]> git.lizzy.rs Git - rust.git/blob - src/librustc_resolve/lib.rs
Rollup merge of #54308 - dsciarra:issue-22692, r=estebank
[rust.git] / src / librustc_resolve / lib.rs
1 // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 #![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
12        html_favicon_url = "https://doc.rust-lang.org/favicon.ico",
13        html_root_url = "https://doc.rust-lang.org/nightly/")]
14
15 #![feature(crate_visibility_modifier)]
16 #![feature(nll)]
17 #![feature(rustc_diagnostic_macros)]
18 #![feature(slice_sort_by_cached_key)]
19
20 #[macro_use]
21 extern crate log;
22 #[macro_use]
23 extern crate syntax;
24 extern crate syntax_pos;
25 extern crate rustc_errors as errors;
26 extern crate arena;
27 #[macro_use]
28 extern crate rustc;
29 extern crate rustc_data_structures;
30 extern crate rustc_metadata;
31
32 pub use rustc::hir::def::{Namespace, PerNS};
33
34 use self::TypeParameters::*;
35 use self::RibKind::*;
36
37 use rustc::hir::map::{Definitions, DefCollector};
38 use rustc::hir::{self, PrimTy, Bool, Char, Float, Int, Uint, Str};
39 use rustc::middle::cstore::CrateStore;
40 use rustc::session::Session;
41 use rustc::lint;
42 use rustc::hir::def::*;
43 use rustc::hir::def::Namespace::*;
44 use rustc::hir::def_id::{CRATE_DEF_INDEX, LOCAL_CRATE, DefId};
45 use rustc::hir::{Freevar, FreevarMap, TraitCandidate, TraitMap, GlobMap};
46 use rustc::session::config::nightly_options;
47 use rustc::ty;
48 use rustc::util::nodemap::{NodeMap, NodeSet, FxHashMap, FxHashSet, DefIdMap};
49
50 use rustc_metadata::creader::CrateLoader;
51 use rustc_metadata::cstore::CStore;
52
53 use syntax::source_map::SourceMap;
54 use syntax::ext::hygiene::{Mark, Transparency, SyntaxContext};
55 use syntax::ast::{self, Name, NodeId, Ident, FloatTy, IntTy, UintTy};
56 use syntax::ext::base::SyntaxExtension;
57 use syntax::ext::base::Determinacy::{self, Determined, Undetermined};
58 use syntax::ext::base::MacroKind;
59 use syntax::symbol::{Symbol, keywords};
60 use syntax::util::lev_distance::find_best_match_for_name;
61
62 use syntax::visit::{self, FnKind, Visitor};
63 use syntax::attr;
64 use syntax::ast::{CRATE_NODE_ID, Arm, IsAsync, BindingMode, Block, Crate, Expr, ExprKind};
65 use syntax::ast::{FnDecl, ForeignItem, ForeignItemKind, GenericParamKind, Generics};
66 use syntax::ast::{Item, ItemKind, ImplItem, ImplItemKind};
67 use syntax::ast::{Label, Local, Mutability, Pat, PatKind, Path};
68 use syntax::ast::{QSelf, TraitItemKind, TraitRef, Ty, TyKind};
69 use syntax::ptr::P;
70
71 use syntax_pos::{Span, DUMMY_SP, MultiSpan};
72 use errors::{Applicability, DiagnosticBuilder, DiagnosticId};
73
74 use std::cell::{Cell, RefCell};
75 use std::cmp;
76 use std::collections::BTreeSet;
77 use std::fmt;
78 use std::iter;
79 use std::mem::replace;
80 use rustc_data_structures::sync::Lrc;
81
82 use resolve_imports::{ImportDirective, ImportDirectiveSubclass, NameResolution, ImportResolver};
83 use macros::{InvocationData, LegacyBinding, ParentScope};
84
85 // NB: This module needs to be declared first so diagnostics are
86 // registered before they are used.
87 mod diagnostics;
88
89 mod macros;
90 mod check_unused;
91 mod build_reduced_graph;
92 mod resolve_imports;
93
94 fn is_known_tool(name: Name) -> bool {
95     ["clippy", "rustfmt"].contains(&&*name.as_str())
96 }
97
98 /// A free importable items suggested in case of resolution failure.
99 struct ImportSuggestion {
100     path: Path,
101 }
102
103 /// A field or associated item from self type suggested in case of resolution failure.
104 enum AssocSuggestion {
105     Field,
106     MethodWithSelf,
107     AssocItem,
108 }
109
110 #[derive(Eq)]
111 struct BindingError {
112     name: Name,
113     origin: BTreeSet<Span>,
114     target: BTreeSet<Span>,
115 }
116
117 impl PartialOrd for BindingError {
118     fn partial_cmp(&self, other: &BindingError) -> Option<cmp::Ordering> {
119         Some(self.cmp(other))
120     }
121 }
122
123 impl PartialEq for BindingError {
124     fn eq(&self, other: &BindingError) -> bool {
125         self.name == other.name
126     }
127 }
128
129 impl Ord for BindingError {
130     fn cmp(&self, other: &BindingError) -> cmp::Ordering {
131         self.name.cmp(&other.name)
132     }
133 }
134
135 enum ResolutionError<'a> {
136     /// error E0401: can't use type parameters from outer function
137     TypeParametersFromOuterFunction(Def),
138     /// error E0403: the name is already used for a type parameter in this type parameter list
139     NameAlreadyUsedInTypeParameterList(Name, &'a Span),
140     /// error E0407: method is not a member of trait
141     MethodNotMemberOfTrait(Name, &'a str),
142     /// error E0437: type is not a member of trait
143     TypeNotMemberOfTrait(Name, &'a str),
144     /// error E0438: const is not a member of trait
145     ConstNotMemberOfTrait(Name, &'a str),
146     /// error E0408: variable `{}` is not bound in all patterns
147     VariableNotBoundInPattern(&'a BindingError),
148     /// error E0409: variable `{}` is bound in inconsistent ways within the same match arm
149     VariableBoundWithDifferentMode(Name, Span),
150     /// error E0415: identifier is bound more than once in this parameter list
151     IdentifierBoundMoreThanOnceInParameterList(&'a str),
152     /// error E0416: identifier is bound more than once in the same pattern
153     IdentifierBoundMoreThanOnceInSamePattern(&'a str),
154     /// error E0426: use of undeclared label
155     UndeclaredLabel(&'a str, Option<Name>),
156     /// error E0429: `self` imports are only allowed within a { } list
157     SelfImportsOnlyAllowedWithin,
158     /// error E0430: `self` import can only appear once in the list
159     SelfImportCanOnlyAppearOnceInTheList,
160     /// error E0431: `self` import can only appear in an import list with a non-empty prefix
161     SelfImportOnlyInImportListWithNonEmptyPrefix,
162     /// error E0433: failed to resolve
163     FailedToResolve(&'a str),
164     /// error E0434: can't capture dynamic environment in a fn item
165     CannotCaptureDynamicEnvironmentInFnItem,
166     /// error E0435: attempt to use a non-constant value in a constant
167     AttemptToUseNonConstantValueInConstant,
168     /// error E0530: X bindings cannot shadow Ys
169     BindingShadowsSomethingUnacceptable(&'a str, Name, &'a NameBinding<'a>),
170     /// error E0128: type parameters with a default cannot use forward declared identifiers
171     ForwardDeclaredTyParam,
172 }
173
174 /// Combines an error with provided span and emits it
175 ///
176 /// This takes the error provided, combines it with the span and any additional spans inside the
177 /// error and emits it.
178 fn resolve_error<'sess, 'a>(resolver: &'sess Resolver,
179                             span: Span,
180                             resolution_error: ResolutionError<'a>) {
181     resolve_struct_error(resolver, span, resolution_error).emit();
182 }
183
184 fn resolve_struct_error<'sess, 'a>(resolver: &'sess Resolver,
185                                    span: Span,
186                                    resolution_error: ResolutionError<'a>)
187                                    -> DiagnosticBuilder<'sess> {
188     match resolution_error {
189         ResolutionError::TypeParametersFromOuterFunction(outer_def) => {
190             let mut err = struct_span_err!(resolver.session,
191                                            span,
192                                            E0401,
193                                            "can't use type parameters from outer function");
194             err.span_label(span, "use of type variable from outer function");
195
196             let cm = resolver.session.source_map();
197             match outer_def {
198                 Def::SelfTy(maybe_trait_defid, maybe_impl_defid) => {
199                     if let Some(impl_span) = maybe_impl_defid.and_then(|def_id| {
200                         resolver.definitions.opt_span(def_id)
201                     }) {
202                         err.span_label(
203                             reduce_impl_span_to_impl_keyword(cm, impl_span),
204                             "`Self` type implicitly declared here, by this `impl`",
205                         );
206                     }
207                     match (maybe_trait_defid, maybe_impl_defid) {
208                         (Some(_), None) => {
209                             err.span_label(span, "can't use `Self` here");
210                         }
211                         (_, Some(_)) => {
212                             err.span_label(span, "use a type here instead");
213                         }
214                         (None, None) => bug!("`impl` without trait nor type?"),
215                     }
216                     return err;
217                 },
218                 Def::TyParam(typaram_defid) => {
219                     if let Some(typaram_span) = resolver.definitions.opt_span(typaram_defid) {
220                         err.span_label(typaram_span, "type variable from outer function");
221                     }
222                 },
223                 _ => {
224                     bug!("TypeParametersFromOuterFunction should only be used with Def::SelfTy or \
225                          Def::TyParam")
226                 }
227             }
228
229             // Try to retrieve the span of the function signature and generate a new message with
230             // a local type parameter
231             let sugg_msg = "try using a local type parameter instead";
232             if let Some((sugg_span, new_snippet)) = cm.generate_local_type_param_snippet(span) {
233                 // Suggest the modification to the user
234                 err.span_suggestion_with_applicability(
235                     sugg_span,
236                     sugg_msg,
237                     new_snippet,
238                     Applicability::MachineApplicable,
239                 );
240             } else if let Some(sp) = cm.generate_fn_name_span(span) {
241                 err.span_label(sp, "try adding a local type parameter in this method instead");
242             } else {
243                 err.help("try using a local type parameter instead");
244             }
245
246             err
247         }
248         ResolutionError::NameAlreadyUsedInTypeParameterList(name, first_use_span) => {
249              let mut err = struct_span_err!(resolver.session,
250                                             span,
251                                             E0403,
252                                             "the name `{}` is already used for a type parameter \
253                                             in this type parameter list",
254                                             name);
255              err.span_label(span, "already used");
256              err.span_label(first_use_span.clone(), format!("first use of `{}`", name));
257              err
258         }
259         ResolutionError::MethodNotMemberOfTrait(method, trait_) => {
260             let mut err = struct_span_err!(resolver.session,
261                                            span,
262                                            E0407,
263                                            "method `{}` is not a member of trait `{}`",
264                                            method,
265                                            trait_);
266             err.span_label(span, format!("not a member of trait `{}`", trait_));
267             err
268         }
269         ResolutionError::TypeNotMemberOfTrait(type_, trait_) => {
270             let mut err = struct_span_err!(resolver.session,
271                              span,
272                              E0437,
273                              "type `{}` is not a member of trait `{}`",
274                              type_,
275                              trait_);
276             err.span_label(span, format!("not a member of trait `{}`", trait_));
277             err
278         }
279         ResolutionError::ConstNotMemberOfTrait(const_, trait_) => {
280             let mut err = struct_span_err!(resolver.session,
281                              span,
282                              E0438,
283                              "const `{}` is not a member of trait `{}`",
284                              const_,
285                              trait_);
286             err.span_label(span, format!("not a member of trait `{}`", trait_));
287             err
288         }
289         ResolutionError::VariableNotBoundInPattern(binding_error) => {
290             let target_sp = binding_error.target.iter().cloned().collect::<Vec<_>>();
291             let msp = MultiSpan::from_spans(target_sp.clone());
292             let msg = format!("variable `{}` is not bound in all patterns", binding_error.name);
293             let mut err = resolver.session.struct_span_err_with_code(
294                 msp,
295                 &msg,
296                 DiagnosticId::Error("E0408".into()),
297             );
298             for sp in target_sp {
299                 err.span_label(sp, format!("pattern doesn't bind `{}`", binding_error.name));
300             }
301             let origin_sp = binding_error.origin.iter().cloned();
302             for sp in origin_sp {
303                 err.span_label(sp, "variable not in all patterns");
304             }
305             err
306         }
307         ResolutionError::VariableBoundWithDifferentMode(variable_name,
308                                                         first_binding_span) => {
309             let mut err = struct_span_err!(resolver.session,
310                              span,
311                              E0409,
312                              "variable `{}` is bound in inconsistent \
313                              ways within the same match arm",
314                              variable_name);
315             err.span_label(span, "bound in different ways");
316             err.span_label(first_binding_span, "first binding");
317             err
318         }
319         ResolutionError::IdentifierBoundMoreThanOnceInParameterList(identifier) => {
320             let mut err = struct_span_err!(resolver.session,
321                              span,
322                              E0415,
323                              "identifier `{}` is bound more than once in this parameter list",
324                              identifier);
325             err.span_label(span, "used as parameter more than once");
326             err
327         }
328         ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(identifier) => {
329             let mut err = struct_span_err!(resolver.session,
330                              span,
331                              E0416,
332                              "identifier `{}` is bound more than once in the same pattern",
333                              identifier);
334             err.span_label(span, "used in a pattern more than once");
335             err
336         }
337         ResolutionError::UndeclaredLabel(name, lev_candidate) => {
338             let mut err = struct_span_err!(resolver.session,
339                                            span,
340                                            E0426,
341                                            "use of undeclared label `{}`",
342                                            name);
343             if let Some(lev_candidate) = lev_candidate {
344                 err.span_label(span, format!("did you mean `{}`?", lev_candidate));
345             } else {
346                 err.span_label(span, format!("undeclared label `{}`", name));
347             }
348             err
349         }
350         ResolutionError::SelfImportsOnlyAllowedWithin => {
351             struct_span_err!(resolver.session,
352                              span,
353                              E0429,
354                              "{}",
355                              "`self` imports are only allowed within a { } list")
356         }
357         ResolutionError::SelfImportCanOnlyAppearOnceInTheList => {
358             let mut err = struct_span_err!(resolver.session, span, E0430,
359                                            "`self` import can only appear once in an import list");
360             err.span_label(span, "can only appear once in an import list");
361             err
362         }
363         ResolutionError::SelfImportOnlyInImportListWithNonEmptyPrefix => {
364             let mut err = struct_span_err!(resolver.session, span, E0431,
365                                            "`self` import can only appear in an import list with \
366                                             a non-empty prefix");
367             err.span_label(span, "can only appear in an import list with a non-empty prefix");
368             err
369         }
370         ResolutionError::FailedToResolve(msg) => {
371             let mut err = struct_span_err!(resolver.session, span, E0433,
372                                            "failed to resolve. {}", msg);
373             err.span_label(span, msg);
374             err
375         }
376         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem => {
377             let mut err = struct_span_err!(resolver.session,
378                                            span,
379                                            E0434,
380                                            "{}",
381                                            "can't capture dynamic environment in a fn item");
382             err.help("use the `|| { ... }` closure form instead");
383             err
384         }
385         ResolutionError::AttemptToUseNonConstantValueInConstant => {
386             let mut err = struct_span_err!(resolver.session, span, E0435,
387                                            "attempt to use a non-constant value in a constant");
388             err.span_label(span, "non-constant value");
389             err
390         }
391         ResolutionError::BindingShadowsSomethingUnacceptable(what_binding, name, binding) => {
392             let shadows_what = PathResolution::new(binding.def()).kind_name();
393             let mut err = struct_span_err!(resolver.session,
394                                            span,
395                                            E0530,
396                                            "{}s cannot shadow {}s", what_binding, shadows_what);
397             err.span_label(span, format!("cannot be named the same as a {}", shadows_what));
398             let participle = if binding.is_import() { "imported" } else { "defined" };
399             let msg = format!("a {} `{}` is {} here", shadows_what, name, participle);
400             err.span_label(binding.span, msg);
401             err
402         }
403         ResolutionError::ForwardDeclaredTyParam => {
404             let mut err = struct_span_err!(resolver.session, span, E0128,
405                                            "type parameters with a default cannot use \
406                                             forward declared identifiers");
407             err.span_label(
408                 span, "defaulted type parameters cannot be forward declared".to_string());
409             err
410         }
411     }
412 }
413
414 /// Adjust the impl span so that just the `impl` keyword is taken by removing
415 /// everything after `<` (`"impl<T> Iterator for A<T> {}" -> "impl"`) and
416 /// everything after the first whitespace (`"impl Iterator for A" -> "impl"`)
417 ///
418 /// Attention: The method used is very fragile since it essentially duplicates the work of the
419 /// parser. If you need to use this function or something similar, please consider updating the
420 /// source_map functions and this function to something more robust.
421 fn reduce_impl_span_to_impl_keyword(cm: &SourceMap, impl_span: Span) -> Span {
422     let impl_span = cm.span_until_char(impl_span, '<');
423     let impl_span = cm.span_until_whitespace(impl_span);
424     impl_span
425 }
426
427 #[derive(Copy, Clone, Debug)]
428 struct BindingInfo {
429     span: Span,
430     binding_mode: BindingMode,
431 }
432
433 /// Map from the name in a pattern to its binding mode.
434 type BindingMap = FxHashMap<Ident, BindingInfo>;
435
436 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
437 enum PatternSource {
438     Match,
439     IfLet,
440     WhileLet,
441     Let,
442     For,
443     FnParam,
444 }
445
446 impl PatternSource {
447     fn descr(self) -> &'static str {
448         match self {
449             PatternSource::Match => "match binding",
450             PatternSource::IfLet => "if let binding",
451             PatternSource::WhileLet => "while let binding",
452             PatternSource::Let => "let binding",
453             PatternSource::For => "for binding",
454             PatternSource::FnParam => "function parameter",
455         }
456     }
457 }
458
459 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
460 enum AliasPossibility {
461     No,
462     Maybe,
463 }
464
465 #[derive(Copy, Clone, Debug)]
466 enum PathSource<'a> {
467     // Type paths `Path`.
468     Type,
469     // Trait paths in bounds or impls.
470     Trait(AliasPossibility),
471     // Expression paths `path`, with optional parent context.
472     Expr(Option<&'a Expr>),
473     // Paths in path patterns `Path`.
474     Pat,
475     // Paths in struct expressions and patterns `Path { .. }`.
476     Struct,
477     // Paths in tuple struct patterns `Path(..)`.
478     TupleStruct,
479     // `m::A::B` in `<T as m::A>::B::C`.
480     TraitItem(Namespace),
481     // Path in `pub(path)`
482     Visibility,
483     // Path in `use a::b::{...};`
484     ImportPrefix,
485 }
486
487 impl<'a> PathSource<'a> {
488     fn namespace(self) -> Namespace {
489         match self {
490             PathSource::Type | PathSource::Trait(_) | PathSource::Struct |
491             PathSource::Visibility | PathSource::ImportPrefix => TypeNS,
492             PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct => ValueNS,
493             PathSource::TraitItem(ns) => ns,
494         }
495     }
496
497     fn global_by_default(self) -> bool {
498         match self {
499             PathSource::Visibility | PathSource::ImportPrefix => true,
500             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
501             PathSource::Struct | PathSource::TupleStruct |
502             PathSource::Trait(_) | PathSource::TraitItem(..) => false,
503         }
504     }
505
506     fn defer_to_typeck(self) -> bool {
507         match self {
508             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
509             PathSource::Struct | PathSource::TupleStruct => true,
510             PathSource::Trait(_) | PathSource::TraitItem(..) |
511             PathSource::Visibility | PathSource::ImportPrefix => false,
512         }
513     }
514
515     fn descr_expected(self) -> &'static str {
516         match self {
517             PathSource::Type => "type",
518             PathSource::Trait(_) => "trait",
519             PathSource::Pat => "unit struct/variant or constant",
520             PathSource::Struct => "struct, variant or union type",
521             PathSource::TupleStruct => "tuple struct/variant",
522             PathSource::Visibility => "module",
523             PathSource::ImportPrefix => "module or enum",
524             PathSource::TraitItem(ns) => match ns {
525                 TypeNS => "associated type",
526                 ValueNS => "method or associated constant",
527                 MacroNS => bug!("associated macro"),
528             },
529             PathSource::Expr(parent) => match parent.map(|p| &p.node) {
530                 // "function" here means "anything callable" rather than `Def::Fn`,
531                 // this is not precise but usually more helpful than just "value".
532                 Some(&ExprKind::Call(..)) => "function",
533                 _ => "value",
534             },
535         }
536     }
537
538     fn is_expected(self, def: Def) -> bool {
539         match self {
540             PathSource::Type => match def {
541                 Def::Struct(..) | Def::Union(..) | Def::Enum(..) |
542                 Def::Trait(..) | Def::TyAlias(..) | Def::AssociatedTy(..) |
543                 Def::PrimTy(..) | Def::TyParam(..) | Def::SelfTy(..) |
544                 Def::Existential(..) |
545                 Def::ForeignTy(..) => true,
546                 _ => false,
547             },
548             PathSource::Trait(AliasPossibility::No) => match def {
549                 Def::Trait(..) => true,
550                 _ => false,
551             },
552             PathSource::Trait(AliasPossibility::Maybe) => match def {
553                 Def::Trait(..) => true,
554                 Def::TraitAlias(..) => true,
555                 _ => false,
556             },
557             PathSource::Expr(..) => match def {
558                 Def::StructCtor(_, CtorKind::Const) | Def::StructCtor(_, CtorKind::Fn) |
559                 Def::VariantCtor(_, CtorKind::Const) | Def::VariantCtor(_, CtorKind::Fn) |
560                 Def::Const(..) | Def::Static(..) | Def::Local(..) | Def::Upvar(..) |
561                 Def::Fn(..) | Def::Method(..) | Def::AssociatedConst(..) |
562                 Def::SelfCtor(..) => true,
563                 _ => false,
564             },
565             PathSource::Pat => match def {
566                 Def::StructCtor(_, CtorKind::Const) |
567                 Def::VariantCtor(_, CtorKind::Const) |
568                 Def::Const(..) | Def::AssociatedConst(..) |
569                 Def::SelfCtor(..) => true,
570                 _ => false,
571             },
572             PathSource::TupleStruct => match def {
573                 Def::StructCtor(_, CtorKind::Fn) |
574                 Def::VariantCtor(_, CtorKind::Fn) |
575                 Def::SelfCtor(..) => true,
576                 _ => false,
577             },
578             PathSource::Struct => match def {
579                 Def::Struct(..) | Def::Union(..) | Def::Variant(..) |
580                 Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => true,
581                 _ => false,
582             },
583             PathSource::TraitItem(ns) => match def {
584                 Def::AssociatedConst(..) | Def::Method(..) if ns == ValueNS => true,
585                 Def::AssociatedTy(..) if ns == TypeNS => true,
586                 _ => false,
587             },
588             PathSource::ImportPrefix => match def {
589                 Def::Mod(..) | Def::Enum(..) => true,
590                 _ => false,
591             },
592             PathSource::Visibility => match def {
593                 Def::Mod(..) => true,
594                 _ => false,
595             },
596         }
597     }
598
599     fn error_code(self, has_unexpected_resolution: bool) -> &'static str {
600         __diagnostic_used!(E0404);
601         __diagnostic_used!(E0405);
602         __diagnostic_used!(E0412);
603         __diagnostic_used!(E0422);
604         __diagnostic_used!(E0423);
605         __diagnostic_used!(E0425);
606         __diagnostic_used!(E0531);
607         __diagnostic_used!(E0532);
608         __diagnostic_used!(E0573);
609         __diagnostic_used!(E0574);
610         __diagnostic_used!(E0575);
611         __diagnostic_used!(E0576);
612         __diagnostic_used!(E0577);
613         __diagnostic_used!(E0578);
614         match (self, has_unexpected_resolution) {
615             (PathSource::Trait(_), true) => "E0404",
616             (PathSource::Trait(_), false) => "E0405",
617             (PathSource::Type, true) => "E0573",
618             (PathSource::Type, false) => "E0412",
619             (PathSource::Struct, true) => "E0574",
620             (PathSource::Struct, false) => "E0422",
621             (PathSource::Expr(..), true) => "E0423",
622             (PathSource::Expr(..), false) => "E0425",
623             (PathSource::Pat, true) | (PathSource::TupleStruct, true) => "E0532",
624             (PathSource::Pat, false) | (PathSource::TupleStruct, false) => "E0531",
625             (PathSource::TraitItem(..), true) => "E0575",
626             (PathSource::TraitItem(..), false) => "E0576",
627             (PathSource::Visibility, true) | (PathSource::ImportPrefix, true) => "E0577",
628             (PathSource::Visibility, false) | (PathSource::ImportPrefix, false) => "E0578",
629         }
630     }
631 }
632
633 struct UsePlacementFinder {
634     target_module: NodeId,
635     span: Option<Span>,
636     found_use: bool,
637 }
638
639 impl UsePlacementFinder {
640     fn check(krate: &Crate, target_module: NodeId) -> (Option<Span>, bool) {
641         let mut finder = UsePlacementFinder {
642             target_module,
643             span: None,
644             found_use: false,
645         };
646         visit::walk_crate(&mut finder, krate);
647         (finder.span, finder.found_use)
648     }
649 }
650
651 impl<'tcx> Visitor<'tcx> for UsePlacementFinder {
652     fn visit_mod(
653         &mut self,
654         module: &'tcx ast::Mod,
655         _: Span,
656         _: &[ast::Attribute],
657         node_id: NodeId,
658     ) {
659         if self.span.is_some() {
660             return;
661         }
662         if node_id != self.target_module {
663             visit::walk_mod(self, module);
664             return;
665         }
666         // find a use statement
667         for item in &module.items {
668             match item.node {
669                 ItemKind::Use(..) => {
670                     // don't suggest placing a use before the prelude
671                     // import or other generated ones
672                     if item.span.ctxt().outer().expn_info().is_none() {
673                         self.span = Some(item.span.shrink_to_lo());
674                         self.found_use = true;
675                         return;
676                     }
677                 },
678                 // don't place use before extern crate
679                 ItemKind::ExternCrate(_) => {}
680                 // but place them before the first other item
681                 _ => if self.span.map_or(true, |span| item.span < span ) {
682                     if item.span.ctxt().outer().expn_info().is_none() {
683                         // don't insert between attributes and an item
684                         if item.attrs.is_empty() {
685                             self.span = Some(item.span.shrink_to_lo());
686                         } else {
687                             // find the first attribute on the item
688                             for attr in &item.attrs {
689                                 if self.span.map_or(true, |span| attr.span < span) {
690                                     self.span = Some(attr.span.shrink_to_lo());
691                                 }
692                             }
693                         }
694                     }
695                 },
696             }
697         }
698     }
699 }
700
701 /// This thing walks the whole crate in DFS manner, visiting each item, resolving names as it goes.
702 impl<'a, 'tcx, 'cl> Visitor<'tcx> for Resolver<'a, 'cl> {
703     fn visit_item(&mut self, item: &'tcx Item) {
704         self.resolve_item(item);
705     }
706     fn visit_arm(&mut self, arm: &'tcx Arm) {
707         self.resolve_arm(arm);
708     }
709     fn visit_block(&mut self, block: &'tcx Block) {
710         self.resolve_block(block);
711     }
712     fn visit_anon_const(&mut self, constant: &'tcx ast::AnonConst) {
713         self.with_constant_rib(|this| {
714             visit::walk_anon_const(this, constant);
715         });
716     }
717     fn visit_expr(&mut self, expr: &'tcx Expr) {
718         self.resolve_expr(expr, None);
719     }
720     fn visit_local(&mut self, local: &'tcx Local) {
721         self.resolve_local(local);
722     }
723     fn visit_ty(&mut self, ty: &'tcx Ty) {
724         match ty.node {
725             TyKind::Path(ref qself, ref path) => {
726                 self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
727             }
728             TyKind::ImplicitSelf => {
729                 let self_ty = keywords::SelfType.ident();
730                 let def = self.resolve_ident_in_lexical_scope(self_ty, TypeNS, Some(ty.id), ty.span)
731                               .map_or(Def::Err, |d| d.def());
732                 self.record_def(ty.id, PathResolution::new(def));
733             }
734             _ => (),
735         }
736         visit::walk_ty(self, ty);
737     }
738     fn visit_poly_trait_ref(&mut self,
739                             tref: &'tcx ast::PolyTraitRef,
740                             m: &'tcx ast::TraitBoundModifier) {
741         self.smart_resolve_path(tref.trait_ref.ref_id, None,
742                                 &tref.trait_ref.path, PathSource::Trait(AliasPossibility::Maybe));
743         visit::walk_poly_trait_ref(self, tref, m);
744     }
745     fn visit_foreign_item(&mut self, foreign_item: &'tcx ForeignItem) {
746         let type_parameters = match foreign_item.node {
747             ForeignItemKind::Fn(_, ref generics) => {
748                 HasTypeParameters(generics, ItemRibKind)
749             }
750             ForeignItemKind::Static(..) => NoTypeParameters,
751             ForeignItemKind::Ty => NoTypeParameters,
752             ForeignItemKind::Macro(..) => NoTypeParameters,
753         };
754         self.with_type_parameter_rib(type_parameters, |this| {
755             visit::walk_foreign_item(this, foreign_item);
756         });
757     }
758     fn visit_fn(&mut self,
759                 function_kind: FnKind<'tcx>,
760                 declaration: &'tcx FnDecl,
761                 _: Span,
762                 node_id: NodeId)
763     {
764         let (rib_kind, asyncness) = match function_kind {
765             FnKind::ItemFn(_, ref header, ..) =>
766                 (ItemRibKind, header.asyncness),
767             FnKind::Method(_, ref sig, _, _) =>
768                 (TraitOrImplItemRibKind, sig.header.asyncness),
769             FnKind::Closure(_) =>
770                 // Async closures aren't resolved through `visit_fn`-- they're
771                 // processed separately
772                 (ClosureRibKind(node_id), IsAsync::NotAsync),
773         };
774
775         // Create a value rib for the function.
776         self.ribs[ValueNS].push(Rib::new(rib_kind));
777
778         // Create a label rib for the function.
779         self.label_ribs.push(Rib::new(rib_kind));
780
781         // Add each argument to the rib.
782         let mut bindings_list = FxHashMap();
783         for argument in &declaration.inputs {
784             self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
785
786             self.visit_ty(&argument.ty);
787
788             debug!("(resolving function) recorded argument");
789         }
790         visit::walk_fn_ret_ty(self, &declaration.output);
791
792         // Resolve the function body, potentially inside the body of an async closure
793         if let IsAsync::Async { closure_id, .. } = asyncness {
794             let rib_kind = ClosureRibKind(closure_id);
795             self.ribs[ValueNS].push(Rib::new(rib_kind));
796             self.label_ribs.push(Rib::new(rib_kind));
797         }
798
799         match function_kind {
800             FnKind::ItemFn(.., body) |
801             FnKind::Method(.., body) => {
802                 self.visit_block(body);
803             }
804             FnKind::Closure(body) => {
805                 self.visit_expr(body);
806             }
807         };
808
809         // Leave the body of the async closure
810         if asyncness.is_async() {
811             self.label_ribs.pop();
812             self.ribs[ValueNS].pop();
813         }
814
815         debug!("(resolving function) leaving function");
816
817         self.label_ribs.pop();
818         self.ribs[ValueNS].pop();
819     }
820     fn visit_generics(&mut self, generics: &'tcx Generics) {
821         // For type parameter defaults, we have to ban access
822         // to following type parameters, as the Substs can only
823         // provide previous type parameters as they're built. We
824         // put all the parameters on the ban list and then remove
825         // them one by one as they are processed and become available.
826         let mut default_ban_rib = Rib::new(ForwardTyParamBanRibKind);
827         let mut found_default = false;
828         default_ban_rib.bindings.extend(generics.params.iter()
829             .filter_map(|param| match param.kind {
830                 GenericParamKind::Lifetime { .. } => None,
831                 GenericParamKind::Type { ref default, .. } => {
832                     found_default |= default.is_some();
833                     if found_default {
834                         Some((Ident::with_empty_ctxt(param.ident.name), Def::Err))
835                     } else {
836                         None
837                     }
838                 }
839             }));
840
841         for param in &generics.params {
842             match param.kind {
843                 GenericParamKind::Lifetime { .. } => self.visit_generic_param(param),
844                 GenericParamKind::Type { ref default, .. } => {
845                     for bound in &param.bounds {
846                         self.visit_param_bound(bound);
847                     }
848
849                     if let Some(ref ty) = default {
850                         self.ribs[TypeNS].push(default_ban_rib);
851                         self.visit_ty(ty);
852                         default_ban_rib = self.ribs[TypeNS].pop().unwrap();
853                     }
854
855                     // Allow all following defaults to refer to this type parameter.
856                     default_ban_rib.bindings.remove(&Ident::with_empty_ctxt(param.ident.name));
857                 }
858             }
859         }
860         for p in &generics.where_clause.predicates {
861             self.visit_where_predicate(p);
862         }
863     }
864 }
865
866 #[derive(Copy, Clone)]
867 enum TypeParameters<'a, 'b> {
868     NoTypeParameters,
869     HasTypeParameters(// Type parameters.
870                       &'b Generics,
871
872                       // The kind of the rib used for type parameters.
873                       RibKind<'a>),
874 }
875
876 /// The rib kind controls the translation of local
877 /// definitions (`Def::Local`) to upvars (`Def::Upvar`).
878 #[derive(Copy, Clone, Debug)]
879 enum RibKind<'a> {
880     /// No translation needs to be applied.
881     NormalRibKind,
882
883     /// We passed through a closure scope at the given node ID.
884     /// Translate upvars as appropriate.
885     ClosureRibKind(NodeId /* func id */),
886
887     /// We passed through an impl or trait and are now in one of its
888     /// methods or associated types. Allow references to ty params that impl or trait
889     /// binds. Disallow any other upvars (including other ty params that are
890     /// upvars).
891     TraitOrImplItemRibKind,
892
893     /// We passed through an item scope. Disallow upvars.
894     ItemRibKind,
895
896     /// We're in a constant item. Can't refer to dynamic stuff.
897     ConstantItemRibKind,
898
899     /// We passed through a module.
900     ModuleRibKind(Module<'a>),
901
902     /// We passed through a `macro_rules!` statement
903     MacroDefinition(DefId),
904
905     /// All bindings in this rib are type parameters that can't be used
906     /// from the default of a type parameter because they're not declared
907     /// before said type parameter. Also see the `visit_generics` override.
908     ForwardTyParamBanRibKind,
909 }
910
911 /// One local scope.
912 ///
913 /// A rib represents a scope names can live in. Note that these appear in many places, not just
914 /// around braces. At any place where the list of accessible names (of the given namespace)
915 /// changes or a new restrictions on the name accessibility are introduced, a new rib is put onto a
916 /// stack. This may be, for example, a `let` statement (because it introduces variables), a macro,
917 /// etc.
918 ///
919 /// Different [rib kinds](enum.RibKind) are transparent for different names.
920 ///
921 /// The resolution keeps a separate stack of ribs as it traverses the AST for each namespace. When
922 /// resolving, the name is looked up from inside out.
923 #[derive(Debug)]
924 struct Rib<'a> {
925     bindings: FxHashMap<Ident, Def>,
926     kind: RibKind<'a>,
927 }
928
929 impl<'a> Rib<'a> {
930     fn new(kind: RibKind<'a>) -> Rib<'a> {
931         Rib {
932             bindings: FxHashMap(),
933             kind,
934         }
935     }
936 }
937
938 /// An intermediate resolution result.
939 ///
940 /// This refers to the thing referred by a name. The difference between `Def` and `Item` is that
941 /// items are visible in their whole block, while defs only from the place they are defined
942 /// forward.
943 enum LexicalScopeBinding<'a> {
944     Item(&'a NameBinding<'a>),
945     Def(Def),
946 }
947
948 impl<'a> LexicalScopeBinding<'a> {
949     fn item(self) -> Option<&'a NameBinding<'a>> {
950         match self {
951             LexicalScopeBinding::Item(binding) => Some(binding),
952             _ => None,
953         }
954     }
955
956     fn def(self) -> Def {
957         match self {
958             LexicalScopeBinding::Item(binding) => binding.def(),
959             LexicalScopeBinding::Def(def) => def,
960         }
961     }
962 }
963
964 #[derive(Copy, Clone, Debug)]
965 pub enum ModuleOrUniformRoot<'a> {
966     /// Regular module.
967     Module(Module<'a>),
968
969     /// The `{{root}}` (`CrateRoot` aka "global") / `extern` initial segment
970     /// in which external crates resolve, and also `crate` (only in `{{root}}`,
971     /// but *not* `extern`), in the Rust 2018 edition.
972     UniformRoot(Name),
973 }
974
975 #[derive(Clone, Debug)]
976 enum PathResult<'a> {
977     Module(ModuleOrUniformRoot<'a>),
978     NonModule(PathResolution),
979     Indeterminate,
980     Failed(Span, String, bool /* is the error from the last segment? */),
981 }
982
983 enum ModuleKind {
984     /// An anonymous module, eg. just a block.
985     ///
986     /// ```
987     /// fn main() {
988     ///     fn f() {} // (1)
989     ///     { // This is an anonymous module
990     ///         f(); // This resolves to (2) as we are inside the block.
991     ///         fn f() {} // (2)
992     ///     }
993     ///     f(); // Resolves to (1)
994     /// }
995     /// ```
996     Block(NodeId),
997     /// Any module with a name.
998     ///
999     /// This could be:
1000     ///
1001     /// * A normal module â€’ either `mod from_file;` or `mod from_block { }`.
1002     /// * A trait or an enum (it implicitly contains associated types, methods and variant
1003     ///   constructors).
1004     Def(Def, Name),
1005 }
1006
1007 /// One node in the tree of modules.
1008 pub struct ModuleData<'a> {
1009     parent: Option<Module<'a>>,
1010     kind: ModuleKind,
1011
1012     // The def id of the closest normal module (`mod`) ancestor (including this module).
1013     normal_ancestor_id: DefId,
1014
1015     resolutions: RefCell<FxHashMap<(Ident, Namespace), &'a RefCell<NameResolution<'a>>>>,
1016     legacy_macro_resolutions: RefCell<Vec<(Ident, MacroKind, ParentScope<'a>, Option<Def>)>>,
1017     macro_resolutions: RefCell<Vec<(Box<[Ident]>, Span)>>,
1018     builtin_attrs: RefCell<Vec<(Ident, ParentScope<'a>)>>,
1019
1020     // Macro invocations that can expand into items in this module.
1021     unresolved_invocations: RefCell<FxHashSet<Mark>>,
1022
1023     no_implicit_prelude: bool,
1024
1025     glob_importers: RefCell<Vec<&'a ImportDirective<'a>>>,
1026     globs: RefCell<Vec<&'a ImportDirective<'a>>>,
1027
1028     // Used to memoize the traits in this module for faster searches through all traits in scope.
1029     traits: RefCell<Option<Box<[(Ident, &'a NameBinding<'a>)]>>>,
1030
1031     // Whether this module is populated. If not populated, any attempt to
1032     // access the children must be preceded with a
1033     // `populate_module_if_necessary` call.
1034     populated: Cell<bool>,
1035
1036     /// Span of the module itself. Used for error reporting.
1037     span: Span,
1038
1039     expansion: Mark,
1040 }
1041
1042 type Module<'a> = &'a ModuleData<'a>;
1043
1044 impl<'a> ModuleData<'a> {
1045     fn new(parent: Option<Module<'a>>,
1046            kind: ModuleKind,
1047            normal_ancestor_id: DefId,
1048            expansion: Mark,
1049            span: Span) -> Self {
1050         ModuleData {
1051             parent,
1052             kind,
1053             normal_ancestor_id,
1054             resolutions: RefCell::new(FxHashMap()),
1055             legacy_macro_resolutions: RefCell::new(Vec::new()),
1056             macro_resolutions: RefCell::new(Vec::new()),
1057             builtin_attrs: RefCell::new(Vec::new()),
1058             unresolved_invocations: RefCell::new(FxHashSet()),
1059             no_implicit_prelude: false,
1060             glob_importers: RefCell::new(Vec::new()),
1061             globs: RefCell::new(Vec::new()),
1062             traits: RefCell::new(None),
1063             populated: Cell::new(normal_ancestor_id.is_local()),
1064             span,
1065             expansion,
1066         }
1067     }
1068
1069     fn for_each_child<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1070         for (&(ident, ns), name_resolution) in self.resolutions.borrow().iter() {
1071             name_resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1072         }
1073     }
1074
1075     fn for_each_child_stable<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1076         let resolutions = self.resolutions.borrow();
1077         let mut resolutions = resolutions.iter().collect::<Vec<_>>();
1078         resolutions.sort_by_cached_key(|&(&(ident, ns), _)| (ident.as_str(), ns));
1079         for &(&(ident, ns), &resolution) in resolutions.iter() {
1080             resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1081         }
1082     }
1083
1084     fn def(&self) -> Option<Def> {
1085         match self.kind {
1086             ModuleKind::Def(def, _) => Some(def),
1087             _ => None,
1088         }
1089     }
1090
1091     fn def_id(&self) -> Option<DefId> {
1092         self.def().as_ref().map(Def::def_id)
1093     }
1094
1095     // `self` resolves to the first module ancestor that `is_normal`.
1096     fn is_normal(&self) -> bool {
1097         match self.kind {
1098             ModuleKind::Def(Def::Mod(_), _) => true,
1099             _ => false,
1100         }
1101     }
1102
1103     fn is_trait(&self) -> bool {
1104         match self.kind {
1105             ModuleKind::Def(Def::Trait(_), _) => true,
1106             _ => false,
1107         }
1108     }
1109
1110     fn is_local(&self) -> bool {
1111         self.normal_ancestor_id.is_local()
1112     }
1113
1114     fn nearest_item_scope(&'a self) -> Module<'a> {
1115         if self.is_trait() { self.parent.unwrap() } else { self }
1116     }
1117 }
1118
1119 impl<'a> fmt::Debug for ModuleData<'a> {
1120     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1121         write!(f, "{:?}", self.def())
1122     }
1123 }
1124
1125 /// Records a possibly-private value, type, or module definition.
1126 #[derive(Clone, Debug)]
1127 pub struct NameBinding<'a> {
1128     kind: NameBindingKind<'a>,
1129     expansion: Mark,
1130     span: Span,
1131     vis: ty::Visibility,
1132 }
1133
1134 pub trait ToNameBinding<'a> {
1135     fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a>;
1136 }
1137
1138 impl<'a> ToNameBinding<'a> for &'a NameBinding<'a> {
1139     fn to_name_binding(self, _: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> {
1140         self
1141     }
1142 }
1143
1144 #[derive(Clone, Debug)]
1145 enum NameBindingKind<'a> {
1146     Def(Def, /* is_macro_export */ bool),
1147     Module(Module<'a>),
1148     Import {
1149         binding: &'a NameBinding<'a>,
1150         directive: &'a ImportDirective<'a>,
1151         used: Cell<bool>,
1152     },
1153     Ambiguity {
1154         b1: &'a NameBinding<'a>,
1155         b2: &'a NameBinding<'a>,
1156     }
1157 }
1158
1159 struct PrivacyError<'a>(Span, Name, &'a NameBinding<'a>);
1160
1161 struct UseError<'a> {
1162     err: DiagnosticBuilder<'a>,
1163     /// Attach `use` statements for these candidates
1164     candidates: Vec<ImportSuggestion>,
1165     /// The node id of the module to place the use statements in
1166     node_id: NodeId,
1167     /// Whether the diagnostic should state that it's "better"
1168     better: bool,
1169 }
1170
1171 struct AmbiguityError<'a> {
1172     ident: Ident,
1173     b1: &'a NameBinding<'a>,
1174     b2: &'a NameBinding<'a>,
1175 }
1176
1177 impl<'a> NameBinding<'a> {
1178     fn module(&self) -> Option<Module<'a>> {
1179         match self.kind {
1180             NameBindingKind::Module(module) => Some(module),
1181             NameBindingKind::Import { binding, .. } => binding.module(),
1182             _ => None,
1183         }
1184     }
1185
1186     fn def(&self) -> Def {
1187         match self.kind {
1188             NameBindingKind::Def(def, _) => def,
1189             NameBindingKind::Module(module) => module.def().unwrap(),
1190             NameBindingKind::Import { binding, .. } => binding.def(),
1191             NameBindingKind::Ambiguity { .. } => Def::Err,
1192         }
1193     }
1194
1195     fn def_ignoring_ambiguity(&self) -> Def {
1196         match self.kind {
1197             NameBindingKind::Import { binding, .. } => binding.def_ignoring_ambiguity(),
1198             NameBindingKind::Ambiguity { b1, .. } => b1.def_ignoring_ambiguity(),
1199             _ => self.def(),
1200         }
1201     }
1202
1203     fn get_macro<'b: 'a>(&self, resolver: &mut Resolver<'a, 'b>) -> Lrc<SyntaxExtension> {
1204         resolver.get_macro(self.def_ignoring_ambiguity())
1205     }
1206
1207     // We sometimes need to treat variants as `pub` for backwards compatibility
1208     fn pseudo_vis(&self) -> ty::Visibility {
1209         if self.is_variant() && self.def().def_id().is_local() {
1210             ty::Visibility::Public
1211         } else {
1212             self.vis
1213         }
1214     }
1215
1216     fn is_variant(&self) -> bool {
1217         match self.kind {
1218             NameBindingKind::Def(Def::Variant(..), _) |
1219             NameBindingKind::Def(Def::VariantCtor(..), _) => true,
1220             _ => false,
1221         }
1222     }
1223
1224     fn is_extern_crate(&self) -> bool {
1225         match self.kind {
1226             NameBindingKind::Import {
1227                 directive: &ImportDirective {
1228                     subclass: ImportDirectiveSubclass::ExternCrate(_), ..
1229                 }, ..
1230             } => true,
1231             _ => false,
1232         }
1233     }
1234
1235     fn is_import(&self) -> bool {
1236         match self.kind {
1237             NameBindingKind::Import { .. } => true,
1238             _ => false,
1239         }
1240     }
1241
1242     fn is_renamed_extern_crate(&self) -> bool {
1243         if let NameBindingKind::Import { directive, ..} = self.kind {
1244             if let ImportDirectiveSubclass::ExternCrate(Some(_)) = directive.subclass {
1245                 return true;
1246             }
1247         }
1248         false
1249     }
1250
1251     fn is_glob_import(&self) -> bool {
1252         match self.kind {
1253             NameBindingKind::Import { directive, .. } => directive.is_glob(),
1254             NameBindingKind::Ambiguity { b1, .. } => b1.is_glob_import(),
1255             _ => false,
1256         }
1257     }
1258
1259     fn is_importable(&self) -> bool {
1260         match self.def() {
1261             Def::AssociatedConst(..) | Def::Method(..) | Def::AssociatedTy(..) => false,
1262             _ => true,
1263         }
1264     }
1265
1266     fn is_macro_def(&self) -> bool {
1267         match self.kind {
1268             NameBindingKind::Def(Def::Macro(..), _) => true,
1269             _ => false,
1270         }
1271     }
1272
1273     fn macro_kind(&self) -> Option<MacroKind> {
1274         match self.def_ignoring_ambiguity() {
1275             Def::Macro(_, kind) => Some(kind),
1276             Def::NonMacroAttr(..) => Some(MacroKind::Attr),
1277             _ => None,
1278         }
1279     }
1280
1281     fn descr(&self) -> &'static str {
1282         if self.is_extern_crate() { "extern crate" } else { self.def().kind_name() }
1283     }
1284
1285     // Suppose that we resolved macro invocation with `invoc_parent_expansion` to binding `binding`
1286     // at some expansion round `max(invoc, binding)` when they both emerged from macros.
1287     // Then this function returns `true` if `self` may emerge from a macro *after* that
1288     // in some later round and screw up our previously found resolution.
1289     // See more detailed explanation in
1290     // https://github.com/rust-lang/rust/pull/53778#issuecomment-419224049
1291     fn may_appear_after(&self, invoc_parent_expansion: Mark, binding: &NameBinding) -> bool {
1292         // self > max(invoc, binding) => !(self <= invoc || self <= binding)
1293         // Expansions are partially ordered, so "may appear after" is an inversion of
1294         // "certainly appears before or simultaneously" and includes unordered cases.
1295         let self_parent_expansion = self.expansion;
1296         let other_parent_expansion = binding.expansion;
1297         let certainly_before_other_or_simultaneously =
1298             other_parent_expansion.is_descendant_of(self_parent_expansion);
1299         let certainly_before_invoc_or_simultaneously =
1300             invoc_parent_expansion.is_descendant_of(self_parent_expansion);
1301         !(certainly_before_other_or_simultaneously || certainly_before_invoc_or_simultaneously)
1302     }
1303 }
1304
1305 /// Interns the names of the primitive types.
1306 ///
1307 /// All other types are defined somewhere and possibly imported, but the primitive ones need
1308 /// special handling, since they have no place of origin.
1309 struct PrimitiveTypeTable {
1310     primitive_types: FxHashMap<Name, PrimTy>,
1311 }
1312
1313 impl PrimitiveTypeTable {
1314     fn new() -> PrimitiveTypeTable {
1315         let mut table = PrimitiveTypeTable { primitive_types: FxHashMap() };
1316
1317         table.intern("bool", Bool);
1318         table.intern("char", Char);
1319         table.intern("f32", Float(FloatTy::F32));
1320         table.intern("f64", Float(FloatTy::F64));
1321         table.intern("isize", Int(IntTy::Isize));
1322         table.intern("i8", Int(IntTy::I8));
1323         table.intern("i16", Int(IntTy::I16));
1324         table.intern("i32", Int(IntTy::I32));
1325         table.intern("i64", Int(IntTy::I64));
1326         table.intern("i128", Int(IntTy::I128));
1327         table.intern("str", Str);
1328         table.intern("usize", Uint(UintTy::Usize));
1329         table.intern("u8", Uint(UintTy::U8));
1330         table.intern("u16", Uint(UintTy::U16));
1331         table.intern("u32", Uint(UintTy::U32));
1332         table.intern("u64", Uint(UintTy::U64));
1333         table.intern("u128", Uint(UintTy::U128));
1334         table
1335     }
1336
1337     fn intern(&mut self, string: &str, primitive_type: PrimTy) {
1338         self.primitive_types.insert(Symbol::intern(string), primitive_type);
1339     }
1340 }
1341
1342 /// The main resolver class.
1343 ///
1344 /// This is the visitor that walks the whole crate.
1345 pub struct Resolver<'a, 'b: 'a> {
1346     session: &'a Session,
1347     cstore: &'a CStore,
1348
1349     pub definitions: Definitions,
1350
1351     graph_root: Module<'a>,
1352
1353     prelude: Option<Module<'a>>,
1354
1355     /// n.b. This is used only for better diagnostics, not name resolution itself.
1356     has_self: FxHashSet<DefId>,
1357
1358     /// Names of fields of an item `DefId` accessible with dot syntax.
1359     /// Used for hints during error reporting.
1360     field_names: FxHashMap<DefId, Vec<Name>>,
1361
1362     /// All imports known to succeed or fail.
1363     determined_imports: Vec<&'a ImportDirective<'a>>,
1364
1365     /// All non-determined imports.
1366     indeterminate_imports: Vec<&'a ImportDirective<'a>>,
1367
1368     /// The module that represents the current item scope.
1369     current_module: Module<'a>,
1370
1371     /// The current set of local scopes for types and values.
1372     /// FIXME #4948: Reuse ribs to avoid allocation.
1373     ribs: PerNS<Vec<Rib<'a>>>,
1374
1375     /// The current set of local scopes, for labels.
1376     label_ribs: Vec<Rib<'a>>,
1377
1378     /// The trait that the current context can refer to.
1379     current_trait_ref: Option<(Module<'a>, TraitRef)>,
1380
1381     /// The current self type if inside an impl (used for better errors).
1382     current_self_type: Option<Ty>,
1383
1384     /// The current self item if inside an ADT (used for better errors).
1385     current_self_item: Option<NodeId>,
1386
1387     /// The idents for the primitive types.
1388     primitive_type_table: PrimitiveTypeTable,
1389
1390     def_map: DefMap,
1391     import_map: ImportMap,
1392     pub freevars: FreevarMap,
1393     freevars_seen: NodeMap<NodeMap<usize>>,
1394     pub export_map: ExportMap,
1395     pub trait_map: TraitMap,
1396
1397     /// A map from nodes to anonymous modules.
1398     /// Anonymous modules are pseudo-modules that are implicitly created around items
1399     /// contained within blocks.
1400     ///
1401     /// For example, if we have this:
1402     ///
1403     ///  fn f() {
1404     ///      fn g() {
1405     ///          ...
1406     ///      }
1407     ///  }
1408     ///
1409     /// There will be an anonymous module created around `g` with the ID of the
1410     /// entry block for `f`.
1411     block_map: NodeMap<Module<'a>>,
1412     module_map: FxHashMap<DefId, Module<'a>>,
1413     extern_module_map: FxHashMap<(DefId, bool /* MacrosOnly? */), Module<'a>>,
1414
1415     pub make_glob_map: bool,
1416     /// Maps imports to the names of items actually imported (this actually maps
1417     /// all imports, but only glob imports are actually interesting).
1418     pub glob_map: GlobMap,
1419
1420     used_imports: FxHashSet<(NodeId, Namespace)>,
1421     pub maybe_unused_trait_imports: NodeSet,
1422     pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
1423
1424     /// A list of labels as of yet unused. Labels will be removed from this map when
1425     /// they are used (in a `break` or `continue` statement)
1426     pub unused_labels: FxHashMap<NodeId, Span>,
1427
1428     /// privacy errors are delayed until the end in order to deduplicate them
1429     privacy_errors: Vec<PrivacyError<'a>>,
1430     /// ambiguity errors are delayed for deduplication
1431     ambiguity_errors: Vec<AmbiguityError<'a>>,
1432     /// `use` injections are delayed for better placement and deduplication
1433     use_injections: Vec<UseError<'a>>,
1434     /// crate-local macro expanded `macro_export` referred to by a module-relative path
1435     macro_expanded_macro_export_errors: BTreeSet<(Span, Span)>,
1436
1437     arenas: &'a ResolverArenas<'a>,
1438     dummy_binding: &'a NameBinding<'a>,
1439
1440     crate_loader: &'a mut CrateLoader<'b>,
1441     macro_names: FxHashSet<Ident>,
1442     builtin_macros: FxHashMap<Name, &'a NameBinding<'a>>,
1443     macro_use_prelude: FxHashMap<Name, &'a NameBinding<'a>>,
1444     pub all_macros: FxHashMap<Name, Def>,
1445     macro_map: FxHashMap<DefId, Lrc<SyntaxExtension>>,
1446     macro_defs: FxHashMap<Mark, DefId>,
1447     local_macro_def_scopes: FxHashMap<NodeId, Module<'a>>,
1448     pub whitelisted_legacy_custom_derives: Vec<Name>,
1449     pub found_unresolved_macro: bool,
1450
1451     /// List of crate local macros that we need to warn about as being unused.
1452     /// Right now this only includes macro_rules! macros, and macros 2.0.
1453     unused_macros: FxHashSet<DefId>,
1454
1455     /// Maps the `Mark` of an expansion to its containing module or block.
1456     invocations: FxHashMap<Mark, &'a InvocationData<'a>>,
1457
1458     /// Avoid duplicated errors for "name already defined".
1459     name_already_seen: FxHashMap<Name, Span>,
1460
1461     potentially_unused_imports: Vec<&'a ImportDirective<'a>>,
1462
1463     /// This table maps struct IDs into struct constructor IDs,
1464     /// it's not used during normal resolution, only for better error reporting.
1465     struct_constructors: DefIdMap<(Def, ty::Visibility)>,
1466
1467     /// Only used for better errors on `fn(): fn()`
1468     current_type_ascription: Vec<Span>,
1469
1470     injected_crate: Option<Module<'a>>,
1471 }
1472
1473 /// Nothing really interesting here, it just provides memory for the rest of the crate.
1474 pub struct ResolverArenas<'a> {
1475     modules: arena::TypedArena<ModuleData<'a>>,
1476     local_modules: RefCell<Vec<Module<'a>>>,
1477     name_bindings: arena::TypedArena<NameBinding<'a>>,
1478     import_directives: arena::TypedArena<ImportDirective<'a>>,
1479     name_resolutions: arena::TypedArena<RefCell<NameResolution<'a>>>,
1480     invocation_data: arena::TypedArena<InvocationData<'a>>,
1481     legacy_bindings: arena::TypedArena<LegacyBinding<'a>>,
1482 }
1483
1484 impl<'a> ResolverArenas<'a> {
1485     fn alloc_module(&'a self, module: ModuleData<'a>) -> Module<'a> {
1486         let module = self.modules.alloc(module);
1487         if module.def_id().map(|def_id| def_id.is_local()).unwrap_or(true) {
1488             self.local_modules.borrow_mut().push(module);
1489         }
1490         module
1491     }
1492     fn local_modules(&'a self) -> ::std::cell::Ref<'a, Vec<Module<'a>>> {
1493         self.local_modules.borrow()
1494     }
1495     fn alloc_name_binding(&'a self, name_binding: NameBinding<'a>) -> &'a NameBinding<'a> {
1496         self.name_bindings.alloc(name_binding)
1497     }
1498     fn alloc_import_directive(&'a self, import_directive: ImportDirective<'a>)
1499                               -> &'a ImportDirective {
1500         self.import_directives.alloc(import_directive)
1501     }
1502     fn alloc_name_resolution(&'a self) -> &'a RefCell<NameResolution<'a>> {
1503         self.name_resolutions.alloc(Default::default())
1504     }
1505     fn alloc_invocation_data(&'a self, expansion_data: InvocationData<'a>)
1506                              -> &'a InvocationData<'a> {
1507         self.invocation_data.alloc(expansion_data)
1508     }
1509     fn alloc_legacy_binding(&'a self, binding: LegacyBinding<'a>) -> &'a LegacyBinding<'a> {
1510         self.legacy_bindings.alloc(binding)
1511     }
1512 }
1513
1514 impl<'a, 'b: 'a, 'cl: 'b> ty::DefIdTree for &'a Resolver<'b, 'cl> {
1515     fn parent(self, id: DefId) -> Option<DefId> {
1516         match id.krate {
1517             LOCAL_CRATE => self.definitions.def_key(id.index).parent,
1518             _ => self.cstore.def_key(id).parent,
1519         }.map(|index| DefId { index, ..id })
1520     }
1521 }
1522
1523 /// This interface is used through the AST→HIR step, to embed full paths into the HIR. After that
1524 /// the resolver is no longer needed as all the relevant information is inline.
1525 impl<'a, 'cl> hir::lowering::Resolver for Resolver<'a, 'cl> {
1526     fn resolve_hir_path(&mut self, path: &mut hir::Path, is_value: bool) {
1527         self.resolve_hir_path_cb(path, is_value,
1528                                  |resolver, span, error| resolve_error(resolver, span, error))
1529     }
1530
1531     fn resolve_str_path(
1532         &mut self,
1533         span: Span,
1534         crate_root: Option<&str>,
1535         components: &[&str],
1536         args: Option<P<hir::GenericArgs>>,
1537         is_value: bool
1538     ) -> hir::Path {
1539         let mut segments = iter::once(keywords::CrateRoot.ident())
1540             .chain(
1541                 crate_root.into_iter()
1542                     .chain(components.iter().cloned())
1543                     .map(Ident::from_str)
1544             ).map(hir::PathSegment::from_ident).collect::<Vec<_>>();
1545
1546         if let Some(args) = args {
1547             let ident = segments.last().unwrap().ident;
1548             *segments.last_mut().unwrap() = hir::PathSegment {
1549                 ident,
1550                 args: Some(args),
1551                 infer_types: true,
1552             };
1553         }
1554
1555         let mut path = hir::Path {
1556             span,
1557             def: Def::Err,
1558             segments: segments.into(),
1559         };
1560
1561         self.resolve_hir_path(&mut path, is_value);
1562         path
1563     }
1564
1565     fn get_resolution(&mut self, id: NodeId) -> Option<PathResolution> {
1566         self.def_map.get(&id).cloned()
1567     }
1568
1569     fn get_import(&mut self, id: NodeId) -> PerNS<Option<PathResolution>> {
1570         self.import_map.get(&id).cloned().unwrap_or_default()
1571     }
1572
1573     fn definitions(&mut self) -> &mut Definitions {
1574         &mut self.definitions
1575     }
1576 }
1577
1578 impl<'a, 'crateloader> Resolver<'a, 'crateloader> {
1579     /// Rustdoc uses this to resolve things in a recoverable way. ResolutionError<'a>
1580     /// isn't something that can be returned because it can't be made to live that long,
1581     /// and also it's a private type. Fortunately rustdoc doesn't need to know the error,
1582     /// just that an error occurred.
1583     pub fn resolve_str_path_error(&mut self, span: Span, path_str: &str, is_value: bool)
1584         -> Result<hir::Path, ()> {
1585         use std::iter;
1586         let mut errored = false;
1587
1588         let mut path = if path_str.starts_with("::") {
1589             hir::Path {
1590                 span,
1591                 def: Def::Err,
1592                 segments: iter::once(keywords::CrateRoot.ident()).chain({
1593                     path_str.split("::").skip(1).map(Ident::from_str)
1594                 }).map(hir::PathSegment::from_ident).collect(),
1595             }
1596         } else {
1597             hir::Path {
1598                 span,
1599                 def: Def::Err,
1600                 segments: path_str.split("::").map(Ident::from_str)
1601                                   .map(hir::PathSegment::from_ident).collect(),
1602             }
1603         };
1604         self.resolve_hir_path_cb(&mut path, is_value, |_, _, _| errored = true);
1605         if errored || path.def == Def::Err {
1606             Err(())
1607         } else {
1608             Ok(path)
1609         }
1610     }
1611
1612     /// resolve_hir_path, but takes a callback in case there was an error
1613     fn resolve_hir_path_cb<F>(&mut self, path: &mut hir::Path, is_value: bool, error_callback: F)
1614         where F: for<'c, 'b> FnOnce(&'c mut Resolver, Span, ResolutionError<'b>)
1615     {
1616         let namespace = if is_value { ValueNS } else { TypeNS };
1617         let hir::Path { ref segments, span, ref mut def } = *path;
1618         let path: Vec<_> = segments.iter().map(|seg| seg.ident).collect();
1619         // FIXME (Manishearth): Intra doc links won't get warned of epoch changes
1620         match self.resolve_path(None, &path, Some(namespace), true, span, CrateLint::No) {
1621             PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
1622                 *def = module.def().unwrap(),
1623             PathResult::NonModule(path_res) if path_res.unresolved_segments() == 0 =>
1624                 *def = path_res.base_def(),
1625             PathResult::NonModule(..) => match self.resolve_path(
1626                 None,
1627                 &path,
1628                 None,
1629                 true,
1630                 span,
1631                 CrateLint::No,
1632             ) {
1633                 PathResult::Failed(span, msg, _) => {
1634                     error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1635                 }
1636                 _ => {}
1637             },
1638             PathResult::Module(ModuleOrUniformRoot::UniformRoot(_)) |
1639             PathResult::Indeterminate => unreachable!(),
1640             PathResult::Failed(span, msg, _) => {
1641                 error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1642             }
1643         }
1644     }
1645 }
1646
1647 impl<'a, 'crateloader: 'a> Resolver<'a, 'crateloader> {
1648     pub fn new(session: &'a Session,
1649                cstore: &'a CStore,
1650                krate: &Crate,
1651                crate_name: &str,
1652                make_glob_map: MakeGlobMap,
1653                crate_loader: &'a mut CrateLoader<'crateloader>,
1654                arenas: &'a ResolverArenas<'a>)
1655                -> Resolver<'a, 'crateloader> {
1656         let root_def_id = DefId::local(CRATE_DEF_INDEX);
1657         let root_module_kind = ModuleKind::Def(Def::Mod(root_def_id), keywords::Invalid.name());
1658         let graph_root = arenas.alloc_module(ModuleData {
1659             no_implicit_prelude: attr::contains_name(&krate.attrs, "no_implicit_prelude"),
1660             ..ModuleData::new(None, root_module_kind, root_def_id, Mark::root(), krate.span)
1661         });
1662         let mut module_map = FxHashMap();
1663         module_map.insert(DefId::local(CRATE_DEF_INDEX), graph_root);
1664
1665         let mut definitions = Definitions::new();
1666         DefCollector::new(&mut definitions, Mark::root())
1667             .collect_root(crate_name, session.local_crate_disambiguator());
1668
1669         let mut invocations = FxHashMap();
1670         invocations.insert(Mark::root(),
1671                            arenas.alloc_invocation_data(InvocationData::root(graph_root)));
1672
1673         let mut macro_defs = FxHashMap();
1674         macro_defs.insert(Mark::root(), root_def_id);
1675
1676         Resolver {
1677             session,
1678
1679             cstore,
1680
1681             definitions,
1682
1683             // The outermost module has def ID 0; this is not reflected in the
1684             // AST.
1685             graph_root,
1686             prelude: None,
1687
1688             has_self: FxHashSet(),
1689             field_names: FxHashMap(),
1690
1691             determined_imports: Vec::new(),
1692             indeterminate_imports: Vec::new(),
1693
1694             current_module: graph_root,
1695             ribs: PerNS {
1696                 value_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1697                 type_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1698                 macro_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1699             },
1700             label_ribs: Vec::new(),
1701
1702             current_trait_ref: None,
1703             current_self_type: None,
1704             current_self_item: None,
1705
1706             primitive_type_table: PrimitiveTypeTable::new(),
1707
1708             def_map: NodeMap(),
1709             import_map: NodeMap(),
1710             freevars: NodeMap(),
1711             freevars_seen: NodeMap(),
1712             export_map: FxHashMap(),
1713             trait_map: NodeMap(),
1714             module_map,
1715             block_map: NodeMap(),
1716             extern_module_map: FxHashMap(),
1717
1718             make_glob_map: make_glob_map == MakeGlobMap::Yes,
1719             glob_map: NodeMap(),
1720
1721             used_imports: FxHashSet(),
1722             maybe_unused_trait_imports: NodeSet(),
1723             maybe_unused_extern_crates: Vec::new(),
1724
1725             unused_labels: FxHashMap(),
1726
1727             privacy_errors: Vec::new(),
1728             ambiguity_errors: Vec::new(),
1729             use_injections: Vec::new(),
1730             macro_expanded_macro_export_errors: BTreeSet::new(),
1731
1732             arenas,
1733             dummy_binding: arenas.alloc_name_binding(NameBinding {
1734                 kind: NameBindingKind::Def(Def::Err, false),
1735                 expansion: Mark::root(),
1736                 span: DUMMY_SP,
1737                 vis: ty::Visibility::Public,
1738             }),
1739
1740             crate_loader,
1741             macro_names: FxHashSet(),
1742             builtin_macros: FxHashMap(),
1743             macro_use_prelude: FxHashMap(),
1744             all_macros: FxHashMap(),
1745             macro_map: FxHashMap(),
1746             invocations,
1747             macro_defs,
1748             local_macro_def_scopes: FxHashMap(),
1749             name_already_seen: FxHashMap(),
1750             whitelisted_legacy_custom_derives: Vec::new(),
1751             potentially_unused_imports: Vec::new(),
1752             struct_constructors: DefIdMap(),
1753             found_unresolved_macro: false,
1754             unused_macros: FxHashSet(),
1755             current_type_ascription: Vec::new(),
1756             injected_crate: None,
1757         }
1758     }
1759
1760     pub fn arenas() -> ResolverArenas<'a> {
1761         ResolverArenas {
1762             modules: arena::TypedArena::new(),
1763             local_modules: RefCell::new(Vec::new()),
1764             name_bindings: arena::TypedArena::new(),
1765             import_directives: arena::TypedArena::new(),
1766             name_resolutions: arena::TypedArena::new(),
1767             invocation_data: arena::TypedArena::new(),
1768             legacy_bindings: arena::TypedArena::new(),
1769         }
1770     }
1771
1772     /// Runs the function on each namespace.
1773     fn per_ns<F: FnMut(&mut Self, Namespace)>(&mut self, mut f: F) {
1774         f(self, TypeNS);
1775         f(self, ValueNS);
1776         f(self, MacroNS);
1777     }
1778
1779     fn macro_def(&self, mut ctxt: SyntaxContext) -> DefId {
1780         loop {
1781             match self.macro_defs.get(&ctxt.outer()) {
1782                 Some(&def_id) => return def_id,
1783                 None => ctxt.remove_mark(),
1784             };
1785         }
1786     }
1787
1788     /// Entry point to crate resolution.
1789     pub fn resolve_crate(&mut self, krate: &Crate) {
1790         ImportResolver { resolver: self }.finalize_imports();
1791         self.current_module = self.graph_root;
1792         self.finalize_current_module_macro_resolutions();
1793
1794         visit::walk_crate(self, krate);
1795
1796         check_unused::check_crate(self, krate);
1797         self.report_errors(krate);
1798         self.crate_loader.postprocess(krate);
1799     }
1800
1801     fn new_module(
1802         &self,
1803         parent: Module<'a>,
1804         kind: ModuleKind,
1805         normal_ancestor_id: DefId,
1806         expansion: Mark,
1807         span: Span,
1808     ) -> Module<'a> {
1809         let module = ModuleData::new(Some(parent), kind, normal_ancestor_id, expansion, span);
1810         self.arenas.alloc_module(module)
1811     }
1812
1813     fn record_use(&mut self, ident: Ident, ns: Namespace, binding: &'a NameBinding<'a>)
1814                   -> bool /* true if an error was reported */ {
1815         match binding.kind {
1816             NameBindingKind::Import { directive, binding, ref used }
1817                     if !used.get() => {
1818                 used.set(true);
1819                 directive.used.set(true);
1820                 self.used_imports.insert((directive.id, ns));
1821                 self.add_to_glob_map(directive.id, ident);
1822                 self.record_use(ident, ns, binding)
1823             }
1824             NameBindingKind::Import { .. } => false,
1825             NameBindingKind::Ambiguity { b1, b2 } => {
1826                 self.ambiguity_errors.push(AmbiguityError { ident, b1, b2 });
1827                 true
1828             }
1829             _ => false
1830         }
1831     }
1832
1833     fn add_to_glob_map(&mut self, id: NodeId, ident: Ident) {
1834         if self.make_glob_map {
1835             self.glob_map.entry(id).or_default().insert(ident.name);
1836         }
1837     }
1838
1839     /// This resolves the identifier `ident` in the namespace `ns` in the current lexical scope.
1840     /// More specifically, we proceed up the hierarchy of scopes and return the binding for
1841     /// `ident` in the first scope that defines it (or None if no scopes define it).
1842     ///
1843     /// A block's items are above its local variables in the scope hierarchy, regardless of where
1844     /// the items are defined in the block. For example,
1845     /// ```rust
1846     /// fn f() {
1847     ///    g(); // Since there are no local variables in scope yet, this resolves to the item.
1848     ///    let g = || {};
1849     ///    fn g() {}
1850     ///    g(); // This resolves to the local variable `g` since it shadows the item.
1851     /// }
1852     /// ```
1853     ///
1854     /// Invariant: This must only be called during main resolution, not during
1855     /// import resolution.
1856     fn resolve_ident_in_lexical_scope(&mut self,
1857                                       mut ident: Ident,
1858                                       ns: Namespace,
1859                                       record_used_id: Option<NodeId>,
1860                                       path_span: Span)
1861                                       -> Option<LexicalScopeBinding<'a>> {
1862         let record_used = record_used_id.is_some();
1863         assert!(ns == TypeNS  || ns == ValueNS);
1864         if ns == TypeNS {
1865             ident.span = if ident.name == keywords::SelfType.name() {
1866                 // FIXME(jseyfried) improve `Self` hygiene
1867                 ident.span.with_ctxt(SyntaxContext::empty())
1868             } else {
1869                 ident.span.modern()
1870             }
1871         } else {
1872             ident = ident.modern_and_legacy();
1873         }
1874
1875         // Walk backwards up the ribs in scope.
1876         let mut module = self.graph_root;
1877         for i in (0 .. self.ribs[ns].len()).rev() {
1878             if let Some(def) = self.ribs[ns][i].bindings.get(&ident).cloned() {
1879                 // The ident resolves to a type parameter or local variable.
1880                 return Some(LexicalScopeBinding::Def(
1881                     self.adjust_local_def(ns, i, def, record_used, path_span)
1882                 ));
1883             }
1884
1885             module = match self.ribs[ns][i].kind {
1886                 ModuleRibKind(module) => module,
1887                 MacroDefinition(def) if def == self.macro_def(ident.span.ctxt()) => {
1888                     // If an invocation of this macro created `ident`, give up on `ident`
1889                     // and switch to `ident`'s source from the macro definition.
1890                     ident.span.remove_mark();
1891                     continue
1892                 }
1893                 _ => continue,
1894             };
1895
1896             let item = self.resolve_ident_in_module_unadjusted(
1897                 ModuleOrUniformRoot::Module(module),
1898                 ident,
1899                 ns,
1900                 false,
1901                 record_used,
1902                 path_span,
1903             );
1904             if let Ok(binding) = item {
1905                 // The ident resolves to an item.
1906                 return Some(LexicalScopeBinding::Item(binding));
1907             }
1908
1909             match module.kind {
1910                 ModuleKind::Block(..) => {}, // We can see through blocks
1911                 _ => break,
1912             }
1913         }
1914
1915         ident.span = ident.span.modern();
1916         let mut poisoned = None;
1917         loop {
1918             let opt_module = if let Some(node_id) = record_used_id {
1919                 self.hygienic_lexical_parent_with_compatibility_fallback(module, &mut ident.span,
1920                                                                          node_id, &mut poisoned)
1921             } else {
1922                 self.hygienic_lexical_parent(module, &mut ident.span)
1923             };
1924             module = unwrap_or!(opt_module, break);
1925             let orig_current_module = self.current_module;
1926             self.current_module = module; // Lexical resolutions can never be a privacy error.
1927             let result = self.resolve_ident_in_module_unadjusted(
1928                 ModuleOrUniformRoot::Module(module),
1929                 ident,
1930                 ns,
1931                 false,
1932                 record_used,
1933                 path_span,
1934             );
1935             self.current_module = orig_current_module;
1936
1937             match result {
1938                 Ok(binding) => {
1939                     if let Some(node_id) = poisoned {
1940                         self.session.buffer_lint_with_diagnostic(
1941                             lint::builtin::PROC_MACRO_DERIVE_RESOLUTION_FALLBACK,
1942                             node_id, ident.span,
1943                             &format!("cannot find {} `{}` in this scope", ns.descr(), ident),
1944                             lint::builtin::BuiltinLintDiagnostics::
1945                                 ProcMacroDeriveResolutionFallback(ident.span),
1946                         );
1947                     }
1948                     return Some(LexicalScopeBinding::Item(binding))
1949                 }
1950                 Err(Determined) => continue,
1951                 Err(Undetermined) =>
1952                     span_bug!(ident.span, "undetermined resolution during main resolution pass"),
1953             }
1954         }
1955
1956         if !module.no_implicit_prelude {
1957             // `record_used` means that we don't try to load crates during speculative resolution
1958             if record_used && ns == TypeNS && self.session.extern_prelude.contains(&ident.name) {
1959                 let crate_id = self.crate_loader.process_path_extern(ident.name, ident.span);
1960                 let crate_root = self.get_module(DefId { krate: crate_id, index: CRATE_DEF_INDEX });
1961                 self.populate_module_if_necessary(&crate_root);
1962
1963                 let binding = (crate_root, ty::Visibility::Public,
1964                                ident.span, Mark::root()).to_name_binding(self.arenas);
1965                 return Some(LexicalScopeBinding::Item(binding));
1966             }
1967             if ns == TypeNS && is_known_tool(ident.name) {
1968                 let binding = (Def::ToolMod, ty::Visibility::Public,
1969                                ident.span, Mark::root()).to_name_binding(self.arenas);
1970                 return Some(LexicalScopeBinding::Item(binding));
1971             }
1972             if let Some(prelude) = self.prelude {
1973                 if let Ok(binding) = self.resolve_ident_in_module_unadjusted(
1974                     ModuleOrUniformRoot::Module(prelude),
1975                     ident,
1976                     ns,
1977                     false,
1978                     false,
1979                     path_span,
1980                 ) {
1981                     return Some(LexicalScopeBinding::Item(binding));
1982                 }
1983             }
1984         }
1985
1986         None
1987     }
1988
1989     fn hygienic_lexical_parent(&mut self, module: Module<'a>, span: &mut Span)
1990                                -> Option<Module<'a>> {
1991         if !module.expansion.is_descendant_of(span.ctxt().outer()) {
1992             return Some(self.macro_def_scope(span.remove_mark()));
1993         }
1994
1995         if let ModuleKind::Block(..) = module.kind {
1996             return Some(module.parent.unwrap());
1997         }
1998
1999         None
2000     }
2001
2002     fn hygienic_lexical_parent_with_compatibility_fallback(&mut self, module: Module<'a>,
2003                                                            span: &mut Span, node_id: NodeId,
2004                                                            poisoned: &mut Option<NodeId>)
2005                                                            -> Option<Module<'a>> {
2006         if let module @ Some(..) = self.hygienic_lexical_parent(module, span) {
2007             return module;
2008         }
2009
2010         // We need to support the next case under a deprecation warning
2011         // ```
2012         // struct MyStruct;
2013         // ---- begin: this comes from a proc macro derive
2014         // mod implementation_details {
2015         //     // Note that `MyStruct` is not in scope here.
2016         //     impl SomeTrait for MyStruct { ... }
2017         // }
2018         // ---- end
2019         // ```
2020         // So we have to fall back to the module's parent during lexical resolution in this case.
2021         if let Some(parent) = module.parent {
2022             // Inner module is inside the macro, parent module is outside of the macro.
2023             if module.expansion != parent.expansion &&
2024             module.expansion.is_descendant_of(parent.expansion) {
2025                 // The macro is a proc macro derive
2026                 if module.expansion.looks_like_proc_macro_derive() {
2027                     if parent.expansion.is_descendant_of(span.ctxt().outer()) {
2028                         *poisoned = Some(node_id);
2029                         return module.parent;
2030                     }
2031                 }
2032             }
2033         }
2034
2035         None
2036     }
2037
2038     fn resolve_ident_in_module(&mut self,
2039                                module: ModuleOrUniformRoot<'a>,
2040                                mut ident: Ident,
2041                                ns: Namespace,
2042                                record_used: bool,
2043                                span: Span)
2044                                -> Result<&'a NameBinding<'a>, Determinacy> {
2045         ident.span = ident.span.modern();
2046         let orig_current_module = self.current_module;
2047         if let ModuleOrUniformRoot::Module(module) = module {
2048             if let Some(def) = ident.span.adjust(module.expansion) {
2049                 self.current_module = self.macro_def_scope(def);
2050             }
2051         }
2052         let result = self.resolve_ident_in_module_unadjusted(
2053             module, ident, ns, false, record_used, span,
2054         );
2055         self.current_module = orig_current_module;
2056         result
2057     }
2058
2059     fn resolve_crate_root(&mut self, ident: Ident) -> Module<'a> {
2060         let mut ctxt = ident.span.ctxt();
2061         let mark = if ident.name == keywords::DollarCrate.name() {
2062             // When resolving `$crate` from a `macro_rules!` invoked in a `macro`,
2063             // we don't want to pretend that the `macro_rules!` definition is in the `macro`
2064             // as described in `SyntaxContext::apply_mark`, so we ignore prepended modern marks.
2065             // FIXME: This is only a guess and it doesn't work correctly for `macro_rules!`
2066             // definitions actually produced by `macro` and `macro` definitions produced by
2067             // `macro_rules!`, but at least such configurations are not stable yet.
2068             ctxt = ctxt.modern_and_legacy();
2069             let mut iter = ctxt.marks().into_iter().rev().peekable();
2070             let mut result = None;
2071             // Find the last modern mark from the end if it exists.
2072             while let Some(&(mark, transparency)) = iter.peek() {
2073                 if transparency == Transparency::Opaque {
2074                     result = Some(mark);
2075                     iter.next();
2076                 } else {
2077                     break;
2078                 }
2079             }
2080             // Then find the last legacy mark from the end if it exists.
2081             for (mark, transparency) in iter {
2082                 if transparency == Transparency::SemiTransparent {
2083                     result = Some(mark);
2084                 } else {
2085                     break;
2086                 }
2087             }
2088             result
2089         } else {
2090             ctxt = ctxt.modern();
2091             ctxt.adjust(Mark::root())
2092         };
2093         let module = match mark {
2094             Some(def) => self.macro_def_scope(def),
2095             None => return self.graph_root,
2096         };
2097         self.get_module(DefId { index: CRATE_DEF_INDEX, ..module.normal_ancestor_id })
2098     }
2099
2100     fn resolve_self(&mut self, ctxt: &mut SyntaxContext, module: Module<'a>) -> Module<'a> {
2101         let mut module = self.get_module(module.normal_ancestor_id);
2102         while module.span.ctxt().modern() != *ctxt {
2103             let parent = module.parent.unwrap_or_else(|| self.macro_def_scope(ctxt.remove_mark()));
2104             module = self.get_module(parent.normal_ancestor_id);
2105         }
2106         module
2107     }
2108
2109     // AST resolution
2110     //
2111     // We maintain a list of value ribs and type ribs.
2112     //
2113     // Simultaneously, we keep track of the current position in the module
2114     // graph in the `current_module` pointer. When we go to resolve a name in
2115     // the value or type namespaces, we first look through all the ribs and
2116     // then query the module graph. When we resolve a name in the module
2117     // namespace, we can skip all the ribs (since nested modules are not
2118     // allowed within blocks in Rust) and jump straight to the current module
2119     // graph node.
2120     //
2121     // Named implementations are handled separately. When we find a method
2122     // call, we consult the module node to find all of the implementations in
2123     // scope. This information is lazily cached in the module node. We then
2124     // generate a fake "implementation scope" containing all the
2125     // implementations thus found, for compatibility with old resolve pass.
2126
2127     pub fn with_scope<F, T>(&mut self, id: NodeId, f: F) -> T
2128         where F: FnOnce(&mut Resolver) -> T
2129     {
2130         let id = self.definitions.local_def_id(id);
2131         let module = self.module_map.get(&id).cloned(); // clones a reference
2132         if let Some(module) = module {
2133             // Move down in the graph.
2134             let orig_module = replace(&mut self.current_module, module);
2135             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(module)));
2136             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(module)));
2137
2138             self.finalize_current_module_macro_resolutions();
2139             let ret = f(self);
2140
2141             self.current_module = orig_module;
2142             self.ribs[ValueNS].pop();
2143             self.ribs[TypeNS].pop();
2144             ret
2145         } else {
2146             f(self)
2147         }
2148     }
2149
2150     /// Searches the current set of local scopes for labels. Returns the first non-None label that
2151     /// is returned by the given predicate function
2152     ///
2153     /// Stops after meeting a closure.
2154     fn search_label<P, R>(&self, mut ident: Ident, pred: P) -> Option<R>
2155         where P: Fn(&Rib, Ident) -> Option<R>
2156     {
2157         for rib in self.label_ribs.iter().rev() {
2158             match rib.kind {
2159                 NormalRibKind => {}
2160                 // If an invocation of this macro created `ident`, give up on `ident`
2161                 // and switch to `ident`'s source from the macro definition.
2162                 MacroDefinition(def) => {
2163                     if def == self.macro_def(ident.span.ctxt()) {
2164                         ident.span.remove_mark();
2165                     }
2166                 }
2167                 _ => {
2168                     // Do not resolve labels across function boundary
2169                     return None;
2170                 }
2171             }
2172             let r = pred(rib, ident);
2173             if r.is_some() {
2174                 return r;
2175             }
2176         }
2177         None
2178     }
2179
2180     fn resolve_adt(&mut self, item: &Item, generics: &Generics) {
2181         self.with_current_self_item(item, |this| {
2182             this.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2183                 let item_def_id = this.definitions.local_def_id(item.id);
2184                 if this.session.features_untracked().self_in_typedefs {
2185                     this.with_self_rib(Def::SelfTy(None, Some(item_def_id)), |this| {
2186                         visit::walk_item(this, item);
2187                     });
2188                 } else {
2189                     visit::walk_item(this, item);
2190                 }
2191             });
2192         });
2193     }
2194
2195     fn resolve_item(&mut self, item: &Item) {
2196         let name = item.ident.name;
2197         debug!("(resolving item) resolving {}", name);
2198
2199         match item.node {
2200             ItemKind::Ty(_, ref generics) |
2201             ItemKind::Fn(_, _, ref generics, _) |
2202             ItemKind::Existential(_, ref generics) => {
2203                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind),
2204                                              |this| visit::walk_item(this, item));
2205             }
2206
2207             ItemKind::Enum(_, ref generics) |
2208             ItemKind::Struct(_, ref generics) |
2209             ItemKind::Union(_, ref generics) => {
2210                 self.resolve_adt(item, generics);
2211             }
2212
2213             ItemKind::Impl(.., ref generics, ref opt_trait_ref, ref self_type, ref impl_items) =>
2214                 self.resolve_implementation(generics,
2215                                             opt_trait_ref,
2216                                             &self_type,
2217                                             item.id,
2218                                             impl_items),
2219
2220             ItemKind::Trait(.., ref generics, ref bounds, ref trait_items) => {
2221                 // Create a new rib for the trait-wide type parameters.
2222                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2223                     let local_def_id = this.definitions.local_def_id(item.id);
2224                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2225                         this.visit_generics(generics);
2226                         walk_list!(this, visit_param_bound, bounds);
2227
2228                         for trait_item in trait_items {
2229                             let type_parameters = HasTypeParameters(&trait_item.generics,
2230                                                                     TraitOrImplItemRibKind);
2231                             this.with_type_parameter_rib(type_parameters, |this| {
2232                                 match trait_item.node {
2233                                     TraitItemKind::Const(ref ty, ref default) => {
2234                                         this.visit_ty(ty);
2235
2236                                         // Only impose the restrictions of
2237                                         // ConstRibKind for an actual constant
2238                                         // expression in a provided default.
2239                                         if let Some(ref expr) = *default{
2240                                             this.with_constant_rib(|this| {
2241                                                 this.visit_expr(expr);
2242                                             });
2243                                         }
2244                                     }
2245                                     TraitItemKind::Method(_, _) => {
2246                                         visit::walk_trait_item(this, trait_item)
2247                                     }
2248                                     TraitItemKind::Type(..) => {
2249                                         visit::walk_trait_item(this, trait_item)
2250                                     }
2251                                     TraitItemKind::Macro(_) => {
2252                                         panic!("unexpanded macro in resolve!")
2253                                     }
2254                                 };
2255                             });
2256                         }
2257                     });
2258                 });
2259             }
2260
2261             ItemKind::TraitAlias(ref generics, ref bounds) => {
2262                 // Create a new rib for the trait-wide type parameters.
2263                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2264                     let local_def_id = this.definitions.local_def_id(item.id);
2265                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2266                         this.visit_generics(generics);
2267                         walk_list!(this, visit_param_bound, bounds);
2268                     });
2269                 });
2270             }
2271
2272             ItemKind::Mod(_) | ItemKind::ForeignMod(_) => {
2273                 self.with_scope(item.id, |this| {
2274                     visit::walk_item(this, item);
2275                 });
2276             }
2277
2278             ItemKind::Static(ref ty, _, ref expr) |
2279             ItemKind::Const(ref ty, ref expr) => {
2280                 self.with_item_rib(|this| {
2281                     this.visit_ty(ty);
2282                     this.with_constant_rib(|this| {
2283                         this.visit_expr(expr);
2284                     });
2285                 });
2286             }
2287
2288             ItemKind::Use(ref use_tree) => {
2289                 // Imports are resolved as global by default, add starting root segment.
2290                 let path = Path {
2291                     segments: use_tree.prefix.make_root().into_iter().collect(),
2292                     span: use_tree.span,
2293                 };
2294                 self.resolve_use_tree(item.id, use_tree.span, item.id, use_tree, &path);
2295             }
2296
2297             ItemKind::ExternCrate(_) | ItemKind::MacroDef(..) | ItemKind::GlobalAsm(_) => {
2298                 // do nothing, these are just around to be encoded
2299             }
2300
2301             ItemKind::Mac(_) => panic!("unexpanded macro in resolve!"),
2302         }
2303     }
2304
2305     /// For the most part, use trees are desugared into `ImportDirective` instances
2306     /// when building the reduced graph (see `build_reduced_graph_for_use_tree`). But
2307     /// there is one special case we handle here: an empty nested import like
2308     /// `a::{b::{}}`, which desugares into...no import directives.
2309     fn resolve_use_tree(
2310         &mut self,
2311         root_id: NodeId,
2312         root_span: Span,
2313         id: NodeId,
2314         use_tree: &ast::UseTree,
2315         prefix: &Path,
2316     ) {
2317         match use_tree.kind {
2318             ast::UseTreeKind::Nested(ref items) => {
2319                 let path = Path {
2320                     segments: prefix.segments
2321                         .iter()
2322                         .chain(use_tree.prefix.segments.iter())
2323                         .cloned()
2324                         .collect(),
2325                     span: prefix.span.to(use_tree.prefix.span),
2326                 };
2327
2328                 if items.len() == 0 {
2329                     // Resolve prefix of an import with empty braces (issue #28388).
2330                     self.smart_resolve_path_with_crate_lint(
2331                         id,
2332                         None,
2333                         &path,
2334                         PathSource::ImportPrefix,
2335                         CrateLint::UsePath { root_id, root_span },
2336                     );
2337                 } else {
2338                     for &(ref tree, nested_id) in items {
2339                         self.resolve_use_tree(root_id, root_span, nested_id, tree, &path);
2340                     }
2341                 }
2342             }
2343             ast::UseTreeKind::Simple(..) => {},
2344             ast::UseTreeKind::Glob => {},
2345         }
2346     }
2347
2348     fn with_type_parameter_rib<'b, F>(&'b mut self, type_parameters: TypeParameters<'a, 'b>, f: F)
2349         where F: FnOnce(&mut Resolver)
2350     {
2351         match type_parameters {
2352             HasTypeParameters(generics, rib_kind) => {
2353                 let mut function_type_rib = Rib::new(rib_kind);
2354                 let mut seen_bindings = FxHashMap();
2355                 for param in &generics.params {
2356                     match param.kind {
2357                         GenericParamKind::Lifetime { .. } => {}
2358                         GenericParamKind::Type { .. } => {
2359                             let ident = param.ident.modern();
2360                             debug!("with_type_parameter_rib: {}", param.id);
2361
2362                             if seen_bindings.contains_key(&ident) {
2363                                 let span = seen_bindings.get(&ident).unwrap();
2364                                 let err = ResolutionError::NameAlreadyUsedInTypeParameterList(
2365                                     ident.name,
2366                                     span,
2367                                 );
2368                                 resolve_error(self, param.ident.span, err);
2369                             }
2370                             seen_bindings.entry(ident).or_insert(param.ident.span);
2371
2372                         // Plain insert (no renaming).
2373                         let def = Def::TyParam(self.definitions.local_def_id(param.id));
2374                             function_type_rib.bindings.insert(ident, def);
2375                             self.record_def(param.id, PathResolution::new(def));
2376                         }
2377                     }
2378                 }
2379                 self.ribs[TypeNS].push(function_type_rib);
2380             }
2381
2382             NoTypeParameters => {
2383                 // Nothing to do.
2384             }
2385         }
2386
2387         f(self);
2388
2389         if let HasTypeParameters(..) = type_parameters {
2390             self.ribs[TypeNS].pop();
2391         }
2392     }
2393
2394     fn with_label_rib<F>(&mut self, f: F)
2395         where F: FnOnce(&mut Resolver)
2396     {
2397         self.label_ribs.push(Rib::new(NormalRibKind));
2398         f(self);
2399         self.label_ribs.pop();
2400     }
2401
2402     fn with_item_rib<F>(&mut self, f: F)
2403         where F: FnOnce(&mut Resolver)
2404     {
2405         self.ribs[ValueNS].push(Rib::new(ItemRibKind));
2406         self.ribs[TypeNS].push(Rib::new(ItemRibKind));
2407         f(self);
2408         self.ribs[TypeNS].pop();
2409         self.ribs[ValueNS].pop();
2410     }
2411
2412     fn with_constant_rib<F>(&mut self, f: F)
2413         where F: FnOnce(&mut Resolver)
2414     {
2415         self.ribs[ValueNS].push(Rib::new(ConstantItemRibKind));
2416         self.label_ribs.push(Rib::new(ConstantItemRibKind));
2417         f(self);
2418         self.label_ribs.pop();
2419         self.ribs[ValueNS].pop();
2420     }
2421
2422     fn with_current_self_type<T, F>(&mut self, self_type: &Ty, f: F) -> T
2423         where F: FnOnce(&mut Resolver) -> T
2424     {
2425         // Handle nested impls (inside fn bodies)
2426         let previous_value = replace(&mut self.current_self_type, Some(self_type.clone()));
2427         let result = f(self);
2428         self.current_self_type = previous_value;
2429         result
2430     }
2431
2432     fn with_current_self_item<T, F>(&mut self, self_item: &Item, f: F) -> T
2433         where F: FnOnce(&mut Resolver) -> T
2434     {
2435         let previous_value = replace(&mut self.current_self_item, Some(self_item.id));
2436         let result = f(self);
2437         self.current_self_item = previous_value;
2438         result
2439     }
2440
2441     /// This is called to resolve a trait reference from an `impl` (i.e. `impl Trait for Foo`)
2442     fn with_optional_trait_ref<T, F>(&mut self, opt_trait_ref: Option<&TraitRef>, f: F) -> T
2443         where F: FnOnce(&mut Resolver, Option<DefId>) -> T
2444     {
2445         let mut new_val = None;
2446         let mut new_id = None;
2447         if let Some(trait_ref) = opt_trait_ref {
2448             let path: Vec<_> = trait_ref.path.segments.iter()
2449                 .map(|seg| seg.ident)
2450                 .collect();
2451             let def = self.smart_resolve_path_fragment(
2452                 trait_ref.ref_id,
2453                 None,
2454                 &path,
2455                 trait_ref.path.span,
2456                 PathSource::Trait(AliasPossibility::No),
2457                 CrateLint::SimplePath(trait_ref.ref_id),
2458             ).base_def();
2459             if def != Def::Err {
2460                 new_id = Some(def.def_id());
2461                 let span = trait_ref.path.span;
2462                 if let PathResult::Module(ModuleOrUniformRoot::Module(module)) =
2463                     self.resolve_path(
2464                         None,
2465                         &path,
2466                         None,
2467                         false,
2468                         span,
2469                         CrateLint::SimplePath(trait_ref.ref_id),
2470                     )
2471                 {
2472                     new_val = Some((module, trait_ref.clone()));
2473                 }
2474             }
2475         }
2476         let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
2477         let result = f(self, new_id);
2478         self.current_trait_ref = original_trait_ref;
2479         result
2480     }
2481
2482     fn with_self_rib<F>(&mut self, self_def: Def, f: F)
2483         where F: FnOnce(&mut Resolver)
2484     {
2485         let mut self_type_rib = Rib::new(NormalRibKind);
2486
2487         // plain insert (no renaming, types are not currently hygienic....)
2488         self_type_rib.bindings.insert(keywords::SelfType.ident(), self_def);
2489         self.ribs[TypeNS].push(self_type_rib);
2490         f(self);
2491         self.ribs[TypeNS].pop();
2492     }
2493
2494     fn with_self_struct_ctor_rib<F>(&mut self, impl_id: DefId, f: F)
2495         where F: FnOnce(&mut Resolver)
2496     {
2497         let self_def = Def::SelfCtor(impl_id);
2498         let mut self_type_rib = Rib::new(NormalRibKind);
2499         self_type_rib.bindings.insert(keywords::SelfType.ident(), self_def);
2500         self.ribs[ValueNS].push(self_type_rib);
2501         f(self);
2502         self.ribs[ValueNS].pop();
2503     }
2504
2505     fn resolve_implementation(&mut self,
2506                               generics: &Generics,
2507                               opt_trait_reference: &Option<TraitRef>,
2508                               self_type: &Ty,
2509                               item_id: NodeId,
2510                               impl_items: &[ImplItem]) {
2511         // If applicable, create a rib for the type parameters.
2512         self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2513             // Dummy self type for better errors if `Self` is used in the trait path.
2514             this.with_self_rib(Def::SelfTy(None, None), |this| {
2515                 // Resolve the trait reference, if necessary.
2516                 this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| {
2517                     let item_def_id = this.definitions.local_def_id(item_id);
2518                     this.with_self_rib(Def::SelfTy(trait_id, Some(item_def_id)), |this| {
2519                         if let Some(trait_ref) = opt_trait_reference.as_ref() {
2520                             // Resolve type arguments in the trait path.
2521                             visit::walk_trait_ref(this, trait_ref);
2522                         }
2523                         // Resolve the self type.
2524                         this.visit_ty(self_type);
2525                         // Resolve the type parameters.
2526                         this.visit_generics(generics);
2527                         // Resolve the items within the impl.
2528                         this.with_current_self_type(self_type, |this| {
2529                             this.with_self_struct_ctor_rib(item_def_id, |this| {
2530                                 for impl_item in impl_items {
2531                                     this.resolve_visibility(&impl_item.vis);
2532
2533                                     // We also need a new scope for the impl item type parameters.
2534                                     let type_parameters = HasTypeParameters(&impl_item.generics,
2535                                                                             TraitOrImplItemRibKind);
2536                                     this.with_type_parameter_rib(type_parameters, |this| {
2537                                         use self::ResolutionError::*;
2538                                         match impl_item.node {
2539                                             ImplItemKind::Const(..) => {
2540                                                 // If this is a trait impl, ensure the const
2541                                                 // exists in trait
2542                                                 this.check_trait_item(impl_item.ident,
2543                                                                       ValueNS,
2544                                                                       impl_item.span,
2545                                                     |n, s| ConstNotMemberOfTrait(n, s));
2546                                                 this.with_constant_rib(|this|
2547                                                     visit::walk_impl_item(this, impl_item)
2548                                                 );
2549                                             }
2550                                             ImplItemKind::Method(..) => {
2551                                                 // If this is a trait impl, ensure the method
2552                                                 // exists in trait
2553                                                 this.check_trait_item(impl_item.ident,
2554                                                                       ValueNS,
2555                                                                       impl_item.span,
2556                                                     |n, s| MethodNotMemberOfTrait(n, s));
2557
2558                                                 visit::walk_impl_item(this, impl_item);
2559                                             }
2560                                             ImplItemKind::Type(ref ty) => {
2561                                                 // If this is a trait impl, ensure the type
2562                                                 // exists in trait
2563                                                 this.check_trait_item(impl_item.ident,
2564                                                                       TypeNS,
2565                                                                       impl_item.span,
2566                                                     |n, s| TypeNotMemberOfTrait(n, s));
2567
2568                                                 this.visit_ty(ty);
2569                                             }
2570                                             ImplItemKind::Existential(ref bounds) => {
2571                                                 // If this is a trait impl, ensure the type
2572                                                 // exists in trait
2573                                                 this.check_trait_item(impl_item.ident,
2574                                                                       TypeNS,
2575                                                                       impl_item.span,
2576                                                     |n, s| TypeNotMemberOfTrait(n, s));
2577
2578                                                 for bound in bounds {
2579                                                     this.visit_param_bound(bound);
2580                                                 }
2581                                             }
2582                                             ImplItemKind::Macro(_) =>
2583                                                 panic!("unexpanded macro in resolve!"),
2584                                         }
2585                                     });
2586                                 }
2587                             });
2588                         });
2589                     });
2590                 });
2591             });
2592         });
2593     }
2594
2595     fn check_trait_item<F>(&mut self, ident: Ident, ns: Namespace, span: Span, err: F)
2596         where F: FnOnce(Name, &str) -> ResolutionError
2597     {
2598         // If there is a TraitRef in scope for an impl, then the method must be in the
2599         // trait.
2600         if let Some((module, _)) = self.current_trait_ref {
2601             if self.resolve_ident_in_module(
2602                 ModuleOrUniformRoot::Module(module),
2603                 ident,
2604                 ns,
2605                 false,
2606                 span,
2607             ).is_err() {
2608                 let path = &self.current_trait_ref.as_ref().unwrap().1.path;
2609                 resolve_error(self, span, err(ident.name, &path_names_to_string(path)));
2610             }
2611         }
2612     }
2613
2614     fn resolve_local(&mut self, local: &Local) {
2615         // Resolve the type.
2616         walk_list!(self, visit_ty, &local.ty);
2617
2618         // Resolve the initializer.
2619         walk_list!(self, visit_expr, &local.init);
2620
2621         // Resolve the pattern.
2622         self.resolve_pattern(&local.pat, PatternSource::Let, &mut FxHashMap());
2623     }
2624
2625     // build a map from pattern identifiers to binding-info's.
2626     // this is done hygienically. This could arise for a macro
2627     // that expands into an or-pattern where one 'x' was from the
2628     // user and one 'x' came from the macro.
2629     fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
2630         let mut binding_map = FxHashMap();
2631
2632         pat.walk(&mut |pat| {
2633             if let PatKind::Ident(binding_mode, ident, ref sub_pat) = pat.node {
2634                 if sub_pat.is_some() || match self.def_map.get(&pat.id).map(|res| res.base_def()) {
2635                     Some(Def::Local(..)) => true,
2636                     _ => false,
2637                 } {
2638                     let binding_info = BindingInfo { span: ident.span, binding_mode: binding_mode };
2639                     binding_map.insert(ident, binding_info);
2640                 }
2641             }
2642             true
2643         });
2644
2645         binding_map
2646     }
2647
2648     // check that all of the arms in an or-pattern have exactly the
2649     // same set of bindings, with the same binding modes for each.
2650     fn check_consistent_bindings(&mut self, pats: &[P<Pat>]) {
2651         if pats.is_empty() {
2652             return;
2653         }
2654
2655         let mut missing_vars = FxHashMap();
2656         let mut inconsistent_vars = FxHashMap();
2657         for (i, p) in pats.iter().enumerate() {
2658             let map_i = self.binding_mode_map(&p);
2659
2660             for (j, q) in pats.iter().enumerate() {
2661                 if i == j {
2662                     continue;
2663                 }
2664
2665                 let map_j = self.binding_mode_map(&q);
2666                 for (&key, &binding_i) in &map_i {
2667                     if map_j.len() == 0 {                   // Account for missing bindings when
2668                         let binding_error = missing_vars    // map_j has none.
2669                             .entry(key.name)
2670                             .or_insert(BindingError {
2671                                 name: key.name,
2672                                 origin: BTreeSet::new(),
2673                                 target: BTreeSet::new(),
2674                             });
2675                         binding_error.origin.insert(binding_i.span);
2676                         binding_error.target.insert(q.span);
2677                     }
2678                     for (&key_j, &binding_j) in &map_j {
2679                         match map_i.get(&key_j) {
2680                             None => {  // missing binding
2681                                 let binding_error = missing_vars
2682                                     .entry(key_j.name)
2683                                     .or_insert(BindingError {
2684                                         name: key_j.name,
2685                                         origin: BTreeSet::new(),
2686                                         target: BTreeSet::new(),
2687                                     });
2688                                 binding_error.origin.insert(binding_j.span);
2689                                 binding_error.target.insert(p.span);
2690                             }
2691                             Some(binding_i) => {  // check consistent binding
2692                                 if binding_i.binding_mode != binding_j.binding_mode {
2693                                     inconsistent_vars
2694                                         .entry(key.name)
2695                                         .or_insert((binding_j.span, binding_i.span));
2696                                 }
2697                             }
2698                         }
2699                     }
2700                 }
2701             }
2702         }
2703         let mut missing_vars = missing_vars.iter().collect::<Vec<_>>();
2704         missing_vars.sort();
2705         for (_, v) in missing_vars {
2706             resolve_error(self,
2707                           *v.origin.iter().next().unwrap(),
2708                           ResolutionError::VariableNotBoundInPattern(v));
2709         }
2710         let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
2711         inconsistent_vars.sort();
2712         for (name, v) in inconsistent_vars {
2713             resolve_error(self, v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
2714         }
2715     }
2716
2717     fn resolve_arm(&mut self, arm: &Arm) {
2718         self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2719
2720         let mut bindings_list = FxHashMap();
2721         for pattern in &arm.pats {
2722             self.resolve_pattern(&pattern, PatternSource::Match, &mut bindings_list);
2723         }
2724
2725         // This has to happen *after* we determine which pat_idents are variants
2726         self.check_consistent_bindings(&arm.pats);
2727
2728         match arm.guard {
2729             Some(ast::Guard::If(ref expr)) => self.visit_expr(expr),
2730             _ => {}
2731         }
2732         self.visit_expr(&arm.body);
2733
2734         self.ribs[ValueNS].pop();
2735     }
2736
2737     fn resolve_block(&mut self, block: &Block) {
2738         debug!("(resolving block) entering block");
2739         // Move down in the graph, if there's an anonymous module rooted here.
2740         let orig_module = self.current_module;
2741         let anonymous_module = self.block_map.get(&block.id).cloned(); // clones a reference
2742
2743         let mut num_macro_definition_ribs = 0;
2744         if let Some(anonymous_module) = anonymous_module {
2745             debug!("(resolving block) found anonymous module, moving down");
2746             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2747             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2748             self.current_module = anonymous_module;
2749             self.finalize_current_module_macro_resolutions();
2750         } else {
2751             self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2752         }
2753
2754         // Descend into the block.
2755         for stmt in &block.stmts {
2756             if let ast::StmtKind::Item(ref item) = stmt.node {
2757                 if let ast::ItemKind::MacroDef(..) = item.node {
2758                     num_macro_definition_ribs += 1;
2759                     let def = self.definitions.local_def_id(item.id);
2760                     self.ribs[ValueNS].push(Rib::new(MacroDefinition(def)));
2761                     self.label_ribs.push(Rib::new(MacroDefinition(def)));
2762                 }
2763             }
2764
2765             self.visit_stmt(stmt);
2766         }
2767
2768         // Move back up.
2769         self.current_module = orig_module;
2770         for _ in 0 .. num_macro_definition_ribs {
2771             self.ribs[ValueNS].pop();
2772             self.label_ribs.pop();
2773         }
2774         self.ribs[ValueNS].pop();
2775         if anonymous_module.is_some() {
2776             self.ribs[TypeNS].pop();
2777         }
2778         debug!("(resolving block) leaving block");
2779     }
2780
2781     fn fresh_binding(&mut self,
2782                      ident: Ident,
2783                      pat_id: NodeId,
2784                      outer_pat_id: NodeId,
2785                      pat_src: PatternSource,
2786                      bindings: &mut FxHashMap<Ident, NodeId>)
2787                      -> PathResolution {
2788         // Add the binding to the local ribs, if it
2789         // doesn't already exist in the bindings map. (We
2790         // must not add it if it's in the bindings map
2791         // because that breaks the assumptions later
2792         // passes make about or-patterns.)
2793         let ident = ident.modern_and_legacy();
2794         let mut def = Def::Local(pat_id);
2795         match bindings.get(&ident).cloned() {
2796             Some(id) if id == outer_pat_id => {
2797                 // `Variant(a, a)`, error
2798                 resolve_error(
2799                     self,
2800                     ident.span,
2801                     ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(
2802                         &ident.as_str())
2803                 );
2804             }
2805             Some(..) if pat_src == PatternSource::FnParam => {
2806                 // `fn f(a: u8, a: u8)`, error
2807                 resolve_error(
2808                     self,
2809                     ident.span,
2810                     ResolutionError::IdentifierBoundMoreThanOnceInParameterList(
2811                         &ident.as_str())
2812                 );
2813             }
2814             Some(..) if pat_src == PatternSource::Match ||
2815                         pat_src == PatternSource::IfLet ||
2816                         pat_src == PatternSource::WhileLet => {
2817                 // `Variant1(a) | Variant2(a)`, ok
2818                 // Reuse definition from the first `a`.
2819                 def = self.ribs[ValueNS].last_mut().unwrap().bindings[&ident];
2820             }
2821             Some(..) => {
2822                 span_bug!(ident.span, "two bindings with the same name from \
2823                                        unexpected pattern source {:?}", pat_src);
2824             }
2825             None => {
2826                 // A completely fresh binding, add to the lists if it's valid.
2827                 if ident.name != keywords::Invalid.name() {
2828                     bindings.insert(ident, outer_pat_id);
2829                     self.ribs[ValueNS].last_mut().unwrap().bindings.insert(ident, def);
2830                 }
2831             }
2832         }
2833
2834         PathResolution::new(def)
2835     }
2836
2837     fn resolve_pattern(&mut self,
2838                        pat: &Pat,
2839                        pat_src: PatternSource,
2840                        // Maps idents to the node ID for the
2841                        // outermost pattern that binds them.
2842                        bindings: &mut FxHashMap<Ident, NodeId>) {
2843         // Visit all direct subpatterns of this pattern.
2844         let outer_pat_id = pat.id;
2845         pat.walk(&mut |pat| {
2846             match pat.node {
2847                 PatKind::Ident(bmode, ident, ref opt_pat) => {
2848                     // First try to resolve the identifier as some existing
2849                     // entity, then fall back to a fresh binding.
2850                     let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS,
2851                                                                       None, pat.span)
2852                                       .and_then(LexicalScopeBinding::item);
2853                     let resolution = binding.map(NameBinding::def).and_then(|def| {
2854                         let is_syntactic_ambiguity = opt_pat.is_none() &&
2855                             bmode == BindingMode::ByValue(Mutability::Immutable);
2856                         match def {
2857                             Def::StructCtor(_, CtorKind::Const) |
2858                             Def::VariantCtor(_, CtorKind::Const) |
2859                             Def::Const(..) if is_syntactic_ambiguity => {
2860                                 // Disambiguate in favor of a unit struct/variant
2861                                 // or constant pattern.
2862                                 self.record_use(ident, ValueNS, binding.unwrap());
2863                                 Some(PathResolution::new(def))
2864                             }
2865                             Def::StructCtor(..) | Def::VariantCtor(..) |
2866                             Def::Const(..) | Def::Static(..) => {
2867                                 // This is unambiguously a fresh binding, either syntactically
2868                                 // (e.g. `IDENT @ PAT` or `ref IDENT`) or because `IDENT` resolves
2869                                 // to something unusable as a pattern (e.g. constructor function),
2870                                 // but we still conservatively report an error, see
2871                                 // issues/33118#issuecomment-233962221 for one reason why.
2872                                 resolve_error(
2873                                     self,
2874                                     ident.span,
2875                                     ResolutionError::BindingShadowsSomethingUnacceptable(
2876                                         pat_src.descr(), ident.name, binding.unwrap())
2877                                 );
2878                                 None
2879                             }
2880                             Def::Fn(..) | Def::Err => {
2881                                 // These entities are explicitly allowed
2882                                 // to be shadowed by fresh bindings.
2883                                 None
2884                             }
2885                             def => {
2886                                 span_bug!(ident.span, "unexpected definition for an \
2887                                                        identifier in pattern: {:?}", def);
2888                             }
2889                         }
2890                     }).unwrap_or_else(|| {
2891                         self.fresh_binding(ident, pat.id, outer_pat_id, pat_src, bindings)
2892                     });
2893
2894                     self.record_def(pat.id, resolution);
2895                 }
2896
2897                 PatKind::TupleStruct(ref path, ..) => {
2898                     self.smart_resolve_path(pat.id, None, path, PathSource::TupleStruct);
2899                 }
2900
2901                 PatKind::Path(ref qself, ref path) => {
2902                     self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
2903                 }
2904
2905                 PatKind::Struct(ref path, ..) => {
2906                     self.smart_resolve_path(pat.id, None, path, PathSource::Struct);
2907                 }
2908
2909                 _ => {}
2910             }
2911             true
2912         });
2913
2914         visit::walk_pat(self, pat);
2915     }
2916
2917     // High-level and context dependent path resolution routine.
2918     // Resolves the path and records the resolution into definition map.
2919     // If resolution fails tries several techniques to find likely
2920     // resolution candidates, suggest imports or other help, and report
2921     // errors in user friendly way.
2922     fn smart_resolve_path(&mut self,
2923                           id: NodeId,
2924                           qself: Option<&QSelf>,
2925                           path: &Path,
2926                           source: PathSource)
2927                           -> PathResolution {
2928         self.smart_resolve_path_with_crate_lint(id, qself, path, source, CrateLint::SimplePath(id))
2929     }
2930
2931     /// A variant of `smart_resolve_path` where you also specify extra
2932     /// information about where the path came from; this extra info is
2933     /// sometimes needed for the lint that recommends rewriting
2934     /// absolute paths to `crate`, so that it knows how to frame the
2935     /// suggestion. If you are just resolving a path like `foo::bar`
2936     /// that appears...somewhere, though, then you just want
2937     /// `CrateLint::SimplePath`, which is what `smart_resolve_path`
2938     /// already provides.
2939     fn smart_resolve_path_with_crate_lint(
2940         &mut self,
2941         id: NodeId,
2942         qself: Option<&QSelf>,
2943         path: &Path,
2944         source: PathSource,
2945         crate_lint: CrateLint
2946     ) -> PathResolution {
2947         let segments = &path.segments.iter()
2948             .map(|seg| seg.ident)
2949             .collect::<Vec<_>>();
2950         self.smart_resolve_path_fragment(id, qself, segments, path.span, source, crate_lint)
2951     }
2952
2953     fn smart_resolve_path_fragment(&mut self,
2954                                    id: NodeId,
2955                                    qself: Option<&QSelf>,
2956                                    path: &[Ident],
2957                                    span: Span,
2958                                    source: PathSource,
2959                                    crate_lint: CrateLint)
2960                                    -> PathResolution {
2961         let ident_span = path.last().map_or(span, |ident| ident.span);
2962         let ns = source.namespace();
2963         let is_expected = &|def| source.is_expected(def);
2964         let is_enum_variant = &|def| if let Def::Variant(..) = def { true } else { false };
2965
2966         // Base error is amended with one short label and possibly some longer helps/notes.
2967         let report_errors = |this: &mut Self, def: Option<Def>| {
2968             // Make the base error.
2969             let expected = source.descr_expected();
2970             let path_str = names_to_string(path);
2971             let code = source.error_code(def.is_some());
2972             let (base_msg, fallback_label, base_span) = if let Some(def) = def {
2973                 (format!("expected {}, found {} `{}`", expected, def.kind_name(), path_str),
2974                  format!("not a {}", expected),
2975                  span)
2976             } else {
2977                 let item_str = path[path.len() - 1];
2978                 let item_span = path[path.len() - 1].span;
2979                 let (mod_prefix, mod_str) = if path.len() == 1 {
2980                     (String::new(), "this scope".to_string())
2981                 } else if path.len() == 2 && path[0].name == keywords::CrateRoot.name() {
2982                     (String::new(), "the crate root".to_string())
2983                 } else {
2984                     let mod_path = &path[..path.len() - 1];
2985                     let mod_prefix = match this.resolve_path(None, mod_path, Some(TypeNS),
2986                                                              false, span, CrateLint::No) {
2987                         PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
2988                             module.def(),
2989                         _ => None,
2990                     }.map_or(String::new(), |def| format!("{} ", def.kind_name()));
2991                     (mod_prefix, format!("`{}`", names_to_string(mod_path)))
2992                 };
2993                 (format!("cannot find {} `{}` in {}{}", expected, item_str, mod_prefix, mod_str),
2994                  format!("not found in {}", mod_str),
2995                  item_span)
2996             };
2997             let code = DiagnosticId::Error(code.into());
2998             let mut err = this.session.struct_span_err_with_code(base_span, &base_msg, code);
2999
3000             // Emit special messages for unresolved `Self` and `self`.
3001             if is_self_type(path, ns) {
3002                 __diagnostic_used!(E0411);
3003                 err.code(DiagnosticId::Error("E0411".into()));
3004                 let available_in = if this.session.features_untracked().self_in_typedefs {
3005                     "impls, traits, and type definitions"
3006                 } else {
3007                     "traits and impls"
3008                 };
3009                 err.span_label(span, format!("`Self` is only available in {}", available_in));
3010                 if this.current_self_item.is_some() && nightly_options::is_nightly_build() {
3011                     err.help("add #![feature(self_in_typedefs)] to the crate attributes \
3012                               to enable");
3013                 }
3014                 return (err, Vec::new());
3015             }
3016             if is_self_value(path, ns) {
3017                 __diagnostic_used!(E0424);
3018                 err.code(DiagnosticId::Error("E0424".into()));
3019                 err.span_label(span, format!("`self` value is a keyword \
3020                                                only available in \
3021                                                methods with `self` parameter"));
3022                 return (err, Vec::new());
3023             }
3024
3025             // Try to lookup the name in more relaxed fashion for better error reporting.
3026             let ident = *path.last().unwrap();
3027             let candidates = this.lookup_import_candidates(ident.name, ns, is_expected);
3028             if candidates.is_empty() && is_expected(Def::Enum(DefId::local(CRATE_DEF_INDEX))) {
3029                 let enum_candidates =
3030                     this.lookup_import_candidates(ident.name, ns, is_enum_variant);
3031                 let mut enum_candidates = enum_candidates.iter()
3032                     .map(|suggestion| import_candidate_to_paths(&suggestion)).collect::<Vec<_>>();
3033                 enum_candidates.sort();
3034                 for (sp, variant_path, enum_path) in enum_candidates {
3035                     if sp.is_dummy() {
3036                         let msg = format!("there is an enum variant `{}`, \
3037                                         try using `{}`?",
3038                                         variant_path,
3039                                         enum_path);
3040                         err.help(&msg);
3041                     } else {
3042                         err.span_suggestion_with_applicability(
3043                             span,
3044                             "you can try using the variant's enum",
3045                             enum_path,
3046                             Applicability::MachineApplicable,
3047                         );
3048                     }
3049                 }
3050             }
3051             if path.len() == 1 && this.self_type_is_available(span) {
3052                 if let Some(candidate) = this.lookup_assoc_candidate(ident, ns, is_expected) {
3053                     let self_is_available = this.self_value_is_available(path[0].span, span);
3054                     match candidate {
3055                         AssocSuggestion::Field => {
3056                             err.span_suggestion_with_applicability(
3057                                 span,
3058                                 "try",
3059                                 format!("self.{}", path_str),
3060                                 Applicability::MachineApplicable,
3061                             );
3062                             if !self_is_available {
3063                                 err.span_label(span, format!("`self` value is a keyword \
3064                                                                only available in \
3065                                                                methods with `self` parameter"));
3066                             }
3067                         }
3068                         AssocSuggestion::MethodWithSelf if self_is_available => {
3069                             err.span_suggestion_with_applicability(
3070                                 span,
3071                                 "try",
3072                                 format!("self.{}", path_str),
3073                                 Applicability::MachineApplicable,
3074                             );
3075                         }
3076                         AssocSuggestion::MethodWithSelf | AssocSuggestion::AssocItem => {
3077                             err.span_suggestion_with_applicability(
3078                                 span,
3079                                 "try",
3080                                 format!("Self::{}", path_str),
3081                                 Applicability::MachineApplicable,
3082                             );
3083                         }
3084                     }
3085                     return (err, candidates);
3086                 }
3087             }
3088
3089             let mut levenshtein_worked = false;
3090
3091             // Try Levenshtein.
3092             if let Some(candidate) = this.lookup_typo_candidate(path, ns, is_expected, span) {
3093                 err.span_label(ident_span, format!("did you mean `{}`?", candidate));
3094                 levenshtein_worked = true;
3095             }
3096
3097             // Try context dependent help if relaxed lookup didn't work.
3098             if let Some(def) = def {
3099                 match (def, source) {
3100                     (Def::Macro(..), _) => {
3101                         err.span_label(span, format!("did you mean `{}!(...)`?", path_str));
3102                         return (err, candidates);
3103                     }
3104                     (Def::TyAlias(..), PathSource::Trait(_)) => {
3105                         err.span_label(span, "type aliases cannot be used for traits");
3106                         return (err, candidates);
3107                     }
3108                     (Def::Mod(..), PathSource::Expr(Some(parent))) => match parent.node {
3109                         ExprKind::Field(_, ident) => {
3110                             err.span_label(parent.span, format!("did you mean `{}::{}`?",
3111                                                                  path_str, ident));
3112                             return (err, candidates);
3113                         }
3114                         ExprKind::MethodCall(ref segment, ..) => {
3115                             err.span_label(parent.span, format!("did you mean `{}::{}(...)`?",
3116                                                                  path_str, segment.ident));
3117                             return (err, candidates);
3118                         }
3119                         _ => {}
3120                     },
3121                     (Def::Enum(..), PathSource::TupleStruct)
3122                         | (Def::Enum(..), PathSource::Expr(..))  => {
3123                         if let Some(variants) = this.collect_enum_variants(def) {
3124                             err.note(&format!("did you mean to use one \
3125                                                of the following variants?\n{}",
3126                                 variants.iter()
3127                                     .map(|suggestion| path_names_to_string(suggestion))
3128                                     .map(|suggestion| format!("- `{}`", suggestion))
3129                                     .collect::<Vec<_>>()
3130                                     .join("\n")));
3131
3132                         } else {
3133                             err.note("did you mean to use one of the enum's variants?");
3134                         }
3135                         return (err, candidates);
3136                     },
3137                     (Def::Struct(def_id), _) if ns == ValueNS => {
3138                         if let Some((ctor_def, ctor_vis))
3139                                 = this.struct_constructors.get(&def_id).cloned() {
3140                             let accessible_ctor = this.is_accessible(ctor_vis);
3141                             if is_expected(ctor_def) && !accessible_ctor {
3142                                 err.span_label(span, format!("constructor is not visible \
3143                                                               here due to private fields"));
3144                             }
3145                         } else {
3146                             // HACK(estebank): find a better way to figure out that this was a
3147                             // parser issue where a struct literal is being used on an expression
3148                             // where a brace being opened means a block is being started. Look
3149                             // ahead for the next text to see if `span` is followed by a `{`.
3150                             let sm = this.session.source_map();
3151                             let mut sp = span;
3152                             loop {
3153                                 sp = sm.next_point(sp);
3154                                 match sm.span_to_snippet(sp) {
3155                                     Ok(ref snippet) => {
3156                                         if snippet.chars().any(|c| { !c.is_whitespace() }) {
3157                                             break;
3158                                         }
3159                                     }
3160                                     _ => break,
3161                                 }
3162                             }
3163                             let followed_by_brace = match sm.span_to_snippet(sp) {
3164                                 Ok(ref snippet) if snippet == "{" => true,
3165                                 _ => false,
3166                             };
3167                             match source {
3168                                 PathSource::Expr(Some(parent)) => {
3169                                     match parent.node {
3170                                         ExprKind::MethodCall(ref path_assignment, _)  => {
3171                                             err.span_suggestion_with_applicability(
3172                                                 sm.start_point(parent.span)
3173                                                   .to(path_assignment.ident.span),
3174                                                 "use `::` to access an associated function",
3175                                                 format!("{}::{}",
3176                                                         path_str,
3177                                                         path_assignment.ident),
3178                                                 Applicability::MaybeIncorrect
3179                                             );
3180                                             return (err, candidates);
3181                                         },
3182                                         _ => {
3183                                             err.span_label(
3184                                                 span,
3185                                                 format!("did you mean `{} {{ /* fields */ }}`?",
3186                                                         path_str),
3187                                             );
3188                                             return (err, candidates);
3189                                         },
3190                                     }
3191                                 },
3192                                 PathSource::Expr(None) if followed_by_brace == true => {
3193                                     err.span_label(
3194                                         span,
3195                                         format!("did you mean `({} {{ /* fields */ }})`?",
3196                                                 path_str),
3197                                     );
3198                                     return (err, candidates);
3199                                 },
3200                                 _ => {
3201                                     err.span_label(
3202                                         span,
3203                                         format!("did you mean `{} {{ /* fields */ }}`?",
3204                                                 path_str),
3205                                     );
3206                                     return (err, candidates);
3207                                 },
3208                             }
3209                         }
3210                         return (err, candidates);
3211                     }
3212                     (Def::Union(..), _) |
3213                     (Def::Variant(..), _) |
3214                     (Def::VariantCtor(_, CtorKind::Fictive), _) if ns == ValueNS => {
3215                         err.span_label(span, format!("did you mean `{} {{ /* fields */ }}`?",
3216                                                      path_str));
3217                         return (err, candidates);
3218                     }
3219                     (Def::SelfTy(..), _) if ns == ValueNS => {
3220                         err.span_label(span, fallback_label);
3221                         err.note("can't use `Self` as a constructor, you must use the \
3222                                   implemented struct");
3223                         return (err, candidates);
3224                     }
3225                     (Def::TyAlias(_), _) | (Def::AssociatedTy(..), _) if ns == ValueNS => {
3226                         err.note("can't use a type alias as a constructor");
3227                         return (err, candidates);
3228                     }
3229                     _ => {}
3230                 }
3231             }
3232
3233             // Fallback label.
3234             if !levenshtein_worked {
3235                 err.span_label(base_span, fallback_label);
3236                 this.type_ascription_suggestion(&mut err, base_span);
3237             }
3238             (err, candidates)
3239         };
3240         let report_errors = |this: &mut Self, def: Option<Def>| {
3241             let (err, candidates) = report_errors(this, def);
3242             let def_id = this.current_module.normal_ancestor_id;
3243             let node_id = this.definitions.as_local_node_id(def_id).unwrap();
3244             let better = def.is_some();
3245             this.use_injections.push(UseError { err, candidates, node_id, better });
3246             err_path_resolution()
3247         };
3248
3249         let resolution = match self.resolve_qpath_anywhere(
3250             id,
3251             qself,
3252             path,
3253             ns,
3254             span,
3255             source.defer_to_typeck(),
3256             source.global_by_default(),
3257             crate_lint,
3258         ) {
3259             Some(resolution) if resolution.unresolved_segments() == 0 => {
3260                 if is_expected(resolution.base_def()) || resolution.base_def() == Def::Err {
3261                     resolution
3262                 } else {
3263                     // Add a temporary hack to smooth the transition to new struct ctor
3264                     // visibility rules. See #38932 for more details.
3265                     let mut res = None;
3266                     if let Def::Struct(def_id) = resolution.base_def() {
3267                         if let Some((ctor_def, ctor_vis))
3268                                 = self.struct_constructors.get(&def_id).cloned() {
3269                             if is_expected(ctor_def) && self.is_accessible(ctor_vis) {
3270                                 let lint = lint::builtin::LEGACY_CONSTRUCTOR_VISIBILITY;
3271                                 self.session.buffer_lint(lint, id, span,
3272                                     "private struct constructors are not usable through \
3273                                      re-exports in outer modules",
3274                                 );
3275                                 res = Some(PathResolution::new(ctor_def));
3276                             }
3277                         }
3278                     }
3279
3280                     res.unwrap_or_else(|| report_errors(self, Some(resolution.base_def())))
3281                 }
3282             }
3283             Some(resolution) if source.defer_to_typeck() => {
3284                 // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
3285                 // or `<T>::A::B`. If `B` should be resolved in value namespace then
3286                 // it needs to be added to the trait map.
3287                 if ns == ValueNS {
3288                     let item_name = *path.last().unwrap();
3289                     let traits = self.get_traits_containing_item(item_name, ns);
3290                     self.trait_map.insert(id, traits);
3291                 }
3292                 resolution
3293             }
3294             _ => report_errors(self, None)
3295         };
3296
3297         if let PathSource::TraitItem(..) = source {} else {
3298             // Avoid recording definition of `A::B` in `<T as A>::B::C`.
3299             self.record_def(id, resolution);
3300         }
3301         resolution
3302     }
3303
3304     fn type_ascription_suggestion(&self,
3305                                   err: &mut DiagnosticBuilder,
3306                                   base_span: Span) {
3307         debug!("type_ascription_suggetion {:?}", base_span);
3308         let cm = self.session.source_map();
3309         debug!("self.current_type_ascription {:?}", self.current_type_ascription);
3310         if let Some(sp) = self.current_type_ascription.last() {
3311             let mut sp = *sp;
3312             loop {  // try to find the `:`, bail on first non-':'/non-whitespace
3313                 sp = cm.next_point(sp);
3314                 if let Ok(snippet) = cm.span_to_snippet(sp.to(cm.next_point(sp))) {
3315                     debug!("snippet {:?}", snippet);
3316                     let line_sp = cm.lookup_char_pos(sp.hi()).line;
3317                     let line_base_sp = cm.lookup_char_pos(base_span.lo()).line;
3318                     debug!("{:?} {:?}", line_sp, line_base_sp);
3319                     if snippet == ":" {
3320                         err.span_label(base_span,
3321                                        "expecting a type here because of type ascription");
3322                         if line_sp != line_base_sp {
3323                             err.span_suggestion_short_with_applicability(
3324                                 sp,
3325                                 "did you mean to use `;` here instead?",
3326                                 ";".to_string(),
3327                                 Applicability::MaybeIncorrect,
3328                             );
3329                         }
3330                         break;
3331                     } else if snippet.trim().len() != 0  {
3332                         debug!("tried to find type ascription `:` token, couldn't find it");
3333                         break;
3334                     }
3335                 } else {
3336                     break;
3337                 }
3338             }
3339         }
3340     }
3341
3342     fn self_type_is_available(&mut self, span: Span) -> bool {
3343         let binding = self.resolve_ident_in_lexical_scope(keywords::SelfType.ident(),
3344                                                           TypeNS, None, span);
3345         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3346     }
3347
3348     fn self_value_is_available(&mut self, self_span: Span, path_span: Span) -> bool {
3349         let ident = Ident::new(keywords::SelfValue.name(), self_span);
3350         let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, None, path_span);
3351         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3352     }
3353
3354     // Resolve in alternative namespaces if resolution in the primary namespace fails.
3355     fn resolve_qpath_anywhere(&mut self,
3356                               id: NodeId,
3357                               qself: Option<&QSelf>,
3358                               path: &[Ident],
3359                               primary_ns: Namespace,
3360                               span: Span,
3361                               defer_to_typeck: bool,
3362                               global_by_default: bool,
3363                               crate_lint: CrateLint)
3364                               -> Option<PathResolution> {
3365         let mut fin_res = None;
3366         // FIXME: can't resolve paths in macro namespace yet, macros are
3367         // processed by the little special hack below.
3368         for (i, ns) in [primary_ns, TypeNS, ValueNS, /*MacroNS*/].iter().cloned().enumerate() {
3369             if i == 0 || ns != primary_ns {
3370                 match self.resolve_qpath(id, qself, path, ns, span, global_by_default, crate_lint) {
3371                     // If defer_to_typeck, then resolution > no resolution,
3372                     // otherwise full resolution > partial resolution > no resolution.
3373                     Some(res) if res.unresolved_segments() == 0 || defer_to_typeck =>
3374                         return Some(res),
3375                     res => if fin_res.is_none() { fin_res = res },
3376                 };
3377             }
3378         }
3379         if primary_ns != MacroNS &&
3380            (self.macro_names.contains(&path[0].modern()) ||
3381             self.builtin_macros.get(&path[0].name).cloned()
3382                                .and_then(NameBinding::macro_kind) == Some(MacroKind::Bang) ||
3383             self.macro_use_prelude.get(&path[0].name).cloned()
3384                                   .and_then(NameBinding::macro_kind) == Some(MacroKind::Bang)) {
3385             // Return some dummy definition, it's enough for error reporting.
3386             return Some(
3387                 PathResolution::new(Def::Macro(DefId::local(CRATE_DEF_INDEX), MacroKind::Bang))
3388             );
3389         }
3390         fin_res
3391     }
3392
3393     /// Handles paths that may refer to associated items.
3394     fn resolve_qpath(&mut self,
3395                      id: NodeId,
3396                      qself: Option<&QSelf>,
3397                      path: &[Ident],
3398                      ns: Namespace,
3399                      span: Span,
3400                      global_by_default: bool,
3401                      crate_lint: CrateLint)
3402                      -> Option<PathResolution> {
3403         debug!(
3404             "resolve_qpath(id={:?}, qself={:?}, path={:?}, \
3405              ns={:?}, span={:?}, global_by_default={:?})",
3406             id,
3407             qself,
3408             path,
3409             ns,
3410             span,
3411             global_by_default,
3412         );
3413
3414         if let Some(qself) = qself {
3415             if qself.position == 0 {
3416                 // This is a case like `<T>::B`, where there is no
3417                 // trait to resolve.  In that case, we leave the `B`
3418                 // segment to be resolved by type-check.
3419                 return Some(PathResolution::with_unresolved_segments(
3420                     Def::Mod(DefId::local(CRATE_DEF_INDEX)), path.len()
3421                 ));
3422             }
3423
3424             // Make sure `A::B` in `<T as A::B>::C` is a trait item.
3425             //
3426             // Currently, `path` names the full item (`A::B::C`, in
3427             // our example).  so we extract the prefix of that that is
3428             // the trait (the slice upto and including
3429             // `qself.position`). And then we recursively resolve that,
3430             // but with `qself` set to `None`.
3431             //
3432             // However, setting `qself` to none (but not changing the
3433             // span) loses the information about where this path
3434             // *actually* appears, so for the purposes of the crate
3435             // lint we pass along information that this is the trait
3436             // name from a fully qualified path, and this also
3437             // contains the full span (the `CrateLint::QPathTrait`).
3438             let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
3439             let res = self.smart_resolve_path_fragment(
3440                 id,
3441                 None,
3442                 &path[..qself.position + 1],
3443                 span,
3444                 PathSource::TraitItem(ns),
3445                 CrateLint::QPathTrait {
3446                     qpath_id: id,
3447                     qpath_span: qself.path_span,
3448                 },
3449             );
3450
3451             // The remaining segments (the `C` in our example) will
3452             // have to be resolved by type-check, since that requires doing
3453             // trait resolution.
3454             return Some(PathResolution::with_unresolved_segments(
3455                 res.base_def(), res.unresolved_segments() + path.len() - qself.position - 1
3456             ));
3457         }
3458
3459         let result = match self.resolve_path(
3460             None,
3461             &path,
3462             Some(ns),
3463             true,
3464             span,
3465             crate_lint,
3466         ) {
3467             PathResult::NonModule(path_res) => path_res,
3468             PathResult::Module(ModuleOrUniformRoot::Module(module)) if !module.is_normal() => {
3469                 PathResolution::new(module.def().unwrap())
3470             }
3471             // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
3472             // don't report an error right away, but try to fallback to a primitive type.
3473             // So, we are still able to successfully resolve something like
3474             //
3475             // use std::u8; // bring module u8 in scope
3476             // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
3477             //     u8::max_value() // OK, resolves to associated function <u8>::max_value,
3478             //                     // not to non-existent std::u8::max_value
3479             // }
3480             //
3481             // Such behavior is required for backward compatibility.
3482             // The same fallback is used when `a` resolves to nothing.
3483             PathResult::Module(ModuleOrUniformRoot::Module(_)) |
3484             PathResult::Failed(..)
3485                     if (ns == TypeNS || path.len() > 1) &&
3486                        self.primitive_type_table.primitive_types
3487                            .contains_key(&path[0].name) => {
3488                 let prim = self.primitive_type_table.primitive_types[&path[0].name];
3489                 PathResolution::with_unresolved_segments(Def::PrimTy(prim), path.len() - 1)
3490             }
3491             PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3492                 PathResolution::new(module.def().unwrap()),
3493             PathResult::Failed(span, msg, false) => {
3494                 resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
3495                 err_path_resolution()
3496             }
3497             PathResult::Module(ModuleOrUniformRoot::UniformRoot(_)) |
3498             PathResult::Failed(..) => return None,
3499             PathResult::Indeterminate => bug!("indetermined path result in resolve_qpath"),
3500         };
3501
3502         if path.len() > 1 && !global_by_default && result.base_def() != Def::Err &&
3503            path[0].name != keywords::CrateRoot.name() &&
3504            path[0].name != keywords::DollarCrate.name() {
3505             let unqualified_result = {
3506                 match self.resolve_path(
3507                     None,
3508                     &[*path.last().unwrap()],
3509                     Some(ns),
3510                     false,
3511                     span,
3512                     CrateLint::No,
3513                 ) {
3514                     PathResult::NonModule(path_res) => path_res.base_def(),
3515                     PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3516                         module.def().unwrap(),
3517                     _ => return Some(result),
3518                 }
3519             };
3520             if result.base_def() == unqualified_result {
3521                 let lint = lint::builtin::UNUSED_QUALIFICATIONS;
3522                 self.session.buffer_lint(lint, id, span, "unnecessary qualification")
3523             }
3524         }
3525
3526         Some(result)
3527     }
3528
3529     fn resolve_path(
3530         &mut self,
3531         base_module: Option<ModuleOrUniformRoot<'a>>,
3532         path: &[Ident],
3533         opt_ns: Option<Namespace>, // `None` indicates a module path
3534         record_used: bool,
3535         path_span: Span,
3536         crate_lint: CrateLint,
3537     ) -> PathResult<'a> {
3538         let parent_scope = ParentScope { module: self.current_module, ..self.dummy_parent_scope() };
3539         self.resolve_path_with_parent_scope(base_module, path, opt_ns, &parent_scope,
3540                                             record_used, path_span, crate_lint)
3541     }
3542
3543     fn resolve_path_with_parent_scope(
3544         &mut self,
3545         base_module: Option<ModuleOrUniformRoot<'a>>,
3546         path: &[Ident],
3547         opt_ns: Option<Namespace>, // `None` indicates a module path
3548         parent_scope: &ParentScope<'a>,
3549         record_used: bool,
3550         path_span: Span,
3551         crate_lint: CrateLint,
3552     ) -> PathResult<'a> {
3553         let mut module = base_module;
3554         let mut allow_super = true;
3555         let mut second_binding = None;
3556         self.current_module = parent_scope.module;
3557
3558         debug!(
3559             "resolve_path(path={:?}, opt_ns={:?}, record_used={:?}, \
3560              path_span={:?}, crate_lint={:?})",
3561             path,
3562             opt_ns,
3563             record_used,
3564             path_span,
3565             crate_lint,
3566         );
3567
3568         for (i, &ident) in path.iter().enumerate() {
3569             debug!("resolve_path ident {} {:?}", i, ident);
3570             let is_last = i == path.len() - 1;
3571             let ns = if is_last { opt_ns.unwrap_or(TypeNS) } else { TypeNS };
3572             let name = ident.name;
3573
3574             allow_super &= ns == TypeNS &&
3575                 (name == keywords::SelfValue.name() ||
3576                  name == keywords::Super.name());
3577
3578             if ns == TypeNS {
3579                 if allow_super && name == keywords::Super.name() {
3580                     let mut ctxt = ident.span.ctxt().modern();
3581                     let self_module = match i {
3582                         0 => Some(self.resolve_self(&mut ctxt, self.current_module)),
3583                         _ => match module {
3584                             Some(ModuleOrUniformRoot::Module(module)) => Some(module),
3585                             _ => None,
3586                         },
3587                     };
3588                     if let Some(self_module) = self_module {
3589                         if let Some(parent) = self_module.parent {
3590                             module = Some(ModuleOrUniformRoot::Module(
3591                                 self.resolve_self(&mut ctxt, parent)));
3592                             continue;
3593                         }
3594                     }
3595                     let msg = "There are too many initial `super`s.".to_string();
3596                     return PathResult::Failed(ident.span, msg, false);
3597                 }
3598                 if i == 0 {
3599                     if name == keywords::SelfValue.name() {
3600                         let mut ctxt = ident.span.ctxt().modern();
3601                         module = Some(ModuleOrUniformRoot::Module(
3602                             self.resolve_self(&mut ctxt, self.current_module)));
3603                         continue;
3604                     }
3605                     if name == keywords::Extern.name() ||
3606                        name == keywords::CrateRoot.name() &&
3607                        self.session.rust_2018() {
3608                         module = Some(ModuleOrUniformRoot::UniformRoot(name));
3609                         continue;
3610                     }
3611                     if name == keywords::CrateRoot.name() ||
3612                        name == keywords::Crate.name() ||
3613                        name == keywords::DollarCrate.name() {
3614                         // `::a::b`, `crate::a::b` or `$crate::a::b`
3615                         module = Some(ModuleOrUniformRoot::Module(
3616                             self.resolve_crate_root(ident)));
3617                         continue;
3618                     }
3619                 }
3620             }
3621
3622             // Report special messages for path segment keywords in wrong positions.
3623             if ident.is_path_segment_keyword() && i != 0 {
3624                 let name_str = if name == keywords::CrateRoot.name() {
3625                     "crate root".to_string()
3626                 } else {
3627                     format!("`{}`", name)
3628                 };
3629                 let msg = if i == 1 && path[0].name == keywords::CrateRoot.name() {
3630                     format!("global paths cannot start with {}", name_str)
3631                 } else {
3632                     format!("{} in paths can only be used in start position", name_str)
3633                 };
3634                 return PathResult::Failed(ident.span, msg, false);
3635             }
3636
3637             let binding = if let Some(module) = module {
3638                 self.resolve_ident_in_module(module, ident, ns, record_used, path_span)
3639             } else if opt_ns == Some(MacroNS) {
3640                 assert!(ns == TypeNS);
3641                 self.resolve_lexical_macro_path_segment(ident, ns, None, parent_scope, record_used,
3642                                                         record_used, path_span).map(|(b, _)| b)
3643             } else {
3644                 let record_used_id =
3645                     if record_used { crate_lint.node_id().or(Some(CRATE_NODE_ID)) } else { None };
3646                 match self.resolve_ident_in_lexical_scope(ident, ns, record_used_id, path_span) {
3647                     // we found a locally-imported or available item/module
3648                     Some(LexicalScopeBinding::Item(binding)) => Ok(binding),
3649                     // we found a local variable or type param
3650                     Some(LexicalScopeBinding::Def(def))
3651                             if opt_ns == Some(TypeNS) || opt_ns == Some(ValueNS) => {
3652                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3653                             def, path.len() - 1
3654                         ));
3655                     }
3656                     _ => Err(if record_used { Determined } else { Undetermined }),
3657                 }
3658             };
3659
3660             match binding {
3661                 Ok(binding) => {
3662                     if i == 1 {
3663                         second_binding = Some(binding);
3664                     }
3665                     let def = binding.def();
3666                     let maybe_assoc = opt_ns != Some(MacroNS) && PathSource::Type.is_expected(def);
3667                     if let Some(next_module) = binding.module() {
3668                         module = Some(ModuleOrUniformRoot::Module(next_module));
3669                     } else if def == Def::ToolMod && i + 1 != path.len() {
3670                         let def = Def::NonMacroAttr(NonMacroAttrKind::Tool);
3671                         return PathResult::NonModule(PathResolution::new(def));
3672                     } else if def == Def::Err {
3673                         return PathResult::NonModule(err_path_resolution());
3674                     } else if opt_ns.is_some() && (is_last || maybe_assoc) {
3675                         self.lint_if_path_starts_with_module(
3676                             crate_lint,
3677                             path,
3678                             path_span,
3679                             second_binding,
3680                         );
3681                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3682                             def, path.len() - i - 1
3683                         ));
3684                     } else {
3685                         return PathResult::Failed(ident.span,
3686                                                   format!("Not a module `{}`", ident),
3687                                                   is_last);
3688                     }
3689                 }
3690                 Err(Undetermined) => return PathResult::Indeterminate,
3691                 Err(Determined) => {
3692                     if let Some(ModuleOrUniformRoot::Module(module)) = module {
3693                         if opt_ns.is_some() && !module.is_normal() {
3694                             return PathResult::NonModule(PathResolution::with_unresolved_segments(
3695                                 module.def().unwrap(), path.len() - i
3696                             ));
3697                         }
3698                     }
3699                     let module_def = match module {
3700                         Some(ModuleOrUniformRoot::Module(module)) => module.def(),
3701                         _ => None,
3702                     };
3703                     let msg = if module_def == self.graph_root.def() {
3704                         let is_mod = |def| match def { Def::Mod(..) => true, _ => false };
3705                         let mut candidates =
3706                             self.lookup_import_candidates(name, TypeNS, is_mod);
3707                         candidates.sort_by_cached_key(|c| {
3708                             (c.path.segments.len(), c.path.to_string())
3709                         });
3710                         if let Some(candidate) = candidates.get(0) {
3711                             format!("Did you mean `{}`?", candidate.path)
3712                         } else {
3713                             format!("Maybe a missing `extern crate {};`?", ident)
3714                         }
3715                     } else if i == 0 {
3716                         format!("Use of undeclared type or module `{}`", ident)
3717                     } else {
3718                         format!("Could not find `{}` in `{}`", ident, path[i - 1])
3719                     };
3720                     return PathResult::Failed(ident.span, msg, is_last);
3721                 }
3722             }
3723         }
3724
3725         self.lint_if_path_starts_with_module(crate_lint, path, path_span, second_binding);
3726
3727         PathResult::Module(module.unwrap_or_else(|| {
3728             span_bug!(path_span, "resolve_path: empty(?) path {:?} has no module", path);
3729         }))
3730
3731     }
3732
3733     fn lint_if_path_starts_with_module(
3734         &self,
3735         crate_lint: CrateLint,
3736         path: &[Ident],
3737         path_span: Span,
3738         second_binding: Option<&NameBinding>,
3739     ) {
3740         // In the 2018 edition this lint is a hard error, so nothing to do
3741         if self.session.rust_2018() {
3742             return
3743         }
3744
3745         let (diag_id, diag_span) = match crate_lint {
3746             CrateLint::No => return,
3747             CrateLint::SimplePath(id) => (id, path_span),
3748             CrateLint::UsePath { root_id, root_span } => (root_id, root_span),
3749             CrateLint::QPathTrait { qpath_id, qpath_span } => (qpath_id, qpath_span),
3750         };
3751
3752         let first_name = match path.get(0) {
3753             Some(ident) => ident.name,
3754             None => return,
3755         };
3756
3757         // We're only interested in `use` paths which should start with
3758         // `{{root}}` or `extern` currently.
3759         if first_name != keywords::Extern.name() && first_name != keywords::CrateRoot.name() {
3760             return
3761         }
3762
3763         match path.get(1) {
3764             // If this import looks like `crate::...` it's already good
3765             Some(ident) if ident.name == keywords::Crate.name() => return,
3766             // Otherwise go below to see if it's an extern crate
3767             Some(_) => {}
3768             // If the path has length one (and it's `CrateRoot` most likely)
3769             // then we don't know whether we're gonna be importing a crate or an
3770             // item in our crate. Defer this lint to elsewhere
3771             None => return,
3772         }
3773
3774         // If the first element of our path was actually resolved to an
3775         // `ExternCrate` (also used for `crate::...`) then no need to issue a
3776         // warning, this looks all good!
3777         if let Some(binding) = second_binding {
3778             if let NameBindingKind::Import { directive: d, .. } = binding.kind {
3779                 // Careful: we still want to rewrite paths from
3780                 // renamed extern crates.
3781                 if let ImportDirectiveSubclass::ExternCrate(None) = d.subclass {
3782                     return
3783                 }
3784             }
3785         }
3786
3787         let diag = lint::builtin::BuiltinLintDiagnostics
3788             ::AbsPathWithModule(diag_span);
3789         self.session.buffer_lint_with_diagnostic(
3790             lint::builtin::ABSOLUTE_PATHS_NOT_STARTING_WITH_CRATE,
3791             diag_id, diag_span,
3792             "absolute paths must start with `self`, `super`, \
3793             `crate`, or an external crate name in the 2018 edition",
3794             diag);
3795     }
3796
3797     // Resolve a local definition, potentially adjusting for closures.
3798     fn adjust_local_def(&mut self,
3799                         ns: Namespace,
3800                         rib_index: usize,
3801                         mut def: Def,
3802                         record_used: bool,
3803                         span: Span) -> Def {
3804         let ribs = &self.ribs[ns][rib_index + 1..];
3805
3806         // An invalid forward use of a type parameter from a previous default.
3807         if let ForwardTyParamBanRibKind = self.ribs[ns][rib_index].kind {
3808             if record_used {
3809                 resolve_error(self, span, ResolutionError::ForwardDeclaredTyParam);
3810             }
3811             assert_eq!(def, Def::Err);
3812             return Def::Err;
3813         }
3814
3815         match def {
3816             Def::Upvar(..) => {
3817                 span_bug!(span, "unexpected {:?} in bindings", def)
3818             }
3819             Def::Local(node_id) => {
3820                 for rib in ribs {
3821                     match rib.kind {
3822                         NormalRibKind | ModuleRibKind(..) | MacroDefinition(..) |
3823                         ForwardTyParamBanRibKind => {
3824                             // Nothing to do. Continue.
3825                         }
3826                         ClosureRibKind(function_id) => {
3827                             let prev_def = def;
3828
3829                             let seen = self.freevars_seen
3830                                            .entry(function_id)
3831                                            .or_default();
3832                             if let Some(&index) = seen.get(&node_id) {
3833                                 def = Def::Upvar(node_id, index, function_id);
3834                                 continue;
3835                             }
3836                             let vec = self.freevars
3837                                           .entry(function_id)
3838                                           .or_default();
3839                             let depth = vec.len();
3840                             def = Def::Upvar(node_id, depth, function_id);
3841
3842                             if record_used {
3843                                 vec.push(Freevar {
3844                                     def: prev_def,
3845                                     span,
3846                                 });
3847                                 seen.insert(node_id, depth);
3848                             }
3849                         }
3850                         ItemRibKind | TraitOrImplItemRibKind => {
3851                             // This was an attempt to access an upvar inside a
3852                             // named function item. This is not allowed, so we
3853                             // report an error.
3854                             if record_used {
3855                                 resolve_error(self, span,
3856                                         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem);
3857                             }
3858                             return Def::Err;
3859                         }
3860                         ConstantItemRibKind => {
3861                             // Still doesn't deal with upvars
3862                             if record_used {
3863                                 resolve_error(self, span,
3864                                         ResolutionError::AttemptToUseNonConstantValueInConstant);
3865                             }
3866                             return Def::Err;
3867                         }
3868                     }
3869                 }
3870             }
3871             Def::TyParam(..) | Def::SelfTy(..) => {
3872                 for rib in ribs {
3873                     match rib.kind {
3874                         NormalRibKind | TraitOrImplItemRibKind | ClosureRibKind(..) |
3875                         ModuleRibKind(..) | MacroDefinition(..) | ForwardTyParamBanRibKind |
3876                         ConstantItemRibKind => {
3877                             // Nothing to do. Continue.
3878                         }
3879                         ItemRibKind => {
3880                             // This was an attempt to use a type parameter outside
3881                             // its scope.
3882                             if record_used {
3883                                 resolve_error(self, span,
3884                                     ResolutionError::TypeParametersFromOuterFunction(def));
3885                             }
3886                             return Def::Err;
3887                         }
3888                     }
3889                 }
3890             }
3891             _ => {}
3892         }
3893         return def;
3894     }
3895
3896     fn lookup_assoc_candidate<FilterFn>(&mut self,
3897                                         ident: Ident,
3898                                         ns: Namespace,
3899                                         filter_fn: FilterFn)
3900                                         -> Option<AssocSuggestion>
3901         where FilterFn: Fn(Def) -> bool
3902     {
3903         fn extract_node_id(t: &Ty) -> Option<NodeId> {
3904             match t.node {
3905                 TyKind::Path(None, _) => Some(t.id),
3906                 TyKind::Rptr(_, ref mut_ty) => extract_node_id(&mut_ty.ty),
3907                 // This doesn't handle the remaining `Ty` variants as they are not
3908                 // that commonly the self_type, it might be interesting to provide
3909                 // support for those in future.
3910                 _ => None,
3911             }
3912         }
3913
3914         // Fields are generally expected in the same contexts as locals.
3915         if filter_fn(Def::Local(ast::DUMMY_NODE_ID)) {
3916             if let Some(node_id) = self.current_self_type.as_ref().and_then(extract_node_id) {
3917                 // Look for a field with the same name in the current self_type.
3918                 if let Some(resolution) = self.def_map.get(&node_id) {
3919                     match resolution.base_def() {
3920                         Def::Struct(did) | Def::Union(did)
3921                                 if resolution.unresolved_segments() == 0 => {
3922                             if let Some(field_names) = self.field_names.get(&did) {
3923                                 if field_names.iter().any(|&field_name| ident.name == field_name) {
3924                                     return Some(AssocSuggestion::Field);
3925                                 }
3926                             }
3927                         }
3928                         _ => {}
3929                     }
3930                 }
3931             }
3932         }
3933
3934         // Look for associated items in the current trait.
3935         if let Some((module, _)) = self.current_trait_ref {
3936             if let Ok(binding) = self.resolve_ident_in_module(
3937                     ModuleOrUniformRoot::Module(module),
3938                     ident,
3939                     ns,
3940                     false,
3941                     module.span,
3942                 ) {
3943                 let def = binding.def();
3944                 if filter_fn(def) {
3945                     return Some(if self.has_self.contains(&def.def_id()) {
3946                         AssocSuggestion::MethodWithSelf
3947                     } else {
3948                         AssocSuggestion::AssocItem
3949                     });
3950                 }
3951             }
3952         }
3953
3954         None
3955     }
3956
3957     fn lookup_typo_candidate<FilterFn>(&mut self,
3958                                        path: &[Ident],
3959                                        ns: Namespace,
3960                                        filter_fn: FilterFn,
3961                                        span: Span)
3962                                        -> Option<Symbol>
3963         where FilterFn: Fn(Def) -> bool
3964     {
3965         let add_module_candidates = |module: Module, names: &mut Vec<Name>| {
3966             for (&(ident, _), resolution) in module.resolutions.borrow().iter() {
3967                 if let Some(binding) = resolution.borrow().binding {
3968                     if filter_fn(binding.def()) {
3969                         names.push(ident.name);
3970                     }
3971                 }
3972             }
3973         };
3974
3975         let mut names = Vec::new();
3976         if path.len() == 1 {
3977             // Search in lexical scope.
3978             // Walk backwards up the ribs in scope and collect candidates.
3979             for rib in self.ribs[ns].iter().rev() {
3980                 // Locals and type parameters
3981                 for (ident, def) in &rib.bindings {
3982                     if filter_fn(*def) {
3983                         names.push(ident.name);
3984                     }
3985                 }
3986                 // Items in scope
3987                 if let ModuleRibKind(module) = rib.kind {
3988                     // Items from this module
3989                     add_module_candidates(module, &mut names);
3990
3991                     if let ModuleKind::Block(..) = module.kind {
3992                         // We can see through blocks
3993                     } else {
3994                         // Items from the prelude
3995                         if !module.no_implicit_prelude {
3996                             names.extend(self.session.extern_prelude.iter().cloned());
3997                             if let Some(prelude) = self.prelude {
3998                                 add_module_candidates(prelude, &mut names);
3999                             }
4000                         }
4001                         break;
4002                     }
4003                 }
4004             }
4005             // Add primitive types to the mix
4006             if filter_fn(Def::PrimTy(Bool)) {
4007                 names.extend(
4008                     self.primitive_type_table.primitive_types.iter().map(|(name, _)| name)
4009                 )
4010             }
4011         } else {
4012             // Search in module.
4013             let mod_path = &path[..path.len() - 1];
4014             if let PathResult::Module(module) = self.resolve_path(None, mod_path, Some(TypeNS),
4015                                                                   false, span, CrateLint::No) {
4016                 if let ModuleOrUniformRoot::Module(module) = module {
4017                     add_module_candidates(module, &mut names);
4018                 }
4019             }
4020         }
4021
4022         let name = path[path.len() - 1].name;
4023         // Make sure error reporting is deterministic.
4024         names.sort_by_cached_key(|name| name.as_str());
4025         match find_best_match_for_name(names.iter(), &name.as_str(), None) {
4026             Some(found) if found != name => Some(found),
4027             _ => None,
4028         }
4029     }
4030
4031     fn with_resolved_label<F>(&mut self, label: Option<Label>, id: NodeId, f: F)
4032         where F: FnOnce(&mut Resolver)
4033     {
4034         if let Some(label) = label {
4035             self.unused_labels.insert(id, label.ident.span);
4036             let def = Def::Label(id);
4037             self.with_label_rib(|this| {
4038                 let ident = label.ident.modern_and_legacy();
4039                 this.label_ribs.last_mut().unwrap().bindings.insert(ident, def);
4040                 f(this);
4041             });
4042         } else {
4043             f(self);
4044         }
4045     }
4046
4047     fn resolve_labeled_block(&mut self, label: Option<Label>, id: NodeId, block: &Block) {
4048         self.with_resolved_label(label, id, |this| this.visit_block(block));
4049     }
4050
4051     fn resolve_expr(&mut self, expr: &Expr, parent: Option<&Expr>) {
4052         // First, record candidate traits for this expression if it could
4053         // result in the invocation of a method call.
4054
4055         self.record_candidate_traits_for_expr_if_necessary(expr);
4056
4057         // Next, resolve the node.
4058         match expr.node {
4059             ExprKind::Path(ref qself, ref path) => {
4060                 self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
4061                 visit::walk_expr(self, expr);
4062             }
4063
4064             ExprKind::Struct(ref path, ..) => {
4065                 self.smart_resolve_path(expr.id, None, path, PathSource::Struct);
4066                 visit::walk_expr(self, expr);
4067             }
4068
4069             ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
4070                 let def = self.search_label(label.ident, |rib, ident| {
4071                     rib.bindings.get(&ident.modern_and_legacy()).cloned()
4072                 });
4073                 match def {
4074                     None => {
4075                         // Search again for close matches...
4076                         // Picks the first label that is "close enough", which is not necessarily
4077                         // the closest match
4078                         let close_match = self.search_label(label.ident, |rib, ident| {
4079                             let names = rib.bindings.iter().map(|(id, _)| &id.name);
4080                             find_best_match_for_name(names, &*ident.as_str(), None)
4081                         });
4082                         self.record_def(expr.id, err_path_resolution());
4083                         resolve_error(self,
4084                                       label.ident.span,
4085                                       ResolutionError::UndeclaredLabel(&label.ident.as_str(),
4086                                                                        close_match));
4087                     }
4088                     Some(Def::Label(id)) => {
4089                         // Since this def is a label, it is never read.
4090                         self.record_def(expr.id, PathResolution::new(Def::Label(id)));
4091                         self.unused_labels.remove(&id);
4092                     }
4093                     Some(_) => {
4094                         span_bug!(expr.span, "label wasn't mapped to a label def!");
4095                     }
4096                 }
4097
4098                 // visit `break` argument if any
4099                 visit::walk_expr(self, expr);
4100             }
4101
4102             ExprKind::IfLet(ref pats, ref subexpression, ref if_block, ref optional_else) => {
4103                 self.visit_expr(subexpression);
4104
4105                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
4106                 let mut bindings_list = FxHashMap();
4107                 for pat in pats {
4108                     self.resolve_pattern(pat, PatternSource::IfLet, &mut bindings_list);
4109                 }
4110                 // This has to happen *after* we determine which pat_idents are variants
4111                 self.check_consistent_bindings(pats);
4112                 self.visit_block(if_block);
4113                 self.ribs[ValueNS].pop();
4114
4115                 optional_else.as_ref().map(|expr| self.visit_expr(expr));
4116             }
4117
4118             ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),
4119
4120             ExprKind::While(ref subexpression, ref block, label) => {
4121                 self.with_resolved_label(label, expr.id, |this| {
4122                     this.visit_expr(subexpression);
4123                     this.visit_block(block);
4124                 });
4125             }
4126
4127             ExprKind::WhileLet(ref pats, ref subexpression, ref block, label) => {
4128                 self.with_resolved_label(label, expr.id, |this| {
4129                     this.visit_expr(subexpression);
4130                     this.ribs[ValueNS].push(Rib::new(NormalRibKind));
4131                     let mut bindings_list = FxHashMap();
4132                     for pat in pats {
4133                         this.resolve_pattern(pat, PatternSource::WhileLet, &mut bindings_list);
4134                     }
4135                     // This has to happen *after* we determine which pat_idents are variants
4136                     this.check_consistent_bindings(pats);
4137                     this.visit_block(block);
4138                     this.ribs[ValueNS].pop();
4139                 });
4140             }
4141
4142             ExprKind::ForLoop(ref pattern, ref subexpression, ref block, label) => {
4143                 self.visit_expr(subexpression);
4144                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
4145                 self.resolve_pattern(pattern, PatternSource::For, &mut FxHashMap());
4146
4147                 self.resolve_labeled_block(label, expr.id, block);
4148
4149                 self.ribs[ValueNS].pop();
4150             }
4151
4152             ExprKind::Block(ref block, label) => self.resolve_labeled_block(label, block.id, block),
4153
4154             // Equivalent to `visit::walk_expr` + passing some context to children.
4155             ExprKind::Field(ref subexpression, _) => {
4156                 self.resolve_expr(subexpression, Some(expr));
4157             }
4158             ExprKind::MethodCall(ref segment, ref arguments) => {
4159                 let mut arguments = arguments.iter();
4160                 self.resolve_expr(arguments.next().unwrap(), Some(expr));
4161                 for argument in arguments {
4162                     self.resolve_expr(argument, None);
4163                 }
4164                 self.visit_path_segment(expr.span, segment);
4165             }
4166
4167             ExprKind::Call(ref callee, ref arguments) => {
4168                 self.resolve_expr(callee, Some(expr));
4169                 for argument in arguments {
4170                     self.resolve_expr(argument, None);
4171                 }
4172             }
4173             ExprKind::Type(ref type_expr, _) => {
4174                 self.current_type_ascription.push(type_expr.span);
4175                 visit::walk_expr(self, expr);
4176                 self.current_type_ascription.pop();
4177             }
4178             // Resolve the body of async exprs inside the async closure to which they desugar
4179             ExprKind::Async(_, async_closure_id, ref block) => {
4180                 let rib_kind = ClosureRibKind(async_closure_id);
4181                 self.ribs[ValueNS].push(Rib::new(rib_kind));
4182                 self.label_ribs.push(Rib::new(rib_kind));
4183                 self.visit_block(&block);
4184                 self.label_ribs.pop();
4185                 self.ribs[ValueNS].pop();
4186             }
4187             // `async |x| ...` gets desugared to `|x| future_from_generator(|| ...)`, so we need to
4188             // resolve the arguments within the proper scopes so that usages of them inside the
4189             // closure are detected as upvars rather than normal closure arg usages.
4190             ExprKind::Closure(
4191                 _, IsAsync::Async { closure_id: inner_closure_id, .. }, _,
4192                 ref fn_decl, ref body, _span,
4193             ) => {
4194                 let rib_kind = ClosureRibKind(expr.id);
4195                 self.ribs[ValueNS].push(Rib::new(rib_kind));
4196                 self.label_ribs.push(Rib::new(rib_kind));
4197                 // Resolve arguments:
4198                 let mut bindings_list = FxHashMap();
4199                 for argument in &fn_decl.inputs {
4200                     self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
4201                     self.visit_ty(&argument.ty);
4202                 }
4203                 // No need to resolve return type-- the outer closure return type is
4204                 // FunctionRetTy::Default
4205
4206                 // Now resolve the inner closure
4207                 {
4208                     let rib_kind = ClosureRibKind(inner_closure_id);
4209                     self.ribs[ValueNS].push(Rib::new(rib_kind));
4210                     self.label_ribs.push(Rib::new(rib_kind));
4211                     // No need to resolve arguments: the inner closure has none.
4212                     // Resolve the return type:
4213                     visit::walk_fn_ret_ty(self, &fn_decl.output);
4214                     // Resolve the body
4215                     self.visit_expr(body);
4216                     self.label_ribs.pop();
4217                     self.ribs[ValueNS].pop();
4218                 }
4219                 self.label_ribs.pop();
4220                 self.ribs[ValueNS].pop();
4221             }
4222             _ => {
4223                 visit::walk_expr(self, expr);
4224             }
4225         }
4226     }
4227
4228     fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &Expr) {
4229         match expr.node {
4230             ExprKind::Field(_, ident) => {
4231                 // FIXME(#6890): Even though you can't treat a method like a
4232                 // field, we need to add any trait methods we find that match
4233                 // the field name so that we can do some nice error reporting
4234                 // later on in typeck.
4235                 let traits = self.get_traits_containing_item(ident, ValueNS);
4236                 self.trait_map.insert(expr.id, traits);
4237             }
4238             ExprKind::MethodCall(ref segment, ..) => {
4239                 debug!("(recording candidate traits for expr) recording traits for {}",
4240                        expr.id);
4241                 let traits = self.get_traits_containing_item(segment.ident, ValueNS);
4242                 self.trait_map.insert(expr.id, traits);
4243             }
4244             _ => {
4245                 // Nothing to do.
4246             }
4247         }
4248     }
4249
4250     fn get_traits_containing_item(&mut self, mut ident: Ident, ns: Namespace)
4251                                   -> Vec<TraitCandidate> {
4252         debug!("(getting traits containing item) looking for '{}'", ident.name);
4253
4254         let mut found_traits = Vec::new();
4255         // Look for the current trait.
4256         if let Some((module, _)) = self.current_trait_ref {
4257             if self.resolve_ident_in_module(
4258                 ModuleOrUniformRoot::Module(module),
4259                 ident,
4260                 ns,
4261                 false,
4262                 module.span,
4263             ).is_ok() {
4264                 let def_id = module.def_id().unwrap();
4265                 found_traits.push(TraitCandidate { def_id: def_id, import_id: None });
4266             }
4267         }
4268
4269         ident.span = ident.span.modern();
4270         let mut search_module = self.current_module;
4271         loop {
4272             self.get_traits_in_module_containing_item(ident, ns, search_module, &mut found_traits);
4273             search_module = unwrap_or!(
4274                 self.hygienic_lexical_parent(search_module, &mut ident.span), break
4275             );
4276         }
4277
4278         if let Some(prelude) = self.prelude {
4279             if !search_module.no_implicit_prelude {
4280                 self.get_traits_in_module_containing_item(ident, ns, prelude, &mut found_traits);
4281             }
4282         }
4283
4284         found_traits
4285     }
4286
4287     fn get_traits_in_module_containing_item(&mut self,
4288                                             ident: Ident,
4289                                             ns: Namespace,
4290                                             module: Module<'a>,
4291                                             found_traits: &mut Vec<TraitCandidate>) {
4292         assert!(ns == TypeNS || ns == ValueNS);
4293         let mut traits = module.traits.borrow_mut();
4294         if traits.is_none() {
4295             let mut collected_traits = Vec::new();
4296             module.for_each_child(|name, ns, binding| {
4297                 if ns != TypeNS { return }
4298                 if let Def::Trait(_) = binding.def() {
4299                     collected_traits.push((name, binding));
4300                 }
4301             });
4302             *traits = Some(collected_traits.into_boxed_slice());
4303         }
4304
4305         for &(trait_name, binding) in traits.as_ref().unwrap().iter() {
4306             let module = binding.module().unwrap();
4307             let mut ident = ident;
4308             if ident.span.glob_adjust(module.expansion, binding.span.ctxt().modern()).is_none() {
4309                 continue
4310             }
4311             if self.resolve_ident_in_module_unadjusted(
4312                 ModuleOrUniformRoot::Module(module),
4313                 ident,
4314                 ns,
4315                 false,
4316                 false,
4317                 module.span,
4318             ).is_ok() {
4319                 let import_id = match binding.kind {
4320                     NameBindingKind::Import { directive, .. } => {
4321                         self.maybe_unused_trait_imports.insert(directive.id);
4322                         self.add_to_glob_map(directive.id, trait_name);
4323                         Some(directive.id)
4324                     }
4325                     _ => None,
4326                 };
4327                 let trait_def_id = module.def_id().unwrap();
4328                 found_traits.push(TraitCandidate { def_id: trait_def_id, import_id: import_id });
4329             }
4330         }
4331     }
4332
4333     fn lookup_import_candidates_from_module<FilterFn>(&mut self,
4334                                           lookup_name: Name,
4335                                           namespace: Namespace,
4336                                           start_module: &'a ModuleData<'a>,
4337                                           crate_name: Ident,
4338                                           filter_fn: FilterFn)
4339                                           -> Vec<ImportSuggestion>
4340         where FilterFn: Fn(Def) -> bool
4341     {
4342         let mut candidates = Vec::new();
4343         let mut worklist = Vec::new();
4344         let mut seen_modules = FxHashSet();
4345         let not_local_module = crate_name != keywords::Crate.ident();
4346         worklist.push((start_module, Vec::<ast::PathSegment>::new(), not_local_module));
4347
4348         while let Some((in_module,
4349                         path_segments,
4350                         in_module_is_extern)) = worklist.pop() {
4351             self.populate_module_if_necessary(in_module);
4352
4353             // We have to visit module children in deterministic order to avoid
4354             // instabilities in reported imports (#43552).
4355             in_module.for_each_child_stable(|ident, ns, name_binding| {
4356                 // avoid imports entirely
4357                 if name_binding.is_import() && !name_binding.is_extern_crate() { return; }
4358                 // avoid non-importable candidates as well
4359                 if !name_binding.is_importable() { return; }
4360
4361                 // collect results based on the filter function
4362                 if ident.name == lookup_name && ns == namespace {
4363                     if filter_fn(name_binding.def()) {
4364                         // create the path
4365                         let mut segms = path_segments.clone();
4366                         if self.session.rust_2018() {
4367                             // crate-local absolute paths start with `crate::` in edition 2018
4368                             // FIXME: may also be stabilized for Rust 2015 (Issues #45477, #44660)
4369                             segms.insert(
4370                                 0, ast::PathSegment::from_ident(crate_name)
4371                             );
4372                         }
4373
4374                         segms.push(ast::PathSegment::from_ident(ident));
4375                         let path = Path {
4376                             span: name_binding.span,
4377                             segments: segms,
4378                         };
4379                         // the entity is accessible in the following cases:
4380                         // 1. if it's defined in the same crate, it's always
4381                         // accessible (since private entities can be made public)
4382                         // 2. if it's defined in another crate, it's accessible
4383                         // only if both the module is public and the entity is
4384                         // declared as public (due to pruning, we don't explore
4385                         // outside crate private modules => no need to check this)
4386                         if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
4387                             candidates.push(ImportSuggestion { path: path });
4388                         }
4389                     }
4390                 }
4391
4392                 // collect submodules to explore
4393                 if let Some(module) = name_binding.module() {
4394                     // form the path
4395                     let mut path_segments = path_segments.clone();
4396                     path_segments.push(ast::PathSegment::from_ident(ident));
4397
4398                     let is_extern_crate_that_also_appears_in_prelude =
4399                         name_binding.is_extern_crate() &&
4400                         self.session.rust_2018();
4401
4402                     let is_visible_to_user =
4403                         !in_module_is_extern || name_binding.vis == ty::Visibility::Public;
4404
4405                     if !is_extern_crate_that_also_appears_in_prelude && is_visible_to_user {
4406                         // add the module to the lookup
4407                         let is_extern = in_module_is_extern || name_binding.is_extern_crate();
4408                         if seen_modules.insert(module.def_id().unwrap()) {
4409                             worklist.push((module, path_segments, is_extern));
4410                         }
4411                     }
4412                 }
4413             })
4414         }
4415
4416         candidates
4417     }
4418
4419     /// When name resolution fails, this method can be used to look up candidate
4420     /// entities with the expected name. It allows filtering them using the
4421     /// supplied predicate (which should be used to only accept the types of
4422     /// definitions expected e.g. traits). The lookup spans across all crates.
4423     ///
4424     /// NOTE: The method does not look into imports, but this is not a problem,
4425     /// since we report the definitions (thus, the de-aliased imports).
4426     fn lookup_import_candidates<FilterFn>(&mut self,
4427                                           lookup_name: Name,
4428                                           namespace: Namespace,
4429                                           filter_fn: FilterFn)
4430                                           -> Vec<ImportSuggestion>
4431         where FilterFn: Fn(Def) -> bool
4432     {
4433         let mut suggestions = vec![];
4434
4435         suggestions.extend(
4436             self.lookup_import_candidates_from_module(
4437                 lookup_name, namespace, self.graph_root, keywords::Crate.ident(), &filter_fn
4438             )
4439         );
4440
4441         if self.session.rust_2018() {
4442             for &name in &self.session.extern_prelude {
4443                 let ident = Ident::with_empty_ctxt(name);
4444                 match self.crate_loader.maybe_process_path_extern(name, ident.span) {
4445                     Some(crate_id) => {
4446                         let crate_root = self.get_module(DefId {
4447                             krate: crate_id,
4448                             index: CRATE_DEF_INDEX,
4449                         });
4450                         self.populate_module_if_necessary(&crate_root);
4451
4452                         suggestions.extend(
4453                             self.lookup_import_candidates_from_module(
4454                                 lookup_name, namespace, crate_root, ident, &filter_fn
4455                             )
4456                         );
4457                     }
4458                     None => {}
4459                 }
4460             }
4461         }
4462
4463         suggestions
4464     }
4465
4466     fn find_module(&mut self,
4467                    module_def: Def)
4468                    -> Option<(Module<'a>, ImportSuggestion)>
4469     {
4470         let mut result = None;
4471         let mut worklist = Vec::new();
4472         let mut seen_modules = FxHashSet();
4473         worklist.push((self.graph_root, Vec::new()));
4474
4475         while let Some((in_module, path_segments)) = worklist.pop() {
4476             // abort if the module is already found
4477             if result.is_some() { break; }
4478
4479             self.populate_module_if_necessary(in_module);
4480
4481             in_module.for_each_child_stable(|ident, _, name_binding| {
4482                 // abort if the module is already found or if name_binding is private external
4483                 if result.is_some() || !name_binding.vis.is_visible_locally() {
4484                     return
4485                 }
4486                 if let Some(module) = name_binding.module() {
4487                     // form the path
4488                     let mut path_segments = path_segments.clone();
4489                     path_segments.push(ast::PathSegment::from_ident(ident));
4490                     if module.def() == Some(module_def) {
4491                         let path = Path {
4492                             span: name_binding.span,
4493                             segments: path_segments,
4494                         };
4495                         result = Some((module, ImportSuggestion { path: path }));
4496                     } else {
4497                         // add the module to the lookup
4498                         if seen_modules.insert(module.def_id().unwrap()) {
4499                             worklist.push((module, path_segments));
4500                         }
4501                     }
4502                 }
4503             });
4504         }
4505
4506         result
4507     }
4508
4509     fn collect_enum_variants(&mut self, enum_def: Def) -> Option<Vec<Path>> {
4510         if let Def::Enum(..) = enum_def {} else {
4511             panic!("Non-enum def passed to collect_enum_variants: {:?}", enum_def)
4512         }
4513
4514         self.find_module(enum_def).map(|(enum_module, enum_import_suggestion)| {
4515             self.populate_module_if_necessary(enum_module);
4516
4517             let mut variants = Vec::new();
4518             enum_module.for_each_child_stable(|ident, _, name_binding| {
4519                 if let Def::Variant(..) = name_binding.def() {
4520                     let mut segms = enum_import_suggestion.path.segments.clone();
4521                     segms.push(ast::PathSegment::from_ident(ident));
4522                     variants.push(Path {
4523                         span: name_binding.span,
4524                         segments: segms,
4525                     });
4526                 }
4527             });
4528             variants
4529         })
4530     }
4531
4532     fn record_def(&mut self, node_id: NodeId, resolution: PathResolution) {
4533         debug!("(recording def) recording {:?} for {}", resolution, node_id);
4534         if let Some(prev_res) = self.def_map.insert(node_id, resolution) {
4535             panic!("path resolved multiple times ({:?} before, {:?} now)", prev_res, resolution);
4536         }
4537     }
4538
4539     fn resolve_visibility(&mut self, vis: &ast::Visibility) -> ty::Visibility {
4540         match vis.node {
4541             ast::VisibilityKind::Public => ty::Visibility::Public,
4542             ast::VisibilityKind::Crate(..) => {
4543                 ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX))
4544             }
4545             ast::VisibilityKind::Inherited => {
4546                 ty::Visibility::Restricted(self.current_module.normal_ancestor_id)
4547             }
4548             ast::VisibilityKind::Restricted { ref path, id, .. } => {
4549                 // Visibilities are resolved as global by default, add starting root segment.
4550                 let segments = path.make_root().iter().chain(path.segments.iter())
4551                     .map(|seg| seg.ident)
4552                     .collect::<Vec<_>>();
4553                 let def = self.smart_resolve_path_fragment(
4554                     id,
4555                     None,
4556                     &segments,
4557                     path.span,
4558                     PathSource::Visibility,
4559                     CrateLint::SimplePath(id),
4560                 ).base_def();
4561                 if def == Def::Err {
4562                     ty::Visibility::Public
4563                 } else {
4564                     let vis = ty::Visibility::Restricted(def.def_id());
4565                     if self.is_accessible(vis) {
4566                         vis
4567                     } else {
4568                         self.session.span_err(path.span, "visibilities can only be restricted \
4569                                                           to ancestor modules");
4570                         ty::Visibility::Public
4571                     }
4572                 }
4573             }
4574         }
4575     }
4576
4577     fn is_accessible(&self, vis: ty::Visibility) -> bool {
4578         vis.is_accessible_from(self.current_module.normal_ancestor_id, self)
4579     }
4580
4581     fn is_accessible_from(&self, vis: ty::Visibility, module: Module<'a>) -> bool {
4582         vis.is_accessible_from(module.normal_ancestor_id, self)
4583     }
4584
4585     fn report_ambiguity_error(&self, ident: Ident, b1: &NameBinding, b2: &NameBinding) {
4586         let participle = |is_import: bool| if is_import { "imported" } else { "defined" };
4587         let msg1 =
4588             format!("`{}` could refer to the name {} here", ident, participle(b1.is_import()));
4589         let msg2 =
4590             format!("`{}` could also refer to the name {} here", ident, participle(b2.is_import()));
4591         let note = if b1.expansion != Mark::root() {
4592             Some(if let Def::Macro(..) = b1.def() {
4593                 format!("macro-expanded {} do not shadow",
4594                         if b1.is_import() { "macro imports" } else { "macros" })
4595             } else {
4596                 format!("macro-expanded {} do not shadow when used in a macro invocation path",
4597                         if b1.is_import() { "imports" } else { "items" })
4598             })
4599         } else if b1.is_glob_import() {
4600             Some(format!("consider adding an explicit import of `{}` to disambiguate", ident))
4601         } else {
4602             None
4603         };
4604
4605         let mut err = struct_span_err!(self.session, ident.span, E0659, "`{}` is ambiguous", ident);
4606         err.span_label(ident.span, "ambiguous name");
4607         err.span_note(b1.span, &msg1);
4608         match b2.def() {
4609             Def::Macro(..) if b2.span.is_dummy() =>
4610                 err.note(&format!("`{}` is also a builtin macro", ident)),
4611             _ => err.span_note(b2.span, &msg2),
4612         };
4613         if let Some(note) = note {
4614             err.note(&note);
4615         }
4616         err.emit();
4617     }
4618
4619     fn report_errors(&mut self, krate: &Crate) {
4620         self.report_with_use_injections(krate);
4621         let mut reported_spans = FxHashSet();
4622
4623         for &(span_use, span_def) in &self.macro_expanded_macro_export_errors {
4624             let msg = "macro-expanded `macro_export` macros from the current crate \
4625                        cannot be referred to by absolute paths";
4626             self.session.buffer_lint_with_diagnostic(
4627                 lint::builtin::MACRO_EXPANDED_MACRO_EXPORTS_ACCESSED_BY_ABSOLUTE_PATHS,
4628                 CRATE_NODE_ID, span_use, msg,
4629                 lint::builtin::BuiltinLintDiagnostics::
4630                     MacroExpandedMacroExportsAccessedByAbsolutePaths(span_def),
4631             );
4632         }
4633
4634         for &AmbiguityError { ident, b1, b2 } in &self.ambiguity_errors {
4635             if reported_spans.insert(ident.span) {
4636                 self.report_ambiguity_error(ident, b1, b2);
4637             }
4638         }
4639
4640         for &PrivacyError(span, name, binding) in &self.privacy_errors {
4641             if !reported_spans.insert(span) { continue }
4642             span_err!(self.session, span, E0603, "{} `{}` is private", binding.descr(), name);
4643         }
4644     }
4645
4646     fn report_with_use_injections(&mut self, krate: &Crate) {
4647         for UseError { mut err, candidates, node_id, better } in self.use_injections.drain(..) {
4648             let (span, found_use) = UsePlacementFinder::check(krate, node_id);
4649             if !candidates.is_empty() {
4650                 show_candidates(&mut err, span, &candidates, better, found_use);
4651             }
4652             err.emit();
4653         }
4654     }
4655
4656     fn report_conflict<'b>(&mut self,
4657                        parent: Module,
4658                        ident: Ident,
4659                        ns: Namespace,
4660                        new_binding: &NameBinding<'b>,
4661                        old_binding: &NameBinding<'b>) {
4662         // Error on the second of two conflicting names
4663         if old_binding.span.lo() > new_binding.span.lo() {
4664             return self.report_conflict(parent, ident, ns, old_binding, new_binding);
4665         }
4666
4667         let container = match parent.kind {
4668             ModuleKind::Def(Def::Mod(_), _) => "module",
4669             ModuleKind::Def(Def::Trait(_), _) => "trait",
4670             ModuleKind::Block(..) => "block",
4671             _ => "enum",
4672         };
4673
4674         let old_noun = match old_binding.is_import() {
4675             true => "import",
4676             false => "definition",
4677         };
4678
4679         let new_participle = match new_binding.is_import() {
4680             true => "imported",
4681             false => "defined",
4682         };
4683
4684         let (name, span) = (ident.name, self.session.source_map().def_span(new_binding.span));
4685
4686         if let Some(s) = self.name_already_seen.get(&name) {
4687             if s == &span {
4688                 return;
4689             }
4690         }
4691
4692         let old_kind = match (ns, old_binding.module()) {
4693             (ValueNS, _) => "value",
4694             (MacroNS, _) => "macro",
4695             (TypeNS, _) if old_binding.is_extern_crate() => "extern crate",
4696             (TypeNS, Some(module)) if module.is_normal() => "module",
4697             (TypeNS, Some(module)) if module.is_trait() => "trait",
4698             (TypeNS, _) => "type",
4699         };
4700
4701         let msg = format!("the name `{}` is defined multiple times", name);
4702
4703         let mut err = match (old_binding.is_extern_crate(), new_binding.is_extern_crate()) {
4704             (true, true) => struct_span_err!(self.session, span, E0259, "{}", msg),
4705             (true, _) | (_, true) => match new_binding.is_import() && old_binding.is_import() {
4706                 true => struct_span_err!(self.session, span, E0254, "{}", msg),
4707                 false => struct_span_err!(self.session, span, E0260, "{}", msg),
4708             },
4709             _ => match (old_binding.is_import(), new_binding.is_import()) {
4710                 (false, false) => struct_span_err!(self.session, span, E0428, "{}", msg),
4711                 (true, true) => struct_span_err!(self.session, span, E0252, "{}", msg),
4712                 _ => struct_span_err!(self.session, span, E0255, "{}", msg),
4713             },
4714         };
4715
4716         err.note(&format!("`{}` must be defined only once in the {} namespace of this {}",
4717                           name,
4718                           ns.descr(),
4719                           container));
4720
4721         err.span_label(span, format!("`{}` re{} here", name, new_participle));
4722         if !old_binding.span.is_dummy() {
4723             err.span_label(self.session.source_map().def_span(old_binding.span),
4724                            format!("previous {} of the {} `{}` here", old_noun, old_kind, name));
4725         }
4726
4727         // See https://github.com/rust-lang/rust/issues/32354
4728         if old_binding.is_import() || new_binding.is_import() {
4729             let binding = if new_binding.is_import() && !new_binding.span.is_dummy() {
4730                 new_binding
4731             } else {
4732                 old_binding
4733             };
4734
4735             let cm = self.session.source_map();
4736             let rename_msg = "You can use `as` to change the binding name of the import";
4737
4738             if let (Ok(snippet), false) = (cm.span_to_snippet(binding.span),
4739                                            binding.is_renamed_extern_crate()) {
4740                 let suggested_name = if name.as_str().chars().next().unwrap().is_uppercase() {
4741                     format!("Other{}", name)
4742                 } else {
4743                     format!("other_{}", name)
4744                 };
4745
4746                 err.span_suggestion_with_applicability(
4747                     binding.span,
4748                     rename_msg,
4749                     if snippet.ends_with(';') {
4750                         format!("{} as {};", &snippet[..snippet.len() - 1], suggested_name)
4751                     } else {
4752                         format!("{} as {}", snippet, suggested_name)
4753                     },
4754                     Applicability::MachineApplicable,
4755                 );
4756             } else {
4757                 err.span_label(binding.span, rename_msg);
4758             }
4759         }
4760
4761         err.emit();
4762         self.name_already_seen.insert(name, span);
4763     }
4764 }
4765
4766 fn is_self_type(path: &[Ident], namespace: Namespace) -> bool {
4767     namespace == TypeNS && path.len() == 1 && path[0].name == keywords::SelfType.name()
4768 }
4769
4770 fn is_self_value(path: &[Ident], namespace: Namespace) -> bool {
4771     namespace == ValueNS && path.len() == 1 && path[0].name == keywords::SelfValue.name()
4772 }
4773
4774 fn names_to_string(idents: &[Ident]) -> String {
4775     let mut result = String::new();
4776     for (i, ident) in idents.iter()
4777                             .filter(|ident| ident.name != keywords::CrateRoot.name())
4778                             .enumerate() {
4779         if i > 0 {
4780             result.push_str("::");
4781         }
4782         result.push_str(&ident.as_str());
4783     }
4784     result
4785 }
4786
4787 fn path_names_to_string(path: &Path) -> String {
4788     names_to_string(&path.segments.iter()
4789                         .map(|seg| seg.ident)
4790                         .collect::<Vec<_>>())
4791 }
4792
4793 /// Get the path for an enum and the variant from an `ImportSuggestion` for an enum variant.
4794 fn import_candidate_to_paths(suggestion: &ImportSuggestion) -> (Span, String, String) {
4795     let variant_path = &suggestion.path;
4796     let variant_path_string = path_names_to_string(variant_path);
4797
4798     let path_len = suggestion.path.segments.len();
4799     let enum_path = ast::Path {
4800         span: suggestion.path.span,
4801         segments: suggestion.path.segments[0..path_len - 1].to_vec(),
4802     };
4803     let enum_path_string = path_names_to_string(&enum_path);
4804
4805     (suggestion.path.span, variant_path_string, enum_path_string)
4806 }
4807
4808
4809 /// When an entity with a given name is not available in scope, we search for
4810 /// entities with that name in all crates. This method allows outputting the
4811 /// results of this search in a programmer-friendly way
4812 fn show_candidates(err: &mut DiagnosticBuilder,
4813                    // This is `None` if all placement locations are inside expansions
4814                    span: Option<Span>,
4815                    candidates: &[ImportSuggestion],
4816                    better: bool,
4817                    found_use: bool) {
4818
4819     // we want consistent results across executions, but candidates are produced
4820     // by iterating through a hash map, so make sure they are ordered:
4821     let mut path_strings: Vec<_> =
4822         candidates.into_iter().map(|c| path_names_to_string(&c.path)).collect();
4823     path_strings.sort();
4824
4825     let better = if better { "better " } else { "" };
4826     let msg_diff = match path_strings.len() {
4827         1 => " is found in another module, you can import it",
4828         _ => "s are found in other modules, you can import them",
4829     };
4830     let msg = format!("possible {}candidate{} into scope", better, msg_diff);
4831
4832     if let Some(span) = span {
4833         for candidate in &mut path_strings {
4834             // produce an additional newline to separate the new use statement
4835             // from the directly following item.
4836             let additional_newline = if found_use {
4837                 ""
4838             } else {
4839                 "\n"
4840             };
4841             *candidate = format!("use {};\n{}", candidate, additional_newline);
4842         }
4843
4844         err.span_suggestions_with_applicability(
4845             span,
4846             &msg,
4847             path_strings,
4848             Applicability::Unspecified,
4849         );
4850     } else {
4851         let mut msg = msg;
4852         msg.push(':');
4853         for candidate in path_strings {
4854             msg.push('\n');
4855             msg.push_str(&candidate);
4856         }
4857     }
4858 }
4859
4860 /// A somewhat inefficient routine to obtain the name of a module.
4861 fn module_to_string(module: Module) -> Option<String> {
4862     let mut names = Vec::new();
4863
4864     fn collect_mod(names: &mut Vec<Ident>, module: Module) {
4865         if let ModuleKind::Def(_, name) = module.kind {
4866             if let Some(parent) = module.parent {
4867                 names.push(Ident::with_empty_ctxt(name));
4868                 collect_mod(names, parent);
4869             }
4870         } else {
4871             // danger, shouldn't be ident?
4872             names.push(Ident::from_str("<opaque>"));
4873             collect_mod(names, module.parent.unwrap());
4874         }
4875     }
4876     collect_mod(&mut names, module);
4877
4878     if names.is_empty() {
4879         return None;
4880     }
4881     Some(names_to_string(&names.into_iter()
4882                         .rev()
4883                         .collect::<Vec<_>>()))
4884 }
4885
4886 fn err_path_resolution() -> PathResolution {
4887     PathResolution::new(Def::Err)
4888 }
4889
4890 #[derive(PartialEq,Copy, Clone)]
4891 pub enum MakeGlobMap {
4892     Yes,
4893     No,
4894 }
4895
4896 #[derive(Copy, Clone, Debug)]
4897 enum CrateLint {
4898     /// Do not issue the lint
4899     No,
4900
4901     /// This lint applies to some random path like `impl ::foo::Bar`
4902     /// or whatever. In this case, we can take the span of that path.
4903     SimplePath(NodeId),
4904
4905     /// This lint comes from a `use` statement. In this case, what we
4906     /// care about really is the *root* `use` statement; e.g., if we
4907     /// have nested things like `use a::{b, c}`, we care about the
4908     /// `use a` part.
4909     UsePath { root_id: NodeId, root_span: Span },
4910
4911     /// This is the "trait item" from a fully qualified path. For example,
4912     /// we might be resolving  `X::Y::Z` from a path like `<T as X::Y>::Z`.
4913     /// The `path_span` is the span of the to the trait itself (`X::Y`).
4914     QPathTrait { qpath_id: NodeId, qpath_span: Span },
4915 }
4916
4917 impl CrateLint {
4918     fn node_id(&self) -> Option<NodeId> {
4919         match *self {
4920             CrateLint::No => None,
4921             CrateLint::SimplePath(id) |
4922             CrateLint::UsePath { root_id: id, .. } |
4923             CrateLint::QPathTrait { qpath_id: id, .. } => Some(id),
4924         }
4925     }
4926 }
4927
4928 __build_diagnostic_array! { librustc_resolve, DIAGNOSTICS }