]> git.lizzy.rs Git - rust.git/blob - src/librustc_resolve/lib.rs
rustc: Fix a suggestion for the `proc_macro` feature
[rust.git] / src / librustc_resolve / lib.rs
1 // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 #![deny(bare_trait_objects)]
12
13 #![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
14       html_favicon_url = "https://doc.rust-lang.org/favicon.ico",
15       html_root_url = "https://doc.rust-lang.org/nightly/")]
16
17 #![feature(crate_visibility_modifier)]
18 #![feature(rustc_diagnostic_macros)]
19 #![feature(slice_sort_by_cached_key)]
20
21 #[macro_use]
22 extern crate log;
23 #[macro_use]
24 extern crate syntax;
25 extern crate syntax_pos;
26 extern crate rustc_errors as errors;
27 extern crate arena;
28 #[macro_use]
29 extern crate rustc;
30 extern crate rustc_data_structures;
31
32 pub use rustc::hir::def::{Namespace, PerNS};
33
34 use self::TypeParameters::*;
35 use self::RibKind::*;
36
37 use rustc::hir::map::{Definitions, DefCollector};
38 use rustc::hir::{self, PrimTy, TyBool, TyChar, TyFloat, TyInt, TyUint, TyStr};
39 use rustc::middle::cstore::{CrateStore, CrateLoader};
40 use rustc::session::Session;
41 use rustc::lint;
42 use rustc::hir::def::*;
43 use rustc::hir::def::Namespace::*;
44 use rustc::hir::def_id::{CRATE_DEF_INDEX, LOCAL_CRATE, DefId};
45 use rustc::ty;
46 use rustc::hir::{Freevar, FreevarMap, TraitCandidate, TraitMap, GlobMap};
47 use rustc::util::nodemap::{NodeMap, NodeSet, FxHashMap, FxHashSet, DefIdMap};
48
49 use syntax::codemap::CodeMap;
50 use syntax::ext::hygiene::{Mark, Transparency, SyntaxContext};
51 use syntax::ast::{self, Name, NodeId, Ident, FloatTy, IntTy, UintTy};
52 use syntax::ext::base::SyntaxExtension;
53 use syntax::ext::base::Determinacy::{self, Determined, Undetermined};
54 use syntax::ext::base::MacroKind;
55 use syntax::symbol::{Symbol, keywords};
56 use syntax::util::lev_distance::find_best_match_for_name;
57
58 use syntax::visit::{self, FnKind, Visitor};
59 use syntax::attr;
60 use syntax::ast::{CRATE_NODE_ID, Arm, IsAsync, BindingMode, Block, Crate, Expr, ExprKind};
61 use syntax::ast::{FnDecl, ForeignItem, ForeignItemKind, GenericParamKind, Generics};
62 use syntax::ast::{Item, ItemKind, ImplItem, ImplItemKind};
63 use syntax::ast::{Label, Local, Mutability, Pat, PatKind, Path};
64 use syntax::ast::{QSelf, TraitItemKind, TraitRef, Ty, TyKind};
65 use syntax::feature_gate::{feature_err, GateIssue};
66 use syntax::ptr::P;
67
68 use syntax_pos::{Span, DUMMY_SP, MultiSpan};
69 use errors::{DiagnosticBuilder, DiagnosticId};
70
71 use std::cell::{Cell, RefCell};
72 use std::cmp;
73 use std::collections::BTreeSet;
74 use std::fmt;
75 use std::iter;
76 use std::mem::replace;
77 use rustc_data_structures::sync::Lrc;
78
79 use resolve_imports::{ImportDirective, ImportDirectiveSubclass, NameResolution, ImportResolver};
80 use macros::{InvocationData, LegacyBinding, LegacyScope, MacroBinding};
81
82 // NB: This module needs to be declared first so diagnostics are
83 // registered before they are used.
84 mod diagnostics;
85
86 mod macros;
87 mod check_unused;
88 mod build_reduced_graph;
89 mod resolve_imports;
90
91 /// A free importable items suggested in case of resolution failure.
92 struct ImportSuggestion {
93     path: Path,
94 }
95
96 /// A field or associated item from self type suggested in case of resolution failure.
97 enum AssocSuggestion {
98     Field,
99     MethodWithSelf,
100     AssocItem,
101 }
102
103 #[derive(Eq)]
104 struct BindingError {
105     name: Name,
106     origin: BTreeSet<Span>,
107     target: BTreeSet<Span>,
108 }
109
110 impl PartialOrd for BindingError {
111     fn partial_cmp(&self, other: &BindingError) -> Option<cmp::Ordering> {
112         Some(self.cmp(other))
113     }
114 }
115
116 impl PartialEq for BindingError {
117     fn eq(&self, other: &BindingError) -> bool {
118         self.name == other.name
119     }
120 }
121
122 impl Ord for BindingError {
123     fn cmp(&self, other: &BindingError) -> cmp::Ordering {
124         self.name.cmp(&other.name)
125     }
126 }
127
128 enum ResolutionError<'a> {
129     /// error E0401: can't use type parameters from outer function
130     TypeParametersFromOuterFunction(Def),
131     /// error E0403: the name is already used for a type parameter in this type parameter list
132     NameAlreadyUsedInTypeParameterList(Name, &'a Span),
133     /// error E0407: method is not a member of trait
134     MethodNotMemberOfTrait(Name, &'a str),
135     /// error E0437: type is not a member of trait
136     TypeNotMemberOfTrait(Name, &'a str),
137     /// error E0438: const is not a member of trait
138     ConstNotMemberOfTrait(Name, &'a str),
139     /// error E0408: variable `{}` is not bound in all patterns
140     VariableNotBoundInPattern(&'a BindingError),
141     /// error E0409: variable `{}` is bound in inconsistent ways within the same match arm
142     VariableBoundWithDifferentMode(Name, Span),
143     /// error E0415: identifier is bound more than once in this parameter list
144     IdentifierBoundMoreThanOnceInParameterList(&'a str),
145     /// error E0416: identifier is bound more than once in the same pattern
146     IdentifierBoundMoreThanOnceInSamePattern(&'a str),
147     /// error E0426: use of undeclared label
148     UndeclaredLabel(&'a str, Option<Name>),
149     /// error E0429: `self` imports are only allowed within a { } list
150     SelfImportsOnlyAllowedWithin,
151     /// error E0430: `self` import can only appear once in the list
152     SelfImportCanOnlyAppearOnceInTheList,
153     /// error E0431: `self` import can only appear in an import list with a non-empty prefix
154     SelfImportOnlyInImportListWithNonEmptyPrefix,
155     /// error E0432: unresolved import
156     UnresolvedImport(Option<(Span, &'a str, &'a str)>),
157     /// error E0433: failed to resolve
158     FailedToResolve(&'a str),
159     /// error E0434: can't capture dynamic environment in a fn item
160     CannotCaptureDynamicEnvironmentInFnItem,
161     /// error E0435: attempt to use a non-constant value in a constant
162     AttemptToUseNonConstantValueInConstant,
163     /// error E0530: X bindings cannot shadow Ys
164     BindingShadowsSomethingUnacceptable(&'a str, Name, &'a NameBinding<'a>),
165     /// error E0128: type parameters with a default cannot use forward declared identifiers
166     ForwardDeclaredTyParam,
167 }
168
169 /// Combines an error with provided span and emits it
170 ///
171 /// This takes the error provided, combines it with the span and any additional spans inside the
172 /// error and emits it.
173 fn resolve_error<'sess, 'a>(resolver: &'sess Resolver,
174                             span: Span,
175                             resolution_error: ResolutionError<'a>) {
176     resolve_struct_error(resolver, span, resolution_error).emit();
177 }
178
179 fn resolve_struct_error<'sess, 'a>(resolver: &'sess Resolver,
180                                    span: Span,
181                                    resolution_error: ResolutionError<'a>)
182                                    -> DiagnosticBuilder<'sess> {
183     match resolution_error {
184         ResolutionError::TypeParametersFromOuterFunction(outer_def) => {
185             let mut err = struct_span_err!(resolver.session,
186                                            span,
187                                            E0401,
188                                            "can't use type parameters from outer function");
189             err.span_label(span, "use of type variable from outer function");
190
191             let cm = resolver.session.codemap();
192             match outer_def {
193                 Def::SelfTy(_, maybe_impl_defid) => {
194                     if let Some(impl_span) = maybe_impl_defid.map_or(None,
195                             |def_id| resolver.definitions.opt_span(def_id)) {
196                         err.span_label(reduce_impl_span_to_impl_keyword(cm, impl_span),
197                                     "`Self` type implicitely declared here, on the `impl`");
198                     }
199                 },
200                 Def::TyParam(typaram_defid) => {
201                     if let Some(typaram_span) = resolver.definitions.opt_span(typaram_defid) {
202                         err.span_label(typaram_span, "type variable from outer function");
203                     }
204                 },
205                 Def::Mod(..) | Def::Struct(..) | Def::Union(..) | Def::Enum(..) | Def::Variant(..) |
206                 Def::Trait(..) | Def::TyAlias(..) | Def::TyForeign(..) | Def::TraitAlias(..) |
207                 Def::AssociatedTy(..) | Def::PrimTy(..) | Def::Fn(..) | Def::Const(..) |
208                 Def::Static(..) | Def::StructCtor(..) | Def::VariantCtor(..) | Def::Method(..) |
209                 Def::AssociatedConst(..) | Def::Local(..) | Def::Upvar(..) | Def::Label(..) |
210                 Def::Existential(..) |
211                 Def::Macro(..) | Def::GlobalAsm(..) | Def::Err =>
212                     bug!("TypeParametersFromOuterFunction should only be used with Def::SelfTy or \
213                          Def::TyParam")
214             }
215
216             // Try to retrieve the span of the function signature and generate a new message with
217             // a local type parameter
218             let sugg_msg = "try using a local type parameter instead";
219             if let Some((sugg_span, new_snippet)) = cm.generate_local_type_param_snippet(span) {
220                 // Suggest the modification to the user
221                 err.span_suggestion(sugg_span,
222                                     sugg_msg,
223                                     new_snippet);
224             } else if let Some(sp) = cm.generate_fn_name_span(span) {
225                 err.span_label(sp, "try adding a local type parameter in this method instead");
226             } else {
227                 err.help("try using a local type parameter instead");
228             }
229
230             err
231         }
232         ResolutionError::NameAlreadyUsedInTypeParameterList(name, first_use_span) => {
233              let mut err = struct_span_err!(resolver.session,
234                                             span,
235                                             E0403,
236                                             "the name `{}` is already used for a type parameter \
237                                             in this type parameter list",
238                                             name);
239              err.span_label(span, "already used");
240              err.span_label(first_use_span.clone(), format!("first use of `{}`", name));
241              err
242         }
243         ResolutionError::MethodNotMemberOfTrait(method, trait_) => {
244             let mut err = struct_span_err!(resolver.session,
245                                            span,
246                                            E0407,
247                                            "method `{}` is not a member of trait `{}`",
248                                            method,
249                                            trait_);
250             err.span_label(span, format!("not a member of trait `{}`", trait_));
251             err
252         }
253         ResolutionError::TypeNotMemberOfTrait(type_, trait_) => {
254             let mut err = struct_span_err!(resolver.session,
255                              span,
256                              E0437,
257                              "type `{}` is not a member of trait `{}`",
258                              type_,
259                              trait_);
260             err.span_label(span, format!("not a member of trait `{}`", trait_));
261             err
262         }
263         ResolutionError::ConstNotMemberOfTrait(const_, trait_) => {
264             let mut err = struct_span_err!(resolver.session,
265                              span,
266                              E0438,
267                              "const `{}` is not a member of trait `{}`",
268                              const_,
269                              trait_);
270             err.span_label(span, format!("not a member of trait `{}`", trait_));
271             err
272         }
273         ResolutionError::VariableNotBoundInPattern(binding_error) => {
274             let target_sp = binding_error.target.iter().map(|x| *x).collect::<Vec<_>>();
275             let msp = MultiSpan::from_spans(target_sp.clone());
276             let msg = format!("variable `{}` is not bound in all patterns", binding_error.name);
277             let mut err = resolver.session.struct_span_err_with_code(
278                 msp,
279                 &msg,
280                 DiagnosticId::Error("E0408".into()),
281             );
282             for sp in target_sp {
283                 err.span_label(sp, format!("pattern doesn't bind `{}`", binding_error.name));
284             }
285             let origin_sp = binding_error.origin.iter().map(|x| *x).collect::<Vec<_>>();
286             for sp in origin_sp {
287                 err.span_label(sp, "variable not in all patterns");
288             }
289             err
290         }
291         ResolutionError::VariableBoundWithDifferentMode(variable_name,
292                                                         first_binding_span) => {
293             let mut err = struct_span_err!(resolver.session,
294                              span,
295                              E0409,
296                              "variable `{}` is bound in inconsistent \
297                              ways within the same match arm",
298                              variable_name);
299             err.span_label(span, "bound in different ways");
300             err.span_label(first_binding_span, "first binding");
301             err
302         }
303         ResolutionError::IdentifierBoundMoreThanOnceInParameterList(identifier) => {
304             let mut err = struct_span_err!(resolver.session,
305                              span,
306                              E0415,
307                              "identifier `{}` is bound more than once in this parameter list",
308                              identifier);
309             err.span_label(span, "used as parameter more than once");
310             err
311         }
312         ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(identifier) => {
313             let mut err = struct_span_err!(resolver.session,
314                              span,
315                              E0416,
316                              "identifier `{}` is bound more than once in the same pattern",
317                              identifier);
318             err.span_label(span, "used in a pattern more than once");
319             err
320         }
321         ResolutionError::UndeclaredLabel(name, lev_candidate) => {
322             let mut err = struct_span_err!(resolver.session,
323                                            span,
324                                            E0426,
325                                            "use of undeclared label `{}`",
326                                            name);
327             if let Some(lev_candidate) = lev_candidate {
328                 err.span_label(span, format!("did you mean `{}`?", lev_candidate));
329             } else {
330                 err.span_label(span, format!("undeclared label `{}`", name));
331             }
332             err
333         }
334         ResolutionError::SelfImportsOnlyAllowedWithin => {
335             struct_span_err!(resolver.session,
336                              span,
337                              E0429,
338                              "{}",
339                              "`self` imports are only allowed within a { } list")
340         }
341         ResolutionError::SelfImportCanOnlyAppearOnceInTheList => {
342             let mut err = struct_span_err!(resolver.session, span, E0430,
343                                            "`self` import can only appear once in an import list");
344             err.span_label(span, "can only appear once in an import list");
345             err
346         }
347         ResolutionError::SelfImportOnlyInImportListWithNonEmptyPrefix => {
348             let mut err = struct_span_err!(resolver.session, span, E0431,
349                                            "`self` import can only appear in an import list with \
350                                             a non-empty prefix");
351             err.span_label(span, "can only appear in an import list with a non-empty prefix");
352             err
353         }
354         ResolutionError::UnresolvedImport(name) => {
355             let (span, msg) = match name {
356                 Some((sp, n, _)) => (sp, format!("unresolved import `{}`", n)),
357                 None => (span, "unresolved import".to_owned()),
358             };
359             let mut err = struct_span_err!(resolver.session, span, E0432, "{}", msg);
360             if let Some((_, _, p)) = name {
361                 err.span_label(span, p);
362             }
363             err
364         }
365         ResolutionError::FailedToResolve(msg) => {
366             let mut err = struct_span_err!(resolver.session, span, E0433,
367                                            "failed to resolve. {}", msg);
368             err.span_label(span, msg);
369             err
370         }
371         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem => {
372             let mut err = struct_span_err!(resolver.session,
373                                            span,
374                                            E0434,
375                                            "{}",
376                                            "can't capture dynamic environment in a fn item");
377             err.help("use the `|| { ... }` closure form instead");
378             err
379         }
380         ResolutionError::AttemptToUseNonConstantValueInConstant => {
381             let mut err = struct_span_err!(resolver.session, span, E0435,
382                                            "attempt to use a non-constant value in a constant");
383             err.span_label(span, "non-constant value");
384             err
385         }
386         ResolutionError::BindingShadowsSomethingUnacceptable(what_binding, name, binding) => {
387             let shadows_what = PathResolution::new(binding.def()).kind_name();
388             let mut err = struct_span_err!(resolver.session,
389                                            span,
390                                            E0530,
391                                            "{}s cannot shadow {}s", what_binding, shadows_what);
392             err.span_label(span, format!("cannot be named the same as a {}", shadows_what));
393             let participle = if binding.is_import() { "imported" } else { "defined" };
394             let msg = format!("a {} `{}` is {} here", shadows_what, name, participle);
395             err.span_label(binding.span, msg);
396             err
397         }
398         ResolutionError::ForwardDeclaredTyParam => {
399             let mut err = struct_span_err!(resolver.session, span, E0128,
400                                            "type parameters with a default cannot use \
401                                             forward declared identifiers");
402             err.span_label(span, format!("defaulted type parameters cannot be forward declared"));
403             err
404         }
405     }
406 }
407
408 /// Adjust the impl span so that just the `impl` keyword is taken by removing
409 /// everything after `<` (`"impl<T> Iterator for A<T> {}" -> "impl"`) and
410 /// everything after the first whitespace (`"impl Iterator for A" -> "impl"`)
411 ///
412 /// Attention: The method used is very fragile since it essentially duplicates the work of the
413 /// parser. If you need to use this function or something similar, please consider updating the
414 /// codemap functions and this function to something more robust.
415 fn reduce_impl_span_to_impl_keyword(cm: &CodeMap, impl_span: Span) -> Span {
416     let impl_span = cm.span_until_char(impl_span, '<');
417     let impl_span = cm.span_until_whitespace(impl_span);
418     impl_span
419 }
420
421 #[derive(Copy, Clone, Debug)]
422 struct BindingInfo {
423     span: Span,
424     binding_mode: BindingMode,
425 }
426
427 /// Map from the name in a pattern to its binding mode.
428 type BindingMap = FxHashMap<Ident, BindingInfo>;
429
430 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
431 enum PatternSource {
432     Match,
433     IfLet,
434     WhileLet,
435     Let,
436     For,
437     FnParam,
438 }
439
440 impl PatternSource {
441     fn descr(self) -> &'static str {
442         match self {
443             PatternSource::Match => "match binding",
444             PatternSource::IfLet => "if let binding",
445             PatternSource::WhileLet => "while let binding",
446             PatternSource::Let => "let binding",
447             PatternSource::For => "for binding",
448             PatternSource::FnParam => "function parameter",
449         }
450     }
451 }
452
453 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
454 enum AliasPossibility {
455     No,
456     Maybe,
457 }
458
459 #[derive(Copy, Clone, Debug)]
460 enum PathSource<'a> {
461     // Type paths `Path`.
462     Type,
463     // Trait paths in bounds or impls.
464     Trait(AliasPossibility),
465     // Expression paths `path`, with optional parent context.
466     Expr(Option<&'a Expr>),
467     // Paths in path patterns `Path`.
468     Pat,
469     // Paths in struct expressions and patterns `Path { .. }`.
470     Struct,
471     // Paths in tuple struct patterns `Path(..)`.
472     TupleStruct,
473     // `m::A::B` in `<T as m::A>::B::C`.
474     TraitItem(Namespace),
475     // Path in `pub(path)`
476     Visibility,
477     // Path in `use a::b::{...};`
478     ImportPrefix,
479 }
480
481 impl<'a> PathSource<'a> {
482     fn namespace(self) -> Namespace {
483         match self {
484             PathSource::Type | PathSource::Trait(_) | PathSource::Struct |
485             PathSource::Visibility | PathSource::ImportPrefix => TypeNS,
486             PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct => ValueNS,
487             PathSource::TraitItem(ns) => ns,
488         }
489     }
490
491     fn global_by_default(self) -> bool {
492         match self {
493             PathSource::Visibility | PathSource::ImportPrefix => true,
494             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
495             PathSource::Struct | PathSource::TupleStruct |
496             PathSource::Trait(_) | PathSource::TraitItem(..) => false,
497         }
498     }
499
500     fn defer_to_typeck(self) -> bool {
501         match self {
502             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
503             PathSource::Struct | PathSource::TupleStruct => true,
504             PathSource::Trait(_) | PathSource::TraitItem(..) |
505             PathSource::Visibility | PathSource::ImportPrefix => false,
506         }
507     }
508
509     fn descr_expected(self) -> &'static str {
510         match self {
511             PathSource::Type => "type",
512             PathSource::Trait(_) => "trait",
513             PathSource::Pat => "unit struct/variant or constant",
514             PathSource::Struct => "struct, variant or union type",
515             PathSource::TupleStruct => "tuple struct/variant",
516             PathSource::Visibility => "module",
517             PathSource::ImportPrefix => "module or enum",
518             PathSource::TraitItem(ns) => match ns {
519                 TypeNS => "associated type",
520                 ValueNS => "method or associated constant",
521                 MacroNS => bug!("associated macro"),
522             },
523             PathSource::Expr(parent) => match parent.map(|p| &p.node) {
524                 // "function" here means "anything callable" rather than `Def::Fn`,
525                 // this is not precise but usually more helpful than just "value".
526                 Some(&ExprKind::Call(..)) => "function",
527                 _ => "value",
528             },
529         }
530     }
531
532     fn is_expected(self, def: Def) -> bool {
533         match self {
534             PathSource::Type => match def {
535                 Def::Struct(..) | Def::Union(..) | Def::Enum(..) |
536                 Def::Trait(..) | Def::TyAlias(..) | Def::AssociatedTy(..) |
537                 Def::PrimTy(..) | Def::TyParam(..) | Def::SelfTy(..) |
538                 Def::TyForeign(..) => true,
539                 _ => false,
540             },
541             PathSource::Trait(AliasPossibility::No) => match def {
542                 Def::Trait(..) => true,
543                 _ => false,
544             },
545             PathSource::Trait(AliasPossibility::Maybe) => match def {
546                 Def::Trait(..) => true,
547                 Def::TraitAlias(..) => true,
548                 _ => false,
549             },
550             PathSource::Expr(..) => match def {
551                 Def::StructCtor(_, CtorKind::Const) | Def::StructCtor(_, CtorKind::Fn) |
552                 Def::VariantCtor(_, CtorKind::Const) | Def::VariantCtor(_, CtorKind::Fn) |
553                 Def::Const(..) | Def::Static(..) | Def::Local(..) | Def::Upvar(..) |
554                 Def::Fn(..) | Def::Method(..) | Def::AssociatedConst(..) => true,
555                 _ => false,
556             },
557             PathSource::Pat => match def {
558                 Def::StructCtor(_, CtorKind::Const) |
559                 Def::VariantCtor(_, CtorKind::Const) |
560                 Def::Const(..) | Def::AssociatedConst(..) => true,
561                 _ => false,
562             },
563             PathSource::TupleStruct => match def {
564                 Def::StructCtor(_, CtorKind::Fn) | Def::VariantCtor(_, CtorKind::Fn) => true,
565                 _ => false,
566             },
567             PathSource::Struct => match def {
568                 Def::Struct(..) | Def::Union(..) | Def::Variant(..) |
569                 Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => true,
570                 _ => false,
571             },
572             PathSource::TraitItem(ns) => match def {
573                 Def::AssociatedConst(..) | Def::Method(..) if ns == ValueNS => true,
574                 Def::AssociatedTy(..) if ns == TypeNS => true,
575                 _ => false,
576             },
577             PathSource::ImportPrefix => match def {
578                 Def::Mod(..) | Def::Enum(..) => true,
579                 _ => false,
580             },
581             PathSource::Visibility => match def {
582                 Def::Mod(..) => true,
583                 _ => false,
584             },
585         }
586     }
587
588     fn error_code(self, has_unexpected_resolution: bool) -> &'static str {
589         __diagnostic_used!(E0404);
590         __diagnostic_used!(E0405);
591         __diagnostic_used!(E0412);
592         __diagnostic_used!(E0422);
593         __diagnostic_used!(E0423);
594         __diagnostic_used!(E0425);
595         __diagnostic_used!(E0531);
596         __diagnostic_used!(E0532);
597         __diagnostic_used!(E0573);
598         __diagnostic_used!(E0574);
599         __diagnostic_used!(E0575);
600         __diagnostic_used!(E0576);
601         __diagnostic_used!(E0577);
602         __diagnostic_used!(E0578);
603         match (self, has_unexpected_resolution) {
604             (PathSource::Trait(_), true) => "E0404",
605             (PathSource::Trait(_), false) => "E0405",
606             (PathSource::Type, true) => "E0573",
607             (PathSource::Type, false) => "E0412",
608             (PathSource::Struct, true) => "E0574",
609             (PathSource::Struct, false) => "E0422",
610             (PathSource::Expr(..), true) => "E0423",
611             (PathSource::Expr(..), false) => "E0425",
612             (PathSource::Pat, true) | (PathSource::TupleStruct, true) => "E0532",
613             (PathSource::Pat, false) | (PathSource::TupleStruct, false) => "E0531",
614             (PathSource::TraitItem(..), true) => "E0575",
615             (PathSource::TraitItem(..), false) => "E0576",
616             (PathSource::Visibility, true) | (PathSource::ImportPrefix, true) => "E0577",
617             (PathSource::Visibility, false) | (PathSource::ImportPrefix, false) => "E0578",
618         }
619     }
620 }
621
622 struct UsePlacementFinder {
623     target_module: NodeId,
624     span: Option<Span>,
625     found_use: bool,
626 }
627
628 impl UsePlacementFinder {
629     fn check(krate: &Crate, target_module: NodeId) -> (Option<Span>, bool) {
630         let mut finder = UsePlacementFinder {
631             target_module,
632             span: None,
633             found_use: false,
634         };
635         visit::walk_crate(&mut finder, krate);
636         (finder.span, finder.found_use)
637     }
638 }
639
640 impl<'tcx> Visitor<'tcx> for UsePlacementFinder {
641     fn visit_mod(
642         &mut self,
643         module: &'tcx ast::Mod,
644         _: Span,
645         _: &[ast::Attribute],
646         node_id: NodeId,
647     ) {
648         if self.span.is_some() {
649             return;
650         }
651         if node_id != self.target_module {
652             visit::walk_mod(self, module);
653             return;
654         }
655         // find a use statement
656         for item in &module.items {
657             match item.node {
658                 ItemKind::Use(..) => {
659                     // don't suggest placing a use before the prelude
660                     // import or other generated ones
661                     if item.span.ctxt().outer().expn_info().is_none() {
662                         self.span = Some(item.span.shrink_to_lo());
663                         self.found_use = true;
664                         return;
665                     }
666                 },
667                 // don't place use before extern crate
668                 ItemKind::ExternCrate(_) => {}
669                 // but place them before the first other item
670                 _ => if self.span.map_or(true, |span| item.span < span ) {
671                     if item.span.ctxt().outer().expn_info().is_none() {
672                         // don't insert between attributes and an item
673                         if item.attrs.is_empty() {
674                             self.span = Some(item.span.shrink_to_lo());
675                         } else {
676                             // find the first attribute on the item
677                             for attr in &item.attrs {
678                                 if self.span.map_or(true, |span| attr.span < span) {
679                                     self.span = Some(attr.span.shrink_to_lo());
680                                 }
681                             }
682                         }
683                     }
684                 },
685             }
686         }
687     }
688 }
689
690 /// This thing walks the whole crate in DFS manner, visiting each item, resolving names as it goes.
691 impl<'a, 'tcx> Visitor<'tcx> for Resolver<'a> {
692     fn visit_item(&mut self, item: &'tcx Item) {
693         self.resolve_item(item);
694     }
695     fn visit_arm(&mut self, arm: &'tcx Arm) {
696         self.resolve_arm(arm);
697     }
698     fn visit_block(&mut self, block: &'tcx Block) {
699         self.resolve_block(block);
700     }
701     fn visit_anon_const(&mut self, constant: &'tcx ast::AnonConst) {
702         self.with_constant_rib(|this| {
703             visit::walk_anon_const(this, constant);
704         });
705     }
706     fn visit_expr(&mut self, expr: &'tcx Expr) {
707         self.resolve_expr(expr, None);
708     }
709     fn visit_local(&mut self, local: &'tcx Local) {
710         self.resolve_local(local);
711     }
712     fn visit_ty(&mut self, ty: &'tcx Ty) {
713         match ty.node {
714             TyKind::Path(ref qself, ref path) => {
715                 self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
716             }
717             TyKind::ImplicitSelf => {
718                 let self_ty = keywords::SelfType.ident();
719                 let def = self.resolve_ident_in_lexical_scope(self_ty, TypeNS, true, ty.span)
720                               .map_or(Def::Err, |d| d.def());
721                 self.record_def(ty.id, PathResolution::new(def));
722             }
723             _ => (),
724         }
725         visit::walk_ty(self, ty);
726     }
727     fn visit_poly_trait_ref(&mut self,
728                             tref: &'tcx ast::PolyTraitRef,
729                             m: &'tcx ast::TraitBoundModifier) {
730         self.smart_resolve_path(tref.trait_ref.ref_id, None,
731                                 &tref.trait_ref.path, PathSource::Trait(AliasPossibility::Maybe));
732         visit::walk_poly_trait_ref(self, tref, m);
733     }
734     fn visit_foreign_item(&mut self, foreign_item: &'tcx ForeignItem) {
735         let type_parameters = match foreign_item.node {
736             ForeignItemKind::Fn(_, ref generics) => {
737                 HasTypeParameters(generics, ItemRibKind)
738             }
739             ForeignItemKind::Static(..) => NoTypeParameters,
740             ForeignItemKind::Ty => NoTypeParameters,
741             ForeignItemKind::Macro(..) => NoTypeParameters,
742         };
743         self.with_type_parameter_rib(type_parameters, |this| {
744             visit::walk_foreign_item(this, foreign_item);
745         });
746     }
747     fn visit_fn(&mut self,
748                 function_kind: FnKind<'tcx>,
749                 declaration: &'tcx FnDecl,
750                 _: Span,
751                 node_id: NodeId)
752     {
753         let (rib_kind, asyncness) = match function_kind {
754             FnKind::ItemFn(_, ref header, ..) =>
755                 (ItemRibKind, header.asyncness),
756             FnKind::Method(_, ref sig, _, _) =>
757                 (TraitOrImplItemRibKind, sig.header.asyncness),
758             FnKind::Closure(_) =>
759                 // Async closures aren't resolved through `visit_fn`-- they're
760                 // processed separately
761                 (ClosureRibKind(node_id), IsAsync::NotAsync),
762         };
763
764         // Create a value rib for the function.
765         self.ribs[ValueNS].push(Rib::new(rib_kind));
766
767         // Create a label rib for the function.
768         self.label_ribs.push(Rib::new(rib_kind));
769
770         // Add each argument to the rib.
771         let mut bindings_list = FxHashMap();
772         for argument in &declaration.inputs {
773             self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
774
775             self.visit_ty(&argument.ty);
776
777             debug!("(resolving function) recorded argument");
778         }
779         visit::walk_fn_ret_ty(self, &declaration.output);
780
781         // Resolve the function body, potentially inside the body of an async closure
782         if let IsAsync::Async { closure_id, .. } = asyncness {
783             let rib_kind = ClosureRibKind(closure_id);
784             self.ribs[ValueNS].push(Rib::new(rib_kind));
785             self.label_ribs.push(Rib::new(rib_kind));
786         }
787
788         match function_kind {
789             FnKind::ItemFn(.., body) |
790             FnKind::Method(.., body) => {
791                 self.visit_block(body);
792             }
793             FnKind::Closure(body) => {
794                 self.visit_expr(body);
795             }
796         };
797
798         // Leave the body of the async closure
799         if asyncness.is_async() {
800             self.label_ribs.pop();
801             self.ribs[ValueNS].pop();
802         }
803
804         debug!("(resolving function) leaving function");
805
806         self.label_ribs.pop();
807         self.ribs[ValueNS].pop();
808     }
809     fn visit_generics(&mut self, generics: &'tcx Generics) {
810         // For type parameter defaults, we have to ban access
811         // to following type parameters, as the Substs can only
812         // provide previous type parameters as they're built. We
813         // put all the parameters on the ban list and then remove
814         // them one by one as they are processed and become available.
815         let mut default_ban_rib = Rib::new(ForwardTyParamBanRibKind);
816         let mut found_default = false;
817         default_ban_rib.bindings.extend(generics.params.iter()
818             .filter_map(|param| match param.kind {
819                 GenericParamKind::Lifetime { .. } => None,
820                 GenericParamKind::Type { ref default, .. } => {
821                     if found_default || default.is_some() {
822                         found_default = true;
823                         return Some((Ident::with_empty_ctxt(param.ident.name), Def::Err));
824                     }
825                     None
826                 }
827             }));
828
829         for param in &generics.params {
830             match param.kind {
831                 GenericParamKind::Lifetime { .. } => self.visit_generic_param(param),
832                 GenericParamKind::Type { ref default, .. } => {
833                     for bound in &param.bounds {
834                         self.visit_param_bound(bound);
835                     }
836
837                     if let Some(ref ty) = default {
838                         self.ribs[TypeNS].push(default_ban_rib);
839                         self.visit_ty(ty);
840                         default_ban_rib = self.ribs[TypeNS].pop().unwrap();
841                     }
842
843                     // Allow all following defaults to refer to this type parameter.
844                     default_ban_rib.bindings.remove(&Ident::with_empty_ctxt(param.ident.name));
845                 }
846             }
847         }
848         for p in &generics.where_clause.predicates {
849             self.visit_where_predicate(p);
850         }
851     }
852 }
853
854 #[derive(Copy, Clone)]
855 enum TypeParameters<'a, 'b> {
856     NoTypeParameters,
857     HasTypeParameters(// Type parameters.
858                       &'b Generics,
859
860                       // The kind of the rib used for type parameters.
861                       RibKind<'a>),
862 }
863
864 /// The rib kind controls the translation of local
865 /// definitions (`Def::Local`) to upvars (`Def::Upvar`).
866 #[derive(Copy, Clone, Debug)]
867 enum RibKind<'a> {
868     /// No translation needs to be applied.
869     NormalRibKind,
870
871     /// We passed through a closure scope at the given node ID.
872     /// Translate upvars as appropriate.
873     ClosureRibKind(NodeId /* func id */),
874
875     /// We passed through an impl or trait and are now in one of its
876     /// methods or associated types. Allow references to ty params that impl or trait
877     /// binds. Disallow any other upvars (including other ty params that are
878     /// upvars).
879     TraitOrImplItemRibKind,
880
881     /// We passed through an item scope. Disallow upvars.
882     ItemRibKind,
883
884     /// We're in a constant item. Can't refer to dynamic stuff.
885     ConstantItemRibKind,
886
887     /// We passed through a module.
888     ModuleRibKind(Module<'a>),
889
890     /// We passed through a `macro_rules!` statement
891     MacroDefinition(DefId),
892
893     /// All bindings in this rib are type parameters that can't be used
894     /// from the default of a type parameter because they're not declared
895     /// before said type parameter. Also see the `visit_generics` override.
896     ForwardTyParamBanRibKind,
897 }
898
899 /// One local scope.
900 ///
901 /// A rib represents a scope names can live in. Note that these appear in many places, not just
902 /// around braces. At any place where the list of accessible names (of the given namespace)
903 /// changes or a new restrictions on the name accessibility are introduced, a new rib is put onto a
904 /// stack. This may be, for example, a `let` statement (because it introduces variables), a macro,
905 /// etc.
906 ///
907 /// Different [rib kinds](enum.RibKind) are transparent for different names.
908 ///
909 /// The resolution keeps a separate stack of ribs as it traverses the AST for each namespace. When
910 /// resolving, the name is looked up from inside out.
911 #[derive(Debug)]
912 struct Rib<'a> {
913     bindings: FxHashMap<Ident, Def>,
914     kind: RibKind<'a>,
915 }
916
917 impl<'a> Rib<'a> {
918     fn new(kind: RibKind<'a>) -> Rib<'a> {
919         Rib {
920             bindings: FxHashMap(),
921             kind,
922         }
923     }
924 }
925
926 /// An intermediate resolution result.
927 ///
928 /// This refers to the thing referred by a name. The difference between `Def` and `Item` is that
929 /// items are visible in their whole block, while defs only from the place they are defined
930 /// forward.
931 enum LexicalScopeBinding<'a> {
932     Item(&'a NameBinding<'a>),
933     Def(Def),
934 }
935
936 impl<'a> LexicalScopeBinding<'a> {
937     fn item(self) -> Option<&'a NameBinding<'a>> {
938         match self {
939             LexicalScopeBinding::Item(binding) => Some(binding),
940             _ => None,
941         }
942     }
943
944     fn def(self) -> Def {
945         match self {
946             LexicalScopeBinding::Item(binding) => binding.def(),
947             LexicalScopeBinding::Def(def) => def,
948         }
949     }
950 }
951
952 #[derive(Clone, Debug)]
953 enum PathResult<'a> {
954     Module(Module<'a>),
955     NonModule(PathResolution),
956     Indeterminate,
957     Failed(Span, String, bool /* is the error from the last segment? */),
958 }
959
960 enum ModuleKind {
961     /// An anonymous module, eg. just a block.
962     ///
963     /// ```
964     /// fn main() {
965     ///     fn f() {} // (1)
966     ///     { // This is an anonymous module
967     ///         f(); // This resolves to (2) as we are inside the block.
968     ///         fn f() {} // (2)
969     ///     }
970     ///     f(); // Resolves to (1)
971     /// }
972     /// ```
973     Block(NodeId),
974     /// Any module with a name.
975     ///
976     /// This could be:
977     ///
978     /// * A normal module â€’ either `mod from_file;` or `mod from_block { }`.
979     /// * A trait or an enum (it implicitly contains associated types, methods and variant
980     ///   constructors).
981     Def(Def, Name),
982 }
983
984 /// One node in the tree of modules.
985 pub struct ModuleData<'a> {
986     parent: Option<Module<'a>>,
987     kind: ModuleKind,
988
989     // The def id of the closest normal module (`mod`) ancestor (including this module).
990     normal_ancestor_id: DefId,
991
992     resolutions: RefCell<FxHashMap<(Ident, Namespace), &'a RefCell<NameResolution<'a>>>>,
993     legacy_macro_resolutions: RefCell<Vec<(Mark, Ident, MacroKind, Option<Def>)>>,
994     macro_resolutions: RefCell<Vec<(Box<[Ident]>, Span)>>,
995
996     // Macro invocations that can expand into items in this module.
997     unresolved_invocations: RefCell<FxHashSet<Mark>>,
998
999     no_implicit_prelude: bool,
1000
1001     glob_importers: RefCell<Vec<&'a ImportDirective<'a>>>,
1002     globs: RefCell<Vec<&'a ImportDirective<'a>>>,
1003
1004     // Used to memoize the traits in this module for faster searches through all traits in scope.
1005     traits: RefCell<Option<Box<[(Ident, &'a NameBinding<'a>)]>>>,
1006
1007     // Whether this module is populated. If not populated, any attempt to
1008     // access the children must be preceded with a
1009     // `populate_module_if_necessary` call.
1010     populated: Cell<bool>,
1011
1012     /// Span of the module itself. Used for error reporting.
1013     span: Span,
1014
1015     expansion: Mark,
1016 }
1017
1018 type Module<'a> = &'a ModuleData<'a>;
1019
1020 impl<'a> ModuleData<'a> {
1021     fn new(parent: Option<Module<'a>>,
1022            kind: ModuleKind,
1023            normal_ancestor_id: DefId,
1024            expansion: Mark,
1025            span: Span) -> Self {
1026         ModuleData {
1027             parent,
1028             kind,
1029             normal_ancestor_id,
1030             resolutions: RefCell::new(FxHashMap()),
1031             legacy_macro_resolutions: RefCell::new(Vec::new()),
1032             macro_resolutions: RefCell::new(Vec::new()),
1033             unresolved_invocations: RefCell::new(FxHashSet()),
1034             no_implicit_prelude: false,
1035             glob_importers: RefCell::new(Vec::new()),
1036             globs: RefCell::new(Vec::new()),
1037             traits: RefCell::new(None),
1038             populated: Cell::new(normal_ancestor_id.is_local()),
1039             span,
1040             expansion,
1041         }
1042     }
1043
1044     fn for_each_child<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1045         for (&(ident, ns), name_resolution) in self.resolutions.borrow().iter() {
1046             name_resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1047         }
1048     }
1049
1050     fn for_each_child_stable<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1051         let resolutions = self.resolutions.borrow();
1052         let mut resolutions = resolutions.iter().collect::<Vec<_>>();
1053         resolutions.sort_by_cached_key(|&(&(ident, ns), _)| (ident.as_str(), ns));
1054         for &(&(ident, ns), &resolution) in resolutions.iter() {
1055             resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1056         }
1057     }
1058
1059     fn def(&self) -> Option<Def> {
1060         match self.kind {
1061             ModuleKind::Def(def, _) => Some(def),
1062             _ => None,
1063         }
1064     }
1065
1066     fn def_id(&self) -> Option<DefId> {
1067         self.def().as_ref().map(Def::def_id)
1068     }
1069
1070     // `self` resolves to the first module ancestor that `is_normal`.
1071     fn is_normal(&self) -> bool {
1072         match self.kind {
1073             ModuleKind::Def(Def::Mod(_), _) => true,
1074             _ => false,
1075         }
1076     }
1077
1078     fn is_trait(&self) -> bool {
1079         match self.kind {
1080             ModuleKind::Def(Def::Trait(_), _) => true,
1081             _ => false,
1082         }
1083     }
1084
1085     fn is_local(&self) -> bool {
1086         self.normal_ancestor_id.is_local()
1087     }
1088
1089     fn nearest_item_scope(&'a self) -> Module<'a> {
1090         if self.is_trait() { self.parent.unwrap() } else { self }
1091     }
1092 }
1093
1094 impl<'a> fmt::Debug for ModuleData<'a> {
1095     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1096         write!(f, "{:?}", self.def())
1097     }
1098 }
1099
1100 /// Records a possibly-private value, type, or module definition.
1101 #[derive(Clone, Debug)]
1102 pub struct NameBinding<'a> {
1103     kind: NameBindingKind<'a>,
1104     expansion: Mark,
1105     span: Span,
1106     vis: ty::Visibility,
1107 }
1108
1109 pub trait ToNameBinding<'a> {
1110     fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a>;
1111 }
1112
1113 impl<'a> ToNameBinding<'a> for &'a NameBinding<'a> {
1114     fn to_name_binding(self, _: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> {
1115         self
1116     }
1117 }
1118
1119 #[derive(Clone, Debug)]
1120 enum NameBindingKind<'a> {
1121     Def(Def),
1122     Module(Module<'a>),
1123     Import {
1124         binding: &'a NameBinding<'a>,
1125         directive: &'a ImportDirective<'a>,
1126         used: Cell<bool>,
1127     },
1128     Ambiguity {
1129         b1: &'a NameBinding<'a>,
1130         b2: &'a NameBinding<'a>,
1131     }
1132 }
1133
1134 struct PrivacyError<'a>(Span, Name, &'a NameBinding<'a>);
1135
1136 struct UseError<'a> {
1137     err: DiagnosticBuilder<'a>,
1138     /// Attach `use` statements for these candidates
1139     candidates: Vec<ImportSuggestion>,
1140     /// The node id of the module to place the use statements in
1141     node_id: NodeId,
1142     /// Whether the diagnostic should state that it's "better"
1143     better: bool,
1144 }
1145
1146 struct AmbiguityError<'a> {
1147     span: Span,
1148     name: Name,
1149     lexical: bool,
1150     b1: &'a NameBinding<'a>,
1151     b2: &'a NameBinding<'a>,
1152 }
1153
1154 impl<'a> NameBinding<'a> {
1155     fn module(&self) -> Option<Module<'a>> {
1156         match self.kind {
1157             NameBindingKind::Module(module) => Some(module),
1158             NameBindingKind::Import { binding, .. } => binding.module(),
1159             _ => None,
1160         }
1161     }
1162
1163     fn def(&self) -> Def {
1164         match self.kind {
1165             NameBindingKind::Def(def) => def,
1166             NameBindingKind::Module(module) => module.def().unwrap(),
1167             NameBindingKind::Import { binding, .. } => binding.def(),
1168             NameBindingKind::Ambiguity { .. } => Def::Err,
1169         }
1170     }
1171
1172     fn def_ignoring_ambiguity(&self) -> Def {
1173         match self.kind {
1174             NameBindingKind::Import { binding, .. } => binding.def_ignoring_ambiguity(),
1175             NameBindingKind::Ambiguity { b1, .. } => b1.def_ignoring_ambiguity(),
1176             _ => self.def(),
1177         }
1178     }
1179
1180     fn get_macro(&self, resolver: &mut Resolver<'a>) -> Lrc<SyntaxExtension> {
1181         resolver.get_macro(self.def_ignoring_ambiguity())
1182     }
1183
1184     // We sometimes need to treat variants as `pub` for backwards compatibility
1185     fn pseudo_vis(&self) -> ty::Visibility {
1186         if self.is_variant() && self.def().def_id().is_local() {
1187             ty::Visibility::Public
1188         } else {
1189             self.vis
1190         }
1191     }
1192
1193     fn is_variant(&self) -> bool {
1194         match self.kind {
1195             NameBindingKind::Def(Def::Variant(..)) |
1196             NameBindingKind::Def(Def::VariantCtor(..)) => true,
1197             _ => false,
1198         }
1199     }
1200
1201     fn is_extern_crate(&self) -> bool {
1202         match self.kind {
1203             NameBindingKind::Import {
1204                 directive: &ImportDirective {
1205                     subclass: ImportDirectiveSubclass::ExternCrate(_), ..
1206                 }, ..
1207             } => true,
1208             _ => false,
1209         }
1210     }
1211
1212     fn is_import(&self) -> bool {
1213         match self.kind {
1214             NameBindingKind::Import { .. } => true,
1215             _ => false,
1216         }
1217     }
1218
1219     fn is_renamed_extern_crate(&self) -> bool {
1220         if let NameBindingKind::Import { directive, ..} = self.kind {
1221             if let ImportDirectiveSubclass::ExternCrate(Some(_)) = directive.subclass {
1222                 return true;
1223             }
1224         }
1225         false
1226     }
1227
1228     fn is_glob_import(&self) -> bool {
1229         match self.kind {
1230             NameBindingKind::Import { directive, .. } => directive.is_glob(),
1231             NameBindingKind::Ambiguity { b1, .. } => b1.is_glob_import(),
1232             _ => false,
1233         }
1234     }
1235
1236     fn is_importable(&self) -> bool {
1237         match self.def() {
1238             Def::AssociatedConst(..) | Def::Method(..) | Def::AssociatedTy(..) => false,
1239             _ => true,
1240         }
1241     }
1242
1243     fn is_macro_def(&self) -> bool {
1244         match self.kind {
1245             NameBindingKind::Def(Def::Macro(..)) => true,
1246             _ => false,
1247         }
1248     }
1249
1250     fn descr(&self) -> &'static str {
1251         if self.is_extern_crate() { "extern crate" } else { self.def().kind_name() }
1252     }
1253 }
1254
1255 /// Interns the names of the primitive types.
1256 ///
1257 /// All other types are defined somewhere and possibly imported, but the primitive ones need
1258 /// special handling, since they have no place of origin.
1259 struct PrimitiveTypeTable {
1260     primitive_types: FxHashMap<Name, PrimTy>,
1261 }
1262
1263 impl PrimitiveTypeTable {
1264     fn new() -> PrimitiveTypeTable {
1265         let mut table = PrimitiveTypeTable { primitive_types: FxHashMap() };
1266
1267         table.intern("bool", TyBool);
1268         table.intern("char", TyChar);
1269         table.intern("f32", TyFloat(FloatTy::F32));
1270         table.intern("f64", TyFloat(FloatTy::F64));
1271         table.intern("isize", TyInt(IntTy::Isize));
1272         table.intern("i8", TyInt(IntTy::I8));
1273         table.intern("i16", TyInt(IntTy::I16));
1274         table.intern("i32", TyInt(IntTy::I32));
1275         table.intern("i64", TyInt(IntTy::I64));
1276         table.intern("i128", TyInt(IntTy::I128));
1277         table.intern("str", TyStr);
1278         table.intern("usize", TyUint(UintTy::Usize));
1279         table.intern("u8", TyUint(UintTy::U8));
1280         table.intern("u16", TyUint(UintTy::U16));
1281         table.intern("u32", TyUint(UintTy::U32));
1282         table.intern("u64", TyUint(UintTy::U64));
1283         table.intern("u128", TyUint(UintTy::U128));
1284         table
1285     }
1286
1287     fn intern(&mut self, string: &str, primitive_type: PrimTy) {
1288         self.primitive_types.insert(Symbol::intern(string), primitive_type);
1289     }
1290 }
1291
1292 /// The main resolver class.
1293 ///
1294 /// This is the visitor that walks the whole crate.
1295 pub struct Resolver<'a> {
1296     session: &'a Session,
1297     cstore: &'a dyn CrateStore,
1298
1299     pub definitions: Definitions,
1300
1301     graph_root: Module<'a>,
1302
1303     prelude: Option<Module<'a>>,
1304     extern_prelude: FxHashSet<Name>,
1305
1306     /// n.b. This is used only for better diagnostics, not name resolution itself.
1307     has_self: FxHashSet<DefId>,
1308
1309     /// Names of fields of an item `DefId` accessible with dot syntax.
1310     /// Used for hints during error reporting.
1311     field_names: FxHashMap<DefId, Vec<Name>>,
1312
1313     /// All imports known to succeed or fail.
1314     determined_imports: Vec<&'a ImportDirective<'a>>,
1315
1316     /// All non-determined imports.
1317     indeterminate_imports: Vec<&'a ImportDirective<'a>>,
1318
1319     /// The module that represents the current item scope.
1320     current_module: Module<'a>,
1321
1322     /// The current set of local scopes for types and values.
1323     /// FIXME #4948: Reuse ribs to avoid allocation.
1324     ribs: PerNS<Vec<Rib<'a>>>,
1325
1326     /// The current set of local scopes, for labels.
1327     label_ribs: Vec<Rib<'a>>,
1328
1329     /// The trait that the current context can refer to.
1330     current_trait_ref: Option<(Module<'a>, TraitRef)>,
1331
1332     /// The current self type if inside an impl (used for better errors).
1333     current_self_type: Option<Ty>,
1334
1335     /// The idents for the primitive types.
1336     primitive_type_table: PrimitiveTypeTable,
1337
1338     def_map: DefMap,
1339     import_map: ImportMap,
1340     pub freevars: FreevarMap,
1341     freevars_seen: NodeMap<NodeMap<usize>>,
1342     pub export_map: ExportMap,
1343     pub trait_map: TraitMap,
1344
1345     /// A map from nodes to anonymous modules.
1346     /// Anonymous modules are pseudo-modules that are implicitly created around items
1347     /// contained within blocks.
1348     ///
1349     /// For example, if we have this:
1350     ///
1351     ///  fn f() {
1352     ///      fn g() {
1353     ///          ...
1354     ///      }
1355     ///  }
1356     ///
1357     /// There will be an anonymous module created around `g` with the ID of the
1358     /// entry block for `f`.
1359     block_map: NodeMap<Module<'a>>,
1360     module_map: FxHashMap<DefId, Module<'a>>,
1361     extern_module_map: FxHashMap<(DefId, bool /* MacrosOnly? */), Module<'a>>,
1362
1363     pub make_glob_map: bool,
1364     /// Maps imports to the names of items actually imported (this actually maps
1365     /// all imports, but only glob imports are actually interesting).
1366     pub glob_map: GlobMap,
1367
1368     used_imports: FxHashSet<(NodeId, Namespace)>,
1369     pub maybe_unused_trait_imports: NodeSet,
1370     pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
1371
1372     /// A list of labels as of yet unused. Labels will be removed from this map when
1373     /// they are used (in a `break` or `continue` statement)
1374     pub unused_labels: FxHashMap<NodeId, Span>,
1375
1376     /// privacy errors are delayed until the end in order to deduplicate them
1377     privacy_errors: Vec<PrivacyError<'a>>,
1378     /// ambiguity errors are delayed for deduplication
1379     ambiguity_errors: Vec<AmbiguityError<'a>>,
1380     /// `use` injections are delayed for better placement and deduplication
1381     use_injections: Vec<UseError<'a>>,
1382     /// `use` injections for proc macros wrongly imported with #[macro_use]
1383     proc_mac_errors: Vec<macros::ProcMacError>,
1384
1385     gated_errors: FxHashSet<Span>,
1386     disallowed_shadowing: Vec<&'a LegacyBinding<'a>>,
1387
1388     arenas: &'a ResolverArenas<'a>,
1389     dummy_binding: &'a NameBinding<'a>,
1390     /// true if `#![feature(use_extern_macros)]`
1391     use_extern_macros: bool,
1392
1393     crate_loader: &'a mut dyn CrateLoader,
1394     macro_names: FxHashSet<Ident>,
1395     global_macros: FxHashMap<Name, &'a NameBinding<'a>>,
1396     pub all_macros: FxHashMap<Name, Def>,
1397     lexical_macro_resolutions: Vec<(Ident, &'a Cell<LegacyScope<'a>>)>,
1398     macro_map: FxHashMap<DefId, Lrc<SyntaxExtension>>,
1399     macro_defs: FxHashMap<Mark, DefId>,
1400     local_macro_def_scopes: FxHashMap<NodeId, Module<'a>>,
1401     macro_exports: Vec<Export>,
1402     pub whitelisted_legacy_custom_derives: Vec<Name>,
1403     pub found_unresolved_macro: bool,
1404
1405     /// List of crate local macros that we need to warn about as being unused.
1406     /// Right now this only includes macro_rules! macros, and macros 2.0.
1407     unused_macros: FxHashSet<DefId>,
1408
1409     /// Maps the `Mark` of an expansion to its containing module or block.
1410     invocations: FxHashMap<Mark, &'a InvocationData<'a>>,
1411
1412     /// Avoid duplicated errors for "name already defined".
1413     name_already_seen: FxHashMap<Name, Span>,
1414
1415     /// A set of procedural macros imported by `#[macro_use]` that have already been warned about
1416     warned_proc_macros: FxHashSet<Name>,
1417
1418     potentially_unused_imports: Vec<&'a ImportDirective<'a>>,
1419
1420     /// This table maps struct IDs into struct constructor IDs,
1421     /// it's not used during normal resolution, only for better error reporting.
1422     struct_constructors: DefIdMap<(Def, ty::Visibility)>,
1423
1424     /// Only used for better errors on `fn(): fn()`
1425     current_type_ascription: Vec<Span>,
1426
1427     injected_crate: Option<Module<'a>>,
1428
1429     /// Only supposed to be used by rustdoc, otherwise should be false.
1430     pub ignore_extern_prelude_feature: bool,
1431 }
1432
1433 /// Nothing really interesting here, it just provides memory for the rest of the crate.
1434 pub struct ResolverArenas<'a> {
1435     modules: arena::TypedArena<ModuleData<'a>>,
1436     local_modules: RefCell<Vec<Module<'a>>>,
1437     name_bindings: arena::TypedArena<NameBinding<'a>>,
1438     import_directives: arena::TypedArena<ImportDirective<'a>>,
1439     name_resolutions: arena::TypedArena<RefCell<NameResolution<'a>>>,
1440     invocation_data: arena::TypedArena<InvocationData<'a>>,
1441     legacy_bindings: arena::TypedArena<LegacyBinding<'a>>,
1442 }
1443
1444 impl<'a> ResolverArenas<'a> {
1445     fn alloc_module(&'a self, module: ModuleData<'a>) -> Module<'a> {
1446         let module = self.modules.alloc(module);
1447         if module.def_id().map(|def_id| def_id.is_local()).unwrap_or(true) {
1448             self.local_modules.borrow_mut().push(module);
1449         }
1450         module
1451     }
1452     fn local_modules(&'a self) -> ::std::cell::Ref<'a, Vec<Module<'a>>> {
1453         self.local_modules.borrow()
1454     }
1455     fn alloc_name_binding(&'a self, name_binding: NameBinding<'a>) -> &'a NameBinding<'a> {
1456         self.name_bindings.alloc(name_binding)
1457     }
1458     fn alloc_import_directive(&'a self, import_directive: ImportDirective<'a>)
1459                               -> &'a ImportDirective {
1460         self.import_directives.alloc(import_directive)
1461     }
1462     fn alloc_name_resolution(&'a self) -> &'a RefCell<NameResolution<'a>> {
1463         self.name_resolutions.alloc(Default::default())
1464     }
1465     fn alloc_invocation_data(&'a self, expansion_data: InvocationData<'a>)
1466                              -> &'a InvocationData<'a> {
1467         self.invocation_data.alloc(expansion_data)
1468     }
1469     fn alloc_legacy_binding(&'a self, binding: LegacyBinding<'a>) -> &'a LegacyBinding<'a> {
1470         self.legacy_bindings.alloc(binding)
1471     }
1472 }
1473
1474 impl<'a, 'b: 'a> ty::DefIdTree for &'a Resolver<'b> {
1475     fn parent(self, id: DefId) -> Option<DefId> {
1476         match id.krate {
1477             LOCAL_CRATE => self.definitions.def_key(id.index).parent,
1478             _ => self.cstore.def_key(id).parent,
1479         }.map(|index| DefId { index, ..id })
1480     }
1481 }
1482
1483 /// This interface is used through the AST→HIR step, to embed full paths into the HIR. After that
1484 /// the resolver is no longer needed as all the relevant information is inline.
1485 impl<'a> hir::lowering::Resolver for Resolver<'a> {
1486     fn resolve_hir_path(&mut self, path: &mut hir::Path, is_value: bool) {
1487         self.resolve_hir_path_cb(path, is_value,
1488                                  |resolver, span, error| resolve_error(resolver, span, error))
1489     }
1490
1491     fn resolve_str_path(
1492         &mut self,
1493         span: Span,
1494         crate_root: Option<&str>,
1495         components: &[&str],
1496         args: Option<P<hir::GenericArgs>>,
1497         is_value: bool
1498     ) -> hir::Path {
1499         let mut segments = iter::once(keywords::CrateRoot.ident())
1500             .chain(
1501                 crate_root.into_iter()
1502                     .chain(components.iter().cloned())
1503                     .map(Ident::from_str)
1504             ).map(hir::PathSegment::from_ident).collect::<Vec<_>>();
1505
1506         if let Some(args) = args {
1507             let ident = segments.last().unwrap().ident;
1508             *segments.last_mut().unwrap() = hir::PathSegment {
1509                 ident,
1510                 args: Some(args),
1511                 infer_types: true,
1512             };
1513         }
1514
1515         let mut path = hir::Path {
1516             span,
1517             def: Def::Err,
1518             segments: segments.into(),
1519         };
1520
1521         self.resolve_hir_path(&mut path, is_value);
1522         path
1523     }
1524
1525     fn get_resolution(&mut self, id: NodeId) -> Option<PathResolution> {
1526         self.def_map.get(&id).cloned()
1527     }
1528
1529     fn get_import(&mut self, id: NodeId) -> PerNS<Option<PathResolution>> {
1530         self.import_map.get(&id).cloned().unwrap_or_default()
1531     }
1532
1533     fn definitions(&mut self) -> &mut Definitions {
1534         &mut self.definitions
1535     }
1536 }
1537
1538 impl<'a> Resolver<'a> {
1539     /// Rustdoc uses this to resolve things in a recoverable way. ResolutionError<'a>
1540     /// isn't something that can be returned because it can't be made to live that long,
1541     /// and also it's a private type. Fortunately rustdoc doesn't need to know the error,
1542     /// just that an error occurred.
1543     pub fn resolve_str_path_error(&mut self, span: Span, path_str: &str, is_value: bool)
1544         -> Result<hir::Path, ()> {
1545         use std::iter;
1546         let mut errored = false;
1547
1548         let mut path = if path_str.starts_with("::") {
1549             hir::Path {
1550                 span,
1551                 def: Def::Err,
1552                 segments: iter::once(keywords::CrateRoot.ident()).chain({
1553                     path_str.split("::").skip(1).map(Ident::from_str)
1554                 }).map(hir::PathSegment::from_ident).collect(),
1555             }
1556         } else {
1557             hir::Path {
1558                 span,
1559                 def: Def::Err,
1560                 segments: path_str.split("::").map(Ident::from_str)
1561                                   .map(hir::PathSegment::from_ident).collect(),
1562             }
1563         };
1564         self.resolve_hir_path_cb(&mut path, is_value, |_, _, _| errored = true);
1565         if errored || path.def == Def::Err {
1566             Err(())
1567         } else {
1568             Ok(path)
1569         }
1570     }
1571
1572     /// resolve_hir_path, but takes a callback in case there was an error
1573     fn resolve_hir_path_cb<F>(&mut self, path: &mut hir::Path, is_value: bool, error_callback: F)
1574         where F: for<'c, 'b> FnOnce(&'c mut Resolver, Span, ResolutionError<'b>)
1575     {
1576         let namespace = if is_value { ValueNS } else { TypeNS };
1577         let hir::Path { ref segments, span, ref mut def } = *path;
1578         let path: Vec<_> = segments.iter().map(|seg| seg.ident).collect();
1579         // FIXME (Manishearth): Intra doc links won't get warned of epoch changes
1580         match self.resolve_path(&path, Some(namespace), true, span, CrateLint::No) {
1581             PathResult::Module(module) => *def = module.def().unwrap(),
1582             PathResult::NonModule(path_res) if path_res.unresolved_segments() == 0 =>
1583                 *def = path_res.base_def(),
1584             PathResult::NonModule(..) => match self.resolve_path(
1585                 &path,
1586                 None,
1587                 true,
1588                 span,
1589                 CrateLint::No,
1590             ) {
1591                 PathResult::Failed(span, msg, _) => {
1592                     error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1593                 }
1594                 _ => {}
1595             },
1596             PathResult::Indeterminate => unreachable!(),
1597             PathResult::Failed(span, msg, _) => {
1598                 error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1599             }
1600         }
1601     }
1602 }
1603
1604 impl<'a> Resolver<'a> {
1605     pub fn new(session: &'a Session,
1606                cstore: &'a dyn CrateStore,
1607                krate: &Crate,
1608                crate_name: &str,
1609                make_glob_map: MakeGlobMap,
1610                crate_loader: &'a mut dyn CrateLoader,
1611                arenas: &'a ResolverArenas<'a>)
1612                -> Resolver<'a> {
1613         let root_def_id = DefId::local(CRATE_DEF_INDEX);
1614         let root_module_kind = ModuleKind::Def(Def::Mod(root_def_id), keywords::Invalid.name());
1615         let graph_root = arenas.alloc_module(ModuleData {
1616             no_implicit_prelude: attr::contains_name(&krate.attrs, "no_implicit_prelude"),
1617             ..ModuleData::new(None, root_module_kind, root_def_id, Mark::root(), krate.span)
1618         });
1619         let mut module_map = FxHashMap();
1620         module_map.insert(DefId::local(CRATE_DEF_INDEX), graph_root);
1621
1622         let mut definitions = Definitions::new();
1623         DefCollector::new(&mut definitions, Mark::root())
1624             .collect_root(crate_name, session.local_crate_disambiguator());
1625
1626         let mut extern_prelude: FxHashSet<Name> =
1627             session.opts.externs.iter().map(|kv| Symbol::intern(kv.0)).collect();
1628         if !attr::contains_name(&krate.attrs, "no_core") {
1629             if !attr::contains_name(&krate.attrs, "no_std") {
1630                 extern_prelude.insert(Symbol::intern("std"));
1631             } else {
1632                 extern_prelude.insert(Symbol::intern("core"));
1633             }
1634         }
1635
1636         let mut invocations = FxHashMap();
1637         invocations.insert(Mark::root(),
1638                            arenas.alloc_invocation_data(InvocationData::root(graph_root)));
1639
1640         let features = session.features_untracked();
1641
1642         let mut macro_defs = FxHashMap();
1643         macro_defs.insert(Mark::root(), root_def_id);
1644
1645         Resolver {
1646             session,
1647
1648             cstore,
1649
1650             definitions,
1651
1652             // The outermost module has def ID 0; this is not reflected in the
1653             // AST.
1654             graph_root,
1655             prelude: None,
1656             extern_prelude,
1657
1658             has_self: FxHashSet(),
1659             field_names: FxHashMap(),
1660
1661             determined_imports: Vec::new(),
1662             indeterminate_imports: Vec::new(),
1663
1664             current_module: graph_root,
1665             ribs: PerNS {
1666                 value_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1667                 type_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1668                 macro_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1669             },
1670             label_ribs: Vec::new(),
1671
1672             current_trait_ref: None,
1673             current_self_type: None,
1674
1675             primitive_type_table: PrimitiveTypeTable::new(),
1676
1677             def_map: NodeMap(),
1678             import_map: NodeMap(),
1679             freevars: NodeMap(),
1680             freevars_seen: NodeMap(),
1681             export_map: FxHashMap(),
1682             trait_map: NodeMap(),
1683             module_map,
1684             block_map: NodeMap(),
1685             extern_module_map: FxHashMap(),
1686
1687             make_glob_map: make_glob_map == MakeGlobMap::Yes,
1688             glob_map: NodeMap(),
1689
1690             used_imports: FxHashSet(),
1691             maybe_unused_trait_imports: NodeSet(),
1692             maybe_unused_extern_crates: Vec::new(),
1693
1694             unused_labels: FxHashMap(),
1695
1696             privacy_errors: Vec::new(),
1697             ambiguity_errors: Vec::new(),
1698             use_injections: Vec::new(),
1699             proc_mac_errors: Vec::new(),
1700             gated_errors: FxHashSet(),
1701             disallowed_shadowing: Vec::new(),
1702
1703             arenas,
1704             dummy_binding: arenas.alloc_name_binding(NameBinding {
1705                 kind: NameBindingKind::Def(Def::Err),
1706                 expansion: Mark::root(),
1707                 span: DUMMY_SP,
1708                 vis: ty::Visibility::Public,
1709             }),
1710
1711             // The `proc_macro` and `decl_macro` features imply `use_extern_macros`
1712             use_extern_macros:
1713                 features.use_extern_macros || features.decl_macro,
1714
1715             crate_loader,
1716             macro_names: FxHashSet(),
1717             global_macros: FxHashMap(),
1718             all_macros: FxHashMap(),
1719             lexical_macro_resolutions: Vec::new(),
1720             macro_map: FxHashMap(),
1721             macro_exports: Vec::new(),
1722             invocations,
1723             macro_defs,
1724             local_macro_def_scopes: FxHashMap(),
1725             name_already_seen: FxHashMap(),
1726             whitelisted_legacy_custom_derives: Vec::new(),
1727             warned_proc_macros: FxHashSet(),
1728             potentially_unused_imports: Vec::new(),
1729             struct_constructors: DefIdMap(),
1730             found_unresolved_macro: false,
1731             unused_macros: FxHashSet(),
1732             current_type_ascription: Vec::new(),
1733             injected_crate: None,
1734             ignore_extern_prelude_feature: false,
1735         }
1736     }
1737
1738     pub fn arenas() -> ResolverArenas<'a> {
1739         ResolverArenas {
1740             modules: arena::TypedArena::new(),
1741             local_modules: RefCell::new(Vec::new()),
1742             name_bindings: arena::TypedArena::new(),
1743             import_directives: arena::TypedArena::new(),
1744             name_resolutions: arena::TypedArena::new(),
1745             invocation_data: arena::TypedArena::new(),
1746             legacy_bindings: arena::TypedArena::new(),
1747         }
1748     }
1749
1750     /// Runs the function on each namespace.
1751     fn per_ns<F: FnMut(&mut Self, Namespace)>(&mut self, mut f: F) {
1752         f(self, TypeNS);
1753         f(self, ValueNS);
1754         if self.use_extern_macros {
1755             f(self, MacroNS);
1756         }
1757     }
1758
1759     fn macro_def(&self, mut ctxt: SyntaxContext) -> DefId {
1760         loop {
1761             match self.macro_defs.get(&ctxt.outer()) {
1762                 Some(&def_id) => return def_id,
1763                 None => ctxt.remove_mark(),
1764             };
1765         }
1766     }
1767
1768     /// Entry point to crate resolution.
1769     pub fn resolve_crate(&mut self, krate: &Crate) {
1770         ImportResolver { resolver: self }.finalize_imports();
1771         self.current_module = self.graph_root;
1772         self.finalize_current_module_macro_resolutions();
1773
1774         visit::walk_crate(self, krate);
1775
1776         check_unused::check_crate(self, krate);
1777         self.report_errors(krate);
1778         self.crate_loader.postprocess(krate);
1779     }
1780
1781     fn new_module(
1782         &self,
1783         parent: Module<'a>,
1784         kind: ModuleKind,
1785         normal_ancestor_id: DefId,
1786         expansion: Mark,
1787         span: Span,
1788     ) -> Module<'a> {
1789         let module = ModuleData::new(Some(parent), kind, normal_ancestor_id, expansion, span);
1790         self.arenas.alloc_module(module)
1791     }
1792
1793     fn record_use(&mut self, ident: Ident, ns: Namespace, binding: &'a NameBinding<'a>, span: Span)
1794                   -> bool /* true if an error was reported */ {
1795         match binding.kind {
1796             NameBindingKind::Import { directive, binding, ref used }
1797                     if !used.get() => {
1798                 used.set(true);
1799                 directive.used.set(true);
1800                 self.used_imports.insert((directive.id, ns));
1801                 self.add_to_glob_map(directive.id, ident);
1802                 self.record_use(ident, ns, binding, span)
1803             }
1804             NameBindingKind::Import { .. } => false,
1805             NameBindingKind::Ambiguity { b1, b2 } => {
1806                 self.ambiguity_errors.push(AmbiguityError {
1807                     span, name: ident.name, lexical: false, b1, b2,
1808                 });
1809                 true
1810             }
1811             _ => false
1812         }
1813     }
1814
1815     fn add_to_glob_map(&mut self, id: NodeId, ident: Ident) {
1816         if self.make_glob_map {
1817             self.glob_map.entry(id).or_insert_with(FxHashSet).insert(ident.name);
1818         }
1819     }
1820
1821     /// This resolves the identifier `ident` in the namespace `ns` in the current lexical scope.
1822     /// More specifically, we proceed up the hierarchy of scopes and return the binding for
1823     /// `ident` in the first scope that defines it (or None if no scopes define it).
1824     ///
1825     /// A block's items are above its local variables in the scope hierarchy, regardless of where
1826     /// the items are defined in the block. For example,
1827     /// ```rust
1828     /// fn f() {
1829     ///    g(); // Since there are no local variables in scope yet, this resolves to the item.
1830     ///    let g = || {};
1831     ///    fn g() {}
1832     ///    g(); // This resolves to the local variable `g` since it shadows the item.
1833     /// }
1834     /// ```
1835     ///
1836     /// Invariant: This must only be called during main resolution, not during
1837     /// import resolution.
1838     fn resolve_ident_in_lexical_scope(&mut self,
1839                                       mut ident: Ident,
1840                                       ns: Namespace,
1841                                       record_used: bool,
1842                                       path_span: Span)
1843                                       -> Option<LexicalScopeBinding<'a>> {
1844         if ns == TypeNS {
1845             ident.span = if ident.name == keywords::SelfType.name() {
1846                 // FIXME(jseyfried) improve `Self` hygiene
1847                 ident.span.with_ctxt(SyntaxContext::empty())
1848             } else {
1849                 ident.span.modern()
1850             }
1851         } else {
1852             ident = ident.modern_and_legacy();
1853         }
1854
1855         // Walk backwards up the ribs in scope.
1856         let mut module = self.graph_root;
1857         for i in (0 .. self.ribs[ns].len()).rev() {
1858             if let Some(def) = self.ribs[ns][i].bindings.get(&ident).cloned() {
1859                 // The ident resolves to a type parameter or local variable.
1860                 return Some(LexicalScopeBinding::Def(
1861                     self.adjust_local_def(ns, i, def, record_used, path_span)
1862                 ));
1863             }
1864
1865             module = match self.ribs[ns][i].kind {
1866                 ModuleRibKind(module) => module,
1867                 MacroDefinition(def) if def == self.macro_def(ident.span.ctxt()) => {
1868                     // If an invocation of this macro created `ident`, give up on `ident`
1869                     // and switch to `ident`'s source from the macro definition.
1870                     ident.span.remove_mark();
1871                     continue
1872                 }
1873                 _ => continue,
1874             };
1875
1876             let item = self.resolve_ident_in_module_unadjusted(
1877                 module, ident, ns, false, record_used, path_span,
1878             );
1879             if let Ok(binding) = item {
1880                 // The ident resolves to an item.
1881                 return Some(LexicalScopeBinding::Item(binding));
1882             }
1883
1884             match module.kind {
1885                 ModuleKind::Block(..) => {}, // We can see through blocks
1886                 _ => break,
1887             }
1888         }
1889
1890         ident.span = ident.span.modern();
1891         loop {
1892             let (opt_module, poisoned) = if record_used {
1893                 self.hygienic_lexical_parent_with_compatibility_fallback(module, &mut ident.span)
1894             } else {
1895                 (self.hygienic_lexical_parent(module, &mut ident.span), false)
1896             };
1897             module = unwrap_or!(opt_module, break);
1898             let orig_current_module = self.current_module;
1899             self.current_module = module; // Lexical resolutions can never be a privacy error.
1900             let result = self.resolve_ident_in_module_unadjusted(
1901                 module, ident, ns, false, record_used, path_span,
1902             );
1903             self.current_module = orig_current_module;
1904
1905             match result {
1906                 Ok(binding) => {
1907                     if poisoned {
1908                         self.session.buffer_lint_with_diagnostic(
1909                             lint::builtin::PROC_MACRO_DERIVE_RESOLUTION_FALLBACK,
1910                             CRATE_NODE_ID, ident.span,
1911                             &format!("cannot find {} `{}` in this scope", ns.descr(), ident),
1912                             lint::builtin::BuiltinLintDiagnostics::
1913                                 ProcMacroDeriveResolutionFallback(ident.span),
1914                         );
1915                     }
1916                     return Some(LexicalScopeBinding::Item(binding))
1917                 }
1918                 _ if poisoned => break,
1919                 Err(Undetermined) => return None,
1920                 Err(Determined) => {}
1921             }
1922         }
1923
1924         if !module.no_implicit_prelude {
1925             // `record_used` means that we don't try to load crates during speculative resolution
1926             if record_used && ns == TypeNS && self.extern_prelude.contains(&ident.name) {
1927                 if !self.session.features_untracked().extern_prelude &&
1928                    !self.ignore_extern_prelude_feature {
1929                     feature_err(&self.session.parse_sess, "extern_prelude",
1930                                 ident.span, GateIssue::Language,
1931                                 "access to extern crates through prelude is experimental").emit();
1932                 }
1933
1934                 let crate_id = self.crate_loader.process_path_extern(ident.name, ident.span);
1935                 let crate_root = self.get_module(DefId { krate: crate_id, index: CRATE_DEF_INDEX });
1936                 self.populate_module_if_necessary(crate_root);
1937
1938                 let binding = (crate_root, ty::Visibility::Public,
1939                                ident.span, Mark::root()).to_name_binding(self.arenas);
1940                 return Some(LexicalScopeBinding::Item(binding));
1941             }
1942             if let Some(prelude) = self.prelude {
1943                 if let Ok(binding) = self.resolve_ident_in_module_unadjusted(prelude, ident, ns,
1944                                                                         false, false, path_span) {
1945                     return Some(LexicalScopeBinding::Item(binding));
1946                 }
1947             }
1948         }
1949
1950         None
1951     }
1952
1953     fn hygienic_lexical_parent(&mut self, module: Module<'a>, span: &mut Span)
1954                                -> Option<Module<'a>> {
1955         if !module.expansion.is_descendant_of(span.ctxt().outer()) {
1956             return Some(self.macro_def_scope(span.remove_mark()));
1957         }
1958
1959         if let ModuleKind::Block(..) = module.kind {
1960             return Some(module.parent.unwrap());
1961         }
1962
1963         None
1964     }
1965
1966     fn hygienic_lexical_parent_with_compatibility_fallback(
1967         &mut self, module: Module<'a>, span: &mut Span) -> (Option<Module<'a>>, /* poisoned */ bool
1968     ) {
1969         if let module @ Some(..) = self.hygienic_lexical_parent(module, span) {
1970             return (module, false);
1971         }
1972
1973         // We need to support the next case under a deprecation warning
1974         // ```
1975         // struct MyStruct;
1976         // ---- begin: this comes from a proc macro derive
1977         // mod implementation_details {
1978         //     // Note that `MyStruct` is not in scope here.
1979         //     impl SomeTrait for MyStruct { ... }
1980         // }
1981         // ---- end
1982         // ```
1983         // So we have to fall back to the module's parent during lexical resolution in this case.
1984         if let Some(parent) = module.parent {
1985             // Inner module is inside the macro, parent module is outside of the macro.
1986             if module.expansion != parent.expansion &&
1987             module.expansion.is_descendant_of(parent.expansion) {
1988                 // The macro is a proc macro derive
1989                 if module.expansion.looks_like_proc_macro_derive() {
1990                     if parent.expansion.is_descendant_of(span.ctxt().outer()) {
1991                         return (module.parent, true);
1992                     }
1993                 }
1994             }
1995         }
1996
1997         (None, false)
1998     }
1999
2000     fn resolve_ident_in_module(&mut self,
2001                                module: Module<'a>,
2002                                mut ident: Ident,
2003                                ns: Namespace,
2004                                ignore_unresolved_invocations: bool,
2005                                record_used: bool,
2006                                span: Span)
2007                                -> Result<&'a NameBinding<'a>, Determinacy> {
2008         ident.span = ident.span.modern();
2009         let orig_current_module = self.current_module;
2010         if let Some(def) = ident.span.adjust(module.expansion) {
2011             self.current_module = self.macro_def_scope(def);
2012         }
2013         let result = self.resolve_ident_in_module_unadjusted(
2014             module, ident, ns, ignore_unresolved_invocations, record_used, span,
2015         );
2016         self.current_module = orig_current_module;
2017         result
2018     }
2019
2020     fn resolve_crate_root(&mut self, ident: Ident) -> Module<'a> {
2021         let mut ctxt = ident.span.ctxt();
2022         let mark = if ident.name == keywords::DollarCrate.name() {
2023             // When resolving `$crate` from a `macro_rules!` invoked in a `macro`,
2024             // we don't want to pretend that the `macro_rules!` definition is in the `macro`
2025             // as described in `SyntaxContext::apply_mark`, so we ignore prepended modern marks.
2026             // FIXME: This is only a guess and it doesn't work correctly for `macro_rules!`
2027             // definitions actually produced by `macro` and `macro` definitions produced by
2028             // `macro_rules!`, but at least such configurations are not stable yet.
2029             ctxt = ctxt.modern_and_legacy();
2030             let mut iter = ctxt.marks().into_iter().rev().peekable();
2031             let mut result = None;
2032             // Find the last modern mark from the end if it exists.
2033             while let Some(&(mark, transparency)) = iter.peek() {
2034                 if transparency == Transparency::Opaque {
2035                     result = Some(mark);
2036                     iter.next();
2037                 } else {
2038                     break;
2039                 }
2040             }
2041             // Then find the last legacy mark from the end if it exists.
2042             for (mark, transparency) in iter {
2043                 if transparency == Transparency::SemiTransparent {
2044                     result = Some(mark);
2045                 } else {
2046                     break;
2047                 }
2048             }
2049             result
2050         } else {
2051             ctxt = ctxt.modern();
2052             ctxt.adjust(Mark::root())
2053         };
2054         let module = match mark {
2055             Some(def) => self.macro_def_scope(def),
2056             None => return self.graph_root,
2057         };
2058         self.get_module(DefId { index: CRATE_DEF_INDEX, ..module.normal_ancestor_id })
2059     }
2060
2061     fn resolve_self(&mut self, ctxt: &mut SyntaxContext, module: Module<'a>) -> Module<'a> {
2062         let mut module = self.get_module(module.normal_ancestor_id);
2063         while module.span.ctxt().modern() != *ctxt {
2064             let parent = module.parent.unwrap_or_else(|| self.macro_def_scope(ctxt.remove_mark()));
2065             module = self.get_module(parent.normal_ancestor_id);
2066         }
2067         module
2068     }
2069
2070     // AST resolution
2071     //
2072     // We maintain a list of value ribs and type ribs.
2073     //
2074     // Simultaneously, we keep track of the current position in the module
2075     // graph in the `current_module` pointer. When we go to resolve a name in
2076     // the value or type namespaces, we first look through all the ribs and
2077     // then query the module graph. When we resolve a name in the module
2078     // namespace, we can skip all the ribs (since nested modules are not
2079     // allowed within blocks in Rust) and jump straight to the current module
2080     // graph node.
2081     //
2082     // Named implementations are handled separately. When we find a method
2083     // call, we consult the module node to find all of the implementations in
2084     // scope. This information is lazily cached in the module node. We then
2085     // generate a fake "implementation scope" containing all the
2086     // implementations thus found, for compatibility with old resolve pass.
2087
2088     pub fn with_scope<F, T>(&mut self, id: NodeId, f: F) -> T
2089         where F: FnOnce(&mut Resolver) -> T
2090     {
2091         let id = self.definitions.local_def_id(id);
2092         let module = self.module_map.get(&id).cloned(); // clones a reference
2093         if let Some(module) = module {
2094             // Move down in the graph.
2095             let orig_module = replace(&mut self.current_module, module);
2096             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(module)));
2097             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(module)));
2098
2099             self.finalize_current_module_macro_resolutions();
2100             let ret = f(self);
2101
2102             self.current_module = orig_module;
2103             self.ribs[ValueNS].pop();
2104             self.ribs[TypeNS].pop();
2105             ret
2106         } else {
2107             f(self)
2108         }
2109     }
2110
2111     /// Searches the current set of local scopes for labels. Returns the first non-None label that
2112     /// is returned by the given predicate function
2113     ///
2114     /// Stops after meeting a closure.
2115     fn search_label<P, R>(&self, mut ident: Ident, pred: P) -> Option<R>
2116         where P: Fn(&Rib, Ident) -> Option<R>
2117     {
2118         for rib in self.label_ribs.iter().rev() {
2119             match rib.kind {
2120                 NormalRibKind => {}
2121                 // If an invocation of this macro created `ident`, give up on `ident`
2122                 // and switch to `ident`'s source from the macro definition.
2123                 MacroDefinition(def) => {
2124                     if def == self.macro_def(ident.span.ctxt()) {
2125                         ident.span.remove_mark();
2126                     }
2127                 }
2128                 _ => {
2129                     // Do not resolve labels across function boundary
2130                     return None;
2131                 }
2132             }
2133             let r = pred(rib, ident);
2134             if r.is_some() {
2135                 return r;
2136             }
2137         }
2138         None
2139     }
2140
2141     fn resolve_item(&mut self, item: &Item) {
2142         let name = item.ident.name;
2143
2144         debug!("(resolving item) resolving {}", name);
2145
2146         self.check_proc_macro_attrs(&item.attrs);
2147
2148         match item.node {
2149             ItemKind::Enum(_, ref generics) |
2150             ItemKind::Ty(_, ref generics) |
2151             ItemKind::Struct(_, ref generics) |
2152             ItemKind::Union(_, ref generics) |
2153             ItemKind::Fn(_, _, ref generics, _) => {
2154                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind),
2155                                          |this| visit::walk_item(this, item));
2156             }
2157
2158             ItemKind::Impl(.., ref generics, ref opt_trait_ref, ref self_type, ref impl_items) =>
2159                 self.resolve_implementation(generics,
2160                                             opt_trait_ref,
2161                                             &self_type,
2162                                             item.id,
2163                                             impl_items),
2164
2165             ItemKind::Trait(.., ref generics, ref bounds, ref trait_items) => {
2166                 // Create a new rib for the trait-wide type parameters.
2167                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2168                     let local_def_id = this.definitions.local_def_id(item.id);
2169                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2170                         this.visit_generics(generics);
2171                         walk_list!(this, visit_param_bound, bounds);
2172
2173                         for trait_item in trait_items {
2174                             this.check_proc_macro_attrs(&trait_item.attrs);
2175
2176                             let type_parameters = HasTypeParameters(&trait_item.generics,
2177                                                                     TraitOrImplItemRibKind);
2178                             this.with_type_parameter_rib(type_parameters, |this| {
2179                                 match trait_item.node {
2180                                     TraitItemKind::Const(ref ty, ref default) => {
2181                                         this.visit_ty(ty);
2182
2183                                         // Only impose the restrictions of
2184                                         // ConstRibKind for an actual constant
2185                                         // expression in a provided default.
2186                                         if let Some(ref expr) = *default{
2187                                             this.with_constant_rib(|this| {
2188                                                 this.visit_expr(expr);
2189                                             });
2190                                         }
2191                                     }
2192                                     TraitItemKind::Method(_, _) => {
2193                                         visit::walk_trait_item(this, trait_item)
2194                                     }
2195                                     TraitItemKind::Type(..) => {
2196                                         visit::walk_trait_item(this, trait_item)
2197                                     }
2198                                     TraitItemKind::Macro(_) => {
2199                                         panic!("unexpanded macro in resolve!")
2200                                     }
2201                                 };
2202                             });
2203                         }
2204                     });
2205                 });
2206             }
2207
2208             ItemKind::TraitAlias(ref generics, ref bounds) => {
2209                 // Create a new rib for the trait-wide type parameters.
2210                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2211                     let local_def_id = this.definitions.local_def_id(item.id);
2212                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2213                         this.visit_generics(generics);
2214                         walk_list!(this, visit_param_bound, bounds);
2215                     });
2216                 });
2217             }
2218
2219             ItemKind::Mod(_) | ItemKind::ForeignMod(_) => {
2220                 self.with_scope(item.id, |this| {
2221                     visit::walk_item(this, item);
2222                 });
2223             }
2224
2225             ItemKind::Static(ref ty, _, ref expr) |
2226             ItemKind::Const(ref ty, ref expr) => {
2227                 self.with_item_rib(|this| {
2228                     this.visit_ty(ty);
2229                     this.with_constant_rib(|this| {
2230                         this.visit_expr(expr);
2231                     });
2232                 });
2233             }
2234
2235             ItemKind::Use(ref use_tree) => {
2236                 // Imports are resolved as global by default, add starting root segment.
2237                 let path = Path {
2238                     segments: use_tree.prefix.make_root().into_iter().collect(),
2239                     span: use_tree.span,
2240                 };
2241                 self.resolve_use_tree(item.id, use_tree.span, item.id, use_tree, &path);
2242             }
2243
2244             ItemKind::ExternCrate(_) | ItemKind::MacroDef(..) | ItemKind::GlobalAsm(_) => {
2245                 // do nothing, these are just around to be encoded
2246             }
2247
2248             ItemKind::Mac(_) => panic!("unexpanded macro in resolve!"),
2249         }
2250     }
2251
2252     /// For the most part, use trees are desugared into `ImportDirective` instances
2253     /// when building the reduced graph (see `build_reduced_graph_for_use_tree`). But
2254     /// there is one special case we handle here: an empty nested import like
2255     /// `a::{b::{}}`, which desugares into...no import directives.
2256     fn resolve_use_tree(
2257         &mut self,
2258         root_id: NodeId,
2259         root_span: Span,
2260         id: NodeId,
2261         use_tree: &ast::UseTree,
2262         prefix: &Path,
2263     ) {
2264         match use_tree.kind {
2265             ast::UseTreeKind::Nested(ref items) => {
2266                 let path = Path {
2267                     segments: prefix.segments
2268                         .iter()
2269                         .chain(use_tree.prefix.segments.iter())
2270                         .cloned()
2271                         .collect(),
2272                     span: prefix.span.to(use_tree.prefix.span),
2273                 };
2274
2275                 if items.len() == 0 {
2276                     // Resolve prefix of an import with empty braces (issue #28388).
2277                     self.smart_resolve_path_with_crate_lint(
2278                         id,
2279                         None,
2280                         &path,
2281                         PathSource::ImportPrefix,
2282                         CrateLint::UsePath { root_id, root_span },
2283                     );
2284                 } else {
2285                     for &(ref tree, nested_id) in items {
2286                         self.resolve_use_tree(root_id, root_span, nested_id, tree, &path);
2287                     }
2288                 }
2289             }
2290             ast::UseTreeKind::Simple(..) => {},
2291             ast::UseTreeKind::Glob => {},
2292         }
2293     }
2294
2295     fn with_type_parameter_rib<'b, F>(&'b mut self, type_parameters: TypeParameters<'a, 'b>, f: F)
2296         where F: FnOnce(&mut Resolver)
2297     {
2298         match type_parameters {
2299             HasTypeParameters(generics, rib_kind) => {
2300                 let mut function_type_rib = Rib::new(rib_kind);
2301                 let mut seen_bindings = FxHashMap();
2302                 generics.params.iter().for_each(|param| match param.kind {
2303                     GenericParamKind::Lifetime { .. } => {}
2304                     GenericParamKind::Type { .. } => {
2305                         let ident = param.ident.modern();
2306                         debug!("with_type_parameter_rib: {}", param.id);
2307
2308                         if seen_bindings.contains_key(&ident) {
2309                             let span = seen_bindings.get(&ident).unwrap();
2310                             let err = ResolutionError::NameAlreadyUsedInTypeParameterList(
2311                                 ident.name,
2312                                 span,
2313                             );
2314                             resolve_error(self, param.ident.span, err);
2315                         }
2316                         seen_bindings.entry(ident).or_insert(param.ident.span);
2317
2318                     // Plain insert (no renaming).
2319                     let def = Def::TyParam(self.definitions.local_def_id(param.id));
2320                         function_type_rib.bindings.insert(ident, def);
2321                         self.record_def(param.id, PathResolution::new(def));
2322                     }
2323                 });
2324                 self.ribs[TypeNS].push(function_type_rib);
2325             }
2326
2327             NoTypeParameters => {
2328                 // Nothing to do.
2329             }
2330         }
2331
2332         f(self);
2333
2334         if let HasTypeParameters(..) = type_parameters {
2335             self.ribs[TypeNS].pop();
2336         }
2337     }
2338
2339     fn with_label_rib<F>(&mut self, f: F)
2340         where F: FnOnce(&mut Resolver)
2341     {
2342         self.label_ribs.push(Rib::new(NormalRibKind));
2343         f(self);
2344         self.label_ribs.pop();
2345     }
2346
2347     fn with_item_rib<F>(&mut self, f: F)
2348         where F: FnOnce(&mut Resolver)
2349     {
2350         self.ribs[ValueNS].push(Rib::new(ItemRibKind));
2351         self.ribs[TypeNS].push(Rib::new(ItemRibKind));
2352         f(self);
2353         self.ribs[TypeNS].pop();
2354         self.ribs[ValueNS].pop();
2355     }
2356
2357     fn with_constant_rib<F>(&mut self, f: F)
2358         where F: FnOnce(&mut Resolver)
2359     {
2360         self.ribs[ValueNS].push(Rib::new(ConstantItemRibKind));
2361         f(self);
2362         self.ribs[ValueNS].pop();
2363     }
2364
2365     fn with_current_self_type<T, F>(&mut self, self_type: &Ty, f: F) -> T
2366         where F: FnOnce(&mut Resolver) -> T
2367     {
2368         // Handle nested impls (inside fn bodies)
2369         let previous_value = replace(&mut self.current_self_type, Some(self_type.clone()));
2370         let result = f(self);
2371         self.current_self_type = previous_value;
2372         result
2373     }
2374
2375     /// This is called to resolve a trait reference from an `impl` (i.e. `impl Trait for Foo`)
2376     fn with_optional_trait_ref<T, F>(&mut self, opt_trait_ref: Option<&TraitRef>, f: F) -> T
2377         where F: FnOnce(&mut Resolver, Option<DefId>) -> T
2378     {
2379         let mut new_val = None;
2380         let mut new_id = None;
2381         if let Some(trait_ref) = opt_trait_ref {
2382             let path: Vec<_> = trait_ref.path.segments.iter()
2383                 .map(|seg| seg.ident)
2384                 .collect();
2385             let def = self.smart_resolve_path_fragment(
2386                 trait_ref.ref_id,
2387                 None,
2388                 &path,
2389                 trait_ref.path.span,
2390                 PathSource::Trait(AliasPossibility::No),
2391                 CrateLint::SimplePath(trait_ref.ref_id),
2392             ).base_def();
2393             if def != Def::Err {
2394                 new_id = Some(def.def_id());
2395                 let span = trait_ref.path.span;
2396                 if let PathResult::Module(module) = self.resolve_path(
2397                     &path,
2398                     None,
2399                     false,
2400                     span,
2401                     CrateLint::SimplePath(trait_ref.ref_id),
2402                 ) {
2403                     new_val = Some((module, trait_ref.clone()));
2404                 }
2405             }
2406         }
2407         let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
2408         let result = f(self, new_id);
2409         self.current_trait_ref = original_trait_ref;
2410         result
2411     }
2412
2413     fn with_self_rib<F>(&mut self, self_def: Def, f: F)
2414         where F: FnOnce(&mut Resolver)
2415     {
2416         let mut self_type_rib = Rib::new(NormalRibKind);
2417
2418         // plain insert (no renaming, types are not currently hygienic....)
2419         self_type_rib.bindings.insert(keywords::SelfType.ident(), self_def);
2420         self.ribs[TypeNS].push(self_type_rib);
2421         f(self);
2422         self.ribs[TypeNS].pop();
2423     }
2424
2425     fn resolve_implementation(&mut self,
2426                               generics: &Generics,
2427                               opt_trait_reference: &Option<TraitRef>,
2428                               self_type: &Ty,
2429                               item_id: NodeId,
2430                               impl_items: &[ImplItem]) {
2431         // If applicable, create a rib for the type parameters.
2432         self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2433             // Dummy self type for better errors if `Self` is used in the trait path.
2434             this.with_self_rib(Def::SelfTy(None, None), |this| {
2435                 // Resolve the trait reference, if necessary.
2436                 this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| {
2437                     let item_def_id = this.definitions.local_def_id(item_id);
2438                     this.with_self_rib(Def::SelfTy(trait_id, Some(item_def_id)), |this| {
2439                         if let Some(trait_ref) = opt_trait_reference.as_ref() {
2440                             // Resolve type arguments in trait path
2441                             visit::walk_trait_ref(this, trait_ref);
2442                         }
2443                         // Resolve the self type.
2444                         this.visit_ty(self_type);
2445                         // Resolve the type parameters.
2446                         this.visit_generics(generics);
2447                         this.with_current_self_type(self_type, |this| {
2448                             for impl_item in impl_items {
2449                                 this.check_proc_macro_attrs(&impl_item.attrs);
2450                                 this.resolve_visibility(&impl_item.vis);
2451
2452                                 // We also need a new scope for the impl item type parameters.
2453                                 let type_parameters = HasTypeParameters(&impl_item.generics,
2454                                                                         TraitOrImplItemRibKind);
2455                                 this.with_type_parameter_rib(type_parameters, |this| {
2456                                     use self::ResolutionError::*;
2457                                     match impl_item.node {
2458                                         ImplItemKind::Const(..) => {
2459                                             // If this is a trait impl, ensure the const
2460                                             // exists in trait
2461                                             this.check_trait_item(impl_item.ident,
2462                                                                 ValueNS,
2463                                                                 impl_item.span,
2464                                                 |n, s| ConstNotMemberOfTrait(n, s));
2465                                             this.with_constant_rib(|this|
2466                                                 visit::walk_impl_item(this, impl_item)
2467                                             );
2468                                         }
2469                                         ImplItemKind::Method(..) => {
2470                                             // If this is a trait impl, ensure the method
2471                                             // exists in trait
2472                                             this.check_trait_item(impl_item.ident,
2473                                                                 ValueNS,
2474                                                                 impl_item.span,
2475                                                 |n, s| MethodNotMemberOfTrait(n, s));
2476
2477                                             visit::walk_impl_item(this, impl_item);
2478                                         }
2479                                         ImplItemKind::Type(ref ty) => {
2480                                             // If this is a trait impl, ensure the type
2481                                             // exists in trait
2482                                             this.check_trait_item(impl_item.ident,
2483                                                                 TypeNS,
2484                                                                 impl_item.span,
2485                                                 |n, s| TypeNotMemberOfTrait(n, s));
2486
2487                                             this.visit_ty(ty);
2488                                         }
2489                                         ImplItemKind::Macro(_) =>
2490                                             panic!("unexpanded macro in resolve!"),
2491                                     }
2492                                 });
2493                             }
2494                         });
2495                     });
2496                 });
2497             });
2498         });
2499     }
2500
2501     fn check_trait_item<F>(&mut self, ident: Ident, ns: Namespace, span: Span, err: F)
2502         where F: FnOnce(Name, &str) -> ResolutionError
2503     {
2504         // If there is a TraitRef in scope for an impl, then the method must be in the
2505         // trait.
2506         if let Some((module, _)) = self.current_trait_ref {
2507             if self.resolve_ident_in_module(module, ident, ns, false, false, span).is_err() {
2508                 let path = &self.current_trait_ref.as_ref().unwrap().1.path;
2509                 resolve_error(self, span, err(ident.name, &path_names_to_string(path)));
2510             }
2511         }
2512     }
2513
2514     fn resolve_local(&mut self, local: &Local) {
2515         // Resolve the type.
2516         walk_list!(self, visit_ty, &local.ty);
2517
2518         // Resolve the initializer.
2519         walk_list!(self, visit_expr, &local.init);
2520
2521         // Resolve the pattern.
2522         self.resolve_pattern(&local.pat, PatternSource::Let, &mut FxHashMap());
2523     }
2524
2525     // build a map from pattern identifiers to binding-info's.
2526     // this is done hygienically. This could arise for a macro
2527     // that expands into an or-pattern where one 'x' was from the
2528     // user and one 'x' came from the macro.
2529     fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
2530         let mut binding_map = FxHashMap();
2531
2532         pat.walk(&mut |pat| {
2533             if let PatKind::Ident(binding_mode, ident, ref sub_pat) = pat.node {
2534                 if sub_pat.is_some() || match self.def_map.get(&pat.id).map(|res| res.base_def()) {
2535                     Some(Def::Local(..)) => true,
2536                     _ => false,
2537                 } {
2538                     let binding_info = BindingInfo { span: ident.span, binding_mode: binding_mode };
2539                     binding_map.insert(ident, binding_info);
2540                 }
2541             }
2542             true
2543         });
2544
2545         binding_map
2546     }
2547
2548     // check that all of the arms in an or-pattern have exactly the
2549     // same set of bindings, with the same binding modes for each.
2550     fn check_consistent_bindings(&mut self, pats: &[P<Pat>]) {
2551         if pats.is_empty() {
2552             return;
2553         }
2554
2555         let mut missing_vars = FxHashMap();
2556         let mut inconsistent_vars = FxHashMap();
2557         for (i, p) in pats.iter().enumerate() {
2558             let map_i = self.binding_mode_map(&p);
2559
2560             for (j, q) in pats.iter().enumerate() {
2561                 if i == j {
2562                     continue;
2563                 }
2564
2565                 let map_j = self.binding_mode_map(&q);
2566                 for (&key, &binding_i) in &map_i {
2567                     if map_j.len() == 0 {                   // Account for missing bindings when
2568                         let binding_error = missing_vars    // map_j has none.
2569                             .entry(key.name)
2570                             .or_insert(BindingError {
2571                                 name: key.name,
2572                                 origin: BTreeSet::new(),
2573                                 target: BTreeSet::new(),
2574                             });
2575                         binding_error.origin.insert(binding_i.span);
2576                         binding_error.target.insert(q.span);
2577                     }
2578                     for (&key_j, &binding_j) in &map_j {
2579                         match map_i.get(&key_j) {
2580                             None => {  // missing binding
2581                                 let binding_error = missing_vars
2582                                     .entry(key_j.name)
2583                                     .or_insert(BindingError {
2584                                         name: key_j.name,
2585                                         origin: BTreeSet::new(),
2586                                         target: BTreeSet::new(),
2587                                     });
2588                                 binding_error.origin.insert(binding_j.span);
2589                                 binding_error.target.insert(p.span);
2590                             }
2591                             Some(binding_i) => {  // check consistent binding
2592                                 if binding_i.binding_mode != binding_j.binding_mode {
2593                                     inconsistent_vars
2594                                         .entry(key.name)
2595                                         .or_insert((binding_j.span, binding_i.span));
2596                                 }
2597                             }
2598                         }
2599                     }
2600                 }
2601             }
2602         }
2603         let mut missing_vars = missing_vars.iter().collect::<Vec<_>>();
2604         missing_vars.sort();
2605         for (_, v) in missing_vars {
2606             resolve_error(self,
2607                           *v.origin.iter().next().unwrap(),
2608                           ResolutionError::VariableNotBoundInPattern(v));
2609         }
2610         let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
2611         inconsistent_vars.sort();
2612         for (name, v) in inconsistent_vars {
2613             resolve_error(self, v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
2614         }
2615     }
2616
2617     fn resolve_arm(&mut self, arm: &Arm) {
2618         self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2619
2620         let mut bindings_list = FxHashMap();
2621         for pattern in &arm.pats {
2622             self.resolve_pattern(&pattern, PatternSource::Match, &mut bindings_list);
2623         }
2624
2625         // This has to happen *after* we determine which pat_idents are variants
2626         self.check_consistent_bindings(&arm.pats);
2627
2628         walk_list!(self, visit_expr, &arm.guard);
2629         self.visit_expr(&arm.body);
2630
2631         self.ribs[ValueNS].pop();
2632     }
2633
2634     fn resolve_block(&mut self, block: &Block) {
2635         debug!("(resolving block) entering block");
2636         // Move down in the graph, if there's an anonymous module rooted here.
2637         let orig_module = self.current_module;
2638         let anonymous_module = self.block_map.get(&block.id).cloned(); // clones a reference
2639
2640         let mut num_macro_definition_ribs = 0;
2641         if let Some(anonymous_module) = anonymous_module {
2642             debug!("(resolving block) found anonymous module, moving down");
2643             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2644             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2645             self.current_module = anonymous_module;
2646             self.finalize_current_module_macro_resolutions();
2647         } else {
2648             self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2649         }
2650
2651         // Descend into the block.
2652         for stmt in &block.stmts {
2653             if let ast::StmtKind::Item(ref item) = stmt.node {
2654                 if let ast::ItemKind::MacroDef(..) = item.node {
2655                     num_macro_definition_ribs += 1;
2656                     let def = self.definitions.local_def_id(item.id);
2657                     self.ribs[ValueNS].push(Rib::new(MacroDefinition(def)));
2658                     self.label_ribs.push(Rib::new(MacroDefinition(def)));
2659                 }
2660             }
2661
2662             self.visit_stmt(stmt);
2663         }
2664
2665         // Move back up.
2666         self.current_module = orig_module;
2667         for _ in 0 .. num_macro_definition_ribs {
2668             self.ribs[ValueNS].pop();
2669             self.label_ribs.pop();
2670         }
2671         self.ribs[ValueNS].pop();
2672         if let Some(_) = anonymous_module {
2673             self.ribs[TypeNS].pop();
2674         }
2675         debug!("(resolving block) leaving block");
2676     }
2677
2678     fn fresh_binding(&mut self,
2679                      ident: Ident,
2680                      pat_id: NodeId,
2681                      outer_pat_id: NodeId,
2682                      pat_src: PatternSource,
2683                      bindings: &mut FxHashMap<Ident, NodeId>)
2684                      -> PathResolution {
2685         // Add the binding to the local ribs, if it
2686         // doesn't already exist in the bindings map. (We
2687         // must not add it if it's in the bindings map
2688         // because that breaks the assumptions later
2689         // passes make about or-patterns.)
2690         let ident = ident.modern_and_legacy();
2691         let mut def = Def::Local(pat_id);
2692         match bindings.get(&ident).cloned() {
2693             Some(id) if id == outer_pat_id => {
2694                 // `Variant(a, a)`, error
2695                 resolve_error(
2696                     self,
2697                     ident.span,
2698                     ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(
2699                         &ident.as_str())
2700                 );
2701             }
2702             Some(..) if pat_src == PatternSource::FnParam => {
2703                 // `fn f(a: u8, a: u8)`, error
2704                 resolve_error(
2705                     self,
2706                     ident.span,
2707                     ResolutionError::IdentifierBoundMoreThanOnceInParameterList(
2708                         &ident.as_str())
2709                 );
2710             }
2711             Some(..) if pat_src == PatternSource::Match ||
2712                         pat_src == PatternSource::IfLet ||
2713                         pat_src == PatternSource::WhileLet => {
2714                 // `Variant1(a) | Variant2(a)`, ok
2715                 // Reuse definition from the first `a`.
2716                 def = self.ribs[ValueNS].last_mut().unwrap().bindings[&ident];
2717             }
2718             Some(..) => {
2719                 span_bug!(ident.span, "two bindings with the same name from \
2720                                        unexpected pattern source {:?}", pat_src);
2721             }
2722             None => {
2723                 // A completely fresh binding, add to the lists if it's valid.
2724                 if ident.name != keywords::Invalid.name() {
2725                     bindings.insert(ident, outer_pat_id);
2726                     self.ribs[ValueNS].last_mut().unwrap().bindings.insert(ident, def);
2727                 }
2728             }
2729         }
2730
2731         PathResolution::new(def)
2732     }
2733
2734     fn resolve_pattern(&mut self,
2735                        pat: &Pat,
2736                        pat_src: PatternSource,
2737                        // Maps idents to the node ID for the
2738                        // outermost pattern that binds them.
2739                        bindings: &mut FxHashMap<Ident, NodeId>) {
2740         // Visit all direct subpatterns of this pattern.
2741         let outer_pat_id = pat.id;
2742         pat.walk(&mut |pat| {
2743             match pat.node {
2744                 PatKind::Ident(bmode, ident, ref opt_pat) => {
2745                     // First try to resolve the identifier as some existing
2746                     // entity, then fall back to a fresh binding.
2747                     let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS,
2748                                                                       false, pat.span)
2749                                       .and_then(LexicalScopeBinding::item);
2750                     let resolution = binding.map(NameBinding::def).and_then(|def| {
2751                         let is_syntactic_ambiguity = opt_pat.is_none() &&
2752                             bmode == BindingMode::ByValue(Mutability::Immutable);
2753                         match def {
2754                             Def::StructCtor(_, CtorKind::Const) |
2755                             Def::VariantCtor(_, CtorKind::Const) |
2756                             Def::Const(..) if is_syntactic_ambiguity => {
2757                                 // Disambiguate in favor of a unit struct/variant
2758                                 // or constant pattern.
2759                                 self.record_use(ident, ValueNS, binding.unwrap(), ident.span);
2760                                 Some(PathResolution::new(def))
2761                             }
2762                             Def::StructCtor(..) | Def::VariantCtor(..) |
2763                             Def::Const(..) | Def::Static(..) => {
2764                                 // This is unambiguously a fresh binding, either syntactically
2765                                 // (e.g. `IDENT @ PAT` or `ref IDENT`) or because `IDENT` resolves
2766                                 // to something unusable as a pattern (e.g. constructor function),
2767                                 // but we still conservatively report an error, see
2768                                 // issues/33118#issuecomment-233962221 for one reason why.
2769                                 resolve_error(
2770                                     self,
2771                                     ident.span,
2772                                     ResolutionError::BindingShadowsSomethingUnacceptable(
2773                                         pat_src.descr(), ident.name, binding.unwrap())
2774                                 );
2775                                 None
2776                             }
2777                             Def::Fn(..) | Def::Err => {
2778                                 // These entities are explicitly allowed
2779                                 // to be shadowed by fresh bindings.
2780                                 None
2781                             }
2782                             def => {
2783                                 span_bug!(ident.span, "unexpected definition for an \
2784                                                        identifier in pattern: {:?}", def);
2785                             }
2786                         }
2787                     }).unwrap_or_else(|| {
2788                         self.fresh_binding(ident, pat.id, outer_pat_id, pat_src, bindings)
2789                     });
2790
2791                     self.record_def(pat.id, resolution);
2792                 }
2793
2794                 PatKind::TupleStruct(ref path, ..) => {
2795                     self.smart_resolve_path(pat.id, None, path, PathSource::TupleStruct);
2796                 }
2797
2798                 PatKind::Path(ref qself, ref path) => {
2799                     self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
2800                 }
2801
2802                 PatKind::Struct(ref path, ..) => {
2803                     self.smart_resolve_path(pat.id, None, path, PathSource::Struct);
2804                 }
2805
2806                 _ => {}
2807             }
2808             true
2809         });
2810
2811         visit::walk_pat(self, pat);
2812     }
2813
2814     // High-level and context dependent path resolution routine.
2815     // Resolves the path and records the resolution into definition map.
2816     // If resolution fails tries several techniques to find likely
2817     // resolution candidates, suggest imports or other help, and report
2818     // errors in user friendly way.
2819     fn smart_resolve_path(&mut self,
2820                           id: NodeId,
2821                           qself: Option<&QSelf>,
2822                           path: &Path,
2823                           source: PathSource)
2824                           -> PathResolution {
2825         self.smart_resolve_path_with_crate_lint(id, qself, path, source, CrateLint::SimplePath(id))
2826     }
2827
2828     /// A variant of `smart_resolve_path` where you also specify extra
2829     /// information about where the path came from; this extra info is
2830     /// sometimes needed for the lint that recommends rewriting
2831     /// absolute paths to `crate`, so that it knows how to frame the
2832     /// suggestion. If you are just resolving a path like `foo::bar`
2833     /// that appears...somewhere, though, then you just want
2834     /// `CrateLint::SimplePath`, which is what `smart_resolve_path`
2835     /// already provides.
2836     fn smart_resolve_path_with_crate_lint(
2837         &mut self,
2838         id: NodeId,
2839         qself: Option<&QSelf>,
2840         path: &Path,
2841         source: PathSource,
2842         crate_lint: CrateLint
2843     ) -> PathResolution {
2844         let segments = &path.segments.iter()
2845             .map(|seg| seg.ident)
2846             .collect::<Vec<_>>();
2847         self.smart_resolve_path_fragment(id, qself, segments, path.span, source, crate_lint)
2848     }
2849
2850     fn smart_resolve_path_fragment(&mut self,
2851                                    id: NodeId,
2852                                    qself: Option<&QSelf>,
2853                                    path: &[Ident],
2854                                    span: Span,
2855                                    source: PathSource,
2856                                    crate_lint: CrateLint)
2857                                    -> PathResolution {
2858         let ident_span = path.last().map_or(span, |ident| ident.span);
2859         let ns = source.namespace();
2860         let is_expected = &|def| source.is_expected(def);
2861         let is_enum_variant = &|def| if let Def::Variant(..) = def { true } else { false };
2862
2863         // Base error is amended with one short label and possibly some longer helps/notes.
2864         let report_errors = |this: &mut Self, def: Option<Def>| {
2865             // Make the base error.
2866             let expected = source.descr_expected();
2867             let path_str = names_to_string(path);
2868             let code = source.error_code(def.is_some());
2869             let (base_msg, fallback_label, base_span) = if let Some(def) = def {
2870                 (format!("expected {}, found {} `{}`", expected, def.kind_name(), path_str),
2871                  format!("not a {}", expected),
2872                  span)
2873             } else {
2874                 let item_str = path[path.len() - 1];
2875                 let item_span = path[path.len() - 1].span;
2876                 let (mod_prefix, mod_str) = if path.len() == 1 {
2877                     (format!(""), format!("this scope"))
2878                 } else if path.len() == 2 && path[0].name == keywords::CrateRoot.name() {
2879                     (format!(""), format!("the crate root"))
2880                 } else {
2881                     let mod_path = &path[..path.len() - 1];
2882                     let mod_prefix = match this.resolve_path(mod_path, Some(TypeNS),
2883                                                              false, span, CrateLint::No) {
2884                         PathResult::Module(module) => module.def(),
2885                         _ => None,
2886                     }.map_or(format!(""), |def| format!("{} ", def.kind_name()));
2887                     (mod_prefix, format!("`{}`", names_to_string(mod_path)))
2888                 };
2889                 (format!("cannot find {} `{}` in {}{}", expected, item_str, mod_prefix, mod_str),
2890                  format!("not found in {}", mod_str),
2891                  item_span)
2892             };
2893             let code = DiagnosticId::Error(code.into());
2894             let mut err = this.session.struct_span_err_with_code(base_span, &base_msg, code);
2895
2896             // Emit special messages for unresolved `Self` and `self`.
2897             if is_self_type(path, ns) {
2898                 __diagnostic_used!(E0411);
2899                 err.code(DiagnosticId::Error("E0411".into()));
2900                 err.span_label(span, "`Self` is only available in traits and impls");
2901                 return (err, Vec::new());
2902             }
2903             if is_self_value(path, ns) {
2904                 __diagnostic_used!(E0424);
2905                 err.code(DiagnosticId::Error("E0424".into()));
2906                 err.span_label(span, format!("`self` value is only available in \
2907                                                methods with `self` parameter"));
2908                 return (err, Vec::new());
2909             }
2910
2911             // Try to lookup the name in more relaxed fashion for better error reporting.
2912             let ident = *path.last().unwrap();
2913             let candidates = this.lookup_import_candidates(ident.name, ns, is_expected);
2914             if candidates.is_empty() && is_expected(Def::Enum(DefId::local(CRATE_DEF_INDEX))) {
2915                 let enum_candidates =
2916                     this.lookup_import_candidates(ident.name, ns, is_enum_variant);
2917                 let mut enum_candidates = enum_candidates.iter()
2918                     .map(|suggestion| import_candidate_to_paths(&suggestion)).collect::<Vec<_>>();
2919                 enum_candidates.sort();
2920                 for (sp, variant_path, enum_path) in enum_candidates {
2921                     if sp.is_dummy() {
2922                         let msg = format!("there is an enum variant `{}`, \
2923                                         try using `{}`?",
2924                                         variant_path,
2925                                         enum_path);
2926                         err.help(&msg);
2927                     } else {
2928                         err.span_suggestion(span, "you can try using the variant's enum",
2929                                             enum_path);
2930                     }
2931                 }
2932             }
2933             if path.len() == 1 && this.self_type_is_available(span) {
2934                 if let Some(candidate) = this.lookup_assoc_candidate(ident, ns, is_expected) {
2935                     let self_is_available = this.self_value_is_available(path[0].span, span);
2936                     match candidate {
2937                         AssocSuggestion::Field => {
2938                             err.span_suggestion(span, "try",
2939                                                 format!("self.{}", path_str));
2940                             if !self_is_available {
2941                                 err.span_label(span, format!("`self` value is only available in \
2942                                                                methods with `self` parameter"));
2943                             }
2944                         }
2945                         AssocSuggestion::MethodWithSelf if self_is_available => {
2946                             err.span_suggestion(span, "try",
2947                                                 format!("self.{}", path_str));
2948                         }
2949                         AssocSuggestion::MethodWithSelf | AssocSuggestion::AssocItem => {
2950                             err.span_suggestion(span, "try",
2951                                                 format!("Self::{}", path_str));
2952                         }
2953                     }
2954                     return (err, candidates);
2955                 }
2956             }
2957
2958             let mut levenshtein_worked = false;
2959
2960             // Try Levenshtein.
2961             if let Some(candidate) = this.lookup_typo_candidate(path, ns, is_expected, span) {
2962                 err.span_label(ident_span, format!("did you mean `{}`?", candidate));
2963                 levenshtein_worked = true;
2964             }
2965
2966             // Try context dependent help if relaxed lookup didn't work.
2967             if let Some(def) = def {
2968                 match (def, source) {
2969                     (Def::Macro(..), _) => {
2970                         err.span_label(span, format!("did you mean `{}!(...)`?", path_str));
2971                         return (err, candidates);
2972                     }
2973                     (Def::TyAlias(..), PathSource::Trait(_)) => {
2974                         err.span_label(span, "type aliases cannot be used for traits");
2975                         return (err, candidates);
2976                     }
2977                     (Def::Mod(..), PathSource::Expr(Some(parent))) => match parent.node {
2978                         ExprKind::Field(_, ident) => {
2979                             err.span_label(parent.span, format!("did you mean `{}::{}`?",
2980                                                                  path_str, ident));
2981                             return (err, candidates);
2982                         }
2983                         ExprKind::MethodCall(ref segment, ..) => {
2984                             err.span_label(parent.span, format!("did you mean `{}::{}(...)`?",
2985                                                                  path_str, segment.ident));
2986                             return (err, candidates);
2987                         }
2988                         _ => {}
2989                     },
2990                     (Def::Enum(..), PathSource::TupleStruct)
2991                         | (Def::Enum(..), PathSource::Expr(..))  => {
2992                         if let Some(variants) = this.collect_enum_variants(def) {
2993                             err.note(&format!("did you mean to use one \
2994                                                of the following variants?\n{}",
2995                                 variants.iter()
2996                                     .map(|suggestion| path_names_to_string(suggestion))
2997                                     .map(|suggestion| format!("- `{}`", suggestion))
2998                                     .collect::<Vec<_>>()
2999                                     .join("\n")));
3000
3001                         } else {
3002                             err.note("did you mean to use one of the enum's variants?");
3003                         }
3004                         return (err, candidates);
3005                     },
3006                     (Def::Struct(def_id), _) if ns == ValueNS => {
3007                         if let Some((ctor_def, ctor_vis))
3008                                 = this.struct_constructors.get(&def_id).cloned() {
3009                             let accessible_ctor = this.is_accessible(ctor_vis);
3010                             if is_expected(ctor_def) && !accessible_ctor {
3011                                 err.span_label(span, format!("constructor is not visible \
3012                                                               here due to private fields"));
3013                             }
3014                         } else {
3015                             // HACK(estebank): find a better way to figure out that this was a
3016                             // parser issue where a struct literal is being used on an expression
3017                             // where a brace being opened means a block is being started. Look
3018                             // ahead for the next text to see if `span` is followed by a `{`.
3019                             let cm = this.session.codemap();
3020                             let mut sp = span;
3021                             loop {
3022                                 sp = cm.next_point(sp);
3023                                 match cm.span_to_snippet(sp) {
3024                                     Ok(ref snippet) => {
3025                                         if snippet.chars().any(|c| { !c.is_whitespace() }) {
3026                                             break;
3027                                         }
3028                                     }
3029                                     _ => break,
3030                                 }
3031                             }
3032                             let followed_by_brace = match cm.span_to_snippet(sp) {
3033                                 Ok(ref snippet) if snippet == "{" => true,
3034                                 _ => false,
3035                             };
3036                             if let (PathSource::Expr(None), true) = (source, followed_by_brace) {
3037                                 err.span_label(
3038                                     span,
3039                                     format!("did you mean `({} {{ /* fields */ }})`?", path_str),
3040                                 );
3041                             } else {
3042                                 err.span_label(
3043                                     span,
3044                                     format!("did you mean `{} {{ /* fields */ }}`?", path_str),
3045                                 );
3046                             }
3047                         }
3048                         return (err, candidates);
3049                     }
3050                     (Def::Union(..), _) |
3051                     (Def::Variant(..), _) |
3052                     (Def::VariantCtor(_, CtorKind::Fictive), _) if ns == ValueNS => {
3053                         err.span_label(span, format!("did you mean `{} {{ /* fields */ }}`?",
3054                                                      path_str));
3055                         return (err, candidates);
3056                     }
3057                     (Def::SelfTy(..), _) if ns == ValueNS => {
3058                         err.span_label(span, fallback_label);
3059                         err.note("can't use `Self` as a constructor, you must use the \
3060                                   implemented struct");
3061                         return (err, candidates);
3062                     }
3063                     (Def::TyAlias(_), _) | (Def::AssociatedTy(..), _) if ns == ValueNS => {
3064                         err.note("can't use a type alias as a constructor");
3065                         return (err, candidates);
3066                     }
3067                     _ => {}
3068                 }
3069             }
3070
3071             // Fallback label.
3072             if !levenshtein_worked {
3073                 err.span_label(base_span, fallback_label);
3074                 this.type_ascription_suggestion(&mut err, base_span);
3075             }
3076             (err, candidates)
3077         };
3078         let report_errors = |this: &mut Self, def: Option<Def>| {
3079             let (err, candidates) = report_errors(this, def);
3080             let def_id = this.current_module.normal_ancestor_id;
3081             let node_id = this.definitions.as_local_node_id(def_id).unwrap();
3082             let better = def.is_some();
3083             this.use_injections.push(UseError { err, candidates, node_id, better });
3084             err_path_resolution()
3085         };
3086
3087         let resolution = match self.resolve_qpath_anywhere(
3088             id,
3089             qself,
3090             path,
3091             ns,
3092             span,
3093             source.defer_to_typeck(),
3094             source.global_by_default(),
3095             crate_lint,
3096         ) {
3097             Some(resolution) if resolution.unresolved_segments() == 0 => {
3098                 if is_expected(resolution.base_def()) || resolution.base_def() == Def::Err {
3099                     resolution
3100                 } else {
3101                     // Add a temporary hack to smooth the transition to new struct ctor
3102                     // visibility rules. See #38932 for more details.
3103                     let mut res = None;
3104                     if let Def::Struct(def_id) = resolution.base_def() {
3105                         if let Some((ctor_def, ctor_vis))
3106                                 = self.struct_constructors.get(&def_id).cloned() {
3107                             if is_expected(ctor_def) && self.is_accessible(ctor_vis) {
3108                                 let lint = lint::builtin::LEGACY_CONSTRUCTOR_VISIBILITY;
3109                                 self.session.buffer_lint(lint, id, span,
3110                                     "private struct constructors are not usable through \
3111                                      re-exports in outer modules",
3112                                 );
3113                                 res = Some(PathResolution::new(ctor_def));
3114                             }
3115                         }
3116                     }
3117
3118                     res.unwrap_or_else(|| report_errors(self, Some(resolution.base_def())))
3119                 }
3120             }
3121             Some(resolution) if source.defer_to_typeck() => {
3122                 // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
3123                 // or `<T>::A::B`. If `B` should be resolved in value namespace then
3124                 // it needs to be added to the trait map.
3125                 if ns == ValueNS {
3126                     let item_name = *path.last().unwrap();
3127                     let traits = self.get_traits_containing_item(item_name, ns);
3128                     self.trait_map.insert(id, traits);
3129                 }
3130                 resolution
3131             }
3132             _ => report_errors(self, None)
3133         };
3134
3135         if let PathSource::TraitItem(..) = source {} else {
3136             // Avoid recording definition of `A::B` in `<T as A>::B::C`.
3137             self.record_def(id, resolution);
3138         }
3139         resolution
3140     }
3141
3142     fn type_ascription_suggestion(&self,
3143                                   err: &mut DiagnosticBuilder,
3144                                   base_span: Span) {
3145         debug!("type_ascription_suggetion {:?}", base_span);
3146         let cm = self.session.codemap();
3147         debug!("self.current_type_ascription {:?}", self.current_type_ascription);
3148         if let Some(sp) = self.current_type_ascription.last() {
3149             let mut sp = *sp;
3150             loop {  // try to find the `:`, bail on first non-':'/non-whitespace
3151                 sp = cm.next_point(sp);
3152                 if let Ok(snippet) = cm.span_to_snippet(sp.to(cm.next_point(sp))) {
3153                     debug!("snippet {:?}", snippet);
3154                     let line_sp = cm.lookup_char_pos(sp.hi()).line;
3155                     let line_base_sp = cm.lookup_char_pos(base_span.lo()).line;
3156                     debug!("{:?} {:?}", line_sp, line_base_sp);
3157                     if snippet == ":" {
3158                         err.span_label(base_span,
3159                                        "expecting a type here because of type ascription");
3160                         if line_sp != line_base_sp {
3161                             err.span_suggestion_short(sp,
3162                                                       "did you mean to use `;` here instead?",
3163                                                       ";".to_string());
3164                         }
3165                         break;
3166                     } else if snippet.trim().len() != 0  {
3167                         debug!("tried to find type ascription `:` token, couldn't find it");
3168                         break;
3169                     }
3170                 } else {
3171                     break;
3172                 }
3173             }
3174         }
3175     }
3176
3177     fn self_type_is_available(&mut self, span: Span) -> bool {
3178         let binding = self.resolve_ident_in_lexical_scope(keywords::SelfType.ident(),
3179                                                           TypeNS, false, span);
3180         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3181     }
3182
3183     fn self_value_is_available(&mut self, self_span: Span, path_span: Span) -> bool {
3184         let ident = Ident::new(keywords::SelfValue.name(), self_span);
3185         let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, false, path_span);
3186         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3187     }
3188
3189     // Resolve in alternative namespaces if resolution in the primary namespace fails.
3190     fn resolve_qpath_anywhere(&mut self,
3191                               id: NodeId,
3192                               qself: Option<&QSelf>,
3193                               path: &[Ident],
3194                               primary_ns: Namespace,
3195                               span: Span,
3196                               defer_to_typeck: bool,
3197                               global_by_default: bool,
3198                               crate_lint: CrateLint)
3199                               -> Option<PathResolution> {
3200         let mut fin_res = None;
3201         // FIXME: can't resolve paths in macro namespace yet, macros are
3202         // processed by the little special hack below.
3203         for (i, ns) in [primary_ns, TypeNS, ValueNS, /*MacroNS*/].iter().cloned().enumerate() {
3204             if i == 0 || ns != primary_ns {
3205                 match self.resolve_qpath(id, qself, path, ns, span, global_by_default, crate_lint) {
3206                     // If defer_to_typeck, then resolution > no resolution,
3207                     // otherwise full resolution > partial resolution > no resolution.
3208                     Some(res) if res.unresolved_segments() == 0 || defer_to_typeck =>
3209                         return Some(res),
3210                     res => if fin_res.is_none() { fin_res = res },
3211                 };
3212             }
3213         }
3214         let is_global = self.global_macros.get(&path[0].name).cloned()
3215             .map(|binding| binding.get_macro(self).kind() == MacroKind::Bang).unwrap_or(false);
3216         if primary_ns != MacroNS && (is_global ||
3217                                      self.macro_names.contains(&path[0].modern())) {
3218             // Return some dummy definition, it's enough for error reporting.
3219             return Some(
3220                 PathResolution::new(Def::Macro(DefId::local(CRATE_DEF_INDEX), MacroKind::Bang))
3221             );
3222         }
3223         fin_res
3224     }
3225
3226     /// Handles paths that may refer to associated items.
3227     fn resolve_qpath(&mut self,
3228                      id: NodeId,
3229                      qself: Option<&QSelf>,
3230                      path: &[Ident],
3231                      ns: Namespace,
3232                      span: Span,
3233                      global_by_default: bool,
3234                      crate_lint: CrateLint)
3235                      -> Option<PathResolution> {
3236         debug!(
3237             "resolve_qpath(id={:?}, qself={:?}, path={:?}, \
3238              ns={:?}, span={:?}, global_by_default={:?})",
3239             id,
3240             qself,
3241             path,
3242             ns,
3243             span,
3244             global_by_default,
3245         );
3246
3247         if let Some(qself) = qself {
3248             if qself.position == 0 {
3249                 // This is a case like `<T>::B`, where there is no
3250                 // trait to resolve.  In that case, we leave the `B`
3251                 // segment to be resolved by type-check.
3252                 return Some(PathResolution::with_unresolved_segments(
3253                     Def::Mod(DefId::local(CRATE_DEF_INDEX)), path.len()
3254                 ));
3255             }
3256
3257             // Make sure `A::B` in `<T as A::B>::C` is a trait item.
3258             //
3259             // Currently, `path` names the full item (`A::B::C`, in
3260             // our example).  so we extract the prefix of that that is
3261             // the trait (the slice upto and including
3262             // `qself.position`). And then we recursively resolve that,
3263             // but with `qself` set to `None`.
3264             //
3265             // However, setting `qself` to none (but not changing the
3266             // span) loses the information about where this path
3267             // *actually* appears, so for the purposes of the crate
3268             // lint we pass along information that this is the trait
3269             // name from a fully qualified path, and this also
3270             // contains the full span (the `CrateLint::QPathTrait`).
3271             let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
3272             let res = self.smart_resolve_path_fragment(
3273                 id,
3274                 None,
3275                 &path[..qself.position + 1],
3276                 span,
3277                 PathSource::TraitItem(ns),
3278                 CrateLint::QPathTrait {
3279                     qpath_id: id,
3280                     qpath_span: qself.path_span,
3281                 },
3282             );
3283
3284             // The remaining segments (the `C` in our example) will
3285             // have to be resolved by type-check, since that requires doing
3286             // trait resolution.
3287             return Some(PathResolution::with_unresolved_segments(
3288                 res.base_def(), res.unresolved_segments() + path.len() - qself.position - 1
3289             ));
3290         }
3291
3292         let result = match self.resolve_path(
3293             &path,
3294             Some(ns),
3295             true,
3296             span,
3297             crate_lint,
3298         ) {
3299             PathResult::NonModule(path_res) => path_res,
3300             PathResult::Module(module) if !module.is_normal() => {
3301                 PathResolution::new(module.def().unwrap())
3302             }
3303             // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
3304             // don't report an error right away, but try to fallback to a primitive type.
3305             // So, we are still able to successfully resolve something like
3306             //
3307             // use std::u8; // bring module u8 in scope
3308             // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
3309             //     u8::max_value() // OK, resolves to associated function <u8>::max_value,
3310             //                     // not to non-existent std::u8::max_value
3311             // }
3312             //
3313             // Such behavior is required for backward compatibility.
3314             // The same fallback is used when `a` resolves to nothing.
3315             PathResult::Module(..) | PathResult::Failed(..)
3316                     if (ns == TypeNS || path.len() > 1) &&
3317                        self.primitive_type_table.primitive_types
3318                            .contains_key(&path[0].name) => {
3319                 let prim = self.primitive_type_table.primitive_types[&path[0].name];
3320                 PathResolution::with_unresolved_segments(Def::PrimTy(prim), path.len() - 1)
3321             }
3322             PathResult::Module(module) => PathResolution::new(module.def().unwrap()),
3323             PathResult::Failed(span, msg, false) => {
3324                 resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
3325                 err_path_resolution()
3326             }
3327             PathResult::Failed(..) => return None,
3328             PathResult::Indeterminate => bug!("indetermined path result in resolve_qpath"),
3329         };
3330
3331         if path.len() > 1 && !global_by_default && result.base_def() != Def::Err &&
3332            path[0].name != keywords::CrateRoot.name() &&
3333            path[0].name != keywords::DollarCrate.name() {
3334             let unqualified_result = {
3335                 match self.resolve_path(
3336                     &[*path.last().unwrap()],
3337                     Some(ns),
3338                     false,
3339                     span,
3340                     CrateLint::No,
3341                 ) {
3342                     PathResult::NonModule(path_res) => path_res.base_def(),
3343                     PathResult::Module(module) => module.def().unwrap(),
3344                     _ => return Some(result),
3345                 }
3346             };
3347             if result.base_def() == unqualified_result {
3348                 let lint = lint::builtin::UNUSED_QUALIFICATIONS;
3349                 self.session.buffer_lint(lint, id, span, "unnecessary qualification")
3350             }
3351         }
3352
3353         Some(result)
3354     }
3355
3356     fn resolve_path(
3357         &mut self,
3358         path: &[Ident],
3359         opt_ns: Option<Namespace>, // `None` indicates a module path
3360         record_used: bool,
3361         path_span: Span,
3362         crate_lint: CrateLint,
3363     ) -> PathResult<'a> {
3364         let mut module = None;
3365         let mut allow_super = true;
3366         let mut second_binding = None;
3367
3368         debug!(
3369             "resolve_path(path={:?}, opt_ns={:?}, record_used={:?}, \
3370              path_span={:?}, crate_lint={:?})",
3371             path,
3372             opt_ns,
3373             record_used,
3374             path_span,
3375             crate_lint,
3376         );
3377
3378         for (i, &ident) in path.iter().enumerate() {
3379             debug!("resolve_path ident {} {:?}", i, ident);
3380             let is_last = i == path.len() - 1;
3381             let ns = if is_last { opt_ns.unwrap_or(TypeNS) } else { TypeNS };
3382             let name = ident.name;
3383
3384             if i == 0 && ns == TypeNS && name == keywords::SelfValue.name() {
3385                 let mut ctxt = ident.span.ctxt().modern();
3386                 module = Some(self.resolve_self(&mut ctxt, self.current_module));
3387                 continue
3388             } else if allow_super && ns == TypeNS && name == keywords::Super.name() {
3389                 let mut ctxt = ident.span.ctxt().modern();
3390                 let self_module = match i {
3391                     0 => self.resolve_self(&mut ctxt, self.current_module),
3392                     _ => module.unwrap(),
3393                 };
3394                 if let Some(parent) = self_module.parent {
3395                     module = Some(self.resolve_self(&mut ctxt, parent));
3396                     continue
3397                 } else {
3398                     let msg = "There are too many initial `super`s.".to_string();
3399                     return PathResult::Failed(ident.span, msg, false);
3400                 }
3401             } else if i == 0 && ns == TypeNS && name == keywords::Extern.name() {
3402                 continue;
3403             }
3404             allow_super = false;
3405
3406             if ns == TypeNS {
3407                 if (i == 0 && name == keywords::CrateRoot.name()) ||
3408                    (i == 0 && name == keywords::Crate.name()) ||
3409                    (i == 0 && name == keywords::DollarCrate.name()) ||
3410                    (i == 1 && name == keywords::Crate.name() &&
3411                               path[0].name == keywords::CrateRoot.name()) {
3412                     // `::a::b`, `crate::a::b`, `::crate::a::b` or `$crate::a::b`
3413                     module = Some(self.resolve_crate_root(ident));
3414                     continue
3415                 } else if i == 1 && !ident.is_path_segment_keyword() {
3416                     let prev_name = path[0].name;
3417                     if prev_name == keywords::Extern.name() ||
3418                        prev_name == keywords::CrateRoot.name() &&
3419                        self.session.features_untracked().extern_absolute_paths &&
3420                        self.session.rust_2018() {
3421                         // `::extern_crate::a::b`
3422                         let crate_id = self.crate_loader.process_path_extern(name, ident.span);
3423                         let crate_root =
3424                             self.get_module(DefId { krate: crate_id, index: CRATE_DEF_INDEX });
3425                         self.populate_module_if_necessary(crate_root);
3426                         module = Some(crate_root);
3427                         continue
3428                     }
3429                 }
3430             }
3431
3432             // Report special messages for path segment keywords in wrong positions.
3433             if name == keywords::CrateRoot.name() && i != 0 ||
3434                name == keywords::DollarCrate.name() && i != 0 ||
3435                name == keywords::SelfValue.name() && i != 0 ||
3436                name == keywords::SelfType.name() && i != 0 ||
3437                name == keywords::Super.name() && i != 0 ||
3438                name == keywords::Extern.name() && i != 0 ||
3439                // we allow crate::foo and ::crate::foo but nothing else
3440                name == keywords::Crate.name() && i > 1 &&
3441                     path[0].name != keywords::CrateRoot.name() ||
3442                name == keywords::Crate.name() && path.len() == 1 {
3443                 let name_str = if name == keywords::CrateRoot.name() {
3444                     format!("crate root")
3445                 } else {
3446                     format!("`{}`", name)
3447                 };
3448                 let msg = if i == 1 && path[0].name == keywords::CrateRoot.name() {
3449                     format!("global paths cannot start with {}", name_str)
3450                 } else {
3451                     format!("{} in paths can only be used in start position", name_str)
3452                 };
3453                 return PathResult::Failed(ident.span, msg, false);
3454             }
3455
3456             let binding = if let Some(module) = module {
3457                 self.resolve_ident_in_module(module, ident, ns, false, record_used, path_span)
3458             } else if opt_ns == Some(MacroNS) {
3459                 self.resolve_lexical_macro_path_segment(ident, ns, record_used, path_span)
3460                     .map(MacroBinding::binding)
3461             } else {
3462                 match self.resolve_ident_in_lexical_scope(ident, ns, record_used, path_span) {
3463                     // we found a locally-imported or available item/module
3464                     Some(LexicalScopeBinding::Item(binding)) => Ok(binding),
3465                     // we found a local variable or type param
3466                     Some(LexicalScopeBinding::Def(def))
3467                             if opt_ns == Some(TypeNS) || opt_ns == Some(ValueNS) => {
3468                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3469                             def, path.len() - 1
3470                         ));
3471                     }
3472                     _ => Err(if record_used { Determined } else { Undetermined }),
3473                 }
3474             };
3475
3476             match binding {
3477                 Ok(binding) => {
3478                     if i == 1 {
3479                         second_binding = Some(binding);
3480                     }
3481                     let def = binding.def();
3482                     let maybe_assoc = opt_ns != Some(MacroNS) && PathSource::Type.is_expected(def);
3483                     if let Some(next_module) = binding.module() {
3484                         module = Some(next_module);
3485                     } else if def == Def::Err {
3486                         return PathResult::NonModule(err_path_resolution());
3487                     } else if opt_ns.is_some() && (is_last || maybe_assoc) {
3488                         self.lint_if_path_starts_with_module(
3489                             crate_lint,
3490                             path,
3491                             path_span,
3492                             second_binding,
3493                         );
3494                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3495                             def, path.len() - i - 1
3496                         ));
3497                     } else {
3498                         return PathResult::Failed(ident.span,
3499                                                   format!("Not a module `{}`", ident),
3500                                                   is_last);
3501                     }
3502                 }
3503                 Err(Undetermined) => return PathResult::Indeterminate,
3504                 Err(Determined) => {
3505                     if let Some(module) = module {
3506                         if opt_ns.is_some() && !module.is_normal() {
3507                             return PathResult::NonModule(PathResolution::with_unresolved_segments(
3508                                 module.def().unwrap(), path.len() - i
3509                             ));
3510                         }
3511                     }
3512                     let msg = if module.and_then(ModuleData::def) == self.graph_root.def() {
3513                         let is_mod = |def| match def { Def::Mod(..) => true, _ => false };
3514                         let mut candidates =
3515                             self.lookup_import_candidates(name, TypeNS, is_mod);
3516                         candidates.sort_by_cached_key(|c| {
3517                             (c.path.segments.len(), c.path.to_string())
3518                         });
3519                         if let Some(candidate) = candidates.get(0) {
3520                             format!("Did you mean `{}`?", candidate.path)
3521                         } else {
3522                             format!("Maybe a missing `extern crate {};`?", ident)
3523                         }
3524                     } else if i == 0 {
3525                         format!("Use of undeclared type or module `{}`", ident)
3526                     } else {
3527                         format!("Could not find `{}` in `{}`", ident, path[i - 1])
3528                     };
3529                     return PathResult::Failed(ident.span, msg, is_last);
3530                 }
3531             }
3532         }
3533
3534         self.lint_if_path_starts_with_module(crate_lint, path, path_span, second_binding);
3535
3536         PathResult::Module(module.unwrap_or(self.graph_root))
3537     }
3538
3539     fn lint_if_path_starts_with_module(
3540         &self,
3541         crate_lint: CrateLint,
3542         path: &[Ident],
3543         path_span: Span,
3544         second_binding: Option<&NameBinding>,
3545     ) {
3546         let (diag_id, diag_span) = match crate_lint {
3547             CrateLint::No => return,
3548             CrateLint::SimplePath(id) => (id, path_span),
3549             CrateLint::UsePath { root_id, root_span } => (root_id, root_span),
3550             CrateLint::QPathTrait { qpath_id, qpath_span } => (qpath_id, qpath_span),
3551         };
3552
3553         let first_name = match path.get(0) {
3554             Some(ident) => ident.name,
3555             None => return,
3556         };
3557
3558         // We're only interested in `use` paths which should start with
3559         // `{{root}}` or `extern` currently.
3560         if first_name != keywords::Extern.name() && first_name != keywords::CrateRoot.name() {
3561             return
3562         }
3563
3564         match path.get(1) {
3565             // If this import looks like `crate::...` it's already good
3566             Some(ident) if ident.name == keywords::Crate.name() => return,
3567             // Otherwise go below to see if it's an extern crate
3568             Some(_) => {}
3569             // If the path has length one (and it's `CrateRoot` most likely)
3570             // then we don't know whether we're gonna be importing a crate or an
3571             // item in our crate. Defer this lint to elsewhere
3572             None => return,
3573         }
3574
3575         // If the first element of our path was actually resolved to an
3576         // `ExternCrate` (also used for `crate::...`) then no need to issue a
3577         // warning, this looks all good!
3578         if let Some(binding) = second_binding {
3579             if let NameBindingKind::Import { directive: d, .. } = binding.kind {
3580                 // Careful: we still want to rewrite paths from
3581                 // renamed extern crates.
3582                 if let ImportDirectiveSubclass::ExternCrate(None) = d.subclass {
3583                     return
3584                 }
3585             }
3586         }
3587
3588         self.lint_path_starts_with_module(diag_id, diag_span);
3589     }
3590
3591     fn lint_path_starts_with_module(&self, id: NodeId, span: Span) {
3592         // In the 2018 edition this lint is a hard error, so nothing to do
3593         if self.session.rust_2018() {
3594             return
3595         }
3596         // In the 2015 edition there's no use in emitting lints unless the
3597         // crate's already enabled the feature that we're going to suggest
3598         if !self.session.features_untracked().crate_in_paths {
3599             return
3600         }
3601         let diag = lint::builtin::BuiltinLintDiagnostics
3602             ::AbsPathWithModule(span);
3603         self.session.buffer_lint_with_diagnostic(
3604             lint::builtin::ABSOLUTE_PATHS_NOT_STARTING_WITH_CRATE,
3605             id, span,
3606             "absolute paths must start with `self`, `super`, \
3607             `crate`, or an external crate name in the 2018 edition",
3608             diag);
3609     }
3610
3611     // Resolve a local definition, potentially adjusting for closures.
3612     fn adjust_local_def(&mut self,
3613                         ns: Namespace,
3614                         rib_index: usize,
3615                         mut def: Def,
3616                         record_used: bool,
3617                         span: Span) -> Def {
3618         let ribs = &self.ribs[ns][rib_index + 1..];
3619
3620         // An invalid forward use of a type parameter from a previous default.
3621         if let ForwardTyParamBanRibKind = self.ribs[ns][rib_index].kind {
3622             if record_used {
3623                 resolve_error(self, span, ResolutionError::ForwardDeclaredTyParam);
3624             }
3625             assert_eq!(def, Def::Err);
3626             return Def::Err;
3627         }
3628
3629         match def {
3630             Def::Upvar(..) => {
3631                 span_bug!(span, "unexpected {:?} in bindings", def)
3632             }
3633             Def::Local(node_id) => {
3634                 for rib in ribs {
3635                     match rib.kind {
3636                         NormalRibKind | ModuleRibKind(..) | MacroDefinition(..) |
3637                         ForwardTyParamBanRibKind => {
3638                             // Nothing to do. Continue.
3639                         }
3640                         ClosureRibKind(function_id) => {
3641                             let prev_def = def;
3642
3643                             let seen = self.freevars_seen
3644                                            .entry(function_id)
3645                                            .or_insert_with(|| NodeMap());
3646                             if let Some(&index) = seen.get(&node_id) {
3647                                 def = Def::Upvar(node_id, index, function_id);
3648                                 continue;
3649                             }
3650                             let vec = self.freevars
3651                                           .entry(function_id)
3652                                           .or_insert_with(|| vec![]);
3653                             let depth = vec.len();
3654                             def = Def::Upvar(node_id, depth, function_id);
3655
3656                             if record_used {
3657                                 vec.push(Freevar {
3658                                     def: prev_def,
3659                                     span,
3660                                 });
3661                                 seen.insert(node_id, depth);
3662                             }
3663                         }
3664                         ItemRibKind | TraitOrImplItemRibKind => {
3665                             // This was an attempt to access an upvar inside a
3666                             // named function item. This is not allowed, so we
3667                             // report an error.
3668                             if record_used {
3669                                 resolve_error(self, span,
3670                                         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem);
3671                             }
3672                             return Def::Err;
3673                         }
3674                         ConstantItemRibKind => {
3675                             // Still doesn't deal with upvars
3676                             if record_used {
3677                                 resolve_error(self, span,
3678                                         ResolutionError::AttemptToUseNonConstantValueInConstant);
3679                             }
3680                             return Def::Err;
3681                         }
3682                     }
3683                 }
3684             }
3685             Def::TyParam(..) | Def::SelfTy(..) => {
3686                 for rib in ribs {
3687                     match rib.kind {
3688                         NormalRibKind | TraitOrImplItemRibKind | ClosureRibKind(..) |
3689                         ModuleRibKind(..) | MacroDefinition(..) | ForwardTyParamBanRibKind |
3690                         ConstantItemRibKind => {
3691                             // Nothing to do. Continue.
3692                         }
3693                         ItemRibKind => {
3694                             // This was an attempt to use a type parameter outside
3695                             // its scope.
3696                             if record_used {
3697                                 resolve_error(self, span,
3698                                     ResolutionError::TypeParametersFromOuterFunction(def));
3699                             }
3700                             return Def::Err;
3701                         }
3702                     }
3703                 }
3704             }
3705             _ => {}
3706         }
3707         return def;
3708     }
3709
3710     fn lookup_assoc_candidate<FilterFn>(&mut self,
3711                                         ident: Ident,
3712                                         ns: Namespace,
3713                                         filter_fn: FilterFn)
3714                                         -> Option<AssocSuggestion>
3715         where FilterFn: Fn(Def) -> bool
3716     {
3717         fn extract_node_id(t: &Ty) -> Option<NodeId> {
3718             match t.node {
3719                 TyKind::Path(None, _) => Some(t.id),
3720                 TyKind::Rptr(_, ref mut_ty) => extract_node_id(&mut_ty.ty),
3721                 // This doesn't handle the remaining `Ty` variants as they are not
3722                 // that commonly the self_type, it might be interesting to provide
3723                 // support for those in future.
3724                 _ => None,
3725             }
3726         }
3727
3728         // Fields are generally expected in the same contexts as locals.
3729         if filter_fn(Def::Local(ast::DUMMY_NODE_ID)) {
3730             if let Some(node_id) = self.current_self_type.as_ref().and_then(extract_node_id) {
3731                 // Look for a field with the same name in the current self_type.
3732                 if let Some(resolution) = self.def_map.get(&node_id) {
3733                     match resolution.base_def() {
3734                         Def::Struct(did) | Def::Union(did)
3735                                 if resolution.unresolved_segments() == 0 => {
3736                             if let Some(field_names) = self.field_names.get(&did) {
3737                                 if field_names.iter().any(|&field_name| ident.name == field_name) {
3738                                     return Some(AssocSuggestion::Field);
3739                                 }
3740                             }
3741                         }
3742                         _ => {}
3743                     }
3744                 }
3745             }
3746         }
3747
3748         // Look for associated items in the current trait.
3749         if let Some((module, _)) = self.current_trait_ref {
3750             if let Ok(binding) =
3751                     self.resolve_ident_in_module(module, ident, ns, false, false, module.span) {
3752                 let def = binding.def();
3753                 if filter_fn(def) {
3754                     return Some(if self.has_self.contains(&def.def_id()) {
3755                         AssocSuggestion::MethodWithSelf
3756                     } else {
3757                         AssocSuggestion::AssocItem
3758                     });
3759                 }
3760             }
3761         }
3762
3763         None
3764     }
3765
3766     fn lookup_typo_candidate<FilterFn>(&mut self,
3767                                        path: &[Ident],
3768                                        ns: Namespace,
3769                                        filter_fn: FilterFn,
3770                                        span: Span)
3771                                        -> Option<Symbol>
3772         where FilterFn: Fn(Def) -> bool
3773     {
3774         let add_module_candidates = |module: Module, names: &mut Vec<Name>| {
3775             for (&(ident, _), resolution) in module.resolutions.borrow().iter() {
3776                 if let Some(binding) = resolution.borrow().binding {
3777                     if filter_fn(binding.def()) {
3778                         names.push(ident.name);
3779                     }
3780                 }
3781             }
3782         };
3783
3784         let mut names = Vec::new();
3785         if path.len() == 1 {
3786             // Search in lexical scope.
3787             // Walk backwards up the ribs in scope and collect candidates.
3788             for rib in self.ribs[ns].iter().rev() {
3789                 // Locals and type parameters
3790                 for (ident, def) in &rib.bindings {
3791                     if filter_fn(*def) {
3792                         names.push(ident.name);
3793                     }
3794                 }
3795                 // Items in scope
3796                 if let ModuleRibKind(module) = rib.kind {
3797                     // Items from this module
3798                     add_module_candidates(module, &mut names);
3799
3800                     if let ModuleKind::Block(..) = module.kind {
3801                         // We can see through blocks
3802                     } else {
3803                         // Items from the prelude
3804                         if !module.no_implicit_prelude {
3805                             names.extend(self.extern_prelude.iter().cloned());
3806                             if let Some(prelude) = self.prelude {
3807                                 add_module_candidates(prelude, &mut names);
3808                             }
3809                         }
3810                         break;
3811                     }
3812                 }
3813             }
3814             // Add primitive types to the mix
3815             if filter_fn(Def::PrimTy(TyBool)) {
3816                 for (name, _) in &self.primitive_type_table.primitive_types {
3817                     names.push(*name);
3818                 }
3819             }
3820         } else {
3821             // Search in module.
3822             let mod_path = &path[..path.len() - 1];
3823             if let PathResult::Module(module) = self.resolve_path(mod_path, Some(TypeNS),
3824                                                                   false, span, CrateLint::No) {
3825                 add_module_candidates(module, &mut names);
3826             }
3827         }
3828
3829         let name = path[path.len() - 1].name;
3830         // Make sure error reporting is deterministic.
3831         names.sort_by_cached_key(|name| name.as_str());
3832         match find_best_match_for_name(names.iter(), &name.as_str(), None) {
3833             Some(found) if found != name => Some(found),
3834             _ => None,
3835         }
3836     }
3837
3838     fn with_resolved_label<F>(&mut self, label: Option<Label>, id: NodeId, f: F)
3839         where F: FnOnce(&mut Resolver)
3840     {
3841         if let Some(label) = label {
3842             self.unused_labels.insert(id, label.ident.span);
3843             let def = Def::Label(id);
3844             self.with_label_rib(|this| {
3845                 let ident = label.ident.modern_and_legacy();
3846                 this.label_ribs.last_mut().unwrap().bindings.insert(ident, def);
3847                 f(this);
3848             });
3849         } else {
3850             f(self);
3851         }
3852     }
3853
3854     fn resolve_labeled_block(&mut self, label: Option<Label>, id: NodeId, block: &Block) {
3855         self.with_resolved_label(label, id, |this| this.visit_block(block));
3856     }
3857
3858     fn resolve_expr(&mut self, expr: &Expr, parent: Option<&Expr>) {
3859         // First, record candidate traits for this expression if it could
3860         // result in the invocation of a method call.
3861
3862         self.record_candidate_traits_for_expr_if_necessary(expr);
3863
3864         // Next, resolve the node.
3865         match expr.node {
3866             ExprKind::Path(ref qself, ref path) => {
3867                 self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
3868                 visit::walk_expr(self, expr);
3869             }
3870
3871             ExprKind::Struct(ref path, ..) => {
3872                 self.smart_resolve_path(expr.id, None, path, PathSource::Struct);
3873                 visit::walk_expr(self, expr);
3874             }
3875
3876             ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
3877                 let def = self.search_label(label.ident, |rib, ident| {
3878                     rib.bindings.get(&ident.modern_and_legacy()).cloned()
3879                 });
3880                 match def {
3881                     None => {
3882                         // Search again for close matches...
3883                         // Picks the first label that is "close enough", which is not necessarily
3884                         // the closest match
3885                         let close_match = self.search_label(label.ident, |rib, ident| {
3886                             let names = rib.bindings.iter().map(|(id, _)| &id.name);
3887                             find_best_match_for_name(names, &*ident.as_str(), None)
3888                         });
3889                         self.record_def(expr.id, err_path_resolution());
3890                         resolve_error(self,
3891                                       label.ident.span,
3892                                       ResolutionError::UndeclaredLabel(&label.ident.as_str(),
3893                                                                        close_match));
3894                     }
3895                     Some(Def::Label(id)) => {
3896                         // Since this def is a label, it is never read.
3897                         self.record_def(expr.id, PathResolution::new(Def::Label(id)));
3898                         self.unused_labels.remove(&id);
3899                     }
3900                     Some(_) => {
3901                         span_bug!(expr.span, "label wasn't mapped to a label def!");
3902                     }
3903                 }
3904
3905                 // visit `break` argument if any
3906                 visit::walk_expr(self, expr);
3907             }
3908
3909             ExprKind::IfLet(ref pats, ref subexpression, ref if_block, ref optional_else) => {
3910                 self.visit_expr(subexpression);
3911
3912                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
3913                 let mut bindings_list = FxHashMap();
3914                 for pat in pats {
3915                     self.resolve_pattern(pat, PatternSource::IfLet, &mut bindings_list);
3916                 }
3917                 // This has to happen *after* we determine which pat_idents are variants
3918                 self.check_consistent_bindings(pats);
3919                 self.visit_block(if_block);
3920                 self.ribs[ValueNS].pop();
3921
3922                 optional_else.as_ref().map(|expr| self.visit_expr(expr));
3923             }
3924
3925             ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),
3926
3927             ExprKind::While(ref subexpression, ref block, label) => {
3928                 self.with_resolved_label(label, expr.id, |this| {
3929                     this.visit_expr(subexpression);
3930                     this.visit_block(block);
3931                 });
3932             }
3933
3934             ExprKind::WhileLet(ref pats, ref subexpression, ref block, label) => {
3935                 self.with_resolved_label(label, expr.id, |this| {
3936                     this.visit_expr(subexpression);
3937                     this.ribs[ValueNS].push(Rib::new(NormalRibKind));
3938                     let mut bindings_list = FxHashMap();
3939                     for pat in pats {
3940                         this.resolve_pattern(pat, PatternSource::WhileLet, &mut bindings_list);
3941                     }
3942                     // This has to happen *after* we determine which pat_idents are variants
3943                     this.check_consistent_bindings(pats);
3944                     this.visit_block(block);
3945                     this.ribs[ValueNS].pop();
3946                 });
3947             }
3948
3949             ExprKind::ForLoop(ref pattern, ref subexpression, ref block, label) => {
3950                 self.visit_expr(subexpression);
3951                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
3952                 self.resolve_pattern(pattern, PatternSource::For, &mut FxHashMap());
3953
3954                 self.resolve_labeled_block(label, expr.id, block);
3955
3956                 self.ribs[ValueNS].pop();
3957             }
3958
3959             ExprKind::Block(ref block, label) => self.resolve_labeled_block(label, block.id, block),
3960
3961             // Equivalent to `visit::walk_expr` + passing some context to children.
3962             ExprKind::Field(ref subexpression, _) => {
3963                 self.resolve_expr(subexpression, Some(expr));
3964             }
3965             ExprKind::MethodCall(ref segment, ref arguments) => {
3966                 let mut arguments = arguments.iter();
3967                 self.resolve_expr(arguments.next().unwrap(), Some(expr));
3968                 for argument in arguments {
3969                     self.resolve_expr(argument, None);
3970                 }
3971                 self.visit_path_segment(expr.span, segment);
3972             }
3973
3974             ExprKind::Call(ref callee, ref arguments) => {
3975                 self.resolve_expr(callee, Some(expr));
3976                 for argument in arguments {
3977                     self.resolve_expr(argument, None);
3978                 }
3979             }
3980             ExprKind::Type(ref type_expr, _) => {
3981                 self.current_type_ascription.push(type_expr.span);
3982                 visit::walk_expr(self, expr);
3983                 self.current_type_ascription.pop();
3984             }
3985             // Resolve the body of async exprs inside the async closure to which they desugar
3986             ExprKind::Async(_, async_closure_id, ref block) => {
3987                 let rib_kind = ClosureRibKind(async_closure_id);
3988                 self.ribs[ValueNS].push(Rib::new(rib_kind));
3989                 self.label_ribs.push(Rib::new(rib_kind));
3990                 self.visit_block(&block);
3991                 self.label_ribs.pop();
3992                 self.ribs[ValueNS].pop();
3993             }
3994             // `async |x| ...` gets desugared to `|x| future_from_generator(|| ...)`, so we need to
3995             // resolve the arguments within the proper scopes so that usages of them inside the
3996             // closure are detected as upvars rather than normal closure arg usages.
3997             ExprKind::Closure(
3998                 _, IsAsync::Async { closure_id: inner_closure_id, .. }, _,
3999                 ref fn_decl, ref body, _span,
4000             ) => {
4001                 let rib_kind = ClosureRibKind(expr.id);
4002                 self.ribs[ValueNS].push(Rib::new(rib_kind));
4003                 self.label_ribs.push(Rib::new(rib_kind));
4004                 // Resolve arguments:
4005                 let mut bindings_list = FxHashMap();
4006                 for argument in &fn_decl.inputs {
4007                     self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
4008                     self.visit_ty(&argument.ty);
4009                 }
4010                 // No need to resolve return type-- the outer closure return type is
4011                 // FunctionRetTy::Default
4012
4013                 // Now resolve the inner closure
4014                 {
4015                     let rib_kind = ClosureRibKind(inner_closure_id);
4016                     self.ribs[ValueNS].push(Rib::new(rib_kind));
4017                     self.label_ribs.push(Rib::new(rib_kind));
4018                     // No need to resolve arguments: the inner closure has none.
4019                     // Resolve the return type:
4020                     visit::walk_fn_ret_ty(self, &fn_decl.output);
4021                     // Resolve the body
4022                     self.visit_expr(body);
4023                     self.label_ribs.pop();
4024                     self.ribs[ValueNS].pop();
4025                 }
4026                 self.label_ribs.pop();
4027                 self.ribs[ValueNS].pop();
4028             }
4029             _ => {
4030                 visit::walk_expr(self, expr);
4031             }
4032         }
4033     }
4034
4035     fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &Expr) {
4036         match expr.node {
4037             ExprKind::Field(_, ident) => {
4038                 // FIXME(#6890): Even though you can't treat a method like a
4039                 // field, we need to add any trait methods we find that match
4040                 // the field name so that we can do some nice error reporting
4041                 // later on in typeck.
4042                 let traits = self.get_traits_containing_item(ident, ValueNS);
4043                 self.trait_map.insert(expr.id, traits);
4044             }
4045             ExprKind::MethodCall(ref segment, ..) => {
4046                 debug!("(recording candidate traits for expr) recording traits for {}",
4047                        expr.id);
4048                 let traits = self.get_traits_containing_item(segment.ident, ValueNS);
4049                 self.trait_map.insert(expr.id, traits);
4050             }
4051             _ => {
4052                 // Nothing to do.
4053             }
4054         }
4055     }
4056
4057     fn get_traits_containing_item(&mut self, mut ident: Ident, ns: Namespace)
4058                                   -> Vec<TraitCandidate> {
4059         debug!("(getting traits containing item) looking for '{}'", ident.name);
4060
4061         let mut found_traits = Vec::new();
4062         // Look for the current trait.
4063         if let Some((module, _)) = self.current_trait_ref {
4064             if self.resolve_ident_in_module(module, ident, ns, false, false, module.span).is_ok() {
4065                 let def_id = module.def_id().unwrap();
4066                 found_traits.push(TraitCandidate { def_id: def_id, import_id: None });
4067             }
4068         }
4069
4070         ident.span = ident.span.modern();
4071         let mut search_module = self.current_module;
4072         loop {
4073             self.get_traits_in_module_containing_item(ident, ns, search_module, &mut found_traits);
4074             search_module = unwrap_or!(
4075                 self.hygienic_lexical_parent(search_module, &mut ident.span), break
4076             );
4077         }
4078
4079         if let Some(prelude) = self.prelude {
4080             if !search_module.no_implicit_prelude {
4081                 self.get_traits_in_module_containing_item(ident, ns, prelude, &mut found_traits);
4082             }
4083         }
4084
4085         found_traits
4086     }
4087
4088     fn get_traits_in_module_containing_item(&mut self,
4089                                             ident: Ident,
4090                                             ns: Namespace,
4091                                             module: Module<'a>,
4092                                             found_traits: &mut Vec<TraitCandidate>) {
4093         let mut traits = module.traits.borrow_mut();
4094         if traits.is_none() {
4095             let mut collected_traits = Vec::new();
4096             module.for_each_child(|name, ns, binding| {
4097                 if ns != TypeNS { return }
4098                 if let Def::Trait(_) = binding.def() {
4099                     collected_traits.push((name, binding));
4100                 }
4101             });
4102             *traits = Some(collected_traits.into_boxed_slice());
4103         }
4104
4105         for &(trait_name, binding) in traits.as_ref().unwrap().iter() {
4106             let module = binding.module().unwrap();
4107             let mut ident = ident;
4108             if ident.span.glob_adjust(module.expansion, binding.span.ctxt().modern()).is_none() {
4109                 continue
4110             }
4111             if self.resolve_ident_in_module_unadjusted(module, ident, ns, false, false, module.span)
4112                    .is_ok() {
4113                 let import_id = match binding.kind {
4114                     NameBindingKind::Import { directive, .. } => {
4115                         self.maybe_unused_trait_imports.insert(directive.id);
4116                         self.add_to_glob_map(directive.id, trait_name);
4117                         Some(directive.id)
4118                     }
4119                     _ => None,
4120                 };
4121                 let trait_def_id = module.def_id().unwrap();
4122                 found_traits.push(TraitCandidate { def_id: trait_def_id, import_id: import_id });
4123             }
4124         }
4125     }
4126
4127     /// When name resolution fails, this method can be used to look up candidate
4128     /// entities with the expected name. It allows filtering them using the
4129     /// supplied predicate (which should be used to only accept the types of
4130     /// definitions expected e.g. traits). The lookup spans across all crates.
4131     ///
4132     /// NOTE: The method does not look into imports, but this is not a problem,
4133     /// since we report the definitions (thus, the de-aliased imports).
4134     fn lookup_import_candidates<FilterFn>(&mut self,
4135                                           lookup_name: Name,
4136                                           namespace: Namespace,
4137                                           filter_fn: FilterFn)
4138                                           -> Vec<ImportSuggestion>
4139         where FilterFn: Fn(Def) -> bool
4140     {
4141         let mut candidates = Vec::new();
4142         let mut worklist = Vec::new();
4143         let mut seen_modules = FxHashSet();
4144         worklist.push((self.graph_root, Vec::new(), false));
4145
4146         while let Some((in_module,
4147                         path_segments,
4148                         in_module_is_extern)) = worklist.pop() {
4149             self.populate_module_if_necessary(in_module);
4150
4151             // We have to visit module children in deterministic order to avoid
4152             // instabilities in reported imports (#43552).
4153             in_module.for_each_child_stable(|ident, ns, name_binding| {
4154                 // avoid imports entirely
4155                 if name_binding.is_import() && !name_binding.is_extern_crate() { return; }
4156                 // avoid non-importable candidates as well
4157                 if !name_binding.is_importable() { return; }
4158
4159                 // collect results based on the filter function
4160                 if ident.name == lookup_name && ns == namespace {
4161                     if filter_fn(name_binding.def()) {
4162                         // create the path
4163                         let mut segms = if self.session.rust_2018() && !in_module_is_extern {
4164                             // crate-local absolute paths start with `crate::` in edition 2018
4165                             // FIXME: may also be stabilized for Rust 2015 (Issues #45477, #44660)
4166                             let mut full_segms = vec![
4167                                 ast::PathSegment::from_ident(keywords::Crate.ident())
4168                             ];
4169                             full_segms.extend(path_segments.clone());
4170                             full_segms
4171                         } else {
4172                             path_segments.clone()
4173                         };
4174
4175                         segms.push(ast::PathSegment::from_ident(ident));
4176                         let path = Path {
4177                             span: name_binding.span,
4178                             segments: segms,
4179                         };
4180                         // the entity is accessible in the following cases:
4181                         // 1. if it's defined in the same crate, it's always
4182                         // accessible (since private entities can be made public)
4183                         // 2. if it's defined in another crate, it's accessible
4184                         // only if both the module is public and the entity is
4185                         // declared as public (due to pruning, we don't explore
4186                         // outside crate private modules => no need to check this)
4187                         if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
4188                             candidates.push(ImportSuggestion { path: path });
4189                         }
4190                     }
4191                 }
4192
4193                 // collect submodules to explore
4194                 if let Some(module) = name_binding.module() {
4195                     // form the path
4196                     let mut path_segments = path_segments.clone();
4197                     path_segments.push(ast::PathSegment::from_ident(ident));
4198
4199                     if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
4200                         // add the module to the lookup
4201                         let is_extern = in_module_is_extern || name_binding.is_extern_crate();
4202                         if seen_modules.insert(module.def_id().unwrap()) {
4203                             worklist.push((module, path_segments, is_extern));
4204                         }
4205                     }
4206                 }
4207             })
4208         }
4209
4210         candidates
4211     }
4212
4213     fn find_module(&mut self,
4214                    module_def: Def)
4215                    -> Option<(Module<'a>, ImportSuggestion)>
4216     {
4217         let mut result = None;
4218         let mut worklist = Vec::new();
4219         let mut seen_modules = FxHashSet();
4220         worklist.push((self.graph_root, Vec::new()));
4221
4222         while let Some((in_module, path_segments)) = worklist.pop() {
4223             // abort if the module is already found
4224             if let Some(_) = result { break; }
4225
4226             self.populate_module_if_necessary(in_module);
4227
4228             in_module.for_each_child_stable(|ident, _, name_binding| {
4229                 // abort if the module is already found or if name_binding is private external
4230                 if result.is_some() || !name_binding.vis.is_visible_locally() {
4231                     return
4232                 }
4233                 if let Some(module) = name_binding.module() {
4234                     // form the path
4235                     let mut path_segments = path_segments.clone();
4236                     path_segments.push(ast::PathSegment::from_ident(ident));
4237                     if module.def() == Some(module_def) {
4238                         let path = Path {
4239                             span: name_binding.span,
4240                             segments: path_segments,
4241                         };
4242                         result = Some((module, ImportSuggestion { path: path }));
4243                     } else {
4244                         // add the module to the lookup
4245                         if seen_modules.insert(module.def_id().unwrap()) {
4246                             worklist.push((module, path_segments));
4247                         }
4248                     }
4249                 }
4250             });
4251         }
4252
4253         result
4254     }
4255
4256     fn collect_enum_variants(&mut self, enum_def: Def) -> Option<Vec<Path>> {
4257         if let Def::Enum(..) = enum_def {} else {
4258             panic!("Non-enum def passed to collect_enum_variants: {:?}", enum_def)
4259         }
4260
4261         self.find_module(enum_def).map(|(enum_module, enum_import_suggestion)| {
4262             self.populate_module_if_necessary(enum_module);
4263
4264             let mut variants = Vec::new();
4265             enum_module.for_each_child_stable(|ident, _, name_binding| {
4266                 if let Def::Variant(..) = name_binding.def() {
4267                     let mut segms = enum_import_suggestion.path.segments.clone();
4268                     segms.push(ast::PathSegment::from_ident(ident));
4269                     variants.push(Path {
4270                         span: name_binding.span,
4271                         segments: segms,
4272                     });
4273                 }
4274             });
4275             variants
4276         })
4277     }
4278
4279     fn record_def(&mut self, node_id: NodeId, resolution: PathResolution) {
4280         debug!("(recording def) recording {:?} for {}", resolution, node_id);
4281         if let Some(prev_res) = self.def_map.insert(node_id, resolution) {
4282             panic!("path resolved multiple times ({:?} before, {:?} now)", prev_res, resolution);
4283         }
4284     }
4285
4286     fn resolve_visibility(&mut self, vis: &ast::Visibility) -> ty::Visibility {
4287         match vis.node {
4288             ast::VisibilityKind::Public => ty::Visibility::Public,
4289             ast::VisibilityKind::Crate(..) => {
4290                 ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX))
4291             }
4292             ast::VisibilityKind::Inherited => {
4293                 ty::Visibility::Restricted(self.current_module.normal_ancestor_id)
4294             }
4295             ast::VisibilityKind::Restricted { ref path, id, .. } => {
4296                 // Visibilities are resolved as global by default, add starting root segment.
4297                 let segments = path.make_root().iter().chain(path.segments.iter())
4298                     .map(|seg| seg.ident)
4299                     .collect::<Vec<_>>();
4300                 let def = self.smart_resolve_path_fragment(
4301                     id,
4302                     None,
4303                     &segments,
4304                     path.span,
4305                     PathSource::Visibility,
4306                     CrateLint::SimplePath(id),
4307                 ).base_def();
4308                 if def == Def::Err {
4309                     ty::Visibility::Public
4310                 } else {
4311                     let vis = ty::Visibility::Restricted(def.def_id());
4312                     if self.is_accessible(vis) {
4313                         vis
4314                     } else {
4315                         self.session.span_err(path.span, "visibilities can only be restricted \
4316                                                           to ancestor modules");
4317                         ty::Visibility::Public
4318                     }
4319                 }
4320             }
4321         }
4322     }
4323
4324     fn is_accessible(&self, vis: ty::Visibility) -> bool {
4325         vis.is_accessible_from(self.current_module.normal_ancestor_id, self)
4326     }
4327
4328     fn is_accessible_from(&self, vis: ty::Visibility, module: Module<'a>) -> bool {
4329         vis.is_accessible_from(module.normal_ancestor_id, self)
4330     }
4331
4332     fn report_errors(&mut self, krate: &Crate) {
4333         self.report_shadowing_errors();
4334         self.report_with_use_injections(krate);
4335         self.report_proc_macro_import(krate);
4336         let mut reported_spans = FxHashSet();
4337
4338         for &AmbiguityError { span, name, b1, b2, lexical } in &self.ambiguity_errors {
4339             if !reported_spans.insert(span) { continue }
4340             let participle = |binding: &NameBinding| {
4341                 if binding.is_import() { "imported" } else { "defined" }
4342             };
4343             let msg1 = format!("`{}` could refer to the name {} here", name, participle(b1));
4344             let msg2 = format!("`{}` could also refer to the name {} here", name, participle(b2));
4345             let note = if b1.expansion == Mark::root() || !lexical && b1.is_glob_import() {
4346                 format!("consider adding an explicit import of `{}` to disambiguate", name)
4347             } else if let Def::Macro(..) = b1.def() {
4348                 format!("macro-expanded {} do not shadow",
4349                         if b1.is_import() { "macro imports" } else { "macros" })
4350             } else {
4351                 format!("macro-expanded {} do not shadow when used in a macro invocation path",
4352                         if b1.is_import() { "imports" } else { "items" })
4353             };
4354
4355             let mut err = struct_span_err!(self.session, span, E0659, "`{}` is ambiguous", name);
4356             err.span_note(b1.span, &msg1);
4357             match b2.def() {
4358                 Def::Macro(..) if b2.span.is_dummy() =>
4359                     err.note(&format!("`{}` is also a builtin macro", name)),
4360                 _ => err.span_note(b2.span, &msg2),
4361             };
4362             err.note(&note).emit();
4363         }
4364
4365         for &PrivacyError(span, name, binding) in &self.privacy_errors {
4366             if !reported_spans.insert(span) { continue }
4367             span_err!(self.session, span, E0603, "{} `{}` is private", binding.descr(), name);
4368         }
4369     }
4370
4371     fn report_with_use_injections(&mut self, krate: &Crate) {
4372         for UseError { mut err, candidates, node_id, better } in self.use_injections.drain(..) {
4373             let (span, found_use) = UsePlacementFinder::check(krate, node_id);
4374             if !candidates.is_empty() {
4375                 show_candidates(&mut err, span, &candidates, better, found_use);
4376             }
4377             err.emit();
4378         }
4379     }
4380
4381     fn report_shadowing_errors(&mut self) {
4382         for (ident, scope) in replace(&mut self.lexical_macro_resolutions, Vec::new()) {
4383             self.resolve_legacy_scope(scope, ident, true);
4384         }
4385
4386         let mut reported_errors = FxHashSet();
4387         for binding in replace(&mut self.disallowed_shadowing, Vec::new()) {
4388             if self.resolve_legacy_scope(&binding.parent, binding.ident, false).is_some() &&
4389                reported_errors.insert((binding.ident, binding.span)) {
4390                 let msg = format!("`{}` is already in scope", binding.ident);
4391                 self.session.struct_span_err(binding.span, &msg)
4392                     .note("macro-expanded `macro_rules!`s may not shadow \
4393                            existing macros (see RFC 1560)")
4394                     .emit();
4395             }
4396         }
4397     }
4398
4399     fn report_conflict<'b>(&mut self,
4400                        parent: Module,
4401                        ident: Ident,
4402                        ns: Namespace,
4403                        new_binding: &NameBinding<'b>,
4404                        old_binding: &NameBinding<'b>) {
4405         // Error on the second of two conflicting names
4406         if old_binding.span.lo() > new_binding.span.lo() {
4407             return self.report_conflict(parent, ident, ns, old_binding, new_binding);
4408         }
4409
4410         let container = match parent.kind {
4411             ModuleKind::Def(Def::Mod(_), _) => "module",
4412             ModuleKind::Def(Def::Trait(_), _) => "trait",
4413             ModuleKind::Block(..) => "block",
4414             _ => "enum",
4415         };
4416
4417         let old_noun = match old_binding.is_import() {
4418             true => "import",
4419             false => "definition",
4420         };
4421
4422         let new_participle = match new_binding.is_import() {
4423             true => "imported",
4424             false => "defined",
4425         };
4426
4427         let (name, span) = (ident.name, self.session.codemap().def_span(new_binding.span));
4428
4429         if let Some(s) = self.name_already_seen.get(&name) {
4430             if s == &span {
4431                 return;
4432             }
4433         }
4434
4435         let old_kind = match (ns, old_binding.module()) {
4436             (ValueNS, _) => "value",
4437             (MacroNS, _) => "macro",
4438             (TypeNS, _) if old_binding.is_extern_crate() => "extern crate",
4439             (TypeNS, Some(module)) if module.is_normal() => "module",
4440             (TypeNS, Some(module)) if module.is_trait() => "trait",
4441             (TypeNS, _) => "type",
4442         };
4443
4444         let msg = format!("the name `{}` is defined multiple times", name);
4445
4446         let mut err = match (old_binding.is_extern_crate(), new_binding.is_extern_crate()) {
4447             (true, true) => struct_span_err!(self.session, span, E0259, "{}", msg),
4448             (true, _) | (_, true) => match new_binding.is_import() && old_binding.is_import() {
4449                 true => struct_span_err!(self.session, span, E0254, "{}", msg),
4450                 false => struct_span_err!(self.session, span, E0260, "{}", msg),
4451             },
4452             _ => match (old_binding.is_import(), new_binding.is_import()) {
4453                 (false, false) => struct_span_err!(self.session, span, E0428, "{}", msg),
4454                 (true, true) => struct_span_err!(self.session, span, E0252, "{}", msg),
4455                 _ => struct_span_err!(self.session, span, E0255, "{}", msg),
4456             },
4457         };
4458
4459         err.note(&format!("`{}` must be defined only once in the {} namespace of this {}",
4460                           name,
4461                           ns.descr(),
4462                           container));
4463
4464         err.span_label(span, format!("`{}` re{} here", name, new_participle));
4465         if !old_binding.span.is_dummy() {
4466             err.span_label(self.session.codemap().def_span(old_binding.span),
4467                            format!("previous {} of the {} `{}` here", old_noun, old_kind, name));
4468         }
4469
4470         // See https://github.com/rust-lang/rust/issues/32354
4471         if old_binding.is_import() || new_binding.is_import() {
4472             let binding = if new_binding.is_import() && !new_binding.span.is_dummy() {
4473                 new_binding
4474             } else {
4475                 old_binding
4476             };
4477
4478             let cm = self.session.codemap();
4479             let rename_msg = "You can use `as` to change the binding name of the import";
4480
4481             if let (Ok(snippet), false) = (cm.span_to_snippet(binding.span),
4482                                            binding.is_renamed_extern_crate()) {
4483                 let suggested_name = if name.as_str().chars().next().unwrap().is_uppercase() {
4484                     format!("Other{}", name)
4485                 } else {
4486                     format!("other_{}", name)
4487                 };
4488
4489                 err.span_suggestion(binding.span,
4490                                     rename_msg,
4491                                     if snippet.ends_with(';') {
4492                                         format!("{} as {};",
4493                                                 &snippet[..snippet.len()-1],
4494                                                 suggested_name)
4495                                     } else {
4496                                         format!("{} as {}", snippet, suggested_name)
4497                                     });
4498             } else {
4499                 err.span_label(binding.span, rename_msg);
4500             }
4501         }
4502
4503         err.emit();
4504         self.name_already_seen.insert(name, span);
4505     }
4506
4507     fn check_proc_macro_attrs(&mut self, attrs: &[ast::Attribute]) {
4508         if self.use_extern_macros { return; }
4509
4510         for attr in attrs {
4511             if attr.path.segments.len() > 1 {
4512                 continue
4513             }
4514             let ident = attr.path.segments[0].ident;
4515             let result = self.resolve_lexical_macro_path_segment(ident,
4516                                                                  MacroNS,
4517                                                                  false,
4518                                                                  attr.path.span);
4519             if let Ok(binding) = result {
4520                 if let SyntaxExtension::AttrProcMacro(..) = *binding.binding().get_macro(self) {
4521                     attr::mark_known(attr);
4522
4523                     let msg = "attribute procedural macros are experimental";
4524                     let feature = "use_extern_macros";
4525
4526                     feature_err(&self.session.parse_sess, feature,
4527                                 attr.span, GateIssue::Language, msg)
4528                         .span_label(binding.span(), "procedural macro imported here")
4529                         .emit();
4530                 }
4531             }
4532         }
4533     }
4534 }
4535
4536 fn is_self_type(path: &[Ident], namespace: Namespace) -> bool {
4537     namespace == TypeNS && path.len() == 1 && path[0].name == keywords::SelfType.name()
4538 }
4539
4540 fn is_self_value(path: &[Ident], namespace: Namespace) -> bool {
4541     namespace == ValueNS && path.len() == 1 && path[0].name == keywords::SelfValue.name()
4542 }
4543
4544 fn names_to_string(idents: &[Ident]) -> String {
4545     let mut result = String::new();
4546     for (i, ident) in idents.iter()
4547                             .filter(|ident| ident.name != keywords::CrateRoot.name())
4548                             .enumerate() {
4549         if i > 0 {
4550             result.push_str("::");
4551         }
4552         result.push_str(&ident.as_str());
4553     }
4554     result
4555 }
4556
4557 fn path_names_to_string(path: &Path) -> String {
4558     names_to_string(&path.segments.iter()
4559                         .map(|seg| seg.ident)
4560                         .collect::<Vec<_>>())
4561 }
4562
4563 /// Get the path for an enum and the variant from an `ImportSuggestion` for an enum variant.
4564 fn import_candidate_to_paths(suggestion: &ImportSuggestion) -> (Span, String, String) {
4565     let variant_path = &suggestion.path;
4566     let variant_path_string = path_names_to_string(variant_path);
4567
4568     let path_len = suggestion.path.segments.len();
4569     let enum_path = ast::Path {
4570         span: suggestion.path.span,
4571         segments: suggestion.path.segments[0..path_len - 1].to_vec(),
4572     };
4573     let enum_path_string = path_names_to_string(&enum_path);
4574
4575     (suggestion.path.span, variant_path_string, enum_path_string)
4576 }
4577
4578
4579 /// When an entity with a given name is not available in scope, we search for
4580 /// entities with that name in all crates. This method allows outputting the
4581 /// results of this search in a programmer-friendly way
4582 fn show_candidates(err: &mut DiagnosticBuilder,
4583                    // This is `None` if all placement locations are inside expansions
4584                    span: Option<Span>,
4585                    candidates: &[ImportSuggestion],
4586                    better: bool,
4587                    found_use: bool) {
4588
4589     // we want consistent results across executions, but candidates are produced
4590     // by iterating through a hash map, so make sure they are ordered:
4591     let mut path_strings: Vec<_> =
4592         candidates.into_iter().map(|c| path_names_to_string(&c.path)).collect();
4593     path_strings.sort();
4594
4595     let better = if better { "better " } else { "" };
4596     let msg_diff = match path_strings.len() {
4597         1 => " is found in another module, you can import it",
4598         _ => "s are found in other modules, you can import them",
4599     };
4600     let msg = format!("possible {}candidate{} into scope", better, msg_diff);
4601
4602     if let Some(span) = span {
4603         for candidate in &mut path_strings {
4604             // produce an additional newline to separate the new use statement
4605             // from the directly following item.
4606             let additional_newline = if found_use {
4607                 ""
4608             } else {
4609                 "\n"
4610             };
4611             *candidate = format!("use {};\n{}", candidate, additional_newline);
4612         }
4613
4614         err.span_suggestions(span, &msg, path_strings);
4615     } else {
4616         let mut msg = msg;
4617         msg.push(':');
4618         for candidate in path_strings {
4619             msg.push('\n');
4620             msg.push_str(&candidate);
4621         }
4622     }
4623 }
4624
4625 /// A somewhat inefficient routine to obtain the name of a module.
4626 fn module_to_string(module: Module) -> Option<String> {
4627     let mut names = Vec::new();
4628
4629     fn collect_mod(names: &mut Vec<Ident>, module: Module) {
4630         if let ModuleKind::Def(_, name) = module.kind {
4631             if let Some(parent) = module.parent {
4632                 names.push(Ident::with_empty_ctxt(name));
4633                 collect_mod(names, parent);
4634             }
4635         } else {
4636             // danger, shouldn't be ident?
4637             names.push(Ident::from_str("<opaque>"));
4638             collect_mod(names, module.parent.unwrap());
4639         }
4640     }
4641     collect_mod(&mut names, module);
4642
4643     if names.is_empty() {
4644         return None;
4645     }
4646     Some(names_to_string(&names.into_iter()
4647                         .rev()
4648                         .collect::<Vec<_>>()))
4649 }
4650
4651 fn err_path_resolution() -> PathResolution {
4652     PathResolution::new(Def::Err)
4653 }
4654
4655 #[derive(PartialEq,Copy, Clone)]
4656 pub enum MakeGlobMap {
4657     Yes,
4658     No,
4659 }
4660
4661 #[derive(Copy, Clone, Debug)]
4662 enum CrateLint {
4663     /// Do not issue the lint
4664     No,
4665
4666     /// This lint applies to some random path like `impl ::foo::Bar`
4667     /// or whatever. In this case, we can take the span of that path.
4668     SimplePath(NodeId),
4669
4670     /// This lint comes from a `use` statement. In this case, what we
4671     /// care about really is the *root* `use` statement; e.g., if we
4672     /// have nested things like `use a::{b, c}`, we care about the
4673     /// `use a` part.
4674     UsePath { root_id: NodeId, root_span: Span },
4675
4676     /// This is the "trait item" from a fully qualified path. For example,
4677     /// we might be resolving  `X::Y::Z` from a path like `<T as X::Y>::Z`.
4678     /// The `path_span` is the span of the to the trait itself (`X::Y`).
4679     QPathTrait { qpath_id: NodeId, qpath_span: Span },
4680 }
4681
4682 __build_diagnostic_array! { librustc_resolve, DIAGNOSTICS }