]> git.lizzy.rs Git - rust.git/blob - src/librustc_resolve/lib.rs
Use assert_eq! in copy_from_slice
[rust.git] / src / librustc_resolve / lib.rs
1 // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 #![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
12       html_favicon_url = "https://doc.rust-lang.org/favicon.ico",
13       html_root_url = "https://doc.rust-lang.org/nightly/")]
14
15 #![feature(crate_visibility_modifier)]
16 #![feature(rustc_diagnostic_macros)]
17 #![feature(slice_sort_by_cached_key)]
18
19 #[macro_use]
20 extern crate log;
21 #[macro_use]
22 extern crate syntax;
23 extern crate syntax_pos;
24 extern crate rustc_errors as errors;
25 extern crate arena;
26 #[macro_use]
27 extern crate rustc;
28 extern crate rustc_data_structures;
29
30 pub use rustc::hir::def::{Namespace, PerNS};
31
32 use self::TypeParameters::*;
33 use self::RibKind::*;
34
35 use rustc::hir::map::{Definitions, DefCollector};
36 use rustc::hir::{self, PrimTy, TyBool, TyChar, TyFloat, TyInt, TyUint, TyStr};
37 use rustc::middle::cstore::{CrateStore, CrateLoader};
38 use rustc::session::Session;
39 use rustc::lint;
40 use rustc::hir::def::*;
41 use rustc::hir::def::Namespace::*;
42 use rustc::hir::def_id::{CRATE_DEF_INDEX, LOCAL_CRATE, DefId};
43 use rustc::ty;
44 use rustc::hir::{Freevar, FreevarMap, TraitCandidate, TraitMap, GlobMap};
45 use rustc::util::nodemap::{NodeMap, NodeSet, FxHashMap, FxHashSet, DefIdMap};
46
47 use syntax::codemap::CodeMap;
48 use syntax::ext::hygiene::{Mark, Transparency, SyntaxContext};
49 use syntax::ast::{self, Name, NodeId, Ident, FloatTy, IntTy, UintTy};
50 use syntax::ext::base::SyntaxExtension;
51 use syntax::ext::base::Determinacy::{self, Determined, Undetermined};
52 use syntax::ext::base::MacroKind;
53 use syntax::symbol::{Symbol, keywords};
54 use syntax::util::lev_distance::find_best_match_for_name;
55
56 use syntax::visit::{self, FnKind, Visitor};
57 use syntax::attr;
58 use syntax::ast::{Arm, IsAsync, BindingMode, Block, Crate, Expr, ExprKind};
59 use syntax::ast::{FnDecl, ForeignItem, ForeignItemKind, GenericParamKind, Generics};
60 use syntax::ast::{Item, ItemKind, ImplItem, ImplItemKind};
61 use syntax::ast::{Label, Local, Mutability, Pat, PatKind, Path};
62 use syntax::ast::{QSelf, TraitItemKind, TraitRef, Ty, TyKind};
63 use syntax::feature_gate::{feature_err, GateIssue};
64 use syntax::ptr::P;
65
66 use syntax_pos::{Span, DUMMY_SP, MultiSpan};
67 use errors::{DiagnosticBuilder, DiagnosticId};
68
69 use std::cell::{Cell, RefCell};
70 use std::cmp;
71 use std::collections::BTreeSet;
72 use std::fmt;
73 use std::iter;
74 use std::mem::replace;
75 use rustc_data_structures::sync::Lrc;
76
77 use resolve_imports::{ImportDirective, ImportDirectiveSubclass, NameResolution, ImportResolver};
78 use macros::{InvocationData, LegacyBinding, LegacyScope, MacroBinding};
79
80 // NB: This module needs to be declared first so diagnostics are
81 // registered before they are used.
82 mod diagnostics;
83
84 mod macros;
85 mod check_unused;
86 mod build_reduced_graph;
87 mod resolve_imports;
88
89 /// A free importable items suggested in case of resolution failure.
90 struct ImportSuggestion {
91     path: Path,
92 }
93
94 /// A field or associated item from self type suggested in case of resolution failure.
95 enum AssocSuggestion {
96     Field,
97     MethodWithSelf,
98     AssocItem,
99 }
100
101 #[derive(Eq)]
102 struct BindingError {
103     name: Name,
104     origin: BTreeSet<Span>,
105     target: BTreeSet<Span>,
106 }
107
108 impl PartialOrd for BindingError {
109     fn partial_cmp(&self, other: &BindingError) -> Option<cmp::Ordering> {
110         Some(self.cmp(other))
111     }
112 }
113
114 impl PartialEq for BindingError {
115     fn eq(&self, other: &BindingError) -> bool {
116         self.name == other.name
117     }
118 }
119
120 impl Ord for BindingError {
121     fn cmp(&self, other: &BindingError) -> cmp::Ordering {
122         self.name.cmp(&other.name)
123     }
124 }
125
126 enum ResolutionError<'a> {
127     /// error E0401: can't use type parameters from outer function
128     TypeParametersFromOuterFunction(Def),
129     /// error E0403: the name is already used for a type parameter in this type parameter list
130     NameAlreadyUsedInTypeParameterList(Name, &'a Span),
131     /// error E0407: method is not a member of trait
132     MethodNotMemberOfTrait(Name, &'a str),
133     /// error E0437: type is not a member of trait
134     TypeNotMemberOfTrait(Name, &'a str),
135     /// error E0438: const is not a member of trait
136     ConstNotMemberOfTrait(Name, &'a str),
137     /// error E0408: variable `{}` is not bound in all patterns
138     VariableNotBoundInPattern(&'a BindingError),
139     /// error E0409: variable `{}` is bound in inconsistent ways within the same match arm
140     VariableBoundWithDifferentMode(Name, Span),
141     /// error E0415: identifier is bound more than once in this parameter list
142     IdentifierBoundMoreThanOnceInParameterList(&'a str),
143     /// error E0416: identifier is bound more than once in the same pattern
144     IdentifierBoundMoreThanOnceInSamePattern(&'a str),
145     /// error E0426: use of undeclared label
146     UndeclaredLabel(&'a str, Option<Name>),
147     /// error E0429: `self` imports are only allowed within a { } list
148     SelfImportsOnlyAllowedWithin,
149     /// error E0430: `self` import can only appear once in the list
150     SelfImportCanOnlyAppearOnceInTheList,
151     /// error E0431: `self` import can only appear in an import list with a non-empty prefix
152     SelfImportOnlyInImportListWithNonEmptyPrefix,
153     /// error E0432: unresolved import
154     UnresolvedImport(Option<(Span, &'a str, &'a str)>),
155     /// error E0433: failed to resolve
156     FailedToResolve(&'a str),
157     /// error E0434: can't capture dynamic environment in a fn item
158     CannotCaptureDynamicEnvironmentInFnItem,
159     /// error E0435: attempt to use a non-constant value in a constant
160     AttemptToUseNonConstantValueInConstant,
161     /// error E0530: X bindings cannot shadow Ys
162     BindingShadowsSomethingUnacceptable(&'a str, Name, &'a NameBinding<'a>),
163     /// error E0128: type parameters with a default cannot use forward declared identifiers
164     ForwardDeclaredTyParam,
165 }
166
167 /// Combines an error with provided span and emits it
168 ///
169 /// This takes the error provided, combines it with the span and any additional spans inside the
170 /// error and emits it.
171 fn resolve_error<'sess, 'a>(resolver: &'sess Resolver,
172                             span: Span,
173                             resolution_error: ResolutionError<'a>) {
174     resolve_struct_error(resolver, span, resolution_error).emit();
175 }
176
177 fn resolve_struct_error<'sess, 'a>(resolver: &'sess Resolver,
178                                    span: Span,
179                                    resolution_error: ResolutionError<'a>)
180                                    -> DiagnosticBuilder<'sess> {
181     match resolution_error {
182         ResolutionError::TypeParametersFromOuterFunction(outer_def) => {
183             let mut err = struct_span_err!(resolver.session,
184                                            span,
185                                            E0401,
186                                            "can't use type parameters from outer function");
187             err.span_label(span, "use of type variable from outer function");
188
189             let cm = resolver.session.codemap();
190             match outer_def {
191                 Def::SelfTy(_, maybe_impl_defid) => {
192                     if let Some(impl_span) = maybe_impl_defid.map_or(None,
193                             |def_id| resolver.definitions.opt_span(def_id)) {
194                         err.span_label(reduce_impl_span_to_impl_keyword(cm, impl_span),
195                                     "`Self` type implicitely declared here, on the `impl`");
196                     }
197                 },
198                 Def::TyParam(typaram_defid) => {
199                     if let Some(typaram_span) = resolver.definitions.opt_span(typaram_defid) {
200                         err.span_label(typaram_span, "type variable from outer function");
201                     }
202                 },
203                 Def::Mod(..) | Def::Struct(..) | Def::Union(..) | Def::Enum(..) | Def::Variant(..) |
204                 Def::Trait(..) | Def::TyAlias(..) | Def::TyForeign(..) | Def::TraitAlias(..) |
205                 Def::AssociatedTy(..) | Def::PrimTy(..) | Def::Fn(..) | Def::Const(..) |
206                 Def::Static(..) | Def::StructCtor(..) | Def::VariantCtor(..) | Def::Method(..) |
207                 Def::AssociatedConst(..) | Def::Local(..) | Def::Upvar(..) | Def::Label(..) |
208                 Def::Existential(..) |
209                 Def::Macro(..) | Def::GlobalAsm(..) | Def::Err =>
210                     bug!("TypeParametersFromOuterFunction should only be used with Def::SelfTy or \
211                          Def::TyParam")
212             }
213
214             // Try to retrieve the span of the function signature and generate a new message with
215             // a local type parameter
216             let sugg_msg = "try using a local type parameter instead";
217             if let Some((sugg_span, new_snippet)) = cm.generate_local_type_param_snippet(span) {
218                 // Suggest the modification to the user
219                 err.span_suggestion(sugg_span,
220                                     sugg_msg,
221                                     new_snippet);
222             } else if let Some(sp) = cm.generate_fn_name_span(span) {
223                 err.span_label(sp, "try adding a local type parameter in this method instead");
224             } else {
225                 err.help("try using a local type parameter instead");
226             }
227
228             err
229         }
230         ResolutionError::NameAlreadyUsedInTypeParameterList(name, first_use_span) => {
231              let mut err = struct_span_err!(resolver.session,
232                                             span,
233                                             E0403,
234                                             "the name `{}` is already used for a type parameter \
235                                             in this type parameter list",
236                                             name);
237              err.span_label(span, "already used");
238              err.span_label(first_use_span.clone(), format!("first use of `{}`", name));
239              err
240         }
241         ResolutionError::MethodNotMemberOfTrait(method, trait_) => {
242             let mut err = struct_span_err!(resolver.session,
243                                            span,
244                                            E0407,
245                                            "method `{}` is not a member of trait `{}`",
246                                            method,
247                                            trait_);
248             err.span_label(span, format!("not a member of trait `{}`", trait_));
249             err
250         }
251         ResolutionError::TypeNotMemberOfTrait(type_, trait_) => {
252             let mut err = struct_span_err!(resolver.session,
253                              span,
254                              E0437,
255                              "type `{}` is not a member of trait `{}`",
256                              type_,
257                              trait_);
258             err.span_label(span, format!("not a member of trait `{}`", trait_));
259             err
260         }
261         ResolutionError::ConstNotMemberOfTrait(const_, trait_) => {
262             let mut err = struct_span_err!(resolver.session,
263                              span,
264                              E0438,
265                              "const `{}` is not a member of trait `{}`",
266                              const_,
267                              trait_);
268             err.span_label(span, format!("not a member of trait `{}`", trait_));
269             err
270         }
271         ResolutionError::VariableNotBoundInPattern(binding_error) => {
272             let target_sp = binding_error.target.iter().map(|x| *x).collect::<Vec<_>>();
273             let msp = MultiSpan::from_spans(target_sp.clone());
274             let msg = format!("variable `{}` is not bound in all patterns", binding_error.name);
275             let mut err = resolver.session.struct_span_err_with_code(
276                 msp,
277                 &msg,
278                 DiagnosticId::Error("E0408".into()),
279             );
280             for sp in target_sp {
281                 err.span_label(sp, format!("pattern doesn't bind `{}`", binding_error.name));
282             }
283             let origin_sp = binding_error.origin.iter().map(|x| *x).collect::<Vec<_>>();
284             for sp in origin_sp {
285                 err.span_label(sp, "variable not in all patterns");
286             }
287             err
288         }
289         ResolutionError::VariableBoundWithDifferentMode(variable_name,
290                                                         first_binding_span) => {
291             let mut err = struct_span_err!(resolver.session,
292                              span,
293                              E0409,
294                              "variable `{}` is bound in inconsistent \
295                              ways within the same match arm",
296                              variable_name);
297             err.span_label(span, "bound in different ways");
298             err.span_label(first_binding_span, "first binding");
299             err
300         }
301         ResolutionError::IdentifierBoundMoreThanOnceInParameterList(identifier) => {
302             let mut err = struct_span_err!(resolver.session,
303                              span,
304                              E0415,
305                              "identifier `{}` is bound more than once in this parameter list",
306                              identifier);
307             err.span_label(span, "used as parameter more than once");
308             err
309         }
310         ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(identifier) => {
311             let mut err = struct_span_err!(resolver.session,
312                              span,
313                              E0416,
314                              "identifier `{}` is bound more than once in the same pattern",
315                              identifier);
316             err.span_label(span, "used in a pattern more than once");
317             err
318         }
319         ResolutionError::UndeclaredLabel(name, lev_candidate) => {
320             let mut err = struct_span_err!(resolver.session,
321                                            span,
322                                            E0426,
323                                            "use of undeclared label `{}`",
324                                            name);
325             if let Some(lev_candidate) = lev_candidate {
326                 err.span_label(span, format!("did you mean `{}`?", lev_candidate));
327             } else {
328                 err.span_label(span, format!("undeclared label `{}`", name));
329             }
330             err
331         }
332         ResolutionError::SelfImportsOnlyAllowedWithin => {
333             struct_span_err!(resolver.session,
334                              span,
335                              E0429,
336                              "{}",
337                              "`self` imports are only allowed within a { } list")
338         }
339         ResolutionError::SelfImportCanOnlyAppearOnceInTheList => {
340             let mut err = struct_span_err!(resolver.session, span, E0430,
341                                            "`self` import can only appear once in an import list");
342             err.span_label(span, "can only appear once in an import list");
343             err
344         }
345         ResolutionError::SelfImportOnlyInImportListWithNonEmptyPrefix => {
346             let mut err = struct_span_err!(resolver.session, span, E0431,
347                                            "`self` import can only appear in an import list with \
348                                             a non-empty prefix");
349             err.span_label(span, "can only appear in an import list with a non-empty prefix");
350             err
351         }
352         ResolutionError::UnresolvedImport(name) => {
353             let (span, msg) = match name {
354                 Some((sp, n, _)) => (sp, format!("unresolved import `{}`", n)),
355                 None => (span, "unresolved import".to_owned()),
356             };
357             let mut err = struct_span_err!(resolver.session, span, E0432, "{}", msg);
358             if let Some((_, _, p)) = name {
359                 err.span_label(span, p);
360             }
361             err
362         }
363         ResolutionError::FailedToResolve(msg) => {
364             let mut err = struct_span_err!(resolver.session, span, E0433,
365                                            "failed to resolve. {}", msg);
366             err.span_label(span, msg);
367             err
368         }
369         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem => {
370             let mut err = struct_span_err!(resolver.session,
371                                            span,
372                                            E0434,
373                                            "{}",
374                                            "can't capture dynamic environment in a fn item");
375             err.help("use the `|| { ... }` closure form instead");
376             err
377         }
378         ResolutionError::AttemptToUseNonConstantValueInConstant => {
379             let mut err = struct_span_err!(resolver.session, span, E0435,
380                                            "attempt to use a non-constant value in a constant");
381             err.span_label(span, "non-constant value");
382             err
383         }
384         ResolutionError::BindingShadowsSomethingUnacceptable(what_binding, name, binding) => {
385             let shadows_what = PathResolution::new(binding.def()).kind_name();
386             let mut err = struct_span_err!(resolver.session,
387                                            span,
388                                            E0530,
389                                            "{}s cannot shadow {}s", what_binding, shadows_what);
390             err.span_label(span, format!("cannot be named the same as a {}", shadows_what));
391             let participle = if binding.is_import() { "imported" } else { "defined" };
392             let msg = format!("a {} `{}` is {} here", shadows_what, name, participle);
393             err.span_label(binding.span, msg);
394             err
395         }
396         ResolutionError::ForwardDeclaredTyParam => {
397             let mut err = struct_span_err!(resolver.session, span, E0128,
398                                            "type parameters with a default cannot use \
399                                             forward declared identifiers");
400             err.span_label(span, format!("defaulted type parameters cannot be forward declared"));
401             err
402         }
403     }
404 }
405
406 /// Adjust the impl span so that just the `impl` keyword is taken by removing
407 /// everything after `<` (`"impl<T> Iterator for A<T> {}" -> "impl"`) and
408 /// everything after the first whitespace (`"impl Iterator for A" -> "impl"`)
409 ///
410 /// Attention: The method used is very fragile since it essentially duplicates the work of the
411 /// parser. If you need to use this function or something similar, please consider updating the
412 /// codemap functions and this function to something more robust.
413 fn reduce_impl_span_to_impl_keyword(cm: &CodeMap, impl_span: Span) -> Span {
414     let impl_span = cm.span_until_char(impl_span, '<');
415     let impl_span = cm.span_until_whitespace(impl_span);
416     impl_span
417 }
418
419 #[derive(Copy, Clone, Debug)]
420 struct BindingInfo {
421     span: Span,
422     binding_mode: BindingMode,
423 }
424
425 /// Map from the name in a pattern to its binding mode.
426 type BindingMap = FxHashMap<Ident, BindingInfo>;
427
428 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
429 enum PatternSource {
430     Match,
431     IfLet,
432     WhileLet,
433     Let,
434     For,
435     FnParam,
436 }
437
438 impl PatternSource {
439     fn descr(self) -> &'static str {
440         match self {
441             PatternSource::Match => "match binding",
442             PatternSource::IfLet => "if let binding",
443             PatternSource::WhileLet => "while let binding",
444             PatternSource::Let => "let binding",
445             PatternSource::For => "for binding",
446             PatternSource::FnParam => "function parameter",
447         }
448     }
449 }
450
451 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
452 enum AliasPossibility {
453     No,
454     Maybe,
455 }
456
457 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
458 enum PathSource<'a> {
459     // Type paths `Path`.
460     Type,
461     // Trait paths in bounds or impls.
462     Trait(AliasPossibility),
463     // Expression paths `path`, with optional parent context.
464     Expr(Option<&'a Expr>),
465     // Paths in path patterns `Path`.
466     Pat,
467     // Paths in struct expressions and patterns `Path { .. }`.
468     Struct,
469     // Paths in tuple struct patterns `Path(..)`.
470     TupleStruct,
471     // `m::A::B` in `<T as m::A>::B::C`.
472     TraitItem(Namespace),
473     // Path in `pub(path)`
474     Visibility,
475     // Path in `use a::b::{...};`
476     ImportPrefix,
477 }
478
479 impl<'a> PathSource<'a> {
480     fn namespace(self) -> Namespace {
481         match self {
482             PathSource::Type | PathSource::Trait(_) | PathSource::Struct |
483             PathSource::Visibility | PathSource::ImportPrefix => TypeNS,
484             PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct => ValueNS,
485             PathSource::TraitItem(ns) => ns,
486         }
487     }
488
489     fn global_by_default(self) -> bool {
490         match self {
491             PathSource::Visibility | PathSource::ImportPrefix => true,
492             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
493             PathSource::Struct | PathSource::TupleStruct |
494             PathSource::Trait(_) | PathSource::TraitItem(..) => false,
495         }
496     }
497
498     fn defer_to_typeck(self) -> bool {
499         match self {
500             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
501             PathSource::Struct | PathSource::TupleStruct => true,
502             PathSource::Trait(_) | PathSource::TraitItem(..) |
503             PathSource::Visibility | PathSource::ImportPrefix => false,
504         }
505     }
506
507     fn descr_expected(self) -> &'static str {
508         match self {
509             PathSource::Type => "type",
510             PathSource::Trait(_) => "trait",
511             PathSource::Pat => "unit struct/variant or constant",
512             PathSource::Struct => "struct, variant or union type",
513             PathSource::TupleStruct => "tuple struct/variant",
514             PathSource::Visibility => "module",
515             PathSource::ImportPrefix => "module or enum",
516             PathSource::TraitItem(ns) => match ns {
517                 TypeNS => "associated type",
518                 ValueNS => "method or associated constant",
519                 MacroNS => bug!("associated macro"),
520             },
521             PathSource::Expr(parent) => match parent.map(|p| &p.node) {
522                 // "function" here means "anything callable" rather than `Def::Fn`,
523                 // this is not precise but usually more helpful than just "value".
524                 Some(&ExprKind::Call(..)) => "function",
525                 _ => "value",
526             },
527         }
528     }
529
530     fn is_expected(self, def: Def) -> bool {
531         match self {
532             PathSource::Type => match def {
533                 Def::Struct(..) | Def::Union(..) | Def::Enum(..) |
534                 Def::Trait(..) | Def::TyAlias(..) | Def::AssociatedTy(..) |
535                 Def::PrimTy(..) | Def::TyParam(..) | Def::SelfTy(..) |
536                 Def::TyForeign(..) => true,
537                 _ => false,
538             },
539             PathSource::Trait(AliasPossibility::No) => match def {
540                 Def::Trait(..) => true,
541                 _ => false,
542             },
543             PathSource::Trait(AliasPossibility::Maybe) => match def {
544                 Def::Trait(..) => true,
545                 Def::TraitAlias(..) => true,
546                 _ => false,
547             },
548             PathSource::Expr(..) => match def {
549                 Def::StructCtor(_, CtorKind::Const) | Def::StructCtor(_, CtorKind::Fn) |
550                 Def::VariantCtor(_, CtorKind::Const) | Def::VariantCtor(_, CtorKind::Fn) |
551                 Def::Const(..) | Def::Static(..) | Def::Local(..) | Def::Upvar(..) |
552                 Def::Fn(..) | Def::Method(..) | Def::AssociatedConst(..) => true,
553                 _ => false,
554             },
555             PathSource::Pat => match def {
556                 Def::StructCtor(_, CtorKind::Const) |
557                 Def::VariantCtor(_, CtorKind::Const) |
558                 Def::Const(..) | Def::AssociatedConst(..) => true,
559                 _ => false,
560             },
561             PathSource::TupleStruct => match def {
562                 Def::StructCtor(_, CtorKind::Fn) | Def::VariantCtor(_, CtorKind::Fn) => true,
563                 _ => false,
564             },
565             PathSource::Struct => match def {
566                 Def::Struct(..) | Def::Union(..) | Def::Variant(..) |
567                 Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => true,
568                 _ => false,
569             },
570             PathSource::TraitItem(ns) => match def {
571                 Def::AssociatedConst(..) | Def::Method(..) if ns == ValueNS => true,
572                 Def::AssociatedTy(..) if ns == TypeNS => true,
573                 _ => false,
574             },
575             PathSource::ImportPrefix => match def {
576                 Def::Mod(..) | Def::Enum(..) => true,
577                 _ => false,
578             },
579             PathSource::Visibility => match def {
580                 Def::Mod(..) => true,
581                 _ => false,
582             },
583         }
584     }
585
586     fn error_code(self, has_unexpected_resolution: bool) -> &'static str {
587         __diagnostic_used!(E0404);
588         __diagnostic_used!(E0405);
589         __diagnostic_used!(E0412);
590         __diagnostic_used!(E0422);
591         __diagnostic_used!(E0423);
592         __diagnostic_used!(E0425);
593         __diagnostic_used!(E0531);
594         __diagnostic_used!(E0532);
595         __diagnostic_used!(E0573);
596         __diagnostic_used!(E0574);
597         __diagnostic_used!(E0575);
598         __diagnostic_used!(E0576);
599         __diagnostic_used!(E0577);
600         __diagnostic_used!(E0578);
601         match (self, has_unexpected_resolution) {
602             (PathSource::Trait(_), true) => "E0404",
603             (PathSource::Trait(_), false) => "E0405",
604             (PathSource::Type, true) => "E0573",
605             (PathSource::Type, false) => "E0412",
606             (PathSource::Struct, true) => "E0574",
607             (PathSource::Struct, false) => "E0422",
608             (PathSource::Expr(..), true) => "E0423",
609             (PathSource::Expr(..), false) => "E0425",
610             (PathSource::Pat, true) | (PathSource::TupleStruct, true) => "E0532",
611             (PathSource::Pat, false) | (PathSource::TupleStruct, false) => "E0531",
612             (PathSource::TraitItem(..), true) => "E0575",
613             (PathSource::TraitItem(..), false) => "E0576",
614             (PathSource::Visibility, true) | (PathSource::ImportPrefix, true) => "E0577",
615             (PathSource::Visibility, false) | (PathSource::ImportPrefix, false) => "E0578",
616         }
617     }
618 }
619
620 struct UsePlacementFinder {
621     target_module: NodeId,
622     span: Option<Span>,
623     found_use: bool,
624 }
625
626 impl UsePlacementFinder {
627     fn check(krate: &Crate, target_module: NodeId) -> (Option<Span>, bool) {
628         let mut finder = UsePlacementFinder {
629             target_module,
630             span: None,
631             found_use: false,
632         };
633         visit::walk_crate(&mut finder, krate);
634         (finder.span, finder.found_use)
635     }
636 }
637
638 impl<'tcx> Visitor<'tcx> for UsePlacementFinder {
639     fn visit_mod(
640         &mut self,
641         module: &'tcx ast::Mod,
642         _: Span,
643         _: &[ast::Attribute],
644         node_id: NodeId,
645     ) {
646         if self.span.is_some() {
647             return;
648         }
649         if node_id != self.target_module {
650             visit::walk_mod(self, module);
651             return;
652         }
653         // find a use statement
654         for item in &module.items {
655             match item.node {
656                 ItemKind::Use(..) => {
657                     // don't suggest placing a use before the prelude
658                     // import or other generated ones
659                     if item.span.ctxt().outer().expn_info().is_none() {
660                         self.span = Some(item.span.shrink_to_lo());
661                         self.found_use = true;
662                         return;
663                     }
664                 },
665                 // don't place use before extern crate
666                 ItemKind::ExternCrate(_) => {}
667                 // but place them before the first other item
668                 _ => if self.span.map_or(true, |span| item.span < span ) {
669                     if item.span.ctxt().outer().expn_info().is_none() {
670                         // don't insert between attributes and an item
671                         if item.attrs.is_empty() {
672                             self.span = Some(item.span.shrink_to_lo());
673                         } else {
674                             // find the first attribute on the item
675                             for attr in &item.attrs {
676                                 if self.span.map_or(true, |span| attr.span < span) {
677                                     self.span = Some(attr.span.shrink_to_lo());
678                                 }
679                             }
680                         }
681                     }
682                 },
683             }
684         }
685     }
686 }
687
688 /// This thing walks the whole crate in DFS manner, visiting each item, resolving names as it goes.
689 impl<'a, 'tcx> Visitor<'tcx> for Resolver<'a> {
690     fn visit_item(&mut self, item: &'tcx Item) {
691         self.resolve_item(item);
692     }
693     fn visit_arm(&mut self, arm: &'tcx Arm) {
694         self.resolve_arm(arm);
695     }
696     fn visit_block(&mut self, block: &'tcx Block) {
697         self.resolve_block(block);
698     }
699     fn visit_anon_const(&mut self, constant: &'tcx ast::AnonConst) {
700         self.with_constant_rib(|this| {
701             visit::walk_anon_const(this, constant);
702         });
703     }
704     fn visit_expr(&mut self, expr: &'tcx Expr) {
705         self.resolve_expr(expr, None);
706     }
707     fn visit_local(&mut self, local: &'tcx Local) {
708         self.resolve_local(local);
709     }
710     fn visit_ty(&mut self, ty: &'tcx Ty) {
711         match ty.node {
712             TyKind::Path(ref qself, ref path) => {
713                 self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
714             }
715             TyKind::ImplicitSelf => {
716                 let self_ty = keywords::SelfType.ident();
717                 let def = self.resolve_ident_in_lexical_scope(self_ty, TypeNS, true, ty.span)
718                               .map_or(Def::Err, |d| d.def());
719                 self.record_def(ty.id, PathResolution::new(def));
720             }
721             _ => (),
722         }
723         visit::walk_ty(self, ty);
724     }
725     fn visit_poly_trait_ref(&mut self,
726                             tref: &'tcx ast::PolyTraitRef,
727                             m: &'tcx ast::TraitBoundModifier) {
728         self.smart_resolve_path(tref.trait_ref.ref_id, None,
729                                 &tref.trait_ref.path, PathSource::Trait(AliasPossibility::Maybe));
730         visit::walk_poly_trait_ref(self, tref, m);
731     }
732     fn visit_foreign_item(&mut self, foreign_item: &'tcx ForeignItem) {
733         let type_parameters = match foreign_item.node {
734             ForeignItemKind::Fn(_, ref generics) => {
735                 HasTypeParameters(generics, ItemRibKind)
736             }
737             ForeignItemKind::Static(..) => NoTypeParameters,
738             ForeignItemKind::Ty => NoTypeParameters,
739             ForeignItemKind::Macro(..) => NoTypeParameters,
740         };
741         self.with_type_parameter_rib(type_parameters, |this| {
742             visit::walk_foreign_item(this, foreign_item);
743         });
744     }
745     fn visit_fn(&mut self,
746                 function_kind: FnKind<'tcx>,
747                 declaration: &'tcx FnDecl,
748                 _: Span,
749                 node_id: NodeId)
750     {
751         let (rib_kind, asyncness) = match function_kind {
752             FnKind::ItemFn(_, ref header, ..) =>
753                 (ItemRibKind, header.asyncness),
754             FnKind::Method(_, ref sig, _, _) =>
755                 (TraitOrImplItemRibKind, sig.header.asyncness),
756             FnKind::Closure(_) =>
757                 // Async closures aren't resolved through `visit_fn`-- they're
758                 // processed separately
759                 (ClosureRibKind(node_id), IsAsync::NotAsync),
760         };
761
762         // Create a value rib for the function.
763         self.ribs[ValueNS].push(Rib::new(rib_kind));
764
765         // Create a label rib for the function.
766         self.label_ribs.push(Rib::new(rib_kind));
767
768         // Add each argument to the rib.
769         let mut bindings_list = FxHashMap();
770         for argument in &declaration.inputs {
771             self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
772
773             self.visit_ty(&argument.ty);
774
775             debug!("(resolving function) recorded argument");
776         }
777         visit::walk_fn_ret_ty(self, &declaration.output);
778
779         // Resolve the function body, potentially inside the body of an async closure
780         if let IsAsync::Async(async_closure_id) = asyncness {
781             let rib_kind = ClosureRibKind(async_closure_id);
782             self.ribs[ValueNS].push(Rib::new(rib_kind));
783             self.label_ribs.push(Rib::new(rib_kind));
784         }
785
786         match function_kind {
787             FnKind::ItemFn(.., body) |
788             FnKind::Method(.., body) => {
789                 self.visit_block(body);
790             }
791             FnKind::Closure(body) => {
792                 self.visit_expr(body);
793             }
794         };
795
796         // Leave the body of the async closure
797         if asyncness.is_async() {
798             self.label_ribs.pop();
799             self.ribs[ValueNS].pop();
800         }
801
802         debug!("(resolving function) leaving function");
803
804         self.label_ribs.pop();
805         self.ribs[ValueNS].pop();
806     }
807     fn visit_generics(&mut self, generics: &'tcx Generics) {
808         // For type parameter defaults, we have to ban access
809         // to following type parameters, as the Substs can only
810         // provide previous type parameters as they're built. We
811         // put all the parameters on the ban list and then remove
812         // them one by one as they are processed and become available.
813         let mut default_ban_rib = Rib::new(ForwardTyParamBanRibKind);
814         let mut found_default = false;
815         default_ban_rib.bindings.extend(generics.params.iter()
816             .filter_map(|param| match param.kind {
817                 GenericParamKind::Lifetime { .. } => None,
818                 GenericParamKind::Type { ref default, .. } => {
819                     if found_default || default.is_some() {
820                         found_default = true;
821                         return Some((Ident::with_empty_ctxt(param.ident.name), Def::Err));
822                     }
823                     None
824                 }
825             }));
826
827         for param in &generics.params {
828             match param.kind {
829                 GenericParamKind::Lifetime { .. } => self.visit_generic_param(param),
830                 GenericParamKind::Type { ref default, .. } => {
831                     for bound in &param.bounds {
832                         self.visit_param_bound(bound);
833                     }
834
835                     if let Some(ref ty) = default {
836                         self.ribs[TypeNS].push(default_ban_rib);
837                         self.visit_ty(ty);
838                         default_ban_rib = self.ribs[TypeNS].pop().unwrap();
839                     }
840
841                     // Allow all following defaults to refer to this type parameter.
842                     default_ban_rib.bindings.remove(&Ident::with_empty_ctxt(param.ident.name));
843                 }
844             }
845         }
846         for p in &generics.where_clause.predicates {
847             self.visit_where_predicate(p);
848         }
849     }
850 }
851
852 #[derive(Copy, Clone)]
853 enum TypeParameters<'a, 'b> {
854     NoTypeParameters,
855     HasTypeParameters(// Type parameters.
856                       &'b Generics,
857
858                       // The kind of the rib used for type parameters.
859                       RibKind<'a>),
860 }
861
862 /// The rib kind controls the translation of local
863 /// definitions (`Def::Local`) to upvars (`Def::Upvar`).
864 #[derive(Copy, Clone, Debug)]
865 enum RibKind<'a> {
866     /// No translation needs to be applied.
867     NormalRibKind,
868
869     /// We passed through a closure scope at the given node ID.
870     /// Translate upvars as appropriate.
871     ClosureRibKind(NodeId /* func id */),
872
873     /// We passed through an impl or trait and are now in one of its
874     /// methods or associated types. Allow references to ty params that impl or trait
875     /// binds. Disallow any other upvars (including other ty params that are
876     /// upvars).
877     TraitOrImplItemRibKind,
878
879     /// We passed through an item scope. Disallow upvars.
880     ItemRibKind,
881
882     /// We're in a constant item. Can't refer to dynamic stuff.
883     ConstantItemRibKind,
884
885     /// We passed through a module.
886     ModuleRibKind(Module<'a>),
887
888     /// We passed through a `macro_rules!` statement
889     MacroDefinition(DefId),
890
891     /// All bindings in this rib are type parameters that can't be used
892     /// from the default of a type parameter because they're not declared
893     /// before said type parameter. Also see the `visit_generics` override.
894     ForwardTyParamBanRibKind,
895 }
896
897 /// One local scope.
898 ///
899 /// A rib represents a scope names can live in. Note that these appear in many places, not just
900 /// around braces. At any place where the list of accessible names (of the given namespace)
901 /// changes or a new restrictions on the name accessibility are introduced, a new rib is put onto a
902 /// stack. This may be, for example, a `let` statement (because it introduces variables), a macro,
903 /// etc.
904 ///
905 /// Different [rib kinds](enum.RibKind) are transparent for different names.
906 ///
907 /// The resolution keeps a separate stack of ribs as it traverses the AST for each namespace. When
908 /// resolving, the name is looked up from inside out.
909 #[derive(Debug)]
910 struct Rib<'a> {
911     bindings: FxHashMap<Ident, Def>,
912     kind: RibKind<'a>,
913 }
914
915 impl<'a> Rib<'a> {
916     fn new(kind: RibKind<'a>) -> Rib<'a> {
917         Rib {
918             bindings: FxHashMap(),
919             kind,
920         }
921     }
922 }
923
924 /// An intermediate resolution result.
925 ///
926 /// This refers to the thing referred by a name. The difference between `Def` and `Item` is that
927 /// items are visible in their whole block, while defs only from the place they are defined
928 /// forward.
929 enum LexicalScopeBinding<'a> {
930     Item(&'a NameBinding<'a>),
931     Def(Def),
932 }
933
934 impl<'a> LexicalScopeBinding<'a> {
935     fn item(self) -> Option<&'a NameBinding<'a>> {
936         match self {
937             LexicalScopeBinding::Item(binding) => Some(binding),
938             _ => None,
939         }
940     }
941
942     fn def(self) -> Def {
943         match self {
944             LexicalScopeBinding::Item(binding) => binding.def(),
945             LexicalScopeBinding::Def(def) => def,
946         }
947     }
948 }
949
950 #[derive(Clone, Debug)]
951 enum PathResult<'a> {
952     Module(Module<'a>),
953     NonModule(PathResolution),
954     Indeterminate,
955     Failed(Span, String, bool /* is the error from the last segment? */),
956 }
957
958 enum ModuleKind {
959     /// An anonymous module, eg. just a block.
960     ///
961     /// ```
962     /// fn main() {
963     ///     fn f() {} // (1)
964     ///     { // This is an anonymous module
965     ///         f(); // This resolves to (2) as we are inside the block.
966     ///         fn f() {} // (2)
967     ///     }
968     ///     f(); // Resolves to (1)
969     /// }
970     /// ```
971     Block(NodeId),
972     /// Any module with a name.
973     ///
974     /// This could be:
975     ///
976     /// * A normal module â€’ either `mod from_file;` or `mod from_block { }`.
977     /// * A trait or an enum (it implicitly contains associated types, methods and variant
978     ///   constructors).
979     Def(Def, Name),
980 }
981
982 /// One node in the tree of modules.
983 pub struct ModuleData<'a> {
984     parent: Option<Module<'a>>,
985     kind: ModuleKind,
986
987     // The def id of the closest normal module (`mod`) ancestor (including this module).
988     normal_ancestor_id: DefId,
989
990     resolutions: RefCell<FxHashMap<(Ident, Namespace), &'a RefCell<NameResolution<'a>>>>,
991     legacy_macro_resolutions: RefCell<Vec<(Mark, Ident, MacroKind, Option<Def>)>>,
992     macro_resolutions: RefCell<Vec<(Box<[Ident]>, Span)>>,
993
994     // Macro invocations that can expand into items in this module.
995     unresolved_invocations: RefCell<FxHashSet<Mark>>,
996
997     no_implicit_prelude: bool,
998
999     glob_importers: RefCell<Vec<&'a ImportDirective<'a>>>,
1000     globs: RefCell<Vec<&'a ImportDirective<'a>>>,
1001
1002     // Used to memoize the traits in this module for faster searches through all traits in scope.
1003     traits: RefCell<Option<Box<[(Ident, &'a NameBinding<'a>)]>>>,
1004
1005     // Whether this module is populated. If not populated, any attempt to
1006     // access the children must be preceded with a
1007     // `populate_module_if_necessary` call.
1008     populated: Cell<bool>,
1009
1010     /// Span of the module itself. Used for error reporting.
1011     span: Span,
1012
1013     expansion: Mark,
1014 }
1015
1016 type Module<'a> = &'a ModuleData<'a>;
1017
1018 impl<'a> ModuleData<'a> {
1019     fn new(parent: Option<Module<'a>>,
1020            kind: ModuleKind,
1021            normal_ancestor_id: DefId,
1022            expansion: Mark,
1023            span: Span) -> Self {
1024         ModuleData {
1025             parent,
1026             kind,
1027             normal_ancestor_id,
1028             resolutions: RefCell::new(FxHashMap()),
1029             legacy_macro_resolutions: RefCell::new(Vec::new()),
1030             macro_resolutions: RefCell::new(Vec::new()),
1031             unresolved_invocations: RefCell::new(FxHashSet()),
1032             no_implicit_prelude: false,
1033             glob_importers: RefCell::new(Vec::new()),
1034             globs: RefCell::new(Vec::new()),
1035             traits: RefCell::new(None),
1036             populated: Cell::new(normal_ancestor_id.is_local()),
1037             span,
1038             expansion,
1039         }
1040     }
1041
1042     fn for_each_child<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1043         for (&(ident, ns), name_resolution) in self.resolutions.borrow().iter() {
1044             name_resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1045         }
1046     }
1047
1048     fn for_each_child_stable<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1049         let resolutions = self.resolutions.borrow();
1050         let mut resolutions = resolutions.iter().collect::<Vec<_>>();
1051         resolutions.sort_by_cached_key(|&(&(ident, ns), _)| (ident.as_str(), ns));
1052         for &(&(ident, ns), &resolution) in resolutions.iter() {
1053             resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1054         }
1055     }
1056
1057     fn def(&self) -> Option<Def> {
1058         match self.kind {
1059             ModuleKind::Def(def, _) => Some(def),
1060             _ => None,
1061         }
1062     }
1063
1064     fn def_id(&self) -> Option<DefId> {
1065         self.def().as_ref().map(Def::def_id)
1066     }
1067
1068     // `self` resolves to the first module ancestor that `is_normal`.
1069     fn is_normal(&self) -> bool {
1070         match self.kind {
1071             ModuleKind::Def(Def::Mod(_), _) => true,
1072             _ => false,
1073         }
1074     }
1075
1076     fn is_trait(&self) -> bool {
1077         match self.kind {
1078             ModuleKind::Def(Def::Trait(_), _) => true,
1079             _ => false,
1080         }
1081     }
1082
1083     fn is_local(&self) -> bool {
1084         self.normal_ancestor_id.is_local()
1085     }
1086
1087     fn nearest_item_scope(&'a self) -> Module<'a> {
1088         if self.is_trait() { self.parent.unwrap() } else { self }
1089     }
1090 }
1091
1092 impl<'a> fmt::Debug for ModuleData<'a> {
1093     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1094         write!(f, "{:?}", self.def())
1095     }
1096 }
1097
1098 /// Records a possibly-private value, type, or module definition.
1099 #[derive(Clone, Debug)]
1100 pub struct NameBinding<'a> {
1101     kind: NameBindingKind<'a>,
1102     expansion: Mark,
1103     span: Span,
1104     vis: ty::Visibility,
1105 }
1106
1107 pub trait ToNameBinding<'a> {
1108     fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a>;
1109 }
1110
1111 impl<'a> ToNameBinding<'a> for &'a NameBinding<'a> {
1112     fn to_name_binding(self, _: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> {
1113         self
1114     }
1115 }
1116
1117 #[derive(Clone, Debug)]
1118 enum NameBindingKind<'a> {
1119     Def(Def),
1120     Module(Module<'a>),
1121     Import {
1122         binding: &'a NameBinding<'a>,
1123         directive: &'a ImportDirective<'a>,
1124         used: Cell<bool>,
1125     },
1126     Ambiguity {
1127         b1: &'a NameBinding<'a>,
1128         b2: &'a NameBinding<'a>,
1129     }
1130 }
1131
1132 struct PrivacyError<'a>(Span, Name, &'a NameBinding<'a>);
1133
1134 struct UseError<'a> {
1135     err: DiagnosticBuilder<'a>,
1136     /// Attach `use` statements for these candidates
1137     candidates: Vec<ImportSuggestion>,
1138     /// The node id of the module to place the use statements in
1139     node_id: NodeId,
1140     /// Whether the diagnostic should state that it's "better"
1141     better: bool,
1142 }
1143
1144 struct AmbiguityError<'a> {
1145     span: Span,
1146     name: Name,
1147     lexical: bool,
1148     b1: &'a NameBinding<'a>,
1149     b2: &'a NameBinding<'a>,
1150 }
1151
1152 impl<'a> NameBinding<'a> {
1153     fn module(&self) -> Option<Module<'a>> {
1154         match self.kind {
1155             NameBindingKind::Module(module) => Some(module),
1156             NameBindingKind::Import { binding, .. } => binding.module(),
1157             _ => None,
1158         }
1159     }
1160
1161     fn def(&self) -> Def {
1162         match self.kind {
1163             NameBindingKind::Def(def) => def,
1164             NameBindingKind::Module(module) => module.def().unwrap(),
1165             NameBindingKind::Import { binding, .. } => binding.def(),
1166             NameBindingKind::Ambiguity { .. } => Def::Err,
1167         }
1168     }
1169
1170     fn def_ignoring_ambiguity(&self) -> Def {
1171         match self.kind {
1172             NameBindingKind::Import { binding, .. } => binding.def_ignoring_ambiguity(),
1173             NameBindingKind::Ambiguity { b1, .. } => b1.def_ignoring_ambiguity(),
1174             _ => self.def(),
1175         }
1176     }
1177
1178     fn get_macro(&self, resolver: &mut Resolver<'a>) -> Lrc<SyntaxExtension> {
1179         resolver.get_macro(self.def_ignoring_ambiguity())
1180     }
1181
1182     // We sometimes need to treat variants as `pub` for backwards compatibility
1183     fn pseudo_vis(&self) -> ty::Visibility {
1184         if self.is_variant() && self.def().def_id().is_local() {
1185             ty::Visibility::Public
1186         } else {
1187             self.vis
1188         }
1189     }
1190
1191     fn is_variant(&self) -> bool {
1192         match self.kind {
1193             NameBindingKind::Def(Def::Variant(..)) |
1194             NameBindingKind::Def(Def::VariantCtor(..)) => true,
1195             _ => false,
1196         }
1197     }
1198
1199     fn is_extern_crate(&self) -> bool {
1200         match self.kind {
1201             NameBindingKind::Import {
1202                 directive: &ImportDirective {
1203                     subclass: ImportDirectiveSubclass::ExternCrate(_), ..
1204                 }, ..
1205             } => true,
1206             _ => false,
1207         }
1208     }
1209
1210     fn is_import(&self) -> bool {
1211         match self.kind {
1212             NameBindingKind::Import { .. } => true,
1213             _ => false,
1214         }
1215     }
1216
1217     fn is_renamed_extern_crate(&self) -> bool {
1218         if let NameBindingKind::Import { directive, ..} = self.kind {
1219             if let ImportDirectiveSubclass::ExternCrate(Some(_)) = directive.subclass {
1220                 return true;
1221             }
1222         }
1223         false
1224     }
1225
1226     fn is_glob_import(&self) -> bool {
1227         match self.kind {
1228             NameBindingKind::Import { directive, .. } => directive.is_glob(),
1229             NameBindingKind::Ambiguity { b1, .. } => b1.is_glob_import(),
1230             _ => false,
1231         }
1232     }
1233
1234     fn is_importable(&self) -> bool {
1235         match self.def() {
1236             Def::AssociatedConst(..) | Def::Method(..) | Def::AssociatedTy(..) => false,
1237             _ => true,
1238         }
1239     }
1240
1241     fn is_macro_def(&self) -> bool {
1242         match self.kind {
1243             NameBindingKind::Def(Def::Macro(..)) => true,
1244             _ => false,
1245         }
1246     }
1247
1248     fn descr(&self) -> &'static str {
1249         if self.is_extern_crate() { "extern crate" } else { self.def().kind_name() }
1250     }
1251 }
1252
1253 /// Interns the names of the primitive types.
1254 ///
1255 /// All other types are defined somewhere and possibly imported, but the primitive ones need
1256 /// special handling, since they have no place of origin.
1257 struct PrimitiveTypeTable {
1258     primitive_types: FxHashMap<Name, PrimTy>,
1259 }
1260
1261 impl PrimitiveTypeTable {
1262     fn new() -> PrimitiveTypeTable {
1263         let mut table = PrimitiveTypeTable { primitive_types: FxHashMap() };
1264
1265         table.intern("bool", TyBool);
1266         table.intern("char", TyChar);
1267         table.intern("f32", TyFloat(FloatTy::F32));
1268         table.intern("f64", TyFloat(FloatTy::F64));
1269         table.intern("isize", TyInt(IntTy::Isize));
1270         table.intern("i8", TyInt(IntTy::I8));
1271         table.intern("i16", TyInt(IntTy::I16));
1272         table.intern("i32", TyInt(IntTy::I32));
1273         table.intern("i64", TyInt(IntTy::I64));
1274         table.intern("i128", TyInt(IntTy::I128));
1275         table.intern("str", TyStr);
1276         table.intern("usize", TyUint(UintTy::Usize));
1277         table.intern("u8", TyUint(UintTy::U8));
1278         table.intern("u16", TyUint(UintTy::U16));
1279         table.intern("u32", TyUint(UintTy::U32));
1280         table.intern("u64", TyUint(UintTy::U64));
1281         table.intern("u128", TyUint(UintTy::U128));
1282         table
1283     }
1284
1285     fn intern(&mut self, string: &str, primitive_type: PrimTy) {
1286         self.primitive_types.insert(Symbol::intern(string), primitive_type);
1287     }
1288 }
1289
1290 /// The main resolver class.
1291 ///
1292 /// This is the visitor that walks the whole crate.
1293 pub struct Resolver<'a> {
1294     session: &'a Session,
1295     cstore: &'a CrateStore,
1296
1297     pub definitions: Definitions,
1298
1299     graph_root: Module<'a>,
1300
1301     prelude: Option<Module<'a>>,
1302     extern_prelude: FxHashSet<Name>,
1303
1304     /// n.b. This is used only for better diagnostics, not name resolution itself.
1305     has_self: FxHashSet<DefId>,
1306
1307     /// Names of fields of an item `DefId` accessible with dot syntax.
1308     /// Used for hints during error reporting.
1309     field_names: FxHashMap<DefId, Vec<Name>>,
1310
1311     /// All imports known to succeed or fail.
1312     determined_imports: Vec<&'a ImportDirective<'a>>,
1313
1314     /// All non-determined imports.
1315     indeterminate_imports: Vec<&'a ImportDirective<'a>>,
1316
1317     /// The module that represents the current item scope.
1318     current_module: Module<'a>,
1319
1320     /// The current set of local scopes for types and values.
1321     /// FIXME #4948: Reuse ribs to avoid allocation.
1322     ribs: PerNS<Vec<Rib<'a>>>,
1323
1324     /// The current set of local scopes, for labels.
1325     label_ribs: Vec<Rib<'a>>,
1326
1327     /// The trait that the current context can refer to.
1328     current_trait_ref: Option<(Module<'a>, TraitRef)>,
1329
1330     /// The current self type if inside an impl (used for better errors).
1331     current_self_type: Option<Ty>,
1332
1333     /// The idents for the primitive types.
1334     primitive_type_table: PrimitiveTypeTable,
1335
1336     def_map: DefMap,
1337     import_map: ImportMap,
1338     pub freevars: FreevarMap,
1339     freevars_seen: NodeMap<NodeMap<usize>>,
1340     pub export_map: ExportMap,
1341     pub trait_map: TraitMap,
1342
1343     /// A map from nodes to anonymous modules.
1344     /// Anonymous modules are pseudo-modules that are implicitly created around items
1345     /// contained within blocks.
1346     ///
1347     /// For example, if we have this:
1348     ///
1349     ///  fn f() {
1350     ///      fn g() {
1351     ///          ...
1352     ///      }
1353     ///  }
1354     ///
1355     /// There will be an anonymous module created around `g` with the ID of the
1356     /// entry block for `f`.
1357     block_map: NodeMap<Module<'a>>,
1358     module_map: FxHashMap<DefId, Module<'a>>,
1359     extern_module_map: FxHashMap<(DefId, bool /* MacrosOnly? */), Module<'a>>,
1360
1361     pub make_glob_map: bool,
1362     /// Maps imports to the names of items actually imported (this actually maps
1363     /// all imports, but only glob imports are actually interesting).
1364     pub glob_map: GlobMap,
1365
1366     used_imports: FxHashSet<(NodeId, Namespace)>,
1367     pub maybe_unused_trait_imports: NodeSet,
1368     pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
1369
1370     /// A list of labels as of yet unused. Labels will be removed from this map when
1371     /// they are used (in a `break` or `continue` statement)
1372     pub unused_labels: FxHashMap<NodeId, Span>,
1373
1374     /// privacy errors are delayed until the end in order to deduplicate them
1375     privacy_errors: Vec<PrivacyError<'a>>,
1376     /// ambiguity errors are delayed for deduplication
1377     ambiguity_errors: Vec<AmbiguityError<'a>>,
1378     /// `use` injections are delayed for better placement and deduplication
1379     use_injections: Vec<UseError<'a>>,
1380     /// `use` injections for proc macros wrongly imported with #[macro_use]
1381     proc_mac_errors: Vec<macros::ProcMacError>,
1382
1383     gated_errors: FxHashSet<Span>,
1384     disallowed_shadowing: Vec<&'a LegacyBinding<'a>>,
1385
1386     arenas: &'a ResolverArenas<'a>,
1387     dummy_binding: &'a NameBinding<'a>,
1388     /// true if `#![feature(use_extern_macros)]`
1389     use_extern_macros: bool,
1390
1391     crate_loader: &'a mut CrateLoader,
1392     macro_names: FxHashSet<Ident>,
1393     global_macros: FxHashMap<Name, &'a NameBinding<'a>>,
1394     pub all_macros: FxHashMap<Name, Def>,
1395     lexical_macro_resolutions: Vec<(Ident, &'a Cell<LegacyScope<'a>>)>,
1396     macro_map: FxHashMap<DefId, Lrc<SyntaxExtension>>,
1397     macro_defs: FxHashMap<Mark, DefId>,
1398     local_macro_def_scopes: FxHashMap<NodeId, Module<'a>>,
1399     macro_exports: Vec<Export>,
1400     pub whitelisted_legacy_custom_derives: Vec<Name>,
1401     pub found_unresolved_macro: bool,
1402
1403     /// List of crate local macros that we need to warn about as being unused.
1404     /// Right now this only includes macro_rules! macros, and macros 2.0.
1405     unused_macros: FxHashSet<DefId>,
1406
1407     /// Maps the `Mark` of an expansion to its containing module or block.
1408     invocations: FxHashMap<Mark, &'a InvocationData<'a>>,
1409
1410     /// Avoid duplicated errors for "name already defined".
1411     name_already_seen: FxHashMap<Name, Span>,
1412
1413     /// If `#![feature(proc_macro)]` is set
1414     proc_macro_enabled: bool,
1415
1416     /// A set of procedural macros imported by `#[macro_use]` that have already been warned about
1417     warned_proc_macros: FxHashSet<Name>,
1418
1419     potentially_unused_imports: Vec<&'a ImportDirective<'a>>,
1420
1421     /// This table maps struct IDs into struct constructor IDs,
1422     /// it's not used during normal resolution, only for better error reporting.
1423     struct_constructors: DefIdMap<(Def, ty::Visibility)>,
1424
1425     /// Only used for better errors on `fn(): fn()`
1426     current_type_ascription: Vec<Span>,
1427
1428     injected_crate: Option<Module<'a>>,
1429
1430     /// Only supposed to be used by rustdoc, otherwise should be false.
1431     pub ignore_extern_prelude_feature: bool,
1432 }
1433
1434 /// Nothing really interesting here, it just provides memory for the rest of the crate.
1435 pub struct ResolverArenas<'a> {
1436     modules: arena::TypedArena<ModuleData<'a>>,
1437     local_modules: RefCell<Vec<Module<'a>>>,
1438     name_bindings: arena::TypedArena<NameBinding<'a>>,
1439     import_directives: arena::TypedArena<ImportDirective<'a>>,
1440     name_resolutions: arena::TypedArena<RefCell<NameResolution<'a>>>,
1441     invocation_data: arena::TypedArena<InvocationData<'a>>,
1442     legacy_bindings: arena::TypedArena<LegacyBinding<'a>>,
1443 }
1444
1445 impl<'a> ResolverArenas<'a> {
1446     fn alloc_module(&'a self, module: ModuleData<'a>) -> Module<'a> {
1447         let module = self.modules.alloc(module);
1448         if module.def_id().map(|def_id| def_id.is_local()).unwrap_or(true) {
1449             self.local_modules.borrow_mut().push(module);
1450         }
1451         module
1452     }
1453     fn local_modules(&'a self) -> ::std::cell::Ref<'a, Vec<Module<'a>>> {
1454         self.local_modules.borrow()
1455     }
1456     fn alloc_name_binding(&'a self, name_binding: NameBinding<'a>) -> &'a NameBinding<'a> {
1457         self.name_bindings.alloc(name_binding)
1458     }
1459     fn alloc_import_directive(&'a self, import_directive: ImportDirective<'a>)
1460                               -> &'a ImportDirective {
1461         self.import_directives.alloc(import_directive)
1462     }
1463     fn alloc_name_resolution(&'a self) -> &'a RefCell<NameResolution<'a>> {
1464         self.name_resolutions.alloc(Default::default())
1465     }
1466     fn alloc_invocation_data(&'a self, expansion_data: InvocationData<'a>)
1467                              -> &'a InvocationData<'a> {
1468         self.invocation_data.alloc(expansion_data)
1469     }
1470     fn alloc_legacy_binding(&'a self, binding: LegacyBinding<'a>) -> &'a LegacyBinding<'a> {
1471         self.legacy_bindings.alloc(binding)
1472     }
1473 }
1474
1475 impl<'a, 'b: 'a> ty::DefIdTree for &'a Resolver<'b> {
1476     fn parent(self, id: DefId) -> Option<DefId> {
1477         match id.krate {
1478             LOCAL_CRATE => self.definitions.def_key(id.index).parent,
1479             _ => self.cstore.def_key(id).parent,
1480         }.map(|index| DefId { index, ..id })
1481     }
1482 }
1483
1484 /// This interface is used through the AST→HIR step, to embed full paths into the HIR. After that
1485 /// the resolver is no longer needed as all the relevant information is inline.
1486 impl<'a> hir::lowering::Resolver for Resolver<'a> {
1487     fn resolve_hir_path(&mut self, path: &mut hir::Path, is_value: bool) {
1488         self.resolve_hir_path_cb(path, is_value,
1489                                  |resolver, span, error| resolve_error(resolver, span, error))
1490     }
1491
1492     fn resolve_str_path(
1493         &mut self,
1494         span: Span,
1495         crate_root: Option<&str>,
1496         components: &[&str],
1497         args: Option<P<hir::GenericArgs>>,
1498         is_value: bool
1499     ) -> hir::Path {
1500         let mut segments = iter::once(keywords::CrateRoot.name())
1501             .chain(
1502                 crate_root.into_iter()
1503                     .chain(components.iter().cloned())
1504                     .map(Symbol::intern)
1505             ).map(hir::PathSegment::from_name).collect::<Vec<_>>();
1506
1507         if let Some(args) = args {
1508             let name = segments.last().unwrap().name;
1509             *segments.last_mut().unwrap() = hir::PathSegment {
1510                 name,
1511                 args: Some(args),
1512                 infer_types: true,
1513             };
1514         }
1515
1516         let mut path = hir::Path {
1517             span,
1518             def: Def::Err,
1519             segments: segments.into(),
1520         };
1521
1522         self.resolve_hir_path(&mut path, is_value);
1523         path
1524     }
1525
1526     fn get_resolution(&mut self, id: NodeId) -> Option<PathResolution> {
1527         self.def_map.get(&id).cloned()
1528     }
1529
1530     fn get_import(&mut self, id: NodeId) -> PerNS<Option<PathResolution>> {
1531         self.import_map.get(&id).cloned().unwrap_or_default()
1532     }
1533
1534     fn definitions(&mut self) -> &mut Definitions {
1535         &mut self.definitions
1536     }
1537 }
1538
1539 impl<'a> Resolver<'a> {
1540     /// Rustdoc uses this to resolve things in a recoverable way. ResolutionError<'a>
1541     /// isn't something that can be returned because it can't be made to live that long,
1542     /// and also it's a private type. Fortunately rustdoc doesn't need to know the error,
1543     /// just that an error occurred.
1544     pub fn resolve_str_path_error(&mut self, span: Span, path_str: &str, is_value: bool)
1545         -> Result<hir::Path, ()> {
1546         use std::iter;
1547         let mut errored = false;
1548
1549         let mut path = if path_str.starts_with("::") {
1550             hir::Path {
1551                 span,
1552                 def: Def::Err,
1553                 segments: iter::once(keywords::CrateRoot.name()).chain({
1554                     path_str.split("::").skip(1).map(Symbol::intern)
1555                 }).map(hir::PathSegment::from_name).collect(),
1556             }
1557         } else {
1558             hir::Path {
1559                 span,
1560                 def: Def::Err,
1561                 segments: path_str.split("::").map(Symbol::intern)
1562                                   .map(hir::PathSegment::from_name).collect(),
1563             }
1564         };
1565         self.resolve_hir_path_cb(&mut path, is_value, |_, _, _| errored = true);
1566         if errored || path.def == Def::Err {
1567             Err(())
1568         } else {
1569             Ok(path)
1570         }
1571     }
1572
1573     /// resolve_hir_path, but takes a callback in case there was an error
1574     fn resolve_hir_path_cb<F>(&mut self, path: &mut hir::Path, is_value: bool, error_callback: F)
1575             where F: for<'c, 'b> FnOnce(&'c mut Resolver, Span, ResolutionError<'b>)
1576         {
1577         let namespace = if is_value { ValueNS } else { TypeNS };
1578         let hir::Path { ref segments, span, ref mut def } = *path;
1579         let path: Vec<Ident> = segments.iter()
1580             .map(|seg| Ident::new(seg.name, span))
1581             .collect();
1582         // FIXME (Manishearth): Intra doc links won't get warned of epoch changes
1583         match self.resolve_path(&path, Some(namespace), true, span, CrateLint::No) {
1584             PathResult::Module(module) => *def = module.def().unwrap(),
1585             PathResult::NonModule(path_res) if path_res.unresolved_segments() == 0 =>
1586                 *def = path_res.base_def(),
1587             PathResult::NonModule(..) => match self.resolve_path(
1588                 &path,
1589                 None,
1590                 true,
1591                 span,
1592                 CrateLint::No,
1593             ) {
1594                 PathResult::Failed(span, msg, _) => {
1595                     error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1596                 }
1597                 _ => {}
1598             },
1599             PathResult::Indeterminate => unreachable!(),
1600             PathResult::Failed(span, msg, _) => {
1601                 error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1602             }
1603         }
1604     }
1605 }
1606
1607 impl<'a> Resolver<'a> {
1608     pub fn new(session: &'a Session,
1609                cstore: &'a CrateStore,
1610                krate: &Crate,
1611                crate_name: &str,
1612                make_glob_map: MakeGlobMap,
1613                crate_loader: &'a mut CrateLoader,
1614                arenas: &'a ResolverArenas<'a>)
1615                -> Resolver<'a> {
1616         let root_def_id = DefId::local(CRATE_DEF_INDEX);
1617         let root_module_kind = ModuleKind::Def(Def::Mod(root_def_id), keywords::Invalid.name());
1618         let graph_root = arenas.alloc_module(ModuleData {
1619             no_implicit_prelude: attr::contains_name(&krate.attrs, "no_implicit_prelude"),
1620             ..ModuleData::new(None, root_module_kind, root_def_id, Mark::root(), krate.span)
1621         });
1622         let mut module_map = FxHashMap();
1623         module_map.insert(DefId::local(CRATE_DEF_INDEX), graph_root);
1624
1625         let mut definitions = Definitions::new();
1626         DefCollector::new(&mut definitions, Mark::root())
1627             .collect_root(crate_name, session.local_crate_disambiguator());
1628
1629         let mut extern_prelude: FxHashSet<Name> =
1630             session.opts.externs.iter().map(|kv| Symbol::intern(kv.0)).collect();
1631         if !attr::contains_name(&krate.attrs, "no_core") {
1632             if !attr::contains_name(&krate.attrs, "no_std") {
1633                 extern_prelude.insert(Symbol::intern("std"));
1634             } else {
1635                 extern_prelude.insert(Symbol::intern("core"));
1636             }
1637         }
1638
1639         let mut invocations = FxHashMap();
1640         invocations.insert(Mark::root(),
1641                            arenas.alloc_invocation_data(InvocationData::root(graph_root)));
1642
1643         let features = session.features_untracked();
1644
1645         let mut macro_defs = FxHashMap();
1646         macro_defs.insert(Mark::root(), root_def_id);
1647
1648         Resolver {
1649             session,
1650
1651             cstore,
1652
1653             definitions,
1654
1655             // The outermost module has def ID 0; this is not reflected in the
1656             // AST.
1657             graph_root,
1658             prelude: None,
1659             extern_prelude,
1660
1661             has_self: FxHashSet(),
1662             field_names: FxHashMap(),
1663
1664             determined_imports: Vec::new(),
1665             indeterminate_imports: Vec::new(),
1666
1667             current_module: graph_root,
1668             ribs: PerNS {
1669                 value_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1670                 type_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1671                 macro_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1672             },
1673             label_ribs: Vec::new(),
1674
1675             current_trait_ref: None,
1676             current_self_type: None,
1677
1678             primitive_type_table: PrimitiveTypeTable::new(),
1679
1680             def_map: NodeMap(),
1681             import_map: NodeMap(),
1682             freevars: NodeMap(),
1683             freevars_seen: NodeMap(),
1684             export_map: FxHashMap(),
1685             trait_map: NodeMap(),
1686             module_map,
1687             block_map: NodeMap(),
1688             extern_module_map: FxHashMap(),
1689
1690             make_glob_map: make_glob_map == MakeGlobMap::Yes,
1691             glob_map: NodeMap(),
1692
1693             used_imports: FxHashSet(),
1694             maybe_unused_trait_imports: NodeSet(),
1695             maybe_unused_extern_crates: Vec::new(),
1696
1697             unused_labels: FxHashMap(),
1698
1699             privacy_errors: Vec::new(),
1700             ambiguity_errors: Vec::new(),
1701             use_injections: Vec::new(),
1702             proc_mac_errors: Vec::new(),
1703             gated_errors: FxHashSet(),
1704             disallowed_shadowing: Vec::new(),
1705
1706             arenas,
1707             dummy_binding: arenas.alloc_name_binding(NameBinding {
1708                 kind: NameBindingKind::Def(Def::Err),
1709                 expansion: Mark::root(),
1710                 span: DUMMY_SP,
1711                 vis: ty::Visibility::Public,
1712             }),
1713
1714             // The `proc_macro` and `decl_macro` features imply `use_extern_macros`
1715             use_extern_macros:
1716                 features.use_extern_macros || features.proc_macro || features.decl_macro,
1717
1718             crate_loader,
1719             macro_names: FxHashSet(),
1720             global_macros: FxHashMap(),
1721             all_macros: FxHashMap(),
1722             lexical_macro_resolutions: Vec::new(),
1723             macro_map: FxHashMap(),
1724             macro_exports: Vec::new(),
1725             invocations,
1726             macro_defs,
1727             local_macro_def_scopes: FxHashMap(),
1728             name_already_seen: FxHashMap(),
1729             whitelisted_legacy_custom_derives: Vec::new(),
1730             proc_macro_enabled: features.proc_macro,
1731             warned_proc_macros: FxHashSet(),
1732             potentially_unused_imports: Vec::new(),
1733             struct_constructors: DefIdMap(),
1734             found_unresolved_macro: false,
1735             unused_macros: FxHashSet(),
1736             current_type_ascription: Vec::new(),
1737             injected_crate: None,
1738             ignore_extern_prelude_feature: false,
1739         }
1740     }
1741
1742     pub fn arenas() -> ResolverArenas<'a> {
1743         ResolverArenas {
1744             modules: arena::TypedArena::new(),
1745             local_modules: RefCell::new(Vec::new()),
1746             name_bindings: arena::TypedArena::new(),
1747             import_directives: arena::TypedArena::new(),
1748             name_resolutions: arena::TypedArena::new(),
1749             invocation_data: arena::TypedArena::new(),
1750             legacy_bindings: arena::TypedArena::new(),
1751         }
1752     }
1753
1754     /// Runs the function on each namespace.
1755     fn per_ns<F: FnMut(&mut Self, Namespace)>(&mut self, mut f: F) {
1756         f(self, TypeNS);
1757         f(self, ValueNS);
1758         if self.use_extern_macros {
1759             f(self, MacroNS);
1760         }
1761     }
1762
1763     fn macro_def(&self, mut ctxt: SyntaxContext) -> DefId {
1764         loop {
1765             match self.macro_defs.get(&ctxt.outer()) {
1766                 Some(&def_id) => return def_id,
1767                 None => ctxt.remove_mark(),
1768             };
1769         }
1770     }
1771
1772     /// Entry point to crate resolution.
1773     pub fn resolve_crate(&mut self, krate: &Crate) {
1774         ImportResolver { resolver: self }.finalize_imports();
1775         self.current_module = self.graph_root;
1776         self.finalize_current_module_macro_resolutions();
1777
1778         visit::walk_crate(self, krate);
1779
1780         check_unused::check_crate(self, krate);
1781         self.report_errors(krate);
1782         self.crate_loader.postprocess(krate);
1783     }
1784
1785     fn new_module(
1786         &self,
1787         parent: Module<'a>,
1788         kind: ModuleKind,
1789         normal_ancestor_id: DefId,
1790         expansion: Mark,
1791         span: Span,
1792     ) -> Module<'a> {
1793         let module = ModuleData::new(Some(parent), kind, normal_ancestor_id, expansion, span);
1794         self.arenas.alloc_module(module)
1795     }
1796
1797     fn record_use(&mut self, ident: Ident, ns: Namespace, binding: &'a NameBinding<'a>, span: Span)
1798                   -> bool /* true if an error was reported */ {
1799         match binding.kind {
1800             NameBindingKind::Import { directive, binding, ref used }
1801                     if !used.get() => {
1802                 used.set(true);
1803                 directive.used.set(true);
1804                 self.used_imports.insert((directive.id, ns));
1805                 self.add_to_glob_map(directive.id, ident);
1806                 self.record_use(ident, ns, binding, span)
1807             }
1808             NameBindingKind::Import { .. } => false,
1809             NameBindingKind::Ambiguity { b1, b2 } => {
1810                 self.ambiguity_errors.push(AmbiguityError {
1811                     span, name: ident.name, lexical: false, b1, b2,
1812                 });
1813                 true
1814             }
1815             _ => false
1816         }
1817     }
1818
1819     fn add_to_glob_map(&mut self, id: NodeId, ident: Ident) {
1820         if self.make_glob_map {
1821             self.glob_map.entry(id).or_insert_with(FxHashSet).insert(ident.name);
1822         }
1823     }
1824
1825     /// This resolves the identifier `ident` in the namespace `ns` in the current lexical scope.
1826     /// More specifically, we proceed up the hierarchy of scopes and return the binding for
1827     /// `ident` in the first scope that defines it (or None if no scopes define it).
1828     ///
1829     /// A block's items are above its local variables in the scope hierarchy, regardless of where
1830     /// the items are defined in the block. For example,
1831     /// ```rust
1832     /// fn f() {
1833     ///    g(); // Since there are no local variables in scope yet, this resolves to the item.
1834     ///    let g = || {};
1835     ///    fn g() {}
1836     ///    g(); // This resolves to the local variable `g` since it shadows the item.
1837     /// }
1838     /// ```
1839     ///
1840     /// Invariant: This must only be called during main resolution, not during
1841     /// import resolution.
1842     fn resolve_ident_in_lexical_scope(&mut self,
1843                                       mut ident: Ident,
1844                                       ns: Namespace,
1845                                       record_used: bool,
1846                                       path_span: Span)
1847                                       -> Option<LexicalScopeBinding<'a>> {
1848         if ns == TypeNS {
1849             ident.span = if ident.name == keywords::SelfType.name() {
1850                 // FIXME(jseyfried) improve `Self` hygiene
1851                 ident.span.with_ctxt(SyntaxContext::empty())
1852             } else {
1853                 ident.span.modern()
1854             }
1855         }
1856
1857         // Walk backwards up the ribs in scope.
1858         let mut module = self.graph_root;
1859         for i in (0 .. self.ribs[ns].len()).rev() {
1860             if let Some(def) = self.ribs[ns][i].bindings.get(&ident).cloned() {
1861                 // The ident resolves to a type parameter or local variable.
1862                 return Some(LexicalScopeBinding::Def(
1863                     self.adjust_local_def(ns, i, def, record_used, path_span)
1864                 ));
1865             }
1866
1867             module = match self.ribs[ns][i].kind {
1868                 ModuleRibKind(module) => module,
1869                 MacroDefinition(def) if def == self.macro_def(ident.span.ctxt()) => {
1870                     // If an invocation of this macro created `ident`, give up on `ident`
1871                     // and switch to `ident`'s source from the macro definition.
1872                     ident.span.remove_mark();
1873                     continue
1874                 }
1875                 _ => continue,
1876             };
1877
1878             let item = self.resolve_ident_in_module_unadjusted(
1879                 module, ident, ns, false, record_used, path_span,
1880             );
1881             if let Ok(binding) = item {
1882                 // The ident resolves to an item.
1883                 return Some(LexicalScopeBinding::Item(binding));
1884             }
1885
1886             match module.kind {
1887                 ModuleKind::Block(..) => {}, // We can see through blocks
1888                 _ => break,
1889             }
1890         }
1891
1892         ident.span = ident.span.modern();
1893         loop {
1894             module = unwrap_or!(self.hygienic_lexical_parent(module, &mut ident.span), break);
1895             let orig_current_module = self.current_module;
1896             self.current_module = module; // Lexical resolutions can never be a privacy error.
1897             let result = self.resolve_ident_in_module_unadjusted(
1898                 module, ident, ns, false, record_used, path_span,
1899             );
1900             self.current_module = orig_current_module;
1901
1902             match result {
1903                 Ok(binding) => return Some(LexicalScopeBinding::Item(binding)),
1904                 Err(Undetermined) => return None,
1905                 Err(Determined) => {}
1906             }
1907         }
1908
1909         if !module.no_implicit_prelude {
1910             // `record_used` means that we don't try to load crates during speculative resolution
1911             if record_used && ns == TypeNS && self.extern_prelude.contains(&ident.name) {
1912                 if !self.session.features_untracked().extern_prelude &&
1913                    !self.ignore_extern_prelude_feature {
1914                     feature_err(&self.session.parse_sess, "extern_prelude",
1915                                 ident.span, GateIssue::Language,
1916                                 "access to extern crates through prelude is experimental").emit();
1917                 }
1918
1919                 let crate_id = self.crate_loader.process_path_extern(ident.name, ident.span);
1920                 let crate_root = self.get_module(DefId { krate: crate_id, index: CRATE_DEF_INDEX });
1921                 self.populate_module_if_necessary(crate_root);
1922
1923                 let binding = (crate_root, ty::Visibility::Public,
1924                                ident.span, Mark::root()).to_name_binding(self.arenas);
1925                 return Some(LexicalScopeBinding::Item(binding));
1926             }
1927             if let Some(prelude) = self.prelude {
1928                 if let Ok(binding) = self.resolve_ident_in_module_unadjusted(prelude, ident, ns,
1929                                                                         false, false, path_span) {
1930                     return Some(LexicalScopeBinding::Item(binding));
1931                 }
1932             }
1933         }
1934
1935         None
1936     }
1937
1938     fn hygienic_lexical_parent(&mut self, mut module: Module<'a>, span: &mut Span)
1939                                -> Option<Module<'a>> {
1940         if !module.expansion.is_descendant_of(span.ctxt().outer()) {
1941             return Some(self.macro_def_scope(span.remove_mark()));
1942         }
1943
1944         if let ModuleKind::Block(..) = module.kind {
1945             return Some(module.parent.unwrap());
1946         }
1947
1948         let mut module_expansion = module.expansion.modern(); // for backward compatibility
1949         while let Some(parent) = module.parent {
1950             let parent_expansion = parent.expansion.modern();
1951             if module_expansion.is_descendant_of(parent_expansion) &&
1952                parent_expansion != module_expansion {
1953                 return if parent_expansion.is_descendant_of(span.ctxt().outer()) {
1954                     Some(parent)
1955                 } else {
1956                     None
1957                 };
1958             }
1959             module = parent;
1960             module_expansion = parent_expansion;
1961         }
1962
1963         None
1964     }
1965
1966     fn resolve_ident_in_module(&mut self,
1967                                module: Module<'a>,
1968                                mut ident: Ident,
1969                                ns: Namespace,
1970                                ignore_unresolved_invocations: bool,
1971                                record_used: bool,
1972                                span: Span)
1973                                -> Result<&'a NameBinding<'a>, Determinacy> {
1974         ident.span = ident.span.modern();
1975         let orig_current_module = self.current_module;
1976         if let Some(def) = ident.span.adjust(module.expansion) {
1977             self.current_module = self.macro_def_scope(def);
1978         }
1979         let result = self.resolve_ident_in_module_unadjusted(
1980             module, ident, ns, ignore_unresolved_invocations, record_used, span,
1981         );
1982         self.current_module = orig_current_module;
1983         result
1984     }
1985
1986     fn resolve_crate_root(&mut self, mut ctxt: SyntaxContext, legacy: bool) -> Module<'a> {
1987         let mark = if legacy {
1988             // When resolving `$crate` from a `macro_rules!` invoked in a `macro`,
1989             // we don't want to pretend that the `macro_rules!` definition is in the `macro`
1990             // as described in `SyntaxContext::apply_mark`, so we ignore prepended modern marks.
1991             ctxt.marks().into_iter().find(|&mark| mark.transparency() != Transparency::Opaque)
1992         } else {
1993             ctxt = ctxt.modern();
1994             ctxt.adjust(Mark::root())
1995         };
1996         let module = match mark {
1997             Some(def) => self.macro_def_scope(def),
1998             None => return self.graph_root,
1999         };
2000         self.get_module(DefId { index: CRATE_DEF_INDEX, ..module.normal_ancestor_id })
2001     }
2002
2003     fn resolve_self(&mut self, ctxt: &mut SyntaxContext, module: Module<'a>) -> Module<'a> {
2004         let mut module = self.get_module(module.normal_ancestor_id);
2005         while module.span.ctxt().modern() != *ctxt {
2006             let parent = module.parent.unwrap_or_else(|| self.macro_def_scope(ctxt.remove_mark()));
2007             module = self.get_module(parent.normal_ancestor_id);
2008         }
2009         module
2010     }
2011
2012     // AST resolution
2013     //
2014     // We maintain a list of value ribs and type ribs.
2015     //
2016     // Simultaneously, we keep track of the current position in the module
2017     // graph in the `current_module` pointer. When we go to resolve a name in
2018     // the value or type namespaces, we first look through all the ribs and
2019     // then query the module graph. When we resolve a name in the module
2020     // namespace, we can skip all the ribs (since nested modules are not
2021     // allowed within blocks in Rust) and jump straight to the current module
2022     // graph node.
2023     //
2024     // Named implementations are handled separately. When we find a method
2025     // call, we consult the module node to find all of the implementations in
2026     // scope. This information is lazily cached in the module node. We then
2027     // generate a fake "implementation scope" containing all the
2028     // implementations thus found, for compatibility with old resolve pass.
2029
2030     pub fn with_scope<F, T>(&mut self, id: NodeId, f: F) -> T
2031         where F: FnOnce(&mut Resolver) -> T
2032     {
2033         let id = self.definitions.local_def_id(id);
2034         let module = self.module_map.get(&id).cloned(); // clones a reference
2035         if let Some(module) = module {
2036             // Move down in the graph.
2037             let orig_module = replace(&mut self.current_module, module);
2038             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(module)));
2039             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(module)));
2040
2041             self.finalize_current_module_macro_resolutions();
2042             let ret = f(self);
2043
2044             self.current_module = orig_module;
2045             self.ribs[ValueNS].pop();
2046             self.ribs[TypeNS].pop();
2047             ret
2048         } else {
2049             f(self)
2050         }
2051     }
2052
2053     /// Searches the current set of local scopes for labels. Returns the first non-None label that
2054     /// is returned by the given predicate function
2055     ///
2056     /// Stops after meeting a closure.
2057     fn search_label<P, R>(&self, mut ident: Ident, pred: P) -> Option<R>
2058         where P: Fn(&Rib, Ident) -> Option<R>
2059     {
2060         for rib in self.label_ribs.iter().rev() {
2061             match rib.kind {
2062                 NormalRibKind => {}
2063                 // If an invocation of this macro created `ident`, give up on `ident`
2064                 // and switch to `ident`'s source from the macro definition.
2065                 MacroDefinition(def) => {
2066                     if def == self.macro_def(ident.span.ctxt()) {
2067                         ident.span.remove_mark();
2068                     }
2069                 }
2070                 _ => {
2071                     // Do not resolve labels across function boundary
2072                     return None;
2073                 }
2074             }
2075             let r = pred(rib, ident);
2076             if r.is_some() {
2077                 return r;
2078             }
2079         }
2080         None
2081     }
2082
2083     fn resolve_item(&mut self, item: &Item) {
2084         let name = item.ident.name;
2085
2086         debug!("(resolving item) resolving {}", name);
2087
2088         self.check_proc_macro_attrs(&item.attrs);
2089
2090         match item.node {
2091             ItemKind::Enum(_, ref generics) |
2092             ItemKind::Ty(_, ref generics) |
2093             ItemKind::Struct(_, ref generics) |
2094             ItemKind::Union(_, ref generics) |
2095             ItemKind::Fn(_, _, ref generics, _) => {
2096                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind),
2097                                          |this| visit::walk_item(this, item));
2098             }
2099
2100             ItemKind::Impl(.., ref generics, ref opt_trait_ref, ref self_type, ref impl_items) =>
2101                 self.resolve_implementation(generics,
2102                                             opt_trait_ref,
2103                                             &self_type,
2104                                             item.id,
2105                                             impl_items),
2106
2107             ItemKind::Trait(.., ref generics, ref bounds, ref trait_items) => {
2108                 // Create a new rib for the trait-wide type parameters.
2109                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2110                     let local_def_id = this.definitions.local_def_id(item.id);
2111                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2112                         this.visit_generics(generics);
2113                         walk_list!(this, visit_param_bound, bounds);
2114
2115                         for trait_item in trait_items {
2116                             this.check_proc_macro_attrs(&trait_item.attrs);
2117
2118                             let type_parameters = HasTypeParameters(&trait_item.generics,
2119                                                                     TraitOrImplItemRibKind);
2120                             this.with_type_parameter_rib(type_parameters, |this| {
2121                                 match trait_item.node {
2122                                     TraitItemKind::Const(ref ty, ref default) => {
2123                                         this.visit_ty(ty);
2124
2125                                         // Only impose the restrictions of
2126                                         // ConstRibKind for an actual constant
2127                                         // expression in a provided default.
2128                                         if let Some(ref expr) = *default{
2129                                             this.with_constant_rib(|this| {
2130                                                 this.visit_expr(expr);
2131                                             });
2132                                         }
2133                                     }
2134                                     TraitItemKind::Method(_, _) => {
2135                                         visit::walk_trait_item(this, trait_item)
2136                                     }
2137                                     TraitItemKind::Type(..) => {
2138                                         visit::walk_trait_item(this, trait_item)
2139                                     }
2140                                     TraitItemKind::Macro(_) => {
2141                                         panic!("unexpanded macro in resolve!")
2142                                     }
2143                                 };
2144                             });
2145                         }
2146                     });
2147                 });
2148             }
2149
2150             ItemKind::TraitAlias(ref generics, ref bounds) => {
2151                 // Create a new rib for the trait-wide type parameters.
2152                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2153                     let local_def_id = this.definitions.local_def_id(item.id);
2154                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2155                         this.visit_generics(generics);
2156                         walk_list!(this, visit_param_bound, bounds);
2157                     });
2158                 });
2159             }
2160
2161             ItemKind::Mod(_) | ItemKind::ForeignMod(_) => {
2162                 self.with_scope(item.id, |this| {
2163                     visit::walk_item(this, item);
2164                 });
2165             }
2166
2167             ItemKind::Static(ref ty, _, ref expr) |
2168             ItemKind::Const(ref ty, ref expr) => {
2169                 self.with_item_rib(|this| {
2170                     this.visit_ty(ty);
2171                     this.with_constant_rib(|this| {
2172                         this.visit_expr(expr);
2173                     });
2174                 });
2175             }
2176
2177             ItemKind::Use(ref use_tree) => {
2178                 // Imports are resolved as global by default, add starting root segment.
2179                 let path = Path {
2180                     segments: use_tree.prefix.make_root().into_iter().collect(),
2181                     span: use_tree.span,
2182                 };
2183                 self.resolve_use_tree(item.id, use_tree.span, item.id, use_tree, &path);
2184             }
2185
2186             ItemKind::ExternCrate(_) | ItemKind::MacroDef(..) | ItemKind::GlobalAsm(_) => {
2187                 // do nothing, these are just around to be encoded
2188             }
2189
2190             ItemKind::Mac(_) => panic!("unexpanded macro in resolve!"),
2191         }
2192     }
2193
2194     /// For the most part, use trees are desugared into `ImportDirective` instances
2195     /// when building the reduced graph (see `build_reduced_graph_for_use_tree`). But
2196     /// there is one special case we handle here: an empty nested import like
2197     /// `a::{b::{}}`, which desugares into...no import directives.
2198     fn resolve_use_tree(
2199         &mut self,
2200         root_id: NodeId,
2201         root_span: Span,
2202         id: NodeId,
2203         use_tree: &ast::UseTree,
2204         prefix: &Path,
2205     ) {
2206         match use_tree.kind {
2207             ast::UseTreeKind::Nested(ref items) => {
2208                 let path = Path {
2209                     segments: prefix.segments
2210                         .iter()
2211                         .chain(use_tree.prefix.segments.iter())
2212                         .cloned()
2213                         .collect(),
2214                     span: prefix.span.to(use_tree.prefix.span),
2215                 };
2216
2217                 if items.len() == 0 {
2218                     // Resolve prefix of an import with empty braces (issue #28388).
2219                     self.smart_resolve_path_with_crate_lint(
2220                         id,
2221                         None,
2222                         &path,
2223                         PathSource::ImportPrefix,
2224                         CrateLint::UsePath { root_id, root_span },
2225                     );
2226                 } else {
2227                     for &(ref tree, nested_id) in items {
2228                         self.resolve_use_tree(root_id, root_span, nested_id, tree, &path);
2229                     }
2230                 }
2231             }
2232             ast::UseTreeKind::Simple(..) => {},
2233             ast::UseTreeKind::Glob => {},
2234         }
2235     }
2236
2237     fn with_type_parameter_rib<'b, F>(&'b mut self, type_parameters: TypeParameters<'a, 'b>, f: F)
2238         where F: FnOnce(&mut Resolver)
2239     {
2240         match type_parameters {
2241             HasTypeParameters(generics, rib_kind) => {
2242                 let mut function_type_rib = Rib::new(rib_kind);
2243                 let mut seen_bindings = FxHashMap();
2244                 generics.params.iter().for_each(|param| match param.kind {
2245                     GenericParamKind::Lifetime { .. } => {}
2246                     GenericParamKind::Type { .. } => {
2247                         let ident = param.ident.modern();
2248                         debug!("with_type_parameter_rib: {}", param.id);
2249
2250                         if seen_bindings.contains_key(&ident) {
2251                             let span = seen_bindings.get(&ident).unwrap();
2252                             let err = ResolutionError::NameAlreadyUsedInTypeParameterList(
2253                                 ident.name,
2254                                 span,
2255                             );
2256                             resolve_error(self, param.ident.span, err);
2257                         }
2258                         seen_bindings.entry(ident).or_insert(param.ident.span);
2259
2260                     // Plain insert (no renaming).
2261                     let def = Def::TyParam(self.definitions.local_def_id(param.id));
2262                         function_type_rib.bindings.insert(ident, def);
2263                         self.record_def(param.id, PathResolution::new(def));
2264                     }
2265                 });
2266                 self.ribs[TypeNS].push(function_type_rib);
2267             }
2268
2269             NoTypeParameters => {
2270                 // Nothing to do.
2271             }
2272         }
2273
2274         f(self);
2275
2276         if let HasTypeParameters(..) = type_parameters {
2277             self.ribs[TypeNS].pop();
2278         }
2279     }
2280
2281     fn with_label_rib<F>(&mut self, f: F)
2282         where F: FnOnce(&mut Resolver)
2283     {
2284         self.label_ribs.push(Rib::new(NormalRibKind));
2285         f(self);
2286         self.label_ribs.pop();
2287     }
2288
2289     fn with_item_rib<F>(&mut self, f: F)
2290         where F: FnOnce(&mut Resolver)
2291     {
2292         self.ribs[ValueNS].push(Rib::new(ItemRibKind));
2293         self.ribs[TypeNS].push(Rib::new(ItemRibKind));
2294         f(self);
2295         self.ribs[TypeNS].pop();
2296         self.ribs[ValueNS].pop();
2297     }
2298
2299     fn with_constant_rib<F>(&mut self, f: F)
2300         where F: FnOnce(&mut Resolver)
2301     {
2302         self.ribs[ValueNS].push(Rib::new(ConstantItemRibKind));
2303         f(self);
2304         self.ribs[ValueNS].pop();
2305     }
2306
2307     fn with_current_self_type<T, F>(&mut self, self_type: &Ty, f: F) -> T
2308         where F: FnOnce(&mut Resolver) -> T
2309     {
2310         // Handle nested impls (inside fn bodies)
2311         let previous_value = replace(&mut self.current_self_type, Some(self_type.clone()));
2312         let result = f(self);
2313         self.current_self_type = previous_value;
2314         result
2315     }
2316
2317     /// This is called to resolve a trait reference from an `impl` (i.e. `impl Trait for Foo`)
2318     fn with_optional_trait_ref<T, F>(&mut self, opt_trait_ref: Option<&TraitRef>, f: F) -> T
2319         where F: FnOnce(&mut Resolver, Option<DefId>) -> T
2320     {
2321         let mut new_val = None;
2322         let mut new_id = None;
2323         if let Some(trait_ref) = opt_trait_ref {
2324             let path: Vec<_> = trait_ref.path.segments.iter()
2325                 .map(|seg| seg.ident)
2326                 .collect();
2327             let def = self.smart_resolve_path_fragment(
2328                 trait_ref.ref_id,
2329                 None,
2330                 &path,
2331                 trait_ref.path.span,
2332                 PathSource::Trait(AliasPossibility::No),
2333                 CrateLint::SimplePath(trait_ref.ref_id),
2334             ).base_def();
2335             if def != Def::Err {
2336                 new_id = Some(def.def_id());
2337                 let span = trait_ref.path.span;
2338                 if let PathResult::Module(module) = self.resolve_path(
2339                     &path,
2340                     None,
2341                     false,
2342                     span,
2343                     CrateLint::SimplePath(trait_ref.ref_id),
2344                 ) {
2345                     new_val = Some((module, trait_ref.clone()));
2346                 }
2347             }
2348         }
2349         let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
2350         let result = f(self, new_id);
2351         self.current_trait_ref = original_trait_ref;
2352         result
2353     }
2354
2355     fn with_self_rib<F>(&mut self, self_def: Def, f: F)
2356         where F: FnOnce(&mut Resolver)
2357     {
2358         let mut self_type_rib = Rib::new(NormalRibKind);
2359
2360         // plain insert (no renaming, types are not currently hygienic....)
2361         self_type_rib.bindings.insert(keywords::SelfType.ident(), self_def);
2362         self.ribs[TypeNS].push(self_type_rib);
2363         f(self);
2364         self.ribs[TypeNS].pop();
2365     }
2366
2367     fn resolve_implementation(&mut self,
2368                               generics: &Generics,
2369                               opt_trait_reference: &Option<TraitRef>,
2370                               self_type: &Ty,
2371                               item_id: NodeId,
2372                               impl_items: &[ImplItem]) {
2373         // If applicable, create a rib for the type parameters.
2374         self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2375             // Dummy self type for better errors if `Self` is used in the trait path.
2376             this.with_self_rib(Def::SelfTy(None, None), |this| {
2377                 // Resolve the trait reference, if necessary.
2378                 this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| {
2379                     let item_def_id = this.definitions.local_def_id(item_id);
2380                     this.with_self_rib(Def::SelfTy(trait_id, Some(item_def_id)), |this| {
2381                         if let Some(trait_ref) = opt_trait_reference.as_ref() {
2382                             // Resolve type arguments in trait path
2383                             visit::walk_trait_ref(this, trait_ref);
2384                         }
2385                         // Resolve the self type.
2386                         this.visit_ty(self_type);
2387                         // Resolve the type parameters.
2388                         this.visit_generics(generics);
2389                         this.with_current_self_type(self_type, |this| {
2390                             for impl_item in impl_items {
2391                                 this.check_proc_macro_attrs(&impl_item.attrs);
2392                                 this.resolve_visibility(&impl_item.vis);
2393
2394                                 // We also need a new scope for the impl item type parameters.
2395                                 let type_parameters = HasTypeParameters(&impl_item.generics,
2396                                                                         TraitOrImplItemRibKind);
2397                                 this.with_type_parameter_rib(type_parameters, |this| {
2398                                     use self::ResolutionError::*;
2399                                     match impl_item.node {
2400                                         ImplItemKind::Const(..) => {
2401                                             // If this is a trait impl, ensure the const
2402                                             // exists in trait
2403                                             this.check_trait_item(impl_item.ident,
2404                                                                 ValueNS,
2405                                                                 impl_item.span,
2406                                                 |n, s| ConstNotMemberOfTrait(n, s));
2407                                             this.with_constant_rib(|this|
2408                                                 visit::walk_impl_item(this, impl_item)
2409                                             );
2410                                         }
2411                                         ImplItemKind::Method(..) => {
2412                                             // If this is a trait impl, ensure the method
2413                                             // exists in trait
2414                                             this.check_trait_item(impl_item.ident,
2415                                                                 ValueNS,
2416                                                                 impl_item.span,
2417                                                 |n, s| MethodNotMemberOfTrait(n, s));
2418
2419                                             visit::walk_impl_item(this, impl_item);
2420                                         }
2421                                         ImplItemKind::Type(ref ty) => {
2422                                             // If this is a trait impl, ensure the type
2423                                             // exists in trait
2424                                             this.check_trait_item(impl_item.ident,
2425                                                                 TypeNS,
2426                                                                 impl_item.span,
2427                                                 |n, s| TypeNotMemberOfTrait(n, s));
2428
2429                                             this.visit_ty(ty);
2430                                         }
2431                                         ImplItemKind::Macro(_) =>
2432                                             panic!("unexpanded macro in resolve!"),
2433                                     }
2434                                 });
2435                             }
2436                         });
2437                     });
2438                 });
2439             });
2440         });
2441     }
2442
2443     fn check_trait_item<F>(&mut self, ident: Ident, ns: Namespace, span: Span, err: F)
2444         where F: FnOnce(Name, &str) -> ResolutionError
2445     {
2446         // If there is a TraitRef in scope for an impl, then the method must be in the
2447         // trait.
2448         if let Some((module, _)) = self.current_trait_ref {
2449             if self.resolve_ident_in_module(module, ident, ns, false, false, span).is_err() {
2450                 let path = &self.current_trait_ref.as_ref().unwrap().1.path;
2451                 resolve_error(self, span, err(ident.name, &path_names_to_string(path)));
2452             }
2453         }
2454     }
2455
2456     fn resolve_local(&mut self, local: &Local) {
2457         // Resolve the type.
2458         walk_list!(self, visit_ty, &local.ty);
2459
2460         // Resolve the initializer.
2461         walk_list!(self, visit_expr, &local.init);
2462
2463         // Resolve the pattern.
2464         self.resolve_pattern(&local.pat, PatternSource::Let, &mut FxHashMap());
2465     }
2466
2467     // build a map from pattern identifiers to binding-info's.
2468     // this is done hygienically. This could arise for a macro
2469     // that expands into an or-pattern where one 'x' was from the
2470     // user and one 'x' came from the macro.
2471     fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
2472         let mut binding_map = FxHashMap();
2473
2474         pat.walk(&mut |pat| {
2475             if let PatKind::Ident(binding_mode, ident, ref sub_pat) = pat.node {
2476                 if sub_pat.is_some() || match self.def_map.get(&pat.id).map(|res| res.base_def()) {
2477                     Some(Def::Local(..)) => true,
2478                     _ => false,
2479                 } {
2480                     let binding_info = BindingInfo { span: ident.span, binding_mode: binding_mode };
2481                     binding_map.insert(ident, binding_info);
2482                 }
2483             }
2484             true
2485         });
2486
2487         binding_map
2488     }
2489
2490     // check that all of the arms in an or-pattern have exactly the
2491     // same set of bindings, with the same binding modes for each.
2492     fn check_consistent_bindings(&mut self, pats: &[P<Pat>]) {
2493         if pats.is_empty() {
2494             return;
2495         }
2496
2497         let mut missing_vars = FxHashMap();
2498         let mut inconsistent_vars = FxHashMap();
2499         for (i, p) in pats.iter().enumerate() {
2500             let map_i = self.binding_mode_map(&p);
2501
2502             for (j, q) in pats.iter().enumerate() {
2503                 if i == j {
2504                     continue;
2505                 }
2506
2507                 let map_j = self.binding_mode_map(&q);
2508                 for (&key, &binding_i) in &map_i {
2509                     if map_j.len() == 0 {                   // Account for missing bindings when
2510                         let binding_error = missing_vars    // map_j has none.
2511                             .entry(key.name)
2512                             .or_insert(BindingError {
2513                                 name: key.name,
2514                                 origin: BTreeSet::new(),
2515                                 target: BTreeSet::new(),
2516                             });
2517                         binding_error.origin.insert(binding_i.span);
2518                         binding_error.target.insert(q.span);
2519                     }
2520                     for (&key_j, &binding_j) in &map_j {
2521                         match map_i.get(&key_j) {
2522                             None => {  // missing binding
2523                                 let binding_error = missing_vars
2524                                     .entry(key_j.name)
2525                                     .or_insert(BindingError {
2526                                         name: key_j.name,
2527                                         origin: BTreeSet::new(),
2528                                         target: BTreeSet::new(),
2529                                     });
2530                                 binding_error.origin.insert(binding_j.span);
2531                                 binding_error.target.insert(p.span);
2532                             }
2533                             Some(binding_i) => {  // check consistent binding
2534                                 if binding_i.binding_mode != binding_j.binding_mode {
2535                                     inconsistent_vars
2536                                         .entry(key.name)
2537                                         .or_insert((binding_j.span, binding_i.span));
2538                                 }
2539                             }
2540                         }
2541                     }
2542                 }
2543             }
2544         }
2545         let mut missing_vars = missing_vars.iter().collect::<Vec<_>>();
2546         missing_vars.sort();
2547         for (_, v) in missing_vars {
2548             resolve_error(self,
2549                           *v.origin.iter().next().unwrap(),
2550                           ResolutionError::VariableNotBoundInPattern(v));
2551         }
2552         let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
2553         inconsistent_vars.sort();
2554         for (name, v) in inconsistent_vars {
2555             resolve_error(self, v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
2556         }
2557     }
2558
2559     fn resolve_arm(&mut self, arm: &Arm) {
2560         self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2561
2562         let mut bindings_list = FxHashMap();
2563         for pattern in &arm.pats {
2564             self.resolve_pattern(&pattern, PatternSource::Match, &mut bindings_list);
2565         }
2566
2567         // This has to happen *after* we determine which pat_idents are variants
2568         self.check_consistent_bindings(&arm.pats);
2569
2570         walk_list!(self, visit_expr, &arm.guard);
2571         self.visit_expr(&arm.body);
2572
2573         self.ribs[ValueNS].pop();
2574     }
2575
2576     fn resolve_block(&mut self, block: &Block) {
2577         debug!("(resolving block) entering block");
2578         // Move down in the graph, if there's an anonymous module rooted here.
2579         let orig_module = self.current_module;
2580         let anonymous_module = self.block_map.get(&block.id).cloned(); // clones a reference
2581
2582         let mut num_macro_definition_ribs = 0;
2583         if let Some(anonymous_module) = anonymous_module {
2584             debug!("(resolving block) found anonymous module, moving down");
2585             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2586             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2587             self.current_module = anonymous_module;
2588             self.finalize_current_module_macro_resolutions();
2589         } else {
2590             self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2591         }
2592
2593         // Descend into the block.
2594         for stmt in &block.stmts {
2595             if let ast::StmtKind::Item(ref item) = stmt.node {
2596                 if let ast::ItemKind::MacroDef(..) = item.node {
2597                     num_macro_definition_ribs += 1;
2598                     let def = self.definitions.local_def_id(item.id);
2599                     self.ribs[ValueNS].push(Rib::new(MacroDefinition(def)));
2600                     self.label_ribs.push(Rib::new(MacroDefinition(def)));
2601                 }
2602             }
2603
2604             self.visit_stmt(stmt);
2605         }
2606
2607         // Move back up.
2608         self.current_module = orig_module;
2609         for _ in 0 .. num_macro_definition_ribs {
2610             self.ribs[ValueNS].pop();
2611             self.label_ribs.pop();
2612         }
2613         self.ribs[ValueNS].pop();
2614         if let Some(_) = anonymous_module {
2615             self.ribs[TypeNS].pop();
2616         }
2617         debug!("(resolving block) leaving block");
2618     }
2619
2620     fn fresh_binding(&mut self,
2621                      ident: Ident,
2622                      pat_id: NodeId,
2623                      outer_pat_id: NodeId,
2624                      pat_src: PatternSource,
2625                      bindings: &mut FxHashMap<Ident, NodeId>)
2626                      -> PathResolution {
2627         // Add the binding to the local ribs, if it
2628         // doesn't already exist in the bindings map. (We
2629         // must not add it if it's in the bindings map
2630         // because that breaks the assumptions later
2631         // passes make about or-patterns.)
2632         let mut def = Def::Local(pat_id);
2633         match bindings.get(&ident).cloned() {
2634             Some(id) if id == outer_pat_id => {
2635                 // `Variant(a, a)`, error
2636                 resolve_error(
2637                     self,
2638                     ident.span,
2639                     ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(
2640                         &ident.as_str())
2641                 );
2642             }
2643             Some(..) if pat_src == PatternSource::FnParam => {
2644                 // `fn f(a: u8, a: u8)`, error
2645                 resolve_error(
2646                     self,
2647                     ident.span,
2648                     ResolutionError::IdentifierBoundMoreThanOnceInParameterList(
2649                         &ident.as_str())
2650                 );
2651             }
2652             Some(..) if pat_src == PatternSource::Match ||
2653                         pat_src == PatternSource::IfLet ||
2654                         pat_src == PatternSource::WhileLet => {
2655                 // `Variant1(a) | Variant2(a)`, ok
2656                 // Reuse definition from the first `a`.
2657                 def = self.ribs[ValueNS].last_mut().unwrap().bindings[&ident];
2658             }
2659             Some(..) => {
2660                 span_bug!(ident.span, "two bindings with the same name from \
2661                                        unexpected pattern source {:?}", pat_src);
2662             }
2663             None => {
2664                 // A completely fresh binding, add to the lists if it's valid.
2665                 if ident.name != keywords::Invalid.name() {
2666                     bindings.insert(ident, outer_pat_id);
2667                     self.ribs[ValueNS].last_mut().unwrap().bindings.insert(ident, def);
2668                 }
2669             }
2670         }
2671
2672         PathResolution::new(def)
2673     }
2674
2675     fn resolve_pattern(&mut self,
2676                        pat: &Pat,
2677                        pat_src: PatternSource,
2678                        // Maps idents to the node ID for the
2679                        // outermost pattern that binds them.
2680                        bindings: &mut FxHashMap<Ident, NodeId>) {
2681         // Visit all direct subpatterns of this pattern.
2682         let outer_pat_id = pat.id;
2683         pat.walk(&mut |pat| {
2684             match pat.node {
2685                 PatKind::Ident(bmode, ident, ref opt_pat) => {
2686                     // First try to resolve the identifier as some existing
2687                     // entity, then fall back to a fresh binding.
2688                     let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS,
2689                                                                       false, pat.span)
2690                                       .and_then(LexicalScopeBinding::item);
2691                     let resolution = binding.map(NameBinding::def).and_then(|def| {
2692                         let is_syntactic_ambiguity = opt_pat.is_none() &&
2693                             bmode == BindingMode::ByValue(Mutability::Immutable);
2694                         match def {
2695                             Def::StructCtor(_, CtorKind::Const) |
2696                             Def::VariantCtor(_, CtorKind::Const) |
2697                             Def::Const(..) if is_syntactic_ambiguity => {
2698                                 // Disambiguate in favor of a unit struct/variant
2699                                 // or constant pattern.
2700                                 self.record_use(ident, ValueNS, binding.unwrap(), ident.span);
2701                                 Some(PathResolution::new(def))
2702                             }
2703                             Def::StructCtor(..) | Def::VariantCtor(..) |
2704                             Def::Const(..) | Def::Static(..) => {
2705                                 // This is unambiguously a fresh binding, either syntactically
2706                                 // (e.g. `IDENT @ PAT` or `ref IDENT`) or because `IDENT` resolves
2707                                 // to something unusable as a pattern (e.g. constructor function),
2708                                 // but we still conservatively report an error, see
2709                                 // issues/33118#issuecomment-233962221 for one reason why.
2710                                 resolve_error(
2711                                     self,
2712                                     ident.span,
2713                                     ResolutionError::BindingShadowsSomethingUnacceptable(
2714                                         pat_src.descr(), ident.name, binding.unwrap())
2715                                 );
2716                                 None
2717                             }
2718                             Def::Fn(..) | Def::Err => {
2719                                 // These entities are explicitly allowed
2720                                 // to be shadowed by fresh bindings.
2721                                 None
2722                             }
2723                             def => {
2724                                 span_bug!(ident.span, "unexpected definition for an \
2725                                                        identifier in pattern: {:?}", def);
2726                             }
2727                         }
2728                     }).unwrap_or_else(|| {
2729                         self.fresh_binding(ident, pat.id, outer_pat_id, pat_src, bindings)
2730                     });
2731
2732                     self.record_def(pat.id, resolution);
2733                 }
2734
2735                 PatKind::TupleStruct(ref path, ..) => {
2736                     self.smart_resolve_path(pat.id, None, path, PathSource::TupleStruct);
2737                 }
2738
2739                 PatKind::Path(ref qself, ref path) => {
2740                     self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
2741                 }
2742
2743                 PatKind::Struct(ref path, ..) => {
2744                     self.smart_resolve_path(pat.id, None, path, PathSource::Struct);
2745                 }
2746
2747                 _ => {}
2748             }
2749             true
2750         });
2751
2752         visit::walk_pat(self, pat);
2753     }
2754
2755     // High-level and context dependent path resolution routine.
2756     // Resolves the path and records the resolution into definition map.
2757     // If resolution fails tries several techniques to find likely
2758     // resolution candidates, suggest imports or other help, and report
2759     // errors in user friendly way.
2760     fn smart_resolve_path(&mut self,
2761                           id: NodeId,
2762                           qself: Option<&QSelf>,
2763                           path: &Path,
2764                           source: PathSource)
2765                           -> PathResolution {
2766         self.smart_resolve_path_with_crate_lint(id, qself, path, source, CrateLint::SimplePath(id))
2767     }
2768
2769     /// A variant of `smart_resolve_path` where you also specify extra
2770     /// information about where the path came from; this extra info is
2771     /// sometimes needed for the lint that recommends rewriting
2772     /// absoluate paths to `crate`, so that it knows how to frame the
2773     /// suggestion. If you are just resolving a path like `foo::bar`
2774     /// that appears...somewhere, though, then you just want
2775     /// `CrateLint::SimplePath`, which is what `smart_resolve_path`
2776     /// already provides.
2777     fn smart_resolve_path_with_crate_lint(
2778         &mut self,
2779         id: NodeId,
2780         qself: Option<&QSelf>,
2781         path: &Path,
2782         source: PathSource,
2783         crate_lint: CrateLint
2784     ) -> PathResolution {
2785         let segments = &path.segments.iter()
2786             .map(|seg| seg.ident)
2787             .collect::<Vec<_>>();
2788         self.smart_resolve_path_fragment(id, qself, segments, path.span, source, crate_lint)
2789     }
2790
2791     fn smart_resolve_path_fragment(&mut self,
2792                                    id: NodeId,
2793                                    qself: Option<&QSelf>,
2794                                    path: &[Ident],
2795                                    span: Span,
2796                                    source: PathSource,
2797                                    crate_lint: CrateLint)
2798                                    -> PathResolution {
2799         let ident_span = path.last().map_or(span, |ident| ident.span);
2800         let ns = source.namespace();
2801         let is_expected = &|def| source.is_expected(def);
2802         let is_enum_variant = &|def| if let Def::Variant(..) = def { true } else { false };
2803
2804         // Base error is amended with one short label and possibly some longer helps/notes.
2805         let report_errors = |this: &mut Self, def: Option<Def>| {
2806             // Make the base error.
2807             let expected = source.descr_expected();
2808             let path_str = names_to_string(path);
2809             let code = source.error_code(def.is_some());
2810             let (base_msg, fallback_label, base_span) = if let Some(def) = def {
2811                 (format!("expected {}, found {} `{}`", expected, def.kind_name(), path_str),
2812                  format!("not a {}", expected),
2813                  span)
2814             } else {
2815                 let item_str = path[path.len() - 1];
2816                 let item_span = path[path.len() - 1].span;
2817                 let (mod_prefix, mod_str) = if path.len() == 1 {
2818                     (format!(""), format!("this scope"))
2819                 } else if path.len() == 2 && path[0].name == keywords::CrateRoot.name() {
2820                     (format!(""), format!("the crate root"))
2821                 } else {
2822                     let mod_path = &path[..path.len() - 1];
2823                     let mod_prefix = match this.resolve_path(mod_path, Some(TypeNS),
2824                                                              false, span, CrateLint::No) {
2825                         PathResult::Module(module) => module.def(),
2826                         _ => None,
2827                     }.map_or(format!(""), |def| format!("{} ", def.kind_name()));
2828                     (mod_prefix, format!("`{}`", names_to_string(mod_path)))
2829                 };
2830                 (format!("cannot find {} `{}` in {}{}", expected, item_str, mod_prefix, mod_str),
2831                  format!("not found in {}", mod_str),
2832                  item_span)
2833             };
2834             let code = DiagnosticId::Error(code.into());
2835             let mut err = this.session.struct_span_err_with_code(base_span, &base_msg, code);
2836
2837             // Emit special messages for unresolved `Self` and `self`.
2838             if is_self_type(path, ns) {
2839                 __diagnostic_used!(E0411);
2840                 err.code(DiagnosticId::Error("E0411".into()));
2841                 err.span_label(span, "`Self` is only available in traits and impls");
2842                 return (err, Vec::new());
2843             }
2844             if is_self_value(path, ns) {
2845                 __diagnostic_used!(E0424);
2846                 err.code(DiagnosticId::Error("E0424".into()));
2847                 err.span_label(span, format!("`self` value is only available in \
2848                                                methods with `self` parameter"));
2849                 return (err, Vec::new());
2850             }
2851
2852             // Try to lookup the name in more relaxed fashion for better error reporting.
2853             let ident = *path.last().unwrap();
2854             let candidates = this.lookup_import_candidates(ident.name, ns, is_expected);
2855             if candidates.is_empty() && is_expected(Def::Enum(DefId::local(CRATE_DEF_INDEX))) {
2856                 let enum_candidates =
2857                     this.lookup_import_candidates(ident.name, ns, is_enum_variant);
2858                 let mut enum_candidates = enum_candidates.iter()
2859                     .map(|suggestion| import_candidate_to_paths(&suggestion)).collect::<Vec<_>>();
2860                 enum_candidates.sort();
2861                 for (sp, variant_path, enum_path) in enum_candidates {
2862                     if sp == DUMMY_SP {
2863                         let msg = format!("there is an enum variant `{}`, \
2864                                         try using `{}`?",
2865                                         variant_path,
2866                                         enum_path);
2867                         err.help(&msg);
2868                     } else {
2869                         err.span_suggestion(span, "you can try using the variant's enum",
2870                                             enum_path);
2871                     }
2872                 }
2873             }
2874             if path.len() == 1 && this.self_type_is_available(span) {
2875                 if let Some(candidate) = this.lookup_assoc_candidate(ident, ns, is_expected) {
2876                     let self_is_available = this.self_value_is_available(path[0].span, span);
2877                     match candidate {
2878                         AssocSuggestion::Field => {
2879                             err.span_suggestion(span, "try",
2880                                                 format!("self.{}", path_str));
2881                             if !self_is_available {
2882                                 err.span_label(span, format!("`self` value is only available in \
2883                                                                methods with `self` parameter"));
2884                             }
2885                         }
2886                         AssocSuggestion::MethodWithSelf if self_is_available => {
2887                             err.span_suggestion(span, "try",
2888                                                 format!("self.{}", path_str));
2889                         }
2890                         AssocSuggestion::MethodWithSelf | AssocSuggestion::AssocItem => {
2891                             err.span_suggestion(span, "try",
2892                                                 format!("Self::{}", path_str));
2893                         }
2894                     }
2895                     return (err, candidates);
2896                 }
2897             }
2898
2899             let mut levenshtein_worked = false;
2900
2901             // Try Levenshtein.
2902             if let Some(candidate) = this.lookup_typo_candidate(path, ns, is_expected, span) {
2903                 err.span_label(ident_span, format!("did you mean `{}`?", candidate));
2904                 levenshtein_worked = true;
2905             }
2906
2907             // Try context dependent help if relaxed lookup didn't work.
2908             if let Some(def) = def {
2909                 match (def, source) {
2910                     (Def::Macro(..), _) => {
2911                         err.span_label(span, format!("did you mean `{}!(...)`?", path_str));
2912                         return (err, candidates);
2913                     }
2914                     (Def::TyAlias(..), PathSource::Trait(_)) => {
2915                         err.span_label(span, "type aliases cannot be used for traits");
2916                         return (err, candidates);
2917                     }
2918                     (Def::Mod(..), PathSource::Expr(Some(parent))) => match parent.node {
2919                         ExprKind::Field(_, ident) => {
2920                             err.span_label(parent.span, format!("did you mean `{}::{}`?",
2921                                                                  path_str, ident));
2922                             return (err, candidates);
2923                         }
2924                         ExprKind::MethodCall(ref segment, ..) => {
2925                             err.span_label(parent.span, format!("did you mean `{}::{}(...)`?",
2926                                                                  path_str, segment.ident));
2927                             return (err, candidates);
2928                         }
2929                         _ => {}
2930                     },
2931                     (Def::Enum(..), PathSource::TupleStruct)
2932                         | (Def::Enum(..), PathSource::Expr(..))  => {
2933                         if let Some(variants) = this.collect_enum_variants(def) {
2934                             err.note(&format!("did you mean to use one \
2935                                                of the following variants?\n{}",
2936                                 variants.iter()
2937                                     .map(|suggestion| path_names_to_string(suggestion))
2938                                     .map(|suggestion| format!("- `{}`", suggestion))
2939                                     .collect::<Vec<_>>()
2940                                     .join("\n")));
2941
2942                         } else {
2943                             err.note("did you mean to use one of the enum's variants?");
2944                         }
2945                         return (err, candidates);
2946                     },
2947                     (Def::Struct(def_id), _) if ns == ValueNS => {
2948                         if let Some((ctor_def, ctor_vis))
2949                                 = this.struct_constructors.get(&def_id).cloned() {
2950                             let accessible_ctor = this.is_accessible(ctor_vis);
2951                             if is_expected(ctor_def) && !accessible_ctor {
2952                                 err.span_label(span, format!("constructor is not visible \
2953                                                               here due to private fields"));
2954                             }
2955                         } else {
2956                             // HACK(estebank): find a better way to figure out that this was a
2957                             // parser issue where a struct literal is being used on an expression
2958                             // where a brace being opened means a block is being started. Look
2959                             // ahead for the next text to see if `span` is followed by a `{`.
2960                             let cm = this.session.codemap();
2961                             let mut sp = span;
2962                             loop {
2963                                 sp = cm.next_point(sp);
2964                                 match cm.span_to_snippet(sp) {
2965                                     Ok(ref snippet) => {
2966                                         if snippet.chars().any(|c| { !c.is_whitespace() }) {
2967                                             break;
2968                                         }
2969                                     }
2970                                     _ => break,
2971                                 }
2972                             }
2973                             let followed_by_brace = match cm.span_to_snippet(sp) {
2974                                 Ok(ref snippet) if snippet == "{" => true,
2975                                 _ => false,
2976                             };
2977                             if let (PathSource::Expr(None), true) = (source, followed_by_brace) {
2978                                 err.span_label(
2979                                     span,
2980                                     format!("did you mean `({} {{ /* fields */ }})`?", path_str),
2981                                 );
2982                             } else {
2983                                 err.span_label(
2984                                     span,
2985                                     format!("did you mean `{} {{ /* fields */ }}`?", path_str),
2986                                 );
2987                             }
2988                         }
2989                         return (err, candidates);
2990                     }
2991                     (Def::Union(..), _) |
2992                     (Def::Variant(..), _) |
2993                     (Def::VariantCtor(_, CtorKind::Fictive), _) if ns == ValueNS => {
2994                         err.span_label(span, format!("did you mean `{} {{ /* fields */ }}`?",
2995                                                      path_str));
2996                         return (err, candidates);
2997                     }
2998                     (Def::SelfTy(..), _) if ns == ValueNS => {
2999                         err.span_label(span, fallback_label);
3000                         err.note("can't use `Self` as a constructor, you must use the \
3001                                   implemented struct");
3002                         return (err, candidates);
3003                     }
3004                     (Def::TyAlias(_), _) | (Def::AssociatedTy(..), _) if ns == ValueNS => {
3005                         err.note("can't use a type alias as a constructor");
3006                         return (err, candidates);
3007                     }
3008                     _ => {}
3009                 }
3010             }
3011
3012             // Fallback label.
3013             if !levenshtein_worked {
3014                 err.span_label(base_span, fallback_label);
3015                 this.type_ascription_suggestion(&mut err, base_span);
3016             }
3017             (err, candidates)
3018         };
3019         let report_errors = |this: &mut Self, def: Option<Def>| {
3020             let (err, candidates) = report_errors(this, def);
3021             let def_id = this.current_module.normal_ancestor_id;
3022             let node_id = this.definitions.as_local_node_id(def_id).unwrap();
3023             let better = def.is_some();
3024             this.use_injections.push(UseError { err, candidates, node_id, better });
3025             err_path_resolution()
3026         };
3027
3028         let resolution = match self.resolve_qpath_anywhere(
3029             id,
3030             qself,
3031             path,
3032             ns,
3033             span,
3034             source.defer_to_typeck(),
3035             source.global_by_default(),
3036             crate_lint,
3037         ) {
3038             Some(resolution) if resolution.unresolved_segments() == 0 => {
3039                 if is_expected(resolution.base_def()) || resolution.base_def() == Def::Err {
3040                     resolution
3041                 } else {
3042                     // Add a temporary hack to smooth the transition to new struct ctor
3043                     // visibility rules. See #38932 for more details.
3044                     let mut res = None;
3045                     if let Def::Struct(def_id) = resolution.base_def() {
3046                         if let Some((ctor_def, ctor_vis))
3047                                 = self.struct_constructors.get(&def_id).cloned() {
3048                             if is_expected(ctor_def) && self.is_accessible(ctor_vis) {
3049                                 let lint = lint::builtin::LEGACY_CONSTRUCTOR_VISIBILITY;
3050                                 self.session.buffer_lint(lint, id, span,
3051                                     "private struct constructors are not usable through \
3052                                      re-exports in outer modules",
3053                                 );
3054                                 res = Some(PathResolution::new(ctor_def));
3055                             }
3056                         }
3057                     }
3058
3059                     res.unwrap_or_else(|| report_errors(self, Some(resolution.base_def())))
3060                 }
3061             }
3062             Some(resolution) if source.defer_to_typeck() => {
3063                 // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
3064                 // or `<T>::A::B`. If `B` should be resolved in value namespace then
3065                 // it needs to be added to the trait map.
3066                 if ns == ValueNS {
3067                     let item_name = *path.last().unwrap();
3068                     let traits = self.get_traits_containing_item(item_name, ns);
3069                     self.trait_map.insert(id, traits);
3070                 }
3071                 resolution
3072             }
3073             _ => report_errors(self, None)
3074         };
3075
3076         if let PathSource::TraitItem(..) = source {} else {
3077             // Avoid recording definition of `A::B` in `<T as A>::B::C`.
3078             self.record_def(id, resolution);
3079         }
3080         resolution
3081     }
3082
3083     fn type_ascription_suggestion(&self,
3084                                   err: &mut DiagnosticBuilder,
3085                                   base_span: Span) {
3086         debug!("type_ascription_suggetion {:?}", base_span);
3087         let cm = self.session.codemap();
3088         debug!("self.current_type_ascription {:?}", self.current_type_ascription);
3089         if let Some(sp) = self.current_type_ascription.last() {
3090             let mut sp = *sp;
3091             loop {  // try to find the `:`, bail on first non-':'/non-whitespace
3092                 sp = cm.next_point(sp);
3093                 if let Ok(snippet) = cm.span_to_snippet(sp.to(cm.next_point(sp))) {
3094                     debug!("snippet {:?}", snippet);
3095                     let line_sp = cm.lookup_char_pos(sp.hi()).line;
3096                     let line_base_sp = cm.lookup_char_pos(base_span.lo()).line;
3097                     debug!("{:?} {:?}", line_sp, line_base_sp);
3098                     if snippet == ":" {
3099                         err.span_label(base_span,
3100                                        "expecting a type here because of type ascription");
3101                         if line_sp != line_base_sp {
3102                             err.span_suggestion_short(sp,
3103                                                       "did you mean to use `;` here instead?",
3104                                                       ";".to_string());
3105                         }
3106                         break;
3107                     } else if snippet.trim().len() != 0  {
3108                         debug!("tried to find type ascription `:` token, couldn't find it");
3109                         break;
3110                     }
3111                 } else {
3112                     break;
3113                 }
3114             }
3115         }
3116     }
3117
3118     fn self_type_is_available(&mut self, span: Span) -> bool {
3119         let binding = self.resolve_ident_in_lexical_scope(keywords::SelfType.ident(),
3120                                                           TypeNS, false, span);
3121         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3122     }
3123
3124     fn self_value_is_available(&mut self, self_span: Span, path_span: Span) -> bool {
3125         let ident = Ident::new(keywords::SelfValue.name(), self_span);
3126         let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, false, path_span);
3127         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3128     }
3129
3130     // Resolve in alternative namespaces if resolution in the primary namespace fails.
3131     fn resolve_qpath_anywhere(&mut self,
3132                               id: NodeId,
3133                               qself: Option<&QSelf>,
3134                               path: &[Ident],
3135                               primary_ns: Namespace,
3136                               span: Span,
3137                               defer_to_typeck: bool,
3138                               global_by_default: bool,
3139                               crate_lint: CrateLint)
3140                               -> Option<PathResolution> {
3141         let mut fin_res = None;
3142         // FIXME: can't resolve paths in macro namespace yet, macros are
3143         // processed by the little special hack below.
3144         for (i, ns) in [primary_ns, TypeNS, ValueNS, /*MacroNS*/].iter().cloned().enumerate() {
3145             if i == 0 || ns != primary_ns {
3146                 match self.resolve_qpath(id, qself, path, ns, span, global_by_default, crate_lint) {
3147                     // If defer_to_typeck, then resolution > no resolution,
3148                     // otherwise full resolution > partial resolution > no resolution.
3149                     Some(res) if res.unresolved_segments() == 0 || defer_to_typeck =>
3150                         return Some(res),
3151                     res => if fin_res.is_none() { fin_res = res },
3152                 };
3153             }
3154         }
3155         let is_global = self.global_macros.get(&path[0].name).cloned()
3156             .map(|binding| binding.get_macro(self).kind() == MacroKind::Bang).unwrap_or(false);
3157         if primary_ns != MacroNS && (is_global ||
3158                                      self.macro_names.contains(&path[0].modern())) {
3159             // Return some dummy definition, it's enough for error reporting.
3160             return Some(
3161                 PathResolution::new(Def::Macro(DefId::local(CRATE_DEF_INDEX), MacroKind::Bang))
3162             );
3163         }
3164         fin_res
3165     }
3166
3167     /// Handles paths that may refer to associated items.
3168     fn resolve_qpath(&mut self,
3169                      id: NodeId,
3170                      qself: Option<&QSelf>,
3171                      path: &[Ident],
3172                      ns: Namespace,
3173                      span: Span,
3174                      global_by_default: bool,
3175                      crate_lint: CrateLint)
3176                      -> Option<PathResolution> {
3177         debug!(
3178             "resolve_qpath(id={:?}, qself={:?}, path={:?}, \
3179              ns={:?}, span={:?}, global_by_default={:?})",
3180             id,
3181             qself,
3182             path,
3183             ns,
3184             span,
3185             global_by_default,
3186         );
3187
3188         if let Some(qself) = qself {
3189             if qself.position == 0 {
3190                 // This is a case like `<T>::B`, where there is no
3191                 // trait to resolve.  In that case, we leave the `B`
3192                 // segment to be resolved by type-check.
3193                 return Some(PathResolution::with_unresolved_segments(
3194                     Def::Mod(DefId::local(CRATE_DEF_INDEX)), path.len()
3195                 ));
3196             }
3197
3198             // Make sure `A::B` in `<T as A::B>::C` is a trait item.
3199             //
3200             // Currently, `path` names the full item (`A::B::C`, in
3201             // our example).  so we extract the prefix of that that is
3202             // the trait (the slice upto and including
3203             // `qself.position`). And then we recursively resolve that,
3204             // but with `qself` set to `None`.
3205             //
3206             // However, setting `qself` to none (but not changing the
3207             // span) loses the information about where this path
3208             // *actually* appears, so for the purposes of the crate
3209             // lint we pass along information that this is the trait
3210             // name from a fully qualified path, and this also
3211             // contains the full span (the `CrateLint::QPathTrait`).
3212             let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
3213             let res = self.smart_resolve_path_fragment(
3214                 id,
3215                 None,
3216                 &path[..qself.position + 1],
3217                 span,
3218                 PathSource::TraitItem(ns),
3219                 CrateLint::QPathTrait {
3220                     qpath_id: id,
3221                     qpath_span: qself.path_span,
3222                 },
3223             );
3224
3225             // The remaining segments (the `C` in our example) will
3226             // have to be resolved by type-check, since that requires doing
3227             // trait resolution.
3228             return Some(PathResolution::with_unresolved_segments(
3229                 res.base_def(), res.unresolved_segments() + path.len() - qself.position - 1
3230             ));
3231         }
3232
3233         let result = match self.resolve_path(
3234             &path,
3235             Some(ns),
3236             true,
3237             span,
3238             crate_lint,
3239         ) {
3240             PathResult::NonModule(path_res) => path_res,
3241             PathResult::Module(module) if !module.is_normal() => {
3242                 PathResolution::new(module.def().unwrap())
3243             }
3244             // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
3245             // don't report an error right away, but try to fallback to a primitive type.
3246             // So, we are still able to successfully resolve something like
3247             //
3248             // use std::u8; // bring module u8 in scope
3249             // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
3250             //     u8::max_value() // OK, resolves to associated function <u8>::max_value,
3251             //                     // not to non-existent std::u8::max_value
3252             // }
3253             //
3254             // Such behavior is required for backward compatibility.
3255             // The same fallback is used when `a` resolves to nothing.
3256             PathResult::Module(..) | PathResult::Failed(..)
3257                     if (ns == TypeNS || path.len() > 1) &&
3258                        self.primitive_type_table.primitive_types
3259                            .contains_key(&path[0].name) => {
3260                 let prim = self.primitive_type_table.primitive_types[&path[0].name];
3261                 PathResolution::with_unresolved_segments(Def::PrimTy(prim), path.len() - 1)
3262             }
3263             PathResult::Module(module) => PathResolution::new(module.def().unwrap()),
3264             PathResult::Failed(span, msg, false) => {
3265                 resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
3266                 err_path_resolution()
3267             }
3268             PathResult::Failed(..) => return None,
3269             PathResult::Indeterminate => bug!("indetermined path result in resolve_qpath"),
3270         };
3271
3272         if path.len() > 1 && !global_by_default && result.base_def() != Def::Err &&
3273            path[0].name != keywords::CrateRoot.name() &&
3274            path[0].name != keywords::DollarCrate.name() {
3275             let unqualified_result = {
3276                 match self.resolve_path(
3277                     &[*path.last().unwrap()],
3278                     Some(ns),
3279                     false,
3280                     span,
3281                     CrateLint::No,
3282                 ) {
3283                     PathResult::NonModule(path_res) => path_res.base_def(),
3284                     PathResult::Module(module) => module.def().unwrap(),
3285                     _ => return Some(result),
3286                 }
3287             };
3288             if result.base_def() == unqualified_result {
3289                 let lint = lint::builtin::UNUSED_QUALIFICATIONS;
3290                 self.session.buffer_lint(lint, id, span, "unnecessary qualification")
3291             }
3292         }
3293
3294         Some(result)
3295     }
3296
3297     fn resolve_path(
3298         &mut self,
3299         path: &[Ident],
3300         opt_ns: Option<Namespace>, // `None` indicates a module path
3301         record_used: bool,
3302         path_span: Span,
3303         crate_lint: CrateLint,
3304     ) -> PathResult<'a> {
3305         let mut module = None;
3306         let mut allow_super = true;
3307         let mut second_binding = None;
3308
3309         debug!(
3310             "resolve_path(path={:?}, opt_ns={:?}, record_used={:?}, \
3311              path_span={:?}, crate_lint={:?})",
3312             path,
3313             opt_ns,
3314             record_used,
3315             path_span,
3316             crate_lint,
3317         );
3318
3319         for (i, &ident) in path.iter().enumerate() {
3320             debug!("resolve_path ident {} {:?}", i, ident);
3321             let is_last = i == path.len() - 1;
3322             let ns = if is_last { opt_ns.unwrap_or(TypeNS) } else { TypeNS };
3323             let name = ident.name;
3324
3325             if i == 0 && ns == TypeNS && name == keywords::SelfValue.name() {
3326                 let mut ctxt = ident.span.ctxt().modern();
3327                 module = Some(self.resolve_self(&mut ctxt, self.current_module));
3328                 continue
3329             } else if allow_super && ns == TypeNS && name == keywords::Super.name() {
3330                 let mut ctxt = ident.span.ctxt().modern();
3331                 let self_module = match i {
3332                     0 => self.resolve_self(&mut ctxt, self.current_module),
3333                     _ => module.unwrap(),
3334                 };
3335                 if let Some(parent) = self_module.parent {
3336                     module = Some(self.resolve_self(&mut ctxt, parent));
3337                     continue
3338                 } else {
3339                     let msg = "There are too many initial `super`s.".to_string();
3340                     return PathResult::Failed(ident.span, msg, false);
3341                 }
3342             } else if i == 0 && ns == TypeNS && name == keywords::Extern.name() {
3343                 continue;
3344             }
3345             allow_super = false;
3346
3347             if ns == TypeNS {
3348                 if (i == 0 && name == keywords::CrateRoot.name()) ||
3349                    (i == 0 && name == keywords::Crate.name()) ||
3350                    (i == 1 && name == keywords::Crate.name() &&
3351                               path[0].name == keywords::CrateRoot.name()) {
3352                     // `::a::b` or `::crate::a::b`
3353                     module = Some(self.resolve_crate_root(ident.span.ctxt(), false));
3354                     continue
3355                 } else if i == 0 && name == keywords::DollarCrate.name() {
3356                     // `$crate::a::b`
3357                     module = Some(self.resolve_crate_root(ident.span.ctxt(), true));
3358                     continue
3359                 } else if i == 1 && !ident.is_path_segment_keyword() {
3360                     let prev_name = path[0].name;
3361                     if prev_name == keywords::Extern.name() ||
3362                        prev_name == keywords::CrateRoot.name() &&
3363                        self.session.features_untracked().extern_absolute_paths &&
3364                        self.session.rust_2018() {
3365                         // `::extern_crate::a::b`
3366                         let crate_id = self.crate_loader.process_path_extern(name, ident.span);
3367                         let crate_root =
3368                             self.get_module(DefId { krate: crate_id, index: CRATE_DEF_INDEX });
3369                         self.populate_module_if_necessary(crate_root);
3370                         module = Some(crate_root);
3371                         continue
3372                     }
3373                 }
3374             }
3375
3376             // Report special messages for path segment keywords in wrong positions.
3377             if name == keywords::CrateRoot.name() && i != 0 ||
3378                name == keywords::DollarCrate.name() && i != 0 ||
3379                name == keywords::SelfValue.name() && i != 0 ||
3380                name == keywords::SelfType.name() && i != 0 ||
3381                name == keywords::Super.name() && i != 0 ||
3382                name == keywords::Extern.name() && i != 0 ||
3383                // we allow crate::foo and ::crate::foo but nothing else
3384                name == keywords::Crate.name() && i > 1 &&
3385                     path[0].name != keywords::CrateRoot.name() ||
3386                name == keywords::Crate.name() && path.len() == 1 {
3387                 let name_str = if name == keywords::CrateRoot.name() {
3388                     format!("crate root")
3389                 } else {
3390                     format!("`{}`", name)
3391                 };
3392                 let msg = if i == 1 && path[0].name == keywords::CrateRoot.name() {
3393                     format!("global paths cannot start with {}", name_str)
3394                 } else {
3395                     format!("{} in paths can only be used in start position", name_str)
3396                 };
3397                 return PathResult::Failed(ident.span, msg, false);
3398             }
3399
3400             let binding = if let Some(module) = module {
3401                 self.resolve_ident_in_module(module, ident, ns, false, record_used, path_span)
3402             } else if opt_ns == Some(MacroNS) {
3403                 self.resolve_lexical_macro_path_segment(ident, ns, record_used, path_span)
3404                     .map(MacroBinding::binding)
3405             } else {
3406                 match self.resolve_ident_in_lexical_scope(ident, ns, record_used, path_span) {
3407                     // we found a locally-imported or available item/module
3408                     Some(LexicalScopeBinding::Item(binding)) => Ok(binding),
3409                     // we found a local variable or type param
3410                     Some(LexicalScopeBinding::Def(def))
3411                             if opt_ns == Some(TypeNS) || opt_ns == Some(ValueNS) => {
3412                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3413                             def, path.len() - 1
3414                         ));
3415                     }
3416                     _ => Err(if record_used { Determined } else { Undetermined }),
3417                 }
3418             };
3419
3420             match binding {
3421                 Ok(binding) => {
3422                     if i == 1 {
3423                         second_binding = Some(binding);
3424                     }
3425                     let def = binding.def();
3426                     let maybe_assoc = opt_ns != Some(MacroNS) && PathSource::Type.is_expected(def);
3427                     if let Some(next_module) = binding.module() {
3428                         module = Some(next_module);
3429                     } else if def == Def::Err {
3430                         return PathResult::NonModule(err_path_resolution());
3431                     } else if opt_ns.is_some() && (is_last || maybe_assoc) {
3432                         self.lint_if_path_starts_with_module(
3433                             crate_lint,
3434                             path,
3435                             path_span,
3436                             second_binding,
3437                         );
3438                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3439                             def, path.len() - i - 1
3440                         ));
3441                     } else {
3442                         return PathResult::Failed(ident.span,
3443                                                   format!("Not a module `{}`", ident),
3444                                                   is_last);
3445                     }
3446                 }
3447                 Err(Undetermined) => return PathResult::Indeterminate,
3448                 Err(Determined) => {
3449                     if let Some(module) = module {
3450                         if opt_ns.is_some() && !module.is_normal() {
3451                             return PathResult::NonModule(PathResolution::with_unresolved_segments(
3452                                 module.def().unwrap(), path.len() - i
3453                             ));
3454                         }
3455                     }
3456                     let msg = if module.and_then(ModuleData::def) == self.graph_root.def() {
3457                         let is_mod = |def| match def { Def::Mod(..) => true, _ => false };
3458                         let mut candidates =
3459                             self.lookup_import_candidates(name, TypeNS, is_mod);
3460                         candidates.sort_by_cached_key(|c| {
3461                             (c.path.segments.len(), c.path.to_string())
3462                         });
3463                         if let Some(candidate) = candidates.get(0) {
3464                             format!("Did you mean `{}`?", candidate.path)
3465                         } else {
3466                             format!("Maybe a missing `extern crate {};`?", ident)
3467                         }
3468                     } else if i == 0 {
3469                         format!("Use of undeclared type or module `{}`", ident)
3470                     } else {
3471                         format!("Could not find `{}` in `{}`", ident, path[i - 1])
3472                     };
3473                     return PathResult::Failed(ident.span, msg, is_last);
3474                 }
3475             }
3476         }
3477
3478         self.lint_if_path_starts_with_module(crate_lint, path, path_span, second_binding);
3479
3480         PathResult::Module(module.unwrap_or(self.graph_root))
3481     }
3482
3483     fn lint_if_path_starts_with_module(
3484         &self,
3485         crate_lint: CrateLint,
3486         path: &[Ident],
3487         path_span: Span,
3488         second_binding: Option<&NameBinding>,
3489     ) {
3490         let (diag_id, diag_span) = match crate_lint {
3491             CrateLint::No => return,
3492             CrateLint::SimplePath(id) => (id, path_span),
3493             CrateLint::UsePath { root_id, root_span } => (root_id, root_span),
3494             CrateLint::QPathTrait { qpath_id, qpath_span } => (qpath_id, qpath_span),
3495         };
3496
3497         let first_name = match path.get(0) {
3498             Some(ident) => ident.name,
3499             None => return,
3500         };
3501
3502         // We're only interested in `use` paths which should start with
3503         // `{{root}}` or `extern` currently.
3504         if first_name != keywords::Extern.name() && first_name != keywords::CrateRoot.name() {
3505             return
3506         }
3507
3508         match path.get(1) {
3509             // If this import looks like `crate::...` it's already good
3510             Some(name) if name.name == keywords::Crate.name() => return,
3511             // Otherwise go below to see if it's an extern crate
3512             Some(_) => {}
3513             // If the path has length one (and it's `CrateRoot` most likely)
3514             // then we don't know whether we're gonna be importing a crate or an
3515             // item in our crate. Defer this lint to elsewhere
3516             None => return,
3517         }
3518
3519         // If the first element of our path was actually resolved to an
3520         // `ExternCrate` (also used for `crate::...`) then no need to issue a
3521         // warning, this looks all good!
3522         if let Some(binding) = second_binding {
3523             if let NameBindingKind::Import { directive: d, .. } = binding.kind {
3524                 // Careful: we still want to rewrite paths from
3525                 // renamed extern crates.
3526                 if let ImportDirectiveSubclass::ExternCrate(None) = d.subclass {
3527                     return
3528                 }
3529             }
3530         }
3531
3532         self.lint_path_starts_with_module(diag_id, diag_span);
3533     }
3534
3535     fn lint_path_starts_with_module(&self, id: NodeId, span: Span) {
3536         // In the 2018 edition this lint is a hard error, so nothing to do
3537         if self.session.rust_2018() {
3538             return
3539         }
3540         // In the 2015 edition there's no use in emitting lints unless the
3541         // crate's already enabled the feature that we're going to suggest
3542         if !self.session.features_untracked().crate_in_paths {
3543             return
3544         }
3545         let diag = lint::builtin::BuiltinLintDiagnostics
3546             ::AbsPathWithModule(span);
3547         self.session.buffer_lint_with_diagnostic(
3548             lint::builtin::ABSOLUTE_PATHS_NOT_STARTING_WITH_CRATE,
3549             id, span,
3550             "absolute paths must start with `self`, `super`, \
3551             `crate`, or an external crate name in the 2018 edition",
3552             diag);
3553     }
3554
3555     // Resolve a local definition, potentially adjusting for closures.
3556     fn adjust_local_def(&mut self,
3557                         ns: Namespace,
3558                         rib_index: usize,
3559                         mut def: Def,
3560                         record_used: bool,
3561                         span: Span) -> Def {
3562         let ribs = &self.ribs[ns][rib_index + 1..];
3563
3564         // An invalid forward use of a type parameter from a previous default.
3565         if let ForwardTyParamBanRibKind = self.ribs[ns][rib_index].kind {
3566             if record_used {
3567                 resolve_error(self, span, ResolutionError::ForwardDeclaredTyParam);
3568             }
3569             assert_eq!(def, Def::Err);
3570             return Def::Err;
3571         }
3572
3573         match def {
3574             Def::Upvar(..) => {
3575                 span_bug!(span, "unexpected {:?} in bindings", def)
3576             }
3577             Def::Local(node_id) => {
3578                 for rib in ribs {
3579                     match rib.kind {
3580                         NormalRibKind | ModuleRibKind(..) | MacroDefinition(..) |
3581                         ForwardTyParamBanRibKind => {
3582                             // Nothing to do. Continue.
3583                         }
3584                         ClosureRibKind(function_id) => {
3585                             let prev_def = def;
3586
3587                             let seen = self.freevars_seen
3588                                            .entry(function_id)
3589                                            .or_insert_with(|| NodeMap());
3590                             if let Some(&index) = seen.get(&node_id) {
3591                                 def = Def::Upvar(node_id, index, function_id);
3592                                 continue;
3593                             }
3594                             let vec = self.freevars
3595                                           .entry(function_id)
3596                                           .or_insert_with(|| vec![]);
3597                             let depth = vec.len();
3598                             def = Def::Upvar(node_id, depth, function_id);
3599
3600                             if record_used {
3601                                 vec.push(Freevar {
3602                                     def: prev_def,
3603                                     span,
3604                                 });
3605                                 seen.insert(node_id, depth);
3606                             }
3607                         }
3608                         ItemRibKind | TraitOrImplItemRibKind => {
3609                             // This was an attempt to access an upvar inside a
3610                             // named function item. This is not allowed, so we
3611                             // report an error.
3612                             if record_used {
3613                                 resolve_error(self, span,
3614                                         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem);
3615                             }
3616                             return Def::Err;
3617                         }
3618                         ConstantItemRibKind => {
3619                             // Still doesn't deal with upvars
3620                             if record_used {
3621                                 resolve_error(self, span,
3622                                         ResolutionError::AttemptToUseNonConstantValueInConstant);
3623                             }
3624                             return Def::Err;
3625                         }
3626                     }
3627                 }
3628             }
3629             Def::TyParam(..) | Def::SelfTy(..) => {
3630                 for rib in ribs {
3631                     match rib.kind {
3632                         NormalRibKind | TraitOrImplItemRibKind | ClosureRibKind(..) |
3633                         ModuleRibKind(..) | MacroDefinition(..) | ForwardTyParamBanRibKind |
3634                         ConstantItemRibKind => {
3635                             // Nothing to do. Continue.
3636                         }
3637                         ItemRibKind => {
3638                             // This was an attempt to use a type parameter outside
3639                             // its scope.
3640                             if record_used {
3641                                 resolve_error(self, span,
3642                                     ResolutionError::TypeParametersFromOuterFunction(def));
3643                             }
3644                             return Def::Err;
3645                         }
3646                     }
3647                 }
3648             }
3649             _ => {}
3650         }
3651         return def;
3652     }
3653
3654     fn lookup_assoc_candidate<FilterFn>(&mut self,
3655                                         ident: Ident,
3656                                         ns: Namespace,
3657                                         filter_fn: FilterFn)
3658                                         -> Option<AssocSuggestion>
3659         where FilterFn: Fn(Def) -> bool
3660     {
3661         fn extract_node_id(t: &Ty) -> Option<NodeId> {
3662             match t.node {
3663                 TyKind::Path(None, _) => Some(t.id),
3664                 TyKind::Rptr(_, ref mut_ty) => extract_node_id(&mut_ty.ty),
3665                 // This doesn't handle the remaining `Ty` variants as they are not
3666                 // that commonly the self_type, it might be interesting to provide
3667                 // support for those in future.
3668                 _ => None,
3669             }
3670         }
3671
3672         // Fields are generally expected in the same contexts as locals.
3673         if filter_fn(Def::Local(ast::DUMMY_NODE_ID)) {
3674             if let Some(node_id) = self.current_self_type.as_ref().and_then(extract_node_id) {
3675                 // Look for a field with the same name in the current self_type.
3676                 if let Some(resolution) = self.def_map.get(&node_id) {
3677                     match resolution.base_def() {
3678                         Def::Struct(did) | Def::Union(did)
3679                                 if resolution.unresolved_segments() == 0 => {
3680                             if let Some(field_names) = self.field_names.get(&did) {
3681                                 if field_names.iter().any(|&field_name| ident.name == field_name) {
3682                                     return Some(AssocSuggestion::Field);
3683                                 }
3684                             }
3685                         }
3686                         _ => {}
3687                     }
3688                 }
3689             }
3690         }
3691
3692         // Look for associated items in the current trait.
3693         if let Some((module, _)) = self.current_trait_ref {
3694             if let Ok(binding) =
3695                     self.resolve_ident_in_module(module, ident, ns, false, false, module.span) {
3696                 let def = binding.def();
3697                 if filter_fn(def) {
3698                     return Some(if self.has_self.contains(&def.def_id()) {
3699                         AssocSuggestion::MethodWithSelf
3700                     } else {
3701                         AssocSuggestion::AssocItem
3702                     });
3703                 }
3704             }
3705         }
3706
3707         None
3708     }
3709
3710     fn lookup_typo_candidate<FilterFn>(&mut self,
3711                                        path: &[Ident],
3712                                        ns: Namespace,
3713                                        filter_fn: FilterFn,
3714                                        span: Span)
3715                                        -> Option<Symbol>
3716         where FilterFn: Fn(Def) -> bool
3717     {
3718         let add_module_candidates = |module: Module, names: &mut Vec<Name>| {
3719             for (&(ident, _), resolution) in module.resolutions.borrow().iter() {
3720                 if let Some(binding) = resolution.borrow().binding {
3721                     if filter_fn(binding.def()) {
3722                         names.push(ident.name);
3723                     }
3724                 }
3725             }
3726         };
3727
3728         let mut names = Vec::new();
3729         if path.len() == 1 {
3730             // Search in lexical scope.
3731             // Walk backwards up the ribs in scope and collect candidates.
3732             for rib in self.ribs[ns].iter().rev() {
3733                 // Locals and type parameters
3734                 for (ident, def) in &rib.bindings {
3735                     if filter_fn(*def) {
3736                         names.push(ident.name);
3737                     }
3738                 }
3739                 // Items in scope
3740                 if let ModuleRibKind(module) = rib.kind {
3741                     // Items from this module
3742                     add_module_candidates(module, &mut names);
3743
3744                     if let ModuleKind::Block(..) = module.kind {
3745                         // We can see through blocks
3746                     } else {
3747                         // Items from the prelude
3748                         if !module.no_implicit_prelude {
3749                             names.extend(self.extern_prelude.iter().cloned());
3750                             if let Some(prelude) = self.prelude {
3751                                 add_module_candidates(prelude, &mut names);
3752                             }
3753                         }
3754                         break;
3755                     }
3756                 }
3757             }
3758             // Add primitive types to the mix
3759             if filter_fn(Def::PrimTy(TyBool)) {
3760                 for (name, _) in &self.primitive_type_table.primitive_types {
3761                     names.push(*name);
3762                 }
3763             }
3764         } else {
3765             // Search in module.
3766             let mod_path = &path[..path.len() - 1];
3767             if let PathResult::Module(module) = self.resolve_path(mod_path, Some(TypeNS),
3768                                                                   false, span, CrateLint::No) {
3769                 add_module_candidates(module, &mut names);
3770             }
3771         }
3772
3773         let name = path[path.len() - 1].name;
3774         // Make sure error reporting is deterministic.
3775         names.sort_by_cached_key(|name| name.as_str());
3776         match find_best_match_for_name(names.iter(), &name.as_str(), None) {
3777             Some(found) if found != name => Some(found),
3778             _ => None,
3779         }
3780     }
3781
3782     fn with_resolved_label<F>(&mut self, label: Option<Label>, id: NodeId, f: F)
3783         where F: FnOnce(&mut Resolver)
3784     {
3785         if let Some(label) = label {
3786             self.unused_labels.insert(id, label.ident.span);
3787             let def = Def::Label(id);
3788             self.with_label_rib(|this| {
3789                 this.label_ribs.last_mut().unwrap().bindings.insert(label.ident, def);
3790                 f(this);
3791             });
3792         } else {
3793             f(self);
3794         }
3795     }
3796
3797     fn resolve_labeled_block(&mut self, label: Option<Label>, id: NodeId, block: &Block) {
3798         self.with_resolved_label(label, id, |this| this.visit_block(block));
3799     }
3800
3801     fn resolve_expr(&mut self, expr: &Expr, parent: Option<&Expr>) {
3802         // First, record candidate traits for this expression if it could
3803         // result in the invocation of a method call.
3804
3805         self.record_candidate_traits_for_expr_if_necessary(expr);
3806
3807         // Next, resolve the node.
3808         match expr.node {
3809             ExprKind::Path(ref qself, ref path) => {
3810                 self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
3811                 visit::walk_expr(self, expr);
3812             }
3813
3814             ExprKind::Struct(ref path, ..) => {
3815                 self.smart_resolve_path(expr.id, None, path, PathSource::Struct);
3816                 visit::walk_expr(self, expr);
3817             }
3818
3819             ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
3820                 match self.search_label(label.ident, |rib, id| rib.bindings.get(&id).cloned()) {
3821                     None => {
3822                         // Search again for close matches...
3823                         // Picks the first label that is "close enough", which is not necessarily
3824                         // the closest match
3825                         let close_match = self.search_label(label.ident, |rib, ident| {
3826                             let names = rib.bindings.iter().map(|(id, _)| &id.name);
3827                             find_best_match_for_name(names, &*ident.as_str(), None)
3828                         });
3829                         self.record_def(expr.id, err_path_resolution());
3830                         resolve_error(self,
3831                                       label.ident.span,
3832                                       ResolutionError::UndeclaredLabel(&label.ident.as_str(),
3833                                                                        close_match));
3834                     }
3835                     Some(Def::Label(id)) => {
3836                         // Since this def is a label, it is never read.
3837                         self.record_def(expr.id, PathResolution::new(Def::Label(id)));
3838                         self.unused_labels.remove(&id);
3839                     }
3840                     Some(_) => {
3841                         span_bug!(expr.span, "label wasn't mapped to a label def!");
3842                     }
3843                 }
3844
3845                 // visit `break` argument if any
3846                 visit::walk_expr(self, expr);
3847             }
3848
3849             ExprKind::IfLet(ref pats, ref subexpression, ref if_block, ref optional_else) => {
3850                 self.visit_expr(subexpression);
3851
3852                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
3853                 let mut bindings_list = FxHashMap();
3854                 for pat in pats {
3855                     self.resolve_pattern(pat, PatternSource::IfLet, &mut bindings_list);
3856                 }
3857                 // This has to happen *after* we determine which pat_idents are variants
3858                 self.check_consistent_bindings(pats);
3859                 self.visit_block(if_block);
3860                 self.ribs[ValueNS].pop();
3861
3862                 optional_else.as_ref().map(|expr| self.visit_expr(expr));
3863             }
3864
3865             ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),
3866
3867             ExprKind::While(ref subexpression, ref block, label) => {
3868                 self.with_resolved_label(label, expr.id, |this| {
3869                     this.visit_expr(subexpression);
3870                     this.visit_block(block);
3871                 });
3872             }
3873
3874             ExprKind::WhileLet(ref pats, ref subexpression, ref block, label) => {
3875                 self.with_resolved_label(label, expr.id, |this| {
3876                     this.visit_expr(subexpression);
3877                     this.ribs[ValueNS].push(Rib::new(NormalRibKind));
3878                     let mut bindings_list = FxHashMap();
3879                     for pat in pats {
3880                         this.resolve_pattern(pat, PatternSource::WhileLet, &mut bindings_list);
3881                     }
3882                     // This has to happen *after* we determine which pat_idents are variants
3883                     this.check_consistent_bindings(pats);
3884                     this.visit_block(block);
3885                     this.ribs[ValueNS].pop();
3886                 });
3887             }
3888
3889             ExprKind::ForLoop(ref pattern, ref subexpression, ref block, label) => {
3890                 self.visit_expr(subexpression);
3891                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
3892                 self.resolve_pattern(pattern, PatternSource::For, &mut FxHashMap());
3893
3894                 self.resolve_labeled_block(label, expr.id, block);
3895
3896                 self.ribs[ValueNS].pop();
3897             }
3898
3899             ExprKind::Block(ref block, label) => self.resolve_labeled_block(label, block.id, block),
3900
3901             // Equivalent to `visit::walk_expr` + passing some context to children.
3902             ExprKind::Field(ref subexpression, _) => {
3903                 self.resolve_expr(subexpression, Some(expr));
3904             }
3905             ExprKind::MethodCall(ref segment, ref arguments) => {
3906                 let mut arguments = arguments.iter();
3907                 self.resolve_expr(arguments.next().unwrap(), Some(expr));
3908                 for argument in arguments {
3909                     self.resolve_expr(argument, None);
3910                 }
3911                 self.visit_path_segment(expr.span, segment);
3912             }
3913
3914             ExprKind::Call(ref callee, ref arguments) => {
3915                 self.resolve_expr(callee, Some(expr));
3916                 for argument in arguments {
3917                     self.resolve_expr(argument, None);
3918                 }
3919             }
3920             ExprKind::Type(ref type_expr, _) => {
3921                 self.current_type_ascription.push(type_expr.span);
3922                 visit::walk_expr(self, expr);
3923                 self.current_type_ascription.pop();
3924             }
3925             // Resolve the body of async exprs inside the async closure to which they desugar
3926             ExprKind::Async(_, async_closure_id, ref block) => {
3927                 let rib_kind = ClosureRibKind(async_closure_id);
3928                 self.ribs[ValueNS].push(Rib::new(rib_kind));
3929                 self.label_ribs.push(Rib::new(rib_kind));
3930                 self.visit_block(&block);
3931                 self.label_ribs.pop();
3932                 self.ribs[ValueNS].pop();
3933             }
3934             // `async |x| ...` gets desugared to `|x| future_from_generator(|| ...)`, so we need to
3935             // resolve the arguments within the proper scopes so that usages of them inside the
3936             // closure are detected as upvars rather than normal closure arg usages.
3937             ExprKind::Closure(
3938                 _, IsAsync::Async(inner_closure_id), _, ref fn_decl, ref body, _span) =>
3939             {
3940                 let rib_kind = ClosureRibKind(expr.id);
3941                 self.ribs[ValueNS].push(Rib::new(rib_kind));
3942                 self.label_ribs.push(Rib::new(rib_kind));
3943                 // Resolve arguments:
3944                 let mut bindings_list = FxHashMap();
3945                 for argument in &fn_decl.inputs {
3946                     self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
3947                     self.visit_ty(&argument.ty);
3948                 }
3949                 // No need to resolve return type-- the outer closure return type is
3950                 // FunctionRetTy::Default
3951
3952                 // Now resolve the inner closure
3953                 {
3954                     let rib_kind = ClosureRibKind(inner_closure_id);
3955                     self.ribs[ValueNS].push(Rib::new(rib_kind));
3956                     self.label_ribs.push(Rib::new(rib_kind));
3957                     // No need to resolve arguments: the inner closure has none.
3958                     // Resolve the return type:
3959                     visit::walk_fn_ret_ty(self, &fn_decl.output);
3960                     // Resolve the body
3961                     self.visit_expr(body);
3962                     self.label_ribs.pop();
3963                     self.ribs[ValueNS].pop();
3964                 }
3965                 self.label_ribs.pop();
3966                 self.ribs[ValueNS].pop();
3967             }
3968             _ => {
3969                 visit::walk_expr(self, expr);
3970             }
3971         }
3972     }
3973
3974     fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &Expr) {
3975         match expr.node {
3976             ExprKind::Field(_, ident) => {
3977                 // FIXME(#6890): Even though you can't treat a method like a
3978                 // field, we need to add any trait methods we find that match
3979                 // the field name so that we can do some nice error reporting
3980                 // later on in typeck.
3981                 let traits = self.get_traits_containing_item(ident, ValueNS);
3982                 self.trait_map.insert(expr.id, traits);
3983             }
3984             ExprKind::MethodCall(ref segment, ..) => {
3985                 debug!("(recording candidate traits for expr) recording traits for {}",
3986                        expr.id);
3987                 let traits = self.get_traits_containing_item(segment.ident, ValueNS);
3988                 self.trait_map.insert(expr.id, traits);
3989             }
3990             _ => {
3991                 // Nothing to do.
3992             }
3993         }
3994     }
3995
3996     fn get_traits_containing_item(&mut self, mut ident: Ident, ns: Namespace)
3997                                   -> Vec<TraitCandidate> {
3998         debug!("(getting traits containing item) looking for '{}'", ident.name);
3999
4000         let mut found_traits = Vec::new();
4001         // Look for the current trait.
4002         if let Some((module, _)) = self.current_trait_ref {
4003             if self.resolve_ident_in_module(module, ident, ns, false, false, module.span).is_ok() {
4004                 let def_id = module.def_id().unwrap();
4005                 found_traits.push(TraitCandidate { def_id: def_id, import_id: None });
4006             }
4007         }
4008
4009         ident.span = ident.span.modern();
4010         let mut search_module = self.current_module;
4011         loop {
4012             self.get_traits_in_module_containing_item(ident, ns, search_module, &mut found_traits);
4013             search_module =
4014                 unwrap_or!(self.hygienic_lexical_parent(search_module, &mut ident.span), break);
4015         }
4016
4017         if let Some(prelude) = self.prelude {
4018             if !search_module.no_implicit_prelude {
4019                 self.get_traits_in_module_containing_item(ident, ns, prelude, &mut found_traits);
4020             }
4021         }
4022
4023         found_traits
4024     }
4025
4026     fn get_traits_in_module_containing_item(&mut self,
4027                                             ident: Ident,
4028                                             ns: Namespace,
4029                                             module: Module<'a>,
4030                                             found_traits: &mut Vec<TraitCandidate>) {
4031         let mut traits = module.traits.borrow_mut();
4032         if traits.is_none() {
4033             let mut collected_traits = Vec::new();
4034             module.for_each_child(|name, ns, binding| {
4035                 if ns != TypeNS { return }
4036                 if let Def::Trait(_) = binding.def() {
4037                     collected_traits.push((name, binding));
4038                 }
4039             });
4040             *traits = Some(collected_traits.into_boxed_slice());
4041         }
4042
4043         for &(trait_name, binding) in traits.as_ref().unwrap().iter() {
4044             let module = binding.module().unwrap();
4045             let mut ident = ident;
4046             if ident.span.glob_adjust(module.expansion, binding.span.ctxt().modern()).is_none() {
4047                 continue
4048             }
4049             if self.resolve_ident_in_module_unadjusted(module, ident, ns, false, false, module.span)
4050                    .is_ok() {
4051                 let import_id = match binding.kind {
4052                     NameBindingKind::Import { directive, .. } => {
4053                         self.maybe_unused_trait_imports.insert(directive.id);
4054                         self.add_to_glob_map(directive.id, trait_name);
4055                         Some(directive.id)
4056                     }
4057                     _ => None,
4058                 };
4059                 let trait_def_id = module.def_id().unwrap();
4060                 found_traits.push(TraitCandidate { def_id: trait_def_id, import_id: import_id });
4061             }
4062         }
4063     }
4064
4065     /// When name resolution fails, this method can be used to look up candidate
4066     /// entities with the expected name. It allows filtering them using the
4067     /// supplied predicate (which should be used to only accept the types of
4068     /// definitions expected e.g. traits). The lookup spans across all crates.
4069     ///
4070     /// NOTE: The method does not look into imports, but this is not a problem,
4071     /// since we report the definitions (thus, the de-aliased imports).
4072     fn lookup_import_candidates<FilterFn>(&mut self,
4073                                           lookup_name: Name,
4074                                           namespace: Namespace,
4075                                           filter_fn: FilterFn)
4076                                           -> Vec<ImportSuggestion>
4077         where FilterFn: Fn(Def) -> bool
4078     {
4079         let mut candidates = Vec::new();
4080         let mut worklist = Vec::new();
4081         let mut seen_modules = FxHashSet();
4082         worklist.push((self.graph_root, Vec::new(), false));
4083
4084         while let Some((in_module,
4085                         path_segments,
4086                         in_module_is_extern)) = worklist.pop() {
4087             self.populate_module_if_necessary(in_module);
4088
4089             // We have to visit module children in deterministic order to avoid
4090             // instabilities in reported imports (#43552).
4091             in_module.for_each_child_stable(|ident, ns, name_binding| {
4092                 // avoid imports entirely
4093                 if name_binding.is_import() && !name_binding.is_extern_crate() { return; }
4094                 // avoid non-importable candidates as well
4095                 if !name_binding.is_importable() { return; }
4096
4097                 // collect results based on the filter function
4098                 if ident.name == lookup_name && ns == namespace {
4099                     if filter_fn(name_binding.def()) {
4100                         // create the path
4101                         let mut segms = path_segments.clone();
4102                         segms.push(ast::PathSegment::from_ident(ident));
4103                         let path = Path {
4104                             span: name_binding.span,
4105                             segments: segms,
4106                         };
4107                         // the entity is accessible in the following cases:
4108                         // 1. if it's defined in the same crate, it's always
4109                         // accessible (since private entities can be made public)
4110                         // 2. if it's defined in another crate, it's accessible
4111                         // only if both the module is public and the entity is
4112                         // declared as public (due to pruning, we don't explore
4113                         // outside crate private modules => no need to check this)
4114                         if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
4115                             candidates.push(ImportSuggestion { path: path });
4116                         }
4117                     }
4118                 }
4119
4120                 // collect submodules to explore
4121                 if let Some(module) = name_binding.module() {
4122                     // form the path
4123                     let mut path_segments = path_segments.clone();
4124                     path_segments.push(ast::PathSegment::from_ident(ident));
4125
4126                     if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
4127                         // add the module to the lookup
4128                         let is_extern = in_module_is_extern || name_binding.is_extern_crate();
4129                         if seen_modules.insert(module.def_id().unwrap()) {
4130                             worklist.push((module, path_segments, is_extern));
4131                         }
4132                     }
4133                 }
4134             })
4135         }
4136
4137         candidates
4138     }
4139
4140     fn find_module(&mut self,
4141                    module_def: Def)
4142                    -> Option<(Module<'a>, ImportSuggestion)>
4143     {
4144         let mut result = None;
4145         let mut worklist = Vec::new();
4146         let mut seen_modules = FxHashSet();
4147         worklist.push((self.graph_root, Vec::new()));
4148
4149         while let Some((in_module, path_segments)) = worklist.pop() {
4150             // abort if the module is already found
4151             if let Some(_) = result { break; }
4152
4153             self.populate_module_if_necessary(in_module);
4154
4155             in_module.for_each_child_stable(|ident, _, name_binding| {
4156                 // abort if the module is already found or if name_binding is private external
4157                 if result.is_some() || !name_binding.vis.is_visible_locally() {
4158                     return
4159                 }
4160                 if let Some(module) = name_binding.module() {
4161                     // form the path
4162                     let mut path_segments = path_segments.clone();
4163                     path_segments.push(ast::PathSegment::from_ident(ident));
4164                     if module.def() == Some(module_def) {
4165                         let path = Path {
4166                             span: name_binding.span,
4167                             segments: path_segments,
4168                         };
4169                         result = Some((module, ImportSuggestion { path: path }));
4170                     } else {
4171                         // add the module to the lookup
4172                         if seen_modules.insert(module.def_id().unwrap()) {
4173                             worklist.push((module, path_segments));
4174                         }
4175                     }
4176                 }
4177             });
4178         }
4179
4180         result
4181     }
4182
4183     fn collect_enum_variants(&mut self, enum_def: Def) -> Option<Vec<Path>> {
4184         if let Def::Enum(..) = enum_def {} else {
4185             panic!("Non-enum def passed to collect_enum_variants: {:?}", enum_def)
4186         }
4187
4188         self.find_module(enum_def).map(|(enum_module, enum_import_suggestion)| {
4189             self.populate_module_if_necessary(enum_module);
4190
4191             let mut variants = Vec::new();
4192             enum_module.for_each_child_stable(|ident, _, name_binding| {
4193                 if let Def::Variant(..) = name_binding.def() {
4194                     let mut segms = enum_import_suggestion.path.segments.clone();
4195                     segms.push(ast::PathSegment::from_ident(ident));
4196                     variants.push(Path {
4197                         span: name_binding.span,
4198                         segments: segms,
4199                     });
4200                 }
4201             });
4202             variants
4203         })
4204     }
4205
4206     fn record_def(&mut self, node_id: NodeId, resolution: PathResolution) {
4207         debug!("(recording def) recording {:?} for {}", resolution, node_id);
4208         if let Some(prev_res) = self.def_map.insert(node_id, resolution) {
4209             panic!("path resolved multiple times ({:?} before, {:?} now)", prev_res, resolution);
4210         }
4211     }
4212
4213     fn resolve_visibility(&mut self, vis: &ast::Visibility) -> ty::Visibility {
4214         match vis.node {
4215             ast::VisibilityKind::Public => ty::Visibility::Public,
4216             ast::VisibilityKind::Crate(..) => {
4217                 ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX))
4218             }
4219             ast::VisibilityKind::Inherited => {
4220                 ty::Visibility::Restricted(self.current_module.normal_ancestor_id)
4221             }
4222             ast::VisibilityKind::Restricted { ref path, id, .. } => {
4223                 // Visibilities are resolved as global by default, add starting root segment.
4224                 let segments = path.make_root().iter().chain(path.segments.iter())
4225                     .map(|seg| seg.ident)
4226                     .collect::<Vec<_>>();
4227                 let def = self.smart_resolve_path_fragment(
4228                     id,
4229                     None,
4230                     &segments,
4231                     path.span,
4232                     PathSource::Visibility,
4233                     CrateLint::SimplePath(id),
4234                 ).base_def();
4235                 if def == Def::Err {
4236                     ty::Visibility::Public
4237                 } else {
4238                     let vis = ty::Visibility::Restricted(def.def_id());
4239                     if self.is_accessible(vis) {
4240                         vis
4241                     } else {
4242                         self.session.span_err(path.span, "visibilities can only be restricted \
4243                                                           to ancestor modules");
4244                         ty::Visibility::Public
4245                     }
4246                 }
4247             }
4248         }
4249     }
4250
4251     fn is_accessible(&self, vis: ty::Visibility) -> bool {
4252         vis.is_accessible_from(self.current_module.normal_ancestor_id, self)
4253     }
4254
4255     fn is_accessible_from(&self, vis: ty::Visibility, module: Module<'a>) -> bool {
4256         vis.is_accessible_from(module.normal_ancestor_id, self)
4257     }
4258
4259     fn report_errors(&mut self, krate: &Crate) {
4260         self.report_shadowing_errors();
4261         self.report_with_use_injections(krate);
4262         self.report_proc_macro_import(krate);
4263         let mut reported_spans = FxHashSet();
4264
4265         for &AmbiguityError { span, name, b1, b2, lexical } in &self.ambiguity_errors {
4266             if !reported_spans.insert(span) { continue }
4267             let participle = |binding: &NameBinding| {
4268                 if binding.is_import() { "imported" } else { "defined" }
4269             };
4270             let msg1 = format!("`{}` could refer to the name {} here", name, participle(b1));
4271             let msg2 = format!("`{}` could also refer to the name {} here", name, participle(b2));
4272             let note = if b1.expansion == Mark::root() || !lexical && b1.is_glob_import() {
4273                 format!("consider adding an explicit import of `{}` to disambiguate", name)
4274             } else if let Def::Macro(..) = b1.def() {
4275                 format!("macro-expanded {} do not shadow",
4276                         if b1.is_import() { "macro imports" } else { "macros" })
4277             } else {
4278                 format!("macro-expanded {} do not shadow when used in a macro invocation path",
4279                         if b1.is_import() { "imports" } else { "items" })
4280             };
4281
4282             let mut err = struct_span_err!(self.session, span, E0659, "`{}` is ambiguous", name);
4283             err.span_note(b1.span, &msg1);
4284             match b2.def() {
4285                 Def::Macro(..) if b2.span == DUMMY_SP =>
4286                     err.note(&format!("`{}` is also a builtin macro", name)),
4287                 _ => err.span_note(b2.span, &msg2),
4288             };
4289             err.note(&note).emit();
4290         }
4291
4292         for &PrivacyError(span, name, binding) in &self.privacy_errors {
4293             if !reported_spans.insert(span) { continue }
4294             span_err!(self.session, span, E0603, "{} `{}` is private", binding.descr(), name);
4295         }
4296     }
4297
4298     fn report_with_use_injections(&mut self, krate: &Crate) {
4299         for UseError { mut err, candidates, node_id, better } in self.use_injections.drain(..) {
4300             let (span, found_use) = UsePlacementFinder::check(krate, node_id);
4301             if !candidates.is_empty() {
4302                 show_candidates(&mut err, span, &candidates, better, found_use);
4303             }
4304             err.emit();
4305         }
4306     }
4307
4308     fn report_shadowing_errors(&mut self) {
4309         for (ident, scope) in replace(&mut self.lexical_macro_resolutions, Vec::new()) {
4310             self.resolve_legacy_scope(scope, ident, true);
4311         }
4312
4313         let mut reported_errors = FxHashSet();
4314         for binding in replace(&mut self.disallowed_shadowing, Vec::new()) {
4315             if self.resolve_legacy_scope(&binding.parent, binding.ident, false).is_some() &&
4316                reported_errors.insert((binding.ident, binding.span)) {
4317                 let msg = format!("`{}` is already in scope", binding.ident);
4318                 self.session.struct_span_err(binding.span, &msg)
4319                     .note("macro-expanded `macro_rules!`s may not shadow \
4320                            existing macros (see RFC 1560)")
4321                     .emit();
4322             }
4323         }
4324     }
4325
4326     fn report_conflict<'b>(&mut self,
4327                        parent: Module,
4328                        ident: Ident,
4329                        ns: Namespace,
4330                        new_binding: &NameBinding<'b>,
4331                        old_binding: &NameBinding<'b>) {
4332         // Error on the second of two conflicting names
4333         if old_binding.span.lo() > new_binding.span.lo() {
4334             return self.report_conflict(parent, ident, ns, old_binding, new_binding);
4335         }
4336
4337         let container = match parent.kind {
4338             ModuleKind::Def(Def::Mod(_), _) => "module",
4339             ModuleKind::Def(Def::Trait(_), _) => "trait",
4340             ModuleKind::Block(..) => "block",
4341             _ => "enum",
4342         };
4343
4344         let old_noun = match old_binding.is_import() {
4345             true => "import",
4346             false => "definition",
4347         };
4348
4349         let new_participle = match new_binding.is_import() {
4350             true => "imported",
4351             false => "defined",
4352         };
4353
4354         let (name, span) = (ident.name, self.session.codemap().def_span(new_binding.span));
4355
4356         if let Some(s) = self.name_already_seen.get(&name) {
4357             if s == &span {
4358                 return;
4359             }
4360         }
4361
4362         let old_kind = match (ns, old_binding.module()) {
4363             (ValueNS, _) => "value",
4364             (MacroNS, _) => "macro",
4365             (TypeNS, _) if old_binding.is_extern_crate() => "extern crate",
4366             (TypeNS, Some(module)) if module.is_normal() => "module",
4367             (TypeNS, Some(module)) if module.is_trait() => "trait",
4368             (TypeNS, _) => "type",
4369         };
4370
4371         let namespace = match ns {
4372             ValueNS => "value",
4373             MacroNS => "macro",
4374             TypeNS => "type",
4375         };
4376
4377         let msg = format!("the name `{}` is defined multiple times", name);
4378
4379         let mut err = match (old_binding.is_extern_crate(), new_binding.is_extern_crate()) {
4380             (true, true) => struct_span_err!(self.session, span, E0259, "{}", msg),
4381             (true, _) | (_, true) => match new_binding.is_import() && old_binding.is_import() {
4382                 true => struct_span_err!(self.session, span, E0254, "{}", msg),
4383                 false => struct_span_err!(self.session, span, E0260, "{}", msg),
4384             },
4385             _ => match (old_binding.is_import(), new_binding.is_import()) {
4386                 (false, false) => struct_span_err!(self.session, span, E0428, "{}", msg),
4387                 (true, true) => struct_span_err!(self.session, span, E0252, "{}", msg),
4388                 _ => struct_span_err!(self.session, span, E0255, "{}", msg),
4389             },
4390         };
4391
4392         err.note(&format!("`{}` must be defined only once in the {} namespace of this {}",
4393                           name,
4394                           namespace,
4395                           container));
4396
4397         err.span_label(span, format!("`{}` re{} here", name, new_participle));
4398         if old_binding.span != DUMMY_SP {
4399             err.span_label(self.session.codemap().def_span(old_binding.span),
4400                            format!("previous {} of the {} `{}` here", old_noun, old_kind, name));
4401         }
4402
4403         // See https://github.com/rust-lang/rust/issues/32354
4404         if old_binding.is_import() || new_binding.is_import() {
4405             let binding = if new_binding.is_import() && new_binding.span != DUMMY_SP {
4406                 new_binding
4407             } else {
4408                 old_binding
4409             };
4410
4411             let cm = self.session.codemap();
4412             let rename_msg = "You can use `as` to change the binding name of the import";
4413
4414             if let (Ok(snippet), false) = (cm.span_to_snippet(binding.span),
4415                                            binding.is_renamed_extern_crate()) {
4416                 let suggested_name = if name.as_str().chars().next().unwrap().is_uppercase() {
4417                     format!("Other{}", name)
4418                 } else {
4419                     format!("other_{}", name)
4420                 };
4421
4422                 err.span_suggestion(binding.span,
4423                                     rename_msg,
4424                                     if snippet.ends_with(';') {
4425                                         format!("{} as {};",
4426                                                 &snippet[..snippet.len()-1],
4427                                                 suggested_name)
4428                                     } else {
4429                                         format!("{} as {}", snippet, suggested_name)
4430                                     });
4431             } else {
4432                 err.span_label(binding.span, rename_msg);
4433             }
4434         }
4435
4436         err.emit();
4437         self.name_already_seen.insert(name, span);
4438     }
4439
4440     fn check_proc_macro_attrs(&mut self, attrs: &[ast::Attribute]) {
4441         if self.proc_macro_enabled { return; }
4442
4443         for attr in attrs {
4444             if attr.path.segments.len() > 1 {
4445                 continue
4446             }
4447             let ident = attr.path.segments[0].ident;
4448             let result = self.resolve_lexical_macro_path_segment(ident,
4449                                                                  MacroNS,
4450                                                                  false,
4451                                                                  attr.path.span);
4452             if let Ok(binding) = result {
4453                 if let SyntaxExtension::AttrProcMacro(..) = *binding.binding().get_macro(self) {
4454                     attr::mark_known(attr);
4455
4456                     let msg = "attribute procedural macros are experimental";
4457                     let feature = "proc_macro";
4458
4459                     feature_err(&self.session.parse_sess, feature,
4460                                 attr.span, GateIssue::Language, msg)
4461                         .span_label(binding.span(), "procedural macro imported here")
4462                         .emit();
4463                 }
4464             }
4465         }
4466     }
4467 }
4468
4469 fn is_self_type(path: &[Ident], namespace: Namespace) -> bool {
4470     namespace == TypeNS && path.len() == 1 && path[0].name == keywords::SelfType.name()
4471 }
4472
4473 fn is_self_value(path: &[Ident], namespace: Namespace) -> bool {
4474     namespace == ValueNS && path.len() == 1 && path[0].name == keywords::SelfValue.name()
4475 }
4476
4477 fn names_to_string(idents: &[Ident]) -> String {
4478     let mut result = String::new();
4479     for (i, ident) in idents.iter()
4480                             .filter(|ident| ident.name != keywords::CrateRoot.name())
4481                             .enumerate() {
4482         if i > 0 {
4483             result.push_str("::");
4484         }
4485         result.push_str(&ident.as_str());
4486     }
4487     result
4488 }
4489
4490 fn path_names_to_string(path: &Path) -> String {
4491     names_to_string(&path.segments.iter()
4492                         .map(|seg| seg.ident)
4493                         .collect::<Vec<_>>())
4494 }
4495
4496 /// Get the path for an enum and the variant from an `ImportSuggestion` for an enum variant.
4497 fn import_candidate_to_paths(suggestion: &ImportSuggestion) -> (Span, String, String) {
4498     let variant_path = &suggestion.path;
4499     let variant_path_string = path_names_to_string(variant_path);
4500
4501     let path_len = suggestion.path.segments.len();
4502     let enum_path = ast::Path {
4503         span: suggestion.path.span,
4504         segments: suggestion.path.segments[0..path_len - 1].to_vec(),
4505     };
4506     let enum_path_string = path_names_to_string(&enum_path);
4507
4508     (suggestion.path.span, variant_path_string, enum_path_string)
4509 }
4510
4511
4512 /// When an entity with a given name is not available in scope, we search for
4513 /// entities with that name in all crates. This method allows outputting the
4514 /// results of this search in a programmer-friendly way
4515 fn show_candidates(err: &mut DiagnosticBuilder,
4516                    // This is `None` if all placement locations are inside expansions
4517                    span: Option<Span>,
4518                    candidates: &[ImportSuggestion],
4519                    better: bool,
4520                    found_use: bool) {
4521
4522     // we want consistent results across executions, but candidates are produced
4523     // by iterating through a hash map, so make sure they are ordered:
4524     let mut path_strings: Vec<_> =
4525         candidates.into_iter().map(|c| path_names_to_string(&c.path)).collect();
4526     path_strings.sort();
4527
4528     let better = if better { "better " } else { "" };
4529     let msg_diff = match path_strings.len() {
4530         1 => " is found in another module, you can import it",
4531         _ => "s are found in other modules, you can import them",
4532     };
4533     let msg = format!("possible {}candidate{} into scope", better, msg_diff);
4534
4535     if let Some(span) = span {
4536         for candidate in &mut path_strings {
4537             // produce an additional newline to separate the new use statement
4538             // from the directly following item.
4539             let additional_newline = if found_use {
4540                 ""
4541             } else {
4542                 "\n"
4543             };
4544             *candidate = format!("use {};\n{}", candidate, additional_newline);
4545         }
4546
4547         err.span_suggestions(span, &msg, path_strings);
4548     } else {
4549         let mut msg = msg;
4550         msg.push(':');
4551         for candidate in path_strings {
4552             msg.push('\n');
4553             msg.push_str(&candidate);
4554         }
4555     }
4556 }
4557
4558 /// A somewhat inefficient routine to obtain the name of a module.
4559 fn module_to_string(module: Module) -> Option<String> {
4560     let mut names = Vec::new();
4561
4562     fn collect_mod(names: &mut Vec<Ident>, module: Module) {
4563         if let ModuleKind::Def(_, name) = module.kind {
4564             if let Some(parent) = module.parent {
4565                 names.push(Ident::with_empty_ctxt(name));
4566                 collect_mod(names, parent);
4567             }
4568         } else {
4569             // danger, shouldn't be ident?
4570             names.push(Ident::from_str("<opaque>"));
4571             collect_mod(names, module.parent.unwrap());
4572         }
4573     }
4574     collect_mod(&mut names, module);
4575
4576     if names.is_empty() {
4577         return None;
4578     }
4579     Some(names_to_string(&names.into_iter()
4580                         .rev()
4581                         .collect::<Vec<_>>()))
4582 }
4583
4584 fn err_path_resolution() -> PathResolution {
4585     PathResolution::new(Def::Err)
4586 }
4587
4588 #[derive(PartialEq,Copy, Clone)]
4589 pub enum MakeGlobMap {
4590     Yes,
4591     No,
4592 }
4593
4594 #[derive(Copy, Clone, Debug)]
4595 enum CrateLint {
4596     /// Do not issue the lint
4597     No,
4598
4599     /// This lint applies to some random path like `impl ::foo::Bar`
4600     /// or whatever. In this case, we can take the span of that path.
4601     SimplePath(NodeId),
4602
4603     /// This lint comes from a `use` statement. In this case, what we
4604     /// care about really is the *root* `use` statement; e.g., if we
4605     /// have nested things like `use a::{b, c}`, we care about the
4606     /// `use a` part.
4607     UsePath { root_id: NodeId, root_span: Span },
4608
4609     /// This is the "trait item" from a fully qualified path. For example,
4610     /// we might be resolving  `X::Y::Z` from a path like `<T as X::Y>::Z`.
4611     /// The `path_span` is the span of the to the trait itself (`X::Y`).
4612     QPathTrait { qpath_id: NodeId, qpath_span: Span },
4613 }
4614
4615 __build_diagnostic_array! { librustc_resolve, DIAGNOSTICS }