]> git.lizzy.rs Git - rust.git/blob - src/librustc_resolve/lib.rs
58e39e900ac917748f29f785012de71c40883a2c
[rust.git] / src / librustc_resolve / lib.rs
1 // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 #![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
12        html_favicon_url = "https://doc.rust-lang.org/favicon.ico",
13        html_root_url = "https://doc.rust-lang.org/nightly/")]
14
15 #![feature(crate_visibility_modifier)]
16 #![feature(nll)]
17 #![feature(rustc_diagnostic_macros)]
18 #![feature(slice_sort_by_cached_key)]
19
20 #[macro_use]
21 extern crate bitflags;
22 #[macro_use]
23 extern crate log;
24 #[macro_use]
25 extern crate syntax;
26 extern crate syntax_pos;
27 extern crate rustc_errors as errors;
28 extern crate arena;
29 #[macro_use]
30 extern crate rustc;
31 extern crate rustc_data_structures;
32 extern crate rustc_metadata;
33
34 pub use rustc::hir::def::{Namespace, PerNS};
35
36 use self::TypeParameters::*;
37 use self::RibKind::*;
38
39 use rustc::hir::map::{Definitions, DefCollector};
40 use rustc::hir::{self, PrimTy, Bool, Char, Float, Int, Uint, Str};
41 use rustc::middle::cstore::CrateStore;
42 use rustc::session::Session;
43 use rustc::lint;
44 use rustc::hir::def::*;
45 use rustc::hir::def::Namespace::*;
46 use rustc::hir::def_id::{CRATE_DEF_INDEX, LOCAL_CRATE, DefId};
47 use rustc::hir::{Freevar, FreevarMap, TraitCandidate, TraitMap, GlobMap};
48 use rustc::session::config::nightly_options;
49 use rustc::ty;
50 use rustc::util::nodemap::{NodeMap, NodeSet, FxHashMap, FxHashSet, DefIdMap};
51
52 use rustc_metadata::creader::CrateLoader;
53 use rustc_metadata::cstore::CStore;
54
55 use syntax::source_map::SourceMap;
56 use syntax::ext::hygiene::{Mark, Transparency, SyntaxContext};
57 use syntax::ast::{self, Name, NodeId, Ident, FloatTy, IntTy, UintTy};
58 use syntax::ext::base::SyntaxExtension;
59 use syntax::ext::base::Determinacy::{self, Determined, Undetermined};
60 use syntax::ext::base::MacroKind;
61 use syntax::feature_gate::{emit_feature_err, GateIssue};
62 use syntax::symbol::{Symbol, keywords};
63 use syntax::util::lev_distance::find_best_match_for_name;
64
65 use syntax::visit::{self, FnKind, Visitor};
66 use syntax::attr;
67 use syntax::ast::{CRATE_NODE_ID, Arm, IsAsync, BindingMode, Block, Crate, Expr, ExprKind};
68 use syntax::ast::{FnDecl, ForeignItem, ForeignItemKind, GenericParamKind, Generics};
69 use syntax::ast::{Item, ItemKind, ImplItem, ImplItemKind};
70 use syntax::ast::{Label, Local, Mutability, Pat, PatKind, Path};
71 use syntax::ast::{QSelf, TraitItemKind, TraitRef, Ty, TyKind};
72 use syntax::ptr::P;
73
74 use syntax_pos::{Span, DUMMY_SP, MultiSpan};
75 use errors::{Applicability, DiagnosticBuilder, DiagnosticId};
76
77 use std::cell::{Cell, RefCell};
78 use std::{cmp, fmt, iter, ptr};
79 use std::collections::BTreeSet;
80 use std::mem::replace;
81 use rustc_data_structures::ptr_key::PtrKey;
82 use rustc_data_structures::sync::Lrc;
83
84 use resolve_imports::{ImportDirective, ImportDirectiveSubclass, NameResolution, ImportResolver};
85 use macros::{InvocationData, LegacyBinding, ParentScope};
86
87 // NB: This module needs to be declared first so diagnostics are
88 // registered before they are used.
89 mod diagnostics;
90 mod error_reporting;
91 mod macros;
92 mod check_unused;
93 mod build_reduced_graph;
94 mod resolve_imports;
95
96 fn is_known_tool(name: Name) -> bool {
97     ["clippy", "rustfmt"].contains(&&*name.as_str())
98 }
99
100 /// A free importable items suggested in case of resolution failure.
101 struct ImportSuggestion {
102     path: Path,
103 }
104
105 /// A field or associated item from self type suggested in case of resolution failure.
106 enum AssocSuggestion {
107     Field,
108     MethodWithSelf,
109     AssocItem,
110 }
111
112 #[derive(Eq)]
113 struct BindingError {
114     name: Name,
115     origin: BTreeSet<Span>,
116     target: BTreeSet<Span>,
117 }
118
119 impl PartialOrd for BindingError {
120     fn partial_cmp(&self, other: &BindingError) -> Option<cmp::Ordering> {
121         Some(self.cmp(other))
122     }
123 }
124
125 impl PartialEq for BindingError {
126     fn eq(&self, other: &BindingError) -> bool {
127         self.name == other.name
128     }
129 }
130
131 impl Ord for BindingError {
132     fn cmp(&self, other: &BindingError) -> cmp::Ordering {
133         self.name.cmp(&other.name)
134     }
135 }
136
137 enum ResolutionError<'a> {
138     /// error E0401: can't use type parameters from outer function
139     TypeParametersFromOuterFunction(Def),
140     /// error E0403: the name is already used for a type parameter in this type parameter list
141     NameAlreadyUsedInTypeParameterList(Name, &'a Span),
142     /// error E0407: method is not a member of trait
143     MethodNotMemberOfTrait(Name, &'a str),
144     /// error E0437: type is not a member of trait
145     TypeNotMemberOfTrait(Name, &'a str),
146     /// error E0438: const is not a member of trait
147     ConstNotMemberOfTrait(Name, &'a str),
148     /// error E0408: variable `{}` is not bound in all patterns
149     VariableNotBoundInPattern(&'a BindingError),
150     /// error E0409: variable `{}` is bound in inconsistent ways within the same match arm
151     VariableBoundWithDifferentMode(Name, Span),
152     /// error E0415: identifier is bound more than once in this parameter list
153     IdentifierBoundMoreThanOnceInParameterList(&'a str),
154     /// error E0416: identifier is bound more than once in the same pattern
155     IdentifierBoundMoreThanOnceInSamePattern(&'a str),
156     /// error E0426: use of undeclared label
157     UndeclaredLabel(&'a str, Option<Name>),
158     /// error E0429: `self` imports are only allowed within a { } list
159     SelfImportsOnlyAllowedWithin,
160     /// error E0430: `self` import can only appear once in the list
161     SelfImportCanOnlyAppearOnceInTheList,
162     /// error E0431: `self` import can only appear in an import list with a non-empty prefix
163     SelfImportOnlyInImportListWithNonEmptyPrefix,
164     /// error E0433: failed to resolve
165     FailedToResolve(&'a str),
166     /// error E0434: can't capture dynamic environment in a fn item
167     CannotCaptureDynamicEnvironmentInFnItem,
168     /// error E0435: attempt to use a non-constant value in a constant
169     AttemptToUseNonConstantValueInConstant,
170     /// error E0530: X bindings cannot shadow Ys
171     BindingShadowsSomethingUnacceptable(&'a str, Name, &'a NameBinding<'a>),
172     /// error E0128: type parameters with a default cannot use forward declared identifiers
173     ForwardDeclaredTyParam,
174 }
175
176 /// Combines an error with provided span and emits it
177 ///
178 /// This takes the error provided, combines it with the span and any additional spans inside the
179 /// error and emits it.
180 fn resolve_error<'sess, 'a>(resolver: &'sess Resolver,
181                             span: Span,
182                             resolution_error: ResolutionError<'a>) {
183     resolve_struct_error(resolver, span, resolution_error).emit();
184 }
185
186 fn resolve_struct_error<'sess, 'a>(resolver: &'sess Resolver,
187                                    span: Span,
188                                    resolution_error: ResolutionError<'a>)
189                                    -> DiagnosticBuilder<'sess> {
190     match resolution_error {
191         ResolutionError::TypeParametersFromOuterFunction(outer_def) => {
192             let mut err = struct_span_err!(resolver.session,
193                                            span,
194                                            E0401,
195                                            "can't use type parameters from outer function");
196             err.span_label(span, "use of type variable from outer function");
197
198             let cm = resolver.session.source_map();
199             match outer_def {
200                 Def::SelfTy(maybe_trait_defid, maybe_impl_defid) => {
201                     if let Some(impl_span) = maybe_impl_defid.and_then(|def_id| {
202                         resolver.definitions.opt_span(def_id)
203                     }) {
204                         err.span_label(
205                             reduce_impl_span_to_impl_keyword(cm, impl_span),
206                             "`Self` type implicitly declared here, by this `impl`",
207                         );
208                     }
209                     match (maybe_trait_defid, maybe_impl_defid) {
210                         (Some(_), None) => {
211                             err.span_label(span, "can't use `Self` here");
212                         }
213                         (_, Some(_)) => {
214                             err.span_label(span, "use a type here instead");
215                         }
216                         (None, None) => bug!("`impl` without trait nor type?"),
217                     }
218                     return err;
219                 },
220                 Def::TyParam(typaram_defid) => {
221                     if let Some(typaram_span) = resolver.definitions.opt_span(typaram_defid) {
222                         err.span_label(typaram_span, "type variable from outer function");
223                     }
224                 },
225                 _ => {
226                     bug!("TypeParametersFromOuterFunction should only be used with Def::SelfTy or \
227                          Def::TyParam")
228                 }
229             }
230
231             // Try to retrieve the span of the function signature and generate a new message with
232             // a local type parameter
233             let sugg_msg = "try using a local type parameter instead";
234             if let Some((sugg_span, new_snippet)) = cm.generate_local_type_param_snippet(span) {
235                 // Suggest the modification to the user
236                 err.span_suggestion_with_applicability(
237                     sugg_span,
238                     sugg_msg,
239                     new_snippet,
240                     Applicability::MachineApplicable,
241                 );
242             } else if let Some(sp) = cm.generate_fn_name_span(span) {
243                 err.span_label(sp, "try adding a local type parameter in this method instead");
244             } else {
245                 err.help("try using a local type parameter instead");
246             }
247
248             err
249         }
250         ResolutionError::NameAlreadyUsedInTypeParameterList(name, first_use_span) => {
251              let mut err = struct_span_err!(resolver.session,
252                                             span,
253                                             E0403,
254                                             "the name `{}` is already used for a type parameter \
255                                             in this type parameter list",
256                                             name);
257              err.span_label(span, "already used");
258              err.span_label(first_use_span.clone(), format!("first use of `{}`", name));
259              err
260         }
261         ResolutionError::MethodNotMemberOfTrait(method, trait_) => {
262             let mut err = struct_span_err!(resolver.session,
263                                            span,
264                                            E0407,
265                                            "method `{}` is not a member of trait `{}`",
266                                            method,
267                                            trait_);
268             err.span_label(span, format!("not a member of trait `{}`", trait_));
269             err
270         }
271         ResolutionError::TypeNotMemberOfTrait(type_, trait_) => {
272             let mut err = struct_span_err!(resolver.session,
273                              span,
274                              E0437,
275                              "type `{}` is not a member of trait `{}`",
276                              type_,
277                              trait_);
278             err.span_label(span, format!("not a member of trait `{}`", trait_));
279             err
280         }
281         ResolutionError::ConstNotMemberOfTrait(const_, trait_) => {
282             let mut err = struct_span_err!(resolver.session,
283                              span,
284                              E0438,
285                              "const `{}` is not a member of trait `{}`",
286                              const_,
287                              trait_);
288             err.span_label(span, format!("not a member of trait `{}`", trait_));
289             err
290         }
291         ResolutionError::VariableNotBoundInPattern(binding_error) => {
292             let target_sp = binding_error.target.iter().cloned().collect::<Vec<_>>();
293             let msp = MultiSpan::from_spans(target_sp.clone());
294             let msg = format!("variable `{}` is not bound in all patterns", binding_error.name);
295             let mut err = resolver.session.struct_span_err_with_code(
296                 msp,
297                 &msg,
298                 DiagnosticId::Error("E0408".into()),
299             );
300             for sp in target_sp {
301                 err.span_label(sp, format!("pattern doesn't bind `{}`", binding_error.name));
302             }
303             let origin_sp = binding_error.origin.iter().cloned();
304             for sp in origin_sp {
305                 err.span_label(sp, "variable not in all patterns");
306             }
307             err
308         }
309         ResolutionError::VariableBoundWithDifferentMode(variable_name,
310                                                         first_binding_span) => {
311             let mut err = struct_span_err!(resolver.session,
312                              span,
313                              E0409,
314                              "variable `{}` is bound in inconsistent \
315                              ways within the same match arm",
316                              variable_name);
317             err.span_label(span, "bound in different ways");
318             err.span_label(first_binding_span, "first binding");
319             err
320         }
321         ResolutionError::IdentifierBoundMoreThanOnceInParameterList(identifier) => {
322             let mut err = struct_span_err!(resolver.session,
323                              span,
324                              E0415,
325                              "identifier `{}` is bound more than once in this parameter list",
326                              identifier);
327             err.span_label(span, "used as parameter more than once");
328             err
329         }
330         ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(identifier) => {
331             let mut err = struct_span_err!(resolver.session,
332                              span,
333                              E0416,
334                              "identifier `{}` is bound more than once in the same pattern",
335                              identifier);
336             err.span_label(span, "used in a pattern more than once");
337             err
338         }
339         ResolutionError::UndeclaredLabel(name, lev_candidate) => {
340             let mut err = struct_span_err!(resolver.session,
341                                            span,
342                                            E0426,
343                                            "use of undeclared label `{}`",
344                                            name);
345             if let Some(lev_candidate) = lev_candidate {
346                 err.span_label(span, format!("did you mean `{}`?", lev_candidate));
347             } else {
348                 err.span_label(span, format!("undeclared label `{}`", name));
349             }
350             err
351         }
352         ResolutionError::SelfImportsOnlyAllowedWithin => {
353             struct_span_err!(resolver.session,
354                              span,
355                              E0429,
356                              "{}",
357                              "`self` imports are only allowed within a { } list")
358         }
359         ResolutionError::SelfImportCanOnlyAppearOnceInTheList => {
360             let mut err = struct_span_err!(resolver.session, span, E0430,
361                                            "`self` import can only appear once in an import list");
362             err.span_label(span, "can only appear once in an import list");
363             err
364         }
365         ResolutionError::SelfImportOnlyInImportListWithNonEmptyPrefix => {
366             let mut err = struct_span_err!(resolver.session, span, E0431,
367                                            "`self` import can only appear in an import list with \
368                                             a non-empty prefix");
369             err.span_label(span, "can only appear in an import list with a non-empty prefix");
370             err
371         }
372         ResolutionError::FailedToResolve(msg) => {
373             let mut err = struct_span_err!(resolver.session, span, E0433,
374                                            "failed to resolve. {}", msg);
375             err.span_label(span, msg);
376             err
377         }
378         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem => {
379             let mut err = struct_span_err!(resolver.session,
380                                            span,
381                                            E0434,
382                                            "{}",
383                                            "can't capture dynamic environment in a fn item");
384             err.help("use the `|| { ... }` closure form instead");
385             err
386         }
387         ResolutionError::AttemptToUseNonConstantValueInConstant => {
388             let mut err = struct_span_err!(resolver.session, span, E0435,
389                                            "attempt to use a non-constant value in a constant");
390             err.span_label(span, "non-constant value");
391             err
392         }
393         ResolutionError::BindingShadowsSomethingUnacceptable(what_binding, name, binding) => {
394             let shadows_what = PathResolution::new(binding.def()).kind_name();
395             let mut err = struct_span_err!(resolver.session,
396                                            span,
397                                            E0530,
398                                            "{}s cannot shadow {}s", what_binding, shadows_what);
399             err.span_label(span, format!("cannot be named the same as a {}", shadows_what));
400             let participle = if binding.is_import() { "imported" } else { "defined" };
401             let msg = format!("a {} `{}` is {} here", shadows_what, name, participle);
402             err.span_label(binding.span, msg);
403             err
404         }
405         ResolutionError::ForwardDeclaredTyParam => {
406             let mut err = struct_span_err!(resolver.session, span, E0128,
407                                            "type parameters with a default cannot use \
408                                             forward declared identifiers");
409             err.span_label(
410                 span, "defaulted type parameters cannot be forward declared".to_string());
411             err
412         }
413     }
414 }
415
416 /// Adjust the impl span so that just the `impl` keyword is taken by removing
417 /// everything after `<` (`"impl<T> Iterator for A<T> {}" -> "impl"`) and
418 /// everything after the first whitespace (`"impl Iterator for A" -> "impl"`)
419 ///
420 /// Attention: The method used is very fragile since it essentially duplicates the work of the
421 /// parser. If you need to use this function or something similar, please consider updating the
422 /// source_map functions and this function to something more robust.
423 fn reduce_impl_span_to_impl_keyword(cm: &SourceMap, impl_span: Span) -> Span {
424     let impl_span = cm.span_until_char(impl_span, '<');
425     let impl_span = cm.span_until_whitespace(impl_span);
426     impl_span
427 }
428
429 #[derive(Copy, Clone, Debug)]
430 struct BindingInfo {
431     span: Span,
432     binding_mode: BindingMode,
433 }
434
435 /// Map from the name in a pattern to its binding mode.
436 type BindingMap = FxHashMap<Ident, BindingInfo>;
437
438 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
439 enum PatternSource {
440     Match,
441     IfLet,
442     WhileLet,
443     Let,
444     For,
445     FnParam,
446 }
447
448 impl PatternSource {
449     fn descr(self) -> &'static str {
450         match self {
451             PatternSource::Match => "match binding",
452             PatternSource::IfLet => "if let binding",
453             PatternSource::WhileLet => "while let binding",
454             PatternSource::Let => "let binding",
455             PatternSource::For => "for binding",
456             PatternSource::FnParam => "function parameter",
457         }
458     }
459 }
460
461 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
462 enum AliasPossibility {
463     No,
464     Maybe,
465 }
466
467 #[derive(Copy, Clone, Debug)]
468 enum PathSource<'a> {
469     // Type paths `Path`.
470     Type,
471     // Trait paths in bounds or impls.
472     Trait(AliasPossibility),
473     // Expression paths `path`, with optional parent context.
474     Expr(Option<&'a Expr>),
475     // Paths in path patterns `Path`.
476     Pat,
477     // Paths in struct expressions and patterns `Path { .. }`.
478     Struct,
479     // Paths in tuple struct patterns `Path(..)`.
480     TupleStruct,
481     // `m::A::B` in `<T as m::A>::B::C`.
482     TraitItem(Namespace),
483     // Path in `pub(path)`
484     Visibility,
485     // Path in `use a::b::{...};`
486     ImportPrefix,
487 }
488
489 impl<'a> PathSource<'a> {
490     fn namespace(self) -> Namespace {
491         match self {
492             PathSource::Type | PathSource::Trait(_) | PathSource::Struct |
493             PathSource::Visibility | PathSource::ImportPrefix => TypeNS,
494             PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct => ValueNS,
495             PathSource::TraitItem(ns) => ns,
496         }
497     }
498
499     fn global_by_default(self) -> bool {
500         match self {
501             PathSource::Visibility | PathSource::ImportPrefix => true,
502             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
503             PathSource::Struct | PathSource::TupleStruct |
504             PathSource::Trait(_) | PathSource::TraitItem(..) => false,
505         }
506     }
507
508     fn defer_to_typeck(self) -> bool {
509         match self {
510             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
511             PathSource::Struct | PathSource::TupleStruct => true,
512             PathSource::Trait(_) | PathSource::TraitItem(..) |
513             PathSource::Visibility | PathSource::ImportPrefix => false,
514         }
515     }
516
517     fn descr_expected(self) -> &'static str {
518         match self {
519             PathSource::Type => "type",
520             PathSource::Trait(_) => "trait",
521             PathSource::Pat => "unit struct/variant or constant",
522             PathSource::Struct => "struct, variant or union type",
523             PathSource::TupleStruct => "tuple struct/variant",
524             PathSource::Visibility => "module",
525             PathSource::ImportPrefix => "module or enum",
526             PathSource::TraitItem(ns) => match ns {
527                 TypeNS => "associated type",
528                 ValueNS => "method or associated constant",
529                 MacroNS => bug!("associated macro"),
530             },
531             PathSource::Expr(parent) => match parent.map(|p| &p.node) {
532                 // "function" here means "anything callable" rather than `Def::Fn`,
533                 // this is not precise but usually more helpful than just "value".
534                 Some(&ExprKind::Call(..)) => "function",
535                 _ => "value",
536             },
537         }
538     }
539
540     fn is_expected(self, def: Def) -> bool {
541         match self {
542             PathSource::Type => match def {
543                 Def::Struct(..) | Def::Union(..) | Def::Enum(..) |
544                 Def::Trait(..) | Def::TyAlias(..) | Def::AssociatedTy(..) |
545                 Def::PrimTy(..) | Def::TyParam(..) | Def::SelfTy(..) |
546                 Def::Existential(..) |
547                 Def::ForeignTy(..) => true,
548                 _ => false,
549             },
550             PathSource::Trait(AliasPossibility::No) => match def {
551                 Def::Trait(..) => true,
552                 _ => false,
553             },
554             PathSource::Trait(AliasPossibility::Maybe) => match def {
555                 Def::Trait(..) => true,
556                 Def::TraitAlias(..) => true,
557                 _ => false,
558             },
559             PathSource::Expr(..) => match def {
560                 Def::StructCtor(_, CtorKind::Const) | Def::StructCtor(_, CtorKind::Fn) |
561                 Def::VariantCtor(_, CtorKind::Const) | Def::VariantCtor(_, CtorKind::Fn) |
562                 Def::Const(..) | Def::Static(..) | Def::Local(..) | Def::Upvar(..) |
563                 Def::Fn(..) | Def::Method(..) | Def::AssociatedConst(..) |
564                 Def::SelfCtor(..) => true,
565                 _ => false,
566             },
567             PathSource::Pat => match def {
568                 Def::StructCtor(_, CtorKind::Const) |
569                 Def::VariantCtor(_, CtorKind::Const) |
570                 Def::Const(..) | Def::AssociatedConst(..) |
571                 Def::SelfCtor(..) => true,
572                 _ => false,
573             },
574             PathSource::TupleStruct => match def {
575                 Def::StructCtor(_, CtorKind::Fn) |
576                 Def::VariantCtor(_, CtorKind::Fn) |
577                 Def::SelfCtor(..) => true,
578                 _ => false,
579             },
580             PathSource::Struct => match def {
581                 Def::Struct(..) | Def::Union(..) | Def::Variant(..) |
582                 Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => true,
583                 _ => false,
584             },
585             PathSource::TraitItem(ns) => match def {
586                 Def::AssociatedConst(..) | Def::Method(..) if ns == ValueNS => true,
587                 Def::AssociatedTy(..) if ns == TypeNS => true,
588                 _ => false,
589             },
590             PathSource::ImportPrefix => match def {
591                 Def::Mod(..) | Def::Enum(..) => true,
592                 _ => false,
593             },
594             PathSource::Visibility => match def {
595                 Def::Mod(..) => true,
596                 _ => false,
597             },
598         }
599     }
600
601     fn error_code(self, has_unexpected_resolution: bool) -> &'static str {
602         __diagnostic_used!(E0404);
603         __diagnostic_used!(E0405);
604         __diagnostic_used!(E0412);
605         __diagnostic_used!(E0422);
606         __diagnostic_used!(E0423);
607         __diagnostic_used!(E0425);
608         __diagnostic_used!(E0531);
609         __diagnostic_used!(E0532);
610         __diagnostic_used!(E0573);
611         __diagnostic_used!(E0574);
612         __diagnostic_used!(E0575);
613         __diagnostic_used!(E0576);
614         __diagnostic_used!(E0577);
615         __diagnostic_used!(E0578);
616         match (self, has_unexpected_resolution) {
617             (PathSource::Trait(_), true) => "E0404",
618             (PathSource::Trait(_), false) => "E0405",
619             (PathSource::Type, true) => "E0573",
620             (PathSource::Type, false) => "E0412",
621             (PathSource::Struct, true) => "E0574",
622             (PathSource::Struct, false) => "E0422",
623             (PathSource::Expr(..), true) => "E0423",
624             (PathSource::Expr(..), false) => "E0425",
625             (PathSource::Pat, true) | (PathSource::TupleStruct, true) => "E0532",
626             (PathSource::Pat, false) | (PathSource::TupleStruct, false) => "E0531",
627             (PathSource::TraitItem(..), true) => "E0575",
628             (PathSource::TraitItem(..), false) => "E0576",
629             (PathSource::Visibility, true) | (PathSource::ImportPrefix, true) => "E0577",
630             (PathSource::Visibility, false) | (PathSource::ImportPrefix, false) => "E0578",
631         }
632     }
633 }
634
635 // A minimal representation of a path segment. We use this in resolve because
636 // we synthesize 'path segments' which don't have the rest of an AST or HIR
637 // PathSegment.
638 #[derive(Clone, Copy, Debug)]
639 pub struct Segment {
640     ident: Ident,
641     id: Option<NodeId>,
642 }
643
644 impl Segment {
645     fn from_path(path: &Path) -> Vec<Segment> {
646         path.segments.iter().map(|s| s.into()).collect()
647     }
648
649     fn from_ident(ident: Ident) -> Segment {
650         Segment {
651             ident,
652             id: None,
653         }
654     }
655
656     fn names_to_string(segments: &[Segment]) -> String {
657         names_to_string(&segments.iter()
658                             .map(|seg| seg.ident)
659                             .collect::<Vec<_>>())
660     }
661 }
662
663 impl<'a> From<&'a ast::PathSegment> for Segment {
664     fn from(seg: &'a ast::PathSegment) -> Segment {
665         Segment {
666             ident: seg.ident,
667             id: Some(seg.id),
668         }
669     }
670 }
671
672 struct UsePlacementFinder {
673     target_module: NodeId,
674     span: Option<Span>,
675     found_use: bool,
676 }
677
678 impl UsePlacementFinder {
679     fn check(krate: &Crate, target_module: NodeId) -> (Option<Span>, bool) {
680         let mut finder = UsePlacementFinder {
681             target_module,
682             span: None,
683             found_use: false,
684         };
685         visit::walk_crate(&mut finder, krate);
686         (finder.span, finder.found_use)
687     }
688 }
689
690 impl<'tcx> Visitor<'tcx> for UsePlacementFinder {
691     fn visit_mod(
692         &mut self,
693         module: &'tcx ast::Mod,
694         _: Span,
695         _: &[ast::Attribute],
696         node_id: NodeId,
697     ) {
698         if self.span.is_some() {
699             return;
700         }
701         if node_id != self.target_module {
702             visit::walk_mod(self, module);
703             return;
704         }
705         // find a use statement
706         for item in &module.items {
707             match item.node {
708                 ItemKind::Use(..) => {
709                     // don't suggest placing a use before the prelude
710                     // import or other generated ones
711                     if item.span.ctxt().outer().expn_info().is_none() {
712                         self.span = Some(item.span.shrink_to_lo());
713                         self.found_use = true;
714                         return;
715                     }
716                 },
717                 // don't place use before extern crate
718                 ItemKind::ExternCrate(_) => {}
719                 // but place them before the first other item
720                 _ => if self.span.map_or(true, |span| item.span < span ) {
721                     if item.span.ctxt().outer().expn_info().is_none() {
722                         // don't insert between attributes and an item
723                         if item.attrs.is_empty() {
724                             self.span = Some(item.span.shrink_to_lo());
725                         } else {
726                             // find the first attribute on the item
727                             for attr in &item.attrs {
728                                 if self.span.map_or(true, |span| attr.span < span) {
729                                     self.span = Some(attr.span.shrink_to_lo());
730                                 }
731                             }
732                         }
733                     }
734                 },
735             }
736         }
737     }
738 }
739
740 /// This thing walks the whole crate in DFS manner, visiting each item, resolving names as it goes.
741 impl<'a, 'tcx, 'cl> Visitor<'tcx> for Resolver<'a, 'cl> {
742     fn visit_item(&mut self, item: &'tcx Item) {
743         self.resolve_item(item);
744     }
745     fn visit_arm(&mut self, arm: &'tcx Arm) {
746         self.resolve_arm(arm);
747     }
748     fn visit_block(&mut self, block: &'tcx Block) {
749         self.resolve_block(block);
750     }
751     fn visit_anon_const(&mut self, constant: &'tcx ast::AnonConst) {
752         self.with_constant_rib(|this| {
753             visit::walk_anon_const(this, constant);
754         });
755     }
756     fn visit_expr(&mut self, expr: &'tcx Expr) {
757         self.resolve_expr(expr, None);
758     }
759     fn visit_local(&mut self, local: &'tcx Local) {
760         self.resolve_local(local);
761     }
762     fn visit_ty(&mut self, ty: &'tcx Ty) {
763         match ty.node {
764             TyKind::Path(ref qself, ref path) => {
765                 self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
766             }
767             TyKind::ImplicitSelf => {
768                 let self_ty = keywords::SelfType.ident();
769                 let def = self.resolve_ident_in_lexical_scope(self_ty, TypeNS, Some(ty.id), ty.span)
770                               .map_or(Def::Err, |d| d.def());
771                 self.record_def(ty.id, PathResolution::new(def));
772             }
773             _ => (),
774         }
775         visit::walk_ty(self, ty);
776     }
777     fn visit_poly_trait_ref(&mut self,
778                             tref: &'tcx ast::PolyTraitRef,
779                             m: &'tcx ast::TraitBoundModifier) {
780         self.smart_resolve_path(tref.trait_ref.ref_id, None,
781                                 &tref.trait_ref.path, PathSource::Trait(AliasPossibility::Maybe));
782         visit::walk_poly_trait_ref(self, tref, m);
783     }
784     fn visit_foreign_item(&mut self, foreign_item: &'tcx ForeignItem) {
785         let type_parameters = match foreign_item.node {
786             ForeignItemKind::Fn(_, ref generics) => {
787                 HasTypeParameters(generics, ItemRibKind)
788             }
789             ForeignItemKind::Static(..) => NoTypeParameters,
790             ForeignItemKind::Ty => NoTypeParameters,
791             ForeignItemKind::Macro(..) => NoTypeParameters,
792         };
793         self.with_type_parameter_rib(type_parameters, |this| {
794             visit::walk_foreign_item(this, foreign_item);
795         });
796     }
797     fn visit_fn(&mut self,
798                 function_kind: FnKind<'tcx>,
799                 declaration: &'tcx FnDecl,
800                 _: Span,
801                 node_id: NodeId)
802     {
803         let (rib_kind, asyncness) = match function_kind {
804             FnKind::ItemFn(_, ref header, ..) =>
805                 (ItemRibKind, header.asyncness),
806             FnKind::Method(_, ref sig, _, _) =>
807                 (TraitOrImplItemRibKind, sig.header.asyncness),
808             FnKind::Closure(_) =>
809                 // Async closures aren't resolved through `visit_fn`-- they're
810                 // processed separately
811                 (ClosureRibKind(node_id), IsAsync::NotAsync),
812         };
813
814         // Create a value rib for the function.
815         self.ribs[ValueNS].push(Rib::new(rib_kind));
816
817         // Create a label rib for the function.
818         self.label_ribs.push(Rib::new(rib_kind));
819
820         // Add each argument to the rib.
821         let mut bindings_list = FxHashMap::default();
822         for argument in &declaration.inputs {
823             self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
824
825             self.visit_ty(&argument.ty);
826
827             debug!("(resolving function) recorded argument");
828         }
829         visit::walk_fn_ret_ty(self, &declaration.output);
830
831         // Resolve the function body, potentially inside the body of an async closure
832         if let IsAsync::Async { closure_id, .. } = asyncness {
833             let rib_kind = ClosureRibKind(closure_id);
834             self.ribs[ValueNS].push(Rib::new(rib_kind));
835             self.label_ribs.push(Rib::new(rib_kind));
836         }
837
838         match function_kind {
839             FnKind::ItemFn(.., body) |
840             FnKind::Method(.., body) => {
841                 self.visit_block(body);
842             }
843             FnKind::Closure(body) => {
844                 self.visit_expr(body);
845             }
846         };
847
848         // Leave the body of the async closure
849         if asyncness.is_async() {
850             self.label_ribs.pop();
851             self.ribs[ValueNS].pop();
852         }
853
854         debug!("(resolving function) leaving function");
855
856         self.label_ribs.pop();
857         self.ribs[ValueNS].pop();
858     }
859     fn visit_generics(&mut self, generics: &'tcx Generics) {
860         // For type parameter defaults, we have to ban access
861         // to following type parameters, as the Substs can only
862         // provide previous type parameters as they're built. We
863         // put all the parameters on the ban list and then remove
864         // them one by one as they are processed and become available.
865         let mut default_ban_rib = Rib::new(ForwardTyParamBanRibKind);
866         let mut found_default = false;
867         default_ban_rib.bindings.extend(generics.params.iter()
868             .filter_map(|param| match param.kind {
869                 GenericParamKind::Lifetime { .. } => None,
870                 GenericParamKind::Type { ref default, .. } => {
871                     found_default |= default.is_some();
872                     if found_default {
873                         Some((Ident::with_empty_ctxt(param.ident.name), Def::Err))
874                     } else {
875                         None
876                     }
877                 }
878             }));
879
880         for param in &generics.params {
881             match param.kind {
882                 GenericParamKind::Lifetime { .. } => self.visit_generic_param(param),
883                 GenericParamKind::Type { ref default, .. } => {
884                     for bound in &param.bounds {
885                         self.visit_param_bound(bound);
886                     }
887
888                     if let Some(ref ty) = default {
889                         self.ribs[TypeNS].push(default_ban_rib);
890                         self.visit_ty(ty);
891                         default_ban_rib = self.ribs[TypeNS].pop().unwrap();
892                     }
893
894                     // Allow all following defaults to refer to this type parameter.
895                     default_ban_rib.bindings.remove(&Ident::with_empty_ctxt(param.ident.name));
896                 }
897             }
898         }
899         for p in &generics.where_clause.predicates {
900             self.visit_where_predicate(p);
901         }
902     }
903 }
904
905 #[derive(Copy, Clone)]
906 enum TypeParameters<'a, 'b> {
907     NoTypeParameters,
908     HasTypeParameters(// Type parameters.
909                       &'b Generics,
910
911                       // The kind of the rib used for type parameters.
912                       RibKind<'a>),
913 }
914
915 /// The rib kind controls the translation of local
916 /// definitions (`Def::Local`) to upvars (`Def::Upvar`).
917 #[derive(Copy, Clone, Debug)]
918 enum RibKind<'a> {
919     /// No translation needs to be applied.
920     NormalRibKind,
921
922     /// We passed through a closure scope at the given node ID.
923     /// Translate upvars as appropriate.
924     ClosureRibKind(NodeId /* func id */),
925
926     /// We passed through an impl or trait and are now in one of its
927     /// methods or associated types. Allow references to ty params that impl or trait
928     /// binds. Disallow any other upvars (including other ty params that are
929     /// upvars).
930     TraitOrImplItemRibKind,
931
932     /// We passed through an item scope. Disallow upvars.
933     ItemRibKind,
934
935     /// We're in a constant item. Can't refer to dynamic stuff.
936     ConstantItemRibKind,
937
938     /// We passed through a module.
939     ModuleRibKind(Module<'a>),
940
941     /// We passed through a `macro_rules!` statement
942     MacroDefinition(DefId),
943
944     /// All bindings in this rib are type parameters that can't be used
945     /// from the default of a type parameter because they're not declared
946     /// before said type parameter. Also see the `visit_generics` override.
947     ForwardTyParamBanRibKind,
948 }
949
950 /// One local scope.
951 ///
952 /// A rib represents a scope names can live in. Note that these appear in many places, not just
953 /// around braces. At any place where the list of accessible names (of the given namespace)
954 /// changes or a new restrictions on the name accessibility are introduced, a new rib is put onto a
955 /// stack. This may be, for example, a `let` statement (because it introduces variables), a macro,
956 /// etc.
957 ///
958 /// Different [rib kinds](enum.RibKind) are transparent for different names.
959 ///
960 /// The resolution keeps a separate stack of ribs as it traverses the AST for each namespace. When
961 /// resolving, the name is looked up from inside out.
962 #[derive(Debug)]
963 struct Rib<'a> {
964     bindings: FxHashMap<Ident, Def>,
965     kind: RibKind<'a>,
966 }
967
968 impl<'a> Rib<'a> {
969     fn new(kind: RibKind<'a>) -> Rib<'a> {
970         Rib {
971             bindings: Default::default(),
972             kind,
973         }
974     }
975 }
976
977 /// An intermediate resolution result.
978 ///
979 /// This refers to the thing referred by a name. The difference between `Def` and `Item` is that
980 /// items are visible in their whole block, while defs only from the place they are defined
981 /// forward.
982 enum LexicalScopeBinding<'a> {
983     Item(&'a NameBinding<'a>),
984     Def(Def),
985 }
986
987 impl<'a> LexicalScopeBinding<'a> {
988     fn item(self) -> Option<&'a NameBinding<'a>> {
989         match self {
990             LexicalScopeBinding::Item(binding) => Some(binding),
991             _ => None,
992         }
993     }
994
995     fn def(self) -> Def {
996         match self {
997             LexicalScopeBinding::Item(binding) => binding.def(),
998             LexicalScopeBinding::Def(def) => def,
999         }
1000     }
1001 }
1002
1003 #[derive(Copy, Clone, Debug)]
1004 pub enum ModuleOrUniformRoot<'a> {
1005     /// Regular module.
1006     Module(Module<'a>),
1007
1008     /// The `{{root}}` (`CrateRoot` aka "global") / `extern` initial segment
1009     /// in which external crates resolve, and also `crate` (only in `{{root}}`,
1010     /// but *not* `extern`), in the Rust 2018 edition.
1011     UniformRoot(Name),
1012 }
1013
1014 #[derive(Clone, Debug)]
1015 enum PathResult<'a> {
1016     Module(ModuleOrUniformRoot<'a>),
1017     NonModule(PathResolution),
1018     Indeterminate,
1019     Failed(Span, String, bool /* is the error from the last segment? */),
1020 }
1021
1022 enum ModuleKind {
1023     /// An anonymous module, eg. just a block.
1024     ///
1025     /// ```
1026     /// fn main() {
1027     ///     fn f() {} // (1)
1028     ///     { // This is an anonymous module
1029     ///         f(); // This resolves to (2) as we are inside the block.
1030     ///         fn f() {} // (2)
1031     ///     }
1032     ///     f(); // Resolves to (1)
1033     /// }
1034     /// ```
1035     Block(NodeId),
1036     /// Any module with a name.
1037     ///
1038     /// This could be:
1039     ///
1040     /// * A normal module â€’ either `mod from_file;` or `mod from_block { }`.
1041     /// * A trait or an enum (it implicitly contains associated types, methods and variant
1042     ///   constructors).
1043     Def(Def, Name),
1044 }
1045
1046 /// One node in the tree of modules.
1047 pub struct ModuleData<'a> {
1048     parent: Option<Module<'a>>,
1049     kind: ModuleKind,
1050
1051     // The def id of the closest normal module (`mod`) ancestor (including this module).
1052     normal_ancestor_id: DefId,
1053
1054     resolutions: RefCell<FxHashMap<(Ident, Namespace), &'a RefCell<NameResolution<'a>>>>,
1055     legacy_macro_resolutions: RefCell<Vec<(Ident, MacroKind, ParentScope<'a>,
1056                                            Option<&'a NameBinding<'a>>)>>,
1057     macro_resolutions: RefCell<Vec<(Box<[Ident]>, Span)>>,
1058     builtin_attrs: RefCell<Vec<(Ident, ParentScope<'a>)>>,
1059
1060     // Macro invocations that can expand into items in this module.
1061     unresolved_invocations: RefCell<FxHashSet<Mark>>,
1062
1063     no_implicit_prelude: bool,
1064
1065     glob_importers: RefCell<Vec<&'a ImportDirective<'a>>>,
1066     globs: RefCell<Vec<&'a ImportDirective<'a>>>,
1067
1068     // Used to memoize the traits in this module for faster searches through all traits in scope.
1069     traits: RefCell<Option<Box<[(Ident, &'a NameBinding<'a>)]>>>,
1070
1071     // Whether this module is populated. If not populated, any attempt to
1072     // access the children must be preceded with a
1073     // `populate_module_if_necessary` call.
1074     populated: Cell<bool>,
1075
1076     /// Span of the module itself. Used for error reporting.
1077     span: Span,
1078
1079     expansion: Mark,
1080 }
1081
1082 type Module<'a> = &'a ModuleData<'a>;
1083
1084 impl<'a> ModuleData<'a> {
1085     fn new(parent: Option<Module<'a>>,
1086            kind: ModuleKind,
1087            normal_ancestor_id: DefId,
1088            expansion: Mark,
1089            span: Span) -> Self {
1090         ModuleData {
1091             parent,
1092             kind,
1093             normal_ancestor_id,
1094             resolutions: Default::default(),
1095             legacy_macro_resolutions: RefCell::new(Vec::new()),
1096             macro_resolutions: RefCell::new(Vec::new()),
1097             builtin_attrs: RefCell::new(Vec::new()),
1098             unresolved_invocations: Default::default(),
1099             no_implicit_prelude: false,
1100             glob_importers: RefCell::new(Vec::new()),
1101             globs: RefCell::new(Vec::new()),
1102             traits: RefCell::new(None),
1103             populated: Cell::new(normal_ancestor_id.is_local()),
1104             span,
1105             expansion,
1106         }
1107     }
1108
1109     fn for_each_child<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1110         for (&(ident, ns), name_resolution) in self.resolutions.borrow().iter() {
1111             name_resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1112         }
1113     }
1114
1115     fn for_each_child_stable<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1116         let resolutions = self.resolutions.borrow();
1117         let mut resolutions = resolutions.iter().collect::<Vec<_>>();
1118         resolutions.sort_by_cached_key(|&(&(ident, ns), _)| (ident.as_str(), ns));
1119         for &(&(ident, ns), &resolution) in resolutions.iter() {
1120             resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1121         }
1122     }
1123
1124     fn def(&self) -> Option<Def> {
1125         match self.kind {
1126             ModuleKind::Def(def, _) => Some(def),
1127             _ => None,
1128         }
1129     }
1130
1131     fn def_id(&self) -> Option<DefId> {
1132         self.def().as_ref().map(Def::def_id)
1133     }
1134
1135     // `self` resolves to the first module ancestor that `is_normal`.
1136     fn is_normal(&self) -> bool {
1137         match self.kind {
1138             ModuleKind::Def(Def::Mod(_), _) => true,
1139             _ => false,
1140         }
1141     }
1142
1143     fn is_trait(&self) -> bool {
1144         match self.kind {
1145             ModuleKind::Def(Def::Trait(_), _) => true,
1146             _ => false,
1147         }
1148     }
1149
1150     fn is_local(&self) -> bool {
1151         self.normal_ancestor_id.is_local()
1152     }
1153
1154     fn nearest_item_scope(&'a self) -> Module<'a> {
1155         if self.is_trait() { self.parent.unwrap() } else { self }
1156     }
1157
1158     fn is_ancestor_of(&self, mut other: &Self) -> bool {
1159         while !ptr::eq(self, other) {
1160             if let Some(parent) = other.parent {
1161                 other = parent;
1162             } else {
1163                 return false;
1164             }
1165         }
1166         true
1167     }
1168 }
1169
1170 impl<'a> fmt::Debug for ModuleData<'a> {
1171     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1172         write!(f, "{:?}", self.def())
1173     }
1174 }
1175
1176 /// Records a possibly-private value, type, or module definition.
1177 #[derive(Clone, Debug)]
1178 pub struct NameBinding<'a> {
1179     kind: NameBindingKind<'a>,
1180     expansion: Mark,
1181     span: Span,
1182     vis: ty::Visibility,
1183 }
1184
1185 pub trait ToNameBinding<'a> {
1186     fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a>;
1187 }
1188
1189 impl<'a> ToNameBinding<'a> for &'a NameBinding<'a> {
1190     fn to_name_binding(self, _: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> {
1191         self
1192     }
1193 }
1194
1195 #[derive(Clone, Debug)]
1196 enum NameBindingKind<'a> {
1197     Def(Def, /* is_macro_export */ bool),
1198     Module(Module<'a>),
1199     Import {
1200         binding: &'a NameBinding<'a>,
1201         directive: &'a ImportDirective<'a>,
1202         used: Cell<bool>,
1203     },
1204     Ambiguity {
1205         b1: &'a NameBinding<'a>,
1206         b2: &'a NameBinding<'a>,
1207     }
1208 }
1209
1210 struct PrivacyError<'a>(Span, Name, &'a NameBinding<'a>);
1211
1212 struct UseError<'a> {
1213     err: DiagnosticBuilder<'a>,
1214     /// Attach `use` statements for these candidates
1215     candidates: Vec<ImportSuggestion>,
1216     /// The node id of the module to place the use statements in
1217     node_id: NodeId,
1218     /// Whether the diagnostic should state that it's "better"
1219     better: bool,
1220 }
1221
1222 struct AmbiguityError<'a> {
1223     ident: Ident,
1224     b1: &'a NameBinding<'a>,
1225     b2: &'a NameBinding<'a>,
1226 }
1227
1228 impl<'a> NameBinding<'a> {
1229     fn module(&self) -> Option<Module<'a>> {
1230         match self.kind {
1231             NameBindingKind::Module(module) => Some(module),
1232             NameBindingKind::Import { binding, .. } => binding.module(),
1233             _ => None,
1234         }
1235     }
1236
1237     fn def(&self) -> Def {
1238         match self.kind {
1239             NameBindingKind::Def(def, _) => def,
1240             NameBindingKind::Module(module) => module.def().unwrap(),
1241             NameBindingKind::Import { binding, .. } => binding.def(),
1242             NameBindingKind::Ambiguity { .. } => Def::Err,
1243         }
1244     }
1245
1246     fn def_ignoring_ambiguity(&self) -> Def {
1247         match self.kind {
1248             NameBindingKind::Import { binding, .. } => binding.def_ignoring_ambiguity(),
1249             NameBindingKind::Ambiguity { b1, .. } => b1.def_ignoring_ambiguity(),
1250             _ => self.def(),
1251         }
1252     }
1253
1254     // We sometimes need to treat variants as `pub` for backwards compatibility
1255     fn pseudo_vis(&self) -> ty::Visibility {
1256         if self.is_variant() && self.def().def_id().is_local() {
1257             ty::Visibility::Public
1258         } else {
1259             self.vis
1260         }
1261     }
1262
1263     fn is_variant(&self) -> bool {
1264         match self.kind {
1265             NameBindingKind::Def(Def::Variant(..), _) |
1266             NameBindingKind::Def(Def::VariantCtor(..), _) => true,
1267             _ => false,
1268         }
1269     }
1270
1271     fn is_extern_crate(&self) -> bool {
1272         match self.kind {
1273             NameBindingKind::Import {
1274                 directive: &ImportDirective {
1275                     subclass: ImportDirectiveSubclass::ExternCrate { .. }, ..
1276                 }, ..
1277             } => true,
1278             _ => false,
1279         }
1280     }
1281
1282     fn is_import(&self) -> bool {
1283         match self.kind {
1284             NameBindingKind::Import { .. } => true,
1285             _ => false,
1286         }
1287     }
1288
1289     fn is_glob_import(&self) -> bool {
1290         match self.kind {
1291             NameBindingKind::Import { directive, .. } => directive.is_glob(),
1292             NameBindingKind::Ambiguity { b1, .. } => b1.is_glob_import(),
1293             _ => false,
1294         }
1295     }
1296
1297     fn is_importable(&self) -> bool {
1298         match self.def() {
1299             Def::AssociatedConst(..) | Def::Method(..) | Def::AssociatedTy(..) => false,
1300             _ => true,
1301         }
1302     }
1303
1304     fn is_macro_def(&self) -> bool {
1305         match self.kind {
1306             NameBindingKind::Def(Def::Macro(..), _) => true,
1307             _ => false,
1308         }
1309     }
1310
1311     fn macro_kind(&self) -> Option<MacroKind> {
1312         match self.def_ignoring_ambiguity() {
1313             Def::Macro(_, kind) => Some(kind),
1314             Def::NonMacroAttr(..) => Some(MacroKind::Attr),
1315             _ => None,
1316         }
1317     }
1318
1319     fn descr(&self) -> &'static str {
1320         if self.is_extern_crate() { "extern crate" } else { self.def().kind_name() }
1321     }
1322
1323     // Suppose that we resolved macro invocation with `invoc_parent_expansion` to binding `binding`
1324     // at some expansion round `max(invoc, binding)` when they both emerged from macros.
1325     // Then this function returns `true` if `self` may emerge from a macro *after* that
1326     // in some later round and screw up our previously found resolution.
1327     // See more detailed explanation in
1328     // https://github.com/rust-lang/rust/pull/53778#issuecomment-419224049
1329     fn may_appear_after(&self, invoc_parent_expansion: Mark, binding: &NameBinding) -> bool {
1330         // self > max(invoc, binding) => !(self <= invoc || self <= binding)
1331         // Expansions are partially ordered, so "may appear after" is an inversion of
1332         // "certainly appears before or simultaneously" and includes unordered cases.
1333         let self_parent_expansion = self.expansion;
1334         let other_parent_expansion = binding.expansion;
1335         let certainly_before_other_or_simultaneously =
1336             other_parent_expansion.is_descendant_of(self_parent_expansion);
1337         let certainly_before_invoc_or_simultaneously =
1338             invoc_parent_expansion.is_descendant_of(self_parent_expansion);
1339         !(certainly_before_other_or_simultaneously || certainly_before_invoc_or_simultaneously)
1340     }
1341 }
1342
1343 /// Interns the names of the primitive types.
1344 ///
1345 /// All other types are defined somewhere and possibly imported, but the primitive ones need
1346 /// special handling, since they have no place of origin.
1347 #[derive(Default)]
1348 struct PrimitiveTypeTable {
1349     primitive_types: FxHashMap<Name, PrimTy>,
1350 }
1351
1352 impl PrimitiveTypeTable {
1353     fn new() -> PrimitiveTypeTable {
1354         let mut table = PrimitiveTypeTable::default();
1355
1356         table.intern("bool", Bool);
1357         table.intern("char", Char);
1358         table.intern("f32", Float(FloatTy::F32));
1359         table.intern("f64", Float(FloatTy::F64));
1360         table.intern("isize", Int(IntTy::Isize));
1361         table.intern("i8", Int(IntTy::I8));
1362         table.intern("i16", Int(IntTy::I16));
1363         table.intern("i32", Int(IntTy::I32));
1364         table.intern("i64", Int(IntTy::I64));
1365         table.intern("i128", Int(IntTy::I128));
1366         table.intern("str", Str);
1367         table.intern("usize", Uint(UintTy::Usize));
1368         table.intern("u8", Uint(UintTy::U8));
1369         table.intern("u16", Uint(UintTy::U16));
1370         table.intern("u32", Uint(UintTy::U32));
1371         table.intern("u64", Uint(UintTy::U64));
1372         table.intern("u128", Uint(UintTy::U128));
1373         table
1374     }
1375
1376     fn intern(&mut self, string: &str, primitive_type: PrimTy) {
1377         self.primitive_types.insert(Symbol::intern(string), primitive_type);
1378     }
1379 }
1380
1381 #[derive(Default, Clone)]
1382 pub struct ExternPreludeEntry<'a> {
1383     extern_crate_item: Option<&'a NameBinding<'a>>,
1384     pub introduced_by_item: bool,
1385 }
1386
1387 /// The main resolver class.
1388 ///
1389 /// This is the visitor that walks the whole crate.
1390 pub struct Resolver<'a, 'b: 'a> {
1391     session: &'a Session,
1392     cstore: &'a CStore,
1393
1394     pub definitions: Definitions,
1395
1396     graph_root: Module<'a>,
1397
1398     prelude: Option<Module<'a>>,
1399     pub extern_prelude: FxHashMap<Ident, ExternPreludeEntry<'a>>,
1400
1401     /// n.b. This is used only for better diagnostics, not name resolution itself.
1402     has_self: FxHashSet<DefId>,
1403
1404     /// Names of fields of an item `DefId` accessible with dot syntax.
1405     /// Used for hints during error reporting.
1406     field_names: FxHashMap<DefId, Vec<Name>>,
1407
1408     /// All imports known to succeed or fail.
1409     determined_imports: Vec<&'a ImportDirective<'a>>,
1410
1411     /// All non-determined imports.
1412     indeterminate_imports: Vec<&'a ImportDirective<'a>>,
1413
1414     /// The module that represents the current item scope.
1415     current_module: Module<'a>,
1416
1417     /// The current set of local scopes for types and values.
1418     /// FIXME #4948: Reuse ribs to avoid allocation.
1419     ribs: PerNS<Vec<Rib<'a>>>,
1420
1421     /// The current set of local scopes, for labels.
1422     label_ribs: Vec<Rib<'a>>,
1423
1424     /// The trait that the current context can refer to.
1425     current_trait_ref: Option<(Module<'a>, TraitRef)>,
1426
1427     /// The current self type if inside an impl (used for better errors).
1428     current_self_type: Option<Ty>,
1429
1430     /// The current self item if inside an ADT (used for better errors).
1431     current_self_item: Option<NodeId>,
1432
1433     /// The idents for the primitive types.
1434     primitive_type_table: PrimitiveTypeTable,
1435
1436     def_map: DefMap,
1437     import_map: ImportMap,
1438     pub freevars: FreevarMap,
1439     freevars_seen: NodeMap<NodeMap<usize>>,
1440     pub export_map: ExportMap,
1441     pub trait_map: TraitMap,
1442
1443     /// A map from nodes to anonymous modules.
1444     /// Anonymous modules are pseudo-modules that are implicitly created around items
1445     /// contained within blocks.
1446     ///
1447     /// For example, if we have this:
1448     ///
1449     ///  fn f() {
1450     ///      fn g() {
1451     ///          ...
1452     ///      }
1453     ///  }
1454     ///
1455     /// There will be an anonymous module created around `g` with the ID of the
1456     /// entry block for `f`.
1457     block_map: NodeMap<Module<'a>>,
1458     module_map: FxHashMap<DefId, Module<'a>>,
1459     extern_module_map: FxHashMap<(DefId, bool /* MacrosOnly? */), Module<'a>>,
1460     binding_parent_modules: FxHashMap<PtrKey<'a, NameBinding<'a>>, Module<'a>>,
1461
1462     pub make_glob_map: bool,
1463     /// Maps imports to the names of items actually imported (this actually maps
1464     /// all imports, but only glob imports are actually interesting).
1465     pub glob_map: GlobMap,
1466
1467     used_imports: FxHashSet<(NodeId, Namespace)>,
1468     pub maybe_unused_trait_imports: NodeSet,
1469     pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
1470
1471     /// A list of labels as of yet unused. Labels will be removed from this map when
1472     /// they are used (in a `break` or `continue` statement)
1473     pub unused_labels: FxHashMap<NodeId, Span>,
1474
1475     /// privacy errors are delayed until the end in order to deduplicate them
1476     privacy_errors: Vec<PrivacyError<'a>>,
1477     /// ambiguity errors are delayed for deduplication
1478     ambiguity_errors: Vec<AmbiguityError<'a>>,
1479     /// `use` injections are delayed for better placement and deduplication
1480     use_injections: Vec<UseError<'a>>,
1481     /// crate-local macro expanded `macro_export` referred to by a module-relative path
1482     macro_expanded_macro_export_errors: BTreeSet<(Span, Span)>,
1483
1484     arenas: &'a ResolverArenas<'a>,
1485     dummy_binding: &'a NameBinding<'a>,
1486
1487     crate_loader: &'a mut CrateLoader<'b>,
1488     macro_names: FxHashSet<Ident>,
1489     builtin_macros: FxHashMap<Name, &'a NameBinding<'a>>,
1490     macro_use_prelude: FxHashMap<Name, &'a NameBinding<'a>>,
1491     pub all_macros: FxHashMap<Name, Def>,
1492     macro_map: FxHashMap<DefId, Lrc<SyntaxExtension>>,
1493     macro_defs: FxHashMap<Mark, DefId>,
1494     local_macro_def_scopes: FxHashMap<NodeId, Module<'a>>,
1495     pub whitelisted_legacy_custom_derives: Vec<Name>,
1496     pub found_unresolved_macro: bool,
1497
1498     /// List of crate local macros that we need to warn about as being unused.
1499     /// Right now this only includes macro_rules! macros, and macros 2.0.
1500     unused_macros: FxHashSet<DefId>,
1501
1502     /// Maps the `Mark` of an expansion to its containing module or block.
1503     invocations: FxHashMap<Mark, &'a InvocationData<'a>>,
1504
1505     /// Avoid duplicated errors for "name already defined".
1506     name_already_seen: FxHashMap<Name, Span>,
1507
1508     potentially_unused_imports: Vec<&'a ImportDirective<'a>>,
1509
1510     /// This table maps struct IDs into struct constructor IDs,
1511     /// it's not used during normal resolution, only for better error reporting.
1512     struct_constructors: DefIdMap<(Def, ty::Visibility)>,
1513
1514     /// Only used for better errors on `fn(): fn()`
1515     current_type_ascription: Vec<Span>,
1516
1517     injected_crate: Option<Module<'a>>,
1518 }
1519
1520 /// Nothing really interesting here, it just provides memory for the rest of the crate.
1521 #[derive(Default)]
1522 pub struct ResolverArenas<'a> {
1523     modules: arena::TypedArena<ModuleData<'a>>,
1524     local_modules: RefCell<Vec<Module<'a>>>,
1525     name_bindings: arena::TypedArena<NameBinding<'a>>,
1526     import_directives: arena::TypedArena<ImportDirective<'a>>,
1527     name_resolutions: arena::TypedArena<RefCell<NameResolution<'a>>>,
1528     invocation_data: arena::TypedArena<InvocationData<'a>>,
1529     legacy_bindings: arena::TypedArena<LegacyBinding<'a>>,
1530 }
1531
1532 impl<'a> ResolverArenas<'a> {
1533     fn alloc_module(&'a self, module: ModuleData<'a>) -> Module<'a> {
1534         let module = self.modules.alloc(module);
1535         if module.def_id().map(|def_id| def_id.is_local()).unwrap_or(true) {
1536             self.local_modules.borrow_mut().push(module);
1537         }
1538         module
1539     }
1540     fn local_modules(&'a self) -> ::std::cell::Ref<'a, Vec<Module<'a>>> {
1541         self.local_modules.borrow()
1542     }
1543     fn alloc_name_binding(&'a self, name_binding: NameBinding<'a>) -> &'a NameBinding<'a> {
1544         self.name_bindings.alloc(name_binding)
1545     }
1546     fn alloc_import_directive(&'a self, import_directive: ImportDirective<'a>)
1547                               -> &'a ImportDirective {
1548         self.import_directives.alloc(import_directive)
1549     }
1550     fn alloc_name_resolution(&'a self) -> &'a RefCell<NameResolution<'a>> {
1551         self.name_resolutions.alloc(Default::default())
1552     }
1553     fn alloc_invocation_data(&'a self, expansion_data: InvocationData<'a>)
1554                              -> &'a InvocationData<'a> {
1555         self.invocation_data.alloc(expansion_data)
1556     }
1557     fn alloc_legacy_binding(&'a self, binding: LegacyBinding<'a>) -> &'a LegacyBinding<'a> {
1558         self.legacy_bindings.alloc(binding)
1559     }
1560 }
1561
1562 impl<'a, 'b: 'a, 'cl: 'b> ty::DefIdTree for &'a Resolver<'b, 'cl> {
1563     fn parent(self, id: DefId) -> Option<DefId> {
1564         match id.krate {
1565             LOCAL_CRATE => self.definitions.def_key(id.index).parent,
1566             _ => self.cstore.def_key(id).parent,
1567         }.map(|index| DefId { index, ..id })
1568     }
1569 }
1570
1571 /// This interface is used through the AST→HIR step, to embed full paths into the HIR. After that
1572 /// the resolver is no longer needed as all the relevant information is inline.
1573 impl<'a, 'cl> hir::lowering::Resolver for Resolver<'a, 'cl> {
1574     fn resolve_hir_path(
1575         &mut self,
1576         path: &ast::Path,
1577         args: Option<P<hir::GenericArgs>>,
1578         is_value: bool,
1579     ) -> hir::Path {
1580         self.resolve_hir_path_cb(path, args, is_value,
1581                                  |resolver, span, error| resolve_error(resolver, span, error))
1582     }
1583
1584     fn resolve_str_path(
1585         &mut self,
1586         span: Span,
1587         crate_root: Option<&str>,
1588         components: &[&str],
1589         args: Option<P<hir::GenericArgs>>,
1590         is_value: bool
1591     ) -> hir::Path {
1592         let segments = iter::once(keywords::CrateRoot.ident())
1593             .chain(
1594                 crate_root.into_iter()
1595                     .chain(components.iter().cloned())
1596                     .map(Ident::from_str)
1597             ).map(|i| self.new_ast_path_segment(i)).collect::<Vec<_>>();
1598
1599
1600         let path = ast::Path {
1601             span,
1602             segments,
1603         };
1604
1605         self.resolve_hir_path(&path, args, is_value)
1606     }
1607
1608     fn get_resolution(&mut self, id: NodeId) -> Option<PathResolution> {
1609         self.def_map.get(&id).cloned()
1610     }
1611
1612     fn get_import(&mut self, id: NodeId) -> PerNS<Option<PathResolution>> {
1613         self.import_map.get(&id).cloned().unwrap_or_default()
1614     }
1615
1616     fn definitions(&mut self) -> &mut Definitions {
1617         &mut self.definitions
1618     }
1619 }
1620
1621 impl<'a, 'crateloader> Resolver<'a, 'crateloader> {
1622     /// Rustdoc uses this to resolve things in a recoverable way. ResolutionError<'a>
1623     /// isn't something that can be returned because it can't be made to live that long,
1624     /// and also it's a private type. Fortunately rustdoc doesn't need to know the error,
1625     /// just that an error occurred.
1626     pub fn resolve_str_path_error(&mut self, span: Span, path_str: &str, is_value: bool)
1627         -> Result<hir::Path, ()> {
1628         use std::iter;
1629         let mut errored = false;
1630
1631         let path = if path_str.starts_with("::") {
1632             ast::Path {
1633                 span,
1634                 segments: iter::once(keywords::CrateRoot.ident())
1635                     .chain({
1636                         path_str.split("::").skip(1).map(Ident::from_str)
1637                     })
1638                     .map(|i| self.new_ast_path_segment(i))
1639                     .collect(),
1640             }
1641         } else {
1642             ast::Path {
1643                 span,
1644                 segments: path_str
1645                     .split("::")
1646                     .map(Ident::from_str)
1647                     .map(|i| self.new_ast_path_segment(i))
1648                     .collect(),
1649             }
1650         };
1651         let path = self.resolve_hir_path_cb(&path, None, is_value, |_, _, _| errored = true);
1652         if errored || path.def == Def::Err {
1653             Err(())
1654         } else {
1655             Ok(path)
1656         }
1657     }
1658
1659     /// resolve_hir_path, but takes a callback in case there was an error
1660     fn resolve_hir_path_cb<F>(
1661         &mut self,
1662         path: &ast::Path,
1663         args: Option<P<hir::GenericArgs>>,
1664         is_value: bool,
1665         error_callback: F,
1666     ) -> hir::Path
1667         where F: for<'c, 'b> FnOnce(&'c mut Resolver, Span, ResolutionError<'b>)
1668     {
1669         let namespace = if is_value { ValueNS } else { TypeNS };
1670         let span = path.span;
1671         let segments = &path.segments;
1672         let path = Segment::from_path(&path);
1673         // FIXME (Manishearth): Intra doc links won't get warned of epoch changes
1674         let def = match self.resolve_path(None, &path, Some(namespace), true, span, CrateLint::No) {
1675             PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
1676                 module.def().unwrap(),
1677             PathResult::NonModule(path_res) if path_res.unresolved_segments() == 0 =>
1678                 *def = path_res.base_def(),
1679             PathResult::NonModule(..) =>
1680                 if let PathResult::Failed(span, msg, _) = self.resolve_path(
1681                     None,
1682                     &path,
1683                     None,
1684                     true,
1685                     span,
1686                     CrateLint::No,
1687                 ) {
1688                     error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1689                 },
1690             PathResult::Module(ModuleOrUniformRoot::UniformRoot(_)) |
1691             PathResult::Indeterminate => unreachable!(),
1692             PathResult::Failed(span, msg, _) => {
1693                 error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1694                 Def::Err
1695             }
1696         };
1697
1698         let mut segments: Vec<_> = segments.iter().map(|seg| {
1699             let mut hir_seg = hir::PathSegment::from_ident(seg.ident);
1700             hir_seg.def = Some(self.def_map.get(&seg.id).map_or(Def::Err, |p| p.base_def()));
1701             hir_seg
1702         }).collect();
1703         segments.last_mut().unwrap().args = args;
1704         hir::Path {
1705             span,
1706             def,
1707             segments: segments.into(),
1708         }
1709     }
1710
1711     fn new_ast_path_segment(&self, ident: Ident) -> ast::PathSegment {
1712         let mut seg = ast::PathSegment::from_ident(ident);
1713         seg.id = self.session.next_node_id();
1714         seg
1715     }
1716 }
1717
1718 impl<'a, 'crateloader: 'a> Resolver<'a, 'crateloader> {
1719     pub fn new(session: &'a Session,
1720                cstore: &'a CStore,
1721                krate: &Crate,
1722                crate_name: &str,
1723                make_glob_map: MakeGlobMap,
1724                crate_loader: &'a mut CrateLoader<'crateloader>,
1725                arenas: &'a ResolverArenas<'a>)
1726                -> Resolver<'a, 'crateloader> {
1727         let root_def_id = DefId::local(CRATE_DEF_INDEX);
1728         let root_module_kind = ModuleKind::Def(Def::Mod(root_def_id), keywords::Invalid.name());
1729         let graph_root = arenas.alloc_module(ModuleData {
1730             no_implicit_prelude: attr::contains_name(&krate.attrs, "no_implicit_prelude"),
1731             ..ModuleData::new(None, root_module_kind, root_def_id, Mark::root(), krate.span)
1732         });
1733         let mut module_map = FxHashMap::default();
1734         module_map.insert(DefId::local(CRATE_DEF_INDEX), graph_root);
1735
1736         let mut definitions = Definitions::new();
1737         DefCollector::new(&mut definitions, Mark::root())
1738             .collect_root(crate_name, session.local_crate_disambiguator());
1739
1740         let mut extern_prelude: FxHashMap<Ident, ExternPreludeEntry> =
1741             session.opts.externs.iter().map(|kv| (Ident::from_str(kv.0), Default::default()))
1742                                        .collect();
1743
1744         if !attr::contains_name(&krate.attrs, "no_core") {
1745             extern_prelude.insert(Ident::from_str("core"), Default::default());
1746             if !attr::contains_name(&krate.attrs, "no_std") {
1747                 extern_prelude.insert(Ident::from_str("std"), Default::default());
1748                 if session.rust_2018() {
1749                     extern_prelude.insert(Ident::from_str("meta"), Default::default());
1750                 }
1751             }
1752         }
1753
1754         let mut invocations = FxHashMap::default();
1755         invocations.insert(Mark::root(),
1756                            arenas.alloc_invocation_data(InvocationData::root(graph_root)));
1757
1758         let mut macro_defs = FxHashMap::default();
1759         macro_defs.insert(Mark::root(), root_def_id);
1760
1761         Resolver {
1762             session,
1763
1764             cstore,
1765
1766             definitions,
1767
1768             // The outermost module has def ID 0; this is not reflected in the
1769             // AST.
1770             graph_root,
1771             prelude: None,
1772             extern_prelude,
1773
1774             has_self: FxHashSet::default(),
1775             field_names: FxHashMap::default(),
1776
1777             determined_imports: Vec::new(),
1778             indeterminate_imports: Vec::new(),
1779
1780             current_module: graph_root,
1781             ribs: PerNS {
1782                 value_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1783                 type_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1784                 macro_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1785             },
1786             label_ribs: Vec::new(),
1787
1788             current_trait_ref: None,
1789             current_self_type: None,
1790             current_self_item: None,
1791
1792             primitive_type_table: PrimitiveTypeTable::new(),
1793
1794             def_map: NodeMap(),
1795             import_map: NodeMap(),
1796             freevars: NodeMap(),
1797             freevars_seen: NodeMap(),
1798             export_map: FxHashMap::default(),
1799             trait_map: NodeMap(),
1800             module_map,
1801             block_map: NodeMap(),
1802             extern_module_map: FxHashMap::default(),
1803             binding_parent_modules: FxHashMap::default(),
1804
1805             make_glob_map: make_glob_map == MakeGlobMap::Yes,
1806             glob_map: NodeMap(),
1807
1808             used_imports: FxHashSet::default(),
1809             maybe_unused_trait_imports: NodeSet(),
1810             maybe_unused_extern_crates: Vec::new(),
1811
1812             unused_labels: FxHashMap::default(),
1813
1814             privacy_errors: Vec::new(),
1815             ambiguity_errors: Vec::new(),
1816             use_injections: Vec::new(),
1817             macro_expanded_macro_export_errors: BTreeSet::new(),
1818
1819             arenas,
1820             dummy_binding: arenas.alloc_name_binding(NameBinding {
1821                 kind: NameBindingKind::Def(Def::Err, false),
1822                 expansion: Mark::root(),
1823                 span: DUMMY_SP,
1824                 vis: ty::Visibility::Public,
1825             }),
1826
1827             crate_loader,
1828             macro_names: FxHashSet::default(),
1829             builtin_macros: FxHashMap::default(),
1830             macro_use_prelude: FxHashMap::default(),
1831             all_macros: FxHashMap::default(),
1832             macro_map: FxHashMap::default(),
1833             invocations,
1834             macro_defs,
1835             local_macro_def_scopes: FxHashMap::default(),
1836             name_already_seen: FxHashMap::default(),
1837             whitelisted_legacy_custom_derives: Vec::new(),
1838             potentially_unused_imports: Vec::new(),
1839             struct_constructors: DefIdMap(),
1840             found_unresolved_macro: false,
1841             unused_macros: FxHashSet::default(),
1842             current_type_ascription: Vec::new(),
1843             injected_crate: None,
1844         }
1845     }
1846
1847     pub fn arenas() -> ResolverArenas<'a> {
1848         Default::default()
1849     }
1850
1851     /// Runs the function on each namespace.
1852     fn per_ns<F: FnMut(&mut Self, Namespace)>(&mut self, mut f: F) {
1853         f(self, TypeNS);
1854         f(self, ValueNS);
1855         f(self, MacroNS);
1856     }
1857
1858     fn macro_def(&self, mut ctxt: SyntaxContext) -> DefId {
1859         loop {
1860             match self.macro_defs.get(&ctxt.outer()) {
1861                 Some(&def_id) => return def_id,
1862                 None => ctxt.remove_mark(),
1863             };
1864         }
1865     }
1866
1867     /// Entry point to crate resolution.
1868     pub fn resolve_crate(&mut self, krate: &Crate) {
1869         ImportResolver { resolver: self }.finalize_imports();
1870         self.current_module = self.graph_root;
1871         self.finalize_current_module_macro_resolutions();
1872
1873         visit::walk_crate(self, krate);
1874
1875         check_unused::check_crate(self, krate);
1876         self.report_errors(krate);
1877         self.crate_loader.postprocess(krate);
1878     }
1879
1880     fn new_module(
1881         &self,
1882         parent: Module<'a>,
1883         kind: ModuleKind,
1884         normal_ancestor_id: DefId,
1885         expansion: Mark,
1886         span: Span,
1887     ) -> Module<'a> {
1888         let module = ModuleData::new(Some(parent), kind, normal_ancestor_id, expansion, span);
1889         self.arenas.alloc_module(module)
1890     }
1891
1892     fn record_use(&mut self, ident: Ident, ns: Namespace, binding: &'a NameBinding<'a>)
1893                   -> bool /* true if an error was reported */ {
1894         match binding.kind {
1895             NameBindingKind::Import { directive, binding, ref used }
1896                     if !used.get() => {
1897                 used.set(true);
1898                 directive.used.set(true);
1899                 self.used_imports.insert((directive.id, ns));
1900                 self.add_to_glob_map(directive.id, ident);
1901                 self.record_use(ident, ns, binding)
1902             }
1903             NameBindingKind::Import { .. } => false,
1904             NameBindingKind::Ambiguity { b1, b2 } => {
1905                 self.ambiguity_errors.push(AmbiguityError { ident, b1, b2 });
1906                 true
1907             }
1908             _ => false
1909         }
1910     }
1911
1912     fn add_to_glob_map(&mut self, id: NodeId, ident: Ident) {
1913         if self.make_glob_map {
1914             self.glob_map.entry(id).or_default().insert(ident.name);
1915         }
1916     }
1917
1918     /// This resolves the identifier `ident` in the namespace `ns` in the current lexical scope.
1919     /// More specifically, we proceed up the hierarchy of scopes and return the binding for
1920     /// `ident` in the first scope that defines it (or None if no scopes define it).
1921     ///
1922     /// A block's items are above its local variables in the scope hierarchy, regardless of where
1923     /// the items are defined in the block. For example,
1924     /// ```rust
1925     /// fn f() {
1926     ///    g(); // Since there are no local variables in scope yet, this resolves to the item.
1927     ///    let g = || {};
1928     ///    fn g() {}
1929     ///    g(); // This resolves to the local variable `g` since it shadows the item.
1930     /// }
1931     /// ```
1932     ///
1933     /// Invariant: This must only be called during main resolution, not during
1934     /// import resolution.
1935     fn resolve_ident_in_lexical_scope(&mut self,
1936                                       mut ident: Ident,
1937                                       ns: Namespace,
1938                                       record_used_id: Option<NodeId>,
1939                                       path_span: Span)
1940                                       -> Option<LexicalScopeBinding<'a>> {
1941         let record_used = record_used_id.is_some();
1942         assert!(ns == TypeNS  || ns == ValueNS);
1943         if ns == TypeNS {
1944             ident.span = if ident.name == keywords::SelfType.name() {
1945                 // FIXME(jseyfried) improve `Self` hygiene
1946                 ident.span.with_ctxt(SyntaxContext::empty())
1947             } else {
1948                 ident.span.modern()
1949             }
1950         } else {
1951             ident = ident.modern_and_legacy();
1952         }
1953
1954         // Walk backwards up the ribs in scope.
1955         let mut module = self.graph_root;
1956         for i in (0 .. self.ribs[ns].len()).rev() {
1957             if let Some(def) = self.ribs[ns][i].bindings.get(&ident).cloned() {
1958                 // The ident resolves to a type parameter or local variable.
1959                 return Some(LexicalScopeBinding::Def(
1960                     self.adjust_local_def(ns, i, def, record_used, path_span)
1961                 ));
1962             }
1963
1964             module = match self.ribs[ns][i].kind {
1965                 ModuleRibKind(module) => module,
1966                 MacroDefinition(def) if def == self.macro_def(ident.span.ctxt()) => {
1967                     // If an invocation of this macro created `ident`, give up on `ident`
1968                     // and switch to `ident`'s source from the macro definition.
1969                     ident.span.remove_mark();
1970                     continue
1971                 }
1972                 _ => continue,
1973             };
1974
1975             let item = self.resolve_ident_in_module_unadjusted(
1976                 ModuleOrUniformRoot::Module(module),
1977                 ident,
1978                 ns,
1979                 false,
1980                 record_used,
1981                 path_span,
1982             );
1983             if let Ok(binding) = item {
1984                 // The ident resolves to an item.
1985                 return Some(LexicalScopeBinding::Item(binding));
1986             }
1987
1988             match module.kind {
1989                 ModuleKind::Block(..) => {}, // We can see through blocks
1990                 _ => break,
1991             }
1992         }
1993
1994         ident.span = ident.span.modern();
1995         let mut poisoned = None;
1996         loop {
1997             let opt_module = if let Some(node_id) = record_used_id {
1998                 self.hygienic_lexical_parent_with_compatibility_fallback(module, &mut ident.span,
1999                                                                          node_id, &mut poisoned)
2000             } else {
2001                 self.hygienic_lexical_parent(module, &mut ident.span)
2002             };
2003             module = unwrap_or!(opt_module, break);
2004             let orig_current_module = self.current_module;
2005             self.current_module = module; // Lexical resolutions can never be a privacy error.
2006             let result = self.resolve_ident_in_module_unadjusted(
2007                 ModuleOrUniformRoot::Module(module),
2008                 ident,
2009                 ns,
2010                 false,
2011                 record_used,
2012                 path_span,
2013             );
2014             self.current_module = orig_current_module;
2015
2016             match result {
2017                 Ok(binding) => {
2018                     if let Some(node_id) = poisoned {
2019                         self.session.buffer_lint_with_diagnostic(
2020                             lint::builtin::PROC_MACRO_DERIVE_RESOLUTION_FALLBACK,
2021                             node_id, ident.span,
2022                             &format!("cannot find {} `{}` in this scope", ns.descr(), ident),
2023                             lint::builtin::BuiltinLintDiagnostics::
2024                                 ProcMacroDeriveResolutionFallback(ident.span),
2025                         );
2026                     }
2027                     return Some(LexicalScopeBinding::Item(binding))
2028                 }
2029                 Err(Determined) => continue,
2030                 Err(Undetermined) =>
2031                     span_bug!(ident.span, "undetermined resolution during main resolution pass"),
2032             }
2033         }
2034
2035         if !module.no_implicit_prelude {
2036             if ns == TypeNS {
2037                 if let Some(binding) = self.extern_prelude_get(ident, !record_used, false) {
2038                     return Some(LexicalScopeBinding::Item(binding));
2039                 }
2040             }
2041             if ns == TypeNS && is_known_tool(ident.name) {
2042                 let binding = (Def::ToolMod, ty::Visibility::Public,
2043                                ident.span, Mark::root()).to_name_binding(self.arenas);
2044                 return Some(LexicalScopeBinding::Item(binding));
2045             }
2046             if let Some(prelude) = self.prelude {
2047                 if let Ok(binding) = self.resolve_ident_in_module_unadjusted(
2048                     ModuleOrUniformRoot::Module(prelude),
2049                     ident,
2050                     ns,
2051                     false,
2052                     false,
2053                     path_span,
2054                 ) {
2055                     return Some(LexicalScopeBinding::Item(binding));
2056                 }
2057             }
2058         }
2059
2060         None
2061     }
2062
2063     fn hygienic_lexical_parent(&mut self, module: Module<'a>, span: &mut Span)
2064                                -> Option<Module<'a>> {
2065         if !module.expansion.is_descendant_of(span.ctxt().outer()) {
2066             return Some(self.macro_def_scope(span.remove_mark()));
2067         }
2068
2069         if let ModuleKind::Block(..) = module.kind {
2070             return Some(module.parent.unwrap());
2071         }
2072
2073         None
2074     }
2075
2076     fn hygienic_lexical_parent_with_compatibility_fallback(&mut self, module: Module<'a>,
2077                                                            span: &mut Span, node_id: NodeId,
2078                                                            poisoned: &mut Option<NodeId>)
2079                                                            -> Option<Module<'a>> {
2080         if let module @ Some(..) = self.hygienic_lexical_parent(module, span) {
2081             return module;
2082         }
2083
2084         // We need to support the next case under a deprecation warning
2085         // ```
2086         // struct MyStruct;
2087         // ---- begin: this comes from a proc macro derive
2088         // mod implementation_details {
2089         //     // Note that `MyStruct` is not in scope here.
2090         //     impl SomeTrait for MyStruct { ... }
2091         // }
2092         // ---- end
2093         // ```
2094         // So we have to fall back to the module's parent during lexical resolution in this case.
2095         if let Some(parent) = module.parent {
2096             // Inner module is inside the macro, parent module is outside of the macro.
2097             if module.expansion != parent.expansion &&
2098             module.expansion.is_descendant_of(parent.expansion) {
2099                 // The macro is a proc macro derive
2100                 if module.expansion.looks_like_proc_macro_derive() {
2101                     if parent.expansion.is_descendant_of(span.ctxt().outer()) {
2102                         *poisoned = Some(node_id);
2103                         return module.parent;
2104                     }
2105                 }
2106             }
2107         }
2108
2109         None
2110     }
2111
2112     fn resolve_ident_in_module(&mut self,
2113                                module: ModuleOrUniformRoot<'a>,
2114                                mut ident: Ident,
2115                                ns: Namespace,
2116                                record_used: bool,
2117                                span: Span)
2118                                -> Result<&'a NameBinding<'a>, Determinacy> {
2119         ident.span = ident.span.modern();
2120         let orig_current_module = self.current_module;
2121         if let ModuleOrUniformRoot::Module(module) = module {
2122             if let Some(def) = ident.span.adjust(module.expansion) {
2123                 self.current_module = self.macro_def_scope(def);
2124             }
2125         }
2126         let result = self.resolve_ident_in_module_unadjusted(
2127             module, ident, ns, false, record_used, span,
2128         );
2129         self.current_module = orig_current_module;
2130         result
2131     }
2132
2133     fn resolve_crate_root(&mut self, ident: Ident) -> Module<'a> {
2134         let mut ctxt = ident.span.ctxt();
2135         let mark = if ident.name == keywords::DollarCrate.name() {
2136             // When resolving `$crate` from a `macro_rules!` invoked in a `macro`,
2137             // we don't want to pretend that the `macro_rules!` definition is in the `macro`
2138             // as described in `SyntaxContext::apply_mark`, so we ignore prepended modern marks.
2139             // FIXME: This is only a guess and it doesn't work correctly for `macro_rules!`
2140             // definitions actually produced by `macro` and `macro` definitions produced by
2141             // `macro_rules!`, but at least such configurations are not stable yet.
2142             ctxt = ctxt.modern_and_legacy();
2143             let mut iter = ctxt.marks().into_iter().rev().peekable();
2144             let mut result = None;
2145             // Find the last modern mark from the end if it exists.
2146             while let Some(&(mark, transparency)) = iter.peek() {
2147                 if transparency == Transparency::Opaque {
2148                     result = Some(mark);
2149                     iter.next();
2150                 } else {
2151                     break;
2152                 }
2153             }
2154             // Then find the last legacy mark from the end if it exists.
2155             for (mark, transparency) in iter {
2156                 if transparency == Transparency::SemiTransparent {
2157                     result = Some(mark);
2158                 } else {
2159                     break;
2160                 }
2161             }
2162             result
2163         } else {
2164             ctxt = ctxt.modern();
2165             ctxt.adjust(Mark::root())
2166         };
2167         let module = match mark {
2168             Some(def) => self.macro_def_scope(def),
2169             None => return self.graph_root,
2170         };
2171         self.get_module(DefId { index: CRATE_DEF_INDEX, ..module.normal_ancestor_id })
2172     }
2173
2174     fn resolve_self(&mut self, ctxt: &mut SyntaxContext, module: Module<'a>) -> Module<'a> {
2175         let mut module = self.get_module(module.normal_ancestor_id);
2176         while module.span.ctxt().modern() != *ctxt {
2177             let parent = module.parent.unwrap_or_else(|| self.macro_def_scope(ctxt.remove_mark()));
2178             module = self.get_module(parent.normal_ancestor_id);
2179         }
2180         module
2181     }
2182
2183     // AST resolution
2184     //
2185     // We maintain a list of value ribs and type ribs.
2186     //
2187     // Simultaneously, we keep track of the current position in the module
2188     // graph in the `current_module` pointer. When we go to resolve a name in
2189     // the value or type namespaces, we first look through all the ribs and
2190     // then query the module graph. When we resolve a name in the module
2191     // namespace, we can skip all the ribs (since nested modules are not
2192     // allowed within blocks in Rust) and jump straight to the current module
2193     // graph node.
2194     //
2195     // Named implementations are handled separately. When we find a method
2196     // call, we consult the module node to find all of the implementations in
2197     // scope. This information is lazily cached in the module node. We then
2198     // generate a fake "implementation scope" containing all the
2199     // implementations thus found, for compatibility with old resolve pass.
2200
2201     pub fn with_scope<F, T>(&mut self, id: NodeId, f: F) -> T
2202         where F: FnOnce(&mut Resolver) -> T
2203     {
2204         let id = self.definitions.local_def_id(id);
2205         let module = self.module_map.get(&id).cloned(); // clones a reference
2206         if let Some(module) = module {
2207             // Move down in the graph.
2208             let orig_module = replace(&mut self.current_module, module);
2209             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(module)));
2210             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(module)));
2211
2212             self.finalize_current_module_macro_resolutions();
2213             let ret = f(self);
2214
2215             self.current_module = orig_module;
2216             self.ribs[ValueNS].pop();
2217             self.ribs[TypeNS].pop();
2218             ret
2219         } else {
2220             f(self)
2221         }
2222     }
2223
2224     /// Searches the current set of local scopes for labels. Returns the first non-None label that
2225     /// is returned by the given predicate function
2226     ///
2227     /// Stops after meeting a closure.
2228     fn search_label<P, R>(&self, mut ident: Ident, pred: P) -> Option<R>
2229         where P: Fn(&Rib, Ident) -> Option<R>
2230     {
2231         for rib in self.label_ribs.iter().rev() {
2232             match rib.kind {
2233                 NormalRibKind => {}
2234                 // If an invocation of this macro created `ident`, give up on `ident`
2235                 // and switch to `ident`'s source from the macro definition.
2236                 MacroDefinition(def) => {
2237                     if def == self.macro_def(ident.span.ctxt()) {
2238                         ident.span.remove_mark();
2239                     }
2240                 }
2241                 _ => {
2242                     // Do not resolve labels across function boundary
2243                     return None;
2244                 }
2245             }
2246             let r = pred(rib, ident);
2247             if r.is_some() {
2248                 return r;
2249             }
2250         }
2251         None
2252     }
2253
2254     fn resolve_adt(&mut self, item: &Item, generics: &Generics) {
2255         self.with_current_self_item(item, |this| {
2256             this.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2257                 let item_def_id = this.definitions.local_def_id(item.id);
2258                 if this.session.features_untracked().self_in_typedefs {
2259                     this.with_self_rib(Def::SelfTy(None, Some(item_def_id)), |this| {
2260                         visit::walk_item(this, item);
2261                     });
2262                 } else {
2263                     visit::walk_item(this, item);
2264                 }
2265             });
2266         });
2267     }
2268
2269     fn resolve_item(&mut self, item: &Item) {
2270         let name = item.ident.name;
2271         debug!("(resolving item) resolving {}", name);
2272
2273         match item.node {
2274             ItemKind::Ty(_, ref generics) |
2275             ItemKind::Fn(_, _, ref generics, _) |
2276             ItemKind::Existential(_, ref generics) => {
2277                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind),
2278                                              |this| visit::walk_item(this, item));
2279             }
2280
2281             ItemKind::Enum(_, ref generics) |
2282             ItemKind::Struct(_, ref generics) |
2283             ItemKind::Union(_, ref generics) => {
2284                 self.resolve_adt(item, generics);
2285             }
2286
2287             ItemKind::Impl(.., ref generics, ref opt_trait_ref, ref self_type, ref impl_items) =>
2288                 self.resolve_implementation(generics,
2289                                             opt_trait_ref,
2290                                             &self_type,
2291                                             item.id,
2292                                             impl_items),
2293
2294             ItemKind::Trait(.., ref generics, ref bounds, ref trait_items) => {
2295                 // Create a new rib for the trait-wide type parameters.
2296                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2297                     let local_def_id = this.definitions.local_def_id(item.id);
2298                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2299                         this.visit_generics(generics);
2300                         walk_list!(this, visit_param_bound, bounds);
2301
2302                         for trait_item in trait_items {
2303                             let type_parameters = HasTypeParameters(&trait_item.generics,
2304                                                                     TraitOrImplItemRibKind);
2305                             this.with_type_parameter_rib(type_parameters, |this| {
2306                                 match trait_item.node {
2307                                     TraitItemKind::Const(ref ty, ref default) => {
2308                                         this.visit_ty(ty);
2309
2310                                         // Only impose the restrictions of
2311                                         // ConstRibKind for an actual constant
2312                                         // expression in a provided default.
2313                                         if let Some(ref expr) = *default{
2314                                             this.with_constant_rib(|this| {
2315                                                 this.visit_expr(expr);
2316                                             });
2317                                         }
2318                                     }
2319                                     TraitItemKind::Method(_, _) => {
2320                                         visit::walk_trait_item(this, trait_item)
2321                                     }
2322                                     TraitItemKind::Type(..) => {
2323                                         visit::walk_trait_item(this, trait_item)
2324                                     }
2325                                     TraitItemKind::Macro(_) => {
2326                                         panic!("unexpanded macro in resolve!")
2327                                     }
2328                                 };
2329                             });
2330                         }
2331                     });
2332                 });
2333             }
2334
2335             ItemKind::TraitAlias(ref generics, ref bounds) => {
2336                 // Create a new rib for the trait-wide type parameters.
2337                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2338                     let local_def_id = this.definitions.local_def_id(item.id);
2339                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2340                         this.visit_generics(generics);
2341                         walk_list!(this, visit_param_bound, bounds);
2342                     });
2343                 });
2344             }
2345
2346             ItemKind::Mod(_) | ItemKind::ForeignMod(_) => {
2347                 self.with_scope(item.id, |this| {
2348                     visit::walk_item(this, item);
2349                 });
2350             }
2351
2352             ItemKind::Static(ref ty, _, ref expr) |
2353             ItemKind::Const(ref ty, ref expr) => {
2354                 self.with_item_rib(|this| {
2355                     this.visit_ty(ty);
2356                     this.with_constant_rib(|this| {
2357                         this.visit_expr(expr);
2358                     });
2359                 });
2360             }
2361
2362             ItemKind::Use(ref use_tree) => {
2363                 // Imports are resolved as global by default, add starting root segment.
2364                 let path = Path {
2365                     segments: use_tree.prefix.make_root().into_iter().collect(),
2366                     span: use_tree.span,
2367                 };
2368                 self.resolve_use_tree(item.id, use_tree.span, item.id, use_tree, &path);
2369             }
2370
2371             ItemKind::ExternCrate(_) | ItemKind::MacroDef(..) | ItemKind::GlobalAsm(_) => {
2372                 // do nothing, these are just around to be encoded
2373             }
2374
2375             ItemKind::Mac(_) => panic!("unexpanded macro in resolve!"),
2376         }
2377     }
2378
2379     /// For the most part, use trees are desugared into `ImportDirective` instances
2380     /// when building the reduced graph (see `build_reduced_graph_for_use_tree`). But
2381     /// there is one special case we handle here: an empty nested import like
2382     /// `a::{b::{}}`, which desugares into...no import directives.
2383     fn resolve_use_tree(
2384         &mut self,
2385         root_id: NodeId,
2386         root_span: Span,
2387         id: NodeId,
2388         use_tree: &ast::UseTree,
2389         prefix: &Path,
2390     ) {
2391         match use_tree.kind {
2392             ast::UseTreeKind::Nested(ref items) => {
2393                 let path = Path {
2394                     segments: prefix.segments
2395                         .iter()
2396                         .chain(use_tree.prefix.segments.iter())
2397                         .cloned()
2398                         .collect(),
2399                     span: prefix.span.to(use_tree.prefix.span),
2400                 };
2401
2402                 if items.is_empty() {
2403                     // Resolve prefix of an import with empty braces (issue #28388).
2404                     self.smart_resolve_path_with_crate_lint(
2405                         id,
2406                         None,
2407                         &path,
2408                         PathSource::ImportPrefix,
2409                         CrateLint::UsePath { root_id, root_span },
2410                     );
2411                 } else {
2412                     for &(ref tree, nested_id) in items {
2413                         self.resolve_use_tree(root_id, root_span, nested_id, tree, &path);
2414                     }
2415                 }
2416             }
2417             ast::UseTreeKind::Simple(..) => {},
2418             ast::UseTreeKind::Glob => {},
2419         }
2420     }
2421
2422     fn with_type_parameter_rib<'b, F>(&'b mut self, type_parameters: TypeParameters<'a, 'b>, f: F)
2423         where F: FnOnce(&mut Resolver)
2424     {
2425         match type_parameters {
2426             HasTypeParameters(generics, rib_kind) => {
2427                 let mut function_type_rib = Rib::new(rib_kind);
2428                 let mut seen_bindings = FxHashMap::default();
2429                 for param in &generics.params {
2430                     match param.kind {
2431                         GenericParamKind::Lifetime { .. } => {}
2432                         GenericParamKind::Type { .. } => {
2433                             let ident = param.ident.modern();
2434                             debug!("with_type_parameter_rib: {}", param.id);
2435
2436                             if seen_bindings.contains_key(&ident) {
2437                                 let span = seen_bindings.get(&ident).unwrap();
2438                                 let err = ResolutionError::NameAlreadyUsedInTypeParameterList(
2439                                     ident.name,
2440                                     span,
2441                                 );
2442                                 resolve_error(self, param.ident.span, err);
2443                             }
2444                             seen_bindings.entry(ident).or_insert(param.ident.span);
2445
2446                         // Plain insert (no renaming).
2447                         let def = Def::TyParam(self.definitions.local_def_id(param.id));
2448                             function_type_rib.bindings.insert(ident, def);
2449                             self.record_def(param.id, PathResolution::new(def));
2450                         }
2451                     }
2452                 }
2453                 self.ribs[TypeNS].push(function_type_rib);
2454             }
2455
2456             NoTypeParameters => {
2457                 // Nothing to do.
2458             }
2459         }
2460
2461         f(self);
2462
2463         if let HasTypeParameters(..) = type_parameters {
2464             self.ribs[TypeNS].pop();
2465         }
2466     }
2467
2468     fn with_label_rib<F>(&mut self, f: F)
2469         where F: FnOnce(&mut Resolver)
2470     {
2471         self.label_ribs.push(Rib::new(NormalRibKind));
2472         f(self);
2473         self.label_ribs.pop();
2474     }
2475
2476     fn with_item_rib<F>(&mut self, f: F)
2477         where F: FnOnce(&mut Resolver)
2478     {
2479         self.ribs[ValueNS].push(Rib::new(ItemRibKind));
2480         self.ribs[TypeNS].push(Rib::new(ItemRibKind));
2481         f(self);
2482         self.ribs[TypeNS].pop();
2483         self.ribs[ValueNS].pop();
2484     }
2485
2486     fn with_constant_rib<F>(&mut self, f: F)
2487         where F: FnOnce(&mut Resolver)
2488     {
2489         self.ribs[ValueNS].push(Rib::new(ConstantItemRibKind));
2490         self.label_ribs.push(Rib::new(ConstantItemRibKind));
2491         f(self);
2492         self.label_ribs.pop();
2493         self.ribs[ValueNS].pop();
2494     }
2495
2496     fn with_current_self_type<T, F>(&mut self, self_type: &Ty, f: F) -> T
2497         where F: FnOnce(&mut Resolver) -> T
2498     {
2499         // Handle nested impls (inside fn bodies)
2500         let previous_value = replace(&mut self.current_self_type, Some(self_type.clone()));
2501         let result = f(self);
2502         self.current_self_type = previous_value;
2503         result
2504     }
2505
2506     fn with_current_self_item<T, F>(&mut self, self_item: &Item, f: F) -> T
2507         where F: FnOnce(&mut Resolver) -> T
2508     {
2509         let previous_value = replace(&mut self.current_self_item, Some(self_item.id));
2510         let result = f(self);
2511         self.current_self_item = previous_value;
2512         result
2513     }
2514
2515     /// This is called to resolve a trait reference from an `impl` (i.e. `impl Trait for Foo`)
2516     fn with_optional_trait_ref<T, F>(&mut self, opt_trait_ref: Option<&TraitRef>, f: F) -> T
2517         where F: FnOnce(&mut Resolver, Option<DefId>) -> T
2518     {
2519         let mut new_val = None;
2520         let mut new_id = None;
2521         if let Some(trait_ref) = opt_trait_ref {
2522             let path: Vec<_> = Segment::from_path(&trait_ref.path);
2523             let def = self.smart_resolve_path_fragment(
2524                 trait_ref.ref_id,
2525                 None,
2526                 &path,
2527                 trait_ref.path.span,
2528                 PathSource::Trait(AliasPossibility::No),
2529                 CrateLint::SimplePath(trait_ref.ref_id),
2530             ).base_def();
2531             if def != Def::Err {
2532                 new_id = Some(def.def_id());
2533                 let span = trait_ref.path.span;
2534                 if let PathResult::Module(ModuleOrUniformRoot::Module(module)) =
2535                     self.resolve_path(
2536                         None,
2537                         &path,
2538                         None,
2539                         false,
2540                         span,
2541                         CrateLint::SimplePath(trait_ref.ref_id),
2542                     )
2543                 {
2544                     new_val = Some((module, trait_ref.clone()));
2545                 }
2546             }
2547         }
2548         let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
2549         let result = f(self, new_id);
2550         self.current_trait_ref = original_trait_ref;
2551         result
2552     }
2553
2554     fn with_self_rib<F>(&mut self, self_def: Def, f: F)
2555         where F: FnOnce(&mut Resolver)
2556     {
2557         let mut self_type_rib = Rib::new(NormalRibKind);
2558
2559         // plain insert (no renaming, types are not currently hygienic....)
2560         self_type_rib.bindings.insert(keywords::SelfType.ident(), self_def);
2561         self.ribs[TypeNS].push(self_type_rib);
2562         f(self);
2563         self.ribs[TypeNS].pop();
2564     }
2565
2566     fn with_self_struct_ctor_rib<F>(&mut self, impl_id: DefId, f: F)
2567         where F: FnOnce(&mut Resolver)
2568     {
2569         let self_def = Def::SelfCtor(impl_id);
2570         let mut self_type_rib = Rib::new(NormalRibKind);
2571         self_type_rib.bindings.insert(keywords::SelfType.ident(), self_def);
2572         self.ribs[ValueNS].push(self_type_rib);
2573         f(self);
2574         self.ribs[ValueNS].pop();
2575     }
2576
2577     fn resolve_implementation(&mut self,
2578                               generics: &Generics,
2579                               opt_trait_reference: &Option<TraitRef>,
2580                               self_type: &Ty,
2581                               item_id: NodeId,
2582                               impl_items: &[ImplItem]) {
2583         // If applicable, create a rib for the type parameters.
2584         self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2585             // Dummy self type for better errors if `Self` is used in the trait path.
2586             this.with_self_rib(Def::SelfTy(None, None), |this| {
2587                 // Resolve the trait reference, if necessary.
2588                 this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| {
2589                     let item_def_id = this.definitions.local_def_id(item_id);
2590                     this.with_self_rib(Def::SelfTy(trait_id, Some(item_def_id)), |this| {
2591                         if let Some(trait_ref) = opt_trait_reference.as_ref() {
2592                             // Resolve type arguments in the trait path.
2593                             visit::walk_trait_ref(this, trait_ref);
2594                         }
2595                         // Resolve the self type.
2596                         this.visit_ty(self_type);
2597                         // Resolve the type parameters.
2598                         this.visit_generics(generics);
2599                         // Resolve the items within the impl.
2600                         this.with_current_self_type(self_type, |this| {
2601                             this.with_self_struct_ctor_rib(item_def_id, |this| {
2602                                 for impl_item in impl_items {
2603                                     this.resolve_visibility(&impl_item.vis);
2604
2605                                     // We also need a new scope for the impl item type parameters.
2606                                     let type_parameters = HasTypeParameters(&impl_item.generics,
2607                                                                             TraitOrImplItemRibKind);
2608                                     this.with_type_parameter_rib(type_parameters, |this| {
2609                                         use self::ResolutionError::*;
2610                                         match impl_item.node {
2611                                             ImplItemKind::Const(..) => {
2612                                                 // If this is a trait impl, ensure the const
2613                                                 // exists in trait
2614                                                 this.check_trait_item(impl_item.ident,
2615                                                                       ValueNS,
2616                                                                       impl_item.span,
2617                                                     |n, s| ConstNotMemberOfTrait(n, s));
2618                                                 this.with_constant_rib(|this|
2619                                                     visit::walk_impl_item(this, impl_item)
2620                                                 );
2621                                             }
2622                                             ImplItemKind::Method(..) => {
2623                                                 // If this is a trait impl, ensure the method
2624                                                 // exists in trait
2625                                                 this.check_trait_item(impl_item.ident,
2626                                                                       ValueNS,
2627                                                                       impl_item.span,
2628                                                     |n, s| MethodNotMemberOfTrait(n, s));
2629
2630                                                 visit::walk_impl_item(this, impl_item);
2631                                             }
2632                                             ImplItemKind::Type(ref ty) => {
2633                                                 // If this is a trait impl, ensure the type
2634                                                 // exists in trait
2635                                                 this.check_trait_item(impl_item.ident,
2636                                                                       TypeNS,
2637                                                                       impl_item.span,
2638                                                     |n, s| TypeNotMemberOfTrait(n, s));
2639
2640                                                 this.visit_ty(ty);
2641                                             }
2642                                             ImplItemKind::Existential(ref bounds) => {
2643                                                 // If this is a trait impl, ensure the type
2644                                                 // exists in trait
2645                                                 this.check_trait_item(impl_item.ident,
2646                                                                       TypeNS,
2647                                                                       impl_item.span,
2648                                                     |n, s| TypeNotMemberOfTrait(n, s));
2649
2650                                                 for bound in bounds {
2651                                                     this.visit_param_bound(bound);
2652                                                 }
2653                                             }
2654                                             ImplItemKind::Macro(_) =>
2655                                                 panic!("unexpanded macro in resolve!"),
2656                                         }
2657                                     });
2658                                 }
2659                             });
2660                         });
2661                     });
2662                 });
2663             });
2664         });
2665     }
2666
2667     fn check_trait_item<F>(&mut self, ident: Ident, ns: Namespace, span: Span, err: F)
2668         where F: FnOnce(Name, &str) -> ResolutionError
2669     {
2670         // If there is a TraitRef in scope for an impl, then the method must be in the
2671         // trait.
2672         if let Some((module, _)) = self.current_trait_ref {
2673             if self.resolve_ident_in_module(
2674                 ModuleOrUniformRoot::Module(module),
2675                 ident,
2676                 ns,
2677                 false,
2678                 span,
2679             ).is_err() {
2680                 let path = &self.current_trait_ref.as_ref().unwrap().1.path;
2681                 resolve_error(self, span, err(ident.name, &path_names_to_string(path)));
2682             }
2683         }
2684     }
2685
2686     fn resolve_local(&mut self, local: &Local) {
2687         // Resolve the type.
2688         walk_list!(self, visit_ty, &local.ty);
2689
2690         // Resolve the initializer.
2691         walk_list!(self, visit_expr, &local.init);
2692
2693         // Resolve the pattern.
2694         self.resolve_pattern(&local.pat, PatternSource::Let, &mut FxHashMap::default());
2695     }
2696
2697     // build a map from pattern identifiers to binding-info's.
2698     // this is done hygienically. This could arise for a macro
2699     // that expands into an or-pattern where one 'x' was from the
2700     // user and one 'x' came from the macro.
2701     fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
2702         let mut binding_map = FxHashMap::default();
2703
2704         pat.walk(&mut |pat| {
2705             if let PatKind::Ident(binding_mode, ident, ref sub_pat) = pat.node {
2706                 if sub_pat.is_some() || match self.def_map.get(&pat.id).map(|res| res.base_def()) {
2707                     Some(Def::Local(..)) => true,
2708                     _ => false,
2709                 } {
2710                     let binding_info = BindingInfo { span: ident.span, binding_mode: binding_mode };
2711                     binding_map.insert(ident, binding_info);
2712                 }
2713             }
2714             true
2715         });
2716
2717         binding_map
2718     }
2719
2720     // check that all of the arms in an or-pattern have exactly the
2721     // same set of bindings, with the same binding modes for each.
2722     fn check_consistent_bindings(&mut self, pats: &[P<Pat>]) {
2723         if pats.is_empty() {
2724             return;
2725         }
2726
2727         let mut missing_vars = FxHashMap::default();
2728         let mut inconsistent_vars = FxHashMap::default();
2729         for (i, p) in pats.iter().enumerate() {
2730             let map_i = self.binding_mode_map(&p);
2731
2732             for (j, q) in pats.iter().enumerate() {
2733                 if i == j {
2734                     continue;
2735                 }
2736
2737                 let map_j = self.binding_mode_map(&q);
2738                 for (&key, &binding_i) in &map_i {
2739                     if map_j.is_empty() {                   // Account for missing bindings when
2740                         let binding_error = missing_vars    // map_j has none.
2741                             .entry(key.name)
2742                             .or_insert(BindingError {
2743                                 name: key.name,
2744                                 origin: BTreeSet::new(),
2745                                 target: BTreeSet::new(),
2746                             });
2747                         binding_error.origin.insert(binding_i.span);
2748                         binding_error.target.insert(q.span);
2749                     }
2750                     for (&key_j, &binding_j) in &map_j {
2751                         match map_i.get(&key_j) {
2752                             None => {  // missing binding
2753                                 let binding_error = missing_vars
2754                                     .entry(key_j.name)
2755                                     .or_insert(BindingError {
2756                                         name: key_j.name,
2757                                         origin: BTreeSet::new(),
2758                                         target: BTreeSet::new(),
2759                                     });
2760                                 binding_error.origin.insert(binding_j.span);
2761                                 binding_error.target.insert(p.span);
2762                             }
2763                             Some(binding_i) => {  // check consistent binding
2764                                 if binding_i.binding_mode != binding_j.binding_mode {
2765                                     inconsistent_vars
2766                                         .entry(key.name)
2767                                         .or_insert((binding_j.span, binding_i.span));
2768                                 }
2769                             }
2770                         }
2771                     }
2772                 }
2773             }
2774         }
2775         let mut missing_vars = missing_vars.iter().collect::<Vec<_>>();
2776         missing_vars.sort();
2777         for (_, v) in missing_vars {
2778             resolve_error(self,
2779                           *v.origin.iter().next().unwrap(),
2780                           ResolutionError::VariableNotBoundInPattern(v));
2781         }
2782         let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
2783         inconsistent_vars.sort();
2784         for (name, v) in inconsistent_vars {
2785             resolve_error(self, v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
2786         }
2787     }
2788
2789     fn resolve_arm(&mut self, arm: &Arm) {
2790         self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2791
2792         let mut bindings_list = FxHashMap::default();
2793         for pattern in &arm.pats {
2794             self.resolve_pattern(&pattern, PatternSource::Match, &mut bindings_list);
2795         }
2796
2797         // This has to happen *after* we determine which pat_idents are variants
2798         self.check_consistent_bindings(&arm.pats);
2799
2800         if let Some(ast::Guard::If(ref expr)) = arm.guard {
2801             self.visit_expr(expr)
2802         }
2803         self.visit_expr(&arm.body);
2804
2805         self.ribs[ValueNS].pop();
2806     }
2807
2808     fn resolve_block(&mut self, block: &Block) {
2809         debug!("(resolving block) entering block");
2810         // Move down in the graph, if there's an anonymous module rooted here.
2811         let orig_module = self.current_module;
2812         let anonymous_module = self.block_map.get(&block.id).cloned(); // clones a reference
2813
2814         let mut num_macro_definition_ribs = 0;
2815         if let Some(anonymous_module) = anonymous_module {
2816             debug!("(resolving block) found anonymous module, moving down");
2817             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2818             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2819             self.current_module = anonymous_module;
2820             self.finalize_current_module_macro_resolutions();
2821         } else {
2822             self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2823         }
2824
2825         // Descend into the block.
2826         for stmt in &block.stmts {
2827             if let ast::StmtKind::Item(ref item) = stmt.node {
2828                 if let ast::ItemKind::MacroDef(..) = item.node {
2829                     num_macro_definition_ribs += 1;
2830                     let def = self.definitions.local_def_id(item.id);
2831                     self.ribs[ValueNS].push(Rib::new(MacroDefinition(def)));
2832                     self.label_ribs.push(Rib::new(MacroDefinition(def)));
2833                 }
2834             }
2835
2836             self.visit_stmt(stmt);
2837         }
2838
2839         // Move back up.
2840         self.current_module = orig_module;
2841         for _ in 0 .. num_macro_definition_ribs {
2842             self.ribs[ValueNS].pop();
2843             self.label_ribs.pop();
2844         }
2845         self.ribs[ValueNS].pop();
2846         if anonymous_module.is_some() {
2847             self.ribs[TypeNS].pop();
2848         }
2849         debug!("(resolving block) leaving block");
2850     }
2851
2852     fn fresh_binding(&mut self,
2853                      ident: Ident,
2854                      pat_id: NodeId,
2855                      outer_pat_id: NodeId,
2856                      pat_src: PatternSource,
2857                      bindings: &mut FxHashMap<Ident, NodeId>)
2858                      -> PathResolution {
2859         // Add the binding to the local ribs, if it
2860         // doesn't already exist in the bindings map. (We
2861         // must not add it if it's in the bindings map
2862         // because that breaks the assumptions later
2863         // passes make about or-patterns.)
2864         let ident = ident.modern_and_legacy();
2865         let mut def = Def::Local(pat_id);
2866         match bindings.get(&ident).cloned() {
2867             Some(id) if id == outer_pat_id => {
2868                 // `Variant(a, a)`, error
2869                 resolve_error(
2870                     self,
2871                     ident.span,
2872                     ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(
2873                         &ident.as_str())
2874                 );
2875             }
2876             Some(..) if pat_src == PatternSource::FnParam => {
2877                 // `fn f(a: u8, a: u8)`, error
2878                 resolve_error(
2879                     self,
2880                     ident.span,
2881                     ResolutionError::IdentifierBoundMoreThanOnceInParameterList(
2882                         &ident.as_str())
2883                 );
2884             }
2885             Some(..) if pat_src == PatternSource::Match ||
2886                         pat_src == PatternSource::IfLet ||
2887                         pat_src == PatternSource::WhileLet => {
2888                 // `Variant1(a) | Variant2(a)`, ok
2889                 // Reuse definition from the first `a`.
2890                 def = self.ribs[ValueNS].last_mut().unwrap().bindings[&ident];
2891             }
2892             Some(..) => {
2893                 span_bug!(ident.span, "two bindings with the same name from \
2894                                        unexpected pattern source {:?}", pat_src);
2895             }
2896             None => {
2897                 // A completely fresh binding, add to the lists if it's valid.
2898                 if ident.name != keywords::Invalid.name() {
2899                     bindings.insert(ident, outer_pat_id);
2900                     self.ribs[ValueNS].last_mut().unwrap().bindings.insert(ident, def);
2901                 }
2902             }
2903         }
2904
2905         PathResolution::new(def)
2906     }
2907
2908     fn resolve_pattern(&mut self,
2909                        pat: &Pat,
2910                        pat_src: PatternSource,
2911                        // Maps idents to the node ID for the
2912                        // outermost pattern that binds them.
2913                        bindings: &mut FxHashMap<Ident, NodeId>) {
2914         // Visit all direct subpatterns of this pattern.
2915         let outer_pat_id = pat.id;
2916         pat.walk(&mut |pat| {
2917             match pat.node {
2918                 PatKind::Ident(bmode, ident, ref opt_pat) => {
2919                     // First try to resolve the identifier as some existing
2920                     // entity, then fall back to a fresh binding.
2921                     let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS,
2922                                                                       None, pat.span)
2923                                       .and_then(LexicalScopeBinding::item);
2924                     let resolution = binding.map(NameBinding::def).and_then(|def| {
2925                         let is_syntactic_ambiguity = opt_pat.is_none() &&
2926                             bmode == BindingMode::ByValue(Mutability::Immutable);
2927                         match def {
2928                             Def::StructCtor(_, CtorKind::Const) |
2929                             Def::VariantCtor(_, CtorKind::Const) |
2930                             Def::Const(..) if is_syntactic_ambiguity => {
2931                                 // Disambiguate in favor of a unit struct/variant
2932                                 // or constant pattern.
2933                                 self.record_use(ident, ValueNS, binding.unwrap());
2934                                 Some(PathResolution::new(def))
2935                             }
2936                             Def::StructCtor(..) | Def::VariantCtor(..) |
2937                             Def::Const(..) | Def::Static(..) => {
2938                                 // This is unambiguously a fresh binding, either syntactically
2939                                 // (e.g. `IDENT @ PAT` or `ref IDENT`) or because `IDENT` resolves
2940                                 // to something unusable as a pattern (e.g. constructor function),
2941                                 // but we still conservatively report an error, see
2942                                 // issues/33118#issuecomment-233962221 for one reason why.
2943                                 resolve_error(
2944                                     self,
2945                                     ident.span,
2946                                     ResolutionError::BindingShadowsSomethingUnacceptable(
2947                                         pat_src.descr(), ident.name, binding.unwrap())
2948                                 );
2949                                 None
2950                             }
2951                             Def::Fn(..) | Def::Err => {
2952                                 // These entities are explicitly allowed
2953                                 // to be shadowed by fresh bindings.
2954                                 None
2955                             }
2956                             def => {
2957                                 span_bug!(ident.span, "unexpected definition for an \
2958                                                        identifier in pattern: {:?}", def);
2959                             }
2960                         }
2961                     }).unwrap_or_else(|| {
2962                         self.fresh_binding(ident, pat.id, outer_pat_id, pat_src, bindings)
2963                     });
2964
2965                     self.record_def(pat.id, resolution);
2966                 }
2967
2968                 PatKind::TupleStruct(ref path, ..) => {
2969                     self.smart_resolve_path(pat.id, None, path, PathSource::TupleStruct);
2970                 }
2971
2972                 PatKind::Path(ref qself, ref path) => {
2973                     self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
2974                 }
2975
2976                 PatKind::Struct(ref path, ..) => {
2977                     self.smart_resolve_path(pat.id, None, path, PathSource::Struct);
2978                 }
2979
2980                 _ => {}
2981             }
2982             true
2983         });
2984
2985         visit::walk_pat(self, pat);
2986     }
2987
2988     // High-level and context dependent path resolution routine.
2989     // Resolves the path and records the resolution into definition map.
2990     // If resolution fails tries several techniques to find likely
2991     // resolution candidates, suggest imports or other help, and report
2992     // errors in user friendly way.
2993     fn smart_resolve_path(&mut self,
2994                           id: NodeId,
2995                           qself: Option<&QSelf>,
2996                           path: &Path,
2997                           source: PathSource)
2998                           -> PathResolution {
2999         self.smart_resolve_path_with_crate_lint(id, qself, path, source, CrateLint::SimplePath(id))
3000     }
3001
3002     /// A variant of `smart_resolve_path` where you also specify extra
3003     /// information about where the path came from; this extra info is
3004     /// sometimes needed for the lint that recommends rewriting
3005     /// absolute paths to `crate`, so that it knows how to frame the
3006     /// suggestion. If you are just resolving a path like `foo::bar`
3007     /// that appears...somewhere, though, then you just want
3008     /// `CrateLint::SimplePath`, which is what `smart_resolve_path`
3009     /// already provides.
3010     fn smart_resolve_path_with_crate_lint(
3011         &mut self,
3012         id: NodeId,
3013         qself: Option<&QSelf>,
3014         path: &Path,
3015         source: PathSource,
3016         crate_lint: CrateLint
3017     ) -> PathResolution {
3018         self.smart_resolve_path_fragment(
3019             id,
3020             qself,
3021             &Segment::from_path(path),
3022             path.span,
3023             source,
3024             crate_lint,
3025         )
3026     }
3027
3028     fn smart_resolve_path_fragment(&mut self,
3029                                    id: NodeId,
3030                                    qself: Option<&QSelf>,
3031                                    path: &[Segment],
3032                                    span: Span,
3033                                    source: PathSource,
3034                                    crate_lint: CrateLint)
3035                                    -> PathResolution {
3036         let ident_span = path.last().map_or(span, |ident| ident.ident.span);
3037         let ns = source.namespace();
3038         let is_expected = &|def| source.is_expected(def);
3039         let is_enum_variant = &|def| if let Def::Variant(..) = def { true } else { false };
3040
3041         // Base error is amended with one short label and possibly some longer helps/notes.
3042         let report_errors = |this: &mut Self, def: Option<Def>| {
3043             // Make the base error.
3044             let expected = source.descr_expected();
3045             let path_str = names_to_string(path);
3046             let item_str = path.last().unwrap().ident;
3047             let code = source.error_code(def.is_some());
3048             let (base_msg, fallback_label, base_span) = if let Some(def) = def {
3049                 (format!("expected {}, found {} `{}`", expected, def.kind_name(), path_str),
3050                  format!("not a {}", expected),
3051                  span)
3052             } else {
3053                 let item_span = path.last().unwrap().ident.span;
3054                 let (mod_prefix, mod_str) = if path.len() == 1 {
3055                     (String::new(), "this scope".to_string())
3056                 } else if path.len() == 2 && path[0].ident.name == keywords::CrateRoot.name() {
3057                     (String::new(), "the crate root".to_string())
3058                 } else {
3059                     let mod_path = &path[..path.len() - 1];
3060                     let mod_prefix = match this.resolve_path(None, mod_path, Some(TypeNS),
3061                                                              false, span, CrateLint::No) {
3062                         PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3063                             module.def(),
3064                         _ => None,
3065                     }.map_or(String::new(), |def| format!("{} ", def.kind_name()));
3066                     (mod_prefix, format!("`{}`", Segment::names_to_string(mod_path)))
3067                 };
3068                 (format!("cannot find {} `{}` in {}{}", expected, item_str, mod_prefix, mod_str),
3069                  format!("not found in {}", mod_str),
3070                  item_span)
3071             };
3072             let code = DiagnosticId::Error(code.into());
3073             let mut err = this.session.struct_span_err_with_code(base_span, &base_msg, code);
3074
3075             // Emit help message for fake-self from other languages like `this`(javascript)
3076             if ["this", "my"].contains(&&*item_str.as_str())
3077                 && this.self_value_is_available(path[0].ident.span, span) {
3078                 err.span_suggestion_with_applicability(
3079                     span,
3080                     "did you mean",
3081                     "self".to_string(),
3082                     Applicability::MaybeIncorrect,
3083                 );
3084             }
3085
3086             // Emit special messages for unresolved `Self` and `self`.
3087             if is_self_type(path, ns) {
3088                 __diagnostic_used!(E0411);
3089                 err.code(DiagnosticId::Error("E0411".into()));
3090                 let available_in = if this.session.features_untracked().self_in_typedefs {
3091                     "impls, traits, and type definitions"
3092                 } else {
3093                     "traits and impls"
3094                 };
3095                 err.span_label(span, format!("`Self` is only available in {}", available_in));
3096                 if this.current_self_item.is_some() && nightly_options::is_nightly_build() {
3097                     err.help("add #![feature(self_in_typedefs)] to the crate attributes \
3098                               to enable");
3099                 }
3100                 return (err, Vec::new());
3101             }
3102             if is_self_value(path, ns) {
3103                 __diagnostic_used!(E0424);
3104                 err.code(DiagnosticId::Error("E0424".into()));
3105                 err.span_label(span, format!("`self` value is a keyword \
3106                                                only available in \
3107                                                methods with `self` parameter"));
3108                 return (err, Vec::new());
3109             }
3110
3111             // Try to lookup the name in more relaxed fashion for better error reporting.
3112             let ident = path.last().unwrap().ident;
3113             let candidates = this.lookup_import_candidates(ident.name, ns, is_expected);
3114             if candidates.is_empty() && is_expected(Def::Enum(DefId::local(CRATE_DEF_INDEX))) {
3115                 let enum_candidates =
3116                     this.lookup_import_candidates(ident.name, ns, is_enum_variant);
3117                 let mut enum_candidates = enum_candidates.iter()
3118                     .map(|suggestion| import_candidate_to_paths(&suggestion)).collect::<Vec<_>>();
3119                 enum_candidates.sort();
3120                 for (sp, variant_path, enum_path) in enum_candidates {
3121                     if sp.is_dummy() {
3122                         let msg = format!("there is an enum variant `{}`, \
3123                                         try using `{}`?",
3124                                         variant_path,
3125                                         enum_path);
3126                         err.help(&msg);
3127                     } else {
3128                         err.span_suggestion_with_applicability(
3129                             span,
3130                             "you can try using the variant's enum",
3131                             enum_path,
3132                             Applicability::MachineApplicable,
3133                         );
3134                     }
3135                 }
3136             }
3137             if path.len() == 1 && this.self_type_is_available(span) {
3138                 if let Some(candidate) = this.lookup_assoc_candidate(ident, ns, is_expected) {
3139                     let self_is_available = this.self_value_is_available(path[0].ident.span, span);
3140                     match candidate {
3141                         AssocSuggestion::Field => {
3142                             err.span_suggestion_with_applicability(
3143                                 span,
3144                                 "try",
3145                                 format!("self.{}", path_str),
3146                                 Applicability::MachineApplicable,
3147                             );
3148                             if !self_is_available {
3149                                 err.span_label(span, format!("`self` value is a keyword \
3150                                                                only available in \
3151                                                                methods with `self` parameter"));
3152                             }
3153                         }
3154                         AssocSuggestion::MethodWithSelf if self_is_available => {
3155                             err.span_suggestion_with_applicability(
3156                                 span,
3157                                 "try",
3158                                 format!("self.{}", path_str),
3159                                 Applicability::MachineApplicable,
3160                             );
3161                         }
3162                         AssocSuggestion::MethodWithSelf | AssocSuggestion::AssocItem => {
3163                             err.span_suggestion_with_applicability(
3164                                 span,
3165                                 "try",
3166                                 format!("Self::{}", path_str),
3167                                 Applicability::MachineApplicable,
3168                             );
3169                         }
3170                     }
3171                     return (err, candidates);
3172                 }
3173             }
3174
3175             let mut levenshtein_worked = false;
3176
3177             // Try Levenshtein.
3178             if let Some(candidate) = this.lookup_typo_candidate(path, ns, is_expected, span) {
3179                 err.span_label(ident_span, format!("did you mean `{}`?", candidate));
3180                 levenshtein_worked = true;
3181             }
3182
3183             // Try context dependent help if relaxed lookup didn't work.
3184             if let Some(def) = def {
3185                 match (def, source) {
3186                     (Def::Macro(..), _) => {
3187                         err.span_label(span, format!("did you mean `{}!(...)`?", path_str));
3188                         return (err, candidates);
3189                     }
3190                     (Def::TyAlias(..), PathSource::Trait(_)) => {
3191                         err.span_label(span, "type aliases cannot be used for traits");
3192                         return (err, candidates);
3193                     }
3194                     (Def::Mod(..), PathSource::Expr(Some(parent))) => match parent.node {
3195                         ExprKind::Field(_, ident) => {
3196                             err.span_label(parent.span, format!("did you mean `{}::{}`?",
3197                                                                  path_str, ident));
3198                             return (err, candidates);
3199                         }
3200                         ExprKind::MethodCall(ref segment, ..) => {
3201                             err.span_label(parent.span, format!("did you mean `{}::{}(...)`?",
3202                                                                  path_str, segment.ident));
3203                             return (err, candidates);
3204                         }
3205                         _ => {}
3206                     },
3207                     (Def::Enum(..), PathSource::TupleStruct)
3208                         | (Def::Enum(..), PathSource::Expr(..))  => {
3209                         if let Some(variants) = this.collect_enum_variants(def) {
3210                             err.note(&format!("did you mean to use one \
3211                                                of the following variants?\n{}",
3212                                 variants.iter()
3213                                     .map(|suggestion| path_names_to_string(suggestion))
3214                                     .map(|suggestion| format!("- `{}`", suggestion))
3215                                     .collect::<Vec<_>>()
3216                                     .join("\n")));
3217
3218                         } else {
3219                             err.note("did you mean to use one of the enum's variants?");
3220                         }
3221                         return (err, candidates);
3222                     },
3223                     (Def::Struct(def_id), _) if ns == ValueNS => {
3224                         if let Some((ctor_def, ctor_vis))
3225                                 = this.struct_constructors.get(&def_id).cloned() {
3226                             let accessible_ctor = this.is_accessible(ctor_vis);
3227                             if is_expected(ctor_def) && !accessible_ctor {
3228                                 err.span_label(span, format!("constructor is not visible \
3229                                                               here due to private fields"));
3230                             }
3231                         } else {
3232                             // HACK(estebank): find a better way to figure out that this was a
3233                             // parser issue where a struct literal is being used on an expression
3234                             // where a brace being opened means a block is being started. Look
3235                             // ahead for the next text to see if `span` is followed by a `{`.
3236                             let sm = this.session.source_map();
3237                             let mut sp = span;
3238                             loop {
3239                                 sp = sm.next_point(sp);
3240                                 match sm.span_to_snippet(sp) {
3241                                     Ok(ref snippet) => {
3242                                         if snippet.chars().any(|c| { !c.is_whitespace() }) {
3243                                             break;
3244                                         }
3245                                     }
3246                                     _ => break,
3247                                 }
3248                             }
3249                             let followed_by_brace = match sm.span_to_snippet(sp) {
3250                                 Ok(ref snippet) if snippet == "{" => true,
3251                                 _ => false,
3252                             };
3253                             match source {
3254                                 PathSource::Expr(Some(parent)) => {
3255                                     match parent.node {
3256                                         ExprKind::MethodCall(ref path_assignment, _)  => {
3257                                             err.span_suggestion_with_applicability(
3258                                                 sm.start_point(parent.span)
3259                                                   .to(path_assignment.ident.span),
3260                                                 "use `::` to access an associated function",
3261                                                 format!("{}::{}",
3262                                                         path_str,
3263                                                         path_assignment.ident),
3264                                                 Applicability::MaybeIncorrect
3265                                             );
3266                                             return (err, candidates);
3267                                         },
3268                                         _ => {
3269                                             err.span_label(
3270                                                 span,
3271                                                 format!("did you mean `{} {{ /* fields */ }}`?",
3272                                                         path_str),
3273                                             );
3274                                             return (err, candidates);
3275                                         },
3276                                     }
3277                                 },
3278                                 PathSource::Expr(None) if followed_by_brace == true => {
3279                                     err.span_label(
3280                                         span,
3281                                         format!("did you mean `({} {{ /* fields */ }})`?",
3282                                                 path_str),
3283                                     );
3284                                     return (err, candidates);
3285                                 },
3286                                 _ => {
3287                                     err.span_label(
3288                                         span,
3289                                         format!("did you mean `{} {{ /* fields */ }}`?",
3290                                                 path_str),
3291                                     );
3292                                     return (err, candidates);
3293                                 },
3294                             }
3295                         }
3296                         return (err, candidates);
3297                     }
3298                     (Def::Union(..), _) |
3299                     (Def::Variant(..), _) |
3300                     (Def::VariantCtor(_, CtorKind::Fictive), _) if ns == ValueNS => {
3301                         err.span_label(span, format!("did you mean `{} {{ /* fields */ }}`?",
3302                                                      path_str));
3303                         return (err, candidates);
3304                     }
3305                     (Def::SelfTy(..), _) if ns == ValueNS => {
3306                         err.span_label(span, fallback_label);
3307                         err.note("can't use `Self` as a constructor, you must use the \
3308                                   implemented struct");
3309                         return (err, candidates);
3310                     }
3311                     (Def::TyAlias(_), _) | (Def::AssociatedTy(..), _) if ns == ValueNS => {
3312                         err.note("can't use a type alias as a constructor");
3313                         return (err, candidates);
3314                     }
3315                     _ => {}
3316                 }
3317             }
3318
3319             // Fallback label.
3320             if !levenshtein_worked {
3321                 err.span_label(base_span, fallback_label);
3322                 this.type_ascription_suggestion(&mut err, base_span);
3323             }
3324             (err, candidates)
3325         };
3326         let report_errors = |this: &mut Self, def: Option<Def>| {
3327             let (err, candidates) = report_errors(this, def);
3328             let def_id = this.current_module.normal_ancestor_id;
3329             let node_id = this.definitions.as_local_node_id(def_id).unwrap();
3330             let better = def.is_some();
3331             this.use_injections.push(UseError { err, candidates, node_id, better });
3332             err_path_resolution()
3333         };
3334
3335         let resolution = match self.resolve_qpath_anywhere(
3336             id,
3337             qself,
3338             path,
3339             ns,
3340             span,
3341             source.defer_to_typeck(),
3342             source.global_by_default(),
3343             crate_lint,
3344         ) {
3345             Some(resolution) if resolution.unresolved_segments() == 0 => {
3346                 if is_expected(resolution.base_def()) || resolution.base_def() == Def::Err {
3347                     resolution
3348                 } else {
3349                     // Add a temporary hack to smooth the transition to new struct ctor
3350                     // visibility rules. See #38932 for more details.
3351                     let mut res = None;
3352                     if let Def::Struct(def_id) = resolution.base_def() {
3353                         if let Some((ctor_def, ctor_vis))
3354                                 = self.struct_constructors.get(&def_id).cloned() {
3355                             if is_expected(ctor_def) && self.is_accessible(ctor_vis) {
3356                                 let lint = lint::builtin::LEGACY_CONSTRUCTOR_VISIBILITY;
3357                                 self.session.buffer_lint(lint, id, span,
3358                                     "private struct constructors are not usable through \
3359                                      re-exports in outer modules",
3360                                 );
3361                                 res = Some(PathResolution::new(ctor_def));
3362                             }
3363                         }
3364                     }
3365
3366                     res.unwrap_or_else(|| report_errors(self, Some(resolution.base_def())))
3367                 }
3368             }
3369             Some(resolution) if source.defer_to_typeck() => {
3370                 // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
3371                 // or `<T>::A::B`. If `B` should be resolved in value namespace then
3372                 // it needs to be added to the trait map.
3373                 if ns == ValueNS {
3374                     let item_name = path.last().unwrap().ident;
3375                     let traits = self.get_traits_containing_item(item_name, ns);
3376                     self.trait_map.insert(id, traits);
3377                 }
3378                 resolution
3379             }
3380             _ => report_errors(self, None)
3381         };
3382
3383         if let PathSource::TraitItem(..) = source {} else {
3384             // Avoid recording definition of `A::B` in `<T as A>::B::C`.
3385             self.record_def(id, resolution);
3386         }
3387         resolution
3388     }
3389
3390     fn type_ascription_suggestion(&self,
3391                                   err: &mut DiagnosticBuilder,
3392                                   base_span: Span) {
3393         debug!("type_ascription_suggetion {:?}", base_span);
3394         let cm = self.session.source_map();
3395         debug!("self.current_type_ascription {:?}", self.current_type_ascription);
3396         if let Some(sp) = self.current_type_ascription.last() {
3397             let mut sp = *sp;
3398             loop {  // try to find the `:`, bail on first non-':'/non-whitespace
3399                 sp = cm.next_point(sp);
3400                 if let Ok(snippet) = cm.span_to_snippet(sp.to(cm.next_point(sp))) {
3401                     debug!("snippet {:?}", snippet);
3402                     let line_sp = cm.lookup_char_pos(sp.hi()).line;
3403                     let line_base_sp = cm.lookup_char_pos(base_span.lo()).line;
3404                     debug!("{:?} {:?}", line_sp, line_base_sp);
3405                     if snippet == ":" {
3406                         err.span_label(base_span,
3407                                        "expecting a type here because of type ascription");
3408                         if line_sp != line_base_sp {
3409                             err.span_suggestion_short_with_applicability(
3410                                 sp,
3411                                 "did you mean to use `;` here instead?",
3412                                 ";".to_string(),
3413                                 Applicability::MaybeIncorrect,
3414                             );
3415                         }
3416                         break;
3417                     } else if !snippet.trim().is_empty() {
3418                         debug!("tried to find type ascription `:` token, couldn't find it");
3419                         break;
3420                     }
3421                 } else {
3422                     break;
3423                 }
3424             }
3425         }
3426     }
3427
3428     fn self_type_is_available(&mut self, span: Span) -> bool {
3429         let binding = self.resolve_ident_in_lexical_scope(keywords::SelfType.ident(),
3430                                                           TypeNS, None, span);
3431         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3432     }
3433
3434     fn self_value_is_available(&mut self, self_span: Span, path_span: Span) -> bool {
3435         let ident = Ident::new(keywords::SelfValue.name(), self_span);
3436         let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, None, path_span);
3437         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3438     }
3439
3440     // Resolve in alternative namespaces if resolution in the primary namespace fails.
3441     fn resolve_qpath_anywhere(&mut self,
3442                               id: NodeId,
3443                               qself: Option<&QSelf>,
3444                               path: &[Segment],
3445                               primary_ns: Namespace,
3446                               span: Span,
3447                               defer_to_typeck: bool,
3448                               global_by_default: bool,
3449                               crate_lint: CrateLint)
3450                               -> Option<PathResolution> {
3451         let mut fin_res = None;
3452         // FIXME: can't resolve paths in macro namespace yet, macros are
3453         // processed by the little special hack below.
3454         for (i, ns) in [primary_ns, TypeNS, ValueNS, /*MacroNS*/].iter().cloned().enumerate() {
3455             if i == 0 || ns != primary_ns {
3456                 match self.resolve_qpath(id, qself, path, ns, span, global_by_default, crate_lint) {
3457                     // If defer_to_typeck, then resolution > no resolution,
3458                     // otherwise full resolution > partial resolution > no resolution.
3459                     Some(res) if res.unresolved_segments() == 0 || defer_to_typeck =>
3460                         return Some(res),
3461                     res => if fin_res.is_none() { fin_res = res },
3462                 };
3463             }
3464         }
3465         if primary_ns != MacroNS &&
3466            (self.macro_names.contains(&path[0].ident.modern()) ||
3467             self.builtin_macros.get(&path[0].ident.name).cloned()
3468                                .and_then(NameBinding::macro_kind) == Some(MacroKind::Bang) ||
3469             self.macro_use_prelude.get(&path[0].ident.name).cloned()
3470                                   .and_then(NameBinding::macro_kind) == Some(MacroKind::Bang)) {
3471             // Return some dummy definition, it's enough for error reporting.
3472             return Some(
3473                 PathResolution::new(Def::Macro(DefId::local(CRATE_DEF_INDEX), MacroKind::Bang))
3474             );
3475         }
3476         fin_res
3477     }
3478
3479     /// Handles paths that may refer to associated items.
3480     fn resolve_qpath(&mut self,
3481                      id: NodeId,
3482                      qself: Option<&QSelf>,
3483                      path: &[Segment],
3484                      ns: Namespace,
3485                      span: Span,
3486                      global_by_default: bool,
3487                      crate_lint: CrateLint)
3488                      -> Option<PathResolution> {
3489         debug!(
3490             "resolve_qpath(id={:?}, qself={:?}, path={:?}, \
3491              ns={:?}, span={:?}, global_by_default={:?})",
3492             id,
3493             qself,
3494             path,
3495             ns,
3496             span,
3497             global_by_default,
3498         );
3499
3500         if let Some(qself) = qself {
3501             if qself.position == 0 {
3502                 // This is a case like `<T>::B`, where there is no
3503                 // trait to resolve.  In that case, we leave the `B`
3504                 // segment to be resolved by type-check.
3505                 return Some(PathResolution::with_unresolved_segments(
3506                     Def::Mod(DefId::local(CRATE_DEF_INDEX)), path.len()
3507                 ));
3508             }
3509
3510             // Make sure `A::B` in `<T as A::B>::C` is a trait item.
3511             //
3512             // Currently, `path` names the full item (`A::B::C`, in
3513             // our example).  so we extract the prefix of that that is
3514             // the trait (the slice upto and including
3515             // `qself.position`). And then we recursively resolve that,
3516             // but with `qself` set to `None`.
3517             //
3518             // However, setting `qself` to none (but not changing the
3519             // span) loses the information about where this path
3520             // *actually* appears, so for the purposes of the crate
3521             // lint we pass along information that this is the trait
3522             // name from a fully qualified path, and this also
3523             // contains the full span (the `CrateLint::QPathTrait`).
3524             let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
3525             let res = self.smart_resolve_path_fragment(
3526                 id,
3527                 None,
3528                 &path[..qself.position + 1],
3529                 span,
3530                 PathSource::TraitItem(ns),
3531                 CrateLint::QPathTrait {
3532                     qpath_id: id,
3533                     qpath_span: qself.path_span,
3534                 },
3535             );
3536
3537             // The remaining segments (the `C` in our example) will
3538             // have to be resolved by type-check, since that requires doing
3539             // trait resolution.
3540             return Some(PathResolution::with_unresolved_segments(
3541                 res.base_def(), res.unresolved_segments() + path.len() - qself.position - 1
3542             ));
3543         }
3544
3545         let result = match self.resolve_path(
3546             None,
3547             &path,
3548             Some(ns),
3549             true,
3550             span,
3551             crate_lint,
3552         ) {
3553             PathResult::NonModule(path_res) => path_res,
3554             PathResult::Module(ModuleOrUniformRoot::Module(module)) if !module.is_normal() => {
3555                 PathResolution::new(module.def().unwrap())
3556             }
3557             // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
3558             // don't report an error right away, but try to fallback to a primitive type.
3559             // So, we are still able to successfully resolve something like
3560             //
3561             // use std::u8; // bring module u8 in scope
3562             // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
3563             //     u8::max_value() // OK, resolves to associated function <u8>::max_value,
3564             //                     // not to non-existent std::u8::max_value
3565             // }
3566             //
3567             // Such behavior is required for backward compatibility.
3568             // The same fallback is used when `a` resolves to nothing.
3569             PathResult::Module(ModuleOrUniformRoot::Module(_)) |
3570             PathResult::Failed(..)
3571                     if (ns == TypeNS || path.len() > 1) &&
3572                        self.primitive_type_table.primitive_types
3573                            .contains_key(&path[0].ident.name) => {
3574                 let prim = self.primitive_type_table.primitive_types[&path[0].ident.name];
3575                 PathResolution::with_unresolved_segments(Def::PrimTy(prim), path.len() - 1)
3576             }
3577             PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3578                 PathResolution::new(module.def().unwrap()),
3579             PathResult::Failed(span, msg, false) => {
3580                 resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
3581                 err_path_resolution()
3582             }
3583             PathResult::Module(ModuleOrUniformRoot::UniformRoot(_)) |
3584             PathResult::Failed(..) => return None,
3585             PathResult::Indeterminate => bug!("indetermined path result in resolve_qpath"),
3586         };
3587
3588         if path.len() > 1 && !global_by_default && result.base_def() != Def::Err &&
3589            path[0].ident.name != keywords::CrateRoot.name() &&
3590            path[0].ident.name != keywords::DollarCrate.name() {
3591             let unqualified_result = {
3592                 match self.resolve_path(
3593                     None,
3594                     &[*path.last().unwrap()],
3595                     Some(ns),
3596                     false,
3597                     span,
3598                     CrateLint::No,
3599                 ) {
3600                     PathResult::NonModule(path_res) => path_res.base_def(),
3601                     PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3602                         module.def().unwrap(),
3603                     _ => return Some(result),
3604                 }
3605             };
3606             if result.base_def() == unqualified_result {
3607                 let lint = lint::builtin::UNUSED_QUALIFICATIONS;
3608                 self.session.buffer_lint(lint, id, span, "unnecessary qualification")
3609             }
3610         }
3611
3612         Some(result)
3613     }
3614
3615     fn resolve_path(
3616         &mut self,
3617         base_module: Option<ModuleOrUniformRoot<'a>>,
3618         path: &[Segment],
3619         opt_ns: Option<Namespace>, // `None` indicates a module path
3620         record_used: bool,
3621         path_span: Span,
3622         crate_lint: CrateLint,
3623     ) -> PathResult<'a> {
3624         let parent_scope = ParentScope { module: self.current_module, ..self.dummy_parent_scope() };
3625         self.resolve_path_with_parent_scope(base_module, path, opt_ns, &parent_scope,
3626                                             record_used, path_span, crate_lint)
3627     }
3628
3629     fn resolve_path_with_parent_scope(
3630         &mut self,
3631         base_module: Option<ModuleOrUniformRoot<'a>>,
3632         path: &[Segment],
3633         opt_ns: Option<Namespace>, // `None` indicates a module path
3634         parent_scope: &ParentScope<'a>,
3635         record_used: bool,
3636         path_span: Span,
3637         crate_lint: CrateLint,
3638     ) -> PathResult<'a> {
3639         let mut module = base_module;
3640         let mut allow_super = true;
3641         let mut second_binding = None;
3642         self.current_module = parent_scope.module;
3643
3644         debug!(
3645             "resolve_path(path={:?}, opt_ns={:?}, record_used={:?}, \
3646              path_span={:?}, crate_lint={:?})",
3647             path,
3648             opt_ns,
3649             record_used,
3650             path_span,
3651             crate_lint,
3652         );
3653
3654         for (i, &Segment { ident, id }) in path.iter().enumerate() {
3655             debug!("resolve_path ident {} {:?}", i, ident);
3656
3657             let is_last = i == path.len() - 1;
3658             let ns = if is_last { opt_ns.unwrap_or(TypeNS) } else { TypeNS };
3659             let name = ident.name;
3660
3661             allow_super &= ns == TypeNS &&
3662                 (name == keywords::SelfValue.name() ||
3663                  name == keywords::Super.name());
3664
3665             if ns == TypeNS {
3666                 if allow_super && name == keywords::Super.name() {
3667                     let mut ctxt = ident.span.ctxt().modern();
3668                     let self_module = match i {
3669                         0 => Some(self.resolve_self(&mut ctxt, self.current_module)),
3670                         _ => match module {
3671                             Some(ModuleOrUniformRoot::Module(module)) => Some(module),
3672                             _ => None,
3673                         },
3674                     };
3675                     if let Some(self_module) = self_module {
3676                         if let Some(parent) = self_module.parent {
3677                             module = Some(ModuleOrUniformRoot::Module(
3678                                 self.resolve_self(&mut ctxt, parent)));
3679                             continue;
3680                         }
3681                     }
3682                     let msg = "There are too many initial `super`s.".to_string();
3683                     return PathResult::Failed(ident.span, msg, false);
3684                 }
3685                 if i == 0 {
3686                     if name == keywords::SelfValue.name() {
3687                         let mut ctxt = ident.span.ctxt().modern();
3688                         module = Some(ModuleOrUniformRoot::Module(
3689                             self.resolve_self(&mut ctxt, self.current_module)));
3690                         continue;
3691                     }
3692                     if name == keywords::Extern.name() ||
3693                        name == keywords::CrateRoot.name() &&
3694                        self.session.rust_2018() {
3695                         module = Some(ModuleOrUniformRoot::UniformRoot(name));
3696                         continue;
3697                     }
3698                     if name == keywords::CrateRoot.name() ||
3699                        name == keywords::Crate.name() ||
3700                        name == keywords::DollarCrate.name() {
3701                         // `::a::b`, `crate::a::b` or `$crate::a::b`
3702                         module = Some(ModuleOrUniformRoot::Module(
3703                             self.resolve_crate_root(ident)));
3704                         continue;
3705                     }
3706                 }
3707             }
3708
3709             // Report special messages for path segment keywords in wrong positions.
3710             if ident.is_path_segment_keyword() && i != 0 {
3711                 let name_str = if name == keywords::CrateRoot.name() {
3712                     "crate root".to_string()
3713                 } else {
3714                     format!("`{}`", name)
3715                 };
3716                 let msg = if i == 1 && path[0].ident.name == keywords::CrateRoot.name() {
3717                     format!("global paths cannot start with {}", name_str)
3718                 } else {
3719                     format!("{} in paths can only be used in start position", name_str)
3720                 };
3721                 return PathResult::Failed(ident.span, msg, false);
3722             }
3723
3724             let binding = if let Some(module) = module {
3725                 self.resolve_ident_in_module(module, ident, ns, record_used, path_span)
3726             } else if opt_ns == Some(MacroNS) {
3727                 assert!(ns == TypeNS);
3728                 self.early_resolve_ident_in_lexical_scope(ident, ns, None, parent_scope,
3729                                                           record_used, record_used, path_span)
3730             } else {
3731                 let record_used_id =
3732                     if record_used { crate_lint.node_id().or(Some(CRATE_NODE_ID)) } else { None };
3733                 match self.resolve_ident_in_lexical_scope(ident, ns, record_used_id, path_span) {
3734                     // we found a locally-imported or available item/module
3735                     Some(LexicalScopeBinding::Item(binding)) => Ok(binding),
3736                     // we found a local variable or type param
3737                     Some(LexicalScopeBinding::Def(def))
3738                             if opt_ns == Some(TypeNS) || opt_ns == Some(ValueNS) => {
3739                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3740                             def, path.len() - 1
3741                         ));
3742                     }
3743                     _ => Err(if record_used { Determined } else { Undetermined }),
3744                 }
3745             };
3746
3747             match binding {
3748                 Ok(binding) => {
3749                     if i == 1 {
3750                         second_binding = Some(binding);
3751                     }
3752                     let def = binding.def();
3753                     let maybe_assoc = opt_ns != Some(MacroNS) && PathSource::Type.is_expected(def);
3754                     if let Some(next_module) = binding.module() {
3755                         module = Some(ModuleOrUniformRoot::Module(next_module));
3756                         if record_used {
3757                             if let Some(id) = id {
3758                                 if !self.def_map.contains_key(&id) {
3759                                     assert!(id != ast::DUMMY_NODE_ID, "Trying to resolve dummy id");
3760                                     self.record_def(id, PathResolution::new(def));
3761                                 }
3762                             }
3763                         }
3764                     } else if def == Def::ToolMod && i + 1 != path.len() {
3765                         let def = Def::NonMacroAttr(NonMacroAttrKind::Tool);
3766                         return PathResult::NonModule(PathResolution::new(def));
3767                     } else if def == Def::Err {
3768                         return PathResult::NonModule(err_path_resolution());
3769                     } else if opt_ns.is_some() && (is_last || maybe_assoc) {
3770                         self.lint_if_path_starts_with_module(
3771                             crate_lint,
3772                             path,
3773                             path_span,
3774                             second_binding,
3775                         );
3776                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3777                             def, path.len() - i - 1
3778                         ));
3779                     } else {
3780                         return PathResult::Failed(ident.span,
3781                                                   format!("Not a module `{}`", ident),
3782                                                   is_last);
3783                     }
3784                 }
3785                 Err(Undetermined) => return PathResult::Indeterminate,
3786                 Err(Determined) => {
3787                     if let Some(ModuleOrUniformRoot::Module(module)) = module {
3788                         if opt_ns.is_some() && !module.is_normal() {
3789                             return PathResult::NonModule(PathResolution::with_unresolved_segments(
3790                                 module.def().unwrap(), path.len() - i
3791                             ));
3792                         }
3793                     }
3794                     let module_def = match module {
3795                         Some(ModuleOrUniformRoot::Module(module)) => module.def(),
3796                         _ => None,
3797                     };
3798                     let msg = if module_def == self.graph_root.def() {
3799                         let is_mod = |def| match def { Def::Mod(..) => true, _ => false };
3800                         let mut candidates =
3801                             self.lookup_import_candidates(name, TypeNS, is_mod);
3802                         candidates.sort_by_cached_key(|c| {
3803                             (c.path.segments.len(), c.path.to_string())
3804                         });
3805                         if let Some(candidate) = candidates.get(0) {
3806                             format!("Did you mean `{}`?", candidate.path)
3807                         } else {
3808                             format!("Maybe a missing `extern crate {};`?", ident)
3809                         }
3810                     } else if i == 0 {
3811                         format!("Use of undeclared type or module `{}`", ident)
3812                     } else {
3813                         format!("Could not find `{}` in `{}`", ident, path[i - 1].ident)
3814                     };
3815                     return PathResult::Failed(ident.span, msg, is_last);
3816                 }
3817             }
3818         }
3819
3820         self.lint_if_path_starts_with_module(crate_lint, path, path_span, second_binding);
3821
3822         PathResult::Module(module.unwrap_or_else(|| {
3823             span_bug!(path_span, "resolve_path: empty(?) path {:?} has no module", path);
3824         }))
3825
3826     }
3827
3828     fn lint_if_path_starts_with_module(
3829         &self,
3830         crate_lint: CrateLint,
3831         path: &[Segment],
3832         path_span: Span,
3833         second_binding: Option<&NameBinding>,
3834     ) {
3835         // In the 2018 edition this lint is a hard error, so nothing to do
3836         if self.session.rust_2018() {
3837             return
3838         }
3839
3840         let (diag_id, diag_span) = match crate_lint {
3841             CrateLint::No => return,
3842             CrateLint::SimplePath(id) => (id, path_span),
3843             CrateLint::UsePath { root_id, root_span } => (root_id, root_span),
3844             CrateLint::QPathTrait { qpath_id, qpath_span } => (qpath_id, qpath_span),
3845         };
3846
3847         let first_name = match path.get(0) {
3848             Some(ident) => ident.ident.name,
3849             None => return,
3850         };
3851
3852         // We're only interested in `use` paths which should start with
3853         // `{{root}}` or `extern` currently.
3854         if first_name != keywords::Extern.name() && first_name != keywords::CrateRoot.name() {
3855             return
3856         }
3857
3858         match path.get(1) {
3859             // If this import looks like `crate::...` it's already good
3860             Some(Segment { ident, .. }) if ident.name == keywords::Crate.name() => return,
3861             // Otherwise go below to see if it's an extern crate
3862             Some(_) => {}
3863             // If the path has length one (and it's `CrateRoot` most likely)
3864             // then we don't know whether we're gonna be importing a crate or an
3865             // item in our crate. Defer this lint to elsewhere
3866             None => return,
3867         }
3868
3869         // If the first element of our path was actually resolved to an
3870         // `ExternCrate` (also used for `crate::...`) then no need to issue a
3871         // warning, this looks all good!
3872         if let Some(binding) = second_binding {
3873             if let NameBindingKind::Import { directive: d, .. } = binding.kind {
3874                 // Careful: we still want to rewrite paths from
3875                 // renamed extern crates.
3876                 if let ImportDirectiveSubclass::ExternCrate { source: None, .. } = d.subclass {
3877                     return
3878                 }
3879             }
3880         }
3881
3882         let diag = lint::builtin::BuiltinLintDiagnostics
3883             ::AbsPathWithModule(diag_span);
3884         self.session.buffer_lint_with_diagnostic(
3885             lint::builtin::ABSOLUTE_PATHS_NOT_STARTING_WITH_CRATE,
3886             diag_id, diag_span,
3887             "absolute paths must start with `self`, `super`, \
3888             `crate`, or an external crate name in the 2018 edition",
3889             diag);
3890     }
3891
3892     // Resolve a local definition, potentially adjusting for closures.
3893     fn adjust_local_def(&mut self,
3894                         ns: Namespace,
3895                         rib_index: usize,
3896                         mut def: Def,
3897                         record_used: bool,
3898                         span: Span) -> Def {
3899         let ribs = &self.ribs[ns][rib_index + 1..];
3900
3901         // An invalid forward use of a type parameter from a previous default.
3902         if let ForwardTyParamBanRibKind = self.ribs[ns][rib_index].kind {
3903             if record_used {
3904                 resolve_error(self, span, ResolutionError::ForwardDeclaredTyParam);
3905             }
3906             assert_eq!(def, Def::Err);
3907             return Def::Err;
3908         }
3909
3910         match def {
3911             Def::Upvar(..) => {
3912                 span_bug!(span, "unexpected {:?} in bindings", def)
3913             }
3914             Def::Local(node_id) => {
3915                 for rib in ribs {
3916                     match rib.kind {
3917                         NormalRibKind | ModuleRibKind(..) | MacroDefinition(..) |
3918                         ForwardTyParamBanRibKind => {
3919                             // Nothing to do. Continue.
3920                         }
3921                         ClosureRibKind(function_id) => {
3922                             let prev_def = def;
3923
3924                             let seen = self.freevars_seen
3925                                            .entry(function_id)
3926                                            .or_default();
3927                             if let Some(&index) = seen.get(&node_id) {
3928                                 def = Def::Upvar(node_id, index, function_id);
3929                                 continue;
3930                             }
3931                             let vec = self.freevars
3932                                           .entry(function_id)
3933                                           .or_default();
3934                             let depth = vec.len();
3935                             def = Def::Upvar(node_id, depth, function_id);
3936
3937                             if record_used {
3938                                 vec.push(Freevar {
3939                                     def: prev_def,
3940                                     span,
3941                                 });
3942                                 seen.insert(node_id, depth);
3943                             }
3944                         }
3945                         ItemRibKind | TraitOrImplItemRibKind => {
3946                             // This was an attempt to access an upvar inside a
3947                             // named function item. This is not allowed, so we
3948                             // report an error.
3949                             if record_used {
3950                                 resolve_error(self, span,
3951                                         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem);
3952                             }
3953                             return Def::Err;
3954                         }
3955                         ConstantItemRibKind => {
3956                             // Still doesn't deal with upvars
3957                             if record_used {
3958                                 resolve_error(self, span,
3959                                         ResolutionError::AttemptToUseNonConstantValueInConstant);
3960                             }
3961                             return Def::Err;
3962                         }
3963                     }
3964                 }
3965             }
3966             Def::TyParam(..) | Def::SelfTy(..) => {
3967                 for rib in ribs {
3968                     match rib.kind {
3969                         NormalRibKind | TraitOrImplItemRibKind | ClosureRibKind(..) |
3970                         ModuleRibKind(..) | MacroDefinition(..) | ForwardTyParamBanRibKind |
3971                         ConstantItemRibKind => {
3972                             // Nothing to do. Continue.
3973                         }
3974                         ItemRibKind => {
3975                             // This was an attempt to use a type parameter outside
3976                             // its scope.
3977                             if record_used {
3978                                 resolve_error(self, span,
3979                                     ResolutionError::TypeParametersFromOuterFunction(def));
3980                             }
3981                             return Def::Err;
3982                         }
3983                     }
3984                 }
3985             }
3986             _ => {}
3987         }
3988         def
3989     }
3990
3991     fn lookup_assoc_candidate<FilterFn>(&mut self,
3992                                         ident: Ident,
3993                                         ns: Namespace,
3994                                         filter_fn: FilterFn)
3995                                         -> Option<AssocSuggestion>
3996         where FilterFn: Fn(Def) -> bool
3997     {
3998         fn extract_node_id(t: &Ty) -> Option<NodeId> {
3999             match t.node {
4000                 TyKind::Path(None, _) => Some(t.id),
4001                 TyKind::Rptr(_, ref mut_ty) => extract_node_id(&mut_ty.ty),
4002                 // This doesn't handle the remaining `Ty` variants as they are not
4003                 // that commonly the self_type, it might be interesting to provide
4004                 // support for those in future.
4005                 _ => None,
4006             }
4007         }
4008
4009         // Fields are generally expected in the same contexts as locals.
4010         if filter_fn(Def::Local(ast::DUMMY_NODE_ID)) {
4011             if let Some(node_id) = self.current_self_type.as_ref().and_then(extract_node_id) {
4012                 // Look for a field with the same name in the current self_type.
4013                 if let Some(resolution) = self.def_map.get(&node_id) {
4014                     match resolution.base_def() {
4015                         Def::Struct(did) | Def::Union(did)
4016                                 if resolution.unresolved_segments() == 0 => {
4017                             if let Some(field_names) = self.field_names.get(&did) {
4018                                 if field_names.iter().any(|&field_name| ident.name == field_name) {
4019                                     return Some(AssocSuggestion::Field);
4020                                 }
4021                             }
4022                         }
4023                         _ => {}
4024                     }
4025                 }
4026             }
4027         }
4028
4029         // Look for associated items in the current trait.
4030         if let Some((module, _)) = self.current_trait_ref {
4031             if let Ok(binding) = self.resolve_ident_in_module(
4032                     ModuleOrUniformRoot::Module(module),
4033                     ident,
4034                     ns,
4035                     false,
4036                     module.span,
4037                 ) {
4038                 let def = binding.def();
4039                 if filter_fn(def) {
4040                     return Some(if self.has_self.contains(&def.def_id()) {
4041                         AssocSuggestion::MethodWithSelf
4042                     } else {
4043                         AssocSuggestion::AssocItem
4044                     });
4045                 }
4046             }
4047         }
4048
4049         None
4050     }
4051
4052     fn lookup_typo_candidate<FilterFn>(&mut self,
4053                                        path: &[Segment],
4054                                        ns: Namespace,
4055                                        filter_fn: FilterFn,
4056                                        span: Span)
4057                                        -> Option<Symbol>
4058         where FilterFn: Fn(Def) -> bool
4059     {
4060         let add_module_candidates = |module: Module, names: &mut Vec<Name>| {
4061             for (&(ident, _), resolution) in module.resolutions.borrow().iter() {
4062                 if let Some(binding) = resolution.borrow().binding {
4063                     if filter_fn(binding.def()) {
4064                         names.push(ident.name);
4065                     }
4066                 }
4067             }
4068         };
4069
4070         let mut names = Vec::new();
4071         if path.len() == 1 {
4072             // Search in lexical scope.
4073             // Walk backwards up the ribs in scope and collect candidates.
4074             for rib in self.ribs[ns].iter().rev() {
4075                 // Locals and type parameters
4076                 for (ident, def) in &rib.bindings {
4077                     if filter_fn(*def) {
4078                         names.push(ident.name);
4079                     }
4080                 }
4081                 // Items in scope
4082                 if let ModuleRibKind(module) = rib.kind {
4083                     // Items from this module
4084                     add_module_candidates(module, &mut names);
4085
4086                     if let ModuleKind::Block(..) = module.kind {
4087                         // We can see through blocks
4088                     } else {
4089                         // Items from the prelude
4090                         if !module.no_implicit_prelude {
4091                             names.extend(self.extern_prelude.iter().map(|(ident, _)| ident.name));
4092                             if let Some(prelude) = self.prelude {
4093                                 add_module_candidates(prelude, &mut names);
4094                             }
4095                         }
4096                         break;
4097                     }
4098                 }
4099             }
4100             // Add primitive types to the mix
4101             if filter_fn(Def::PrimTy(Bool)) {
4102                 names.extend(
4103                     self.primitive_type_table.primitive_types.iter().map(|(name, _)| name)
4104                 )
4105             }
4106         } else {
4107             // Search in module.
4108             let mod_path = &path[..path.len() - 1];
4109             if let PathResult::Module(module) = self.resolve_path(None, mod_path, Some(TypeNS),
4110                                                                   false, span, CrateLint::No) {
4111                 if let ModuleOrUniformRoot::Module(module) = module {
4112                     add_module_candidates(module, &mut names);
4113                 }
4114             }
4115         }
4116
4117         let name = path[path.len() - 1].ident.name;
4118         // Make sure error reporting is deterministic.
4119         names.sort_by_cached_key(|name| name.as_str());
4120         match find_best_match_for_name(names.iter(), &name.as_str(), None) {
4121             Some(found) if found != name => Some(found),
4122             _ => None,
4123         }
4124     }
4125
4126     fn with_resolved_label<F>(&mut self, label: Option<Label>, id: NodeId, f: F)
4127         where F: FnOnce(&mut Resolver)
4128     {
4129         if let Some(label) = label {
4130             self.unused_labels.insert(id, label.ident.span);
4131             let def = Def::Label(id);
4132             self.with_label_rib(|this| {
4133                 let ident = label.ident.modern_and_legacy();
4134                 this.label_ribs.last_mut().unwrap().bindings.insert(ident, def);
4135                 f(this);
4136             });
4137         } else {
4138             f(self);
4139         }
4140     }
4141
4142     fn resolve_labeled_block(&mut self, label: Option<Label>, id: NodeId, block: &Block) {
4143         self.with_resolved_label(label, id, |this| this.visit_block(block));
4144     }
4145
4146     fn resolve_expr(&mut self, expr: &Expr, parent: Option<&Expr>) {
4147         // First, record candidate traits for this expression if it could
4148         // result in the invocation of a method call.
4149
4150         self.record_candidate_traits_for_expr_if_necessary(expr);
4151
4152         // Next, resolve the node.
4153         match expr.node {
4154             ExprKind::Path(ref qself, ref path) => {
4155                 self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
4156                 visit::walk_expr(self, expr);
4157             }
4158
4159             ExprKind::Struct(ref path, ..) => {
4160                 self.smart_resolve_path(expr.id, None, path, PathSource::Struct);
4161                 visit::walk_expr(self, expr);
4162             }
4163
4164             ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
4165                 let def = self.search_label(label.ident, |rib, ident| {
4166                     rib.bindings.get(&ident.modern_and_legacy()).cloned()
4167                 });
4168                 match def {
4169                     None => {
4170                         // Search again for close matches...
4171                         // Picks the first label that is "close enough", which is not necessarily
4172                         // the closest match
4173                         let close_match = self.search_label(label.ident, |rib, ident| {
4174                             let names = rib.bindings.iter().map(|(id, _)| &id.name);
4175                             find_best_match_for_name(names, &*ident.as_str(), None)
4176                         });
4177                         self.record_def(expr.id, err_path_resolution());
4178                         resolve_error(self,
4179                                       label.ident.span,
4180                                       ResolutionError::UndeclaredLabel(&label.ident.as_str(),
4181                                                                        close_match));
4182                     }
4183                     Some(Def::Label(id)) => {
4184                         // Since this def is a label, it is never read.
4185                         self.record_def(expr.id, PathResolution::new(Def::Label(id)));
4186                         self.unused_labels.remove(&id);
4187                     }
4188                     Some(_) => {
4189                         span_bug!(expr.span, "label wasn't mapped to a label def!");
4190                     }
4191                 }
4192
4193                 // visit `break` argument if any
4194                 visit::walk_expr(self, expr);
4195             }
4196
4197             ExprKind::IfLet(ref pats, ref subexpression, ref if_block, ref optional_else) => {
4198                 self.visit_expr(subexpression);
4199
4200                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
4201                 let mut bindings_list = FxHashMap::default();
4202                 for pat in pats {
4203                     self.resolve_pattern(pat, PatternSource::IfLet, &mut bindings_list);
4204                 }
4205                 // This has to happen *after* we determine which pat_idents are variants
4206                 self.check_consistent_bindings(pats);
4207                 self.visit_block(if_block);
4208                 self.ribs[ValueNS].pop();
4209
4210                 optional_else.as_ref().map(|expr| self.visit_expr(expr));
4211             }
4212
4213             ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),
4214
4215             ExprKind::While(ref subexpression, ref block, label) => {
4216                 self.with_resolved_label(label, expr.id, |this| {
4217                     this.visit_expr(subexpression);
4218                     this.visit_block(block);
4219                 });
4220             }
4221
4222             ExprKind::WhileLet(ref pats, ref subexpression, ref block, label) => {
4223                 self.with_resolved_label(label, expr.id, |this| {
4224                     this.visit_expr(subexpression);
4225                     this.ribs[ValueNS].push(Rib::new(NormalRibKind));
4226                     let mut bindings_list = FxHashMap::default();
4227                     for pat in pats {
4228                         this.resolve_pattern(pat, PatternSource::WhileLet, &mut bindings_list);
4229                     }
4230                     // This has to happen *after* we determine which pat_idents are variants
4231                     this.check_consistent_bindings(pats);
4232                     this.visit_block(block);
4233                     this.ribs[ValueNS].pop();
4234                 });
4235             }
4236
4237             ExprKind::ForLoop(ref pattern, ref subexpression, ref block, label) => {
4238                 self.visit_expr(subexpression);
4239                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
4240                 self.resolve_pattern(pattern, PatternSource::For, &mut FxHashMap::default());
4241
4242                 self.resolve_labeled_block(label, expr.id, block);
4243
4244                 self.ribs[ValueNS].pop();
4245             }
4246
4247             ExprKind::Block(ref block, label) => self.resolve_labeled_block(label, block.id, block),
4248
4249             // Equivalent to `visit::walk_expr` + passing some context to children.
4250             ExprKind::Field(ref subexpression, _) => {
4251                 self.resolve_expr(subexpression, Some(expr));
4252             }
4253             ExprKind::MethodCall(ref segment, ref arguments) => {
4254                 let mut arguments = arguments.iter();
4255                 self.resolve_expr(arguments.next().unwrap(), Some(expr));
4256                 for argument in arguments {
4257                     self.resolve_expr(argument, None);
4258                 }
4259                 self.visit_path_segment(expr.span, segment);
4260             }
4261
4262             ExprKind::Call(ref callee, ref arguments) => {
4263                 self.resolve_expr(callee, Some(expr));
4264                 for argument in arguments {
4265                     self.resolve_expr(argument, None);
4266                 }
4267             }
4268             ExprKind::Type(ref type_expr, _) => {
4269                 self.current_type_ascription.push(type_expr.span);
4270                 visit::walk_expr(self, expr);
4271                 self.current_type_ascription.pop();
4272             }
4273             // Resolve the body of async exprs inside the async closure to which they desugar
4274             ExprKind::Async(_, async_closure_id, ref block) => {
4275                 let rib_kind = ClosureRibKind(async_closure_id);
4276                 self.ribs[ValueNS].push(Rib::new(rib_kind));
4277                 self.label_ribs.push(Rib::new(rib_kind));
4278                 self.visit_block(&block);
4279                 self.label_ribs.pop();
4280                 self.ribs[ValueNS].pop();
4281             }
4282             // `async |x| ...` gets desugared to `|x| future_from_generator(|| ...)`, so we need to
4283             // resolve the arguments within the proper scopes so that usages of them inside the
4284             // closure are detected as upvars rather than normal closure arg usages.
4285             ExprKind::Closure(
4286                 _, IsAsync::Async { closure_id: inner_closure_id, .. }, _,
4287                 ref fn_decl, ref body, _span,
4288             ) => {
4289                 let rib_kind = ClosureRibKind(expr.id);
4290                 self.ribs[ValueNS].push(Rib::new(rib_kind));
4291                 self.label_ribs.push(Rib::new(rib_kind));
4292                 // Resolve arguments:
4293                 let mut bindings_list = FxHashMap::default();
4294                 for argument in &fn_decl.inputs {
4295                     self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
4296                     self.visit_ty(&argument.ty);
4297                 }
4298                 // No need to resolve return type-- the outer closure return type is
4299                 // FunctionRetTy::Default
4300
4301                 // Now resolve the inner closure
4302                 {
4303                     let rib_kind = ClosureRibKind(inner_closure_id);
4304                     self.ribs[ValueNS].push(Rib::new(rib_kind));
4305                     self.label_ribs.push(Rib::new(rib_kind));
4306                     // No need to resolve arguments: the inner closure has none.
4307                     // Resolve the return type:
4308                     visit::walk_fn_ret_ty(self, &fn_decl.output);
4309                     // Resolve the body
4310                     self.visit_expr(body);
4311                     self.label_ribs.pop();
4312                     self.ribs[ValueNS].pop();
4313                 }
4314                 self.label_ribs.pop();
4315                 self.ribs[ValueNS].pop();
4316             }
4317             _ => {
4318                 visit::walk_expr(self, expr);
4319             }
4320         }
4321     }
4322
4323     fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &Expr) {
4324         match expr.node {
4325             ExprKind::Field(_, ident) => {
4326                 // FIXME(#6890): Even though you can't treat a method like a
4327                 // field, we need to add any trait methods we find that match
4328                 // the field name so that we can do some nice error reporting
4329                 // later on in typeck.
4330                 let traits = self.get_traits_containing_item(ident, ValueNS);
4331                 self.trait_map.insert(expr.id, traits);
4332             }
4333             ExprKind::MethodCall(ref segment, ..) => {
4334                 debug!("(recording candidate traits for expr) recording traits for {}",
4335                        expr.id);
4336                 let traits = self.get_traits_containing_item(segment.ident, ValueNS);
4337                 self.trait_map.insert(expr.id, traits);
4338             }
4339             _ => {
4340                 // Nothing to do.
4341             }
4342         }
4343     }
4344
4345     fn get_traits_containing_item(&mut self, mut ident: Ident, ns: Namespace)
4346                                   -> Vec<TraitCandidate> {
4347         debug!("(getting traits containing item) looking for '{}'", ident.name);
4348
4349         let mut found_traits = Vec::new();
4350         // Look for the current trait.
4351         if let Some((module, _)) = self.current_trait_ref {
4352             if self.resolve_ident_in_module(
4353                 ModuleOrUniformRoot::Module(module),
4354                 ident,
4355                 ns,
4356                 false,
4357                 module.span,
4358             ).is_ok() {
4359                 let def_id = module.def_id().unwrap();
4360                 found_traits.push(TraitCandidate { def_id: def_id, import_id: None });
4361             }
4362         }
4363
4364         ident.span = ident.span.modern();
4365         let mut search_module = self.current_module;
4366         loop {
4367             self.get_traits_in_module_containing_item(ident, ns, search_module, &mut found_traits);
4368             search_module = unwrap_or!(
4369                 self.hygienic_lexical_parent(search_module, &mut ident.span), break
4370             );
4371         }
4372
4373         if let Some(prelude) = self.prelude {
4374             if !search_module.no_implicit_prelude {
4375                 self.get_traits_in_module_containing_item(ident, ns, prelude, &mut found_traits);
4376             }
4377         }
4378
4379         found_traits
4380     }
4381
4382     fn get_traits_in_module_containing_item(&mut self,
4383                                             ident: Ident,
4384                                             ns: Namespace,
4385                                             module: Module<'a>,
4386                                             found_traits: &mut Vec<TraitCandidate>) {
4387         assert!(ns == TypeNS || ns == ValueNS);
4388         let mut traits = module.traits.borrow_mut();
4389         if traits.is_none() {
4390             let mut collected_traits = Vec::new();
4391             module.for_each_child(|name, ns, binding| {
4392                 if ns != TypeNS { return }
4393                 if let Def::Trait(_) = binding.def() {
4394                     collected_traits.push((name, binding));
4395                 }
4396             });
4397             *traits = Some(collected_traits.into_boxed_slice());
4398         }
4399
4400         for &(trait_name, binding) in traits.as_ref().unwrap().iter() {
4401             let module = binding.module().unwrap();
4402             let mut ident = ident;
4403             if ident.span.glob_adjust(module.expansion, binding.span.ctxt().modern()).is_none() {
4404                 continue
4405             }
4406             if self.resolve_ident_in_module_unadjusted(
4407                 ModuleOrUniformRoot::Module(module),
4408                 ident,
4409                 ns,
4410                 false,
4411                 false,
4412                 module.span,
4413             ).is_ok() {
4414                 let import_id = match binding.kind {
4415                     NameBindingKind::Import { directive, .. } => {
4416                         self.maybe_unused_trait_imports.insert(directive.id);
4417                         self.add_to_glob_map(directive.id, trait_name);
4418                         Some(directive.id)
4419                     }
4420                     _ => None,
4421                 };
4422                 let trait_def_id = module.def_id().unwrap();
4423                 found_traits.push(TraitCandidate { def_id: trait_def_id, import_id: import_id });
4424             }
4425         }
4426     }
4427
4428     fn lookup_import_candidates_from_module<FilterFn>(&mut self,
4429                                           lookup_name: Name,
4430                                           namespace: Namespace,
4431                                           start_module: &'a ModuleData<'a>,
4432                                           crate_name: Ident,
4433                                           filter_fn: FilterFn)
4434                                           -> Vec<ImportSuggestion>
4435         where FilterFn: Fn(Def) -> bool
4436     {
4437         let mut candidates = Vec::new();
4438         let mut seen_modules = FxHashSet::default();
4439         let not_local_module = crate_name != keywords::Crate.ident();
4440         let mut worklist = vec![(start_module, Vec::<ast::PathSegment>::new(), not_local_module)];
4441
4442         while let Some((in_module,
4443                         path_segments,
4444                         in_module_is_extern)) = worklist.pop() {
4445             self.populate_module_if_necessary(in_module);
4446
4447             // We have to visit module children in deterministic order to avoid
4448             // instabilities in reported imports (#43552).
4449             in_module.for_each_child_stable(|ident, ns, name_binding| {
4450                 // avoid imports entirely
4451                 if name_binding.is_import() && !name_binding.is_extern_crate() { return; }
4452                 // avoid non-importable candidates as well
4453                 if !name_binding.is_importable() { return; }
4454
4455                 // collect results based on the filter function
4456                 if ident.name == lookup_name && ns == namespace {
4457                     if filter_fn(name_binding.def()) {
4458                         // create the path
4459                         let mut segms = path_segments.clone();
4460                         if self.session.rust_2018() {
4461                             // crate-local absolute paths start with `crate::` in edition 2018
4462                             // FIXME: may also be stabilized for Rust 2015 (Issues #45477, #44660)
4463                             segms.insert(
4464                                 0, ast::PathSegment::from_ident(crate_name)
4465                             );
4466                         }
4467
4468                         segms.push(ast::PathSegment::from_ident(ident));
4469                         let path = Path {
4470                             span: name_binding.span,
4471                             segments: segms,
4472                         };
4473                         // the entity is accessible in the following cases:
4474                         // 1. if it's defined in the same crate, it's always
4475                         // accessible (since private entities can be made public)
4476                         // 2. if it's defined in another crate, it's accessible
4477                         // only if both the module is public and the entity is
4478                         // declared as public (due to pruning, we don't explore
4479                         // outside crate private modules => no need to check this)
4480                         if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
4481                             candidates.push(ImportSuggestion { path: path });
4482                         }
4483                     }
4484                 }
4485
4486                 // collect submodules to explore
4487                 if let Some(module) = name_binding.module() {
4488                     // form the path
4489                     let mut path_segments = path_segments.clone();
4490                     path_segments.push(ast::PathSegment::from_ident(ident));
4491
4492                     let is_extern_crate_that_also_appears_in_prelude =
4493                         name_binding.is_extern_crate() &&
4494                         self.session.rust_2018();
4495
4496                     let is_visible_to_user =
4497                         !in_module_is_extern || name_binding.vis == ty::Visibility::Public;
4498
4499                     if !is_extern_crate_that_also_appears_in_prelude && is_visible_to_user {
4500                         // add the module to the lookup
4501                         let is_extern = in_module_is_extern || name_binding.is_extern_crate();
4502                         if seen_modules.insert(module.def_id().unwrap()) {
4503                             worklist.push((module, path_segments, is_extern));
4504                         }
4505                     }
4506                 }
4507             })
4508         }
4509
4510         candidates
4511     }
4512
4513     /// When name resolution fails, this method can be used to look up candidate
4514     /// entities with the expected name. It allows filtering them using the
4515     /// supplied predicate (which should be used to only accept the types of
4516     /// definitions expected e.g. traits). The lookup spans across all crates.
4517     ///
4518     /// NOTE: The method does not look into imports, but this is not a problem,
4519     /// since we report the definitions (thus, the de-aliased imports).
4520     fn lookup_import_candidates<FilterFn>(&mut self,
4521                                           lookup_name: Name,
4522                                           namespace: Namespace,
4523                                           filter_fn: FilterFn)
4524                                           -> Vec<ImportSuggestion>
4525         where FilterFn: Fn(Def) -> bool
4526     {
4527         let mut suggestions = self.lookup_import_candidates_from_module(
4528             lookup_name, namespace, self.graph_root, keywords::Crate.ident(), &filter_fn);
4529
4530         if self.session.rust_2018() {
4531             let extern_prelude_names = self.extern_prelude.clone();
4532             for (ident, _) in extern_prelude_names.into_iter() {
4533                 if let Some(crate_id) = self.crate_loader.maybe_process_path_extern(ident.name,
4534                                                                                     ident.span) {
4535                     let crate_root = self.get_module(DefId {
4536                         krate: crate_id,
4537                         index: CRATE_DEF_INDEX,
4538                     });
4539                     self.populate_module_if_necessary(&crate_root);
4540
4541                     suggestions.extend(self.lookup_import_candidates_from_module(
4542                         lookup_name, namespace, crate_root, ident, &filter_fn));
4543                 }
4544             }
4545         }
4546
4547         suggestions
4548     }
4549
4550     fn find_module(&mut self,
4551                    module_def: Def)
4552                    -> Option<(Module<'a>, ImportSuggestion)>
4553     {
4554         let mut result = None;
4555         let mut seen_modules = FxHashSet::default();
4556         let mut worklist = vec![(self.graph_root, Vec::new())];
4557
4558         while let Some((in_module, path_segments)) = worklist.pop() {
4559             // abort if the module is already found
4560             if result.is_some() { break; }
4561
4562             self.populate_module_if_necessary(in_module);
4563
4564             in_module.for_each_child_stable(|ident, _, name_binding| {
4565                 // abort if the module is already found or if name_binding is private external
4566                 if result.is_some() || !name_binding.vis.is_visible_locally() {
4567                     return
4568                 }
4569                 if let Some(module) = name_binding.module() {
4570                     // form the path
4571                     let mut path_segments = path_segments.clone();
4572                     path_segments.push(ast::PathSegment::from_ident(ident));
4573                     if module.def() == Some(module_def) {
4574                         let path = Path {
4575                             span: name_binding.span,
4576                             segments: path_segments,
4577                         };
4578                         result = Some((module, ImportSuggestion { path: path }));
4579                     } else {
4580                         // add the module to the lookup
4581                         if seen_modules.insert(module.def_id().unwrap()) {
4582                             worklist.push((module, path_segments));
4583                         }
4584                     }
4585                 }
4586             });
4587         }
4588
4589         result
4590     }
4591
4592     fn collect_enum_variants(&mut self, enum_def: Def) -> Option<Vec<Path>> {
4593         if let Def::Enum(..) = enum_def {} else {
4594             panic!("Non-enum def passed to collect_enum_variants: {:?}", enum_def)
4595         }
4596
4597         self.find_module(enum_def).map(|(enum_module, enum_import_suggestion)| {
4598             self.populate_module_if_necessary(enum_module);
4599
4600             let mut variants = Vec::new();
4601             enum_module.for_each_child_stable(|ident, _, name_binding| {
4602                 if let Def::Variant(..) = name_binding.def() {
4603                     let mut segms = enum_import_suggestion.path.segments.clone();
4604                     segms.push(ast::PathSegment::from_ident(ident));
4605                     variants.push(Path {
4606                         span: name_binding.span,
4607                         segments: segms,
4608                     });
4609                 }
4610             });
4611             variants
4612         })
4613     }
4614
4615     fn record_def(&mut self, node_id: NodeId, resolution: PathResolution) {
4616         debug!("(recording def) recording {:?} for {}", resolution, node_id);
4617         if let Some(prev_res) = self.def_map.insert(node_id, resolution) {
4618             panic!("path resolved multiple times ({:?} before, {:?} now)", prev_res, resolution);
4619         }
4620     }
4621
4622     fn resolve_visibility(&mut self, vis: &ast::Visibility) -> ty::Visibility {
4623         match vis.node {
4624             ast::VisibilityKind::Public => ty::Visibility::Public,
4625             ast::VisibilityKind::Crate(..) => {
4626                 ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX))
4627             }
4628             ast::VisibilityKind::Inherited => {
4629                 ty::Visibility::Restricted(self.current_module.normal_ancestor_id)
4630             }
4631             ast::VisibilityKind::Restricted { ref path, id, .. } => {
4632                 // Visibilities are resolved as global by default, add starting root segment.
4633                 let segments = path.make_root().iter().chain(path.segments.iter())
4634                     .map(|seg| Segment { ident: seg.ident, id: Some(seg.id) })
4635                     .collect::<Vec<_>>();
4636                 let def = self.smart_resolve_path_fragment(
4637                     id,
4638                     None,
4639                     &segments,
4640                     path.span,
4641                     PathSource::Visibility,
4642                     CrateLint::SimplePath(id),
4643                 ).base_def();
4644                 if def == Def::Err {
4645                     ty::Visibility::Public
4646                 } else {
4647                     let vis = ty::Visibility::Restricted(def.def_id());
4648                     if self.is_accessible(vis) {
4649                         vis
4650                     } else {
4651                         self.session.span_err(path.span, "visibilities can only be restricted \
4652                                                           to ancestor modules");
4653                         ty::Visibility::Public
4654                     }
4655                 }
4656             }
4657         }
4658     }
4659
4660     fn is_accessible(&self, vis: ty::Visibility) -> bool {
4661         vis.is_accessible_from(self.current_module.normal_ancestor_id, self)
4662     }
4663
4664     fn is_accessible_from(&self, vis: ty::Visibility, module: Module<'a>) -> bool {
4665         vis.is_accessible_from(module.normal_ancestor_id, self)
4666     }
4667
4668     fn set_binding_parent_module(&mut self, binding: &'a NameBinding<'a>, module: Module<'a>) {
4669         if let Some(old_module) = self.binding_parent_modules.insert(PtrKey(binding), module) {
4670             if !ptr::eq(module, old_module) {
4671                 span_bug!(binding.span, "parent module is reset for binding");
4672             }
4673         }
4674     }
4675
4676     fn disambiguate_legacy_vs_modern(
4677         &self,
4678         legacy: &'a NameBinding<'a>,
4679         modern: &'a NameBinding<'a>,
4680     ) -> bool {
4681         // Some non-controversial subset of ambiguities "modern macro name" vs "macro_rules"
4682         // is disambiguated to mitigate regressions from macro modularization.
4683         // Scoping for `macro_rules` behaves like scoping for `let` at module level, in general.
4684         match (self.binding_parent_modules.get(&PtrKey(legacy)),
4685                self.binding_parent_modules.get(&PtrKey(modern))) {
4686             (Some(legacy), Some(modern)) =>
4687                 legacy.normal_ancestor_id == modern.normal_ancestor_id &&
4688                 modern.is_ancestor_of(legacy),
4689             _ => false,
4690         }
4691     }
4692
4693     fn report_ambiguity_error(&self, ident: Ident, b1: &NameBinding, b2: &NameBinding) {
4694         let participle = |is_import: bool| if is_import { "imported" } else { "defined" };
4695         let msg1 =
4696             format!("`{}` could refer to the name {} here", ident, participle(b1.is_import()));
4697         let msg2 =
4698             format!("`{}` could also refer to the name {} here", ident, participle(b2.is_import()));
4699         let note = if b1.expansion != Mark::root() {
4700             Some(if let Def::Macro(..) = b1.def() {
4701                 format!("macro-expanded {} do not shadow",
4702                         if b1.is_import() { "macro imports" } else { "macros" })
4703             } else {
4704                 format!("macro-expanded {} do not shadow when used in a macro invocation path",
4705                         if b1.is_import() { "imports" } else { "items" })
4706             })
4707         } else if b1.is_glob_import() {
4708             Some(format!("consider adding an explicit import of `{}` to disambiguate", ident))
4709         } else {
4710             None
4711         };
4712
4713         let mut err = struct_span_err!(self.session, ident.span, E0659, "`{}` is ambiguous", ident);
4714         err.span_label(ident.span, "ambiguous name");
4715         err.span_note(b1.span, &msg1);
4716         match b2.def() {
4717             Def::Macro(..) if b2.span.is_dummy() =>
4718                 err.note(&format!("`{}` is also a builtin macro", ident)),
4719             _ => err.span_note(b2.span, &msg2),
4720         };
4721         if let Some(note) = note {
4722             err.note(&note);
4723         }
4724         err.emit();
4725     }
4726
4727     fn report_errors(&mut self, krate: &Crate) {
4728         self.report_with_use_injections(krate);
4729         let mut reported_spans = FxHashSet::default();
4730
4731         for &(span_use, span_def) in &self.macro_expanded_macro_export_errors {
4732             let msg = "macro-expanded `macro_export` macros from the current crate \
4733                        cannot be referred to by absolute paths";
4734             self.session.buffer_lint_with_diagnostic(
4735                 lint::builtin::MACRO_EXPANDED_MACRO_EXPORTS_ACCESSED_BY_ABSOLUTE_PATHS,
4736                 CRATE_NODE_ID, span_use, msg,
4737                 lint::builtin::BuiltinLintDiagnostics::
4738                     MacroExpandedMacroExportsAccessedByAbsolutePaths(span_def),
4739             );
4740         }
4741
4742         for &AmbiguityError { ident, b1, b2 } in &self.ambiguity_errors {
4743             if reported_spans.insert(ident.span) {
4744                 self.report_ambiguity_error(ident, b1, b2);
4745             }
4746         }
4747
4748         for &PrivacyError(span, name, binding) in &self.privacy_errors {
4749             if !reported_spans.insert(span) { continue }
4750             span_err!(self.session, span, E0603, "{} `{}` is private", binding.descr(), name);
4751         }
4752     }
4753
4754     fn report_with_use_injections(&mut self, krate: &Crate) {
4755         for UseError { mut err, candidates, node_id, better } in self.use_injections.drain(..) {
4756             let (span, found_use) = UsePlacementFinder::check(krate, node_id);
4757             if !candidates.is_empty() {
4758                 show_candidates(&mut err, span, &candidates, better, found_use);
4759             }
4760             err.emit();
4761         }
4762     }
4763
4764     fn report_conflict<'b>(&mut self,
4765                        parent: Module,
4766                        ident: Ident,
4767                        ns: Namespace,
4768                        new_binding: &NameBinding<'b>,
4769                        old_binding: &NameBinding<'b>) {
4770         // Error on the second of two conflicting names
4771         if old_binding.span.lo() > new_binding.span.lo() {
4772             return self.report_conflict(parent, ident, ns, old_binding, new_binding);
4773         }
4774
4775         let container = match parent.kind {
4776             ModuleKind::Def(Def::Mod(_), _) => "module",
4777             ModuleKind::Def(Def::Trait(_), _) => "trait",
4778             ModuleKind::Block(..) => "block",
4779             _ => "enum",
4780         };
4781
4782         let old_noun = match old_binding.is_import() {
4783             true => "import",
4784             false => "definition",
4785         };
4786
4787         let new_participle = match new_binding.is_import() {
4788             true => "imported",
4789             false => "defined",
4790         };
4791
4792         let (name, span) = (ident.name, self.session.source_map().def_span(new_binding.span));
4793
4794         if let Some(s) = self.name_already_seen.get(&name) {
4795             if s == &span {
4796                 return;
4797             }
4798         }
4799
4800         let old_kind = match (ns, old_binding.module()) {
4801             (ValueNS, _) => "value",
4802             (MacroNS, _) => "macro",
4803             (TypeNS, _) if old_binding.is_extern_crate() => "extern crate",
4804             (TypeNS, Some(module)) if module.is_normal() => "module",
4805             (TypeNS, Some(module)) if module.is_trait() => "trait",
4806             (TypeNS, _) => "type",
4807         };
4808
4809         let msg = format!("the name `{}` is defined multiple times", name);
4810
4811         let mut err = match (old_binding.is_extern_crate(), new_binding.is_extern_crate()) {
4812             (true, true) => struct_span_err!(self.session, span, E0259, "{}", msg),
4813             (true, _) | (_, true) => match new_binding.is_import() && old_binding.is_import() {
4814                 true => struct_span_err!(self.session, span, E0254, "{}", msg),
4815                 false => struct_span_err!(self.session, span, E0260, "{}", msg),
4816             },
4817             _ => match (old_binding.is_import(), new_binding.is_import()) {
4818                 (false, false) => struct_span_err!(self.session, span, E0428, "{}", msg),
4819                 (true, true) => struct_span_err!(self.session, span, E0252, "{}", msg),
4820                 _ => struct_span_err!(self.session, span, E0255, "{}", msg),
4821             },
4822         };
4823
4824         err.note(&format!("`{}` must be defined only once in the {} namespace of this {}",
4825                           name,
4826                           ns.descr(),
4827                           container));
4828
4829         err.span_label(span, format!("`{}` re{} here", name, new_participle));
4830         if !old_binding.span.is_dummy() {
4831             err.span_label(self.session.source_map().def_span(old_binding.span),
4832                            format!("previous {} of the {} `{}` here", old_noun, old_kind, name));
4833         }
4834
4835         // See https://github.com/rust-lang/rust/issues/32354
4836         if old_binding.is_import() || new_binding.is_import() {
4837             let binding = if new_binding.is_import() && !new_binding.span.is_dummy() {
4838                 new_binding
4839             } else {
4840                 old_binding
4841             };
4842
4843             let cm = self.session.source_map();
4844             let rename_msg = "you can use `as` to change the binding name of the import";
4845
4846             if let (
4847                 Ok(snippet),
4848                 NameBindingKind::Import { directive, ..},
4849                 _dummy @ false,
4850             ) = (
4851                 cm.span_to_snippet(binding.span),
4852                 binding.kind.clone(),
4853                 binding.span.is_dummy(),
4854             ) {
4855                 let suggested_name = if name.as_str().chars().next().unwrap().is_uppercase() {
4856                     format!("Other{}", name)
4857                 } else {
4858                     format!("other_{}", name)
4859                 };
4860
4861                 err.span_suggestion_with_applicability(
4862                     binding.span,
4863                     &rename_msg,
4864                     match (&directive.subclass, snippet.as_ref()) {
4865                         (ImportDirectiveSubclass::SingleImport { .. }, "self") =>
4866                             format!("self as {}", suggested_name),
4867                         (ImportDirectiveSubclass::SingleImport { source, .. }, _) =>
4868                             format!(
4869                                 "{} as {}{}",
4870                                 &snippet[..((source.span.hi().0 - binding.span.lo().0) as usize)],
4871                                 suggested_name,
4872                                 if snippet.ends_with(";") {
4873                                     ";"
4874                                 } else {
4875                                     ""
4876                                 }
4877                             ),
4878                         (ImportDirectiveSubclass::ExternCrate { source, target, .. }, _) =>
4879                             format!(
4880                                 "extern crate {} as {};",
4881                                 source.unwrap_or(target.name),
4882                                 suggested_name,
4883                             ),
4884                         (_, _) => unreachable!(),
4885                     },
4886                     Applicability::MaybeIncorrect,
4887                 );
4888             } else {
4889                 err.span_label(binding.span, rename_msg);
4890             }
4891         }
4892
4893         err.emit();
4894         self.name_already_seen.insert(name, span);
4895     }
4896
4897     fn extern_prelude_get(&mut self, ident: Ident, speculative: bool, skip_feature_gate: bool)
4898                           -> Option<&'a NameBinding<'a>> {
4899         self.extern_prelude.get(&ident.modern()).cloned().and_then(|entry| {
4900             if let Some(binding) = entry.extern_crate_item {
4901                 if !speculative && !skip_feature_gate && entry.introduced_by_item &&
4902                    !self.session.features_untracked().extern_crate_item_prelude {
4903                     emit_feature_err(&self.session.parse_sess, "extern_crate_item_prelude",
4904                                      ident.span, GateIssue::Language,
4905                                      "use of extern prelude names introduced \
4906                                       with `extern crate` items is unstable");
4907                 }
4908                 Some(binding)
4909             } else {
4910                 let crate_id = if !speculative {
4911                     self.crate_loader.process_path_extern(ident.name, ident.span)
4912                 } else if let Some(crate_id) =
4913                         self.crate_loader.maybe_process_path_extern(ident.name, ident.span) {
4914                     crate_id
4915                 } else {
4916                     return None;
4917                 };
4918                 let crate_root = self.get_module(DefId { krate: crate_id, index: CRATE_DEF_INDEX });
4919                 self.populate_module_if_necessary(&crate_root);
4920                 Some((crate_root, ty::Visibility::Public, ident.span, Mark::root())
4921                     .to_name_binding(self.arenas))
4922             }
4923         })
4924     }
4925 }
4926
4927 fn is_self_type(path: &[Segment], namespace: Namespace) -> bool {
4928     namespace == TypeNS && path.len() == 1 && path[0].ident.name == keywords::SelfType.name()
4929 }
4930
4931 fn is_self_value(path: &[Segment], namespace: Namespace) -> bool {
4932     namespace == ValueNS && path.len() == 1 && path[0].ident.name == keywords::SelfValue.name()
4933 }
4934
4935 fn names_to_string(idents: &[Ident]) -> String {
4936     let mut result = String::new();
4937     for (i, ident) in idents.iter()
4938                             .filter(|ident| ident.name != keywords::CrateRoot.name())
4939                             .enumerate() {
4940         if i > 0 {
4941             result.push_str("::");
4942         }
4943         result.push_str(&ident.as_str());
4944     }
4945     result
4946 }
4947
4948 fn path_names_to_string(path: &Path) -> String {
4949     names_to_string(&path.segments.iter()
4950                         .map(|seg| seg.ident)
4951                         .collect::<Vec<_>>())
4952 }
4953
4954 /// Get the path for an enum and the variant from an `ImportSuggestion` for an enum variant.
4955 fn import_candidate_to_paths(suggestion: &ImportSuggestion) -> (Span, String, String) {
4956     let variant_path = &suggestion.path;
4957     let variant_path_string = path_names_to_string(variant_path);
4958
4959     let path_len = suggestion.path.segments.len();
4960     let enum_path = ast::Path {
4961         span: suggestion.path.span,
4962         segments: suggestion.path.segments[0..path_len - 1].to_vec(),
4963     };
4964     let enum_path_string = path_names_to_string(&enum_path);
4965
4966     (suggestion.path.span, variant_path_string, enum_path_string)
4967 }
4968
4969
4970 /// When an entity with a given name is not available in scope, we search for
4971 /// entities with that name in all crates. This method allows outputting the
4972 /// results of this search in a programmer-friendly way
4973 fn show_candidates(err: &mut DiagnosticBuilder,
4974                    // This is `None` if all placement locations are inside expansions
4975                    span: Option<Span>,
4976                    candidates: &[ImportSuggestion],
4977                    better: bool,
4978                    found_use: bool) {
4979
4980     // we want consistent results across executions, but candidates are produced
4981     // by iterating through a hash map, so make sure they are ordered:
4982     let mut path_strings: Vec<_> =
4983         candidates.into_iter().map(|c| path_names_to_string(&c.path)).collect();
4984     path_strings.sort();
4985
4986     let better = if better { "better " } else { "" };
4987     let msg_diff = match path_strings.len() {
4988         1 => " is found in another module, you can import it",
4989         _ => "s are found in other modules, you can import them",
4990     };
4991     let msg = format!("possible {}candidate{} into scope", better, msg_diff);
4992
4993     if let Some(span) = span {
4994         for candidate in &mut path_strings {
4995             // produce an additional newline to separate the new use statement
4996             // from the directly following item.
4997             let additional_newline = if found_use {
4998                 ""
4999             } else {
5000                 "\n"
5001             };
5002             *candidate = format!("use {};\n{}", candidate, additional_newline);
5003         }
5004
5005         err.span_suggestions_with_applicability(
5006             span,
5007             &msg,
5008             path_strings,
5009             Applicability::Unspecified,
5010         );
5011     } else {
5012         let mut msg = msg;
5013         msg.push(':');
5014         for candidate in path_strings {
5015             msg.push('\n');
5016             msg.push_str(&candidate);
5017         }
5018     }
5019 }
5020
5021 /// A somewhat inefficient routine to obtain the name of a module.
5022 fn module_to_string(module: Module) -> Option<String> {
5023     let mut names = Vec::new();
5024
5025     fn collect_mod(names: &mut Vec<Ident>, module: Module) {
5026         if let ModuleKind::Def(_, name) = module.kind {
5027             if let Some(parent) = module.parent {
5028                 names.push(Ident::with_empty_ctxt(name));
5029                 collect_mod(names, parent);
5030             }
5031         } else {
5032             // danger, shouldn't be ident?
5033             names.push(Ident::from_str("<opaque>"));
5034             collect_mod(names, module.parent.unwrap());
5035         }
5036     }
5037     collect_mod(&mut names, module);
5038
5039     if names.is_empty() {
5040         return None;
5041     }
5042     Some(names_to_string(&names.into_iter()
5043                         .rev()
5044                         .collect::<Vec<_>>()))
5045 }
5046
5047 fn err_path_resolution() -> PathResolution {
5048     PathResolution::new(Def::Err)
5049 }
5050
5051 #[derive(PartialEq,Copy, Clone)]
5052 pub enum MakeGlobMap {
5053     Yes,
5054     No,
5055 }
5056
5057 #[derive(Copy, Clone, Debug)]
5058 enum CrateLint {
5059     /// Do not issue the lint
5060     No,
5061
5062     /// This lint applies to some random path like `impl ::foo::Bar`
5063     /// or whatever. In this case, we can take the span of that path.
5064     SimplePath(NodeId),
5065
5066     /// This lint comes from a `use` statement. In this case, what we
5067     /// care about really is the *root* `use` statement; e.g., if we
5068     /// have nested things like `use a::{b, c}`, we care about the
5069     /// `use a` part.
5070     UsePath { root_id: NodeId, root_span: Span },
5071
5072     /// This is the "trait item" from a fully qualified path. For example,
5073     /// we might be resolving  `X::Y::Z` from a path like `<T as X::Y>::Z`.
5074     /// The `path_span` is the span of the to the trait itself (`X::Y`).
5075     QPathTrait { qpath_id: NodeId, qpath_span: Span },
5076 }
5077
5078 impl CrateLint {
5079     fn node_id(&self) -> Option<NodeId> {
5080         match *self {
5081             CrateLint::No => None,
5082             CrateLint::SimplePath(id) |
5083             CrateLint::UsePath { root_id: id, .. } |
5084             CrateLint::QPathTrait { qpath_id: id, .. } => Some(id),
5085         }
5086     }
5087 }
5088
5089 __build_diagnostic_array! { librustc_resolve, DIAGNOSTICS }