {
4353             if !reported_spans.insert(span) { continue }
4354             let participle = |binding: &NameBinding| {
4355                 if binding.is_import() { "imported" } else { "defined" }
4356             };
4357             let msg1 = format!("`{}` could refer to the name {} here", name, participle(b1));
4358             let msg2 = format!("`{}` could also refer to the name {} here", name, participle(b2));
4359             let note = if b1.expansion == Mark::root() || !lexical && b1.is_glob_import() {
4360                 format!("consider adding an explicit import of `{}` to disambiguate", name)
4361             } else if let Def::Macro(..) = b1.def() {
4362                 format!("macro-expanded {} do not shadow",
4363                         if b1.is_import() { "macro imports" } else { "macros" })
4364             } else {
4365                 format!("macro-expanded {} do not shadow when used in a macro invocation path",
4366                         if b1.is_import() { "imports" } else { "items" })
4367             };
4368
4369             let mut err = struct_span_err!(self.session, span, E0659, "`{}` is ambiguous", name);
4370             err.span_note(b1.span, &msg1);
4371             match b2.def() {
4372                 Def::Macro(..) if b2.span.is_dummy() =>
4373                     err.note(&format!("`{}` is also a builtin macro", name)),
4374                 _ => err.span_note(b2.span, &msg2),
4375             };
4376             err.note(&note).emit();
4377         }
4378
4379         for &PrivacyError(span, name, binding) in &self.privacy_errors {
4380             if !reported_spans.insert(span) { continue }
4381             span_err!(self.session, span, E0603, "{} `{}` is private", binding.descr(), name);
4382         }
4383     }
4384
4385     fn report_with_use_injections(&mut self, krate: &Crate) {
4386         for UseError { mut err, candidates, node_id, better } in self.use_injections.drain(..) {
4387             let (span, found_use) = UsePlacementFinder::check(krate, node_id);
4388             if !candidates.is_empty() {
4389                 show_candidates(&mut err, span, &candidates, better, found_use);
4390             }
4391             err.emit();
4392         }
4393     }
4394
4395     fn report_shadowing_errors(&mut self) {
4396         for (ident, scope) in replace(&mut self.lexical_macro_resolutions, Vec::new()) {
4397             self.resolve_legacy_scope(scope, ident, true);
4398         }
4399
4400         let mut reported_errors = FxHashSet();
4401         for binding in replace(&mut self.disallowed_shadowing, Vec::new()) {
4402             if self.resolve_legacy_scope(&binding.parent, binding.ident, false).is_some() &&
4403                reported_errors.insert((binding.ident, binding.span)) {
4404                 let msg = format!("`{}` is already in scope", binding.ident);
4405                 self.session.struct_span_err(binding.span, &msg)
4406                     .note("macro-expanded `macro_rules!`s may not shadow \
4407                            existing macros (see RFC 1560)")
4408                     .emit();
4409             }
4410         }
4411     }
4412
4413     fn report_conflict<'b>(&mut self,
4414                        parent: Module,
4415                        ident: Ident,
4416                        ns: Namespace,
4417                        new_binding: &NameBinding<'b>,
4418                        old_binding: &NameBinding<'b>) {
4419         // Error on the second of two conflicting names
4420         if old_binding.span.lo() > new_binding.span.lo() {
4421             return self.report_conflict(parent, ident, ns, old_binding, new_binding);
4422         }
4423
4424         let container = match parent.kind {
4425             ModuleKind::Def(Def::Mod(_), _) => "module",
4426             ModuleKind::Def(Def::Trait(_), _) => "trait",
4427             ModuleKind::Block(..) => "block",
4428             _ => "enum",
4429         };
4430
4431         let old_noun = match old_binding.is_import() {
4432             true => "import",
4433             false => "definition",
4434         };
4435
4436         let new_participle = match new_binding.is_import() {
4437             true => "imported",
4438             false => "defined",
4439         };
4440
4441         let (name, span) = (ident.name, self.session.codemap().def_span(new_binding.span));
4442
4443         if let Some(s) = self.name_already_seen.get(&name) {
4444             if s == &span {
4445                 return;
4446             }
4447         }
4448
4449         let old_kind = match (ns, old_binding.module()) {
4450             (ValueNS, _) => "value",
4451             (MacroNS, _) => "macro",
4452             (TypeNS, _) if old_binding.is_extern_crate() => "extern crate",
4453             (TypeNS, Some(module)) if module.is_normal() => "module",
4454             (TypeNS, Some(module)) if module.is_trait() => "trait",
4455             (TypeNS, _) => "type",
4456         };
4457
4458         let msg = format!("the name `{}` is defined multiple times", name);
4459
4460         let mut err = match (old_binding.is_extern_crate(), new_binding.is_extern_crate()) {
4461             (true, true) => struct_span_err!(self.session, span, E0259, "{}", msg),
4462             (true, _) | (_, true) => match new_binding.is_import() && old_binding.is_import() {
4463                 true => struct_span_err!(self.session, span, E0254, "{}", msg),
4464                 false => struct_span_err!(self.session, span, E0260, "{}", msg),
4465             },
4466             _ => match (old_binding.is_import(), new_binding.is_import()) {
4467                 (false, false) => struct_span_err!(self.session, span, E0428, "{}", msg),
4468                 (true, true) => struct_span_err!(self.session, span, E0252, "{}", msg),
4469                 _ => struct_span_err!(self.session, span, E0255, "{}", msg),
4470             },
4471         };
4472
4473         err.note(&format!("`{}` must be defined only once in the {} namespace of this {}",
4474                           name,
4475                           ns.descr(),
4476                           container));
4477
4478         err.span_label(span, format!("`{}` re{} here", name, new_participle));
4479         if !old_binding.span.is_dummy() {
4480             err.span_label(self.session.codemap().def_span(old_binding.span),
4481                            format!("previous {} of the {} `{}` here", old_noun, old_kind, name));
4482         }
4483
4484         // See https://github.com/rust-lang/rust/issues/32354
4485         if old_binding.is_import() || new_binding.is_import() {
4486             let binding = if new_binding.is_import() && !new_binding.span.is_dummy() {
4487                 new_binding
4488             } else {
4489                 old_binding
4490             };
4491
4492             let cm = self.session.codemap();
4493             let rename_msg = "You can use `as` to change the binding name of the import";
4494
4495             if let (Ok(snippet), false) = (cm.span_to_snippet(binding.span),
4496                                            binding.is_renamed_extern_crate()) {
4497                 let suggested_name = if name.as_str().chars().next().unwrap().is_uppercase() {
4498                     format!("Other{}", name)
4499                 } else {
4500                     format!("other_{}", name)
4501                 };
4502
4503                 err.span_suggestion(binding.span,
4504                                     rename_msg,
4505                                     if snippet.ends_with(';') {
4506                                         format!("{} as {};",
4507                                                 &snippet[..snippet.len()-1],
4508                                                 suggested_name)
4509                                     } else {
4510                                         format!("{} as {}", snippet, suggested_name)
4511                                     });
4512             } else {
4513                 err.span_label(binding.span, rename_msg);
4514             }
4515         }
4516
4517         err.emit();
4518         self.name_already_seen.insert(name, span);
4519     }
4520
4521     fn check_proc_macro_attrs(&mut self, attrs: &[ast::Attribute]) {
4522         if self.use_extern_macros { return; }
4523
4524         for attr in attrs {
4525             if attr.path.segments.len() > 1 {
4526                 continue
4527             }
4528             let ident = attr.path.segments[0].ident;
4529             let result = self.resolve_lexical_macro_path_segment(ident,
4530                                                                  MacroNS,
4531                                                                  false,
4532                                                                  attr.path.span);
4533             if let Ok(binding) = result {
4534                 if let SyntaxExtension::AttrProcMacro(..) = *binding.binding().get_macro(self) {
4535                     attr::mark_known(attr);
4536
4537                     let msg = "attribute procedural macros are experimental";
4538                     let feature = "proc_macro";
4539
4540                     feature_err(&self.session.parse_sess, feature,
4541                                 attr.span, GateIssue::Language, msg)
4542                         .span_label(binding.span(), "procedural macro imported here")
4543                         .emit();
4544                 }
4545             }
4546         }
4547     }
4548 }
4549
4550 fn is_self_type(path: &[Ident], namespace: Namespace) -> bool {
4551     namespace == TypeNS && path.len() == 1 && path[0].name == keywords::SelfType.name()
4552 }
4553
4554 fn is_self_value(path: &[Ident], namespace: Namespace) -> bool {
4555     namespace == ValueNS && path.len() == 1 && path[0].name == keywords::SelfValue.name()
4556 }
4557
4558 fn names_to_string(idents: &[Ident]) -> String {
4559     let mut result = String::new();
4560     for (i, ident) in idents.iter()
4561                             .filter(|ident| ident.name != keywords::CrateRoot.name())
4562                             .enumerate() {
4563         if i > 0 {
4564             result.push_str("::");
4565         }
4566         result.push_str(&ident.as_str());
4567     }
4568     result
4569 }
4570
4571 fn path_names_to_string(path: &Path) -> String {
4572     names_to_string(&path.segments.iter()
4573                         .map(|seg| seg.ident)
4574                         .collect::<Vec<_>>())
4575 }
4576
4577 /// Get the path for an enum and the variant from an `ImportSuggestion` for an enum variant.
4578 fn import_candidate_to_paths(suggestion: &ImportSuggestion) -> (Span, String, String) {
4579     let variant_path = &suggestion.path;
4580     let variant_path_string = path_names_to_string(variant_path);
4581
4582     let path_len = suggestion.path.segments.len();
4583     let enum_path = ast::Path {
4584         span: suggestion.path.span,
4585         segments: suggestion.path.segments[0..path_len - 1].to_vec(),
4586     };
4587     let enum_path_string = path_names_to_string(&enum_path);
4588
4589     (suggestion.path.span, variant_path_string, enum_path_string)
4590 }
4591
4592
4593 /// When an entity with a given name is not available in scope, we search for
4594 /// entities with that name in all crates. This method allows outputting the
4595 /// results of this search in a programmer-friendly way
4596 fn show_candidates(err: &mut DiagnosticBuilder,
4597                    // This is `None` if all placement locations are inside expansions
4598                    span: Option<Span>,
4599                    candidates: &[ImportSuggestion],
4600                    better: bool,
4601                    found_use: bool) {
4602
4603     // we want consistent results across executions, but candidates are produced
4604     // by iterating through a hash map, so make sure they are ordered:
4605     let mut path_strings: Vec<_> =
4606         candidates.into_iter().map(|c| path_names_to_string(&c.path)).collect();
4607     path_strings.sort();
4608
4609     let better = if better { "better " } else { "" };
4610     let msg_diff = match path_strings.len() {
4611         1 => " is found in another module, you can import it",
4612         _ => "s are found in other modules, you can import them",
4613     };
4614     let msg = format!("possible {}candidate{} into scope", better, msg_diff);
4615
4616     if let Some(span) = span {
4617         for candidate in &mut path_strings {
4618             // produce an additional newline to separate the new use statement
4619             // from the directly following item.
4620             let additional_newline = if found_use {
4621                 ""
4622             } else {
4623                 "\n"
4624             };
4625             *candidate = format!("use {};\n{}", candidate, additional_newline);
4626         }
4627
4628         err.span_suggestions(span, &msg, path_strings);
4629     } else {
4630         let mut msg = msg;
4631         msg.push(':');
4632         for candidate in path_strings {
4633             msg.push('\n');
4634             msg.push_str(&candidate);
4635         }
4636     }
4637 }
4638
4639 /// A somewhat inefficient routine to obtain the name of a module.
4640 fn module_to_string(module: Module) -> Option<String> {
4641     let mut names = Vec::new();
4642
4643     fn collect_mod(names: &mut Vec<Ident>, module: Module) {
4644         if let ModuleKind::Def(_, name) = module.kind {
4645             if let Some(parent) = module.parent {
4646                 names.push(Ident::with_empty_ctxt(name));
4647                 collect_mod(names, parent);
4648             }
4649         } else {
4650             // danger, shouldn't be ident?
4651             names.push(Ident::from_str("<opaque>"));
4652             collect_mod(names, module.parent.unwrap());
4653         }
4654     }
4655     collect_mod(&mut names, module);
4656
4657     if names.is_empty() {
4658         return None;
4659     }
4660     Some(names_to_string(&names.into_iter()
4661                         .rev()
4662                         .collect::<Vec<_>>()))
4663 }
4664
4665 fn err_path_resolution() -> PathResolution {
4666     PathResolution::new(Def::Err)
4667 }
4668
4669 #[derive(PartialEq,Copy, Clone)]
4670 pub enum MakeGlobMap {
4671     Yes,
4672     No,
4673 }
4674
4675 #[derive(Copy, Clone, Debug)]
4676 enum CrateLint {
4677     /// Do not issue the lint
4678     No,
4679
4680     /// This lint applies to some random path like `impl ::foo::Bar`
4681     /// or whatever. In this case, we can take the span of that path.
4682     SimplePath(NodeId),
4683
4684     /// This lint comes from a `use` statement. In this case, what we
4685     /// care about really is the *root* `use` statement; e.g., if we
4686     /// have nested things like `use a::{b, c}`, we care about the
4687     /// `use a` part.
4688     UsePath { root_id: NodeId, root_span: Span },
4689
4690     /// This is the "trait item" from a fully qualified path. For example,
4691     /// we might be resolving  `X::Y::Z` from a path like `<T as X::Y>::Z`.
4692     /// The `path_span` is the span of the to the trait itself (`X::Y`).
4693     QPathTrait { qpath_id: NodeId, qpath_span: Span },
4694 }
4695
4696 __build_diagnostic_array! { librustc_resolve, DIAGNOSTICS }