]> git.lizzy.rs Git - rust.git/blob - src/librustc_resolve/lib.rs
Reexport -> re-export in error messages
[rust.git] / src / librustc_resolve / lib.rs
1 // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 #![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
12       html_favicon_url = "https://doc.rust-lang.org/favicon.ico",
13       html_root_url = "https://doc.rust-lang.org/nightly/")]
14 #![deny(warnings)]
15
16 #![feature(rustc_diagnostic_macros)]
17
18 #[macro_use]
19 extern crate log;
20 #[macro_use]
21 extern crate syntax;
22 extern crate syntax_pos;
23 extern crate rustc_errors as errors;
24 extern crate arena;
25 #[macro_use]
26 extern crate rustc;
27 extern crate rustc_data_structures;
28
29 use self::Namespace::*;
30 use self::TypeParameters::*;
31 use self::RibKind::*;
32
33 use rustc::hir::map::{Definitions, DefCollector};
34 use rustc::hir::{self, PrimTy, TyBool, TyChar, TyFloat, TyInt, TyUint, TyStr};
35 use rustc::middle::cstore::{CrateStore, CrateLoader};
36 use rustc::session::Session;
37 use rustc::lint;
38 use rustc::hir::def::*;
39 use rustc::hir::def_id::{CRATE_DEF_INDEX, LOCAL_CRATE, DefId};
40 use rustc::ty;
41 use rustc::hir::{Freevar, FreevarMap, TraitCandidate, TraitMap, GlobMap};
42 use rustc::util::nodemap::{NodeMap, NodeSet, FxHashMap, FxHashSet, DefIdMap};
43
44 use syntax::codemap::{dummy_spanned, respan};
45 use syntax::ext::hygiene::{Mark, MarkKind, SyntaxContext};
46 use syntax::ast::{self, Name, NodeId, Ident, SpannedIdent, FloatTy, IntTy, UintTy};
47 use syntax::ext::base::SyntaxExtension;
48 use syntax::ext::base::Determinacy::{self, Determined, Undetermined};
49 use syntax::ext::base::MacroKind;
50 use syntax::symbol::{Symbol, keywords};
51 use syntax::util::lev_distance::find_best_match_for_name;
52
53 use syntax::visit::{self, FnKind, Visitor};
54 use syntax::attr;
55 use syntax::ast::{Arm, BindingMode, Block, Crate, Expr, ExprKind};
56 use syntax::ast::{FnDecl, ForeignItem, ForeignItemKind, GenericParam, Generics};
57 use syntax::ast::{Item, ItemKind, ImplItem, ImplItemKind};
58 use syntax::ast::{Local, Mutability, Pat, PatKind, Path};
59 use syntax::ast::{QSelf, TraitItemKind, TraitRef, Ty, TyKind};
60 use syntax::feature_gate::{feature_err, emit_feature_err, GateIssue};
61 use syntax::parse::token;
62
63 use syntax_pos::{Span, DUMMY_SP, MultiSpan};
64 use errors::{DiagnosticBuilder, DiagnosticId};
65
66 use std::cell::{Cell, RefCell};
67 use std::cmp;
68 use std::collections::BTreeSet;
69 use std::fmt;
70 use std::mem::replace;
71 use std::rc::Rc;
72
73 use resolve_imports::{ImportDirective, ImportDirectiveSubclass, NameResolution, ImportResolver};
74 use macros::{InvocationData, LegacyBinding, LegacyScope, MacroBinding};
75
76 // NB: This module needs to be declared first so diagnostics are
77 // registered before they are used.
78 mod diagnostics;
79
80 mod macros;
81 mod check_unused;
82 mod build_reduced_graph;
83 mod resolve_imports;
84
85 /// A free importable items suggested in case of resolution failure.
86 struct ImportSuggestion {
87     path: Path,
88 }
89
90 /// A field or associated item from self type suggested in case of resolution failure.
91 enum AssocSuggestion {
92     Field,
93     MethodWithSelf,
94     AssocItem,
95 }
96
97 #[derive(Eq)]
98 struct BindingError {
99     name: Name,
100     origin: BTreeSet<Span>,
101     target: BTreeSet<Span>,
102 }
103
104 impl PartialOrd for BindingError {
105     fn partial_cmp(&self, other: &BindingError) -> Option<cmp::Ordering> {
106         Some(self.cmp(other))
107     }
108 }
109
110 impl PartialEq for BindingError {
111     fn eq(&self, other: &BindingError) -> bool {
112         self.name == other.name
113     }
114 }
115
116 impl Ord for BindingError {
117     fn cmp(&self, other: &BindingError) -> cmp::Ordering {
118         self.name.cmp(&other.name)
119     }
120 }
121
122 enum ResolutionError<'a> {
123     /// error E0401: can't use type parameters from outer function
124     TypeParametersFromOuterFunction,
125     /// error E0403: the name is already used for a type parameter in this type parameter list
126     NameAlreadyUsedInTypeParameterList(Name, &'a Span),
127     /// error E0407: method is not a member of trait
128     MethodNotMemberOfTrait(Name, &'a str),
129     /// error E0437: type is not a member of trait
130     TypeNotMemberOfTrait(Name, &'a str),
131     /// error E0438: const is not a member of trait
132     ConstNotMemberOfTrait(Name, &'a str),
133     /// error E0408: variable `{}` is not bound in all patterns
134     VariableNotBoundInPattern(&'a BindingError),
135     /// error E0409: variable `{}` is bound in inconsistent ways within the same match arm
136     VariableBoundWithDifferentMode(Name, Span),
137     /// error E0415: identifier is bound more than once in this parameter list
138     IdentifierBoundMoreThanOnceInParameterList(&'a str),
139     /// error E0416: identifier is bound more than once in the same pattern
140     IdentifierBoundMoreThanOnceInSamePattern(&'a str),
141     /// error E0426: use of undeclared label
142     UndeclaredLabel(&'a str, Option<Name>),
143     /// error E0429: `self` imports are only allowed within a { } list
144     SelfImportsOnlyAllowedWithin,
145     /// error E0430: `self` import can only appear once in the list
146     SelfImportCanOnlyAppearOnceInTheList,
147     /// error E0431: `self` import can only appear in an import list with a non-empty prefix
148     SelfImportOnlyInImportListWithNonEmptyPrefix,
149     /// error E0432: unresolved import
150     UnresolvedImport(Option<(Span, &'a str, &'a str)>),
151     /// error E0433: failed to resolve
152     FailedToResolve(&'a str),
153     /// error E0434: can't capture dynamic environment in a fn item
154     CannotCaptureDynamicEnvironmentInFnItem,
155     /// error E0435: attempt to use a non-constant value in a constant
156     AttemptToUseNonConstantValueInConstant,
157     /// error E0530: X bindings cannot shadow Ys
158     BindingShadowsSomethingUnacceptable(&'a str, Name, &'a NameBinding<'a>),
159     /// error E0128: type parameters with a default cannot use forward declared identifiers
160     ForwardDeclaredTyParam,
161 }
162
163 fn resolve_error<'sess, 'a>(resolver: &'sess Resolver,
164                             span: Span,
165                             resolution_error: ResolutionError<'a>) {
166     resolve_struct_error(resolver, span, resolution_error).emit();
167 }
168
169 fn resolve_struct_error<'sess, 'a>(resolver: &'sess Resolver,
170                                    span: Span,
171                                    resolution_error: ResolutionError<'a>)
172                                    -> DiagnosticBuilder<'sess> {
173     match resolution_error {
174         ResolutionError::TypeParametersFromOuterFunction => {
175             let mut err = struct_span_err!(resolver.session,
176                                            span,
177                                            E0401,
178                                            "can't use type parameters from outer function; \
179                                            try using a local type parameter instead");
180             err.span_label(span, "use of type variable from outer function");
181             err
182         }
183         ResolutionError::NameAlreadyUsedInTypeParameterList(name, first_use_span) => {
184              let mut err = struct_span_err!(resolver.session,
185                                             span,
186                                             E0403,
187                                             "the name `{}` is already used for a type parameter \
188                                             in this type parameter list",
189                                             name);
190              err.span_label(span, "already used");
191              err.span_label(first_use_span.clone(), format!("first use of `{}`", name));
192              err
193         }
194         ResolutionError::MethodNotMemberOfTrait(method, trait_) => {
195             let mut err = struct_span_err!(resolver.session,
196                                            span,
197                                            E0407,
198                                            "method `{}` is not a member of trait `{}`",
199                                            method,
200                                            trait_);
201             err.span_label(span, format!("not a member of trait `{}`", trait_));
202             err
203         }
204         ResolutionError::TypeNotMemberOfTrait(type_, trait_) => {
205             let mut err = struct_span_err!(resolver.session,
206                              span,
207                              E0437,
208                              "type `{}` is not a member of trait `{}`",
209                              type_,
210                              trait_);
211             err.span_label(span, format!("not a member of trait `{}`", trait_));
212             err
213         }
214         ResolutionError::ConstNotMemberOfTrait(const_, trait_) => {
215             let mut err = struct_span_err!(resolver.session,
216                              span,
217                              E0438,
218                              "const `{}` is not a member of trait `{}`",
219                              const_,
220                              trait_);
221             err.span_label(span, format!("not a member of trait `{}`", trait_));
222             err
223         }
224         ResolutionError::VariableNotBoundInPattern(binding_error) => {
225             let target_sp = binding_error.target.iter().map(|x| *x).collect::<Vec<_>>();
226             let msp = MultiSpan::from_spans(target_sp.clone());
227             let msg = format!("variable `{}` is not bound in all patterns", binding_error.name);
228             let mut err = resolver.session.struct_span_err_with_code(
229                 msp,
230                 &msg,
231                 DiagnosticId::Error("E0408".into()),
232             );
233             for sp in target_sp {
234                 err.span_label(sp, format!("pattern doesn't bind `{}`", binding_error.name));
235             }
236             let origin_sp = binding_error.origin.iter().map(|x| *x).collect::<Vec<_>>();
237             for sp in origin_sp {
238                 err.span_label(sp, "variable not in all patterns");
239             }
240             err
241         }
242         ResolutionError::VariableBoundWithDifferentMode(variable_name,
243                                                         first_binding_span) => {
244             let mut err = struct_span_err!(resolver.session,
245                              span,
246                              E0409,
247                              "variable `{}` is bound in inconsistent \
248                              ways within the same match arm",
249                              variable_name);
250             err.span_label(span, "bound in different ways");
251             err.span_label(first_binding_span, "first binding");
252             err
253         }
254         ResolutionError::IdentifierBoundMoreThanOnceInParameterList(identifier) => {
255             let mut err = struct_span_err!(resolver.session,
256                              span,
257                              E0415,
258                              "identifier `{}` is bound more than once in this parameter list",
259                              identifier);
260             err.span_label(span, "used as parameter more than once");
261             err
262         }
263         ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(identifier) => {
264             let mut err = struct_span_err!(resolver.session,
265                              span,
266                              E0416,
267                              "identifier `{}` is bound more than once in the same pattern",
268                              identifier);
269             err.span_label(span, "used in a pattern more than once");
270             err
271         }
272         ResolutionError::UndeclaredLabel(name, lev_candidate) => {
273             let mut err = struct_span_err!(resolver.session,
274                                            span,
275                                            E0426,
276                                            "use of undeclared label `{}`",
277                                            name);
278             if let Some(lev_candidate) = lev_candidate {
279                 err.span_label(span, format!("did you mean `{}`?", lev_candidate));
280             } else {
281                 err.span_label(span, format!("undeclared label `{}`", name));
282             }
283             err
284         }
285         ResolutionError::SelfImportsOnlyAllowedWithin => {
286             struct_span_err!(resolver.session,
287                              span,
288                              E0429,
289                              "{}",
290                              "`self` imports are only allowed within a { } list")
291         }
292         ResolutionError::SelfImportCanOnlyAppearOnceInTheList => {
293             let mut err = struct_span_err!(resolver.session, span, E0430,
294                                            "`self` import can only appear once in an import list");
295             err.span_label(span, "can only appear once in an import list");
296             err
297         }
298         ResolutionError::SelfImportOnlyInImportListWithNonEmptyPrefix => {
299             let mut err = struct_span_err!(resolver.session, span, E0431,
300                                            "`self` import can only appear in an import list with \
301                                             a non-empty prefix");
302             err.span_label(span, "can only appear in an import list with a non-empty prefix");
303             err
304         }
305         ResolutionError::UnresolvedImport(name) => {
306             let (span, msg) = match name {
307                 Some((sp, n, _)) => (sp, format!("unresolved import `{}`", n)),
308                 None => (span, "unresolved import".to_owned()),
309             };
310             let mut err = struct_span_err!(resolver.session, span, E0432, "{}", msg);
311             if let Some((_, _, p)) = name {
312                 err.span_label(span, p);
313             }
314             err
315         }
316         ResolutionError::FailedToResolve(msg) => {
317             let mut err = struct_span_err!(resolver.session, span, E0433,
318                                            "failed to resolve. {}", msg);
319             err.span_label(span, msg);
320             err
321         }
322         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem => {
323             let mut err = struct_span_err!(resolver.session,
324                                            span,
325                                            E0434,
326                                            "{}",
327                                            "can't capture dynamic environment in a fn item");
328             err.help("use the `|| { ... }` closure form instead");
329             err
330         }
331         ResolutionError::AttemptToUseNonConstantValueInConstant => {
332             let mut err = struct_span_err!(resolver.session, span, E0435,
333                                            "attempt to use a non-constant value in a constant");
334             err.span_label(span, "non-constant value");
335             err
336         }
337         ResolutionError::BindingShadowsSomethingUnacceptable(what_binding, name, binding) => {
338             let shadows_what = PathResolution::new(binding.def()).kind_name();
339             let mut err = struct_span_err!(resolver.session,
340                                            span,
341                                            E0530,
342                                            "{}s cannot shadow {}s", what_binding, shadows_what);
343             err.span_label(span, format!("cannot be named the same as a {}", shadows_what));
344             let participle = if binding.is_import() { "imported" } else { "defined" };
345             let msg = format!("a {} `{}` is {} here", shadows_what, name, participle);
346             err.span_label(binding.span, msg);
347             err
348         }
349         ResolutionError::ForwardDeclaredTyParam => {
350             let mut err = struct_span_err!(resolver.session, span, E0128,
351                                            "type parameters with a default cannot use \
352                                             forward declared identifiers");
353             err.span_label(span, format!("defaulted type parameters cannot be forward declared"));
354             err
355         }
356     }
357 }
358
359 #[derive(Copy, Clone, Debug)]
360 struct BindingInfo {
361     span: Span,
362     binding_mode: BindingMode,
363 }
364
365 // Map from the name in a pattern to its binding mode.
366 type BindingMap = FxHashMap<Ident, BindingInfo>;
367
368 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
369 enum PatternSource {
370     Match,
371     IfLet,
372     WhileLet,
373     Let,
374     For,
375     FnParam,
376 }
377
378 impl PatternSource {
379     fn descr(self) -> &'static str {
380         match self {
381             PatternSource::Match => "match binding",
382             PatternSource::IfLet => "if let binding",
383             PatternSource::WhileLet => "while let binding",
384             PatternSource::Let => "let binding",
385             PatternSource::For => "for binding",
386             PatternSource::FnParam => "function parameter",
387         }
388     }
389 }
390
391 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
392 enum AliasPossibility {
393     No,
394     Maybe,
395 }
396
397 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
398 enum PathSource<'a> {
399     // Type paths `Path`.
400     Type,
401     // Trait paths in bounds or impls.
402     Trait(AliasPossibility),
403     // Expression paths `path`, with optional parent context.
404     Expr(Option<&'a Expr>),
405     // Paths in path patterns `Path`.
406     Pat,
407     // Paths in struct expressions and patterns `Path { .. }`.
408     Struct,
409     // Paths in tuple struct patterns `Path(..)`.
410     TupleStruct,
411     // `m::A::B` in `<T as m::A>::B::C`.
412     TraitItem(Namespace),
413     // Path in `pub(path)`
414     Visibility,
415     // Path in `use a::b::{...};`
416     ImportPrefix,
417 }
418
419 impl<'a> PathSource<'a> {
420     fn namespace(self) -> Namespace {
421         match self {
422             PathSource::Type | PathSource::Trait(_) | PathSource::Struct |
423             PathSource::Visibility | PathSource::ImportPrefix => TypeNS,
424             PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct => ValueNS,
425             PathSource::TraitItem(ns) => ns,
426         }
427     }
428
429     fn global_by_default(self) -> bool {
430         match self {
431             PathSource::Visibility | PathSource::ImportPrefix => true,
432             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
433             PathSource::Struct | PathSource::TupleStruct |
434             PathSource::Trait(_) | PathSource::TraitItem(..) => false,
435         }
436     }
437
438     fn defer_to_typeck(self) -> bool {
439         match self {
440             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
441             PathSource::Struct | PathSource::TupleStruct => true,
442             PathSource::Trait(_) | PathSource::TraitItem(..) |
443             PathSource::Visibility | PathSource::ImportPrefix => false,
444         }
445     }
446
447     fn descr_expected(self) -> &'static str {
448         match self {
449             PathSource::Type => "type",
450             PathSource::Trait(_) => "trait",
451             PathSource::Pat => "unit struct/variant or constant",
452             PathSource::Struct => "struct, variant or union type",
453             PathSource::TupleStruct => "tuple struct/variant",
454             PathSource::Visibility => "module",
455             PathSource::ImportPrefix => "module or enum",
456             PathSource::TraitItem(ns) => match ns {
457                 TypeNS => "associated type",
458                 ValueNS => "method or associated constant",
459                 MacroNS => bug!("associated macro"),
460             },
461             PathSource::Expr(parent) => match parent.map(|p| &p.node) {
462                 // "function" here means "anything callable" rather than `Def::Fn`,
463                 // this is not precise but usually more helpful than just "value".
464                 Some(&ExprKind::Call(..)) => "function",
465                 _ => "value",
466             },
467         }
468     }
469
470     fn is_expected(self, def: Def) -> bool {
471         match self {
472             PathSource::Type => match def {
473                 Def::Struct(..) | Def::Union(..) | Def::Enum(..) |
474                 Def::Trait(..) | Def::TyAlias(..) | Def::AssociatedTy(..) |
475                 Def::PrimTy(..) | Def::TyParam(..) | Def::SelfTy(..) |
476                 Def::TyForeign(..) => true,
477                 _ => false,
478             },
479             PathSource::Trait(AliasPossibility::No) => match def {
480                 Def::Trait(..) => true,
481                 _ => false,
482             },
483             PathSource::Trait(AliasPossibility::Maybe) => match def {
484                 Def::Trait(..) => true,
485                 Def::TraitAlias(..) => true,
486                 _ => false,
487             },
488             PathSource::Expr(..) => match def {
489                 Def::StructCtor(_, CtorKind::Const) | Def::StructCtor(_, CtorKind::Fn) |
490                 Def::VariantCtor(_, CtorKind::Const) | Def::VariantCtor(_, CtorKind::Fn) |
491                 Def::Const(..) | Def::Static(..) | Def::Local(..) | Def::Upvar(..) |
492                 Def::Fn(..) | Def::Method(..) | Def::AssociatedConst(..) => true,
493                 _ => false,
494             },
495             PathSource::Pat => match def {
496                 Def::StructCtor(_, CtorKind::Const) |
497                 Def::VariantCtor(_, CtorKind::Const) |
498                 Def::Const(..) | Def::AssociatedConst(..) => true,
499                 _ => false,
500             },
501             PathSource::TupleStruct => match def {
502                 Def::StructCtor(_, CtorKind::Fn) | Def::VariantCtor(_, CtorKind::Fn) => true,
503                 _ => false,
504             },
505             PathSource::Struct => match def {
506                 Def::Struct(..) | Def::Union(..) | Def::Variant(..) |
507                 Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => true,
508                 _ => false,
509             },
510             PathSource::TraitItem(ns) => match def {
511                 Def::AssociatedConst(..) | Def::Method(..) if ns == ValueNS => true,
512                 Def::AssociatedTy(..) if ns == TypeNS => true,
513                 _ => false,
514             },
515             PathSource::ImportPrefix => match def {
516                 Def::Mod(..) | Def::Enum(..) => true,
517                 _ => false,
518             },
519             PathSource::Visibility => match def {
520                 Def::Mod(..) => true,
521                 _ => false,
522             },
523         }
524     }
525
526     fn error_code(self, has_unexpected_resolution: bool) -> &'static str {
527         __diagnostic_used!(E0404);
528         __diagnostic_used!(E0405);
529         __diagnostic_used!(E0412);
530         __diagnostic_used!(E0422);
531         __diagnostic_used!(E0423);
532         __diagnostic_used!(E0425);
533         __diagnostic_used!(E0531);
534         __diagnostic_used!(E0532);
535         __diagnostic_used!(E0573);
536         __diagnostic_used!(E0574);
537         __diagnostic_used!(E0575);
538         __diagnostic_used!(E0576);
539         __diagnostic_used!(E0577);
540         __diagnostic_used!(E0578);
541         match (self, has_unexpected_resolution) {
542             (PathSource::Trait(_), true) => "E0404",
543             (PathSource::Trait(_), false) => "E0405",
544             (PathSource::Type, true) => "E0573",
545             (PathSource::Type, false) => "E0412",
546             (PathSource::Struct, true) => "E0574",
547             (PathSource::Struct, false) => "E0422",
548             (PathSource::Expr(..), true) => "E0423",
549             (PathSource::Expr(..), false) => "E0425",
550             (PathSource::Pat, true) | (PathSource::TupleStruct, true) => "E0532",
551             (PathSource::Pat, false) | (PathSource::TupleStruct, false) => "E0531",
552             (PathSource::TraitItem(..), true) => "E0575",
553             (PathSource::TraitItem(..), false) => "E0576",
554             (PathSource::Visibility, true) | (PathSource::ImportPrefix, true) => "E0577",
555             (PathSource::Visibility, false) | (PathSource::ImportPrefix, false) => "E0578",
556         }
557     }
558 }
559
560 #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
561 pub enum Namespace {
562     TypeNS,
563     ValueNS,
564     MacroNS,
565 }
566
567 #[derive(Clone, Default, Debug)]
568 pub struct PerNS<T> {
569     value_ns: T,
570     type_ns: T,
571     macro_ns: Option<T>,
572 }
573
574 impl<T> ::std::ops::Index<Namespace> for PerNS<T> {
575     type Output = T;
576     fn index(&self, ns: Namespace) -> &T {
577         match ns {
578             ValueNS => &self.value_ns,
579             TypeNS => &self.type_ns,
580             MacroNS => self.macro_ns.as_ref().unwrap(),
581         }
582     }
583 }
584
585 impl<T> ::std::ops::IndexMut<Namespace> for PerNS<T> {
586     fn index_mut(&mut self, ns: Namespace) -> &mut T {
587         match ns {
588             ValueNS => &mut self.value_ns,
589             TypeNS => &mut self.type_ns,
590             MacroNS => self.macro_ns.as_mut().unwrap(),
591         }
592     }
593 }
594
595 struct UsePlacementFinder {
596     target_module: NodeId,
597     span: Option<Span>,
598     found_use: bool,
599 }
600
601 impl UsePlacementFinder {
602     fn check(krate: &Crate, target_module: NodeId) -> (Option<Span>, bool) {
603         let mut finder = UsePlacementFinder {
604             target_module,
605             span: None,
606             found_use: false,
607         };
608         visit::walk_crate(&mut finder, krate);
609         (finder.span, finder.found_use)
610     }
611 }
612
613 impl<'tcx> Visitor<'tcx> for UsePlacementFinder {
614     fn visit_mod(
615         &mut self,
616         module: &'tcx ast::Mod,
617         _: Span,
618         _: &[ast::Attribute],
619         node_id: NodeId,
620     ) {
621         if self.span.is_some() {
622             return;
623         }
624         if node_id != self.target_module {
625             visit::walk_mod(self, module);
626             return;
627         }
628         // find a use statement
629         for item in &module.items {
630             match item.node {
631                 ItemKind::Use(..) => {
632                     // don't suggest placing a use before the prelude
633                     // import or other generated ones
634                     if item.span.ctxt().outer().expn_info().is_none() {
635                         self.span = Some(item.span.with_hi(item.span.lo()));
636                         self.found_use = true;
637                         return;
638                     }
639                 },
640                 // don't place use before extern crate
641                 ItemKind::ExternCrate(_) => {}
642                 // but place them before the first other item
643                 _ => if self.span.map_or(true, |span| item.span < span ) {
644                     if item.span.ctxt().outer().expn_info().is_none() {
645                         // don't insert between attributes and an item
646                         if item.attrs.is_empty() {
647                             self.span = Some(item.span.with_hi(item.span.lo()));
648                         } else {
649                             // find the first attribute on the item
650                             for attr in &item.attrs {
651                                 if self.span.map_or(true, |span| attr.span < span) {
652                                     self.span = Some(attr.span.with_hi(attr.span.lo()));
653                                 }
654                             }
655                         }
656                     }
657                 },
658             }
659         }
660     }
661 }
662
663 impl<'a, 'tcx> Visitor<'tcx> for Resolver<'a> {
664     fn visit_item(&mut self, item: &'tcx Item) {
665         self.resolve_item(item);
666     }
667     fn visit_arm(&mut self, arm: &'tcx Arm) {
668         self.resolve_arm(arm);
669     }
670     fn visit_block(&mut self, block: &'tcx Block) {
671         self.resolve_block(block);
672     }
673     fn visit_expr(&mut self, expr: &'tcx Expr) {
674         self.resolve_expr(expr, None);
675     }
676     fn visit_local(&mut self, local: &'tcx Local) {
677         self.resolve_local(local);
678     }
679     fn visit_ty(&mut self, ty: &'tcx Ty) {
680         match ty.node {
681             TyKind::Path(ref qself, ref path) => {
682                 self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
683             }
684             TyKind::ImplicitSelf => {
685                 let self_ty = keywords::SelfType.ident();
686                 let def = self.resolve_ident_in_lexical_scope(self_ty, TypeNS, true, ty.span)
687                               .map_or(Def::Err, |d| d.def());
688                 self.record_def(ty.id, PathResolution::new(def));
689             }
690             TyKind::Array(ref element, ref length) => {
691                 self.visit_ty(element);
692                 self.with_constant_rib(|this| {
693                     this.visit_expr(length);
694                 });
695                 return;
696             }
697             _ => (),
698         }
699         visit::walk_ty(self, ty);
700     }
701     fn visit_poly_trait_ref(&mut self,
702                             tref: &'tcx ast::PolyTraitRef,
703                             m: &'tcx ast::TraitBoundModifier) {
704         self.smart_resolve_path(tref.trait_ref.ref_id, None,
705                                 &tref.trait_ref.path, PathSource::Trait(AliasPossibility::Maybe));
706         visit::walk_poly_trait_ref(self, tref, m);
707     }
708     fn visit_variant(&mut self,
709                      variant: &'tcx ast::Variant,
710                      generics: &'tcx Generics,
711                      item_id: ast::NodeId) {
712         if let Some(ref dis_expr) = variant.node.disr_expr {
713             // resolve the discriminator expr as a constant
714             self.with_constant_rib(|this| {
715                 this.visit_expr(dis_expr);
716             });
717         }
718
719         // `visit::walk_variant` without the discriminant expression.
720         self.visit_variant_data(&variant.node.data,
721                                 variant.node.name,
722                                 generics,
723                                 item_id,
724                                 variant.span);
725     }
726     fn visit_foreign_item(&mut self, foreign_item: &'tcx ForeignItem) {
727         let type_parameters = match foreign_item.node {
728             ForeignItemKind::Fn(_, ref generics) => {
729                 HasTypeParameters(generics, ItemRibKind)
730             }
731             ForeignItemKind::Static(..) => NoTypeParameters,
732             ForeignItemKind::Ty => NoTypeParameters,
733         };
734         self.with_type_parameter_rib(type_parameters, |this| {
735             visit::walk_foreign_item(this, foreign_item);
736         });
737     }
738     fn visit_fn(&mut self,
739                 function_kind: FnKind<'tcx>,
740                 declaration: &'tcx FnDecl,
741                 _: Span,
742                 node_id: NodeId) {
743         let rib_kind = match function_kind {
744             FnKind::ItemFn(..) => {
745                 ItemRibKind
746             }
747             FnKind::Method(_, _, _, _) => {
748                 TraitOrImplItemRibKind
749             }
750             FnKind::Closure(_) => ClosureRibKind(node_id),
751         };
752
753         // Create a value rib for the function.
754         self.ribs[ValueNS].push(Rib::new(rib_kind));
755
756         // Create a label rib for the function.
757         self.label_ribs.push(Rib::new(rib_kind));
758
759         // Add each argument to the rib.
760         let mut bindings_list = FxHashMap();
761         for argument in &declaration.inputs {
762             self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
763
764             self.visit_ty(&argument.ty);
765
766             debug!("(resolving function) recorded argument");
767         }
768         visit::walk_fn_ret_ty(self, &declaration.output);
769
770         // Resolve the function body.
771         match function_kind {
772             FnKind::ItemFn(.., body) |
773             FnKind::Method(.., body) => {
774                 self.visit_block(body);
775             }
776             FnKind::Closure(body) => {
777                 self.visit_expr(body);
778             }
779         };
780
781         debug!("(resolving function) leaving function");
782
783         self.label_ribs.pop();
784         self.ribs[ValueNS].pop();
785     }
786     fn visit_generics(&mut self, generics: &'tcx Generics) {
787         // For type parameter defaults, we have to ban access
788         // to following type parameters, as the Substs can only
789         // provide previous type parameters as they're built.
790         let mut default_ban_rib = Rib::new(ForwardTyParamBanRibKind);
791         default_ban_rib.bindings.extend(generics.params.iter()
792             .filter_map(|p| if let GenericParam::Type(ref tp) = *p { Some(tp) } else { None })
793             .skip_while(|p| p.default.is_none())
794             .map(|p| (Ident::with_empty_ctxt(p.ident.name), Def::Err)));
795
796         for param in &generics.params {
797             match *param {
798                 GenericParam::Lifetime(_) => self.visit_generic_param(param),
799                 GenericParam::Type(ref ty_param) => {
800                     for bound in &ty_param.bounds {
801                         self.visit_ty_param_bound(bound);
802                     }
803
804                     if let Some(ref ty) = ty_param.default {
805                         self.ribs[TypeNS].push(default_ban_rib);
806                         self.visit_ty(ty);
807                         default_ban_rib = self.ribs[TypeNS].pop().unwrap();
808                     }
809
810                     // Allow all following defaults to refer to this type parameter.
811                     default_ban_rib.bindings.remove(&Ident::with_empty_ctxt(ty_param.ident.name));
812                 }
813             }
814         }
815         for p in &generics.where_clause.predicates { self.visit_where_predicate(p); }
816     }
817 }
818
819 #[derive(Copy, Clone)]
820 enum TypeParameters<'a, 'b> {
821     NoTypeParameters,
822     HasTypeParameters(// Type parameters.
823                       &'b Generics,
824
825                       // The kind of the rib used for type parameters.
826                       RibKind<'a>),
827 }
828
829 // The rib kind controls the translation of local
830 // definitions (`Def::Local`) to upvars (`Def::Upvar`).
831 #[derive(Copy, Clone, Debug)]
832 enum RibKind<'a> {
833     // No translation needs to be applied.
834     NormalRibKind,
835
836     // We passed through a closure scope at the given node ID.
837     // Translate upvars as appropriate.
838     ClosureRibKind(NodeId /* func id */),
839
840     // We passed through an impl or trait and are now in one of its
841     // methods or associated types. Allow references to ty params that impl or trait
842     // binds. Disallow any other upvars (including other ty params that are
843     // upvars).
844     TraitOrImplItemRibKind,
845
846     // We passed through an item scope. Disallow upvars.
847     ItemRibKind,
848
849     // We're in a constant item. Can't refer to dynamic stuff.
850     ConstantItemRibKind,
851
852     // We passed through a module.
853     ModuleRibKind(Module<'a>),
854
855     // We passed through a `macro_rules!` statement
856     MacroDefinition(DefId),
857
858     // All bindings in this rib are type parameters that can't be used
859     // from the default of a type parameter because they're not declared
860     // before said type parameter. Also see the `visit_generics` override.
861     ForwardTyParamBanRibKind,
862 }
863
864 /// One local scope.
865 #[derive(Debug)]
866 struct Rib<'a> {
867     bindings: FxHashMap<Ident, Def>,
868     kind: RibKind<'a>,
869 }
870
871 impl<'a> Rib<'a> {
872     fn new(kind: RibKind<'a>) -> Rib<'a> {
873         Rib {
874             bindings: FxHashMap(),
875             kind,
876         }
877     }
878 }
879
880 enum LexicalScopeBinding<'a> {
881     Item(&'a NameBinding<'a>),
882     Def(Def),
883 }
884
885 impl<'a> LexicalScopeBinding<'a> {
886     fn item(self) -> Option<&'a NameBinding<'a>> {
887         match self {
888             LexicalScopeBinding::Item(binding) => Some(binding),
889             _ => None,
890         }
891     }
892
893     fn def(self) -> Def {
894         match self {
895             LexicalScopeBinding::Item(binding) => binding.def(),
896             LexicalScopeBinding::Def(def) => def,
897         }
898     }
899 }
900
901 #[derive(Clone)]
902 enum PathResult<'a> {
903     Module(Module<'a>),
904     NonModule(PathResolution),
905     Indeterminate,
906     Failed(Span, String, bool /* is the error from the last segment? */),
907 }
908
909 enum ModuleKind {
910     Block(NodeId),
911     Def(Def, Name),
912 }
913
914 /// One node in the tree of modules.
915 pub struct ModuleData<'a> {
916     parent: Option<Module<'a>>,
917     kind: ModuleKind,
918
919     // The def id of the closest normal module (`mod`) ancestor (including this module).
920     normal_ancestor_id: DefId,
921
922     resolutions: RefCell<FxHashMap<(Ident, Namespace), &'a RefCell<NameResolution<'a>>>>,
923     legacy_macro_resolutions: RefCell<Vec<(Mark, Ident, Span, MacroKind)>>,
924     macro_resolutions: RefCell<Vec<(Box<[Ident]>, Span)>>,
925
926     // Macro invocations that can expand into items in this module.
927     unresolved_invocations: RefCell<FxHashSet<Mark>>,
928
929     no_implicit_prelude: bool,
930
931     glob_importers: RefCell<Vec<&'a ImportDirective<'a>>>,
932     globs: RefCell<Vec<&'a ImportDirective<'a>>>,
933
934     // Used to memoize the traits in this module for faster searches through all traits in scope.
935     traits: RefCell<Option<Box<[(Ident, &'a NameBinding<'a>)]>>>,
936
937     // Whether this module is populated. If not populated, any attempt to
938     // access the children must be preceded with a
939     // `populate_module_if_necessary` call.
940     populated: Cell<bool>,
941
942     /// Span of the module itself. Used for error reporting.
943     span: Span,
944
945     expansion: Mark,
946 }
947
948 type Module<'a> = &'a ModuleData<'a>;
949
950 impl<'a> ModuleData<'a> {
951     fn new(parent: Option<Module<'a>>,
952            kind: ModuleKind,
953            normal_ancestor_id: DefId,
954            expansion: Mark,
955            span: Span) -> Self {
956         ModuleData {
957             parent,
958             kind,
959             normal_ancestor_id,
960             resolutions: RefCell::new(FxHashMap()),
961             legacy_macro_resolutions: RefCell::new(Vec::new()),
962             macro_resolutions: RefCell::new(Vec::new()),
963             unresolved_invocations: RefCell::new(FxHashSet()),
964             no_implicit_prelude: false,
965             glob_importers: RefCell::new(Vec::new()),
966             globs: RefCell::new((Vec::new())),
967             traits: RefCell::new(None),
968             populated: Cell::new(normal_ancestor_id.is_local()),
969             span,
970             expansion,
971         }
972     }
973
974     fn for_each_child<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
975         for (&(ident, ns), name_resolution) in self.resolutions.borrow().iter() {
976             name_resolution.borrow().binding.map(|binding| f(ident, ns, binding));
977         }
978     }
979
980     fn for_each_child_stable<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
981         let resolutions = self.resolutions.borrow();
982         let mut resolutions = resolutions.iter().map(|(&(ident, ns), &resolution)| {
983                                                     // Pre-compute keys for sorting
984                                                     (ident.name.as_str(), ns, ident, resolution)
985                                                 })
986                                                 .collect::<Vec<_>>();
987         resolutions.sort_unstable_by_key(|&(str, ns, ..)| (str, ns));
988         for &(_, ns, ident, resolution) in resolutions.iter() {
989             resolution.borrow().binding.map(|binding| f(ident, ns, binding));
990         }
991     }
992
993     fn def(&self) -> Option<Def> {
994         match self.kind {
995             ModuleKind::Def(def, _) => Some(def),
996             _ => None,
997         }
998     }
999
1000     fn def_id(&self) -> Option<DefId> {
1001         self.def().as_ref().map(Def::def_id)
1002     }
1003
1004     // `self` resolves to the first module ancestor that `is_normal`.
1005     fn is_normal(&self) -> bool {
1006         match self.kind {
1007             ModuleKind::Def(Def::Mod(_), _) => true,
1008             _ => false,
1009         }
1010     }
1011
1012     fn is_trait(&self) -> bool {
1013         match self.kind {
1014             ModuleKind::Def(Def::Trait(_), _) => true,
1015             _ => false,
1016         }
1017     }
1018
1019     fn is_local(&self) -> bool {
1020         self.normal_ancestor_id.is_local()
1021     }
1022
1023     fn nearest_item_scope(&'a self) -> Module<'a> {
1024         if self.is_trait() { self.parent.unwrap() } else { self }
1025     }
1026 }
1027
1028 impl<'a> fmt::Debug for ModuleData<'a> {
1029     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1030         write!(f, "{:?}", self.def())
1031     }
1032 }
1033
1034 // Records a possibly-private value, type, or module definition.
1035 #[derive(Clone, Debug)]
1036 pub struct NameBinding<'a> {
1037     kind: NameBindingKind<'a>,
1038     expansion: Mark,
1039     span: Span,
1040     vis: ty::Visibility,
1041 }
1042
1043 pub trait ToNameBinding<'a> {
1044     fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a>;
1045 }
1046
1047 impl<'a> ToNameBinding<'a> for &'a NameBinding<'a> {
1048     fn to_name_binding(self, _: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> {
1049         self
1050     }
1051 }
1052
1053 #[derive(Clone, Debug)]
1054 enum NameBindingKind<'a> {
1055     Def(Def),
1056     Module(Module<'a>),
1057     Import {
1058         binding: &'a NameBinding<'a>,
1059         directive: &'a ImportDirective<'a>,
1060         used: Cell<bool>,
1061         legacy_self_import: bool,
1062     },
1063     Ambiguity {
1064         b1: &'a NameBinding<'a>,
1065         b2: &'a NameBinding<'a>,
1066         legacy: bool,
1067     }
1068 }
1069
1070 struct PrivacyError<'a>(Span, Name, &'a NameBinding<'a>);
1071
1072 struct UseError<'a> {
1073     err: DiagnosticBuilder<'a>,
1074     /// Attach `use` statements for these candidates
1075     candidates: Vec<ImportSuggestion>,
1076     /// The node id of the module to place the use statements in
1077     node_id: NodeId,
1078     /// Whether the diagnostic should state that it's "better"
1079     better: bool,
1080 }
1081
1082 struct AmbiguityError<'a> {
1083     span: Span,
1084     name: Name,
1085     lexical: bool,
1086     b1: &'a NameBinding<'a>,
1087     b2: &'a NameBinding<'a>,
1088     legacy: bool,
1089 }
1090
1091 impl<'a> NameBinding<'a> {
1092     fn module(&self) -> Option<Module<'a>> {
1093         match self.kind {
1094             NameBindingKind::Module(module) => Some(module),
1095             NameBindingKind::Import { binding, .. } => binding.module(),
1096             NameBindingKind::Ambiguity { legacy: true, b1, .. } => b1.module(),
1097             _ => None,
1098         }
1099     }
1100
1101     fn def(&self) -> Def {
1102         match self.kind {
1103             NameBindingKind::Def(def) => def,
1104             NameBindingKind::Module(module) => module.def().unwrap(),
1105             NameBindingKind::Import { binding, .. } => binding.def(),
1106             NameBindingKind::Ambiguity { legacy: true, b1, .. } => b1.def(),
1107             NameBindingKind::Ambiguity { .. } => Def::Err,
1108         }
1109     }
1110
1111     fn def_ignoring_ambiguity(&self) -> Def {
1112         match self.kind {
1113             NameBindingKind::Import { binding, .. } => binding.def_ignoring_ambiguity(),
1114             NameBindingKind::Ambiguity { b1, .. } => b1.def_ignoring_ambiguity(),
1115             _ => self.def(),
1116         }
1117     }
1118
1119     fn get_macro(&self, resolver: &mut Resolver<'a>) -> Rc<SyntaxExtension> {
1120         resolver.get_macro(self.def_ignoring_ambiguity())
1121     }
1122
1123     // We sometimes need to treat variants as `pub` for backwards compatibility
1124     fn pseudo_vis(&self) -> ty::Visibility {
1125         if self.is_variant() && self.def().def_id().is_local() {
1126             ty::Visibility::Public
1127         } else {
1128             self.vis
1129         }
1130     }
1131
1132     fn is_variant(&self) -> bool {
1133         match self.kind {
1134             NameBindingKind::Def(Def::Variant(..)) |
1135             NameBindingKind::Def(Def::VariantCtor(..)) => true,
1136             _ => false,
1137         }
1138     }
1139
1140     fn is_extern_crate(&self) -> bool {
1141         match self.kind {
1142             NameBindingKind::Import {
1143                 directive: &ImportDirective {
1144                     subclass: ImportDirectiveSubclass::ExternCrate(_), ..
1145                 }, ..
1146             } => true,
1147             _ => false,
1148         }
1149     }
1150
1151     fn is_import(&self) -> bool {
1152         match self.kind {
1153             NameBindingKind::Import { .. } => true,
1154             _ => false,
1155         }
1156     }
1157
1158     fn is_renamed_extern_crate(&self) -> bool {
1159         if let NameBindingKind::Import { directive, ..} = self.kind {
1160             if let ImportDirectiveSubclass::ExternCrate(Some(_)) = directive.subclass {
1161                 return true;
1162             }
1163         }
1164         false
1165     }
1166
1167     fn is_glob_import(&self) -> bool {
1168         match self.kind {
1169             NameBindingKind::Import { directive, .. } => directive.is_glob(),
1170             NameBindingKind::Ambiguity { b1, .. } => b1.is_glob_import(),
1171             _ => false,
1172         }
1173     }
1174
1175     fn is_importable(&self) -> bool {
1176         match self.def() {
1177             Def::AssociatedConst(..) | Def::Method(..) | Def::AssociatedTy(..) => false,
1178             _ => true,
1179         }
1180     }
1181
1182     fn is_macro_def(&self) -> bool {
1183         match self.kind {
1184             NameBindingKind::Def(Def::Macro(..)) => true,
1185             _ => false,
1186         }
1187     }
1188
1189     fn descr(&self) -> &'static str {
1190         if self.is_extern_crate() { "extern crate" } else { self.def().kind_name() }
1191     }
1192 }
1193
1194 /// Interns the names of the primitive types.
1195 struct PrimitiveTypeTable {
1196     primitive_types: FxHashMap<Name, PrimTy>,
1197 }
1198
1199 impl PrimitiveTypeTable {
1200     fn new() -> PrimitiveTypeTable {
1201         let mut table = PrimitiveTypeTable { primitive_types: FxHashMap() };
1202
1203         table.intern("bool", TyBool);
1204         table.intern("char", TyChar);
1205         table.intern("f32", TyFloat(FloatTy::F32));
1206         table.intern("f64", TyFloat(FloatTy::F64));
1207         table.intern("isize", TyInt(IntTy::Isize));
1208         table.intern("i8", TyInt(IntTy::I8));
1209         table.intern("i16", TyInt(IntTy::I16));
1210         table.intern("i32", TyInt(IntTy::I32));
1211         table.intern("i64", TyInt(IntTy::I64));
1212         table.intern("i128", TyInt(IntTy::I128));
1213         table.intern("str", TyStr);
1214         table.intern("usize", TyUint(UintTy::Usize));
1215         table.intern("u8", TyUint(UintTy::U8));
1216         table.intern("u16", TyUint(UintTy::U16));
1217         table.intern("u32", TyUint(UintTy::U32));
1218         table.intern("u64", TyUint(UintTy::U64));
1219         table.intern("u128", TyUint(UintTy::U128));
1220         table
1221     }
1222
1223     fn intern(&mut self, string: &str, primitive_type: PrimTy) {
1224         self.primitive_types.insert(Symbol::intern(string), primitive_type);
1225     }
1226 }
1227
1228 /// The main resolver class.
1229 pub struct Resolver<'a> {
1230     session: &'a Session,
1231     cstore: &'a CrateStore,
1232
1233     pub definitions: Definitions,
1234
1235     graph_root: Module<'a>,
1236
1237     prelude: Option<Module<'a>>,
1238
1239     // n.b. This is used only for better diagnostics, not name resolution itself.
1240     has_self: FxHashSet<DefId>,
1241
1242     // Names of fields of an item `DefId` accessible with dot syntax.
1243     // Used for hints during error reporting.
1244     field_names: FxHashMap<DefId, Vec<Name>>,
1245
1246     // All imports known to succeed or fail.
1247     determined_imports: Vec<&'a ImportDirective<'a>>,
1248
1249     // All non-determined imports.
1250     indeterminate_imports: Vec<&'a ImportDirective<'a>>,
1251
1252     // The module that represents the current item scope.
1253     current_module: Module<'a>,
1254
1255     // The current set of local scopes for types and values.
1256     // FIXME #4948: Reuse ribs to avoid allocation.
1257     ribs: PerNS<Vec<Rib<'a>>>,
1258
1259     // The current set of local scopes, for labels.
1260     label_ribs: Vec<Rib<'a>>,
1261
1262     // The trait that the current context can refer to.
1263     current_trait_ref: Option<(Module<'a>, TraitRef)>,
1264
1265     // The current self type if inside an impl (used for better errors).
1266     current_self_type: Option<Ty>,
1267
1268     // The idents for the primitive types.
1269     primitive_type_table: PrimitiveTypeTable,
1270
1271     def_map: DefMap,
1272     pub freevars: FreevarMap,
1273     freevars_seen: NodeMap<NodeMap<usize>>,
1274     pub export_map: ExportMap,
1275     pub trait_map: TraitMap,
1276
1277     // A map from nodes to anonymous modules.
1278     // Anonymous modules are pseudo-modules that are implicitly created around items
1279     // contained within blocks.
1280     //
1281     // For example, if we have this:
1282     //
1283     //  fn f() {
1284     //      fn g() {
1285     //          ...
1286     //      }
1287     //  }
1288     //
1289     // There will be an anonymous module created around `g` with the ID of the
1290     // entry block for `f`.
1291     block_map: NodeMap<Module<'a>>,
1292     module_map: FxHashMap<DefId, Module<'a>>,
1293     extern_module_map: FxHashMap<(DefId, bool /* MacrosOnly? */), Module<'a>>,
1294
1295     pub make_glob_map: bool,
1296     /// Maps imports to the names of items actually imported (this actually maps
1297     /// all imports, but only glob imports are actually interesting).
1298     pub glob_map: GlobMap,
1299
1300     used_imports: FxHashSet<(NodeId, Namespace)>,
1301     pub maybe_unused_trait_imports: NodeSet,
1302     pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
1303
1304     /// privacy errors are delayed until the end in order to deduplicate them
1305     privacy_errors: Vec<PrivacyError<'a>>,
1306     /// ambiguity errors are delayed for deduplication
1307     ambiguity_errors: Vec<AmbiguityError<'a>>,
1308     /// `use` injections are delayed for better placement and deduplication
1309     use_injections: Vec<UseError<'a>>,
1310     /// `use` injections for proc macros wrongly imported with #[macro_use]
1311     proc_mac_errors: Vec<macros::ProcMacError>,
1312
1313     gated_errors: FxHashSet<Span>,
1314     disallowed_shadowing: Vec<&'a LegacyBinding<'a>>,
1315
1316     arenas: &'a ResolverArenas<'a>,
1317     dummy_binding: &'a NameBinding<'a>,
1318     use_extern_macros: bool, // true if `#![feature(use_extern_macros)]`
1319
1320     crate_loader: &'a mut CrateLoader,
1321     macro_names: FxHashSet<Ident>,
1322     global_macros: FxHashMap<Name, &'a NameBinding<'a>>,
1323     lexical_macro_resolutions: Vec<(Ident, &'a Cell<LegacyScope<'a>>)>,
1324     macro_map: FxHashMap<DefId, Rc<SyntaxExtension>>,
1325     macro_defs: FxHashMap<Mark, DefId>,
1326     local_macro_def_scopes: FxHashMap<NodeId, Module<'a>>,
1327     macro_exports: Vec<Export>,
1328     pub whitelisted_legacy_custom_derives: Vec<Name>,
1329     pub found_unresolved_macro: bool,
1330
1331     // List of crate local macros that we need to warn about as being unused.
1332     // Right now this only includes macro_rules! macros, and macros 2.0.
1333     unused_macros: FxHashSet<DefId>,
1334
1335     // Maps the `Mark` of an expansion to its containing module or block.
1336     invocations: FxHashMap<Mark, &'a InvocationData<'a>>,
1337
1338     // Avoid duplicated errors for "name already defined".
1339     name_already_seen: FxHashMap<Name, Span>,
1340
1341     // If `#![feature(proc_macro)]` is set
1342     proc_macro_enabled: bool,
1343
1344     // A set of procedural macros imported by `#[macro_use]` that have already been warned about
1345     warned_proc_macros: FxHashSet<Name>,
1346
1347     potentially_unused_imports: Vec<&'a ImportDirective<'a>>,
1348
1349     // This table maps struct IDs into struct constructor IDs,
1350     // it's not used during normal resolution, only for better error reporting.
1351     struct_constructors: DefIdMap<(Def, ty::Visibility)>,
1352
1353     // Only used for better errors on `fn(): fn()`
1354     current_type_ascription: Vec<Span>,
1355
1356     injected_crate: Option<Module<'a>>,
1357 }
1358
1359 pub struct ResolverArenas<'a> {
1360     modules: arena::TypedArena<ModuleData<'a>>,
1361     local_modules: RefCell<Vec<Module<'a>>>,
1362     name_bindings: arena::TypedArena<NameBinding<'a>>,
1363     import_directives: arena::TypedArena<ImportDirective<'a>>,
1364     name_resolutions: arena::TypedArena<RefCell<NameResolution<'a>>>,
1365     invocation_data: arena::TypedArena<InvocationData<'a>>,
1366     legacy_bindings: arena::TypedArena<LegacyBinding<'a>>,
1367 }
1368
1369 impl<'a> ResolverArenas<'a> {
1370     fn alloc_module(&'a self, module: ModuleData<'a>) -> Module<'a> {
1371         let module = self.modules.alloc(module);
1372         if module.def_id().map(|def_id| def_id.is_local()).unwrap_or(true) {
1373             self.local_modules.borrow_mut().push(module);
1374         }
1375         module
1376     }
1377     fn local_modules(&'a self) -> ::std::cell::Ref<'a, Vec<Module<'a>>> {
1378         self.local_modules.borrow()
1379     }
1380     fn alloc_name_binding(&'a self, name_binding: NameBinding<'a>) -> &'a NameBinding<'a> {
1381         self.name_bindings.alloc(name_binding)
1382     }
1383     fn alloc_import_directive(&'a self, import_directive: ImportDirective<'a>)
1384                               -> &'a ImportDirective {
1385         self.import_directives.alloc(import_directive)
1386     }
1387     fn alloc_name_resolution(&'a self) -> &'a RefCell<NameResolution<'a>> {
1388         self.name_resolutions.alloc(Default::default())
1389     }
1390     fn alloc_invocation_data(&'a self, expansion_data: InvocationData<'a>)
1391                              -> &'a InvocationData<'a> {
1392         self.invocation_data.alloc(expansion_data)
1393     }
1394     fn alloc_legacy_binding(&'a self, binding: LegacyBinding<'a>) -> &'a LegacyBinding<'a> {
1395         self.legacy_bindings.alloc(binding)
1396     }
1397 }
1398
1399 impl<'a, 'b: 'a> ty::DefIdTree for &'a Resolver<'b> {
1400     fn parent(self, id: DefId) -> Option<DefId> {
1401         match id.krate {
1402             LOCAL_CRATE => self.definitions.def_key(id.index).parent,
1403             _ => self.cstore.def_key(id).parent,
1404         }.map(|index| DefId { index: index, ..id })
1405     }
1406 }
1407
1408 impl<'a> hir::lowering::Resolver for Resolver<'a> {
1409     fn resolve_hir_path(&mut self, path: &mut hir::Path, is_value: bool) {
1410         let namespace = if is_value { ValueNS } else { TypeNS };
1411         let hir::Path { ref segments, span, ref mut def } = *path;
1412         let path: Vec<SpannedIdent> = segments.iter()
1413             .map(|seg| respan(span, Ident::with_empty_ctxt(seg.name)))
1414             .collect();
1415         match self.resolve_path(&path, Some(namespace), true, span) {
1416             PathResult::Module(module) => *def = module.def().unwrap(),
1417             PathResult::NonModule(path_res) if path_res.unresolved_segments() == 0 =>
1418                 *def = path_res.base_def(),
1419             PathResult::NonModule(..) => match self.resolve_path(&path, None, true, span) {
1420                 PathResult::Failed(span, msg, _) => {
1421                     resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
1422                 }
1423                 _ => {}
1424             },
1425             PathResult::Indeterminate => unreachable!(),
1426             PathResult::Failed(span, msg, _) => {
1427                 resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
1428             }
1429         }
1430     }
1431
1432     fn get_resolution(&mut self, id: NodeId) -> Option<PathResolution> {
1433         self.def_map.get(&id).cloned()
1434     }
1435
1436     fn definitions(&mut self) -> &mut Definitions {
1437         &mut self.definitions
1438     }
1439 }
1440
1441 impl<'a> Resolver<'a> {
1442     pub fn new(session: &'a Session,
1443                cstore: &'a CrateStore,
1444                krate: &Crate,
1445                crate_name: &str,
1446                make_glob_map: MakeGlobMap,
1447                crate_loader: &'a mut CrateLoader,
1448                arenas: &'a ResolverArenas<'a>)
1449                -> Resolver<'a> {
1450         let root_def_id = DefId::local(CRATE_DEF_INDEX);
1451         let root_module_kind = ModuleKind::Def(Def::Mod(root_def_id), keywords::Invalid.name());
1452         let graph_root = arenas.alloc_module(ModuleData {
1453             no_implicit_prelude: attr::contains_name(&krate.attrs, "no_implicit_prelude"),
1454             ..ModuleData::new(None, root_module_kind, root_def_id, Mark::root(), krate.span)
1455         });
1456         let mut module_map = FxHashMap();
1457         module_map.insert(DefId::local(CRATE_DEF_INDEX), graph_root);
1458
1459         let mut definitions = Definitions::new();
1460         DefCollector::new(&mut definitions, Mark::root())
1461             .collect_root(crate_name, session.local_crate_disambiguator());
1462
1463         let mut invocations = FxHashMap();
1464         invocations.insert(Mark::root(),
1465                            arenas.alloc_invocation_data(InvocationData::root(graph_root)));
1466
1467         let features = session.features.borrow();
1468
1469         let mut macro_defs = FxHashMap();
1470         macro_defs.insert(Mark::root(), root_def_id);
1471
1472         Resolver {
1473             session,
1474
1475             cstore,
1476
1477             definitions,
1478
1479             // The outermost module has def ID 0; this is not reflected in the
1480             // AST.
1481             graph_root,
1482             prelude: None,
1483
1484             has_self: FxHashSet(),
1485             field_names: FxHashMap(),
1486
1487             determined_imports: Vec::new(),
1488             indeterminate_imports: Vec::new(),
1489
1490             current_module: graph_root,
1491             ribs: PerNS {
1492                 value_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1493                 type_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1494                 macro_ns: Some(vec![Rib::new(ModuleRibKind(graph_root))]),
1495             },
1496             label_ribs: Vec::new(),
1497
1498             current_trait_ref: None,
1499             current_self_type: None,
1500
1501             primitive_type_table: PrimitiveTypeTable::new(),
1502
1503             def_map: NodeMap(),
1504             freevars: NodeMap(),
1505             freevars_seen: NodeMap(),
1506             export_map: FxHashMap(),
1507             trait_map: NodeMap(),
1508             module_map,
1509             block_map: NodeMap(),
1510             extern_module_map: FxHashMap(),
1511
1512             make_glob_map: make_glob_map == MakeGlobMap::Yes,
1513             glob_map: NodeMap(),
1514
1515             used_imports: FxHashSet(),
1516             maybe_unused_trait_imports: NodeSet(),
1517             maybe_unused_extern_crates: Vec::new(),
1518
1519             privacy_errors: Vec::new(),
1520             ambiguity_errors: Vec::new(),
1521             use_injections: Vec::new(),
1522             proc_mac_errors: Vec::new(),
1523             gated_errors: FxHashSet(),
1524             disallowed_shadowing: Vec::new(),
1525
1526             arenas,
1527             dummy_binding: arenas.alloc_name_binding(NameBinding {
1528                 kind: NameBindingKind::Def(Def::Err),
1529                 expansion: Mark::root(),
1530                 span: DUMMY_SP,
1531                 vis: ty::Visibility::Public,
1532             }),
1533
1534             // The `proc_macro` and `decl_macro` features imply `use_extern_macros`
1535             use_extern_macros:
1536                 features.use_extern_macros || features.proc_macro || features.decl_macro,
1537
1538             crate_loader,
1539             macro_names: FxHashSet(),
1540             global_macros: FxHashMap(),
1541             lexical_macro_resolutions: Vec::new(),
1542             macro_map: FxHashMap(),
1543             macro_exports: Vec::new(),
1544             invocations,
1545             macro_defs,
1546             local_macro_def_scopes: FxHashMap(),
1547             name_already_seen: FxHashMap(),
1548             whitelisted_legacy_custom_derives: Vec::new(),
1549             proc_macro_enabled: features.proc_macro,
1550             warned_proc_macros: FxHashSet(),
1551             potentially_unused_imports: Vec::new(),
1552             struct_constructors: DefIdMap(),
1553             found_unresolved_macro: false,
1554             unused_macros: FxHashSet(),
1555             current_type_ascription: Vec::new(),
1556             injected_crate: None,
1557         }
1558     }
1559
1560     pub fn arenas() -> ResolverArenas<'a> {
1561         ResolverArenas {
1562             modules: arena::TypedArena::new(),
1563             local_modules: RefCell::new(Vec::new()),
1564             name_bindings: arena::TypedArena::new(),
1565             import_directives: arena::TypedArena::new(),
1566             name_resolutions: arena::TypedArena::new(),
1567             invocation_data: arena::TypedArena::new(),
1568             legacy_bindings: arena::TypedArena::new(),
1569         }
1570     }
1571
1572     fn per_ns<T, F: FnMut(&mut Self, Namespace) -> T>(&mut self, mut f: F) -> PerNS<T> {
1573         PerNS {
1574             type_ns: f(self, TypeNS),
1575             value_ns: f(self, ValueNS),
1576             macro_ns: match self.use_extern_macros {
1577                 true => Some(f(self, MacroNS)),
1578                 false => None,
1579             },
1580         }
1581     }
1582
1583     fn macro_def(&self, mut ctxt: SyntaxContext) -> DefId {
1584         loop {
1585             match self.macro_defs.get(&ctxt.outer()) {
1586                 Some(&def_id) => return def_id,
1587                 None => ctxt.remove_mark(),
1588             };
1589         }
1590     }
1591
1592     /// Entry point to crate resolution.
1593     pub fn resolve_crate(&mut self, krate: &Crate) {
1594         ImportResolver { resolver: self }.finalize_imports();
1595         self.current_module = self.graph_root;
1596         self.finalize_current_module_macro_resolutions();
1597
1598         visit::walk_crate(self, krate);
1599
1600         check_unused::check_crate(self, krate);
1601         self.report_errors(krate);
1602         self.crate_loader.postprocess(krate);
1603     }
1604
1605     fn new_module(
1606         &self,
1607         parent: Module<'a>,
1608         kind: ModuleKind,
1609         normal_ancestor_id: DefId,
1610         expansion: Mark,
1611         span: Span,
1612     ) -> Module<'a> {
1613         let module = ModuleData::new(Some(parent), kind, normal_ancestor_id, expansion, span);
1614         self.arenas.alloc_module(module)
1615     }
1616
1617     fn record_use(&mut self, ident: Ident, ns: Namespace, binding: &'a NameBinding<'a>, span: Span)
1618                   -> bool /* true if an error was reported */ {
1619         match binding.kind {
1620             NameBindingKind::Import { directive, binding, ref used, legacy_self_import }
1621                     if !used.get() => {
1622                 used.set(true);
1623                 directive.used.set(true);
1624                 if legacy_self_import {
1625                     self.warn_legacy_self_import(directive);
1626                     return false;
1627                 }
1628                 self.used_imports.insert((directive.id, ns));
1629                 self.add_to_glob_map(directive.id, ident);
1630                 self.record_use(ident, ns, binding, span)
1631             }
1632             NameBindingKind::Import { .. } => false,
1633             NameBindingKind::Ambiguity { b1, b2, legacy } => {
1634                 self.ambiguity_errors.push(AmbiguityError {
1635                     span: span, name: ident.name, lexical: false, b1: b1, b2: b2, legacy,
1636                 });
1637                 if legacy {
1638                     self.record_use(ident, ns, b1, span);
1639                 }
1640                 !legacy
1641             }
1642             _ => false
1643         }
1644     }
1645
1646     fn add_to_glob_map(&mut self, id: NodeId, ident: Ident) {
1647         if self.make_glob_map {
1648             self.glob_map.entry(id).or_insert_with(FxHashSet).insert(ident.name);
1649         }
1650     }
1651
1652     /// This resolves the identifier `ident` in the namespace `ns` in the current lexical scope.
1653     /// More specifically, we proceed up the hierarchy of scopes and return the binding for
1654     /// `ident` in the first scope that defines it (or None if no scopes define it).
1655     ///
1656     /// A block's items are above its local variables in the scope hierarchy, regardless of where
1657     /// the items are defined in the block. For example,
1658     /// ```rust
1659     /// fn f() {
1660     ///    g(); // Since there are no local variables in scope yet, this resolves to the item.
1661     ///    let g = || {};
1662     ///    fn g() {}
1663     ///    g(); // This resolves to the local variable `g` since it shadows the item.
1664     /// }
1665     /// ```
1666     ///
1667     /// Invariant: This must only be called during main resolution, not during
1668     /// import resolution.
1669     fn resolve_ident_in_lexical_scope(&mut self,
1670                                       mut ident: Ident,
1671                                       ns: Namespace,
1672                                       record_used: bool,
1673                                       path_span: Span)
1674                                       -> Option<LexicalScopeBinding<'a>> {
1675         if ns == TypeNS {
1676             ident.ctxt = if ident.name == keywords::SelfType.name() {
1677                 SyntaxContext::empty() // FIXME(jseyfried) improve `Self` hygiene
1678             } else {
1679                 ident.ctxt.modern()
1680             }
1681         }
1682
1683         // Walk backwards up the ribs in scope.
1684         let mut module = self.graph_root;
1685         for i in (0 .. self.ribs[ns].len()).rev() {
1686             if let Some(def) = self.ribs[ns][i].bindings.get(&ident).cloned() {
1687                 // The ident resolves to a type parameter or local variable.
1688                 return Some(LexicalScopeBinding::Def(
1689                     self.adjust_local_def(ns, i, def, record_used, path_span)
1690                 ));
1691             }
1692
1693             module = match self.ribs[ns][i].kind {
1694                 ModuleRibKind(module) => module,
1695                 MacroDefinition(def) if def == self.macro_def(ident.ctxt) => {
1696                     // If an invocation of this macro created `ident`, give up on `ident`
1697                     // and switch to `ident`'s source from the macro definition.
1698                     ident.ctxt.remove_mark();
1699                     continue
1700                 }
1701                 _ => continue,
1702             };
1703
1704             let item = self.resolve_ident_in_module_unadjusted(
1705                 module, ident, ns, false, record_used, path_span,
1706             );
1707             if let Ok(binding) = item {
1708                 // The ident resolves to an item.
1709                 return Some(LexicalScopeBinding::Item(binding));
1710             }
1711
1712             match module.kind {
1713                 ModuleKind::Block(..) => {}, // We can see through blocks
1714                 _ => break,
1715             }
1716         }
1717
1718         ident.ctxt = ident.ctxt.modern();
1719         loop {
1720             module = unwrap_or!(self.hygienic_lexical_parent(module, &mut ident.ctxt), break);
1721             let orig_current_module = self.current_module;
1722             self.current_module = module; // Lexical resolutions can never be a privacy error.
1723             let result = self.resolve_ident_in_module_unadjusted(
1724                 module, ident, ns, false, record_used, path_span,
1725             );
1726             self.current_module = orig_current_module;
1727
1728             match result {
1729                 Ok(binding) => return Some(LexicalScopeBinding::Item(binding)),
1730                 Err(Undetermined) => return None,
1731                 Err(Determined) => {}
1732             }
1733         }
1734
1735         match self.prelude {
1736             Some(prelude) if !module.no_implicit_prelude => {
1737                 self.resolve_ident_in_module_unadjusted(prelude, ident, ns, false, false, path_span)
1738                     .ok().map(LexicalScopeBinding::Item)
1739             }
1740             _ => None,
1741         }
1742     }
1743
1744     fn hygienic_lexical_parent(&mut self, mut module: Module<'a>, ctxt: &mut SyntaxContext)
1745                                -> Option<Module<'a>> {
1746         if !module.expansion.is_descendant_of(ctxt.outer()) {
1747             return Some(self.macro_def_scope(ctxt.remove_mark()));
1748         }
1749
1750         if let ModuleKind::Block(..) = module.kind {
1751             return Some(module.parent.unwrap());
1752         }
1753
1754         let mut module_expansion = module.expansion.modern(); // for backward compatibility
1755         while let Some(parent) = module.parent {
1756             let parent_expansion = parent.expansion.modern();
1757             if module_expansion.is_descendant_of(parent_expansion) &&
1758                parent_expansion != module_expansion {
1759                 return if parent_expansion.is_descendant_of(ctxt.outer()) {
1760                     Some(parent)
1761                 } else {
1762                     None
1763                 };
1764             }
1765             module = parent;
1766             module_expansion = parent_expansion;
1767         }
1768
1769         None
1770     }
1771
1772     fn resolve_ident_in_module(&mut self,
1773                                module: Module<'a>,
1774                                mut ident: Ident,
1775                                ns: Namespace,
1776                                ignore_unresolved_invocations: bool,
1777                                record_used: bool,
1778                                span: Span)
1779                                -> Result<&'a NameBinding<'a>, Determinacy> {
1780         ident.ctxt = ident.ctxt.modern();
1781         let orig_current_module = self.current_module;
1782         if let Some(def) = ident.ctxt.adjust(module.expansion) {
1783             self.current_module = self.macro_def_scope(def);
1784         }
1785         let result = self.resolve_ident_in_module_unadjusted(
1786             module, ident, ns, ignore_unresolved_invocations, record_used, span,
1787         );
1788         self.current_module = orig_current_module;
1789         result
1790     }
1791
1792     fn resolve_crate_root(&mut self, mut ctxt: SyntaxContext, legacy: bool) -> Module<'a> {
1793         let mark = if legacy {
1794             // When resolving `$crate` from a `macro_rules!` invoked in a `macro`,
1795             // we don't want to pretend that the `macro_rules!` definition is in the `macro`
1796             // as described in `SyntaxContext::apply_mark`, so we ignore prepended modern marks.
1797             ctxt.marks().into_iter().find(|&mark| mark.kind() != MarkKind::Modern)
1798         } else {
1799             ctxt = ctxt.modern();
1800             ctxt.adjust(Mark::root())
1801         };
1802         let module = match mark {
1803             Some(def) => self.macro_def_scope(def),
1804             None => return self.graph_root,
1805         };
1806         self.get_module(DefId { index: CRATE_DEF_INDEX, ..module.normal_ancestor_id })
1807     }
1808
1809     fn resolve_self(&mut self, ctxt: &mut SyntaxContext, module: Module<'a>) -> Module<'a> {
1810         let mut module = self.get_module(module.normal_ancestor_id);
1811         while module.span.ctxt().modern() != *ctxt {
1812             let parent = module.parent.unwrap_or_else(|| self.macro_def_scope(ctxt.remove_mark()));
1813             module = self.get_module(parent.normal_ancestor_id);
1814         }
1815         module
1816     }
1817
1818     // AST resolution
1819     //
1820     // We maintain a list of value ribs and type ribs.
1821     //
1822     // Simultaneously, we keep track of the current position in the module
1823     // graph in the `current_module` pointer. When we go to resolve a name in
1824     // the value or type namespaces, we first look through all the ribs and
1825     // then query the module graph. When we resolve a name in the module
1826     // namespace, we can skip all the ribs (since nested modules are not
1827     // allowed within blocks in Rust) and jump straight to the current module
1828     // graph node.
1829     //
1830     // Named implementations are handled separately. When we find a method
1831     // call, we consult the module node to find all of the implementations in
1832     // scope. This information is lazily cached in the module node. We then
1833     // generate a fake "implementation scope" containing all the
1834     // implementations thus found, for compatibility with old resolve pass.
1835
1836     fn with_scope<F>(&mut self, id: NodeId, f: F)
1837         where F: FnOnce(&mut Resolver)
1838     {
1839         let id = self.definitions.local_def_id(id);
1840         let module = self.module_map.get(&id).cloned(); // clones a reference
1841         if let Some(module) = module {
1842             // Move down in the graph.
1843             let orig_module = replace(&mut self.current_module, module);
1844             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(module)));
1845             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(module)));
1846
1847             self.finalize_current_module_macro_resolutions();
1848             f(self);
1849
1850             self.current_module = orig_module;
1851             self.ribs[ValueNS].pop();
1852             self.ribs[TypeNS].pop();
1853         } else {
1854             f(self);
1855         }
1856     }
1857
1858     /// Searches the current set of local scopes for labels. Returns the first non-None label that
1859     /// is returned by the given predicate function
1860     ///
1861     /// Stops after meeting a closure.
1862     fn search_label<P, R>(&self, mut ident: Ident, pred: P) -> Option<R>
1863         where P: Fn(&Rib, Ident) -> Option<R>
1864     {
1865         for rib in self.label_ribs.iter().rev() {
1866             match rib.kind {
1867                 NormalRibKind => {}
1868                 // If an invocation of this macro created `ident`, give up on `ident`
1869                 // and switch to `ident`'s source from the macro definition.
1870                 MacroDefinition(def) => {
1871                     if def == self.macro_def(ident.ctxt) {
1872                         ident.ctxt.remove_mark();
1873                     }
1874                 }
1875                 _ => {
1876                     // Do not resolve labels across function boundary
1877                     return None;
1878                 }
1879             }
1880             let r = pred(rib, ident);
1881             if r.is_some() {
1882                 return r;
1883             }
1884         }
1885         None
1886     }
1887
1888     fn resolve_item(&mut self, item: &Item) {
1889         let name = item.ident.name;
1890
1891         debug!("(resolving item) resolving {}", name);
1892
1893         self.check_proc_macro_attrs(&item.attrs);
1894
1895         match item.node {
1896             ItemKind::Enum(_, ref generics) |
1897             ItemKind::Ty(_, ref generics) |
1898             ItemKind::Struct(_, ref generics) |
1899             ItemKind::Union(_, ref generics) |
1900             ItemKind::Fn(.., ref generics, _) => {
1901                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind),
1902                                              |this| visit::walk_item(this, item));
1903             }
1904
1905             ItemKind::Impl(.., ref generics, ref opt_trait_ref, ref self_type, ref impl_items) =>
1906                 self.resolve_implementation(generics,
1907                                             opt_trait_ref,
1908                                             &self_type,
1909                                             item.id,
1910                                             impl_items),
1911
1912             ItemKind::Trait(.., ref generics, ref bounds, ref trait_items) => {
1913                 // Create a new rib for the trait-wide type parameters.
1914                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
1915                     let local_def_id = this.definitions.local_def_id(item.id);
1916                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
1917                         this.visit_generics(generics);
1918                         walk_list!(this, visit_ty_param_bound, bounds);
1919
1920                         for trait_item in trait_items {
1921                             this.check_proc_macro_attrs(&trait_item.attrs);
1922
1923                             let type_parameters = HasTypeParameters(&trait_item.generics,
1924                                                                     TraitOrImplItemRibKind);
1925                             this.with_type_parameter_rib(type_parameters, |this| {
1926                                 match trait_item.node {
1927                                     TraitItemKind::Const(ref ty, ref default) => {
1928                                         this.visit_ty(ty);
1929
1930                                         // Only impose the restrictions of
1931                                         // ConstRibKind for an actual constant
1932                                         // expression in a provided default.
1933                                         if let Some(ref expr) = *default{
1934                                             this.with_constant_rib(|this| {
1935                                                 this.visit_expr(expr);
1936                                             });
1937                                         }
1938                                     }
1939                                     TraitItemKind::Method(_, _) => {
1940                                         visit::walk_trait_item(this, trait_item)
1941                                     }
1942                                     TraitItemKind::Type(..) => {
1943                                         visit::walk_trait_item(this, trait_item)
1944                                     }
1945                                     TraitItemKind::Macro(_) => {
1946                                         panic!("unexpanded macro in resolve!")
1947                                     }
1948                                 };
1949                             });
1950                         }
1951                     });
1952                 });
1953             }
1954
1955             ItemKind::TraitAlias(ref generics, ref bounds) => {
1956                 // Create a new rib for the trait-wide type parameters.
1957                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
1958                     let local_def_id = this.definitions.local_def_id(item.id);
1959                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
1960                         this.visit_generics(generics);
1961                         walk_list!(this, visit_ty_param_bound, bounds);
1962                     });
1963                 });
1964             }
1965
1966             ItemKind::Mod(_) | ItemKind::ForeignMod(_) => {
1967                 self.with_scope(item.id, |this| {
1968                     visit::walk_item(this, item);
1969                 });
1970             }
1971
1972             ItemKind::Static(ref ty, _, ref expr) |
1973             ItemKind::Const(ref ty, ref expr) => {
1974                 self.with_item_rib(|this| {
1975                     this.visit_ty(ty);
1976                     this.with_constant_rib(|this| {
1977                         this.visit_expr(expr);
1978                     });
1979                 });
1980             }
1981
1982             ItemKind::Use(ref use_tree) => {
1983                 let path = Path {
1984                     segments: vec![],
1985                     span: use_tree.span,
1986                 };
1987                 self.resolve_use_tree(item, use_tree, &path);
1988             }
1989
1990             ItemKind::ExternCrate(_) | ItemKind::MacroDef(..) | ItemKind::GlobalAsm(_) => {
1991                 // do nothing, these are just around to be encoded
1992             }
1993
1994             ItemKind::Mac(_) => panic!("unexpanded macro in resolve!"),
1995         }
1996     }
1997
1998     fn resolve_use_tree(&mut self, item: &Item, use_tree: &ast::UseTree, prefix: &Path) {
1999         match use_tree.kind {
2000             ast::UseTreeKind::Nested(ref items) => {
2001                 let path = Path {
2002                     segments: prefix.segments
2003                         .iter()
2004                         .chain(use_tree.prefix.segments.iter())
2005                         .cloned()
2006                         .collect(),
2007                     span: prefix.span.to(use_tree.prefix.span),
2008                 };
2009
2010                 if items.len() == 0 {
2011                     // Resolve prefix of an import with empty braces (issue #28388).
2012                     self.smart_resolve_path(item.id, None, &path, PathSource::ImportPrefix);
2013                 } else {
2014                     for &(ref tree, _) in items {
2015                         self.resolve_use_tree(item, tree, &path);
2016                     }
2017                 }
2018             }
2019             ast::UseTreeKind::Simple(_) => {},
2020             ast::UseTreeKind::Glob => {},
2021         }
2022     }
2023
2024     fn with_type_parameter_rib<'b, F>(&'b mut self, type_parameters: TypeParameters<'a, 'b>, f: F)
2025         where F: FnOnce(&mut Resolver)
2026     {
2027         match type_parameters {
2028             HasTypeParameters(generics, rib_kind) => {
2029                 let mut function_type_rib = Rib::new(rib_kind);
2030                 let mut seen_bindings = FxHashMap();
2031                 for param in &generics.params {
2032                     if let GenericParam::Type(ref type_parameter) = *param {
2033                         let ident = type_parameter.ident.modern();
2034                         debug!("with_type_parameter_rib: {}", type_parameter.id);
2035
2036                         if seen_bindings.contains_key(&ident) {
2037                             let span = seen_bindings.get(&ident).unwrap();
2038                             let err = ResolutionError::NameAlreadyUsedInTypeParameterList(
2039                                 ident.name,
2040                                 span,
2041                             );
2042                             resolve_error(self, type_parameter.span, err);
2043                         }
2044                         seen_bindings.entry(ident).or_insert(type_parameter.span);
2045
2046                         // plain insert (no renaming)
2047                         let def_id = self.definitions.local_def_id(type_parameter.id);
2048                         let def = Def::TyParam(def_id);
2049                         function_type_rib.bindings.insert(ident, def);
2050                         self.record_def(type_parameter.id, PathResolution::new(def));
2051                     }
2052                 }
2053                 self.ribs[TypeNS].push(function_type_rib);
2054             }
2055
2056             NoTypeParameters => {
2057                 // Nothing to do.
2058             }
2059         }
2060
2061         f(self);
2062
2063         if let HasTypeParameters(..) = type_parameters {
2064             self.ribs[TypeNS].pop();
2065         }
2066     }
2067
2068     fn with_label_rib<F>(&mut self, f: F)
2069         where F: FnOnce(&mut Resolver)
2070     {
2071         self.label_ribs.push(Rib::new(NormalRibKind));
2072         f(self);
2073         self.label_ribs.pop();
2074     }
2075
2076     fn with_item_rib<F>(&mut self, f: F)
2077         where F: FnOnce(&mut Resolver)
2078     {
2079         self.ribs[ValueNS].push(Rib::new(ItemRibKind));
2080         self.ribs[TypeNS].push(Rib::new(ItemRibKind));
2081         f(self);
2082         self.ribs[TypeNS].pop();
2083         self.ribs[ValueNS].pop();
2084     }
2085
2086     fn with_constant_rib<F>(&mut self, f: F)
2087         where F: FnOnce(&mut Resolver)
2088     {
2089         self.ribs[ValueNS].push(Rib::new(ConstantItemRibKind));
2090         f(self);
2091         self.ribs[ValueNS].pop();
2092     }
2093
2094     fn with_current_self_type<T, F>(&mut self, self_type: &Ty, f: F) -> T
2095         where F: FnOnce(&mut Resolver) -> T
2096     {
2097         // Handle nested impls (inside fn bodies)
2098         let previous_value = replace(&mut self.current_self_type, Some(self_type.clone()));
2099         let result = f(self);
2100         self.current_self_type = previous_value;
2101         result
2102     }
2103
2104     fn with_optional_trait_ref<T, F>(&mut self, opt_trait_ref: Option<&TraitRef>, f: F) -> T
2105         where F: FnOnce(&mut Resolver, Option<DefId>) -> T
2106     {
2107         let mut new_val = None;
2108         let mut new_id = None;
2109         if let Some(trait_ref) = opt_trait_ref {
2110             let path: Vec<_> = trait_ref.path.segments.iter()
2111                 .map(|seg| respan(seg.span, seg.identifier))
2112                 .collect();
2113             let def = self.smart_resolve_path_fragment(trait_ref.ref_id,
2114                                                        None,
2115                                                        &path,
2116                                                        trait_ref.path.span,
2117                                                        trait_ref.path.segments.last().unwrap().span,
2118                                                        PathSource::Trait(AliasPossibility::No))
2119                 .base_def();
2120             if def != Def::Err {
2121                 new_id = Some(def.def_id());
2122                 let span = trait_ref.path.span;
2123                 if let PathResult::Module(module) = self.resolve_path(&path, None, false, span) {
2124                     new_val = Some((module, trait_ref.clone()));
2125                 }
2126             }
2127         }
2128         let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
2129         let result = f(self, new_id);
2130         self.current_trait_ref = original_trait_ref;
2131         result
2132     }
2133
2134     fn with_self_rib<F>(&mut self, self_def: Def, f: F)
2135         where F: FnOnce(&mut Resolver)
2136     {
2137         let mut self_type_rib = Rib::new(NormalRibKind);
2138
2139         // plain insert (no renaming, types are not currently hygienic....)
2140         self_type_rib.bindings.insert(keywords::SelfType.ident(), self_def);
2141         self.ribs[TypeNS].push(self_type_rib);
2142         f(self);
2143         self.ribs[TypeNS].pop();
2144     }
2145
2146     fn resolve_implementation(&mut self,
2147                               generics: &Generics,
2148                               opt_trait_reference: &Option<TraitRef>,
2149                               self_type: &Ty,
2150                               item_id: NodeId,
2151                               impl_items: &[ImplItem]) {
2152         // If applicable, create a rib for the type parameters.
2153         self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2154             // Dummy self type for better errors if `Self` is used in the trait path.
2155             this.with_self_rib(Def::SelfTy(None, None), |this| {
2156                 // Resolve the trait reference, if necessary.
2157                 this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| {
2158                     let item_def_id = this.definitions.local_def_id(item_id);
2159                     this.with_self_rib(Def::SelfTy(trait_id, Some(item_def_id)), |this| {
2160                         if let Some(trait_ref) = opt_trait_reference.as_ref() {
2161                             // Resolve type arguments in trait path
2162                             visit::walk_trait_ref(this, trait_ref);
2163                         }
2164                         // Resolve the self type.
2165                         this.visit_ty(self_type);
2166                         // Resolve the type parameters.
2167                         this.visit_generics(generics);
2168                         this.with_current_self_type(self_type, |this| {
2169                             for impl_item in impl_items {
2170                                 this.check_proc_macro_attrs(&impl_item.attrs);
2171                                 this.resolve_visibility(&impl_item.vis);
2172
2173                                 // We also need a new scope for the impl item type parameters.
2174                                 let type_parameters = HasTypeParameters(&impl_item.generics,
2175                                                                         TraitOrImplItemRibKind);
2176                                 this.with_type_parameter_rib(type_parameters, |this| {
2177                                     use self::ResolutionError::*;
2178                                     match impl_item.node {
2179                                         ImplItemKind::Const(..) => {
2180                                             // If this is a trait impl, ensure the const
2181                                             // exists in trait
2182                                             this.check_trait_item(impl_item.ident,
2183                                                                 ValueNS,
2184                                                                 impl_item.span,
2185                                                 |n, s| ConstNotMemberOfTrait(n, s));
2186                                             this.with_constant_rib(|this|
2187                                                 visit::walk_impl_item(this, impl_item)
2188                                             );
2189                                         }
2190                                         ImplItemKind::Method(_, _) => {
2191                                             // If this is a trait impl, ensure the method
2192                                             // exists in trait
2193                                             this.check_trait_item(impl_item.ident,
2194                                                                 ValueNS,
2195                                                                 impl_item.span,
2196                                                 |n, s| MethodNotMemberOfTrait(n, s));
2197
2198                                             visit::walk_impl_item(this, impl_item);
2199                                         }
2200                                         ImplItemKind::Type(ref ty) => {
2201                                             // If this is a trait impl, ensure the type
2202                                             // exists in trait
2203                                             this.check_trait_item(impl_item.ident,
2204                                                                 TypeNS,
2205                                                                 impl_item.span,
2206                                                 |n, s| TypeNotMemberOfTrait(n, s));
2207
2208                                             this.visit_ty(ty);
2209                                         }
2210                                         ImplItemKind::Macro(_) =>
2211                                             panic!("unexpanded macro in resolve!"),
2212                                     }
2213                                 });
2214                             }
2215                         });
2216                     });
2217                 });
2218             });
2219         });
2220     }
2221
2222     fn check_trait_item<F>(&mut self, ident: Ident, ns: Namespace, span: Span, err: F)
2223         where F: FnOnce(Name, &str) -> ResolutionError
2224     {
2225         // If there is a TraitRef in scope for an impl, then the method must be in the
2226         // trait.
2227         if let Some((module, _)) = self.current_trait_ref {
2228             if self.resolve_ident_in_module(module, ident, ns, false, false, span).is_err() {
2229                 let path = &self.current_trait_ref.as_ref().unwrap().1.path;
2230                 resolve_error(self, span, err(ident.name, &path_names_to_string(path)));
2231             }
2232         }
2233     }
2234
2235     fn resolve_local(&mut self, local: &Local) {
2236         // Resolve the type.
2237         walk_list!(self, visit_ty, &local.ty);
2238
2239         // Resolve the initializer.
2240         walk_list!(self, visit_expr, &local.init);
2241
2242         // Resolve the pattern.
2243         self.resolve_pattern(&local.pat, PatternSource::Let, &mut FxHashMap());
2244     }
2245
2246     // build a map from pattern identifiers to binding-info's.
2247     // this is done hygienically. This could arise for a macro
2248     // that expands into an or-pattern where one 'x' was from the
2249     // user and one 'x' came from the macro.
2250     fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
2251         let mut binding_map = FxHashMap();
2252
2253         pat.walk(&mut |pat| {
2254             if let PatKind::Ident(binding_mode, ident, ref sub_pat) = pat.node {
2255                 if sub_pat.is_some() || match self.def_map.get(&pat.id).map(|res| res.base_def()) {
2256                     Some(Def::Local(..)) => true,
2257                     _ => false,
2258                 } {
2259                     let binding_info = BindingInfo { span: ident.span, binding_mode: binding_mode };
2260                     binding_map.insert(ident.node, binding_info);
2261                 }
2262             }
2263             true
2264         });
2265
2266         binding_map
2267     }
2268
2269     // check that all of the arms in an or-pattern have exactly the
2270     // same set of bindings, with the same binding modes for each.
2271     fn check_consistent_bindings(&mut self, arm: &Arm) {
2272         if arm.pats.is_empty() {
2273             return;
2274         }
2275
2276         let mut missing_vars = FxHashMap();
2277         let mut inconsistent_vars = FxHashMap();
2278         for (i, p) in arm.pats.iter().enumerate() {
2279             let map_i = self.binding_mode_map(&p);
2280
2281             for (j, q) in arm.pats.iter().enumerate() {
2282                 if i == j {
2283                     continue;
2284                 }
2285
2286                 let map_j = self.binding_mode_map(&q);
2287                 for (&key, &binding_i) in &map_i {
2288                     if map_j.len() == 0 {                   // Account for missing bindings when
2289                         let binding_error = missing_vars    // map_j has none.
2290                             .entry(key.name)
2291                             .or_insert(BindingError {
2292                                 name: key.name,
2293                                 origin: BTreeSet::new(),
2294                                 target: BTreeSet::new(),
2295                             });
2296                         binding_error.origin.insert(binding_i.span);
2297                         binding_error.target.insert(q.span);
2298                     }
2299                     for (&key_j, &binding_j) in &map_j {
2300                         match map_i.get(&key_j) {
2301                             None => {  // missing binding
2302                                 let binding_error = missing_vars
2303                                     .entry(key_j.name)
2304                                     .or_insert(BindingError {
2305                                         name: key_j.name,
2306                                         origin: BTreeSet::new(),
2307                                         target: BTreeSet::new(),
2308                                     });
2309                                 binding_error.origin.insert(binding_j.span);
2310                                 binding_error.target.insert(p.span);
2311                             }
2312                             Some(binding_i) => {  // check consistent binding
2313                                 if binding_i.binding_mode != binding_j.binding_mode {
2314                                     inconsistent_vars
2315                                         .entry(key.name)
2316                                         .or_insert((binding_j.span, binding_i.span));
2317                                 }
2318                             }
2319                         }
2320                     }
2321                 }
2322             }
2323         }
2324         let mut missing_vars = missing_vars.iter().collect::<Vec<_>>();
2325         missing_vars.sort();
2326         for (_, v) in missing_vars {
2327             resolve_error(self,
2328                           *v.origin.iter().next().unwrap(),
2329                           ResolutionError::VariableNotBoundInPattern(v));
2330         }
2331         let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
2332         inconsistent_vars.sort();
2333         for (name, v) in inconsistent_vars {
2334             resolve_error(self, v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
2335         }
2336     }
2337
2338     fn resolve_arm(&mut self, arm: &Arm) {
2339         self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2340
2341         let mut bindings_list = FxHashMap();
2342         for pattern in &arm.pats {
2343             self.resolve_pattern(&pattern, PatternSource::Match, &mut bindings_list);
2344         }
2345
2346         // This has to happen *after* we determine which
2347         // pat_idents are variants
2348         self.check_consistent_bindings(arm);
2349
2350         walk_list!(self, visit_expr, &arm.guard);
2351         self.visit_expr(&arm.body);
2352
2353         self.ribs[ValueNS].pop();
2354     }
2355
2356     fn resolve_block(&mut self, block: &Block) {
2357         debug!("(resolving block) entering block");
2358         // Move down in the graph, if there's an anonymous module rooted here.
2359         let orig_module = self.current_module;
2360         let anonymous_module = self.block_map.get(&block.id).cloned(); // clones a reference
2361
2362         let mut num_macro_definition_ribs = 0;
2363         if let Some(anonymous_module) = anonymous_module {
2364             debug!("(resolving block) found anonymous module, moving down");
2365             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2366             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2367             self.current_module = anonymous_module;
2368             self.finalize_current_module_macro_resolutions();
2369         } else {
2370             self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2371         }
2372
2373         // Descend into the block.
2374         for stmt in &block.stmts {
2375             if let ast::StmtKind::Item(ref item) = stmt.node {
2376                 if let ast::ItemKind::MacroDef(..) = item.node {
2377                     num_macro_definition_ribs += 1;
2378                     let def = self.definitions.local_def_id(item.id);
2379                     self.ribs[ValueNS].push(Rib::new(MacroDefinition(def)));
2380                     self.label_ribs.push(Rib::new(MacroDefinition(def)));
2381                 }
2382             }
2383
2384             self.visit_stmt(stmt);
2385         }
2386
2387         // Move back up.
2388         self.current_module = orig_module;
2389         for _ in 0 .. num_macro_definition_ribs {
2390             self.ribs[ValueNS].pop();
2391             self.label_ribs.pop();
2392         }
2393         self.ribs[ValueNS].pop();
2394         if let Some(_) = anonymous_module {
2395             self.ribs[TypeNS].pop();
2396         }
2397         debug!("(resolving block) leaving block");
2398     }
2399
2400     fn fresh_binding(&mut self,
2401                      ident: &SpannedIdent,
2402                      pat_id: NodeId,
2403                      outer_pat_id: NodeId,
2404                      pat_src: PatternSource,
2405                      bindings: &mut FxHashMap<Ident, NodeId>)
2406                      -> PathResolution {
2407         // Add the binding to the local ribs, if it
2408         // doesn't already exist in the bindings map. (We
2409         // must not add it if it's in the bindings map
2410         // because that breaks the assumptions later
2411         // passes make about or-patterns.)
2412         let mut def = Def::Local(pat_id);
2413         match bindings.get(&ident.node).cloned() {
2414             Some(id) if id == outer_pat_id => {
2415                 // `Variant(a, a)`, error
2416                 resolve_error(
2417                     self,
2418                     ident.span,
2419                     ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(
2420                         &ident.node.name.as_str())
2421                 );
2422             }
2423             Some(..) if pat_src == PatternSource::FnParam => {
2424                 // `fn f(a: u8, a: u8)`, error
2425                 resolve_error(
2426                     self,
2427                     ident.span,
2428                     ResolutionError::IdentifierBoundMoreThanOnceInParameterList(
2429                         &ident.node.name.as_str())
2430                 );
2431             }
2432             Some(..) if pat_src == PatternSource::Match => {
2433                 // `Variant1(a) | Variant2(a)`, ok
2434                 // Reuse definition from the first `a`.
2435                 def = self.ribs[ValueNS].last_mut().unwrap().bindings[&ident.node];
2436             }
2437             Some(..) => {
2438                 span_bug!(ident.span, "two bindings with the same name from \
2439                                        unexpected pattern source {:?}", pat_src);
2440             }
2441             None => {
2442                 // A completely fresh binding, add to the lists if it's valid.
2443                 if ident.node.name != keywords::Invalid.name() {
2444                     bindings.insert(ident.node, outer_pat_id);
2445                     self.ribs[ValueNS].last_mut().unwrap().bindings.insert(ident.node, def);
2446                 }
2447             }
2448         }
2449
2450         PathResolution::new(def)
2451     }
2452
2453     fn resolve_pattern(&mut self,
2454                        pat: &Pat,
2455                        pat_src: PatternSource,
2456                        // Maps idents to the node ID for the
2457                        // outermost pattern that binds them.
2458                        bindings: &mut FxHashMap<Ident, NodeId>) {
2459         // Visit all direct subpatterns of this pattern.
2460         let outer_pat_id = pat.id;
2461         pat.walk(&mut |pat| {
2462             match pat.node {
2463                 PatKind::Ident(bmode, ref ident, ref opt_pat) => {
2464                     // First try to resolve the identifier as some existing
2465                     // entity, then fall back to a fresh binding.
2466                     let binding = self.resolve_ident_in_lexical_scope(ident.node, ValueNS,
2467                                                                       false, pat.span)
2468                                       .and_then(LexicalScopeBinding::item);
2469                     let resolution = binding.map(NameBinding::def).and_then(|def| {
2470                         let is_syntactic_ambiguity = opt_pat.is_none() &&
2471                             bmode == BindingMode::ByValue(Mutability::Immutable);
2472                         match def {
2473                             Def::StructCtor(_, CtorKind::Const) |
2474                             Def::VariantCtor(_, CtorKind::Const) |
2475                             Def::Const(..) if is_syntactic_ambiguity => {
2476                                 // Disambiguate in favor of a unit struct/variant
2477                                 // or constant pattern.
2478                                 self.record_use(ident.node, ValueNS, binding.unwrap(), ident.span);
2479                                 Some(PathResolution::new(def))
2480                             }
2481                             Def::StructCtor(..) | Def::VariantCtor(..) |
2482                             Def::Const(..) | Def::Static(..) => {
2483                                 // This is unambiguously a fresh binding, either syntactically
2484                                 // (e.g. `IDENT @ PAT` or `ref IDENT`) or because `IDENT` resolves
2485                                 // to something unusable as a pattern (e.g. constructor function),
2486                                 // but we still conservatively report an error, see
2487                                 // issues/33118#issuecomment-233962221 for one reason why.
2488                                 resolve_error(
2489                                     self,
2490                                     ident.span,
2491                                     ResolutionError::BindingShadowsSomethingUnacceptable(
2492                                         pat_src.descr(), ident.node.name, binding.unwrap())
2493                                 );
2494                                 None
2495                             }
2496                             Def::Fn(..) | Def::Err => {
2497                                 // These entities are explicitly allowed
2498                                 // to be shadowed by fresh bindings.
2499                                 None
2500                             }
2501                             def => {
2502                                 span_bug!(ident.span, "unexpected definition for an \
2503                                                        identifier in pattern: {:?}", def);
2504                             }
2505                         }
2506                     }).unwrap_or_else(|| {
2507                         self.fresh_binding(ident, pat.id, outer_pat_id, pat_src, bindings)
2508                     });
2509
2510                     self.record_def(pat.id, resolution);
2511                 }
2512
2513                 PatKind::TupleStruct(ref path, ..) => {
2514                     self.smart_resolve_path(pat.id, None, path, PathSource::TupleStruct);
2515                 }
2516
2517                 PatKind::Path(ref qself, ref path) => {
2518                     self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
2519                 }
2520
2521                 PatKind::Struct(ref path, ..) => {
2522                     self.smart_resolve_path(pat.id, None, path, PathSource::Struct);
2523                 }
2524
2525                 _ => {}
2526             }
2527             true
2528         });
2529
2530         visit::walk_pat(self, pat);
2531     }
2532
2533     // High-level and context dependent path resolution routine.
2534     // Resolves the path and records the resolution into definition map.
2535     // If resolution fails tries several techniques to find likely
2536     // resolution candidates, suggest imports or other help, and report
2537     // errors in user friendly way.
2538     fn smart_resolve_path(&mut self,
2539                           id: NodeId,
2540                           qself: Option<&QSelf>,
2541                           path: &Path,
2542                           source: PathSource)
2543                           -> PathResolution {
2544         let segments = &path.segments.iter()
2545             .map(|seg| respan(seg.span, seg.identifier))
2546             .collect::<Vec<_>>();
2547         let ident_span = path.segments.last().map_or(path.span, |seg| seg.span);
2548         self.smart_resolve_path_fragment(id, qself, segments, path.span, ident_span, source)
2549     }
2550
2551     fn smart_resolve_path_fragment(&mut self,
2552                                    id: NodeId,
2553                                    qself: Option<&QSelf>,
2554                                    path: &[SpannedIdent],
2555                                    span: Span,
2556                                    ident_span: Span,
2557                                    source: PathSource)
2558                                    -> PathResolution {
2559         let ns = source.namespace();
2560         let is_expected = &|def| source.is_expected(def);
2561         let is_enum_variant = &|def| if let Def::Variant(..) = def { true } else { false };
2562
2563         // Base error is amended with one short label and possibly some longer helps/notes.
2564         let report_errors = |this: &mut Self, def: Option<Def>| {
2565             // Make the base error.
2566             let expected = source.descr_expected();
2567             let path_str = names_to_string(path);
2568             let code = source.error_code(def.is_some());
2569             let (base_msg, fallback_label, base_span) = if let Some(def) = def {
2570                 (format!("expected {}, found {} `{}`", expected, def.kind_name(), path_str),
2571                  format!("not a {}", expected), span)
2572             } else {
2573                 let item_str = path[path.len() - 1].node;
2574                 let item_span = path[path.len() - 1].span;
2575                 let (mod_prefix, mod_str) = if path.len() == 1 {
2576                     (format!(""), format!("this scope"))
2577                 } else if path.len() == 2 && path[0].node.name == keywords::CrateRoot.name() {
2578                     (format!(""), format!("the crate root"))
2579                 } else {
2580                     let mod_path = &path[..path.len() - 1];
2581                     let mod_prefix = match this.resolve_path(mod_path, Some(TypeNS), false, span) {
2582                         PathResult::Module(module) => module.def(),
2583                         _ => None,
2584                     }.map_or(format!(""), |def| format!("{} ", def.kind_name()));
2585                     (mod_prefix, format!("`{}`", names_to_string(mod_path)))
2586                 };
2587                 (format!("cannot find {} `{}` in {}{}", expected, item_str, mod_prefix, mod_str),
2588                  format!("not found in {}", mod_str), item_span)
2589             };
2590             let code = DiagnosticId::Error(code.into());
2591             let mut err = this.session.struct_span_err_with_code(base_span, &base_msg, code);
2592
2593             // Emit special messages for unresolved `Self` and `self`.
2594             if is_self_type(path, ns) {
2595                 __diagnostic_used!(E0411);
2596                 err.code(DiagnosticId::Error("E0411".into()));
2597                 err.span_label(span, "`Self` is only available in traits and impls");
2598                 return (err, Vec::new());
2599             }
2600             if is_self_value(path, ns) {
2601                 __diagnostic_used!(E0424);
2602                 err.code(DiagnosticId::Error("E0424".into()));
2603                 err.span_label(span, format!("`self` value is only available in \
2604                                                methods with `self` parameter"));
2605                 return (err, Vec::new());
2606             }
2607
2608             // Try to lookup the name in more relaxed fashion for better error reporting.
2609             let ident = *path.last().unwrap();
2610             let candidates = this.lookup_import_candidates(ident.node.name, ns, is_expected);
2611             if candidates.is_empty() && is_expected(Def::Enum(DefId::local(CRATE_DEF_INDEX))) {
2612                 let enum_candidates =
2613                     this.lookup_import_candidates(ident.node.name, ns, is_enum_variant);
2614                 let mut enum_candidates = enum_candidates.iter()
2615                     .map(|suggestion| import_candidate_to_paths(&suggestion)).collect::<Vec<_>>();
2616                 enum_candidates.sort();
2617                 for (sp, variant_path, enum_path) in enum_candidates {
2618                     if sp == DUMMY_SP {
2619                         let msg = format!("there is an enum variant `{}`, \
2620                                         try using `{}`?",
2621                                         variant_path,
2622                                         enum_path);
2623                         err.help(&msg);
2624                     } else {
2625                         err.span_suggestion(span, "you can try using the variant's enum",
2626                                             enum_path);
2627                     }
2628                 }
2629             }
2630             if path.len() == 1 && this.self_type_is_available(span) {
2631                 if let Some(candidate) = this.lookup_assoc_candidate(ident.node, ns, is_expected) {
2632                     let self_is_available = this.self_value_is_available(path[0].node.ctxt, span);
2633                     match candidate {
2634                         AssocSuggestion::Field => {
2635                             err.span_suggestion(span, "try",
2636                                                 format!("self.{}", path_str));
2637                             if !self_is_available {
2638                                 err.span_label(span, format!("`self` value is only available in \
2639                                                                methods with `self` parameter"));
2640                             }
2641                         }
2642                         AssocSuggestion::MethodWithSelf if self_is_available => {
2643                             err.span_suggestion(span, "try",
2644                                                 format!("self.{}", path_str));
2645                         }
2646                         AssocSuggestion::MethodWithSelf | AssocSuggestion::AssocItem => {
2647                             err.span_suggestion(span, "try",
2648                                                 format!("Self::{}", path_str));
2649                         }
2650                     }
2651                     return (err, candidates);
2652                 }
2653             }
2654
2655             let mut levenshtein_worked = false;
2656
2657             // Try Levenshtein.
2658             if let Some(candidate) = this.lookup_typo_candidate(path, ns, is_expected, span) {
2659                 err.span_label(ident_span, format!("did you mean `{}`?", candidate));
2660                 levenshtein_worked = true;
2661             }
2662
2663             // Try context dependent help if relaxed lookup didn't work.
2664             if let Some(def) = def {
2665                 match (def, source) {
2666                     (Def::Macro(..), _) => {
2667                         err.span_label(span, format!("did you mean `{}!(...)`?", path_str));
2668                         return (err, candidates);
2669                     }
2670                     (Def::TyAlias(..), PathSource::Trait(_)) => {
2671                         err.span_label(span, "type aliases cannot be used for traits");
2672                         return (err, candidates);
2673                     }
2674                     (Def::Mod(..), PathSource::Expr(Some(parent))) => match parent.node {
2675                         ExprKind::Field(_, ident) => {
2676                             err.span_label(parent.span, format!("did you mean `{}::{}`?",
2677                                                                  path_str, ident.node));
2678                             return (err, candidates);
2679                         }
2680                         ExprKind::MethodCall(ref segment, ..) => {
2681                             err.span_label(parent.span, format!("did you mean `{}::{}(...)`?",
2682                                                                  path_str, segment.identifier));
2683                             return (err, candidates);
2684                         }
2685                         _ => {}
2686                     },
2687                     (Def::Enum(..), PathSource::TupleStruct)
2688                         | (Def::Enum(..), PathSource::Expr(..))  => {
2689                         if let Some(variants) = this.collect_enum_variants(def) {
2690                             err.note(&format!("did you mean to use one \
2691                                                of the following variants?\n{}",
2692                                 variants.iter()
2693                                     .map(|suggestion| path_names_to_string(suggestion))
2694                                     .map(|suggestion| format!("- `{}`", suggestion))
2695                                     .collect::<Vec<_>>()
2696                                     .join("\n")));
2697
2698                         } else {
2699                             err.note("did you mean to use one of the enum's variants?");
2700                         }
2701                         return (err, candidates);
2702                     },
2703                     _ if ns == ValueNS && is_struct_like(def) => {
2704                         if let Def::Struct(def_id) = def {
2705                             if let Some((ctor_def, ctor_vis))
2706                                     = this.struct_constructors.get(&def_id).cloned() {
2707                                 if is_expected(ctor_def) && !this.is_accessible(ctor_vis) {
2708                                     err.span_label(span, format!("constructor is not visible \
2709                                                                    here due to private fields"));
2710                                 }
2711                             }
2712                         }
2713                         err.span_label(span, format!("did you mean `{} {{ /* fields */ }}`?",
2714                                                      path_str));
2715                         return (err, candidates);
2716                     }
2717                     _ => {}
2718                 }
2719             }
2720
2721             // Fallback label.
2722             if !levenshtein_worked {
2723                 err.span_label(base_span, fallback_label);
2724                 this.type_ascription_suggestion(&mut err, base_span);
2725             }
2726             (err, candidates)
2727         };
2728         let report_errors = |this: &mut Self, def: Option<Def>| {
2729             let (err, candidates) = report_errors(this, def);
2730             let def_id = this.current_module.normal_ancestor_id;
2731             let node_id = this.definitions.as_local_node_id(def_id).unwrap();
2732             let better = def.is_some();
2733             this.use_injections.push(UseError { err, candidates, node_id, better });
2734             err_path_resolution()
2735         };
2736
2737         let resolution = match self.resolve_qpath_anywhere(id, qself, path, ns, span,
2738                                                            source.defer_to_typeck(),
2739                                                            source.global_by_default()) {
2740             Some(resolution) if resolution.unresolved_segments() == 0 => {
2741                 if is_expected(resolution.base_def()) || resolution.base_def() == Def::Err {
2742                     resolution
2743                 } else {
2744                     // Add a temporary hack to smooth the transition to new struct ctor
2745                     // visibility rules. See #38932 for more details.
2746                     let mut res = None;
2747                     if let Def::Struct(def_id) = resolution.base_def() {
2748                         if let Some((ctor_def, ctor_vis))
2749                                 = self.struct_constructors.get(&def_id).cloned() {
2750                             if is_expected(ctor_def) && self.is_accessible(ctor_vis) {
2751                                 let lint = lint::builtin::LEGACY_CONSTRUCTOR_VISIBILITY;
2752                                 self.session.buffer_lint(lint, id, span,
2753                                     "private struct constructors are not usable through \
2754                                      re-exports in outer modules",
2755                                 );
2756                                 res = Some(PathResolution::new(ctor_def));
2757                             }
2758                         }
2759                     }
2760
2761                     res.unwrap_or_else(|| report_errors(self, Some(resolution.base_def())))
2762                 }
2763             }
2764             Some(resolution) if source.defer_to_typeck() => {
2765                 // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
2766                 // or `<T>::A::B`. If `B` should be resolved in value namespace then
2767                 // it needs to be added to the trait map.
2768                 if ns == ValueNS {
2769                     let item_name = path.last().unwrap().node;
2770                     let traits = self.get_traits_containing_item(item_name, ns);
2771                     self.trait_map.insert(id, traits);
2772                 }
2773                 resolution
2774             }
2775             _ => report_errors(self, None)
2776         };
2777
2778         if let PathSource::TraitItem(..) = source {} else {
2779             // Avoid recording definition of `A::B` in `<T as A>::B::C`.
2780             self.record_def(id, resolution);
2781         }
2782         resolution
2783     }
2784
2785     fn type_ascription_suggestion(&self,
2786                                   err: &mut DiagnosticBuilder,
2787                                   base_span: Span) {
2788         debug!("type_ascription_suggetion {:?}", base_span);
2789         let cm = self.session.codemap();
2790         debug!("self.current_type_ascription {:?}", self.current_type_ascription);
2791         if let Some(sp) = self.current_type_ascription.last() {
2792             let mut sp = *sp;
2793             loop {  // try to find the `:`, bail on first non-':'/non-whitespace
2794                 sp = sp.next_point();
2795                 if let Ok(snippet) = cm.span_to_snippet(sp.to(sp.next_point())) {
2796                     debug!("snippet {:?}", snippet);
2797                     let line_sp = cm.lookup_char_pos(sp.hi()).line;
2798                     let line_base_sp = cm.lookup_char_pos(base_span.lo()).line;
2799                     debug!("{:?} {:?}", line_sp, line_base_sp);
2800                     if snippet == ":" {
2801                         err.span_label(base_span,
2802                                        "expecting a type here because of type ascription");
2803                         if line_sp != line_base_sp {
2804                             err.span_suggestion_short(sp,
2805                                                       "did you mean to use `;` here instead?",
2806                                                       ";".to_string());
2807                         }
2808                         break;
2809                     } else if snippet.trim().len() != 0  {
2810                         debug!("tried to find type ascription `:` token, couldn't find it");
2811                         break;
2812                     }
2813                 } else {
2814                     break;
2815                 }
2816             }
2817         }
2818     }
2819
2820     fn self_type_is_available(&mut self, span: Span) -> bool {
2821         let binding = self.resolve_ident_in_lexical_scope(keywords::SelfType.ident(),
2822                                                           TypeNS, false, span);
2823         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
2824     }
2825
2826     fn self_value_is_available(&mut self, ctxt: SyntaxContext, span: Span) -> bool {
2827         let ident = Ident { name: keywords::SelfValue.name(), ctxt: ctxt };
2828         let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, false, span);
2829         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
2830     }
2831
2832     // Resolve in alternative namespaces if resolution in the primary namespace fails.
2833     fn resolve_qpath_anywhere(&mut self,
2834                               id: NodeId,
2835                               qself: Option<&QSelf>,
2836                               path: &[SpannedIdent],
2837                               primary_ns: Namespace,
2838                               span: Span,
2839                               defer_to_typeck: bool,
2840                               global_by_default: bool)
2841                               -> Option<PathResolution> {
2842         let mut fin_res = None;
2843         // FIXME: can't resolve paths in macro namespace yet, macros are
2844         // processed by the little special hack below.
2845         for (i, ns) in [primary_ns, TypeNS, ValueNS, /*MacroNS*/].iter().cloned().enumerate() {
2846             if i == 0 || ns != primary_ns {
2847                 match self.resolve_qpath(id, qself, path, ns, span, global_by_default) {
2848                     // If defer_to_typeck, then resolution > no resolution,
2849                     // otherwise full resolution > partial resolution > no resolution.
2850                     Some(res) if res.unresolved_segments() == 0 || defer_to_typeck =>
2851                         return Some(res),
2852                     res => if fin_res.is_none() { fin_res = res },
2853                 };
2854             }
2855         }
2856         let is_global = self.global_macros.get(&path[0].node.name).cloned()
2857             .map(|binding| binding.get_macro(self).kind() == MacroKind::Bang).unwrap_or(false);
2858         if primary_ns != MacroNS && (is_global ||
2859                                      self.macro_names.contains(&path[0].node.modern())) {
2860             // Return some dummy definition, it's enough for error reporting.
2861             return Some(
2862                 PathResolution::new(Def::Macro(DefId::local(CRATE_DEF_INDEX), MacroKind::Bang))
2863             );
2864         }
2865         fin_res
2866     }
2867
2868     /// Handles paths that may refer to associated items.
2869     fn resolve_qpath(&mut self,
2870                      id: NodeId,
2871                      qself: Option<&QSelf>,
2872                      path: &[SpannedIdent],
2873                      ns: Namespace,
2874                      span: Span,
2875                      global_by_default: bool)
2876                      -> Option<PathResolution> {
2877         if let Some(qself) = qself {
2878             if qself.position == 0 {
2879                 // FIXME: Create some fake resolution that can't possibly be a type.
2880                 return Some(PathResolution::with_unresolved_segments(
2881                     Def::Mod(DefId::local(CRATE_DEF_INDEX)), path.len()
2882                 ));
2883             }
2884             // Make sure `A::B` in `<T as A>::B::C` is a trait item.
2885             let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
2886             let res = self.smart_resolve_path_fragment(id, None, &path[..qself.position + 1],
2887                                                        span, span, PathSource::TraitItem(ns));
2888             return Some(PathResolution::with_unresolved_segments(
2889                 res.base_def(), res.unresolved_segments() + path.len() - qself.position - 1
2890             ));
2891         }
2892
2893         let result = match self.resolve_path(&path, Some(ns), true, span) {
2894             PathResult::NonModule(path_res) => path_res,
2895             PathResult::Module(module) if !module.is_normal() => {
2896                 PathResolution::new(module.def().unwrap())
2897             }
2898             // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
2899             // don't report an error right away, but try to fallback to a primitive type.
2900             // So, we are still able to successfully resolve something like
2901             //
2902             // use std::u8; // bring module u8 in scope
2903             // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
2904             //     u8::max_value() // OK, resolves to associated function <u8>::max_value,
2905             //                     // not to non-existent std::u8::max_value
2906             // }
2907             //
2908             // Such behavior is required for backward compatibility.
2909             // The same fallback is used when `a` resolves to nothing.
2910             PathResult::Module(..) | PathResult::Failed(..)
2911                     if (ns == TypeNS || path.len() > 1) &&
2912                        self.primitive_type_table.primitive_types
2913                            .contains_key(&path[0].node.name) => {
2914                 let prim = self.primitive_type_table.primitive_types[&path[0].node.name];
2915                 match prim {
2916                     TyUint(UintTy::U128) | TyInt(IntTy::I128) => {
2917                         if !self.session.features.borrow().i128_type {
2918                             emit_feature_err(&self.session.parse_sess,
2919                                                 "i128_type", span, GateIssue::Language,
2920                                                 "128-bit type is unstable");
2921
2922                         }
2923                     }
2924                     _ => {}
2925                 }
2926                 PathResolution::with_unresolved_segments(Def::PrimTy(prim), path.len() - 1)
2927             }
2928             PathResult::Module(module) => PathResolution::new(module.def().unwrap()),
2929             PathResult::Failed(span, msg, false) => {
2930                 resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
2931                 err_path_resolution()
2932             }
2933             PathResult::Failed(..) => return None,
2934             PathResult::Indeterminate => bug!("indetermined path result in resolve_qpath"),
2935         };
2936
2937         if path.len() > 1 && !global_by_default && result.base_def() != Def::Err &&
2938            path[0].node.name != keywords::CrateRoot.name() &&
2939            path[0].node.name != keywords::DollarCrate.name() {
2940             let unqualified_result = {
2941                 match self.resolve_path(&[*path.last().unwrap()], Some(ns), false, span) {
2942                     PathResult::NonModule(path_res) => path_res.base_def(),
2943                     PathResult::Module(module) => module.def().unwrap(),
2944                     _ => return Some(result),
2945                 }
2946             };
2947             if result.base_def() == unqualified_result {
2948                 let lint = lint::builtin::UNUSED_QUALIFICATIONS;
2949                 self.session.buffer_lint(lint, id, span, "unnecessary qualification")
2950             }
2951         }
2952
2953         Some(result)
2954     }
2955
2956     fn resolve_path(&mut self,
2957                     path: &[SpannedIdent],
2958                     opt_ns: Option<Namespace>, // `None` indicates a module path
2959                     record_used: bool,
2960                     path_span: Span)
2961                     -> PathResult<'a> {
2962         let mut module = None;
2963         let mut allow_super = true;
2964
2965         for (i, &ident) in path.iter().enumerate() {
2966             debug!("resolve_path ident {} {:?}", i, ident);
2967             let is_last = i == path.len() - 1;
2968             let ns = if is_last { opt_ns.unwrap_or(TypeNS) } else { TypeNS };
2969             let name = ident.node.name;
2970
2971             if i == 0 && ns == TypeNS && name == keywords::SelfValue.name() {
2972                 let mut ctxt = ident.node.ctxt.modern();
2973                 module = Some(self.resolve_self(&mut ctxt, self.current_module));
2974                 continue
2975             } else if allow_super && ns == TypeNS && name == keywords::Super.name() {
2976                 let mut ctxt = ident.node.ctxt.modern();
2977                 let self_module = match i {
2978                     0 => self.resolve_self(&mut ctxt, self.current_module),
2979                     _ => module.unwrap(),
2980                 };
2981                 if let Some(parent) = self_module.parent {
2982                     module = Some(self.resolve_self(&mut ctxt, parent));
2983                     continue
2984                 } else {
2985                     let msg = "There are too many initial `super`s.".to_string();
2986                     return PathResult::Failed(ident.span, msg, false);
2987                 }
2988             } else if i == 0 && ns == TypeNS && name == keywords::Extern.name() {
2989                 continue;
2990             }
2991             allow_super = false;
2992
2993             if ns == TypeNS {
2994                 if (i == 0 && name == keywords::CrateRoot.name()) ||
2995                    (i == 1 && name == keywords::Crate.name() &&
2996                               path[0].node.name == keywords::CrateRoot.name()) {
2997                     // `::a::b` or `::crate::a::b`
2998                     module = Some(self.resolve_crate_root(ident.node.ctxt, false));
2999                     continue
3000                 } else if i == 0 && name == keywords::DollarCrate.name() {
3001                     // `$crate::a::b`
3002                     module = Some(self.resolve_crate_root(ident.node.ctxt, true));
3003                     continue
3004                 } else if i == 1 && !token::Ident(ident.node).is_path_segment_keyword() {
3005                     let prev_name = path[0].node.name;
3006                     if prev_name == keywords::Extern.name() ||
3007                        prev_name == keywords::CrateRoot.name() &&
3008                        self.session.features.borrow().extern_absolute_paths {
3009                         // `::extern_crate::a::b`
3010                         let crate_id = self.crate_loader.resolve_crate_from_path(name, ident.span);
3011                         let crate_root =
3012                             self.get_module(DefId { krate: crate_id, index: CRATE_DEF_INDEX });
3013                         self.populate_module_if_necessary(crate_root);
3014                         module = Some(crate_root);
3015                         continue
3016                     }
3017                 }
3018             }
3019
3020             // Report special messages for path segment keywords in wrong positions.
3021             if name == keywords::CrateRoot.name() && i != 0 ||
3022                name == keywords::DollarCrate.name() && i != 0 ||
3023                name == keywords::SelfValue.name() && i != 0 ||
3024                name == keywords::SelfType.name() && i != 0 ||
3025                name == keywords::Super.name() && i != 0 ||
3026                name == keywords::Extern.name() && i != 0 ||
3027                name == keywords::Crate.name() && i != 1 &&
3028                     path[0].node.name != keywords::CrateRoot.name() {
3029                 let name_str = if name == keywords::CrateRoot.name() {
3030                     format!("crate root")
3031                 } else {
3032                     format!("`{}`", name)
3033                 };
3034                 let msg = if i == 1 && path[0].node.name == keywords::CrateRoot.name() {
3035                     format!("global paths cannot start with {}", name_str)
3036                 } else if i == 0 && name == keywords::Crate.name() {
3037                     format!("{} can only be used in absolute paths", name_str)
3038                 } else {
3039                     format!("{} in paths can only be used in start position", name_str)
3040                 };
3041                 return PathResult::Failed(ident.span, msg, false);
3042             }
3043
3044             let binding = if let Some(module) = module {
3045                 self.resolve_ident_in_module(module, ident.node, ns, false, record_used, path_span)
3046             } else if opt_ns == Some(MacroNS) {
3047                 self.resolve_lexical_macro_path_segment(ident.node, ns, record_used, path_span)
3048                     .map(MacroBinding::binding)
3049             } else {
3050                 match self.resolve_ident_in_lexical_scope(ident.node, ns, record_used, path_span) {
3051                     Some(LexicalScopeBinding::Item(binding)) => Ok(binding),
3052                     Some(LexicalScopeBinding::Def(def))
3053                             if opt_ns == Some(TypeNS) || opt_ns == Some(ValueNS) => {
3054                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3055                             def, path.len() - 1
3056                         ));
3057                     }
3058                     _ => Err(if record_used { Determined } else { Undetermined }),
3059                 }
3060             };
3061
3062             match binding {
3063                 Ok(binding) => {
3064                     let def = binding.def();
3065                     let maybe_assoc = opt_ns != Some(MacroNS) && PathSource::Type.is_expected(def);
3066                     if let Some(next_module) = binding.module() {
3067                         module = Some(next_module);
3068                     } else if def == Def::Err {
3069                         return PathResult::NonModule(err_path_resolution());
3070                     } else if opt_ns.is_some() && (is_last || maybe_assoc) {
3071                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3072                             def, path.len() - i - 1
3073                         ));
3074                     } else {
3075                         return PathResult::Failed(ident.span,
3076                                                   format!("Not a module `{}`", ident.node),
3077                                                   is_last);
3078                     }
3079                 }
3080                 Err(Undetermined) => return PathResult::Indeterminate,
3081                 Err(Determined) => {
3082                     if let Some(module) = module {
3083                         if opt_ns.is_some() && !module.is_normal() {
3084                             return PathResult::NonModule(PathResolution::with_unresolved_segments(
3085                                 module.def().unwrap(), path.len() - i
3086                             ));
3087                         }
3088                     }
3089                     let msg = if module.and_then(ModuleData::def) == self.graph_root.def() {
3090                         let is_mod = |def| match def { Def::Mod(..) => true, _ => false };
3091                         let mut candidates =
3092                             self.lookup_import_candidates(name, TypeNS, is_mod);
3093                         candidates.sort_by_key(|c| (c.path.segments.len(), c.path.to_string()));
3094                         if let Some(candidate) = candidates.get(0) {
3095                             format!("Did you mean `{}`?", candidate.path)
3096                         } else {
3097                             format!("Maybe a missing `extern crate {};`?", ident.node)
3098                         }
3099                     } else if i == 0 {
3100                         format!("Use of undeclared type or module `{}`", ident.node)
3101                     } else {
3102                         format!("Could not find `{}` in `{}`", ident.node, path[i - 1].node)
3103                     };
3104                     return PathResult::Failed(ident.span, msg, is_last);
3105                 }
3106             }
3107         }
3108
3109         PathResult::Module(module.unwrap_or(self.graph_root))
3110     }
3111
3112     // Resolve a local definition, potentially adjusting for closures.
3113     fn adjust_local_def(&mut self,
3114                         ns: Namespace,
3115                         rib_index: usize,
3116                         mut def: Def,
3117                         record_used: bool,
3118                         span: Span) -> Def {
3119         let ribs = &self.ribs[ns][rib_index + 1..];
3120
3121         // An invalid forward use of a type parameter from a previous default.
3122         if let ForwardTyParamBanRibKind = self.ribs[ns][rib_index].kind {
3123             if record_used {
3124                 resolve_error(self, span, ResolutionError::ForwardDeclaredTyParam);
3125             }
3126             assert_eq!(def, Def::Err);
3127             return Def::Err;
3128         }
3129
3130         match def {
3131             Def::Upvar(..) => {
3132                 span_bug!(span, "unexpected {:?} in bindings", def)
3133             }
3134             Def::Local(node_id) => {
3135                 for rib in ribs {
3136                     match rib.kind {
3137                         NormalRibKind | ModuleRibKind(..) | MacroDefinition(..) |
3138                         ForwardTyParamBanRibKind => {
3139                             // Nothing to do. Continue.
3140                         }
3141                         ClosureRibKind(function_id) => {
3142                             let prev_def = def;
3143
3144                             let seen = self.freevars_seen
3145                                            .entry(function_id)
3146                                            .or_insert_with(|| NodeMap());
3147                             if let Some(&index) = seen.get(&node_id) {
3148                                 def = Def::Upvar(node_id, index, function_id);
3149                                 continue;
3150                             }
3151                             let vec = self.freevars
3152                                           .entry(function_id)
3153                                           .or_insert_with(|| vec![]);
3154                             let depth = vec.len();
3155                             def = Def::Upvar(node_id, depth, function_id);
3156
3157                             if record_used {
3158                                 vec.push(Freevar {
3159                                     def: prev_def,
3160                                     span,
3161                                 });
3162                                 seen.insert(node_id, depth);
3163                             }
3164                         }
3165                         ItemRibKind | TraitOrImplItemRibKind => {
3166                             // This was an attempt to access an upvar inside a
3167                             // named function item. This is not allowed, so we
3168                             // report an error.
3169                             if record_used {
3170                                 resolve_error(self, span,
3171                                         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem);
3172                             }
3173                             return Def::Err;
3174                         }
3175                         ConstantItemRibKind => {
3176                             // Still doesn't deal with upvars
3177                             if record_used {
3178                                 resolve_error(self, span,
3179                                         ResolutionError::AttemptToUseNonConstantValueInConstant);
3180                             }
3181                             return Def::Err;
3182                         }
3183                     }
3184                 }
3185             }
3186             Def::TyParam(..) | Def::SelfTy(..) => {
3187                 for rib in ribs {
3188                     match rib.kind {
3189                         NormalRibKind | TraitOrImplItemRibKind | ClosureRibKind(..) |
3190                         ModuleRibKind(..) | MacroDefinition(..) | ForwardTyParamBanRibKind |
3191                         ConstantItemRibKind => {
3192                             // Nothing to do. Continue.
3193                         }
3194                         ItemRibKind => {
3195                             // This was an attempt to use a type parameter outside
3196                             // its scope.
3197                             if record_used {
3198                                 resolve_error(self, span,
3199                                               ResolutionError::TypeParametersFromOuterFunction);
3200                             }
3201                             return Def::Err;
3202                         }
3203                     }
3204                 }
3205             }
3206             _ => {}
3207         }
3208         return def;
3209     }
3210
3211     fn lookup_assoc_candidate<FilterFn>(&mut self,
3212                                         ident: Ident,
3213                                         ns: Namespace,
3214                                         filter_fn: FilterFn)
3215                                         -> Option<AssocSuggestion>
3216         where FilterFn: Fn(Def) -> bool
3217     {
3218         fn extract_node_id(t: &Ty) -> Option<NodeId> {
3219             match t.node {
3220                 TyKind::Path(None, _) => Some(t.id),
3221                 TyKind::Rptr(_, ref mut_ty) => extract_node_id(&mut_ty.ty),
3222                 // This doesn't handle the remaining `Ty` variants as they are not
3223                 // that commonly the self_type, it might be interesting to provide
3224                 // support for those in future.
3225                 _ => None,
3226             }
3227         }
3228
3229         // Fields are generally expected in the same contexts as locals.
3230         if filter_fn(Def::Local(ast::DUMMY_NODE_ID)) {
3231             if let Some(node_id) = self.current_self_type.as_ref().and_then(extract_node_id) {
3232                 // Look for a field with the same name in the current self_type.
3233                 if let Some(resolution) = self.def_map.get(&node_id) {
3234                     match resolution.base_def() {
3235                         Def::Struct(did) | Def::Union(did)
3236                                 if resolution.unresolved_segments() == 0 => {
3237                             if let Some(field_names) = self.field_names.get(&did) {
3238                                 if field_names.iter().any(|&field_name| ident.name == field_name) {
3239                                     return Some(AssocSuggestion::Field);
3240                                 }
3241                             }
3242                         }
3243                         _ => {}
3244                     }
3245                 }
3246             }
3247         }
3248
3249         // Look for associated items in the current trait.
3250         if let Some((module, _)) = self.current_trait_ref {
3251             if let Ok(binding) =
3252                     self.resolve_ident_in_module(module, ident, ns, false, false, module.span) {
3253                 let def = binding.def();
3254                 if filter_fn(def) {
3255                     return Some(if self.has_self.contains(&def.def_id()) {
3256                         AssocSuggestion::MethodWithSelf
3257                     } else {
3258                         AssocSuggestion::AssocItem
3259                     });
3260                 }
3261             }
3262         }
3263
3264         None
3265     }
3266
3267     fn lookup_typo_candidate<FilterFn>(&mut self,
3268                                        path: &[SpannedIdent],
3269                                        ns: Namespace,
3270                                        filter_fn: FilterFn,
3271                                        span: Span)
3272                                        -> Option<Symbol>
3273         where FilterFn: Fn(Def) -> bool
3274     {
3275         let add_module_candidates = |module: Module, names: &mut Vec<Name>| {
3276             for (&(ident, _), resolution) in module.resolutions.borrow().iter() {
3277                 if let Some(binding) = resolution.borrow().binding {
3278                     if filter_fn(binding.def()) {
3279                         names.push(ident.name);
3280                     }
3281                 }
3282             }
3283         };
3284
3285         let mut names = Vec::new();
3286         if path.len() == 1 {
3287             // Search in lexical scope.
3288             // Walk backwards up the ribs in scope and collect candidates.
3289             for rib in self.ribs[ns].iter().rev() {
3290                 // Locals and type parameters
3291                 for (ident, def) in &rib.bindings {
3292                     if filter_fn(*def) {
3293                         names.push(ident.name);
3294                     }
3295                 }
3296                 // Items in scope
3297                 if let ModuleRibKind(module) = rib.kind {
3298                     // Items from this module
3299                     add_module_candidates(module, &mut names);
3300
3301                     if let ModuleKind::Block(..) = module.kind {
3302                         // We can see through blocks
3303                     } else {
3304                         // Items from the prelude
3305                         if let Some(prelude) = self.prelude {
3306                             if !module.no_implicit_prelude {
3307                                 add_module_candidates(prelude, &mut names);
3308                             }
3309                         }
3310                         break;
3311                     }
3312                 }
3313             }
3314             // Add primitive types to the mix
3315             if filter_fn(Def::PrimTy(TyBool)) {
3316                 for (name, _) in &self.primitive_type_table.primitive_types {
3317                     names.push(*name);
3318                 }
3319             }
3320         } else {
3321             // Search in module.
3322             let mod_path = &path[..path.len() - 1];
3323             if let PathResult::Module(module) = self.resolve_path(mod_path, Some(TypeNS),
3324                                                                   false, span) {
3325                 add_module_candidates(module, &mut names);
3326             }
3327         }
3328
3329         let name = path[path.len() - 1].node.name;
3330         // Make sure error reporting is deterministic.
3331         names.sort_by_key(|name| name.as_str());
3332         match find_best_match_for_name(names.iter(), &name.as_str(), None) {
3333             Some(found) if found != name => Some(found),
3334             _ => None,
3335         }
3336     }
3337
3338     fn with_resolved_label<F>(&mut self, label: Option<SpannedIdent>, id: NodeId, f: F)
3339         where F: FnOnce(&mut Resolver)
3340     {
3341         if let Some(label) = label {
3342             let def = Def::Label(id);
3343             self.with_label_rib(|this| {
3344                 this.label_ribs.last_mut().unwrap().bindings.insert(label.node, def);
3345                 f(this);
3346             });
3347         } else {
3348             f(self);
3349         }
3350     }
3351
3352     fn resolve_labeled_block(&mut self, label: Option<SpannedIdent>, id: NodeId, block: &Block) {
3353         self.with_resolved_label(label, id, |this| this.visit_block(block));
3354     }
3355
3356     fn resolve_expr(&mut self, expr: &Expr, parent: Option<&Expr>) {
3357         // First, record candidate traits for this expression if it could
3358         // result in the invocation of a method call.
3359
3360         self.record_candidate_traits_for_expr_if_necessary(expr);
3361
3362         // Next, resolve the node.
3363         match expr.node {
3364             ExprKind::Path(ref qself, ref path) => {
3365                 self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
3366                 visit::walk_expr(self, expr);
3367             }
3368
3369             ExprKind::Struct(ref path, ..) => {
3370                 self.smart_resolve_path(expr.id, None, path, PathSource::Struct);
3371                 visit::walk_expr(self, expr);
3372             }
3373
3374             ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
3375                 match self.search_label(label.node, |rib, id| rib.bindings.get(&id).cloned()) {
3376                     None => {
3377                         // Search again for close matches...
3378                         // Picks the first label that is "close enough", which is not necessarily
3379                         // the closest match
3380                         let close_match = self.search_label(label.node, |rib, ident| {
3381                             let names = rib.bindings.iter().map(|(id, _)| &id.name);
3382                             find_best_match_for_name(names, &*ident.name.as_str(), None)
3383                         });
3384                         self.record_def(expr.id, err_path_resolution());
3385                         resolve_error(self,
3386                                       label.span,
3387                                       ResolutionError::UndeclaredLabel(&label.node.name.as_str(),
3388                                                                        close_match));
3389                     }
3390                     Some(def @ Def::Label(_)) => {
3391                         // Since this def is a label, it is never read.
3392                         self.record_def(expr.id, PathResolution::new(def));
3393                     }
3394                     Some(_) => {
3395                         span_bug!(expr.span, "label wasn't mapped to a label def!");
3396                     }
3397                 }
3398
3399                 // visit `break` argument if any
3400                 visit::walk_expr(self, expr);
3401             }
3402
3403             ExprKind::IfLet(ref pattern, ref subexpression, ref if_block, ref optional_else) => {
3404                 self.visit_expr(subexpression);
3405
3406                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
3407                 self.resolve_pattern(pattern, PatternSource::IfLet, &mut FxHashMap());
3408                 self.visit_block(if_block);
3409                 self.ribs[ValueNS].pop();
3410
3411                 optional_else.as_ref().map(|expr| self.visit_expr(expr));
3412             }
3413
3414             ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),
3415
3416             ExprKind::While(ref subexpression, ref block, label) => {
3417                 self.with_resolved_label(label, expr.id, |this| {
3418                     this.visit_expr(subexpression);
3419                     this.visit_block(block);
3420                 });
3421             }
3422
3423             ExprKind::WhileLet(ref pattern, ref subexpression, ref block, label) => {
3424                 self.with_resolved_label(label, expr.id, |this| {
3425                     this.visit_expr(subexpression);
3426                     this.ribs[ValueNS].push(Rib::new(NormalRibKind));
3427                     this.resolve_pattern(pattern, PatternSource::WhileLet, &mut FxHashMap());
3428                     this.visit_block(block);
3429                     this.ribs[ValueNS].pop();
3430                 });
3431             }
3432
3433             ExprKind::ForLoop(ref pattern, ref subexpression, ref block, label) => {
3434                 self.visit_expr(subexpression);
3435                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
3436                 self.resolve_pattern(pattern, PatternSource::For, &mut FxHashMap());
3437
3438                 self.resolve_labeled_block(label, expr.id, block);
3439
3440                 self.ribs[ValueNS].pop();
3441             }
3442
3443             // Equivalent to `visit::walk_expr` + passing some context to children.
3444             ExprKind::Field(ref subexpression, _) => {
3445                 self.resolve_expr(subexpression, Some(expr));
3446             }
3447             ExprKind::MethodCall(ref segment, ref arguments) => {
3448                 let mut arguments = arguments.iter();
3449                 self.resolve_expr(arguments.next().unwrap(), Some(expr));
3450                 for argument in arguments {
3451                     self.resolve_expr(argument, None);
3452                 }
3453                 self.visit_path_segment(expr.span, segment);
3454             }
3455
3456             ExprKind::Repeat(ref element, ref count) => {
3457                 self.visit_expr(element);
3458                 self.with_constant_rib(|this| {
3459                     this.visit_expr(count);
3460                 });
3461             }
3462             ExprKind::Call(ref callee, ref arguments) => {
3463                 self.resolve_expr(callee, Some(expr));
3464                 for argument in arguments {
3465                     self.resolve_expr(argument, None);
3466                 }
3467             }
3468             ExprKind::Type(ref type_expr, _) => {
3469                 self.current_type_ascription.push(type_expr.span);
3470                 visit::walk_expr(self, expr);
3471                 self.current_type_ascription.pop();
3472             }
3473             _ => {
3474                 visit::walk_expr(self, expr);
3475             }
3476         }
3477     }
3478
3479     fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &Expr) {
3480         match expr.node {
3481             ExprKind::Field(_, name) => {
3482                 // FIXME(#6890): Even though you can't treat a method like a
3483                 // field, we need to add any trait methods we find that match
3484                 // the field name so that we can do some nice error reporting
3485                 // later on in typeck.
3486                 let traits = self.get_traits_containing_item(name.node, ValueNS);
3487                 self.trait_map.insert(expr.id, traits);
3488             }
3489             ExprKind::MethodCall(ref segment, ..) => {
3490                 debug!("(recording candidate traits for expr) recording traits for {}",
3491                        expr.id);
3492                 let traits = self.get_traits_containing_item(segment.identifier, ValueNS);
3493                 self.trait_map.insert(expr.id, traits);
3494             }
3495             _ => {
3496                 // Nothing to do.
3497             }
3498         }
3499     }
3500
3501     fn get_traits_containing_item(&mut self, mut ident: Ident, ns: Namespace)
3502                                   -> Vec<TraitCandidate> {
3503         debug!("(getting traits containing item) looking for '{}'", ident.name);
3504
3505         let mut found_traits = Vec::new();
3506         // Look for the current trait.
3507         if let Some((module, _)) = self.current_trait_ref {
3508             if self.resolve_ident_in_module(module, ident, ns, false, false, module.span).is_ok() {
3509                 let def_id = module.def_id().unwrap();
3510                 found_traits.push(TraitCandidate { def_id: def_id, import_id: None });
3511             }
3512         }
3513
3514         ident.ctxt = ident.ctxt.modern();
3515         let mut search_module = self.current_module;
3516         loop {
3517             self.get_traits_in_module_containing_item(ident, ns, search_module, &mut found_traits);
3518             search_module =
3519                 unwrap_or!(self.hygienic_lexical_parent(search_module, &mut ident.ctxt), break);
3520         }
3521
3522         if let Some(prelude) = self.prelude {
3523             if !search_module.no_implicit_prelude {
3524                 self.get_traits_in_module_containing_item(ident, ns, prelude, &mut found_traits);
3525             }
3526         }
3527
3528         found_traits
3529     }
3530
3531     fn get_traits_in_module_containing_item(&mut self,
3532                                             ident: Ident,
3533                                             ns: Namespace,
3534                                             module: Module<'a>,
3535                                             found_traits: &mut Vec<TraitCandidate>) {
3536         let mut traits = module.traits.borrow_mut();
3537         if traits.is_none() {
3538             let mut collected_traits = Vec::new();
3539             module.for_each_child(|name, ns, binding| {
3540                 if ns != TypeNS { return }
3541                 if let Def::Trait(_) = binding.def() {
3542                     collected_traits.push((name, binding));
3543                 }
3544             });
3545             *traits = Some(collected_traits.into_boxed_slice());
3546         }
3547
3548         for &(trait_name, binding) in traits.as_ref().unwrap().iter() {
3549             let module = binding.module().unwrap();
3550             let mut ident = ident;
3551             if ident.ctxt.glob_adjust(module.expansion, binding.span.ctxt().modern()).is_none() {
3552                 continue
3553             }
3554             if self.resolve_ident_in_module_unadjusted(module, ident, ns, false, false, module.span)
3555                    .is_ok() {
3556                 let import_id = match binding.kind {
3557                     NameBindingKind::Import { directive, .. } => {
3558                         self.maybe_unused_trait_imports.insert(directive.id);
3559                         self.add_to_glob_map(directive.id, trait_name);
3560                         Some(directive.id)
3561                     }
3562                     _ => None,
3563                 };
3564                 let trait_def_id = module.def_id().unwrap();
3565                 found_traits.push(TraitCandidate { def_id: trait_def_id, import_id: import_id });
3566             }
3567         }
3568     }
3569
3570     /// When name resolution fails, this method can be used to look up candidate
3571     /// entities with the expected name. It allows filtering them using the
3572     /// supplied predicate (which should be used to only accept the types of
3573     /// definitions expected e.g. traits). The lookup spans across all crates.
3574     ///
3575     /// NOTE: The method does not look into imports, but this is not a problem,
3576     /// since we report the definitions (thus, the de-aliased imports).
3577     fn lookup_import_candidates<FilterFn>(&mut self,
3578                                           lookup_name: Name,
3579                                           namespace: Namespace,
3580                                           filter_fn: FilterFn)
3581                                           -> Vec<ImportSuggestion>
3582         where FilterFn: Fn(Def) -> bool
3583     {
3584         let mut candidates = Vec::new();
3585         let mut worklist = Vec::new();
3586         let mut seen_modules = FxHashSet();
3587         worklist.push((self.graph_root, Vec::new(), false));
3588
3589         while let Some((in_module,
3590                         path_segments,
3591                         in_module_is_extern)) = worklist.pop() {
3592             self.populate_module_if_necessary(in_module);
3593
3594             // We have to visit module children in deterministic order to avoid
3595             // instabilities in reported imports (#43552).
3596             in_module.for_each_child_stable(|ident, ns, name_binding| {
3597                 // avoid imports entirely
3598                 if name_binding.is_import() && !name_binding.is_extern_crate() { return; }
3599                 // avoid non-importable candidates as well
3600                 if !name_binding.is_importable() { return; }
3601
3602                 // collect results based on the filter function
3603                 if ident.name == lookup_name && ns == namespace {
3604                     if filter_fn(name_binding.def()) {
3605                         // create the path
3606                         let mut segms = path_segments.clone();
3607                         segms.push(ast::PathSegment::from_ident(ident, name_binding.span));
3608                         let path = Path {
3609                             span: name_binding.span,
3610                             segments: segms,
3611                         };
3612                         // the entity is accessible in the following cases:
3613                         // 1. if it's defined in the same crate, it's always
3614                         // accessible (since private entities can be made public)
3615                         // 2. if it's defined in another crate, it's accessible
3616                         // only if both the module is public and the entity is
3617                         // declared as public (due to pruning, we don't explore
3618                         // outside crate private modules => no need to check this)
3619                         if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
3620                             candidates.push(ImportSuggestion { path: path });
3621                         }
3622                     }
3623                 }
3624
3625                 // collect submodules to explore
3626                 if let Some(module) = name_binding.module() {
3627                     // form the path
3628                     let mut path_segments = path_segments.clone();
3629                     path_segments.push(ast::PathSegment::from_ident(ident, name_binding.span));
3630
3631                     if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
3632                         // add the module to the lookup
3633                         let is_extern = in_module_is_extern || name_binding.is_extern_crate();
3634                         if seen_modules.insert(module.def_id().unwrap()) {
3635                             worklist.push((module, path_segments, is_extern));
3636                         }
3637                     }
3638                 }
3639             })
3640         }
3641
3642         candidates
3643     }
3644
3645     fn find_module(&mut self,
3646                    module_def: Def)
3647                    -> Option<(Module<'a>, ImportSuggestion)>
3648     {
3649         let mut result = None;
3650         let mut worklist = Vec::new();
3651         let mut seen_modules = FxHashSet();
3652         worklist.push((self.graph_root, Vec::new()));
3653
3654         while let Some((in_module, path_segments)) = worklist.pop() {
3655             // abort if the module is already found
3656             if let Some(_) = result { break; }
3657
3658             self.populate_module_if_necessary(in_module);
3659
3660             in_module.for_each_child_stable(|ident, _, name_binding| {
3661                 // abort if the module is already found or if name_binding is private external
3662                 if result.is_some() || !name_binding.vis.is_visible_locally() {
3663                     return
3664                 }
3665                 if let Some(module) = name_binding.module() {
3666                     // form the path
3667                     let mut path_segments = path_segments.clone();
3668                     path_segments.push(ast::PathSegment::from_ident(ident, name_binding.span));
3669                     if module.def() == Some(module_def) {
3670                         let path = Path {
3671                             span: name_binding.span,
3672                             segments: path_segments,
3673                         };
3674                         result = Some((module, ImportSuggestion { path: path }));
3675                     } else {
3676                         // add the module to the lookup
3677                         if seen_modules.insert(module.def_id().unwrap()) {
3678                             worklist.push((module, path_segments));
3679                         }
3680                     }
3681                 }
3682             });
3683         }
3684
3685         result
3686     }
3687
3688     fn collect_enum_variants(&mut self, enum_def: Def) -> Option<Vec<Path>> {
3689         if let Def::Enum(..) = enum_def {} else {
3690             panic!("Non-enum def passed to collect_enum_variants: {:?}", enum_def)
3691         }
3692
3693         self.find_module(enum_def).map(|(enum_module, enum_import_suggestion)| {
3694             self.populate_module_if_necessary(enum_module);
3695
3696             let mut variants = Vec::new();
3697             enum_module.for_each_child_stable(|ident, _, name_binding| {
3698                 if let Def::Variant(..) = name_binding.def() {
3699                     let mut segms = enum_import_suggestion.path.segments.clone();
3700                     segms.push(ast::PathSegment::from_ident(ident, name_binding.span));
3701                     variants.push(Path {
3702                         span: name_binding.span,
3703                         segments: segms,
3704                     });
3705                 }
3706             });
3707             variants
3708         })
3709     }
3710
3711     fn record_def(&mut self, node_id: NodeId, resolution: PathResolution) {
3712         debug!("(recording def) recording {:?} for {}", resolution, node_id);
3713         if let Some(prev_res) = self.def_map.insert(node_id, resolution) {
3714             panic!("path resolved multiple times ({:?} before, {:?} now)", prev_res, resolution);
3715         }
3716     }
3717
3718     fn resolve_visibility(&mut self, vis: &ast::Visibility) -> ty::Visibility {
3719         match *vis {
3720             ast::Visibility::Public => ty::Visibility::Public,
3721             ast::Visibility::Crate(..) => ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX)),
3722             ast::Visibility::Inherited => {
3723                 ty::Visibility::Restricted(self.current_module.normal_ancestor_id)
3724             }
3725             ast::Visibility::Restricted { ref path, id } => {
3726                 let def = self.smart_resolve_path(id, None, path,
3727                                                   PathSource::Visibility).base_def();
3728                 if def == Def::Err {
3729                     ty::Visibility::Public
3730                 } else {
3731                     let vis = ty::Visibility::Restricted(def.def_id());
3732                     if self.is_accessible(vis) {
3733                         vis
3734                     } else {
3735                         self.session.span_err(path.span, "visibilities can only be restricted \
3736                                                           to ancestor modules");
3737                         ty::Visibility::Public
3738                     }
3739                 }
3740             }
3741         }
3742     }
3743
3744     fn is_accessible(&self, vis: ty::Visibility) -> bool {
3745         vis.is_accessible_from(self.current_module.normal_ancestor_id, self)
3746     }
3747
3748     fn is_accessible_from(&self, vis: ty::Visibility, module: Module<'a>) -> bool {
3749         vis.is_accessible_from(module.normal_ancestor_id, self)
3750     }
3751
3752     fn report_errors(&mut self, krate: &Crate) {
3753         self.report_shadowing_errors();
3754         self.report_with_use_injections(krate);
3755         self.report_proc_macro_import(krate);
3756         let mut reported_spans = FxHashSet();
3757
3758         for &AmbiguityError { span, name, b1, b2, lexical, legacy } in &self.ambiguity_errors {
3759             if !reported_spans.insert(span) { continue }
3760             let participle = |binding: &NameBinding| {
3761                 if binding.is_import() { "imported" } else { "defined" }
3762             };
3763             let msg1 = format!("`{}` could refer to the name {} here", name, participle(b1));
3764             let msg2 = format!("`{}` could also refer to the name {} here", name, participle(b2));
3765             let note = if b1.expansion == Mark::root() || !lexical && b1.is_glob_import() {
3766                 format!("consider adding an explicit import of `{}` to disambiguate", name)
3767             } else if let Def::Macro(..) = b1.def() {
3768                 format!("macro-expanded {} do not shadow",
3769                         if b1.is_import() { "macro imports" } else { "macros" })
3770             } else {
3771                 format!("macro-expanded {} do not shadow when used in a macro invocation path",
3772                         if b1.is_import() { "imports" } else { "items" })
3773             };
3774             if legacy {
3775                 let id = match b2.kind {
3776                     NameBindingKind::Import { directive, .. } => directive.id,
3777                     _ => unreachable!(),
3778                 };
3779                 let mut span = MultiSpan::from_span(span);
3780                 span.push_span_label(b1.span, msg1);
3781                 span.push_span_label(b2.span, msg2);
3782                 let msg = format!("`{}` is ambiguous", name);
3783                 self.session.buffer_lint(lint::builtin::LEGACY_IMPORTS, id, span, &msg);
3784             } else {
3785                 let mut err =
3786                     self.session.struct_span_err(span, &format!("`{}` is ambiguous", name));
3787                 err.span_note(b1.span, &msg1);
3788                 match b2.def() {
3789                     Def::Macro(..) if b2.span == DUMMY_SP =>
3790                         err.note(&format!("`{}` is also a builtin macro", name)),
3791                     _ => err.span_note(b2.span, &msg2),
3792                 };
3793                 err.note(&note).emit();
3794             }
3795         }
3796
3797         for &PrivacyError(span, name, binding) in &self.privacy_errors {
3798             if !reported_spans.insert(span) { continue }
3799             span_err!(self.session, span, E0603, "{} `{}` is private", binding.descr(), name);
3800         }
3801     }
3802
3803     fn report_with_use_injections(&mut self, krate: &Crate) {
3804         for UseError { mut err, candidates, node_id, better } in self.use_injections.drain(..) {
3805             let (span, found_use) = UsePlacementFinder::check(krate, node_id);
3806             if !candidates.is_empty() {
3807                 show_candidates(&mut err, span, &candidates, better, found_use);
3808             }
3809             err.emit();
3810         }
3811     }
3812
3813     fn report_shadowing_errors(&mut self) {
3814         for (ident, scope) in replace(&mut self.lexical_macro_resolutions, Vec::new()) {
3815             self.resolve_legacy_scope(scope, ident, true);
3816         }
3817
3818         let mut reported_errors = FxHashSet();
3819         for binding in replace(&mut self.disallowed_shadowing, Vec::new()) {
3820             if self.resolve_legacy_scope(&binding.parent, binding.ident, false).is_some() &&
3821                reported_errors.insert((binding.ident, binding.span)) {
3822                 let msg = format!("`{}` is already in scope", binding.ident);
3823                 self.session.struct_span_err(binding.span, &msg)
3824                     .note("macro-expanded `macro_rules!`s may not shadow \
3825                            existing macros (see RFC 1560)")
3826                     .emit();
3827             }
3828         }
3829     }
3830
3831     fn report_conflict<'b>(&mut self,
3832                        parent: Module,
3833                        ident: Ident,
3834                        ns: Namespace,
3835                        new_binding: &NameBinding<'b>,
3836                        old_binding: &NameBinding<'b>) {
3837         // Error on the second of two conflicting names
3838         if old_binding.span.lo() > new_binding.span.lo() {
3839             return self.report_conflict(parent, ident, ns, old_binding, new_binding);
3840         }
3841
3842         let container = match parent.kind {
3843             ModuleKind::Def(Def::Mod(_), _) => "module",
3844             ModuleKind::Def(Def::Trait(_), _) => "trait",
3845             ModuleKind::Block(..) => "block",
3846             _ => "enum",
3847         };
3848
3849         let old_noun = match old_binding.is_import() {
3850             true => "import",
3851             false => "definition",
3852         };
3853
3854         let new_participle = match new_binding.is_import() {
3855             true => "imported",
3856             false => "defined",
3857         };
3858
3859         let (name, span) = (ident.name, self.session.codemap().def_span(new_binding.span));
3860
3861         if let Some(s) = self.name_already_seen.get(&name) {
3862             if s == &span {
3863                 return;
3864             }
3865         }
3866
3867         let old_kind = match (ns, old_binding.module()) {
3868             (ValueNS, _) => "value",
3869             (MacroNS, _) => "macro",
3870             (TypeNS, _) if old_binding.is_extern_crate() => "extern crate",
3871             (TypeNS, Some(module)) if module.is_normal() => "module",
3872             (TypeNS, Some(module)) if module.is_trait() => "trait",
3873             (TypeNS, _) => "type",
3874         };
3875
3876         let namespace = match ns {
3877             ValueNS => "value",
3878             MacroNS => "macro",
3879             TypeNS => "type",
3880         };
3881
3882         let msg = format!("the name `{}` is defined multiple times", name);
3883
3884         let mut err = match (old_binding.is_extern_crate(), new_binding.is_extern_crate()) {
3885             (true, true) => struct_span_err!(self.session, span, E0259, "{}", msg),
3886             (true, _) | (_, true) => match new_binding.is_import() && old_binding.is_import() {
3887                 true => struct_span_err!(self.session, span, E0254, "{}", msg),
3888                 false => struct_span_err!(self.session, span, E0260, "{}", msg),
3889             },
3890             _ => match (old_binding.is_import(), new_binding.is_import()) {
3891                 (false, false) => struct_span_err!(self.session, span, E0428, "{}", msg),
3892                 (true, true) => struct_span_err!(self.session, span, E0252, "{}", msg),
3893                 _ => struct_span_err!(self.session, span, E0255, "{}", msg),
3894             },
3895         };
3896
3897         err.note(&format!("`{}` must be defined only once in the {} namespace of this {}",
3898                           name,
3899                           namespace,
3900                           container));
3901
3902         err.span_label(span, format!("`{}` re{} here", name, new_participle));
3903         if old_binding.span != syntax_pos::DUMMY_SP {
3904             err.span_label(self.session.codemap().def_span(old_binding.span),
3905                            format!("previous {} of the {} `{}` here", old_noun, old_kind, name));
3906         }
3907
3908         // See https://github.com/rust-lang/rust/issues/32354
3909         if old_binding.is_import() || new_binding.is_import() {
3910             let binding = if new_binding.is_import() {
3911                 new_binding
3912             } else {
3913                 old_binding
3914             };
3915
3916             let cm = self.session.codemap();
3917             let rename_msg = "You can use `as` to change the binding name of the import";
3918
3919             if let (Ok(snippet), false) = (cm.span_to_snippet(binding.span),
3920                                            binding.is_renamed_extern_crate()) {
3921                 err.span_suggestion(binding.span,
3922                                     rename_msg,
3923                                     format!("{} as Other{}", snippet, name));
3924             } else {
3925                 err.span_label(binding.span, rename_msg);
3926             }
3927         }
3928
3929         err.emit();
3930         self.name_already_seen.insert(name, span);
3931     }
3932
3933     fn warn_legacy_self_import(&self, directive: &'a ImportDirective<'a>) {
3934         let (id, span) = (directive.id, directive.span);
3935         let msg = "`self` no longer imports values";
3936         self.session.buffer_lint(lint::builtin::LEGACY_IMPORTS, id, span, msg);
3937     }
3938
3939     fn check_proc_macro_attrs(&mut self, attrs: &[ast::Attribute]) {
3940         if self.proc_macro_enabled { return; }
3941
3942         for attr in attrs {
3943             if attr.path.segments.len() > 1 {
3944                 continue
3945             }
3946             let ident = attr.path.segments[0].identifier;
3947             let result = self.resolve_lexical_macro_path_segment(ident,
3948                                                                  MacroNS,
3949                                                                  false,
3950                                                                  attr.path.span);
3951             if let Ok(binding) = result {
3952                 if let SyntaxExtension::AttrProcMacro(..) = *binding.binding().get_macro(self) {
3953                     attr::mark_known(attr);
3954
3955                     let msg = "attribute procedural macros are experimental";
3956                     let feature = "proc_macro";
3957
3958                     feature_err(&self.session.parse_sess, feature,
3959                                 attr.span, GateIssue::Language, msg)
3960                         .span_label(binding.span(), "procedural macro imported here")
3961                         .emit();
3962                 }
3963             }
3964         }
3965     }
3966 }
3967
3968 fn is_struct_like(def: Def) -> bool {
3969     match def {
3970         Def::VariantCtor(_, CtorKind::Fictive) => true,
3971         _ => PathSource::Struct.is_expected(def),
3972     }
3973 }
3974
3975 fn is_self_type(path: &[SpannedIdent], namespace: Namespace) -> bool {
3976     namespace == TypeNS && path.len() == 1 && path[0].node.name == keywords::SelfType.name()
3977 }
3978
3979 fn is_self_value(path: &[SpannedIdent], namespace: Namespace) -> bool {
3980     namespace == ValueNS && path.len() == 1 && path[0].node.name == keywords::SelfValue.name()
3981 }
3982
3983 fn names_to_string(idents: &[SpannedIdent]) -> String {
3984     let mut result = String::new();
3985     for (i, ident) in idents.iter()
3986                             .filter(|i| i.node.name != keywords::CrateRoot.name())
3987                             .enumerate() {
3988         if i > 0 {
3989             result.push_str("::");
3990         }
3991         result.push_str(&ident.node.name.as_str());
3992     }
3993     result
3994 }
3995
3996 fn path_names_to_string(path: &Path) -> String {
3997     names_to_string(&path.segments.iter()
3998                         .map(|seg| respan(seg.span, seg.identifier))
3999                         .collect::<Vec<_>>())
4000 }
4001
4002 /// Get the path for an enum and the variant from an `ImportSuggestion` for an enum variant.
4003 fn import_candidate_to_paths(suggestion: &ImportSuggestion) -> (Span, String, String) {
4004     let variant_path = &suggestion.path;
4005     let variant_path_string = path_names_to_string(variant_path);
4006
4007     let path_len = suggestion.path.segments.len();
4008     let enum_path = ast::Path {
4009         span: suggestion.path.span,
4010         segments: suggestion.path.segments[0..path_len - 1].to_vec(),
4011     };
4012     let enum_path_string = path_names_to_string(&enum_path);
4013
4014     (suggestion.path.span, variant_path_string, enum_path_string)
4015 }
4016
4017
4018 /// When an entity with a given name is not available in scope, we search for
4019 /// entities with that name in all crates. This method allows outputting the
4020 /// results of this search in a programmer-friendly way
4021 fn show_candidates(err: &mut DiagnosticBuilder,
4022                    // This is `None` if all placement locations are inside expansions
4023                    span: Option<Span>,
4024                    candidates: &[ImportSuggestion],
4025                    better: bool,
4026                    found_use: bool) {
4027
4028     // we want consistent results across executions, but candidates are produced
4029     // by iterating through a hash map, so make sure they are ordered:
4030     let mut path_strings: Vec<_> =
4031         candidates.into_iter().map(|c| path_names_to_string(&c.path)).collect();
4032     path_strings.sort();
4033
4034     let better = if better { "better " } else { "" };
4035     let msg_diff = match path_strings.len() {
4036         1 => " is found in another module, you can import it",
4037         _ => "s are found in other modules, you can import them",
4038     };
4039     let msg = format!("possible {}candidate{} into scope", better, msg_diff);
4040
4041     if let Some(span) = span {
4042         for candidate in &mut path_strings {
4043             // produce an additional newline to separate the new use statement
4044             // from the directly following item.
4045             let additional_newline = if found_use {
4046                 ""
4047             } else {
4048                 "\n"
4049             };
4050             *candidate = format!("use {};\n{}", candidate, additional_newline);
4051         }
4052
4053         err.span_suggestions(span, &msg, path_strings);
4054     } else {
4055         let mut msg = msg;
4056         msg.push(':');
4057         for candidate in path_strings {
4058             msg.push('\n');
4059             msg.push_str(&candidate);
4060         }
4061     }
4062 }
4063
4064 /// A somewhat inefficient routine to obtain the name of a module.
4065 fn module_to_string(module: Module) -> String {
4066     let mut names = Vec::new();
4067
4068     fn collect_mod(names: &mut Vec<Ident>, module: Module) {
4069         if let ModuleKind::Def(_, name) = module.kind {
4070             if let Some(parent) = module.parent {
4071                 names.push(Ident::with_empty_ctxt(name));
4072                 collect_mod(names, parent);
4073             }
4074         } else {
4075             // danger, shouldn't be ident?
4076             names.push(Ident::from_str("<opaque>"));
4077             collect_mod(names, module.parent.unwrap());
4078         }
4079     }
4080     collect_mod(&mut names, module);
4081
4082     if names.is_empty() {
4083         return "???".to_string();
4084     }
4085     names_to_string(&names.into_iter()
4086                         .rev()
4087                         .map(|n| dummy_spanned(n))
4088                         .collect::<Vec<_>>())
4089 }
4090
4091 fn err_path_resolution() -> PathResolution {
4092     PathResolution::new(Def::Err)
4093 }
4094
4095 #[derive(PartialEq,Copy, Clone)]
4096 pub enum MakeGlobMap {
4097     Yes,
4098     No,
4099 }
4100
4101 #[cfg(not(stage0))] // remove after the next snapshot
4102 __build_diagnostic_array! { librustc_resolve, DIAGNOSTICS }