]> git.lizzy.rs Git - rust.git/blob - src/librustc_resolve/lib.rs
Auto merge of #53960 - estebank:issue-51303, r=nagisa
[rust.git] / src / librustc_resolve / lib.rs
1 // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 #![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
12        html_favicon_url = "https://doc.rust-lang.org/favicon.ico",
13        html_root_url = "https://doc.rust-lang.org/nightly/")]
14
15 #![feature(crate_visibility_modifier)]
16 #![cfg_attr(not(stage0), feature(nll))]
17 #![cfg_attr(not(stage0), feature(infer_outlives_requirements))]
18 #![feature(rustc_diagnostic_macros)]
19 #![feature(slice_sort_by_cached_key)]
20
21 #[macro_use]
22 extern crate log;
23 #[macro_use]
24 extern crate syntax;
25 extern crate syntax_pos;
26 extern crate rustc_errors as errors;
27 extern crate arena;
28 #[macro_use]
29 extern crate rustc;
30 extern crate rustc_data_structures;
31 extern crate rustc_metadata;
32
33 pub use rustc::hir::def::{Namespace, PerNS};
34
35 use self::TypeParameters::*;
36 use self::RibKind::*;
37
38 use rustc::hir::map::{Definitions, DefCollector};
39 use rustc::hir::{self, PrimTy, Bool, Char, Float, Int, Uint, Str};
40 use rustc::middle::cstore::CrateStore;
41 use rustc::session::Session;
42 use rustc::lint;
43 use rustc::hir::def::*;
44 use rustc::hir::def::Namespace::*;
45 use rustc::hir::def_id::{CRATE_DEF_INDEX, LOCAL_CRATE, DefId};
46 use rustc::ty;
47 use rustc::hir::{Freevar, FreevarMap, TraitCandidate, TraitMap, GlobMap};
48 use rustc::util::nodemap::{NodeMap, NodeSet, FxHashMap, FxHashSet, DefIdMap};
49
50 use rustc_metadata::creader::CrateLoader;
51 use rustc_metadata::cstore::CStore;
52
53 use syntax::source_map::SourceMap;
54 use syntax::ext::hygiene::{Mark, Transparency, SyntaxContext};
55 use syntax::ast::{self, Name, NodeId, Ident, FloatTy, IntTy, UintTy};
56 use syntax::ext::base::SyntaxExtension;
57 use syntax::ext::base::Determinacy::{self, Determined, Undetermined};
58 use syntax::ext::base::MacroKind;
59 use syntax::symbol::{Symbol, keywords};
60 use syntax::util::lev_distance::find_best_match_for_name;
61
62 use syntax::visit::{self, FnKind, Visitor};
63 use syntax::attr;
64 use syntax::ast::{CRATE_NODE_ID, Arm, IsAsync, BindingMode, Block, Crate, Expr, ExprKind};
65 use syntax::ast::{FnDecl, ForeignItem, ForeignItemKind, GenericParamKind, Generics};
66 use syntax::ast::{Item, ItemKind, ImplItem, ImplItemKind};
67 use syntax::ast::{Label, Local, Mutability, Pat, PatKind, Path};
68 use syntax::ast::{QSelf, TraitItemKind, TraitRef, Ty, TyKind};
69 use syntax::feature_gate::{feature_err, GateIssue};
70 use syntax::ptr::P;
71
72 use syntax_pos::{Span, DUMMY_SP, MultiSpan};
73 use errors::{Applicability, DiagnosticBuilder, DiagnosticId};
74
75 use std::cell::{Cell, RefCell};
76 use std::cmp;
77 use std::collections::BTreeSet;
78 use std::fmt;
79 use std::iter;
80 use std::mem::replace;
81 use rustc_data_structures::sync::Lrc;
82
83 use resolve_imports::{ImportDirective, ImportDirectiveSubclass, NameResolution, ImportResolver};
84 use macros::{InvocationData, LegacyBinding};
85
86 // NB: This module needs to be declared first so diagnostics are
87 // registered before they are used.
88 mod diagnostics;
89
90 mod macros;
91 mod check_unused;
92 mod build_reduced_graph;
93 mod resolve_imports;
94
95 fn is_known_tool(name: Name) -> bool {
96     ["clippy", "rustfmt"].contains(&&*name.as_str())
97 }
98
99 /// A free importable items suggested in case of resolution failure.
100 struct ImportSuggestion {
101     path: Path,
102 }
103
104 /// A field or associated item from self type suggested in case of resolution failure.
105 enum AssocSuggestion {
106     Field,
107     MethodWithSelf,
108     AssocItem,
109 }
110
111 #[derive(Eq)]
112 struct BindingError {
113     name: Name,
114     origin: BTreeSet<Span>,
115     target: BTreeSet<Span>,
116 }
117
118 impl PartialOrd for BindingError {
119     fn partial_cmp(&self, other: &BindingError) -> Option<cmp::Ordering> {
120         Some(self.cmp(other))
121     }
122 }
123
124 impl PartialEq for BindingError {
125     fn eq(&self, other: &BindingError) -> bool {
126         self.name == other.name
127     }
128 }
129
130 impl Ord for BindingError {
131     fn cmp(&self, other: &BindingError) -> cmp::Ordering {
132         self.name.cmp(&other.name)
133     }
134 }
135
136 enum ResolutionError<'a> {
137     /// error E0401: can't use type parameters from outer function
138     TypeParametersFromOuterFunction(Def),
139     /// error E0403: the name is already used for a type parameter in this type parameter list
140     NameAlreadyUsedInTypeParameterList(Name, &'a Span),
141     /// error E0407: method is not a member of trait
142     MethodNotMemberOfTrait(Name, &'a str),
143     /// error E0437: type is not a member of trait
144     TypeNotMemberOfTrait(Name, &'a str),
145     /// error E0438: const is not a member of trait
146     ConstNotMemberOfTrait(Name, &'a str),
147     /// error E0408: variable `{}` is not bound in all patterns
148     VariableNotBoundInPattern(&'a BindingError),
149     /// error E0409: variable `{}` is bound in inconsistent ways within the same match arm
150     VariableBoundWithDifferentMode(Name, Span),
151     /// error E0415: identifier is bound more than once in this parameter list
152     IdentifierBoundMoreThanOnceInParameterList(&'a str),
153     /// error E0416: identifier is bound more than once in the same pattern
154     IdentifierBoundMoreThanOnceInSamePattern(&'a str),
155     /// error E0426: use of undeclared label
156     UndeclaredLabel(&'a str, Option<Name>),
157     /// error E0429: `self` imports are only allowed within a { } list
158     SelfImportsOnlyAllowedWithin,
159     /// error E0430: `self` import can only appear once in the list
160     SelfImportCanOnlyAppearOnceInTheList,
161     /// error E0431: `self` import can only appear in an import list with a non-empty prefix
162     SelfImportOnlyInImportListWithNonEmptyPrefix,
163     /// error E0432: unresolved import
164     UnresolvedImport(Option<(Span, &'a str, &'a str)>),
165     /// error E0433: failed to resolve
166     FailedToResolve(&'a str),
167     /// error E0434: can't capture dynamic environment in a fn item
168     CannotCaptureDynamicEnvironmentInFnItem,
169     /// error E0435: attempt to use a non-constant value in a constant
170     AttemptToUseNonConstantValueInConstant,
171     /// error E0530: X bindings cannot shadow Ys
172     BindingShadowsSomethingUnacceptable(&'a str, Name, &'a NameBinding<'a>),
173     /// error E0128: type parameters with a default cannot use forward declared identifiers
174     ForwardDeclaredTyParam,
175 }
176
177 /// Combines an error with provided span and emits it
178 ///
179 /// This takes the error provided, combines it with the span and any additional spans inside the
180 /// error and emits it.
181 fn resolve_error<'sess, 'a>(resolver: &'sess Resolver,
182                             span: Span,
183                             resolution_error: ResolutionError<'a>) {
184     resolve_struct_error(resolver, span, resolution_error).emit();
185 }
186
187 fn resolve_struct_error<'sess, 'a>(resolver: &'sess Resolver,
188                                    span: Span,
189                                    resolution_error: ResolutionError<'a>)
190                                    -> DiagnosticBuilder<'sess> {
191     match resolution_error {
192         ResolutionError::TypeParametersFromOuterFunction(outer_def) => {
193             let mut err = struct_span_err!(resolver.session,
194                                            span,
195                                            E0401,
196                                            "can't use type parameters from outer function");
197             err.span_label(span, "use of type variable from outer function");
198
199             let cm = resolver.session.source_map();
200             match outer_def {
201                 Def::SelfTy(maybe_trait_defid, maybe_impl_defid) => {
202                     if let Some(impl_span) = maybe_impl_defid.and_then(|def_id| {
203                         resolver.definitions.opt_span(def_id)
204                     }) {
205                         err.span_label(
206                             reduce_impl_span_to_impl_keyword(cm, impl_span),
207                             "`Self` type implicitly declared here, by this `impl`",
208                         );
209                     }
210                     match (maybe_trait_defid, maybe_impl_defid) {
211                         (Some(_), None) => {
212                             err.span_label(span, "can't use `Self` here");
213                         }
214                         (_, Some(_)) => {
215                             err.span_label(span, "use a type here instead");
216                         }
217                         (None, None) => bug!("`impl` without trait nor type?"),
218                     }
219                     return err;
220                 },
221                 Def::TyParam(typaram_defid) => {
222                     if let Some(typaram_span) = resolver.definitions.opt_span(typaram_defid) {
223                         err.span_label(typaram_span, "type variable from outer function");
224                     }
225                 },
226                 _ => {
227                     bug!("TypeParametersFromOuterFunction should only be used with Def::SelfTy or \
228                          Def::TyParam")
229                 }
230             }
231
232             // Try to retrieve the span of the function signature and generate a new message with
233             // a local type parameter
234             let sugg_msg = "try using a local type parameter instead";
235             if let Some((sugg_span, new_snippet)) = cm.generate_local_type_param_snippet(span) {
236                 // Suggest the modification to the user
237                 err.span_suggestion_with_applicability(
238                     sugg_span,
239                     sugg_msg,
240                     new_snippet,
241                     Applicability::MachineApplicable,
242                 );
243             } else if let Some(sp) = cm.generate_fn_name_span(span) {
244                 err.span_label(sp, "try adding a local type parameter in this method instead");
245             } else {
246                 err.help("try using a local type parameter instead");
247             }
248
249             err
250         }
251         ResolutionError::NameAlreadyUsedInTypeParameterList(name, first_use_span) => {
252              let mut err = struct_span_err!(resolver.session,
253                                             span,
254                                             E0403,
255                                             "the name `{}` is already used for a type parameter \
256                                             in this type parameter list",
257                                             name);
258              err.span_label(span, "already used");
259              err.span_label(first_use_span.clone(), format!("first use of `{}`", name));
260              err
261         }
262         ResolutionError::MethodNotMemberOfTrait(method, trait_) => {
263             let mut err = struct_span_err!(resolver.session,
264                                            span,
265                                            E0407,
266                                            "method `{}` is not a member of trait `{}`",
267                                            method,
268                                            trait_);
269             err.span_label(span, format!("not a member of trait `{}`", trait_));
270             err
271         }
272         ResolutionError::TypeNotMemberOfTrait(type_, trait_) => {
273             let mut err = struct_span_err!(resolver.session,
274                              span,
275                              E0437,
276                              "type `{}` is not a member of trait `{}`",
277                              type_,
278                              trait_);
279             err.span_label(span, format!("not a member of trait `{}`", trait_));
280             err
281         }
282         ResolutionError::ConstNotMemberOfTrait(const_, trait_) => {
283             let mut err = struct_span_err!(resolver.session,
284                              span,
285                              E0438,
286                              "const `{}` is not a member of trait `{}`",
287                              const_,
288                              trait_);
289             err.span_label(span, format!("not a member of trait `{}`", trait_));
290             err
291         }
292         ResolutionError::VariableNotBoundInPattern(binding_error) => {
293             let target_sp = binding_error.target.iter().cloned().collect::<Vec<_>>();
294             let msp = MultiSpan::from_spans(target_sp.clone());
295             let msg = format!("variable `{}` is not bound in all patterns", binding_error.name);
296             let mut err = resolver.session.struct_span_err_with_code(
297                 msp,
298                 &msg,
299                 DiagnosticId::Error("E0408".into()),
300             );
301             for sp in target_sp {
302                 err.span_label(sp, format!("pattern doesn't bind `{}`", binding_error.name));
303             }
304             let origin_sp = binding_error.origin.iter().cloned();
305             for sp in origin_sp {
306                 err.span_label(sp, "variable not in all patterns");
307             }
308             err
309         }
310         ResolutionError::VariableBoundWithDifferentMode(variable_name,
311                                                         first_binding_span) => {
312             let mut err = struct_span_err!(resolver.session,
313                              span,
314                              E0409,
315                              "variable `{}` is bound in inconsistent \
316                              ways within the same match arm",
317                              variable_name);
318             err.span_label(span, "bound in different ways");
319             err.span_label(first_binding_span, "first binding");
320             err
321         }
322         ResolutionError::IdentifierBoundMoreThanOnceInParameterList(identifier) => {
323             let mut err = struct_span_err!(resolver.session,
324                              span,
325                              E0415,
326                              "identifier `{}` is bound more than once in this parameter list",
327                              identifier);
328             err.span_label(span, "used as parameter more than once");
329             err
330         }
331         ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(identifier) => {
332             let mut err = struct_span_err!(resolver.session,
333                              span,
334                              E0416,
335                              "identifier `{}` is bound more than once in the same pattern",
336                              identifier);
337             err.span_label(span, "used in a pattern more than once");
338             err
339         }
340         ResolutionError::UndeclaredLabel(name, lev_candidate) => {
341             let mut err = struct_span_err!(resolver.session,
342                                            span,
343                                            E0426,
344                                            "use of undeclared label `{}`",
345                                            name);
346             if let Some(lev_candidate) = lev_candidate {
347                 err.span_label(span, format!("did you mean `{}`?", lev_candidate));
348             } else {
349                 err.span_label(span, format!("undeclared label `{}`", name));
350             }
351             err
352         }
353         ResolutionError::SelfImportsOnlyAllowedWithin => {
354             struct_span_err!(resolver.session,
355                              span,
356                              E0429,
357                              "{}",
358                              "`self` imports are only allowed within a { } list")
359         }
360         ResolutionError::SelfImportCanOnlyAppearOnceInTheList => {
361             let mut err = struct_span_err!(resolver.session, span, E0430,
362                                            "`self` import can only appear once in an import list");
363             err.span_label(span, "can only appear once in an import list");
364             err
365         }
366         ResolutionError::SelfImportOnlyInImportListWithNonEmptyPrefix => {
367             let mut err = struct_span_err!(resolver.session, span, E0431,
368                                            "`self` import can only appear in an import list with \
369                                             a non-empty prefix");
370             err.span_label(span, "can only appear in an import list with a non-empty prefix");
371             err
372         }
373         ResolutionError::UnresolvedImport(name) => {
374             let (span, msg) = match name {
375                 Some((sp, n, _)) => (sp, format!("unresolved import `{}`", n)),
376                 None => (span, "unresolved import".to_owned()),
377             };
378             let mut err = struct_span_err!(resolver.session, span, E0432, "{}", msg);
379             if let Some((_, _, p)) = name {
380                 err.span_label(span, p);
381             }
382             err
383         }
384         ResolutionError::FailedToResolve(msg) => {
385             let mut err = struct_span_err!(resolver.session, span, E0433,
386                                            "failed to resolve. {}", msg);
387             err.span_label(span, msg);
388             err
389         }
390         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem => {
391             let mut err = struct_span_err!(resolver.session,
392                                            span,
393                                            E0434,
394                                            "{}",
395                                            "can't capture dynamic environment in a fn item");
396             err.help("use the `|| { ... }` closure form instead");
397             err
398         }
399         ResolutionError::AttemptToUseNonConstantValueInConstant => {
400             let mut err = struct_span_err!(resolver.session, span, E0435,
401                                            "attempt to use a non-constant value in a constant");
402             err.span_label(span, "non-constant value");
403             err
404         }
405         ResolutionError::BindingShadowsSomethingUnacceptable(what_binding, name, binding) => {
406             let shadows_what = PathResolution::new(binding.def()).kind_name();
407             let mut err = struct_span_err!(resolver.session,
408                                            span,
409                                            E0530,
410                                            "{}s cannot shadow {}s", what_binding, shadows_what);
411             err.span_label(span, format!("cannot be named the same as a {}", shadows_what));
412             let participle = if binding.is_import() { "imported" } else { "defined" };
413             let msg = format!("a {} `{}` is {} here", shadows_what, name, participle);
414             err.span_label(binding.span, msg);
415             err
416         }
417         ResolutionError::ForwardDeclaredTyParam => {
418             let mut err = struct_span_err!(resolver.session, span, E0128,
419                                            "type parameters with a default cannot use \
420                                             forward declared identifiers");
421             err.span_label(
422                 span, "defaulted type parameters cannot be forward declared".to_string());
423             err
424         }
425     }
426 }
427
428 /// Adjust the impl span so that just the `impl` keyword is taken by removing
429 /// everything after `<` (`"impl<T> Iterator for A<T> {}" -> "impl"`) and
430 /// everything after the first whitespace (`"impl Iterator for A" -> "impl"`)
431 ///
432 /// Attention: The method used is very fragile since it essentially duplicates the work of the
433 /// parser. If you need to use this function or something similar, please consider updating the
434 /// source_map functions and this function to something more robust.
435 fn reduce_impl_span_to_impl_keyword(cm: &SourceMap, impl_span: Span) -> Span {
436     let impl_span = cm.span_until_char(impl_span, '<');
437     let impl_span = cm.span_until_whitespace(impl_span);
438     impl_span
439 }
440
441 #[derive(Copy, Clone, Debug)]
442 struct BindingInfo {
443     span: Span,
444     binding_mode: BindingMode,
445 }
446
447 /// Map from the name in a pattern to its binding mode.
448 type BindingMap = FxHashMap<Ident, BindingInfo>;
449
450 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
451 enum PatternSource {
452     Match,
453     IfLet,
454     WhileLet,
455     Let,
456     For,
457     FnParam,
458 }
459
460 impl PatternSource {
461     fn descr(self) -> &'static str {
462         match self {
463             PatternSource::Match => "match binding",
464             PatternSource::IfLet => "if let binding",
465             PatternSource::WhileLet => "while let binding",
466             PatternSource::Let => "let binding",
467             PatternSource::For => "for binding",
468             PatternSource::FnParam => "function parameter",
469         }
470     }
471 }
472
473 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
474 enum AliasPossibility {
475     No,
476     Maybe,
477 }
478
479 #[derive(Copy, Clone, Debug)]
480 enum PathSource<'a> {
481     // Type paths `Path`.
482     Type,
483     // Trait paths in bounds or impls.
484     Trait(AliasPossibility),
485     // Expression paths `path`, with optional parent context.
486     Expr(Option<&'a Expr>),
487     // Paths in path patterns `Path`.
488     Pat,
489     // Paths in struct expressions and patterns `Path { .. }`.
490     Struct,
491     // Paths in tuple struct patterns `Path(..)`.
492     TupleStruct,
493     // `m::A::B` in `<T as m::A>::B::C`.
494     TraitItem(Namespace),
495     // Path in `pub(path)`
496     Visibility,
497     // Path in `use a::b::{...};`
498     ImportPrefix,
499 }
500
501 impl<'a> PathSource<'a> {
502     fn namespace(self) -> Namespace {
503         match self {
504             PathSource::Type | PathSource::Trait(_) | PathSource::Struct |
505             PathSource::Visibility | PathSource::ImportPrefix => TypeNS,
506             PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct => ValueNS,
507             PathSource::TraitItem(ns) => ns,
508         }
509     }
510
511     fn global_by_default(self) -> bool {
512         match self {
513             PathSource::Visibility | PathSource::ImportPrefix => true,
514             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
515             PathSource::Struct | PathSource::TupleStruct |
516             PathSource::Trait(_) | PathSource::TraitItem(..) => false,
517         }
518     }
519
520     fn defer_to_typeck(self) -> bool {
521         match self {
522             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
523             PathSource::Struct | PathSource::TupleStruct => true,
524             PathSource::Trait(_) | PathSource::TraitItem(..) |
525             PathSource::Visibility | PathSource::ImportPrefix => false,
526         }
527     }
528
529     fn descr_expected(self) -> &'static str {
530         match self {
531             PathSource::Type => "type",
532             PathSource::Trait(_) => "trait",
533             PathSource::Pat => "unit struct/variant or constant",
534             PathSource::Struct => "struct, variant or union type",
535             PathSource::TupleStruct => "tuple struct/variant",
536             PathSource::Visibility => "module",
537             PathSource::ImportPrefix => "module or enum",
538             PathSource::TraitItem(ns) => match ns {
539                 TypeNS => "associated type",
540                 ValueNS => "method or associated constant",
541                 MacroNS => bug!("associated macro"),
542             },
543             PathSource::Expr(parent) => match parent.map(|p| &p.node) {
544                 // "function" here means "anything callable" rather than `Def::Fn`,
545                 // this is not precise but usually more helpful than just "value".
546                 Some(&ExprKind::Call(..)) => "function",
547                 _ => "value",
548             },
549         }
550     }
551
552     fn is_expected(self, def: Def) -> bool {
553         match self {
554             PathSource::Type => match def {
555                 Def::Struct(..) | Def::Union(..) | Def::Enum(..) |
556                 Def::Trait(..) | Def::TyAlias(..) | Def::AssociatedTy(..) |
557                 Def::PrimTy(..) | Def::TyParam(..) | Def::SelfTy(..) |
558                 Def::Existential(..) |
559                 Def::ForeignTy(..) => true,
560                 _ => false,
561             },
562             PathSource::Trait(AliasPossibility::No) => match def {
563                 Def::Trait(..) => true,
564                 _ => false,
565             },
566             PathSource::Trait(AliasPossibility::Maybe) => match def {
567                 Def::Trait(..) => true,
568                 Def::TraitAlias(..) => true,
569                 _ => false,
570             },
571             PathSource::Expr(..) => match def {
572                 Def::StructCtor(_, CtorKind::Const) | Def::StructCtor(_, CtorKind::Fn) |
573                 Def::VariantCtor(_, CtorKind::Const) | Def::VariantCtor(_, CtorKind::Fn) |
574                 Def::Const(..) | Def::Static(..) | Def::Local(..) | Def::Upvar(..) |
575                 Def::Fn(..) | Def::Method(..) | Def::AssociatedConst(..) => true,
576                 _ => false,
577             },
578             PathSource::Pat => match def {
579                 Def::StructCtor(_, CtorKind::Const) |
580                 Def::VariantCtor(_, CtorKind::Const) |
581                 Def::Const(..) | Def::AssociatedConst(..) => true,
582                 _ => false,
583             },
584             PathSource::TupleStruct => match def {
585                 Def::StructCtor(_, CtorKind::Fn) | Def::VariantCtor(_, CtorKind::Fn) => true,
586                 _ => false,
587             },
588             PathSource::Struct => match def {
589                 Def::Struct(..) | Def::Union(..) | Def::Variant(..) |
590                 Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => true,
591                 _ => false,
592             },
593             PathSource::TraitItem(ns) => match def {
594                 Def::AssociatedConst(..) | Def::Method(..) if ns == ValueNS => true,
595                 Def::AssociatedTy(..) if ns == TypeNS => true,
596                 _ => false,
597             },
598             PathSource::ImportPrefix => match def {
599                 Def::Mod(..) | Def::Enum(..) => true,
600                 _ => false,
601             },
602             PathSource::Visibility => match def {
603                 Def::Mod(..) => true,
604                 _ => false,
605             },
606         }
607     }
608
609     fn error_code(self, has_unexpected_resolution: bool) -> &'static str {
610         __diagnostic_used!(E0404);
611         __diagnostic_used!(E0405);
612         __diagnostic_used!(E0412);
613         __diagnostic_used!(E0422);
614         __diagnostic_used!(E0423);
615         __diagnostic_used!(E0425);
616         __diagnostic_used!(E0531);
617         __diagnostic_used!(E0532);
618         __diagnostic_used!(E0573);
619         __diagnostic_used!(E0574);
620         __diagnostic_used!(E0575);
621         __diagnostic_used!(E0576);
622         __diagnostic_used!(E0577);
623         __diagnostic_used!(E0578);
624         match (self, has_unexpected_resolution) {
625             (PathSource::Trait(_), true) => "E0404",
626             (PathSource::Trait(_), false) => "E0405",
627             (PathSource::Type, true) => "E0573",
628             (PathSource::Type, false) => "E0412",
629             (PathSource::Struct, true) => "E0574",
630             (PathSource::Struct, false) => "E0422",
631             (PathSource::Expr(..), true) => "E0423",
632             (PathSource::Expr(..), false) => "E0425",
633             (PathSource::Pat, true) | (PathSource::TupleStruct, true) => "E0532",
634             (PathSource::Pat, false) | (PathSource::TupleStruct, false) => "E0531",
635             (PathSource::TraitItem(..), true) => "E0575",
636             (PathSource::TraitItem(..), false) => "E0576",
637             (PathSource::Visibility, true) | (PathSource::ImportPrefix, true) => "E0577",
638             (PathSource::Visibility, false) | (PathSource::ImportPrefix, false) => "E0578",
639         }
640     }
641 }
642
643 struct UsePlacementFinder {
644     target_module: NodeId,
645     span: Option<Span>,
646     found_use: bool,
647 }
648
649 impl UsePlacementFinder {
650     fn check(krate: &Crate, target_module: NodeId) -> (Option<Span>, bool) {
651         let mut finder = UsePlacementFinder {
652             target_module,
653             span: None,
654             found_use: false,
655         };
656         visit::walk_crate(&mut finder, krate);
657         (finder.span, finder.found_use)
658     }
659 }
660
661 impl<'tcx> Visitor<'tcx> for UsePlacementFinder {
662     fn visit_mod(
663         &mut self,
664         module: &'tcx ast::Mod,
665         _: Span,
666         _: &[ast::Attribute],
667         node_id: NodeId,
668     ) {
669         if self.span.is_some() {
670             return;
671         }
672         if node_id != self.target_module {
673             visit::walk_mod(self, module);
674             return;
675         }
676         // find a use statement
677         for item in &module.items {
678             match item.node {
679                 ItemKind::Use(..) => {
680                     // don't suggest placing a use before the prelude
681                     // import or other generated ones
682                     if item.span.ctxt().outer().expn_info().is_none() {
683                         self.span = Some(item.span.shrink_to_lo());
684                         self.found_use = true;
685                         return;
686                     }
687                 },
688                 // don't place use before extern crate
689                 ItemKind::ExternCrate(_) => {}
690                 // but place them before the first other item
691                 _ => if self.span.map_or(true, |span| item.span < span ) {
692                     if item.span.ctxt().outer().expn_info().is_none() {
693                         // don't insert between attributes and an item
694                         if item.attrs.is_empty() {
695                             self.span = Some(item.span.shrink_to_lo());
696                         } else {
697                             // find the first attribute on the item
698                             for attr in &item.attrs {
699                                 if self.span.map_or(true, |span| attr.span < span) {
700                                     self.span = Some(attr.span.shrink_to_lo());
701                                 }
702                             }
703                         }
704                     }
705                 },
706             }
707         }
708     }
709 }
710
711 /// This thing walks the whole crate in DFS manner, visiting each item, resolving names as it goes.
712 impl<'a, 'tcx, 'cl> Visitor<'tcx> for Resolver<'a, 'cl> {
713     fn visit_item(&mut self, item: &'tcx Item) {
714         self.resolve_item(item);
715     }
716     fn visit_arm(&mut self, arm: &'tcx Arm) {
717         self.resolve_arm(arm);
718     }
719     fn visit_block(&mut self, block: &'tcx Block) {
720         self.resolve_block(block);
721     }
722     fn visit_anon_const(&mut self, constant: &'tcx ast::AnonConst) {
723         self.with_constant_rib(|this| {
724             visit::walk_anon_const(this, constant);
725         });
726     }
727     fn visit_expr(&mut self, expr: &'tcx Expr) {
728         self.resolve_expr(expr, None);
729     }
730     fn visit_local(&mut self, local: &'tcx Local) {
731         self.resolve_local(local);
732     }
733     fn visit_ty(&mut self, ty: &'tcx Ty) {
734         match ty.node {
735             TyKind::Path(ref qself, ref path) => {
736                 self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
737             }
738             TyKind::ImplicitSelf => {
739                 let self_ty = keywords::SelfType.ident();
740                 let def = self.resolve_ident_in_lexical_scope(self_ty, TypeNS, Some(ty.id), ty.span)
741                               .map_or(Def::Err, |d| d.def());
742                 self.record_def(ty.id, PathResolution::new(def));
743             }
744             _ => (),
745         }
746         visit::walk_ty(self, ty);
747     }
748     fn visit_poly_trait_ref(&mut self,
749                             tref: &'tcx ast::PolyTraitRef,
750                             m: &'tcx ast::TraitBoundModifier) {
751         self.smart_resolve_path(tref.trait_ref.ref_id, None,
752                                 &tref.trait_ref.path, PathSource::Trait(AliasPossibility::Maybe));
753         visit::walk_poly_trait_ref(self, tref, m);
754     }
755     fn visit_foreign_item(&mut self, foreign_item: &'tcx ForeignItem) {
756         let type_parameters = match foreign_item.node {
757             ForeignItemKind::Fn(_, ref generics) => {
758                 HasTypeParameters(generics, ItemRibKind)
759             }
760             ForeignItemKind::Static(..) => NoTypeParameters,
761             ForeignItemKind::Ty => NoTypeParameters,
762             ForeignItemKind::Macro(..) => NoTypeParameters,
763         };
764         self.with_type_parameter_rib(type_parameters, |this| {
765             visit::walk_foreign_item(this, foreign_item);
766         });
767     }
768     fn visit_fn(&mut self,
769                 function_kind: FnKind<'tcx>,
770                 declaration: &'tcx FnDecl,
771                 _: Span,
772                 node_id: NodeId)
773     {
774         let (rib_kind, asyncness) = match function_kind {
775             FnKind::ItemFn(_, ref header, ..) =>
776                 (ItemRibKind, header.asyncness),
777             FnKind::Method(_, ref sig, _, _) =>
778                 (TraitOrImplItemRibKind, sig.header.asyncness),
779             FnKind::Closure(_) =>
780                 // Async closures aren't resolved through `visit_fn`-- they're
781                 // processed separately
782                 (ClosureRibKind(node_id), IsAsync::NotAsync),
783         };
784
785         // Create a value rib for the function.
786         self.ribs[ValueNS].push(Rib::new(rib_kind));
787
788         // Create a label rib for the function.
789         self.label_ribs.push(Rib::new(rib_kind));
790
791         // Add each argument to the rib.
792         let mut bindings_list = FxHashMap();
793         for argument in &declaration.inputs {
794             self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
795
796             self.visit_ty(&argument.ty);
797
798             debug!("(resolving function) recorded argument");
799         }
800         visit::walk_fn_ret_ty(self, &declaration.output);
801
802         // Resolve the function body, potentially inside the body of an async closure
803         if let IsAsync::Async { closure_id, .. } = asyncness {
804             let rib_kind = ClosureRibKind(closure_id);
805             self.ribs[ValueNS].push(Rib::new(rib_kind));
806             self.label_ribs.push(Rib::new(rib_kind));
807         }
808
809         match function_kind {
810             FnKind::ItemFn(.., body) |
811             FnKind::Method(.., body) => {
812                 self.visit_block(body);
813             }
814             FnKind::Closure(body) => {
815                 self.visit_expr(body);
816             }
817         };
818
819         // Leave the body of the async closure
820         if asyncness.is_async() {
821             self.label_ribs.pop();
822             self.ribs[ValueNS].pop();
823         }
824
825         debug!("(resolving function) leaving function");
826
827         self.label_ribs.pop();
828         self.ribs[ValueNS].pop();
829     }
830     fn visit_generics(&mut self, generics: &'tcx Generics) {
831         // For type parameter defaults, we have to ban access
832         // to following type parameters, as the Substs can only
833         // provide previous type parameters as they're built. We
834         // put all the parameters on the ban list and then remove
835         // them one by one as they are processed and become available.
836         let mut default_ban_rib = Rib::new(ForwardTyParamBanRibKind);
837         let mut found_default = false;
838         default_ban_rib.bindings.extend(generics.params.iter()
839             .filter_map(|param| match param.kind {
840                 GenericParamKind::Lifetime { .. } => None,
841                 GenericParamKind::Type { ref default, .. } => {
842                     found_default |= default.is_some();
843                     if found_default {
844                         Some((Ident::with_empty_ctxt(param.ident.name), Def::Err))
845                     } else {
846                         None
847                     }
848                 }
849             }));
850
851         for param in &generics.params {
852             match param.kind {
853                 GenericParamKind::Lifetime { .. } => self.visit_generic_param(param),
854                 GenericParamKind::Type { ref default, .. } => {
855                     for bound in &param.bounds {
856                         self.visit_param_bound(bound);
857                     }
858
859                     if let Some(ref ty) = default {
860                         self.ribs[TypeNS].push(default_ban_rib);
861                         self.visit_ty(ty);
862                         default_ban_rib = self.ribs[TypeNS].pop().unwrap();
863                     }
864
865                     // Allow all following defaults to refer to this type parameter.
866                     default_ban_rib.bindings.remove(&Ident::with_empty_ctxt(param.ident.name));
867                 }
868             }
869         }
870         for p in &generics.where_clause.predicates {
871             self.visit_where_predicate(p);
872         }
873     }
874 }
875
876 #[derive(Copy, Clone)]
877 enum TypeParameters<'a, 'b> {
878     NoTypeParameters,
879     HasTypeParameters(// Type parameters.
880                       &'b Generics,
881
882                       // The kind of the rib used for type parameters.
883                       RibKind<'a>),
884 }
885
886 /// The rib kind controls the translation of local
887 /// definitions (`Def::Local`) to upvars (`Def::Upvar`).
888 #[derive(Copy, Clone, Debug)]
889 enum RibKind<'a> {
890     /// No translation needs to be applied.
891     NormalRibKind,
892
893     /// We passed through a closure scope at the given node ID.
894     /// Translate upvars as appropriate.
895     ClosureRibKind(NodeId /* func id */),
896
897     /// We passed through an impl or trait and are now in one of its
898     /// methods or associated types. Allow references to ty params that impl or trait
899     /// binds. Disallow any other upvars (including other ty params that are
900     /// upvars).
901     TraitOrImplItemRibKind,
902
903     /// We passed through an item scope. Disallow upvars.
904     ItemRibKind,
905
906     /// We're in a constant item. Can't refer to dynamic stuff.
907     ConstantItemRibKind,
908
909     /// We passed through a module.
910     ModuleRibKind(Module<'a>),
911
912     /// We passed through a `macro_rules!` statement
913     MacroDefinition(DefId),
914
915     /// All bindings in this rib are type parameters that can't be used
916     /// from the default of a type parameter because they're not declared
917     /// before said type parameter. Also see the `visit_generics` override.
918     ForwardTyParamBanRibKind,
919 }
920
921 /// One local scope.
922 ///
923 /// A rib represents a scope names can live in. Note that these appear in many places, not just
924 /// around braces. At any place where the list of accessible names (of the given namespace)
925 /// changes or a new restrictions on the name accessibility are introduced, a new rib is put onto a
926 /// stack. This may be, for example, a `let` statement (because it introduces variables), a macro,
927 /// etc.
928 ///
929 /// Different [rib kinds](enum.RibKind) are transparent for different names.
930 ///
931 /// The resolution keeps a separate stack of ribs as it traverses the AST for each namespace. When
932 /// resolving, the name is looked up from inside out.
933 #[derive(Debug)]
934 struct Rib<'a> {
935     bindings: FxHashMap<Ident, Def>,
936     kind: RibKind<'a>,
937 }
938
939 impl<'a> Rib<'a> {
940     fn new(kind: RibKind<'a>) -> Rib<'a> {
941         Rib {
942             bindings: FxHashMap(),
943             kind,
944         }
945     }
946 }
947
948 /// An intermediate resolution result.
949 ///
950 /// This refers to the thing referred by a name. The difference between `Def` and `Item` is that
951 /// items are visible in their whole block, while defs only from the place they are defined
952 /// forward.
953 enum LexicalScopeBinding<'a> {
954     Item(&'a NameBinding<'a>),
955     Def(Def),
956 }
957
958 impl<'a> LexicalScopeBinding<'a> {
959     fn item(self) -> Option<&'a NameBinding<'a>> {
960         match self {
961             LexicalScopeBinding::Item(binding) => Some(binding),
962             _ => None,
963         }
964     }
965
966     fn def(self) -> Def {
967         match self {
968             LexicalScopeBinding::Item(binding) => binding.def(),
969             LexicalScopeBinding::Def(def) => def,
970         }
971     }
972 }
973
974 #[derive(Copy, Clone, Debug)]
975 pub enum ModuleOrUniformRoot<'a> {
976     /// Regular module.
977     Module(Module<'a>),
978
979     /// The `{{root}}` (`CrateRoot` aka "global") / `extern` initial segment
980     /// in which external crates resolve, and also `crate` (only in `{{root}}`,
981     /// but *not* `extern`), in the Rust 2018 edition.
982     UniformRoot(Name),
983 }
984
985 #[derive(Clone, Debug)]
986 enum PathResult<'a> {
987     Module(ModuleOrUniformRoot<'a>),
988     NonModule(PathResolution),
989     Indeterminate,
990     Failed(Span, String, bool /* is the error from the last segment? */),
991 }
992
993 enum ModuleKind {
994     /// An anonymous module, eg. just a block.
995     ///
996     /// ```
997     /// fn main() {
998     ///     fn f() {} // (1)
999     ///     { // This is an anonymous module
1000     ///         f(); // This resolves to (2) as we are inside the block.
1001     ///         fn f() {} // (2)
1002     ///     }
1003     ///     f(); // Resolves to (1)
1004     /// }
1005     /// ```
1006     Block(NodeId),
1007     /// Any module with a name.
1008     ///
1009     /// This could be:
1010     ///
1011     /// * A normal module â€’ either `mod from_file;` or `mod from_block { }`.
1012     /// * A trait or an enum (it implicitly contains associated types, methods and variant
1013     ///   constructors).
1014     Def(Def, Name),
1015 }
1016
1017 /// One node in the tree of modules.
1018 pub struct ModuleData<'a> {
1019     parent: Option<Module<'a>>,
1020     kind: ModuleKind,
1021
1022     // The def id of the closest normal module (`mod`) ancestor (including this module).
1023     normal_ancestor_id: DefId,
1024
1025     resolutions: RefCell<FxHashMap<(Ident, Namespace), &'a RefCell<NameResolution<'a>>>>,
1026     legacy_macro_resolutions: RefCell<Vec<(Mark, Ident, MacroKind, Option<Def>)>>,
1027     macro_resolutions: RefCell<Vec<(Box<[Ident]>, Span)>>,
1028
1029     // Macro invocations that can expand into items in this module.
1030     unresolved_invocations: RefCell<FxHashSet<Mark>>,
1031
1032     no_implicit_prelude: bool,
1033
1034     glob_importers: RefCell<Vec<&'a ImportDirective<'a>>>,
1035     globs: RefCell<Vec<&'a ImportDirective<'a>>>,
1036
1037     // Used to memoize the traits in this module for faster searches through all traits in scope.
1038     traits: RefCell<Option<Box<[(Ident, &'a NameBinding<'a>)]>>>,
1039
1040     // Whether this module is populated. If not populated, any attempt to
1041     // access the children must be preceded with a
1042     // `populate_module_if_necessary` call.
1043     populated: Cell<bool>,
1044
1045     /// Span of the module itself. Used for error reporting.
1046     span: Span,
1047
1048     expansion: Mark,
1049 }
1050
1051 type Module<'a> = &'a ModuleData<'a>;
1052
1053 impl<'a> ModuleData<'a> {
1054     fn new(parent: Option<Module<'a>>,
1055            kind: ModuleKind,
1056            normal_ancestor_id: DefId,
1057            expansion: Mark,
1058            span: Span) -> Self {
1059         ModuleData {
1060             parent,
1061             kind,
1062             normal_ancestor_id,
1063             resolutions: RefCell::new(FxHashMap()),
1064             legacy_macro_resolutions: RefCell::new(Vec::new()),
1065             macro_resolutions: RefCell::new(Vec::new()),
1066             unresolved_invocations: RefCell::new(FxHashSet()),
1067             no_implicit_prelude: false,
1068             glob_importers: RefCell::new(Vec::new()),
1069             globs: RefCell::new(Vec::new()),
1070             traits: RefCell::new(None),
1071             populated: Cell::new(normal_ancestor_id.is_local()),
1072             span,
1073             expansion,
1074         }
1075     }
1076
1077     fn for_each_child<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1078         for (&(ident, ns), name_resolution) in self.resolutions.borrow().iter() {
1079             name_resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1080         }
1081     }
1082
1083     fn for_each_child_stable<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1084         let resolutions = self.resolutions.borrow();
1085         let mut resolutions = resolutions.iter().collect::<Vec<_>>();
1086         resolutions.sort_by_cached_key(|&(&(ident, ns), _)| (ident.as_str(), ns));
1087         for &(&(ident, ns), &resolution) in resolutions.iter() {
1088             resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1089         }
1090     }
1091
1092     fn def(&self) -> Option<Def> {
1093         match self.kind {
1094             ModuleKind::Def(def, _) => Some(def),
1095             _ => None,
1096         }
1097     }
1098
1099     fn def_id(&self) -> Option<DefId> {
1100         self.def().as_ref().map(Def::def_id)
1101     }
1102
1103     // `self` resolves to the first module ancestor that `is_normal`.
1104     fn is_normal(&self) -> bool {
1105         match self.kind {
1106             ModuleKind::Def(Def::Mod(_), _) => true,
1107             _ => false,
1108         }
1109     }
1110
1111     fn is_trait(&self) -> bool {
1112         match self.kind {
1113             ModuleKind::Def(Def::Trait(_), _) => true,
1114             _ => false,
1115         }
1116     }
1117
1118     fn is_local(&self) -> bool {
1119         self.normal_ancestor_id.is_local()
1120     }
1121
1122     fn nearest_item_scope(&'a self) -> Module<'a> {
1123         if self.is_trait() { self.parent.unwrap() } else { self }
1124     }
1125 }
1126
1127 impl<'a> fmt::Debug for ModuleData<'a> {
1128     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1129         write!(f, "{:?}", self.def())
1130     }
1131 }
1132
1133 /// Records a possibly-private value, type, or module definition.
1134 #[derive(Clone, Debug)]
1135 pub struct NameBinding<'a> {
1136     kind: NameBindingKind<'a>,
1137     expansion: Mark,
1138     span: Span,
1139     vis: ty::Visibility,
1140 }
1141
1142 pub trait ToNameBinding<'a> {
1143     fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a>;
1144 }
1145
1146 impl<'a> ToNameBinding<'a> for &'a NameBinding<'a> {
1147     fn to_name_binding(self, _: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> {
1148         self
1149     }
1150 }
1151
1152 #[derive(Clone, Debug)]
1153 enum NameBindingKind<'a> {
1154     Def(Def, /* is_macro_export */ bool),
1155     Module(Module<'a>),
1156     Import {
1157         binding: &'a NameBinding<'a>,
1158         directive: &'a ImportDirective<'a>,
1159         used: Cell<bool>,
1160     },
1161     Ambiguity {
1162         b1: &'a NameBinding<'a>,
1163         b2: &'a NameBinding<'a>,
1164     }
1165 }
1166
1167 struct PrivacyError<'a>(Span, Name, &'a NameBinding<'a>);
1168
1169 struct UseError<'a> {
1170     err: DiagnosticBuilder<'a>,
1171     /// Attach `use` statements for these candidates
1172     candidates: Vec<ImportSuggestion>,
1173     /// The node id of the module to place the use statements in
1174     node_id: NodeId,
1175     /// Whether the diagnostic should state that it's "better"
1176     better: bool,
1177 }
1178
1179 struct AmbiguityError<'a> {
1180     span: Span,
1181     name: Name,
1182     lexical: bool,
1183     b1: &'a NameBinding<'a>,
1184     b2: &'a NameBinding<'a>,
1185 }
1186
1187 impl<'a> NameBinding<'a> {
1188     fn module(&self) -> Option<Module<'a>> {
1189         match self.kind {
1190             NameBindingKind::Module(module) => Some(module),
1191             NameBindingKind::Import { binding, .. } => binding.module(),
1192             _ => None,
1193         }
1194     }
1195
1196     fn def(&self) -> Def {
1197         match self.kind {
1198             NameBindingKind::Def(def, _) => def,
1199             NameBindingKind::Module(module) => module.def().unwrap(),
1200             NameBindingKind::Import { binding, .. } => binding.def(),
1201             NameBindingKind::Ambiguity { .. } => Def::Err,
1202         }
1203     }
1204
1205     fn def_ignoring_ambiguity(&self) -> Def {
1206         match self.kind {
1207             NameBindingKind::Import { binding, .. } => binding.def_ignoring_ambiguity(),
1208             NameBindingKind::Ambiguity { b1, .. } => b1.def_ignoring_ambiguity(),
1209             _ => self.def(),
1210         }
1211     }
1212
1213     fn get_macro<'b: 'a>(&self, resolver: &mut Resolver<'a, 'b>) -> Lrc<SyntaxExtension> {
1214         resolver.get_macro(self.def_ignoring_ambiguity())
1215     }
1216
1217     // We sometimes need to treat variants as `pub` for backwards compatibility
1218     fn pseudo_vis(&self) -> ty::Visibility {
1219         if self.is_variant() && self.def().def_id().is_local() {
1220             ty::Visibility::Public
1221         } else {
1222             self.vis
1223         }
1224     }
1225
1226     fn is_variant(&self) -> bool {
1227         match self.kind {
1228             NameBindingKind::Def(Def::Variant(..), _) |
1229             NameBindingKind::Def(Def::VariantCtor(..), _) => true,
1230             _ => false,
1231         }
1232     }
1233
1234     fn is_extern_crate(&self) -> bool {
1235         match self.kind {
1236             NameBindingKind::Import {
1237                 directive: &ImportDirective {
1238                     subclass: ImportDirectiveSubclass::ExternCrate(_), ..
1239                 }, ..
1240             } => true,
1241             _ => false,
1242         }
1243     }
1244
1245     fn is_import(&self) -> bool {
1246         match self.kind {
1247             NameBindingKind::Import { .. } => true,
1248             _ => false,
1249         }
1250     }
1251
1252     fn is_renamed_extern_crate(&self) -> bool {
1253         if let NameBindingKind::Import { directive, ..} = self.kind {
1254             if let ImportDirectiveSubclass::ExternCrate(Some(_)) = directive.subclass {
1255                 return true;
1256             }
1257         }
1258         false
1259     }
1260
1261     fn is_glob_import(&self) -> bool {
1262         match self.kind {
1263             NameBindingKind::Import { directive, .. } => directive.is_glob(),
1264             NameBindingKind::Ambiguity { b1, .. } => b1.is_glob_import(),
1265             _ => false,
1266         }
1267     }
1268
1269     fn is_importable(&self) -> bool {
1270         match self.def() {
1271             Def::AssociatedConst(..) | Def::Method(..) | Def::AssociatedTy(..) => false,
1272             _ => true,
1273         }
1274     }
1275
1276     fn is_macro_def(&self) -> bool {
1277         match self.kind {
1278             NameBindingKind::Def(Def::Macro(..), _) => true,
1279             _ => false,
1280         }
1281     }
1282
1283     fn descr(&self) -> &'static str {
1284         if self.is_extern_crate() { "extern crate" } else { self.def().kind_name() }
1285     }
1286 }
1287
1288 /// Interns the names of the primitive types.
1289 ///
1290 /// All other types are defined somewhere and possibly imported, but the primitive ones need
1291 /// special handling, since they have no place of origin.
1292 struct PrimitiveTypeTable {
1293     primitive_types: FxHashMap<Name, PrimTy>,
1294 }
1295
1296 impl PrimitiveTypeTable {
1297     fn new() -> PrimitiveTypeTable {
1298         let mut table = PrimitiveTypeTable { primitive_types: FxHashMap() };
1299
1300         table.intern("bool", Bool);
1301         table.intern("char", Char);
1302         table.intern("f32", Float(FloatTy::F32));
1303         table.intern("f64", Float(FloatTy::F64));
1304         table.intern("isize", Int(IntTy::Isize));
1305         table.intern("i8", Int(IntTy::I8));
1306         table.intern("i16", Int(IntTy::I16));
1307         table.intern("i32", Int(IntTy::I32));
1308         table.intern("i64", Int(IntTy::I64));
1309         table.intern("i128", Int(IntTy::I128));
1310         table.intern("str", Str);
1311         table.intern("usize", Uint(UintTy::Usize));
1312         table.intern("u8", Uint(UintTy::U8));
1313         table.intern("u16", Uint(UintTy::U16));
1314         table.intern("u32", Uint(UintTy::U32));
1315         table.intern("u64", Uint(UintTy::U64));
1316         table.intern("u128", Uint(UintTy::U128));
1317         table
1318     }
1319
1320     fn intern(&mut self, string: &str, primitive_type: PrimTy) {
1321         self.primitive_types.insert(Symbol::intern(string), primitive_type);
1322     }
1323 }
1324
1325 /// The main resolver class.
1326 ///
1327 /// This is the visitor that walks the whole crate.
1328 pub struct Resolver<'a, 'b: 'a> {
1329     session: &'a Session,
1330     cstore: &'a CStore,
1331
1332     pub definitions: Definitions,
1333
1334     graph_root: Module<'a>,
1335
1336     prelude: Option<Module<'a>>,
1337     extern_prelude: FxHashSet<Name>,
1338
1339     /// n.b. This is used only for better diagnostics, not name resolution itself.
1340     has_self: FxHashSet<DefId>,
1341
1342     /// Names of fields of an item `DefId` accessible with dot syntax.
1343     /// Used for hints during error reporting.
1344     field_names: FxHashMap<DefId, Vec<Name>>,
1345
1346     /// All imports known to succeed or fail.
1347     determined_imports: Vec<&'a ImportDirective<'a>>,
1348
1349     /// All non-determined imports.
1350     indeterminate_imports: Vec<&'a ImportDirective<'a>>,
1351
1352     /// The module that represents the current item scope.
1353     current_module: Module<'a>,
1354
1355     /// The current set of local scopes for types and values.
1356     /// FIXME #4948: Reuse ribs to avoid allocation.
1357     ribs: PerNS<Vec<Rib<'a>>>,
1358
1359     /// The current set of local scopes, for labels.
1360     label_ribs: Vec<Rib<'a>>,
1361
1362     /// The trait that the current context can refer to.
1363     current_trait_ref: Option<(Module<'a>, TraitRef)>,
1364
1365     /// The current self type if inside an impl (used for better errors).
1366     current_self_type: Option<Ty>,
1367
1368     /// The idents for the primitive types.
1369     primitive_type_table: PrimitiveTypeTable,
1370
1371     def_map: DefMap,
1372     import_map: ImportMap,
1373     pub freevars: FreevarMap,
1374     freevars_seen: NodeMap<NodeMap<usize>>,
1375     pub export_map: ExportMap,
1376     pub trait_map: TraitMap,
1377
1378     /// A map from nodes to anonymous modules.
1379     /// Anonymous modules are pseudo-modules that are implicitly created around items
1380     /// contained within blocks.
1381     ///
1382     /// For example, if we have this:
1383     ///
1384     ///  fn f() {
1385     ///      fn g() {
1386     ///          ...
1387     ///      }
1388     ///  }
1389     ///
1390     /// There will be an anonymous module created around `g` with the ID of the
1391     /// entry block for `f`.
1392     block_map: NodeMap<Module<'a>>,
1393     module_map: FxHashMap<DefId, Module<'a>>,
1394     extern_module_map: FxHashMap<(DefId, bool /* MacrosOnly? */), Module<'a>>,
1395
1396     pub make_glob_map: bool,
1397     /// Maps imports to the names of items actually imported (this actually maps
1398     /// all imports, but only glob imports are actually interesting).
1399     pub glob_map: GlobMap,
1400
1401     used_imports: FxHashSet<(NodeId, Namespace)>,
1402     pub maybe_unused_trait_imports: NodeSet,
1403     pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
1404
1405     /// A list of labels as of yet unused. Labels will be removed from this map when
1406     /// they are used (in a `break` or `continue` statement)
1407     pub unused_labels: FxHashMap<NodeId, Span>,
1408
1409     /// privacy errors are delayed until the end in order to deduplicate them
1410     privacy_errors: Vec<PrivacyError<'a>>,
1411     /// ambiguity errors are delayed for deduplication
1412     ambiguity_errors: Vec<AmbiguityError<'a>>,
1413     /// `use` injections are delayed for better placement and deduplication
1414     use_injections: Vec<UseError<'a>>,
1415     /// `use` injections for proc macros wrongly imported with #[macro_use]
1416     proc_mac_errors: Vec<macros::ProcMacError>,
1417     /// crate-local macro expanded `macro_export` referred to by a module-relative path
1418     macro_expanded_macro_export_errors: BTreeSet<(Span, Span)>,
1419     /// macro-expanded `macro_rules` shadowing existing macros
1420     disallowed_shadowing: Vec<&'a LegacyBinding<'a>>,
1421
1422     arenas: &'a ResolverArenas<'a>,
1423     dummy_binding: &'a NameBinding<'a>,
1424
1425     crate_loader: &'a mut CrateLoader<'b>,
1426     macro_names: FxHashSet<Ident>,
1427     macro_prelude: FxHashMap<Name, &'a NameBinding<'a>>,
1428     unshadowable_attrs: FxHashMap<Name, &'a NameBinding<'a>>,
1429     pub all_macros: FxHashMap<Name, Def>,
1430     macro_map: FxHashMap<DefId, Lrc<SyntaxExtension>>,
1431     macro_defs: FxHashMap<Mark, DefId>,
1432     local_macro_def_scopes: FxHashMap<NodeId, Module<'a>>,
1433     pub whitelisted_legacy_custom_derives: Vec<Name>,
1434     pub found_unresolved_macro: bool,
1435
1436     /// List of crate local macros that we need to warn about as being unused.
1437     /// Right now this only includes macro_rules! macros, and macros 2.0.
1438     unused_macros: FxHashSet<DefId>,
1439
1440     /// Maps the `Mark` of an expansion to its containing module or block.
1441     invocations: FxHashMap<Mark, &'a InvocationData<'a>>,
1442
1443     /// Avoid duplicated errors for "name already defined".
1444     name_already_seen: FxHashMap<Name, Span>,
1445
1446     /// A set of procedural macros imported by `#[macro_use]` that have already been warned about
1447     warned_proc_macros: FxHashSet<Name>,
1448
1449     potentially_unused_imports: Vec<&'a ImportDirective<'a>>,
1450
1451     /// This table maps struct IDs into struct constructor IDs,
1452     /// it's not used during normal resolution, only for better error reporting.
1453     struct_constructors: DefIdMap<(Def, ty::Visibility)>,
1454
1455     /// Only used for better errors on `fn(): fn()`
1456     current_type_ascription: Vec<Span>,
1457
1458     injected_crate: Option<Module<'a>>,
1459
1460     /// Only supposed to be used by rustdoc, otherwise should be false.
1461     pub ignore_extern_prelude_feature: bool,
1462 }
1463
1464 /// Nothing really interesting here, it just provides memory for the rest of the crate.
1465 pub struct ResolverArenas<'a> {
1466     modules: arena::TypedArena<ModuleData<'a>>,
1467     local_modules: RefCell<Vec<Module<'a>>>,
1468     name_bindings: arena::TypedArena<NameBinding<'a>>,
1469     import_directives: arena::TypedArena<ImportDirective<'a>>,
1470     name_resolutions: arena::TypedArena<RefCell<NameResolution<'a>>>,
1471     invocation_data: arena::TypedArena<InvocationData<'a>>,
1472     legacy_bindings: arena::TypedArena<LegacyBinding<'a>>,
1473 }
1474
1475 impl<'a> ResolverArenas<'a> {
1476     fn alloc_module(&'a self, module: ModuleData<'a>) -> Module<'a> {
1477         let module = self.modules.alloc(module);
1478         if module.def_id().map(|def_id| def_id.is_local()).unwrap_or(true) {
1479             self.local_modules.borrow_mut().push(module);
1480         }
1481         module
1482     }
1483     fn local_modules(&'a self) -> ::std::cell::Ref<'a, Vec<Module<'a>>> {
1484         self.local_modules.borrow()
1485     }
1486     fn alloc_name_binding(&'a self, name_binding: NameBinding<'a>) -> &'a NameBinding<'a> {
1487         self.name_bindings.alloc(name_binding)
1488     }
1489     fn alloc_import_directive(&'a self, import_directive: ImportDirective<'a>)
1490                               -> &'a ImportDirective {
1491         self.import_directives.alloc(import_directive)
1492     }
1493     fn alloc_name_resolution(&'a self) -> &'a RefCell<NameResolution<'a>> {
1494         self.name_resolutions.alloc(Default::default())
1495     }
1496     fn alloc_invocation_data(&'a self, expansion_data: InvocationData<'a>)
1497                              -> &'a InvocationData<'a> {
1498         self.invocation_data.alloc(expansion_data)
1499     }
1500     fn alloc_legacy_binding(&'a self, binding: LegacyBinding<'a>) -> &'a LegacyBinding<'a> {
1501         self.legacy_bindings.alloc(binding)
1502     }
1503 }
1504
1505 impl<'a, 'b: 'a, 'cl: 'b> ty::DefIdTree for &'a Resolver<'b, 'cl> {
1506     fn parent(self, id: DefId) -> Option<DefId> {
1507         match id.krate {
1508             LOCAL_CRATE => self.definitions.def_key(id.index).parent,
1509             _ => self.cstore.def_key(id).parent,
1510         }.map(|index| DefId { index, ..id })
1511     }
1512 }
1513
1514 /// This interface is used through the AST→HIR step, to embed full paths into the HIR. After that
1515 /// the resolver is no longer needed as all the relevant information is inline.
1516 impl<'a, 'cl> hir::lowering::Resolver for Resolver<'a, 'cl> {
1517     fn resolve_hir_path(&mut self, path: &mut hir::Path, is_value: bool) {
1518         self.resolve_hir_path_cb(path, is_value,
1519                                  |resolver, span, error| resolve_error(resolver, span, error))
1520     }
1521
1522     fn resolve_str_path(
1523         &mut self,
1524         span: Span,
1525         crate_root: Option<&str>,
1526         components: &[&str],
1527         args: Option<P<hir::GenericArgs>>,
1528         is_value: bool
1529     ) -> hir::Path {
1530         let mut segments = iter::once(keywords::CrateRoot.ident())
1531             .chain(
1532                 crate_root.into_iter()
1533                     .chain(components.iter().cloned())
1534                     .map(Ident::from_str)
1535             ).map(hir::PathSegment::from_ident).collect::<Vec<_>>();
1536
1537         if let Some(args) = args {
1538             let ident = segments.last().unwrap().ident;
1539             *segments.last_mut().unwrap() = hir::PathSegment {
1540                 ident,
1541                 args: Some(args),
1542                 infer_types: true,
1543             };
1544         }
1545
1546         let mut path = hir::Path {
1547             span,
1548             def: Def::Err,
1549             segments: segments.into(),
1550         };
1551
1552         self.resolve_hir_path(&mut path, is_value);
1553         path
1554     }
1555
1556     fn get_resolution(&mut self, id: NodeId) -> Option<PathResolution> {
1557         self.def_map.get(&id).cloned()
1558     }
1559
1560     fn get_import(&mut self, id: NodeId) -> PerNS<Option<PathResolution>> {
1561         self.import_map.get(&id).cloned().unwrap_or_default()
1562     }
1563
1564     fn definitions(&mut self) -> &mut Definitions {
1565         &mut self.definitions
1566     }
1567 }
1568
1569 impl<'a, 'crateloader> Resolver<'a, 'crateloader> {
1570     /// Rustdoc uses this to resolve things in a recoverable way. ResolutionError<'a>
1571     /// isn't something that can be returned because it can't be made to live that long,
1572     /// and also it's a private type. Fortunately rustdoc doesn't need to know the error,
1573     /// just that an error occurred.
1574     pub fn resolve_str_path_error(&mut self, span: Span, path_str: &str, is_value: bool)
1575         -> Result<hir::Path, ()> {
1576         use std::iter;
1577         let mut errored = false;
1578
1579         let mut path = if path_str.starts_with("::") {
1580             hir::Path {
1581                 span,
1582                 def: Def::Err,
1583                 segments: iter::once(keywords::CrateRoot.ident()).chain({
1584                     path_str.split("::").skip(1).map(Ident::from_str)
1585                 }).map(hir::PathSegment::from_ident).collect(),
1586             }
1587         } else {
1588             hir::Path {
1589                 span,
1590                 def: Def::Err,
1591                 segments: path_str.split("::").map(Ident::from_str)
1592                                   .map(hir::PathSegment::from_ident).collect(),
1593             }
1594         };
1595         self.resolve_hir_path_cb(&mut path, is_value, |_, _, _| errored = true);
1596         if errored || path.def == Def::Err {
1597             Err(())
1598         } else {
1599             Ok(path)
1600         }
1601     }
1602
1603     /// resolve_hir_path, but takes a callback in case there was an error
1604     fn resolve_hir_path_cb<F>(&mut self, path: &mut hir::Path, is_value: bool, error_callback: F)
1605         where F: for<'c, 'b> FnOnce(&'c mut Resolver, Span, ResolutionError<'b>)
1606     {
1607         let namespace = if is_value { ValueNS } else { TypeNS };
1608         let hir::Path { ref segments, span, ref mut def } = *path;
1609         let path: Vec<_> = segments.iter().map(|seg| seg.ident).collect();
1610         // FIXME (Manishearth): Intra doc links won't get warned of epoch changes
1611         match self.resolve_path(None, &path, Some(namespace), true, span, CrateLint::No) {
1612             PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
1613                 *def = module.def().unwrap(),
1614             PathResult::NonModule(path_res) if path_res.unresolved_segments() == 0 =>
1615                 *def = path_res.base_def(),
1616             PathResult::NonModule(..) => match self.resolve_path(
1617                 None,
1618                 &path,
1619                 None,
1620                 true,
1621                 span,
1622                 CrateLint::No,
1623             ) {
1624                 PathResult::Failed(span, msg, _) => {
1625                     error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1626                 }
1627                 _ => {}
1628             },
1629             PathResult::Module(ModuleOrUniformRoot::UniformRoot(_)) |
1630             PathResult::Indeterminate => unreachable!(),
1631             PathResult::Failed(span, msg, _) => {
1632                 error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1633             }
1634         }
1635     }
1636 }
1637
1638 impl<'a, 'crateloader: 'a> Resolver<'a, 'crateloader> {
1639     pub fn new(session: &'a Session,
1640                cstore: &'a CStore,
1641                krate: &Crate,
1642                crate_name: &str,
1643                make_glob_map: MakeGlobMap,
1644                crate_loader: &'a mut CrateLoader<'crateloader>,
1645                arenas: &'a ResolverArenas<'a>)
1646                -> Resolver<'a, 'crateloader> {
1647         let root_def_id = DefId::local(CRATE_DEF_INDEX);
1648         let root_module_kind = ModuleKind::Def(Def::Mod(root_def_id), keywords::Invalid.name());
1649         let graph_root = arenas.alloc_module(ModuleData {
1650             no_implicit_prelude: attr::contains_name(&krate.attrs, "no_implicit_prelude"),
1651             ..ModuleData::new(None, root_module_kind, root_def_id, Mark::root(), krate.span)
1652         });
1653         let mut module_map = FxHashMap();
1654         module_map.insert(DefId::local(CRATE_DEF_INDEX), graph_root);
1655
1656         let mut definitions = Definitions::new();
1657         DefCollector::new(&mut definitions, Mark::root())
1658             .collect_root(crate_name, session.local_crate_disambiguator());
1659
1660         let mut extern_prelude: FxHashSet<Name> =
1661             session.opts.externs.iter().map(|kv| Symbol::intern(kv.0)).collect();
1662         if !attr::contains_name(&krate.attrs, "no_core") {
1663             if !attr::contains_name(&krate.attrs, "no_std") {
1664                 extern_prelude.insert(Symbol::intern("std"));
1665             } else {
1666                 extern_prelude.insert(Symbol::intern("core"));
1667             }
1668         }
1669
1670         let mut invocations = FxHashMap();
1671         invocations.insert(Mark::root(),
1672                            arenas.alloc_invocation_data(InvocationData::root(graph_root)));
1673
1674         let mut macro_defs = FxHashMap();
1675         macro_defs.insert(Mark::root(), root_def_id);
1676
1677         Resolver {
1678             session,
1679
1680             cstore,
1681
1682             definitions,
1683
1684             // The outermost module has def ID 0; this is not reflected in the
1685             // AST.
1686             graph_root,
1687             prelude: None,
1688             extern_prelude,
1689
1690             has_self: FxHashSet(),
1691             field_names: FxHashMap(),
1692
1693             determined_imports: Vec::new(),
1694             indeterminate_imports: Vec::new(),
1695
1696             current_module: graph_root,
1697             ribs: PerNS {
1698                 value_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1699                 type_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1700                 macro_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1701             },
1702             label_ribs: Vec::new(),
1703
1704             current_trait_ref: None,
1705             current_self_type: None,
1706
1707             primitive_type_table: PrimitiveTypeTable::new(),
1708
1709             def_map: NodeMap(),
1710             import_map: NodeMap(),
1711             freevars: NodeMap(),
1712             freevars_seen: NodeMap(),
1713             export_map: FxHashMap(),
1714             trait_map: NodeMap(),
1715             module_map,
1716             block_map: NodeMap(),
1717             extern_module_map: FxHashMap(),
1718
1719             make_glob_map: make_glob_map == MakeGlobMap::Yes,
1720             glob_map: NodeMap(),
1721
1722             used_imports: FxHashSet(),
1723             maybe_unused_trait_imports: NodeSet(),
1724             maybe_unused_extern_crates: Vec::new(),
1725
1726             unused_labels: FxHashMap(),
1727
1728             privacy_errors: Vec::new(),
1729             ambiguity_errors: Vec::new(),
1730             use_injections: Vec::new(),
1731             proc_mac_errors: Vec::new(),
1732             disallowed_shadowing: Vec::new(),
1733             macro_expanded_macro_export_errors: BTreeSet::new(),
1734
1735             arenas,
1736             dummy_binding: arenas.alloc_name_binding(NameBinding {
1737                 kind: NameBindingKind::Def(Def::Err, false),
1738                 expansion: Mark::root(),
1739                 span: DUMMY_SP,
1740                 vis: ty::Visibility::Public,
1741             }),
1742
1743             crate_loader,
1744             macro_names: FxHashSet(),
1745             macro_prelude: FxHashMap(),
1746             unshadowable_attrs: FxHashMap(),
1747             all_macros: FxHashMap(),
1748             macro_map: FxHashMap(),
1749             invocations,
1750             macro_defs,
1751             local_macro_def_scopes: FxHashMap(),
1752             name_already_seen: FxHashMap(),
1753             whitelisted_legacy_custom_derives: Vec::new(),
1754             warned_proc_macros: FxHashSet(),
1755             potentially_unused_imports: Vec::new(),
1756             struct_constructors: DefIdMap(),
1757             found_unresolved_macro: false,
1758             unused_macros: FxHashSet(),
1759             current_type_ascription: Vec::new(),
1760             injected_crate: None,
1761             ignore_extern_prelude_feature: false,
1762         }
1763     }
1764
1765     pub fn arenas() -> ResolverArenas<'a> {
1766         ResolverArenas {
1767             modules: arena::TypedArena::new(),
1768             local_modules: RefCell::new(Vec::new()),
1769             name_bindings: arena::TypedArena::new(),
1770             import_directives: arena::TypedArena::new(),
1771             name_resolutions: arena::TypedArena::new(),
1772             invocation_data: arena::TypedArena::new(),
1773             legacy_bindings: arena::TypedArena::new(),
1774         }
1775     }
1776
1777     /// Runs the function on each namespace.
1778     fn per_ns<F: FnMut(&mut Self, Namespace)>(&mut self, mut f: F) {
1779         f(self, TypeNS);
1780         f(self, ValueNS);
1781         f(self, MacroNS);
1782     }
1783
1784     fn macro_def(&self, mut ctxt: SyntaxContext) -> DefId {
1785         loop {
1786             match self.macro_defs.get(&ctxt.outer()) {
1787                 Some(&def_id) => return def_id,
1788                 None => ctxt.remove_mark(),
1789             };
1790         }
1791     }
1792
1793     /// Entry point to crate resolution.
1794     pub fn resolve_crate(&mut self, krate: &Crate) {
1795         ImportResolver { resolver: self }.finalize_imports();
1796         self.current_module = self.graph_root;
1797         self.finalize_current_module_macro_resolutions();
1798
1799         visit::walk_crate(self, krate);
1800
1801         check_unused::check_crate(self, krate);
1802         self.report_errors(krate);
1803         self.crate_loader.postprocess(krate);
1804     }
1805
1806     fn new_module(
1807         &self,
1808         parent: Module<'a>,
1809         kind: ModuleKind,
1810         normal_ancestor_id: DefId,
1811         expansion: Mark,
1812         span: Span,
1813     ) -> Module<'a> {
1814         let module = ModuleData::new(Some(parent), kind, normal_ancestor_id, expansion, span);
1815         self.arenas.alloc_module(module)
1816     }
1817
1818     fn record_use(&mut self, ident: Ident, ns: Namespace, binding: &'a NameBinding<'a>, span: Span)
1819                   -> bool /* true if an error was reported */ {
1820         match binding.kind {
1821             NameBindingKind::Import { directive, binding, ref used }
1822                     if !used.get() => {
1823                 used.set(true);
1824                 directive.used.set(true);
1825                 self.used_imports.insert((directive.id, ns));
1826                 self.add_to_glob_map(directive.id, ident);
1827                 self.record_use(ident, ns, binding, span)
1828             }
1829             NameBindingKind::Import { .. } => false,
1830             NameBindingKind::Ambiguity { b1, b2 } => {
1831                 self.ambiguity_errors.push(AmbiguityError {
1832                     span, name: ident.name, lexical: false, b1, b2,
1833                 });
1834                 true
1835             }
1836             _ => false
1837         }
1838     }
1839
1840     fn add_to_glob_map(&mut self, id: NodeId, ident: Ident) {
1841         if self.make_glob_map {
1842             self.glob_map.entry(id).or_default().insert(ident.name);
1843         }
1844     }
1845
1846     /// This resolves the identifier `ident` in the namespace `ns` in the current lexical scope.
1847     /// More specifically, we proceed up the hierarchy of scopes and return the binding for
1848     /// `ident` in the first scope that defines it (or None if no scopes define it).
1849     ///
1850     /// A block's items are above its local variables in the scope hierarchy, regardless of where
1851     /// the items are defined in the block. For example,
1852     /// ```rust
1853     /// fn f() {
1854     ///    g(); // Since there are no local variables in scope yet, this resolves to the item.
1855     ///    let g = || {};
1856     ///    fn g() {}
1857     ///    g(); // This resolves to the local variable `g` since it shadows the item.
1858     /// }
1859     /// ```
1860     ///
1861     /// Invariant: This must only be called during main resolution, not during
1862     /// import resolution.
1863     fn resolve_ident_in_lexical_scope(&mut self,
1864                                       mut ident: Ident,
1865                                       ns: Namespace,
1866                                       record_used_id: Option<NodeId>,
1867                                       path_span: Span)
1868                                       -> Option<LexicalScopeBinding<'a>> {
1869         let record_used = record_used_id.is_some();
1870         assert!(ns == TypeNS  || ns == ValueNS);
1871         if ns == TypeNS {
1872             ident.span = if ident.name == keywords::SelfType.name() {
1873                 // FIXME(jseyfried) improve `Self` hygiene
1874                 ident.span.with_ctxt(SyntaxContext::empty())
1875             } else {
1876                 ident.span.modern()
1877             }
1878         } else {
1879             ident = ident.modern_and_legacy();
1880         }
1881
1882         // Walk backwards up the ribs in scope.
1883         let mut module = self.graph_root;
1884         for i in (0 .. self.ribs[ns].len()).rev() {
1885             if let Some(def) = self.ribs[ns][i].bindings.get(&ident).cloned() {
1886                 // The ident resolves to a type parameter or local variable.
1887                 return Some(LexicalScopeBinding::Def(
1888                     self.adjust_local_def(ns, i, def, record_used, path_span)
1889                 ));
1890             }
1891
1892             module = match self.ribs[ns][i].kind {
1893                 ModuleRibKind(module) => module,
1894                 MacroDefinition(def) if def == self.macro_def(ident.span.ctxt()) => {
1895                     // If an invocation of this macro created `ident`, give up on `ident`
1896                     // and switch to `ident`'s source from the macro definition.
1897                     ident.span.remove_mark();
1898                     continue
1899                 }
1900                 _ => continue,
1901             };
1902
1903             let item = self.resolve_ident_in_module_unadjusted(
1904                 ModuleOrUniformRoot::Module(module),
1905                 ident,
1906                 ns,
1907                 false,
1908                 record_used,
1909                 path_span,
1910             );
1911             if let Ok(binding) = item {
1912                 // The ident resolves to an item.
1913                 return Some(LexicalScopeBinding::Item(binding));
1914             }
1915
1916             match module.kind {
1917                 ModuleKind::Block(..) => {}, // We can see through blocks
1918                 _ => break,
1919             }
1920         }
1921
1922         ident.span = ident.span.modern();
1923         let mut poisoned = None;
1924         loop {
1925             let opt_module = if let Some(node_id) = record_used_id {
1926                 self.hygienic_lexical_parent_with_compatibility_fallback(module, &mut ident.span,
1927                                                                          node_id, &mut poisoned)
1928             } else {
1929                 self.hygienic_lexical_parent(module, &mut ident.span)
1930             };
1931             module = unwrap_or!(opt_module, break);
1932             let orig_current_module = self.current_module;
1933             self.current_module = module; // Lexical resolutions can never be a privacy error.
1934             let result = self.resolve_ident_in_module_unadjusted(
1935                 ModuleOrUniformRoot::Module(module),
1936                 ident,
1937                 ns,
1938                 false,
1939                 record_used,
1940                 path_span,
1941             );
1942             self.current_module = orig_current_module;
1943
1944             match result {
1945                 Ok(binding) => {
1946                     if let Some(node_id) = poisoned {
1947                         self.session.buffer_lint_with_diagnostic(
1948                             lint::builtin::PROC_MACRO_DERIVE_RESOLUTION_FALLBACK,
1949                             node_id, ident.span,
1950                             &format!("cannot find {} `{}` in this scope", ns.descr(), ident),
1951                             lint::builtin::BuiltinLintDiagnostics::
1952                                 ProcMacroDeriveResolutionFallback(ident.span),
1953                         );
1954                     }
1955                     return Some(LexicalScopeBinding::Item(binding))
1956                 }
1957                 Err(Determined) => continue,
1958                 Err(Undetermined) =>
1959                     span_bug!(ident.span, "undetermined resolution during main resolution pass"),
1960             }
1961         }
1962
1963         if !module.no_implicit_prelude {
1964             // `record_used` means that we don't try to load crates during speculative resolution
1965             if record_used && ns == TypeNS && self.extern_prelude.contains(&ident.name) {
1966                 if !self.session.features_untracked().extern_prelude &&
1967                    !self.ignore_extern_prelude_feature {
1968                     feature_err(&self.session.parse_sess, "extern_prelude",
1969                                 ident.span, GateIssue::Language,
1970                                 "access to extern crates through prelude is experimental").emit();
1971                 }
1972
1973                 let crate_root = self.load_extern_prelude_crate_if_needed(ident);
1974
1975                 let binding = (crate_root, ty::Visibility::Public,
1976                                ident.span, Mark::root()).to_name_binding(self.arenas);
1977                 return Some(LexicalScopeBinding::Item(binding));
1978             }
1979             if ns == TypeNS && is_known_tool(ident.name) {
1980                 let binding = (Def::ToolMod, ty::Visibility::Public,
1981                                ident.span, Mark::root()).to_name_binding(self.arenas);
1982                 return Some(LexicalScopeBinding::Item(binding));
1983             }
1984             if let Some(prelude) = self.prelude {
1985                 if let Ok(binding) = self.resolve_ident_in_module_unadjusted(
1986                     ModuleOrUniformRoot::Module(prelude),
1987                     ident,
1988                     ns,
1989                     false,
1990                     false,
1991                     path_span,
1992                 ) {
1993                     return Some(LexicalScopeBinding::Item(binding));
1994                 }
1995             }
1996         }
1997
1998         None
1999     }
2000
2001     fn load_extern_prelude_crate_if_needed(&mut self, ident: Ident) -> Module<'a> {
2002         let crate_id = self.crate_loader.process_path_extern(ident.name, ident.span);
2003         let crate_root = self.get_module(DefId { krate: crate_id, index: CRATE_DEF_INDEX });
2004         self.populate_module_if_necessary(&crate_root);
2005         crate_root
2006     }
2007
2008     fn hygienic_lexical_parent(&mut self, module: Module<'a>, span: &mut Span)
2009                                -> Option<Module<'a>> {
2010         if !module.expansion.is_descendant_of(span.ctxt().outer()) {
2011             return Some(self.macro_def_scope(span.remove_mark()));
2012         }
2013
2014         if let ModuleKind::Block(..) = module.kind {
2015             return Some(module.parent.unwrap());
2016         }
2017
2018         None
2019     }
2020
2021     fn hygienic_lexical_parent_with_compatibility_fallback(&mut self, module: Module<'a>,
2022                                                            span: &mut Span, node_id: NodeId,
2023                                                            poisoned: &mut Option<NodeId>)
2024                                                            -> Option<Module<'a>> {
2025         if let module @ Some(..) = self.hygienic_lexical_parent(module, span) {
2026             return module;
2027         }
2028
2029         // We need to support the next case under a deprecation warning
2030         // ```
2031         // struct MyStruct;
2032         // ---- begin: this comes from a proc macro derive
2033         // mod implementation_details {
2034         //     // Note that `MyStruct` is not in scope here.
2035         //     impl SomeTrait for MyStruct { ... }
2036         // }
2037         // ---- end
2038         // ```
2039         // So we have to fall back to the module's parent during lexical resolution in this case.
2040         if let Some(parent) = module.parent {
2041             // Inner module is inside the macro, parent module is outside of the macro.
2042             if module.expansion != parent.expansion &&
2043             module.expansion.is_descendant_of(parent.expansion) {
2044                 // The macro is a proc macro derive
2045                 if module.expansion.looks_like_proc_macro_derive() {
2046                     if parent.expansion.is_descendant_of(span.ctxt().outer()) {
2047                         *poisoned = Some(node_id);
2048                         return module.parent;
2049                     }
2050                 }
2051             }
2052         }
2053
2054         None
2055     }
2056
2057     fn resolve_ident_in_module(&mut self,
2058                                module: ModuleOrUniformRoot<'a>,
2059                                mut ident: Ident,
2060                                ns: Namespace,
2061                                record_used: bool,
2062                                span: Span)
2063                                -> Result<&'a NameBinding<'a>, Determinacy> {
2064         ident.span = ident.span.modern();
2065         let orig_current_module = self.current_module;
2066         if let ModuleOrUniformRoot::Module(module) = module {
2067             if let Some(def) = ident.span.adjust(module.expansion) {
2068                 self.current_module = self.macro_def_scope(def);
2069             }
2070         }
2071         let result = self.resolve_ident_in_module_unadjusted(
2072             module, ident, ns, false, record_used, span,
2073         );
2074         self.current_module = orig_current_module;
2075         result
2076     }
2077
2078     fn resolve_crate_root(&mut self, ident: Ident) -> Module<'a> {
2079         let mut ctxt = ident.span.ctxt();
2080         let mark = if ident.name == keywords::DollarCrate.name() {
2081             // When resolving `$crate` from a `macro_rules!` invoked in a `macro`,
2082             // we don't want to pretend that the `macro_rules!` definition is in the `macro`
2083             // as described in `SyntaxContext::apply_mark`, so we ignore prepended modern marks.
2084             // FIXME: This is only a guess and it doesn't work correctly for `macro_rules!`
2085             // definitions actually produced by `macro` and `macro` definitions produced by
2086             // `macro_rules!`, but at least such configurations are not stable yet.
2087             ctxt = ctxt.modern_and_legacy();
2088             let mut iter = ctxt.marks().into_iter().rev().peekable();
2089             let mut result = None;
2090             // Find the last modern mark from the end if it exists.
2091             while let Some(&(mark, transparency)) = iter.peek() {
2092                 if transparency == Transparency::Opaque {
2093                     result = Some(mark);
2094                     iter.next();
2095                 } else {
2096                     break;
2097                 }
2098             }
2099             // Then find the last legacy mark from the end if it exists.
2100             for (mark, transparency) in iter {
2101                 if transparency == Transparency::SemiTransparent {
2102                     result = Some(mark);
2103                 } else {
2104                     break;
2105                 }
2106             }
2107             result
2108         } else {
2109             ctxt = ctxt.modern();
2110             ctxt.adjust(Mark::root())
2111         };
2112         let module = match mark {
2113             Some(def) => self.macro_def_scope(def),
2114             None => return self.graph_root,
2115         };
2116         self.get_module(DefId { index: CRATE_DEF_INDEX, ..module.normal_ancestor_id })
2117     }
2118
2119     fn resolve_self(&mut self, ctxt: &mut SyntaxContext, module: Module<'a>) -> Module<'a> {
2120         let mut module = self.get_module(module.normal_ancestor_id);
2121         while module.span.ctxt().modern() != *ctxt {
2122             let parent = module.parent.unwrap_or_else(|| self.macro_def_scope(ctxt.remove_mark()));
2123             module = self.get_module(parent.normal_ancestor_id);
2124         }
2125         module
2126     }
2127
2128     // AST resolution
2129     //
2130     // We maintain a list of value ribs and type ribs.
2131     //
2132     // Simultaneously, we keep track of the current position in the module
2133     // graph in the `current_module` pointer. When we go to resolve a name in
2134     // the value or type namespaces, we first look through all the ribs and
2135     // then query the module graph. When we resolve a name in the module
2136     // namespace, we can skip all the ribs (since nested modules are not
2137     // allowed within blocks in Rust) and jump straight to the current module
2138     // graph node.
2139     //
2140     // Named implementations are handled separately. When we find a method
2141     // call, we consult the module node to find all of the implementations in
2142     // scope. This information is lazily cached in the module node. We then
2143     // generate a fake "implementation scope" containing all the
2144     // implementations thus found, for compatibility with old resolve pass.
2145
2146     pub fn with_scope<F, T>(&mut self, id: NodeId, f: F) -> T
2147         where F: FnOnce(&mut Resolver) -> T
2148     {
2149         let id = self.definitions.local_def_id(id);
2150         let module = self.module_map.get(&id).cloned(); // clones a reference
2151         if let Some(module) = module {
2152             // Move down in the graph.
2153             let orig_module = replace(&mut self.current_module, module);
2154             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(module)));
2155             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(module)));
2156
2157             self.finalize_current_module_macro_resolutions();
2158             let ret = f(self);
2159
2160             self.current_module = orig_module;
2161             self.ribs[ValueNS].pop();
2162             self.ribs[TypeNS].pop();
2163             ret
2164         } else {
2165             f(self)
2166         }
2167     }
2168
2169     /// Searches the current set of local scopes for labels. Returns the first non-None label that
2170     /// is returned by the given predicate function
2171     ///
2172     /// Stops after meeting a closure.
2173     fn search_label<P, R>(&self, mut ident: Ident, pred: P) -> Option<R>
2174         where P: Fn(&Rib, Ident) -> Option<R>
2175     {
2176         for rib in self.label_ribs.iter().rev() {
2177             match rib.kind {
2178                 NormalRibKind => {}
2179                 // If an invocation of this macro created `ident`, give up on `ident`
2180                 // and switch to `ident`'s source from the macro definition.
2181                 MacroDefinition(def) => {
2182                     if def == self.macro_def(ident.span.ctxt()) {
2183                         ident.span.remove_mark();
2184                     }
2185                 }
2186                 _ => {
2187                     // Do not resolve labels across function boundary
2188                     return None;
2189                 }
2190             }
2191             let r = pred(rib, ident);
2192             if r.is_some() {
2193                 return r;
2194             }
2195         }
2196         None
2197     }
2198
2199     fn resolve_item(&mut self, item: &Item) {
2200         let name = item.ident.name;
2201         debug!("(resolving item) resolving {}", name);
2202
2203         match item.node {
2204             ItemKind::Ty(_, ref generics) |
2205             ItemKind::Fn(_, _, ref generics, _) |
2206             ItemKind::Existential(_, ref generics) => {
2207                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind),
2208                                              |this| visit::walk_item(this, item));
2209             }
2210
2211             ItemKind::Enum(_, ref generics) |
2212             ItemKind::Struct(_, ref generics) |
2213             ItemKind::Union(_, ref generics) => {
2214                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2215                     let item_def_id = this.definitions.local_def_id(item.id);
2216                     if this.session.features_untracked().self_in_typedefs {
2217                         this.with_self_rib(Def::SelfTy(None, Some(item_def_id)), |this| {
2218                             visit::walk_item(this, item);
2219                         });
2220                     } else {
2221                         visit::walk_item(this, item);
2222                     }
2223                 });
2224             }
2225
2226             ItemKind::Impl(.., ref generics, ref opt_trait_ref, ref self_type, ref impl_items) =>
2227                 self.resolve_implementation(generics,
2228                                             opt_trait_ref,
2229                                             &self_type,
2230                                             item.id,
2231                                             impl_items),
2232
2233             ItemKind::Trait(.., ref generics, ref bounds, ref trait_items) => {
2234                 // Create a new rib for the trait-wide type parameters.
2235                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2236                     let local_def_id = this.definitions.local_def_id(item.id);
2237                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2238                         this.visit_generics(generics);
2239                         walk_list!(this, visit_param_bound, bounds);
2240
2241                         for trait_item in trait_items {
2242                             let type_parameters = HasTypeParameters(&trait_item.generics,
2243                                                                     TraitOrImplItemRibKind);
2244                             this.with_type_parameter_rib(type_parameters, |this| {
2245                                 match trait_item.node {
2246                                     TraitItemKind::Const(ref ty, ref default) => {
2247                                         this.visit_ty(ty);
2248
2249                                         // Only impose the restrictions of
2250                                         // ConstRibKind for an actual constant
2251                                         // expression in a provided default.
2252                                         if let Some(ref expr) = *default{
2253                                             this.with_constant_rib(|this| {
2254                                                 this.visit_expr(expr);
2255                                             });
2256                                         }
2257                                     }
2258                                     TraitItemKind::Method(_, _) => {
2259                                         visit::walk_trait_item(this, trait_item)
2260                                     }
2261                                     TraitItemKind::Type(..) => {
2262                                         visit::walk_trait_item(this, trait_item)
2263                                     }
2264                                     TraitItemKind::Macro(_) => {
2265                                         panic!("unexpanded macro in resolve!")
2266                                     }
2267                                 };
2268                             });
2269                         }
2270                     });
2271                 });
2272             }
2273
2274             ItemKind::TraitAlias(ref generics, ref bounds) => {
2275                 // Create a new rib for the trait-wide type parameters.
2276                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2277                     let local_def_id = this.definitions.local_def_id(item.id);
2278                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2279                         this.visit_generics(generics);
2280                         walk_list!(this, visit_param_bound, bounds);
2281                     });
2282                 });
2283             }
2284
2285             ItemKind::Mod(_) | ItemKind::ForeignMod(_) => {
2286                 self.with_scope(item.id, |this| {
2287                     visit::walk_item(this, item);
2288                 });
2289             }
2290
2291             ItemKind::Static(ref ty, _, ref expr) |
2292             ItemKind::Const(ref ty, ref expr) => {
2293                 self.with_item_rib(|this| {
2294                     this.visit_ty(ty);
2295                     this.with_constant_rib(|this| {
2296                         this.visit_expr(expr);
2297                     });
2298                 });
2299             }
2300
2301             ItemKind::Use(ref use_tree) => {
2302                 // Imports are resolved as global by default, add starting root segment.
2303                 let path = Path {
2304                     segments: use_tree.prefix.make_root().into_iter().collect(),
2305                     span: use_tree.span,
2306                 };
2307                 self.resolve_use_tree(item.id, use_tree.span, item.id, use_tree, &path);
2308             }
2309
2310             ItemKind::ExternCrate(_) | ItemKind::MacroDef(..) | ItemKind::GlobalAsm(_) => {
2311                 // do nothing, these are just around to be encoded
2312             }
2313
2314             ItemKind::Mac(_) => panic!("unexpanded macro in resolve!"),
2315         }
2316     }
2317
2318     /// For the most part, use trees are desugared into `ImportDirective` instances
2319     /// when building the reduced graph (see `build_reduced_graph_for_use_tree`). But
2320     /// there is one special case we handle here: an empty nested import like
2321     /// `a::{b::{}}`, which desugares into...no import directives.
2322     fn resolve_use_tree(
2323         &mut self,
2324         root_id: NodeId,
2325         root_span: Span,
2326         id: NodeId,
2327         use_tree: &ast::UseTree,
2328         prefix: &Path,
2329     ) {
2330         match use_tree.kind {
2331             ast::UseTreeKind::Nested(ref items) => {
2332                 let path = Path {
2333                     segments: prefix.segments
2334                         .iter()
2335                         .chain(use_tree.prefix.segments.iter())
2336                         .cloned()
2337                         .collect(),
2338                     span: prefix.span.to(use_tree.prefix.span),
2339                 };
2340
2341                 if items.len() == 0 {
2342                     // Resolve prefix of an import with empty braces (issue #28388).
2343                     self.smart_resolve_path_with_crate_lint(
2344                         id,
2345                         None,
2346                         &path,
2347                         PathSource::ImportPrefix,
2348                         CrateLint::UsePath { root_id, root_span },
2349                     );
2350                 } else {
2351                     for &(ref tree, nested_id) in items {
2352                         self.resolve_use_tree(root_id, root_span, nested_id, tree, &path);
2353                     }
2354                 }
2355             }
2356             ast::UseTreeKind::Simple(..) => {},
2357             ast::UseTreeKind::Glob => {},
2358         }
2359     }
2360
2361     fn with_type_parameter_rib<'b, F>(&'b mut self, type_parameters: TypeParameters<'a, 'b>, f: F)
2362         where F: FnOnce(&mut Resolver)
2363     {
2364         match type_parameters {
2365             HasTypeParameters(generics, rib_kind) => {
2366                 let mut function_type_rib = Rib::new(rib_kind);
2367                 let mut seen_bindings = FxHashMap();
2368                 for param in &generics.params {
2369                     match param.kind {
2370                         GenericParamKind::Lifetime { .. } => {}
2371                         GenericParamKind::Type { .. } => {
2372                             let ident = param.ident.modern();
2373                             debug!("with_type_parameter_rib: {}", param.id);
2374
2375                             if seen_bindings.contains_key(&ident) {
2376                                 let span = seen_bindings.get(&ident).unwrap();
2377                                 let err = ResolutionError::NameAlreadyUsedInTypeParameterList(
2378                                     ident.name,
2379                                     span,
2380                                 );
2381                                 resolve_error(self, param.ident.span, err);
2382                             }
2383                             seen_bindings.entry(ident).or_insert(param.ident.span);
2384
2385                         // Plain insert (no renaming).
2386                         let def = Def::TyParam(self.definitions.local_def_id(param.id));
2387                             function_type_rib.bindings.insert(ident, def);
2388                             self.record_def(param.id, PathResolution::new(def));
2389                         }
2390                     }
2391                 }
2392                 self.ribs[TypeNS].push(function_type_rib);
2393             }
2394
2395             NoTypeParameters => {
2396                 // Nothing to do.
2397             }
2398         }
2399
2400         f(self);
2401
2402         if let HasTypeParameters(..) = type_parameters {
2403             self.ribs[TypeNS].pop();
2404         }
2405     }
2406
2407     fn with_label_rib<F>(&mut self, f: F)
2408         where F: FnOnce(&mut Resolver)
2409     {
2410         self.label_ribs.push(Rib::new(NormalRibKind));
2411         f(self);
2412         self.label_ribs.pop();
2413     }
2414
2415     fn with_item_rib<F>(&mut self, f: F)
2416         where F: FnOnce(&mut Resolver)
2417     {
2418         self.ribs[ValueNS].push(Rib::new(ItemRibKind));
2419         self.ribs[TypeNS].push(Rib::new(ItemRibKind));
2420         f(self);
2421         self.ribs[TypeNS].pop();
2422         self.ribs[ValueNS].pop();
2423     }
2424
2425     fn with_constant_rib<F>(&mut self, f: F)
2426         where F: FnOnce(&mut Resolver)
2427     {
2428         self.ribs[ValueNS].push(Rib::new(ConstantItemRibKind));
2429         self.label_ribs.push(Rib::new(ConstantItemRibKind));
2430         f(self);
2431         self.label_ribs.pop();
2432         self.ribs[ValueNS].pop();
2433     }
2434
2435     fn with_current_self_type<T, F>(&mut self, self_type: &Ty, f: F) -> T
2436         where F: FnOnce(&mut Resolver) -> T
2437     {
2438         // Handle nested impls (inside fn bodies)
2439         let previous_value = replace(&mut self.current_self_type, Some(self_type.clone()));
2440         let result = f(self);
2441         self.current_self_type = previous_value;
2442         result
2443     }
2444
2445     /// This is called to resolve a trait reference from an `impl` (i.e. `impl Trait for Foo`)
2446     fn with_optional_trait_ref<T, F>(&mut self, opt_trait_ref: Option<&TraitRef>, f: F) -> T
2447         where F: FnOnce(&mut Resolver, Option<DefId>) -> T
2448     {
2449         let mut new_val = None;
2450         let mut new_id = None;
2451         if let Some(trait_ref) = opt_trait_ref {
2452             let path: Vec<_> = trait_ref.path.segments.iter()
2453                 .map(|seg| seg.ident)
2454                 .collect();
2455             let def = self.smart_resolve_path_fragment(
2456                 trait_ref.ref_id,
2457                 None,
2458                 &path,
2459                 trait_ref.path.span,
2460                 PathSource::Trait(AliasPossibility::No),
2461                 CrateLint::SimplePath(trait_ref.ref_id),
2462             ).base_def();
2463             if def != Def::Err {
2464                 new_id = Some(def.def_id());
2465                 let span = trait_ref.path.span;
2466                 if let PathResult::Module(ModuleOrUniformRoot::Module(module)) =
2467                     self.resolve_path(
2468                         None,
2469                         &path,
2470                         None,
2471                         false,
2472                         span,
2473                         CrateLint::SimplePath(trait_ref.ref_id),
2474                     )
2475                 {
2476                     new_val = Some((module, trait_ref.clone()));
2477                 }
2478             }
2479         }
2480         let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
2481         let result = f(self, new_id);
2482         self.current_trait_ref = original_trait_ref;
2483         result
2484     }
2485
2486     fn with_self_rib<F>(&mut self, self_def: Def, f: F)
2487         where F: FnOnce(&mut Resolver)
2488     {
2489         let mut self_type_rib = Rib::new(NormalRibKind);
2490
2491         // plain insert (no renaming, types are not currently hygienic....)
2492         self_type_rib.bindings.insert(keywords::SelfType.ident(), self_def);
2493         self.ribs[TypeNS].push(self_type_rib);
2494         f(self);
2495         self.ribs[TypeNS].pop();
2496     }
2497
2498     fn resolve_implementation(&mut self,
2499                               generics: &Generics,
2500                               opt_trait_reference: &Option<TraitRef>,
2501                               self_type: &Ty,
2502                               item_id: NodeId,
2503                               impl_items: &[ImplItem]) {
2504         // If applicable, create a rib for the type parameters.
2505         self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2506             // Dummy self type for better errors if `Self` is used in the trait path.
2507             this.with_self_rib(Def::SelfTy(None, None), |this| {
2508                 // Resolve the trait reference, if necessary.
2509                 this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| {
2510                     let item_def_id = this.definitions.local_def_id(item_id);
2511                     this.with_self_rib(Def::SelfTy(trait_id, Some(item_def_id)), |this| {
2512                         if let Some(trait_ref) = opt_trait_reference.as_ref() {
2513                             // Resolve type arguments in the trait path.
2514                             visit::walk_trait_ref(this, trait_ref);
2515                         }
2516                         // Resolve the self type.
2517                         this.visit_ty(self_type);
2518                         // Resolve the type parameters.
2519                         this.visit_generics(generics);
2520                         // Resolve the items within the impl.
2521                         this.with_current_self_type(self_type, |this| {
2522                             for impl_item in impl_items {
2523                                 this.resolve_visibility(&impl_item.vis);
2524
2525                                 // We also need a new scope for the impl item type parameters.
2526                                 let type_parameters = HasTypeParameters(&impl_item.generics,
2527                                                                         TraitOrImplItemRibKind);
2528                                 this.with_type_parameter_rib(type_parameters, |this| {
2529                                     use self::ResolutionError::*;
2530                                     match impl_item.node {
2531                                         ImplItemKind::Const(..) => {
2532                                             // If this is a trait impl, ensure the const
2533                                             // exists in trait
2534                                             this.check_trait_item(impl_item.ident,
2535                                                                   ValueNS,
2536                                                                   impl_item.span,
2537                                                 |n, s| ConstNotMemberOfTrait(n, s));
2538                                             this.with_constant_rib(|this|
2539                                                 visit::walk_impl_item(this, impl_item)
2540                                             );
2541                                         }
2542                                         ImplItemKind::Method(..) => {
2543                                             // If this is a trait impl, ensure the method
2544                                             // exists in trait
2545                                             this.check_trait_item(impl_item.ident,
2546                                                                   ValueNS,
2547                                                                   impl_item.span,
2548                                                 |n, s| MethodNotMemberOfTrait(n, s));
2549
2550                                             visit::walk_impl_item(this, impl_item);
2551                                         }
2552                                         ImplItemKind::Type(ref ty) => {
2553                                             // If this is a trait impl, ensure the type
2554                                             // exists in trait
2555                                             this.check_trait_item(impl_item.ident,
2556                                                                   TypeNS,
2557                                                                   impl_item.span,
2558                                                 |n, s| TypeNotMemberOfTrait(n, s));
2559
2560                                             this.visit_ty(ty);
2561                                         }
2562                                         ImplItemKind::Existential(ref bounds) => {
2563                                             // If this is a trait impl, ensure the type
2564                                             // exists in trait
2565                                             this.check_trait_item(impl_item.ident,
2566                                                                   TypeNS,
2567                                                                   impl_item.span,
2568                                                 |n, s| TypeNotMemberOfTrait(n, s));
2569
2570                                             for bound in bounds {
2571                                                 this.visit_param_bound(bound);
2572                                             }
2573                                         }
2574                                         ImplItemKind::Macro(_) =>
2575                                             panic!("unexpanded macro in resolve!"),
2576                                     }
2577                                 });
2578                             }
2579                         });
2580                     });
2581                 });
2582             });
2583         });
2584     }
2585
2586     fn check_trait_item<F>(&mut self, ident: Ident, ns: Namespace, span: Span, err: F)
2587         where F: FnOnce(Name, &str) -> ResolutionError
2588     {
2589         // If there is a TraitRef in scope for an impl, then the method must be in the
2590         // trait.
2591         if let Some((module, _)) = self.current_trait_ref {
2592             if self.resolve_ident_in_module(
2593                 ModuleOrUniformRoot::Module(module),
2594                 ident,
2595                 ns,
2596                 false,
2597                 span,
2598             ).is_err() {
2599                 let path = &self.current_trait_ref.as_ref().unwrap().1.path;
2600                 resolve_error(self, span, err(ident.name, &path_names_to_string(path)));
2601             }
2602         }
2603     }
2604
2605     fn resolve_local(&mut self, local: &Local) {
2606         // Resolve the type.
2607         walk_list!(self, visit_ty, &local.ty);
2608
2609         // Resolve the initializer.
2610         walk_list!(self, visit_expr, &local.init);
2611
2612         // Resolve the pattern.
2613         self.resolve_pattern(&local.pat, PatternSource::Let, &mut FxHashMap());
2614     }
2615
2616     // build a map from pattern identifiers to binding-info's.
2617     // this is done hygienically. This could arise for a macro
2618     // that expands into an or-pattern where one 'x' was from the
2619     // user and one 'x' came from the macro.
2620     fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
2621         let mut binding_map = FxHashMap();
2622
2623         pat.walk(&mut |pat| {
2624             if let PatKind::Ident(binding_mode, ident, ref sub_pat) = pat.node {
2625                 if sub_pat.is_some() || match self.def_map.get(&pat.id).map(|res| res.base_def()) {
2626                     Some(Def::Local(..)) => true,
2627                     _ => false,
2628                 } {
2629                     let binding_info = BindingInfo { span: ident.span, binding_mode: binding_mode };
2630                     binding_map.insert(ident, binding_info);
2631                 }
2632             }
2633             true
2634         });
2635
2636         binding_map
2637     }
2638
2639     // check that all of the arms in an or-pattern have exactly the
2640     // same set of bindings, with the same binding modes for each.
2641     fn check_consistent_bindings(&mut self, pats: &[P<Pat>]) {
2642         if pats.is_empty() {
2643             return;
2644         }
2645
2646         let mut missing_vars = FxHashMap();
2647         let mut inconsistent_vars = FxHashMap();
2648         for (i, p) in pats.iter().enumerate() {
2649             let map_i = self.binding_mode_map(&p);
2650
2651             for (j, q) in pats.iter().enumerate() {
2652                 if i == j {
2653                     continue;
2654                 }
2655
2656                 let map_j = self.binding_mode_map(&q);
2657                 for (&key, &binding_i) in &map_i {
2658                     if map_j.len() == 0 {                   // Account for missing bindings when
2659                         let binding_error = missing_vars    // map_j has none.
2660                             .entry(key.name)
2661                             .or_insert(BindingError {
2662                                 name: key.name,
2663                                 origin: BTreeSet::new(),
2664                                 target: BTreeSet::new(),
2665                             });
2666                         binding_error.origin.insert(binding_i.span);
2667                         binding_error.target.insert(q.span);
2668                     }
2669                     for (&key_j, &binding_j) in &map_j {
2670                         match map_i.get(&key_j) {
2671                             None => {  // missing binding
2672                                 let binding_error = missing_vars
2673                                     .entry(key_j.name)
2674                                     .or_insert(BindingError {
2675                                         name: key_j.name,
2676                                         origin: BTreeSet::new(),
2677                                         target: BTreeSet::new(),
2678                                     });
2679                                 binding_error.origin.insert(binding_j.span);
2680                                 binding_error.target.insert(p.span);
2681                             }
2682                             Some(binding_i) => {  // check consistent binding
2683                                 if binding_i.binding_mode != binding_j.binding_mode {
2684                                     inconsistent_vars
2685                                         .entry(key.name)
2686                                         .or_insert((binding_j.span, binding_i.span));
2687                                 }
2688                             }
2689                         }
2690                     }
2691                 }
2692             }
2693         }
2694         let mut missing_vars = missing_vars.iter().collect::<Vec<_>>();
2695         missing_vars.sort();
2696         for (_, v) in missing_vars {
2697             resolve_error(self,
2698                           *v.origin.iter().next().unwrap(),
2699                           ResolutionError::VariableNotBoundInPattern(v));
2700         }
2701         let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
2702         inconsistent_vars.sort();
2703         for (name, v) in inconsistent_vars {
2704             resolve_error(self, v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
2705         }
2706     }
2707
2708     fn resolve_arm(&mut self, arm: &Arm) {
2709         self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2710
2711         let mut bindings_list = FxHashMap();
2712         for pattern in &arm.pats {
2713             self.resolve_pattern(&pattern, PatternSource::Match, &mut bindings_list);
2714         }
2715
2716         // This has to happen *after* we determine which pat_idents are variants
2717         self.check_consistent_bindings(&arm.pats);
2718
2719         match arm.guard {
2720             Some(ast::Guard::If(ref expr)) => self.visit_expr(expr),
2721             _ => {}
2722         }
2723         self.visit_expr(&arm.body);
2724
2725         self.ribs[ValueNS].pop();
2726     }
2727
2728     fn resolve_block(&mut self, block: &Block) {
2729         debug!("(resolving block) entering block");
2730         // Move down in the graph, if there's an anonymous module rooted here.
2731         let orig_module = self.current_module;
2732         let anonymous_module = self.block_map.get(&block.id).cloned(); // clones a reference
2733
2734         let mut num_macro_definition_ribs = 0;
2735         if let Some(anonymous_module) = anonymous_module {
2736             debug!("(resolving block) found anonymous module, moving down");
2737             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2738             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2739             self.current_module = anonymous_module;
2740             self.finalize_current_module_macro_resolutions();
2741         } else {
2742             self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2743         }
2744
2745         // Descend into the block.
2746         for stmt in &block.stmts {
2747             if let ast::StmtKind::Item(ref item) = stmt.node {
2748                 if let ast::ItemKind::MacroDef(..) = item.node {
2749                     num_macro_definition_ribs += 1;
2750                     let def = self.definitions.local_def_id(item.id);
2751                     self.ribs[ValueNS].push(Rib::new(MacroDefinition(def)));
2752                     self.label_ribs.push(Rib::new(MacroDefinition(def)));
2753                 }
2754             }
2755
2756             self.visit_stmt(stmt);
2757         }
2758
2759         // Move back up.
2760         self.current_module = orig_module;
2761         for _ in 0 .. num_macro_definition_ribs {
2762             self.ribs[ValueNS].pop();
2763             self.label_ribs.pop();
2764         }
2765         self.ribs[ValueNS].pop();
2766         if anonymous_module.is_some() {
2767             self.ribs[TypeNS].pop();
2768         }
2769         debug!("(resolving block) leaving block");
2770     }
2771
2772     fn fresh_binding(&mut self,
2773                      ident: Ident,
2774                      pat_id: NodeId,
2775                      outer_pat_id: NodeId,
2776                      pat_src: PatternSource,
2777                      bindings: &mut FxHashMap<Ident, NodeId>)
2778                      -> PathResolution {
2779         // Add the binding to the local ribs, if it
2780         // doesn't already exist in the bindings map. (We
2781         // must not add it if it's in the bindings map
2782         // because that breaks the assumptions later
2783         // passes make about or-patterns.)
2784         let ident = ident.modern_and_legacy();
2785         let mut def = Def::Local(pat_id);
2786         match bindings.get(&ident).cloned() {
2787             Some(id) if id == outer_pat_id => {
2788                 // `Variant(a, a)`, error
2789                 resolve_error(
2790                     self,
2791                     ident.span,
2792                     ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(
2793                         &ident.as_str())
2794                 );
2795             }
2796             Some(..) if pat_src == PatternSource::FnParam => {
2797                 // `fn f(a: u8, a: u8)`, error
2798                 resolve_error(
2799                     self,
2800                     ident.span,
2801                     ResolutionError::IdentifierBoundMoreThanOnceInParameterList(
2802                         &ident.as_str())
2803                 );
2804             }
2805             Some(..) if pat_src == PatternSource::Match ||
2806                         pat_src == PatternSource::IfLet ||
2807                         pat_src == PatternSource::WhileLet => {
2808                 // `Variant1(a) | Variant2(a)`, ok
2809                 // Reuse definition from the first `a`.
2810                 def = self.ribs[ValueNS].last_mut().unwrap().bindings[&ident];
2811             }
2812             Some(..) => {
2813                 span_bug!(ident.span, "two bindings with the same name from \
2814                                        unexpected pattern source {:?}", pat_src);
2815             }
2816             None => {
2817                 // A completely fresh binding, add to the lists if it's valid.
2818                 if ident.name != keywords::Invalid.name() {
2819                     bindings.insert(ident, outer_pat_id);
2820                     self.ribs[ValueNS].last_mut().unwrap().bindings.insert(ident, def);
2821                 }
2822             }
2823         }
2824
2825         PathResolution::new(def)
2826     }
2827
2828     fn resolve_pattern(&mut self,
2829                        pat: &Pat,
2830                        pat_src: PatternSource,
2831                        // Maps idents to the node ID for the
2832                        // outermost pattern that binds them.
2833                        bindings: &mut FxHashMap<Ident, NodeId>) {
2834         // Visit all direct subpatterns of this pattern.
2835         let outer_pat_id = pat.id;
2836         pat.walk(&mut |pat| {
2837             match pat.node {
2838                 PatKind::Ident(bmode, ident, ref opt_pat) => {
2839                     // First try to resolve the identifier as some existing
2840                     // entity, then fall back to a fresh binding.
2841                     let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS,
2842                                                                       None, pat.span)
2843                                       .and_then(LexicalScopeBinding::item);
2844                     let resolution = binding.map(NameBinding::def).and_then(|def| {
2845                         let is_syntactic_ambiguity = opt_pat.is_none() &&
2846                             bmode == BindingMode::ByValue(Mutability::Immutable);
2847                         match def {
2848                             Def::StructCtor(_, CtorKind::Const) |
2849                             Def::VariantCtor(_, CtorKind::Const) |
2850                             Def::Const(..) if is_syntactic_ambiguity => {
2851                                 // Disambiguate in favor of a unit struct/variant
2852                                 // or constant pattern.
2853                                 self.record_use(ident, ValueNS, binding.unwrap(), ident.span);
2854                                 Some(PathResolution::new(def))
2855                             }
2856                             Def::StructCtor(..) | Def::VariantCtor(..) |
2857                             Def::Const(..) | Def::Static(..) => {
2858                                 // This is unambiguously a fresh binding, either syntactically
2859                                 // (e.g. `IDENT @ PAT` or `ref IDENT`) or because `IDENT` resolves
2860                                 // to something unusable as a pattern (e.g. constructor function),
2861                                 // but we still conservatively report an error, see
2862                                 // issues/33118#issuecomment-233962221 for one reason why.
2863                                 resolve_error(
2864                                     self,
2865                                     ident.span,
2866                                     ResolutionError::BindingShadowsSomethingUnacceptable(
2867                                         pat_src.descr(), ident.name, binding.unwrap())
2868                                 );
2869                                 None
2870                             }
2871                             Def::Fn(..) | Def::Err => {
2872                                 // These entities are explicitly allowed
2873                                 // to be shadowed by fresh bindings.
2874                                 None
2875                             }
2876                             def => {
2877                                 span_bug!(ident.span, "unexpected definition for an \
2878                                                        identifier in pattern: {:?}", def);
2879                             }
2880                         }
2881                     }).unwrap_or_else(|| {
2882                         self.fresh_binding(ident, pat.id, outer_pat_id, pat_src, bindings)
2883                     });
2884
2885                     self.record_def(pat.id, resolution);
2886                 }
2887
2888                 PatKind::TupleStruct(ref path, ..) => {
2889                     self.smart_resolve_path(pat.id, None, path, PathSource::TupleStruct);
2890                 }
2891
2892                 PatKind::Path(ref qself, ref path) => {
2893                     self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
2894                 }
2895
2896                 PatKind::Struct(ref path, ..) => {
2897                     self.smart_resolve_path(pat.id, None, path, PathSource::Struct);
2898                 }
2899
2900                 _ => {}
2901             }
2902             true
2903         });
2904
2905         visit::walk_pat(self, pat);
2906     }
2907
2908     // High-level and context dependent path resolution routine.
2909     // Resolves the path and records the resolution into definition map.
2910     // If resolution fails tries several techniques to find likely
2911     // resolution candidates, suggest imports or other help, and report
2912     // errors in user friendly way.
2913     fn smart_resolve_path(&mut self,
2914                           id: NodeId,
2915                           qself: Option<&QSelf>,
2916                           path: &Path,
2917                           source: PathSource)
2918                           -> PathResolution {
2919         self.smart_resolve_path_with_crate_lint(id, qself, path, source, CrateLint::SimplePath(id))
2920     }
2921
2922     /// A variant of `smart_resolve_path` where you also specify extra
2923     /// information about where the path came from; this extra info is
2924     /// sometimes needed for the lint that recommends rewriting
2925     /// absolute paths to `crate`, so that it knows how to frame the
2926     /// suggestion. If you are just resolving a path like `foo::bar`
2927     /// that appears...somewhere, though, then you just want
2928     /// `CrateLint::SimplePath`, which is what `smart_resolve_path`
2929     /// already provides.
2930     fn smart_resolve_path_with_crate_lint(
2931         &mut self,
2932         id: NodeId,
2933         qself: Option<&QSelf>,
2934         path: &Path,
2935         source: PathSource,
2936         crate_lint: CrateLint
2937     ) -> PathResolution {
2938         let segments = &path.segments.iter()
2939             .map(|seg| seg.ident)
2940             .collect::<Vec<_>>();
2941         self.smart_resolve_path_fragment(id, qself, segments, path.span, source, crate_lint)
2942     }
2943
2944     fn smart_resolve_path_fragment(&mut self,
2945                                    id: NodeId,
2946                                    qself: Option<&QSelf>,
2947                                    path: &[Ident],
2948                                    span: Span,
2949                                    source: PathSource,
2950                                    crate_lint: CrateLint)
2951                                    -> PathResolution {
2952         let ident_span = path.last().map_or(span, |ident| ident.span);
2953         let ns = source.namespace();
2954         let is_expected = &|def| source.is_expected(def);
2955         let is_enum_variant = &|def| if let Def::Variant(..) = def { true } else { false };
2956
2957         // Base error is amended with one short label and possibly some longer helps/notes.
2958         let report_errors = |this: &mut Self, def: Option<Def>| {
2959             // Make the base error.
2960             let expected = source.descr_expected();
2961             let path_str = names_to_string(path);
2962             let code = source.error_code(def.is_some());
2963             let (base_msg, fallback_label, base_span) = if let Some(def) = def {
2964                 (format!("expected {}, found {} `{}`", expected, def.kind_name(), path_str),
2965                  format!("not a {}", expected),
2966                  span)
2967             } else {
2968                 let item_str = path[path.len() - 1];
2969                 let item_span = path[path.len() - 1].span;
2970                 let (mod_prefix, mod_str) = if path.len() == 1 {
2971                     (String::new(), "this scope".to_string())
2972                 } else if path.len() == 2 && path[0].name == keywords::CrateRoot.name() {
2973                     (String::new(), "the crate root".to_string())
2974                 } else {
2975                     let mod_path = &path[..path.len() - 1];
2976                     let mod_prefix = match this.resolve_path(None, mod_path, Some(TypeNS),
2977                                                              false, span, CrateLint::No) {
2978                         PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
2979                             module.def(),
2980                         _ => None,
2981                     }.map_or(String::new(), |def| format!("{} ", def.kind_name()));
2982                     (mod_prefix, format!("`{}`", names_to_string(mod_path)))
2983                 };
2984                 (format!("cannot find {} `{}` in {}{}", expected, item_str, mod_prefix, mod_str),
2985                  format!("not found in {}", mod_str),
2986                  item_span)
2987             };
2988             let code = DiagnosticId::Error(code.into());
2989             let mut err = this.session.struct_span_err_with_code(base_span, &base_msg, code);
2990
2991             // Emit special messages for unresolved `Self` and `self`.
2992             if is_self_type(path, ns) {
2993                 __diagnostic_used!(E0411);
2994                 err.code(DiagnosticId::Error("E0411".into()));
2995                 let available_in = if this.session.features_untracked().self_in_typedefs {
2996                     "impls, traits, and type definitions"
2997                 } else {
2998                     "traits and impls"
2999                 };
3000                 err.span_label(span, format!("`Self` is only available in {}", available_in));
3001                 return (err, Vec::new());
3002             }
3003             if is_self_value(path, ns) {
3004                 __diagnostic_used!(E0424);
3005                 err.code(DiagnosticId::Error("E0424".into()));
3006                 err.span_label(span, format!("`self` value is only available in \
3007                                                methods with `self` parameter"));
3008                 return (err, Vec::new());
3009             }
3010
3011             // Try to lookup the name in more relaxed fashion for better error reporting.
3012             let ident = *path.last().unwrap();
3013             let candidates = this.lookup_import_candidates(ident.name, ns, is_expected);
3014             if candidates.is_empty() && is_expected(Def::Enum(DefId::local(CRATE_DEF_INDEX))) {
3015                 let enum_candidates =
3016                     this.lookup_import_candidates(ident.name, ns, is_enum_variant);
3017                 let mut enum_candidates = enum_candidates.iter()
3018                     .map(|suggestion| import_candidate_to_paths(&suggestion)).collect::<Vec<_>>();
3019                 enum_candidates.sort();
3020                 for (sp, variant_path, enum_path) in enum_candidates {
3021                     if sp.is_dummy() {
3022                         let msg = format!("there is an enum variant `{}`, \
3023                                         try using `{}`?",
3024                                         variant_path,
3025                                         enum_path);
3026                         err.help(&msg);
3027                     } else {
3028                         err.span_suggestion_with_applicability(
3029                             span,
3030                             "you can try using the variant's enum",
3031                             enum_path,
3032                             Applicability::MachineApplicable,
3033                         );
3034                     }
3035                 }
3036             }
3037             if path.len() == 1 && this.self_type_is_available(span) {
3038                 if let Some(candidate) = this.lookup_assoc_candidate(ident, ns, is_expected) {
3039                     let self_is_available = this.self_value_is_available(path[0].span, span);
3040                     match candidate {
3041                         AssocSuggestion::Field => {
3042                             err.span_suggestion_with_applicability(
3043                                 span,
3044                                 "try",
3045                                 format!("self.{}", path_str),
3046                                 Applicability::MachineApplicable,
3047                             );
3048                             if !self_is_available {
3049                                 err.span_label(span, format!("`self` value is only available in \
3050                                                                methods with `self` parameter"));
3051                             }
3052                         }
3053                         AssocSuggestion::MethodWithSelf if self_is_available => {
3054                             err.span_suggestion_with_applicability(
3055                                 span,
3056                                 "try",
3057                                 format!("self.{}", path_str),
3058                                 Applicability::MachineApplicable,
3059                             );
3060                         }
3061                         AssocSuggestion::MethodWithSelf | AssocSuggestion::AssocItem => {
3062                             err.span_suggestion_with_applicability(
3063                                 span,
3064                                 "try",
3065                                 format!("Self::{}", path_str),
3066                                 Applicability::MachineApplicable,
3067                             );
3068                         }
3069                     }
3070                     return (err, candidates);
3071                 }
3072             }
3073
3074             let mut levenshtein_worked = false;
3075
3076             // Try Levenshtein.
3077             if let Some(candidate) = this.lookup_typo_candidate(path, ns, is_expected, span) {
3078                 err.span_label(ident_span, format!("did you mean `{}`?", candidate));
3079                 levenshtein_worked = true;
3080             }
3081
3082             // Try context dependent help if relaxed lookup didn't work.
3083             if let Some(def) = def {
3084                 match (def, source) {
3085                     (Def::Macro(..), _) => {
3086                         err.span_label(span, format!("did you mean `{}!(...)`?", path_str));
3087                         return (err, candidates);
3088                     }
3089                     (Def::TyAlias(..), PathSource::Trait(_)) => {
3090                         err.span_label(span, "type aliases cannot be used for traits");
3091                         return (err, candidates);
3092                     }
3093                     (Def::Mod(..), PathSource::Expr(Some(parent))) => match parent.node {
3094                         ExprKind::Field(_, ident) => {
3095                             err.span_label(parent.span, format!("did you mean `{}::{}`?",
3096                                                                  path_str, ident));
3097                             return (err, candidates);
3098                         }
3099                         ExprKind::MethodCall(ref segment, ..) => {
3100                             err.span_label(parent.span, format!("did you mean `{}::{}(...)`?",
3101                                                                  path_str, segment.ident));
3102                             return (err, candidates);
3103                         }
3104                         _ => {}
3105                     },
3106                     (Def::Enum(..), PathSource::TupleStruct)
3107                         | (Def::Enum(..), PathSource::Expr(..))  => {
3108                         if let Some(variants) = this.collect_enum_variants(def) {
3109                             err.note(&format!("did you mean to use one \
3110                                                of the following variants?\n{}",
3111                                 variants.iter()
3112                                     .map(|suggestion| path_names_to_string(suggestion))
3113                                     .map(|suggestion| format!("- `{}`", suggestion))
3114                                     .collect::<Vec<_>>()
3115                                     .join("\n")));
3116
3117                         } else {
3118                             err.note("did you mean to use one of the enum's variants?");
3119                         }
3120                         return (err, candidates);
3121                     },
3122                     (Def::Struct(def_id), _) if ns == ValueNS => {
3123                         if let Some((ctor_def, ctor_vis))
3124                                 = this.struct_constructors.get(&def_id).cloned() {
3125                             let accessible_ctor = this.is_accessible(ctor_vis);
3126                             if is_expected(ctor_def) && !accessible_ctor {
3127                                 err.span_label(span, format!("constructor is not visible \
3128                                                               here due to private fields"));
3129                             }
3130                         } else {
3131                             // HACK(estebank): find a better way to figure out that this was a
3132                             // parser issue where a struct literal is being used on an expression
3133                             // where a brace being opened means a block is being started. Look
3134                             // ahead for the next text to see if `span` is followed by a `{`.
3135                             let cm = this.session.source_map();
3136                             let mut sp = span;
3137                             loop {
3138                                 sp = cm.next_point(sp);
3139                                 match cm.span_to_snippet(sp) {
3140                                     Ok(ref snippet) => {
3141                                         if snippet.chars().any(|c| { !c.is_whitespace() }) {
3142                                             break;
3143                                         }
3144                                     }
3145                                     _ => break,
3146                                 }
3147                             }
3148                             let followed_by_brace = match cm.span_to_snippet(sp) {
3149                                 Ok(ref snippet) if snippet == "{" => true,
3150                                 _ => false,
3151                             };
3152                             if let (PathSource::Expr(None), true) = (source, followed_by_brace) {
3153                                 err.span_label(
3154                                     span,
3155                                     format!("did you mean `({} {{ /* fields */ }})`?", path_str),
3156                                 );
3157                             } else {
3158                                 err.span_label(
3159                                     span,
3160                                     format!("did you mean `{} {{ /* fields */ }}`?", path_str),
3161                                 );
3162                             }
3163                         }
3164                         return (err, candidates);
3165                     }
3166                     (Def::Union(..), _) |
3167                     (Def::Variant(..), _) |
3168                     (Def::VariantCtor(_, CtorKind::Fictive), _) if ns == ValueNS => {
3169                         err.span_label(span, format!("did you mean `{} {{ /* fields */ }}`?",
3170                                                      path_str));
3171                         return (err, candidates);
3172                     }
3173                     (Def::SelfTy(..), _) if ns == ValueNS => {
3174                         err.span_label(span, fallback_label);
3175                         err.note("can't use `Self` as a constructor, you must use the \
3176                                   implemented struct");
3177                         return (err, candidates);
3178                     }
3179                     (Def::TyAlias(_), _) | (Def::AssociatedTy(..), _) if ns == ValueNS => {
3180                         err.note("can't use a type alias as a constructor");
3181                         return (err, candidates);
3182                     }
3183                     _ => {}
3184                 }
3185             }
3186
3187             // Fallback label.
3188             if !levenshtein_worked {
3189                 err.span_label(base_span, fallback_label);
3190                 this.type_ascription_suggestion(&mut err, base_span);
3191             }
3192             (err, candidates)
3193         };
3194         let report_errors = |this: &mut Self, def: Option<Def>| {
3195             let (err, candidates) = report_errors(this, def);
3196             let def_id = this.current_module.normal_ancestor_id;
3197             let node_id = this.definitions.as_local_node_id(def_id).unwrap();
3198             let better = def.is_some();
3199             this.use_injections.push(UseError { err, candidates, node_id, better });
3200             err_path_resolution()
3201         };
3202
3203         let resolution = match self.resolve_qpath_anywhere(
3204             id,
3205             qself,
3206             path,
3207             ns,
3208             span,
3209             source.defer_to_typeck(),
3210             source.global_by_default(),
3211             crate_lint,
3212         ) {
3213             Some(resolution) if resolution.unresolved_segments() == 0 => {
3214                 if is_expected(resolution.base_def()) || resolution.base_def() == Def::Err {
3215                     resolution
3216                 } else {
3217                     // Add a temporary hack to smooth the transition to new struct ctor
3218                     // visibility rules. See #38932 for more details.
3219                     let mut res = None;
3220                     if let Def::Struct(def_id) = resolution.base_def() {
3221                         if let Some((ctor_def, ctor_vis))
3222                                 = self.struct_constructors.get(&def_id).cloned() {
3223                             if is_expected(ctor_def) && self.is_accessible(ctor_vis) {
3224                                 let lint = lint::builtin::LEGACY_CONSTRUCTOR_VISIBILITY;
3225                                 self.session.buffer_lint(lint, id, span,
3226                                     "private struct constructors are not usable through \
3227                                      re-exports in outer modules",
3228                                 );
3229                                 res = Some(PathResolution::new(ctor_def));
3230                             }
3231                         }
3232                     }
3233
3234                     res.unwrap_or_else(|| report_errors(self, Some(resolution.base_def())))
3235                 }
3236             }
3237             Some(resolution) if source.defer_to_typeck() => {
3238                 // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
3239                 // or `<T>::A::B`. If `B` should be resolved in value namespace then
3240                 // it needs to be added to the trait map.
3241                 if ns == ValueNS {
3242                     let item_name = *path.last().unwrap();
3243                     let traits = self.get_traits_containing_item(item_name, ns);
3244                     self.trait_map.insert(id, traits);
3245                 }
3246                 resolution
3247             }
3248             _ => report_errors(self, None)
3249         };
3250
3251         if let PathSource::TraitItem(..) = source {} else {
3252             // Avoid recording definition of `A::B` in `<T as A>::B::C`.
3253             self.record_def(id, resolution);
3254         }
3255         resolution
3256     }
3257
3258     fn type_ascription_suggestion(&self,
3259                                   err: &mut DiagnosticBuilder,
3260                                   base_span: Span) {
3261         debug!("type_ascription_suggetion {:?}", base_span);
3262         let cm = self.session.source_map();
3263         debug!("self.current_type_ascription {:?}", self.current_type_ascription);
3264         if let Some(sp) = self.current_type_ascription.last() {
3265             let mut sp = *sp;
3266             loop {  // try to find the `:`, bail on first non-':'/non-whitespace
3267                 sp = cm.next_point(sp);
3268                 if let Ok(snippet) = cm.span_to_snippet(sp.to(cm.next_point(sp))) {
3269                     debug!("snippet {:?}", snippet);
3270                     let line_sp = cm.lookup_char_pos(sp.hi()).line;
3271                     let line_base_sp = cm.lookup_char_pos(base_span.lo()).line;
3272                     debug!("{:?} {:?}", line_sp, line_base_sp);
3273                     if snippet == ":" {
3274                         err.span_label(base_span,
3275                                        "expecting a type here because of type ascription");
3276                         if line_sp != line_base_sp {
3277                             err.span_suggestion_short(sp,
3278                                                       "did you mean to use `;` here instead?",
3279                                                       ";".to_string());
3280                         }
3281                         break;
3282                     } else if snippet.trim().len() != 0  {
3283                         debug!("tried to find type ascription `:` token, couldn't find it");
3284                         break;
3285                     }
3286                 } else {
3287                     break;
3288                 }
3289             }
3290         }
3291     }
3292
3293     fn self_type_is_available(&mut self, span: Span) -> bool {
3294         let binding = self.resolve_ident_in_lexical_scope(keywords::SelfType.ident(),
3295                                                           TypeNS, None, span);
3296         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3297     }
3298
3299     fn self_value_is_available(&mut self, self_span: Span, path_span: Span) -> bool {
3300         let ident = Ident::new(keywords::SelfValue.name(), self_span);
3301         let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, None, path_span);
3302         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3303     }
3304
3305     // Resolve in alternative namespaces if resolution in the primary namespace fails.
3306     fn resolve_qpath_anywhere(&mut self,
3307                               id: NodeId,
3308                               qself: Option<&QSelf>,
3309                               path: &[Ident],
3310                               primary_ns: Namespace,
3311                               span: Span,
3312                               defer_to_typeck: bool,
3313                               global_by_default: bool,
3314                               crate_lint: CrateLint)
3315                               -> Option<PathResolution> {
3316         let mut fin_res = None;
3317         // FIXME: can't resolve paths in macro namespace yet, macros are
3318         // processed by the little special hack below.
3319         for (i, ns) in [primary_ns, TypeNS, ValueNS, /*MacroNS*/].iter().cloned().enumerate() {
3320             if i == 0 || ns != primary_ns {
3321                 match self.resolve_qpath(id, qself, path, ns, span, global_by_default, crate_lint) {
3322                     // If defer_to_typeck, then resolution > no resolution,
3323                     // otherwise full resolution > partial resolution > no resolution.
3324                     Some(res) if res.unresolved_segments() == 0 || defer_to_typeck =>
3325                         return Some(res),
3326                     res => if fin_res.is_none() { fin_res = res },
3327                 };
3328             }
3329         }
3330         let is_global = self.macro_prelude.get(&path[0].name).cloned()
3331             .map(|binding| binding.get_macro(self).kind() == MacroKind::Bang).unwrap_or(false);
3332         if primary_ns != MacroNS && (is_global ||
3333                                      self.macro_names.contains(&path[0].modern())) {
3334             // Return some dummy definition, it's enough for error reporting.
3335             return Some(
3336                 PathResolution::new(Def::Macro(DefId::local(CRATE_DEF_INDEX), MacroKind::Bang))
3337             );
3338         }
3339         fin_res
3340     }
3341
3342     /// Handles paths that may refer to associated items.
3343     fn resolve_qpath(&mut self,
3344                      id: NodeId,
3345                      qself: Option<&QSelf>,
3346                      path: &[Ident],
3347                      ns: Namespace,
3348                      span: Span,
3349                      global_by_default: bool,
3350                      crate_lint: CrateLint)
3351                      -> Option<PathResolution> {
3352         debug!(
3353             "resolve_qpath(id={:?}, qself={:?}, path={:?}, \
3354              ns={:?}, span={:?}, global_by_default={:?})",
3355             id,
3356             qself,
3357             path,
3358             ns,
3359             span,
3360             global_by_default,
3361         );
3362
3363         if let Some(qself) = qself {
3364             if qself.position == 0 {
3365                 // This is a case like `<T>::B`, where there is no
3366                 // trait to resolve.  In that case, we leave the `B`
3367                 // segment to be resolved by type-check.
3368                 return Some(PathResolution::with_unresolved_segments(
3369                     Def::Mod(DefId::local(CRATE_DEF_INDEX)), path.len()
3370                 ));
3371             }
3372
3373             // Make sure `A::B` in `<T as A::B>::C` is a trait item.
3374             //
3375             // Currently, `path` names the full item (`A::B::C`, in
3376             // our example).  so we extract the prefix of that that is
3377             // the trait (the slice upto and including
3378             // `qself.position`). And then we recursively resolve that,
3379             // but with `qself` set to `None`.
3380             //
3381             // However, setting `qself` to none (but not changing the
3382             // span) loses the information about where this path
3383             // *actually* appears, so for the purposes of the crate
3384             // lint we pass along information that this is the trait
3385             // name from a fully qualified path, and this also
3386             // contains the full span (the `CrateLint::QPathTrait`).
3387             let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
3388             let res = self.smart_resolve_path_fragment(
3389                 id,
3390                 None,
3391                 &path[..qself.position + 1],
3392                 span,
3393                 PathSource::TraitItem(ns),
3394                 CrateLint::QPathTrait {
3395                     qpath_id: id,
3396                     qpath_span: qself.path_span,
3397                 },
3398             );
3399
3400             // The remaining segments (the `C` in our example) will
3401             // have to be resolved by type-check, since that requires doing
3402             // trait resolution.
3403             return Some(PathResolution::with_unresolved_segments(
3404                 res.base_def(), res.unresolved_segments() + path.len() - qself.position - 1
3405             ));
3406         }
3407
3408         let result = match self.resolve_path(
3409             None,
3410             &path,
3411             Some(ns),
3412             true,
3413             span,
3414             crate_lint,
3415         ) {
3416             PathResult::NonModule(path_res) => path_res,
3417             PathResult::Module(ModuleOrUniformRoot::Module(module)) if !module.is_normal() => {
3418                 PathResolution::new(module.def().unwrap())
3419             }
3420             // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
3421             // don't report an error right away, but try to fallback to a primitive type.
3422             // So, we are still able to successfully resolve something like
3423             //
3424             // use std::u8; // bring module u8 in scope
3425             // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
3426             //     u8::max_value() // OK, resolves to associated function <u8>::max_value,
3427             //                     // not to non-existent std::u8::max_value
3428             // }
3429             //
3430             // Such behavior is required for backward compatibility.
3431             // The same fallback is used when `a` resolves to nothing.
3432             PathResult::Module(ModuleOrUniformRoot::Module(_)) |
3433             PathResult::Failed(..)
3434                     if (ns == TypeNS || path.len() > 1) &&
3435                        self.primitive_type_table.primitive_types
3436                            .contains_key(&path[0].name) => {
3437                 let prim = self.primitive_type_table.primitive_types[&path[0].name];
3438                 PathResolution::with_unresolved_segments(Def::PrimTy(prim), path.len() - 1)
3439             }
3440             PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3441                 PathResolution::new(module.def().unwrap()),
3442             PathResult::Failed(span, msg, false) => {
3443                 resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
3444                 err_path_resolution()
3445             }
3446             PathResult::Module(ModuleOrUniformRoot::UniformRoot(_)) |
3447             PathResult::Failed(..) => return None,
3448             PathResult::Indeterminate => bug!("indetermined path result in resolve_qpath"),
3449         };
3450
3451         if path.len() > 1 && !global_by_default && result.base_def() != Def::Err &&
3452            path[0].name != keywords::CrateRoot.name() &&
3453            path[0].name != keywords::DollarCrate.name() {
3454             let unqualified_result = {
3455                 match self.resolve_path(
3456                     None,
3457                     &[*path.last().unwrap()],
3458                     Some(ns),
3459                     false,
3460                     span,
3461                     CrateLint::No,
3462                 ) {
3463                     PathResult::NonModule(path_res) => path_res.base_def(),
3464                     PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3465                         module.def().unwrap(),
3466                     _ => return Some(result),
3467                 }
3468             };
3469             if result.base_def() == unqualified_result {
3470                 let lint = lint::builtin::UNUSED_QUALIFICATIONS;
3471                 self.session.buffer_lint(lint, id, span, "unnecessary qualification")
3472             }
3473         }
3474
3475         Some(result)
3476     }
3477
3478     fn resolve_path(
3479         &mut self,
3480         base_module: Option<ModuleOrUniformRoot<'a>>,
3481         path: &[Ident],
3482         opt_ns: Option<Namespace>, // `None` indicates a module path
3483         record_used: bool,
3484         path_span: Span,
3485         crate_lint: CrateLint,
3486     ) -> PathResult<'a> {
3487         let mut module = base_module;
3488         let mut allow_super = true;
3489         let mut second_binding = None;
3490
3491         debug!(
3492             "resolve_path(path={:?}, opt_ns={:?}, record_used={:?}, \
3493              path_span={:?}, crate_lint={:?})",
3494             path,
3495             opt_ns,
3496             record_used,
3497             path_span,
3498             crate_lint,
3499         );
3500
3501         for (i, &ident) in path.iter().enumerate() {
3502             debug!("resolve_path ident {} {:?}", i, ident);
3503             let is_last = i == path.len() - 1;
3504             let ns = if is_last { opt_ns.unwrap_or(TypeNS) } else { TypeNS };
3505             let name = ident.name;
3506
3507             allow_super &= ns == TypeNS &&
3508                 (name == keywords::SelfValue.name() ||
3509                  name == keywords::Super.name());
3510
3511             if ns == TypeNS {
3512                 if allow_super && name == keywords::Super.name() {
3513                     let mut ctxt = ident.span.ctxt().modern();
3514                     let self_module = match i {
3515                         0 => Some(self.resolve_self(&mut ctxt, self.current_module)),
3516                         _ => match module {
3517                             Some(ModuleOrUniformRoot::Module(module)) => Some(module),
3518                             _ => None,
3519                         },
3520                     };
3521                     if let Some(self_module) = self_module {
3522                         if let Some(parent) = self_module.parent {
3523                             module = Some(ModuleOrUniformRoot::Module(
3524                                 self.resolve_self(&mut ctxt, parent)));
3525                             continue;
3526                         }
3527                     }
3528                     let msg = "There are too many initial `super`s.".to_string();
3529                     return PathResult::Failed(ident.span, msg, false);
3530                 }
3531                 if i == 0 {
3532                     if name == keywords::SelfValue.name() {
3533                         let mut ctxt = ident.span.ctxt().modern();
3534                         module = Some(ModuleOrUniformRoot::Module(
3535                             self.resolve_self(&mut ctxt, self.current_module)));
3536                         continue;
3537                     }
3538                     if name == keywords::Extern.name() ||
3539                        name == keywords::CrateRoot.name() &&
3540                        self.session.features_untracked().extern_absolute_paths &&
3541                        self.session.rust_2018() {
3542                         module = Some(ModuleOrUniformRoot::UniformRoot(name));
3543                         continue;
3544                     }
3545                     if name == keywords::CrateRoot.name() ||
3546                        name == keywords::Crate.name() ||
3547                        name == keywords::DollarCrate.name() {
3548                         // `::a::b`, `crate::a::b` or `$crate::a::b`
3549                         module = Some(ModuleOrUniformRoot::Module(
3550                             self.resolve_crate_root(ident)));
3551                         continue;
3552                     }
3553                 }
3554             }
3555
3556             // Report special messages for path segment keywords in wrong positions.
3557             if ident.is_path_segment_keyword() && i != 0 {
3558                 let name_str = if name == keywords::CrateRoot.name() {
3559                     "crate root".to_string()
3560                 } else {
3561                     format!("`{}`", name)
3562                 };
3563                 let msg = if i == 1 && path[0].name == keywords::CrateRoot.name() {
3564                     format!("global paths cannot start with {}", name_str)
3565                 } else {
3566                     format!("{} in paths can only be used in start position", name_str)
3567                 };
3568                 return PathResult::Failed(ident.span, msg, false);
3569             }
3570
3571             let binding = if let Some(module) = module {
3572                 self.resolve_ident_in_module(module, ident, ns, record_used, path_span)
3573             } else if opt_ns == Some(MacroNS) {
3574                 assert!(ns == TypeNS);
3575                 self.resolve_lexical_macro_path_segment(ident, ns, record_used, record_used,
3576                                                         false, path_span).map(|(b, _)| b)
3577             } else {
3578                 let record_used_id =
3579                     if record_used { crate_lint.node_id().or(Some(CRATE_NODE_ID)) } else { None };
3580                 match self.resolve_ident_in_lexical_scope(ident, ns, record_used_id, path_span) {
3581                     // we found a locally-imported or available item/module
3582                     Some(LexicalScopeBinding::Item(binding)) => Ok(binding),
3583                     // we found a local variable or type param
3584                     Some(LexicalScopeBinding::Def(def))
3585                             if opt_ns == Some(TypeNS) || opt_ns == Some(ValueNS) => {
3586                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3587                             def, path.len() - 1
3588                         ));
3589                     }
3590                     _ => Err(if record_used { Determined } else { Undetermined }),
3591                 }
3592             };
3593
3594             match binding {
3595                 Ok(binding) => {
3596                     if i == 1 {
3597                         second_binding = Some(binding);
3598                     }
3599                     let def = binding.def();
3600                     let maybe_assoc = opt_ns != Some(MacroNS) && PathSource::Type.is_expected(def);
3601                     if let Some(next_module) = binding.module() {
3602                         module = Some(ModuleOrUniformRoot::Module(next_module));
3603                     } else if def == Def::ToolMod && i + 1 != path.len() {
3604                         let def = Def::NonMacroAttr(NonMacroAttrKind::Tool);
3605                         return PathResult::NonModule(PathResolution::new(def));
3606                     } else if def == Def::Err {
3607                         return PathResult::NonModule(err_path_resolution());
3608                     } else if opt_ns.is_some() && (is_last || maybe_assoc) {
3609                         self.lint_if_path_starts_with_module(
3610                             crate_lint,
3611                             path,
3612                             path_span,
3613                             second_binding,
3614                         );
3615                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3616                             def, path.len() - i - 1
3617                         ));
3618                     } else {
3619                         return PathResult::Failed(ident.span,
3620                                                   format!("Not a module `{}`", ident),
3621                                                   is_last);
3622                     }
3623                 }
3624                 Err(Undetermined) => return PathResult::Indeterminate,
3625                 Err(Determined) => {
3626                     if let Some(ModuleOrUniformRoot::Module(module)) = module {
3627                         if opt_ns.is_some() && !module.is_normal() {
3628                             return PathResult::NonModule(PathResolution::with_unresolved_segments(
3629                                 module.def().unwrap(), path.len() - i
3630                             ));
3631                         }
3632                     }
3633                     let module_def = match module {
3634                         Some(ModuleOrUniformRoot::Module(module)) => module.def(),
3635                         _ => None,
3636                     };
3637                     let msg = if module_def == self.graph_root.def() {
3638                         let is_mod = |def| match def { Def::Mod(..) => true, _ => false };
3639                         let mut candidates =
3640                             self.lookup_import_candidates(name, TypeNS, is_mod);
3641                         candidates.sort_by_cached_key(|c| {
3642                             (c.path.segments.len(), c.path.to_string())
3643                         });
3644                         if let Some(candidate) = candidates.get(0) {
3645                             format!("Did you mean `{}`?", candidate.path)
3646                         } else {
3647                             format!("Maybe a missing `extern crate {};`?", ident)
3648                         }
3649                     } else if i == 0 {
3650                         format!("Use of undeclared type or module `{}`", ident)
3651                     } else {
3652                         format!("Could not find `{}` in `{}`", ident, path[i - 1])
3653                     };
3654                     return PathResult::Failed(ident.span, msg, is_last);
3655                 }
3656             }
3657         }
3658
3659         self.lint_if_path_starts_with_module(crate_lint, path, path_span, second_binding);
3660
3661         PathResult::Module(module.unwrap_or_else(|| {
3662             span_bug!(path_span, "resolve_path: empty(?) path {:?} has no module", path);
3663         }))
3664
3665     }
3666
3667     fn lint_if_path_starts_with_module(
3668         &self,
3669         crate_lint: CrateLint,
3670         path: &[Ident],
3671         path_span: Span,
3672         second_binding: Option<&NameBinding>,
3673     ) {
3674         // In the 2018 edition this lint is a hard error, so nothing to do
3675         if self.session.rust_2018() {
3676             return
3677         }
3678
3679         // In the 2015 edition there's no use in emitting lints unless the
3680         // crate's already enabled the feature that we're going to suggest
3681         if !self.session.features_untracked().crate_in_paths {
3682             return
3683         }
3684
3685         let (diag_id, diag_span) = match crate_lint {
3686             CrateLint::No => return,
3687             CrateLint::SimplePath(id) => (id, path_span),
3688             CrateLint::UsePath { root_id, root_span } => (root_id, root_span),
3689             CrateLint::QPathTrait { qpath_id, qpath_span } => (qpath_id, qpath_span),
3690         };
3691
3692         let first_name = match path.get(0) {
3693             Some(ident) => ident.name,
3694             None => return,
3695         };
3696
3697         // We're only interested in `use` paths which should start with
3698         // `{{root}}` or `extern` currently.
3699         if first_name != keywords::Extern.name() && first_name != keywords::CrateRoot.name() {
3700             return
3701         }
3702
3703         match path.get(1) {
3704             // If this import looks like `crate::...` it's already good
3705             Some(ident) if ident.name == keywords::Crate.name() => return,
3706             // Otherwise go below to see if it's an extern crate
3707             Some(_) => {}
3708             // If the path has length one (and it's `CrateRoot` most likely)
3709             // then we don't know whether we're gonna be importing a crate or an
3710             // item in our crate. Defer this lint to elsewhere
3711             None => return,
3712         }
3713
3714         // If the first element of our path was actually resolved to an
3715         // `ExternCrate` (also used for `crate::...`) then no need to issue a
3716         // warning, this looks all good!
3717         if let Some(binding) = second_binding {
3718             if let NameBindingKind::Import { directive: d, .. } = binding.kind {
3719                 // Careful: we still want to rewrite paths from
3720                 // renamed extern crates.
3721                 if let ImportDirectiveSubclass::ExternCrate(None) = d.subclass {
3722                     return
3723                 }
3724             }
3725         }
3726
3727         let diag = lint::builtin::BuiltinLintDiagnostics
3728             ::AbsPathWithModule(diag_span);
3729         self.session.buffer_lint_with_diagnostic(
3730             lint::builtin::ABSOLUTE_PATHS_NOT_STARTING_WITH_CRATE,
3731             diag_id, diag_span,
3732             "absolute paths must start with `self`, `super`, \
3733             `crate`, or an external crate name in the 2018 edition",
3734             diag);
3735     }
3736
3737     // Resolve a local definition, potentially adjusting for closures.
3738     fn adjust_local_def(&mut self,
3739                         ns: Namespace,
3740                         rib_index: usize,
3741                         mut def: Def,
3742                         record_used: bool,
3743                         span: Span) -> Def {
3744         let ribs = &self.ribs[ns][rib_index + 1..];
3745
3746         // An invalid forward use of a type parameter from a previous default.
3747         if let ForwardTyParamBanRibKind = self.ribs[ns][rib_index].kind {
3748             if record_used {
3749                 resolve_error(self, span, ResolutionError::ForwardDeclaredTyParam);
3750             }
3751             assert_eq!(def, Def::Err);
3752             return Def::Err;
3753         }
3754
3755         match def {
3756             Def::Upvar(..) => {
3757                 span_bug!(span, "unexpected {:?} in bindings", def)
3758             }
3759             Def::Local(node_id) => {
3760                 for rib in ribs {
3761                     match rib.kind {
3762                         NormalRibKind | ModuleRibKind(..) | MacroDefinition(..) |
3763                         ForwardTyParamBanRibKind => {
3764                             // Nothing to do. Continue.
3765                         }
3766                         ClosureRibKind(function_id) => {
3767                             let prev_def = def;
3768
3769                             let seen = self.freevars_seen
3770                                            .entry(function_id)
3771                                            .or_default();
3772                             if let Some(&index) = seen.get(&node_id) {
3773                                 def = Def::Upvar(node_id, index, function_id);
3774                                 continue;
3775                             }
3776                             let vec = self.freevars
3777                                           .entry(function_id)
3778                                           .or_default();
3779                             let depth = vec.len();
3780                             def = Def::Upvar(node_id, depth, function_id);
3781
3782                             if record_used {
3783                                 vec.push(Freevar {
3784                                     def: prev_def,
3785                                     span,
3786                                 });
3787                                 seen.insert(node_id, depth);
3788                             }
3789                         }
3790                         ItemRibKind | TraitOrImplItemRibKind => {
3791                             // This was an attempt to access an upvar inside a
3792                             // named function item. This is not allowed, so we
3793                             // report an error.
3794                             if record_used {
3795                                 resolve_error(self, span,
3796                                         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem);
3797                             }
3798                             return Def::Err;
3799                         }
3800                         ConstantItemRibKind => {
3801                             // Still doesn't deal with upvars
3802                             if record_used {
3803                                 resolve_error(self, span,
3804                                         ResolutionError::AttemptToUseNonConstantValueInConstant);
3805                             }
3806                             return Def::Err;
3807                         }
3808                     }
3809                 }
3810             }
3811             Def::TyParam(..) | Def::SelfTy(..) => {
3812                 for rib in ribs {
3813                     match rib.kind {
3814                         NormalRibKind | TraitOrImplItemRibKind | ClosureRibKind(..) |
3815                         ModuleRibKind(..) | MacroDefinition(..) | ForwardTyParamBanRibKind |
3816                         ConstantItemRibKind => {
3817                             // Nothing to do. Continue.
3818                         }
3819                         ItemRibKind => {
3820                             // This was an attempt to use a type parameter outside
3821                             // its scope.
3822                             if record_used {
3823                                 resolve_error(self, span,
3824                                     ResolutionError::TypeParametersFromOuterFunction(def));
3825                             }
3826                             return Def::Err;
3827                         }
3828                     }
3829                 }
3830             }
3831             _ => {}
3832         }
3833         return def;
3834     }
3835
3836     fn lookup_assoc_candidate<FilterFn>(&mut self,
3837                                         ident: Ident,
3838                                         ns: Namespace,
3839                                         filter_fn: FilterFn)
3840                                         -> Option<AssocSuggestion>
3841         where FilterFn: Fn(Def) -> bool
3842     {
3843         fn extract_node_id(t: &Ty) -> Option<NodeId> {
3844             match t.node {
3845                 TyKind::Path(None, _) => Some(t.id),
3846                 TyKind::Rptr(_, ref mut_ty) => extract_node_id(&mut_ty.ty),
3847                 // This doesn't handle the remaining `Ty` variants as they are not
3848                 // that commonly the self_type, it might be interesting to provide
3849                 // support for those in future.
3850                 _ => None,
3851             }
3852         }
3853
3854         // Fields are generally expected in the same contexts as locals.
3855         if filter_fn(Def::Local(ast::DUMMY_NODE_ID)) {
3856             if let Some(node_id) = self.current_self_type.as_ref().and_then(extract_node_id) {
3857                 // Look for a field with the same name in the current self_type.
3858                 if let Some(resolution) = self.def_map.get(&node_id) {
3859                     match resolution.base_def() {
3860                         Def::Struct(did) | Def::Union(did)
3861                                 if resolution.unresolved_segments() == 0 => {
3862                             if let Some(field_names) = self.field_names.get(&did) {
3863                                 if field_names.iter().any(|&field_name| ident.name == field_name) {
3864                                     return Some(AssocSuggestion::Field);
3865                                 }
3866                             }
3867                         }
3868                         _ => {}
3869                     }
3870                 }
3871             }
3872         }
3873
3874         // Look for associated items in the current trait.
3875         if let Some((module, _)) = self.current_trait_ref {
3876             if let Ok(binding) = self.resolve_ident_in_module(
3877                     ModuleOrUniformRoot::Module(module),
3878                     ident,
3879                     ns,
3880                     false,
3881                     module.span,
3882                 ) {
3883                 let def = binding.def();
3884                 if filter_fn(def) {
3885                     return Some(if self.has_self.contains(&def.def_id()) {
3886                         AssocSuggestion::MethodWithSelf
3887                     } else {
3888                         AssocSuggestion::AssocItem
3889                     });
3890                 }
3891             }
3892         }
3893
3894         None
3895     }
3896
3897     fn lookup_typo_candidate<FilterFn>(&mut self,
3898                                        path: &[Ident],
3899                                        ns: Namespace,
3900                                        filter_fn: FilterFn,
3901                                        span: Span)
3902                                        -> Option<Symbol>
3903         where FilterFn: Fn(Def) -> bool
3904     {
3905         let add_module_candidates = |module: Module, names: &mut Vec<Name>| {
3906             for (&(ident, _), resolution) in module.resolutions.borrow().iter() {
3907                 if let Some(binding) = resolution.borrow().binding {
3908                     if filter_fn(binding.def()) {
3909                         names.push(ident.name);
3910                     }
3911                 }
3912             }
3913         };
3914
3915         let mut names = Vec::new();
3916         if path.len() == 1 {
3917             // Search in lexical scope.
3918             // Walk backwards up the ribs in scope and collect candidates.
3919             for rib in self.ribs[ns].iter().rev() {
3920                 // Locals and type parameters
3921                 for (ident, def) in &rib.bindings {
3922                     if filter_fn(*def) {
3923                         names.push(ident.name);
3924                     }
3925                 }
3926                 // Items in scope
3927                 if let ModuleRibKind(module) = rib.kind {
3928                     // Items from this module
3929                     add_module_candidates(module, &mut names);
3930
3931                     if let ModuleKind::Block(..) = module.kind {
3932                         // We can see through blocks
3933                     } else {
3934                         // Items from the prelude
3935                         if !module.no_implicit_prelude {
3936                             names.extend(self.extern_prelude.iter().cloned());
3937                             if let Some(prelude) = self.prelude {
3938                                 add_module_candidates(prelude, &mut names);
3939                             }
3940                         }
3941                         break;
3942                     }
3943                 }
3944             }
3945             // Add primitive types to the mix
3946             if filter_fn(Def::PrimTy(Bool)) {
3947                 names.extend(
3948                     self.primitive_type_table.primitive_types.iter().map(|(name, _)| name)
3949                 )
3950             }
3951         } else {
3952             // Search in module.
3953             let mod_path = &path[..path.len() - 1];
3954             if let PathResult::Module(module) = self.resolve_path(None, mod_path, Some(TypeNS),
3955                                                                   false, span, CrateLint::No) {
3956                 if let ModuleOrUniformRoot::Module(module) = module {
3957                     add_module_candidates(module, &mut names);
3958                 }
3959             }
3960         }
3961
3962         let name = path[path.len() - 1].name;
3963         // Make sure error reporting is deterministic.
3964         names.sort_by_cached_key(|name| name.as_str());
3965         match find_best_match_for_name(names.iter(), &name.as_str(), None) {
3966             Some(found) if found != name => Some(found),
3967             _ => None,
3968         }
3969     }
3970
3971     fn with_resolved_label<F>(&mut self, label: Option<Label>, id: NodeId, f: F)
3972         where F: FnOnce(&mut Resolver)
3973     {
3974         if let Some(label) = label {
3975             self.unused_labels.insert(id, label.ident.span);
3976             let def = Def::Label(id);
3977             self.with_label_rib(|this| {
3978                 let ident = label.ident.modern_and_legacy();
3979                 this.label_ribs.last_mut().unwrap().bindings.insert(ident, def);
3980                 f(this);
3981             });
3982         } else {
3983             f(self);
3984         }
3985     }
3986
3987     fn resolve_labeled_block(&mut self, label: Option<Label>, id: NodeId, block: &Block) {
3988         self.with_resolved_label(label, id, |this| this.visit_block(block));
3989     }
3990
3991     fn resolve_expr(&mut self, expr: &Expr, parent: Option<&Expr>) {
3992         // First, record candidate traits for this expression if it could
3993         // result in the invocation of a method call.
3994
3995         self.record_candidate_traits_for_expr_if_necessary(expr);
3996
3997         // Next, resolve the node.
3998         match expr.node {
3999             ExprKind::Path(ref qself, ref path) => {
4000                 self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
4001                 visit::walk_expr(self, expr);
4002             }
4003
4004             ExprKind::Struct(ref path, ..) => {
4005                 self.smart_resolve_path(expr.id, None, path, PathSource::Struct);
4006                 visit::walk_expr(self, expr);
4007             }
4008
4009             ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
4010                 let def = self.search_label(label.ident, |rib, ident| {
4011                     rib.bindings.get(&ident.modern_and_legacy()).cloned()
4012                 });
4013                 match def {
4014                     None => {
4015                         // Search again for close matches...
4016                         // Picks the first label that is "close enough", which is not necessarily
4017                         // the closest match
4018                         let close_match = self.search_label(label.ident, |rib, ident| {
4019                             let names = rib.bindings.iter().map(|(id, _)| &id.name);
4020                             find_best_match_for_name(names, &*ident.as_str(), None)
4021                         });
4022                         self.record_def(expr.id, err_path_resolution());
4023                         resolve_error(self,
4024                                       label.ident.span,
4025                                       ResolutionError::UndeclaredLabel(&label.ident.as_str(),
4026                                                                        close_match));
4027                     }
4028                     Some(Def::Label(id)) => {
4029                         // Since this def is a label, it is never read.
4030                         self.record_def(expr.id, PathResolution::new(Def::Label(id)));
4031                         self.unused_labels.remove(&id);
4032                     }
4033                     Some(_) => {
4034                         span_bug!(expr.span, "label wasn't mapped to a label def!");
4035                     }
4036                 }
4037
4038                 // visit `break` argument if any
4039                 visit::walk_expr(self, expr);
4040             }
4041
4042             ExprKind::IfLet(ref pats, ref subexpression, ref if_block, ref optional_else) => {
4043                 self.visit_expr(subexpression);
4044
4045                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
4046                 let mut bindings_list = FxHashMap();
4047                 for pat in pats {
4048                     self.resolve_pattern(pat, PatternSource::IfLet, &mut bindings_list);
4049                 }
4050                 // This has to happen *after* we determine which pat_idents are variants
4051                 self.check_consistent_bindings(pats);
4052                 self.visit_block(if_block);
4053                 self.ribs[ValueNS].pop();
4054
4055                 optional_else.as_ref().map(|expr| self.visit_expr(expr));
4056             }
4057
4058             ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),
4059
4060             ExprKind::While(ref subexpression, ref block, label) => {
4061                 self.with_resolved_label(label, expr.id, |this| {
4062                     this.visit_expr(subexpression);
4063                     this.visit_block(block);
4064                 });
4065             }
4066
4067             ExprKind::WhileLet(ref pats, ref subexpression, ref block, label) => {
4068                 self.with_resolved_label(label, expr.id, |this| {
4069                     this.visit_expr(subexpression);
4070                     this.ribs[ValueNS].push(Rib::new(NormalRibKind));
4071                     let mut bindings_list = FxHashMap();
4072                     for pat in pats {
4073                         this.resolve_pattern(pat, PatternSource::WhileLet, &mut bindings_list);
4074                     }
4075                     // This has to happen *after* we determine which pat_idents are variants
4076                     this.check_consistent_bindings(pats);
4077                     this.visit_block(block);
4078                     this.ribs[ValueNS].pop();
4079                 });
4080             }
4081
4082             ExprKind::ForLoop(ref pattern, ref subexpression, ref block, label) => {
4083                 self.visit_expr(subexpression);
4084                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
4085                 self.resolve_pattern(pattern, PatternSource::For, &mut FxHashMap());
4086
4087                 self.resolve_labeled_block(label, expr.id, block);
4088
4089                 self.ribs[ValueNS].pop();
4090             }
4091
4092             ExprKind::Block(ref block, label) => self.resolve_labeled_block(label, block.id, block),
4093
4094             // Equivalent to `visit::walk_expr` + passing some context to children.
4095             ExprKind::Field(ref subexpression, _) => {
4096                 self.resolve_expr(subexpression, Some(expr));
4097             }
4098             ExprKind::MethodCall(ref segment, ref arguments) => {
4099                 let mut arguments = arguments.iter();
4100                 self.resolve_expr(arguments.next().unwrap(), Some(expr));
4101                 for argument in arguments {
4102                     self.resolve_expr(argument, None);
4103                 }
4104                 self.visit_path_segment(expr.span, segment);
4105             }
4106
4107             ExprKind::Call(ref callee, ref arguments) => {
4108                 self.resolve_expr(callee, Some(expr));
4109                 for argument in arguments {
4110                     self.resolve_expr(argument, None);
4111                 }
4112             }
4113             ExprKind::Type(ref type_expr, _) => {
4114                 self.current_type_ascription.push(type_expr.span);
4115                 visit::walk_expr(self, expr);
4116                 self.current_type_ascription.pop();
4117             }
4118             // Resolve the body of async exprs inside the async closure to which they desugar
4119             ExprKind::Async(_, async_closure_id, ref block) => {
4120                 let rib_kind = ClosureRibKind(async_closure_id);
4121                 self.ribs[ValueNS].push(Rib::new(rib_kind));
4122                 self.label_ribs.push(Rib::new(rib_kind));
4123                 self.visit_block(&block);
4124                 self.label_ribs.pop();
4125                 self.ribs[ValueNS].pop();
4126             }
4127             // `async |x| ...` gets desugared to `|x| future_from_generator(|| ...)`, so we need to
4128             // resolve the arguments within the proper scopes so that usages of them inside the
4129             // closure are detected as upvars rather than normal closure arg usages.
4130             ExprKind::Closure(
4131                 _, IsAsync::Async { closure_id: inner_closure_id, .. }, _,
4132                 ref fn_decl, ref body, _span,
4133             ) => {
4134                 let rib_kind = ClosureRibKind(expr.id);
4135                 self.ribs[ValueNS].push(Rib::new(rib_kind));
4136                 self.label_ribs.push(Rib::new(rib_kind));
4137                 // Resolve arguments:
4138                 let mut bindings_list = FxHashMap();
4139                 for argument in &fn_decl.inputs {
4140                     self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
4141                     self.visit_ty(&argument.ty);
4142                 }
4143                 // No need to resolve return type-- the outer closure return type is
4144                 // FunctionRetTy::Default
4145
4146                 // Now resolve the inner closure
4147                 {
4148                     let rib_kind = ClosureRibKind(inner_closure_id);
4149                     self.ribs[ValueNS].push(Rib::new(rib_kind));
4150                     self.label_ribs.push(Rib::new(rib_kind));
4151                     // No need to resolve arguments: the inner closure has none.
4152                     // Resolve the return type:
4153                     visit::walk_fn_ret_ty(self, &fn_decl.output);
4154                     // Resolve the body
4155                     self.visit_expr(body);
4156                     self.label_ribs.pop();
4157                     self.ribs[ValueNS].pop();
4158                 }
4159                 self.label_ribs.pop();
4160                 self.ribs[ValueNS].pop();
4161             }
4162             _ => {
4163                 visit::walk_expr(self, expr);
4164             }
4165         }
4166     }
4167
4168     fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &Expr) {
4169         match expr.node {
4170             ExprKind::Field(_, ident) => {
4171                 // FIXME(#6890): Even though you can't treat a method like a
4172                 // field, we need to add any trait methods we find that match
4173                 // the field name so that we can do some nice error reporting
4174                 // later on in typeck.
4175                 let traits = self.get_traits_containing_item(ident, ValueNS);
4176                 self.trait_map.insert(expr.id, traits);
4177             }
4178             ExprKind::MethodCall(ref segment, ..) => {
4179                 debug!("(recording candidate traits for expr) recording traits for {}",
4180                        expr.id);
4181                 let traits = self.get_traits_containing_item(segment.ident, ValueNS);
4182                 self.trait_map.insert(expr.id, traits);
4183             }
4184             _ => {
4185                 // Nothing to do.
4186             }
4187         }
4188     }
4189
4190     fn get_traits_containing_item(&mut self, mut ident: Ident, ns: Namespace)
4191                                   -> Vec<TraitCandidate> {
4192         debug!("(getting traits containing item) looking for '{}'", ident.name);
4193
4194         let mut found_traits = Vec::new();
4195         // Look for the current trait.
4196         if let Some((module, _)) = self.current_trait_ref {
4197             if self.resolve_ident_in_module(
4198                 ModuleOrUniformRoot::Module(module),
4199                 ident,
4200                 ns,
4201                 false,
4202                 module.span,
4203             ).is_ok() {
4204                 let def_id = module.def_id().unwrap();
4205                 found_traits.push(TraitCandidate { def_id: def_id, import_id: None });
4206             }
4207         }
4208
4209         ident.span = ident.span.modern();
4210         let mut search_module = self.current_module;
4211         loop {
4212             self.get_traits_in_module_containing_item(ident, ns, search_module, &mut found_traits);
4213             search_module = unwrap_or!(
4214                 self.hygienic_lexical_parent(search_module, &mut ident.span), break
4215             );
4216         }
4217
4218         if let Some(prelude) = self.prelude {
4219             if !search_module.no_implicit_prelude {
4220                 self.get_traits_in_module_containing_item(ident, ns, prelude, &mut found_traits);
4221             }
4222         }
4223
4224         found_traits
4225     }
4226
4227     fn get_traits_in_module_containing_item(&mut self,
4228                                             ident: Ident,
4229                                             ns: Namespace,
4230                                             module: Module<'a>,
4231                                             found_traits: &mut Vec<TraitCandidate>) {
4232         assert!(ns == TypeNS || ns == ValueNS);
4233         let mut traits = module.traits.borrow_mut();
4234         if traits.is_none() {
4235             let mut collected_traits = Vec::new();
4236             module.for_each_child(|name, ns, binding| {
4237                 if ns != TypeNS { return }
4238                 if let Def::Trait(_) = binding.def() {
4239                     collected_traits.push((name, binding));
4240                 }
4241             });
4242             *traits = Some(collected_traits.into_boxed_slice());
4243         }
4244
4245         for &(trait_name, binding) in traits.as_ref().unwrap().iter() {
4246             let module = binding.module().unwrap();
4247             let mut ident = ident;
4248             if ident.span.glob_adjust(module.expansion, binding.span.ctxt().modern()).is_none() {
4249                 continue
4250             }
4251             if self.resolve_ident_in_module_unadjusted(
4252                 ModuleOrUniformRoot::Module(module),
4253                 ident,
4254                 ns,
4255                 false,
4256                 false,
4257                 module.span,
4258             ).is_ok() {
4259                 let import_id = match binding.kind {
4260                     NameBindingKind::Import { directive, .. } => {
4261                         self.maybe_unused_trait_imports.insert(directive.id);
4262                         self.add_to_glob_map(directive.id, trait_name);
4263                         Some(directive.id)
4264                     }
4265                     _ => None,
4266                 };
4267                 let trait_def_id = module.def_id().unwrap();
4268                 found_traits.push(TraitCandidate { def_id: trait_def_id, import_id: import_id });
4269             }
4270         }
4271     }
4272
4273     fn lookup_import_candidates_from_module<FilterFn>(&mut self,
4274                                           lookup_name: Name,
4275                                           namespace: Namespace,
4276                                           start_module: &'a ModuleData<'a>,
4277                                           crate_name: Ident,
4278                                           filter_fn: FilterFn)
4279                                           -> Vec<ImportSuggestion>
4280         where FilterFn: Fn(Def) -> bool
4281     {
4282         let mut candidates = Vec::new();
4283         let mut worklist = Vec::new();
4284         let mut seen_modules = FxHashSet();
4285         let not_local_module = crate_name != keywords::Crate.ident();
4286         worklist.push((start_module, Vec::<ast::PathSegment>::new(), not_local_module));
4287
4288         while let Some((in_module,
4289                         path_segments,
4290                         in_module_is_extern)) = worklist.pop() {
4291             self.populate_module_if_necessary(in_module);
4292
4293             // We have to visit module children in deterministic order to avoid
4294             // instabilities in reported imports (#43552).
4295             in_module.for_each_child_stable(|ident, ns, name_binding| {
4296                 // avoid imports entirely
4297                 if name_binding.is_import() && !name_binding.is_extern_crate() { return; }
4298                 // avoid non-importable candidates as well
4299                 if !name_binding.is_importable() { return; }
4300
4301                 // collect results based on the filter function
4302                 if ident.name == lookup_name && ns == namespace {
4303                     if filter_fn(name_binding.def()) {
4304                         // create the path
4305                         let mut segms = path_segments.clone();
4306                         if self.session.rust_2018() {
4307                             // crate-local absolute paths start with `crate::` in edition 2018
4308                             // FIXME: may also be stabilized for Rust 2015 (Issues #45477, #44660)
4309                             segms.insert(
4310                                 0, ast::PathSegment::from_ident(crate_name)
4311                             );
4312                         }
4313
4314                         segms.push(ast::PathSegment::from_ident(ident));
4315                         let path = Path {
4316                             span: name_binding.span,
4317                             segments: segms,
4318                         };
4319                         // the entity is accessible in the following cases:
4320                         // 1. if it's defined in the same crate, it's always
4321                         // accessible (since private entities can be made public)
4322                         // 2. if it's defined in another crate, it's accessible
4323                         // only if both the module is public and the entity is
4324                         // declared as public (due to pruning, we don't explore
4325                         // outside crate private modules => no need to check this)
4326                         if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
4327                             candidates.push(ImportSuggestion { path: path });
4328                         }
4329                     }
4330                 }
4331
4332                 // collect submodules to explore
4333                 if let Some(module) = name_binding.module() {
4334                     // form the path
4335                     let mut path_segments = path_segments.clone();
4336                     path_segments.push(ast::PathSegment::from_ident(ident));
4337
4338                     let is_extern_crate_that_also_appears_in_prelude =
4339                         name_binding.is_extern_crate() &&
4340                         self.session.rust_2018();
4341
4342                     let is_visible_to_user =
4343                         !in_module_is_extern || name_binding.vis == ty::Visibility::Public;
4344
4345                     if !is_extern_crate_that_also_appears_in_prelude && is_visible_to_user {
4346                         // add the module to the lookup
4347                         let is_extern = in_module_is_extern || name_binding.is_extern_crate();
4348                         if seen_modules.insert(module.def_id().unwrap()) {
4349                             worklist.push((module, path_segments, is_extern));
4350                         }
4351                     }
4352                 }
4353             })
4354         }
4355
4356         candidates
4357     }
4358
4359     /// When name resolution fails, this method can be used to look up candidate
4360     /// entities with the expected name. It allows filtering them using the
4361     /// supplied predicate (which should be used to only accept the types of
4362     /// definitions expected e.g. traits). The lookup spans across all crates.
4363     ///
4364     /// NOTE: The method does not look into imports, but this is not a problem,
4365     /// since we report the definitions (thus, the de-aliased imports).
4366     fn lookup_import_candidates<FilterFn>(&mut self,
4367                                           lookup_name: Name,
4368                                           namespace: Namespace,
4369                                           filter_fn: FilterFn)
4370                                           -> Vec<ImportSuggestion>
4371         where FilterFn: Fn(Def) -> bool
4372     {
4373         let mut suggestions = vec![];
4374
4375         suggestions.extend(
4376             self.lookup_import_candidates_from_module(
4377                 lookup_name, namespace, self.graph_root, keywords::Crate.ident(), &filter_fn
4378             )
4379         );
4380
4381         if self.session.features_untracked().extern_prelude {
4382             let extern_prelude_names = self.extern_prelude.clone();
4383             for &krate_name in extern_prelude_names.iter() {
4384                 let krate_ident = Ident::with_empty_ctxt(krate_name);
4385                 let external_prelude_module = self.load_extern_prelude_crate_if_needed(krate_ident);
4386
4387                 suggestions.extend(
4388                     self.lookup_import_candidates_from_module(
4389                         lookup_name, namespace, external_prelude_module, krate_ident, &filter_fn
4390                     )
4391                 );
4392             }
4393         }
4394
4395         suggestions
4396     }
4397
4398     fn find_module(&mut self,
4399                    module_def: Def)
4400                    -> Option<(Module<'a>, ImportSuggestion)>
4401     {
4402         let mut result = None;
4403         let mut worklist = Vec::new();
4404         let mut seen_modules = FxHashSet();
4405         worklist.push((self.graph_root, Vec::new()));
4406
4407         while let Some((in_module, path_segments)) = worklist.pop() {
4408             // abort if the module is already found
4409             if result.is_some() { break; }
4410
4411             self.populate_module_if_necessary(in_module);
4412
4413             in_module.for_each_child_stable(|ident, _, name_binding| {
4414                 // abort if the module is already found or if name_binding is private external
4415                 if result.is_some() || !name_binding.vis.is_visible_locally() {
4416                     return
4417                 }
4418                 if let Some(module) = name_binding.module() {
4419                     // form the path
4420                     let mut path_segments = path_segments.clone();
4421                     path_segments.push(ast::PathSegment::from_ident(ident));
4422                     if module.def() == Some(module_def) {
4423                         let path = Path {
4424                             span: name_binding.span,
4425                             segments: path_segments,
4426                         };
4427                         result = Some((module, ImportSuggestion { path: path }));
4428                     } else {
4429                         // add the module to the lookup
4430                         if seen_modules.insert(module.def_id().unwrap()) {
4431                             worklist.push((module, path_segments));
4432                         }
4433                     }
4434                 }
4435             });
4436         }
4437
4438         result
4439     }
4440
4441     fn collect_enum_variants(&mut self, enum_def: Def) -> Option<Vec<Path>> {
4442         if let Def::Enum(..) = enum_def {} else {
4443             panic!("Non-enum def passed to collect_enum_variants: {:?}", enum_def)
4444         }
4445
4446         self.find_module(enum_def).map(|(enum_module, enum_import_suggestion)| {
4447             self.populate_module_if_necessary(enum_module);
4448
4449             let mut variants = Vec::new();
4450             enum_module.for_each_child_stable(|ident, _, name_binding| {
4451                 if let Def::Variant(..) = name_binding.def() {
4452                     let mut segms = enum_import_suggestion.path.segments.clone();
4453                     segms.push(ast::PathSegment::from_ident(ident));
4454                     variants.push(Path {
4455                         span: name_binding.span,
4456                         segments: segms,
4457                     });
4458                 }
4459             });
4460             variants
4461         })
4462     }
4463
4464     fn record_def(&mut self, node_id: NodeId, resolution: PathResolution) {
4465         debug!("(recording def) recording {:?} for {}", resolution, node_id);
4466         if let Some(prev_res) = self.def_map.insert(node_id, resolution) {
4467             panic!("path resolved multiple times ({:?} before, {:?} now)", prev_res, resolution);
4468         }
4469     }
4470
4471     fn resolve_visibility(&mut self, vis: &ast::Visibility) -> ty::Visibility {
4472         match vis.node {
4473             ast::VisibilityKind::Public => ty::Visibility::Public,
4474             ast::VisibilityKind::Crate(..) => {
4475                 ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX))
4476             }
4477             ast::VisibilityKind::Inherited => {
4478                 ty::Visibility::Restricted(self.current_module.normal_ancestor_id)
4479             }
4480             ast::VisibilityKind::Restricted { ref path, id, .. } => {
4481                 // Visibilities are resolved as global by default, add starting root segment.
4482                 let segments = path.make_root().iter().chain(path.segments.iter())
4483                     .map(|seg| seg.ident)
4484                     .collect::<Vec<_>>();
4485                 let def = self.smart_resolve_path_fragment(
4486                     id,
4487                     None,
4488                     &segments,
4489                     path.span,
4490                     PathSource::Visibility,
4491                     CrateLint::SimplePath(id),
4492                 ).base_def();
4493                 if def == Def::Err {
4494                     ty::Visibility::Public
4495                 } else {
4496                     let vis = ty::Visibility::Restricted(def.def_id());
4497                     if self.is_accessible(vis) {
4498                         vis
4499                     } else {
4500                         self.session.span_err(path.span, "visibilities can only be restricted \
4501                                                           to ancestor modules");
4502                         ty::Visibility::Public
4503                     }
4504                 }
4505             }
4506         }
4507     }
4508
4509     fn is_accessible(&self, vis: ty::Visibility) -> bool {
4510         vis.is_accessible_from(self.current_module.normal_ancestor_id, self)
4511     }
4512
4513     fn is_accessible_from(&self, vis: ty::Visibility, module: Module<'a>) -> bool {
4514         vis.is_accessible_from(module.normal_ancestor_id, self)
4515     }
4516
4517     fn report_ambiguity_error(
4518         &self, name: Name, span: Span, _lexical: bool,
4519         def1: Def, is_import1: bool, is_glob1: bool, from_expansion1: bool, span1: Span,
4520         def2: Def, is_import2: bool, _is_glob2: bool, _from_expansion2: bool, span2: Span,
4521     ) {
4522         let participle = |is_import: bool| if is_import { "imported" } else { "defined" };
4523         let msg1 = format!("`{}` could refer to the name {} here", name, participle(is_import1));
4524         let msg2 =
4525             format!("`{}` could also refer to the name {} here", name, participle(is_import2));
4526         let note = if from_expansion1 {
4527             Some(if let Def::Macro(..) = def1 {
4528                 format!("macro-expanded {} do not shadow",
4529                         if is_import1 { "macro imports" } else { "macros" })
4530             } else {
4531                 format!("macro-expanded {} do not shadow when used in a macro invocation path",
4532                         if is_import1 { "imports" } else { "items" })
4533             })
4534         } else if is_glob1 {
4535             Some(format!("consider adding an explicit import of `{}` to disambiguate", name))
4536         } else {
4537             None
4538         };
4539
4540         let mut err = struct_span_err!(self.session, span, E0659, "`{}` is ambiguous", name);
4541         err.span_note(span1, &msg1);
4542         match def2 {
4543             Def::Macro(..) if span2.is_dummy() =>
4544                 err.note(&format!("`{}` is also a builtin macro", name)),
4545             _ => err.span_note(span2, &msg2),
4546         };
4547         if let Some(note) = note {
4548             err.note(&note);
4549         }
4550         err.emit();
4551     }
4552
4553     fn report_errors(&mut self, krate: &Crate) {
4554         self.report_shadowing_errors();
4555         self.report_with_use_injections(krate);
4556         self.report_proc_macro_import(krate);
4557         let mut reported_spans = FxHashSet();
4558
4559         for &(span_use, span_def) in &self.macro_expanded_macro_export_errors {
4560             let msg = "macro-expanded `macro_export` macros from the current crate \
4561                        cannot be referred to by absolute paths";
4562             self.session.buffer_lint_with_diagnostic(
4563                 lint::builtin::MACRO_EXPANDED_MACRO_EXPORTS_ACCESSED_BY_ABSOLUTE_PATHS,
4564                 CRATE_NODE_ID, span_use, msg,
4565                 lint::builtin::BuiltinLintDiagnostics::
4566                     MacroExpandedMacroExportsAccessedByAbsolutePaths(span_def),
4567             );
4568         }
4569
4570         for &AmbiguityError { span, name, b1, b2, lexical } in &self.ambiguity_errors {
4571             if reported_spans.insert(span) {
4572                 self.report_ambiguity_error(
4573                     name, span, lexical,
4574                     b1.def(), b1.is_import(), b1.is_glob_import(),
4575                     b1.expansion != Mark::root(), b1.span,
4576                     b2.def(), b2.is_import(), b2.is_glob_import(),
4577                     b2.expansion != Mark::root(), b2.span,
4578                 );
4579             }
4580         }
4581
4582         for &PrivacyError(span, name, binding) in &self.privacy_errors {
4583             if !reported_spans.insert(span) { continue }
4584             span_err!(self.session, span, E0603, "{} `{}` is private", binding.descr(), name);
4585         }
4586     }
4587
4588     fn report_with_use_injections(&mut self, krate: &Crate) {
4589         for UseError { mut err, candidates, node_id, better } in self.use_injections.drain(..) {
4590             let (span, found_use) = UsePlacementFinder::check(krate, node_id);
4591             if !candidates.is_empty() {
4592                 show_candidates(&mut err, span, &candidates, better, found_use);
4593             }
4594             err.emit();
4595         }
4596     }
4597
4598     fn report_shadowing_errors(&mut self) {
4599         let mut reported_errors = FxHashSet();
4600         for binding in replace(&mut self.disallowed_shadowing, Vec::new()) {
4601             if self.resolve_legacy_scope(&binding.parent, binding.ident, false).is_some() &&
4602                reported_errors.insert((binding.ident, binding.span)) {
4603                 let msg = format!("`{}` is already in scope", binding.ident);
4604                 self.session.struct_span_err(binding.span, &msg)
4605                     .note("macro-expanded `macro_rules!`s may not shadow \
4606                            existing macros (see RFC 1560)")
4607                     .emit();
4608             }
4609         }
4610     }
4611
4612     fn report_conflict<'b>(&mut self,
4613                        parent: Module,
4614                        ident: Ident,
4615                        ns: Namespace,
4616                        new_binding: &NameBinding<'b>,
4617                        old_binding: &NameBinding<'b>) {
4618         // Error on the second of two conflicting names
4619         if old_binding.span.lo() > new_binding.span.lo() {
4620             return self.report_conflict(parent, ident, ns, old_binding, new_binding);
4621         }
4622
4623         let container = match parent.kind {
4624             ModuleKind::Def(Def::Mod(_), _) => "module",
4625             ModuleKind::Def(Def::Trait(_), _) => "trait",
4626             ModuleKind::Block(..) => "block",
4627             _ => "enum",
4628         };
4629
4630         let old_noun = match old_binding.is_import() {
4631             true => "import",
4632             false => "definition",
4633         };
4634
4635         let new_participle = match new_binding.is_import() {
4636             true => "imported",
4637             false => "defined",
4638         };
4639
4640         let (name, span) = (ident.name, self.session.source_map().def_span(new_binding.span));
4641
4642         if let Some(s) = self.name_already_seen.get(&name) {
4643             if s == &span {
4644                 return;
4645             }
4646         }
4647
4648         let old_kind = match (ns, old_binding.module()) {
4649             (ValueNS, _) => "value",
4650             (MacroNS, _) => "macro",
4651             (TypeNS, _) if old_binding.is_extern_crate() => "extern crate",
4652             (TypeNS, Some(module)) if module.is_normal() => "module",
4653             (TypeNS, Some(module)) if module.is_trait() => "trait",
4654             (TypeNS, _) => "type",
4655         };
4656
4657         let msg = format!("the name `{}` is defined multiple times", name);
4658
4659         let mut err = match (old_binding.is_extern_crate(), new_binding.is_extern_crate()) {
4660             (true, true) => struct_span_err!(self.session, span, E0259, "{}", msg),
4661             (true, _) | (_, true) => match new_binding.is_import() && old_binding.is_import() {
4662                 true => struct_span_err!(self.session, span, E0254, "{}", msg),
4663                 false => struct_span_err!(self.session, span, E0260, "{}", msg),
4664             },
4665             _ => match (old_binding.is_import(), new_binding.is_import()) {
4666                 (false, false) => struct_span_err!(self.session, span, E0428, "{}", msg),
4667                 (true, true) => struct_span_err!(self.session, span, E0252, "{}", msg),
4668                 _ => struct_span_err!(self.session, span, E0255, "{}", msg),
4669             },
4670         };
4671
4672         err.note(&format!("`{}` must be defined only once in the {} namespace of this {}",
4673                           name,
4674                           ns.descr(),
4675                           container));
4676
4677         err.span_label(span, format!("`{}` re{} here", name, new_participle));
4678         if !old_binding.span.is_dummy() {
4679             err.span_label(self.session.source_map().def_span(old_binding.span),
4680                            format!("previous {} of the {} `{}` here", old_noun, old_kind, name));
4681         }
4682
4683         // See https://github.com/rust-lang/rust/issues/32354
4684         if old_binding.is_import() || new_binding.is_import() {
4685             let binding = if new_binding.is_import() && !new_binding.span.is_dummy() {
4686                 new_binding
4687             } else {
4688                 old_binding
4689             };
4690
4691             let cm = self.session.source_map();
4692             let rename_msg = "You can use `as` to change the binding name of the import";
4693
4694             if let (Ok(snippet), false) = (cm.span_to_snippet(binding.span),
4695                                            binding.is_renamed_extern_crate()) {
4696                 let suggested_name = if name.as_str().chars().next().unwrap().is_uppercase() {
4697                     format!("Other{}", name)
4698                 } else {
4699                     format!("other_{}", name)
4700                 };
4701
4702                 err.span_suggestion_with_applicability(
4703                     binding.span,
4704                     rename_msg,
4705                     if snippet.ends_with(';') {
4706                         format!("{} as {};", &snippet[..snippet.len() - 1], suggested_name)
4707                     } else {
4708                         format!("{} as {}", snippet, suggested_name)
4709                     },
4710                     Applicability::MachineApplicable,
4711                 );
4712             } else {
4713                 err.span_label(binding.span, rename_msg);
4714             }
4715         }
4716
4717         err.emit();
4718         self.name_already_seen.insert(name, span);
4719     }
4720 }
4721
4722 fn is_self_type(path: &[Ident], namespace: Namespace) -> bool {
4723     namespace == TypeNS && path.len() == 1 && path[0].name == keywords::SelfType.name()
4724 }
4725
4726 fn is_self_value(path: &[Ident], namespace: Namespace) -> bool {
4727     namespace == ValueNS && path.len() == 1 && path[0].name == keywords::SelfValue.name()
4728 }
4729
4730 fn names_to_string(idents: &[Ident]) -> String {
4731     let mut result = String::new();
4732     for (i, ident) in idents.iter()
4733                             .filter(|ident| ident.name != keywords::CrateRoot.name())
4734                             .enumerate() {
4735         if i > 0 {
4736             result.push_str("::");
4737         }
4738         result.push_str(&ident.as_str());
4739     }
4740     result
4741 }
4742
4743 fn path_names_to_string(path: &Path) -> String {
4744     names_to_string(&path.segments.iter()
4745                         .map(|seg| seg.ident)
4746                         .collect::<Vec<_>>())
4747 }
4748
4749 /// Get the path for an enum and the variant from an `ImportSuggestion` for an enum variant.
4750 fn import_candidate_to_paths(suggestion: &ImportSuggestion) -> (Span, String, String) {
4751     let variant_path = &suggestion.path;
4752     let variant_path_string = path_names_to_string(variant_path);
4753
4754     let path_len = suggestion.path.segments.len();
4755     let enum_path = ast::Path {
4756         span: suggestion.path.span,
4757         segments: suggestion.path.segments[0..path_len - 1].to_vec(),
4758     };
4759     let enum_path_string = path_names_to_string(&enum_path);
4760
4761     (suggestion.path.span, variant_path_string, enum_path_string)
4762 }
4763
4764
4765 /// When an entity with a given name is not available in scope, we search for
4766 /// entities with that name in all crates. This method allows outputting the
4767 /// results of this search in a programmer-friendly way
4768 fn show_candidates(err: &mut DiagnosticBuilder,
4769                    // This is `None` if all placement locations are inside expansions
4770                    span: Option<Span>,
4771                    candidates: &[ImportSuggestion],
4772                    better: bool,
4773                    found_use: bool) {
4774
4775     // we want consistent results across executions, but candidates are produced
4776     // by iterating through a hash map, so make sure they are ordered:
4777     let mut path_strings: Vec<_> =
4778         candidates.into_iter().map(|c| path_names_to_string(&c.path)).collect();
4779     path_strings.sort();
4780
4781     let better = if better { "better " } else { "" };
4782     let msg_diff = match path_strings.len() {
4783         1 => " is found in another module, you can import it",
4784         _ => "s are found in other modules, you can import them",
4785     };
4786     let msg = format!("possible {}candidate{} into scope", better, msg_diff);
4787
4788     if let Some(span) = span {
4789         for candidate in &mut path_strings {
4790             // produce an additional newline to separate the new use statement
4791             // from the directly following item.
4792             let additional_newline = if found_use {
4793                 ""
4794             } else {
4795                 "\n"
4796             };
4797             *candidate = format!("use {};\n{}", candidate, additional_newline);
4798         }
4799
4800         err.span_suggestions(span, &msg, path_strings);
4801     } else {
4802         let mut msg = msg;
4803         msg.push(':');
4804         for candidate in path_strings {
4805             msg.push('\n');
4806             msg.push_str(&candidate);
4807         }
4808     }
4809 }
4810
4811 /// A somewhat inefficient routine to obtain the name of a module.
4812 fn module_to_string(module: Module) -> Option<String> {
4813     let mut names = Vec::new();
4814
4815     fn collect_mod(names: &mut Vec<Ident>, module: Module) {
4816         if let ModuleKind::Def(_, name) = module.kind {
4817             if let Some(parent) = module.parent {
4818                 names.push(Ident::with_empty_ctxt(name));
4819                 collect_mod(names, parent);
4820             }
4821         } else {
4822             // danger, shouldn't be ident?
4823             names.push(Ident::from_str("<opaque>"));
4824             collect_mod(names, module.parent.unwrap());
4825         }
4826     }
4827     collect_mod(&mut names, module);
4828
4829     if names.is_empty() {
4830         return None;
4831     }
4832     Some(names_to_string(&names.into_iter()
4833                         .rev()
4834                         .collect::<Vec<_>>()))
4835 }
4836
4837 fn err_path_resolution() -> PathResolution {
4838     PathResolution::new(Def::Err)
4839 }
4840
4841 #[derive(PartialEq,Copy, Clone)]
4842 pub enum MakeGlobMap {
4843     Yes,
4844     No,
4845 }
4846
4847 #[derive(Copy, Clone, Debug)]
4848 enum CrateLint {
4849     /// Do not issue the lint
4850     No,
4851
4852     /// This lint applies to some random path like `impl ::foo::Bar`
4853     /// or whatever. In this case, we can take the span of that path.
4854     SimplePath(NodeId),
4855
4856     /// This lint comes from a `use` statement. In this case, what we
4857     /// care about really is the *root* `use` statement; e.g., if we
4858     /// have nested things like `use a::{b, c}`, we care about the
4859     /// `use a` part.
4860     UsePath { root_id: NodeId, root_span: Span },
4861
4862     /// This is the "trait item" from a fully qualified path. For example,
4863     /// we might be resolving  `X::Y::Z` from a path like `<T as X::Y>::Z`.
4864     /// The `path_span` is the span of the to the trait itself (`X::Y`).
4865     QPathTrait { qpath_id: NodeId, qpath_span: Span },
4866 }
4867
4868 impl CrateLint {
4869     fn node_id(&self) -> Option<NodeId> {
4870         match *self {
4871             CrateLint::No => None,
4872             CrateLint::SimplePath(id) |
4873             CrateLint::UsePath { root_id: id, .. } |
4874             CrateLint::QPathTrait { qpath_id: id, .. } => Some(id),
4875         }
4876     }
4877 }
4878
4879 __build_diagnostic_array! { librustc_resolve, DIAGNOSTICS }