]> git.lizzy.rs Git - rust.git/blob - src/librustc_resolve/lib.rs
4bfe4d25ded9373ecdfe3a96e907469320426894
[rust.git] / src / librustc_resolve / lib.rs
1 // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 #![crate_name = "rustc_resolve"]
12 #![crate_type = "dylib"]
13 #![crate_type = "rlib"]
14 #![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
15       html_favicon_url = "https://doc.rust-lang.org/favicon.ico",
16       html_root_url = "https://doc.rust-lang.org/nightly/")]
17 #![deny(warnings)]
18
19 #![feature(associated_consts)]
20 #![feature(rustc_diagnostic_macros)]
21
22 #[macro_use]
23 extern crate log;
24 #[macro_use]
25 extern crate syntax;
26 extern crate syntax_pos;
27 extern crate rustc_errors as errors;
28 extern crate arena;
29 #[macro_use]
30 extern crate rustc;
31
32 use self::Namespace::*;
33 use self::TypeParameters::*;
34 use self::RibKind::*;
35
36 use rustc::hir::map::{Definitions, DefCollector};
37 use rustc::hir::{self, PrimTy, TyBool, TyChar, TyFloat, TyInt, TyUint, TyStr};
38 use rustc::middle::cstore::CrateLoader;
39 use rustc::session::Session;
40 use rustc::lint;
41 use rustc::hir::def::*;
42 use rustc::hir::def_id::{CRATE_DEF_INDEX, LOCAL_CRATE, DefId};
43 use rustc::ty;
44 use rustc::hir::{Freevar, FreevarMap, TraitCandidate, TraitMap, GlobMap};
45 use rustc::util::nodemap::{NodeMap, NodeSet, FxHashMap, FxHashSet, DefIdMap};
46
47 use syntax::ext::hygiene::{Mark, SyntaxContext};
48 use syntax::ast::{self, Name, NodeId, Ident, SpannedIdent, FloatTy, IntTy, UintTy};
49 use syntax::ext::base::SyntaxExtension;
50 use syntax::ext::base::Determinacy::{self, Determined, Undetermined};
51 use syntax::ext::base::MacroKind;
52 use syntax::symbol::{Symbol, keywords};
53 use syntax::util::lev_distance::find_best_match_for_name;
54
55 use syntax::visit::{self, FnKind, Visitor};
56 use syntax::attr;
57 use syntax::ast::{Arm, BindingMode, Block, Crate, Expr, ExprKind};
58 use syntax::ast::{FnDecl, ForeignItem, ForeignItemKind, Generics};
59 use syntax::ast::{Item, ItemKind, ImplItem, ImplItemKind};
60 use syntax::ast::{Local, Mutability, Pat, PatKind, Path};
61 use syntax::ast::{QSelf, TraitItemKind, TraitRef, Ty, TyKind};
62 use syntax::feature_gate::{feature_err, emit_feature_err, GateIssue};
63
64 use syntax_pos::{Span, DUMMY_SP, MultiSpan};
65 use errors::DiagnosticBuilder;
66
67 use std::cell::{Cell, RefCell};
68 use std::cmp;
69 use std::collections::BTreeSet;
70 use std::fmt;
71 use std::mem::replace;
72 use std::rc::Rc;
73
74 use resolve_imports::{ImportDirective, ImportDirectiveSubclass, NameResolution, ImportResolver};
75 use macros::{InvocationData, LegacyBinding, LegacyScope, MacroBinding};
76
77 // NB: This module needs to be declared first so diagnostics are
78 // registered before they are used.
79 mod diagnostics;
80
81 mod macros;
82 mod check_unused;
83 mod build_reduced_graph;
84 mod resolve_imports;
85
86 /// A free importable items suggested in case of resolution failure.
87 struct ImportSuggestion {
88     path: Path,
89 }
90
91 /// A field or associated item from self type suggested in case of resolution failure.
92 enum AssocSuggestion {
93     Field,
94     MethodWithSelf,
95     AssocItem,
96 }
97
98 #[derive(Eq)]
99 struct BindingError {
100     name: Name,
101     origin: BTreeSet<Span>,
102     target: BTreeSet<Span>,
103 }
104
105 impl PartialOrd for BindingError {
106     fn partial_cmp(&self, other: &BindingError) -> Option<cmp::Ordering> {
107         Some(self.cmp(other))
108     }
109 }
110
111 impl PartialEq for BindingError {
112     fn eq(&self, other: &BindingError) -> bool {
113         self.name == other.name
114     }
115 }
116
117 impl Ord for BindingError {
118     fn cmp(&self, other: &BindingError) -> cmp::Ordering {
119         self.name.cmp(&other.name)
120     }
121 }
122
123 enum ResolutionError<'a> {
124     /// error E0401: can't use type parameters from outer function
125     TypeParametersFromOuterFunction,
126     /// error E0403: the name is already used for a type parameter in this type parameter list
127     NameAlreadyUsedInTypeParameterList(Name, &'a Span),
128     /// error E0407: method is not a member of trait
129     MethodNotMemberOfTrait(Name, &'a str),
130     /// error E0437: type is not a member of trait
131     TypeNotMemberOfTrait(Name, &'a str),
132     /// error E0438: const is not a member of trait
133     ConstNotMemberOfTrait(Name, &'a str),
134     /// error E0408: variable `{}` is not bound in all patterns
135     VariableNotBoundInPattern(&'a BindingError),
136     /// error E0409: variable `{}` is bound in inconsistent ways within the same match arm
137     VariableBoundWithDifferentMode(Name, Span),
138     /// error E0415: identifier is bound more than once in this parameter list
139     IdentifierBoundMoreThanOnceInParameterList(&'a str),
140     /// error E0416: identifier is bound more than once in the same pattern
141     IdentifierBoundMoreThanOnceInSamePattern(&'a str),
142     /// error E0426: use of undeclared label
143     UndeclaredLabel(&'a str),
144     /// error E0429: `self` imports are only allowed within a { } list
145     SelfImportsOnlyAllowedWithin,
146     /// error E0430: `self` import can only appear once in the list
147     SelfImportCanOnlyAppearOnceInTheList,
148     /// error E0431: `self` import can only appear in an import list with a non-empty prefix
149     SelfImportOnlyInImportListWithNonEmptyPrefix,
150     /// error E0432: unresolved import
151     UnresolvedImport(Option<(&'a str, &'a str)>),
152     /// error E0433: failed to resolve
153     FailedToResolve(&'a str),
154     /// error E0434: can't capture dynamic environment in a fn item
155     CannotCaptureDynamicEnvironmentInFnItem,
156     /// error E0435: attempt to use a non-constant value in a constant
157     AttemptToUseNonConstantValueInConstant,
158     /// error E0530: X bindings cannot shadow Ys
159     BindingShadowsSomethingUnacceptable(&'a str, Name, &'a NameBinding<'a>),
160     /// error E0128: type parameters with a default cannot use forward declared identifiers
161     ForwardDeclaredTyParam,
162 }
163
164 fn resolve_error<'sess, 'a>(resolver: &'sess Resolver,
165                             span: Span,
166                             resolution_error: ResolutionError<'a>) {
167     resolve_struct_error(resolver, span, resolution_error).emit();
168 }
169
170 fn resolve_struct_error<'sess, 'a>(resolver: &'sess Resolver,
171                                    span: Span,
172                                    resolution_error: ResolutionError<'a>)
173                                    -> DiagnosticBuilder<'sess> {
174     match resolution_error {
175         ResolutionError::TypeParametersFromOuterFunction => {
176             let mut err = struct_span_err!(resolver.session,
177                                            span,
178                                            E0401,
179                                            "can't use type parameters from outer function; \
180                                            try using a local type parameter instead");
181             err.span_label(span, "use of type variable from outer function");
182             err
183         }
184         ResolutionError::NameAlreadyUsedInTypeParameterList(name, first_use_span) => {
185              let mut err = struct_span_err!(resolver.session,
186                                             span,
187                                             E0403,
188                                             "the name `{}` is already used for a type parameter \
189                                             in this type parameter list",
190                                             name);
191              err.span_label(span, "already used");
192              err.span_label(first_use_span.clone(), format!("first use of `{}`", name));
193              err
194         }
195         ResolutionError::MethodNotMemberOfTrait(method, trait_) => {
196             let mut err = struct_span_err!(resolver.session,
197                                            span,
198                                            E0407,
199                                            "method `{}` is not a member of trait `{}`",
200                                            method,
201                                            trait_);
202             err.span_label(span, format!("not a member of trait `{}`", trait_));
203             err
204         }
205         ResolutionError::TypeNotMemberOfTrait(type_, trait_) => {
206             let mut err = struct_span_err!(resolver.session,
207                              span,
208                              E0437,
209                              "type `{}` is not a member of trait `{}`",
210                              type_,
211                              trait_);
212             err.span_label(span, format!("not a member of trait `{}`", trait_));
213             err
214         }
215         ResolutionError::ConstNotMemberOfTrait(const_, trait_) => {
216             let mut err = struct_span_err!(resolver.session,
217                              span,
218                              E0438,
219                              "const `{}` is not a member of trait `{}`",
220                              const_,
221                              trait_);
222             err.span_label(span, format!("not a member of trait `{}`", trait_));
223             err
224         }
225         ResolutionError::VariableNotBoundInPattern(binding_error) => {
226             let target_sp = binding_error.target.iter().map(|x| *x).collect::<Vec<_>>();
227             let msp = MultiSpan::from_spans(target_sp.clone());
228             let msg = format!("variable `{}` is not bound in all patterns", binding_error.name);
229             let mut err = resolver.session.struct_span_err_with_code(msp, &msg, "E0408");
230             for sp in target_sp {
231                 err.span_label(sp, format!("pattern doesn't bind `{}`", binding_error.name));
232             }
233             let origin_sp = binding_error.origin.iter().map(|x| *x).collect::<Vec<_>>();
234             for sp in origin_sp {
235                 err.span_label(sp, "variable not in all patterns");
236             }
237             err
238         }
239         ResolutionError::VariableBoundWithDifferentMode(variable_name,
240                                                         first_binding_span) => {
241             let mut err = struct_span_err!(resolver.session,
242                              span,
243                              E0409,
244                              "variable `{}` is bound in inconsistent \
245                              ways within the same match arm",
246                              variable_name);
247             err.span_label(span, "bound in different ways");
248             err.span_label(first_binding_span, "first binding");
249             err
250         }
251         ResolutionError::IdentifierBoundMoreThanOnceInParameterList(identifier) => {
252             let mut err = struct_span_err!(resolver.session,
253                              span,
254                              E0415,
255                              "identifier `{}` is bound more than once in this parameter list",
256                              identifier);
257             err.span_label(span, "used as parameter more than once");
258             err
259         }
260         ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(identifier) => {
261             let mut err = struct_span_err!(resolver.session,
262                              span,
263                              E0416,
264                              "identifier `{}` is bound more than once in the same pattern",
265                              identifier);
266             err.span_label(span, "used in a pattern more than once");
267             err
268         }
269         ResolutionError::UndeclaredLabel(name) => {
270             let mut err = struct_span_err!(resolver.session,
271                                            span,
272                                            E0426,
273                                            "use of undeclared label `{}`",
274                                            name);
275             err.span_label(span, format!("undeclared label `{}`", name));
276             err
277         }
278         ResolutionError::SelfImportsOnlyAllowedWithin => {
279             struct_span_err!(resolver.session,
280                              span,
281                              E0429,
282                              "{}",
283                              "`self` imports are only allowed within a { } list")
284         }
285         ResolutionError::SelfImportCanOnlyAppearOnceInTheList => {
286             struct_span_err!(resolver.session,
287                              span,
288                              E0430,
289                              "`self` import can only appear once in the list")
290         }
291         ResolutionError::SelfImportOnlyInImportListWithNonEmptyPrefix => {
292             struct_span_err!(resolver.session,
293                              span,
294                              E0431,
295                              "`self` import can only appear in an import list with a \
296                               non-empty prefix")
297         }
298         ResolutionError::UnresolvedImport(name) => {
299             let msg = match name {
300                 Some((n, _)) => format!("unresolved import `{}`", n),
301                 None => "unresolved import".to_owned(),
302             };
303             let mut err = struct_span_err!(resolver.session, span, E0432, "{}", msg);
304             if let Some((_, p)) = name {
305                 err.span_label(span, p);
306             }
307             err
308         }
309         ResolutionError::FailedToResolve(msg) => {
310             let mut err = struct_span_err!(resolver.session, span, E0433,
311                                            "failed to resolve. {}", msg);
312             err.span_label(span, msg);
313             err
314         }
315         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem => {
316             struct_span_err!(resolver.session,
317                              span,
318                              E0434,
319                              "{}",
320                              "can't capture dynamic environment in a fn item; use the || { ... } \
321                               closure form instead")
322         }
323         ResolutionError::AttemptToUseNonConstantValueInConstant => {
324             let mut err = struct_span_err!(resolver.session,
325                              span,
326                              E0435,
327                              "attempt to use a non-constant value in a constant");
328             err.span_label(span, "non-constant value");
329             err
330         }
331         ResolutionError::BindingShadowsSomethingUnacceptable(what_binding, name, binding) => {
332             let shadows_what = PathResolution::new(binding.def()).kind_name();
333             let mut err = struct_span_err!(resolver.session,
334                                            span,
335                                            E0530,
336                                            "{}s cannot shadow {}s", what_binding, shadows_what);
337             err.span_label(span, format!("cannot be named the same as a {}", shadows_what));
338             let participle = if binding.is_import() { "imported" } else { "defined" };
339             let msg = format!("a {} `{}` is {} here", shadows_what, name, participle);
340             err.span_label(binding.span, msg);
341             err
342         }
343         ResolutionError::ForwardDeclaredTyParam => {
344             let mut err = struct_span_err!(resolver.session, span, E0128,
345                                            "type parameters with a default cannot use \
346                                             forward declared identifiers");
347             err.span_label(span, format!("defaulted type parameters \
348                                            cannot be forward declared"));
349             err
350         }
351     }
352 }
353
354 #[derive(Copy, Clone, Debug)]
355 struct BindingInfo {
356     span: Span,
357     binding_mode: BindingMode,
358 }
359
360 // Map from the name in a pattern to its binding mode.
361 type BindingMap = FxHashMap<Ident, BindingInfo>;
362
363 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
364 enum PatternSource {
365     Match,
366     IfLet,
367     WhileLet,
368     Let,
369     For,
370     FnParam,
371 }
372
373 impl PatternSource {
374     fn is_refutable(self) -> bool {
375         match self {
376             PatternSource::Match | PatternSource::IfLet | PatternSource::WhileLet => true,
377             PatternSource::Let | PatternSource::For | PatternSource::FnParam  => false,
378         }
379     }
380     fn descr(self) -> &'static str {
381         match self {
382             PatternSource::Match => "match binding",
383             PatternSource::IfLet => "if let binding",
384             PatternSource::WhileLet => "while let binding",
385             PatternSource::Let => "let binding",
386             PatternSource::For => "for binding",
387             PatternSource::FnParam => "function parameter",
388         }
389     }
390 }
391
392 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
393 enum PathSource<'a> {
394     // Type paths `Path`.
395     Type,
396     // Trait paths in bounds or impls.
397     Trait,
398     // Expression paths `path`, with optional parent context.
399     Expr(Option<&'a Expr>),
400     // Paths in path patterns `Path`.
401     Pat,
402     // Paths in struct expressions and patterns `Path { .. }`.
403     Struct,
404     // Paths in tuple struct patterns `Path(..)`.
405     TupleStruct,
406     // `m::A::B` in `<T as m::A>::B::C`.
407     TraitItem(Namespace),
408     // Path in `pub(path)`
409     Visibility,
410     // Path in `use a::b::{...};`
411     ImportPrefix,
412 }
413
414 impl<'a> PathSource<'a> {
415     fn namespace(self) -> Namespace {
416         match self {
417             PathSource::Type | PathSource::Trait | PathSource::Struct |
418             PathSource::Visibility | PathSource::ImportPrefix => TypeNS,
419             PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct => ValueNS,
420             PathSource::TraitItem(ns) => ns,
421         }
422     }
423
424     fn global_by_default(self) -> bool {
425         match self {
426             PathSource::Visibility | PathSource::ImportPrefix => true,
427             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
428             PathSource::Struct | PathSource::TupleStruct |
429             PathSource::Trait | PathSource::TraitItem(..) => false,
430         }
431     }
432
433     fn defer_to_typeck(self) -> bool {
434         match self {
435             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
436             PathSource::Struct | PathSource::TupleStruct => true,
437             PathSource::Trait | PathSource::TraitItem(..) |
438             PathSource::Visibility | PathSource::ImportPrefix => false,
439         }
440     }
441
442     fn descr_expected(self) -> &'static str {
443         match self {
444             PathSource::Type => "type",
445             PathSource::Trait => "trait",
446             PathSource::Pat => "unit struct/variant or constant",
447             PathSource::Struct => "struct, variant or union type",
448             PathSource::TupleStruct => "tuple struct/variant",
449             PathSource::Visibility => "module",
450             PathSource::ImportPrefix => "module or enum",
451             PathSource::TraitItem(ns) => match ns {
452                 TypeNS => "associated type",
453                 ValueNS => "method or associated constant",
454                 MacroNS => bug!("associated macro"),
455             },
456             PathSource::Expr(parent) => match parent.map(|p| &p.node) {
457                 // "function" here means "anything callable" rather than `Def::Fn`,
458                 // this is not precise but usually more helpful than just "value".
459                 Some(&ExprKind::Call(..)) => "function",
460                 _ => "value",
461             },
462         }
463     }
464
465     fn is_expected(self, def: Def) -> bool {
466         match self {
467             PathSource::Type => match def {
468                 Def::Struct(..) | Def::Union(..) | Def::Enum(..) |
469                 Def::Trait(..) | Def::TyAlias(..) | Def::AssociatedTy(..) |
470                 Def::PrimTy(..) | Def::TyParam(..) | Def::SelfTy(..) => true,
471                 _ => false,
472             },
473             PathSource::Trait => match def {
474                 Def::Trait(..) => true,
475                 _ => false,
476             },
477             PathSource::Expr(..) => match def {
478                 Def::StructCtor(_, CtorKind::Const) | Def::StructCtor(_, CtorKind::Fn) |
479                 Def::VariantCtor(_, CtorKind::Const) | Def::VariantCtor(_, CtorKind::Fn) |
480                 Def::Const(..) | Def::Static(..) | Def::Local(..) | Def::Upvar(..) |
481                 Def::Fn(..) | Def::Method(..) | Def::AssociatedConst(..) => true,
482                 _ => false,
483             },
484             PathSource::Pat => match def {
485                 Def::StructCtor(_, CtorKind::Const) |
486                 Def::VariantCtor(_, CtorKind::Const) |
487                 Def::Const(..) | Def::AssociatedConst(..) => true,
488                 _ => false,
489             },
490             PathSource::TupleStruct => match def {
491                 Def::StructCtor(_, CtorKind::Fn) | Def::VariantCtor(_, CtorKind::Fn) => true,
492                 _ => false,
493             },
494             PathSource::Struct => match def {
495                 Def::Struct(..) | Def::Union(..) | Def::Variant(..) |
496                 Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => true,
497                 _ => false,
498             },
499             PathSource::TraitItem(ns) => match def {
500                 Def::AssociatedConst(..) | Def::Method(..) if ns == ValueNS => true,
501                 Def::AssociatedTy(..) if ns == TypeNS => true,
502                 _ => false,
503             },
504             PathSource::ImportPrefix => match def {
505                 Def::Mod(..) | Def::Enum(..) => true,
506                 _ => false,
507             },
508             PathSource::Visibility => match def {
509                 Def::Mod(..) => true,
510                 _ => false,
511             },
512         }
513     }
514
515     fn error_code(self, has_unexpected_resolution: bool) -> &'static str {
516         __diagnostic_used!(E0404);
517         __diagnostic_used!(E0405);
518         __diagnostic_used!(E0412);
519         __diagnostic_used!(E0422);
520         __diagnostic_used!(E0423);
521         __diagnostic_used!(E0425);
522         __diagnostic_used!(E0531);
523         __diagnostic_used!(E0532);
524         __diagnostic_used!(E0573);
525         __diagnostic_used!(E0574);
526         __diagnostic_used!(E0575);
527         __diagnostic_used!(E0576);
528         __diagnostic_used!(E0577);
529         __diagnostic_used!(E0578);
530         match (self, has_unexpected_resolution) {
531             (PathSource::Trait, true) => "E0404",
532             (PathSource::Trait, false) => "E0405",
533             (PathSource::Type, true) => "E0573",
534             (PathSource::Type, false) => "E0412",
535             (PathSource::Struct, true) => "E0574",
536             (PathSource::Struct, false) => "E0422",
537             (PathSource::Expr(..), true) => "E0423",
538             (PathSource::Expr(..), false) => "E0425",
539             (PathSource::Pat, true) | (PathSource::TupleStruct, true) => "E0532",
540             (PathSource::Pat, false) | (PathSource::TupleStruct, false) => "E0531",
541             (PathSource::TraitItem(..), true) => "E0575",
542             (PathSource::TraitItem(..), false) => "E0576",
543             (PathSource::Visibility, true) | (PathSource::ImportPrefix, true) => "E0577",
544             (PathSource::Visibility, false) | (PathSource::ImportPrefix, false) => "E0578",
545         }
546     }
547 }
548
549 #[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
550 pub enum Namespace {
551     TypeNS,
552     ValueNS,
553     MacroNS,
554 }
555
556 #[derive(Clone, Default, Debug)]
557 pub struct PerNS<T> {
558     value_ns: T,
559     type_ns: T,
560     macro_ns: Option<T>,
561 }
562
563 impl<T> ::std::ops::Index<Namespace> for PerNS<T> {
564     type Output = T;
565     fn index(&self, ns: Namespace) -> &T {
566         match ns {
567             ValueNS => &self.value_ns,
568             TypeNS => &self.type_ns,
569             MacroNS => self.macro_ns.as_ref().unwrap(),
570         }
571     }
572 }
573
574 impl<T> ::std::ops::IndexMut<Namespace> for PerNS<T> {
575     fn index_mut(&mut self, ns: Namespace) -> &mut T {
576         match ns {
577             ValueNS => &mut self.value_ns,
578             TypeNS => &mut self.type_ns,
579             MacroNS => self.macro_ns.as_mut().unwrap(),
580         }
581     }
582 }
583
584 impl<'a, 'tcx> Visitor<'tcx> for Resolver<'a> {
585     fn visit_item(&mut self, item: &'tcx Item) {
586         self.resolve_item(item);
587     }
588     fn visit_arm(&mut self, arm: &'tcx Arm) {
589         self.resolve_arm(arm);
590     }
591     fn visit_block(&mut self, block: &'tcx Block) {
592         self.resolve_block(block);
593     }
594     fn visit_expr(&mut self, expr: &'tcx Expr) {
595         self.resolve_expr(expr, None);
596     }
597     fn visit_local(&mut self, local: &'tcx Local) {
598         self.resolve_local(local);
599     }
600     fn visit_ty(&mut self, ty: &'tcx Ty) {
601         if let TyKind::Path(ref qself, ref path) = ty.node {
602             self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
603         } else if let TyKind::ImplicitSelf = ty.node {
604             let self_ty = keywords::SelfType.ident();
605             let def = self.resolve_ident_in_lexical_scope(self_ty, TypeNS, true, ty.span)
606                           .map_or(Def::Err, |d| d.def());
607             self.record_def(ty.id, PathResolution::new(def));
608         } else if let TyKind::Array(ref element, ref length) = ty.node {
609             self.visit_ty(element);
610             self.with_constant_rib(|this| {
611                 this.visit_expr(length);
612             });
613             return;
614         }
615         visit::walk_ty(self, ty);
616     }
617     fn visit_poly_trait_ref(&mut self,
618                             tref: &'tcx ast::PolyTraitRef,
619                             m: &'tcx ast::TraitBoundModifier) {
620         self.smart_resolve_path(tref.trait_ref.ref_id, None,
621                                 &tref.trait_ref.path, PathSource::Trait);
622         visit::walk_poly_trait_ref(self, tref, m);
623     }
624     fn visit_variant(&mut self,
625                      variant: &'tcx ast::Variant,
626                      generics: &'tcx Generics,
627                      item_id: ast::NodeId) {
628         if let Some(ref dis_expr) = variant.node.disr_expr {
629             // resolve the discriminator expr as a constant
630             self.with_constant_rib(|this| {
631                 this.visit_expr(dis_expr);
632             });
633         }
634
635         // `visit::walk_variant` without the discriminant expression.
636         self.visit_variant_data(&variant.node.data,
637                                 variant.node.name,
638                                 generics,
639                                 item_id,
640                                 variant.span);
641     }
642     fn visit_foreign_item(&mut self, foreign_item: &'tcx ForeignItem) {
643         let type_parameters = match foreign_item.node {
644             ForeignItemKind::Fn(_, ref generics) => {
645                 HasTypeParameters(generics, ItemRibKind)
646             }
647             ForeignItemKind::Static(..) => NoTypeParameters,
648         };
649         self.with_type_parameter_rib(type_parameters, |this| {
650             visit::walk_foreign_item(this, foreign_item);
651         });
652     }
653     fn visit_fn(&mut self,
654                 function_kind: FnKind<'tcx>,
655                 declaration: &'tcx FnDecl,
656                 _: Span,
657                 node_id: NodeId) {
658         let rib_kind = match function_kind {
659             FnKind::ItemFn(_, generics, ..) => {
660                 self.visit_generics(generics);
661                 ItemRibKind
662             }
663             FnKind::Method(_, sig, _, _) => {
664                 self.visit_generics(&sig.generics);
665                 MethodRibKind(!sig.decl.has_self())
666             }
667             FnKind::Closure(_) => ClosureRibKind(node_id),
668         };
669
670         // Create a value rib for the function.
671         self.ribs[ValueNS].push(Rib::new(rib_kind));
672
673         // Create a label rib for the function.
674         self.label_ribs.push(Rib::new(rib_kind));
675
676         // Add each argument to the rib.
677         let mut bindings_list = FxHashMap();
678         for argument in &declaration.inputs {
679             self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
680
681             self.visit_ty(&argument.ty);
682
683             debug!("(resolving function) recorded argument");
684         }
685         visit::walk_fn_ret_ty(self, &declaration.output);
686
687         // Resolve the function body.
688         match function_kind {
689             FnKind::ItemFn(.., body) |
690             FnKind::Method(.., body) => {
691                 self.visit_block(body);
692             }
693             FnKind::Closure(body) => {
694                 self.visit_expr(body);
695             }
696         };
697
698         debug!("(resolving function) leaving function");
699
700         self.label_ribs.pop();
701         self.ribs[ValueNS].pop();
702     }
703     fn visit_generics(&mut self, generics: &'tcx Generics) {
704         // For type parameter defaults, we have to ban access
705         // to following type parameters, as the Substs can only
706         // provide previous type parameters as they're built.
707         let mut default_ban_rib = Rib::new(ForwardTyParamBanRibKind);
708         default_ban_rib.bindings.extend(generics.ty_params.iter()
709             .skip_while(|p| p.default.is_none())
710             .map(|p| (Ident::with_empty_ctxt(p.ident.name), Def::Err)));
711
712         for param in &generics.ty_params {
713             for bound in &param.bounds {
714                 self.visit_ty_param_bound(bound);
715             }
716
717             if let Some(ref ty) = param.default {
718                 self.ribs[TypeNS].push(default_ban_rib);
719                 self.visit_ty(ty);
720                 default_ban_rib = self.ribs[TypeNS].pop().unwrap();
721             }
722
723             // Allow all following defaults to refer to this type parameter.
724             default_ban_rib.bindings.remove(&Ident::with_empty_ctxt(param.ident.name));
725         }
726         for lt in &generics.lifetimes { self.visit_lifetime_def(lt); }
727         for p in &generics.where_clause.predicates { self.visit_where_predicate(p); }
728     }
729 }
730
731 pub type ErrorMessage = Option<(Span, String)>;
732
733 #[derive(Copy, Clone)]
734 enum TypeParameters<'a, 'b> {
735     NoTypeParameters,
736     HasTypeParameters(// Type parameters.
737                       &'b Generics,
738
739                       // The kind of the rib used for type parameters.
740                       RibKind<'a>),
741 }
742
743 // The rib kind controls the translation of local
744 // definitions (`Def::Local`) to upvars (`Def::Upvar`).
745 #[derive(Copy, Clone, Debug)]
746 enum RibKind<'a> {
747     // No translation needs to be applied.
748     NormalRibKind,
749
750     // We passed through a closure scope at the given node ID.
751     // Translate upvars as appropriate.
752     ClosureRibKind(NodeId /* func id */),
753
754     // We passed through an impl or trait and are now in one of its
755     // methods. Allow references to ty params that impl or trait
756     // binds. Disallow any other upvars (including other ty params that are
757     // upvars).
758     //
759     // The boolean value represents the fact that this method is static or not.
760     MethodRibKind(bool),
761
762     // We passed through an item scope. Disallow upvars.
763     ItemRibKind,
764
765     // We're in a constant item. Can't refer to dynamic stuff.
766     ConstantItemRibKind,
767
768     // We passed through a module.
769     ModuleRibKind(Module<'a>),
770
771     // We passed through a `macro_rules!` statement
772     MacroDefinition(DefId),
773
774     // All bindings in this rib are type parameters that can't be used
775     // from the default of a type parameter because they're not declared
776     // before said type parameter. Also see the `visit_generics` override.
777     ForwardTyParamBanRibKind,
778 }
779
780 /// One local scope.
781 #[derive(Debug)]
782 struct Rib<'a> {
783     bindings: FxHashMap<Ident, Def>,
784     kind: RibKind<'a>,
785 }
786
787 impl<'a> Rib<'a> {
788     fn new(kind: RibKind<'a>) -> Rib<'a> {
789         Rib {
790             bindings: FxHashMap(),
791             kind: kind,
792         }
793     }
794 }
795
796 enum LexicalScopeBinding<'a> {
797     Item(&'a NameBinding<'a>),
798     Def(Def),
799 }
800
801 impl<'a> LexicalScopeBinding<'a> {
802     fn item(self) -> Option<&'a NameBinding<'a>> {
803         match self {
804             LexicalScopeBinding::Item(binding) => Some(binding),
805             _ => None,
806         }
807     }
808
809     fn def(self) -> Def {
810         match self {
811             LexicalScopeBinding::Item(binding) => binding.def(),
812             LexicalScopeBinding::Def(def) => def,
813         }
814     }
815 }
816
817 #[derive(Clone)]
818 enum PathResult<'a> {
819     Module(Module<'a>),
820     NonModule(PathResolution),
821     Indeterminate,
822     Failed(String, bool /* is the error from the last segment? */),
823 }
824
825 enum ModuleKind {
826     Block(NodeId),
827     Def(Def, Name),
828 }
829
830 /// One node in the tree of modules.
831 pub struct ModuleData<'a> {
832     parent: Option<Module<'a>>,
833     kind: ModuleKind,
834
835     // The def id of the closest normal module (`mod`) ancestor (including this module).
836     normal_ancestor_id: DefId,
837
838     resolutions: RefCell<FxHashMap<(Ident, Namespace), &'a RefCell<NameResolution<'a>>>>,
839     legacy_macro_resolutions: RefCell<Vec<(Mark, Ident, Span, MacroKind)>>,
840     macro_resolutions: RefCell<Vec<(Box<[Ident]>, Span)>>,
841
842     // Macro invocations that can expand into items in this module.
843     unresolved_invocations: RefCell<FxHashSet<Mark>>,
844
845     no_implicit_prelude: bool,
846
847     glob_importers: RefCell<Vec<&'a ImportDirective<'a>>>,
848     globs: RefCell<Vec<&'a ImportDirective<'a>>>,
849
850     // Used to memoize the traits in this module for faster searches through all traits in scope.
851     traits: RefCell<Option<Box<[(Ident, &'a NameBinding<'a>)]>>>,
852
853     // Whether this module is populated. If not populated, any attempt to
854     // access the children must be preceded with a
855     // `populate_module_if_necessary` call.
856     populated: Cell<bool>,
857
858     /// Span of the module itself. Used for error reporting.
859     span: Span,
860
861     expansion: Mark,
862 }
863
864 pub type Module<'a> = &'a ModuleData<'a>;
865
866 impl<'a> ModuleData<'a> {
867     fn new(parent: Option<Module<'a>>,
868            kind: ModuleKind,
869            normal_ancestor_id: DefId,
870            expansion: Mark,
871            span: Span) -> Self {
872         ModuleData {
873             parent: parent,
874             kind: kind,
875             normal_ancestor_id: normal_ancestor_id,
876             resolutions: RefCell::new(FxHashMap()),
877             legacy_macro_resolutions: RefCell::new(Vec::new()),
878             macro_resolutions: RefCell::new(Vec::new()),
879             unresolved_invocations: RefCell::new(FxHashSet()),
880             no_implicit_prelude: false,
881             glob_importers: RefCell::new(Vec::new()),
882             globs: RefCell::new((Vec::new())),
883             traits: RefCell::new(None),
884             populated: Cell::new(normal_ancestor_id.is_local()),
885             span: span,
886             expansion: expansion,
887         }
888     }
889
890     fn for_each_child<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
891         for (&(ident, ns), name_resolution) in self.resolutions.borrow().iter() {
892             name_resolution.borrow().binding.map(|binding| f(ident, ns, binding));
893         }
894     }
895
896     fn def(&self) -> Option<Def> {
897         match self.kind {
898             ModuleKind::Def(def, _) => Some(def),
899             _ => None,
900         }
901     }
902
903     fn def_id(&self) -> Option<DefId> {
904         self.def().as_ref().map(Def::def_id)
905     }
906
907     // `self` resolves to the first module ancestor that `is_normal`.
908     fn is_normal(&self) -> bool {
909         match self.kind {
910             ModuleKind::Def(Def::Mod(_), _) => true,
911             _ => false,
912         }
913     }
914
915     fn is_trait(&self) -> bool {
916         match self.kind {
917             ModuleKind::Def(Def::Trait(_), _) => true,
918             _ => false,
919         }
920     }
921
922     fn is_local(&self) -> bool {
923         self.normal_ancestor_id.is_local()
924     }
925
926     fn nearest_item_scope(&'a self) -> Module<'a> {
927         if self.is_trait() { self.parent.unwrap() } else { self }
928     }
929 }
930
931 impl<'a> fmt::Debug for ModuleData<'a> {
932     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
933         write!(f, "{:?}", self.def())
934     }
935 }
936
937 // Records a possibly-private value, type, or module definition.
938 #[derive(Clone, Debug)]
939 pub struct NameBinding<'a> {
940     kind: NameBindingKind<'a>,
941     expansion: Mark,
942     span: Span,
943     vis: ty::Visibility,
944 }
945
946 pub trait ToNameBinding<'a> {
947     fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a>;
948 }
949
950 impl<'a> ToNameBinding<'a> for &'a NameBinding<'a> {
951     fn to_name_binding(self, _: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> {
952         self
953     }
954 }
955
956 #[derive(Clone, Debug)]
957 enum NameBindingKind<'a> {
958     Def(Def),
959     Module(Module<'a>),
960     Import {
961         binding: &'a NameBinding<'a>,
962         directive: &'a ImportDirective<'a>,
963         used: Cell<bool>,
964         legacy_self_import: bool,
965     },
966     Ambiguity {
967         b1: &'a NameBinding<'a>,
968         b2: &'a NameBinding<'a>,
969         legacy: bool,
970     }
971 }
972
973 struct PrivacyError<'a>(Span, Name, &'a NameBinding<'a>);
974
975 struct AmbiguityError<'a> {
976     span: Span,
977     name: Name,
978     lexical: bool,
979     b1: &'a NameBinding<'a>,
980     b2: &'a NameBinding<'a>,
981     legacy: bool,
982 }
983
984 impl<'a> NameBinding<'a> {
985     fn module(&self) -> Option<Module<'a>> {
986         match self.kind {
987             NameBindingKind::Module(module) => Some(module),
988             NameBindingKind::Import { binding, .. } => binding.module(),
989             NameBindingKind::Ambiguity { legacy: true, b1, .. } => b1.module(),
990             _ => None,
991         }
992     }
993
994     fn def(&self) -> Def {
995         match self.kind {
996             NameBindingKind::Def(def) => def,
997             NameBindingKind::Module(module) => module.def().unwrap(),
998             NameBindingKind::Import { binding, .. } => binding.def(),
999             NameBindingKind::Ambiguity { legacy: true, b1, .. } => b1.def(),
1000             NameBindingKind::Ambiguity { .. } => Def::Err,
1001         }
1002     }
1003
1004     fn def_ignoring_ambiguity(&self) -> Def {
1005         match self.kind {
1006             NameBindingKind::Import { binding, .. } => binding.def_ignoring_ambiguity(),
1007             NameBindingKind::Ambiguity { b1, .. } => b1.def_ignoring_ambiguity(),
1008             _ => self.def(),
1009         }
1010     }
1011
1012     fn get_macro(&self, resolver: &mut Resolver<'a>) -> Rc<SyntaxExtension> {
1013         resolver.get_macro(self.def_ignoring_ambiguity())
1014     }
1015
1016     // We sometimes need to treat variants as `pub` for backwards compatibility
1017     fn pseudo_vis(&self) -> ty::Visibility {
1018         if self.is_variant() { ty::Visibility::Public } else { self.vis }
1019     }
1020
1021     fn is_variant(&self) -> bool {
1022         match self.kind {
1023             NameBindingKind::Def(Def::Variant(..)) |
1024             NameBindingKind::Def(Def::VariantCtor(..)) => true,
1025             _ => false,
1026         }
1027     }
1028
1029     fn is_extern_crate(&self) -> bool {
1030         match self.kind {
1031             NameBindingKind::Import {
1032                 directive: &ImportDirective {
1033                     subclass: ImportDirectiveSubclass::ExternCrate, ..
1034                 }, ..
1035             } => true,
1036             _ => false,
1037         }
1038     }
1039
1040     fn is_import(&self) -> bool {
1041         match self.kind {
1042             NameBindingKind::Import { .. } => true,
1043             _ => false,
1044         }
1045     }
1046
1047     fn is_glob_import(&self) -> bool {
1048         match self.kind {
1049             NameBindingKind::Import { directive, .. } => directive.is_glob(),
1050             NameBindingKind::Ambiguity { b1, .. } => b1.is_glob_import(),
1051             _ => false,
1052         }
1053     }
1054
1055     fn is_importable(&self) -> bool {
1056         match self.def() {
1057             Def::AssociatedConst(..) | Def::Method(..) | Def::AssociatedTy(..) => false,
1058             _ => true,
1059         }
1060     }
1061
1062     fn is_macro_def(&self) -> bool {
1063         match self.kind {
1064             NameBindingKind::Def(Def::Macro(..)) => true,
1065             _ => false,
1066         }
1067     }
1068
1069     fn descr(&self) -> &'static str {
1070         if self.is_extern_crate() { "extern crate" } else { self.def().kind_name() }
1071     }
1072 }
1073
1074 /// Interns the names of the primitive types.
1075 struct PrimitiveTypeTable {
1076     primitive_types: FxHashMap<Name, PrimTy>,
1077 }
1078
1079 impl PrimitiveTypeTable {
1080     fn new() -> PrimitiveTypeTable {
1081         let mut table = PrimitiveTypeTable { primitive_types: FxHashMap() };
1082
1083         table.intern("bool", TyBool);
1084         table.intern("char", TyChar);
1085         table.intern("f32", TyFloat(FloatTy::F32));
1086         table.intern("f64", TyFloat(FloatTy::F64));
1087         table.intern("isize", TyInt(IntTy::Is));
1088         table.intern("i8", TyInt(IntTy::I8));
1089         table.intern("i16", TyInt(IntTy::I16));
1090         table.intern("i32", TyInt(IntTy::I32));
1091         table.intern("i64", TyInt(IntTy::I64));
1092         table.intern("i128", TyInt(IntTy::I128));
1093         table.intern("str", TyStr);
1094         table.intern("usize", TyUint(UintTy::Us));
1095         table.intern("u8", TyUint(UintTy::U8));
1096         table.intern("u16", TyUint(UintTy::U16));
1097         table.intern("u32", TyUint(UintTy::U32));
1098         table.intern("u64", TyUint(UintTy::U64));
1099         table.intern("u128", TyUint(UintTy::U128));
1100         table
1101     }
1102
1103     fn intern(&mut self, string: &str, primitive_type: PrimTy) {
1104         self.primitive_types.insert(Symbol::intern(string), primitive_type);
1105     }
1106 }
1107
1108 /// The main resolver class.
1109 pub struct Resolver<'a> {
1110     session: &'a Session,
1111
1112     pub definitions: Definitions,
1113
1114     graph_root: Module<'a>,
1115
1116     prelude: Option<Module<'a>>,
1117
1118     // n.b. This is used only for better diagnostics, not name resolution itself.
1119     has_self: FxHashSet<DefId>,
1120
1121     // Names of fields of an item `DefId` accessible with dot syntax.
1122     // Used for hints during error reporting.
1123     field_names: FxHashMap<DefId, Vec<Name>>,
1124
1125     // All imports known to succeed or fail.
1126     determined_imports: Vec<&'a ImportDirective<'a>>,
1127
1128     // All non-determined imports.
1129     indeterminate_imports: Vec<&'a ImportDirective<'a>>,
1130
1131     // The module that represents the current item scope.
1132     current_module: Module<'a>,
1133
1134     // The current set of local scopes for types and values.
1135     // FIXME #4948: Reuse ribs to avoid allocation.
1136     ribs: PerNS<Vec<Rib<'a>>>,
1137
1138     // The current set of local scopes, for labels.
1139     label_ribs: Vec<Rib<'a>>,
1140
1141     // The trait that the current context can refer to.
1142     current_trait_ref: Option<(Module<'a>, TraitRef)>,
1143
1144     // The current self type if inside an impl (used for better errors).
1145     current_self_type: Option<Ty>,
1146
1147     // The idents for the primitive types.
1148     primitive_type_table: PrimitiveTypeTable,
1149
1150     def_map: DefMap,
1151     pub freevars: FreevarMap,
1152     freevars_seen: NodeMap<NodeMap<usize>>,
1153     pub export_map: ExportMap,
1154     pub trait_map: TraitMap,
1155
1156     // A map from nodes to anonymous modules.
1157     // Anonymous modules are pseudo-modules that are implicitly created around items
1158     // contained within blocks.
1159     //
1160     // For example, if we have this:
1161     //
1162     //  fn f() {
1163     //      fn g() {
1164     //          ...
1165     //      }
1166     //  }
1167     //
1168     // There will be an anonymous module created around `g` with the ID of the
1169     // entry block for `f`.
1170     block_map: NodeMap<Module<'a>>,
1171     module_map: FxHashMap<DefId, Module<'a>>,
1172     extern_module_map: FxHashMap<(DefId, bool /* MacrosOnly? */), Module<'a>>,
1173
1174     pub make_glob_map: bool,
1175     // Maps imports to the names of items actually imported (this actually maps
1176     // all imports, but only glob imports are actually interesting).
1177     pub glob_map: GlobMap,
1178
1179     used_imports: FxHashSet<(NodeId, Namespace)>,
1180     pub maybe_unused_trait_imports: NodeSet,
1181
1182     privacy_errors: Vec<PrivacyError<'a>>,
1183     ambiguity_errors: Vec<AmbiguityError<'a>>,
1184     gated_errors: FxHashSet<Span>,
1185     disallowed_shadowing: Vec<&'a LegacyBinding<'a>>,
1186
1187     arenas: &'a ResolverArenas<'a>,
1188     dummy_binding: &'a NameBinding<'a>,
1189     use_extern_macros: bool, // true if `#![feature(use_extern_macros)]`
1190
1191     crate_loader: &'a mut CrateLoader,
1192     macro_names: FxHashSet<Ident>,
1193     global_macros: FxHashMap<Name, &'a NameBinding<'a>>,
1194     lexical_macro_resolutions: Vec<(Ident, &'a Cell<LegacyScope<'a>>)>,
1195     macro_map: FxHashMap<DefId, Rc<SyntaxExtension>>,
1196     macro_defs: FxHashMap<Mark, DefId>,
1197     local_macro_def_scopes: FxHashMap<NodeId, Module<'a>>,
1198     macro_exports: Vec<Export>,
1199     pub whitelisted_legacy_custom_derives: Vec<Name>,
1200     pub found_unresolved_macro: bool,
1201
1202     // List of crate local macros that we need to warn about as being unused.
1203     // Right now this only includes macro_rules! macros, and macros 2.0.
1204     unused_macros: FxHashSet<DefId>,
1205
1206     // Maps the `Mark` of an expansion to its containing module or block.
1207     invocations: FxHashMap<Mark, &'a InvocationData<'a>>,
1208
1209     // Avoid duplicated errors for "name already defined".
1210     name_already_seen: FxHashMap<Name, Span>,
1211
1212     // If `#![feature(proc_macro)]` is set
1213     proc_macro_enabled: bool,
1214
1215     // A set of procedural macros imported by `#[macro_use]` that have already been warned about
1216     warned_proc_macros: FxHashSet<Name>,
1217
1218     potentially_unused_imports: Vec<&'a ImportDirective<'a>>,
1219
1220     // This table maps struct IDs into struct constructor IDs,
1221     // it's not used during normal resolution, only for better error reporting.
1222     struct_constructors: DefIdMap<(Def, ty::Visibility)>,
1223 }
1224
1225 pub struct ResolverArenas<'a> {
1226     modules: arena::TypedArena<ModuleData<'a>>,
1227     local_modules: RefCell<Vec<Module<'a>>>,
1228     name_bindings: arena::TypedArena<NameBinding<'a>>,
1229     import_directives: arena::TypedArena<ImportDirective<'a>>,
1230     name_resolutions: arena::TypedArena<RefCell<NameResolution<'a>>>,
1231     invocation_data: arena::TypedArena<InvocationData<'a>>,
1232     legacy_bindings: arena::TypedArena<LegacyBinding<'a>>,
1233 }
1234
1235 impl<'a> ResolverArenas<'a> {
1236     fn alloc_module(&'a self, module: ModuleData<'a>) -> Module<'a> {
1237         let module = self.modules.alloc(module);
1238         if module.def_id().map(|def_id| def_id.is_local()).unwrap_or(true) {
1239             self.local_modules.borrow_mut().push(module);
1240         }
1241         module
1242     }
1243     fn local_modules(&'a self) -> ::std::cell::Ref<'a, Vec<Module<'a>>> {
1244         self.local_modules.borrow()
1245     }
1246     fn alloc_name_binding(&'a self, name_binding: NameBinding<'a>) -> &'a NameBinding<'a> {
1247         self.name_bindings.alloc(name_binding)
1248     }
1249     fn alloc_import_directive(&'a self, import_directive: ImportDirective<'a>)
1250                               -> &'a ImportDirective {
1251         self.import_directives.alloc(import_directive)
1252     }
1253     fn alloc_name_resolution(&'a self) -> &'a RefCell<NameResolution<'a>> {
1254         self.name_resolutions.alloc(Default::default())
1255     }
1256     fn alloc_invocation_data(&'a self, expansion_data: InvocationData<'a>)
1257                              -> &'a InvocationData<'a> {
1258         self.invocation_data.alloc(expansion_data)
1259     }
1260     fn alloc_legacy_binding(&'a self, binding: LegacyBinding<'a>) -> &'a LegacyBinding<'a> {
1261         self.legacy_bindings.alloc(binding)
1262     }
1263 }
1264
1265 impl<'a, 'b: 'a> ty::DefIdTree for &'a Resolver<'b> {
1266     fn parent(self, id: DefId) -> Option<DefId> {
1267         match id.krate {
1268             LOCAL_CRATE => self.definitions.def_key(id.index).parent,
1269             _ => self.session.cstore.def_key(id).parent,
1270         }.map(|index| DefId { index: index, ..id })
1271     }
1272 }
1273
1274 impl<'a> hir::lowering::Resolver for Resolver<'a> {
1275     fn resolve_hir_path(&mut self, path: &mut hir::Path, is_value: bool) {
1276         let namespace = if is_value { ValueNS } else { TypeNS };
1277         let hir::Path { ref segments, span, ref mut def } = *path;
1278         let path: Vec<_> = segments.iter().map(|seg| Ident::with_empty_ctxt(seg.name)).collect();
1279         match self.resolve_path(&path, Some(namespace), true, span) {
1280             PathResult::Module(module) => *def = module.def().unwrap(),
1281             PathResult::NonModule(path_res) if path_res.unresolved_segments() == 0 =>
1282                 *def = path_res.base_def(),
1283             PathResult::NonModule(..) => match self.resolve_path(&path, None, true, span) {
1284                 PathResult::Failed(msg, _) => {
1285                     resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
1286                 }
1287                 _ => {}
1288             },
1289             PathResult::Indeterminate => unreachable!(),
1290             PathResult::Failed(msg, _) => {
1291                 resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
1292             }
1293         }
1294     }
1295
1296     fn get_resolution(&mut self, id: NodeId) -> Option<PathResolution> {
1297         self.def_map.get(&id).cloned()
1298     }
1299
1300     fn definitions(&mut self) -> &mut Definitions {
1301         &mut self.definitions
1302     }
1303 }
1304
1305 impl<'a> Resolver<'a> {
1306     pub fn new(session: &'a Session,
1307                krate: &Crate,
1308                crate_name: &str,
1309                make_glob_map: MakeGlobMap,
1310                crate_loader: &'a mut CrateLoader,
1311                arenas: &'a ResolverArenas<'a>)
1312                -> Resolver<'a> {
1313         let root_def_id = DefId::local(CRATE_DEF_INDEX);
1314         let root_module_kind = ModuleKind::Def(Def::Mod(root_def_id), keywords::Invalid.name());
1315         let graph_root = arenas.alloc_module(ModuleData {
1316             no_implicit_prelude: attr::contains_name(&krate.attrs, "no_implicit_prelude"),
1317             ..ModuleData::new(None, root_module_kind, root_def_id, Mark::root(), krate.span)
1318         });
1319         let mut module_map = FxHashMap();
1320         module_map.insert(DefId::local(CRATE_DEF_INDEX), graph_root);
1321
1322         let mut definitions = Definitions::new();
1323         DefCollector::new(&mut definitions, Mark::root())
1324             .collect_root(crate_name, &session.local_crate_disambiguator().as_str());
1325
1326         let mut invocations = FxHashMap();
1327         invocations.insert(Mark::root(),
1328                            arenas.alloc_invocation_data(InvocationData::root(graph_root)));
1329
1330         let features = session.features.borrow();
1331
1332         let mut macro_defs = FxHashMap();
1333         macro_defs.insert(Mark::root(), root_def_id);
1334
1335         Resolver {
1336             session: session,
1337
1338             definitions: definitions,
1339
1340             // The outermost module has def ID 0; this is not reflected in the
1341             // AST.
1342             graph_root: graph_root,
1343             prelude: None,
1344
1345             has_self: FxHashSet(),
1346             field_names: FxHashMap(),
1347
1348             determined_imports: Vec::new(),
1349             indeterminate_imports: Vec::new(),
1350
1351             current_module: graph_root,
1352             ribs: PerNS {
1353                 value_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1354                 type_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1355                 macro_ns: Some(vec![Rib::new(ModuleRibKind(graph_root))]),
1356             },
1357             label_ribs: Vec::new(),
1358
1359             current_trait_ref: None,
1360             current_self_type: None,
1361
1362             primitive_type_table: PrimitiveTypeTable::new(),
1363
1364             def_map: NodeMap(),
1365             freevars: NodeMap(),
1366             freevars_seen: NodeMap(),
1367             export_map: NodeMap(),
1368             trait_map: NodeMap(),
1369             module_map: module_map,
1370             block_map: NodeMap(),
1371             extern_module_map: FxHashMap(),
1372
1373             make_glob_map: make_glob_map == MakeGlobMap::Yes,
1374             glob_map: NodeMap(),
1375
1376             used_imports: FxHashSet(),
1377             maybe_unused_trait_imports: NodeSet(),
1378
1379             privacy_errors: Vec::new(),
1380             ambiguity_errors: Vec::new(),
1381             gated_errors: FxHashSet(),
1382             disallowed_shadowing: Vec::new(),
1383
1384             arenas: arenas,
1385             dummy_binding: arenas.alloc_name_binding(NameBinding {
1386                 kind: NameBindingKind::Def(Def::Err),
1387                 expansion: Mark::root(),
1388                 span: DUMMY_SP,
1389                 vis: ty::Visibility::Public,
1390             }),
1391
1392             // The `proc_macro` and `decl_macro` features imply `use_extern_macros`
1393             use_extern_macros:
1394                 features.use_extern_macros || features.proc_macro || features.decl_macro,
1395
1396             crate_loader: crate_loader,
1397             macro_names: FxHashSet(),
1398             global_macros: FxHashMap(),
1399             lexical_macro_resolutions: Vec::new(),
1400             macro_map: FxHashMap(),
1401             macro_exports: Vec::new(),
1402             invocations: invocations,
1403             macro_defs: macro_defs,
1404             local_macro_def_scopes: FxHashMap(),
1405             name_already_seen: FxHashMap(),
1406             whitelisted_legacy_custom_derives: Vec::new(),
1407             proc_macro_enabled: features.proc_macro,
1408             warned_proc_macros: FxHashSet(),
1409             potentially_unused_imports: Vec::new(),
1410             struct_constructors: DefIdMap(),
1411             found_unresolved_macro: false,
1412             unused_macros: FxHashSet(),
1413         }
1414     }
1415
1416     pub fn arenas() -> ResolverArenas<'a> {
1417         ResolverArenas {
1418             modules: arena::TypedArena::new(),
1419             local_modules: RefCell::new(Vec::new()),
1420             name_bindings: arena::TypedArena::new(),
1421             import_directives: arena::TypedArena::new(),
1422             name_resolutions: arena::TypedArena::new(),
1423             invocation_data: arena::TypedArena::new(),
1424             legacy_bindings: arena::TypedArena::new(),
1425         }
1426     }
1427
1428     fn per_ns<T, F: FnMut(&mut Self, Namespace) -> T>(&mut self, mut f: F) -> PerNS<T> {
1429         PerNS {
1430             type_ns: f(self, TypeNS),
1431             value_ns: f(self, ValueNS),
1432             macro_ns: match self.use_extern_macros {
1433                 true => Some(f(self, MacroNS)),
1434                 false => None,
1435             },
1436         }
1437     }
1438
1439     /// Entry point to crate resolution.
1440     pub fn resolve_crate(&mut self, krate: &Crate) {
1441         ImportResolver { resolver: self }.finalize_imports();
1442         self.current_module = self.graph_root;
1443         self.finalize_current_module_macro_resolutions();
1444         visit::walk_crate(self, krate);
1445
1446         check_unused::check_crate(self, krate);
1447         self.report_errors();
1448         self.crate_loader.postprocess(krate);
1449     }
1450
1451     fn new_module(
1452         &self,
1453         parent: Module<'a>,
1454         kind: ModuleKind,
1455         normal_ancestor_id: DefId,
1456         expansion: Mark,
1457         span: Span,
1458     ) -> Module<'a> {
1459         let module = ModuleData::new(Some(parent), kind, normal_ancestor_id, expansion, span);
1460         self.arenas.alloc_module(module)
1461     }
1462
1463     fn record_use(&mut self, ident: Ident, ns: Namespace, binding: &'a NameBinding<'a>, span: Span)
1464                   -> bool /* true if an error was reported */ {
1465         match binding.kind {
1466             NameBindingKind::Import { directive, binding, ref used, legacy_self_import }
1467                     if !used.get() => {
1468                 used.set(true);
1469                 directive.used.set(true);
1470                 if legacy_self_import {
1471                     self.warn_legacy_self_import(directive);
1472                     return false;
1473                 }
1474                 self.used_imports.insert((directive.id, ns));
1475                 self.add_to_glob_map(directive.id, ident);
1476                 self.record_use(ident, ns, binding, span)
1477             }
1478             NameBindingKind::Import { .. } => false,
1479             NameBindingKind::Ambiguity { b1, b2, legacy } => {
1480                 self.ambiguity_errors.push(AmbiguityError {
1481                     span: span, name: ident.name, lexical: false, b1: b1, b2: b2, legacy: legacy,
1482                 });
1483                 if legacy {
1484                     self.record_use(ident, ns, b1, span);
1485                 }
1486                 !legacy
1487             }
1488             _ => false
1489         }
1490     }
1491
1492     fn add_to_glob_map(&mut self, id: NodeId, ident: Ident) {
1493         if self.make_glob_map {
1494             self.glob_map.entry(id).or_insert_with(FxHashSet).insert(ident.name);
1495         }
1496     }
1497
1498     /// This resolves the identifier `ident` in the namespace `ns` in the current lexical scope.
1499     /// More specifically, we proceed up the hierarchy of scopes and return the binding for
1500     /// `ident` in the first scope that defines it (or None if no scopes define it).
1501     ///
1502     /// A block's items are above its local variables in the scope hierarchy, regardless of where
1503     /// the items are defined in the block. For example,
1504     /// ```rust
1505     /// fn f() {
1506     ///    g(); // Since there are no local variables in scope yet, this resolves to the item.
1507     ///    let g = || {};
1508     ///    fn g() {}
1509     ///    g(); // This resolves to the local variable `g` since it shadows the item.
1510     /// }
1511     /// ```
1512     ///
1513     /// Invariant: This must only be called during main resolution, not during
1514     /// import resolution.
1515     fn resolve_ident_in_lexical_scope(&mut self,
1516                                       mut ident: Ident,
1517                                       ns: Namespace,
1518                                       record_used: bool,
1519                                       path_span: Span)
1520                                       -> Option<LexicalScopeBinding<'a>> {
1521         if ns == TypeNS {
1522             ident.ctxt = if ident.name == keywords::SelfType.name() {
1523                 SyntaxContext::empty() // FIXME(jseyfried) improve `Self` hygiene
1524             } else {
1525                 ident.ctxt.modern()
1526             }
1527         }
1528
1529         // Walk backwards up the ribs in scope.
1530         let mut module = self.graph_root;
1531         for i in (0 .. self.ribs[ns].len()).rev() {
1532             if let Some(def) = self.ribs[ns][i].bindings.get(&ident).cloned() {
1533                 // The ident resolves to a type parameter or local variable.
1534                 return Some(LexicalScopeBinding::Def(
1535                     self.adjust_local_def(ns, i, def, record_used, path_span)
1536                 ));
1537             }
1538
1539             module = match self.ribs[ns][i].kind {
1540                 ModuleRibKind(module) => module,
1541                 MacroDefinition(def) if def == self.macro_defs[&ident.ctxt.outer()] => {
1542                     // If an invocation of this macro created `ident`, give up on `ident`
1543                     // and switch to `ident`'s source from the macro definition.
1544                     ident.ctxt.remove_mark();
1545                     continue
1546                 }
1547                 _ => continue,
1548             };
1549
1550             let item = self.resolve_ident_in_module_unadjusted(
1551                 module, ident, ns, false, record_used, path_span,
1552             );
1553             if let Ok(binding) = item {
1554                 // The ident resolves to an item.
1555                 return Some(LexicalScopeBinding::Item(binding));
1556             }
1557
1558             match module.kind {
1559                 ModuleKind::Block(..) => {}, // We can see through blocks
1560                 _ => break,
1561             }
1562         }
1563
1564         ident.ctxt = ident.ctxt.modern();
1565         loop {
1566             module = unwrap_or!(self.hygienic_lexical_parent(module, &mut ident.ctxt), break);
1567             let orig_current_module = self.current_module;
1568             self.current_module = module; // Lexical resolutions can never be a privacy error.
1569             let result = self.resolve_ident_in_module_unadjusted(
1570                 module, ident, ns, false, record_used, path_span,
1571             );
1572             self.current_module = orig_current_module;
1573
1574             match result {
1575                 Ok(binding) => return Some(LexicalScopeBinding::Item(binding)),
1576                 Err(Undetermined) => return None,
1577                 Err(Determined) => {}
1578             }
1579         }
1580
1581         match self.prelude {
1582             Some(prelude) if !module.no_implicit_prelude => {
1583                 self.resolve_ident_in_module_unadjusted(prelude, ident, ns, false, false, path_span)
1584                     .ok().map(LexicalScopeBinding::Item)
1585             }
1586             _ => None,
1587         }
1588     }
1589
1590     fn hygienic_lexical_parent(&mut self, mut module: Module<'a>, ctxt: &mut SyntaxContext)
1591                                -> Option<Module<'a>> {
1592         if !module.expansion.is_descendant_of(ctxt.outer()) {
1593             return Some(self.macro_def_scope(ctxt.remove_mark()));
1594         }
1595
1596         if let ModuleKind::Block(..) = module.kind {
1597             return Some(module.parent.unwrap());
1598         }
1599
1600         let mut module_expansion = module.expansion.modern(); // for backward compatability
1601         while let Some(parent) = module.parent {
1602             let parent_expansion = parent.expansion.modern();
1603             if module_expansion.is_descendant_of(parent_expansion) &&
1604                parent_expansion != module_expansion {
1605                 return if parent_expansion.is_descendant_of(ctxt.outer()) {
1606                     Some(parent)
1607                 } else {
1608                     None
1609                 };
1610             }
1611             module = parent;
1612             module_expansion = parent_expansion;
1613         }
1614
1615         None
1616     }
1617
1618     fn resolve_ident_in_module(&mut self,
1619                                module: Module<'a>,
1620                                mut ident: Ident,
1621                                ns: Namespace,
1622                                ignore_unresolved_invocations: bool,
1623                                record_used: bool,
1624                                span: Span)
1625                                -> Result<&'a NameBinding<'a>, Determinacy> {
1626         ident.ctxt = ident.ctxt.modern();
1627         let orig_current_module = self.current_module;
1628         if let Some(def) = ident.ctxt.adjust(module.expansion) {
1629             self.current_module = self.macro_def_scope(def);
1630         }
1631         let result = self.resolve_ident_in_module_unadjusted(
1632             module, ident, ns, ignore_unresolved_invocations, record_used, span,
1633         );
1634         self.current_module = orig_current_module;
1635         result
1636     }
1637
1638     fn resolve_crate_root(&mut self, mut ctxt: SyntaxContext) -> Module<'a> {
1639         let module = match ctxt.adjust(Mark::root()) {
1640             Some(def) => self.macro_def_scope(def),
1641             None => return self.graph_root,
1642         };
1643         self.get_module(DefId { index: CRATE_DEF_INDEX, ..module.normal_ancestor_id })
1644     }
1645
1646     fn resolve_self(&mut self, ctxt: &mut SyntaxContext, module: Module<'a>) -> Module<'a> {
1647         let mut module = self.get_module(module.normal_ancestor_id);
1648         while module.span.ctxt.modern() != *ctxt {
1649             let parent = module.parent.unwrap_or_else(|| self.macro_def_scope(ctxt.remove_mark()));
1650             module = self.get_module(parent.normal_ancestor_id);
1651         }
1652         module
1653     }
1654
1655     // AST resolution
1656     //
1657     // We maintain a list of value ribs and type ribs.
1658     //
1659     // Simultaneously, we keep track of the current position in the module
1660     // graph in the `current_module` pointer. When we go to resolve a name in
1661     // the value or type namespaces, we first look through all the ribs and
1662     // then query the module graph. When we resolve a name in the module
1663     // namespace, we can skip all the ribs (since nested modules are not
1664     // allowed within blocks in Rust) and jump straight to the current module
1665     // graph node.
1666     //
1667     // Named implementations are handled separately. When we find a method
1668     // call, we consult the module node to find all of the implementations in
1669     // scope. This information is lazily cached in the module node. We then
1670     // generate a fake "implementation scope" containing all the
1671     // implementations thus found, for compatibility with old resolve pass.
1672
1673     fn with_scope<F>(&mut self, id: NodeId, f: F)
1674         where F: FnOnce(&mut Resolver)
1675     {
1676         let id = self.definitions.local_def_id(id);
1677         let module = self.module_map.get(&id).cloned(); // clones a reference
1678         if let Some(module) = module {
1679             // Move down in the graph.
1680             let orig_module = replace(&mut self.current_module, module);
1681             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(module)));
1682             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(module)));
1683
1684             self.finalize_current_module_macro_resolutions();
1685             f(self);
1686
1687             self.current_module = orig_module;
1688             self.ribs[ValueNS].pop();
1689             self.ribs[TypeNS].pop();
1690         } else {
1691             f(self);
1692         }
1693     }
1694
1695     /// Searches the current set of local scopes for labels.
1696     /// Stops after meeting a closure.
1697     fn search_label(&self, mut ident: Ident) -> Option<Def> {
1698         for rib in self.label_ribs.iter().rev() {
1699             match rib.kind {
1700                 NormalRibKind => {}
1701                 // If an invocation of this macro created `ident`, give up on `ident`
1702                 // and switch to `ident`'s source from the macro definition.
1703                 MacroDefinition(def) => {
1704                     if def == self.macro_defs[&ident.ctxt.outer()] {
1705                         ident.ctxt.remove_mark();
1706                     }
1707                 }
1708                 _ => {
1709                     // Do not resolve labels across function boundary
1710                     return None;
1711                 }
1712             }
1713             let result = rib.bindings.get(&ident).cloned();
1714             if result.is_some() {
1715                 return result;
1716             }
1717         }
1718         None
1719     }
1720
1721     fn resolve_item(&mut self, item: &Item) {
1722         let name = item.ident.name;
1723
1724         debug!("(resolving item) resolving {}", name);
1725
1726         self.check_proc_macro_attrs(&item.attrs);
1727
1728         match item.node {
1729             ItemKind::Enum(_, ref generics) |
1730             ItemKind::Ty(_, ref generics) |
1731             ItemKind::Struct(_, ref generics) |
1732             ItemKind::Union(_, ref generics) |
1733             ItemKind::Fn(.., ref generics, _) => {
1734                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind),
1735                                              |this| visit::walk_item(this, item));
1736             }
1737
1738             ItemKind::DefaultImpl(_, ref trait_ref) => {
1739                 self.with_optional_trait_ref(Some(trait_ref), |this, _| {
1740                     // Resolve type arguments in trait path
1741                     visit::walk_trait_ref(this, trait_ref);
1742                 });
1743             }
1744             ItemKind::Impl(.., ref generics, ref opt_trait_ref, ref self_type, ref impl_items) =>
1745                 self.resolve_implementation(generics,
1746                                             opt_trait_ref,
1747                                             &self_type,
1748                                             item.id,
1749                                             impl_items),
1750
1751             ItemKind::Trait(_, ref generics, ref bounds, ref trait_items) => {
1752                 // Create a new rib for the trait-wide type parameters.
1753                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
1754                     let local_def_id = this.definitions.local_def_id(item.id);
1755                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
1756                         this.visit_generics(generics);
1757                         walk_list!(this, visit_ty_param_bound, bounds);
1758
1759                         for trait_item in trait_items {
1760                             this.check_proc_macro_attrs(&trait_item.attrs);
1761
1762                             match trait_item.node {
1763                                 TraitItemKind::Const(ref ty, ref default) => {
1764                                     this.visit_ty(ty);
1765
1766                                     // Only impose the restrictions of
1767                                     // ConstRibKind for an actual constant
1768                                     // expression in a provided default.
1769                                     if let Some(ref expr) = *default{
1770                                         this.with_constant_rib(|this| {
1771                                             this.visit_expr(expr);
1772                                         });
1773                                     }
1774                                 }
1775                                 TraitItemKind::Method(ref sig, _) => {
1776                                     let type_parameters =
1777                                         HasTypeParameters(&sig.generics,
1778                                                           MethodRibKind(!sig.decl.has_self()));
1779                                     this.with_type_parameter_rib(type_parameters, |this| {
1780                                         visit::walk_trait_item(this, trait_item)
1781                                     });
1782                                 }
1783                                 TraitItemKind::Type(..) => {
1784                                     this.with_type_parameter_rib(NoTypeParameters, |this| {
1785                                         visit::walk_trait_item(this, trait_item)
1786                                     });
1787                                 }
1788                                 TraitItemKind::Macro(_) => panic!("unexpanded macro in resolve!"),
1789                             };
1790                         }
1791                     });
1792                 });
1793             }
1794
1795             ItemKind::Mod(_) | ItemKind::ForeignMod(_) => {
1796                 self.with_scope(item.id, |this| {
1797                     visit::walk_item(this, item);
1798                 });
1799             }
1800
1801             ItemKind::Static(ref ty, _, ref expr) |
1802             ItemKind::Const(ref ty, ref expr) => {
1803                 self.with_item_rib(|this| {
1804                     this.visit_ty(ty);
1805                     this.with_constant_rib(|this| {
1806                         this.visit_expr(expr);
1807                     });
1808                 });
1809             }
1810
1811             ItemKind::Use(ref view_path) => {
1812                 match view_path.node {
1813                     ast::ViewPathList(ref prefix, ref items) if items.is_empty() => {
1814                         // Resolve prefix of an import with empty braces (issue #28388).
1815                         self.smart_resolve_path(item.id, None, prefix, PathSource::ImportPrefix);
1816                     }
1817                     _ => {}
1818                 }
1819             }
1820
1821             ItemKind::ExternCrate(_) | ItemKind::MacroDef(..) | ItemKind::GlobalAsm(_)=> {
1822                 // do nothing, these are just around to be encoded
1823             }
1824
1825             ItemKind::Mac(_) => panic!("unexpanded macro in resolve!"),
1826         }
1827     }
1828
1829     fn with_type_parameter_rib<'b, F>(&'b mut self, type_parameters: TypeParameters<'a, 'b>, f: F)
1830         where F: FnOnce(&mut Resolver)
1831     {
1832         match type_parameters {
1833             HasTypeParameters(generics, rib_kind) => {
1834                 let mut function_type_rib = Rib::new(rib_kind);
1835                 let mut seen_bindings = FxHashMap();
1836                 for type_parameter in &generics.ty_params {
1837                     let ident = type_parameter.ident.modern();
1838                     debug!("with_type_parameter_rib: {}", type_parameter.id);
1839
1840                     if seen_bindings.contains_key(&ident) {
1841                         let span = seen_bindings.get(&ident).unwrap();
1842                         let err =
1843                             ResolutionError::NameAlreadyUsedInTypeParameterList(ident.name, span);
1844                         resolve_error(self, type_parameter.span, err);
1845                     }
1846                     seen_bindings.entry(ident).or_insert(type_parameter.span);
1847
1848                     // plain insert (no renaming)
1849                     let def_id = self.definitions.local_def_id(type_parameter.id);
1850                     let def = Def::TyParam(def_id);
1851                     function_type_rib.bindings.insert(ident, def);
1852                     self.record_def(type_parameter.id, PathResolution::new(def));
1853                 }
1854                 self.ribs[TypeNS].push(function_type_rib);
1855             }
1856
1857             NoTypeParameters => {
1858                 // Nothing to do.
1859             }
1860         }
1861
1862         f(self);
1863
1864         if let HasTypeParameters(..) = type_parameters {
1865             self.ribs[TypeNS].pop();
1866         }
1867     }
1868
1869     fn with_label_rib<F>(&mut self, f: F)
1870         where F: FnOnce(&mut Resolver)
1871     {
1872         self.label_ribs.push(Rib::new(NormalRibKind));
1873         f(self);
1874         self.label_ribs.pop();
1875     }
1876
1877     fn with_item_rib<F>(&mut self, f: F)
1878         where F: FnOnce(&mut Resolver)
1879     {
1880         self.ribs[ValueNS].push(Rib::new(ItemRibKind));
1881         self.ribs[TypeNS].push(Rib::new(ItemRibKind));
1882         f(self);
1883         self.ribs[TypeNS].pop();
1884         self.ribs[ValueNS].pop();
1885     }
1886
1887     fn with_constant_rib<F>(&mut self, f: F)
1888         where F: FnOnce(&mut Resolver)
1889     {
1890         self.ribs[ValueNS].push(Rib::new(ConstantItemRibKind));
1891         f(self);
1892         self.ribs[ValueNS].pop();
1893     }
1894
1895     fn with_current_self_type<T, F>(&mut self, self_type: &Ty, f: F) -> T
1896         where F: FnOnce(&mut Resolver) -> T
1897     {
1898         // Handle nested impls (inside fn bodies)
1899         let previous_value = replace(&mut self.current_self_type, Some(self_type.clone()));
1900         let result = f(self);
1901         self.current_self_type = previous_value;
1902         result
1903     }
1904
1905     fn with_optional_trait_ref<T, F>(&mut self, opt_trait_ref: Option<&TraitRef>, f: F) -> T
1906         where F: FnOnce(&mut Resolver, Option<DefId>) -> T
1907     {
1908         let mut new_val = None;
1909         let mut new_id = None;
1910         if let Some(trait_ref) = opt_trait_ref {
1911             let path: Vec<_> = trait_ref.path.segments.iter().map(|seg| seg.identifier).collect();
1912             let def = self.smart_resolve_path_fragment(trait_ref.ref_id,
1913                                                        None,
1914                                                        &path,
1915                                                        trait_ref.path.span,
1916                                                        trait_ref.path.segments.last().unwrap().span,
1917                                                        PathSource::Trait)
1918                 .base_def();
1919             if def != Def::Err {
1920                 new_id = Some(def.def_id());
1921                 let span = trait_ref.path.span;
1922                 if let PathResult::Module(module) = self.resolve_path(&path, None, false, span) {
1923                     new_val = Some((module, trait_ref.clone()));
1924                 }
1925             }
1926         }
1927         let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
1928         let result = f(self, new_id);
1929         self.current_trait_ref = original_trait_ref;
1930         result
1931     }
1932
1933     fn with_self_rib<F>(&mut self, self_def: Def, f: F)
1934         where F: FnOnce(&mut Resolver)
1935     {
1936         let mut self_type_rib = Rib::new(NormalRibKind);
1937
1938         // plain insert (no renaming, types are not currently hygienic....)
1939         self_type_rib.bindings.insert(keywords::SelfType.ident(), self_def);
1940         self.ribs[TypeNS].push(self_type_rib);
1941         f(self);
1942         self.ribs[TypeNS].pop();
1943     }
1944
1945     fn resolve_implementation(&mut self,
1946                               generics: &Generics,
1947                               opt_trait_reference: &Option<TraitRef>,
1948                               self_type: &Ty,
1949                               item_id: NodeId,
1950                               impl_items: &[ImplItem]) {
1951         // If applicable, create a rib for the type parameters.
1952         self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
1953             // Dummy self type for better errors if `Self` is used in the trait path.
1954             this.with_self_rib(Def::SelfTy(None, None), |this| {
1955                 // Resolve the trait reference, if necessary.
1956                 this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| {
1957                     let item_def_id = this.definitions.local_def_id(item_id);
1958                     this.with_self_rib(Def::SelfTy(trait_id, Some(item_def_id)), |this| {
1959                         if let Some(trait_ref) = opt_trait_reference.as_ref() {
1960                             // Resolve type arguments in trait path
1961                             visit::walk_trait_ref(this, trait_ref);
1962                         }
1963                         // Resolve the self type.
1964                         this.visit_ty(self_type);
1965                         // Resolve the type parameters.
1966                         this.visit_generics(generics);
1967                         this.with_current_self_type(self_type, |this| {
1968                             for impl_item in impl_items {
1969                                 this.check_proc_macro_attrs(&impl_item.attrs);
1970                                 this.resolve_visibility(&impl_item.vis);
1971                                 match impl_item.node {
1972                                     ImplItemKind::Const(..) => {
1973                                         // If this is a trait impl, ensure the const
1974                                         // exists in trait
1975                                         this.check_trait_item(impl_item.ident,
1976                                                             ValueNS,
1977                                                             impl_item.span,
1978                                             |n, s| ResolutionError::ConstNotMemberOfTrait(n, s));
1979                                         visit::walk_impl_item(this, impl_item);
1980                                     }
1981                                     ImplItemKind::Method(ref sig, _) => {
1982                                         // If this is a trait impl, ensure the method
1983                                         // exists in trait
1984                                         this.check_trait_item(impl_item.ident,
1985                                                             ValueNS,
1986                                                             impl_item.span,
1987                                             |n, s| ResolutionError::MethodNotMemberOfTrait(n, s));
1988
1989                                         // We also need a new scope for the method-
1990                                         // specific type parameters.
1991                                         let type_parameters =
1992                                             HasTypeParameters(&sig.generics,
1993                                                             MethodRibKind(!sig.decl.has_self()));
1994                                         this.with_type_parameter_rib(type_parameters, |this| {
1995                                             visit::walk_impl_item(this, impl_item);
1996                                         });
1997                                     }
1998                                     ImplItemKind::Type(ref ty) => {
1999                                         // If this is a trait impl, ensure the type
2000                                         // exists in trait
2001                                         this.check_trait_item(impl_item.ident,
2002                                                             TypeNS,
2003                                                             impl_item.span,
2004                                             |n, s| ResolutionError::TypeNotMemberOfTrait(n, s));
2005
2006                                         this.visit_ty(ty);
2007                                     }
2008                                     ImplItemKind::Macro(_) =>
2009                                         panic!("unexpanded macro in resolve!"),
2010                                 }
2011                             }
2012                         });
2013                     });
2014                 });
2015             });
2016         });
2017     }
2018
2019     fn check_trait_item<F>(&mut self, ident: Ident, ns: Namespace, span: Span, err: F)
2020         where F: FnOnce(Name, &str) -> ResolutionError
2021     {
2022         // If there is a TraitRef in scope for an impl, then the method must be in the
2023         // trait.
2024         if let Some((module, _)) = self.current_trait_ref {
2025             if self.resolve_ident_in_module(module, ident, ns, false, false, span).is_err() {
2026                 let path = &self.current_trait_ref.as_ref().unwrap().1.path;
2027                 resolve_error(self, span, err(ident.name, &path_names_to_string(path)));
2028             }
2029         }
2030     }
2031
2032     fn resolve_local(&mut self, local: &Local) {
2033         // Resolve the type.
2034         walk_list!(self, visit_ty, &local.ty);
2035
2036         // Resolve the initializer.
2037         walk_list!(self, visit_expr, &local.init);
2038
2039         // Resolve the pattern.
2040         self.resolve_pattern(&local.pat, PatternSource::Let, &mut FxHashMap());
2041     }
2042
2043     // build a map from pattern identifiers to binding-info's.
2044     // this is done hygienically. This could arise for a macro
2045     // that expands into an or-pattern where one 'x' was from the
2046     // user and one 'x' came from the macro.
2047     fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
2048         let mut binding_map = FxHashMap();
2049
2050         pat.walk(&mut |pat| {
2051             if let PatKind::Ident(binding_mode, ident, ref sub_pat) = pat.node {
2052                 if sub_pat.is_some() || match self.def_map.get(&pat.id).map(|res| res.base_def()) {
2053                     Some(Def::Local(..)) => true,
2054                     _ => false,
2055                 } {
2056                     let binding_info = BindingInfo { span: ident.span, binding_mode: binding_mode };
2057                     binding_map.insert(ident.node, binding_info);
2058                 }
2059             }
2060             true
2061         });
2062
2063         binding_map
2064     }
2065
2066     // check that all of the arms in an or-pattern have exactly the
2067     // same set of bindings, with the same binding modes for each.
2068     fn check_consistent_bindings(&mut self, arm: &Arm) {
2069         if arm.pats.is_empty() {
2070             return;
2071         }
2072
2073         let mut missing_vars = FxHashMap();
2074         let mut inconsistent_vars = FxHashMap();
2075         for (i, p) in arm.pats.iter().enumerate() {
2076             let map_i = self.binding_mode_map(&p);
2077
2078             for (j, q) in arm.pats.iter().enumerate() {
2079                 if i == j {
2080                     continue;
2081                 }
2082
2083                 let map_j = self.binding_mode_map(&q);
2084                 for (&key, &binding_i) in &map_i {
2085                     if map_j.len() == 0 {                   // Account for missing bindings when
2086                         let binding_error = missing_vars    // map_j has none.
2087                             .entry(key.name)
2088                             .or_insert(BindingError {
2089                                 name: key.name,
2090                                 origin: BTreeSet::new(),
2091                                 target: BTreeSet::new(),
2092                             });
2093                         binding_error.origin.insert(binding_i.span);
2094                         binding_error.target.insert(q.span);
2095                     }
2096                     for (&key_j, &binding_j) in &map_j {
2097                         match map_i.get(&key_j) {
2098                             None => {  // missing binding
2099                                 let binding_error = missing_vars
2100                                     .entry(key_j.name)
2101                                     .or_insert(BindingError {
2102                                         name: key_j.name,
2103                                         origin: BTreeSet::new(),
2104                                         target: BTreeSet::new(),
2105                                     });
2106                                 binding_error.origin.insert(binding_j.span);
2107                                 binding_error.target.insert(p.span);
2108                             }
2109                             Some(binding_i) => {  // check consistent binding
2110                                 if binding_i.binding_mode != binding_j.binding_mode {
2111                                     inconsistent_vars
2112                                         .entry(key.name)
2113                                         .or_insert((binding_j.span, binding_i.span));
2114                                 }
2115                             }
2116                         }
2117                     }
2118                 }
2119             }
2120         }
2121         let mut missing_vars = missing_vars.iter().collect::<Vec<_>>();
2122         missing_vars.sort();
2123         for (_, v) in missing_vars {
2124             resolve_error(self,
2125                           *v.origin.iter().next().unwrap(),
2126                           ResolutionError::VariableNotBoundInPattern(v));
2127         }
2128         let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
2129         inconsistent_vars.sort();
2130         for (name, v) in inconsistent_vars {
2131             resolve_error(self, v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
2132         }
2133     }
2134
2135     fn resolve_arm(&mut self, arm: &Arm) {
2136         self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2137
2138         let mut bindings_list = FxHashMap();
2139         for pattern in &arm.pats {
2140             self.resolve_pattern(&pattern, PatternSource::Match, &mut bindings_list);
2141         }
2142
2143         // This has to happen *after* we determine which
2144         // pat_idents are variants
2145         self.check_consistent_bindings(arm);
2146
2147         walk_list!(self, visit_expr, &arm.guard);
2148         self.visit_expr(&arm.body);
2149
2150         self.ribs[ValueNS].pop();
2151     }
2152
2153     fn resolve_block(&mut self, block: &Block) {
2154         debug!("(resolving block) entering block");
2155         // Move down in the graph, if there's an anonymous module rooted here.
2156         let orig_module = self.current_module;
2157         let anonymous_module = self.block_map.get(&block.id).cloned(); // clones a reference
2158
2159         let mut num_macro_definition_ribs = 0;
2160         if let Some(anonymous_module) = anonymous_module {
2161             debug!("(resolving block) found anonymous module, moving down");
2162             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2163             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2164             self.current_module = anonymous_module;
2165             self.finalize_current_module_macro_resolutions();
2166         } else {
2167             self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2168         }
2169
2170         // Descend into the block.
2171         for stmt in &block.stmts {
2172             if let ast::StmtKind::Item(ref item) = stmt.node {
2173                 if let ast::ItemKind::MacroDef(..) = item.node {
2174                     num_macro_definition_ribs += 1;
2175                     let def = self.definitions.local_def_id(item.id);
2176                     self.ribs[ValueNS].push(Rib::new(MacroDefinition(def)));
2177                     self.label_ribs.push(Rib::new(MacroDefinition(def)));
2178                 }
2179             }
2180
2181             self.visit_stmt(stmt);
2182         }
2183
2184         // Move back up.
2185         self.current_module = orig_module;
2186         for _ in 0 .. num_macro_definition_ribs {
2187             self.ribs[ValueNS].pop();
2188             self.label_ribs.pop();
2189         }
2190         self.ribs[ValueNS].pop();
2191         if let Some(_) = anonymous_module {
2192             self.ribs[TypeNS].pop();
2193         }
2194         debug!("(resolving block) leaving block");
2195     }
2196
2197     fn fresh_binding(&mut self,
2198                      ident: &SpannedIdent,
2199                      pat_id: NodeId,
2200                      outer_pat_id: NodeId,
2201                      pat_src: PatternSource,
2202                      bindings: &mut FxHashMap<Ident, NodeId>)
2203                      -> PathResolution {
2204         // Add the binding to the local ribs, if it
2205         // doesn't already exist in the bindings map. (We
2206         // must not add it if it's in the bindings map
2207         // because that breaks the assumptions later
2208         // passes make about or-patterns.)
2209         let mut def = Def::Local(self.definitions.local_def_id(pat_id));
2210         match bindings.get(&ident.node).cloned() {
2211             Some(id) if id == outer_pat_id => {
2212                 // `Variant(a, a)`, error
2213                 resolve_error(
2214                     self,
2215                     ident.span,
2216                     ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(
2217                         &ident.node.name.as_str())
2218                 );
2219             }
2220             Some(..) if pat_src == PatternSource::FnParam => {
2221                 // `fn f(a: u8, a: u8)`, error
2222                 resolve_error(
2223                     self,
2224                     ident.span,
2225                     ResolutionError::IdentifierBoundMoreThanOnceInParameterList(
2226                         &ident.node.name.as_str())
2227                 );
2228             }
2229             Some(..) if pat_src == PatternSource::Match => {
2230                 // `Variant1(a) | Variant2(a)`, ok
2231                 // Reuse definition from the first `a`.
2232                 def = self.ribs[ValueNS].last_mut().unwrap().bindings[&ident.node];
2233             }
2234             Some(..) => {
2235                 span_bug!(ident.span, "two bindings with the same name from \
2236                                        unexpected pattern source {:?}", pat_src);
2237             }
2238             None => {
2239                 // A completely fresh binding, add to the lists if it's valid.
2240                 if ident.node.name != keywords::Invalid.name() {
2241                     bindings.insert(ident.node, outer_pat_id);
2242                     self.ribs[ValueNS].last_mut().unwrap().bindings.insert(ident.node, def);
2243                 }
2244             }
2245         }
2246
2247         PathResolution::new(def)
2248     }
2249
2250     fn resolve_pattern(&mut self,
2251                        pat: &Pat,
2252                        pat_src: PatternSource,
2253                        // Maps idents to the node ID for the
2254                        // outermost pattern that binds them.
2255                        bindings: &mut FxHashMap<Ident, NodeId>) {
2256         // Visit all direct subpatterns of this pattern.
2257         let outer_pat_id = pat.id;
2258         pat.walk(&mut |pat| {
2259             match pat.node {
2260                 PatKind::Ident(bmode, ref ident, ref opt_pat) => {
2261                     // First try to resolve the identifier as some existing
2262                     // entity, then fall back to a fresh binding.
2263                     let binding = self.resolve_ident_in_lexical_scope(ident.node, ValueNS,
2264                                                                       false, pat.span)
2265                                       .and_then(LexicalScopeBinding::item);
2266                     let resolution = binding.map(NameBinding::def).and_then(|def| {
2267                         let always_binding = !pat_src.is_refutable() || opt_pat.is_some() ||
2268                                              bmode != BindingMode::ByValue(Mutability::Immutable);
2269                         match def {
2270                             Def::StructCtor(_, CtorKind::Const) |
2271                             Def::VariantCtor(_, CtorKind::Const) |
2272                             Def::Const(..) if !always_binding => {
2273                                 // A unit struct/variant or constant pattern.
2274                                 self.record_use(ident.node, ValueNS, binding.unwrap(), ident.span);
2275                                 Some(PathResolution::new(def))
2276                             }
2277                             Def::StructCtor(..) | Def::VariantCtor(..) |
2278                             Def::Const(..) | Def::Static(..) => {
2279                                 // A fresh binding that shadows something unacceptable.
2280                                 resolve_error(
2281                                     self,
2282                                     ident.span,
2283                                     ResolutionError::BindingShadowsSomethingUnacceptable(
2284                                         pat_src.descr(), ident.node.name, binding.unwrap())
2285                                 );
2286                                 None
2287                             }
2288                             Def::Local(..) | Def::Upvar(..) | Def::Fn(..) | Def::Err => {
2289                                 // These entities are explicitly allowed
2290                                 // to be shadowed by fresh bindings.
2291                                 None
2292                             }
2293                             def => {
2294                                 span_bug!(ident.span, "unexpected definition for an \
2295                                                        identifier in pattern: {:?}", def);
2296                             }
2297                         }
2298                     }).unwrap_or_else(|| {
2299                         self.fresh_binding(ident, pat.id, outer_pat_id, pat_src, bindings)
2300                     });
2301
2302                     self.record_def(pat.id, resolution);
2303                 }
2304
2305                 PatKind::TupleStruct(ref path, ..) => {
2306                     self.smart_resolve_path(pat.id, None, path, PathSource::TupleStruct);
2307                 }
2308
2309                 PatKind::Path(ref qself, ref path) => {
2310                     self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
2311                 }
2312
2313                 PatKind::Struct(ref path, ..) => {
2314                     self.smart_resolve_path(pat.id, None, path, PathSource::Struct);
2315                 }
2316
2317                 _ => {}
2318             }
2319             true
2320         });
2321
2322         visit::walk_pat(self, pat);
2323     }
2324
2325     // High-level and context dependent path resolution routine.
2326     // Resolves the path and records the resolution into definition map.
2327     // If resolution fails tries several techniques to find likely
2328     // resolution candidates, suggest imports or other help, and report
2329     // errors in user friendly way.
2330     fn smart_resolve_path(&mut self,
2331                           id: NodeId,
2332                           qself: Option<&QSelf>,
2333                           path: &Path,
2334                           source: PathSource)
2335                           -> PathResolution {
2336         let segments = &path.segments.iter().map(|seg| seg.identifier).collect::<Vec<_>>();
2337         let ident_span = path.segments.last().map_or(path.span, |seg| seg.span);
2338         self.smart_resolve_path_fragment(id, qself, segments, path.span, ident_span, source)
2339     }
2340
2341     fn smart_resolve_path_fragment(&mut self,
2342                                    id: NodeId,
2343                                    qself: Option<&QSelf>,
2344                                    path: &[Ident],
2345                                    span: Span,
2346                                    ident_span: Span,
2347                                    source: PathSource)
2348                                    -> PathResolution {
2349         let ns = source.namespace();
2350         let is_expected = &|def| source.is_expected(def);
2351         let is_enum_variant = &|def| if let Def::Variant(..) = def { true } else { false };
2352
2353         // Base error is amended with one short label and possibly some longer helps/notes.
2354         let report_errors = |this: &mut Self, def: Option<Def>| {
2355             // Make the base error.
2356             let expected = source.descr_expected();
2357             let path_str = names_to_string(path);
2358             let code = source.error_code(def.is_some());
2359             let (base_msg, fallback_label, base_span) = if let Some(def) = def {
2360                 (format!("expected {}, found {} `{}`", expected, def.kind_name(), path_str),
2361                  format!("not a {}", expected), span)
2362             } else {
2363                 let item_str = path[path.len() - 1];
2364                 let (mod_prefix, mod_str) = if path.len() == 1 {
2365                     (format!(""), format!("this scope"))
2366                 } else if path.len() == 2 && path[0].name == keywords::CrateRoot.name() {
2367                     (format!(""), format!("the crate root"))
2368                 } else {
2369                     let mod_path = &path[..path.len() - 1];
2370                     let mod_prefix = match this.resolve_path(mod_path, Some(TypeNS), false, span) {
2371                         PathResult::Module(module) => module.def(),
2372                         _ => None,
2373                     }.map_or(format!(""), |def| format!("{} ", def.kind_name()));
2374                     (mod_prefix, format!("`{}`", names_to_string(mod_path)))
2375                 };
2376                 (format!("cannot find {} `{}` in {}{}", expected, item_str, mod_prefix, mod_str),
2377                  format!("not found in {}", mod_str), ident_span)
2378             };
2379             let mut err = this.session.struct_span_err_with_code(base_span, &base_msg, code);
2380
2381             // Emit special messages for unresolved `Self` and `self`.
2382             if is_self_type(path, ns) {
2383                 __diagnostic_used!(E0411);
2384                 err.code("E0411".into());
2385                 err.span_label(span, "`Self` is only available in traits and impls");
2386                 return err;
2387             }
2388             if is_self_value(path, ns) {
2389                 __diagnostic_used!(E0424);
2390                 err.code("E0424".into());
2391                 err.span_label(span, format!("`self` value is only available in \
2392                                                methods with `self` parameter"));
2393                 return err;
2394             }
2395
2396             // Try to lookup the name in more relaxed fashion for better error reporting.
2397             let ident = *path.last().unwrap();
2398             let candidates = this.lookup_import_candidates(ident.name, ns, is_expected);
2399             if !candidates.is_empty() {
2400                 let mut module_span = this.current_module.span;
2401                 module_span.hi = module_span.lo;
2402                 // Report import candidates as help and proceed searching for labels.
2403                 show_candidates(&mut err, module_span, &candidates, def.is_some());
2404             } else if is_expected(Def::Enum(DefId::local(CRATE_DEF_INDEX))) {
2405                 let enum_candidates =
2406                     this.lookup_import_candidates(ident.name, ns, is_enum_variant);
2407                 let mut enum_candidates = enum_candidates.iter()
2408                     .map(|suggestion| import_candidate_to_paths(&suggestion)).collect::<Vec<_>>();
2409                 enum_candidates.sort();
2410                 for (sp, variant_path, enum_path) in enum_candidates {
2411                     let msg = format!("there is an enum variant `{}`, did you mean to use `{}`?",
2412                                       variant_path,
2413                                       enum_path);
2414                     if sp == DUMMY_SP {
2415                         err.help(&msg);
2416                     } else {
2417                         err.span_help(sp, &msg);
2418                     }
2419                 }
2420             }
2421             if path.len() == 1 && this.self_type_is_available(span) {
2422                 if let Some(candidate) = this.lookup_assoc_candidate(ident, ns, is_expected) {
2423                     let self_is_available = this.self_value_is_available(path[0].ctxt, span);
2424                     match candidate {
2425                         AssocSuggestion::Field => {
2426                             err.span_label(span, format!("did you mean `self.{}`?", path_str));
2427                             if !self_is_available {
2428                                 err.span_label(span, format!("`self` value is only available in \
2429                                                                methods with `self` parameter"));
2430                             }
2431                         }
2432                         AssocSuggestion::MethodWithSelf if self_is_available => {
2433                             err.span_label(span, format!("did you mean `self.{}(...)`?",
2434                                                            path_str));
2435                         }
2436                         AssocSuggestion::MethodWithSelf | AssocSuggestion::AssocItem => {
2437                             err.span_label(span, format!("did you mean `Self::{}`?", path_str));
2438                         }
2439                     }
2440                     return err;
2441                 }
2442             }
2443
2444             let mut levenshtein_worked = false;
2445
2446             // Try Levenshtein.
2447             if let Some(candidate) = this.lookup_typo_candidate(path, ns, is_expected, span) {
2448                 err.span_label(ident_span, format!("did you mean `{}`?", candidate));
2449                 levenshtein_worked = true;
2450             }
2451
2452             // Try context dependent help if relaxed lookup didn't work.
2453             if let Some(def) = def {
2454                 match (def, source) {
2455                     (Def::Macro(..), _) => {
2456                         err.span_label(span, format!("did you mean `{}!(...)`?", path_str));
2457                         return err;
2458                     }
2459                     (Def::TyAlias(..), PathSource::Trait) => {
2460                         err.span_label(span, "type aliases cannot be used for traits");
2461                         return err;
2462                     }
2463                     (Def::Mod(..), PathSource::Expr(Some(parent))) => match parent.node {
2464                         ExprKind::Field(_, ident) => {
2465                             err.span_label(parent.span, format!("did you mean `{}::{}`?",
2466                                                                  path_str, ident.node));
2467                             return err;
2468                         }
2469                         ExprKind::MethodCall(ident, ..) => {
2470                             err.span_label(parent.span, format!("did you mean `{}::{}(...)`?",
2471                                                                  path_str, ident.node));
2472                             return err;
2473                         }
2474                         _ => {}
2475                     },
2476                     _ if ns == ValueNS && is_struct_like(def) => {
2477                         if let Def::Struct(def_id) = def {
2478                             if let Some((ctor_def, ctor_vis))
2479                                     = this.struct_constructors.get(&def_id).cloned() {
2480                                 if is_expected(ctor_def) && !this.is_accessible(ctor_vis) {
2481                                     err.span_label(span, format!("constructor is not visible \
2482                                                                    here due to private fields"));
2483                                 }
2484                             }
2485                         }
2486                         err.span_label(span, format!("did you mean `{} {{ /* fields */ }}`?",
2487                                                        path_str));
2488                         return err;
2489                     }
2490                     _ => {}
2491                 }
2492             }
2493
2494             // Fallback label.
2495             if !levenshtein_worked {
2496                 err.span_label(base_span, fallback_label);
2497             }
2498             err
2499         };
2500         let report_errors = |this: &mut Self, def: Option<Def>| {
2501             report_errors(this, def).emit();
2502             err_path_resolution()
2503         };
2504
2505         let resolution = match self.resolve_qpath_anywhere(id, qself, path, ns, span,
2506                                                            source.defer_to_typeck(),
2507                                                            source.global_by_default()) {
2508             Some(resolution) if resolution.unresolved_segments() == 0 => {
2509                 if is_expected(resolution.base_def()) || resolution.base_def() == Def::Err {
2510                     resolution
2511                 } else {
2512                     // Add a temporary hack to smooth the transition to new struct ctor
2513                     // visibility rules. See #38932 for more details.
2514                     let mut res = None;
2515                     if let Def::Struct(def_id) = resolution.base_def() {
2516                         if let Some((ctor_def, ctor_vis))
2517                                 = self.struct_constructors.get(&def_id).cloned() {
2518                             if is_expected(ctor_def) && self.is_accessible(ctor_vis) {
2519                                 let lint = lint::builtin::LEGACY_CONSTRUCTOR_VISIBILITY;
2520                                 self.session.add_lint(lint, id, span,
2521                                     "private struct constructors are not usable through \
2522                                      reexports in outer modules".to_string());
2523                                 res = Some(PathResolution::new(ctor_def));
2524                             }
2525                         }
2526                     }
2527
2528                     res.unwrap_or_else(|| report_errors(self, Some(resolution.base_def())))
2529                 }
2530             }
2531             Some(resolution) if source.defer_to_typeck() => {
2532                 // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
2533                 // or `<T>::A::B`. If `B` should be resolved in value namespace then
2534                 // it needs to be added to the trait map.
2535                 if ns == ValueNS {
2536                     let item_name = *path.last().unwrap();
2537                     let traits = self.get_traits_containing_item(item_name, ns);
2538                     self.trait_map.insert(id, traits);
2539                 }
2540                 resolution
2541             }
2542             _ => report_errors(self, None)
2543         };
2544
2545         if let PathSource::TraitItem(..) = source {} else {
2546             // Avoid recording definition of `A::B` in `<T as A>::B::C`.
2547             self.record_def(id, resolution);
2548         }
2549         resolution
2550     }
2551
2552     fn self_type_is_available(&mut self, span: Span) -> bool {
2553         let binding = self.resolve_ident_in_lexical_scope(keywords::SelfType.ident(),
2554                                                           TypeNS, false, span);
2555         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
2556     }
2557
2558     fn self_value_is_available(&mut self, ctxt: SyntaxContext, span: Span) -> bool {
2559         let ident = Ident { name: keywords::SelfValue.name(), ctxt: ctxt };
2560         let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, false, span);
2561         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
2562     }
2563
2564     // Resolve in alternative namespaces if resolution in the primary namespace fails.
2565     fn resolve_qpath_anywhere(&mut self,
2566                               id: NodeId,
2567                               qself: Option<&QSelf>,
2568                               path: &[Ident],
2569                               primary_ns: Namespace,
2570                               span: Span,
2571                               defer_to_typeck: bool,
2572                               global_by_default: bool)
2573                               -> Option<PathResolution> {
2574         let mut fin_res = None;
2575         // FIXME: can't resolve paths in macro namespace yet, macros are
2576         // processed by the little special hack below.
2577         for (i, ns) in [primary_ns, TypeNS, ValueNS, /*MacroNS*/].iter().cloned().enumerate() {
2578             if i == 0 || ns != primary_ns {
2579                 match self.resolve_qpath(id, qself, path, ns, span, global_by_default) {
2580                     // If defer_to_typeck, then resolution > no resolution,
2581                     // otherwise full resolution > partial resolution > no resolution.
2582                     Some(res) if res.unresolved_segments() == 0 || defer_to_typeck =>
2583                         return Some(res),
2584                     res => if fin_res.is_none() { fin_res = res },
2585                 };
2586             }
2587         }
2588         let is_global = self.global_macros.get(&path[0].name).cloned()
2589             .map(|binding| binding.get_macro(self).kind() == MacroKind::Bang).unwrap_or(false);
2590         if primary_ns != MacroNS && (is_global || self.macro_names.contains(&path[0].modern())) {
2591             // Return some dummy definition, it's enough for error reporting.
2592             return Some(
2593                 PathResolution::new(Def::Macro(DefId::local(CRATE_DEF_INDEX), MacroKind::Bang))
2594             );
2595         }
2596         fin_res
2597     }
2598
2599     /// Handles paths that may refer to associated items.
2600     fn resolve_qpath(&mut self,
2601                      id: NodeId,
2602                      qself: Option<&QSelf>,
2603                      path: &[Ident],
2604                      ns: Namespace,
2605                      span: Span,
2606                      global_by_default: bool)
2607                      -> Option<PathResolution> {
2608         if let Some(qself) = qself {
2609             if qself.position == 0 {
2610                 // FIXME: Create some fake resolution that can't possibly be a type.
2611                 return Some(PathResolution::with_unresolved_segments(
2612                     Def::Mod(DefId::local(CRATE_DEF_INDEX)), path.len()
2613                 ));
2614             }
2615             // Make sure `A::B` in `<T as A>::B::C` is a trait item.
2616             let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
2617             let res = self.smart_resolve_path_fragment(id, None, &path[..qself.position + 1],
2618                                                        span, span, PathSource::TraitItem(ns));
2619             return Some(PathResolution::with_unresolved_segments(
2620                 res.base_def(), res.unresolved_segments() + path.len() - qself.position - 1
2621             ));
2622         }
2623
2624         let result = match self.resolve_path(&path, Some(ns), true, span) {
2625             PathResult::NonModule(path_res) => path_res,
2626             PathResult::Module(module) if !module.is_normal() => {
2627                 PathResolution::new(module.def().unwrap())
2628             }
2629             // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
2630             // don't report an error right away, but try to fallback to a primitive type.
2631             // So, we are still able to successfully resolve something like
2632             //
2633             // use std::u8; // bring module u8 in scope
2634             // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
2635             //     u8::max_value() // OK, resolves to associated function <u8>::max_value,
2636             //                     // not to non-existent std::u8::max_value
2637             // }
2638             //
2639             // Such behavior is required for backward compatibility.
2640             // The same fallback is used when `a` resolves to nothing.
2641             PathResult::Module(..) | PathResult::Failed(..)
2642                     if (ns == TypeNS || path.len() > 1) &&
2643                        self.primitive_type_table.primitive_types.contains_key(&path[0].name) => {
2644                 let prim = self.primitive_type_table.primitive_types[&path[0].name];
2645                 match prim {
2646                     TyUint(UintTy::U128) | TyInt(IntTy::I128) => {
2647                         if !self.session.features.borrow().i128_type {
2648                             emit_feature_err(&self.session.parse_sess,
2649                                                 "i128_type", span, GateIssue::Language,
2650                                                 "128-bit type is unstable");
2651
2652                         }
2653                     }
2654                     _ => {}
2655                 }
2656                 PathResolution::with_unresolved_segments(Def::PrimTy(prim), path.len() - 1)
2657             }
2658             PathResult::Module(module) => PathResolution::new(module.def().unwrap()),
2659             PathResult::Failed(msg, false) => {
2660                 resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
2661                 err_path_resolution()
2662             }
2663             PathResult::Failed(..) => return None,
2664             PathResult::Indeterminate => bug!("indetermined path result in resolve_qpath"),
2665         };
2666
2667         if path.len() > 1 && !global_by_default && result.base_def() != Def::Err &&
2668            path[0].name != keywords::CrateRoot.name() &&
2669            path[0].name != keywords::DollarCrate.name() {
2670             let unqualified_result = {
2671                 match self.resolve_path(&[*path.last().unwrap()], Some(ns), false, span) {
2672                     PathResult::NonModule(path_res) => path_res.base_def(),
2673                     PathResult::Module(module) => module.def().unwrap(),
2674                     _ => return Some(result),
2675                 }
2676             };
2677             if result.base_def() == unqualified_result {
2678                 let lint = lint::builtin::UNUSED_QUALIFICATIONS;
2679                 self.session.add_lint(lint, id, span, "unnecessary qualification".to_string());
2680             }
2681         }
2682
2683         Some(result)
2684     }
2685
2686     fn resolve_path(&mut self,
2687                     path: &[Ident],
2688                     opt_ns: Option<Namespace>, // `None` indicates a module path
2689                     record_used: bool,
2690                     path_span: Span)
2691                     -> PathResult<'a> {
2692         let mut module = None;
2693         let mut allow_super = true;
2694
2695         for (i, &ident) in path.iter().enumerate() {
2696             let is_last = i == path.len() - 1;
2697             let ns = if is_last { opt_ns.unwrap_or(TypeNS) } else { TypeNS };
2698
2699             if i == 0 && ns == TypeNS && ident.name == keywords::SelfValue.name() {
2700                 let mut ctxt = ident.ctxt.modern();
2701                 module = Some(self.resolve_self(&mut ctxt, self.current_module));
2702                 continue
2703             } else if allow_super && ns == TypeNS && ident.name == keywords::Super.name() {
2704                 let mut ctxt = ident.ctxt.modern();
2705                 let self_module = match i {
2706                     0 => self.resolve_self(&mut ctxt, self.current_module),
2707                     _ => module.unwrap(),
2708                 };
2709                 if let Some(parent) = self_module.parent {
2710                     module = Some(self.resolve_self(&mut ctxt, parent));
2711                     continue
2712                 } else {
2713                     let msg = "There are too many initial `super`s.".to_string();
2714                     return PathResult::Failed(msg, false);
2715                 }
2716             }
2717             allow_super = false;
2718
2719             if i == 0 && ns == TypeNS && ident.name == keywords::CrateRoot.name() {
2720                 module = Some(self.resolve_crate_root(ident.ctxt.modern()));
2721                 continue
2722             } else if i == 0 && ns == TypeNS && ident.name == keywords::DollarCrate.name() {
2723                 module = Some(self.resolve_crate_root(ident.ctxt));
2724                 continue
2725             }
2726
2727             let binding = if let Some(module) = module {
2728                 self.resolve_ident_in_module(module, ident, ns, false, record_used, path_span)
2729             } else if opt_ns == Some(MacroNS) {
2730                 self.resolve_lexical_macro_path_segment(ident, ns, record_used, path_span)
2731                     .map(MacroBinding::binding)
2732             } else {
2733                 match self.resolve_ident_in_lexical_scope(ident, ns, record_used, path_span) {
2734                     Some(LexicalScopeBinding::Item(binding)) => Ok(binding),
2735                     Some(LexicalScopeBinding::Def(def))
2736                             if opt_ns == Some(TypeNS) || opt_ns == Some(ValueNS) => {
2737                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
2738                             def, path.len() - 1
2739                         ));
2740                     }
2741                     _ => Err(if record_used { Determined } else { Undetermined }),
2742                 }
2743             };
2744
2745             match binding {
2746                 Ok(binding) => {
2747                     let def = binding.def();
2748                     let maybe_assoc = opt_ns != Some(MacroNS) && PathSource::Type.is_expected(def);
2749                     if let Some(next_module) = binding.module() {
2750                         module = Some(next_module);
2751                     } else if def == Def::Err {
2752                         return PathResult::NonModule(err_path_resolution());
2753                     } else if opt_ns.is_some() && (is_last || maybe_assoc) {
2754                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
2755                             def, path.len() - i - 1
2756                         ));
2757                     } else {
2758                         return PathResult::Failed(format!("Not a module `{}`", ident), is_last);
2759                     }
2760                 }
2761                 Err(Undetermined) => return PathResult::Indeterminate,
2762                 Err(Determined) => {
2763                     if let Some(module) = module {
2764                         if opt_ns.is_some() && !module.is_normal() {
2765                             return PathResult::NonModule(PathResolution::with_unresolved_segments(
2766                                 module.def().unwrap(), path.len() - i
2767                             ));
2768                         }
2769                     }
2770                     let msg = if module.and_then(ModuleData::def) == self.graph_root.def() {
2771                         let is_mod = |def| match def { Def::Mod(..) => true, _ => false };
2772                         let mut candidates =
2773                             self.lookup_import_candidates(ident.name, TypeNS, is_mod);
2774                         candidates.sort_by_key(|c| (c.path.segments.len(), c.path.to_string()));
2775                         if let Some(candidate) = candidates.get(0) {
2776                             format!("Did you mean `{}`?", candidate.path)
2777                         } else {
2778                             format!("Maybe a missing `extern crate {};`?", ident)
2779                         }
2780                     } else if i == 0 {
2781                         format!("Use of undeclared type or module `{}`", ident)
2782                     } else {
2783                         format!("Could not find `{}` in `{}`", ident, path[i - 1])
2784                     };
2785                     return PathResult::Failed(msg, is_last);
2786                 }
2787             }
2788         }
2789
2790         PathResult::Module(module.unwrap_or(self.graph_root))
2791     }
2792
2793     // Resolve a local definition, potentially adjusting for closures.
2794     fn adjust_local_def(&mut self,
2795                         ns: Namespace,
2796                         rib_index: usize,
2797                         mut def: Def,
2798                         record_used: bool,
2799                         span: Span) -> Def {
2800         let ribs = &self.ribs[ns][rib_index + 1..];
2801
2802         // An invalid forward use of a type parameter from a previous default.
2803         if let ForwardTyParamBanRibKind = self.ribs[ns][rib_index].kind {
2804             if record_used {
2805                 resolve_error(self, span,
2806                         ResolutionError::ForwardDeclaredTyParam);
2807             }
2808             assert_eq!(def, Def::Err);
2809             return Def::Err;
2810         }
2811
2812         match def {
2813             Def::Upvar(..) => {
2814                 span_bug!(span, "unexpected {:?} in bindings", def)
2815             }
2816             Def::Local(def_id) => {
2817                 for rib in ribs {
2818                     match rib.kind {
2819                         NormalRibKind | ModuleRibKind(..) | MacroDefinition(..) |
2820                         ForwardTyParamBanRibKind => {
2821                             // Nothing to do. Continue.
2822                         }
2823                         ClosureRibKind(function_id) => {
2824                             let prev_def = def;
2825                             let node_id = self.definitions.as_local_node_id(def_id).unwrap();
2826
2827                             let seen = self.freevars_seen
2828                                            .entry(function_id)
2829                                            .or_insert_with(|| NodeMap());
2830                             if let Some(&index) = seen.get(&node_id) {
2831                                 def = Def::Upvar(def_id, index, function_id);
2832                                 continue;
2833                             }
2834                             let vec = self.freevars
2835                                           .entry(function_id)
2836                                           .or_insert_with(|| vec![]);
2837                             let depth = vec.len();
2838                             def = Def::Upvar(def_id, depth, function_id);
2839
2840                             if record_used {
2841                                 vec.push(Freevar {
2842                                     def: prev_def,
2843                                     span: span,
2844                                 });
2845                                 seen.insert(node_id, depth);
2846                             }
2847                         }
2848                         ItemRibKind | MethodRibKind(_) => {
2849                             // This was an attempt to access an upvar inside a
2850                             // named function item. This is not allowed, so we
2851                             // report an error.
2852                             if record_used {
2853                                 resolve_error(self, span,
2854                                         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem);
2855                             }
2856                             return Def::Err;
2857                         }
2858                         ConstantItemRibKind => {
2859                             // Still doesn't deal with upvars
2860                             if record_used {
2861                                 resolve_error(self, span,
2862                                         ResolutionError::AttemptToUseNonConstantValueInConstant);
2863                             }
2864                             return Def::Err;
2865                         }
2866                     }
2867                 }
2868             }
2869             Def::TyParam(..) | Def::SelfTy(..) => {
2870                 for rib in ribs {
2871                     match rib.kind {
2872                         NormalRibKind | MethodRibKind(_) | ClosureRibKind(..) |
2873                         ModuleRibKind(..) | MacroDefinition(..) | ForwardTyParamBanRibKind |
2874                         ConstantItemRibKind => {
2875                             // Nothing to do. Continue.
2876                         }
2877                         ItemRibKind => {
2878                             // This was an attempt to use a type parameter outside
2879                             // its scope.
2880                             if record_used {
2881                                 resolve_error(self, span,
2882                                               ResolutionError::TypeParametersFromOuterFunction);
2883                             }
2884                             return Def::Err;
2885                         }
2886                     }
2887                 }
2888             }
2889             _ => {}
2890         }
2891         return def;
2892     }
2893
2894     // Calls `f` with a `Resolver` whose current lexical scope is `module`'s lexical scope,
2895     // i.e. the module's items and the prelude (unless the module is `#[no_implicit_prelude]`).
2896     // FIXME #34673: This needs testing.
2897     pub fn with_module_lexical_scope<T, F>(&mut self, module: Module<'a>, f: F) -> T
2898         where F: FnOnce(&mut Resolver<'a>) -> T,
2899     {
2900         self.with_empty_ribs(|this| {
2901             this.ribs[ValueNS].push(Rib::new(ModuleRibKind(module)));
2902             this.ribs[TypeNS].push(Rib::new(ModuleRibKind(module)));
2903             f(this)
2904         })
2905     }
2906
2907     fn with_empty_ribs<T, F>(&mut self, f: F) -> T
2908         where F: FnOnce(&mut Resolver<'a>) -> T,
2909     {
2910         let ribs = replace(&mut self.ribs, PerNS::<Vec<Rib>>::default());
2911         let label_ribs = replace(&mut self.label_ribs, Vec::new());
2912
2913         let result = f(self);
2914         self.ribs = ribs;
2915         self.label_ribs = label_ribs;
2916         result
2917     }
2918
2919     fn lookup_assoc_candidate<FilterFn>(&mut self,
2920                                         ident: Ident,
2921                                         ns: Namespace,
2922                                         filter_fn: FilterFn)
2923                                         -> Option<AssocSuggestion>
2924         where FilterFn: Fn(Def) -> bool
2925     {
2926         fn extract_node_id(t: &Ty) -> Option<NodeId> {
2927             match t.node {
2928                 TyKind::Path(None, _) => Some(t.id),
2929                 TyKind::Rptr(_, ref mut_ty) => extract_node_id(&mut_ty.ty),
2930                 // This doesn't handle the remaining `Ty` variants as they are not
2931                 // that commonly the self_type, it might be interesting to provide
2932                 // support for those in future.
2933                 _ => None,
2934             }
2935         }
2936
2937         // Fields are generally expected in the same contexts as locals.
2938         if filter_fn(Def::Local(DefId::local(CRATE_DEF_INDEX))) {
2939             if let Some(node_id) = self.current_self_type.as_ref().and_then(extract_node_id) {
2940                 // Look for a field with the same name in the current self_type.
2941                 if let Some(resolution) = self.def_map.get(&node_id) {
2942                     match resolution.base_def() {
2943                         Def::Struct(did) | Def::Union(did)
2944                                 if resolution.unresolved_segments() == 0 => {
2945                             if let Some(field_names) = self.field_names.get(&did) {
2946                                 if field_names.iter().any(|&field_name| ident.name == field_name) {
2947                                     return Some(AssocSuggestion::Field);
2948                                 }
2949                             }
2950                         }
2951                         _ => {}
2952                     }
2953                 }
2954             }
2955         }
2956
2957         // Look for associated items in the current trait.
2958         if let Some((module, _)) = self.current_trait_ref {
2959             if let Ok(binding) =
2960                     self.resolve_ident_in_module(module, ident, ns, false, false, module.span) {
2961                 let def = binding.def();
2962                 if filter_fn(def) {
2963                     return Some(if self.has_self.contains(&def.def_id()) {
2964                         AssocSuggestion::MethodWithSelf
2965                     } else {
2966                         AssocSuggestion::AssocItem
2967                     });
2968                 }
2969             }
2970         }
2971
2972         None
2973     }
2974
2975     fn lookup_typo_candidate<FilterFn>(&mut self,
2976                                        path: &[Ident],
2977                                        ns: Namespace,
2978                                        filter_fn: FilterFn,
2979                                        span: Span)
2980                                        -> Option<Symbol>
2981         where FilterFn: Fn(Def) -> bool
2982     {
2983         let add_module_candidates = |module: Module, names: &mut Vec<Name>| {
2984             for (&(ident, _), resolution) in module.resolutions.borrow().iter() {
2985                 if let Some(binding) = resolution.borrow().binding {
2986                     if filter_fn(binding.def()) {
2987                         names.push(ident.name);
2988                     }
2989                 }
2990             }
2991         };
2992
2993         let mut names = Vec::new();
2994         if path.len() == 1 {
2995             // Search in lexical scope.
2996             // Walk backwards up the ribs in scope and collect candidates.
2997             for rib in self.ribs[ns].iter().rev() {
2998                 // Locals and type parameters
2999                 for (ident, def) in &rib.bindings {
3000                     if filter_fn(*def) {
3001                         names.push(ident.name);
3002                     }
3003                 }
3004                 // Items in scope
3005                 if let ModuleRibKind(module) = rib.kind {
3006                     // Items from this module
3007                     add_module_candidates(module, &mut names);
3008
3009                     if let ModuleKind::Block(..) = module.kind {
3010                         // We can see through blocks
3011                     } else {
3012                         // Items from the prelude
3013                         if let Some(prelude) = self.prelude {
3014                             if !module.no_implicit_prelude {
3015                                 add_module_candidates(prelude, &mut names);
3016                             }
3017                         }
3018                         break;
3019                     }
3020                 }
3021             }
3022             // Add primitive types to the mix
3023             if filter_fn(Def::PrimTy(TyBool)) {
3024                 for (name, _) in &self.primitive_type_table.primitive_types {
3025                     names.push(*name);
3026                 }
3027             }
3028         } else {
3029             // Search in module.
3030             let mod_path = &path[..path.len() - 1];
3031             if let PathResult::Module(module) = self.resolve_path(mod_path, Some(TypeNS),
3032                                                                   false, span) {
3033                 add_module_candidates(module, &mut names);
3034             }
3035         }
3036
3037         let name = path[path.len() - 1].name;
3038         // Make sure error reporting is deterministic.
3039         names.sort_by_key(|name| name.as_str());
3040         match find_best_match_for_name(names.iter(), &name.as_str(), None) {
3041             Some(found) if found != name => Some(found),
3042             _ => None,
3043         }
3044     }
3045
3046     fn with_resolved_label<F>(&mut self, label: Option<SpannedIdent>, id: NodeId, f: F)
3047         where F: FnOnce(&mut Resolver)
3048     {
3049         if let Some(label) = label {
3050             let def = Def::Label(id);
3051             self.with_label_rib(|this| {
3052                 this.label_ribs.last_mut().unwrap().bindings.insert(label.node, def);
3053                 f(this);
3054             });
3055         } else {
3056             f(self);
3057         }
3058     }
3059
3060     fn resolve_labeled_block(&mut self, label: Option<SpannedIdent>, id: NodeId, block: &Block) {
3061         self.with_resolved_label(label, id, |this| this.visit_block(block));
3062     }
3063
3064     fn resolve_expr(&mut self, expr: &Expr, parent: Option<&Expr>) {
3065         // First, record candidate traits for this expression if it could
3066         // result in the invocation of a method call.
3067
3068         self.record_candidate_traits_for_expr_if_necessary(expr);
3069
3070         // Next, resolve the node.
3071         match expr.node {
3072             ExprKind::Path(ref qself, ref path) => {
3073                 self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
3074                 visit::walk_expr(self, expr);
3075             }
3076
3077             ExprKind::Struct(ref path, ..) => {
3078                 self.smart_resolve_path(expr.id, None, path, PathSource::Struct);
3079                 visit::walk_expr(self, expr);
3080             }
3081
3082             ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
3083                 match self.search_label(label.node) {
3084                     None => {
3085                         self.record_def(expr.id, err_path_resolution());
3086                         resolve_error(self,
3087                                       label.span,
3088                                       ResolutionError::UndeclaredLabel(&label.node.name.as_str()));
3089                     }
3090                     Some(def @ Def::Label(_)) => {
3091                         // Since this def is a label, it is never read.
3092                         self.record_def(expr.id, PathResolution::new(def));
3093                     }
3094                     Some(_) => {
3095                         span_bug!(expr.span, "label wasn't mapped to a label def!");
3096                     }
3097                 }
3098
3099                 // visit `break` argument if any
3100                 visit::walk_expr(self, expr);
3101             }
3102
3103             ExprKind::IfLet(ref pattern, ref subexpression, ref if_block, ref optional_else) => {
3104                 self.visit_expr(subexpression);
3105
3106                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
3107                 self.resolve_pattern(pattern, PatternSource::IfLet, &mut FxHashMap());
3108                 self.visit_block(if_block);
3109                 self.ribs[ValueNS].pop();
3110
3111                 optional_else.as_ref().map(|expr| self.visit_expr(expr));
3112             }
3113
3114             ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),
3115
3116             ExprKind::While(ref subexpression, ref block, label) => {
3117                 self.with_resolved_label(label, expr.id, |this| {
3118                     this.visit_expr(subexpression);
3119                     this.visit_block(block);
3120                 });
3121             }
3122
3123             ExprKind::WhileLet(ref pattern, ref subexpression, ref block, label) => {
3124                 self.with_resolved_label(label, expr.id, |this| {
3125                     this.visit_expr(subexpression);
3126                     this.ribs[ValueNS].push(Rib::new(NormalRibKind));
3127                     this.resolve_pattern(pattern, PatternSource::WhileLet, &mut FxHashMap());
3128                     this.visit_block(block);
3129                     this.ribs[ValueNS].pop();
3130                 });
3131             }
3132
3133             ExprKind::ForLoop(ref pattern, ref subexpression, ref block, label) => {
3134                 self.visit_expr(subexpression);
3135                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
3136                 self.resolve_pattern(pattern, PatternSource::For, &mut FxHashMap());
3137
3138                 self.resolve_labeled_block(label, expr.id, block);
3139
3140                 self.ribs[ValueNS].pop();
3141             }
3142
3143             // Equivalent to `visit::walk_expr` + passing some context to children.
3144             ExprKind::Field(ref subexpression, _) => {
3145                 self.resolve_expr(subexpression, Some(expr));
3146             }
3147             ExprKind::MethodCall(_, ref types, ref arguments) => {
3148                 let mut arguments = arguments.iter();
3149                 self.resolve_expr(arguments.next().unwrap(), Some(expr));
3150                 for argument in arguments {
3151                     self.resolve_expr(argument, None);
3152                 }
3153                 for ty in types.iter() {
3154                     self.visit_ty(ty);
3155                 }
3156             }
3157
3158             ExprKind::Repeat(ref element, ref count) => {
3159                 self.visit_expr(element);
3160                 self.with_constant_rib(|this| {
3161                     this.visit_expr(count);
3162                 });
3163             }
3164             ExprKind::Call(ref callee, ref arguments) => {
3165                 self.resolve_expr(callee, Some(expr));
3166                 for argument in arguments {
3167                     self.resolve_expr(argument, None);
3168                 }
3169             }
3170
3171             _ => {
3172                 visit::walk_expr(self, expr);
3173             }
3174         }
3175     }
3176
3177     fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &Expr) {
3178         match expr.node {
3179             ExprKind::Field(_, name) => {
3180                 // FIXME(#6890): Even though you can't treat a method like a
3181                 // field, we need to add any trait methods we find that match
3182                 // the field name so that we can do some nice error reporting
3183                 // later on in typeck.
3184                 let traits = self.get_traits_containing_item(name.node, ValueNS);
3185                 self.trait_map.insert(expr.id, traits);
3186             }
3187             ExprKind::MethodCall(name, ..) => {
3188                 debug!("(recording candidate traits for expr) recording traits for {}",
3189                        expr.id);
3190                 let traits = self.get_traits_containing_item(name.node, ValueNS);
3191                 self.trait_map.insert(expr.id, traits);
3192             }
3193             _ => {
3194                 // Nothing to do.
3195             }
3196         }
3197     }
3198
3199     fn get_traits_containing_item(&mut self, mut ident: Ident, ns: Namespace)
3200                                   -> Vec<TraitCandidate> {
3201         debug!("(getting traits containing item) looking for '{}'", ident.name);
3202
3203         let mut found_traits = Vec::new();
3204         // Look for the current trait.
3205         if let Some((module, _)) = self.current_trait_ref {
3206             if self.resolve_ident_in_module(module, ident, ns, false, false, module.span).is_ok() {
3207                 let def_id = module.def_id().unwrap();
3208                 found_traits.push(TraitCandidate { def_id: def_id, import_id: None });
3209             }
3210         }
3211
3212         ident.ctxt = ident.ctxt.modern();
3213         let mut search_module = self.current_module;
3214         loop {
3215             self.get_traits_in_module_containing_item(ident, ns, search_module, &mut found_traits);
3216             search_module =
3217                 unwrap_or!(self.hygienic_lexical_parent(search_module, &mut ident.ctxt), break);
3218         }
3219
3220         if let Some(prelude) = self.prelude {
3221             if !search_module.no_implicit_prelude {
3222                 self.get_traits_in_module_containing_item(ident, ns, prelude, &mut found_traits);
3223             }
3224         }
3225
3226         found_traits
3227     }
3228
3229     fn get_traits_in_module_containing_item(&mut self,
3230                                             ident: Ident,
3231                                             ns: Namespace,
3232                                             module: Module<'a>,
3233                                             found_traits: &mut Vec<TraitCandidate>) {
3234         let mut traits = module.traits.borrow_mut();
3235         if traits.is_none() {
3236             let mut collected_traits = Vec::new();
3237             module.for_each_child(|name, ns, binding| {
3238                 if ns != TypeNS { return }
3239                 if let Def::Trait(_) = binding.def() {
3240                     collected_traits.push((name, binding));
3241                 }
3242             });
3243             *traits = Some(collected_traits.into_boxed_slice());
3244         }
3245
3246         for &(trait_name, binding) in traits.as_ref().unwrap().iter() {
3247             let module = binding.module().unwrap();
3248             let mut ident = ident;
3249             if ident.ctxt.glob_adjust(module.expansion, binding.span.ctxt.modern()).is_none() {
3250                 continue
3251             }
3252             if self.resolve_ident_in_module_unadjusted(module, ident, ns, false, false, module.span)
3253                    .is_ok() {
3254                 let import_id = match binding.kind {
3255                     NameBindingKind::Import { directive, .. } => {
3256                         self.maybe_unused_trait_imports.insert(directive.id);
3257                         self.add_to_glob_map(directive.id, trait_name);
3258                         Some(directive.id)
3259                     }
3260                     _ => None,
3261                 };
3262                 let trait_def_id = module.def_id().unwrap();
3263                 found_traits.push(TraitCandidate { def_id: trait_def_id, import_id: import_id });
3264             }
3265         }
3266     }
3267
3268     /// When name resolution fails, this method can be used to look up candidate
3269     /// entities with the expected name. It allows filtering them using the
3270     /// supplied predicate (which should be used to only accept the types of
3271     /// definitions expected e.g. traits). The lookup spans across all crates.
3272     ///
3273     /// NOTE: The method does not look into imports, but this is not a problem,
3274     /// since we report the definitions (thus, the de-aliased imports).
3275     fn lookup_import_candidates<FilterFn>(&mut self,
3276                                           lookup_name: Name,
3277                                           namespace: Namespace,
3278                                           filter_fn: FilterFn)
3279                                           -> Vec<ImportSuggestion>
3280         where FilterFn: Fn(Def) -> bool
3281     {
3282         let mut candidates = Vec::new();
3283         let mut worklist = Vec::new();
3284         let mut seen_modules = FxHashSet();
3285         worklist.push((self.graph_root, Vec::new(), false));
3286
3287         while let Some((in_module,
3288                         path_segments,
3289                         in_module_is_extern)) = worklist.pop() {
3290             self.populate_module_if_necessary(in_module);
3291
3292             in_module.for_each_child(|ident, ns, name_binding| {
3293
3294                 // avoid imports entirely
3295                 if name_binding.is_import() && !name_binding.is_extern_crate() { return; }
3296                 // avoid non-importable candidates as well
3297                 if !name_binding.is_importable() { return; }
3298
3299                 // collect results based on the filter function
3300                 if ident.name == lookup_name && ns == namespace {
3301                     if filter_fn(name_binding.def()) {
3302                         // create the path
3303                         let mut segms = path_segments.clone();
3304                         segms.push(ast::PathSegment::from_ident(ident, name_binding.span));
3305                         let path = Path {
3306                             span: name_binding.span,
3307                             segments: segms,
3308                         };
3309                         // the entity is accessible in the following cases:
3310                         // 1. if it's defined in the same crate, it's always
3311                         // accessible (since private entities can be made public)
3312                         // 2. if it's defined in another crate, it's accessible
3313                         // only if both the module is public and the entity is
3314                         // declared as public (due to pruning, we don't explore
3315                         // outside crate private modules => no need to check this)
3316                         if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
3317                             candidates.push(ImportSuggestion { path: path });
3318                         }
3319                     }
3320                 }
3321
3322                 // collect submodules to explore
3323                 if let Some(module) = name_binding.module() {
3324                     // form the path
3325                     let mut path_segments = path_segments.clone();
3326                     path_segments.push(ast::PathSegment::from_ident(ident, name_binding.span));
3327
3328                     if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
3329                         // add the module to the lookup
3330                         let is_extern = in_module_is_extern || name_binding.is_extern_crate();
3331                         if seen_modules.insert(module.def_id().unwrap()) {
3332                             worklist.push((module, path_segments, is_extern));
3333                         }
3334                     }
3335                 }
3336             })
3337         }
3338
3339         candidates
3340     }
3341
3342     fn record_def(&mut self, node_id: NodeId, resolution: PathResolution) {
3343         debug!("(recording def) recording {:?} for {}", resolution, node_id);
3344         if let Some(prev_res) = self.def_map.insert(node_id, resolution) {
3345             panic!("path resolved multiple times ({:?} before, {:?} now)", prev_res, resolution);
3346         }
3347     }
3348
3349     fn resolve_visibility(&mut self, vis: &ast::Visibility) -> ty::Visibility {
3350         match *vis {
3351             ast::Visibility::Public => ty::Visibility::Public,
3352             ast::Visibility::Crate(..) => ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX)),
3353             ast::Visibility::Inherited => {
3354                 ty::Visibility::Restricted(self.current_module.normal_ancestor_id)
3355             }
3356             ast::Visibility::Restricted { ref path, id } => {
3357                 let def = self.smart_resolve_path(id, None, path,
3358                                                   PathSource::Visibility).base_def();
3359                 if def == Def::Err {
3360                     ty::Visibility::Public
3361                 } else {
3362                     let vis = ty::Visibility::Restricted(def.def_id());
3363                     if self.is_accessible(vis) {
3364                         vis
3365                     } else {
3366                         self.session.span_err(path.span, "visibilities can only be restricted \
3367                                                           to ancestor modules");
3368                         ty::Visibility::Public
3369                     }
3370                 }
3371             }
3372         }
3373     }
3374
3375     fn is_accessible(&self, vis: ty::Visibility) -> bool {
3376         vis.is_accessible_from(self.current_module.normal_ancestor_id, self)
3377     }
3378
3379     fn is_accessible_from(&self, vis: ty::Visibility, module: Module<'a>) -> bool {
3380         vis.is_accessible_from(module.normal_ancestor_id, self)
3381     }
3382
3383     fn report_errors(&mut self) {
3384         self.report_shadowing_errors();
3385         let mut reported_spans = FxHashSet();
3386
3387         for &AmbiguityError { span, name, b1, b2, lexical, legacy } in &self.ambiguity_errors {
3388             if !reported_spans.insert(span) { continue }
3389             let participle = |binding: &NameBinding| {
3390                 if binding.is_import() { "imported" } else { "defined" }
3391             };
3392             let msg1 = format!("`{}` could refer to the name {} here", name, participle(b1));
3393             let msg2 = format!("`{}` could also refer to the name {} here", name, participle(b2));
3394             let note = if b1.expansion == Mark::root() || !lexical && b1.is_glob_import() {
3395                 format!("consider adding an explicit import of `{}` to disambiguate", name)
3396             } else if let Def::Macro(..) = b1.def() {
3397                 format!("macro-expanded {} do not shadow",
3398                         if b1.is_import() { "macro imports" } else { "macros" })
3399             } else {
3400                 format!("macro-expanded {} do not shadow when used in a macro invocation path",
3401                         if b1.is_import() { "imports" } else { "items" })
3402             };
3403             if legacy {
3404                 let id = match b2.kind {
3405                     NameBindingKind::Import { directive, .. } => directive.id,
3406                     _ => unreachable!(),
3407                 };
3408                 let mut span = MultiSpan::from_span(span);
3409                 span.push_span_label(b1.span, msg1);
3410                 span.push_span_label(b2.span, msg2);
3411                 let msg = format!("`{}` is ambiguous", name);
3412                 self.session.add_lint(lint::builtin::LEGACY_IMPORTS, id, span, msg);
3413             } else {
3414                 let mut err =
3415                     self.session.struct_span_err(span, &format!("`{}` is ambiguous", name));
3416                 err.span_note(b1.span, &msg1);
3417                 match b2.def() {
3418                     Def::Macro(..) if b2.span == DUMMY_SP =>
3419                         err.note(&format!("`{}` is also a builtin macro", name)),
3420                     _ => err.span_note(b2.span, &msg2),
3421                 };
3422                 err.note(&note).emit();
3423             }
3424         }
3425
3426         for &PrivacyError(span, name, binding) in &self.privacy_errors {
3427             if !reported_spans.insert(span) { continue }
3428             span_err!(self.session, span, E0603, "{} `{}` is private", binding.descr(), name);
3429         }
3430     }
3431
3432     fn report_shadowing_errors(&mut self) {
3433         for (ident, scope) in replace(&mut self.lexical_macro_resolutions, Vec::new()) {
3434             self.resolve_legacy_scope(scope, ident, true);
3435         }
3436
3437         let mut reported_errors = FxHashSet();
3438         for binding in replace(&mut self.disallowed_shadowing, Vec::new()) {
3439             if self.resolve_legacy_scope(&binding.parent, binding.ident, false).is_some() &&
3440                reported_errors.insert((binding.ident, binding.span)) {
3441                 let msg = format!("`{}` is already in scope", binding.ident);
3442                 self.session.struct_span_err(binding.span, &msg)
3443                     .note("macro-expanded `macro_rules!`s may not shadow \
3444                            existing macros (see RFC 1560)")
3445                     .emit();
3446             }
3447         }
3448     }
3449
3450     fn report_conflict(&mut self,
3451                        parent: Module,
3452                        ident: Ident,
3453                        ns: Namespace,
3454                        new_binding: &NameBinding,
3455                        old_binding: &NameBinding) {
3456         // Error on the second of two conflicting names
3457         if old_binding.span.lo > new_binding.span.lo {
3458             return self.report_conflict(parent, ident, ns, old_binding, new_binding);
3459         }
3460
3461         let container = match parent.kind {
3462             ModuleKind::Def(Def::Mod(_), _) => "module",
3463             ModuleKind::Def(Def::Trait(_), _) => "trait",
3464             ModuleKind::Block(..) => "block",
3465             _ => "enum",
3466         };
3467
3468         let old_noun = match old_binding.is_import() {
3469             true => "import",
3470             false => "definition",
3471         };
3472
3473         let new_participle = match new_binding.is_import() {
3474             true => "imported",
3475             false => "defined",
3476         };
3477
3478         let (name, span) = (ident.name, new_binding.span);
3479
3480         if let Some(s) = self.name_already_seen.get(&name) {
3481             if s == &span {
3482                 return;
3483             }
3484         }
3485
3486         let old_kind = match (ns, old_binding.module()) {
3487             (ValueNS, _) => "value",
3488             (MacroNS, _) => "macro",
3489             (TypeNS, _) if old_binding.is_extern_crate() => "extern crate",
3490             (TypeNS, Some(module)) if module.is_normal() => "module",
3491             (TypeNS, Some(module)) if module.is_trait() => "trait",
3492             (TypeNS, _) => "type",
3493         };
3494
3495         let namespace = match ns {
3496             ValueNS => "value",
3497             MacroNS => "macro",
3498             TypeNS => "type",
3499         };
3500
3501         let msg = format!("the name `{}` is defined multiple times", name);
3502
3503         let mut err = match (old_binding.is_extern_crate(), new_binding.is_extern_crate()) {
3504             (true, true) => struct_span_err!(self.session, span, E0259, "{}", msg),
3505             (true, _) | (_, true) => match new_binding.is_import() && old_binding.is_import() {
3506                 true => struct_span_err!(self.session, span, E0254, "{}", msg),
3507                 false => struct_span_err!(self.session, span, E0260, "{}", msg),
3508             },
3509             _ => match (old_binding.is_import(), new_binding.is_import()) {
3510                 (false, false) => struct_span_err!(self.session, span, E0428, "{}", msg),
3511                 (true, true) => struct_span_err!(self.session, span, E0252, "{}", msg),
3512                 _ => struct_span_err!(self.session, span, E0255, "{}", msg),
3513             },
3514         };
3515
3516         err.note(&format!("`{}` must be defined only once in the {} namespace of this {}",
3517                           name,
3518                           namespace,
3519                           container));
3520
3521         err.span_label(span, format!("`{}` re{} here", name, new_participle));
3522         if old_binding.span != syntax_pos::DUMMY_SP {
3523             err.span_label(old_binding.span, format!("previous {} of the {} `{}` here",
3524                                                       old_noun, old_kind, name));
3525         }
3526
3527         err.emit();
3528         self.name_already_seen.insert(name, span);
3529     }
3530
3531     fn warn_legacy_self_import(&self, directive: &'a ImportDirective<'a>) {
3532         let (id, span) = (directive.id, directive.span);
3533         let msg = "`self` no longer imports values".to_string();
3534         self.session.add_lint(lint::builtin::LEGACY_IMPORTS, id, span, msg);
3535     }
3536
3537     fn check_proc_macro_attrs(&mut self, attrs: &[ast::Attribute]) {
3538         if self.proc_macro_enabled { return; }
3539
3540         for attr in attrs {
3541             if attr.path.segments.len() > 1 {
3542                 continue
3543             }
3544             let ident = attr.path.segments[0].identifier;
3545             let result = self.resolve_lexical_macro_path_segment(ident,
3546                                                                  MacroNS,
3547                                                                  false,
3548                                                                  attr.path.span);
3549             if let Ok(binding) = result {
3550                 if let SyntaxExtension::AttrProcMacro(..) = *binding.binding().get_macro(self) {
3551                     attr::mark_known(attr);
3552
3553                     let msg = "attribute procedural macros are experimental";
3554                     let feature = "proc_macro";
3555
3556                     feature_err(&self.session.parse_sess, feature,
3557                                 attr.span, GateIssue::Language, msg)
3558                         .span_note(binding.span(), "procedural macro imported here")
3559                         .emit();
3560                 }
3561             }
3562         }
3563     }
3564 }
3565
3566 fn is_struct_like(def: Def) -> bool {
3567     match def {
3568         Def::VariantCtor(_, CtorKind::Fictive) => true,
3569         _ => PathSource::Struct.is_expected(def),
3570     }
3571 }
3572
3573 fn is_self_type(path: &[Ident], namespace: Namespace) -> bool {
3574     namespace == TypeNS && path.len() == 1 && path[0].name == keywords::SelfType.name()
3575 }
3576
3577 fn is_self_value(path: &[Ident], namespace: Namespace) -> bool {
3578     namespace == ValueNS && path.len() == 1 && path[0].name == keywords::SelfValue.name()
3579 }
3580
3581 fn names_to_string(idents: &[Ident]) -> String {
3582     let mut result = String::new();
3583     for (i, ident) in idents.iter().filter(|i| i.name != keywords::CrateRoot.name()).enumerate() {
3584         if i > 0 {
3585             result.push_str("::");
3586         }
3587         result.push_str(&ident.name.as_str());
3588     }
3589     result
3590 }
3591
3592 fn path_names_to_string(path: &Path) -> String {
3593     names_to_string(&path.segments.iter().map(|seg| seg.identifier).collect::<Vec<_>>())
3594 }
3595
3596 /// Get the path for an enum and the variant from an `ImportSuggestion` for an enum variant.
3597 fn import_candidate_to_paths(suggestion: &ImportSuggestion) -> (Span, String, String) {
3598     let variant_path = &suggestion.path;
3599     let variant_path_string = path_names_to_string(variant_path);
3600
3601     let path_len = suggestion.path.segments.len();
3602     let enum_path = ast::Path {
3603         span: suggestion.path.span,
3604         segments: suggestion.path.segments[0..path_len - 1].to_vec(),
3605     };
3606     let enum_path_string = path_names_to_string(&enum_path);
3607
3608     (suggestion.path.span, variant_path_string, enum_path_string)
3609 }
3610
3611
3612 /// When an entity with a given name is not available in scope, we search for
3613 /// entities with that name in all crates. This method allows outputting the
3614 /// results of this search in a programmer-friendly way
3615 fn show_candidates(err: &mut DiagnosticBuilder,
3616                    span: Span,
3617                    candidates: &[ImportSuggestion],
3618                    better: bool) {
3619
3620     // we want consistent results across executions, but candidates are produced
3621     // by iterating through a hash map, so make sure they are ordered:
3622     let mut path_strings: Vec<_> =
3623         candidates.into_iter().map(|c| path_names_to_string(&c.path)).collect();
3624     path_strings.sort();
3625
3626     let better = if better { "better " } else { "" };
3627     let msg_diff = match path_strings.len() {
3628         1 => " is found in another module, you can import it",
3629         _ => "s are found in other modules, you can import them",
3630     };
3631     let msg = format!("possible {}candidate{} into scope", better, msg_diff);
3632
3633     for candidate in &mut path_strings {
3634         *candidate = format!("use {};\n", candidate);
3635     }
3636
3637     err.span_suggestions(span, &msg, path_strings);
3638 }
3639
3640 /// A somewhat inefficient routine to obtain the name of a module.
3641 fn module_to_string(module: Module) -> String {
3642     let mut names = Vec::new();
3643
3644     fn collect_mod(names: &mut Vec<Ident>, module: Module) {
3645         if let ModuleKind::Def(_, name) = module.kind {
3646             if let Some(parent) = module.parent {
3647                 names.push(Ident::with_empty_ctxt(name));
3648                 collect_mod(names, parent);
3649             }
3650         } else {
3651             // danger, shouldn't be ident?
3652             names.push(Ident::from_str("<opaque>"));
3653             collect_mod(names, module.parent.unwrap());
3654         }
3655     }
3656     collect_mod(&mut names, module);
3657
3658     if names.is_empty() {
3659         return "???".to_string();
3660     }
3661     names_to_string(&names.into_iter().rev().collect::<Vec<_>>())
3662 }
3663
3664 fn err_path_resolution() -> PathResolution {
3665     PathResolution::new(Def::Err)
3666 }
3667
3668 #[derive(PartialEq,Copy, Clone)]
3669 pub enum MakeGlobMap {
3670     Yes,
3671     No,
3672 }
3673
3674 __build_diagnostic_array! { librustc_resolve, DIAGNOSTICS }