]> git.lizzy.rs Git - rust.git/blob - src/librustc_resolve/lib.rs
Auto merge of #47156 - petrochenkov:extpath, r=nikomatsakis
[rust.git] / src / librustc_resolve / lib.rs
1 // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 #![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
12       html_favicon_url = "https://doc.rust-lang.org/favicon.ico",
13       html_root_url = "https://doc.rust-lang.org/nightly/")]
14 #![deny(warnings)]
15
16 #![feature(rustc_diagnostic_macros)]
17
18 #[macro_use]
19 extern crate log;
20 #[macro_use]
21 extern crate syntax;
22 extern crate syntax_pos;
23 extern crate rustc_errors as errors;
24 extern crate arena;
25 #[macro_use]
26 extern crate rustc;
27 extern crate rustc_data_structures;
28
29 use self::Namespace::*;
30 use self::TypeParameters::*;
31 use self::RibKind::*;
32
33 use rustc::hir::map::{Definitions, DefCollector};
34 use rustc::hir::{self, PrimTy, TyBool, TyChar, TyFloat, TyInt, TyUint, TyStr};
35 use rustc::middle::cstore::{CrateStore, CrateLoader};
36 use rustc::session::Session;
37 use rustc::lint;
38 use rustc::hir::def::*;
39 use rustc::hir::def_id::{CRATE_DEF_INDEX, LOCAL_CRATE, DefId};
40 use rustc::ty;
41 use rustc::hir::{Freevar, FreevarMap, TraitCandidate, TraitMap, GlobMap};
42 use rustc::util::nodemap::{NodeMap, NodeSet, FxHashMap, FxHashSet, DefIdMap};
43
44 use syntax::codemap::{dummy_spanned, respan};
45 use syntax::ext::hygiene::{Mark, SyntaxContext};
46 use syntax::ast::{self, Name, NodeId, Ident, SpannedIdent, FloatTy, IntTy, UintTy};
47 use syntax::ext::base::SyntaxExtension;
48 use syntax::ext::base::Determinacy::{self, Determined, Undetermined};
49 use syntax::ext::base::MacroKind;
50 use syntax::symbol::{Symbol, keywords};
51 use syntax::util::lev_distance::find_best_match_for_name;
52
53 use syntax::visit::{self, FnKind, Visitor};
54 use syntax::attr;
55 use syntax::ast::{Arm, BindingMode, Block, Crate, Expr, ExprKind};
56 use syntax::ast::{FnDecl, ForeignItem, ForeignItemKind, GenericParam, Generics};
57 use syntax::ast::{Item, ItemKind, ImplItem, ImplItemKind};
58 use syntax::ast::{Local, Mutability, Pat, PatKind, Path};
59 use syntax::ast::{QSelf, TraitItemKind, TraitRef, Ty, TyKind};
60 use syntax::feature_gate::{feature_err, emit_feature_err, GateIssue};
61 use syntax::parse::token;
62
63 use syntax_pos::{Span, DUMMY_SP, MultiSpan};
64 use errors::{DiagnosticBuilder, DiagnosticId};
65
66 use std::cell::{Cell, RefCell};
67 use std::cmp;
68 use std::collections::BTreeSet;
69 use std::fmt;
70 use std::mem::replace;
71 use std::rc::Rc;
72
73 use resolve_imports::{ImportDirective, ImportDirectiveSubclass, NameResolution, ImportResolver};
74 use macros::{InvocationData, LegacyBinding, LegacyScope, MacroBinding};
75
76 // NB: This module needs to be declared first so diagnostics are
77 // registered before they are used.
78 mod diagnostics;
79
80 mod macros;
81 mod check_unused;
82 mod build_reduced_graph;
83 mod resolve_imports;
84
85 /// A free importable items suggested in case of resolution failure.
86 struct ImportSuggestion {
87     path: Path,
88 }
89
90 /// A field or associated item from self type suggested in case of resolution failure.
91 enum AssocSuggestion {
92     Field,
93     MethodWithSelf,
94     AssocItem,
95 }
96
97 #[derive(Eq)]
98 struct BindingError {
99     name: Name,
100     origin: BTreeSet<Span>,
101     target: BTreeSet<Span>,
102 }
103
104 impl PartialOrd for BindingError {
105     fn partial_cmp(&self, other: &BindingError) -> Option<cmp::Ordering> {
106         Some(self.cmp(other))
107     }
108 }
109
110 impl PartialEq for BindingError {
111     fn eq(&self, other: &BindingError) -> bool {
112         self.name == other.name
113     }
114 }
115
116 impl Ord for BindingError {
117     fn cmp(&self, other: &BindingError) -> cmp::Ordering {
118         self.name.cmp(&other.name)
119     }
120 }
121
122 enum ResolutionError<'a> {
123     /// error E0401: can't use type parameters from outer function
124     TypeParametersFromOuterFunction,
125     /// error E0403: the name is already used for a type parameter in this type parameter list
126     NameAlreadyUsedInTypeParameterList(Name, &'a Span),
127     /// error E0407: method is not a member of trait
128     MethodNotMemberOfTrait(Name, &'a str),
129     /// error E0437: type is not a member of trait
130     TypeNotMemberOfTrait(Name, &'a str),
131     /// error E0438: const is not a member of trait
132     ConstNotMemberOfTrait(Name, &'a str),
133     /// error E0408: variable `{}` is not bound in all patterns
134     VariableNotBoundInPattern(&'a BindingError),
135     /// error E0409: variable `{}` is bound in inconsistent ways within the same match arm
136     VariableBoundWithDifferentMode(Name, Span),
137     /// error E0415: identifier is bound more than once in this parameter list
138     IdentifierBoundMoreThanOnceInParameterList(&'a str),
139     /// error E0416: identifier is bound more than once in the same pattern
140     IdentifierBoundMoreThanOnceInSamePattern(&'a str),
141     /// error E0426: use of undeclared label
142     UndeclaredLabel(&'a str, Option<Name>),
143     /// error E0429: `self` imports are only allowed within a { } list
144     SelfImportsOnlyAllowedWithin,
145     /// error E0430: `self` import can only appear once in the list
146     SelfImportCanOnlyAppearOnceInTheList,
147     /// error E0431: `self` import can only appear in an import list with a non-empty prefix
148     SelfImportOnlyInImportListWithNonEmptyPrefix,
149     /// error E0432: unresolved import
150     UnresolvedImport(Option<(Span, &'a str, &'a str)>),
151     /// error E0433: failed to resolve
152     FailedToResolve(&'a str),
153     /// error E0434: can't capture dynamic environment in a fn item
154     CannotCaptureDynamicEnvironmentInFnItem,
155     /// error E0435: attempt to use a non-constant value in a constant
156     AttemptToUseNonConstantValueInConstant,
157     /// error E0530: X bindings cannot shadow Ys
158     BindingShadowsSomethingUnacceptable(&'a str, Name, &'a NameBinding<'a>),
159     /// error E0128: type parameters with a default cannot use forward declared identifiers
160     ForwardDeclaredTyParam,
161 }
162
163 fn resolve_error<'sess, 'a>(resolver: &'sess Resolver,
164                             span: Span,
165                             resolution_error: ResolutionError<'a>) {
166     resolve_struct_error(resolver, span, resolution_error).emit();
167 }
168
169 fn resolve_struct_error<'sess, 'a>(resolver: &'sess Resolver,
170                                    span: Span,
171                                    resolution_error: ResolutionError<'a>)
172                                    -> DiagnosticBuilder<'sess> {
173     match resolution_error {
174         ResolutionError::TypeParametersFromOuterFunction => {
175             let mut err = struct_span_err!(resolver.session,
176                                            span,
177                                            E0401,
178                                            "can't use type parameters from outer function; \
179                                            try using a local type parameter instead");
180             err.span_label(span, "use of type variable from outer function");
181             err
182         }
183         ResolutionError::NameAlreadyUsedInTypeParameterList(name, first_use_span) => {
184              let mut err = struct_span_err!(resolver.session,
185                                             span,
186                                             E0403,
187                                             "the name `{}` is already used for a type parameter \
188                                             in this type parameter list",
189                                             name);
190              err.span_label(span, "already used");
191              err.span_label(first_use_span.clone(), format!("first use of `{}`", name));
192              err
193         }
194         ResolutionError::MethodNotMemberOfTrait(method, trait_) => {
195             let mut err = struct_span_err!(resolver.session,
196                                            span,
197                                            E0407,
198                                            "method `{}` is not a member of trait `{}`",
199                                            method,
200                                            trait_);
201             err.span_label(span, format!("not a member of trait `{}`", trait_));
202             err
203         }
204         ResolutionError::TypeNotMemberOfTrait(type_, trait_) => {
205             let mut err = struct_span_err!(resolver.session,
206                              span,
207                              E0437,
208                              "type `{}` is not a member of trait `{}`",
209                              type_,
210                              trait_);
211             err.span_label(span, format!("not a member of trait `{}`", trait_));
212             err
213         }
214         ResolutionError::ConstNotMemberOfTrait(const_, trait_) => {
215             let mut err = struct_span_err!(resolver.session,
216                              span,
217                              E0438,
218                              "const `{}` is not a member of trait `{}`",
219                              const_,
220                              trait_);
221             err.span_label(span, format!("not a member of trait `{}`", trait_));
222             err
223         }
224         ResolutionError::VariableNotBoundInPattern(binding_error) => {
225             let target_sp = binding_error.target.iter().map(|x| *x).collect::<Vec<_>>();
226             let msp = MultiSpan::from_spans(target_sp.clone());
227             let msg = format!("variable `{}` is not bound in all patterns", binding_error.name);
228             let mut err = resolver.session.struct_span_err_with_code(
229                 msp,
230                 &msg,
231                 DiagnosticId::Error("E0408".into()),
232             );
233             for sp in target_sp {
234                 err.span_label(sp, format!("pattern doesn't bind `{}`", binding_error.name));
235             }
236             let origin_sp = binding_error.origin.iter().map(|x| *x).collect::<Vec<_>>();
237             for sp in origin_sp {
238                 err.span_label(sp, "variable not in all patterns");
239             }
240             err
241         }
242         ResolutionError::VariableBoundWithDifferentMode(variable_name,
243                                                         first_binding_span) => {
244             let mut err = struct_span_err!(resolver.session,
245                              span,
246                              E0409,
247                              "variable `{}` is bound in inconsistent \
248                              ways within the same match arm",
249                              variable_name);
250             err.span_label(span, "bound in different ways");
251             err.span_label(first_binding_span, "first binding");
252             err
253         }
254         ResolutionError::IdentifierBoundMoreThanOnceInParameterList(identifier) => {
255             let mut err = struct_span_err!(resolver.session,
256                              span,
257                              E0415,
258                              "identifier `{}` is bound more than once in this parameter list",
259                              identifier);
260             err.span_label(span, "used as parameter more than once");
261             err
262         }
263         ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(identifier) => {
264             let mut err = struct_span_err!(resolver.session,
265                              span,
266                              E0416,
267                              "identifier `{}` is bound more than once in the same pattern",
268                              identifier);
269             err.span_label(span, "used in a pattern more than once");
270             err
271         }
272         ResolutionError::UndeclaredLabel(name, lev_candidate) => {
273             let mut err = struct_span_err!(resolver.session,
274                                            span,
275                                            E0426,
276                                            "use of undeclared label `{}`",
277                                            name);
278             if let Some(lev_candidate) = lev_candidate {
279                 err.span_label(span, format!("did you mean `{}`?", lev_candidate));
280             } else {
281                 err.span_label(span, format!("undeclared label `{}`", name));
282             }
283             err
284         }
285         ResolutionError::SelfImportsOnlyAllowedWithin => {
286             struct_span_err!(resolver.session,
287                              span,
288                              E0429,
289                              "{}",
290                              "`self` imports are only allowed within a { } list")
291         }
292         ResolutionError::SelfImportCanOnlyAppearOnceInTheList => {
293             let mut err = struct_span_err!(resolver.session, span, E0430,
294                                            "`self` import can only appear once in an import list");
295             err.span_label(span, "can only appear once in an import list");
296             err
297         }
298         ResolutionError::SelfImportOnlyInImportListWithNonEmptyPrefix => {
299             let mut err = struct_span_err!(resolver.session, span, E0431,
300                                            "`self` import can only appear in an import list with \
301                                             a non-empty prefix");
302             err.span_label(span, "can only appear in an import list with a non-empty prefix");
303             err
304         }
305         ResolutionError::UnresolvedImport(name) => {
306             let (span, msg) = match name {
307                 Some((sp, n, _)) => (sp, format!("unresolved import `{}`", n)),
308                 None => (span, "unresolved import".to_owned()),
309             };
310             let mut err = struct_span_err!(resolver.session, span, E0432, "{}", msg);
311             if let Some((_, _, p)) = name {
312                 err.span_label(span, p);
313             }
314             err
315         }
316         ResolutionError::FailedToResolve(msg) => {
317             let mut err = struct_span_err!(resolver.session, span, E0433,
318                                            "failed to resolve. {}", msg);
319             err.span_label(span, msg);
320             err
321         }
322         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem => {
323             let mut err = struct_span_err!(resolver.session,
324                                            span,
325                                            E0434,
326                                            "{}",
327                                            "can't capture dynamic environment in a fn item");
328             err.help("use the `|| { ... }` closure form instead");
329             err
330         }
331         ResolutionError::AttemptToUseNonConstantValueInConstant => {
332             let mut err = struct_span_err!(resolver.session, span, E0435,
333                                            "attempt to use a non-constant value in a constant");
334             err.span_label(span, "non-constant value");
335             err
336         }
337         ResolutionError::BindingShadowsSomethingUnacceptable(what_binding, name, binding) => {
338             let shadows_what = PathResolution::new(binding.def()).kind_name();
339             let mut err = struct_span_err!(resolver.session,
340                                            span,
341                                            E0530,
342                                            "{}s cannot shadow {}s", what_binding, shadows_what);
343             err.span_label(span, format!("cannot be named the same as a {}", shadows_what));
344             let participle = if binding.is_import() { "imported" } else { "defined" };
345             let msg = format!("a {} `{}` is {} here", shadows_what, name, participle);
346             err.span_label(binding.span, msg);
347             err
348         }
349         ResolutionError::ForwardDeclaredTyParam => {
350             let mut err = struct_span_err!(resolver.session, span, E0128,
351                                            "type parameters with a default cannot use \
352                                             forward declared identifiers");
353             err.span_label(span, format!("defaulted type parameters cannot be forward declared"));
354             err
355         }
356     }
357 }
358
359 #[derive(Copy, Clone, Debug)]
360 struct BindingInfo {
361     span: Span,
362     binding_mode: BindingMode,
363 }
364
365 // Map from the name in a pattern to its binding mode.
366 type BindingMap = FxHashMap<Ident, BindingInfo>;
367
368 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
369 enum PatternSource {
370     Match,
371     IfLet,
372     WhileLet,
373     Let,
374     For,
375     FnParam,
376 }
377
378 impl PatternSource {
379     fn descr(self) -> &'static str {
380         match self {
381             PatternSource::Match => "match binding",
382             PatternSource::IfLet => "if let binding",
383             PatternSource::WhileLet => "while let binding",
384             PatternSource::Let => "let binding",
385             PatternSource::For => "for binding",
386             PatternSource::FnParam => "function parameter",
387         }
388     }
389 }
390
391 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
392 enum AliasPossibility {
393     No,
394     Maybe,
395 }
396
397 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
398 enum PathSource<'a> {
399     // Type paths `Path`.
400     Type,
401     // Trait paths in bounds or impls.
402     Trait(AliasPossibility),
403     // Expression paths `path`, with optional parent context.
404     Expr(Option<&'a Expr>),
405     // Paths in path patterns `Path`.
406     Pat,
407     // Paths in struct expressions and patterns `Path { .. }`.
408     Struct,
409     // Paths in tuple struct patterns `Path(..)`.
410     TupleStruct,
411     // `m::A::B` in `<T as m::A>::B::C`.
412     TraitItem(Namespace),
413     // Path in `pub(path)`
414     Visibility,
415     // Path in `use a::b::{...};`
416     ImportPrefix,
417 }
418
419 impl<'a> PathSource<'a> {
420     fn namespace(self) -> Namespace {
421         match self {
422             PathSource::Type | PathSource::Trait(_) | PathSource::Struct |
423             PathSource::Visibility | PathSource::ImportPrefix => TypeNS,
424             PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct => ValueNS,
425             PathSource::TraitItem(ns) => ns,
426         }
427     }
428
429     fn global_by_default(self) -> bool {
430         match self {
431             PathSource::Visibility | PathSource::ImportPrefix => true,
432             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
433             PathSource::Struct | PathSource::TupleStruct |
434             PathSource::Trait(_) | PathSource::TraitItem(..) => false,
435         }
436     }
437
438     fn defer_to_typeck(self) -> bool {
439         match self {
440             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
441             PathSource::Struct | PathSource::TupleStruct => true,
442             PathSource::Trait(_) | PathSource::TraitItem(..) |
443             PathSource::Visibility | PathSource::ImportPrefix => false,
444         }
445     }
446
447     fn descr_expected(self) -> &'static str {
448         match self {
449             PathSource::Type => "type",
450             PathSource::Trait(_) => "trait",
451             PathSource::Pat => "unit struct/variant or constant",
452             PathSource::Struct => "struct, variant or union type",
453             PathSource::TupleStruct => "tuple struct/variant",
454             PathSource::Visibility => "module",
455             PathSource::ImportPrefix => "module or enum",
456             PathSource::TraitItem(ns) => match ns {
457                 TypeNS => "associated type",
458                 ValueNS => "method or associated constant",
459                 MacroNS => bug!("associated macro"),
460             },
461             PathSource::Expr(parent) => match parent.map(|p| &p.node) {
462                 // "function" here means "anything callable" rather than `Def::Fn`,
463                 // this is not precise but usually more helpful than just "value".
464                 Some(&ExprKind::Call(..)) => "function",
465                 _ => "value",
466             },
467         }
468     }
469
470     fn is_expected(self, def: Def) -> bool {
471         match self {
472             PathSource::Type => match def {
473                 Def::Struct(..) | Def::Union(..) | Def::Enum(..) |
474                 Def::Trait(..) | Def::TyAlias(..) | Def::AssociatedTy(..) |
475                 Def::PrimTy(..) | Def::TyParam(..) | Def::SelfTy(..) |
476                 Def::TyForeign(..) => true,
477                 _ => false,
478             },
479             PathSource::Trait(AliasPossibility::No) => match def {
480                 Def::Trait(..) => true,
481                 _ => false,
482             },
483             PathSource::Trait(AliasPossibility::Maybe) => match def {
484                 Def::Trait(..) => true,
485                 Def::TraitAlias(..) => true,
486                 _ => false,
487             },
488             PathSource::Expr(..) => match def {
489                 Def::StructCtor(_, CtorKind::Const) | Def::StructCtor(_, CtorKind::Fn) |
490                 Def::VariantCtor(_, CtorKind::Const) | Def::VariantCtor(_, CtorKind::Fn) |
491                 Def::Const(..) | Def::Static(..) | Def::Local(..) | Def::Upvar(..) |
492                 Def::Fn(..) | Def::Method(..) | Def::AssociatedConst(..) => true,
493                 _ => false,
494             },
495             PathSource::Pat => match def {
496                 Def::StructCtor(_, CtorKind::Const) |
497                 Def::VariantCtor(_, CtorKind::Const) |
498                 Def::Const(..) | Def::AssociatedConst(..) => true,
499                 _ => false,
500             },
501             PathSource::TupleStruct => match def {
502                 Def::StructCtor(_, CtorKind::Fn) | Def::VariantCtor(_, CtorKind::Fn) => true,
503                 _ => false,
504             },
505             PathSource::Struct => match def {
506                 Def::Struct(..) | Def::Union(..) | Def::Variant(..) |
507                 Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => true,
508                 _ => false,
509             },
510             PathSource::TraitItem(ns) => match def {
511                 Def::AssociatedConst(..) | Def::Method(..) if ns == ValueNS => true,
512                 Def::AssociatedTy(..) if ns == TypeNS => true,
513                 _ => false,
514             },
515             PathSource::ImportPrefix => match def {
516                 Def::Mod(..) | Def::Enum(..) => true,
517                 _ => false,
518             },
519             PathSource::Visibility => match def {
520                 Def::Mod(..) => true,
521                 _ => false,
522             },
523         }
524     }
525
526     fn error_code(self, has_unexpected_resolution: bool) -> &'static str {
527         __diagnostic_used!(E0404);
528         __diagnostic_used!(E0405);
529         __diagnostic_used!(E0412);
530         __diagnostic_used!(E0422);
531         __diagnostic_used!(E0423);
532         __diagnostic_used!(E0425);
533         __diagnostic_used!(E0531);
534         __diagnostic_used!(E0532);
535         __diagnostic_used!(E0573);
536         __diagnostic_used!(E0574);
537         __diagnostic_used!(E0575);
538         __diagnostic_used!(E0576);
539         __diagnostic_used!(E0577);
540         __diagnostic_used!(E0578);
541         match (self, has_unexpected_resolution) {
542             (PathSource::Trait(_), true) => "E0404",
543             (PathSource::Trait(_), false) => "E0405",
544             (PathSource::Type, true) => "E0573",
545             (PathSource::Type, false) => "E0412",
546             (PathSource::Struct, true) => "E0574",
547             (PathSource::Struct, false) => "E0422",
548             (PathSource::Expr(..), true) => "E0423",
549             (PathSource::Expr(..), false) => "E0425",
550             (PathSource::Pat, true) | (PathSource::TupleStruct, true) => "E0532",
551             (PathSource::Pat, false) | (PathSource::TupleStruct, false) => "E0531",
552             (PathSource::TraitItem(..), true) => "E0575",
553             (PathSource::TraitItem(..), false) => "E0576",
554             (PathSource::Visibility, true) | (PathSource::ImportPrefix, true) => "E0577",
555             (PathSource::Visibility, false) | (PathSource::ImportPrefix, false) => "E0578",
556         }
557     }
558 }
559
560 #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
561 pub enum Namespace {
562     TypeNS,
563     ValueNS,
564     MacroNS,
565 }
566
567 #[derive(Clone, Default, Debug)]
568 pub struct PerNS<T> {
569     value_ns: T,
570     type_ns: T,
571     macro_ns: Option<T>,
572 }
573
574 impl<T> ::std::ops::Index<Namespace> for PerNS<T> {
575     type Output = T;
576     fn index(&self, ns: Namespace) -> &T {
577         match ns {
578             ValueNS => &self.value_ns,
579             TypeNS => &self.type_ns,
580             MacroNS => self.macro_ns.as_ref().unwrap(),
581         }
582     }
583 }
584
585 impl<T> ::std::ops::IndexMut<Namespace> for PerNS<T> {
586     fn index_mut(&mut self, ns: Namespace) -> &mut T {
587         match ns {
588             ValueNS => &mut self.value_ns,
589             TypeNS => &mut self.type_ns,
590             MacroNS => self.macro_ns.as_mut().unwrap(),
591         }
592     }
593 }
594
595 struct UsePlacementFinder {
596     target_module: NodeId,
597     span: Option<Span>,
598     found_use: bool,
599 }
600
601 impl UsePlacementFinder {
602     fn check(krate: &Crate, target_module: NodeId) -> (Option<Span>, bool) {
603         let mut finder = UsePlacementFinder {
604             target_module,
605             span: None,
606             found_use: false,
607         };
608         visit::walk_crate(&mut finder, krate);
609         (finder.span, finder.found_use)
610     }
611 }
612
613 impl<'tcx> Visitor<'tcx> for UsePlacementFinder {
614     fn visit_mod(
615         &mut self,
616         module: &'tcx ast::Mod,
617         _: Span,
618         _: &[ast::Attribute],
619         node_id: NodeId,
620     ) {
621         if self.span.is_some() {
622             return;
623         }
624         if node_id != self.target_module {
625             visit::walk_mod(self, module);
626             return;
627         }
628         // find a use statement
629         for item in &module.items {
630             match item.node {
631                 ItemKind::Use(..) => {
632                     // don't suggest placing a use before the prelude
633                     // import or other generated ones
634                     if item.span.ctxt().outer().expn_info().is_none() {
635                         self.span = Some(item.span.with_hi(item.span.lo()));
636                         self.found_use = true;
637                         return;
638                     }
639                 },
640                 // don't place use before extern crate
641                 ItemKind::ExternCrate(_) => {}
642                 // but place them before the first other item
643                 _ => if self.span.map_or(true, |span| item.span < span ) {
644                     if item.span.ctxt().outer().expn_info().is_none() {
645                         // don't insert between attributes and an item
646                         if item.attrs.is_empty() {
647                             self.span = Some(item.span.with_hi(item.span.lo()));
648                         } else {
649                             // find the first attribute on the item
650                             for attr in &item.attrs {
651                                 if self.span.map_or(true, |span| attr.span < span) {
652                                     self.span = Some(attr.span.with_hi(attr.span.lo()));
653                                 }
654                             }
655                         }
656                     }
657                 },
658             }
659         }
660     }
661 }
662
663 impl<'a, 'tcx> Visitor<'tcx> for Resolver<'a> {
664     fn visit_item(&mut self, item: &'tcx Item) {
665         self.resolve_item(item);
666     }
667     fn visit_arm(&mut self, arm: &'tcx Arm) {
668         self.resolve_arm(arm);
669     }
670     fn visit_block(&mut self, block: &'tcx Block) {
671         self.resolve_block(block);
672     }
673     fn visit_expr(&mut self, expr: &'tcx Expr) {
674         self.resolve_expr(expr, None);
675     }
676     fn visit_local(&mut self, local: &'tcx Local) {
677         self.resolve_local(local);
678     }
679     fn visit_ty(&mut self, ty: &'tcx Ty) {
680         match ty.node {
681             TyKind::Path(ref qself, ref path) => {
682                 self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
683             }
684             TyKind::ImplicitSelf => {
685                 let self_ty = keywords::SelfType.ident();
686                 let def = self.resolve_ident_in_lexical_scope(self_ty, TypeNS, true, ty.span)
687                               .map_or(Def::Err, |d| d.def());
688                 self.record_def(ty.id, PathResolution::new(def));
689             }
690             TyKind::Array(ref element, ref length) => {
691                 self.visit_ty(element);
692                 self.with_constant_rib(|this| {
693                     this.visit_expr(length);
694                 });
695                 return;
696             }
697             _ => (),
698         }
699         visit::walk_ty(self, ty);
700     }
701     fn visit_poly_trait_ref(&mut self,
702                             tref: &'tcx ast::PolyTraitRef,
703                             m: &'tcx ast::TraitBoundModifier) {
704         self.smart_resolve_path(tref.trait_ref.ref_id, None,
705                                 &tref.trait_ref.path, PathSource::Trait(AliasPossibility::Maybe));
706         visit::walk_poly_trait_ref(self, tref, m);
707     }
708     fn visit_variant(&mut self,
709                      variant: &'tcx ast::Variant,
710                      generics: &'tcx Generics,
711                      item_id: ast::NodeId) {
712         if let Some(ref dis_expr) = variant.node.disr_expr {
713             // resolve the discriminator expr as a constant
714             self.with_constant_rib(|this| {
715                 this.visit_expr(dis_expr);
716             });
717         }
718
719         // `visit::walk_variant` without the discriminant expression.
720         self.visit_variant_data(&variant.node.data,
721                                 variant.node.name,
722                                 generics,
723                                 item_id,
724                                 variant.span);
725     }
726     fn visit_foreign_item(&mut self, foreign_item: &'tcx ForeignItem) {
727         let type_parameters = match foreign_item.node {
728             ForeignItemKind::Fn(_, ref generics) => {
729                 HasTypeParameters(generics, ItemRibKind)
730             }
731             ForeignItemKind::Static(..) => NoTypeParameters,
732             ForeignItemKind::Ty => NoTypeParameters,
733         };
734         self.with_type_parameter_rib(type_parameters, |this| {
735             visit::walk_foreign_item(this, foreign_item);
736         });
737     }
738     fn visit_fn(&mut self,
739                 function_kind: FnKind<'tcx>,
740                 declaration: &'tcx FnDecl,
741                 _: Span,
742                 node_id: NodeId) {
743         let rib_kind = match function_kind {
744             FnKind::ItemFn(..) => {
745                 ItemRibKind
746             }
747             FnKind::Method(_, _, _, _) => {
748                 TraitOrImplItemRibKind
749             }
750             FnKind::Closure(_) => ClosureRibKind(node_id),
751         };
752
753         // Create a value rib for the function.
754         self.ribs[ValueNS].push(Rib::new(rib_kind));
755
756         // Create a label rib for the function.
757         self.label_ribs.push(Rib::new(rib_kind));
758
759         // Add each argument to the rib.
760         let mut bindings_list = FxHashMap();
761         for argument in &declaration.inputs {
762             self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
763
764             self.visit_ty(&argument.ty);
765
766             debug!("(resolving function) recorded argument");
767         }
768         visit::walk_fn_ret_ty(self, &declaration.output);
769
770         // Resolve the function body.
771         match function_kind {
772             FnKind::ItemFn(.., body) |
773             FnKind::Method(.., body) => {
774                 self.visit_block(body);
775             }
776             FnKind::Closure(body) => {
777                 self.visit_expr(body);
778             }
779         };
780
781         debug!("(resolving function) leaving function");
782
783         self.label_ribs.pop();
784         self.ribs[ValueNS].pop();
785     }
786     fn visit_generics(&mut self, generics: &'tcx Generics) {
787         // For type parameter defaults, we have to ban access
788         // to following type parameters, as the Substs can only
789         // provide previous type parameters as they're built.
790         let mut default_ban_rib = Rib::new(ForwardTyParamBanRibKind);
791         default_ban_rib.bindings.extend(generics.params.iter()
792             .filter_map(|p| if let GenericParam::Type(ref tp) = *p { Some(tp) } else { None })
793             .skip_while(|p| p.default.is_none())
794             .map(|p| (Ident::with_empty_ctxt(p.ident.name), Def::Err)));
795
796         for param in &generics.params {
797             match *param {
798                 GenericParam::Lifetime(_) => self.visit_generic_param(param),
799                 GenericParam::Type(ref ty_param) => {
800                     for bound in &ty_param.bounds {
801                         self.visit_ty_param_bound(bound);
802                     }
803
804                     if let Some(ref ty) = ty_param.default {
805                         self.ribs[TypeNS].push(default_ban_rib);
806                         self.visit_ty(ty);
807                         default_ban_rib = self.ribs[TypeNS].pop().unwrap();
808                     }
809
810                     // Allow all following defaults to refer to this type parameter.
811                     default_ban_rib.bindings.remove(&Ident::with_empty_ctxt(ty_param.ident.name));
812                 }
813             }
814         }
815         for p in &generics.where_clause.predicates { self.visit_where_predicate(p); }
816     }
817 }
818
819 #[derive(Copy, Clone)]
820 enum TypeParameters<'a, 'b> {
821     NoTypeParameters,
822     HasTypeParameters(// Type parameters.
823                       &'b Generics,
824
825                       // The kind of the rib used for type parameters.
826                       RibKind<'a>),
827 }
828
829 // The rib kind controls the translation of local
830 // definitions (`Def::Local`) to upvars (`Def::Upvar`).
831 #[derive(Copy, Clone, Debug)]
832 enum RibKind<'a> {
833     // No translation needs to be applied.
834     NormalRibKind,
835
836     // We passed through a closure scope at the given node ID.
837     // Translate upvars as appropriate.
838     ClosureRibKind(NodeId /* func id */),
839
840     // We passed through an impl or trait and are now in one of its
841     // methods or associated types. Allow references to ty params that impl or trait
842     // binds. Disallow any other upvars (including other ty params that are
843     // upvars).
844     TraitOrImplItemRibKind,
845
846     // We passed through an item scope. Disallow upvars.
847     ItemRibKind,
848
849     // We're in a constant item. Can't refer to dynamic stuff.
850     ConstantItemRibKind,
851
852     // We passed through a module.
853     ModuleRibKind(Module<'a>),
854
855     // We passed through a `macro_rules!` statement
856     MacroDefinition(DefId),
857
858     // All bindings in this rib are type parameters that can't be used
859     // from the default of a type parameter because they're not declared
860     // before said type parameter. Also see the `visit_generics` override.
861     ForwardTyParamBanRibKind,
862 }
863
864 /// One local scope.
865 #[derive(Debug)]
866 struct Rib<'a> {
867     bindings: FxHashMap<Ident, Def>,
868     kind: RibKind<'a>,
869 }
870
871 impl<'a> Rib<'a> {
872     fn new(kind: RibKind<'a>) -> Rib<'a> {
873         Rib {
874             bindings: FxHashMap(),
875             kind,
876         }
877     }
878 }
879
880 enum LexicalScopeBinding<'a> {
881     Item(&'a NameBinding<'a>),
882     Def(Def),
883 }
884
885 impl<'a> LexicalScopeBinding<'a> {
886     fn item(self) -> Option<&'a NameBinding<'a>> {
887         match self {
888             LexicalScopeBinding::Item(binding) => Some(binding),
889             _ => None,
890         }
891     }
892
893     fn def(self) -> Def {
894         match self {
895             LexicalScopeBinding::Item(binding) => binding.def(),
896             LexicalScopeBinding::Def(def) => def,
897         }
898     }
899 }
900
901 #[derive(Clone)]
902 enum PathResult<'a> {
903     Module(Module<'a>),
904     NonModule(PathResolution),
905     Indeterminate,
906     Failed(Span, String, bool /* is the error from the last segment? */),
907 }
908
909 enum ModuleKind {
910     Block(NodeId),
911     Def(Def, Name),
912 }
913
914 /// One node in the tree of modules.
915 pub struct ModuleData<'a> {
916     parent: Option<Module<'a>>,
917     kind: ModuleKind,
918
919     // The def id of the closest normal module (`mod`) ancestor (including this module).
920     normal_ancestor_id: DefId,
921
922     resolutions: RefCell<FxHashMap<(Ident, Namespace), &'a RefCell<NameResolution<'a>>>>,
923     legacy_macro_resolutions: RefCell<Vec<(Mark, Ident, Span, MacroKind)>>,
924     macro_resolutions: RefCell<Vec<(Box<[Ident]>, Span)>>,
925
926     // Macro invocations that can expand into items in this module.
927     unresolved_invocations: RefCell<FxHashSet<Mark>>,
928
929     no_implicit_prelude: bool,
930
931     glob_importers: RefCell<Vec<&'a ImportDirective<'a>>>,
932     globs: RefCell<Vec<&'a ImportDirective<'a>>>,
933
934     // Used to memoize the traits in this module for faster searches through all traits in scope.
935     traits: RefCell<Option<Box<[(Ident, &'a NameBinding<'a>)]>>>,
936
937     // Whether this module is populated. If not populated, any attempt to
938     // access the children must be preceded with a
939     // `populate_module_if_necessary` call.
940     populated: Cell<bool>,
941
942     /// Span of the module itself. Used for error reporting.
943     span: Span,
944
945     expansion: Mark,
946 }
947
948 type Module<'a> = &'a ModuleData<'a>;
949
950 impl<'a> ModuleData<'a> {
951     fn new(parent: Option<Module<'a>>,
952            kind: ModuleKind,
953            normal_ancestor_id: DefId,
954            expansion: Mark,
955            span: Span) -> Self {
956         ModuleData {
957             parent,
958             kind,
959             normal_ancestor_id,
960             resolutions: RefCell::new(FxHashMap()),
961             legacy_macro_resolutions: RefCell::new(Vec::new()),
962             macro_resolutions: RefCell::new(Vec::new()),
963             unresolved_invocations: RefCell::new(FxHashSet()),
964             no_implicit_prelude: false,
965             glob_importers: RefCell::new(Vec::new()),
966             globs: RefCell::new((Vec::new())),
967             traits: RefCell::new(None),
968             populated: Cell::new(normal_ancestor_id.is_local()),
969             span,
970             expansion,
971         }
972     }
973
974     fn for_each_child<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
975         for (&(ident, ns), name_resolution) in self.resolutions.borrow().iter() {
976             name_resolution.borrow().binding.map(|binding| f(ident, ns, binding));
977         }
978     }
979
980     fn for_each_child_stable<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
981         let resolutions = self.resolutions.borrow();
982         let mut resolutions = resolutions.iter().map(|(&(ident, ns), &resolution)| {
983                                                     // Pre-compute keys for sorting
984                                                     (ident.name.as_str(), ns, ident, resolution)
985                                                 })
986                                                 .collect::<Vec<_>>();
987         resolutions.sort_unstable_by_key(|&(str, ns, ..)| (str, ns));
988         for &(_, ns, ident, resolution) in resolutions.iter() {
989             resolution.borrow().binding.map(|binding| f(ident, ns, binding));
990         }
991     }
992
993     fn def(&self) -> Option<Def> {
994         match self.kind {
995             ModuleKind::Def(def, _) => Some(def),
996             _ => None,
997         }
998     }
999
1000     fn def_id(&self) -> Option<DefId> {
1001         self.def().as_ref().map(Def::def_id)
1002     }
1003
1004     // `self` resolves to the first module ancestor that `is_normal`.
1005     fn is_normal(&self) -> bool {
1006         match self.kind {
1007             ModuleKind::Def(Def::Mod(_), _) => true,
1008             _ => false,
1009         }
1010     }
1011
1012     fn is_trait(&self) -> bool {
1013         match self.kind {
1014             ModuleKind::Def(Def::Trait(_), _) => true,
1015             _ => false,
1016         }
1017     }
1018
1019     fn is_local(&self) -> bool {
1020         self.normal_ancestor_id.is_local()
1021     }
1022
1023     fn nearest_item_scope(&'a self) -> Module<'a> {
1024         if self.is_trait() { self.parent.unwrap() } else { self }
1025     }
1026 }
1027
1028 impl<'a> fmt::Debug for ModuleData<'a> {
1029     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1030         write!(f, "{:?}", self.def())
1031     }
1032 }
1033
1034 // Records a possibly-private value, type, or module definition.
1035 #[derive(Clone, Debug)]
1036 pub struct NameBinding<'a> {
1037     kind: NameBindingKind<'a>,
1038     expansion: Mark,
1039     span: Span,
1040     vis: ty::Visibility,
1041 }
1042
1043 pub trait ToNameBinding<'a> {
1044     fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a>;
1045 }
1046
1047 impl<'a> ToNameBinding<'a> for &'a NameBinding<'a> {
1048     fn to_name_binding(self, _: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> {
1049         self
1050     }
1051 }
1052
1053 #[derive(Clone, Debug)]
1054 enum NameBindingKind<'a> {
1055     Def(Def),
1056     Module(Module<'a>),
1057     Import {
1058         binding: &'a NameBinding<'a>,
1059         directive: &'a ImportDirective<'a>,
1060         used: Cell<bool>,
1061         legacy_self_import: bool,
1062     },
1063     Ambiguity {
1064         b1: &'a NameBinding<'a>,
1065         b2: &'a NameBinding<'a>,
1066         legacy: bool,
1067     }
1068 }
1069
1070 struct PrivacyError<'a>(Span, Name, &'a NameBinding<'a>);
1071
1072 struct UseError<'a> {
1073     err: DiagnosticBuilder<'a>,
1074     /// Attach `use` statements for these candidates
1075     candidates: Vec<ImportSuggestion>,
1076     /// The node id of the module to place the use statements in
1077     node_id: NodeId,
1078     /// Whether the diagnostic should state that it's "better"
1079     better: bool,
1080 }
1081
1082 struct AmbiguityError<'a> {
1083     span: Span,
1084     name: Name,
1085     lexical: bool,
1086     b1: &'a NameBinding<'a>,
1087     b2: &'a NameBinding<'a>,
1088     legacy: bool,
1089 }
1090
1091 impl<'a> NameBinding<'a> {
1092     fn module(&self) -> Option<Module<'a>> {
1093         match self.kind {
1094             NameBindingKind::Module(module) => Some(module),
1095             NameBindingKind::Import { binding, .. } => binding.module(),
1096             NameBindingKind::Ambiguity { legacy: true, b1, .. } => b1.module(),
1097             _ => None,
1098         }
1099     }
1100
1101     fn def(&self) -> Def {
1102         match self.kind {
1103             NameBindingKind::Def(def) => def,
1104             NameBindingKind::Module(module) => module.def().unwrap(),
1105             NameBindingKind::Import { binding, .. } => binding.def(),
1106             NameBindingKind::Ambiguity { legacy: true, b1, .. } => b1.def(),
1107             NameBindingKind::Ambiguity { .. } => Def::Err,
1108         }
1109     }
1110
1111     fn def_ignoring_ambiguity(&self) -> Def {
1112         match self.kind {
1113             NameBindingKind::Import { binding, .. } => binding.def_ignoring_ambiguity(),
1114             NameBindingKind::Ambiguity { b1, .. } => b1.def_ignoring_ambiguity(),
1115             _ => self.def(),
1116         }
1117     }
1118
1119     fn get_macro(&self, resolver: &mut Resolver<'a>) -> Rc<SyntaxExtension> {
1120         resolver.get_macro(self.def_ignoring_ambiguity())
1121     }
1122
1123     // We sometimes need to treat variants as `pub` for backwards compatibility
1124     fn pseudo_vis(&self) -> ty::Visibility {
1125         if self.is_variant() && self.def().def_id().is_local() {
1126             ty::Visibility::Public
1127         } else {
1128             self.vis
1129         }
1130     }
1131
1132     fn is_variant(&self) -> bool {
1133         match self.kind {
1134             NameBindingKind::Def(Def::Variant(..)) |
1135             NameBindingKind::Def(Def::VariantCtor(..)) => true,
1136             _ => false,
1137         }
1138     }
1139
1140     fn is_extern_crate(&self) -> bool {
1141         match self.kind {
1142             NameBindingKind::Import {
1143                 directive: &ImportDirective {
1144                     subclass: ImportDirectiveSubclass::ExternCrate(_), ..
1145                 }, ..
1146             } => true,
1147             _ => false,
1148         }
1149     }
1150
1151     fn is_import(&self) -> bool {
1152         match self.kind {
1153             NameBindingKind::Import { .. } => true,
1154             _ => false,
1155         }
1156     }
1157
1158     fn is_renamed_extern_crate(&self) -> bool {
1159         if let NameBindingKind::Import { directive, ..} = self.kind {
1160             if let ImportDirectiveSubclass::ExternCrate(Some(_)) = directive.subclass {
1161                 return true;
1162             }
1163         }
1164         false
1165     }
1166
1167     fn is_glob_import(&self) -> bool {
1168         match self.kind {
1169             NameBindingKind::Import { directive, .. } => directive.is_glob(),
1170             NameBindingKind::Ambiguity { b1, .. } => b1.is_glob_import(),
1171             _ => false,
1172         }
1173     }
1174
1175     fn is_importable(&self) -> bool {
1176         match self.def() {
1177             Def::AssociatedConst(..) | Def::Method(..) | Def::AssociatedTy(..) => false,
1178             _ => true,
1179         }
1180     }
1181
1182     fn is_macro_def(&self) -> bool {
1183         match self.kind {
1184             NameBindingKind::Def(Def::Macro(..)) => true,
1185             _ => false,
1186         }
1187     }
1188
1189     fn descr(&self) -> &'static str {
1190         if self.is_extern_crate() { "extern crate" } else { self.def().kind_name() }
1191     }
1192 }
1193
1194 /// Interns the names of the primitive types.
1195 struct PrimitiveTypeTable {
1196     primitive_types: FxHashMap<Name, PrimTy>,
1197 }
1198
1199 impl PrimitiveTypeTable {
1200     fn new() -> PrimitiveTypeTable {
1201         let mut table = PrimitiveTypeTable { primitive_types: FxHashMap() };
1202
1203         table.intern("bool", TyBool);
1204         table.intern("char", TyChar);
1205         table.intern("f32", TyFloat(FloatTy::F32));
1206         table.intern("f64", TyFloat(FloatTy::F64));
1207         table.intern("isize", TyInt(IntTy::Isize));
1208         table.intern("i8", TyInt(IntTy::I8));
1209         table.intern("i16", TyInt(IntTy::I16));
1210         table.intern("i32", TyInt(IntTy::I32));
1211         table.intern("i64", TyInt(IntTy::I64));
1212         table.intern("i128", TyInt(IntTy::I128));
1213         table.intern("str", TyStr);
1214         table.intern("usize", TyUint(UintTy::Usize));
1215         table.intern("u8", TyUint(UintTy::U8));
1216         table.intern("u16", TyUint(UintTy::U16));
1217         table.intern("u32", TyUint(UintTy::U32));
1218         table.intern("u64", TyUint(UintTy::U64));
1219         table.intern("u128", TyUint(UintTy::U128));
1220         table
1221     }
1222
1223     fn intern(&mut self, string: &str, primitive_type: PrimTy) {
1224         self.primitive_types.insert(Symbol::intern(string), primitive_type);
1225     }
1226 }
1227
1228 /// The main resolver class.
1229 pub struct Resolver<'a> {
1230     session: &'a Session,
1231     cstore: &'a CrateStore,
1232
1233     pub definitions: Definitions,
1234
1235     graph_root: Module<'a>,
1236
1237     prelude: Option<Module<'a>>,
1238
1239     // n.b. This is used only for better diagnostics, not name resolution itself.
1240     has_self: FxHashSet<DefId>,
1241
1242     // Names of fields of an item `DefId` accessible with dot syntax.
1243     // Used for hints during error reporting.
1244     field_names: FxHashMap<DefId, Vec<Name>>,
1245
1246     // All imports known to succeed or fail.
1247     determined_imports: Vec<&'a ImportDirective<'a>>,
1248
1249     // All non-determined imports.
1250     indeterminate_imports: Vec<&'a ImportDirective<'a>>,
1251
1252     // The module that represents the current item scope.
1253     current_module: Module<'a>,
1254
1255     // The current set of local scopes for types and values.
1256     // FIXME #4948: Reuse ribs to avoid allocation.
1257     ribs: PerNS<Vec<Rib<'a>>>,
1258
1259     // The current set of local scopes, for labels.
1260     label_ribs: Vec<Rib<'a>>,
1261
1262     // The trait that the current context can refer to.
1263     current_trait_ref: Option<(Module<'a>, TraitRef)>,
1264
1265     // The current self type if inside an impl (used for better errors).
1266     current_self_type: Option<Ty>,
1267
1268     // The idents for the primitive types.
1269     primitive_type_table: PrimitiveTypeTable,
1270
1271     def_map: DefMap,
1272     pub freevars: FreevarMap,
1273     freevars_seen: NodeMap<NodeMap<usize>>,
1274     pub export_map: ExportMap,
1275     pub trait_map: TraitMap,
1276
1277     // A map from nodes to anonymous modules.
1278     // Anonymous modules are pseudo-modules that are implicitly created around items
1279     // contained within blocks.
1280     //
1281     // For example, if we have this:
1282     //
1283     //  fn f() {
1284     //      fn g() {
1285     //          ...
1286     //      }
1287     //  }
1288     //
1289     // There will be an anonymous module created around `g` with the ID of the
1290     // entry block for `f`.
1291     block_map: NodeMap<Module<'a>>,
1292     module_map: FxHashMap<DefId, Module<'a>>,
1293     extern_module_map: FxHashMap<(DefId, bool /* MacrosOnly? */), Module<'a>>,
1294
1295     pub make_glob_map: bool,
1296     /// Maps imports to the names of items actually imported (this actually maps
1297     /// all imports, but only glob imports are actually interesting).
1298     pub glob_map: GlobMap,
1299
1300     used_imports: FxHashSet<(NodeId, Namespace)>,
1301     pub maybe_unused_trait_imports: NodeSet,
1302     pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
1303
1304     /// privacy errors are delayed until the end in order to deduplicate them
1305     privacy_errors: Vec<PrivacyError<'a>>,
1306     /// ambiguity errors are delayed for deduplication
1307     ambiguity_errors: Vec<AmbiguityError<'a>>,
1308     /// `use` injections are delayed for better placement and deduplication
1309     use_injections: Vec<UseError<'a>>,
1310     /// `use` injections for proc macros wrongly imported with #[macro_use]
1311     proc_mac_errors: Vec<macros::ProcMacError>,
1312
1313     gated_errors: FxHashSet<Span>,
1314     disallowed_shadowing: Vec<&'a LegacyBinding<'a>>,
1315
1316     arenas: &'a ResolverArenas<'a>,
1317     dummy_binding: &'a NameBinding<'a>,
1318     use_extern_macros: bool, // true if `#![feature(use_extern_macros)]`
1319
1320     crate_loader: &'a mut CrateLoader,
1321     macro_names: FxHashSet<Ident>,
1322     global_macros: FxHashMap<Name, &'a NameBinding<'a>>,
1323     lexical_macro_resolutions: Vec<(Ident, &'a Cell<LegacyScope<'a>>)>,
1324     macro_map: FxHashMap<DefId, Rc<SyntaxExtension>>,
1325     macro_defs: FxHashMap<Mark, DefId>,
1326     local_macro_def_scopes: FxHashMap<NodeId, Module<'a>>,
1327     macro_exports: Vec<Export>,
1328     pub whitelisted_legacy_custom_derives: Vec<Name>,
1329     pub found_unresolved_macro: bool,
1330
1331     // List of crate local macros that we need to warn about as being unused.
1332     // Right now this only includes macro_rules! macros, and macros 2.0.
1333     unused_macros: FxHashSet<DefId>,
1334
1335     // Maps the `Mark` of an expansion to its containing module or block.
1336     invocations: FxHashMap<Mark, &'a InvocationData<'a>>,
1337
1338     // Avoid duplicated errors for "name already defined".
1339     name_already_seen: FxHashMap<Name, Span>,
1340
1341     // If `#![feature(proc_macro)]` is set
1342     proc_macro_enabled: bool,
1343
1344     // A set of procedural macros imported by `#[macro_use]` that have already been warned about
1345     warned_proc_macros: FxHashSet<Name>,
1346
1347     potentially_unused_imports: Vec<&'a ImportDirective<'a>>,
1348
1349     // This table maps struct IDs into struct constructor IDs,
1350     // it's not used during normal resolution, only for better error reporting.
1351     struct_constructors: DefIdMap<(Def, ty::Visibility)>,
1352
1353     // Only used for better errors on `fn(): fn()`
1354     current_type_ascription: Vec<Span>,
1355
1356     injected_crate: Option<Module<'a>>,
1357 }
1358
1359 pub struct ResolverArenas<'a> {
1360     modules: arena::TypedArena<ModuleData<'a>>,
1361     local_modules: RefCell<Vec<Module<'a>>>,
1362     name_bindings: arena::TypedArena<NameBinding<'a>>,
1363     import_directives: arena::TypedArena<ImportDirective<'a>>,
1364     name_resolutions: arena::TypedArena<RefCell<NameResolution<'a>>>,
1365     invocation_data: arena::TypedArena<InvocationData<'a>>,
1366     legacy_bindings: arena::TypedArena<LegacyBinding<'a>>,
1367 }
1368
1369 impl<'a> ResolverArenas<'a> {
1370     fn alloc_module(&'a self, module: ModuleData<'a>) -> Module<'a> {
1371         let module = self.modules.alloc(module);
1372         if module.def_id().map(|def_id| def_id.is_local()).unwrap_or(true) {
1373             self.local_modules.borrow_mut().push(module);
1374         }
1375         module
1376     }
1377     fn local_modules(&'a self) -> ::std::cell::Ref<'a, Vec<Module<'a>>> {
1378         self.local_modules.borrow()
1379     }
1380     fn alloc_name_binding(&'a self, name_binding: NameBinding<'a>) -> &'a NameBinding<'a> {
1381         self.name_bindings.alloc(name_binding)
1382     }
1383     fn alloc_import_directive(&'a self, import_directive: ImportDirective<'a>)
1384                               -> &'a ImportDirective {
1385         self.import_directives.alloc(import_directive)
1386     }
1387     fn alloc_name_resolution(&'a self) -> &'a RefCell<NameResolution<'a>> {
1388         self.name_resolutions.alloc(Default::default())
1389     }
1390     fn alloc_invocation_data(&'a self, expansion_data: InvocationData<'a>)
1391                              -> &'a InvocationData<'a> {
1392         self.invocation_data.alloc(expansion_data)
1393     }
1394     fn alloc_legacy_binding(&'a self, binding: LegacyBinding<'a>) -> &'a LegacyBinding<'a> {
1395         self.legacy_bindings.alloc(binding)
1396     }
1397 }
1398
1399 impl<'a, 'b: 'a> ty::DefIdTree for &'a Resolver<'b> {
1400     fn parent(self, id: DefId) -> Option<DefId> {
1401         match id.krate {
1402             LOCAL_CRATE => self.definitions.def_key(id.index).parent,
1403             _ => self.cstore.def_key(id).parent,
1404         }.map(|index| DefId { index: index, ..id })
1405     }
1406 }
1407
1408 impl<'a> hir::lowering::Resolver for Resolver<'a> {
1409     fn resolve_hir_path(&mut self, path: &mut hir::Path, is_value: bool) {
1410         let namespace = if is_value { ValueNS } else { TypeNS };
1411         let hir::Path { ref segments, span, ref mut def } = *path;
1412         let path: Vec<SpannedIdent> = segments.iter()
1413             .map(|seg| respan(span, Ident::with_empty_ctxt(seg.name)))
1414             .collect();
1415         match self.resolve_path(&path, Some(namespace), true, span) {
1416             PathResult::Module(module) => *def = module.def().unwrap(),
1417             PathResult::NonModule(path_res) if path_res.unresolved_segments() == 0 =>
1418                 *def = path_res.base_def(),
1419             PathResult::NonModule(..) => match self.resolve_path(&path, None, true, span) {
1420                 PathResult::Failed(span, msg, _) => {
1421                     resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
1422                 }
1423                 _ => {}
1424             },
1425             PathResult::Indeterminate => unreachable!(),
1426             PathResult::Failed(span, msg, _) => {
1427                 resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
1428             }
1429         }
1430     }
1431
1432     fn get_resolution(&mut self, id: NodeId) -> Option<PathResolution> {
1433         self.def_map.get(&id).cloned()
1434     }
1435
1436     fn definitions(&mut self) -> &mut Definitions {
1437         &mut self.definitions
1438     }
1439 }
1440
1441 impl<'a> Resolver<'a> {
1442     pub fn new(session: &'a Session,
1443                cstore: &'a CrateStore,
1444                krate: &Crate,
1445                crate_name: &str,
1446                make_glob_map: MakeGlobMap,
1447                crate_loader: &'a mut CrateLoader,
1448                arenas: &'a ResolverArenas<'a>)
1449                -> Resolver<'a> {
1450         let root_def_id = DefId::local(CRATE_DEF_INDEX);
1451         let root_module_kind = ModuleKind::Def(Def::Mod(root_def_id), keywords::Invalid.name());
1452         let graph_root = arenas.alloc_module(ModuleData {
1453             no_implicit_prelude: attr::contains_name(&krate.attrs, "no_implicit_prelude"),
1454             ..ModuleData::new(None, root_module_kind, root_def_id, Mark::root(), krate.span)
1455         });
1456         let mut module_map = FxHashMap();
1457         module_map.insert(DefId::local(CRATE_DEF_INDEX), graph_root);
1458
1459         let mut definitions = Definitions::new();
1460         DefCollector::new(&mut definitions, Mark::root())
1461             .collect_root(crate_name, session.local_crate_disambiguator());
1462
1463         let mut invocations = FxHashMap();
1464         invocations.insert(Mark::root(),
1465                            arenas.alloc_invocation_data(InvocationData::root(graph_root)));
1466
1467         let features = session.features.borrow();
1468
1469         let mut macro_defs = FxHashMap();
1470         macro_defs.insert(Mark::root(), root_def_id);
1471
1472         Resolver {
1473             session,
1474
1475             cstore,
1476
1477             definitions,
1478
1479             // The outermost module has def ID 0; this is not reflected in the
1480             // AST.
1481             graph_root,
1482             prelude: None,
1483
1484             has_self: FxHashSet(),
1485             field_names: FxHashMap(),
1486
1487             determined_imports: Vec::new(),
1488             indeterminate_imports: Vec::new(),
1489
1490             current_module: graph_root,
1491             ribs: PerNS {
1492                 value_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1493                 type_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1494                 macro_ns: Some(vec![Rib::new(ModuleRibKind(graph_root))]),
1495             },
1496             label_ribs: Vec::new(),
1497
1498             current_trait_ref: None,
1499             current_self_type: None,
1500
1501             primitive_type_table: PrimitiveTypeTable::new(),
1502
1503             def_map: NodeMap(),
1504             freevars: NodeMap(),
1505             freevars_seen: NodeMap(),
1506             export_map: FxHashMap(),
1507             trait_map: NodeMap(),
1508             module_map,
1509             block_map: NodeMap(),
1510             extern_module_map: FxHashMap(),
1511
1512             make_glob_map: make_glob_map == MakeGlobMap::Yes,
1513             glob_map: NodeMap(),
1514
1515             used_imports: FxHashSet(),
1516             maybe_unused_trait_imports: NodeSet(),
1517             maybe_unused_extern_crates: Vec::new(),
1518
1519             privacy_errors: Vec::new(),
1520             ambiguity_errors: Vec::new(),
1521             use_injections: Vec::new(),
1522             proc_mac_errors: Vec::new(),
1523             gated_errors: FxHashSet(),
1524             disallowed_shadowing: Vec::new(),
1525
1526             arenas,
1527             dummy_binding: arenas.alloc_name_binding(NameBinding {
1528                 kind: NameBindingKind::Def(Def::Err),
1529                 expansion: Mark::root(),
1530                 span: DUMMY_SP,
1531                 vis: ty::Visibility::Public,
1532             }),
1533
1534             // The `proc_macro` and `decl_macro` features imply `use_extern_macros`
1535             use_extern_macros:
1536                 features.use_extern_macros || features.proc_macro || features.decl_macro,
1537
1538             crate_loader,
1539             macro_names: FxHashSet(),
1540             global_macros: FxHashMap(),
1541             lexical_macro_resolutions: Vec::new(),
1542             macro_map: FxHashMap(),
1543             macro_exports: Vec::new(),
1544             invocations,
1545             macro_defs,
1546             local_macro_def_scopes: FxHashMap(),
1547             name_already_seen: FxHashMap(),
1548             whitelisted_legacy_custom_derives: Vec::new(),
1549             proc_macro_enabled: features.proc_macro,
1550             warned_proc_macros: FxHashSet(),
1551             potentially_unused_imports: Vec::new(),
1552             struct_constructors: DefIdMap(),
1553             found_unresolved_macro: false,
1554             unused_macros: FxHashSet(),
1555             current_type_ascription: Vec::new(),
1556             injected_crate: None,
1557         }
1558     }
1559
1560     pub fn arenas() -> ResolverArenas<'a> {
1561         ResolverArenas {
1562             modules: arena::TypedArena::new(),
1563             local_modules: RefCell::new(Vec::new()),
1564             name_bindings: arena::TypedArena::new(),
1565             import_directives: arena::TypedArena::new(),
1566             name_resolutions: arena::TypedArena::new(),
1567             invocation_data: arena::TypedArena::new(),
1568             legacy_bindings: arena::TypedArena::new(),
1569         }
1570     }
1571
1572     fn per_ns<T, F: FnMut(&mut Self, Namespace) -> T>(&mut self, mut f: F) -> PerNS<T> {
1573         PerNS {
1574             type_ns: f(self, TypeNS),
1575             value_ns: f(self, ValueNS),
1576             macro_ns: match self.use_extern_macros {
1577                 true => Some(f(self, MacroNS)),
1578                 false => None,
1579             },
1580         }
1581     }
1582
1583     fn macro_def(&self, mut ctxt: SyntaxContext) -> DefId {
1584         loop {
1585             match self.macro_defs.get(&ctxt.outer()) {
1586                 Some(&def_id) => return def_id,
1587                 None => ctxt.remove_mark(),
1588             };
1589         }
1590     }
1591
1592     /// Entry point to crate resolution.
1593     pub fn resolve_crate(&mut self, krate: &Crate) {
1594         ImportResolver { resolver: self }.finalize_imports();
1595         self.current_module = self.graph_root;
1596         self.finalize_current_module_macro_resolutions();
1597
1598         visit::walk_crate(self, krate);
1599
1600         check_unused::check_crate(self, krate);
1601         self.report_errors(krate);
1602         self.crate_loader.postprocess(krate);
1603     }
1604
1605     fn new_module(
1606         &self,
1607         parent: Module<'a>,
1608         kind: ModuleKind,
1609         normal_ancestor_id: DefId,
1610         expansion: Mark,
1611         span: Span,
1612     ) -> Module<'a> {
1613         let module = ModuleData::new(Some(parent), kind, normal_ancestor_id, expansion, span);
1614         self.arenas.alloc_module(module)
1615     }
1616
1617     fn record_use(&mut self, ident: Ident, ns: Namespace, binding: &'a NameBinding<'a>, span: Span)
1618                   -> bool /* true if an error was reported */ {
1619         match binding.kind {
1620             NameBindingKind::Import { directive, binding, ref used, legacy_self_import }
1621                     if !used.get() => {
1622                 used.set(true);
1623                 directive.used.set(true);
1624                 if legacy_self_import {
1625                     self.warn_legacy_self_import(directive);
1626                     return false;
1627                 }
1628                 self.used_imports.insert((directive.id, ns));
1629                 self.add_to_glob_map(directive.id, ident);
1630                 self.record_use(ident, ns, binding, span)
1631             }
1632             NameBindingKind::Import { .. } => false,
1633             NameBindingKind::Ambiguity { b1, b2, legacy } => {
1634                 self.ambiguity_errors.push(AmbiguityError {
1635                     span: span, name: ident.name, lexical: false, b1: b1, b2: b2, legacy,
1636                 });
1637                 if legacy {
1638                     self.record_use(ident, ns, b1, span);
1639                 }
1640                 !legacy
1641             }
1642             _ => false
1643         }
1644     }
1645
1646     fn add_to_glob_map(&mut self, id: NodeId, ident: Ident) {
1647         if self.make_glob_map {
1648             self.glob_map.entry(id).or_insert_with(FxHashSet).insert(ident.name);
1649         }
1650     }
1651
1652     /// This resolves the identifier `ident` in the namespace `ns` in the current lexical scope.
1653     /// More specifically, we proceed up the hierarchy of scopes and return the binding for
1654     /// `ident` in the first scope that defines it (or None if no scopes define it).
1655     ///
1656     /// A block's items are above its local variables in the scope hierarchy, regardless of where
1657     /// the items are defined in the block. For example,
1658     /// ```rust
1659     /// fn f() {
1660     ///    g(); // Since there are no local variables in scope yet, this resolves to the item.
1661     ///    let g = || {};
1662     ///    fn g() {}
1663     ///    g(); // This resolves to the local variable `g` since it shadows the item.
1664     /// }
1665     /// ```
1666     ///
1667     /// Invariant: This must only be called during main resolution, not during
1668     /// import resolution.
1669     fn resolve_ident_in_lexical_scope(&mut self,
1670                                       mut ident: Ident,
1671                                       ns: Namespace,
1672                                       record_used: bool,
1673                                       path_span: Span)
1674                                       -> Option<LexicalScopeBinding<'a>> {
1675         if ns == TypeNS {
1676             ident.ctxt = if ident.name == keywords::SelfType.name() {
1677                 SyntaxContext::empty() // FIXME(jseyfried) improve `Self` hygiene
1678             } else {
1679                 ident.ctxt.modern()
1680             }
1681         }
1682
1683         // Walk backwards up the ribs in scope.
1684         let mut module = self.graph_root;
1685         for i in (0 .. self.ribs[ns].len()).rev() {
1686             if let Some(def) = self.ribs[ns][i].bindings.get(&ident).cloned() {
1687                 // The ident resolves to a type parameter or local variable.
1688                 return Some(LexicalScopeBinding::Def(
1689                     self.adjust_local_def(ns, i, def, record_used, path_span)
1690                 ));
1691             }
1692
1693             module = match self.ribs[ns][i].kind {
1694                 ModuleRibKind(module) => module,
1695                 MacroDefinition(def) if def == self.macro_def(ident.ctxt) => {
1696                     // If an invocation of this macro created `ident`, give up on `ident`
1697                     // and switch to `ident`'s source from the macro definition.
1698                     ident.ctxt.remove_mark();
1699                     continue
1700                 }
1701                 _ => continue,
1702             };
1703
1704             let item = self.resolve_ident_in_module_unadjusted(
1705                 module, ident, ns, false, record_used, path_span,
1706             );
1707             if let Ok(binding) = item {
1708                 // The ident resolves to an item.
1709                 return Some(LexicalScopeBinding::Item(binding));
1710             }
1711
1712             match module.kind {
1713                 ModuleKind::Block(..) => {}, // We can see through blocks
1714                 _ => break,
1715             }
1716         }
1717
1718         ident.ctxt = ident.ctxt.modern();
1719         loop {
1720             module = unwrap_or!(self.hygienic_lexical_parent(module, &mut ident.ctxt), break);
1721             let orig_current_module = self.current_module;
1722             self.current_module = module; // Lexical resolutions can never be a privacy error.
1723             let result = self.resolve_ident_in_module_unadjusted(
1724                 module, ident, ns, false, record_used, path_span,
1725             );
1726             self.current_module = orig_current_module;
1727
1728             match result {
1729                 Ok(binding) => return Some(LexicalScopeBinding::Item(binding)),
1730                 Err(Undetermined) => return None,
1731                 Err(Determined) => {}
1732             }
1733         }
1734
1735         match self.prelude {
1736             Some(prelude) if !module.no_implicit_prelude => {
1737                 self.resolve_ident_in_module_unadjusted(prelude, ident, ns, false, false, path_span)
1738                     .ok().map(LexicalScopeBinding::Item)
1739             }
1740             _ => None,
1741         }
1742     }
1743
1744     fn hygienic_lexical_parent(&mut self, mut module: Module<'a>, ctxt: &mut SyntaxContext)
1745                                -> Option<Module<'a>> {
1746         if !module.expansion.is_descendant_of(ctxt.outer()) {
1747             return Some(self.macro_def_scope(ctxt.remove_mark()));
1748         }
1749
1750         if let ModuleKind::Block(..) = module.kind {
1751             return Some(module.parent.unwrap());
1752         }
1753
1754         let mut module_expansion = module.expansion.modern(); // for backward compatibility
1755         while let Some(parent) = module.parent {
1756             let parent_expansion = parent.expansion.modern();
1757             if module_expansion.is_descendant_of(parent_expansion) &&
1758                parent_expansion != module_expansion {
1759                 return if parent_expansion.is_descendant_of(ctxt.outer()) {
1760                     Some(parent)
1761                 } else {
1762                     None
1763                 };
1764             }
1765             module = parent;
1766             module_expansion = parent_expansion;
1767         }
1768
1769         None
1770     }
1771
1772     fn resolve_ident_in_module(&mut self,
1773                                module: Module<'a>,
1774                                mut ident: Ident,
1775                                ns: Namespace,
1776                                ignore_unresolved_invocations: bool,
1777                                record_used: bool,
1778                                span: Span)
1779                                -> Result<&'a NameBinding<'a>, Determinacy> {
1780         ident.ctxt = ident.ctxt.modern();
1781         let orig_current_module = self.current_module;
1782         if let Some(def) = ident.ctxt.adjust(module.expansion) {
1783             self.current_module = self.macro_def_scope(def);
1784         }
1785         let result = self.resolve_ident_in_module_unadjusted(
1786             module, ident, ns, ignore_unresolved_invocations, record_used, span,
1787         );
1788         self.current_module = orig_current_module;
1789         result
1790     }
1791
1792     fn resolve_crate_root(&mut self, mut ctxt: SyntaxContext) -> Module<'a> {
1793         let module = match ctxt.adjust(Mark::root()) {
1794             Some(def) => self.macro_def_scope(def),
1795             None => return self.graph_root,
1796         };
1797         self.get_module(DefId { index: CRATE_DEF_INDEX, ..module.normal_ancestor_id })
1798     }
1799
1800     fn resolve_self(&mut self, ctxt: &mut SyntaxContext, module: Module<'a>) -> Module<'a> {
1801         let mut module = self.get_module(module.normal_ancestor_id);
1802         while module.span.ctxt().modern() != *ctxt {
1803             let parent = module.parent.unwrap_or_else(|| self.macro_def_scope(ctxt.remove_mark()));
1804             module = self.get_module(parent.normal_ancestor_id);
1805         }
1806         module
1807     }
1808
1809     // AST resolution
1810     //
1811     // We maintain a list of value ribs and type ribs.
1812     //
1813     // Simultaneously, we keep track of the current position in the module
1814     // graph in the `current_module` pointer. When we go to resolve a name in
1815     // the value or type namespaces, we first look through all the ribs and
1816     // then query the module graph. When we resolve a name in the module
1817     // namespace, we can skip all the ribs (since nested modules are not
1818     // allowed within blocks in Rust) and jump straight to the current module
1819     // graph node.
1820     //
1821     // Named implementations are handled separately. When we find a method
1822     // call, we consult the module node to find all of the implementations in
1823     // scope. This information is lazily cached in the module node. We then
1824     // generate a fake "implementation scope" containing all the
1825     // implementations thus found, for compatibility with old resolve pass.
1826
1827     fn with_scope<F>(&mut self, id: NodeId, f: F)
1828         where F: FnOnce(&mut Resolver)
1829     {
1830         let id = self.definitions.local_def_id(id);
1831         let module = self.module_map.get(&id).cloned(); // clones a reference
1832         if let Some(module) = module {
1833             // Move down in the graph.
1834             let orig_module = replace(&mut self.current_module, module);
1835             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(module)));
1836             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(module)));
1837
1838             self.finalize_current_module_macro_resolutions();
1839             f(self);
1840
1841             self.current_module = orig_module;
1842             self.ribs[ValueNS].pop();
1843             self.ribs[TypeNS].pop();
1844         } else {
1845             f(self);
1846         }
1847     }
1848
1849     /// Searches the current set of local scopes for labels. Returns the first non-None label that
1850     /// is returned by the given predicate function
1851     ///
1852     /// Stops after meeting a closure.
1853     fn search_label<P, R>(&self, mut ident: Ident, pred: P) -> Option<R>
1854         where P: Fn(&Rib, Ident) -> Option<R>
1855     {
1856         for rib in self.label_ribs.iter().rev() {
1857             match rib.kind {
1858                 NormalRibKind => {}
1859                 // If an invocation of this macro created `ident`, give up on `ident`
1860                 // and switch to `ident`'s source from the macro definition.
1861                 MacroDefinition(def) => {
1862                     if def == self.macro_def(ident.ctxt) {
1863                         ident.ctxt.remove_mark();
1864                     }
1865                 }
1866                 _ => {
1867                     // Do not resolve labels across function boundary
1868                     return None;
1869                 }
1870             }
1871             let r = pred(rib, ident);
1872             if r.is_some() {
1873                 return r;
1874             }
1875         }
1876         None
1877     }
1878
1879     fn resolve_item(&mut self, item: &Item) {
1880         let name = item.ident.name;
1881
1882         debug!("(resolving item) resolving {}", name);
1883
1884         self.check_proc_macro_attrs(&item.attrs);
1885
1886         match item.node {
1887             ItemKind::Enum(_, ref generics) |
1888             ItemKind::Ty(_, ref generics) |
1889             ItemKind::Struct(_, ref generics) |
1890             ItemKind::Union(_, ref generics) |
1891             ItemKind::Fn(.., ref generics, _) => {
1892                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind),
1893                                              |this| visit::walk_item(this, item));
1894             }
1895
1896             ItemKind::AutoImpl(_, ref trait_ref) => {
1897                 self.with_optional_trait_ref(Some(trait_ref), |this, _| {
1898                     // Resolve type arguments in trait path
1899                     visit::walk_trait_ref(this, trait_ref);
1900                 });
1901             }
1902             ItemKind::Impl(.., ref generics, ref opt_trait_ref, ref self_type, ref impl_items) =>
1903                 self.resolve_implementation(generics,
1904                                             opt_trait_ref,
1905                                             &self_type,
1906                                             item.id,
1907                                             impl_items),
1908
1909             ItemKind::Trait(.., ref generics, ref bounds, ref trait_items) => {
1910                 // Create a new rib for the trait-wide type parameters.
1911                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
1912                     let local_def_id = this.definitions.local_def_id(item.id);
1913                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
1914                         this.visit_generics(generics);
1915                         walk_list!(this, visit_ty_param_bound, bounds);
1916
1917                         for trait_item in trait_items {
1918                             this.check_proc_macro_attrs(&trait_item.attrs);
1919
1920                             let type_parameters = HasTypeParameters(&trait_item.generics,
1921                                                                     TraitOrImplItemRibKind);
1922                             this.with_type_parameter_rib(type_parameters, |this| {
1923                                 match trait_item.node {
1924                                     TraitItemKind::Const(ref ty, ref default) => {
1925                                         this.visit_ty(ty);
1926
1927                                         // Only impose the restrictions of
1928                                         // ConstRibKind for an actual constant
1929                                         // expression in a provided default.
1930                                         if let Some(ref expr) = *default{
1931                                             this.with_constant_rib(|this| {
1932                                                 this.visit_expr(expr);
1933                                             });
1934                                         }
1935                                     }
1936                                     TraitItemKind::Method(_, _) => {
1937                                         visit::walk_trait_item(this, trait_item)
1938                                     }
1939                                     TraitItemKind::Type(..) => {
1940                                         visit::walk_trait_item(this, trait_item)
1941                                     }
1942                                     TraitItemKind::Macro(_) => {
1943                                         panic!("unexpanded macro in resolve!")
1944                                     }
1945                                 };
1946                             });
1947                         }
1948                     });
1949                 });
1950             }
1951
1952             ItemKind::TraitAlias(ref generics, ref bounds) => {
1953                 // Create a new rib for the trait-wide type parameters.
1954                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
1955                     let local_def_id = this.definitions.local_def_id(item.id);
1956                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
1957                         this.visit_generics(generics);
1958                         walk_list!(this, visit_ty_param_bound, bounds);
1959                     });
1960                 });
1961             }
1962
1963             ItemKind::Mod(_) | ItemKind::ForeignMod(_) => {
1964                 self.with_scope(item.id, |this| {
1965                     visit::walk_item(this, item);
1966                 });
1967             }
1968
1969             ItemKind::Static(ref ty, _, ref expr) |
1970             ItemKind::Const(ref ty, ref expr) => {
1971                 self.with_item_rib(|this| {
1972                     this.visit_ty(ty);
1973                     this.with_constant_rib(|this| {
1974                         this.visit_expr(expr);
1975                     });
1976                 });
1977             }
1978
1979             ItemKind::Use(ref use_tree) => {
1980                 let path = Path {
1981                     segments: vec![],
1982                     span: use_tree.span,
1983                 };
1984                 self.resolve_use_tree(item, use_tree, &path);
1985             }
1986
1987             ItemKind::ExternCrate(_) | ItemKind::MacroDef(..) | ItemKind::GlobalAsm(_) => {
1988                 // do nothing, these are just around to be encoded
1989             }
1990
1991             ItemKind::Mac(_) => panic!("unexpanded macro in resolve!"),
1992         }
1993     }
1994
1995     fn resolve_use_tree(&mut self, item: &Item, use_tree: &ast::UseTree, prefix: &Path) {
1996         match use_tree.kind {
1997             ast::UseTreeKind::Nested(ref items) => {
1998                 let path = Path {
1999                     segments: prefix.segments
2000                         .iter()
2001                         .chain(use_tree.prefix.segments.iter())
2002                         .cloned()
2003                         .collect(),
2004                     span: prefix.span.to(use_tree.prefix.span),
2005                 };
2006
2007                 if items.len() == 0 {
2008                     // Resolve prefix of an import with empty braces (issue #28388).
2009                     self.smart_resolve_path(item.id, None, &path, PathSource::ImportPrefix);
2010                 } else {
2011                     for &(ref tree, _) in items {
2012                         self.resolve_use_tree(item, tree, &path);
2013                     }
2014                 }
2015             }
2016             ast::UseTreeKind::Simple(_) => {},
2017             ast::UseTreeKind::Glob => {},
2018         }
2019     }
2020
2021     fn with_type_parameter_rib<'b, F>(&'b mut self, type_parameters: TypeParameters<'a, 'b>, f: F)
2022         where F: FnOnce(&mut Resolver)
2023     {
2024         match type_parameters {
2025             HasTypeParameters(generics, rib_kind) => {
2026                 let mut function_type_rib = Rib::new(rib_kind);
2027                 let mut seen_bindings = FxHashMap();
2028                 for param in &generics.params {
2029                     if let GenericParam::Type(ref type_parameter) = *param {
2030                         let ident = type_parameter.ident.modern();
2031                         debug!("with_type_parameter_rib: {}", type_parameter.id);
2032
2033                         if seen_bindings.contains_key(&ident) {
2034                             let span = seen_bindings.get(&ident).unwrap();
2035                             let err = ResolutionError::NameAlreadyUsedInTypeParameterList(
2036                                 ident.name,
2037                                 span,
2038                             );
2039                             resolve_error(self, type_parameter.span, err);
2040                         }
2041                         seen_bindings.entry(ident).or_insert(type_parameter.span);
2042
2043                         // plain insert (no renaming)
2044                         let def_id = self.definitions.local_def_id(type_parameter.id);
2045                         let def = Def::TyParam(def_id);
2046                         function_type_rib.bindings.insert(ident, def);
2047                         self.record_def(type_parameter.id, PathResolution::new(def));
2048                     }
2049                 }
2050                 self.ribs[TypeNS].push(function_type_rib);
2051             }
2052
2053             NoTypeParameters => {
2054                 // Nothing to do.
2055             }
2056         }
2057
2058         f(self);
2059
2060         if let HasTypeParameters(..) = type_parameters {
2061             self.ribs[TypeNS].pop();
2062         }
2063     }
2064
2065     fn with_label_rib<F>(&mut self, f: F)
2066         where F: FnOnce(&mut Resolver)
2067     {
2068         self.label_ribs.push(Rib::new(NormalRibKind));
2069         f(self);
2070         self.label_ribs.pop();
2071     }
2072
2073     fn with_item_rib<F>(&mut self, f: F)
2074         where F: FnOnce(&mut Resolver)
2075     {
2076         self.ribs[ValueNS].push(Rib::new(ItemRibKind));
2077         self.ribs[TypeNS].push(Rib::new(ItemRibKind));
2078         f(self);
2079         self.ribs[TypeNS].pop();
2080         self.ribs[ValueNS].pop();
2081     }
2082
2083     fn with_constant_rib<F>(&mut self, f: F)
2084         where F: FnOnce(&mut Resolver)
2085     {
2086         self.ribs[ValueNS].push(Rib::new(ConstantItemRibKind));
2087         f(self);
2088         self.ribs[ValueNS].pop();
2089     }
2090
2091     fn with_current_self_type<T, F>(&mut self, self_type: &Ty, f: F) -> T
2092         where F: FnOnce(&mut Resolver) -> T
2093     {
2094         // Handle nested impls (inside fn bodies)
2095         let previous_value = replace(&mut self.current_self_type, Some(self_type.clone()));
2096         let result = f(self);
2097         self.current_self_type = previous_value;
2098         result
2099     }
2100
2101     fn with_optional_trait_ref<T, F>(&mut self, opt_trait_ref: Option<&TraitRef>, f: F) -> T
2102         where F: FnOnce(&mut Resolver, Option<DefId>) -> T
2103     {
2104         let mut new_val = None;
2105         let mut new_id = None;
2106         if let Some(trait_ref) = opt_trait_ref {
2107             let path: Vec<_> = trait_ref.path.segments.iter()
2108                 .map(|seg| respan(seg.span, seg.identifier))
2109                 .collect();
2110             let def = self.smart_resolve_path_fragment(trait_ref.ref_id,
2111                                                        None,
2112                                                        &path,
2113                                                        trait_ref.path.span,
2114                                                        trait_ref.path.segments.last().unwrap().span,
2115                                                        PathSource::Trait(AliasPossibility::No))
2116                 .base_def();
2117             if def != Def::Err {
2118                 new_id = Some(def.def_id());
2119                 let span = trait_ref.path.span;
2120                 if let PathResult::Module(module) = self.resolve_path(&path, None, false, span) {
2121                     new_val = Some((module, trait_ref.clone()));
2122                 }
2123             }
2124         }
2125         let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
2126         let result = f(self, new_id);
2127         self.current_trait_ref = original_trait_ref;
2128         result
2129     }
2130
2131     fn with_self_rib<F>(&mut self, self_def: Def, f: F)
2132         where F: FnOnce(&mut Resolver)
2133     {
2134         let mut self_type_rib = Rib::new(NormalRibKind);
2135
2136         // plain insert (no renaming, types are not currently hygienic....)
2137         self_type_rib.bindings.insert(keywords::SelfType.ident(), self_def);
2138         self.ribs[TypeNS].push(self_type_rib);
2139         f(self);
2140         self.ribs[TypeNS].pop();
2141     }
2142
2143     fn resolve_implementation(&mut self,
2144                               generics: &Generics,
2145                               opt_trait_reference: &Option<TraitRef>,
2146                               self_type: &Ty,
2147                               item_id: NodeId,
2148                               impl_items: &[ImplItem]) {
2149         // If applicable, create a rib for the type parameters.
2150         self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2151             // Dummy self type for better errors if `Self` is used in the trait path.
2152             this.with_self_rib(Def::SelfTy(None, None), |this| {
2153                 // Resolve the trait reference, if necessary.
2154                 this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| {
2155                     let item_def_id = this.definitions.local_def_id(item_id);
2156                     this.with_self_rib(Def::SelfTy(trait_id, Some(item_def_id)), |this| {
2157                         if let Some(trait_ref) = opt_trait_reference.as_ref() {
2158                             // Resolve type arguments in trait path
2159                             visit::walk_trait_ref(this, trait_ref);
2160                         }
2161                         // Resolve the self type.
2162                         this.visit_ty(self_type);
2163                         // Resolve the type parameters.
2164                         this.visit_generics(generics);
2165                         this.with_current_self_type(self_type, |this| {
2166                             for impl_item in impl_items {
2167                                 this.check_proc_macro_attrs(&impl_item.attrs);
2168                                 this.resolve_visibility(&impl_item.vis);
2169
2170                                 // We also need a new scope for the impl item type parameters.
2171                                 let type_parameters = HasTypeParameters(&impl_item.generics,
2172                                                                         TraitOrImplItemRibKind);
2173                                 this.with_type_parameter_rib(type_parameters, |this| {
2174                                     use self::ResolutionError::*;
2175                                     match impl_item.node {
2176                                         ImplItemKind::Const(..) => {
2177                                             // If this is a trait impl, ensure the const
2178                                             // exists in trait
2179                                             this.check_trait_item(impl_item.ident,
2180                                                                 ValueNS,
2181                                                                 impl_item.span,
2182                                                 |n, s| ConstNotMemberOfTrait(n, s));
2183                                             this.with_constant_rib(|this|
2184                                                 visit::walk_impl_item(this, impl_item)
2185                                             );
2186                                         }
2187                                         ImplItemKind::Method(_, _) => {
2188                                             // If this is a trait impl, ensure the method
2189                                             // exists in trait
2190                                             this.check_trait_item(impl_item.ident,
2191                                                                 ValueNS,
2192                                                                 impl_item.span,
2193                                                 |n, s| MethodNotMemberOfTrait(n, s));
2194
2195                                             visit::walk_impl_item(this, impl_item);
2196                                         }
2197                                         ImplItemKind::Type(ref ty) => {
2198                                             // If this is a trait impl, ensure the type
2199                                             // exists in trait
2200                                             this.check_trait_item(impl_item.ident,
2201                                                                 TypeNS,
2202                                                                 impl_item.span,
2203                                                 |n, s| TypeNotMemberOfTrait(n, s));
2204
2205                                             this.visit_ty(ty);
2206                                         }
2207                                         ImplItemKind::Macro(_) =>
2208                                             panic!("unexpanded macro in resolve!"),
2209                                     }
2210                                 });
2211                             }
2212                         });
2213                     });
2214                 });
2215             });
2216         });
2217     }
2218
2219     fn check_trait_item<F>(&mut self, ident: Ident, ns: Namespace, span: Span, err: F)
2220         where F: FnOnce(Name, &str) -> ResolutionError
2221     {
2222         // If there is a TraitRef in scope for an impl, then the method must be in the
2223         // trait.
2224         if let Some((module, _)) = self.current_trait_ref {
2225             if self.resolve_ident_in_module(module, ident, ns, false, false, span).is_err() {
2226                 let path = &self.current_trait_ref.as_ref().unwrap().1.path;
2227                 resolve_error(self, span, err(ident.name, &path_names_to_string(path)));
2228             }
2229         }
2230     }
2231
2232     fn resolve_local(&mut self, local: &Local) {
2233         // Resolve the type.
2234         walk_list!(self, visit_ty, &local.ty);
2235
2236         // Resolve the initializer.
2237         walk_list!(self, visit_expr, &local.init);
2238
2239         // Resolve the pattern.
2240         self.resolve_pattern(&local.pat, PatternSource::Let, &mut FxHashMap());
2241     }
2242
2243     // build a map from pattern identifiers to binding-info's.
2244     // this is done hygienically. This could arise for a macro
2245     // that expands into an or-pattern where one 'x' was from the
2246     // user and one 'x' came from the macro.
2247     fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
2248         let mut binding_map = FxHashMap();
2249
2250         pat.walk(&mut |pat| {
2251             if let PatKind::Ident(binding_mode, ident, ref sub_pat) = pat.node {
2252                 if sub_pat.is_some() || match self.def_map.get(&pat.id).map(|res| res.base_def()) {
2253                     Some(Def::Local(..)) => true,
2254                     _ => false,
2255                 } {
2256                     let binding_info = BindingInfo { span: ident.span, binding_mode: binding_mode };
2257                     binding_map.insert(ident.node, binding_info);
2258                 }
2259             }
2260             true
2261         });
2262
2263         binding_map
2264     }
2265
2266     // check that all of the arms in an or-pattern have exactly the
2267     // same set of bindings, with the same binding modes for each.
2268     fn check_consistent_bindings(&mut self, arm: &Arm) {
2269         if arm.pats.is_empty() {
2270             return;
2271         }
2272
2273         let mut missing_vars = FxHashMap();
2274         let mut inconsistent_vars = FxHashMap();
2275         for (i, p) in arm.pats.iter().enumerate() {
2276             let map_i = self.binding_mode_map(&p);
2277
2278             for (j, q) in arm.pats.iter().enumerate() {
2279                 if i == j {
2280                     continue;
2281                 }
2282
2283                 let map_j = self.binding_mode_map(&q);
2284                 for (&key, &binding_i) in &map_i {
2285                     if map_j.len() == 0 {                   // Account for missing bindings when
2286                         let binding_error = missing_vars    // map_j has none.
2287                             .entry(key.name)
2288                             .or_insert(BindingError {
2289                                 name: key.name,
2290                                 origin: BTreeSet::new(),
2291                                 target: BTreeSet::new(),
2292                             });
2293                         binding_error.origin.insert(binding_i.span);
2294                         binding_error.target.insert(q.span);
2295                     }
2296                     for (&key_j, &binding_j) in &map_j {
2297                         match map_i.get(&key_j) {
2298                             None => {  // missing binding
2299                                 let binding_error = missing_vars
2300                                     .entry(key_j.name)
2301                                     .or_insert(BindingError {
2302                                         name: key_j.name,
2303                                         origin: BTreeSet::new(),
2304                                         target: BTreeSet::new(),
2305                                     });
2306                                 binding_error.origin.insert(binding_j.span);
2307                                 binding_error.target.insert(p.span);
2308                             }
2309                             Some(binding_i) => {  // check consistent binding
2310                                 if binding_i.binding_mode != binding_j.binding_mode {
2311                                     inconsistent_vars
2312                                         .entry(key.name)
2313                                         .or_insert((binding_j.span, binding_i.span));
2314                                 }
2315                             }
2316                         }
2317                     }
2318                 }
2319             }
2320         }
2321         let mut missing_vars = missing_vars.iter().collect::<Vec<_>>();
2322         missing_vars.sort();
2323         for (_, v) in missing_vars {
2324             resolve_error(self,
2325                           *v.origin.iter().next().unwrap(),
2326                           ResolutionError::VariableNotBoundInPattern(v));
2327         }
2328         let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
2329         inconsistent_vars.sort();
2330         for (name, v) in inconsistent_vars {
2331             resolve_error(self, v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
2332         }
2333     }
2334
2335     fn resolve_arm(&mut self, arm: &Arm) {
2336         self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2337
2338         let mut bindings_list = FxHashMap();
2339         for pattern in &arm.pats {
2340             self.resolve_pattern(&pattern, PatternSource::Match, &mut bindings_list);
2341         }
2342
2343         // This has to happen *after* we determine which
2344         // pat_idents are variants
2345         self.check_consistent_bindings(arm);
2346
2347         walk_list!(self, visit_expr, &arm.guard);
2348         self.visit_expr(&arm.body);
2349
2350         self.ribs[ValueNS].pop();
2351     }
2352
2353     fn resolve_block(&mut self, block: &Block) {
2354         debug!("(resolving block) entering block");
2355         // Move down in the graph, if there's an anonymous module rooted here.
2356         let orig_module = self.current_module;
2357         let anonymous_module = self.block_map.get(&block.id).cloned(); // clones a reference
2358
2359         let mut num_macro_definition_ribs = 0;
2360         if let Some(anonymous_module) = anonymous_module {
2361             debug!("(resolving block) found anonymous module, moving down");
2362             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2363             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2364             self.current_module = anonymous_module;
2365             self.finalize_current_module_macro_resolutions();
2366         } else {
2367             self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2368         }
2369
2370         // Descend into the block.
2371         for stmt in &block.stmts {
2372             if let ast::StmtKind::Item(ref item) = stmt.node {
2373                 if let ast::ItemKind::MacroDef(..) = item.node {
2374                     num_macro_definition_ribs += 1;
2375                     let def = self.definitions.local_def_id(item.id);
2376                     self.ribs[ValueNS].push(Rib::new(MacroDefinition(def)));
2377                     self.label_ribs.push(Rib::new(MacroDefinition(def)));
2378                 }
2379             }
2380
2381             self.visit_stmt(stmt);
2382         }
2383
2384         // Move back up.
2385         self.current_module = orig_module;
2386         for _ in 0 .. num_macro_definition_ribs {
2387             self.ribs[ValueNS].pop();
2388             self.label_ribs.pop();
2389         }
2390         self.ribs[ValueNS].pop();
2391         if let Some(_) = anonymous_module {
2392             self.ribs[TypeNS].pop();
2393         }
2394         debug!("(resolving block) leaving block");
2395     }
2396
2397     fn fresh_binding(&mut self,
2398                      ident: &SpannedIdent,
2399                      pat_id: NodeId,
2400                      outer_pat_id: NodeId,
2401                      pat_src: PatternSource,
2402                      bindings: &mut FxHashMap<Ident, NodeId>)
2403                      -> PathResolution {
2404         // Add the binding to the local ribs, if it
2405         // doesn't already exist in the bindings map. (We
2406         // must not add it if it's in the bindings map
2407         // because that breaks the assumptions later
2408         // passes make about or-patterns.)
2409         let mut def = Def::Local(pat_id);
2410         match bindings.get(&ident.node).cloned() {
2411             Some(id) if id == outer_pat_id => {
2412                 // `Variant(a, a)`, error
2413                 resolve_error(
2414                     self,
2415                     ident.span,
2416                     ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(
2417                         &ident.node.name.as_str())
2418                 );
2419             }
2420             Some(..) if pat_src == PatternSource::FnParam => {
2421                 // `fn f(a: u8, a: u8)`, error
2422                 resolve_error(
2423                     self,
2424                     ident.span,
2425                     ResolutionError::IdentifierBoundMoreThanOnceInParameterList(
2426                         &ident.node.name.as_str())
2427                 );
2428             }
2429             Some(..) if pat_src == PatternSource::Match => {
2430                 // `Variant1(a) | Variant2(a)`, ok
2431                 // Reuse definition from the first `a`.
2432                 def = self.ribs[ValueNS].last_mut().unwrap().bindings[&ident.node];
2433             }
2434             Some(..) => {
2435                 span_bug!(ident.span, "two bindings with the same name from \
2436                                        unexpected pattern source {:?}", pat_src);
2437             }
2438             None => {
2439                 // A completely fresh binding, add to the lists if it's valid.
2440                 if ident.node.name != keywords::Invalid.name() {
2441                     bindings.insert(ident.node, outer_pat_id);
2442                     self.ribs[ValueNS].last_mut().unwrap().bindings.insert(ident.node, def);
2443                 }
2444             }
2445         }
2446
2447         PathResolution::new(def)
2448     }
2449
2450     fn resolve_pattern(&mut self,
2451                        pat: &Pat,
2452                        pat_src: PatternSource,
2453                        // Maps idents to the node ID for the
2454                        // outermost pattern that binds them.
2455                        bindings: &mut FxHashMap<Ident, NodeId>) {
2456         // Visit all direct subpatterns of this pattern.
2457         let outer_pat_id = pat.id;
2458         pat.walk(&mut |pat| {
2459             match pat.node {
2460                 PatKind::Ident(bmode, ref ident, ref opt_pat) => {
2461                     // First try to resolve the identifier as some existing
2462                     // entity, then fall back to a fresh binding.
2463                     let binding = self.resolve_ident_in_lexical_scope(ident.node, ValueNS,
2464                                                                       false, pat.span)
2465                                       .and_then(LexicalScopeBinding::item);
2466                     let resolution = binding.map(NameBinding::def).and_then(|def| {
2467                         let is_syntactic_ambiguity = opt_pat.is_none() &&
2468                             bmode == BindingMode::ByValue(Mutability::Immutable);
2469                         match def {
2470                             Def::StructCtor(_, CtorKind::Const) |
2471                             Def::VariantCtor(_, CtorKind::Const) |
2472                             Def::Const(..) if is_syntactic_ambiguity => {
2473                                 // Disambiguate in favor of a unit struct/variant
2474                                 // or constant pattern.
2475                                 self.record_use(ident.node, ValueNS, binding.unwrap(), ident.span);
2476                                 Some(PathResolution::new(def))
2477                             }
2478                             Def::StructCtor(..) | Def::VariantCtor(..) |
2479                             Def::Const(..) | Def::Static(..) => {
2480                                 // This is unambiguously a fresh binding, either syntactically
2481                                 // (e.g. `IDENT @ PAT` or `ref IDENT`) or because `IDENT` resolves
2482                                 // to something unusable as a pattern (e.g. constructor function),
2483                                 // but we still conservatively report an error, see
2484                                 // issues/33118#issuecomment-233962221 for one reason why.
2485                                 resolve_error(
2486                                     self,
2487                                     ident.span,
2488                                     ResolutionError::BindingShadowsSomethingUnacceptable(
2489                                         pat_src.descr(), ident.node.name, binding.unwrap())
2490                                 );
2491                                 None
2492                             }
2493                             Def::Fn(..) | Def::Err => {
2494                                 // These entities are explicitly allowed
2495                                 // to be shadowed by fresh bindings.
2496                                 None
2497                             }
2498                             def => {
2499                                 span_bug!(ident.span, "unexpected definition for an \
2500                                                        identifier in pattern: {:?}", def);
2501                             }
2502                         }
2503                     }).unwrap_or_else(|| {
2504                         self.fresh_binding(ident, pat.id, outer_pat_id, pat_src, bindings)
2505                     });
2506
2507                     self.record_def(pat.id, resolution);
2508                 }
2509
2510                 PatKind::TupleStruct(ref path, ..) => {
2511                     self.smart_resolve_path(pat.id, None, path, PathSource::TupleStruct);
2512                 }
2513
2514                 PatKind::Path(ref qself, ref path) => {
2515                     self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
2516                 }
2517
2518                 PatKind::Struct(ref path, ..) => {
2519                     self.smart_resolve_path(pat.id, None, path, PathSource::Struct);
2520                 }
2521
2522                 _ => {}
2523             }
2524             true
2525         });
2526
2527         visit::walk_pat(self, pat);
2528     }
2529
2530     // High-level and context dependent path resolution routine.
2531     // Resolves the path and records the resolution into definition map.
2532     // If resolution fails tries several techniques to find likely
2533     // resolution candidates, suggest imports or other help, and report
2534     // errors in user friendly way.
2535     fn smart_resolve_path(&mut self,
2536                           id: NodeId,
2537                           qself: Option<&QSelf>,
2538                           path: &Path,
2539                           source: PathSource)
2540                           -> PathResolution {
2541         let segments = &path.segments.iter()
2542             .map(|seg| respan(seg.span, seg.identifier))
2543             .collect::<Vec<_>>();
2544         let ident_span = path.segments.last().map_or(path.span, |seg| seg.span);
2545         self.smart_resolve_path_fragment(id, qself, segments, path.span, ident_span, source)
2546     }
2547
2548     fn smart_resolve_path_fragment(&mut self,
2549                                    id: NodeId,
2550                                    qself: Option<&QSelf>,
2551                                    path: &[SpannedIdent],
2552                                    span: Span,
2553                                    ident_span: Span,
2554                                    source: PathSource)
2555                                    -> PathResolution {
2556         let ns = source.namespace();
2557         let is_expected = &|def| source.is_expected(def);
2558         let is_enum_variant = &|def| if let Def::Variant(..) = def { true } else { false };
2559
2560         // Base error is amended with one short label and possibly some longer helps/notes.
2561         let report_errors = |this: &mut Self, def: Option<Def>| {
2562             // Make the base error.
2563             let expected = source.descr_expected();
2564             let path_str = names_to_string(path);
2565             let code = source.error_code(def.is_some());
2566             let (base_msg, fallback_label, base_span) = if let Some(def) = def {
2567                 (format!("expected {}, found {} `{}`", expected, def.kind_name(), path_str),
2568                  format!("not a {}", expected), span)
2569             } else {
2570                 let item_str = path[path.len() - 1].node;
2571                 let item_span = path[path.len() - 1].span;
2572                 let (mod_prefix, mod_str) = if path.len() == 1 {
2573                     (format!(""), format!("this scope"))
2574                 } else if path.len() == 2 && path[0].node.name == keywords::CrateRoot.name() {
2575                     (format!(""), format!("the crate root"))
2576                 } else {
2577                     let mod_path = &path[..path.len() - 1];
2578                     let mod_prefix = match this.resolve_path(mod_path, Some(TypeNS), false, span) {
2579                         PathResult::Module(module) => module.def(),
2580                         _ => None,
2581                     }.map_or(format!(""), |def| format!("{} ", def.kind_name()));
2582                     (mod_prefix, format!("`{}`", names_to_string(mod_path)))
2583                 };
2584                 (format!("cannot find {} `{}` in {}{}", expected, item_str, mod_prefix, mod_str),
2585                  format!("not found in {}", mod_str), item_span)
2586             };
2587             let code = DiagnosticId::Error(code.into());
2588             let mut err = this.session.struct_span_err_with_code(base_span, &base_msg, code);
2589
2590             // Emit special messages for unresolved `Self` and `self`.
2591             if is_self_type(path, ns) {
2592                 __diagnostic_used!(E0411);
2593                 err.code(DiagnosticId::Error("E0411".into()));
2594                 err.span_label(span, "`Self` is only available in traits and impls");
2595                 return (err, Vec::new());
2596             }
2597             if is_self_value(path, ns) {
2598                 __diagnostic_used!(E0424);
2599                 err.code(DiagnosticId::Error("E0424".into()));
2600                 err.span_label(span, format!("`self` value is only available in \
2601                                                methods with `self` parameter"));
2602                 return (err, Vec::new());
2603             }
2604
2605             // Try to lookup the name in more relaxed fashion for better error reporting.
2606             let ident = *path.last().unwrap();
2607             let candidates = this.lookup_import_candidates(ident.node.name, ns, is_expected);
2608             if candidates.is_empty() && is_expected(Def::Enum(DefId::local(CRATE_DEF_INDEX))) {
2609                 let enum_candidates =
2610                     this.lookup_import_candidates(ident.node.name, ns, is_enum_variant);
2611                 let mut enum_candidates = enum_candidates.iter()
2612                     .map(|suggestion| import_candidate_to_paths(&suggestion)).collect::<Vec<_>>();
2613                 enum_candidates.sort();
2614                 for (sp, variant_path, enum_path) in enum_candidates {
2615                     if sp == DUMMY_SP {
2616                         let msg = format!("there is an enum variant `{}`, \
2617                                         try using `{}`?",
2618                                         variant_path,
2619                                         enum_path);
2620                         err.help(&msg);
2621                     } else {
2622                         err.span_suggestion(span, "you can try using the variant's enum",
2623                                             enum_path);
2624                     }
2625                 }
2626             }
2627             if path.len() == 1 && this.self_type_is_available(span) {
2628                 if let Some(candidate) = this.lookup_assoc_candidate(ident.node, ns, is_expected) {
2629                     let self_is_available = this.self_value_is_available(path[0].node.ctxt, span);
2630                     match candidate {
2631                         AssocSuggestion::Field => {
2632                             err.span_suggestion(span, "try",
2633                                                 format!("self.{}", path_str));
2634                             if !self_is_available {
2635                                 err.span_label(span, format!("`self` value is only available in \
2636                                                                methods with `self` parameter"));
2637                             }
2638                         }
2639                         AssocSuggestion::MethodWithSelf if self_is_available => {
2640                             err.span_suggestion(span, "try",
2641                                                 format!("self.{}", path_str));
2642                         }
2643                         AssocSuggestion::MethodWithSelf | AssocSuggestion::AssocItem => {
2644                             err.span_suggestion(span, "try",
2645                                                 format!("Self::{}", path_str));
2646                         }
2647                     }
2648                     return (err, candidates);
2649                 }
2650             }
2651
2652             let mut levenshtein_worked = false;
2653
2654             // Try Levenshtein.
2655             if let Some(candidate) = this.lookup_typo_candidate(path, ns, is_expected, span) {
2656                 err.span_label(ident_span, format!("did you mean `{}`?", candidate));
2657                 levenshtein_worked = true;
2658             }
2659
2660             // Try context dependent help if relaxed lookup didn't work.
2661             if let Some(def) = def {
2662                 match (def, source) {
2663                     (Def::Macro(..), _) => {
2664                         err.span_label(span, format!("did you mean `{}!(...)`?", path_str));
2665                         return (err, candidates);
2666                     }
2667                     (Def::TyAlias(..), PathSource::Trait(_)) => {
2668                         err.span_label(span, "type aliases cannot be used for traits");
2669                         return (err, candidates);
2670                     }
2671                     (Def::Mod(..), PathSource::Expr(Some(parent))) => match parent.node {
2672                         ExprKind::Field(_, ident) => {
2673                             err.span_label(parent.span, format!("did you mean `{}::{}`?",
2674                                                                  path_str, ident.node));
2675                             return (err, candidates);
2676                         }
2677                         ExprKind::MethodCall(ref segment, ..) => {
2678                             err.span_label(parent.span, format!("did you mean `{}::{}(...)`?",
2679                                                                  path_str, segment.identifier));
2680                             return (err, candidates);
2681                         }
2682                         _ => {}
2683                     },
2684                     (Def::Enum(..), PathSource::TupleStruct)
2685                         | (Def::Enum(..), PathSource::Expr(..))  => {
2686                         if let Some(variants) = this.collect_enum_variants(def) {
2687                             err.note(&format!("did you mean to use one \
2688                                                of the following variants?\n{}",
2689                                 variants.iter()
2690                                     .map(|suggestion| path_names_to_string(suggestion))
2691                                     .map(|suggestion| format!("- `{}`", suggestion))
2692                                     .collect::<Vec<_>>()
2693                                     .join("\n")));
2694
2695                         } else {
2696                             err.note("did you mean to use one of the enum's variants?");
2697                         }
2698                         return (err, candidates);
2699                     },
2700                     _ if ns == ValueNS && is_struct_like(def) => {
2701                         if let Def::Struct(def_id) = def {
2702                             if let Some((ctor_def, ctor_vis))
2703                                     = this.struct_constructors.get(&def_id).cloned() {
2704                                 if is_expected(ctor_def) && !this.is_accessible(ctor_vis) {
2705                                     err.span_label(span, format!("constructor is not visible \
2706                                                                    here due to private fields"));
2707                                 }
2708                             }
2709                         }
2710                         err.span_label(span, format!("did you mean `{} {{ /* fields */ }}`?",
2711                                                      path_str));
2712                         return (err, candidates);
2713                     }
2714                     _ => {}
2715                 }
2716             }
2717
2718             // Fallback label.
2719             if !levenshtein_worked {
2720                 err.span_label(base_span, fallback_label);
2721                 this.type_ascription_suggestion(&mut err, base_span);
2722             }
2723             (err, candidates)
2724         };
2725         let report_errors = |this: &mut Self, def: Option<Def>| {
2726             let (err, candidates) = report_errors(this, def);
2727             let def_id = this.current_module.normal_ancestor_id;
2728             let node_id = this.definitions.as_local_node_id(def_id).unwrap();
2729             let better = def.is_some();
2730             this.use_injections.push(UseError { err, candidates, node_id, better });
2731             err_path_resolution()
2732         };
2733
2734         let resolution = match self.resolve_qpath_anywhere(id, qself, path, ns, span,
2735                                                            source.defer_to_typeck(),
2736                                                            source.global_by_default()) {
2737             Some(resolution) if resolution.unresolved_segments() == 0 => {
2738                 if is_expected(resolution.base_def()) || resolution.base_def() == Def::Err {
2739                     resolution
2740                 } else {
2741                     // Add a temporary hack to smooth the transition to new struct ctor
2742                     // visibility rules. See #38932 for more details.
2743                     let mut res = None;
2744                     if let Def::Struct(def_id) = resolution.base_def() {
2745                         if let Some((ctor_def, ctor_vis))
2746                                 = self.struct_constructors.get(&def_id).cloned() {
2747                             if is_expected(ctor_def) && self.is_accessible(ctor_vis) {
2748                                 let lint = lint::builtin::LEGACY_CONSTRUCTOR_VISIBILITY;
2749                                 self.session.buffer_lint(lint, id, span,
2750                                     "private struct constructors are not usable through \
2751                                      reexports in outer modules",
2752                                 );
2753                                 res = Some(PathResolution::new(ctor_def));
2754                             }
2755                         }
2756                     }
2757
2758                     res.unwrap_or_else(|| report_errors(self, Some(resolution.base_def())))
2759                 }
2760             }
2761             Some(resolution) if source.defer_to_typeck() => {
2762                 // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
2763                 // or `<T>::A::B`. If `B` should be resolved in value namespace then
2764                 // it needs to be added to the trait map.
2765                 if ns == ValueNS {
2766                     let item_name = path.last().unwrap().node;
2767                     let traits = self.get_traits_containing_item(item_name, ns);
2768                     self.trait_map.insert(id, traits);
2769                 }
2770                 resolution
2771             }
2772             _ => report_errors(self, None)
2773         };
2774
2775         if let PathSource::TraitItem(..) = source {} else {
2776             // Avoid recording definition of `A::B` in `<T as A>::B::C`.
2777             self.record_def(id, resolution);
2778         }
2779         resolution
2780     }
2781
2782     fn type_ascription_suggestion(&self,
2783                                   err: &mut DiagnosticBuilder,
2784                                   base_span: Span) {
2785         debug!("type_ascription_suggetion {:?}", base_span);
2786         let cm = self.session.codemap();
2787         debug!("self.current_type_ascription {:?}", self.current_type_ascription);
2788         if let Some(sp) = self.current_type_ascription.last() {
2789             let mut sp = *sp;
2790             loop {  // try to find the `:`, bail on first non-':'/non-whitespace
2791                 sp = sp.next_point();
2792                 if let Ok(snippet) = cm.span_to_snippet(sp.to(sp.next_point())) {
2793                     debug!("snippet {:?}", snippet);
2794                     let line_sp = cm.lookup_char_pos(sp.hi()).line;
2795                     let line_base_sp = cm.lookup_char_pos(base_span.lo()).line;
2796                     debug!("{:?} {:?}", line_sp, line_base_sp);
2797                     if snippet == ":" {
2798                         err.span_label(base_span,
2799                                        "expecting a type here because of type ascription");
2800                         if line_sp != line_base_sp {
2801                             err.span_suggestion_short(sp,
2802                                                       "did you mean to use `;` here instead?",
2803                                                       ";".to_string());
2804                         }
2805                         break;
2806                     } else if snippet.trim().len() != 0  {
2807                         debug!("tried to find type ascription `:` token, couldn't find it");
2808                         break;
2809                     }
2810                 } else {
2811                     break;
2812                 }
2813             }
2814         }
2815     }
2816
2817     fn self_type_is_available(&mut self, span: Span) -> bool {
2818         let binding = self.resolve_ident_in_lexical_scope(keywords::SelfType.ident(),
2819                                                           TypeNS, false, span);
2820         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
2821     }
2822
2823     fn self_value_is_available(&mut self, ctxt: SyntaxContext, span: Span) -> bool {
2824         let ident = Ident { name: keywords::SelfValue.name(), ctxt: ctxt };
2825         let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, false, span);
2826         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
2827     }
2828
2829     // Resolve in alternative namespaces if resolution in the primary namespace fails.
2830     fn resolve_qpath_anywhere(&mut self,
2831                               id: NodeId,
2832                               qself: Option<&QSelf>,
2833                               path: &[SpannedIdent],
2834                               primary_ns: Namespace,
2835                               span: Span,
2836                               defer_to_typeck: bool,
2837                               global_by_default: bool)
2838                               -> Option<PathResolution> {
2839         let mut fin_res = None;
2840         // FIXME: can't resolve paths in macro namespace yet, macros are
2841         // processed by the little special hack below.
2842         for (i, ns) in [primary_ns, TypeNS, ValueNS, /*MacroNS*/].iter().cloned().enumerate() {
2843             if i == 0 || ns != primary_ns {
2844                 match self.resolve_qpath(id, qself, path, ns, span, global_by_default) {
2845                     // If defer_to_typeck, then resolution > no resolution,
2846                     // otherwise full resolution > partial resolution > no resolution.
2847                     Some(res) if res.unresolved_segments() == 0 || defer_to_typeck =>
2848                         return Some(res),
2849                     res => if fin_res.is_none() { fin_res = res },
2850                 };
2851             }
2852         }
2853         let is_global = self.global_macros.get(&path[0].node.name).cloned()
2854             .map(|binding| binding.get_macro(self).kind() == MacroKind::Bang).unwrap_or(false);
2855         if primary_ns != MacroNS && (is_global ||
2856                                      self.macro_names.contains(&path[0].node.modern())) {
2857             // Return some dummy definition, it's enough for error reporting.
2858             return Some(
2859                 PathResolution::new(Def::Macro(DefId::local(CRATE_DEF_INDEX), MacroKind::Bang))
2860             );
2861         }
2862         fin_res
2863     }
2864
2865     /// Handles paths that may refer to associated items.
2866     fn resolve_qpath(&mut self,
2867                      id: NodeId,
2868                      qself: Option<&QSelf>,
2869                      path: &[SpannedIdent],
2870                      ns: Namespace,
2871                      span: Span,
2872                      global_by_default: bool)
2873                      -> Option<PathResolution> {
2874         if let Some(qself) = qself {
2875             if qself.position == 0 {
2876                 // FIXME: Create some fake resolution that can't possibly be a type.
2877                 return Some(PathResolution::with_unresolved_segments(
2878                     Def::Mod(DefId::local(CRATE_DEF_INDEX)), path.len()
2879                 ));
2880             }
2881             // Make sure `A::B` in `<T as A>::B::C` is a trait item.
2882             let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
2883             let res = self.smart_resolve_path_fragment(id, None, &path[..qself.position + 1],
2884                                                        span, span, PathSource::TraitItem(ns));
2885             return Some(PathResolution::with_unresolved_segments(
2886                 res.base_def(), res.unresolved_segments() + path.len() - qself.position - 1
2887             ));
2888         }
2889
2890         let result = match self.resolve_path(&path, Some(ns), true, span) {
2891             PathResult::NonModule(path_res) => path_res,
2892             PathResult::Module(module) if !module.is_normal() => {
2893                 PathResolution::new(module.def().unwrap())
2894             }
2895             // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
2896             // don't report an error right away, but try to fallback to a primitive type.
2897             // So, we are still able to successfully resolve something like
2898             //
2899             // use std::u8; // bring module u8 in scope
2900             // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
2901             //     u8::max_value() // OK, resolves to associated function <u8>::max_value,
2902             //                     // not to non-existent std::u8::max_value
2903             // }
2904             //
2905             // Such behavior is required for backward compatibility.
2906             // The same fallback is used when `a` resolves to nothing.
2907             PathResult::Module(..) | PathResult::Failed(..)
2908                     if (ns == TypeNS || path.len() > 1) &&
2909                        self.primitive_type_table.primitive_types
2910                            .contains_key(&path[0].node.name) => {
2911                 let prim = self.primitive_type_table.primitive_types[&path[0].node.name];
2912                 match prim {
2913                     TyUint(UintTy::U128) | TyInt(IntTy::I128) => {
2914                         if !self.session.features.borrow().i128_type {
2915                             emit_feature_err(&self.session.parse_sess,
2916                                                 "i128_type", span, GateIssue::Language,
2917                                                 "128-bit type is unstable");
2918
2919                         }
2920                     }
2921                     _ => {}
2922                 }
2923                 PathResolution::with_unresolved_segments(Def::PrimTy(prim), path.len() - 1)
2924             }
2925             PathResult::Module(module) => PathResolution::new(module.def().unwrap()),
2926             PathResult::Failed(span, msg, false) => {
2927                 resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
2928                 err_path_resolution()
2929             }
2930             PathResult::Failed(..) => return None,
2931             PathResult::Indeterminate => bug!("indetermined path result in resolve_qpath"),
2932         };
2933
2934         if path.len() > 1 && !global_by_default && result.base_def() != Def::Err &&
2935            path[0].node.name != keywords::CrateRoot.name() &&
2936            path[0].node.name != keywords::DollarCrate.name() {
2937             let unqualified_result = {
2938                 match self.resolve_path(&[*path.last().unwrap()], Some(ns), false, span) {
2939                     PathResult::NonModule(path_res) => path_res.base_def(),
2940                     PathResult::Module(module) => module.def().unwrap(),
2941                     _ => return Some(result),
2942                 }
2943             };
2944             if result.base_def() == unqualified_result {
2945                 let lint = lint::builtin::UNUSED_QUALIFICATIONS;
2946                 self.session.buffer_lint(lint, id, span, "unnecessary qualification")
2947             }
2948         }
2949
2950         Some(result)
2951     }
2952
2953     fn resolve_path(&mut self,
2954                     path: &[SpannedIdent],
2955                     opt_ns: Option<Namespace>, // `None` indicates a module path
2956                     record_used: bool,
2957                     path_span: Span)
2958                     -> PathResult<'a> {
2959         let mut module = None;
2960         let mut allow_super = true;
2961
2962         for (i, &ident) in path.iter().enumerate() {
2963             debug!("resolve_path ident {} {:?}", i, ident);
2964             let is_last = i == path.len() - 1;
2965             let ns = if is_last { opt_ns.unwrap_or(TypeNS) } else { TypeNS };
2966             let name = ident.node.name;
2967
2968             if i == 0 && ns == TypeNS && name == keywords::SelfValue.name() {
2969                 let mut ctxt = ident.node.ctxt.modern();
2970                 module = Some(self.resolve_self(&mut ctxt, self.current_module));
2971                 continue
2972             } else if allow_super && ns == TypeNS && name == keywords::Super.name() {
2973                 let mut ctxt = ident.node.ctxt.modern();
2974                 let self_module = match i {
2975                     0 => self.resolve_self(&mut ctxt, self.current_module),
2976                     _ => module.unwrap(),
2977                 };
2978                 if let Some(parent) = self_module.parent {
2979                     module = Some(self.resolve_self(&mut ctxt, parent));
2980                     continue
2981                 } else {
2982                     let msg = "There are too many initial `super`s.".to_string();
2983                     return PathResult::Failed(ident.span, msg, false);
2984                 }
2985             } else if i == 0 && ns == TypeNS && name == keywords::Extern.name() {
2986                 continue;
2987             }
2988             allow_super = false;
2989
2990             if ns == TypeNS {
2991                 if (i == 0 && name == keywords::CrateRoot.name()) ||
2992                    (i == 1 && name == keywords::Crate.name() &&
2993                               path[0].node.name == keywords::CrateRoot.name()) {
2994                     // `::a::b` or `::crate::a::b`
2995                     module = Some(self.resolve_crate_root(ident.node.ctxt.modern()));
2996                     continue
2997                 } else if i == 0 && name == keywords::DollarCrate.name() {
2998                     // `$crate::a::b`
2999                     module = Some(self.resolve_crate_root(ident.node.ctxt));
3000                     continue
3001                 } else if i == 1 && !token::Ident(ident.node).is_path_segment_keyword() {
3002                     let prev_name = path[0].node.name;
3003                     if prev_name == keywords::Extern.name() ||
3004                        prev_name == keywords::CrateRoot.name() &&
3005                        self.session.features.borrow().extern_absolute_paths {
3006                         // `::extern_crate::a::b`
3007                         let crate_id = self.crate_loader.resolve_crate_from_path(name, ident.span);
3008                         let crate_root =
3009                             self.get_module(DefId { krate: crate_id, index: CRATE_DEF_INDEX });
3010                         self.populate_module_if_necessary(crate_root);
3011                         module = Some(crate_root);
3012                         continue
3013                     }
3014                 }
3015             }
3016
3017             // Report special messages for path segment keywords in wrong positions.
3018             if name == keywords::CrateRoot.name() && i != 0 ||
3019                name == keywords::DollarCrate.name() && i != 0 ||
3020                name == keywords::SelfValue.name() && i != 0 ||
3021                name == keywords::SelfType.name() && i != 0 ||
3022                name == keywords::Super.name() && i != 0 ||
3023                name == keywords::Extern.name() && i != 0 ||
3024                name == keywords::Crate.name() && i != 1 &&
3025                     path[0].node.name != keywords::CrateRoot.name() {
3026                 let name_str = if name == keywords::CrateRoot.name() {
3027                     format!("crate root")
3028                 } else {
3029                     format!("`{}`", name)
3030                 };
3031                 let msg = if i == 1 && path[0].node.name == keywords::CrateRoot.name() {
3032                     format!("global paths cannot start with {}", name_str)
3033                 } else if i == 0 && name == keywords::Crate.name() {
3034                     format!("{} can only be used in absolute paths", name_str)
3035                 } else {
3036                     format!("{} in paths can only be used in start position", name_str)
3037                 };
3038                 return PathResult::Failed(ident.span, msg, false);
3039             }
3040
3041             let binding = if let Some(module) = module {
3042                 self.resolve_ident_in_module(module, ident.node, ns, false, record_used, path_span)
3043             } else if opt_ns == Some(MacroNS) {
3044                 self.resolve_lexical_macro_path_segment(ident.node, ns, record_used, path_span)
3045                     .map(MacroBinding::binding)
3046             } else {
3047                 match self.resolve_ident_in_lexical_scope(ident.node, ns, record_used, path_span) {
3048                     Some(LexicalScopeBinding::Item(binding)) => Ok(binding),
3049                     Some(LexicalScopeBinding::Def(def))
3050                             if opt_ns == Some(TypeNS) || opt_ns == Some(ValueNS) => {
3051                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3052                             def, path.len() - 1
3053                         ));
3054                     }
3055                     _ => Err(if record_used { Determined } else { Undetermined }),
3056                 }
3057             };
3058
3059             match binding {
3060                 Ok(binding) => {
3061                     let def = binding.def();
3062                     let maybe_assoc = opt_ns != Some(MacroNS) && PathSource::Type.is_expected(def);
3063                     if let Some(next_module) = binding.module() {
3064                         module = Some(next_module);
3065                     } else if def == Def::Err {
3066                         return PathResult::NonModule(err_path_resolution());
3067                     } else if opt_ns.is_some() && (is_last || maybe_assoc) {
3068                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3069                             def, path.len() - i - 1
3070                         ));
3071                     } else {
3072                         return PathResult::Failed(ident.span,
3073                                                   format!("Not a module `{}`", ident.node),
3074                                                   is_last);
3075                     }
3076                 }
3077                 Err(Undetermined) => return PathResult::Indeterminate,
3078                 Err(Determined) => {
3079                     if let Some(module) = module {
3080                         if opt_ns.is_some() && !module.is_normal() {
3081                             return PathResult::NonModule(PathResolution::with_unresolved_segments(
3082                                 module.def().unwrap(), path.len() - i
3083                             ));
3084                         }
3085                     }
3086                     let msg = if module.and_then(ModuleData::def) == self.graph_root.def() {
3087                         let is_mod = |def| match def { Def::Mod(..) => true, _ => false };
3088                         let mut candidates =
3089                             self.lookup_import_candidates(name, TypeNS, is_mod);
3090                         candidates.sort_by_key(|c| (c.path.segments.len(), c.path.to_string()));
3091                         if let Some(candidate) = candidates.get(0) {
3092                             format!("Did you mean `{}`?", candidate.path)
3093                         } else {
3094                             format!("Maybe a missing `extern crate {};`?", ident.node)
3095                         }
3096                     } else if i == 0 {
3097                         format!("Use of undeclared type or module `{}`", ident.node)
3098                     } else {
3099                         format!("Could not find `{}` in `{}`", ident.node, path[i - 1].node)
3100                     };
3101                     return PathResult::Failed(ident.span, msg, is_last);
3102                 }
3103             }
3104         }
3105
3106         PathResult::Module(module.unwrap_or(self.graph_root))
3107     }
3108
3109     // Resolve a local definition, potentially adjusting for closures.
3110     fn adjust_local_def(&mut self,
3111                         ns: Namespace,
3112                         rib_index: usize,
3113                         mut def: Def,
3114                         record_used: bool,
3115                         span: Span) -> Def {
3116         let ribs = &self.ribs[ns][rib_index + 1..];
3117
3118         // An invalid forward use of a type parameter from a previous default.
3119         if let ForwardTyParamBanRibKind = self.ribs[ns][rib_index].kind {
3120             if record_used {
3121                 resolve_error(self, span, ResolutionError::ForwardDeclaredTyParam);
3122             }
3123             assert_eq!(def, Def::Err);
3124             return Def::Err;
3125         }
3126
3127         match def {
3128             Def::Upvar(..) => {
3129                 span_bug!(span, "unexpected {:?} in bindings", def)
3130             }
3131             Def::Local(node_id) => {
3132                 for rib in ribs {
3133                     match rib.kind {
3134                         NormalRibKind | ModuleRibKind(..) | MacroDefinition(..) |
3135                         ForwardTyParamBanRibKind => {
3136                             // Nothing to do. Continue.
3137                         }
3138                         ClosureRibKind(function_id) => {
3139                             let prev_def = def;
3140
3141                             let seen = self.freevars_seen
3142                                            .entry(function_id)
3143                                            .or_insert_with(|| NodeMap());
3144                             if let Some(&index) = seen.get(&node_id) {
3145                                 def = Def::Upvar(node_id, index, function_id);
3146                                 continue;
3147                             }
3148                             let vec = self.freevars
3149                                           .entry(function_id)
3150                                           .or_insert_with(|| vec![]);
3151                             let depth = vec.len();
3152                             def = Def::Upvar(node_id, depth, function_id);
3153
3154                             if record_used {
3155                                 vec.push(Freevar {
3156                                     def: prev_def,
3157                                     span,
3158                                 });
3159                                 seen.insert(node_id, depth);
3160                             }
3161                         }
3162                         ItemRibKind | TraitOrImplItemRibKind => {
3163                             // This was an attempt to access an upvar inside a
3164                             // named function item. This is not allowed, so we
3165                             // report an error.
3166                             if record_used {
3167                                 resolve_error(self, span,
3168                                         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem);
3169                             }
3170                             return Def::Err;
3171                         }
3172                         ConstantItemRibKind => {
3173                             // Still doesn't deal with upvars
3174                             if record_used {
3175                                 resolve_error(self, span,
3176                                         ResolutionError::AttemptToUseNonConstantValueInConstant);
3177                             }
3178                             return Def::Err;
3179                         }
3180                     }
3181                 }
3182             }
3183             Def::TyParam(..) | Def::SelfTy(..) => {
3184                 for rib in ribs {
3185                     match rib.kind {
3186                         NormalRibKind | TraitOrImplItemRibKind | ClosureRibKind(..) |
3187                         ModuleRibKind(..) | MacroDefinition(..) | ForwardTyParamBanRibKind |
3188                         ConstantItemRibKind => {
3189                             // Nothing to do. Continue.
3190                         }
3191                         ItemRibKind => {
3192                             // This was an attempt to use a type parameter outside
3193                             // its scope.
3194                             if record_used {
3195                                 resolve_error(self, span,
3196                                               ResolutionError::TypeParametersFromOuterFunction);
3197                             }
3198                             return Def::Err;
3199                         }
3200                     }
3201                 }
3202             }
3203             _ => {}
3204         }
3205         return def;
3206     }
3207
3208     fn lookup_assoc_candidate<FilterFn>(&mut self,
3209                                         ident: Ident,
3210                                         ns: Namespace,
3211                                         filter_fn: FilterFn)
3212                                         -> Option<AssocSuggestion>
3213         where FilterFn: Fn(Def) -> bool
3214     {
3215         fn extract_node_id(t: &Ty) -> Option<NodeId> {
3216             match t.node {
3217                 TyKind::Path(None, _) => Some(t.id),
3218                 TyKind::Rptr(_, ref mut_ty) => extract_node_id(&mut_ty.ty),
3219                 // This doesn't handle the remaining `Ty` variants as they are not
3220                 // that commonly the self_type, it might be interesting to provide
3221                 // support for those in future.
3222                 _ => None,
3223             }
3224         }
3225
3226         // Fields are generally expected in the same contexts as locals.
3227         if filter_fn(Def::Local(ast::DUMMY_NODE_ID)) {
3228             if let Some(node_id) = self.current_self_type.as_ref().and_then(extract_node_id) {
3229                 // Look for a field with the same name in the current self_type.
3230                 if let Some(resolution) = self.def_map.get(&node_id) {
3231                     match resolution.base_def() {
3232                         Def::Struct(did) | Def::Union(did)
3233                                 if resolution.unresolved_segments() == 0 => {
3234                             if let Some(field_names) = self.field_names.get(&did) {
3235                                 if field_names.iter().any(|&field_name| ident.name == field_name) {
3236                                     return Some(AssocSuggestion::Field);
3237                                 }
3238                             }
3239                         }
3240                         _ => {}
3241                     }
3242                 }
3243             }
3244         }
3245
3246         // Look for associated items in the current trait.
3247         if let Some((module, _)) = self.current_trait_ref {
3248             if let Ok(binding) =
3249                     self.resolve_ident_in_module(module, ident, ns, false, false, module.span) {
3250                 let def = binding.def();
3251                 if filter_fn(def) {
3252                     return Some(if self.has_self.contains(&def.def_id()) {
3253                         AssocSuggestion::MethodWithSelf
3254                     } else {
3255                         AssocSuggestion::AssocItem
3256                     });
3257                 }
3258             }
3259         }
3260
3261         None
3262     }
3263
3264     fn lookup_typo_candidate<FilterFn>(&mut self,
3265                                        path: &[SpannedIdent],
3266                                        ns: Namespace,
3267                                        filter_fn: FilterFn,
3268                                        span: Span)
3269                                        -> Option<Symbol>
3270         where FilterFn: Fn(Def) -> bool
3271     {
3272         let add_module_candidates = |module: Module, names: &mut Vec<Name>| {
3273             for (&(ident, _), resolution) in module.resolutions.borrow().iter() {
3274                 if let Some(binding) = resolution.borrow().binding {
3275                     if filter_fn(binding.def()) {
3276                         names.push(ident.name);
3277                     }
3278                 }
3279             }
3280         };
3281
3282         let mut names = Vec::new();
3283         if path.len() == 1 {
3284             // Search in lexical scope.
3285             // Walk backwards up the ribs in scope and collect candidates.
3286             for rib in self.ribs[ns].iter().rev() {
3287                 // Locals and type parameters
3288                 for (ident, def) in &rib.bindings {
3289                     if filter_fn(*def) {
3290                         names.push(ident.name);
3291                     }
3292                 }
3293                 // Items in scope
3294                 if let ModuleRibKind(module) = rib.kind {
3295                     // Items from this module
3296                     add_module_candidates(module, &mut names);
3297
3298                     if let ModuleKind::Block(..) = module.kind {
3299                         // We can see through blocks
3300                     } else {
3301                         // Items from the prelude
3302                         if let Some(prelude) = self.prelude {
3303                             if !module.no_implicit_prelude {
3304                                 add_module_candidates(prelude, &mut names);
3305                             }
3306                         }
3307                         break;
3308                     }
3309                 }
3310             }
3311             // Add primitive types to the mix
3312             if filter_fn(Def::PrimTy(TyBool)) {
3313                 for (name, _) in &self.primitive_type_table.primitive_types {
3314                     names.push(*name);
3315                 }
3316             }
3317         } else {
3318             // Search in module.
3319             let mod_path = &path[..path.len() - 1];
3320             if let PathResult::Module(module) = self.resolve_path(mod_path, Some(TypeNS),
3321                                                                   false, span) {
3322                 add_module_candidates(module, &mut names);
3323             }
3324         }
3325
3326         let name = path[path.len() - 1].node.name;
3327         // Make sure error reporting is deterministic.
3328         names.sort_by_key(|name| name.as_str());
3329         match find_best_match_for_name(names.iter(), &name.as_str(), None) {
3330             Some(found) if found != name => Some(found),
3331             _ => None,
3332         }
3333     }
3334
3335     fn with_resolved_label<F>(&mut self, label: Option<SpannedIdent>, id: NodeId, f: F)
3336         where F: FnOnce(&mut Resolver)
3337     {
3338         if let Some(label) = label {
3339             let def = Def::Label(id);
3340             self.with_label_rib(|this| {
3341                 this.label_ribs.last_mut().unwrap().bindings.insert(label.node, def);
3342                 f(this);
3343             });
3344         } else {
3345             f(self);
3346         }
3347     }
3348
3349     fn resolve_labeled_block(&mut self, label: Option<SpannedIdent>, id: NodeId, block: &Block) {
3350         self.with_resolved_label(label, id, |this| this.visit_block(block));
3351     }
3352
3353     fn resolve_expr(&mut self, expr: &Expr, parent: Option<&Expr>) {
3354         // First, record candidate traits for this expression if it could
3355         // result in the invocation of a method call.
3356
3357         self.record_candidate_traits_for_expr_if_necessary(expr);
3358
3359         // Next, resolve the node.
3360         match expr.node {
3361             ExprKind::Path(ref qself, ref path) => {
3362                 self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
3363                 visit::walk_expr(self, expr);
3364             }
3365
3366             ExprKind::Struct(ref path, ..) => {
3367                 self.smart_resolve_path(expr.id, None, path, PathSource::Struct);
3368                 visit::walk_expr(self, expr);
3369             }
3370
3371             ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
3372                 match self.search_label(label.node, |rib, id| rib.bindings.get(&id).cloned()) {
3373                     None => {
3374                         // Search again for close matches...
3375                         // Picks the first label that is "close enough", which is not necessarily
3376                         // the closest match
3377                         let close_match = self.search_label(label.node, |rib, ident| {
3378                             let names = rib.bindings.iter().map(|(id, _)| &id.name);
3379                             find_best_match_for_name(names, &*ident.name.as_str(), None)
3380                         });
3381                         self.record_def(expr.id, err_path_resolution());
3382                         resolve_error(self,
3383                                       label.span,
3384                                       ResolutionError::UndeclaredLabel(&label.node.name.as_str(),
3385                                                                        close_match));
3386                     }
3387                     Some(def @ Def::Label(_)) => {
3388                         // Since this def is a label, it is never read.
3389                         self.record_def(expr.id, PathResolution::new(def));
3390                     }
3391                     Some(_) => {
3392                         span_bug!(expr.span, "label wasn't mapped to a label def!");
3393                     }
3394                 }
3395
3396                 // visit `break` argument if any
3397                 visit::walk_expr(self, expr);
3398             }
3399
3400             ExprKind::IfLet(ref pattern, ref subexpression, ref if_block, ref optional_else) => {
3401                 self.visit_expr(subexpression);
3402
3403                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
3404                 self.resolve_pattern(pattern, PatternSource::IfLet, &mut FxHashMap());
3405                 self.visit_block(if_block);
3406                 self.ribs[ValueNS].pop();
3407
3408                 optional_else.as_ref().map(|expr| self.visit_expr(expr));
3409             }
3410
3411             ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),
3412
3413             ExprKind::While(ref subexpression, ref block, label) => {
3414                 self.with_resolved_label(label, expr.id, |this| {
3415                     this.visit_expr(subexpression);
3416                     this.visit_block(block);
3417                 });
3418             }
3419
3420             ExprKind::WhileLet(ref pattern, ref subexpression, ref block, label) => {
3421                 self.with_resolved_label(label, expr.id, |this| {
3422                     this.visit_expr(subexpression);
3423                     this.ribs[ValueNS].push(Rib::new(NormalRibKind));
3424                     this.resolve_pattern(pattern, PatternSource::WhileLet, &mut FxHashMap());
3425                     this.visit_block(block);
3426                     this.ribs[ValueNS].pop();
3427                 });
3428             }
3429
3430             ExprKind::ForLoop(ref pattern, ref subexpression, ref block, label) => {
3431                 self.visit_expr(subexpression);
3432                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
3433                 self.resolve_pattern(pattern, PatternSource::For, &mut FxHashMap());
3434
3435                 self.resolve_labeled_block(label, expr.id, block);
3436
3437                 self.ribs[ValueNS].pop();
3438             }
3439
3440             // Equivalent to `visit::walk_expr` + passing some context to children.
3441             ExprKind::Field(ref subexpression, _) => {
3442                 self.resolve_expr(subexpression, Some(expr));
3443             }
3444             ExprKind::MethodCall(ref segment, ref arguments) => {
3445                 let mut arguments = arguments.iter();
3446                 self.resolve_expr(arguments.next().unwrap(), Some(expr));
3447                 for argument in arguments {
3448                     self.resolve_expr(argument, None);
3449                 }
3450                 self.visit_path_segment(expr.span, segment);
3451             }
3452
3453             ExprKind::Repeat(ref element, ref count) => {
3454                 self.visit_expr(element);
3455                 self.with_constant_rib(|this| {
3456                     this.visit_expr(count);
3457                 });
3458             }
3459             ExprKind::Call(ref callee, ref arguments) => {
3460                 self.resolve_expr(callee, Some(expr));
3461                 for argument in arguments {
3462                     self.resolve_expr(argument, None);
3463                 }
3464             }
3465             ExprKind::Type(ref type_expr, _) => {
3466                 self.current_type_ascription.push(type_expr.span);
3467                 visit::walk_expr(self, expr);
3468                 self.current_type_ascription.pop();
3469             }
3470             _ => {
3471                 visit::walk_expr(self, expr);
3472             }
3473         }
3474     }
3475
3476     fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &Expr) {
3477         match expr.node {
3478             ExprKind::Field(_, name) => {
3479                 // FIXME(#6890): Even though you can't treat a method like a
3480                 // field, we need to add any trait methods we find that match
3481                 // the field name so that we can do some nice error reporting
3482                 // later on in typeck.
3483                 let traits = self.get_traits_containing_item(name.node, ValueNS);
3484                 self.trait_map.insert(expr.id, traits);
3485             }
3486             ExprKind::MethodCall(ref segment, ..) => {
3487                 debug!("(recording candidate traits for expr) recording traits for {}",
3488                        expr.id);
3489                 let traits = self.get_traits_containing_item(segment.identifier, ValueNS);
3490                 self.trait_map.insert(expr.id, traits);
3491             }
3492             _ => {
3493                 // Nothing to do.
3494             }
3495         }
3496     }
3497
3498     fn get_traits_containing_item(&mut self, mut ident: Ident, ns: Namespace)
3499                                   -> Vec<TraitCandidate> {
3500         debug!("(getting traits containing item) looking for '{}'", ident.name);
3501
3502         let mut found_traits = Vec::new();
3503         // Look for the current trait.
3504         if let Some((module, _)) = self.current_trait_ref {
3505             if self.resolve_ident_in_module(module, ident, ns, false, false, module.span).is_ok() {
3506                 let def_id = module.def_id().unwrap();
3507                 found_traits.push(TraitCandidate { def_id: def_id, import_id: None });
3508             }
3509         }
3510
3511         ident.ctxt = ident.ctxt.modern();
3512         let mut search_module = self.current_module;
3513         loop {
3514             self.get_traits_in_module_containing_item(ident, ns, search_module, &mut found_traits);
3515             search_module =
3516                 unwrap_or!(self.hygienic_lexical_parent(search_module, &mut ident.ctxt), break);
3517         }
3518
3519         if let Some(prelude) = self.prelude {
3520             if !search_module.no_implicit_prelude {
3521                 self.get_traits_in_module_containing_item(ident, ns, prelude, &mut found_traits);
3522             }
3523         }
3524
3525         found_traits
3526     }
3527
3528     fn get_traits_in_module_containing_item(&mut self,
3529                                             ident: Ident,
3530                                             ns: Namespace,
3531                                             module: Module<'a>,
3532                                             found_traits: &mut Vec<TraitCandidate>) {
3533         let mut traits = module.traits.borrow_mut();
3534         if traits.is_none() {
3535             let mut collected_traits = Vec::new();
3536             module.for_each_child(|name, ns, binding| {
3537                 if ns != TypeNS { return }
3538                 if let Def::Trait(_) = binding.def() {
3539                     collected_traits.push((name, binding));
3540                 }
3541             });
3542             *traits = Some(collected_traits.into_boxed_slice());
3543         }
3544
3545         for &(trait_name, binding) in traits.as_ref().unwrap().iter() {
3546             let module = binding.module().unwrap();
3547             let mut ident = ident;
3548             if ident.ctxt.glob_adjust(module.expansion, binding.span.ctxt().modern()).is_none() {
3549                 continue
3550             }
3551             if self.resolve_ident_in_module_unadjusted(module, ident, ns, false, false, module.span)
3552                    .is_ok() {
3553                 let import_id = match binding.kind {
3554                     NameBindingKind::Import { directive, .. } => {
3555                         self.maybe_unused_trait_imports.insert(directive.id);
3556                         self.add_to_glob_map(directive.id, trait_name);
3557                         Some(directive.id)
3558                     }
3559                     _ => None,
3560                 };
3561                 let trait_def_id = module.def_id().unwrap();
3562                 found_traits.push(TraitCandidate { def_id: trait_def_id, import_id: import_id });
3563             }
3564         }
3565     }
3566
3567     /// When name resolution fails, this method can be used to look up candidate
3568     /// entities with the expected name. It allows filtering them using the
3569     /// supplied predicate (which should be used to only accept the types of
3570     /// definitions expected e.g. traits). The lookup spans across all crates.
3571     ///
3572     /// NOTE: The method does not look into imports, but this is not a problem,
3573     /// since we report the definitions (thus, the de-aliased imports).
3574     fn lookup_import_candidates<FilterFn>(&mut self,
3575                                           lookup_name: Name,
3576                                           namespace: Namespace,
3577                                           filter_fn: FilterFn)
3578                                           -> Vec<ImportSuggestion>
3579         where FilterFn: Fn(Def) -> bool
3580     {
3581         let mut candidates = Vec::new();
3582         let mut worklist = Vec::new();
3583         let mut seen_modules = FxHashSet();
3584         worklist.push((self.graph_root, Vec::new(), false));
3585
3586         while let Some((in_module,
3587                         path_segments,
3588                         in_module_is_extern)) = worklist.pop() {
3589             self.populate_module_if_necessary(in_module);
3590
3591             // We have to visit module children in deterministic order to avoid
3592             // instabilities in reported imports (#43552).
3593             in_module.for_each_child_stable(|ident, ns, name_binding| {
3594                 // avoid imports entirely
3595                 if name_binding.is_import() && !name_binding.is_extern_crate() { return; }
3596                 // avoid non-importable candidates as well
3597                 if !name_binding.is_importable() { return; }
3598
3599                 // collect results based on the filter function
3600                 if ident.name == lookup_name && ns == namespace {
3601                     if filter_fn(name_binding.def()) {
3602                         // create the path
3603                         let mut segms = path_segments.clone();
3604                         segms.push(ast::PathSegment::from_ident(ident, name_binding.span));
3605                         let path = Path {
3606                             span: name_binding.span,
3607                             segments: segms,
3608                         };
3609                         // the entity is accessible in the following cases:
3610                         // 1. if it's defined in the same crate, it's always
3611                         // accessible (since private entities can be made public)
3612                         // 2. if it's defined in another crate, it's accessible
3613                         // only if both the module is public and the entity is
3614                         // declared as public (due to pruning, we don't explore
3615                         // outside crate private modules => no need to check this)
3616                         if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
3617                             candidates.push(ImportSuggestion { path: path });
3618                         }
3619                     }
3620                 }
3621
3622                 // collect submodules to explore
3623                 if let Some(module) = name_binding.module() {
3624                     // form the path
3625                     let mut path_segments = path_segments.clone();
3626                     path_segments.push(ast::PathSegment::from_ident(ident, name_binding.span));
3627
3628                     if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
3629                         // add the module to the lookup
3630                         let is_extern = in_module_is_extern || name_binding.is_extern_crate();
3631                         if seen_modules.insert(module.def_id().unwrap()) {
3632                             worklist.push((module, path_segments, is_extern));
3633                         }
3634                     }
3635                 }
3636             })
3637         }
3638
3639         candidates
3640     }
3641
3642     fn find_module(&mut self,
3643                    module_def: Def)
3644                    -> Option<(Module<'a>, ImportSuggestion)>
3645     {
3646         let mut result = None;
3647         let mut worklist = Vec::new();
3648         let mut seen_modules = FxHashSet();
3649         worklist.push((self.graph_root, Vec::new()));
3650
3651         while let Some((in_module, path_segments)) = worklist.pop() {
3652             // abort if the module is already found
3653             if let Some(_) = result { break; }
3654
3655             self.populate_module_if_necessary(in_module);
3656
3657             in_module.for_each_child_stable(|ident, _, name_binding| {
3658                 // abort if the module is already found or if name_binding is private external
3659                 if result.is_some() || !name_binding.vis.is_visible_locally() {
3660                     return
3661                 }
3662                 if let Some(module) = name_binding.module() {
3663                     // form the path
3664                     let mut path_segments = path_segments.clone();
3665                     path_segments.push(ast::PathSegment::from_ident(ident, name_binding.span));
3666                     if module.def() == Some(module_def) {
3667                         let path = Path {
3668                             span: name_binding.span,
3669                             segments: path_segments,
3670                         };
3671                         result = Some((module, ImportSuggestion { path: path }));
3672                     } else {
3673                         // add the module to the lookup
3674                         if seen_modules.insert(module.def_id().unwrap()) {
3675                             worklist.push((module, path_segments));
3676                         }
3677                     }
3678                 }
3679             });
3680         }
3681
3682         result
3683     }
3684
3685     fn collect_enum_variants(&mut self, enum_def: Def) -> Option<Vec<Path>> {
3686         if let Def::Enum(..) = enum_def {} else {
3687             panic!("Non-enum def passed to collect_enum_variants: {:?}", enum_def)
3688         }
3689
3690         self.find_module(enum_def).map(|(enum_module, enum_import_suggestion)| {
3691             self.populate_module_if_necessary(enum_module);
3692
3693             let mut variants = Vec::new();
3694             enum_module.for_each_child_stable(|ident, _, name_binding| {
3695                 if let Def::Variant(..) = name_binding.def() {
3696                     let mut segms = enum_import_suggestion.path.segments.clone();
3697                     segms.push(ast::PathSegment::from_ident(ident, name_binding.span));
3698                     variants.push(Path {
3699                         span: name_binding.span,
3700                         segments: segms,
3701                     });
3702                 }
3703             });
3704             variants
3705         })
3706     }
3707
3708     fn record_def(&mut self, node_id: NodeId, resolution: PathResolution) {
3709         debug!("(recording def) recording {:?} for {}", resolution, node_id);
3710         if let Some(prev_res) = self.def_map.insert(node_id, resolution) {
3711             panic!("path resolved multiple times ({:?} before, {:?} now)", prev_res, resolution);
3712         }
3713     }
3714
3715     fn resolve_visibility(&mut self, vis: &ast::Visibility) -> ty::Visibility {
3716         match *vis {
3717             ast::Visibility::Public => ty::Visibility::Public,
3718             ast::Visibility::Crate(..) => ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX)),
3719             ast::Visibility::Inherited => {
3720                 ty::Visibility::Restricted(self.current_module.normal_ancestor_id)
3721             }
3722             ast::Visibility::Restricted { ref path, id } => {
3723                 let def = self.smart_resolve_path(id, None, path,
3724                                                   PathSource::Visibility).base_def();
3725                 if def == Def::Err {
3726                     ty::Visibility::Public
3727                 } else {
3728                     let vis = ty::Visibility::Restricted(def.def_id());
3729                     if self.is_accessible(vis) {
3730                         vis
3731                     } else {
3732                         self.session.span_err(path.span, "visibilities can only be restricted \
3733                                                           to ancestor modules");
3734                         ty::Visibility::Public
3735                     }
3736                 }
3737             }
3738         }
3739     }
3740
3741     fn is_accessible(&self, vis: ty::Visibility) -> bool {
3742         vis.is_accessible_from(self.current_module.normal_ancestor_id, self)
3743     }
3744
3745     fn is_accessible_from(&self, vis: ty::Visibility, module: Module<'a>) -> bool {
3746         vis.is_accessible_from(module.normal_ancestor_id, self)
3747     }
3748
3749     fn report_errors(&mut self, krate: &Crate) {
3750         self.report_shadowing_errors();
3751         self.report_with_use_injections(krate);
3752         self.report_proc_macro_import(krate);
3753         let mut reported_spans = FxHashSet();
3754
3755         for &AmbiguityError { span, name, b1, b2, lexical, legacy } in &self.ambiguity_errors {
3756             if !reported_spans.insert(span) { continue }
3757             let participle = |binding: &NameBinding| {
3758                 if binding.is_import() { "imported" } else { "defined" }
3759             };
3760             let msg1 = format!("`{}` could refer to the name {} here", name, participle(b1));
3761             let msg2 = format!("`{}` could also refer to the name {} here", name, participle(b2));
3762             let note = if b1.expansion == Mark::root() || !lexical && b1.is_glob_import() {
3763                 format!("consider adding an explicit import of `{}` to disambiguate", name)
3764             } else if let Def::Macro(..) = b1.def() {
3765                 format!("macro-expanded {} do not shadow",
3766                         if b1.is_import() { "macro imports" } else { "macros" })
3767             } else {
3768                 format!("macro-expanded {} do not shadow when used in a macro invocation path",
3769                         if b1.is_import() { "imports" } else { "items" })
3770             };
3771             if legacy {
3772                 let id = match b2.kind {
3773                     NameBindingKind::Import { directive, .. } => directive.id,
3774                     _ => unreachable!(),
3775                 };
3776                 let mut span = MultiSpan::from_span(span);
3777                 span.push_span_label(b1.span, msg1);
3778                 span.push_span_label(b2.span, msg2);
3779                 let msg = format!("`{}` is ambiguous", name);
3780                 self.session.buffer_lint(lint::builtin::LEGACY_IMPORTS, id, span, &msg);
3781             } else {
3782                 let mut err =
3783                     self.session.struct_span_err(span, &format!("`{}` is ambiguous", name));
3784                 err.span_note(b1.span, &msg1);
3785                 match b2.def() {
3786                     Def::Macro(..) if b2.span == DUMMY_SP =>
3787                         err.note(&format!("`{}` is also a builtin macro", name)),
3788                     _ => err.span_note(b2.span, &msg2),
3789                 };
3790                 err.note(&note).emit();
3791             }
3792         }
3793
3794         for &PrivacyError(span, name, binding) in &self.privacy_errors {
3795             if !reported_spans.insert(span) { continue }
3796             span_err!(self.session, span, E0603, "{} `{}` is private", binding.descr(), name);
3797         }
3798     }
3799
3800     fn report_with_use_injections(&mut self, krate: &Crate) {
3801         for UseError { mut err, candidates, node_id, better } in self.use_injections.drain(..) {
3802             let (span, found_use) = UsePlacementFinder::check(krate, node_id);
3803             if !candidates.is_empty() {
3804                 show_candidates(&mut err, span, &candidates, better, found_use);
3805             }
3806             err.emit();
3807         }
3808     }
3809
3810     fn report_shadowing_errors(&mut self) {
3811         for (ident, scope) in replace(&mut self.lexical_macro_resolutions, Vec::new()) {
3812             self.resolve_legacy_scope(scope, ident, true);
3813         }
3814
3815         let mut reported_errors = FxHashSet();
3816         for binding in replace(&mut self.disallowed_shadowing, Vec::new()) {
3817             if self.resolve_legacy_scope(&binding.parent, binding.ident, false).is_some() &&
3818                reported_errors.insert((binding.ident, binding.span)) {
3819                 let msg = format!("`{}` is already in scope", binding.ident);
3820                 self.session.struct_span_err(binding.span, &msg)
3821                     .note("macro-expanded `macro_rules!`s may not shadow \
3822                            existing macros (see RFC 1560)")
3823                     .emit();
3824             }
3825         }
3826     }
3827
3828     fn report_conflict<'b>(&mut self,
3829                        parent: Module,
3830                        ident: Ident,
3831                        ns: Namespace,
3832                        new_binding: &NameBinding<'b>,
3833                        old_binding: &NameBinding<'b>) {
3834         // Error on the second of two conflicting names
3835         if old_binding.span.lo() > new_binding.span.lo() {
3836             return self.report_conflict(parent, ident, ns, old_binding, new_binding);
3837         }
3838
3839         let container = match parent.kind {
3840             ModuleKind::Def(Def::Mod(_), _) => "module",
3841             ModuleKind::Def(Def::Trait(_), _) => "trait",
3842             ModuleKind::Block(..) => "block",
3843             _ => "enum",
3844         };
3845
3846         let old_noun = match old_binding.is_import() {
3847             true => "import",
3848             false => "definition",
3849         };
3850
3851         let new_participle = match new_binding.is_import() {
3852             true => "imported",
3853             false => "defined",
3854         };
3855
3856         let (name, span) = (ident.name, self.session.codemap().def_span(new_binding.span));
3857
3858         if let Some(s) = self.name_already_seen.get(&name) {
3859             if s == &span {
3860                 return;
3861             }
3862         }
3863
3864         let old_kind = match (ns, old_binding.module()) {
3865             (ValueNS, _) => "value",
3866             (MacroNS, _) => "macro",
3867             (TypeNS, _) if old_binding.is_extern_crate() => "extern crate",
3868             (TypeNS, Some(module)) if module.is_normal() => "module",
3869             (TypeNS, Some(module)) if module.is_trait() => "trait",
3870             (TypeNS, _) => "type",
3871         };
3872
3873         let namespace = match ns {
3874             ValueNS => "value",
3875             MacroNS => "macro",
3876             TypeNS => "type",
3877         };
3878
3879         let msg = format!("the name `{}` is defined multiple times", name);
3880
3881         let mut err = match (old_binding.is_extern_crate(), new_binding.is_extern_crate()) {
3882             (true, true) => struct_span_err!(self.session, span, E0259, "{}", msg),
3883             (true, _) | (_, true) => match new_binding.is_import() && old_binding.is_import() {
3884                 true => struct_span_err!(self.session, span, E0254, "{}", msg),
3885                 false => struct_span_err!(self.session, span, E0260, "{}", msg),
3886             },
3887             _ => match (old_binding.is_import(), new_binding.is_import()) {
3888                 (false, false) => struct_span_err!(self.session, span, E0428, "{}", msg),
3889                 (true, true) => struct_span_err!(self.session, span, E0252, "{}", msg),
3890                 _ => struct_span_err!(self.session, span, E0255, "{}", msg),
3891             },
3892         };
3893
3894         err.note(&format!("`{}` must be defined only once in the {} namespace of this {}",
3895                           name,
3896                           namespace,
3897                           container));
3898
3899         err.span_label(span, format!("`{}` re{} here", name, new_participle));
3900         if old_binding.span != syntax_pos::DUMMY_SP {
3901             err.span_label(self.session.codemap().def_span(old_binding.span),
3902                            format!("previous {} of the {} `{}` here", old_noun, old_kind, name));
3903         }
3904
3905         // See https://github.com/rust-lang/rust/issues/32354
3906         if old_binding.is_import() || new_binding.is_import() {
3907             let binding = if new_binding.is_import() {
3908                 new_binding
3909             } else {
3910                 old_binding
3911             };
3912
3913             let cm = self.session.codemap();
3914             let rename_msg = "You can use `as` to change the binding name of the import";
3915
3916             if let (Ok(snippet), false) = (cm.span_to_snippet(binding.span),
3917                                            binding.is_renamed_extern_crate()) {
3918                 err.span_suggestion(binding.span,
3919                                     rename_msg,
3920                                     format!("{} as Other{}", snippet, name));
3921             } else {
3922                 err.span_label(binding.span, rename_msg);
3923             }
3924         }
3925
3926         err.emit();
3927         self.name_already_seen.insert(name, span);
3928     }
3929
3930     fn warn_legacy_self_import(&self, directive: &'a ImportDirective<'a>) {
3931         let (id, span) = (directive.id, directive.span);
3932         let msg = "`self` no longer imports values";
3933         self.session.buffer_lint(lint::builtin::LEGACY_IMPORTS, id, span, msg);
3934     }
3935
3936     fn check_proc_macro_attrs(&mut self, attrs: &[ast::Attribute]) {
3937         if self.proc_macro_enabled { return; }
3938
3939         for attr in attrs {
3940             if attr.path.segments.len() > 1 {
3941                 continue
3942             }
3943             let ident = attr.path.segments[0].identifier;
3944             let result = self.resolve_lexical_macro_path_segment(ident,
3945                                                                  MacroNS,
3946                                                                  false,
3947                                                                  attr.path.span);
3948             if let Ok(binding) = result {
3949                 if let SyntaxExtension::AttrProcMacro(..) = *binding.binding().get_macro(self) {
3950                     attr::mark_known(attr);
3951
3952                     let msg = "attribute procedural macros are experimental";
3953                     let feature = "proc_macro";
3954
3955                     feature_err(&self.session.parse_sess, feature,
3956                                 attr.span, GateIssue::Language, msg)
3957                         .span_label(binding.span(), "procedural macro imported here")
3958                         .emit();
3959                 }
3960             }
3961         }
3962     }
3963 }
3964
3965 fn is_struct_like(def: Def) -> bool {
3966     match def {
3967         Def::VariantCtor(_, CtorKind::Fictive) => true,
3968         _ => PathSource::Struct.is_expected(def),
3969     }
3970 }
3971
3972 fn is_self_type(path: &[SpannedIdent], namespace: Namespace) -> bool {
3973     namespace == TypeNS && path.len() == 1 && path[0].node.name == keywords::SelfType.name()
3974 }
3975
3976 fn is_self_value(path: &[SpannedIdent], namespace: Namespace) -> bool {
3977     namespace == ValueNS && path.len() == 1 && path[0].node.name == keywords::SelfValue.name()
3978 }
3979
3980 fn names_to_string(idents: &[SpannedIdent]) -> String {
3981     let mut result = String::new();
3982     for (i, ident) in idents.iter()
3983                             .filter(|i| i.node.name != keywords::CrateRoot.name())
3984                             .enumerate() {
3985         if i > 0 {
3986             result.push_str("::");
3987         }
3988         result.push_str(&ident.node.name.as_str());
3989     }
3990     result
3991 }
3992
3993 fn path_names_to_string(path: &Path) -> String {
3994     names_to_string(&path.segments.iter()
3995                         .map(|seg| respan(seg.span, seg.identifier))
3996                         .collect::<Vec<_>>())
3997 }
3998
3999 /// Get the path for an enum and the variant from an `ImportSuggestion` for an enum variant.
4000 fn import_candidate_to_paths(suggestion: &ImportSuggestion) -> (Span, String, String) {
4001     let variant_path = &suggestion.path;
4002     let variant_path_string = path_names_to_string(variant_path);
4003
4004     let path_len = suggestion.path.segments.len();
4005     let enum_path = ast::Path {
4006         span: suggestion.path.span,
4007         segments: suggestion.path.segments[0..path_len - 1].to_vec(),
4008     };
4009     let enum_path_string = path_names_to_string(&enum_path);
4010
4011     (suggestion.path.span, variant_path_string, enum_path_string)
4012 }
4013
4014
4015 /// When an entity with a given name is not available in scope, we search for
4016 /// entities with that name in all crates. This method allows outputting the
4017 /// results of this search in a programmer-friendly way
4018 fn show_candidates(err: &mut DiagnosticBuilder,
4019                    // This is `None` if all placement locations are inside expansions
4020                    span: Option<Span>,
4021                    candidates: &[ImportSuggestion],
4022                    better: bool,
4023                    found_use: bool) {
4024
4025     // we want consistent results across executions, but candidates are produced
4026     // by iterating through a hash map, so make sure they are ordered:
4027     let mut path_strings: Vec<_> =
4028         candidates.into_iter().map(|c| path_names_to_string(&c.path)).collect();
4029     path_strings.sort();
4030
4031     let better = if better { "better " } else { "" };
4032     let msg_diff = match path_strings.len() {
4033         1 => " is found in another module, you can import it",
4034         _ => "s are found in other modules, you can import them",
4035     };
4036     let msg = format!("possible {}candidate{} into scope", better, msg_diff);
4037
4038     if let Some(span) = span {
4039         for candidate in &mut path_strings {
4040             // produce an additional newline to separate the new use statement
4041             // from the directly following item.
4042             let additional_newline = if found_use {
4043                 ""
4044             } else {
4045                 "\n"
4046             };
4047             *candidate = format!("use {};\n{}", candidate, additional_newline);
4048         }
4049
4050         err.span_suggestions(span, &msg, path_strings);
4051     } else {
4052         let mut msg = msg;
4053         msg.push(':');
4054         for candidate in path_strings {
4055             msg.push('\n');
4056             msg.push_str(&candidate);
4057         }
4058     }
4059 }
4060
4061 /// A somewhat inefficient routine to obtain the name of a module.
4062 fn module_to_string(module: Module) -> String {
4063     let mut names = Vec::new();
4064
4065     fn collect_mod(names: &mut Vec<Ident>, module: Module) {
4066         if let ModuleKind::Def(_, name) = module.kind {
4067             if let Some(parent) = module.parent {
4068                 names.push(Ident::with_empty_ctxt(name));
4069                 collect_mod(names, parent);
4070             }
4071         } else {
4072             // danger, shouldn't be ident?
4073             names.push(Ident::from_str("<opaque>"));
4074             collect_mod(names, module.parent.unwrap());
4075         }
4076     }
4077     collect_mod(&mut names, module);
4078
4079     if names.is_empty() {
4080         return "???".to_string();
4081     }
4082     names_to_string(&names.into_iter()
4083                         .rev()
4084                         .map(|n| dummy_spanned(n))
4085                         .collect::<Vec<_>>())
4086 }
4087
4088 fn err_path_resolution() -> PathResolution {
4089     PathResolution::new(Def::Err)
4090 }
4091
4092 #[derive(PartialEq,Copy, Clone)]
4093 pub enum MakeGlobMap {
4094     Yes,
4095     No,
4096 }
4097
4098 #[cfg(not(stage0))] // remove after the next snapshot
4099 __build_diagnostic_array! { librustc_resolve, DIAGNOSTICS }