]> git.lizzy.rs Git - rust.git/blob - src/librustc_resolve/lib.rs
4a2361055d730533378d936b7ba75325558bd319
[rust.git] / src / librustc_resolve / lib.rs
1 // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 #![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
12       html_favicon_url = "https://doc.rust-lang.org/favicon.ico",
13       html_root_url = "https://doc.rust-lang.org/nightly/")]
14
15 #![feature(crate_visibility_modifier)]
16 #![cfg_attr(not(stage0), feature(nll))]
17 #![feature(rustc_diagnostic_macros)]
18 #![feature(slice_sort_by_cached_key)]
19
20 #[macro_use]
21 extern crate log;
22 #[macro_use]
23 extern crate syntax;
24 extern crate syntax_pos;
25 extern crate rustc_errors as errors;
26 extern crate arena;
27 #[macro_use]
28 extern crate rustc;
29 extern crate rustc_data_structures;
30 extern crate rustc_metadata;
31
32 pub use rustc::hir::def::{Namespace, PerNS};
33
34 use self::TypeParameters::*;
35 use self::RibKind::*;
36
37 use rustc::hir::map::{Definitions, DefCollector};
38 use rustc::hir::{self, PrimTy, TyBool, TyChar, TyFloat, TyInt, TyUint, TyStr};
39 use rustc::middle::cstore::CrateStore;
40 use rustc::session::Session;
41 use rustc::lint;
42 use rustc::hir::def::*;
43 use rustc::hir::def::Namespace::*;
44 use rustc::hir::def_id::{CRATE_DEF_INDEX, LOCAL_CRATE, DefId};
45 use rustc::ty;
46 use rustc::hir::{Freevar, FreevarMap, TraitCandidate, TraitMap, GlobMap};
47 use rustc::util::nodemap::{NodeMap, NodeSet, FxHashMap, FxHashSet, DefIdMap};
48
49 use rustc_metadata::creader::CrateLoader;
50 use rustc_metadata::cstore::CStore;
51
52 use syntax::codemap::CodeMap;
53 use syntax::ext::hygiene::{Mark, Transparency, SyntaxContext};
54 use syntax::ast::{self, Name, NodeId, Ident, FloatTy, IntTy, UintTy};
55 use syntax::ext::base::SyntaxExtension;
56 use syntax::ext::base::Determinacy::{self, Determined, Undetermined};
57 use syntax::ext::base::MacroKind;
58 use syntax::symbol::{Symbol, keywords};
59 use syntax::util::lev_distance::find_best_match_for_name;
60
61 use syntax::visit::{self, FnKind, Visitor};
62 use syntax::attr;
63 use syntax::ast::{CRATE_NODE_ID, Arm, IsAsync, BindingMode, Block, Crate, Expr, ExprKind};
64 use syntax::ast::{FnDecl, ForeignItem, ForeignItemKind, GenericParamKind, Generics};
65 use syntax::ast::{Item, ItemKind, ImplItem, ImplItemKind};
66 use syntax::ast::{Label, Local, Mutability, Pat, PatKind, Path};
67 use syntax::ast::{QSelf, TraitItemKind, TraitRef, Ty, TyKind};
68 use syntax::feature_gate::{feature_err, GateIssue};
69 use syntax::ptr::P;
70
71 use syntax_pos::{Span, DUMMY_SP, MultiSpan};
72 use errors::{DiagnosticBuilder, DiagnosticId};
73
74 use std::cell::{Cell, RefCell};
75 use std::cmp;
76 use std::collections::BTreeSet;
77 use std::fmt;
78 use std::iter;
79 use std::mem::replace;
80 use rustc_data_structures::sync::Lrc;
81
82 use resolve_imports::{ImportDirective, ImportDirectiveSubclass, NameResolution, ImportResolver};
83 use macros::{InvocationData, LegacyBinding, LegacyScope, MacroBinding};
84
85 // NB: This module needs to be declared first so diagnostics are
86 // registered before they are used.
87 mod diagnostics;
88
89 mod macros;
90 mod check_unused;
91 mod build_reduced_graph;
92 mod resolve_imports;
93
94 fn is_known_tool(name: Name) -> bool {
95     ["clippy", "rustfmt"].contains(&&*name.as_str())
96 }
97
98 /// A free importable items suggested in case of resolution failure.
99 struct ImportSuggestion {
100     path: Path,
101 }
102
103 /// A field or associated item from self type suggested in case of resolution failure.
104 enum AssocSuggestion {
105     Field,
106     MethodWithSelf,
107     AssocItem,
108 }
109
110 #[derive(Eq)]
111 struct BindingError {
112     name: Name,
113     origin: BTreeSet<Span>,
114     target: BTreeSet<Span>,
115 }
116
117 impl PartialOrd for BindingError {
118     fn partial_cmp(&self, other: &BindingError) -> Option<cmp::Ordering> {
119         Some(self.cmp(other))
120     }
121 }
122
123 impl PartialEq for BindingError {
124     fn eq(&self, other: &BindingError) -> bool {
125         self.name == other.name
126     }
127 }
128
129 impl Ord for BindingError {
130     fn cmp(&self, other: &BindingError) -> cmp::Ordering {
131         self.name.cmp(&other.name)
132     }
133 }
134
135 enum ResolutionError<'a> {
136     /// error E0401: can't use type parameters from outer function
137     TypeParametersFromOuterFunction(Def),
138     /// error E0403: the name is already used for a type parameter in this type parameter list
139     NameAlreadyUsedInTypeParameterList(Name, &'a Span),
140     /// error E0407: method is not a member of trait
141     MethodNotMemberOfTrait(Name, &'a str),
142     /// error E0437: type is not a member of trait
143     TypeNotMemberOfTrait(Name, &'a str),
144     /// error E0438: const is not a member of trait
145     ConstNotMemberOfTrait(Name, &'a str),
146     /// error E0408: variable `{}` is not bound in all patterns
147     VariableNotBoundInPattern(&'a BindingError),
148     /// error E0409: variable `{}` is bound in inconsistent ways within the same match arm
149     VariableBoundWithDifferentMode(Name, Span),
150     /// error E0415: identifier is bound more than once in this parameter list
151     IdentifierBoundMoreThanOnceInParameterList(&'a str),
152     /// error E0416: identifier is bound more than once in the same pattern
153     IdentifierBoundMoreThanOnceInSamePattern(&'a str),
154     /// error E0426: use of undeclared label
155     UndeclaredLabel(&'a str, Option<Name>),
156     /// error E0429: `self` imports are only allowed within a { } list
157     SelfImportsOnlyAllowedWithin,
158     /// error E0430: `self` import can only appear once in the list
159     SelfImportCanOnlyAppearOnceInTheList,
160     /// error E0431: `self` import can only appear in an import list with a non-empty prefix
161     SelfImportOnlyInImportListWithNonEmptyPrefix,
162     /// error E0432: unresolved import
163     UnresolvedImport(Option<(Span, &'a str, &'a str)>),
164     /// error E0433: failed to resolve
165     FailedToResolve(&'a str),
166     /// error E0434: can't capture dynamic environment in a fn item
167     CannotCaptureDynamicEnvironmentInFnItem,
168     /// error E0435: attempt to use a non-constant value in a constant
169     AttemptToUseNonConstantValueInConstant,
170     /// error E0530: X bindings cannot shadow Ys
171     BindingShadowsSomethingUnacceptable(&'a str, Name, &'a NameBinding<'a>),
172     /// error E0128: type parameters with a default cannot use forward declared identifiers
173     ForwardDeclaredTyParam,
174 }
175
176 /// Combines an error with provided span and emits it
177 ///
178 /// This takes the error provided, combines it with the span and any additional spans inside the
179 /// error and emits it.
180 fn resolve_error<'sess, 'a>(resolver: &'sess Resolver,
181                             span: Span,
182                             resolution_error: ResolutionError<'a>) {
183     resolve_struct_error(resolver, span, resolution_error).emit();
184 }
185
186 fn resolve_struct_error<'sess, 'a>(resolver: &'sess Resolver,
187                                    span: Span,
188                                    resolution_error: ResolutionError<'a>)
189                                    -> DiagnosticBuilder<'sess> {
190     match resolution_error {
191         ResolutionError::TypeParametersFromOuterFunction(outer_def) => {
192             let mut err = struct_span_err!(resolver.session,
193                                            span,
194                                            E0401,
195                                            "can't use type parameters from outer function");
196             err.span_label(span, "use of type variable from outer function");
197
198             let cm = resolver.session.codemap();
199             match outer_def {
200                 Def::SelfTy(_, maybe_impl_defid) => {
201                     if let Some(impl_span) = maybe_impl_defid.map_or(None,
202                             |def_id| resolver.definitions.opt_span(def_id)) {
203                         err.span_label(reduce_impl_span_to_impl_keyword(cm, impl_span),
204                                     "`Self` type implicitely declared here, on the `impl`");
205                     }
206                 },
207                 Def::TyParam(typaram_defid) => {
208                     if let Some(typaram_span) = resolver.definitions.opt_span(typaram_defid) {
209                         err.span_label(typaram_span, "type variable from outer function");
210                     }
211                 },
212                 _ => {
213                     bug!("TypeParametersFromOuterFunction should only be used with Def::SelfTy or \
214                          Def::TyParam")
215                 }
216             }
217
218             // Try to retrieve the span of the function signature and generate a new message with
219             // a local type parameter
220             let sugg_msg = "try using a local type parameter instead";
221             if let Some((sugg_span, new_snippet)) = cm.generate_local_type_param_snippet(span) {
222                 // Suggest the modification to the user
223                 err.span_suggestion(sugg_span,
224                                     sugg_msg,
225                                     new_snippet);
226             } else if let Some(sp) = cm.generate_fn_name_span(span) {
227                 err.span_label(sp, "try adding a local type parameter in this method instead");
228             } else {
229                 err.help("try using a local type parameter instead");
230             }
231
232             err
233         }
234         ResolutionError::NameAlreadyUsedInTypeParameterList(name, first_use_span) => {
235              let mut err = struct_span_err!(resolver.session,
236                                             span,
237                                             E0403,
238                                             "the name `{}` is already used for a type parameter \
239                                             in this type parameter list",
240                                             name);
241              err.span_label(span, "already used");
242              err.span_label(first_use_span.clone(), format!("first use of `{}`", name));
243              err
244         }
245         ResolutionError::MethodNotMemberOfTrait(method, trait_) => {
246             let mut err = struct_span_err!(resolver.session,
247                                            span,
248                                            E0407,
249                                            "method `{}` is not a member of trait `{}`",
250                                            method,
251                                            trait_);
252             err.span_label(span, format!("not a member of trait `{}`", trait_));
253             err
254         }
255         ResolutionError::TypeNotMemberOfTrait(type_, trait_) => {
256             let mut err = struct_span_err!(resolver.session,
257                              span,
258                              E0437,
259                              "type `{}` is not a member of trait `{}`",
260                              type_,
261                              trait_);
262             err.span_label(span, format!("not a member of trait `{}`", trait_));
263             err
264         }
265         ResolutionError::ConstNotMemberOfTrait(const_, trait_) => {
266             let mut err = struct_span_err!(resolver.session,
267                              span,
268                              E0438,
269                              "const `{}` is not a member of trait `{}`",
270                              const_,
271                              trait_);
272             err.span_label(span, format!("not a member of trait `{}`", trait_));
273             err
274         }
275         ResolutionError::VariableNotBoundInPattern(binding_error) => {
276             let target_sp = binding_error.target.iter().cloned().collect::<Vec<_>>();
277             let msp = MultiSpan::from_spans(target_sp.clone());
278             let msg = format!("variable `{}` is not bound in all patterns", binding_error.name);
279             let mut err = resolver.session.struct_span_err_with_code(
280                 msp,
281                 &msg,
282                 DiagnosticId::Error("E0408".into()),
283             );
284             for sp in target_sp {
285                 err.span_label(sp, format!("pattern doesn't bind `{}`", binding_error.name));
286             }
287             let origin_sp = binding_error.origin.iter().cloned();
288             for sp in origin_sp {
289                 err.span_label(sp, "variable not in all patterns");
290             }
291             err
292         }
293         ResolutionError::VariableBoundWithDifferentMode(variable_name,
294                                                         first_binding_span) => {
295             let mut err = struct_span_err!(resolver.session,
296                              span,
297                              E0409,
298                              "variable `{}` is bound in inconsistent \
299                              ways within the same match arm",
300                              variable_name);
301             err.span_label(span, "bound in different ways");
302             err.span_label(first_binding_span, "first binding");
303             err
304         }
305         ResolutionError::IdentifierBoundMoreThanOnceInParameterList(identifier) => {
306             let mut err = struct_span_err!(resolver.session,
307                              span,
308                              E0415,
309                              "identifier `{}` is bound more than once in this parameter list",
310                              identifier);
311             err.span_label(span, "used as parameter more than once");
312             err
313         }
314         ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(identifier) => {
315             let mut err = struct_span_err!(resolver.session,
316                              span,
317                              E0416,
318                              "identifier `{}` is bound more than once in the same pattern",
319                              identifier);
320             err.span_label(span, "used in a pattern more than once");
321             err
322         }
323         ResolutionError::UndeclaredLabel(name, lev_candidate) => {
324             let mut err = struct_span_err!(resolver.session,
325                                            span,
326                                            E0426,
327                                            "use of undeclared label `{}`",
328                                            name);
329             if let Some(lev_candidate) = lev_candidate {
330                 err.span_label(span, format!("did you mean `{}`?", lev_candidate));
331             } else {
332                 err.span_label(span, format!("undeclared label `{}`", name));
333             }
334             err
335         }
336         ResolutionError::SelfImportsOnlyAllowedWithin => {
337             struct_span_err!(resolver.session,
338                              span,
339                              E0429,
340                              "{}",
341                              "`self` imports are only allowed within a { } list")
342         }
343         ResolutionError::SelfImportCanOnlyAppearOnceInTheList => {
344             let mut err = struct_span_err!(resolver.session, span, E0430,
345                                            "`self` import can only appear once in an import list");
346             err.span_label(span, "can only appear once in an import list");
347             err
348         }
349         ResolutionError::SelfImportOnlyInImportListWithNonEmptyPrefix => {
350             let mut err = struct_span_err!(resolver.session, span, E0431,
351                                            "`self` import can only appear in an import list with \
352                                             a non-empty prefix");
353             err.span_label(span, "can only appear in an import list with a non-empty prefix");
354             err
355         }
356         ResolutionError::UnresolvedImport(name) => {
357             let (span, msg) = match name {
358                 Some((sp, n, _)) => (sp, format!("unresolved import `{}`", n)),
359                 None => (span, "unresolved import".to_owned()),
360             };
361             let mut err = struct_span_err!(resolver.session, span, E0432, "{}", msg);
362             if let Some((_, _, p)) = name {
363                 err.span_label(span, p);
364             }
365             err
366         }
367         ResolutionError::FailedToResolve(msg) => {
368             let mut err = struct_span_err!(resolver.session, span, E0433,
369                                            "failed to resolve. {}", msg);
370             err.span_label(span, msg);
371             err
372         }
373         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem => {
374             let mut err = struct_span_err!(resolver.session,
375                                            span,
376                                            E0434,
377                                            "{}",
378                                            "can't capture dynamic environment in a fn item");
379             err.help("use the `|| { ... }` closure form instead");
380             err
381         }
382         ResolutionError::AttemptToUseNonConstantValueInConstant => {
383             let mut err = struct_span_err!(resolver.session, span, E0435,
384                                            "attempt to use a non-constant value in a constant");
385             err.span_label(span, "non-constant value");
386             err
387         }
388         ResolutionError::BindingShadowsSomethingUnacceptable(what_binding, name, binding) => {
389             let shadows_what = PathResolution::new(binding.def()).kind_name();
390             let mut err = struct_span_err!(resolver.session,
391                                            span,
392                                            E0530,
393                                            "{}s cannot shadow {}s", what_binding, shadows_what);
394             err.span_label(span, format!("cannot be named the same as a {}", shadows_what));
395             let participle = if binding.is_import() { "imported" } else { "defined" };
396             let msg = format!("a {} `{}` is {} here", shadows_what, name, participle);
397             err.span_label(binding.span, msg);
398             err
399         }
400         ResolutionError::ForwardDeclaredTyParam => {
401             let mut err = struct_span_err!(resolver.session, span, E0128,
402                                            "type parameters with a default cannot use \
403                                             forward declared identifiers");
404             err.span_label(
405                 span, "defaulted type parameters cannot be forward declared".to_string());
406             err
407         }
408     }
409 }
410
411 /// Adjust the impl span so that just the `impl` keyword is taken by removing
412 /// everything after `<` (`"impl<T> Iterator for A<T> {}" -> "impl"`) and
413 /// everything after the first whitespace (`"impl Iterator for A" -> "impl"`)
414 ///
415 /// Attention: The method used is very fragile since it essentially duplicates the work of the
416 /// parser. If you need to use this function or something similar, please consider updating the
417 /// codemap functions and this function to something more robust.
418 fn reduce_impl_span_to_impl_keyword(cm: &CodeMap, impl_span: Span) -> Span {
419     let impl_span = cm.span_until_char(impl_span, '<');
420     let impl_span = cm.span_until_whitespace(impl_span);
421     impl_span
422 }
423
424 #[derive(Copy, Clone, Debug)]
425 struct BindingInfo {
426     span: Span,
427     binding_mode: BindingMode,
428 }
429
430 /// Map from the name in a pattern to its binding mode.
431 type BindingMap = FxHashMap<Ident, BindingInfo>;
432
433 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
434 enum PatternSource {
435     Match,
436     IfLet,
437     WhileLet,
438     Let,
439     For,
440     FnParam,
441 }
442
443 impl PatternSource {
444     fn descr(self) -> &'static str {
445         match self {
446             PatternSource::Match => "match binding",
447             PatternSource::IfLet => "if let binding",
448             PatternSource::WhileLet => "while let binding",
449             PatternSource::Let => "let binding",
450             PatternSource::For => "for binding",
451             PatternSource::FnParam => "function parameter",
452         }
453     }
454 }
455
456 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
457 enum AliasPossibility {
458     No,
459     Maybe,
460 }
461
462 #[derive(Copy, Clone, Debug)]
463 enum PathSource<'a> {
464     // Type paths `Path`.
465     Type,
466     // Trait paths in bounds or impls.
467     Trait(AliasPossibility),
468     // Expression paths `path`, with optional parent context.
469     Expr(Option<&'a Expr>),
470     // Paths in path patterns `Path`.
471     Pat,
472     // Paths in struct expressions and patterns `Path { .. }`.
473     Struct,
474     // Paths in tuple struct patterns `Path(..)`.
475     TupleStruct,
476     // `m::A::B` in `<T as m::A>::B::C`.
477     TraitItem(Namespace),
478     // Path in `pub(path)`
479     Visibility,
480     // Path in `use a::b::{...};`
481     ImportPrefix,
482 }
483
484 impl<'a> PathSource<'a> {
485     fn namespace(self) -> Namespace {
486         match self {
487             PathSource::Type | PathSource::Trait(_) | PathSource::Struct |
488             PathSource::Visibility | PathSource::ImportPrefix => TypeNS,
489             PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct => ValueNS,
490             PathSource::TraitItem(ns) => ns,
491         }
492     }
493
494     fn global_by_default(self) -> bool {
495         match self {
496             PathSource::Visibility | PathSource::ImportPrefix => true,
497             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
498             PathSource::Struct | PathSource::TupleStruct |
499             PathSource::Trait(_) | PathSource::TraitItem(..) => false,
500         }
501     }
502
503     fn defer_to_typeck(self) -> bool {
504         match self {
505             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
506             PathSource::Struct | PathSource::TupleStruct => true,
507             PathSource::Trait(_) | PathSource::TraitItem(..) |
508             PathSource::Visibility | PathSource::ImportPrefix => false,
509         }
510     }
511
512     fn descr_expected(self) -> &'static str {
513         match self {
514             PathSource::Type => "type",
515             PathSource::Trait(_) => "trait",
516             PathSource::Pat => "unit struct/variant or constant",
517             PathSource::Struct => "struct, variant or union type",
518             PathSource::TupleStruct => "tuple struct/variant",
519             PathSource::Visibility => "module",
520             PathSource::ImportPrefix => "module or enum",
521             PathSource::TraitItem(ns) => match ns {
522                 TypeNS => "associated type",
523                 ValueNS => "method or associated constant",
524                 MacroNS => bug!("associated macro"),
525             },
526             PathSource::Expr(parent) => match parent.map(|p| &p.node) {
527                 // "function" here means "anything callable" rather than `Def::Fn`,
528                 // this is not precise but usually more helpful than just "value".
529                 Some(&ExprKind::Call(..)) => "function",
530                 _ => "value",
531             },
532         }
533     }
534
535     fn is_expected(self, def: Def) -> bool {
536         match self {
537             PathSource::Type => match def {
538                 Def::Struct(..) | Def::Union(..) | Def::Enum(..) |
539                 Def::Trait(..) | Def::TyAlias(..) | Def::AssociatedTy(..) |
540                 Def::PrimTy(..) | Def::TyParam(..) | Def::SelfTy(..) |
541                 Def::Existential(..) |
542                 Def::TyForeign(..) => true,
543                 _ => false,
544             },
545             PathSource::Trait(AliasPossibility::No) => match def {
546                 Def::Trait(..) => true,
547                 _ => false,
548             },
549             PathSource::Trait(AliasPossibility::Maybe) => match def {
550                 Def::Trait(..) => true,
551                 Def::TraitAlias(..) => true,
552                 _ => false,
553             },
554             PathSource::Expr(..) => match def {
555                 Def::StructCtor(_, CtorKind::Const) | Def::StructCtor(_, CtorKind::Fn) |
556                 Def::VariantCtor(_, CtorKind::Const) | Def::VariantCtor(_, CtorKind::Fn) |
557                 Def::Const(..) | Def::Static(..) | Def::Local(..) | Def::Upvar(..) |
558                 Def::Fn(..) | Def::Method(..) | Def::AssociatedConst(..) => true,
559                 _ => false,
560             },
561             PathSource::Pat => match def {
562                 Def::StructCtor(_, CtorKind::Const) |
563                 Def::VariantCtor(_, CtorKind::Const) |
564                 Def::Const(..) | Def::AssociatedConst(..) => true,
565                 _ => false,
566             },
567             PathSource::TupleStruct => match def {
568                 Def::StructCtor(_, CtorKind::Fn) | Def::VariantCtor(_, CtorKind::Fn) => true,
569                 _ => false,
570             },
571             PathSource::Struct => match def {
572                 Def::Struct(..) | Def::Union(..) | Def::Variant(..) |
573                 Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => true,
574                 _ => false,
575             },
576             PathSource::TraitItem(ns) => match def {
577                 Def::AssociatedConst(..) | Def::Method(..) if ns == ValueNS => true,
578                 Def::AssociatedTy(..) if ns == TypeNS => true,
579                 _ => false,
580             },
581             PathSource::ImportPrefix => match def {
582                 Def::Mod(..) | Def::Enum(..) => true,
583                 _ => false,
584             },
585             PathSource::Visibility => match def {
586                 Def::Mod(..) => true,
587                 _ => false,
588             },
589         }
590     }
591
592     fn error_code(self, has_unexpected_resolution: bool) -> &'static str {
593         __diagnostic_used!(E0404);
594         __diagnostic_used!(E0405);
595         __diagnostic_used!(E0412);
596         __diagnostic_used!(E0422);
597         __diagnostic_used!(E0423);
598         __diagnostic_used!(E0425);
599         __diagnostic_used!(E0531);
600         __diagnostic_used!(E0532);
601         __diagnostic_used!(E0573);
602         __diagnostic_used!(E0574);
603         __diagnostic_used!(E0575);
604         __diagnostic_used!(E0576);
605         __diagnostic_used!(E0577);
606         __diagnostic_used!(E0578);
607         match (self, has_unexpected_resolution) {
608             (PathSource::Trait(_), true) => "E0404",
609             (PathSource::Trait(_), false) => "E0405",
610             (PathSource::Type, true) => "E0573",
611             (PathSource::Type, false) => "E0412",
612             (PathSource::Struct, true) => "E0574",
613             (PathSource::Struct, false) => "E0422",
614             (PathSource::Expr(..), true) => "E0423",
615             (PathSource::Expr(..), false) => "E0425",
616             (PathSource::Pat, true) | (PathSource::TupleStruct, true) => "E0532",
617             (PathSource::Pat, false) | (PathSource::TupleStruct, false) => "E0531",
618             (PathSource::TraitItem(..), true) => "E0575",
619             (PathSource::TraitItem(..), false) => "E0576",
620             (PathSource::Visibility, true) | (PathSource::ImportPrefix, true) => "E0577",
621             (PathSource::Visibility, false) | (PathSource::ImportPrefix, false) => "E0578",
622         }
623     }
624 }
625
626 struct UsePlacementFinder {
627     target_module: NodeId,
628     span: Option<Span>,
629     found_use: bool,
630 }
631
632 impl UsePlacementFinder {
633     fn check(krate: &Crate, target_module: NodeId) -> (Option<Span>, bool) {
634         let mut finder = UsePlacementFinder {
635             target_module,
636             span: None,
637             found_use: false,
638         };
639         visit::walk_crate(&mut finder, krate);
640         (finder.span, finder.found_use)
641     }
642 }
643
644 impl<'tcx> Visitor<'tcx> for UsePlacementFinder {
645     fn visit_mod(
646         &mut self,
647         module: &'tcx ast::Mod,
648         _: Span,
649         _: &[ast::Attribute],
650         node_id: NodeId,
651     ) {
652         if self.span.is_some() {
653             return;
654         }
655         if node_id != self.target_module {
656             visit::walk_mod(self, module);
657             return;
658         }
659         // find a use statement
660         for item in &module.items {
661             match item.node {
662                 ItemKind::Use(..) => {
663                     // don't suggest placing a use before the prelude
664                     // import or other generated ones
665                     if item.span.ctxt().outer().expn_info().is_none() {
666                         self.span = Some(item.span.shrink_to_lo());
667                         self.found_use = true;
668                         return;
669                     }
670                 },
671                 // don't place use before extern crate
672                 ItemKind::ExternCrate(_) => {}
673                 // but place them before the first other item
674                 _ => if self.span.map_or(true, |span| item.span < span ) {
675                     if item.span.ctxt().outer().expn_info().is_none() {
676                         // don't insert between attributes and an item
677                         if item.attrs.is_empty() {
678                             self.span = Some(item.span.shrink_to_lo());
679                         } else {
680                             // find the first attribute on the item
681                             for attr in &item.attrs {
682                                 if self.span.map_or(true, |span| attr.span < span) {
683                                     self.span = Some(attr.span.shrink_to_lo());
684                                 }
685                             }
686                         }
687                     }
688                 },
689             }
690         }
691     }
692 }
693
694 /// This thing walks the whole crate in DFS manner, visiting each item, resolving names as it goes.
695 impl<'a, 'tcx, 'cl> Visitor<'tcx> for Resolver<'a, 'cl> {
696     fn visit_item(&mut self, item: &'tcx Item) {
697         self.resolve_item(item);
698     }
699     fn visit_arm(&mut self, arm: &'tcx Arm) {
700         self.resolve_arm(arm);
701     }
702     fn visit_block(&mut self, block: &'tcx Block) {
703         self.resolve_block(block);
704     }
705     fn visit_anon_const(&mut self, constant: &'tcx ast::AnonConst) {
706         self.with_constant_rib(|this| {
707             visit::walk_anon_const(this, constant);
708         });
709     }
710     fn visit_expr(&mut self, expr: &'tcx Expr) {
711         self.resolve_expr(expr, None);
712     }
713     fn visit_local(&mut self, local: &'tcx Local) {
714         self.resolve_local(local);
715     }
716     fn visit_ty(&mut self, ty: &'tcx Ty) {
717         match ty.node {
718             TyKind::Path(ref qself, ref path) => {
719                 self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
720             }
721             TyKind::ImplicitSelf => {
722                 let self_ty = keywords::SelfType.ident();
723                 let def = self.resolve_ident_in_lexical_scope(self_ty, TypeNS, Some(ty.id), ty.span)
724                               .map_or(Def::Err, |d| d.def());
725                 self.record_def(ty.id, PathResolution::new(def));
726             }
727             _ => (),
728         }
729         visit::walk_ty(self, ty);
730     }
731     fn visit_poly_trait_ref(&mut self,
732                             tref: &'tcx ast::PolyTraitRef,
733                             m: &'tcx ast::TraitBoundModifier) {
734         self.smart_resolve_path(tref.trait_ref.ref_id, None,
735                                 &tref.trait_ref.path, PathSource::Trait(AliasPossibility::Maybe));
736         visit::walk_poly_trait_ref(self, tref, m);
737     }
738     fn visit_foreign_item(&mut self, foreign_item: &'tcx ForeignItem) {
739         let type_parameters = match foreign_item.node {
740             ForeignItemKind::Fn(_, ref generics) => {
741                 HasTypeParameters(generics, ItemRibKind)
742             }
743             ForeignItemKind::Static(..) => NoTypeParameters,
744             ForeignItemKind::Ty => NoTypeParameters,
745             ForeignItemKind::Macro(..) => NoTypeParameters,
746         };
747         self.with_type_parameter_rib(type_parameters, |this| {
748             visit::walk_foreign_item(this, foreign_item);
749         });
750     }
751     fn visit_fn(&mut self,
752                 function_kind: FnKind<'tcx>,
753                 declaration: &'tcx FnDecl,
754                 _: Span,
755                 node_id: NodeId)
756     {
757         let (rib_kind, asyncness) = match function_kind {
758             FnKind::ItemFn(_, ref header, ..) =>
759                 (ItemRibKind, header.asyncness),
760             FnKind::Method(_, ref sig, _, _) =>
761                 (TraitOrImplItemRibKind, sig.header.asyncness),
762             FnKind::Closure(_) =>
763                 // Async closures aren't resolved through `visit_fn`-- they're
764                 // processed separately
765                 (ClosureRibKind(node_id), IsAsync::NotAsync),
766         };
767
768         // Create a value rib for the function.
769         self.ribs[ValueNS].push(Rib::new(rib_kind));
770
771         // Create a label rib for the function.
772         self.label_ribs.push(Rib::new(rib_kind));
773
774         // Add each argument to the rib.
775         let mut bindings_list = FxHashMap();
776         for argument in &declaration.inputs {
777             self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
778
779             self.visit_ty(&argument.ty);
780
781             debug!("(resolving function) recorded argument");
782         }
783         visit::walk_fn_ret_ty(self, &declaration.output);
784
785         // Resolve the function body, potentially inside the body of an async closure
786         if let IsAsync::Async { closure_id, .. } = asyncness {
787             let rib_kind = ClosureRibKind(closure_id);
788             self.ribs[ValueNS].push(Rib::new(rib_kind));
789             self.label_ribs.push(Rib::new(rib_kind));
790         }
791
792         match function_kind {
793             FnKind::ItemFn(.., body) |
794             FnKind::Method(.., body) => {
795                 self.visit_block(body);
796             }
797             FnKind::Closure(body) => {
798                 self.visit_expr(body);
799             }
800         };
801
802         // Leave the body of the async closure
803         if asyncness.is_async() {
804             self.label_ribs.pop();
805             self.ribs[ValueNS].pop();
806         }
807
808         debug!("(resolving function) leaving function");
809
810         self.label_ribs.pop();
811         self.ribs[ValueNS].pop();
812     }
813     fn visit_generics(&mut self, generics: &'tcx Generics) {
814         // For type parameter defaults, we have to ban access
815         // to following type parameters, as the Substs can only
816         // provide previous type parameters as they're built. We
817         // put all the parameters on the ban list and then remove
818         // them one by one as they are processed and become available.
819         let mut default_ban_rib = Rib::new(ForwardTyParamBanRibKind);
820         let mut found_default = false;
821         default_ban_rib.bindings.extend(generics.params.iter()
822             .filter_map(|param| match param.kind {
823                 GenericParamKind::Lifetime { .. } => None,
824                 GenericParamKind::Type { ref default, .. } => {
825                     if found_default || default.is_some() {
826                         found_default = true;
827                         return Some((Ident::with_empty_ctxt(param.ident.name), Def::Err));
828                     }
829                     None
830                 }
831             }));
832
833         for param in &generics.params {
834             match param.kind {
835                 GenericParamKind::Lifetime { .. } => self.visit_generic_param(param),
836                 GenericParamKind::Type { ref default, .. } => {
837                     for bound in &param.bounds {
838                         self.visit_param_bound(bound);
839                     }
840
841                     if let Some(ref ty) = default {
842                         self.ribs[TypeNS].push(default_ban_rib);
843                         self.visit_ty(ty);
844                         default_ban_rib = self.ribs[TypeNS].pop().unwrap();
845                     }
846
847                     // Allow all following defaults to refer to this type parameter.
848                     default_ban_rib.bindings.remove(&Ident::with_empty_ctxt(param.ident.name));
849                 }
850             }
851         }
852         for p in &generics.where_clause.predicates {
853             self.visit_where_predicate(p);
854         }
855     }
856 }
857
858 #[derive(Copy, Clone)]
859 enum TypeParameters<'a, 'b> {
860     NoTypeParameters,
861     HasTypeParameters(// Type parameters.
862                       &'b Generics,
863
864                       // The kind of the rib used for type parameters.
865                       RibKind<'a>),
866 }
867
868 /// The rib kind controls the translation of local
869 /// definitions (`Def::Local`) to upvars (`Def::Upvar`).
870 #[derive(Copy, Clone, Debug)]
871 enum RibKind<'a> {
872     /// No translation needs to be applied.
873     NormalRibKind,
874
875     /// We passed through a closure scope at the given node ID.
876     /// Translate upvars as appropriate.
877     ClosureRibKind(NodeId /* func id */),
878
879     /// We passed through an impl or trait and are now in one of its
880     /// methods or associated types. Allow references to ty params that impl or trait
881     /// binds. Disallow any other upvars (including other ty params that are
882     /// upvars).
883     TraitOrImplItemRibKind,
884
885     /// We passed through an item scope. Disallow upvars.
886     ItemRibKind,
887
888     /// We're in a constant item. Can't refer to dynamic stuff.
889     ConstantItemRibKind,
890
891     /// We passed through a module.
892     ModuleRibKind(Module<'a>),
893
894     /// We passed through a `macro_rules!` statement
895     MacroDefinition(DefId),
896
897     /// All bindings in this rib are type parameters that can't be used
898     /// from the default of a type parameter because they're not declared
899     /// before said type parameter. Also see the `visit_generics` override.
900     ForwardTyParamBanRibKind,
901 }
902
903 /// One local scope.
904 ///
905 /// A rib represents a scope names can live in. Note that these appear in many places, not just
906 /// around braces. At any place where the list of accessible names (of the given namespace)
907 /// changes or a new restrictions on the name accessibility are introduced, a new rib is put onto a
908 /// stack. This may be, for example, a `let` statement (because it introduces variables), a macro,
909 /// etc.
910 ///
911 /// Different [rib kinds](enum.RibKind) are transparent for different names.
912 ///
913 /// The resolution keeps a separate stack of ribs as it traverses the AST for each namespace. When
914 /// resolving, the name is looked up from inside out.
915 #[derive(Debug)]
916 struct Rib<'a> {
917     bindings: FxHashMap<Ident, Def>,
918     kind: RibKind<'a>,
919 }
920
921 impl<'a> Rib<'a> {
922     fn new(kind: RibKind<'a>) -> Rib<'a> {
923         Rib {
924             bindings: FxHashMap(),
925             kind,
926         }
927     }
928 }
929
930 /// An intermediate resolution result.
931 ///
932 /// This refers to the thing referred by a name. The difference between `Def` and `Item` is that
933 /// items are visible in their whole block, while defs only from the place they are defined
934 /// forward.
935 enum LexicalScopeBinding<'a> {
936     Item(&'a NameBinding<'a>),
937     Def(Def),
938 }
939
940 impl<'a> LexicalScopeBinding<'a> {
941     fn item(self) -> Option<&'a NameBinding<'a>> {
942         match self {
943             LexicalScopeBinding::Item(binding) => Some(binding),
944             _ => None,
945         }
946     }
947
948     fn def(self) -> Def {
949         match self {
950             LexicalScopeBinding::Item(binding) => binding.def(),
951             LexicalScopeBinding::Def(def) => def,
952         }
953     }
954 }
955
956 #[derive(Clone, Debug)]
957 enum PathResult<'a> {
958     Module(Module<'a>),
959     NonModule(PathResolution),
960     Indeterminate,
961     Failed(Span, String, bool /* is the error from the last segment? */),
962 }
963
964 enum ModuleKind {
965     /// An anonymous module, eg. just a block.
966     ///
967     /// ```
968     /// fn main() {
969     ///     fn f() {} // (1)
970     ///     { // This is an anonymous module
971     ///         f(); // This resolves to (2) as we are inside the block.
972     ///         fn f() {} // (2)
973     ///     }
974     ///     f(); // Resolves to (1)
975     /// }
976     /// ```
977     Block(NodeId),
978     /// Any module with a name.
979     ///
980     /// This could be:
981     ///
982     /// * A normal module â€’ either `mod from_file;` or `mod from_block { }`.
983     /// * A trait or an enum (it implicitly contains associated types, methods and variant
984     ///   constructors).
985     Def(Def, Name),
986 }
987
988 /// One node in the tree of modules.
989 pub struct ModuleData<'a> {
990     parent: Option<Module<'a>>,
991     kind: ModuleKind,
992
993     // The def id of the closest normal module (`mod`) ancestor (including this module).
994     normal_ancestor_id: DefId,
995
996     resolutions: RefCell<FxHashMap<(Ident, Namespace), &'a RefCell<NameResolution<'a>>>>,
997     legacy_macro_resolutions: RefCell<Vec<(Mark, Ident, MacroKind, Option<Def>)>>,
998     macro_resolutions: RefCell<Vec<(Box<[Ident]>, Span)>>,
999
1000     // Macro invocations that can expand into items in this module.
1001     unresolved_invocations: RefCell<FxHashSet<Mark>>,
1002
1003     no_implicit_prelude: bool,
1004
1005     glob_importers: RefCell<Vec<&'a ImportDirective<'a>>>,
1006     globs: RefCell<Vec<&'a ImportDirective<'a>>>,
1007
1008     // Used to memoize the traits in this module for faster searches through all traits in scope.
1009     traits: RefCell<Option<Box<[(Ident, &'a NameBinding<'a>)]>>>,
1010
1011     // Whether this module is populated. If not populated, any attempt to
1012     // access the children must be preceded with a
1013     // `populate_module_if_necessary` call.
1014     populated: Cell<bool>,
1015
1016     /// Span of the module itself. Used for error reporting.
1017     span: Span,
1018
1019     expansion: Mark,
1020 }
1021
1022 type Module<'a> = &'a ModuleData<'a>;
1023
1024 impl<'a> ModuleData<'a> {
1025     fn new(parent: Option<Module<'a>>,
1026            kind: ModuleKind,
1027            normal_ancestor_id: DefId,
1028            expansion: Mark,
1029            span: Span) -> Self {
1030         ModuleData {
1031             parent,
1032             kind,
1033             normal_ancestor_id,
1034             resolutions: RefCell::new(FxHashMap()),
1035             legacy_macro_resolutions: RefCell::new(Vec::new()),
1036             macro_resolutions: RefCell::new(Vec::new()),
1037             unresolved_invocations: RefCell::new(FxHashSet()),
1038             no_implicit_prelude: false,
1039             glob_importers: RefCell::new(Vec::new()),
1040             globs: RefCell::new(Vec::new()),
1041             traits: RefCell::new(None),
1042             populated: Cell::new(normal_ancestor_id.is_local()),
1043             span,
1044             expansion,
1045         }
1046     }
1047
1048     fn for_each_child<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1049         for (&(ident, ns), name_resolution) in self.resolutions.borrow().iter() {
1050             name_resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1051         }
1052     }
1053
1054     fn for_each_child_stable<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1055         let resolutions = self.resolutions.borrow();
1056         let mut resolutions = resolutions.iter().collect::<Vec<_>>();
1057         resolutions.sort_by_cached_key(|&(&(ident, ns), _)| (ident.as_str(), ns));
1058         for &(&(ident, ns), &resolution) in resolutions.iter() {
1059             resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1060         }
1061     }
1062
1063     fn def(&self) -> Option<Def> {
1064         match self.kind {
1065             ModuleKind::Def(def, _) => Some(def),
1066             _ => None,
1067         }
1068     }
1069
1070     fn def_id(&self) -> Option<DefId> {
1071         self.def().as_ref().map(Def::def_id)
1072     }
1073
1074     // `self` resolves to the first module ancestor that `is_normal`.
1075     fn is_normal(&self) -> bool {
1076         match self.kind {
1077             ModuleKind::Def(Def::Mod(_), _) => true,
1078             _ => false,
1079         }
1080     }
1081
1082     fn is_trait(&self) -> bool {
1083         match self.kind {
1084             ModuleKind::Def(Def::Trait(_), _) => true,
1085             _ => false,
1086         }
1087     }
1088
1089     fn is_local(&self) -> bool {
1090         self.normal_ancestor_id.is_local()
1091     }
1092
1093     fn nearest_item_scope(&'a self) -> Module<'a> {
1094         if self.is_trait() { self.parent.unwrap() } else { self }
1095     }
1096 }
1097
1098 impl<'a> fmt::Debug for ModuleData<'a> {
1099     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1100         write!(f, "{:?}", self.def())
1101     }
1102 }
1103
1104 /// Records a possibly-private value, type, or module definition.
1105 #[derive(Clone, Debug)]
1106 pub struct NameBinding<'a> {
1107     kind: NameBindingKind<'a>,
1108     expansion: Mark,
1109     span: Span,
1110     vis: ty::Visibility,
1111 }
1112
1113 pub trait ToNameBinding<'a> {
1114     fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a>;
1115 }
1116
1117 impl<'a> ToNameBinding<'a> for &'a NameBinding<'a> {
1118     fn to_name_binding(self, _: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> {
1119         self
1120     }
1121 }
1122
1123 #[derive(Clone, Debug)]
1124 enum NameBindingKind<'a> {
1125     Def(Def, /* is_macro_export */ bool),
1126     Module(Module<'a>),
1127     Import {
1128         binding: &'a NameBinding<'a>,
1129         directive: &'a ImportDirective<'a>,
1130         used: Cell<bool>,
1131     },
1132     Ambiguity {
1133         b1: &'a NameBinding<'a>,
1134         b2: &'a NameBinding<'a>,
1135     }
1136 }
1137
1138 struct PrivacyError<'a>(Span, Name, &'a NameBinding<'a>);
1139
1140 struct UseError<'a> {
1141     err: DiagnosticBuilder<'a>,
1142     /// Attach `use` statements for these candidates
1143     candidates: Vec<ImportSuggestion>,
1144     /// The node id of the module to place the use statements in
1145     node_id: NodeId,
1146     /// Whether the diagnostic should state that it's "better"
1147     better: bool,
1148 }
1149
1150 struct AmbiguityError<'a> {
1151     span: Span,
1152     name: Name,
1153     lexical: bool,
1154     b1: &'a NameBinding<'a>,
1155     b2: &'a NameBinding<'a>,
1156 }
1157
1158 impl<'a> NameBinding<'a> {
1159     fn module(&self) -> Option<Module<'a>> {
1160         match self.kind {
1161             NameBindingKind::Module(module) => Some(module),
1162             NameBindingKind::Import { binding, .. } => binding.module(),
1163             _ => None,
1164         }
1165     }
1166
1167     fn def(&self) -> Def {
1168         match self.kind {
1169             NameBindingKind::Def(def, _) => def,
1170             NameBindingKind::Module(module) => module.def().unwrap(),
1171             NameBindingKind::Import { binding, .. } => binding.def(),
1172             NameBindingKind::Ambiguity { .. } => Def::Err,
1173         }
1174     }
1175
1176     fn def_ignoring_ambiguity(&self) -> Def {
1177         match self.kind {
1178             NameBindingKind::Import { binding, .. } => binding.def_ignoring_ambiguity(),
1179             NameBindingKind::Ambiguity { b1, .. } => b1.def_ignoring_ambiguity(),
1180             _ => self.def(),
1181         }
1182     }
1183
1184     fn get_macro<'b: 'a>(&self, resolver: &mut Resolver<'a, 'b>) -> Lrc<SyntaxExtension> {
1185         resolver.get_macro(self.def_ignoring_ambiguity())
1186     }
1187
1188     // We sometimes need to treat variants as `pub` for backwards compatibility
1189     fn pseudo_vis(&self) -> ty::Visibility {
1190         if self.is_variant() && self.def().def_id().is_local() {
1191             ty::Visibility::Public
1192         } else {
1193             self.vis
1194         }
1195     }
1196
1197     fn is_variant(&self) -> bool {
1198         match self.kind {
1199             NameBindingKind::Def(Def::Variant(..), _) |
1200             NameBindingKind::Def(Def::VariantCtor(..), _) => true,
1201             _ => false,
1202         }
1203     }
1204
1205     fn is_extern_crate(&self) -> bool {
1206         match self.kind {
1207             NameBindingKind::Import {
1208                 directive: &ImportDirective {
1209                     subclass: ImportDirectiveSubclass::ExternCrate(_), ..
1210                 }, ..
1211             } => true,
1212             _ => false,
1213         }
1214     }
1215
1216     fn is_import(&self) -> bool {
1217         match self.kind {
1218             NameBindingKind::Import { .. } => true,
1219             _ => false,
1220         }
1221     }
1222
1223     fn is_renamed_extern_crate(&self) -> bool {
1224         if let NameBindingKind::Import { directive, ..} = self.kind {
1225             if let ImportDirectiveSubclass::ExternCrate(Some(_)) = directive.subclass {
1226                 return true;
1227             }
1228         }
1229         false
1230     }
1231
1232     fn is_glob_import(&self) -> bool {
1233         match self.kind {
1234             NameBindingKind::Import { directive, .. } => directive.is_glob(),
1235             NameBindingKind::Ambiguity { b1, .. } => b1.is_glob_import(),
1236             _ => false,
1237         }
1238     }
1239
1240     fn is_importable(&self) -> bool {
1241         match self.def() {
1242             Def::AssociatedConst(..) | Def::Method(..) | Def::AssociatedTy(..) => false,
1243             _ => true,
1244         }
1245     }
1246
1247     fn is_macro_def(&self) -> bool {
1248         match self.kind {
1249             NameBindingKind::Def(Def::Macro(..), _) => true,
1250             _ => false,
1251         }
1252     }
1253
1254     fn descr(&self) -> &'static str {
1255         if self.is_extern_crate() { "extern crate" } else { self.def().kind_name() }
1256     }
1257 }
1258
1259 /// Interns the names of the primitive types.
1260 ///
1261 /// All other types are defined somewhere and possibly imported, but the primitive ones need
1262 /// special handling, since they have no place of origin.
1263 struct PrimitiveTypeTable {
1264     primitive_types: FxHashMap<Name, PrimTy>,
1265 }
1266
1267 impl PrimitiveTypeTable {
1268     fn new() -> PrimitiveTypeTable {
1269         let mut table = PrimitiveTypeTable { primitive_types: FxHashMap() };
1270
1271         table.intern("bool", TyBool);
1272         table.intern("char", TyChar);
1273         table.intern("f32", TyFloat(FloatTy::F32));
1274         table.intern("f64", TyFloat(FloatTy::F64));
1275         table.intern("isize", TyInt(IntTy::Isize));
1276         table.intern("i8", TyInt(IntTy::I8));
1277         table.intern("i16", TyInt(IntTy::I16));
1278         table.intern("i32", TyInt(IntTy::I32));
1279         table.intern("i64", TyInt(IntTy::I64));
1280         table.intern("i128", TyInt(IntTy::I128));
1281         table.intern("str", TyStr);
1282         table.intern("usize", TyUint(UintTy::Usize));
1283         table.intern("u8", TyUint(UintTy::U8));
1284         table.intern("u16", TyUint(UintTy::U16));
1285         table.intern("u32", TyUint(UintTy::U32));
1286         table.intern("u64", TyUint(UintTy::U64));
1287         table.intern("u128", TyUint(UintTy::U128));
1288         table
1289     }
1290
1291     fn intern(&mut self, string: &str, primitive_type: PrimTy) {
1292         self.primitive_types.insert(Symbol::intern(string), primitive_type);
1293     }
1294 }
1295
1296 /// The main resolver class.
1297 ///
1298 /// This is the visitor that walks the whole crate.
1299 pub struct Resolver<'a, 'b: 'a> {
1300     session: &'a Session,
1301     cstore: &'a CStore,
1302
1303     pub definitions: Definitions,
1304
1305     graph_root: Module<'a>,
1306
1307     prelude: Option<Module<'a>>,
1308     extern_prelude: FxHashSet<Name>,
1309
1310     /// n.b. This is used only for better diagnostics, not name resolution itself.
1311     has_self: FxHashSet<DefId>,
1312
1313     /// Names of fields of an item `DefId` accessible with dot syntax.
1314     /// Used for hints during error reporting.
1315     field_names: FxHashMap<DefId, Vec<Name>>,
1316
1317     /// All imports known to succeed or fail.
1318     determined_imports: Vec<&'a ImportDirective<'a>>,
1319
1320     /// All non-determined imports.
1321     indeterminate_imports: Vec<&'a ImportDirective<'a>>,
1322
1323     /// The module that represents the current item scope.
1324     current_module: Module<'a>,
1325
1326     /// The current set of local scopes for types and values.
1327     /// FIXME #4948: Reuse ribs to avoid allocation.
1328     ribs: PerNS<Vec<Rib<'a>>>,
1329
1330     /// The current set of local scopes, for labels.
1331     label_ribs: Vec<Rib<'a>>,
1332
1333     /// The trait that the current context can refer to.
1334     current_trait_ref: Option<(Module<'a>, TraitRef)>,
1335
1336     /// The current self type if inside an impl (used for better errors).
1337     current_self_type: Option<Ty>,
1338
1339     /// The idents for the primitive types.
1340     primitive_type_table: PrimitiveTypeTable,
1341
1342     def_map: DefMap,
1343     import_map: ImportMap,
1344     pub freevars: FreevarMap,
1345     freevars_seen: NodeMap<NodeMap<usize>>,
1346     pub export_map: ExportMap,
1347     pub trait_map: TraitMap,
1348
1349     /// A map from nodes to anonymous modules.
1350     /// Anonymous modules are pseudo-modules that are implicitly created around items
1351     /// contained within blocks.
1352     ///
1353     /// For example, if we have this:
1354     ///
1355     ///  fn f() {
1356     ///      fn g() {
1357     ///          ...
1358     ///      }
1359     ///  }
1360     ///
1361     /// There will be an anonymous module created around `g` with the ID of the
1362     /// entry block for `f`.
1363     block_map: NodeMap<Module<'a>>,
1364     module_map: FxHashMap<DefId, Module<'a>>,
1365     extern_module_map: FxHashMap<(DefId, bool /* MacrosOnly? */), Module<'a>>,
1366
1367     pub make_glob_map: bool,
1368     /// Maps imports to the names of items actually imported (this actually maps
1369     /// all imports, but only glob imports are actually interesting).
1370     pub glob_map: GlobMap,
1371
1372     used_imports: FxHashSet<(NodeId, Namespace)>,
1373     pub maybe_unused_trait_imports: NodeSet,
1374     pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
1375
1376     /// A list of labels as of yet unused. Labels will be removed from this map when
1377     /// they are used (in a `break` or `continue` statement)
1378     pub unused_labels: FxHashMap<NodeId, Span>,
1379
1380     /// privacy errors are delayed until the end in order to deduplicate them
1381     privacy_errors: Vec<PrivacyError<'a>>,
1382     /// ambiguity errors are delayed for deduplication
1383     ambiguity_errors: Vec<AmbiguityError<'a>>,
1384     /// `use` injections are delayed for better placement and deduplication
1385     use_injections: Vec<UseError<'a>>,
1386     /// `use` injections for proc macros wrongly imported with #[macro_use]
1387     proc_mac_errors: Vec<macros::ProcMacError>,
1388
1389     gated_errors: FxHashSet<Span>,
1390     disallowed_shadowing: Vec<&'a LegacyBinding<'a>>,
1391
1392     arenas: &'a ResolverArenas<'a>,
1393     dummy_binding: &'a NameBinding<'a>,
1394     /// true if `#![feature(use_extern_macros)]`
1395     use_extern_macros: bool,
1396
1397     crate_loader: &'a mut CrateLoader<'b>,
1398     macro_names: FxHashSet<Ident>,
1399     macro_prelude: FxHashMap<Name, &'a NameBinding<'a>>,
1400     pub all_macros: FxHashMap<Name, Def>,
1401     lexical_macro_resolutions: Vec<(Ident, &'a Cell<LegacyScope<'a>>)>,
1402     macro_map: FxHashMap<DefId, Lrc<SyntaxExtension>>,
1403     macro_defs: FxHashMap<Mark, DefId>,
1404     local_macro_def_scopes: FxHashMap<NodeId, Module<'a>>,
1405     macro_exports: Vec<Export>, // FIXME: Remove when `use_extern_macros` is stabilized
1406     pub whitelisted_legacy_custom_derives: Vec<Name>,
1407     pub found_unresolved_macro: bool,
1408
1409     /// List of crate local macros that we need to warn about as being unused.
1410     /// Right now this only includes macro_rules! macros, and macros 2.0.
1411     unused_macros: FxHashSet<DefId>,
1412
1413     /// Maps the `Mark` of an expansion to its containing module or block.
1414     invocations: FxHashMap<Mark, &'a InvocationData<'a>>,
1415
1416     /// Avoid duplicated errors for "name already defined".
1417     name_already_seen: FxHashMap<Name, Span>,
1418
1419     /// A set of procedural macros imported by `#[macro_use]` that have already been warned about
1420     warned_proc_macros: FxHashSet<Name>,
1421
1422     potentially_unused_imports: Vec<&'a ImportDirective<'a>>,
1423
1424     /// This table maps struct IDs into struct constructor IDs,
1425     /// it's not used during normal resolution, only for better error reporting.
1426     struct_constructors: DefIdMap<(Def, ty::Visibility)>,
1427
1428     /// Only used for better errors on `fn(): fn()`
1429     current_type_ascription: Vec<Span>,
1430
1431     injected_crate: Option<Module<'a>>,
1432
1433     /// Only supposed to be used by rustdoc, otherwise should be false.
1434     pub ignore_extern_prelude_feature: bool,
1435
1436     /// Macro invocations in the whole crate that can expand into a `#[macro_export] macro_rules`.
1437     unresolved_invocations_macro_export: FxHashSet<Mark>,
1438 }
1439
1440 /// Nothing really interesting here, it just provides memory for the rest of the crate.
1441 pub struct ResolverArenas<'a> {
1442     modules: arena::TypedArena<ModuleData<'a>>,
1443     local_modules: RefCell<Vec<Module<'a>>>,
1444     name_bindings: arena::TypedArena<NameBinding<'a>>,
1445     import_directives: arena::TypedArena<ImportDirective<'a>>,
1446     name_resolutions: arena::TypedArena<RefCell<NameResolution<'a>>>,
1447     invocation_data: arena::TypedArena<InvocationData<'a>>,
1448     legacy_bindings: arena::TypedArena<LegacyBinding<'a>>,
1449 }
1450
1451 impl<'a> ResolverArenas<'a> {
1452     fn alloc_module(&'a self, module: ModuleData<'a>) -> Module<'a> {
1453         let module = self.modules.alloc(module);
1454         if module.def_id().map(|def_id| def_id.is_local()).unwrap_or(true) {
1455             self.local_modules.borrow_mut().push(module);
1456         }
1457         module
1458     }
1459     fn local_modules(&'a self) -> ::std::cell::Ref<'a, Vec<Module<'a>>> {
1460         self.local_modules.borrow()
1461     }
1462     fn alloc_name_binding(&'a self, name_binding: NameBinding<'a>) -> &'a NameBinding<'a> {
1463         self.name_bindings.alloc(name_binding)
1464     }
1465     fn alloc_import_directive(&'a self, import_directive: ImportDirective<'a>)
1466                               -> &'a ImportDirective {
1467         self.import_directives.alloc(import_directive)
1468     }
1469     fn alloc_name_resolution(&'a self) -> &'a RefCell<NameResolution<'a>> {
1470         self.name_resolutions.alloc(Default::default())
1471     }
1472     fn alloc_invocation_data(&'a self, expansion_data: InvocationData<'a>)
1473                              -> &'a InvocationData<'a> {
1474         self.invocation_data.alloc(expansion_data)
1475     }
1476     fn alloc_legacy_binding(&'a self, binding: LegacyBinding<'a>) -> &'a LegacyBinding<'a> {
1477         self.legacy_bindings.alloc(binding)
1478     }
1479 }
1480
1481 impl<'a, 'b: 'a, 'cl: 'b> ty::DefIdTree for &'a Resolver<'b, 'cl> {
1482     fn parent(self, id: DefId) -> Option<DefId> {
1483         match id.krate {
1484             LOCAL_CRATE => self.definitions.def_key(id.index).parent,
1485             _ => self.cstore.def_key(id).parent,
1486         }.map(|index| DefId { index, ..id })
1487     }
1488 }
1489
1490 /// This interface is used through the AST→HIR step, to embed full paths into the HIR. After that
1491 /// the resolver is no longer needed as all the relevant information is inline.
1492 impl<'a, 'cl> hir::lowering::Resolver for Resolver<'a, 'cl> {
1493     fn resolve_hir_path(&mut self, path: &mut hir::Path, is_value: bool) {
1494         self.resolve_hir_path_cb(path, is_value,
1495                                  |resolver, span, error| resolve_error(resolver, span, error))
1496     }
1497
1498     fn resolve_str_path(
1499         &mut self,
1500         span: Span,
1501         crate_root: Option<&str>,
1502         components: &[&str],
1503         args: Option<P<hir::GenericArgs>>,
1504         is_value: bool
1505     ) -> hir::Path {
1506         let mut segments = iter::once(keywords::CrateRoot.ident())
1507             .chain(
1508                 crate_root.into_iter()
1509                     .chain(components.iter().cloned())
1510                     .map(Ident::from_str)
1511             ).map(hir::PathSegment::from_ident).collect::<Vec<_>>();
1512
1513         if let Some(args) = args {
1514             let ident = segments.last().unwrap().ident;
1515             *segments.last_mut().unwrap() = hir::PathSegment {
1516                 ident,
1517                 args: Some(args),
1518                 infer_types: true,
1519             };
1520         }
1521
1522         let mut path = hir::Path {
1523             span,
1524             def: Def::Err,
1525             segments: segments.into(),
1526         };
1527
1528         self.resolve_hir_path(&mut path, is_value);
1529         path
1530     }
1531
1532     fn get_resolution(&mut self, id: NodeId) -> Option<PathResolution> {
1533         self.def_map.get(&id).cloned()
1534     }
1535
1536     fn get_import(&mut self, id: NodeId) -> PerNS<Option<PathResolution>> {
1537         self.import_map.get(&id).cloned().unwrap_or_default()
1538     }
1539
1540     fn definitions(&mut self) -> &mut Definitions {
1541         &mut self.definitions
1542     }
1543 }
1544
1545 impl<'a, 'crateloader> Resolver<'a, 'crateloader> {
1546     /// Rustdoc uses this to resolve things in a recoverable way. ResolutionError<'a>
1547     /// isn't something that can be returned because it can't be made to live that long,
1548     /// and also it's a private type. Fortunately rustdoc doesn't need to know the error,
1549     /// just that an error occurred.
1550     pub fn resolve_str_path_error(&mut self, span: Span, path_str: &str, is_value: bool)
1551         -> Result<hir::Path, ()> {
1552         use std::iter;
1553         let mut errored = false;
1554
1555         let mut path = if path_str.starts_with("::") {
1556             hir::Path {
1557                 span,
1558                 def: Def::Err,
1559                 segments: iter::once(keywords::CrateRoot.ident()).chain({
1560                     path_str.split("::").skip(1).map(Ident::from_str)
1561                 }).map(hir::PathSegment::from_ident).collect(),
1562             }
1563         } else {
1564             hir::Path {
1565                 span,
1566                 def: Def::Err,
1567                 segments: path_str.split("::").map(Ident::from_str)
1568                                   .map(hir::PathSegment::from_ident).collect(),
1569             }
1570         };
1571         self.resolve_hir_path_cb(&mut path, is_value, |_, _, _| errored = true);
1572         if errored || path.def == Def::Err {
1573             Err(())
1574         } else {
1575             Ok(path)
1576         }
1577     }
1578
1579     /// resolve_hir_path, but takes a callback in case there was an error
1580     fn resolve_hir_path_cb<F>(&mut self, path: &mut hir::Path, is_value: bool, error_callback: F)
1581         where F: for<'c, 'b> FnOnce(&'c mut Resolver, Span, ResolutionError<'b>)
1582     {
1583         let namespace = if is_value { ValueNS } else { TypeNS };
1584         let hir::Path { ref segments, span, ref mut def } = *path;
1585         let path: Vec<_> = segments.iter().map(|seg| seg.ident).collect();
1586         // FIXME (Manishearth): Intra doc links won't get warned of epoch changes
1587         match self.resolve_path(&path, Some(namespace), true, span, CrateLint::No) {
1588             PathResult::Module(module) => *def = module.def().unwrap(),
1589             PathResult::NonModule(path_res) if path_res.unresolved_segments() == 0 =>
1590                 *def = path_res.base_def(),
1591             PathResult::NonModule(..) => match self.resolve_path(
1592                 &path,
1593                 None,
1594                 true,
1595                 span,
1596                 CrateLint::No,
1597             ) {
1598                 PathResult::Failed(span, msg, _) => {
1599                     error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1600                 }
1601                 _ => {}
1602             },
1603             PathResult::Indeterminate => unreachable!(),
1604             PathResult::Failed(span, msg, _) => {
1605                 error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1606             }
1607         }
1608     }
1609 }
1610
1611 impl<'a, 'crateloader: 'a> Resolver<'a, 'crateloader> {
1612     pub fn new(session: &'a Session,
1613                cstore: &'a CStore,
1614                krate: &Crate,
1615                crate_name: &str,
1616                make_glob_map: MakeGlobMap,
1617                crate_loader: &'a mut CrateLoader<'crateloader>,
1618                arenas: &'a ResolverArenas<'a>)
1619                -> Resolver<'a, 'crateloader> {
1620         let root_def_id = DefId::local(CRATE_DEF_INDEX);
1621         let root_module_kind = ModuleKind::Def(Def::Mod(root_def_id), keywords::Invalid.name());
1622         let graph_root = arenas.alloc_module(ModuleData {
1623             no_implicit_prelude: attr::contains_name(&krate.attrs, "no_implicit_prelude"),
1624             ..ModuleData::new(None, root_module_kind, root_def_id, Mark::root(), krate.span)
1625         });
1626         let mut module_map = FxHashMap();
1627         module_map.insert(DefId::local(CRATE_DEF_INDEX), graph_root);
1628
1629         let mut definitions = Definitions::new();
1630         DefCollector::new(&mut definitions, Mark::root())
1631             .collect_root(crate_name, session.local_crate_disambiguator());
1632
1633         let mut extern_prelude: FxHashSet<Name> =
1634             session.opts.externs.iter().map(|kv| Symbol::intern(kv.0)).collect();
1635         if !attr::contains_name(&krate.attrs, "no_core") {
1636             if !attr::contains_name(&krate.attrs, "no_std") {
1637                 extern_prelude.insert(Symbol::intern("std"));
1638             } else {
1639                 extern_prelude.insert(Symbol::intern("core"));
1640             }
1641         }
1642
1643         let mut invocations = FxHashMap();
1644         invocations.insert(Mark::root(),
1645                            arenas.alloc_invocation_data(InvocationData::root(graph_root)));
1646
1647         let features = session.features_untracked();
1648
1649         let mut macro_defs = FxHashMap();
1650         macro_defs.insert(Mark::root(), root_def_id);
1651
1652         Resolver {
1653             session,
1654
1655             cstore,
1656
1657             definitions,
1658
1659             // The outermost module has def ID 0; this is not reflected in the
1660             // AST.
1661             graph_root,
1662             prelude: None,
1663             extern_prelude,
1664
1665             has_self: FxHashSet(),
1666             field_names: FxHashMap(),
1667
1668             determined_imports: Vec::new(),
1669             indeterminate_imports: Vec::new(),
1670
1671             current_module: graph_root,
1672             ribs: PerNS {
1673                 value_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1674                 type_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1675                 macro_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1676             },
1677             label_ribs: Vec::new(),
1678
1679             current_trait_ref: None,
1680             current_self_type: None,
1681
1682             primitive_type_table: PrimitiveTypeTable::new(),
1683
1684             def_map: NodeMap(),
1685             import_map: NodeMap(),
1686             freevars: NodeMap(),
1687             freevars_seen: NodeMap(),
1688             export_map: FxHashMap(),
1689             trait_map: NodeMap(),
1690             module_map,
1691             block_map: NodeMap(),
1692             extern_module_map: FxHashMap(),
1693
1694             make_glob_map: make_glob_map == MakeGlobMap::Yes,
1695             glob_map: NodeMap(),
1696
1697             used_imports: FxHashSet(),
1698             maybe_unused_trait_imports: NodeSet(),
1699             maybe_unused_extern_crates: Vec::new(),
1700
1701             unused_labels: FxHashMap(),
1702
1703             privacy_errors: Vec::new(),
1704             ambiguity_errors: Vec::new(),
1705             use_injections: Vec::new(),
1706             proc_mac_errors: Vec::new(),
1707             gated_errors: FxHashSet(),
1708             disallowed_shadowing: Vec::new(),
1709
1710             arenas,
1711             dummy_binding: arenas.alloc_name_binding(NameBinding {
1712                 kind: NameBindingKind::Def(Def::Err, false),
1713                 expansion: Mark::root(),
1714                 span: DUMMY_SP,
1715                 vis: ty::Visibility::Public,
1716             }),
1717
1718             use_extern_macros: features.use_extern_macros(),
1719
1720             crate_loader,
1721             macro_names: FxHashSet(),
1722             macro_prelude: FxHashMap(),
1723             all_macros: FxHashMap(),
1724             lexical_macro_resolutions: Vec::new(),
1725             macro_map: FxHashMap(),
1726             macro_exports: Vec::new(),
1727             invocations,
1728             macro_defs,
1729             local_macro_def_scopes: FxHashMap(),
1730             name_already_seen: FxHashMap(),
1731             whitelisted_legacy_custom_derives: Vec::new(),
1732             warned_proc_macros: FxHashSet(),
1733             potentially_unused_imports: Vec::new(),
1734             struct_constructors: DefIdMap(),
1735             found_unresolved_macro: false,
1736             unused_macros: FxHashSet(),
1737             current_type_ascription: Vec::new(),
1738             injected_crate: None,
1739             ignore_extern_prelude_feature: false,
1740             unresolved_invocations_macro_export: FxHashSet(),
1741         }
1742     }
1743
1744     pub fn arenas() -> ResolverArenas<'a> {
1745         ResolverArenas {
1746             modules: arena::TypedArena::new(),
1747             local_modules: RefCell::new(Vec::new()),
1748             name_bindings: arena::TypedArena::new(),
1749             import_directives: arena::TypedArena::new(),
1750             name_resolutions: arena::TypedArena::new(),
1751             invocation_data: arena::TypedArena::new(),
1752             legacy_bindings: arena::TypedArena::new(),
1753         }
1754     }
1755
1756     /// Runs the function on each namespace.
1757     fn per_ns<F: FnMut(&mut Self, Namespace)>(&mut self, mut f: F) {
1758         f(self, TypeNS);
1759         f(self, ValueNS);
1760         if self.use_extern_macros {
1761             f(self, MacroNS);
1762         }
1763     }
1764
1765     fn macro_def(&self, mut ctxt: SyntaxContext) -> DefId {
1766         loop {
1767             match self.macro_defs.get(&ctxt.outer()) {
1768                 Some(&def_id) => return def_id,
1769                 None => ctxt.remove_mark(),
1770             };
1771         }
1772     }
1773
1774     /// Entry point to crate resolution.
1775     pub fn resolve_crate(&mut self, krate: &Crate) {
1776         ImportResolver { resolver: self }.finalize_imports();
1777         self.current_module = self.graph_root;
1778         self.finalize_current_module_macro_resolutions();
1779
1780         visit::walk_crate(self, krate);
1781
1782         check_unused::check_crate(self, krate);
1783         self.report_errors(krate);
1784         self.crate_loader.postprocess(krate);
1785     }
1786
1787     fn new_module(
1788         &self,
1789         parent: Module<'a>,
1790         kind: ModuleKind,
1791         normal_ancestor_id: DefId,
1792         expansion: Mark,
1793         span: Span,
1794     ) -> Module<'a> {
1795         let module = ModuleData::new(Some(parent), kind, normal_ancestor_id, expansion, span);
1796         self.arenas.alloc_module(module)
1797     }
1798
1799     fn record_use(&mut self, ident: Ident, ns: Namespace, binding: &'a NameBinding<'a>, span: Span)
1800                   -> bool /* true if an error was reported */ {
1801         match binding.kind {
1802             NameBindingKind::Import { directive, binding, ref used }
1803                     if !used.get() => {
1804                 used.set(true);
1805                 directive.used.set(true);
1806                 self.used_imports.insert((directive.id, ns));
1807                 self.add_to_glob_map(directive.id, ident);
1808                 self.record_use(ident, ns, binding, span)
1809             }
1810             NameBindingKind::Import { .. } => false,
1811             NameBindingKind::Ambiguity { b1, b2 } => {
1812                 self.ambiguity_errors.push(AmbiguityError {
1813                     span, name: ident.name, lexical: false, b1, b2,
1814                 });
1815                 true
1816             }
1817             _ => false
1818         }
1819     }
1820
1821     fn add_to_glob_map(&mut self, id: NodeId, ident: Ident) {
1822         if self.make_glob_map {
1823             self.glob_map.entry(id).or_insert_with(FxHashSet).insert(ident.name);
1824         }
1825     }
1826
1827     /// This resolves the identifier `ident` in the namespace `ns` in the current lexical scope.
1828     /// More specifically, we proceed up the hierarchy of scopes and return the binding for
1829     /// `ident` in the first scope that defines it (or None if no scopes define it).
1830     ///
1831     /// A block's items are above its local variables in the scope hierarchy, regardless of where
1832     /// the items are defined in the block. For example,
1833     /// ```rust
1834     /// fn f() {
1835     ///    g(); // Since there are no local variables in scope yet, this resolves to the item.
1836     ///    let g = || {};
1837     ///    fn g() {}
1838     ///    g(); // This resolves to the local variable `g` since it shadows the item.
1839     /// }
1840     /// ```
1841     ///
1842     /// Invariant: This must only be called during main resolution, not during
1843     /// import resolution.
1844     fn resolve_ident_in_lexical_scope(&mut self,
1845                                       mut ident: Ident,
1846                                       ns: Namespace,
1847                                       record_used_id: Option<NodeId>,
1848                                       path_span: Span)
1849                                       -> Option<LexicalScopeBinding<'a>> {
1850         let record_used = record_used_id.is_some();
1851         assert!(ns == TypeNS  || ns == ValueNS);
1852         if ns == TypeNS {
1853             ident.span = if ident.name == keywords::SelfType.name() {
1854                 // FIXME(jseyfried) improve `Self` hygiene
1855                 ident.span.with_ctxt(SyntaxContext::empty())
1856             } else {
1857                 ident.span.modern()
1858             }
1859         } else {
1860             ident = ident.modern_and_legacy();
1861         }
1862
1863         // Walk backwards up the ribs in scope.
1864         let mut module = self.graph_root;
1865         for i in (0 .. self.ribs[ns].len()).rev() {
1866             if let Some(def) = self.ribs[ns][i].bindings.get(&ident).cloned() {
1867                 // The ident resolves to a type parameter or local variable.
1868                 return Some(LexicalScopeBinding::Def(
1869                     self.adjust_local_def(ns, i, def, record_used, path_span)
1870                 ));
1871             }
1872
1873             module = match self.ribs[ns][i].kind {
1874                 ModuleRibKind(module) => module,
1875                 MacroDefinition(def) if def == self.macro_def(ident.span.ctxt()) => {
1876                     // If an invocation of this macro created `ident`, give up on `ident`
1877                     // and switch to `ident`'s source from the macro definition.
1878                     ident.span.remove_mark();
1879                     continue
1880                 }
1881                 _ => continue,
1882             };
1883
1884             let item = self.resolve_ident_in_module_unadjusted(
1885                 module, ident, ns, false, record_used, path_span,
1886             );
1887             if let Ok(binding) = item {
1888                 // The ident resolves to an item.
1889                 return Some(LexicalScopeBinding::Item(binding));
1890             }
1891
1892             match module.kind {
1893                 ModuleKind::Block(..) => {}, // We can see through blocks
1894                 _ => break,
1895             }
1896         }
1897
1898         ident.span = ident.span.modern();
1899         loop {
1900             let (opt_module, poisoned) = if let Some(node_id) = record_used_id {
1901                 self.hygienic_lexical_parent_with_compatibility_fallback(module, &mut ident.span,
1902                                                                          node_id)
1903             } else {
1904                 (self.hygienic_lexical_parent(module, &mut ident.span), None)
1905             };
1906             module = unwrap_or!(opt_module, break);
1907             let orig_current_module = self.current_module;
1908             self.current_module = module; // Lexical resolutions can never be a privacy error.
1909             let result = self.resolve_ident_in_module_unadjusted(
1910                 module, ident, ns, false, record_used, path_span,
1911             );
1912             self.current_module = orig_current_module;
1913
1914             match result {
1915                 Ok(binding) => {
1916                     if let Some(node_id) = poisoned {
1917                         self.session.buffer_lint_with_diagnostic(
1918                             lint::builtin::PROC_MACRO_DERIVE_RESOLUTION_FALLBACK,
1919                             node_id, ident.span,
1920                             &format!("cannot find {} `{}` in this scope", ns.descr(), ident),
1921                             lint::builtin::BuiltinLintDiagnostics::
1922                                 ProcMacroDeriveResolutionFallback(ident.span),
1923                         );
1924                     }
1925                     return Some(LexicalScopeBinding::Item(binding))
1926                 }
1927                 _ if poisoned.is_some() => break,
1928                 Err(Determined) => continue,
1929                 Err(Undetermined) =>
1930                     span_bug!(ident.span, "undetermined resolution during main resolution pass"),
1931             }
1932         }
1933
1934         if !module.no_implicit_prelude {
1935             // `record_used` means that we don't try to load crates during speculative resolution
1936             if record_used && ns == TypeNS && self.extern_prelude.contains(&ident.name) {
1937                 if !self.session.features_untracked().extern_prelude &&
1938                    !self.ignore_extern_prelude_feature {
1939                     feature_err(&self.session.parse_sess, "extern_prelude",
1940                                 ident.span, GateIssue::Language,
1941                                 "access to extern crates through prelude is experimental").emit();
1942                 }
1943
1944                 let crate_id = self.crate_loader.process_path_extern(ident.name, ident.span);
1945                 let crate_root = self.get_module(DefId { krate: crate_id, index: CRATE_DEF_INDEX });
1946                 self.populate_module_if_necessary(crate_root);
1947
1948                 let binding = (crate_root, ty::Visibility::Public,
1949                                ident.span, Mark::root()).to_name_binding(self.arenas);
1950                 return Some(LexicalScopeBinding::Item(binding));
1951             }
1952             if ns == TypeNS && is_known_tool(ident.name) {
1953                 let binding = (Def::ToolMod, ty::Visibility::Public,
1954                                ident.span, Mark::root()).to_name_binding(self.arenas);
1955                 return Some(LexicalScopeBinding::Item(binding));
1956             }
1957             if let Some(prelude) = self.prelude {
1958                 if let Ok(binding) = self.resolve_ident_in_module_unadjusted(prelude, ident, ns,
1959                                                                         false, false, path_span) {
1960                     return Some(LexicalScopeBinding::Item(binding));
1961                 }
1962             }
1963         }
1964
1965         None
1966     }
1967
1968     fn hygienic_lexical_parent(&mut self, module: Module<'a>, span: &mut Span)
1969                                -> Option<Module<'a>> {
1970         if !module.expansion.is_descendant_of(span.ctxt().outer()) {
1971             return Some(self.macro_def_scope(span.remove_mark()));
1972         }
1973
1974         if let ModuleKind::Block(..) = module.kind {
1975             return Some(module.parent.unwrap());
1976         }
1977
1978         None
1979     }
1980
1981     fn hygienic_lexical_parent_with_compatibility_fallback(
1982         &mut self, module: Module<'a>, span: &mut Span, node_id: NodeId
1983     ) -> (Option<Module<'a>>, /* poisoned */ Option<NodeId>)
1984     {
1985         if let module @ Some(..) = self.hygienic_lexical_parent(module, span) {
1986             return (module, None);
1987         }
1988
1989         // We need to support the next case under a deprecation warning
1990         // ```
1991         // struct MyStruct;
1992         // ---- begin: this comes from a proc macro derive
1993         // mod implementation_details {
1994         //     // Note that `MyStruct` is not in scope here.
1995         //     impl SomeTrait for MyStruct { ... }
1996         // }
1997         // ---- end
1998         // ```
1999         // So we have to fall back to the module's parent during lexical resolution in this case.
2000         if let Some(parent) = module.parent {
2001             // Inner module is inside the macro, parent module is outside of the macro.
2002             if module.expansion != parent.expansion &&
2003             module.expansion.is_descendant_of(parent.expansion) {
2004                 // The macro is a proc macro derive
2005                 if module.expansion.looks_like_proc_macro_derive() {
2006                     if parent.expansion.is_descendant_of(span.ctxt().outer()) {
2007                         return (module.parent, Some(node_id));
2008                     }
2009                 }
2010             }
2011         }
2012
2013         (None, None)
2014     }
2015
2016     fn resolve_ident_in_module(&mut self,
2017                                module: Module<'a>,
2018                                mut ident: Ident,
2019                                ns: Namespace,
2020                                record_used: bool,
2021                                span: Span)
2022                                -> Result<&'a NameBinding<'a>, Determinacy> {
2023         ident.span = ident.span.modern();
2024         let orig_current_module = self.current_module;
2025         if let Some(def) = ident.span.adjust(module.expansion) {
2026             self.current_module = self.macro_def_scope(def);
2027         }
2028         let result = self.resolve_ident_in_module_unadjusted(
2029             module, ident, ns, false, record_used, span,
2030         );
2031         self.current_module = orig_current_module;
2032         result
2033     }
2034
2035     fn resolve_crate_root(&mut self, ident: Ident) -> Module<'a> {
2036         let mut ctxt = ident.span.ctxt();
2037         let mark = if ident.name == keywords::DollarCrate.name() {
2038             // When resolving `$crate` from a `macro_rules!` invoked in a `macro`,
2039             // we don't want to pretend that the `macro_rules!` definition is in the `macro`
2040             // as described in `SyntaxContext::apply_mark`, so we ignore prepended modern marks.
2041             // FIXME: This is only a guess and it doesn't work correctly for `macro_rules!`
2042             // definitions actually produced by `macro` and `macro` definitions produced by
2043             // `macro_rules!`, but at least such configurations are not stable yet.
2044             ctxt = ctxt.modern_and_legacy();
2045             let mut iter = ctxt.marks().into_iter().rev().peekable();
2046             let mut result = None;
2047             // Find the last modern mark from the end if it exists.
2048             while let Some(&(mark, transparency)) = iter.peek() {
2049                 if transparency == Transparency::Opaque {
2050                     result = Some(mark);
2051                     iter.next();
2052                 } else {
2053                     break;
2054                 }
2055             }
2056             // Then find the last legacy mark from the end if it exists.
2057             for (mark, transparency) in iter {
2058                 if transparency == Transparency::SemiTransparent {
2059                     result = Some(mark);
2060                 } else {
2061                     break;
2062                 }
2063             }
2064             result
2065         } else {
2066             ctxt = ctxt.modern();
2067             ctxt.adjust(Mark::root())
2068         };
2069         let module = match mark {
2070             Some(def) => self.macro_def_scope(def),
2071             None => return self.graph_root,
2072         };
2073         self.get_module(DefId { index: CRATE_DEF_INDEX, ..module.normal_ancestor_id })
2074     }
2075
2076     fn resolve_self(&mut self, ctxt: &mut SyntaxContext, module: Module<'a>) -> Module<'a> {
2077         let mut module = self.get_module(module.normal_ancestor_id);
2078         while module.span.ctxt().modern() != *ctxt {
2079             let parent = module.parent.unwrap_or_else(|| self.macro_def_scope(ctxt.remove_mark()));
2080             module = self.get_module(parent.normal_ancestor_id);
2081         }
2082         module
2083     }
2084
2085     // AST resolution
2086     //
2087     // We maintain a list of value ribs and type ribs.
2088     //
2089     // Simultaneously, we keep track of the current position in the module
2090     // graph in the `current_module` pointer. When we go to resolve a name in
2091     // the value or type namespaces, we first look through all the ribs and
2092     // then query the module graph. When we resolve a name in the module
2093     // namespace, we can skip all the ribs (since nested modules are not
2094     // allowed within blocks in Rust) and jump straight to the current module
2095     // graph node.
2096     //
2097     // Named implementations are handled separately. When we find a method
2098     // call, we consult the module node to find all of the implementations in
2099     // scope. This information is lazily cached in the module node. We then
2100     // generate a fake "implementation scope" containing all the
2101     // implementations thus found, for compatibility with old resolve pass.
2102
2103     pub fn with_scope<F, T>(&mut self, id: NodeId, f: F) -> T
2104         where F: FnOnce(&mut Resolver) -> T
2105     {
2106         let id = self.definitions.local_def_id(id);
2107         let module = self.module_map.get(&id).cloned(); // clones a reference
2108         if let Some(module) = module {
2109             // Move down in the graph.
2110             let orig_module = replace(&mut self.current_module, module);
2111             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(module)));
2112             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(module)));
2113
2114             self.finalize_current_module_macro_resolutions();
2115             let ret = f(self);
2116
2117             self.current_module = orig_module;
2118             self.ribs[ValueNS].pop();
2119             self.ribs[TypeNS].pop();
2120             ret
2121         } else {
2122             f(self)
2123         }
2124     }
2125
2126     /// Searches the current set of local scopes for labels. Returns the first non-None label that
2127     /// is returned by the given predicate function
2128     ///
2129     /// Stops after meeting a closure.
2130     fn search_label<P, R>(&self, mut ident: Ident, pred: P) -> Option<R>
2131         where P: Fn(&Rib, Ident) -> Option<R>
2132     {
2133         for rib in self.label_ribs.iter().rev() {
2134             match rib.kind {
2135                 NormalRibKind => {}
2136                 // If an invocation of this macro created `ident`, give up on `ident`
2137                 // and switch to `ident`'s source from the macro definition.
2138                 MacroDefinition(def) => {
2139                     if def == self.macro_def(ident.span.ctxt()) {
2140                         ident.span.remove_mark();
2141                     }
2142                 }
2143                 _ => {
2144                     // Do not resolve labels across function boundary
2145                     return None;
2146                 }
2147             }
2148             let r = pred(rib, ident);
2149             if r.is_some() {
2150                 return r;
2151             }
2152         }
2153         None
2154     }
2155
2156     fn resolve_item(&mut self, item: &Item) {
2157         let name = item.ident.name;
2158
2159         debug!("(resolving item) resolving {}", name);
2160
2161         self.check_proc_macro_attrs(&item.attrs);
2162
2163         match item.node {
2164             ItemKind::Enum(_, ref generics) |
2165             ItemKind::Ty(_, ref generics) |
2166             ItemKind::Existential(_, ref generics) |
2167             ItemKind::Struct(_, ref generics) |
2168             ItemKind::Union(_, ref generics) |
2169             ItemKind::Fn(_, _, ref generics, _) => {
2170                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind),
2171                                          |this| visit::walk_item(this, item));
2172             }
2173
2174             ItemKind::Impl(.., ref generics, ref opt_trait_ref, ref self_type, ref impl_items) =>
2175                 self.resolve_implementation(generics,
2176                                             opt_trait_ref,
2177                                             &self_type,
2178                                             item.id,
2179                                             impl_items),
2180
2181             ItemKind::Trait(.., ref generics, ref bounds, ref trait_items) => {
2182                 // Create a new rib for the trait-wide type parameters.
2183                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2184                     let local_def_id = this.definitions.local_def_id(item.id);
2185                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2186                         this.visit_generics(generics);
2187                         walk_list!(this, visit_param_bound, bounds);
2188
2189                         for trait_item in trait_items {
2190                             this.check_proc_macro_attrs(&trait_item.attrs);
2191
2192                             let type_parameters = HasTypeParameters(&trait_item.generics,
2193                                                                     TraitOrImplItemRibKind);
2194                             this.with_type_parameter_rib(type_parameters, |this| {
2195                                 match trait_item.node {
2196                                     TraitItemKind::Const(ref ty, ref default) => {
2197                                         this.visit_ty(ty);
2198
2199                                         // Only impose the restrictions of
2200                                         // ConstRibKind for an actual constant
2201                                         // expression in a provided default.
2202                                         if let Some(ref expr) = *default{
2203                                             this.with_constant_rib(|this| {
2204                                                 this.visit_expr(expr);
2205                                             });
2206                                         }
2207                                     }
2208                                     TraitItemKind::Method(_, _) => {
2209                                         visit::walk_trait_item(this, trait_item)
2210                                     }
2211                                     TraitItemKind::Type(..) => {
2212                                         visit::walk_trait_item(this, trait_item)
2213                                     }
2214                                     TraitItemKind::Macro(_) => {
2215                                         panic!("unexpanded macro in resolve!")
2216                                     }
2217                                 };
2218                             });
2219                         }
2220                     });
2221                 });
2222             }
2223
2224             ItemKind::TraitAlias(ref generics, ref bounds) => {
2225                 // Create a new rib for the trait-wide type parameters.
2226                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2227                     let local_def_id = this.definitions.local_def_id(item.id);
2228                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2229                         this.visit_generics(generics);
2230                         walk_list!(this, visit_param_bound, bounds);
2231                     });
2232                 });
2233             }
2234
2235             ItemKind::Mod(_) | ItemKind::ForeignMod(_) => {
2236                 self.with_scope(item.id, |this| {
2237                     visit::walk_item(this, item);
2238                 });
2239             }
2240
2241             ItemKind::Static(ref ty, _, ref expr) |
2242             ItemKind::Const(ref ty, ref expr) => {
2243                 self.with_item_rib(|this| {
2244                     this.visit_ty(ty);
2245                     this.with_constant_rib(|this| {
2246                         this.visit_expr(expr);
2247                     });
2248                 });
2249             }
2250
2251             ItemKind::Use(ref use_tree) => {
2252                 // Imports are resolved as global by default, add starting root segment.
2253                 let path = Path {
2254                     segments: use_tree.prefix.make_root().into_iter().collect(),
2255                     span: use_tree.span,
2256                 };
2257                 self.resolve_use_tree(item.id, use_tree.span, item.id, use_tree, &path);
2258             }
2259
2260             ItemKind::ExternCrate(_) | ItemKind::MacroDef(..) | ItemKind::GlobalAsm(_) => {
2261                 // do nothing, these are just around to be encoded
2262             }
2263
2264             ItemKind::Mac(_) => panic!("unexpanded macro in resolve!"),
2265         }
2266     }
2267
2268     /// For the most part, use trees are desugared into `ImportDirective` instances
2269     /// when building the reduced graph (see `build_reduced_graph_for_use_tree`). But
2270     /// there is one special case we handle here: an empty nested import like
2271     /// `a::{b::{}}`, which desugares into...no import directives.
2272     fn resolve_use_tree(
2273         &mut self,
2274         root_id: NodeId,
2275         root_span: Span,
2276         id: NodeId,
2277         use_tree: &ast::UseTree,
2278         prefix: &Path,
2279     ) {
2280         match use_tree.kind {
2281             ast::UseTreeKind::Nested(ref items) => {
2282                 let path = Path {
2283                     segments: prefix.segments
2284                         .iter()
2285                         .chain(use_tree.prefix.segments.iter())
2286                         .cloned()
2287                         .collect(),
2288                     span: prefix.span.to(use_tree.prefix.span),
2289                 };
2290
2291                 if items.len() == 0 {
2292                     // Resolve prefix of an import with empty braces (issue #28388).
2293                     self.smart_resolve_path_with_crate_lint(
2294                         id,
2295                         None,
2296                         &path,
2297                         PathSource::ImportPrefix,
2298                         CrateLint::UsePath { root_id, root_span },
2299                     );
2300                 } else {
2301                     for &(ref tree, nested_id) in items {
2302                         self.resolve_use_tree(root_id, root_span, nested_id, tree, &path);
2303                     }
2304                 }
2305             }
2306             ast::UseTreeKind::Simple(..) => {},
2307             ast::UseTreeKind::Glob => {},
2308         }
2309     }
2310
2311     fn with_type_parameter_rib<'b, F>(&'b mut self, type_parameters: TypeParameters<'a, 'b>, f: F)
2312         where F: FnOnce(&mut Resolver)
2313     {
2314         match type_parameters {
2315             HasTypeParameters(generics, rib_kind) => {
2316                 let mut function_type_rib = Rib::new(rib_kind);
2317                 let mut seen_bindings = FxHashMap();
2318                 generics.params.iter().for_each(|param| match param.kind {
2319                     GenericParamKind::Lifetime { .. } => {}
2320                     GenericParamKind::Type { .. } => {
2321                         let ident = param.ident.modern();
2322                         debug!("with_type_parameter_rib: {}", param.id);
2323
2324                         if seen_bindings.contains_key(&ident) {
2325                             let span = seen_bindings.get(&ident).unwrap();
2326                             let err = ResolutionError::NameAlreadyUsedInTypeParameterList(
2327                                 ident.name,
2328                                 span,
2329                             );
2330                             resolve_error(self, param.ident.span, err);
2331                         }
2332                         seen_bindings.entry(ident).or_insert(param.ident.span);
2333
2334                     // Plain insert (no renaming).
2335                     let def = Def::TyParam(self.definitions.local_def_id(param.id));
2336                         function_type_rib.bindings.insert(ident, def);
2337                         self.record_def(param.id, PathResolution::new(def));
2338                     }
2339                 });
2340                 self.ribs[TypeNS].push(function_type_rib);
2341             }
2342
2343             NoTypeParameters => {
2344                 // Nothing to do.
2345             }
2346         }
2347
2348         f(self);
2349
2350         if let HasTypeParameters(..) = type_parameters {
2351             self.ribs[TypeNS].pop();
2352         }
2353     }
2354
2355     fn with_label_rib<F>(&mut self, f: F)
2356         where F: FnOnce(&mut Resolver)
2357     {
2358         self.label_ribs.push(Rib::new(NormalRibKind));
2359         f(self);
2360         self.label_ribs.pop();
2361     }
2362
2363     fn with_item_rib<F>(&mut self, f: F)
2364         where F: FnOnce(&mut Resolver)
2365     {
2366         self.ribs[ValueNS].push(Rib::new(ItemRibKind));
2367         self.ribs[TypeNS].push(Rib::new(ItemRibKind));
2368         f(self);
2369         self.ribs[TypeNS].pop();
2370         self.ribs[ValueNS].pop();
2371     }
2372
2373     fn with_constant_rib<F>(&mut self, f: F)
2374         where F: FnOnce(&mut Resolver)
2375     {
2376         self.ribs[ValueNS].push(Rib::new(ConstantItemRibKind));
2377         self.label_ribs.push(Rib::new(ConstantItemRibKind));
2378         f(self);
2379         self.label_ribs.pop();
2380         self.ribs[ValueNS].pop();
2381     }
2382
2383     fn with_current_self_type<T, F>(&mut self, self_type: &Ty, f: F) -> T
2384         where F: FnOnce(&mut Resolver) -> T
2385     {
2386         // Handle nested impls (inside fn bodies)
2387         let previous_value = replace(&mut self.current_self_type, Some(self_type.clone()));
2388         let result = f(self);
2389         self.current_self_type = previous_value;
2390         result
2391     }
2392
2393     /// This is called to resolve a trait reference from an `impl` (i.e. `impl Trait for Foo`)
2394     fn with_optional_trait_ref<T, F>(&mut self, opt_trait_ref: Option<&TraitRef>, f: F) -> T
2395         where F: FnOnce(&mut Resolver, Option<DefId>) -> T
2396     {
2397         let mut new_val = None;
2398         let mut new_id = None;
2399         if let Some(trait_ref) = opt_trait_ref {
2400             let path: Vec<_> = trait_ref.path.segments.iter()
2401                 .map(|seg| seg.ident)
2402                 .collect();
2403             let def = self.smart_resolve_path_fragment(
2404                 trait_ref.ref_id,
2405                 None,
2406                 &path,
2407                 trait_ref.path.span,
2408                 PathSource::Trait(AliasPossibility::No),
2409                 CrateLint::SimplePath(trait_ref.ref_id),
2410             ).base_def();
2411             if def != Def::Err {
2412                 new_id = Some(def.def_id());
2413                 let span = trait_ref.path.span;
2414                 if let PathResult::Module(module) = self.resolve_path(
2415                     &path,
2416                     None,
2417                     false,
2418                     span,
2419                     CrateLint::SimplePath(trait_ref.ref_id),
2420                 ) {
2421                     new_val = Some((module, trait_ref.clone()));
2422                 }
2423             }
2424         }
2425         let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
2426         let result = f(self, new_id);
2427         self.current_trait_ref = original_trait_ref;
2428         result
2429     }
2430
2431     fn with_self_rib<F>(&mut self, self_def: Def, f: F)
2432         where F: FnOnce(&mut Resolver)
2433     {
2434         let mut self_type_rib = Rib::new(NormalRibKind);
2435
2436         // plain insert (no renaming, types are not currently hygienic....)
2437         self_type_rib.bindings.insert(keywords::SelfType.ident(), self_def);
2438         self.ribs[TypeNS].push(self_type_rib);
2439         f(self);
2440         self.ribs[TypeNS].pop();
2441     }
2442
2443     fn resolve_implementation(&mut self,
2444                               generics: &Generics,
2445                               opt_trait_reference: &Option<TraitRef>,
2446                               self_type: &Ty,
2447                               item_id: NodeId,
2448                               impl_items: &[ImplItem]) {
2449         // If applicable, create a rib for the type parameters.
2450         self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2451             // Dummy self type for better errors if `Self` is used in the trait path.
2452             this.with_self_rib(Def::SelfTy(None, None), |this| {
2453                 // Resolve the trait reference, if necessary.
2454                 this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| {
2455                     let item_def_id = this.definitions.local_def_id(item_id);
2456                     this.with_self_rib(Def::SelfTy(trait_id, Some(item_def_id)), |this| {
2457                         if let Some(trait_ref) = opt_trait_reference.as_ref() {
2458                             // Resolve type arguments in trait path
2459                             visit::walk_trait_ref(this, trait_ref);
2460                         }
2461                         // Resolve the self type.
2462                         this.visit_ty(self_type);
2463                         // Resolve the type parameters.
2464                         this.visit_generics(generics);
2465                         this.with_current_self_type(self_type, |this| {
2466                             for impl_item in impl_items {
2467                                 this.check_proc_macro_attrs(&impl_item.attrs);
2468                                 this.resolve_visibility(&impl_item.vis);
2469
2470                                 // We also need a new scope for the impl item type parameters.
2471                                 let type_parameters = HasTypeParameters(&impl_item.generics,
2472                                                                         TraitOrImplItemRibKind);
2473                                 this.with_type_parameter_rib(type_parameters, |this| {
2474                                     use self::ResolutionError::*;
2475                                     match impl_item.node {
2476                                         ImplItemKind::Const(..) => {
2477                                             // If this is a trait impl, ensure the const
2478                                             // exists in trait
2479                                             this.check_trait_item(impl_item.ident,
2480                                                                 ValueNS,
2481                                                                 impl_item.span,
2482                                                 |n, s| ConstNotMemberOfTrait(n, s));
2483                                             this.with_constant_rib(|this|
2484                                                 visit::walk_impl_item(this, impl_item)
2485                                             );
2486                                         }
2487                                         ImplItemKind::Method(..) => {
2488                                             // If this is a trait impl, ensure the method
2489                                             // exists in trait
2490                                             this.check_trait_item(impl_item.ident,
2491                                                                 ValueNS,
2492                                                                 impl_item.span,
2493                                                 |n, s| MethodNotMemberOfTrait(n, s));
2494
2495                                             visit::walk_impl_item(this, impl_item);
2496                                         }
2497                                         ImplItemKind::Type(ref ty) => {
2498                                             // If this is a trait impl, ensure the type
2499                                             // exists in trait
2500                                             this.check_trait_item(impl_item.ident,
2501                                                                 TypeNS,
2502                                                                 impl_item.span,
2503                                                 |n, s| TypeNotMemberOfTrait(n, s));
2504
2505                                             this.visit_ty(ty);
2506                                         }
2507                                         ImplItemKind::Existential(ref bounds) => {
2508                                             // If this is a trait impl, ensure the type
2509                                             // exists in trait
2510                                             this.check_trait_item(impl_item.ident,
2511                                                                 TypeNS,
2512                                                                 impl_item.span,
2513                                                 |n, s| TypeNotMemberOfTrait(n, s));
2514
2515                                             for bound in bounds {
2516                                                 this.visit_param_bound(bound);
2517                                             }
2518                                         }
2519                                         ImplItemKind::Macro(_) =>
2520                                             panic!("unexpanded macro in resolve!"),
2521                                     }
2522                                 });
2523                             }
2524                         });
2525                     });
2526                 });
2527             });
2528         });
2529     }
2530
2531     fn check_trait_item<F>(&mut self, ident: Ident, ns: Namespace, span: Span, err: F)
2532         where F: FnOnce(Name, &str) -> ResolutionError
2533     {
2534         // If there is a TraitRef in scope for an impl, then the method must be in the
2535         // trait.
2536         if let Some((module, _)) = self.current_trait_ref {
2537             if self.resolve_ident_in_module(module, ident, ns, false, span).is_err() {
2538                 let path = &self.current_trait_ref.as_ref().unwrap().1.path;
2539                 resolve_error(self, span, err(ident.name, &path_names_to_string(path)));
2540             }
2541         }
2542     }
2543
2544     fn resolve_local(&mut self, local: &Local) {
2545         // Resolve the type.
2546         walk_list!(self, visit_ty, &local.ty);
2547
2548         // Resolve the initializer.
2549         walk_list!(self, visit_expr, &local.init);
2550
2551         // Resolve the pattern.
2552         self.resolve_pattern(&local.pat, PatternSource::Let, &mut FxHashMap());
2553     }
2554
2555     // build a map from pattern identifiers to binding-info's.
2556     // this is done hygienically. This could arise for a macro
2557     // that expands into an or-pattern where one 'x' was from the
2558     // user and one 'x' came from the macro.
2559     fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
2560         let mut binding_map = FxHashMap();
2561
2562         pat.walk(&mut |pat| {
2563             if let PatKind::Ident(binding_mode, ident, ref sub_pat) = pat.node {
2564                 if sub_pat.is_some() || match self.def_map.get(&pat.id).map(|res| res.base_def()) {
2565                     Some(Def::Local(..)) => true,
2566                     _ => false,
2567                 } {
2568                     let binding_info = BindingInfo { span: ident.span, binding_mode: binding_mode };
2569                     binding_map.insert(ident, binding_info);
2570                 }
2571             }
2572             true
2573         });
2574
2575         binding_map
2576     }
2577
2578     // check that all of the arms in an or-pattern have exactly the
2579     // same set of bindings, with the same binding modes for each.
2580     fn check_consistent_bindings(&mut self, pats: &[P<Pat>]) {
2581         if pats.is_empty() {
2582             return;
2583         }
2584
2585         let mut missing_vars = FxHashMap();
2586         let mut inconsistent_vars = FxHashMap();
2587         for (i, p) in pats.iter().enumerate() {
2588             let map_i = self.binding_mode_map(&p);
2589
2590             for (j, q) in pats.iter().enumerate() {
2591                 if i == j {
2592                     continue;
2593                 }
2594
2595                 let map_j = self.binding_mode_map(&q);
2596                 for (&key, &binding_i) in &map_i {
2597                     if map_j.len() == 0 {                   // Account for missing bindings when
2598                         let binding_error = missing_vars    // map_j has none.
2599                             .entry(key.name)
2600                             .or_insert(BindingError {
2601                                 name: key.name,
2602                                 origin: BTreeSet::new(),
2603                                 target: BTreeSet::new(),
2604                             });
2605                         binding_error.origin.insert(binding_i.span);
2606                         binding_error.target.insert(q.span);
2607                     }
2608                     for (&key_j, &binding_j) in &map_j {
2609                         match map_i.get(&key_j) {
2610                             None => {  // missing binding
2611                                 let binding_error = missing_vars
2612                                     .entry(key_j.name)
2613                                     .or_insert(BindingError {
2614                                         name: key_j.name,
2615                                         origin: BTreeSet::new(),
2616                                         target: BTreeSet::new(),
2617                                     });
2618                                 binding_error.origin.insert(binding_j.span);
2619                                 binding_error.target.insert(p.span);
2620                             }
2621                             Some(binding_i) => {  // check consistent binding
2622                                 if binding_i.binding_mode != binding_j.binding_mode {
2623                                     inconsistent_vars
2624                                         .entry(key.name)
2625                                         .or_insert((binding_j.span, binding_i.span));
2626                                 }
2627                             }
2628                         }
2629                     }
2630                 }
2631             }
2632         }
2633         let mut missing_vars = missing_vars.iter().collect::<Vec<_>>();
2634         missing_vars.sort();
2635         for (_, v) in missing_vars {
2636             resolve_error(self,
2637                           *v.origin.iter().next().unwrap(),
2638                           ResolutionError::VariableNotBoundInPattern(v));
2639         }
2640         let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
2641         inconsistent_vars.sort();
2642         for (name, v) in inconsistent_vars {
2643             resolve_error(self, v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
2644         }
2645     }
2646
2647     fn resolve_arm(&mut self, arm: &Arm) {
2648         self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2649
2650         let mut bindings_list = FxHashMap();
2651         for pattern in &arm.pats {
2652             self.resolve_pattern(&pattern, PatternSource::Match, &mut bindings_list);
2653         }
2654
2655         // This has to happen *after* we determine which pat_idents are variants
2656         self.check_consistent_bindings(&arm.pats);
2657
2658         walk_list!(self, visit_expr, &arm.guard);
2659         self.visit_expr(&arm.body);
2660
2661         self.ribs[ValueNS].pop();
2662     }
2663
2664     fn resolve_block(&mut self, block: &Block) {
2665         debug!("(resolving block) entering block");
2666         // Move down in the graph, if there's an anonymous module rooted here.
2667         let orig_module = self.current_module;
2668         let anonymous_module = self.block_map.get(&block.id).cloned(); // clones a reference
2669
2670         let mut num_macro_definition_ribs = 0;
2671         if let Some(anonymous_module) = anonymous_module {
2672             debug!("(resolving block) found anonymous module, moving down");
2673             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2674             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2675             self.current_module = anonymous_module;
2676             self.finalize_current_module_macro_resolutions();
2677         } else {
2678             self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2679         }
2680
2681         // Descend into the block.
2682         for stmt in &block.stmts {
2683             if let ast::StmtKind::Item(ref item) = stmt.node {
2684                 if let ast::ItemKind::MacroDef(..) = item.node {
2685                     num_macro_definition_ribs += 1;
2686                     let def = self.definitions.local_def_id(item.id);
2687                     self.ribs[ValueNS].push(Rib::new(MacroDefinition(def)));
2688                     self.label_ribs.push(Rib::new(MacroDefinition(def)));
2689                 }
2690             }
2691
2692             self.visit_stmt(stmt);
2693         }
2694
2695         // Move back up.
2696         self.current_module = orig_module;
2697         for _ in 0 .. num_macro_definition_ribs {
2698             self.ribs[ValueNS].pop();
2699             self.label_ribs.pop();
2700         }
2701         self.ribs[ValueNS].pop();
2702         if let Some(_) = anonymous_module {
2703             self.ribs[TypeNS].pop();
2704         }
2705         debug!("(resolving block) leaving block");
2706     }
2707
2708     fn fresh_binding(&mut self,
2709                      ident: Ident,
2710                      pat_id: NodeId,
2711                      outer_pat_id: NodeId,
2712                      pat_src: PatternSource,
2713                      bindings: &mut FxHashMap<Ident, NodeId>)
2714                      -> PathResolution {
2715         // Add the binding to the local ribs, if it
2716         // doesn't already exist in the bindings map. (We
2717         // must not add it if it's in the bindings map
2718         // because that breaks the assumptions later
2719         // passes make about or-patterns.)
2720         let ident = ident.modern_and_legacy();
2721         let mut def = Def::Local(pat_id);
2722         match bindings.get(&ident).cloned() {
2723             Some(id) if id == outer_pat_id => {
2724                 // `Variant(a, a)`, error
2725                 resolve_error(
2726                     self,
2727                     ident.span,
2728                     ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(
2729                         &ident.as_str())
2730                 );
2731             }
2732             Some(..) if pat_src == PatternSource::FnParam => {
2733                 // `fn f(a: u8, a: u8)`, error
2734                 resolve_error(
2735                     self,
2736                     ident.span,
2737                     ResolutionError::IdentifierBoundMoreThanOnceInParameterList(
2738                         &ident.as_str())
2739                 );
2740             }
2741             Some(..) if pat_src == PatternSource::Match ||
2742                         pat_src == PatternSource::IfLet ||
2743                         pat_src == PatternSource::WhileLet => {
2744                 // `Variant1(a) | Variant2(a)`, ok
2745                 // Reuse definition from the first `a`.
2746                 def = self.ribs[ValueNS].last_mut().unwrap().bindings[&ident];
2747             }
2748             Some(..) => {
2749                 span_bug!(ident.span, "two bindings with the same name from \
2750                                        unexpected pattern source {:?}", pat_src);
2751             }
2752             None => {
2753                 // A completely fresh binding, add to the lists if it's valid.
2754                 if ident.name != keywords::Invalid.name() {
2755                     bindings.insert(ident, outer_pat_id);
2756                     self.ribs[ValueNS].last_mut().unwrap().bindings.insert(ident, def);
2757                 }
2758             }
2759         }
2760
2761         PathResolution::new(def)
2762     }
2763
2764     fn resolve_pattern(&mut self,
2765                        pat: &Pat,
2766                        pat_src: PatternSource,
2767                        // Maps idents to the node ID for the
2768                        // outermost pattern that binds them.
2769                        bindings: &mut FxHashMap<Ident, NodeId>) {
2770         // Visit all direct subpatterns of this pattern.
2771         let outer_pat_id = pat.id;
2772         pat.walk(&mut |pat| {
2773             match pat.node {
2774                 PatKind::Ident(bmode, ident, ref opt_pat) => {
2775                     // First try to resolve the identifier as some existing
2776                     // entity, then fall back to a fresh binding.
2777                     let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS,
2778                                                                       None, pat.span)
2779                                       .and_then(LexicalScopeBinding::item);
2780                     let resolution = binding.map(NameBinding::def).and_then(|def| {
2781                         let is_syntactic_ambiguity = opt_pat.is_none() &&
2782                             bmode == BindingMode::ByValue(Mutability::Immutable);
2783                         match def {
2784                             Def::StructCtor(_, CtorKind::Const) |
2785                             Def::VariantCtor(_, CtorKind::Const) |
2786                             Def::Const(..) if is_syntactic_ambiguity => {
2787                                 // Disambiguate in favor of a unit struct/variant
2788                                 // or constant pattern.
2789                                 self.record_use(ident, ValueNS, binding.unwrap(), ident.span);
2790                                 Some(PathResolution::new(def))
2791                             }
2792                             Def::StructCtor(..) | Def::VariantCtor(..) |
2793                             Def::Const(..) | Def::Static(..) => {
2794                                 // This is unambiguously a fresh binding, either syntactically
2795                                 // (e.g. `IDENT @ PAT` or `ref IDENT`) or because `IDENT` resolves
2796                                 // to something unusable as a pattern (e.g. constructor function),
2797                                 // but we still conservatively report an error, see
2798                                 // issues/33118#issuecomment-233962221 for one reason why.
2799                                 resolve_error(
2800                                     self,
2801                                     ident.span,
2802                                     ResolutionError::BindingShadowsSomethingUnacceptable(
2803                                         pat_src.descr(), ident.name, binding.unwrap())
2804                                 );
2805                                 None
2806                             }
2807                             Def::Fn(..) | Def::Err => {
2808                                 // These entities are explicitly allowed
2809                                 // to be shadowed by fresh bindings.
2810                                 None
2811                             }
2812                             def => {
2813                                 span_bug!(ident.span, "unexpected definition for an \
2814                                                        identifier in pattern: {:?}", def);
2815                             }
2816                         }
2817                     }).unwrap_or_else(|| {
2818                         self.fresh_binding(ident, pat.id, outer_pat_id, pat_src, bindings)
2819                     });
2820
2821                     self.record_def(pat.id, resolution);
2822                 }
2823
2824                 PatKind::TupleStruct(ref path, ..) => {
2825                     self.smart_resolve_path(pat.id, None, path, PathSource::TupleStruct);
2826                 }
2827
2828                 PatKind::Path(ref qself, ref path) => {
2829                     self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
2830                 }
2831
2832                 PatKind::Struct(ref path, ..) => {
2833                     self.smart_resolve_path(pat.id, None, path, PathSource::Struct);
2834                 }
2835
2836                 _ => {}
2837             }
2838             true
2839         });
2840
2841         visit::walk_pat(self, pat);
2842     }
2843
2844     // High-level and context dependent path resolution routine.
2845     // Resolves the path and records the resolution into definition map.
2846     // If resolution fails tries several techniques to find likely
2847     // resolution candidates, suggest imports or other help, and report
2848     // errors in user friendly way.
2849     fn smart_resolve_path(&mut self,
2850                           id: NodeId,
2851                           qself: Option<&QSelf>,
2852                           path: &Path,
2853                           source: PathSource)
2854                           -> PathResolution {
2855         self.smart_resolve_path_with_crate_lint(id, qself, path, source, CrateLint::SimplePath(id))
2856     }
2857
2858     /// A variant of `smart_resolve_path` where you also specify extra
2859     /// information about where the path came from; this extra info is
2860     /// sometimes needed for the lint that recommends rewriting
2861     /// absolute paths to `crate`, so that it knows how to frame the
2862     /// suggestion. If you are just resolving a path like `foo::bar`
2863     /// that appears...somewhere, though, then you just want
2864     /// `CrateLint::SimplePath`, which is what `smart_resolve_path`
2865     /// already provides.
2866     fn smart_resolve_path_with_crate_lint(
2867         &mut self,
2868         id: NodeId,
2869         qself: Option<&QSelf>,
2870         path: &Path,
2871         source: PathSource,
2872         crate_lint: CrateLint
2873     ) -> PathResolution {
2874         let segments = &path.segments.iter()
2875             .map(|seg| seg.ident)
2876             .collect::<Vec<_>>();
2877         self.smart_resolve_path_fragment(id, qself, segments, path.span, source, crate_lint)
2878     }
2879
2880     fn smart_resolve_path_fragment(&mut self,
2881                                    id: NodeId,
2882                                    qself: Option<&QSelf>,
2883                                    path: &[Ident],
2884                                    span: Span,
2885                                    source: PathSource,
2886                                    crate_lint: CrateLint)
2887                                    -> PathResolution {
2888         let ident_span = path.last().map_or(span, |ident| ident.span);
2889         let ns = source.namespace();
2890         let is_expected = &|def| source.is_expected(def);
2891         let is_enum_variant = &|def| if let Def::Variant(..) = def { true } else { false };
2892
2893         // Base error is amended with one short label and possibly some longer helps/notes.
2894         let report_errors = |this: &mut Self, def: Option<Def>| {
2895             // Make the base error.
2896             let expected = source.descr_expected();
2897             let path_str = names_to_string(path);
2898             let code = source.error_code(def.is_some());
2899             let (base_msg, fallback_label, base_span) = if let Some(def) = def {
2900                 (format!("expected {}, found {} `{}`", expected, def.kind_name(), path_str),
2901                  format!("not a {}", expected),
2902                  span)
2903             } else {
2904                 let item_str = path[path.len() - 1];
2905                 let item_span = path[path.len() - 1].span;
2906                 let (mod_prefix, mod_str) = if path.len() == 1 {
2907                     (String::new(), "this scope".to_string())
2908                 } else if path.len() == 2 && path[0].name == keywords::CrateRoot.name() {
2909                     (String::new(), "the crate root".to_string())
2910                 } else {
2911                     let mod_path = &path[..path.len() - 1];
2912                     let mod_prefix = match this.resolve_path(mod_path, Some(TypeNS),
2913                                                              false, span, CrateLint::No) {
2914                         PathResult::Module(module) => module.def(),
2915                         _ => None,
2916                     }.map_or(String::new(), |def| format!("{} ", def.kind_name()));
2917                     (mod_prefix, format!("`{}`", names_to_string(mod_path)))
2918                 };
2919                 (format!("cannot find {} `{}` in {}{}", expected, item_str, mod_prefix, mod_str),
2920                  format!("not found in {}", mod_str),
2921                  item_span)
2922             };
2923             let code = DiagnosticId::Error(code.into());
2924             let mut err = this.session.struct_span_err_with_code(base_span, &base_msg, code);
2925
2926             // Emit special messages for unresolved `Self` and `self`.
2927             if is_self_type(path, ns) {
2928                 __diagnostic_used!(E0411);
2929                 err.code(DiagnosticId::Error("E0411".into()));
2930                 err.span_label(span, "`Self` is only available in traits and impls");
2931                 return (err, Vec::new());
2932             }
2933             if is_self_value(path, ns) {
2934                 __diagnostic_used!(E0424);
2935                 err.code(DiagnosticId::Error("E0424".into()));
2936                 err.span_label(span, format!("`self` value is only available in \
2937                                                methods with `self` parameter"));
2938                 return (err, Vec::new());
2939             }
2940
2941             // Try to lookup the name in more relaxed fashion for better error reporting.
2942             let ident = *path.last().unwrap();
2943             let candidates = this.lookup_import_candidates(ident.name, ns, is_expected);
2944             if candidates.is_empty() && is_expected(Def::Enum(DefId::local(CRATE_DEF_INDEX))) {
2945                 let enum_candidates =
2946                     this.lookup_import_candidates(ident.name, ns, is_enum_variant);
2947                 let mut enum_candidates = enum_candidates.iter()
2948                     .map(|suggestion| import_candidate_to_paths(&suggestion)).collect::<Vec<_>>();
2949                 enum_candidates.sort();
2950                 for (sp, variant_path, enum_path) in enum_candidates {
2951                     if sp.is_dummy() {
2952                         let msg = format!("there is an enum variant `{}`, \
2953                                         try using `{}`?",
2954                                         variant_path,
2955                                         enum_path);
2956                         err.help(&msg);
2957                     } else {
2958                         err.span_suggestion(span, "you can try using the variant's enum",
2959                                             enum_path);
2960                     }
2961                 }
2962             }
2963             if path.len() == 1 && this.self_type_is_available(span) {
2964                 if let Some(candidate) = this.lookup_assoc_candidate(ident, ns, is_expected) {
2965                     let self_is_available = this.self_value_is_available(path[0].span, span);
2966                     match candidate {
2967                         AssocSuggestion::Field => {
2968                             err.span_suggestion(span, "try",
2969                                                 format!("self.{}", path_str));
2970                             if !self_is_available {
2971                                 err.span_label(span, format!("`self` value is only available in \
2972                                                                methods with `self` parameter"));
2973                             }
2974                         }
2975                         AssocSuggestion::MethodWithSelf if self_is_available => {
2976                             err.span_suggestion(span, "try",
2977                                                 format!("self.{}", path_str));
2978                         }
2979                         AssocSuggestion::MethodWithSelf | AssocSuggestion::AssocItem => {
2980                             err.span_suggestion(span, "try",
2981                                                 format!("Self::{}", path_str));
2982                         }
2983                     }
2984                     return (err, candidates);
2985                 }
2986             }
2987
2988             let mut levenshtein_worked = false;
2989
2990             // Try Levenshtein.
2991             if let Some(candidate) = this.lookup_typo_candidate(path, ns, is_expected, span) {
2992                 err.span_label(ident_span, format!("did you mean `{}`?", candidate));
2993                 levenshtein_worked = true;
2994             }
2995
2996             // Try context dependent help if relaxed lookup didn't work.
2997             if let Some(def) = def {
2998                 match (def, source) {
2999                     (Def::Macro(..), _) => {
3000                         err.span_label(span, format!("did you mean `{}!(...)`?", path_str));
3001                         return (err, candidates);
3002                     }
3003                     (Def::TyAlias(..), PathSource::Trait(_)) => {
3004                         err.span_label(span, "type aliases cannot be used for traits");
3005                         return (err, candidates);
3006                     }
3007                     (Def::Mod(..), PathSource::Expr(Some(parent))) => match parent.node {
3008                         ExprKind::Field(_, ident) => {
3009                             err.span_label(parent.span, format!("did you mean `{}::{}`?",
3010                                                                  path_str, ident));
3011                             return (err, candidates);
3012                         }
3013                         ExprKind::MethodCall(ref segment, ..) => {
3014                             err.span_label(parent.span, format!("did you mean `{}::{}(...)`?",
3015                                                                  path_str, segment.ident));
3016                             return (err, candidates);
3017                         }
3018                         _ => {}
3019                     },
3020                     (Def::Enum(..), PathSource::TupleStruct)
3021                         | (Def::Enum(..), PathSource::Expr(..))  => {
3022                         if let Some(variants) = this.collect_enum_variants(def) {
3023                             err.note(&format!("did you mean to use one \
3024                                                of the following variants?\n{}",
3025                                 variants.iter()
3026                                     .map(|suggestion| path_names_to_string(suggestion))
3027                                     .map(|suggestion| format!("- `{}`", suggestion))
3028                                     .collect::<Vec<_>>()
3029                                     .join("\n")));
3030
3031                         } else {
3032                             err.note("did you mean to use one of the enum's variants?");
3033                         }
3034                         return (err, candidates);
3035                     },
3036                     (Def::Struct(def_id), _) if ns == ValueNS => {
3037                         if let Some((ctor_def, ctor_vis))
3038                                 = this.struct_constructors.get(&def_id).cloned() {
3039                             let accessible_ctor = this.is_accessible(ctor_vis);
3040                             if is_expected(ctor_def) && !accessible_ctor {
3041                                 err.span_label(span, format!("constructor is not visible \
3042                                                               here due to private fields"));
3043                             }
3044                         } else {
3045                             // HACK(estebank): find a better way to figure out that this was a
3046                             // parser issue where a struct literal is being used on an expression
3047                             // where a brace being opened means a block is being started. Look
3048                             // ahead for the next text to see if `span` is followed by a `{`.
3049                             let cm = this.session.codemap();
3050                             let mut sp = span;
3051                             loop {
3052                                 sp = cm.next_point(sp);
3053                                 match cm.span_to_snippet(sp) {
3054                                     Ok(ref snippet) => {
3055                                         if snippet.chars().any(|c| { !c.is_whitespace() }) {
3056                                             break;
3057                                         }
3058                                     }
3059                                     _ => break,
3060                                 }
3061                             }
3062                             let followed_by_brace = match cm.span_to_snippet(sp) {
3063                                 Ok(ref snippet) if snippet == "{" => true,
3064                                 _ => false,
3065                             };
3066                             if let (PathSource::Expr(None), true) = (source, followed_by_brace) {
3067                                 err.span_label(
3068                                     span,
3069                                     format!("did you mean `({} {{ /* fields */ }})`?", path_str),
3070                                 );
3071                             } else {
3072                                 err.span_label(
3073                                     span,
3074                                     format!("did you mean `{} {{ /* fields */ }}`?", path_str),
3075                                 );
3076                             }
3077                         }
3078                         return (err, candidates);
3079                     }
3080                     (Def::Union(..), _) |
3081                     (Def::Variant(..), _) |
3082                     (Def::VariantCtor(_, CtorKind::Fictive), _) if ns == ValueNS => {
3083                         err.span_label(span, format!("did you mean `{} {{ /* fields */ }}`?",
3084                                                      path_str));
3085                         return (err, candidates);
3086                     }
3087                     (Def::SelfTy(..), _) if ns == ValueNS => {
3088                         err.span_label(span, fallback_label);
3089                         err.note("can't use `Self` as a constructor, you must use the \
3090                                   implemented struct");
3091                         return (err, candidates);
3092                     }
3093                     (Def::TyAlias(_), _) | (Def::AssociatedTy(..), _) if ns == ValueNS => {
3094                         err.note("can't use a type alias as a constructor");
3095                         return (err, candidates);
3096                     }
3097                     _ => {}
3098                 }
3099             }
3100
3101             // Fallback label.
3102             if !levenshtein_worked {
3103                 err.span_label(base_span, fallback_label);
3104                 this.type_ascription_suggestion(&mut err, base_span);
3105             }
3106             (err, candidates)
3107         };
3108         let report_errors = |this: &mut Self, def: Option<Def>| {
3109             let (err, candidates) = report_errors(this, def);
3110             let def_id = this.current_module.normal_ancestor_id;
3111             let node_id = this.definitions.as_local_node_id(def_id).unwrap();
3112             let better = def.is_some();
3113             this.use_injections.push(UseError { err, candidates, node_id, better });
3114             err_path_resolution()
3115         };
3116
3117         let resolution = match self.resolve_qpath_anywhere(
3118             id,
3119             qself,
3120             path,
3121             ns,
3122             span,
3123             source.defer_to_typeck(),
3124             source.global_by_default(),
3125             crate_lint,
3126         ) {
3127             Some(resolution) if resolution.unresolved_segments() == 0 => {
3128                 if is_expected(resolution.base_def()) || resolution.base_def() == Def::Err {
3129                     resolution
3130                 } else {
3131                     // Add a temporary hack to smooth the transition to new struct ctor
3132                     // visibility rules. See #38932 for more details.
3133                     let mut res = None;
3134                     if let Def::Struct(def_id) = resolution.base_def() {
3135                         if let Some((ctor_def, ctor_vis))
3136                                 = self.struct_constructors.get(&def_id).cloned() {
3137                             if is_expected(ctor_def) && self.is_accessible(ctor_vis) {
3138                                 let lint = lint::builtin::LEGACY_CONSTRUCTOR_VISIBILITY;
3139                                 self.session.buffer_lint(lint, id, span,
3140                                     "private struct constructors are not usable through \
3141                                      re-exports in outer modules",
3142                                 );
3143                                 res = Some(PathResolution::new(ctor_def));
3144                             }
3145                         }
3146                     }
3147
3148                     res.unwrap_or_else(|| report_errors(self, Some(resolution.base_def())))
3149                 }
3150             }
3151             Some(resolution) if source.defer_to_typeck() => {
3152                 // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
3153                 // or `<T>::A::B`. If `B` should be resolved in value namespace then
3154                 // it needs to be added to the trait map.
3155                 if ns == ValueNS {
3156                     let item_name = *path.last().unwrap();
3157                     let traits = self.get_traits_containing_item(item_name, ns);
3158                     self.trait_map.insert(id, traits);
3159                 }
3160                 resolution
3161             }
3162             _ => report_errors(self, None)
3163         };
3164
3165         if let PathSource::TraitItem(..) = source {} else {
3166             // Avoid recording definition of `A::B` in `<T as A>::B::C`.
3167             self.record_def(id, resolution);
3168         }
3169         resolution
3170     }
3171
3172     fn type_ascription_suggestion(&self,
3173                                   err: &mut DiagnosticBuilder,
3174                                   base_span: Span) {
3175         debug!("type_ascription_suggetion {:?}", base_span);
3176         let cm = self.session.codemap();
3177         debug!("self.current_type_ascription {:?}", self.current_type_ascription);
3178         if let Some(sp) = self.current_type_ascription.last() {
3179             let mut sp = *sp;
3180             loop {  // try to find the `:`, bail on first non-':'/non-whitespace
3181                 sp = cm.next_point(sp);
3182                 if let Ok(snippet) = cm.span_to_snippet(sp.to(cm.next_point(sp))) {
3183                     debug!("snippet {:?}", snippet);
3184                     let line_sp = cm.lookup_char_pos(sp.hi()).line;
3185                     let line_base_sp = cm.lookup_char_pos(base_span.lo()).line;
3186                     debug!("{:?} {:?}", line_sp, line_base_sp);
3187                     if snippet == ":" {
3188                         err.span_label(base_span,
3189                                        "expecting a type here because of type ascription");
3190                         if line_sp != line_base_sp {
3191                             err.span_suggestion_short(sp,
3192                                                       "did you mean to use `;` here instead?",
3193                                                       ";".to_string());
3194                         }
3195                         break;
3196                     } else if snippet.trim().len() != 0  {
3197                         debug!("tried to find type ascription `:` token, couldn't find it");
3198                         break;
3199                     }
3200                 } else {
3201                     break;
3202                 }
3203             }
3204         }
3205     }
3206
3207     fn self_type_is_available(&mut self, span: Span) -> bool {
3208         let binding = self.resolve_ident_in_lexical_scope(keywords::SelfType.ident(),
3209                                                           TypeNS, None, span);
3210         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3211     }
3212
3213     fn self_value_is_available(&mut self, self_span: Span, path_span: Span) -> bool {
3214         let ident = Ident::new(keywords::SelfValue.name(), self_span);
3215         let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, None, path_span);
3216         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3217     }
3218
3219     // Resolve in alternative namespaces if resolution in the primary namespace fails.
3220     fn resolve_qpath_anywhere(&mut self,
3221                               id: NodeId,
3222                               qself: Option<&QSelf>,
3223                               path: &[Ident],
3224                               primary_ns: Namespace,
3225                               span: Span,
3226                               defer_to_typeck: bool,
3227                               global_by_default: bool,
3228                               crate_lint: CrateLint)
3229                               -> Option<PathResolution> {
3230         let mut fin_res = None;
3231         // FIXME: can't resolve paths in macro namespace yet, macros are
3232         // processed by the little special hack below.
3233         for (i, ns) in [primary_ns, TypeNS, ValueNS, /*MacroNS*/].iter().cloned().enumerate() {
3234             if i == 0 || ns != primary_ns {
3235                 match self.resolve_qpath(id, qself, path, ns, span, global_by_default, crate_lint) {
3236                     // If defer_to_typeck, then resolution > no resolution,
3237                     // otherwise full resolution > partial resolution > no resolution.
3238                     Some(res) if res.unresolved_segments() == 0 || defer_to_typeck =>
3239                         return Some(res),
3240                     res => if fin_res.is_none() { fin_res = res },
3241                 };
3242             }
3243         }
3244         let is_global = self.macro_prelude.get(&path[0].name).cloned()
3245             .map(|binding| binding.get_macro(self).kind() == MacroKind::Bang).unwrap_or(false);
3246         if primary_ns != MacroNS && (is_global ||
3247                                      self.macro_names.contains(&path[0].modern())) {
3248             // Return some dummy definition, it's enough for error reporting.
3249             return Some(
3250                 PathResolution::new(Def::Macro(DefId::local(CRATE_DEF_INDEX), MacroKind::Bang))
3251             );
3252         }
3253         fin_res
3254     }
3255
3256     /// Handles paths that may refer to associated items.
3257     fn resolve_qpath(&mut self,
3258                      id: NodeId,
3259                      qself: Option<&QSelf>,
3260                      path: &[Ident],
3261                      ns: Namespace,
3262                      span: Span,
3263                      global_by_default: bool,
3264                      crate_lint: CrateLint)
3265                      -> Option<PathResolution> {
3266         debug!(
3267             "resolve_qpath(id={:?}, qself={:?}, path={:?}, \
3268              ns={:?}, span={:?}, global_by_default={:?})",
3269             id,
3270             qself,
3271             path,
3272             ns,
3273             span,
3274             global_by_default,
3275         );
3276
3277         if let Some(qself) = qself {
3278             if qself.position == 0 {
3279                 // This is a case like `<T>::B`, where there is no
3280                 // trait to resolve.  In that case, we leave the `B`
3281                 // segment to be resolved by type-check.
3282                 return Some(PathResolution::with_unresolved_segments(
3283                     Def::Mod(DefId::local(CRATE_DEF_INDEX)), path.len()
3284                 ));
3285             }
3286
3287             // Make sure `A::B` in `<T as A::B>::C` is a trait item.
3288             //
3289             // Currently, `path` names the full item (`A::B::C`, in
3290             // our example).  so we extract the prefix of that that is
3291             // the trait (the slice upto and including
3292             // `qself.position`). And then we recursively resolve that,
3293             // but with `qself` set to `None`.
3294             //
3295             // However, setting `qself` to none (but not changing the
3296             // span) loses the information about where this path
3297             // *actually* appears, so for the purposes of the crate
3298             // lint we pass along information that this is the trait
3299             // name from a fully qualified path, and this also
3300             // contains the full span (the `CrateLint::QPathTrait`).
3301             let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
3302             let res = self.smart_resolve_path_fragment(
3303                 id,
3304                 None,
3305                 &path[..qself.position + 1],
3306                 span,
3307                 PathSource::TraitItem(ns),
3308                 CrateLint::QPathTrait {
3309                     qpath_id: id,
3310                     qpath_span: qself.path_span,
3311                 },
3312             );
3313
3314             // The remaining segments (the `C` in our example) will
3315             // have to be resolved by type-check, since that requires doing
3316             // trait resolution.
3317             return Some(PathResolution::with_unresolved_segments(
3318                 res.base_def(), res.unresolved_segments() + path.len() - qself.position - 1
3319             ));
3320         }
3321
3322         let result = match self.resolve_path(
3323             &path,
3324             Some(ns),
3325             true,
3326             span,
3327             crate_lint,
3328         ) {
3329             PathResult::NonModule(path_res) => path_res,
3330             PathResult::Module(module) if !module.is_normal() => {
3331                 PathResolution::new(module.def().unwrap())
3332             }
3333             // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
3334             // don't report an error right away, but try to fallback to a primitive type.
3335             // So, we are still able to successfully resolve something like
3336             //
3337             // use std::u8; // bring module u8 in scope
3338             // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
3339             //     u8::max_value() // OK, resolves to associated function <u8>::max_value,
3340             //                     // not to non-existent std::u8::max_value
3341             // }
3342             //
3343             // Such behavior is required for backward compatibility.
3344             // The same fallback is used when `a` resolves to nothing.
3345             PathResult::Module(..) | PathResult::Failed(..)
3346                     if (ns == TypeNS || path.len() > 1) &&
3347                        self.primitive_type_table.primitive_types
3348                            .contains_key(&path[0].name) => {
3349                 let prim = self.primitive_type_table.primitive_types[&path[0].name];
3350                 PathResolution::with_unresolved_segments(Def::PrimTy(prim), path.len() - 1)
3351             }
3352             PathResult::Module(module) => PathResolution::new(module.def().unwrap()),
3353             PathResult::Failed(span, msg, false) => {
3354                 resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
3355                 err_path_resolution()
3356             }
3357             PathResult::Failed(..) => return None,
3358             PathResult::Indeterminate => bug!("indetermined path result in resolve_qpath"),
3359         };
3360
3361         if path.len() > 1 && !global_by_default && result.base_def() != Def::Err &&
3362            path[0].name != keywords::CrateRoot.name() &&
3363            path[0].name != keywords::DollarCrate.name() {
3364             let unqualified_result = {
3365                 match self.resolve_path(
3366                     &[*path.last().unwrap()],
3367                     Some(ns),
3368                     false,
3369                     span,
3370                     CrateLint::No,
3371                 ) {
3372                     PathResult::NonModule(path_res) => path_res.base_def(),
3373                     PathResult::Module(module) => module.def().unwrap(),
3374                     _ => return Some(result),
3375                 }
3376             };
3377             if result.base_def() == unqualified_result {
3378                 let lint = lint::builtin::UNUSED_QUALIFICATIONS;
3379                 self.session.buffer_lint(lint, id, span, "unnecessary qualification")
3380             }
3381         }
3382
3383         Some(result)
3384     }
3385
3386     fn resolve_path(
3387         &mut self,
3388         path: &[Ident],
3389         opt_ns: Option<Namespace>, // `None` indicates a module path
3390         record_used: bool,
3391         path_span: Span,
3392         crate_lint: CrateLint,
3393     ) -> PathResult<'a> {
3394         let mut module = None;
3395         let mut allow_super = true;
3396         let mut second_binding = None;
3397
3398         debug!(
3399             "resolve_path(path={:?}, opt_ns={:?}, record_used={:?}, \
3400              path_span={:?}, crate_lint={:?})",
3401             path,
3402             opt_ns,
3403             record_used,
3404             path_span,
3405             crate_lint,
3406         );
3407
3408         for (i, &ident) in path.iter().enumerate() {
3409             debug!("resolve_path ident {} {:?}", i, ident);
3410             let is_last = i == path.len() - 1;
3411             let ns = if is_last { opt_ns.unwrap_or(TypeNS) } else { TypeNS };
3412             let name = ident.name;
3413
3414             if i == 0 && ns == TypeNS && name == keywords::SelfValue.name() {
3415                 let mut ctxt = ident.span.ctxt().modern();
3416                 module = Some(self.resolve_self(&mut ctxt, self.current_module));
3417                 continue
3418             } else if allow_super && ns == TypeNS && name == keywords::Super.name() {
3419                 let mut ctxt = ident.span.ctxt().modern();
3420                 let self_module = match i {
3421                     0 => self.resolve_self(&mut ctxt, self.current_module),
3422                     _ => module.unwrap(),
3423                 };
3424                 if let Some(parent) = self_module.parent {
3425                     module = Some(self.resolve_self(&mut ctxt, parent));
3426                     continue
3427                 } else {
3428                     let msg = "There are too many initial `super`s.".to_string();
3429                     return PathResult::Failed(ident.span, msg, false);
3430                 }
3431             } else if i == 0 && ns == TypeNS && name == keywords::Extern.name() {
3432                 continue;
3433             }
3434             allow_super = false;
3435
3436             if ns == TypeNS {
3437                 if (i == 0 && name == keywords::CrateRoot.name()) ||
3438                    (i == 0 && name == keywords::Crate.name()) ||
3439                    (i == 0 && name == keywords::DollarCrate.name()) ||
3440                    (i == 1 && name == keywords::Crate.name() &&
3441                               path[0].name == keywords::CrateRoot.name()) {
3442                     // `::a::b`, `crate::a::b`, `::crate::a::b` or `$crate::a::b`
3443                     module = Some(self.resolve_crate_root(ident));
3444                     continue
3445                 } else if i == 1 && !ident.is_path_segment_keyword() {
3446                     let prev_name = path[0].name;
3447                     if prev_name == keywords::Extern.name() ||
3448                        prev_name == keywords::CrateRoot.name() &&
3449                        self.session.features_untracked().extern_absolute_paths &&
3450                        self.session.rust_2018() {
3451                         // `::extern_crate::a::b`
3452                         let crate_id = self.crate_loader.process_path_extern(name, ident.span);
3453                         let crate_root =
3454                             self.get_module(DefId { krate: crate_id, index: CRATE_DEF_INDEX });
3455                         self.populate_module_if_necessary(crate_root);
3456                         module = Some(crate_root);
3457                         continue
3458                     }
3459                 }
3460             }
3461
3462             // Report special messages for path segment keywords in wrong positions.
3463             if name == keywords::CrateRoot.name() && i != 0 ||
3464                name == keywords::DollarCrate.name() && i != 0 ||
3465                name == keywords::SelfValue.name() && i != 0 ||
3466                name == keywords::SelfType.name() && i != 0 ||
3467                name == keywords::Super.name() && i != 0 ||
3468                name == keywords::Extern.name() && i != 0 ||
3469                // we allow crate::foo and ::crate::foo but nothing else
3470                name == keywords::Crate.name() && i > 1 &&
3471                     path[0].name != keywords::CrateRoot.name() ||
3472                name == keywords::Crate.name() && path.len() == 1 {
3473                 let name_str = if name == keywords::CrateRoot.name() {
3474                     "crate root".to_string()
3475                 } else {
3476                     format!("`{}`", name)
3477                 };
3478                 let msg = if i == 1 && path[0].name == keywords::CrateRoot.name() {
3479                     format!("global paths cannot start with {}", name_str)
3480                 } else {
3481                     format!("{} in paths can only be used in start position", name_str)
3482                 };
3483                 return PathResult::Failed(ident.span, msg, false);
3484             }
3485
3486             let binding = if let Some(module) = module {
3487                 self.resolve_ident_in_module(module, ident, ns, record_used, path_span)
3488             } else if opt_ns == Some(MacroNS) {
3489                 assert!(ns == TypeNS);
3490                 self.resolve_lexical_macro_path_segment(ident, ns, record_used, record_used,
3491                                                         false, path_span).map(MacroBinding::binding)
3492             } else {
3493                 let record_used_id =
3494                     if record_used { crate_lint.node_id().or(Some(CRATE_NODE_ID)) } else { None };
3495                 match self.resolve_ident_in_lexical_scope(ident, ns, record_used_id, path_span) {
3496                     // we found a locally-imported or available item/module
3497                     Some(LexicalScopeBinding::Item(binding)) => Ok(binding),
3498                     // we found a local variable or type param
3499                     Some(LexicalScopeBinding::Def(def))
3500                             if opt_ns == Some(TypeNS) || opt_ns == Some(ValueNS) => {
3501                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3502                             def, path.len() - 1
3503                         ));
3504                     }
3505                     _ => Err(if record_used { Determined } else { Undetermined }),
3506                 }
3507             };
3508
3509             match binding {
3510                 Ok(binding) => {
3511                     if i == 1 {
3512                         second_binding = Some(binding);
3513                     }
3514                     let def = binding.def();
3515                     let maybe_assoc = opt_ns != Some(MacroNS) && PathSource::Type.is_expected(def);
3516                     if let Some(next_module) = binding.module() {
3517                         module = Some(next_module);
3518                     } else if def == Def::ToolMod && i + 1 != path.len() {
3519                         let def = Def::NonMacroAttr(NonMacroAttrKind::Tool);
3520                         return PathResult::NonModule(PathResolution::new(def));
3521                     } else if def == Def::Err {
3522                         return PathResult::NonModule(err_path_resolution());
3523                     } else if opt_ns.is_some() && (is_last || maybe_assoc) {
3524                         self.lint_if_path_starts_with_module(
3525                             crate_lint,
3526                             path,
3527                             path_span,
3528                             second_binding,
3529                         );
3530                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3531                             def, path.len() - i - 1
3532                         ));
3533                     } else {
3534                         return PathResult::Failed(ident.span,
3535                                                   format!("Not a module `{}`", ident),
3536                                                   is_last);
3537                     }
3538                 }
3539                 Err(Undetermined) => return PathResult::Indeterminate,
3540                 Err(Determined) => {
3541                     if let Some(module) = module {
3542                         if opt_ns.is_some() && !module.is_normal() {
3543                             return PathResult::NonModule(PathResolution::with_unresolved_segments(
3544                                 module.def().unwrap(), path.len() - i
3545                             ));
3546                         }
3547                     }
3548                     let msg = if module.and_then(ModuleData::def) == self.graph_root.def() {
3549                         let is_mod = |def| match def { Def::Mod(..) => true, _ => false };
3550                         let mut candidates =
3551                             self.lookup_import_candidates(name, TypeNS, is_mod);
3552                         candidates.sort_by_cached_key(|c| {
3553                             (c.path.segments.len(), c.path.to_string())
3554                         });
3555                         if let Some(candidate) = candidates.get(0) {
3556                             format!("Did you mean `{}`?", candidate.path)
3557                         } else {
3558                             format!("Maybe a missing `extern crate {};`?", ident)
3559                         }
3560                     } else if i == 0 {
3561                         format!("Use of undeclared type or module `{}`", ident)
3562                     } else {
3563                         format!("Could not find `{}` in `{}`", ident, path[i - 1])
3564                     };
3565                     return PathResult::Failed(ident.span, msg, is_last);
3566                 }
3567             }
3568         }
3569
3570         self.lint_if_path_starts_with_module(crate_lint, path, path_span, second_binding);
3571
3572         PathResult::Module(module.unwrap_or(self.graph_root))
3573     }
3574
3575     fn lint_if_path_starts_with_module(
3576         &self,
3577         crate_lint: CrateLint,
3578         path: &[Ident],
3579         path_span: Span,
3580         second_binding: Option<&NameBinding>,
3581     ) {
3582         let (diag_id, diag_span) = match crate_lint {
3583             CrateLint::No => return,
3584             CrateLint::SimplePath(id) => (id, path_span),
3585             CrateLint::UsePath { root_id, root_span } => (root_id, root_span),
3586             CrateLint::QPathTrait { qpath_id, qpath_span } => (qpath_id, qpath_span),
3587         };
3588
3589         let first_name = match path.get(0) {
3590             Some(ident) => ident.name,
3591             None => return,
3592         };
3593
3594         // We're only interested in `use` paths which should start with
3595         // `{{root}}` or `extern` currently.
3596         if first_name != keywords::Extern.name() && first_name != keywords::CrateRoot.name() {
3597             return
3598         }
3599
3600         match path.get(1) {
3601             // If this import looks like `crate::...` it's already good
3602             Some(ident) if ident.name == keywords::Crate.name() => return,
3603             // Otherwise go below to see if it's an extern crate
3604             Some(_) => {}
3605             // If the path has length one (and it's `CrateRoot` most likely)
3606             // then we don't know whether we're gonna be importing a crate or an
3607             // item in our crate. Defer this lint to elsewhere
3608             None => return,
3609         }
3610
3611         // If the first element of our path was actually resolved to an
3612         // `ExternCrate` (also used for `crate::...`) then no need to issue a
3613         // warning, this looks all good!
3614         if let Some(binding) = second_binding {
3615             if let NameBindingKind::Import { directive: d, .. } = binding.kind {
3616                 // Careful: we still want to rewrite paths from
3617                 // renamed extern crates.
3618                 if let ImportDirectiveSubclass::ExternCrate(None) = d.subclass {
3619                     return
3620                 }
3621             }
3622         }
3623
3624         self.lint_path_starts_with_module(diag_id, diag_span);
3625     }
3626
3627     fn lint_path_starts_with_module(&self, id: NodeId, span: Span) {
3628         // In the 2018 edition this lint is a hard error, so nothing to do
3629         if self.session.rust_2018() {
3630             return
3631         }
3632         // In the 2015 edition there's no use in emitting lints unless the
3633         // crate's already enabled the feature that we're going to suggest
3634         if !self.session.features_untracked().crate_in_paths {
3635             return
3636         }
3637         let diag = lint::builtin::BuiltinLintDiagnostics
3638             ::AbsPathWithModule(span);
3639         self.session.buffer_lint_with_diagnostic(
3640             lint::builtin::ABSOLUTE_PATHS_NOT_STARTING_WITH_CRATE,
3641             id, span,
3642             "absolute paths must start with `self`, `super`, \
3643             `crate`, or an external crate name in the 2018 edition",
3644             diag);
3645     }
3646
3647     // Resolve a local definition, potentially adjusting for closures.
3648     fn adjust_local_def(&mut self,
3649                         ns: Namespace,
3650                         rib_index: usize,
3651                         mut def: Def,
3652                         record_used: bool,
3653                         span: Span) -> Def {
3654         let ribs = &self.ribs[ns][rib_index + 1..];
3655
3656         // An invalid forward use of a type parameter from a previous default.
3657         if let ForwardTyParamBanRibKind = self.ribs[ns][rib_index].kind {
3658             if record_used {
3659                 resolve_error(self, span, ResolutionError::ForwardDeclaredTyParam);
3660             }
3661             assert_eq!(def, Def::Err);
3662             return Def::Err;
3663         }
3664
3665         match def {
3666             Def::Upvar(..) => {
3667                 span_bug!(span, "unexpected {:?} in bindings", def)
3668             }
3669             Def::Local(node_id) => {
3670                 for rib in ribs {
3671                     match rib.kind {
3672                         NormalRibKind | ModuleRibKind(..) | MacroDefinition(..) |
3673                         ForwardTyParamBanRibKind => {
3674                             // Nothing to do. Continue.
3675                         }
3676                         ClosureRibKind(function_id) => {
3677                             let prev_def = def;
3678
3679                             let seen = self.freevars_seen
3680                                            .entry(function_id)
3681                                            .or_insert_with(|| NodeMap());
3682                             if let Some(&index) = seen.get(&node_id) {
3683                                 def = Def::Upvar(node_id, index, function_id);
3684                                 continue;
3685                             }
3686                             let vec = self.freevars
3687                                           .entry(function_id)
3688                                           .or_insert_with(|| vec![]);
3689                             let depth = vec.len();
3690                             def = Def::Upvar(node_id, depth, function_id);
3691
3692                             if record_used {
3693                                 vec.push(Freevar {
3694                                     def: prev_def,
3695                                     span,
3696                                 });
3697                                 seen.insert(node_id, depth);
3698                             }
3699                         }
3700                         ItemRibKind | TraitOrImplItemRibKind => {
3701                             // This was an attempt to access an upvar inside a
3702                             // named function item. This is not allowed, so we
3703                             // report an error.
3704                             if record_used {
3705                                 resolve_error(self, span,
3706                                         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem);
3707                             }
3708                             return Def::Err;
3709                         }
3710                         ConstantItemRibKind => {
3711                             // Still doesn't deal with upvars
3712                             if record_used {
3713                                 resolve_error(self, span,
3714                                         ResolutionError::AttemptToUseNonConstantValueInConstant);
3715                             }
3716                             return Def::Err;
3717                         }
3718                     }
3719                 }
3720             }
3721             Def::TyParam(..) | Def::SelfTy(..) => {
3722                 for rib in ribs {
3723                     match rib.kind {
3724                         NormalRibKind | TraitOrImplItemRibKind | ClosureRibKind(..) |
3725                         ModuleRibKind(..) | MacroDefinition(..) | ForwardTyParamBanRibKind |
3726                         ConstantItemRibKind => {
3727                             // Nothing to do. Continue.
3728                         }
3729                         ItemRibKind => {
3730                             // This was an attempt to use a type parameter outside
3731                             // its scope.
3732                             if record_used {
3733                                 resolve_error(self, span,
3734                                     ResolutionError::TypeParametersFromOuterFunction(def));
3735                             }
3736                             return Def::Err;
3737                         }
3738                     }
3739                 }
3740             }
3741             _ => {}
3742         }
3743         return def;
3744     }
3745
3746     fn lookup_assoc_candidate<FilterFn>(&mut self,
3747                                         ident: Ident,
3748                                         ns: Namespace,
3749                                         filter_fn: FilterFn)
3750                                         -> Option<AssocSuggestion>
3751         where FilterFn: Fn(Def) -> bool
3752     {
3753         fn extract_node_id(t: &Ty) -> Option<NodeId> {
3754             match t.node {
3755                 TyKind::Path(None, _) => Some(t.id),
3756                 TyKind::Rptr(_, ref mut_ty) => extract_node_id(&mut_ty.ty),
3757                 // This doesn't handle the remaining `Ty` variants as they are not
3758                 // that commonly the self_type, it might be interesting to provide
3759                 // support for those in future.
3760                 _ => None,
3761             }
3762         }
3763
3764         // Fields are generally expected in the same contexts as locals.
3765         if filter_fn(Def::Local(ast::DUMMY_NODE_ID)) {
3766             if let Some(node_id) = self.current_self_type.as_ref().and_then(extract_node_id) {
3767                 // Look for a field with the same name in the current self_type.
3768                 if let Some(resolution) = self.def_map.get(&node_id) {
3769                     match resolution.base_def() {
3770                         Def::Struct(did) | Def::Union(did)
3771                                 if resolution.unresolved_segments() == 0 => {
3772                             if let Some(field_names) = self.field_names.get(&did) {
3773                                 if field_names.iter().any(|&field_name| ident.name == field_name) {
3774                                     return Some(AssocSuggestion::Field);
3775                                 }
3776                             }
3777                         }
3778                         _ => {}
3779                     }
3780                 }
3781             }
3782         }
3783
3784         // Look for associated items in the current trait.
3785         if let Some((module, _)) = self.current_trait_ref {
3786             if let Ok(binding) =
3787                     self.resolve_ident_in_module(module, ident, ns, false, module.span) {
3788                 let def = binding.def();
3789                 if filter_fn(def) {
3790                     return Some(if self.has_self.contains(&def.def_id()) {
3791                         AssocSuggestion::MethodWithSelf
3792                     } else {
3793                         AssocSuggestion::AssocItem
3794                     });
3795                 }
3796             }
3797         }
3798
3799         None
3800     }
3801
3802     fn lookup_typo_candidate<FilterFn>(&mut self,
3803                                        path: &[Ident],
3804                                        ns: Namespace,
3805                                        filter_fn: FilterFn,
3806                                        span: Span)
3807                                        -> Option<Symbol>
3808         where FilterFn: Fn(Def) -> bool
3809     {
3810         let add_module_candidates = |module: Module, names: &mut Vec<Name>| {
3811             for (&(ident, _), resolution) in module.resolutions.borrow().iter() {
3812                 if let Some(binding) = resolution.borrow().binding {
3813                     if filter_fn(binding.def()) {
3814                         names.push(ident.name);
3815                     }
3816                 }
3817             }
3818         };
3819
3820         let mut names = Vec::new();
3821         if path.len() == 1 {
3822             // Search in lexical scope.
3823             // Walk backwards up the ribs in scope and collect candidates.
3824             for rib in self.ribs[ns].iter().rev() {
3825                 // Locals and type parameters
3826                 for (ident, def) in &rib.bindings {
3827                     if filter_fn(*def) {
3828                         names.push(ident.name);
3829                     }
3830                 }
3831                 // Items in scope
3832                 if let ModuleRibKind(module) = rib.kind {
3833                     // Items from this module
3834                     add_module_candidates(module, &mut names);
3835
3836                     if let ModuleKind::Block(..) = module.kind {
3837                         // We can see through blocks
3838                     } else {
3839                         // Items from the prelude
3840                         if !module.no_implicit_prelude {
3841                             names.extend(self.extern_prelude.iter().cloned());
3842                             if let Some(prelude) = self.prelude {
3843                                 add_module_candidates(prelude, &mut names);
3844                             }
3845                         }
3846                         break;
3847                     }
3848                 }
3849             }
3850             // Add primitive types to the mix
3851             if filter_fn(Def::PrimTy(TyBool)) {
3852                 names.extend(
3853                     self.primitive_type_table.primitive_types.iter().map(|(name, _)| name)
3854                 )
3855             }
3856         } else {
3857             // Search in module.
3858             let mod_path = &path[..path.len() - 1];
3859             if let PathResult::Module(module) = self.resolve_path(mod_path, Some(TypeNS),
3860                                                                   false, span, CrateLint::No) {
3861                 add_module_candidates(module, &mut names);
3862             }
3863         }
3864
3865         let name = path[path.len() - 1].name;
3866         // Make sure error reporting is deterministic.
3867         names.sort_by_cached_key(|name| name.as_str());
3868         match find_best_match_for_name(names.iter(), &name.as_str(), None) {
3869             Some(found) if found != name => Some(found),
3870             _ => None,
3871         }
3872     }
3873
3874     fn with_resolved_label<F>(&mut self, label: Option<Label>, id: NodeId, f: F)
3875         where F: FnOnce(&mut Resolver)
3876     {
3877         if let Some(label) = label {
3878             self.unused_labels.insert(id, label.ident.span);
3879             let def = Def::Label(id);
3880             self.with_label_rib(|this| {
3881                 let ident = label.ident.modern_and_legacy();
3882                 this.label_ribs.last_mut().unwrap().bindings.insert(ident, def);
3883                 f(this);
3884             });
3885         } else {
3886             f(self);
3887         }
3888     }
3889
3890     fn resolve_labeled_block(&mut self, label: Option<Label>, id: NodeId, block: &Block) {
3891         self.with_resolved_label(label, id, |this| this.visit_block(block));
3892     }
3893
3894     fn resolve_expr(&mut self, expr: &Expr, parent: Option<&Expr>) {
3895         // First, record candidate traits for this expression if it could
3896         // result in the invocation of a method call.
3897
3898         self.record_candidate_traits_for_expr_if_necessary(expr);
3899
3900         // Next, resolve the node.
3901         match expr.node {
3902             ExprKind::Path(ref qself, ref path) => {
3903                 self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
3904                 visit::walk_expr(self, expr);
3905             }
3906
3907             ExprKind::Struct(ref path, ..) => {
3908                 self.smart_resolve_path(expr.id, None, path, PathSource::Struct);
3909                 visit::walk_expr(self, expr);
3910             }
3911
3912             ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
3913                 let def = self.search_label(label.ident, |rib, ident| {
3914                     rib.bindings.get(&ident.modern_and_legacy()).cloned()
3915                 });
3916                 match def {
3917                     None => {
3918                         // Search again for close matches...
3919                         // Picks the first label that is "close enough", which is not necessarily
3920                         // the closest match
3921                         let close_match = self.search_label(label.ident, |rib, ident| {
3922                             let names = rib.bindings.iter().map(|(id, _)| &id.name);
3923                             find_best_match_for_name(names, &*ident.as_str(), None)
3924                         });
3925                         self.record_def(expr.id, err_path_resolution());
3926                         resolve_error(self,
3927                                       label.ident.span,
3928                                       ResolutionError::UndeclaredLabel(&label.ident.as_str(),
3929                                                                        close_match));
3930                     }
3931                     Some(Def::Label(id)) => {
3932                         // Since this def is a label, it is never read.
3933                         self.record_def(expr.id, PathResolution::new(Def::Label(id)));
3934                         self.unused_labels.remove(&id);
3935                     }
3936                     Some(_) => {
3937                         span_bug!(expr.span, "label wasn't mapped to a label def!");
3938                     }
3939                 }
3940
3941                 // visit `break` argument if any
3942                 visit::walk_expr(self, expr);
3943             }
3944
3945             ExprKind::IfLet(ref pats, ref subexpression, ref if_block, ref optional_else) => {
3946                 self.visit_expr(subexpression);
3947
3948                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
3949                 let mut bindings_list = FxHashMap();
3950                 for pat in pats {
3951                     self.resolve_pattern(pat, PatternSource::IfLet, &mut bindings_list);
3952                 }
3953                 // This has to happen *after* we determine which pat_idents are variants
3954                 self.check_consistent_bindings(pats);
3955                 self.visit_block(if_block);
3956                 self.ribs[ValueNS].pop();
3957
3958                 optional_else.as_ref().map(|expr| self.visit_expr(expr));
3959             }
3960
3961             ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),
3962
3963             ExprKind::While(ref subexpression, ref block, label) => {
3964                 self.with_resolved_label(label, expr.id, |this| {
3965                     this.visit_expr(subexpression);
3966                     this.visit_block(block);
3967                 });
3968             }
3969
3970             ExprKind::WhileLet(ref pats, ref subexpression, ref block, label) => {
3971                 self.with_resolved_label(label, expr.id, |this| {
3972                     this.visit_expr(subexpression);
3973                     this.ribs[ValueNS].push(Rib::new(NormalRibKind));
3974                     let mut bindings_list = FxHashMap();
3975                     for pat in pats {
3976                         this.resolve_pattern(pat, PatternSource::WhileLet, &mut bindings_list);
3977                     }
3978                     // This has to happen *after* we determine which pat_idents are variants
3979                     this.check_consistent_bindings(pats);
3980                     this.visit_block(block);
3981                     this.ribs[ValueNS].pop();
3982                 });
3983             }
3984
3985             ExprKind::ForLoop(ref pattern, ref subexpression, ref block, label) => {
3986                 self.visit_expr(subexpression);
3987                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
3988                 self.resolve_pattern(pattern, PatternSource::For, &mut FxHashMap());
3989
3990                 self.resolve_labeled_block(label, expr.id, block);
3991
3992                 self.ribs[ValueNS].pop();
3993             }
3994
3995             ExprKind::Block(ref block, label) => self.resolve_labeled_block(label, block.id, block),
3996
3997             // Equivalent to `visit::walk_expr` + passing some context to children.
3998             ExprKind::Field(ref subexpression, _) => {
3999                 self.resolve_expr(subexpression, Some(expr));
4000             }
4001             ExprKind::MethodCall(ref segment, ref arguments) => {
4002                 let mut arguments = arguments.iter();
4003                 self.resolve_expr(arguments.next().unwrap(), Some(expr));
4004                 for argument in arguments {
4005                     self.resolve_expr(argument, None);
4006                 }
4007                 self.visit_path_segment(expr.span, segment);
4008             }
4009
4010             ExprKind::Call(ref callee, ref arguments) => {
4011                 self.resolve_expr(callee, Some(expr));
4012                 for argument in arguments {
4013                     self.resolve_expr(argument, None);
4014                 }
4015             }
4016             ExprKind::Type(ref type_expr, _) => {
4017                 self.current_type_ascription.push(type_expr.span);
4018                 visit::walk_expr(self, expr);
4019                 self.current_type_ascription.pop();
4020             }
4021             // Resolve the body of async exprs inside the async closure to which they desugar
4022             ExprKind::Async(_, async_closure_id, ref block) => {
4023                 let rib_kind = ClosureRibKind(async_closure_id);
4024                 self.ribs[ValueNS].push(Rib::new(rib_kind));
4025                 self.label_ribs.push(Rib::new(rib_kind));
4026                 self.visit_block(&block);
4027                 self.label_ribs.pop();
4028                 self.ribs[ValueNS].pop();
4029             }
4030             // `async |x| ...` gets desugared to `|x| future_from_generator(|| ...)`, so we need to
4031             // resolve the arguments within the proper scopes so that usages of them inside the
4032             // closure are detected as upvars rather than normal closure arg usages.
4033             ExprKind::Closure(
4034                 _, IsAsync::Async { closure_id: inner_closure_id, .. }, _,
4035                 ref fn_decl, ref body, _span,
4036             ) => {
4037                 let rib_kind = ClosureRibKind(expr.id);
4038                 self.ribs[ValueNS].push(Rib::new(rib_kind));
4039                 self.label_ribs.push(Rib::new(rib_kind));
4040                 // Resolve arguments:
4041                 let mut bindings_list = FxHashMap();
4042                 for argument in &fn_decl.inputs {
4043                     self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
4044                     self.visit_ty(&argument.ty);
4045                 }
4046                 // No need to resolve return type-- the outer closure return type is
4047                 // FunctionRetTy::Default
4048
4049                 // Now resolve the inner closure
4050                 {
4051                     let rib_kind = ClosureRibKind(inner_closure_id);
4052                     self.ribs[ValueNS].push(Rib::new(rib_kind));
4053                     self.label_ribs.push(Rib::new(rib_kind));
4054                     // No need to resolve arguments: the inner closure has none.
4055                     // Resolve the return type:
4056                     visit::walk_fn_ret_ty(self, &fn_decl.output);
4057                     // Resolve the body
4058                     self.visit_expr(body);
4059                     self.label_ribs.pop();
4060                     self.ribs[ValueNS].pop();
4061                 }
4062                 self.label_ribs.pop();
4063                 self.ribs[ValueNS].pop();
4064             }
4065             _ => {
4066                 visit::walk_expr(self, expr);
4067             }
4068         }
4069     }
4070
4071     fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &Expr) {
4072         match expr.node {
4073             ExprKind::Field(_, ident) => {
4074                 // FIXME(#6890): Even though you can't treat a method like a
4075                 // field, we need to add any trait methods we find that match
4076                 // the field name so that we can do some nice error reporting
4077                 // later on in typeck.
4078                 let traits = self.get_traits_containing_item(ident, ValueNS);
4079                 self.trait_map.insert(expr.id, traits);
4080             }
4081             ExprKind::MethodCall(ref segment, ..) => {
4082                 debug!("(recording candidate traits for expr) recording traits for {}",
4083                        expr.id);
4084                 let traits = self.get_traits_containing_item(segment.ident, ValueNS);
4085                 self.trait_map.insert(expr.id, traits);
4086             }
4087             _ => {
4088                 // Nothing to do.
4089             }
4090         }
4091     }
4092
4093     fn get_traits_containing_item(&mut self, mut ident: Ident, ns: Namespace)
4094                                   -> Vec<TraitCandidate> {
4095         debug!("(getting traits containing item) looking for '{}'", ident.name);
4096
4097         let mut found_traits = Vec::new();
4098         // Look for the current trait.
4099         if let Some((module, _)) = self.current_trait_ref {
4100             if self.resolve_ident_in_module(module, ident, ns, false, module.span).is_ok() {
4101                 let def_id = module.def_id().unwrap();
4102                 found_traits.push(TraitCandidate { def_id: def_id, import_id: None });
4103             }
4104         }
4105
4106         ident.span = ident.span.modern();
4107         let mut search_module = self.current_module;
4108         loop {
4109             self.get_traits_in_module_containing_item(ident, ns, search_module, &mut found_traits);
4110             search_module = unwrap_or!(
4111                 self.hygienic_lexical_parent(search_module, &mut ident.span), break
4112             );
4113         }
4114
4115         if let Some(prelude) = self.prelude {
4116             if !search_module.no_implicit_prelude {
4117                 self.get_traits_in_module_containing_item(ident, ns, prelude, &mut found_traits);
4118             }
4119         }
4120
4121         found_traits
4122     }
4123
4124     fn get_traits_in_module_containing_item(&mut self,
4125                                             ident: Ident,
4126                                             ns: Namespace,
4127                                             module: Module<'a>,
4128                                             found_traits: &mut Vec<TraitCandidate>) {
4129         let mut traits = module.traits.borrow_mut();
4130         if traits.is_none() {
4131             let mut collected_traits = Vec::new();
4132             module.for_each_child(|name, ns, binding| {
4133                 if ns != TypeNS { return }
4134                 if let Def::Trait(_) = binding.def() {
4135                     collected_traits.push((name, binding));
4136                 }
4137             });
4138             *traits = Some(collected_traits.into_boxed_slice());
4139         }
4140
4141         for &(trait_name, binding) in traits.as_ref().unwrap().iter() {
4142             let module = binding.module().unwrap();
4143             let mut ident = ident;
4144             if ident.span.glob_adjust(module.expansion, binding.span.ctxt().modern()).is_none() {
4145                 continue
4146             }
4147             if self.resolve_ident_in_module_unadjusted(module, ident, ns, false, false, module.span)
4148                    .is_ok() {
4149                 let import_id = match binding.kind {
4150                     NameBindingKind::Import { directive, .. } => {
4151                         self.maybe_unused_trait_imports.insert(directive.id);
4152                         self.add_to_glob_map(directive.id, trait_name);
4153                         Some(directive.id)
4154                     }
4155                     _ => None,
4156                 };
4157                 let trait_def_id = module.def_id().unwrap();
4158                 found_traits.push(TraitCandidate { def_id: trait_def_id, import_id: import_id });
4159             }
4160         }
4161     }
4162
4163     /// When name resolution fails, this method can be used to look up candidate
4164     /// entities with the expected name. It allows filtering them using the
4165     /// supplied predicate (which should be used to only accept the types of
4166     /// definitions expected e.g. traits). The lookup spans across all crates.
4167     ///
4168     /// NOTE: The method does not look into imports, but this is not a problem,
4169     /// since we report the definitions (thus, the de-aliased imports).
4170     fn lookup_import_candidates<FilterFn>(&mut self,
4171                                           lookup_name: Name,
4172                                           namespace: Namespace,
4173                                           filter_fn: FilterFn)
4174                                           -> Vec<ImportSuggestion>
4175         where FilterFn: Fn(Def) -> bool
4176     {
4177         let mut candidates = Vec::new();
4178         let mut worklist = Vec::new();
4179         let mut seen_modules = FxHashSet();
4180         worklist.push((self.graph_root, Vec::new(), false));
4181
4182         while let Some((in_module,
4183                         path_segments,
4184                         in_module_is_extern)) = worklist.pop() {
4185             self.populate_module_if_necessary(in_module);
4186
4187             // We have to visit module children in deterministic order to avoid
4188             // instabilities in reported imports (#43552).
4189             in_module.for_each_child_stable(|ident, ns, name_binding| {
4190                 // avoid imports entirely
4191                 if name_binding.is_import() && !name_binding.is_extern_crate() { return; }
4192                 // avoid non-importable candidates as well
4193                 if !name_binding.is_importable() { return; }
4194
4195                 // collect results based on the filter function
4196                 if ident.name == lookup_name && ns == namespace {
4197                     if filter_fn(name_binding.def()) {
4198                         // create the path
4199                         let mut segms = if self.session.rust_2018() && !in_module_is_extern {
4200                             // crate-local absolute paths start with `crate::` in edition 2018
4201                             // FIXME: may also be stabilized for Rust 2015 (Issues #45477, #44660)
4202                             let mut full_segms = vec![
4203                                 ast::PathSegment::from_ident(keywords::Crate.ident())
4204                             ];
4205                             full_segms.extend(path_segments.clone());
4206                             full_segms
4207                         } else {
4208                             path_segments.clone()
4209                         };
4210
4211                         segms.push(ast::PathSegment::from_ident(ident));
4212                         let path = Path {
4213                             span: name_binding.span,
4214                             segments: segms,
4215                         };
4216                         // the entity is accessible in the following cases:
4217                         // 1. if it's defined in the same crate, it's always
4218                         // accessible (since private entities can be made public)
4219                         // 2. if it's defined in another crate, it's accessible
4220                         // only if both the module is public and the entity is
4221                         // declared as public (due to pruning, we don't explore
4222                         // outside crate private modules => no need to check this)
4223                         if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
4224                             candidates.push(ImportSuggestion { path: path });
4225                         }
4226                     }
4227                 }
4228
4229                 // collect submodules to explore
4230                 if let Some(module) = name_binding.module() {
4231                     // form the path
4232                     let mut path_segments = path_segments.clone();
4233                     path_segments.push(ast::PathSegment::from_ident(ident));
4234
4235                     if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
4236                         // add the module to the lookup
4237                         let is_extern = in_module_is_extern || name_binding.is_extern_crate();
4238                         if seen_modules.insert(module.def_id().unwrap()) {
4239                             worklist.push((module, path_segments, is_extern));
4240                         }
4241                     }
4242                 }
4243             })
4244         }
4245
4246         candidates
4247     }
4248
4249     fn find_module(&mut self,
4250                    module_def: Def)
4251                    -> Option<(Module<'a>, ImportSuggestion)>
4252     {
4253         let mut result = None;
4254         let mut worklist = Vec::new();
4255         let mut seen_modules = FxHashSet();
4256         worklist.push((self.graph_root, Vec::new()));
4257
4258         while let Some((in_module, path_segments)) = worklist.pop() {
4259             // abort if the module is already found
4260             if let Some(_) = result { break; }
4261
4262             self.populate_module_if_necessary(in_module);
4263
4264             in_module.for_each_child_stable(|ident, _, name_binding| {
4265                 // abort if the module is already found or if name_binding is private external
4266                 if result.is_some() || !name_binding.vis.is_visible_locally() {
4267                     return
4268                 }
4269                 if let Some(module) = name_binding.module() {
4270                     // form the path
4271                     let mut path_segments = path_segments.clone();
4272                     path_segments.push(ast::PathSegment::from_ident(ident));
4273                     if module.def() == Some(module_def) {
4274                         let path = Path {
4275                             span: name_binding.span,
4276                             segments: path_segments,
4277                         };
4278                         result = Some((module, ImportSuggestion { path: path }));
4279                     } else {
4280                         // add the module to the lookup
4281                         if seen_modules.insert(module.def_id().unwrap()) {
4282                             worklist.push((module, path_segments));
4283                         }
4284                     }
4285                 }
4286             });
4287         }
4288
4289         result
4290     }
4291
4292     fn collect_enum_variants(&mut self, enum_def: Def) -> Option<Vec<Path>> {
4293         if let Def::Enum(..) = enum_def {} else {
4294             panic!("Non-enum def passed to collect_enum_variants: {:?}", enum_def)
4295         }
4296
4297         self.find_module(enum_def).map(|(enum_module, enum_import_suggestion)| {
4298             self.populate_module_if_necessary(enum_module);
4299
4300             let mut variants = Vec::new();
4301             enum_module.for_each_child_stable(|ident, _, name_binding| {
4302                 if let Def::Variant(..) = name_binding.def() {
4303                     let mut segms = enum_import_suggestion.path.segments.clone();
4304                     segms.push(ast::PathSegment::from_ident(ident));
4305                     variants.push(Path {
4306                         span: name_binding.span,
4307                         segments: segms,
4308                     });
4309                 }
4310             });
4311             variants
4312         })
4313     }
4314
4315     fn record_def(&mut self, node_id: NodeId, resolution: PathResolution) {
4316         debug!("(recording def) recording {:?} for {}", resolution, node_id);
4317         if let Some(prev_res) = self.def_map.insert(node_id, resolution) {
4318             panic!("path resolved multiple times ({:?} before, {:?} now)", prev_res, resolution);
4319         }
4320     }
4321
4322     fn resolve_visibility(&mut self, vis: &ast::Visibility) -> ty::Visibility {
4323         match vis.node {
4324             ast::VisibilityKind::Public => ty::Visibility::Public,
4325             ast::VisibilityKind::Crate(..) => {
4326                 ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX))
4327             }
4328             ast::VisibilityKind::Inherited => {
4329                 ty::Visibility::Restricted(self.current_module.normal_ancestor_id)
4330             }
4331             ast::VisibilityKind::Restricted { ref path, id, .. } => {
4332                 // Visibilities are resolved as global by default, add starting root segment.
4333                 let segments = path.make_root().iter().chain(path.segments.iter())
4334                     .map(|seg| seg.ident)
4335                     .collect::<Vec<_>>();
4336                 let def = self.smart_resolve_path_fragment(
4337                     id,
4338                     None,
4339                     &segments,
4340                     path.span,
4341                     PathSource::Visibility,
4342                     CrateLint::SimplePath(id),
4343                 ).base_def();
4344                 if def == Def::Err {
4345                     ty::Visibility::Public
4346                 } else {
4347                     let vis = ty::Visibility::Restricted(def.def_id());
4348                     if self.is_accessible(vis) {
4349                         vis
4350                     } else {
4351                         self.session.span_err(path.span, "visibilities can only be restricted \
4352                                                           to ancestor modules");
4353                         ty::Visibility::Public
4354                     }
4355                 }
4356             }
4357         }
4358     }
4359
4360     fn is_accessible(&self, vis: ty::Visibility) -> bool {
4361         vis.is_accessible_from(self.current_module.normal_ancestor_id, self)
4362     }
4363
4364     fn is_accessible_from(&self, vis: ty::Visibility, module: Module<'a>) -> bool {
4365         vis.is_accessible_from(module.normal_ancestor_id, self)
4366     }
4367
4368     fn report_errors(&mut self, krate: &Crate) {
4369         self.report_shadowing_errors();
4370         self.report_with_use_injections(krate);
4371         self.report_proc_macro_import(krate);
4372         let mut reported_spans = FxHashSet();
4373
4374         for &AmbiguityError { span, name, b1, b2, lexical } in &self.ambiguity_errors {
4375             if !reported_spans.insert(span) { continue }
4376             let participle = |binding: &NameBinding| {
4377                 if binding.is_import() { "imported" } else { "defined" }
4378             };
4379             let msg1 = format!("`{}` could refer to the name {} here", name, participle(b1));
4380             let msg2 = format!("`{}` could also refer to the name {} here", name, participle(b2));
4381             let note = if b1.expansion == Mark::root() || !lexical && b1.is_glob_import() {
4382                 format!("consider adding an explicit import of `{}` to disambiguate", name)
4383             } else if let Def::Macro(..) = b1.def() {
4384                 format!("macro-expanded {} do not shadow",
4385                         if b1.is_import() { "macro imports" } else { "macros" })
4386             } else {
4387                 format!("macro-expanded {} do not shadow when used in a macro invocation path",
4388                         if b1.is_import() { "imports" } else { "items" })
4389             };
4390
4391             let mut err = struct_span_err!(self.session, span, E0659, "`{}` is ambiguous", name);
4392             err.span_note(b1.span, &msg1);
4393             match b2.def() {
4394                 Def::Macro(..) if b2.span.is_dummy() =>
4395                     err.note(&format!("`{}` is also a builtin macro", name)),
4396                 _ => err.span_note(b2.span, &msg2),
4397             };
4398             err.note(&note).emit();
4399         }
4400
4401         for &PrivacyError(span, name, binding) in &self.privacy_errors {
4402             if !reported_spans.insert(span) { continue }
4403             span_err!(self.session, span, E0603, "{} `{}` is private", binding.descr(), name);
4404         }
4405     }
4406
4407     fn report_with_use_injections(&mut self, krate: &Crate) {
4408         for UseError { mut err, candidates, node_id, better } in self.use_injections.drain(..) {
4409             let (span, found_use) = UsePlacementFinder::check(krate, node_id);
4410             if !candidates.is_empty() {
4411                 show_candidates(&mut err, span, &candidates, better, found_use);
4412             }
4413             err.emit();
4414         }
4415     }
4416
4417     fn report_shadowing_errors(&mut self) {
4418         for (ident, scope) in replace(&mut self.lexical_macro_resolutions, Vec::new()) {
4419             self.resolve_legacy_scope(scope, ident, true);
4420         }
4421
4422         let mut reported_errors = FxHashSet();
4423         for binding in replace(&mut self.disallowed_shadowing, Vec::new()) {
4424             if self.resolve_legacy_scope(&binding.parent, binding.ident, false).is_some() &&
4425                reported_errors.insert((binding.ident, binding.span)) {
4426                 let msg = format!("`{}` is already in scope", binding.ident);
4427                 self.session.struct_span_err(binding.span, &msg)
4428                     .note("macro-expanded `macro_rules!`s may not shadow \
4429                            existing macros (see RFC 1560)")
4430                     .emit();
4431             }
4432         }
4433     }
4434
4435     fn report_conflict<'b>(&mut self,
4436                        parent: Module,
4437                        ident: Ident,
4438                        ns: Namespace,
4439                        new_binding: &NameBinding<'b>,
4440                        old_binding: &NameBinding<'b>) {
4441         // Error on the second of two conflicting names
4442         if old_binding.span.lo() > new_binding.span.lo() {
4443             return self.report_conflict(parent, ident, ns, old_binding, new_binding);
4444         }
4445
4446         let container = match parent.kind {
4447             ModuleKind::Def(Def::Mod(_), _) => "module",
4448             ModuleKind::Def(Def::Trait(_), _) => "trait",
4449             ModuleKind::Block(..) => "block",
4450             _ => "enum",
4451         };
4452
4453         let old_noun = match old_binding.is_import() {
4454             true => "import",
4455             false => "definition",
4456         };
4457
4458         let new_participle = match new_binding.is_import() {
4459             true => "imported",
4460             false => "defined",
4461         };
4462
4463         let (name, span) = (ident.name, self.session.codemap().def_span(new_binding.span));
4464
4465         if let Some(s) = self.name_already_seen.get(&name) {
4466             if s == &span {
4467                 return;
4468             }
4469         }
4470
4471         let old_kind = match (ns, old_binding.module()) {
4472             (ValueNS, _) => "value",
4473             (MacroNS, _) => "macro",
4474             (TypeNS, _) if old_binding.is_extern_crate() => "extern crate",
4475             (TypeNS, Some(module)) if module.is_normal() => "module",
4476             (TypeNS, Some(module)) if module.is_trait() => "trait",
4477             (TypeNS, _) => "type",
4478         };
4479
4480         let msg = format!("the name `{}` is defined multiple times", name);
4481
4482         let mut err = match (old_binding.is_extern_crate(), new_binding.is_extern_crate()) {
4483             (true, true) => struct_span_err!(self.session, span, E0259, "{}", msg),
4484             (true, _) | (_, true) => match new_binding.is_import() && old_binding.is_import() {
4485                 true => struct_span_err!(self.session, span, E0254, "{}", msg),
4486                 false => struct_span_err!(self.session, span, E0260, "{}", msg),
4487             },
4488             _ => match (old_binding.is_import(), new_binding.is_import()) {
4489                 (false, false) => struct_span_err!(self.session, span, E0428, "{}", msg),
4490                 (true, true) => struct_span_err!(self.session, span, E0252, "{}", msg),
4491                 _ => struct_span_err!(self.session, span, E0255, "{}", msg),
4492             },
4493         };
4494
4495         err.note(&format!("`{}` must be defined only once in the {} namespace of this {}",
4496                           name,
4497                           ns.descr(),
4498                           container));
4499
4500         err.span_label(span, format!("`{}` re{} here", name, new_participle));
4501         if !old_binding.span.is_dummy() {
4502             err.span_label(self.session.codemap().def_span(old_binding.span),
4503                            format!("previous {} of the {} `{}` here", old_noun, old_kind, name));
4504         }
4505
4506         // See https://github.com/rust-lang/rust/issues/32354
4507         if old_binding.is_import() || new_binding.is_import() {
4508             let binding = if new_binding.is_import() && !new_binding.span.is_dummy() {
4509                 new_binding
4510             } else {
4511                 old_binding
4512             };
4513
4514             let cm = self.session.codemap();
4515             let rename_msg = "You can use `as` to change the binding name of the import";
4516
4517             if let (Ok(snippet), false) = (cm.span_to_snippet(binding.span),
4518                                            binding.is_renamed_extern_crate()) {
4519                 let suggested_name = if name.as_str().chars().next().unwrap().is_uppercase() {
4520                     format!("Other{}", name)
4521                 } else {
4522                     format!("other_{}", name)
4523                 };
4524
4525                 err.span_suggestion(binding.span,
4526                                     rename_msg,
4527                                     if snippet.ends_with(';') {
4528                                         format!("{} as {};",
4529                                                 &snippet[..snippet.len()-1],
4530                                                 suggested_name)
4531                                     } else {
4532                                         format!("{} as {}", snippet, suggested_name)
4533                                     });
4534             } else {
4535                 err.span_label(binding.span, rename_msg);
4536             }
4537         }
4538
4539         err.emit();
4540         self.name_already_seen.insert(name, span);
4541     }
4542
4543     fn check_proc_macro_attrs(&mut self, attrs: &[ast::Attribute]) {
4544         if self.use_extern_macros { return; }
4545
4546         for attr in attrs {
4547             if attr.path.segments.len() > 1 {
4548                 continue
4549             }
4550             let ident = attr.path.segments[0].ident;
4551             let result = self.resolve_lexical_macro_path_segment(ident,
4552                                                                  MacroNS,
4553                                                                  false,
4554                                                                  false,
4555                                                                  true,
4556                                                                  attr.path.span);
4557             if let Ok(binding) = result {
4558                 if let SyntaxExtension::AttrProcMacro(..) = *binding.binding().get_macro(self) {
4559                     attr::mark_known(attr);
4560
4561                     let msg = "attribute procedural macros are experimental";
4562                     let feature = "use_extern_macros";
4563
4564                     feature_err(&self.session.parse_sess, feature,
4565                                 attr.span, GateIssue::Language, msg)
4566                         .span_label(binding.span(), "procedural macro imported here")
4567                         .emit();
4568                 }
4569             }
4570         }
4571     }
4572 }
4573
4574 fn is_self_type(path: &[Ident], namespace: Namespace) -> bool {
4575     namespace == TypeNS && path.len() == 1 && path[0].name == keywords::SelfType.name()
4576 }
4577
4578 fn is_self_value(path: &[Ident], namespace: Namespace) -> bool {
4579     namespace == ValueNS && path.len() == 1 && path[0].name == keywords::SelfValue.name()
4580 }
4581
4582 fn names_to_string(idents: &[Ident]) -> String {
4583     let mut result = String::new();
4584     for (i, ident) in idents.iter()
4585                             .filter(|ident| ident.name != keywords::CrateRoot.name())
4586                             .enumerate() {
4587         if i > 0 {
4588             result.push_str("::");
4589         }
4590         result.push_str(&ident.as_str());
4591     }
4592     result
4593 }
4594
4595 fn path_names_to_string(path: &Path) -> String {
4596     names_to_string(&path.segments.iter()
4597                         .map(|seg| seg.ident)
4598                         .collect::<Vec<_>>())
4599 }
4600
4601 /// Get the path for an enum and the variant from an `ImportSuggestion` for an enum variant.
4602 fn import_candidate_to_paths(suggestion: &ImportSuggestion) -> (Span, String, String) {
4603     let variant_path = &suggestion.path;
4604     let variant_path_string = path_names_to_string(variant_path);
4605
4606     let path_len = suggestion.path.segments.len();
4607     let enum_path = ast::Path {
4608         span: suggestion.path.span,
4609         segments: suggestion.path.segments[0..path_len - 1].to_vec(),
4610     };
4611     let enum_path_string = path_names_to_string(&enum_path);
4612
4613     (suggestion.path.span, variant_path_string, enum_path_string)
4614 }
4615
4616
4617 /// When an entity with a given name is not available in scope, we search for
4618 /// entities with that name in all crates. This method allows outputting the
4619 /// results of this search in a programmer-friendly way
4620 fn show_candidates(err: &mut DiagnosticBuilder,
4621                    // This is `None` if all placement locations are inside expansions
4622                    span: Option<Span>,
4623                    candidates: &[ImportSuggestion],
4624                    better: bool,
4625                    found_use: bool) {
4626
4627     // we want consistent results across executions, but candidates are produced
4628     // by iterating through a hash map, so make sure they are ordered:
4629     let mut path_strings: Vec<_> =
4630         candidates.into_iter().map(|c| path_names_to_string(&c.path)).collect();
4631     path_strings.sort();
4632
4633     let better = if better { "better " } else { "" };
4634     let msg_diff = match path_strings.len() {
4635         1 => " is found in another module, you can import it",
4636         _ => "s are found in other modules, you can import them",
4637     };
4638     let msg = format!("possible {}candidate{} into scope", better, msg_diff);
4639
4640     if let Some(span) = span {
4641         for candidate in &mut path_strings {
4642             // produce an additional newline to separate the new use statement
4643             // from the directly following item.
4644             let additional_newline = if found_use {
4645                 ""
4646             } else {
4647                 "\n"
4648             };
4649             *candidate = format!("use {};\n{}", candidate, additional_newline);
4650         }
4651
4652         err.span_suggestions(span, &msg, path_strings);
4653     } else {
4654         let mut msg = msg;
4655         msg.push(':');
4656         for candidate in path_strings {
4657             msg.push('\n');
4658             msg.push_str(&candidate);
4659         }
4660     }
4661 }
4662
4663 /// A somewhat inefficient routine to obtain the name of a module.
4664 fn module_to_string(module: Module) -> Option<String> {
4665     let mut names = Vec::new();
4666
4667     fn collect_mod(names: &mut Vec<Ident>, module: Module) {
4668         if let ModuleKind::Def(_, name) = module.kind {
4669             if let Some(parent) = module.parent {
4670                 names.push(Ident::with_empty_ctxt(name));
4671                 collect_mod(names, parent);
4672             }
4673         } else {
4674             // danger, shouldn't be ident?
4675             names.push(Ident::from_str("<opaque>"));
4676             collect_mod(names, module.parent.unwrap());
4677         }
4678     }
4679     collect_mod(&mut names, module);
4680
4681     if names.is_empty() {
4682         return None;
4683     }
4684     Some(names_to_string(&names.into_iter()
4685                         .rev()
4686                         .collect::<Vec<_>>()))
4687 }
4688
4689 fn err_path_resolution() -> PathResolution {
4690     PathResolution::new(Def::Err)
4691 }
4692
4693 #[derive(PartialEq,Copy, Clone)]
4694 pub enum MakeGlobMap {
4695     Yes,
4696     No,
4697 }
4698
4699 #[derive(Copy, Clone, Debug)]
4700 enum CrateLint {
4701     /// Do not issue the lint
4702     No,
4703
4704     /// This lint applies to some random path like `impl ::foo::Bar`
4705     /// or whatever. In this case, we can take the span of that path.
4706     SimplePath(NodeId),
4707
4708     /// This lint comes from a `use` statement. In this case, what we
4709     /// care about really is the *root* `use` statement; e.g., if we
4710     /// have nested things like `use a::{b, c}`, we care about the
4711     /// `use a` part.
4712     UsePath { root_id: NodeId, root_span: Span },
4713
4714     /// This is the "trait item" from a fully qualified path. For example,
4715     /// we might be resolving  `X::Y::Z` from a path like `<T as X::Y>::Z`.
4716     /// The `path_span` is the span of the to the trait itself (`X::Y`).
4717     QPathTrait { qpath_id: NodeId, qpath_span: Span },
4718 }
4719
4720 impl CrateLint {
4721     fn node_id(&self) -> Option<NodeId> {
4722         match *self {
4723             CrateLint::No => None,
4724             CrateLint::SimplePath(id) |
4725             CrateLint::UsePath { root_id: id, .. } |
4726             CrateLint::QPathTrait { qpath_id: id, .. } => Some(id),
4727         }
4728     }
4729 }
4730
4731 __build_diagnostic_array! { librustc_resolve, DIAGNOSTICS }