]> git.lizzy.rs Git - rust.git/blob - src/librustc_resolve/lib.rs
0f931d4374e59337a7e43c78ff7f1cc6f579b030
[rust.git] / src / librustc_resolve / lib.rs
1 // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 #![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
12       html_favicon_url = "https://doc.rust-lang.org/favicon.ico",
13       html_root_url = "https://doc.rust-lang.org/nightly/")]
14
15 #![feature(rustc_diagnostic_macros)]
16 #![feature(slice_sort_by_cached_key)]
17
18 #[macro_use]
19 extern crate log;
20 #[macro_use]
21 extern crate syntax;
22 extern crate syntax_pos;
23 extern crate rustc_errors as errors;
24 extern crate arena;
25 #[macro_use]
26 extern crate rustc;
27 extern crate rustc_data_structures;
28
29 use self::Namespace::*;
30 use self::TypeParameters::*;
31 use self::RibKind::*;
32
33 use rustc::hir::map::{Definitions, DefCollector};
34 use rustc::hir::{self, PrimTy, TyBool, TyChar, TyFloat, TyInt, TyUint, TyStr};
35 use rustc::middle::cstore::{CrateStore, CrateLoader};
36 use rustc::session::Session;
37 use rustc::lint;
38 use rustc::hir::def::*;
39 use rustc::hir::def_id::{CRATE_DEF_INDEX, LOCAL_CRATE, DefId};
40 use rustc::ty;
41 use rustc::hir::{Freevar, FreevarMap, TraitCandidate, TraitMap, GlobMap};
42 use rustc::util::nodemap::{NodeMap, NodeSet, FxHashMap, FxHashSet, DefIdMap};
43
44 use syntax::codemap::{BytePos, CodeMap};
45 use syntax::ext::hygiene::{Mark, MarkKind, SyntaxContext};
46 use syntax::ast::{self, Name, NodeId, Ident, FloatTy, IntTy, UintTy};
47 use syntax::ext::base::SyntaxExtension;
48 use syntax::ext::base::Determinacy::{self, Determined, Undetermined};
49 use syntax::ext::base::MacroKind;
50 use syntax::symbol::{Symbol, keywords};
51 use syntax::util::lev_distance::find_best_match_for_name;
52
53 use syntax::visit::{self, FnKind, Visitor};
54 use syntax::attr;
55 use syntax::ast::{Arm, BindingMode, Block, Crate, Expr, ExprKind};
56 use syntax::ast::{FnDecl, ForeignItem, ForeignItemKind, GenericParam, Generics};
57 use syntax::ast::{Item, ItemKind, ImplItem, ImplItemKind};
58 use syntax::ast::{Label, Local, Mutability, Pat, PatKind, Path};
59 use syntax::ast::{QSelf, TraitItemKind, TraitRef, Ty, TyKind};
60 use syntax::feature_gate::{feature_err, GateIssue};
61 use syntax::parse::token;
62 use syntax::ptr::P;
63
64 use syntax_pos::{Span, DUMMY_SP, MultiSpan};
65 use errors::{DiagnosticBuilder, DiagnosticId};
66
67 use std::cell::{Cell, RefCell};
68 use std::cmp;
69 use std::collections::BTreeSet;
70 use std::fmt;
71 use std::iter;
72 use std::mem::replace;
73 use rustc_data_structures::sync::Lrc;
74
75 use resolve_imports::{ImportDirective, ImportDirectiveSubclass, NameResolution, ImportResolver};
76 use macros::{InvocationData, LegacyBinding, LegacyScope, MacroBinding};
77
78 // NB: This module needs to be declared first so diagnostics are
79 // registered before they are used.
80 mod diagnostics;
81
82 mod macros;
83 mod check_unused;
84 mod build_reduced_graph;
85 mod resolve_imports;
86
87 /// A free importable items suggested in case of resolution failure.
88 struct ImportSuggestion {
89     path: Path,
90 }
91
92 /// A field or associated item from self type suggested in case of resolution failure.
93 enum AssocSuggestion {
94     Field,
95     MethodWithSelf,
96     AssocItem,
97 }
98
99 #[derive(Eq)]
100 struct BindingError {
101     name: Name,
102     origin: BTreeSet<Span>,
103     target: BTreeSet<Span>,
104 }
105
106 impl PartialOrd for BindingError {
107     fn partial_cmp(&self, other: &BindingError) -> Option<cmp::Ordering> {
108         Some(self.cmp(other))
109     }
110 }
111
112 impl PartialEq for BindingError {
113     fn eq(&self, other: &BindingError) -> bool {
114         self.name == other.name
115     }
116 }
117
118 impl Ord for BindingError {
119     fn cmp(&self, other: &BindingError) -> cmp::Ordering {
120         self.name.cmp(&other.name)
121     }
122 }
123
124 enum ResolutionError<'a> {
125     /// error E0401: can't use type parameters from outer function
126     TypeParametersFromOuterFunction(Def),
127     /// error E0403: the name is already used for a type parameter in this type parameter list
128     NameAlreadyUsedInTypeParameterList(Name, &'a Span),
129     /// error E0407: method is not a member of trait
130     MethodNotMemberOfTrait(Name, &'a str),
131     /// error E0437: type is not a member of trait
132     TypeNotMemberOfTrait(Name, &'a str),
133     /// error E0438: const is not a member of trait
134     ConstNotMemberOfTrait(Name, &'a str),
135     /// error E0408: variable `{}` is not bound in all patterns
136     VariableNotBoundInPattern(&'a BindingError),
137     /// error E0409: variable `{}` is bound in inconsistent ways within the same match arm
138     VariableBoundWithDifferentMode(Name, Span),
139     /// error E0415: identifier is bound more than once in this parameter list
140     IdentifierBoundMoreThanOnceInParameterList(&'a str),
141     /// error E0416: identifier is bound more than once in the same pattern
142     IdentifierBoundMoreThanOnceInSamePattern(&'a str),
143     /// error E0426: use of undeclared label
144     UndeclaredLabel(&'a str, Option<Name>),
145     /// error E0429: `self` imports are only allowed within a { } list
146     SelfImportsOnlyAllowedWithin,
147     /// error E0430: `self` import can only appear once in the list
148     SelfImportCanOnlyAppearOnceInTheList,
149     /// error E0431: `self` import can only appear in an import list with a non-empty prefix
150     SelfImportOnlyInImportListWithNonEmptyPrefix,
151     /// error E0432: unresolved import
152     UnresolvedImport(Option<(Span, &'a str, &'a str)>),
153     /// error E0433: failed to resolve
154     FailedToResolve(&'a str),
155     /// error E0434: can't capture dynamic environment in a fn item
156     CannotCaptureDynamicEnvironmentInFnItem,
157     /// error E0435: attempt to use a non-constant value in a constant
158     AttemptToUseNonConstantValueInConstant,
159     /// error E0530: X bindings cannot shadow Ys
160     BindingShadowsSomethingUnacceptable(&'a str, Name, &'a NameBinding<'a>),
161     /// error E0128: type parameters with a default cannot use forward declared identifiers
162     ForwardDeclaredTyParam,
163 }
164
165 /// Combines an error with provided span and emits it
166 ///
167 /// This takes the error provided, combines it with the span and any additional spans inside the
168 /// error and emits it.
169 fn resolve_error<'sess, 'a>(resolver: &'sess Resolver,
170                             span: Span,
171                             resolution_error: ResolutionError<'a>) {
172     resolve_struct_error(resolver, span, resolution_error).emit();
173 }
174
175 fn resolve_struct_error<'sess, 'a>(resolver: &'sess Resolver,
176                                    span: Span,
177                                    resolution_error: ResolutionError<'a>)
178                                    -> DiagnosticBuilder<'sess> {
179     match resolution_error {
180         ResolutionError::TypeParametersFromOuterFunction(outer_def) => {
181             let mut err = struct_span_err!(resolver.session,
182                                            span,
183                                            E0401,
184                                            "can't use type parameters from outer function");
185             err.span_label(span, "use of type variable from outer function");
186
187             let cm = resolver.session.codemap();
188             match outer_def {
189                 Def::SelfTy(_, maybe_impl_defid) => {
190                     if let Some(impl_span) = maybe_impl_defid.map_or(None,
191                             |def_id| resolver.definitions.opt_span(def_id)) {
192                         err.span_label(reduce_impl_span_to_impl_keyword(cm, impl_span),
193                                     "`Self` type implicitely declared here, on the `impl`");
194                     }
195                 },
196                 Def::TyParam(typaram_defid) => {
197                     if let Some(typaram_span) = resolver.definitions.opt_span(typaram_defid) {
198                         err.span_label(typaram_span, "type variable from outer function");
199                     }
200                 },
201                 Def::Mod(..) | Def::Struct(..) | Def::Union(..) | Def::Enum(..) | Def::Variant(..) |
202                 Def::Trait(..) | Def::TyAlias(..) | Def::TyForeign(..) | Def::TraitAlias(..) |
203                 Def::AssociatedTy(..) | Def::PrimTy(..) | Def::Fn(..) | Def::Const(..) |
204                 Def::Static(..) | Def::StructCtor(..) | Def::VariantCtor(..) | Def::Method(..) |
205                 Def::AssociatedConst(..) | Def::Local(..) | Def::Upvar(..) | Def::Label(..) |
206                 Def::Macro(..) | Def::GlobalAsm(..) | Def::Err =>
207                     bug!("TypeParametersFromOuterFunction should only be used with Def::SelfTy or \
208                          Def::TyParam")
209             }
210
211             // Try to retrieve the span of the function signature and generate a new message with
212             // a local type parameter
213             let sugg_msg = "try using a local type parameter instead";
214             if let Some((sugg_span, new_snippet)) = generate_local_type_param_snippet(cm, span) {
215                 // Suggest the modification to the user
216                 err.span_suggestion(sugg_span,
217                                     sugg_msg,
218                                     new_snippet);
219             } else if let Some(sp) = generate_fn_name_span(cm, span) {
220                 err.span_label(sp, "try adding a local type parameter in this method instead");
221             } else {
222                 err.help("try using a local type parameter instead");
223             }
224
225             err
226         }
227         ResolutionError::NameAlreadyUsedInTypeParameterList(name, first_use_span) => {
228              let mut err = struct_span_err!(resolver.session,
229                                             span,
230                                             E0403,
231                                             "the name `{}` is already used for a type parameter \
232                                             in this type parameter list",
233                                             name);
234              err.span_label(span, "already used");
235              err.span_label(first_use_span.clone(), format!("first use of `{}`", name));
236              err
237         }
238         ResolutionError::MethodNotMemberOfTrait(method, trait_) => {
239             let mut err = struct_span_err!(resolver.session,
240                                            span,
241                                            E0407,
242                                            "method `{}` is not a member of trait `{}`",
243                                            method,
244                                            trait_);
245             err.span_label(span, format!("not a member of trait `{}`", trait_));
246             err
247         }
248         ResolutionError::TypeNotMemberOfTrait(type_, trait_) => {
249             let mut err = struct_span_err!(resolver.session,
250                              span,
251                              E0437,
252                              "type `{}` is not a member of trait `{}`",
253                              type_,
254                              trait_);
255             err.span_label(span, format!("not a member of trait `{}`", trait_));
256             err
257         }
258         ResolutionError::ConstNotMemberOfTrait(const_, trait_) => {
259             let mut err = struct_span_err!(resolver.session,
260                              span,
261                              E0438,
262                              "const `{}` is not a member of trait `{}`",
263                              const_,
264                              trait_);
265             err.span_label(span, format!("not a member of trait `{}`", trait_));
266             err
267         }
268         ResolutionError::VariableNotBoundInPattern(binding_error) => {
269             let target_sp = binding_error.target.iter().map(|x| *x).collect::<Vec<_>>();
270             let msp = MultiSpan::from_spans(target_sp.clone());
271             let msg = format!("variable `{}` is not bound in all patterns", binding_error.name);
272             let mut err = resolver.session.struct_span_err_with_code(
273                 msp,
274                 &msg,
275                 DiagnosticId::Error("E0408".into()),
276             );
277             for sp in target_sp {
278                 err.span_label(sp, format!("pattern doesn't bind `{}`", binding_error.name));
279             }
280             let origin_sp = binding_error.origin.iter().map(|x| *x).collect::<Vec<_>>();
281             for sp in origin_sp {
282                 err.span_label(sp, "variable not in all patterns");
283             }
284             err
285         }
286         ResolutionError::VariableBoundWithDifferentMode(variable_name,
287                                                         first_binding_span) => {
288             let mut err = struct_span_err!(resolver.session,
289                              span,
290                              E0409,
291                              "variable `{}` is bound in inconsistent \
292                              ways within the same match arm",
293                              variable_name);
294             err.span_label(span, "bound in different ways");
295             err.span_label(first_binding_span, "first binding");
296             err
297         }
298         ResolutionError::IdentifierBoundMoreThanOnceInParameterList(identifier) => {
299             let mut err = struct_span_err!(resolver.session,
300                              span,
301                              E0415,
302                              "identifier `{}` is bound more than once in this parameter list",
303                              identifier);
304             err.span_label(span, "used as parameter more than once");
305             err
306         }
307         ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(identifier) => {
308             let mut err = struct_span_err!(resolver.session,
309                              span,
310                              E0416,
311                              "identifier `{}` is bound more than once in the same pattern",
312                              identifier);
313             err.span_label(span, "used in a pattern more than once");
314             err
315         }
316         ResolutionError::UndeclaredLabel(name, lev_candidate) => {
317             let mut err = struct_span_err!(resolver.session,
318                                            span,
319                                            E0426,
320                                            "use of undeclared label `{}`",
321                                            name);
322             if let Some(lev_candidate) = lev_candidate {
323                 err.span_label(span, format!("did you mean `{}`?", lev_candidate));
324             } else {
325                 err.span_label(span, format!("undeclared label `{}`", name));
326             }
327             err
328         }
329         ResolutionError::SelfImportsOnlyAllowedWithin => {
330             struct_span_err!(resolver.session,
331                              span,
332                              E0429,
333                              "{}",
334                              "`self` imports are only allowed within a { } list")
335         }
336         ResolutionError::SelfImportCanOnlyAppearOnceInTheList => {
337             let mut err = struct_span_err!(resolver.session, span, E0430,
338                                            "`self` import can only appear once in an import list");
339             err.span_label(span, "can only appear once in an import list");
340             err
341         }
342         ResolutionError::SelfImportOnlyInImportListWithNonEmptyPrefix => {
343             let mut err = struct_span_err!(resolver.session, span, E0431,
344                                            "`self` import can only appear in an import list with \
345                                             a non-empty prefix");
346             err.span_label(span, "can only appear in an import list with a non-empty prefix");
347             err
348         }
349         ResolutionError::UnresolvedImport(name) => {
350             let (span, msg) = match name {
351                 Some((sp, n, _)) => (sp, format!("unresolved import `{}`", n)),
352                 None => (span, "unresolved import".to_owned()),
353             };
354             let mut err = struct_span_err!(resolver.session, span, E0432, "{}", msg);
355             if let Some((_, _, p)) = name {
356                 err.span_label(span, p);
357             }
358             err
359         }
360         ResolutionError::FailedToResolve(msg) => {
361             let mut err = struct_span_err!(resolver.session, span, E0433,
362                                            "failed to resolve. {}", msg);
363             err.span_label(span, msg);
364             err
365         }
366         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem => {
367             let mut err = struct_span_err!(resolver.session,
368                                            span,
369                                            E0434,
370                                            "{}",
371                                            "can't capture dynamic environment in a fn item");
372             err.help("use the `|| { ... }` closure form instead");
373             err
374         }
375         ResolutionError::AttemptToUseNonConstantValueInConstant => {
376             let mut err = struct_span_err!(resolver.session, span, E0435,
377                                            "attempt to use a non-constant value in a constant");
378             err.span_label(span, "non-constant value");
379             err
380         }
381         ResolutionError::BindingShadowsSomethingUnacceptable(what_binding, name, binding) => {
382             let shadows_what = PathResolution::new(binding.def()).kind_name();
383             let mut err = struct_span_err!(resolver.session,
384                                            span,
385                                            E0530,
386                                            "{}s cannot shadow {}s", what_binding, shadows_what);
387             err.span_label(span, format!("cannot be named the same as a {}", shadows_what));
388             let participle = if binding.is_import() { "imported" } else { "defined" };
389             let msg = format!("a {} `{}` is {} here", shadows_what, name, participle);
390             err.span_label(binding.span, msg);
391             err
392         }
393         ResolutionError::ForwardDeclaredTyParam => {
394             let mut err = struct_span_err!(resolver.session, span, E0128,
395                                            "type parameters with a default cannot use \
396                                             forward declared identifiers");
397             err.span_label(span, format!("defaulted type parameters cannot be forward declared"));
398             err
399         }
400     }
401 }
402
403 /// Adjust the impl span so that just the `impl` keyword is taken by removing
404 /// everything after `<` (`"impl<T> Iterator for A<T> {}" -> "impl"`) and
405 /// everything after the first whitespace (`"impl Iterator for A" -> "impl"`)
406 ///
407 /// Attention: The method used is very fragile since it essentially duplicates the work of the
408 /// parser. If you need to use this function or something similar, please consider updating the
409 /// codemap functions and this function to something more robust.
410 fn reduce_impl_span_to_impl_keyword(cm: &CodeMap, impl_span: Span) -> Span {
411     let impl_span = cm.span_until_char(impl_span, '<');
412     let impl_span = cm.span_until_whitespace(impl_span);
413     impl_span
414 }
415
416 fn generate_fn_name_span(cm: &CodeMap, span: Span) -> Option<Span> {
417     let prev_span = cm.span_extend_to_prev_str(span, "fn", true);
418     cm.span_to_snippet(prev_span).map(|snippet| {
419         let len = snippet.find(|c: char| !c.is_alphanumeric() && c != '_')
420             .expect("no label after fn");
421         prev_span.with_hi(BytePos(prev_span.lo().0 + len as u32))
422     }).ok()
423 }
424
425 /// Take the span of a type parameter in a function signature and try to generate a span for the
426 /// function name (with generics) and a new snippet for this span with the pointed type parameter as
427 /// a new local type parameter.
428 ///
429 /// For instance:
430 /// ```rust,ignore (pseudo-Rust)
431 /// // Given span
432 /// fn my_function(param: T)
433 /// //                    ^ Original span
434 ///
435 /// // Result
436 /// fn my_function(param: T)
437 /// // ^^^^^^^^^^^ Generated span with snippet `my_function<T>`
438 /// ```
439 ///
440 /// Attention: The method used is very fragile since it essentially duplicates the work of the
441 /// parser. If you need to use this function or something similar, please consider updating the
442 /// codemap functions and this function to something more robust.
443 fn generate_local_type_param_snippet(cm: &CodeMap, span: Span) -> Option<(Span, String)> {
444     // Try to extend the span to the previous "fn" keyword to retrieve the function
445     // signature
446     let sugg_span = cm.span_extend_to_prev_str(span, "fn", false);
447     if sugg_span != span {
448         if let Ok(snippet) = cm.span_to_snippet(sugg_span) {
449             // Consume the function name
450             let mut offset = snippet.find(|c: char| !c.is_alphanumeric() && c != '_')
451                 .expect("no label after fn");
452
453             // Consume the generics part of the function signature
454             let mut bracket_counter = 0;
455             let mut last_char = None;
456             for c in snippet[offset..].chars() {
457                 match c {
458                     '<' => bracket_counter += 1,
459                     '>' => bracket_counter -= 1,
460                     '(' => if bracket_counter == 0 { break; }
461                     _ => {}
462                 }
463                 offset += c.len_utf8();
464                 last_char = Some(c);
465             }
466
467             // Adjust the suggestion span to encompass the function name with its generics
468             let sugg_span = sugg_span.with_hi(BytePos(sugg_span.lo().0 + offset as u32));
469
470             // Prepare the new suggested snippet to append the type parameter that triggered
471             // the error in the generics of the function signature
472             let mut new_snippet = if last_char == Some('>') {
473                 format!("{}, ", &snippet[..(offset - '>'.len_utf8())])
474             } else {
475                 format!("{}<", &snippet[..offset])
476             };
477             new_snippet.push_str(&cm.span_to_snippet(span).unwrap_or("T".to_string()));
478             new_snippet.push('>');
479
480             return Some((sugg_span, new_snippet));
481         }
482     }
483
484     None
485 }
486
487 #[derive(Copy, Clone, Debug)]
488 struct BindingInfo {
489     span: Span,
490     binding_mode: BindingMode,
491 }
492
493 /// Map from the name in a pattern to its binding mode.
494 type BindingMap = FxHashMap<Ident, BindingInfo>;
495
496 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
497 enum PatternSource {
498     Match,
499     IfLet,
500     WhileLet,
501     Let,
502     For,
503     FnParam,
504 }
505
506 impl PatternSource {
507     fn descr(self) -> &'static str {
508         match self {
509             PatternSource::Match => "match binding",
510             PatternSource::IfLet => "if let binding",
511             PatternSource::WhileLet => "while let binding",
512             PatternSource::Let => "let binding",
513             PatternSource::For => "for binding",
514             PatternSource::FnParam => "function parameter",
515         }
516     }
517 }
518
519 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
520 enum AliasPossibility {
521     No,
522     Maybe,
523 }
524
525 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
526 enum PathSource<'a> {
527     // Type paths `Path`.
528     Type,
529     // Trait paths in bounds or impls.
530     Trait(AliasPossibility),
531     // Expression paths `path`, with optional parent context.
532     Expr(Option<&'a Expr>),
533     // Paths in path patterns `Path`.
534     Pat,
535     // Paths in struct expressions and patterns `Path { .. }`.
536     Struct,
537     // Paths in tuple struct patterns `Path(..)`.
538     TupleStruct,
539     // `m::A::B` in `<T as m::A>::B::C`.
540     TraitItem(Namespace),
541     // Path in `pub(path)`
542     Visibility,
543     // Path in `use a::b::{...};`
544     ImportPrefix,
545 }
546
547 impl<'a> PathSource<'a> {
548     fn namespace(self) -> Namespace {
549         match self {
550             PathSource::Type | PathSource::Trait(_) | PathSource::Struct |
551             PathSource::Visibility | PathSource::ImportPrefix => TypeNS,
552             PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct => ValueNS,
553             PathSource::TraitItem(ns) => ns,
554         }
555     }
556
557     fn global_by_default(self) -> bool {
558         match self {
559             PathSource::Visibility | PathSource::ImportPrefix => true,
560             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
561             PathSource::Struct | PathSource::TupleStruct |
562             PathSource::Trait(_) | PathSource::TraitItem(..) => false,
563         }
564     }
565
566     fn defer_to_typeck(self) -> bool {
567         match self {
568             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
569             PathSource::Struct | PathSource::TupleStruct => true,
570             PathSource::Trait(_) | PathSource::TraitItem(..) |
571             PathSource::Visibility | PathSource::ImportPrefix => false,
572         }
573     }
574
575     fn descr_expected(self) -> &'static str {
576         match self {
577             PathSource::Type => "type",
578             PathSource::Trait(_) => "trait",
579             PathSource::Pat => "unit struct/variant or constant",
580             PathSource::Struct => "struct, variant or union type",
581             PathSource::TupleStruct => "tuple struct/variant",
582             PathSource::Visibility => "module",
583             PathSource::ImportPrefix => "module or enum",
584             PathSource::TraitItem(ns) => match ns {
585                 TypeNS => "associated type",
586                 ValueNS => "method or associated constant",
587                 MacroNS => bug!("associated macro"),
588             },
589             PathSource::Expr(parent) => match parent.map(|p| &p.node) {
590                 // "function" here means "anything callable" rather than `Def::Fn`,
591                 // this is not precise but usually more helpful than just "value".
592                 Some(&ExprKind::Call(..)) => "function",
593                 _ => "value",
594             },
595         }
596     }
597
598     fn is_expected(self, def: Def) -> bool {
599         match self {
600             PathSource::Type => match def {
601                 Def::Struct(..) | Def::Union(..) | Def::Enum(..) |
602                 Def::Trait(..) | Def::TyAlias(..) | Def::AssociatedTy(..) |
603                 Def::PrimTy(..) | Def::TyParam(..) | Def::SelfTy(..) |
604                 Def::TyForeign(..) => true,
605                 _ => false,
606             },
607             PathSource::Trait(AliasPossibility::No) => match def {
608                 Def::Trait(..) => true,
609                 _ => false,
610             },
611             PathSource::Trait(AliasPossibility::Maybe) => match def {
612                 Def::Trait(..) => true,
613                 Def::TraitAlias(..) => true,
614                 _ => false,
615             },
616             PathSource::Expr(..) => match def {
617                 Def::StructCtor(_, CtorKind::Const) | Def::StructCtor(_, CtorKind::Fn) |
618                 Def::VariantCtor(_, CtorKind::Const) | Def::VariantCtor(_, CtorKind::Fn) |
619                 Def::Const(..) | Def::Static(..) | Def::Local(..) | Def::Upvar(..) |
620                 Def::Fn(..) | Def::Method(..) | Def::AssociatedConst(..) => true,
621                 _ => false,
622             },
623             PathSource::Pat => match def {
624                 Def::StructCtor(_, CtorKind::Const) |
625                 Def::VariantCtor(_, CtorKind::Const) |
626                 Def::Const(..) | Def::AssociatedConst(..) => true,
627                 _ => false,
628             },
629             PathSource::TupleStruct => match def {
630                 Def::StructCtor(_, CtorKind::Fn) | Def::VariantCtor(_, CtorKind::Fn) => true,
631                 _ => false,
632             },
633             PathSource::Struct => match def {
634                 Def::Struct(..) | Def::Union(..) | Def::Variant(..) |
635                 Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => true,
636                 _ => false,
637             },
638             PathSource::TraitItem(ns) => match def {
639                 Def::AssociatedConst(..) | Def::Method(..) if ns == ValueNS => true,
640                 Def::AssociatedTy(..) if ns == TypeNS => true,
641                 _ => false,
642             },
643             PathSource::ImportPrefix => match def {
644                 Def::Mod(..) | Def::Enum(..) => true,
645                 _ => false,
646             },
647             PathSource::Visibility => match def {
648                 Def::Mod(..) => true,
649                 _ => false,
650             },
651         }
652     }
653
654     fn error_code(self, has_unexpected_resolution: bool) -> &'static str {
655         __diagnostic_used!(E0404);
656         __diagnostic_used!(E0405);
657         __diagnostic_used!(E0412);
658         __diagnostic_used!(E0422);
659         __diagnostic_used!(E0423);
660         __diagnostic_used!(E0425);
661         __diagnostic_used!(E0531);
662         __diagnostic_used!(E0532);
663         __diagnostic_used!(E0573);
664         __diagnostic_used!(E0574);
665         __diagnostic_used!(E0575);
666         __diagnostic_used!(E0576);
667         __diagnostic_used!(E0577);
668         __diagnostic_used!(E0578);
669         match (self, has_unexpected_resolution) {
670             (PathSource::Trait(_), true) => "E0404",
671             (PathSource::Trait(_), false) => "E0405",
672             (PathSource::Type, true) => "E0573",
673             (PathSource::Type, false) => "E0412",
674             (PathSource::Struct, true) => "E0574",
675             (PathSource::Struct, false) => "E0422",
676             (PathSource::Expr(..), true) => "E0423",
677             (PathSource::Expr(..), false) => "E0425",
678             (PathSource::Pat, true) | (PathSource::TupleStruct, true) => "E0532",
679             (PathSource::Pat, false) | (PathSource::TupleStruct, false) => "E0531",
680             (PathSource::TraitItem(..), true) => "E0575",
681             (PathSource::TraitItem(..), false) => "E0576",
682             (PathSource::Visibility, true) | (PathSource::ImportPrefix, true) => "E0577",
683             (PathSource::Visibility, false) | (PathSource::ImportPrefix, false) => "E0578",
684         }
685     }
686 }
687
688 /// Different kinds of symbols don't influence each other.
689 ///
690 /// Therefore, they have a separate universe (namespace).
691 #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
692 pub enum Namespace {
693     TypeNS,
694     ValueNS,
695     MacroNS,
696 }
697
698 /// Just a helper â€’ separate structure for each namespace.
699 #[derive(Clone, Default, Debug)]
700 pub struct PerNS<T> {
701     value_ns: T,
702     type_ns: T,
703     macro_ns: T,
704 }
705
706 impl<T> ::std::ops::Index<Namespace> for PerNS<T> {
707     type Output = T;
708     fn index(&self, ns: Namespace) -> &T {
709         match ns {
710             ValueNS => &self.value_ns,
711             TypeNS => &self.type_ns,
712             MacroNS => &self.macro_ns,
713         }
714     }
715 }
716
717 impl<T> ::std::ops::IndexMut<Namespace> for PerNS<T> {
718     fn index_mut(&mut self, ns: Namespace) -> &mut T {
719         match ns {
720             ValueNS => &mut self.value_ns,
721             TypeNS => &mut self.type_ns,
722             MacroNS => &mut self.macro_ns,
723         }
724     }
725 }
726
727 struct UsePlacementFinder {
728     target_module: NodeId,
729     span: Option<Span>,
730     found_use: bool,
731 }
732
733 impl UsePlacementFinder {
734     fn check(krate: &Crate, target_module: NodeId) -> (Option<Span>, bool) {
735         let mut finder = UsePlacementFinder {
736             target_module,
737             span: None,
738             found_use: false,
739         };
740         visit::walk_crate(&mut finder, krate);
741         (finder.span, finder.found_use)
742     }
743 }
744
745 impl<'tcx> Visitor<'tcx> for UsePlacementFinder {
746     fn visit_mod(
747         &mut self,
748         module: &'tcx ast::Mod,
749         _: Span,
750         _: &[ast::Attribute],
751         node_id: NodeId,
752     ) {
753         if self.span.is_some() {
754             return;
755         }
756         if node_id != self.target_module {
757             visit::walk_mod(self, module);
758             return;
759         }
760         // find a use statement
761         for item in &module.items {
762             match item.node {
763                 ItemKind::Use(..) => {
764                     // don't suggest placing a use before the prelude
765                     // import or other generated ones
766                     if item.span.ctxt().outer().expn_info().is_none() {
767                         self.span = Some(item.span.shrink_to_lo());
768                         self.found_use = true;
769                         return;
770                     }
771                 },
772                 // don't place use before extern crate
773                 ItemKind::ExternCrate(_) => {}
774                 // but place them before the first other item
775                 _ => if self.span.map_or(true, |span| item.span < span ) {
776                     if item.span.ctxt().outer().expn_info().is_none() {
777                         // don't insert between attributes and an item
778                         if item.attrs.is_empty() {
779                             self.span = Some(item.span.shrink_to_lo());
780                         } else {
781                             // find the first attribute on the item
782                             for attr in &item.attrs {
783                                 if self.span.map_or(true, |span| attr.span < span) {
784                                     self.span = Some(attr.span.shrink_to_lo());
785                                 }
786                             }
787                         }
788                     }
789                 },
790             }
791         }
792     }
793 }
794
795 /// This thing walks the whole crate in DFS manner, visiting each item, resolving names as it goes.
796 impl<'a, 'tcx> Visitor<'tcx> for Resolver<'a> {
797     fn visit_item(&mut self, item: &'tcx Item) {
798         self.resolve_item(item);
799     }
800     fn visit_arm(&mut self, arm: &'tcx Arm) {
801         self.resolve_arm(arm);
802     }
803     fn visit_block(&mut self, block: &'tcx Block) {
804         self.resolve_block(block);
805     }
806     fn visit_expr(&mut self, expr: &'tcx Expr) {
807         self.resolve_expr(expr, None);
808     }
809     fn visit_local(&mut self, local: &'tcx Local) {
810         self.resolve_local(local);
811     }
812     fn visit_ty(&mut self, ty: &'tcx Ty) {
813         match ty.node {
814             TyKind::Path(ref qself, ref path) => {
815                 self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
816             }
817             TyKind::ImplicitSelf => {
818                 let self_ty = keywords::SelfType.ident();
819                 let def = self.resolve_ident_in_lexical_scope(self_ty, TypeNS, true, ty.span)
820                               .map_or(Def::Err, |d| d.def());
821                 self.record_def(ty.id, PathResolution::new(def));
822             }
823             TyKind::Array(ref element, ref length) => {
824                 self.visit_ty(element);
825                 self.with_constant_rib(|this| {
826                     this.visit_expr(length);
827                 });
828                 return;
829             }
830             _ => (),
831         }
832         visit::walk_ty(self, ty);
833     }
834     fn visit_poly_trait_ref(&mut self,
835                             tref: &'tcx ast::PolyTraitRef,
836                             m: &'tcx ast::TraitBoundModifier) {
837         self.smart_resolve_path(tref.trait_ref.ref_id, None,
838                                 &tref.trait_ref.path, PathSource::Trait(AliasPossibility::Maybe));
839         visit::walk_poly_trait_ref(self, tref, m);
840     }
841     fn visit_variant(&mut self,
842                      variant: &'tcx ast::Variant,
843                      generics: &'tcx Generics,
844                      item_id: ast::NodeId) {
845         if let Some(ref dis_expr) = variant.node.disr_expr {
846             // resolve the discriminator expr as a constant
847             self.with_constant_rib(|this| {
848                 this.visit_expr(dis_expr);
849             });
850         }
851
852         // `visit::walk_variant` without the discriminant expression.
853         self.visit_variant_data(&variant.node.data,
854                                 variant.node.ident,
855                                 generics,
856                                 item_id,
857                                 variant.span);
858     }
859     fn visit_foreign_item(&mut self, foreign_item: &'tcx ForeignItem) {
860         let type_parameters = match foreign_item.node {
861             ForeignItemKind::Fn(_, ref generics) => {
862                 HasTypeParameters(generics, ItemRibKind)
863             }
864             ForeignItemKind::Static(..) => NoTypeParameters,
865             ForeignItemKind::Ty => NoTypeParameters,
866             ForeignItemKind::Macro(..) => NoTypeParameters,
867         };
868         self.with_type_parameter_rib(type_parameters, |this| {
869             visit::walk_foreign_item(this, foreign_item);
870         });
871     }
872     fn visit_fn(&mut self,
873                 function_kind: FnKind<'tcx>,
874                 declaration: &'tcx FnDecl,
875                 _: Span,
876                 node_id: NodeId) {
877         let rib_kind = match function_kind {
878             FnKind::ItemFn(..) => {
879                 ItemRibKind
880             }
881             FnKind::Method(_, _, _, _) => {
882                 TraitOrImplItemRibKind
883             }
884             FnKind::Closure(_) => ClosureRibKind(node_id),
885         };
886
887         // Create a value rib for the function.
888         self.ribs[ValueNS].push(Rib::new(rib_kind));
889
890         // Create a label rib for the function.
891         self.label_ribs.push(Rib::new(rib_kind));
892
893         // Add each argument to the rib.
894         let mut bindings_list = FxHashMap();
895         for argument in &declaration.inputs {
896             self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
897
898             self.visit_ty(&argument.ty);
899
900             debug!("(resolving function) recorded argument");
901         }
902         visit::walk_fn_ret_ty(self, &declaration.output);
903
904         // Resolve the function body.
905         match function_kind {
906             FnKind::ItemFn(.., body) |
907             FnKind::Method(.., body) => {
908                 self.visit_block(body);
909             }
910             FnKind::Closure(body) => {
911                 self.visit_expr(body);
912             }
913         };
914
915         debug!("(resolving function) leaving function");
916
917         self.label_ribs.pop();
918         self.ribs[ValueNS].pop();
919     }
920     fn visit_generics(&mut self, generics: &'tcx Generics) {
921         // For type parameter defaults, we have to ban access
922         // to following type parameters, as the Substs can only
923         // provide previous type parameters as they're built. We
924         // put all the parameters on the ban list and then remove
925         // them one by one as they are processed and become available.
926         let mut default_ban_rib = Rib::new(ForwardTyParamBanRibKind);
927         default_ban_rib.bindings.extend(generics.params.iter()
928             .filter_map(|p| if let GenericParam::Type(ref tp) = *p { Some(tp) } else { None })
929             .skip_while(|p| p.default.is_none())
930             .map(|p| (Ident::with_empty_ctxt(p.ident.name), Def::Err)));
931
932         for param in &generics.params {
933             match *param {
934                 GenericParam::Lifetime(_) => self.visit_generic_param(param),
935                 GenericParam::Type(ref ty_param) => {
936                     for bound in &ty_param.bounds {
937                         self.visit_ty_param_bound(bound);
938                     }
939
940                     if let Some(ref ty) = ty_param.default {
941                         self.ribs[TypeNS].push(default_ban_rib);
942                         self.visit_ty(ty);
943                         default_ban_rib = self.ribs[TypeNS].pop().unwrap();
944                     }
945
946                     // Allow all following defaults to refer to this type parameter.
947                     default_ban_rib.bindings.remove(&Ident::with_empty_ctxt(ty_param.ident.name));
948                 }
949             }
950         }
951         for p in &generics.where_clause.predicates { self.visit_where_predicate(p); }
952     }
953 }
954
955 #[derive(Copy, Clone)]
956 enum TypeParameters<'a, 'b> {
957     NoTypeParameters,
958     HasTypeParameters(// Type parameters.
959                       &'b Generics,
960
961                       // The kind of the rib used for type parameters.
962                       RibKind<'a>),
963 }
964
965 /// The rib kind controls the translation of local
966 /// definitions (`Def::Local`) to upvars (`Def::Upvar`).
967 #[derive(Copy, Clone, Debug)]
968 enum RibKind<'a> {
969     /// No translation needs to be applied.
970     NormalRibKind,
971
972     /// We passed through a closure scope at the given node ID.
973     /// Translate upvars as appropriate.
974     ClosureRibKind(NodeId /* func id */),
975
976     /// We passed through an impl or trait and are now in one of its
977     /// methods or associated types. Allow references to ty params that impl or trait
978     /// binds. Disallow any other upvars (including other ty params that are
979     /// upvars).
980     TraitOrImplItemRibKind,
981
982     /// We passed through an item scope. Disallow upvars.
983     ItemRibKind,
984
985     /// We're in a constant item. Can't refer to dynamic stuff.
986     ConstantItemRibKind,
987
988     /// We passed through a module.
989     ModuleRibKind(Module<'a>),
990
991     /// We passed through a `macro_rules!` statement
992     MacroDefinition(DefId),
993
994     /// All bindings in this rib are type parameters that can't be used
995     /// from the default of a type parameter because they're not declared
996     /// before said type parameter. Also see the `visit_generics` override.
997     ForwardTyParamBanRibKind,
998 }
999
1000 /// One local scope.
1001 ///
1002 /// A rib represents a scope names can live in. Note that these appear in many places, not just
1003 /// around braces. At any place where the list of accessible names (of the given namespace)
1004 /// changes or a new restrictions on the name accessibility are introduced, a new rib is put onto a
1005 /// stack. This may be, for example, a `let` statement (because it introduces variables), a macro,
1006 /// etc.
1007 ///
1008 /// Different [rib kinds](enum.RibKind) are transparent for different names.
1009 ///
1010 /// The resolution keeps a separate stack of ribs as it traverses the AST for each namespace. When
1011 /// resolving, the name is looked up from inside out.
1012 #[derive(Debug)]
1013 struct Rib<'a> {
1014     bindings: FxHashMap<Ident, Def>,
1015     kind: RibKind<'a>,
1016 }
1017
1018 impl<'a> Rib<'a> {
1019     fn new(kind: RibKind<'a>) -> Rib<'a> {
1020         Rib {
1021             bindings: FxHashMap(),
1022             kind,
1023         }
1024     }
1025 }
1026
1027 /// An intermediate resolution result.
1028 ///
1029 /// This refers to the thing referred by a name. The difference between `Def` and `Item` is that
1030 /// items are visible in their whole block, while defs only from the place they are defined
1031 /// forward.
1032 enum LexicalScopeBinding<'a> {
1033     Item(&'a NameBinding<'a>),
1034     Def(Def),
1035 }
1036
1037 impl<'a> LexicalScopeBinding<'a> {
1038     fn item(self) -> Option<&'a NameBinding<'a>> {
1039         match self {
1040             LexicalScopeBinding::Item(binding) => Some(binding),
1041             _ => None,
1042         }
1043     }
1044
1045     fn def(self) -> Def {
1046         match self {
1047             LexicalScopeBinding::Item(binding) => binding.def(),
1048             LexicalScopeBinding::Def(def) => def,
1049         }
1050     }
1051 }
1052
1053 #[derive(Clone, Debug)]
1054 enum PathResult<'a> {
1055     Module(Module<'a>),
1056     NonModule(PathResolution),
1057     Indeterminate,
1058     Failed(Span, String, bool /* is the error from the last segment? */),
1059 }
1060
1061 enum ModuleKind {
1062     /// An anonymous module, eg. just a block.
1063     ///
1064     /// ```
1065     /// fn main() {
1066     ///     fn f() {} // (1)
1067     ///     { // This is an anonymous module
1068     ///         f(); // This resolves to (2) as we are inside the block.
1069     ///         fn f() {} // (2)
1070     ///     }
1071     ///     f(); // Resolves to (1)
1072     /// }
1073     /// ```
1074     Block(NodeId),
1075     /// Any module with a name.
1076     ///
1077     /// This could be:
1078     ///
1079     /// * A normal module â€’ either `mod from_file;` or `mod from_block { }`.
1080     /// * A trait or an enum (it implicitly contains associated types, methods and variant
1081     ///   constructors).
1082     Def(Def, Name),
1083 }
1084
1085 /// One node in the tree of modules.
1086 pub struct ModuleData<'a> {
1087     parent: Option<Module<'a>>,
1088     kind: ModuleKind,
1089
1090     // The def id of the closest normal module (`mod`) ancestor (including this module).
1091     normal_ancestor_id: DefId,
1092
1093     resolutions: RefCell<FxHashMap<(Ident, Namespace), &'a RefCell<NameResolution<'a>>>>,
1094     legacy_macro_resolutions: RefCell<Vec<(Mark, Ident, Span, MacroKind)>>,
1095     macro_resolutions: RefCell<Vec<(Box<[Ident]>, Span)>>,
1096
1097     // Macro invocations that can expand into items in this module.
1098     unresolved_invocations: RefCell<FxHashSet<Mark>>,
1099
1100     no_implicit_prelude: bool,
1101
1102     glob_importers: RefCell<Vec<&'a ImportDirective<'a>>>,
1103     globs: RefCell<Vec<&'a ImportDirective<'a>>>,
1104
1105     // Used to memoize the traits in this module for faster searches through all traits in scope.
1106     traits: RefCell<Option<Box<[(Ident, &'a NameBinding<'a>)]>>>,
1107
1108     // Whether this module is populated. If not populated, any attempt to
1109     // access the children must be preceded with a
1110     // `populate_module_if_necessary` call.
1111     populated: Cell<bool>,
1112
1113     /// Span of the module itself. Used for error reporting.
1114     span: Span,
1115
1116     expansion: Mark,
1117 }
1118
1119 type Module<'a> = &'a ModuleData<'a>;
1120
1121 impl<'a> ModuleData<'a> {
1122     fn new(parent: Option<Module<'a>>,
1123            kind: ModuleKind,
1124            normal_ancestor_id: DefId,
1125            expansion: Mark,
1126            span: Span) -> Self {
1127         ModuleData {
1128             parent,
1129             kind,
1130             normal_ancestor_id,
1131             resolutions: RefCell::new(FxHashMap()),
1132             legacy_macro_resolutions: RefCell::new(Vec::new()),
1133             macro_resolutions: RefCell::new(Vec::new()),
1134             unresolved_invocations: RefCell::new(FxHashSet()),
1135             no_implicit_prelude: false,
1136             glob_importers: RefCell::new(Vec::new()),
1137             globs: RefCell::new(Vec::new()),
1138             traits: RefCell::new(None),
1139             populated: Cell::new(normal_ancestor_id.is_local()),
1140             span,
1141             expansion,
1142         }
1143     }
1144
1145     fn for_each_child<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1146         for (&(ident, ns), name_resolution) in self.resolutions.borrow().iter() {
1147             name_resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1148         }
1149     }
1150
1151     fn for_each_child_stable<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1152         let resolutions = self.resolutions.borrow();
1153         let mut resolutions = resolutions.iter().collect::<Vec<_>>();
1154         resolutions.sort_by_cached_key(|&(&(ident, ns), _)| (ident.name.as_str(), ns));
1155         for &(&(ident, ns), &resolution) in resolutions.iter() {
1156             resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1157         }
1158     }
1159
1160     fn def(&self) -> Option<Def> {
1161         match self.kind {
1162             ModuleKind::Def(def, _) => Some(def),
1163             _ => None,
1164         }
1165     }
1166
1167     fn def_id(&self) -> Option<DefId> {
1168         self.def().as_ref().map(Def::def_id)
1169     }
1170
1171     // `self` resolves to the first module ancestor that `is_normal`.
1172     fn is_normal(&self) -> bool {
1173         match self.kind {
1174             ModuleKind::Def(Def::Mod(_), _) => true,
1175             _ => false,
1176         }
1177     }
1178
1179     fn is_trait(&self) -> bool {
1180         match self.kind {
1181             ModuleKind::Def(Def::Trait(_), _) => true,
1182             _ => false,
1183         }
1184     }
1185
1186     fn is_local(&self) -> bool {
1187         self.normal_ancestor_id.is_local()
1188     }
1189
1190     fn nearest_item_scope(&'a self) -> Module<'a> {
1191         if self.is_trait() { self.parent.unwrap() } else { self }
1192     }
1193 }
1194
1195 impl<'a> fmt::Debug for ModuleData<'a> {
1196     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1197         write!(f, "{:?}", self.def())
1198     }
1199 }
1200
1201 /// Records a possibly-private value, type, or module definition.
1202 #[derive(Clone, Debug)]
1203 pub struct NameBinding<'a> {
1204     kind: NameBindingKind<'a>,
1205     expansion: Mark,
1206     span: Span,
1207     vis: ty::Visibility,
1208 }
1209
1210 pub trait ToNameBinding<'a> {
1211     fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a>;
1212 }
1213
1214 impl<'a> ToNameBinding<'a> for &'a NameBinding<'a> {
1215     fn to_name_binding(self, _: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> {
1216         self
1217     }
1218 }
1219
1220 #[derive(Clone, Debug)]
1221 enum NameBindingKind<'a> {
1222     Def(Def),
1223     Module(Module<'a>),
1224     Import {
1225         binding: &'a NameBinding<'a>,
1226         directive: &'a ImportDirective<'a>,
1227         used: Cell<bool>,
1228         legacy_self_import: bool,
1229     },
1230     Ambiguity {
1231         b1: &'a NameBinding<'a>,
1232         b2: &'a NameBinding<'a>,
1233         legacy: bool,
1234     }
1235 }
1236
1237 struct PrivacyError<'a>(Span, Name, &'a NameBinding<'a>);
1238
1239 struct UseError<'a> {
1240     err: DiagnosticBuilder<'a>,
1241     /// Attach `use` statements for these candidates
1242     candidates: Vec<ImportSuggestion>,
1243     /// The node id of the module to place the use statements in
1244     node_id: NodeId,
1245     /// Whether the diagnostic should state that it's "better"
1246     better: bool,
1247 }
1248
1249 struct AmbiguityError<'a> {
1250     span: Span,
1251     name: Name,
1252     lexical: bool,
1253     b1: &'a NameBinding<'a>,
1254     b2: &'a NameBinding<'a>,
1255     legacy: bool,
1256 }
1257
1258 impl<'a> NameBinding<'a> {
1259     fn module(&self) -> Option<Module<'a>> {
1260         match self.kind {
1261             NameBindingKind::Module(module) => Some(module),
1262             NameBindingKind::Import { binding, .. } => binding.module(),
1263             NameBindingKind::Ambiguity { legacy: true, b1, .. } => b1.module(),
1264             _ => None,
1265         }
1266     }
1267
1268     fn def(&self) -> Def {
1269         match self.kind {
1270             NameBindingKind::Def(def) => def,
1271             NameBindingKind::Module(module) => module.def().unwrap(),
1272             NameBindingKind::Import { binding, .. } => binding.def(),
1273             NameBindingKind::Ambiguity { legacy: true, b1, .. } => b1.def(),
1274             NameBindingKind::Ambiguity { .. } => Def::Err,
1275         }
1276     }
1277
1278     fn def_ignoring_ambiguity(&self) -> Def {
1279         match self.kind {
1280             NameBindingKind::Import { binding, .. } => binding.def_ignoring_ambiguity(),
1281             NameBindingKind::Ambiguity { b1, .. } => b1.def_ignoring_ambiguity(),
1282             _ => self.def(),
1283         }
1284     }
1285
1286     fn get_macro(&self, resolver: &mut Resolver<'a>) -> Lrc<SyntaxExtension> {
1287         resolver.get_macro(self.def_ignoring_ambiguity())
1288     }
1289
1290     // We sometimes need to treat variants as `pub` for backwards compatibility
1291     fn pseudo_vis(&self) -> ty::Visibility {
1292         if self.is_variant() && self.def().def_id().is_local() {
1293             ty::Visibility::Public
1294         } else {
1295             self.vis
1296         }
1297     }
1298
1299     fn is_variant(&self) -> bool {
1300         match self.kind {
1301             NameBindingKind::Def(Def::Variant(..)) |
1302             NameBindingKind::Def(Def::VariantCtor(..)) => true,
1303             _ => false,
1304         }
1305     }
1306
1307     fn is_extern_crate(&self) -> bool {
1308         match self.kind {
1309             NameBindingKind::Import {
1310                 directive: &ImportDirective {
1311                     subclass: ImportDirectiveSubclass::ExternCrate(_), ..
1312                 }, ..
1313             } => true,
1314             _ => false,
1315         }
1316     }
1317
1318     fn is_import(&self) -> bool {
1319         match self.kind {
1320             NameBindingKind::Import { .. } => true,
1321             _ => false,
1322         }
1323     }
1324
1325     fn is_renamed_extern_crate(&self) -> bool {
1326         if let NameBindingKind::Import { directive, ..} = self.kind {
1327             if let ImportDirectiveSubclass::ExternCrate(Some(_)) = directive.subclass {
1328                 return true;
1329             }
1330         }
1331         false
1332     }
1333
1334     fn is_glob_import(&self) -> bool {
1335         match self.kind {
1336             NameBindingKind::Import { directive, .. } => directive.is_glob(),
1337             NameBindingKind::Ambiguity { b1, .. } => b1.is_glob_import(),
1338             _ => false,
1339         }
1340     }
1341
1342     fn is_importable(&self) -> bool {
1343         match self.def() {
1344             Def::AssociatedConst(..) | Def::Method(..) | Def::AssociatedTy(..) => false,
1345             _ => true,
1346         }
1347     }
1348
1349     fn is_macro_def(&self) -> bool {
1350         match self.kind {
1351             NameBindingKind::Def(Def::Macro(..)) => true,
1352             _ => false,
1353         }
1354     }
1355
1356     fn descr(&self) -> &'static str {
1357         if self.is_extern_crate() { "extern crate" } else { self.def().kind_name() }
1358     }
1359 }
1360
1361 /// Interns the names of the primitive types.
1362 ///
1363 /// All other types are defined somewhere and possibly imported, but the primitive ones need
1364 /// special handling, since they have no place of origin.
1365 struct PrimitiveTypeTable {
1366     primitive_types: FxHashMap<Name, PrimTy>,
1367 }
1368
1369 impl PrimitiveTypeTable {
1370     fn new() -> PrimitiveTypeTable {
1371         let mut table = PrimitiveTypeTable { primitive_types: FxHashMap() };
1372
1373         table.intern("bool", TyBool);
1374         table.intern("char", TyChar);
1375         table.intern("f32", TyFloat(FloatTy::F32));
1376         table.intern("f64", TyFloat(FloatTy::F64));
1377         table.intern("isize", TyInt(IntTy::Isize));
1378         table.intern("i8", TyInt(IntTy::I8));
1379         table.intern("i16", TyInt(IntTy::I16));
1380         table.intern("i32", TyInt(IntTy::I32));
1381         table.intern("i64", TyInt(IntTy::I64));
1382         table.intern("i128", TyInt(IntTy::I128));
1383         table.intern("str", TyStr);
1384         table.intern("usize", TyUint(UintTy::Usize));
1385         table.intern("u8", TyUint(UintTy::U8));
1386         table.intern("u16", TyUint(UintTy::U16));
1387         table.intern("u32", TyUint(UintTy::U32));
1388         table.intern("u64", TyUint(UintTy::U64));
1389         table.intern("u128", TyUint(UintTy::U128));
1390         table
1391     }
1392
1393     fn intern(&mut self, string: &str, primitive_type: PrimTy) {
1394         self.primitive_types.insert(Symbol::intern(string), primitive_type);
1395     }
1396 }
1397
1398 /// The main resolver class.
1399 ///
1400 /// This is the visitor that walks the whole crate.
1401 pub struct Resolver<'a> {
1402     session: &'a Session,
1403     cstore: &'a CrateStore,
1404
1405     pub definitions: Definitions,
1406
1407     graph_root: Module<'a>,
1408
1409     prelude: Option<Module<'a>>,
1410     extern_prelude: FxHashSet<Name>,
1411
1412     /// n.b. This is used only for better diagnostics, not name resolution itself.
1413     has_self: FxHashSet<DefId>,
1414
1415     /// Names of fields of an item `DefId` accessible with dot syntax.
1416     /// Used for hints during error reporting.
1417     field_names: FxHashMap<DefId, Vec<Name>>,
1418
1419     /// All imports known to succeed or fail.
1420     determined_imports: Vec<&'a ImportDirective<'a>>,
1421
1422     /// All non-determined imports.
1423     indeterminate_imports: Vec<&'a ImportDirective<'a>>,
1424
1425     /// The module that represents the current item scope.
1426     current_module: Module<'a>,
1427
1428     /// The current set of local scopes for types and values.
1429     /// FIXME #4948: Reuse ribs to avoid allocation.
1430     ribs: PerNS<Vec<Rib<'a>>>,
1431
1432     /// The current set of local scopes, for labels.
1433     label_ribs: Vec<Rib<'a>>,
1434
1435     /// The trait that the current context can refer to.
1436     current_trait_ref: Option<(Module<'a>, TraitRef)>,
1437
1438     /// The current self type if inside an impl (used for better errors).
1439     current_self_type: Option<Ty>,
1440
1441     /// The idents for the primitive types.
1442     primitive_type_table: PrimitiveTypeTable,
1443
1444     def_map: DefMap,
1445     pub freevars: FreevarMap,
1446     freevars_seen: NodeMap<NodeMap<usize>>,
1447     pub export_map: ExportMap,
1448     pub trait_map: TraitMap,
1449
1450     /// A map from nodes to anonymous modules.
1451     /// Anonymous modules are pseudo-modules that are implicitly created around items
1452     /// contained within blocks.
1453     ///
1454     /// For example, if we have this:
1455     ///
1456     ///  fn f() {
1457     ///      fn g() {
1458     ///          ...
1459     ///      }
1460     ///  }
1461     ///
1462     /// There will be an anonymous module created around `g` with the ID of the
1463     /// entry block for `f`.
1464     block_map: NodeMap<Module<'a>>,
1465     module_map: FxHashMap<DefId, Module<'a>>,
1466     extern_module_map: FxHashMap<(DefId, bool /* MacrosOnly? */), Module<'a>>,
1467
1468     pub make_glob_map: bool,
1469     /// Maps imports to the names of items actually imported (this actually maps
1470     /// all imports, but only glob imports are actually interesting).
1471     pub glob_map: GlobMap,
1472
1473     used_imports: FxHashSet<(NodeId, Namespace)>,
1474     pub maybe_unused_trait_imports: NodeSet,
1475     pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
1476
1477     /// privacy errors are delayed until the end in order to deduplicate them
1478     privacy_errors: Vec<PrivacyError<'a>>,
1479     /// ambiguity errors are delayed for deduplication
1480     ambiguity_errors: Vec<AmbiguityError<'a>>,
1481     /// `use` injections are delayed for better placement and deduplication
1482     use_injections: Vec<UseError<'a>>,
1483     /// `use` injections for proc macros wrongly imported with #[macro_use]
1484     proc_mac_errors: Vec<macros::ProcMacError>,
1485
1486     gated_errors: FxHashSet<Span>,
1487     disallowed_shadowing: Vec<&'a LegacyBinding<'a>>,
1488
1489     arenas: &'a ResolverArenas<'a>,
1490     dummy_binding: &'a NameBinding<'a>,
1491     /// true if `#![feature(use_extern_macros)]`
1492     use_extern_macros: bool,
1493
1494     crate_loader: &'a mut CrateLoader,
1495     macro_names: FxHashSet<Ident>,
1496     global_macros: FxHashMap<Name, &'a NameBinding<'a>>,
1497     pub all_macros: FxHashMap<Name, Def>,
1498     lexical_macro_resolutions: Vec<(Ident, &'a Cell<LegacyScope<'a>>)>,
1499     macro_map: FxHashMap<DefId, Lrc<SyntaxExtension>>,
1500     macro_defs: FxHashMap<Mark, DefId>,
1501     local_macro_def_scopes: FxHashMap<NodeId, Module<'a>>,
1502     macro_exports: Vec<Export>,
1503     pub whitelisted_legacy_custom_derives: Vec<Name>,
1504     pub found_unresolved_macro: bool,
1505
1506     /// List of crate local macros that we need to warn about as being unused.
1507     /// Right now this only includes macro_rules! macros, and macros 2.0.
1508     unused_macros: FxHashSet<DefId>,
1509
1510     /// Maps the `Mark` of an expansion to its containing module or block.
1511     invocations: FxHashMap<Mark, &'a InvocationData<'a>>,
1512
1513     /// Avoid duplicated errors for "name already defined".
1514     name_already_seen: FxHashMap<Name, Span>,
1515
1516     /// If `#![feature(proc_macro)]` is set
1517     proc_macro_enabled: bool,
1518
1519     /// A set of procedural macros imported by `#[macro_use]` that have already been warned about
1520     warned_proc_macros: FxHashSet<Name>,
1521
1522     potentially_unused_imports: Vec<&'a ImportDirective<'a>>,
1523
1524     /// This table maps struct IDs into struct constructor IDs,
1525     /// it's not used during normal resolution, only for better error reporting.
1526     struct_constructors: DefIdMap<(Def, ty::Visibility)>,
1527
1528     /// Only used for better errors on `fn(): fn()`
1529     current_type_ascription: Vec<Span>,
1530
1531     injected_crate: Option<Module<'a>>,
1532 }
1533
1534 /// Nothing really interesting here, it just provides memory for the rest of the crate.
1535 pub struct ResolverArenas<'a> {
1536     modules: arena::TypedArena<ModuleData<'a>>,
1537     local_modules: RefCell<Vec<Module<'a>>>,
1538     name_bindings: arena::TypedArena<NameBinding<'a>>,
1539     import_directives: arena::TypedArena<ImportDirective<'a>>,
1540     name_resolutions: arena::TypedArena<RefCell<NameResolution<'a>>>,
1541     invocation_data: arena::TypedArena<InvocationData<'a>>,
1542     legacy_bindings: arena::TypedArena<LegacyBinding<'a>>,
1543 }
1544
1545 impl<'a> ResolverArenas<'a> {
1546     fn alloc_module(&'a self, module: ModuleData<'a>) -> Module<'a> {
1547         let module = self.modules.alloc(module);
1548         if module.def_id().map(|def_id| def_id.is_local()).unwrap_or(true) {
1549             self.local_modules.borrow_mut().push(module);
1550         }
1551         module
1552     }
1553     fn local_modules(&'a self) -> ::std::cell::Ref<'a, Vec<Module<'a>>> {
1554         self.local_modules.borrow()
1555     }
1556     fn alloc_name_binding(&'a self, name_binding: NameBinding<'a>) -> &'a NameBinding<'a> {
1557         self.name_bindings.alloc(name_binding)
1558     }
1559     fn alloc_import_directive(&'a self, import_directive: ImportDirective<'a>)
1560                               -> &'a ImportDirective {
1561         self.import_directives.alloc(import_directive)
1562     }
1563     fn alloc_name_resolution(&'a self) -> &'a RefCell<NameResolution<'a>> {
1564         self.name_resolutions.alloc(Default::default())
1565     }
1566     fn alloc_invocation_data(&'a self, expansion_data: InvocationData<'a>)
1567                              -> &'a InvocationData<'a> {
1568         self.invocation_data.alloc(expansion_data)
1569     }
1570     fn alloc_legacy_binding(&'a self, binding: LegacyBinding<'a>) -> &'a LegacyBinding<'a> {
1571         self.legacy_bindings.alloc(binding)
1572     }
1573 }
1574
1575 impl<'a, 'b: 'a> ty::DefIdTree for &'a Resolver<'b> {
1576     fn parent(self, id: DefId) -> Option<DefId> {
1577         match id.krate {
1578             LOCAL_CRATE => self.definitions.def_key(id.index).parent,
1579             _ => self.cstore.def_key(id).parent,
1580         }.map(|index| DefId { index, ..id })
1581     }
1582 }
1583
1584 /// This interface is used through the AST→HIR step, to embed full paths into the HIR. After that
1585 /// the resolver is no longer needed as all the relevant information is inline.
1586 impl<'a> hir::lowering::Resolver for Resolver<'a> {
1587     fn resolve_hir_path(&mut self, path: &mut hir::Path, is_value: bool) {
1588         self.resolve_hir_path_cb(path, is_value,
1589                                  |resolver, span, error| resolve_error(resolver, span, error))
1590     }
1591
1592     fn resolve_str_path(&mut self, span: Span, crate_root: Option<&str>,
1593                         components: &[&str], is_value: bool) -> hir::Path {
1594         let mut path = hir::Path {
1595             span,
1596             def: Def::Err,
1597             segments: iter::once(keywords::CrateRoot.name()).chain({
1598                 crate_root.into_iter().chain(components.iter().cloned()).map(Symbol::intern)
1599             }).map(hir::PathSegment::from_name).collect(),
1600         };
1601
1602         self.resolve_hir_path(&mut path, is_value);
1603         path
1604     }
1605
1606     fn get_resolution(&mut self, id: NodeId) -> Option<PathResolution> {
1607         self.def_map.get(&id).cloned()
1608     }
1609
1610     fn definitions(&mut self) -> &mut Definitions {
1611         &mut self.definitions
1612     }
1613 }
1614
1615 impl<'a> Resolver<'a> {
1616     /// Rustdoc uses this to resolve things in a recoverable way. ResolutionError<'a>
1617     /// isn't something that can be returned because it can't be made to live that long,
1618     /// and also it's a private type. Fortunately rustdoc doesn't need to know the error,
1619     /// just that an error occurred.
1620     pub fn resolve_str_path_error(&mut self, span: Span, path_str: &str, is_value: bool)
1621         -> Result<hir::Path, ()> {
1622         use std::iter;
1623         let mut errored = false;
1624
1625         let mut path = if path_str.starts_with("::") {
1626             hir::Path {
1627                 span,
1628                 def: Def::Err,
1629                 segments: iter::once(keywords::CrateRoot.name()).chain({
1630                     path_str.split("::").skip(1).map(Symbol::intern)
1631                 }).map(hir::PathSegment::from_name).collect(),
1632             }
1633         } else {
1634             hir::Path {
1635                 span,
1636                 def: Def::Err,
1637                 segments: path_str.split("::").map(Symbol::intern)
1638                                   .map(hir::PathSegment::from_name).collect(),
1639             }
1640         };
1641         self.resolve_hir_path_cb(&mut path, is_value, |_, _, _| errored = true);
1642         if errored || path.def == Def::Err {
1643             Err(())
1644         } else {
1645             Ok(path)
1646         }
1647     }
1648
1649     /// resolve_hir_path, but takes a callback in case there was an error
1650     fn resolve_hir_path_cb<F>(&mut self, path: &mut hir::Path, is_value: bool, error_callback: F)
1651             where F: for<'c, 'b> FnOnce(&'c mut Resolver, Span, ResolutionError<'b>)
1652         {
1653         let namespace = if is_value { ValueNS } else { TypeNS };
1654         let hir::Path { ref segments, span, ref mut def } = *path;
1655         let path: Vec<Ident> = segments.iter()
1656             .map(|seg| Ident::new(seg.name, span))
1657             .collect();
1658         // FIXME (Manishearth): Intra doc links won't get warned of epoch changes
1659         match self.resolve_path(&path, Some(namespace), true, span, None) {
1660             PathResult::Module(module) => *def = module.def().unwrap(),
1661             PathResult::NonModule(path_res) if path_res.unresolved_segments() == 0 =>
1662                 *def = path_res.base_def(),
1663             PathResult::NonModule(..) => match self.resolve_path(&path, None, true, span, None) {
1664                 PathResult::Failed(span, msg, _) => {
1665                     error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1666                 }
1667                 _ => {}
1668             },
1669             PathResult::Indeterminate => unreachable!(),
1670             PathResult::Failed(span, msg, _) => {
1671                 error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1672             }
1673         }
1674     }
1675 }
1676
1677 impl<'a> Resolver<'a> {
1678     pub fn new(session: &'a Session,
1679                cstore: &'a CrateStore,
1680                krate: &Crate,
1681                crate_name: &str,
1682                make_glob_map: MakeGlobMap,
1683                crate_loader: &'a mut CrateLoader,
1684                arenas: &'a ResolverArenas<'a>)
1685                -> Resolver<'a> {
1686         let root_def_id = DefId::local(CRATE_DEF_INDEX);
1687         let root_module_kind = ModuleKind::Def(Def::Mod(root_def_id), keywords::Invalid.name());
1688         let graph_root = arenas.alloc_module(ModuleData {
1689             no_implicit_prelude: attr::contains_name(&krate.attrs, "no_implicit_prelude"),
1690             ..ModuleData::new(None, root_module_kind, root_def_id, Mark::root(), krate.span)
1691         });
1692         let mut module_map = FxHashMap();
1693         module_map.insert(DefId::local(CRATE_DEF_INDEX), graph_root);
1694
1695         let mut definitions = Definitions::new();
1696         DefCollector::new(&mut definitions, Mark::root())
1697             .collect_root(crate_name, session.local_crate_disambiguator());
1698
1699         let mut invocations = FxHashMap();
1700         invocations.insert(Mark::root(),
1701                            arenas.alloc_invocation_data(InvocationData::root(graph_root)));
1702
1703         let features = session.features_untracked();
1704
1705         let mut macro_defs = FxHashMap();
1706         macro_defs.insert(Mark::root(), root_def_id);
1707
1708         Resolver {
1709             session,
1710
1711             cstore,
1712
1713             definitions,
1714
1715             // The outermost module has def ID 0; this is not reflected in the
1716             // AST.
1717             graph_root,
1718             prelude: None,
1719             extern_prelude: session.opts.externs.iter().map(|kv| Symbol::intern(kv.0)).collect(),
1720
1721             has_self: FxHashSet(),
1722             field_names: FxHashMap(),
1723
1724             determined_imports: Vec::new(),
1725             indeterminate_imports: Vec::new(),
1726
1727             current_module: graph_root,
1728             ribs: PerNS {
1729                 value_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1730                 type_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1731                 macro_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1732             },
1733             label_ribs: Vec::new(),
1734
1735             current_trait_ref: None,
1736             current_self_type: None,
1737
1738             primitive_type_table: PrimitiveTypeTable::new(),
1739
1740             def_map: NodeMap(),
1741             freevars: NodeMap(),
1742             freevars_seen: NodeMap(),
1743             export_map: FxHashMap(),
1744             trait_map: NodeMap(),
1745             module_map,
1746             block_map: NodeMap(),
1747             extern_module_map: FxHashMap(),
1748
1749             make_glob_map: make_glob_map == MakeGlobMap::Yes,
1750             glob_map: NodeMap(),
1751
1752             used_imports: FxHashSet(),
1753             maybe_unused_trait_imports: NodeSet(),
1754             maybe_unused_extern_crates: Vec::new(),
1755
1756             privacy_errors: Vec::new(),
1757             ambiguity_errors: Vec::new(),
1758             use_injections: Vec::new(),
1759             proc_mac_errors: Vec::new(),
1760             gated_errors: FxHashSet(),
1761             disallowed_shadowing: Vec::new(),
1762
1763             arenas,
1764             dummy_binding: arenas.alloc_name_binding(NameBinding {
1765                 kind: NameBindingKind::Def(Def::Err),
1766                 expansion: Mark::root(),
1767                 span: DUMMY_SP,
1768                 vis: ty::Visibility::Public,
1769             }),
1770
1771             // The `proc_macro` and `decl_macro` features imply `use_extern_macros`
1772             use_extern_macros:
1773                 features.use_extern_macros || features.proc_macro || features.decl_macro,
1774
1775             crate_loader,
1776             macro_names: FxHashSet(),
1777             global_macros: FxHashMap(),
1778             all_macros: FxHashMap(),
1779             lexical_macro_resolutions: Vec::new(),
1780             macro_map: FxHashMap(),
1781             macro_exports: Vec::new(),
1782             invocations,
1783             macro_defs,
1784             local_macro_def_scopes: FxHashMap(),
1785             name_already_seen: FxHashMap(),
1786             whitelisted_legacy_custom_derives: Vec::new(),
1787             proc_macro_enabled: features.proc_macro,
1788             warned_proc_macros: FxHashSet(),
1789             potentially_unused_imports: Vec::new(),
1790             struct_constructors: DefIdMap(),
1791             found_unresolved_macro: false,
1792             unused_macros: FxHashSet(),
1793             current_type_ascription: Vec::new(),
1794             injected_crate: None,
1795         }
1796     }
1797
1798     pub fn arenas() -> ResolverArenas<'a> {
1799         ResolverArenas {
1800             modules: arena::TypedArena::new(),
1801             local_modules: RefCell::new(Vec::new()),
1802             name_bindings: arena::TypedArena::new(),
1803             import_directives: arena::TypedArena::new(),
1804             name_resolutions: arena::TypedArena::new(),
1805             invocation_data: arena::TypedArena::new(),
1806             legacy_bindings: arena::TypedArena::new(),
1807         }
1808     }
1809
1810     /// Runs the function on each namespace.
1811     fn per_ns<F: FnMut(&mut Self, Namespace)>(&mut self, mut f: F) {
1812         f(self, TypeNS);
1813         f(self, ValueNS);
1814         if self.use_extern_macros {
1815             f(self, MacroNS);
1816         }
1817     }
1818
1819     fn macro_def(&self, mut ctxt: SyntaxContext) -> DefId {
1820         loop {
1821             match self.macro_defs.get(&ctxt.outer()) {
1822                 Some(&def_id) => return def_id,
1823                 None => ctxt.remove_mark(),
1824             };
1825         }
1826     }
1827
1828     /// Entry point to crate resolution.
1829     pub fn resolve_crate(&mut self, krate: &Crate) {
1830         ImportResolver { resolver: self }.finalize_imports();
1831         self.current_module = self.graph_root;
1832         self.finalize_current_module_macro_resolutions();
1833
1834         visit::walk_crate(self, krate);
1835
1836         check_unused::check_crate(self, krate);
1837         self.report_errors(krate);
1838         self.crate_loader.postprocess(krate);
1839     }
1840
1841     fn new_module(
1842         &self,
1843         parent: Module<'a>,
1844         kind: ModuleKind,
1845         normal_ancestor_id: DefId,
1846         expansion: Mark,
1847         span: Span,
1848     ) -> Module<'a> {
1849         let module = ModuleData::new(Some(parent), kind, normal_ancestor_id, expansion, span);
1850         self.arenas.alloc_module(module)
1851     }
1852
1853     fn record_use(&mut self, ident: Ident, ns: Namespace, binding: &'a NameBinding<'a>, span: Span)
1854                   -> bool /* true if an error was reported */ {
1855         match binding.kind {
1856             NameBindingKind::Import { directive, binding, ref used, legacy_self_import }
1857                     if !used.get() => {
1858                 used.set(true);
1859                 directive.used.set(true);
1860                 if legacy_self_import {
1861                     self.warn_legacy_self_import(directive);
1862                     return false;
1863                 }
1864                 self.used_imports.insert((directive.id, ns));
1865                 self.add_to_glob_map(directive.id, ident);
1866                 self.record_use(ident, ns, binding, span)
1867             }
1868             NameBindingKind::Import { .. } => false,
1869             NameBindingKind::Ambiguity { b1, b2, legacy } => {
1870                 self.ambiguity_errors.push(AmbiguityError {
1871                     span: span, name: ident.name, lexical: false, b1: b1, b2: b2, legacy,
1872                 });
1873                 if legacy {
1874                     self.record_use(ident, ns, b1, span);
1875                 }
1876                 !legacy
1877             }
1878             _ => false
1879         }
1880     }
1881
1882     fn add_to_glob_map(&mut self, id: NodeId, ident: Ident) {
1883         if self.make_glob_map {
1884             self.glob_map.entry(id).or_insert_with(FxHashSet).insert(ident.name);
1885         }
1886     }
1887
1888     /// This resolves the identifier `ident` in the namespace `ns` in the current lexical scope.
1889     /// More specifically, we proceed up the hierarchy of scopes and return the binding for
1890     /// `ident` in the first scope that defines it (or None if no scopes define it).
1891     ///
1892     /// A block's items are above its local variables in the scope hierarchy, regardless of where
1893     /// the items are defined in the block. For example,
1894     /// ```rust
1895     /// fn f() {
1896     ///    g(); // Since there are no local variables in scope yet, this resolves to the item.
1897     ///    let g = || {};
1898     ///    fn g() {}
1899     ///    g(); // This resolves to the local variable `g` since it shadows the item.
1900     /// }
1901     /// ```
1902     ///
1903     /// Invariant: This must only be called during main resolution, not during
1904     /// import resolution.
1905     fn resolve_ident_in_lexical_scope(&mut self,
1906                                       mut ident: Ident,
1907                                       ns: Namespace,
1908                                       record_used: bool,
1909                                       path_span: Span)
1910                                       -> Option<LexicalScopeBinding<'a>> {
1911         if ns == TypeNS {
1912             ident.span = if ident.name == keywords::SelfType.name() {
1913                 // FIXME(jseyfried) improve `Self` hygiene
1914                 ident.span.with_ctxt(SyntaxContext::empty())
1915             } else {
1916                 ident.span.modern()
1917             }
1918         }
1919
1920         // Walk backwards up the ribs in scope.
1921         let mut module = self.graph_root;
1922         for i in (0 .. self.ribs[ns].len()).rev() {
1923             if let Some(def) = self.ribs[ns][i].bindings.get(&ident).cloned() {
1924                 // The ident resolves to a type parameter or local variable.
1925                 return Some(LexicalScopeBinding::Def(
1926                     self.adjust_local_def(ns, i, def, record_used, path_span)
1927                 ));
1928             }
1929
1930             module = match self.ribs[ns][i].kind {
1931                 ModuleRibKind(module) => module,
1932                 MacroDefinition(def) if def == self.macro_def(ident.span.ctxt()) => {
1933                     // If an invocation of this macro created `ident`, give up on `ident`
1934                     // and switch to `ident`'s source from the macro definition.
1935                     ident.span.remove_mark();
1936                     continue
1937                 }
1938                 _ => continue,
1939             };
1940
1941             let item = self.resolve_ident_in_module_unadjusted(
1942                 module, ident, ns, false, record_used, path_span,
1943             );
1944             if let Ok(binding) = item {
1945                 // The ident resolves to an item.
1946                 return Some(LexicalScopeBinding::Item(binding));
1947             }
1948
1949             match module.kind {
1950                 ModuleKind::Block(..) => {}, // We can see through blocks
1951                 _ => break,
1952             }
1953         }
1954
1955         ident.span = ident.span.modern();
1956         loop {
1957             module = unwrap_or!(self.hygienic_lexical_parent(module, &mut ident.span), break);
1958             let orig_current_module = self.current_module;
1959             self.current_module = module; // Lexical resolutions can never be a privacy error.
1960             let result = self.resolve_ident_in_module_unadjusted(
1961                 module, ident, ns, false, record_used, path_span,
1962             );
1963             self.current_module = orig_current_module;
1964
1965             match result {
1966                 Ok(binding) => return Some(LexicalScopeBinding::Item(binding)),
1967                 Err(Undetermined) => return None,
1968                 Err(Determined) => {}
1969             }
1970         }
1971
1972         if !module.no_implicit_prelude {
1973             // `record_used` means that we don't try to load crates during speculative resolution
1974             if record_used && ns == TypeNS && self.extern_prelude.contains(&ident.name) {
1975                 if !self.session.features_untracked().extern_prelude {
1976                     feature_err(&self.session.parse_sess, "extern_prelude",
1977                                 ident.span, GateIssue::Language,
1978                                 "access to extern crates through prelude is experimental").emit();
1979                 }
1980
1981                 let crate_id = self.crate_loader.process_path_extern(ident.name, ident.span);
1982                 let crate_root = self.get_module(DefId { krate: crate_id, index: CRATE_DEF_INDEX });
1983                 self.populate_module_if_necessary(crate_root);
1984
1985                 let binding = (crate_root, ty::Visibility::Public,
1986                                ident.span, Mark::root()).to_name_binding(self.arenas);
1987                 return Some(LexicalScopeBinding::Item(binding));
1988             }
1989             if let Some(prelude) = self.prelude {
1990                 if let Ok(binding) = self.resolve_ident_in_module_unadjusted(prelude, ident, ns,
1991                                                                         false, false, path_span) {
1992                     return Some(LexicalScopeBinding::Item(binding));
1993                 }
1994             }
1995         }
1996
1997         None
1998     }
1999
2000     fn hygienic_lexical_parent(&mut self, mut module: Module<'a>, span: &mut Span)
2001                                -> Option<Module<'a>> {
2002         if !module.expansion.is_descendant_of(span.ctxt().outer()) {
2003             return Some(self.macro_def_scope(span.remove_mark()));
2004         }
2005
2006         if let ModuleKind::Block(..) = module.kind {
2007             return Some(module.parent.unwrap());
2008         }
2009
2010         let mut module_expansion = module.expansion.modern(); // for backward compatibility
2011         while let Some(parent) = module.parent {
2012             let parent_expansion = parent.expansion.modern();
2013             if module_expansion.is_descendant_of(parent_expansion) &&
2014                parent_expansion != module_expansion {
2015                 return if parent_expansion.is_descendant_of(span.ctxt().outer()) {
2016                     Some(parent)
2017                 } else {
2018                     None
2019                 };
2020             }
2021             module = parent;
2022             module_expansion = parent_expansion;
2023         }
2024
2025         None
2026     }
2027
2028     fn resolve_ident_in_module(&mut self,
2029                                module: Module<'a>,
2030                                mut ident: Ident,
2031                                ns: Namespace,
2032                                ignore_unresolved_invocations: bool,
2033                                record_used: bool,
2034                                span: Span)
2035                                -> Result<&'a NameBinding<'a>, Determinacy> {
2036         ident.span = ident.span.modern();
2037         let orig_current_module = self.current_module;
2038         if let Some(def) = ident.span.adjust(module.expansion) {
2039             self.current_module = self.macro_def_scope(def);
2040         }
2041         let result = self.resolve_ident_in_module_unadjusted(
2042             module, ident, ns, ignore_unresolved_invocations, record_used, span,
2043         );
2044         self.current_module = orig_current_module;
2045         result
2046     }
2047
2048     fn resolve_crate_root(&mut self, mut ctxt: SyntaxContext, legacy: bool) -> Module<'a> {
2049         let mark = if legacy {
2050             // When resolving `$crate` from a `macro_rules!` invoked in a `macro`,
2051             // we don't want to pretend that the `macro_rules!` definition is in the `macro`
2052             // as described in `SyntaxContext::apply_mark`, so we ignore prepended modern marks.
2053             ctxt.marks().into_iter().find(|&mark| mark.kind() != MarkKind::Modern)
2054         } else {
2055             ctxt = ctxt.modern();
2056             ctxt.adjust(Mark::root())
2057         };
2058         let module = match mark {
2059             Some(def) => self.macro_def_scope(def),
2060             None => return self.graph_root,
2061         };
2062         self.get_module(DefId { index: CRATE_DEF_INDEX, ..module.normal_ancestor_id })
2063     }
2064
2065     fn resolve_self(&mut self, ctxt: &mut SyntaxContext, module: Module<'a>) -> Module<'a> {
2066         let mut module = self.get_module(module.normal_ancestor_id);
2067         while module.span.ctxt().modern() != *ctxt {
2068             let parent = module.parent.unwrap_or_else(|| self.macro_def_scope(ctxt.remove_mark()));
2069             module = self.get_module(parent.normal_ancestor_id);
2070         }
2071         module
2072     }
2073
2074     // AST resolution
2075     //
2076     // We maintain a list of value ribs and type ribs.
2077     //
2078     // Simultaneously, we keep track of the current position in the module
2079     // graph in the `current_module` pointer. When we go to resolve a name in
2080     // the value or type namespaces, we first look through all the ribs and
2081     // then query the module graph. When we resolve a name in the module
2082     // namespace, we can skip all the ribs (since nested modules are not
2083     // allowed within blocks in Rust) and jump straight to the current module
2084     // graph node.
2085     //
2086     // Named implementations are handled separately. When we find a method
2087     // call, we consult the module node to find all of the implementations in
2088     // scope. This information is lazily cached in the module node. We then
2089     // generate a fake "implementation scope" containing all the
2090     // implementations thus found, for compatibility with old resolve pass.
2091
2092     pub fn with_scope<F, T>(&mut self, id: NodeId, f: F) -> T
2093         where F: FnOnce(&mut Resolver) -> T
2094     {
2095         let id = self.definitions.local_def_id(id);
2096         let module = self.module_map.get(&id).cloned(); // clones a reference
2097         if let Some(module) = module {
2098             // Move down in the graph.
2099             let orig_module = replace(&mut self.current_module, module);
2100             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(module)));
2101             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(module)));
2102
2103             self.finalize_current_module_macro_resolutions();
2104             let ret = f(self);
2105
2106             self.current_module = orig_module;
2107             self.ribs[ValueNS].pop();
2108             self.ribs[TypeNS].pop();
2109             ret
2110         } else {
2111             f(self)
2112         }
2113     }
2114
2115     /// Searches the current set of local scopes for labels. Returns the first non-None label that
2116     /// is returned by the given predicate function
2117     ///
2118     /// Stops after meeting a closure.
2119     fn search_label<P, R>(&self, mut ident: Ident, pred: P) -> Option<R>
2120         where P: Fn(&Rib, Ident) -> Option<R>
2121     {
2122         for rib in self.label_ribs.iter().rev() {
2123             match rib.kind {
2124                 NormalRibKind => {}
2125                 // If an invocation of this macro created `ident`, give up on `ident`
2126                 // and switch to `ident`'s source from the macro definition.
2127                 MacroDefinition(def) => {
2128                     if def == self.macro_def(ident.span.ctxt()) {
2129                         ident.span.remove_mark();
2130                     }
2131                 }
2132                 _ => {
2133                     // Do not resolve labels across function boundary
2134                     return None;
2135                 }
2136             }
2137             let r = pred(rib, ident);
2138             if r.is_some() {
2139                 return r;
2140             }
2141         }
2142         None
2143     }
2144
2145     fn resolve_item(&mut self, item: &Item) {
2146         let name = item.ident.name;
2147
2148         debug!("(resolving item) resolving {}", name);
2149
2150         self.check_proc_macro_attrs(&item.attrs);
2151
2152         match item.node {
2153             ItemKind::Enum(_, ref generics) |
2154             ItemKind::Ty(_, ref generics) |
2155             ItemKind::Struct(_, ref generics) |
2156             ItemKind::Union(_, ref generics) |
2157             ItemKind::Fn(.., ref generics, _) => {
2158                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind),
2159                                              |this| visit::walk_item(this, item));
2160             }
2161
2162             ItemKind::Impl(.., ref generics, ref opt_trait_ref, ref self_type, ref impl_items) =>
2163                 self.resolve_implementation(generics,
2164                                             opt_trait_ref,
2165                                             &self_type,
2166                                             item.id,
2167                                             impl_items),
2168
2169             ItemKind::Trait(.., ref generics, ref bounds, ref trait_items) => {
2170                 // Create a new rib for the trait-wide type parameters.
2171                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2172                     let local_def_id = this.definitions.local_def_id(item.id);
2173                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2174                         this.visit_generics(generics);
2175                         walk_list!(this, visit_ty_param_bound, bounds);
2176
2177                         for trait_item in trait_items {
2178                             this.check_proc_macro_attrs(&trait_item.attrs);
2179
2180                             let type_parameters = HasTypeParameters(&trait_item.generics,
2181                                                                     TraitOrImplItemRibKind);
2182                             this.with_type_parameter_rib(type_parameters, |this| {
2183                                 match trait_item.node {
2184                                     TraitItemKind::Const(ref ty, ref default) => {
2185                                         this.visit_ty(ty);
2186
2187                                         // Only impose the restrictions of
2188                                         // ConstRibKind for an actual constant
2189                                         // expression in a provided default.
2190                                         if let Some(ref expr) = *default{
2191                                             this.with_constant_rib(|this| {
2192                                                 this.visit_expr(expr);
2193                                             });
2194                                         }
2195                                     }
2196                                     TraitItemKind::Method(_, _) => {
2197                                         visit::walk_trait_item(this, trait_item)
2198                                     }
2199                                     TraitItemKind::Type(..) => {
2200                                         visit::walk_trait_item(this, trait_item)
2201                                     }
2202                                     TraitItemKind::Macro(_) => {
2203                                         panic!("unexpanded macro in resolve!")
2204                                     }
2205                                 };
2206                             });
2207                         }
2208                     });
2209                 });
2210             }
2211
2212             ItemKind::TraitAlias(ref generics, ref bounds) => {
2213                 // Create a new rib for the trait-wide type parameters.
2214                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2215                     let local_def_id = this.definitions.local_def_id(item.id);
2216                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2217                         this.visit_generics(generics);
2218                         walk_list!(this, visit_ty_param_bound, bounds);
2219                     });
2220                 });
2221             }
2222
2223             ItemKind::Mod(_) | ItemKind::ForeignMod(_) => {
2224                 self.with_scope(item.id, |this| {
2225                     visit::walk_item(this, item);
2226                 });
2227             }
2228
2229             ItemKind::Static(ref ty, _, ref expr) |
2230             ItemKind::Const(ref ty, ref expr) => {
2231                 self.with_item_rib(|this| {
2232                     this.visit_ty(ty);
2233                     this.with_constant_rib(|this| {
2234                         this.visit_expr(expr);
2235                     });
2236                 });
2237             }
2238
2239             ItemKind::Use(ref use_tree) => {
2240                 // Imports are resolved as global by default, add starting root segment.
2241                 let path = Path {
2242                     segments: use_tree.prefix.make_root().into_iter().collect(),
2243                     span: use_tree.span,
2244                 };
2245                 self.resolve_use_tree(item.id, use_tree, &path);
2246             }
2247
2248             ItemKind::ExternCrate(_) | ItemKind::MacroDef(..) | ItemKind::GlobalAsm(_) => {
2249                 // do nothing, these are just around to be encoded
2250             }
2251
2252             ItemKind::Mac(_) => panic!("unexpanded macro in resolve!"),
2253         }
2254     }
2255
2256     fn resolve_use_tree(&mut self, id: NodeId, use_tree: &ast::UseTree, prefix: &Path) {
2257         match use_tree.kind {
2258             ast::UseTreeKind::Nested(ref items) => {
2259                 let path = Path {
2260                     segments: prefix.segments
2261                         .iter()
2262                         .chain(use_tree.prefix.segments.iter())
2263                         .cloned()
2264                         .collect(),
2265                     span: prefix.span.to(use_tree.prefix.span),
2266                 };
2267
2268                 if items.len() == 0 {
2269                     // Resolve prefix of an import with empty braces (issue #28388).
2270                     self.smart_resolve_path(id, None, &path, PathSource::ImportPrefix);
2271                 } else {
2272                     for &(ref tree, nested_id) in items {
2273                         self.resolve_use_tree(nested_id, tree, &path);
2274                     }
2275                 }
2276             }
2277             ast::UseTreeKind::Simple(_) => {},
2278             ast::UseTreeKind::Glob => {},
2279         }
2280     }
2281
2282     fn with_type_parameter_rib<'b, F>(&'b mut self, type_parameters: TypeParameters<'a, 'b>, f: F)
2283         where F: FnOnce(&mut Resolver)
2284     {
2285         match type_parameters {
2286             HasTypeParameters(generics, rib_kind) => {
2287                 let mut function_type_rib = Rib::new(rib_kind);
2288                 let mut seen_bindings = FxHashMap();
2289                 for param in &generics.params {
2290                     if let GenericParam::Type(ref type_parameter) = *param {
2291                         let ident = type_parameter.ident.modern();
2292                         debug!("with_type_parameter_rib: {}", type_parameter.id);
2293
2294                         if seen_bindings.contains_key(&ident) {
2295                             let span = seen_bindings.get(&ident).unwrap();
2296                             let err = ResolutionError::NameAlreadyUsedInTypeParameterList(
2297                                 ident.name,
2298                                 span,
2299                             );
2300                             resolve_error(self, type_parameter.ident.span, err);
2301                         }
2302                         seen_bindings.entry(ident).or_insert(type_parameter.ident.span);
2303
2304                         // plain insert (no renaming)
2305                         let def_id = self.definitions.local_def_id(type_parameter.id);
2306                         let def = Def::TyParam(def_id);
2307                         function_type_rib.bindings.insert(ident, def);
2308                         self.record_def(type_parameter.id, PathResolution::new(def));
2309                     }
2310                 }
2311                 self.ribs[TypeNS].push(function_type_rib);
2312             }
2313
2314             NoTypeParameters => {
2315                 // Nothing to do.
2316             }
2317         }
2318
2319         f(self);
2320
2321         if let HasTypeParameters(..) = type_parameters {
2322             self.ribs[TypeNS].pop();
2323         }
2324     }
2325
2326     fn with_label_rib<F>(&mut self, f: F)
2327         where F: FnOnce(&mut Resolver)
2328     {
2329         self.label_ribs.push(Rib::new(NormalRibKind));
2330         f(self);
2331         self.label_ribs.pop();
2332     }
2333
2334     fn with_item_rib<F>(&mut self, f: F)
2335         where F: FnOnce(&mut Resolver)
2336     {
2337         self.ribs[ValueNS].push(Rib::new(ItemRibKind));
2338         self.ribs[TypeNS].push(Rib::new(ItemRibKind));
2339         f(self);
2340         self.ribs[TypeNS].pop();
2341         self.ribs[ValueNS].pop();
2342     }
2343
2344     fn with_constant_rib<F>(&mut self, f: F)
2345         where F: FnOnce(&mut Resolver)
2346     {
2347         self.ribs[ValueNS].push(Rib::new(ConstantItemRibKind));
2348         f(self);
2349         self.ribs[ValueNS].pop();
2350     }
2351
2352     fn with_current_self_type<T, F>(&mut self, self_type: &Ty, f: F) -> T
2353         where F: FnOnce(&mut Resolver) -> T
2354     {
2355         // Handle nested impls (inside fn bodies)
2356         let previous_value = replace(&mut self.current_self_type, Some(self_type.clone()));
2357         let result = f(self);
2358         self.current_self_type = previous_value;
2359         result
2360     }
2361
2362     /// This is called to resolve a trait reference from an `impl` (i.e. `impl Trait for Foo`)
2363     fn with_optional_trait_ref<T, F>(&mut self, opt_trait_ref: Option<&TraitRef>, f: F) -> T
2364         where F: FnOnce(&mut Resolver, Option<DefId>) -> T
2365     {
2366         let mut new_val = None;
2367         let mut new_id = None;
2368         if let Some(trait_ref) = opt_trait_ref {
2369             let path: Vec<_> = trait_ref.path.segments.iter()
2370                 .map(|seg| seg.ident)
2371                 .collect();
2372             let def = self.smart_resolve_path_fragment(
2373                 trait_ref.ref_id,
2374                 None,
2375                 &path,
2376                 trait_ref.path.span,
2377                 PathSource::Trait(AliasPossibility::No)
2378             ).base_def();
2379             if def != Def::Err {
2380                 new_id = Some(def.def_id());
2381                 let span = trait_ref.path.span;
2382                 if let PathResult::Module(module) = self.resolve_path(&path, None, false, span,
2383                                                                       Some(trait_ref.ref_id)) {
2384                     new_val = Some((module, trait_ref.clone()));
2385                 }
2386             }
2387         }
2388         let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
2389         let result = f(self, new_id);
2390         self.current_trait_ref = original_trait_ref;
2391         result
2392     }
2393
2394     fn with_self_rib<F>(&mut self, self_def: Def, f: F)
2395         where F: FnOnce(&mut Resolver)
2396     {
2397         let mut self_type_rib = Rib::new(NormalRibKind);
2398
2399         // plain insert (no renaming, types are not currently hygienic....)
2400         self_type_rib.bindings.insert(keywords::SelfType.ident(), self_def);
2401         self.ribs[TypeNS].push(self_type_rib);
2402         f(self);
2403         self.ribs[TypeNS].pop();
2404     }
2405
2406     fn resolve_implementation(&mut self,
2407                               generics: &Generics,
2408                               opt_trait_reference: &Option<TraitRef>,
2409                               self_type: &Ty,
2410                               item_id: NodeId,
2411                               impl_items: &[ImplItem]) {
2412         // If applicable, create a rib for the type parameters.
2413         self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2414             // Dummy self type for better errors if `Self` is used in the trait path.
2415             this.with_self_rib(Def::SelfTy(None, None), |this| {
2416                 // Resolve the trait reference, if necessary.
2417                 this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| {
2418                     let item_def_id = this.definitions.local_def_id(item_id);
2419                     this.with_self_rib(Def::SelfTy(trait_id, Some(item_def_id)), |this| {
2420                         if let Some(trait_ref) = opt_trait_reference.as_ref() {
2421                             // Resolve type arguments in trait path
2422                             visit::walk_trait_ref(this, trait_ref);
2423                         }
2424                         // Resolve the self type.
2425                         this.visit_ty(self_type);
2426                         // Resolve the type parameters.
2427                         this.visit_generics(generics);
2428                         this.with_current_self_type(self_type, |this| {
2429                             for impl_item in impl_items {
2430                                 this.check_proc_macro_attrs(&impl_item.attrs);
2431                                 this.resolve_visibility(&impl_item.vis);
2432
2433                                 // We also need a new scope for the impl item type parameters.
2434                                 let type_parameters = HasTypeParameters(&impl_item.generics,
2435                                                                         TraitOrImplItemRibKind);
2436                                 this.with_type_parameter_rib(type_parameters, |this| {
2437                                     use self::ResolutionError::*;
2438                                     match impl_item.node {
2439                                         ImplItemKind::Const(..) => {
2440                                             // If this is a trait impl, ensure the const
2441                                             // exists in trait
2442                                             this.check_trait_item(impl_item.ident,
2443                                                                 ValueNS,
2444                                                                 impl_item.span,
2445                                                 |n, s| ConstNotMemberOfTrait(n, s));
2446                                             this.with_constant_rib(|this|
2447                                                 visit::walk_impl_item(this, impl_item)
2448                                             );
2449                                         }
2450                                         ImplItemKind::Method(_, _) => {
2451                                             // If this is a trait impl, ensure the method
2452                                             // exists in trait
2453                                             this.check_trait_item(impl_item.ident,
2454                                                                 ValueNS,
2455                                                                 impl_item.span,
2456                                                 |n, s| MethodNotMemberOfTrait(n, s));
2457
2458                                             visit::walk_impl_item(this, impl_item);
2459                                         }
2460                                         ImplItemKind::Type(ref ty) => {
2461                                             // If this is a trait impl, ensure the type
2462                                             // exists in trait
2463                                             this.check_trait_item(impl_item.ident,
2464                                                                 TypeNS,
2465                                                                 impl_item.span,
2466                                                 |n, s| TypeNotMemberOfTrait(n, s));
2467
2468                                             this.visit_ty(ty);
2469                                         }
2470                                         ImplItemKind::Macro(_) =>
2471                                             panic!("unexpanded macro in resolve!"),
2472                                     }
2473                                 });
2474                             }
2475                         });
2476                     });
2477                 });
2478             });
2479         });
2480     }
2481
2482     fn check_trait_item<F>(&mut self, ident: Ident, ns: Namespace, span: Span, err: F)
2483         where F: FnOnce(Name, &str) -> ResolutionError
2484     {
2485         // If there is a TraitRef in scope for an impl, then the method must be in the
2486         // trait.
2487         if let Some((module, _)) = self.current_trait_ref {
2488             if self.resolve_ident_in_module(module, ident, ns, false, false, span).is_err() {
2489                 let path = &self.current_trait_ref.as_ref().unwrap().1.path;
2490                 resolve_error(self, span, err(ident.name, &path_names_to_string(path)));
2491             }
2492         }
2493     }
2494
2495     fn resolve_local(&mut self, local: &Local) {
2496         // Resolve the type.
2497         walk_list!(self, visit_ty, &local.ty);
2498
2499         // Resolve the initializer.
2500         walk_list!(self, visit_expr, &local.init);
2501
2502         // Resolve the pattern.
2503         self.resolve_pattern(&local.pat, PatternSource::Let, &mut FxHashMap());
2504     }
2505
2506     // build a map from pattern identifiers to binding-info's.
2507     // this is done hygienically. This could arise for a macro
2508     // that expands into an or-pattern where one 'x' was from the
2509     // user and one 'x' came from the macro.
2510     fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
2511         let mut binding_map = FxHashMap();
2512
2513         pat.walk(&mut |pat| {
2514             if let PatKind::Ident(binding_mode, ident, ref sub_pat) = pat.node {
2515                 if sub_pat.is_some() || match self.def_map.get(&pat.id).map(|res| res.base_def()) {
2516                     Some(Def::Local(..)) => true,
2517                     _ => false,
2518                 } {
2519                     let binding_info = BindingInfo { span: ident.span, binding_mode: binding_mode };
2520                     binding_map.insert(ident, binding_info);
2521                 }
2522             }
2523             true
2524         });
2525
2526         binding_map
2527     }
2528
2529     // check that all of the arms in an or-pattern have exactly the
2530     // same set of bindings, with the same binding modes for each.
2531     fn check_consistent_bindings(&mut self, pats: &[P<Pat>]) {
2532         if pats.is_empty() {
2533             return;
2534         }
2535
2536         let mut missing_vars = FxHashMap();
2537         let mut inconsistent_vars = FxHashMap();
2538         for (i, p) in pats.iter().enumerate() {
2539             let map_i = self.binding_mode_map(&p);
2540
2541             for (j, q) in pats.iter().enumerate() {
2542                 if i == j {
2543                     continue;
2544                 }
2545
2546                 let map_j = self.binding_mode_map(&q);
2547                 for (&key, &binding_i) in &map_i {
2548                     if map_j.len() == 0 {                   // Account for missing bindings when
2549                         let binding_error = missing_vars    // map_j has none.
2550                             .entry(key.name)
2551                             .or_insert(BindingError {
2552                                 name: key.name,
2553                                 origin: BTreeSet::new(),
2554                                 target: BTreeSet::new(),
2555                             });
2556                         binding_error.origin.insert(binding_i.span);
2557                         binding_error.target.insert(q.span);
2558                     }
2559                     for (&key_j, &binding_j) in &map_j {
2560                         match map_i.get(&key_j) {
2561                             None => {  // missing binding
2562                                 let binding_error = missing_vars
2563                                     .entry(key_j.name)
2564                                     .or_insert(BindingError {
2565                                         name: key_j.name,
2566                                         origin: BTreeSet::new(),
2567                                         target: BTreeSet::new(),
2568                                     });
2569                                 binding_error.origin.insert(binding_j.span);
2570                                 binding_error.target.insert(p.span);
2571                             }
2572                             Some(binding_i) => {  // check consistent binding
2573                                 if binding_i.binding_mode != binding_j.binding_mode {
2574                                     inconsistent_vars
2575                                         .entry(key.name)
2576                                         .or_insert((binding_j.span, binding_i.span));
2577                                 }
2578                             }
2579                         }
2580                     }
2581                 }
2582             }
2583         }
2584         let mut missing_vars = missing_vars.iter().collect::<Vec<_>>();
2585         missing_vars.sort();
2586         for (_, v) in missing_vars {
2587             resolve_error(self,
2588                           *v.origin.iter().next().unwrap(),
2589                           ResolutionError::VariableNotBoundInPattern(v));
2590         }
2591         let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
2592         inconsistent_vars.sort();
2593         for (name, v) in inconsistent_vars {
2594             resolve_error(self, v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
2595         }
2596     }
2597
2598     fn resolve_arm(&mut self, arm: &Arm) {
2599         self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2600
2601         let mut bindings_list = FxHashMap();
2602         for pattern in &arm.pats {
2603             self.resolve_pattern(&pattern, PatternSource::Match, &mut bindings_list);
2604         }
2605
2606         // This has to happen *after* we determine which pat_idents are variants
2607         self.check_consistent_bindings(&arm.pats);
2608
2609         walk_list!(self, visit_expr, &arm.guard);
2610         self.visit_expr(&arm.body);
2611
2612         self.ribs[ValueNS].pop();
2613     }
2614
2615     fn resolve_block(&mut self, block: &Block) {
2616         debug!("(resolving block) entering block");
2617         // Move down in the graph, if there's an anonymous module rooted here.
2618         let orig_module = self.current_module;
2619         let anonymous_module = self.block_map.get(&block.id).cloned(); // clones a reference
2620
2621         let mut num_macro_definition_ribs = 0;
2622         if let Some(anonymous_module) = anonymous_module {
2623             debug!("(resolving block) found anonymous module, moving down");
2624             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2625             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2626             self.current_module = anonymous_module;
2627             self.finalize_current_module_macro_resolutions();
2628         } else {
2629             self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2630         }
2631
2632         // Descend into the block.
2633         for stmt in &block.stmts {
2634             if let ast::StmtKind::Item(ref item) = stmt.node {
2635                 if let ast::ItemKind::MacroDef(..) = item.node {
2636                     num_macro_definition_ribs += 1;
2637                     let def = self.definitions.local_def_id(item.id);
2638                     self.ribs[ValueNS].push(Rib::new(MacroDefinition(def)));
2639                     self.label_ribs.push(Rib::new(MacroDefinition(def)));
2640                 }
2641             }
2642
2643             self.visit_stmt(stmt);
2644         }
2645
2646         // Move back up.
2647         self.current_module = orig_module;
2648         for _ in 0 .. num_macro_definition_ribs {
2649             self.ribs[ValueNS].pop();
2650             self.label_ribs.pop();
2651         }
2652         self.ribs[ValueNS].pop();
2653         if let Some(_) = anonymous_module {
2654             self.ribs[TypeNS].pop();
2655         }
2656         debug!("(resolving block) leaving block");
2657     }
2658
2659     fn fresh_binding(&mut self,
2660                      ident: Ident,
2661                      pat_id: NodeId,
2662                      outer_pat_id: NodeId,
2663                      pat_src: PatternSource,
2664                      bindings: &mut FxHashMap<Ident, NodeId>)
2665                      -> PathResolution {
2666         // Add the binding to the local ribs, if it
2667         // doesn't already exist in the bindings map. (We
2668         // must not add it if it's in the bindings map
2669         // because that breaks the assumptions later
2670         // passes make about or-patterns.)
2671         let mut def = Def::Local(pat_id);
2672         match bindings.get(&ident).cloned() {
2673             Some(id) if id == outer_pat_id => {
2674                 // `Variant(a, a)`, error
2675                 resolve_error(
2676                     self,
2677                     ident.span,
2678                     ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(
2679                         &ident.name.as_str())
2680                 );
2681             }
2682             Some(..) if pat_src == PatternSource::FnParam => {
2683                 // `fn f(a: u8, a: u8)`, error
2684                 resolve_error(
2685                     self,
2686                     ident.span,
2687                     ResolutionError::IdentifierBoundMoreThanOnceInParameterList(
2688                         &ident.name.as_str())
2689                 );
2690             }
2691             Some(..) if pat_src == PatternSource::Match ||
2692                         pat_src == PatternSource::IfLet ||
2693                         pat_src == PatternSource::WhileLet => {
2694                 // `Variant1(a) | Variant2(a)`, ok
2695                 // Reuse definition from the first `a`.
2696                 def = self.ribs[ValueNS].last_mut().unwrap().bindings[&ident];
2697             }
2698             Some(..) => {
2699                 span_bug!(ident.span, "two bindings with the same name from \
2700                                        unexpected pattern source {:?}", pat_src);
2701             }
2702             None => {
2703                 // A completely fresh binding, add to the lists if it's valid.
2704                 if ident.name != keywords::Invalid.name() {
2705                     bindings.insert(ident, outer_pat_id);
2706                     self.ribs[ValueNS].last_mut().unwrap().bindings.insert(ident, def);
2707                 }
2708             }
2709         }
2710
2711         PathResolution::new(def)
2712     }
2713
2714     fn resolve_pattern(&mut self,
2715                        pat: &Pat,
2716                        pat_src: PatternSource,
2717                        // Maps idents to the node ID for the
2718                        // outermost pattern that binds them.
2719                        bindings: &mut FxHashMap<Ident, NodeId>) {
2720         // Visit all direct subpatterns of this pattern.
2721         let outer_pat_id = pat.id;
2722         pat.walk(&mut |pat| {
2723             match pat.node {
2724                 PatKind::Ident(bmode, ident, ref opt_pat) => {
2725                     // First try to resolve the identifier as some existing
2726                     // entity, then fall back to a fresh binding.
2727                     let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS,
2728                                                                       false, pat.span)
2729                                       .and_then(LexicalScopeBinding::item);
2730                     let resolution = binding.map(NameBinding::def).and_then(|def| {
2731                         let is_syntactic_ambiguity = opt_pat.is_none() &&
2732                             bmode == BindingMode::ByValue(Mutability::Immutable);
2733                         match def {
2734                             Def::StructCtor(_, CtorKind::Const) |
2735                             Def::VariantCtor(_, CtorKind::Const) |
2736                             Def::Const(..) if is_syntactic_ambiguity => {
2737                                 // Disambiguate in favor of a unit struct/variant
2738                                 // or constant pattern.
2739                                 self.record_use(ident, ValueNS, binding.unwrap(), ident.span);
2740                                 Some(PathResolution::new(def))
2741                             }
2742                             Def::StructCtor(..) | Def::VariantCtor(..) |
2743                             Def::Const(..) | Def::Static(..) => {
2744                                 // This is unambiguously a fresh binding, either syntactically
2745                                 // (e.g. `IDENT @ PAT` or `ref IDENT`) or because `IDENT` resolves
2746                                 // to something unusable as a pattern (e.g. constructor function),
2747                                 // but we still conservatively report an error, see
2748                                 // issues/33118#issuecomment-233962221 for one reason why.
2749                                 resolve_error(
2750                                     self,
2751                                     ident.span,
2752                                     ResolutionError::BindingShadowsSomethingUnacceptable(
2753                                         pat_src.descr(), ident.name, binding.unwrap())
2754                                 );
2755                                 None
2756                             }
2757                             Def::Fn(..) | Def::Err => {
2758                                 // These entities are explicitly allowed
2759                                 // to be shadowed by fresh bindings.
2760                                 None
2761                             }
2762                             def => {
2763                                 span_bug!(ident.span, "unexpected definition for an \
2764                                                        identifier in pattern: {:?}", def);
2765                             }
2766                         }
2767                     }).unwrap_or_else(|| {
2768                         self.fresh_binding(ident, pat.id, outer_pat_id, pat_src, bindings)
2769                     });
2770
2771                     self.record_def(pat.id, resolution);
2772                 }
2773
2774                 PatKind::TupleStruct(ref path, ..) => {
2775                     self.smart_resolve_path(pat.id, None, path, PathSource::TupleStruct);
2776                 }
2777
2778                 PatKind::Path(ref qself, ref path) => {
2779                     self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
2780                 }
2781
2782                 PatKind::Struct(ref path, ..) => {
2783                     self.smart_resolve_path(pat.id, None, path, PathSource::Struct);
2784                 }
2785
2786                 _ => {}
2787             }
2788             true
2789         });
2790
2791         visit::walk_pat(self, pat);
2792     }
2793
2794     // High-level and context dependent path resolution routine.
2795     // Resolves the path and records the resolution into definition map.
2796     // If resolution fails tries several techniques to find likely
2797     // resolution candidates, suggest imports or other help, and report
2798     // errors in user friendly way.
2799     fn smart_resolve_path(&mut self,
2800                           id: NodeId,
2801                           qself: Option<&QSelf>,
2802                           path: &Path,
2803                           source: PathSource)
2804                           -> PathResolution {
2805         let segments = &path.segments.iter()
2806             .map(|seg| seg.ident)
2807             .collect::<Vec<_>>();
2808         self.smart_resolve_path_fragment(id, qself, segments, path.span, source)
2809     }
2810
2811     fn smart_resolve_path_fragment(&mut self,
2812                                    id: NodeId,
2813                                    qself: Option<&QSelf>,
2814                                    path: &[Ident],
2815                                    span: Span,
2816                                    source: PathSource)
2817                                    -> PathResolution {
2818         let ident_span = path.last().map_or(span, |ident| ident.span);
2819         let ns = source.namespace();
2820         let is_expected = &|def| source.is_expected(def);
2821         let is_enum_variant = &|def| if let Def::Variant(..) = def { true } else { false };
2822
2823         // Base error is amended with one short label and possibly some longer helps/notes.
2824         let report_errors = |this: &mut Self, def: Option<Def>| {
2825             // Make the base error.
2826             let expected = source.descr_expected();
2827             let path_str = names_to_string(path);
2828             let code = source.error_code(def.is_some());
2829             let (base_msg, fallback_label, base_span) = if let Some(def) = def {
2830                 (format!("expected {}, found {} `{}`", expected, def.kind_name(), path_str),
2831                  format!("not a {}", expected),
2832                  span)
2833             } else {
2834                 let item_str = path[path.len() - 1];
2835                 let item_span = path[path.len() - 1].span;
2836                 let (mod_prefix, mod_str) = if path.len() == 1 {
2837                     (format!(""), format!("this scope"))
2838                 } else if path.len() == 2 && path[0].name == keywords::CrateRoot.name() {
2839                     (format!(""), format!("the crate root"))
2840                 } else {
2841                     let mod_path = &path[..path.len() - 1];
2842                     let mod_prefix = match this.resolve_path(mod_path, Some(TypeNS),
2843                                                              false, span, None) {
2844                         PathResult::Module(module) => module.def(),
2845                         _ => None,
2846                     }.map_or(format!(""), |def| format!("{} ", def.kind_name()));
2847                     (mod_prefix, format!("`{}`", names_to_string(mod_path)))
2848                 };
2849                 (format!("cannot find {} `{}` in {}{}", expected, item_str, mod_prefix, mod_str),
2850                  format!("not found in {}", mod_str),
2851                  item_span)
2852             };
2853             let code = DiagnosticId::Error(code.into());
2854             let mut err = this.session.struct_span_err_with_code(base_span, &base_msg, code);
2855
2856             // Emit special messages for unresolved `Self` and `self`.
2857             if is_self_type(path, ns) {
2858                 __diagnostic_used!(E0411);
2859                 err.code(DiagnosticId::Error("E0411".into()));
2860                 err.span_label(span, "`Self` is only available in traits and impls");
2861                 return (err, Vec::new());
2862             }
2863             if is_self_value(path, ns) {
2864                 __diagnostic_used!(E0424);
2865                 err.code(DiagnosticId::Error("E0424".into()));
2866                 err.span_label(span, format!("`self` value is only available in \
2867                                                methods with `self` parameter"));
2868                 return (err, Vec::new());
2869             }
2870
2871             // Try to lookup the name in more relaxed fashion for better error reporting.
2872             let ident = *path.last().unwrap();
2873             let candidates = this.lookup_import_candidates(ident.name, ns, is_expected);
2874             if candidates.is_empty() && is_expected(Def::Enum(DefId::local(CRATE_DEF_INDEX))) {
2875                 let enum_candidates =
2876                     this.lookup_import_candidates(ident.name, ns, is_enum_variant);
2877                 let mut enum_candidates = enum_candidates.iter()
2878                     .map(|suggestion| import_candidate_to_paths(&suggestion)).collect::<Vec<_>>();
2879                 enum_candidates.sort();
2880                 for (sp, variant_path, enum_path) in enum_candidates {
2881                     if sp == DUMMY_SP {
2882                         let msg = format!("there is an enum variant `{}`, \
2883                                         try using `{}`?",
2884                                         variant_path,
2885                                         enum_path);
2886                         err.help(&msg);
2887                     } else {
2888                         err.span_suggestion(span, "you can try using the variant's enum",
2889                                             enum_path);
2890                     }
2891                 }
2892             }
2893             if path.len() == 1 && this.self_type_is_available(span) {
2894                 if let Some(candidate) = this.lookup_assoc_candidate(ident, ns, is_expected) {
2895                     let self_is_available = this.self_value_is_available(path[0].span, span);
2896                     match candidate {
2897                         AssocSuggestion::Field => {
2898                             err.span_suggestion(span, "try",
2899                                                 format!("self.{}", path_str));
2900                             if !self_is_available {
2901                                 err.span_label(span, format!("`self` value is only available in \
2902                                                                methods with `self` parameter"));
2903                             }
2904                         }
2905                         AssocSuggestion::MethodWithSelf if self_is_available => {
2906                             err.span_suggestion(span, "try",
2907                                                 format!("self.{}", path_str));
2908                         }
2909                         AssocSuggestion::MethodWithSelf | AssocSuggestion::AssocItem => {
2910                             err.span_suggestion(span, "try",
2911                                                 format!("Self::{}", path_str));
2912                         }
2913                     }
2914                     return (err, candidates);
2915                 }
2916             }
2917
2918             let mut levenshtein_worked = false;
2919
2920             // Try Levenshtein.
2921             if let Some(candidate) = this.lookup_typo_candidate(path, ns, is_expected, span) {
2922                 err.span_label(ident_span, format!("did you mean `{}`?", candidate));
2923                 levenshtein_worked = true;
2924             }
2925
2926             // Try context dependent help if relaxed lookup didn't work.
2927             if let Some(def) = def {
2928                 match (def, source) {
2929                     (Def::Macro(..), _) => {
2930                         err.span_label(span, format!("did you mean `{}!(...)`?", path_str));
2931                         return (err, candidates);
2932                     }
2933                     (Def::TyAlias(..), PathSource::Trait(_)) => {
2934                         err.span_label(span, "type aliases cannot be used for traits");
2935                         return (err, candidates);
2936                     }
2937                     (Def::Mod(..), PathSource::Expr(Some(parent))) => match parent.node {
2938                         ExprKind::Field(_, ident) => {
2939                             err.span_label(parent.span, format!("did you mean `{}::{}`?",
2940                                                                  path_str, ident));
2941                             return (err, candidates);
2942                         }
2943                         ExprKind::MethodCall(ref segment, ..) => {
2944                             err.span_label(parent.span, format!("did you mean `{}::{}(...)`?",
2945                                                                  path_str, segment.ident));
2946                             return (err, candidates);
2947                         }
2948                         _ => {}
2949                     },
2950                     (Def::Enum(..), PathSource::TupleStruct)
2951                         | (Def::Enum(..), PathSource::Expr(..))  => {
2952                         if let Some(variants) = this.collect_enum_variants(def) {
2953                             err.note(&format!("did you mean to use one \
2954                                                of the following variants?\n{}",
2955                                 variants.iter()
2956                                     .map(|suggestion| path_names_to_string(suggestion))
2957                                     .map(|suggestion| format!("- `{}`", suggestion))
2958                                     .collect::<Vec<_>>()
2959                                     .join("\n")));
2960
2961                         } else {
2962                             err.note("did you mean to use one of the enum's variants?");
2963                         }
2964                         return (err, candidates);
2965                     },
2966                     (Def::Struct(def_id), _) if ns == ValueNS => {
2967                         if let Some((ctor_def, ctor_vis))
2968                                 = this.struct_constructors.get(&def_id).cloned() {
2969                             let accessible_ctor = this.is_accessible(ctor_vis);
2970                             if is_expected(ctor_def) && !accessible_ctor {
2971                                 err.span_label(span, format!("constructor is not visible \
2972                                                               here due to private fields"));
2973                             }
2974                         } else {
2975                             err.span_label(span, format!("did you mean `{} {{ /* fields */ }}`?",
2976                                                          path_str));
2977                         }
2978                         return (err, candidates);
2979                     }
2980                     (Def::Union(..), _) |
2981                     (Def::Variant(..), _) |
2982                     (Def::VariantCtor(_, CtorKind::Fictive), _) if ns == ValueNS => {
2983                         err.span_label(span, format!("did you mean `{} {{ /* fields */ }}`?",
2984                                                      path_str));
2985                         return (err, candidates);
2986                     }
2987                     (Def::SelfTy(..), _) if ns == ValueNS => {
2988                         err.span_label(span, fallback_label);
2989                         err.note("can't use `Self` as a constructor, you must use the \
2990                                   implemented struct");
2991                         return (err, candidates);
2992                     }
2993                     (Def::TyAlias(_), _) | (Def::AssociatedTy(..), _) if ns == ValueNS => {
2994                         err.note("can't use a type alias as a constructor");
2995                         return (err, candidates);
2996                     }
2997                     _ => {}
2998                 }
2999             }
3000
3001             // Fallback label.
3002             if !levenshtein_worked {
3003                 err.span_label(base_span, fallback_label);
3004                 this.type_ascription_suggestion(&mut err, base_span);
3005             }
3006             (err, candidates)
3007         };
3008         let report_errors = |this: &mut Self, def: Option<Def>| {
3009             let (err, candidates) = report_errors(this, def);
3010             let def_id = this.current_module.normal_ancestor_id;
3011             let node_id = this.definitions.as_local_node_id(def_id).unwrap();
3012             let better = def.is_some();
3013             this.use_injections.push(UseError { err, candidates, node_id, better });
3014             err_path_resolution()
3015         };
3016
3017         let resolution = match self.resolve_qpath_anywhere(id, qself, path, ns, span,
3018                                                            source.defer_to_typeck(),
3019                                                            source.global_by_default()) {
3020             Some(resolution) if resolution.unresolved_segments() == 0 => {
3021                 if is_expected(resolution.base_def()) || resolution.base_def() == Def::Err {
3022                     resolution
3023                 } else {
3024                     // Add a temporary hack to smooth the transition to new struct ctor
3025                     // visibility rules. See #38932 for more details.
3026                     let mut res = None;
3027                     if let Def::Struct(def_id) = resolution.base_def() {
3028                         if let Some((ctor_def, ctor_vis))
3029                                 = self.struct_constructors.get(&def_id).cloned() {
3030                             if is_expected(ctor_def) && self.is_accessible(ctor_vis) {
3031                                 let lint = lint::builtin::LEGACY_CONSTRUCTOR_VISIBILITY;
3032                                 self.session.buffer_lint(lint, id, span,
3033                                     "private struct constructors are not usable through \
3034                                      re-exports in outer modules",
3035                                 );
3036                                 res = Some(PathResolution::new(ctor_def));
3037                             }
3038                         }
3039                     }
3040
3041                     res.unwrap_or_else(|| report_errors(self, Some(resolution.base_def())))
3042                 }
3043             }
3044             Some(resolution) if source.defer_to_typeck() => {
3045                 // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
3046                 // or `<T>::A::B`. If `B` should be resolved in value namespace then
3047                 // it needs to be added to the trait map.
3048                 if ns == ValueNS {
3049                     let item_name = *path.last().unwrap();
3050                     let traits = self.get_traits_containing_item(item_name, ns);
3051                     self.trait_map.insert(id, traits);
3052                 }
3053                 resolution
3054             }
3055             _ => report_errors(self, None)
3056         };
3057
3058         if let PathSource::TraitItem(..) = source {} else {
3059             // Avoid recording definition of `A::B` in `<T as A>::B::C`.
3060             self.record_def(id, resolution);
3061         }
3062         resolution
3063     }
3064
3065     fn type_ascription_suggestion(&self,
3066                                   err: &mut DiagnosticBuilder,
3067                                   base_span: Span) {
3068         debug!("type_ascription_suggetion {:?}", base_span);
3069         let cm = self.session.codemap();
3070         debug!("self.current_type_ascription {:?}", self.current_type_ascription);
3071         if let Some(sp) = self.current_type_ascription.last() {
3072             let mut sp = *sp;
3073             loop {  // try to find the `:`, bail on first non-':'/non-whitespace
3074                 sp = cm.next_point(sp);
3075                 if let Ok(snippet) = cm.span_to_snippet(sp.to(cm.next_point(sp))) {
3076                     debug!("snippet {:?}", snippet);
3077                     let line_sp = cm.lookup_char_pos(sp.hi()).line;
3078                     let line_base_sp = cm.lookup_char_pos(base_span.lo()).line;
3079                     debug!("{:?} {:?}", line_sp, line_base_sp);
3080                     if snippet == ":" {
3081                         err.span_label(base_span,
3082                                        "expecting a type here because of type ascription");
3083                         if line_sp != line_base_sp {
3084                             err.span_suggestion_short(sp,
3085                                                       "did you mean to use `;` here instead?",
3086                                                       ";".to_string());
3087                         }
3088                         break;
3089                     } else if snippet.trim().len() != 0  {
3090                         debug!("tried to find type ascription `:` token, couldn't find it");
3091                         break;
3092                     }
3093                 } else {
3094                     break;
3095                 }
3096             }
3097         }
3098     }
3099
3100     fn self_type_is_available(&mut self, span: Span) -> bool {
3101         let binding = self.resolve_ident_in_lexical_scope(keywords::SelfType.ident(),
3102                                                           TypeNS, false, span);
3103         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3104     }
3105
3106     fn self_value_is_available(&mut self, self_span: Span, path_span: Span) -> bool {
3107         let ident = Ident::new(keywords::SelfValue.name(), self_span);
3108         let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, false, path_span);
3109         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3110     }
3111
3112     // Resolve in alternative namespaces if resolution in the primary namespace fails.
3113     fn resolve_qpath_anywhere(&mut self,
3114                               id: NodeId,
3115                               qself: Option<&QSelf>,
3116                               path: &[Ident],
3117                               primary_ns: Namespace,
3118                               span: Span,
3119                               defer_to_typeck: bool,
3120                               global_by_default: bool)
3121                               -> Option<PathResolution> {
3122         let mut fin_res = None;
3123         // FIXME: can't resolve paths in macro namespace yet, macros are
3124         // processed by the little special hack below.
3125         for (i, ns) in [primary_ns, TypeNS, ValueNS, /*MacroNS*/].iter().cloned().enumerate() {
3126             if i == 0 || ns != primary_ns {
3127                 match self.resolve_qpath(id, qself, path, ns, span, global_by_default) {
3128                     // If defer_to_typeck, then resolution > no resolution,
3129                     // otherwise full resolution > partial resolution > no resolution.
3130                     Some(res) if res.unresolved_segments() == 0 || defer_to_typeck =>
3131                         return Some(res),
3132                     res => if fin_res.is_none() { fin_res = res },
3133                 };
3134             }
3135         }
3136         let is_global = self.global_macros.get(&path[0].name).cloned()
3137             .map(|binding| binding.get_macro(self).kind() == MacroKind::Bang).unwrap_or(false);
3138         if primary_ns != MacroNS && (is_global ||
3139                                      self.macro_names.contains(&path[0].modern())) {
3140             // Return some dummy definition, it's enough for error reporting.
3141             return Some(
3142                 PathResolution::new(Def::Macro(DefId::local(CRATE_DEF_INDEX), MacroKind::Bang))
3143             );
3144         }
3145         fin_res
3146     }
3147
3148     /// Handles paths that may refer to associated items.
3149     fn resolve_qpath(&mut self,
3150                      id: NodeId,
3151                      qself: Option<&QSelf>,
3152                      path: &[Ident],
3153                      ns: Namespace,
3154                      span: Span,
3155                      global_by_default: bool)
3156                      -> Option<PathResolution> {
3157         if let Some(qself) = qself {
3158             if qself.position == 0 {
3159                 // FIXME: Create some fake resolution that can't possibly be a type.
3160                 return Some(PathResolution::with_unresolved_segments(
3161                     Def::Mod(DefId::local(CRATE_DEF_INDEX)), path.len()
3162                 ));
3163             }
3164             // Make sure `A::B` in `<T as A>::B::C` is a trait item.
3165             let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
3166             let res = self.smart_resolve_path_fragment(id, None, &path[..qself.position + 1],
3167                                                        span, PathSource::TraitItem(ns));
3168             return Some(PathResolution::with_unresolved_segments(
3169                 res.base_def(), res.unresolved_segments() + path.len() - qself.position - 1
3170             ));
3171         }
3172
3173         let result = match self.resolve_path(&path, Some(ns), true, span, Some(id)) {
3174             PathResult::NonModule(path_res) => path_res,
3175             PathResult::Module(module) if !module.is_normal() => {
3176                 PathResolution::new(module.def().unwrap())
3177             }
3178             // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
3179             // don't report an error right away, but try to fallback to a primitive type.
3180             // So, we are still able to successfully resolve something like
3181             //
3182             // use std::u8; // bring module u8 in scope
3183             // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
3184             //     u8::max_value() // OK, resolves to associated function <u8>::max_value,
3185             //                     // not to non-existent std::u8::max_value
3186             // }
3187             //
3188             // Such behavior is required for backward compatibility.
3189             // The same fallback is used when `a` resolves to nothing.
3190             PathResult::Module(..) | PathResult::Failed(..)
3191                     if (ns == TypeNS || path.len() > 1) &&
3192                        self.primitive_type_table.primitive_types
3193                            .contains_key(&path[0].name) => {
3194                 let prim = self.primitive_type_table.primitive_types[&path[0].name];
3195                 PathResolution::with_unresolved_segments(Def::PrimTy(prim), path.len() - 1)
3196             }
3197             PathResult::Module(module) => PathResolution::new(module.def().unwrap()),
3198             PathResult::Failed(span, msg, false) => {
3199                 resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
3200                 err_path_resolution()
3201             }
3202             PathResult::Failed(..) => return None,
3203             PathResult::Indeterminate => bug!("indetermined path result in resolve_qpath"),
3204         };
3205
3206         if path.len() > 1 && !global_by_default && result.base_def() != Def::Err &&
3207            path[0].name != keywords::CrateRoot.name() &&
3208            path[0].name != keywords::DollarCrate.name() {
3209             let unqualified_result = {
3210                 match self.resolve_path(&[*path.last().unwrap()], Some(ns), false, span, None) {
3211                     PathResult::NonModule(path_res) => path_res.base_def(),
3212                     PathResult::Module(module) => module.def().unwrap(),
3213                     _ => return Some(result),
3214                 }
3215             };
3216             if result.base_def() == unqualified_result {
3217                 let lint = lint::builtin::UNUSED_QUALIFICATIONS;
3218                 self.session.buffer_lint(lint, id, span, "unnecessary qualification")
3219             }
3220         }
3221
3222         Some(result)
3223     }
3224
3225     fn resolve_path(&mut self,
3226                     path: &[Ident],
3227                     opt_ns: Option<Namespace>, // `None` indicates a module path
3228                     record_used: bool,
3229                     path_span: Span,
3230                     node_id: Option<NodeId>) // None indicates that we don't care about linting
3231                                              // `::module` paths
3232                     -> PathResult<'a> {
3233         let mut module = None;
3234         let mut allow_super = true;
3235
3236         for (i, &ident) in path.iter().enumerate() {
3237             debug!("resolve_path ident {} {:?}", i, ident);
3238             let is_last = i == path.len() - 1;
3239             let ns = if is_last { opt_ns.unwrap_or(TypeNS) } else { TypeNS };
3240             let name = ident.name;
3241
3242             if i == 0 && ns == TypeNS && name == keywords::SelfValue.name() {
3243                 let mut ctxt = ident.span.ctxt().modern();
3244                 module = Some(self.resolve_self(&mut ctxt, self.current_module));
3245                 continue
3246             } else if allow_super && ns == TypeNS && name == keywords::Super.name() {
3247                 let mut ctxt = ident.span.ctxt().modern();
3248                 let self_module = match i {
3249                     0 => self.resolve_self(&mut ctxt, self.current_module),
3250                     _ => module.unwrap(),
3251                 };
3252                 if let Some(parent) = self_module.parent {
3253                     module = Some(self.resolve_self(&mut ctxt, parent));
3254                     continue
3255                 } else {
3256                     let msg = "There are too many initial `super`s.".to_string();
3257                     return PathResult::Failed(ident.span, msg, false);
3258                 }
3259             } else if i == 0 && ns == TypeNS && name == keywords::Extern.name() {
3260                 continue;
3261             }
3262             allow_super = false;
3263
3264             if ns == TypeNS {
3265                 if (i == 0 && name == keywords::CrateRoot.name()) ||
3266                    (i == 0 && name == keywords::Crate.name()) ||
3267                    (i == 1 && name == keywords::Crate.name() &&
3268                               path[0].name == keywords::CrateRoot.name()) {
3269                     // `::a::b` or `::crate::a::b`
3270                     module = Some(self.resolve_crate_root(ident.span.ctxt(), false));
3271                     continue
3272                 } else if i == 0 && name == keywords::DollarCrate.name() {
3273                     // `$crate::a::b`
3274                     module = Some(self.resolve_crate_root(ident.span.ctxt(), true));
3275                     continue
3276                 } else if i == 1 && !token::is_path_segment_keyword(ident) {
3277                     let prev_name = path[0].name;
3278                     if prev_name == keywords::Extern.name() ||
3279                        prev_name == keywords::CrateRoot.name() &&
3280                        self.session.features_untracked().extern_absolute_paths &&
3281                        self.session.rust_2018() {
3282                         // `::extern_crate::a::b`
3283                         let crate_id = self.crate_loader.process_path_extern(name, ident.span);
3284                         let crate_root =
3285                             self.get_module(DefId { krate: crate_id, index: CRATE_DEF_INDEX });
3286                         self.populate_module_if_necessary(crate_root);
3287                         module = Some(crate_root);
3288                         continue
3289                     }
3290                 }
3291             }
3292
3293             // Report special messages for path segment keywords in wrong positions.
3294             if name == keywords::CrateRoot.name() && i != 0 ||
3295                name == keywords::DollarCrate.name() && i != 0 ||
3296                name == keywords::SelfValue.name() && i != 0 ||
3297                name == keywords::SelfType.name() && i != 0 ||
3298                name == keywords::Super.name() && i != 0 ||
3299                name == keywords::Extern.name() && i != 0 ||
3300                // we allow crate::foo and ::crate::foo but nothing else
3301                name == keywords::Crate.name() && i > 1 &&
3302                     path[0].name != keywords::CrateRoot.name() ||
3303                name == keywords::Crate.name() && path.len() == 1 {
3304                 let name_str = if name == keywords::CrateRoot.name() {
3305                     format!("crate root")
3306                 } else {
3307                     format!("`{}`", name)
3308                 };
3309                 let msg = if i == 1 && path[0].name == keywords::CrateRoot.name() {
3310                     format!("global paths cannot start with {}", name_str)
3311                 } else {
3312                     format!("{} in paths can only be used in start position", name_str)
3313                 };
3314                 return PathResult::Failed(ident.span, msg, false);
3315             }
3316
3317             let binding = if let Some(module) = module {
3318                 self.resolve_ident_in_module(module, ident, ns, false, record_used, path_span)
3319             } else if opt_ns == Some(MacroNS) {
3320                 self.resolve_lexical_macro_path_segment(ident, ns, record_used, path_span)
3321                     .map(MacroBinding::binding)
3322             } else {
3323                 match self.resolve_ident_in_lexical_scope(ident, ns, record_used, path_span) {
3324                     Some(LexicalScopeBinding::Item(binding)) => Ok(binding),
3325                     Some(LexicalScopeBinding::Def(def))
3326                             if opt_ns == Some(TypeNS) || opt_ns == Some(ValueNS) => {
3327                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3328                             def, path.len() - 1
3329                         ));
3330                     }
3331                     _ => Err(if record_used { Determined } else { Undetermined }),
3332                 }
3333             };
3334
3335             match binding {
3336                 Ok(binding) => {
3337                     let def = binding.def();
3338                     let maybe_assoc = opt_ns != Some(MacroNS) && PathSource::Type.is_expected(def);
3339                     if let Some(next_module) = binding.module() {
3340                         module = Some(next_module);
3341                     } else if def == Def::Err {
3342                         return PathResult::NonModule(err_path_resolution());
3343                     } else if opt_ns.is_some() && (is_last || maybe_assoc) {
3344                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3345                             def, path.len() - i - 1
3346                         ));
3347                     } else {
3348                         return PathResult::Failed(ident.span,
3349                                                   format!("Not a module `{}`", ident),
3350                                                   is_last);
3351                     }
3352
3353                     if let Some(id) = node_id {
3354                         if i == 1 && self.session.features_untracked().crate_in_paths
3355                                   && !self.session.rust_2018() {
3356                             let prev_name = path[0].name;
3357                             if prev_name == keywords::Extern.name() ||
3358                                prev_name == keywords::CrateRoot.name() {
3359                                 let mut is_crate = false;
3360                                 if let NameBindingKind::Import { directive: d, .. } = binding.kind {
3361                                     if let ImportDirectiveSubclass::ExternCrate(..) = d.subclass {
3362                                         is_crate = true;
3363                                     }
3364                                 }
3365
3366                                 if !is_crate {
3367                                     let diag = lint::builtin::BuiltinLintDiagnostics
3368                                                    ::AbsPathWithModule(path_span);
3369                                     self.session.buffer_lint_with_diagnostic(
3370                                         lint::builtin::ABSOLUTE_PATH_STARTING_WITH_MODULE,
3371                                         id, path_span,
3372                                         "Absolute paths must start with `self`, `super`, \
3373                                         `crate`, or an external crate name in the 2018 edition",
3374                                         diag);
3375                                 }
3376                             }
3377                         }
3378                     }
3379                 }
3380                 Err(Undetermined) => return PathResult::Indeterminate,
3381                 Err(Determined) => {
3382                     if let Some(module) = module {
3383                         if opt_ns.is_some() && !module.is_normal() {
3384                             return PathResult::NonModule(PathResolution::with_unresolved_segments(
3385                                 module.def().unwrap(), path.len() - i
3386                             ));
3387                         }
3388                     }
3389                     let msg = if module.and_then(ModuleData::def) == self.graph_root.def() {
3390                         let is_mod = |def| match def { Def::Mod(..) => true, _ => false };
3391                         let mut candidates =
3392                             self.lookup_import_candidates(name, TypeNS, is_mod);
3393                         candidates.sort_by_cached_key(|c| {
3394                             (c.path.segments.len(), c.path.to_string())
3395                         });
3396                         if let Some(candidate) = candidates.get(0) {
3397                             format!("Did you mean `{}`?", candidate.path)
3398                         } else {
3399                             format!("Maybe a missing `extern crate {};`?", ident)
3400                         }
3401                     } else if i == 0 {
3402                         format!("Use of undeclared type or module `{}`", ident)
3403                     } else {
3404                         format!("Could not find `{}` in `{}`", ident, path[i - 1])
3405                     };
3406                     return PathResult::Failed(ident.span, msg, is_last);
3407                 }
3408             }
3409         }
3410
3411         PathResult::Module(module.unwrap_or(self.graph_root))
3412     }
3413
3414     // Resolve a local definition, potentially adjusting for closures.
3415     fn adjust_local_def(&mut self,
3416                         ns: Namespace,
3417                         rib_index: usize,
3418                         mut def: Def,
3419                         record_used: bool,
3420                         span: Span) -> Def {
3421         let ribs = &self.ribs[ns][rib_index + 1..];
3422
3423         // An invalid forward use of a type parameter from a previous default.
3424         if let ForwardTyParamBanRibKind = self.ribs[ns][rib_index].kind {
3425             if record_used {
3426                 resolve_error(self, span, ResolutionError::ForwardDeclaredTyParam);
3427             }
3428             assert_eq!(def, Def::Err);
3429             return Def::Err;
3430         }
3431
3432         match def {
3433             Def::Upvar(..) => {
3434                 span_bug!(span, "unexpected {:?} in bindings", def)
3435             }
3436             Def::Local(node_id) => {
3437                 for rib in ribs {
3438                     match rib.kind {
3439                         NormalRibKind | ModuleRibKind(..) | MacroDefinition(..) |
3440                         ForwardTyParamBanRibKind => {
3441                             // Nothing to do. Continue.
3442                         }
3443                         ClosureRibKind(function_id) => {
3444                             let prev_def = def;
3445
3446                             let seen = self.freevars_seen
3447                                            .entry(function_id)
3448                                            .or_insert_with(|| NodeMap());
3449                             if let Some(&index) = seen.get(&node_id) {
3450                                 def = Def::Upvar(node_id, index, function_id);
3451                                 continue;
3452                             }
3453                             let vec = self.freevars
3454                                           .entry(function_id)
3455                                           .or_insert_with(|| vec![]);
3456                             let depth = vec.len();
3457                             def = Def::Upvar(node_id, depth, function_id);
3458
3459                             if record_used {
3460                                 vec.push(Freevar {
3461                                     def: prev_def,
3462                                     span,
3463                                 });
3464                                 seen.insert(node_id, depth);
3465                             }
3466                         }
3467                         ItemRibKind | TraitOrImplItemRibKind => {
3468                             // This was an attempt to access an upvar inside a
3469                             // named function item. This is not allowed, so we
3470                             // report an error.
3471                             if record_used {
3472                                 resolve_error(self, span,
3473                                         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem);
3474                             }
3475                             return Def::Err;
3476                         }
3477                         ConstantItemRibKind => {
3478                             // Still doesn't deal with upvars
3479                             if record_used {
3480                                 resolve_error(self, span,
3481                                         ResolutionError::AttemptToUseNonConstantValueInConstant);
3482                             }
3483                             return Def::Err;
3484                         }
3485                     }
3486                 }
3487             }
3488             Def::TyParam(..) | Def::SelfTy(..) => {
3489                 for rib in ribs {
3490                     match rib.kind {
3491                         NormalRibKind | TraitOrImplItemRibKind | ClosureRibKind(..) |
3492                         ModuleRibKind(..) | MacroDefinition(..) | ForwardTyParamBanRibKind |
3493                         ConstantItemRibKind => {
3494                             // Nothing to do. Continue.
3495                         }
3496                         ItemRibKind => {
3497                             // This was an attempt to use a type parameter outside
3498                             // its scope.
3499                             if record_used {
3500                                 resolve_error(self, span,
3501                                     ResolutionError::TypeParametersFromOuterFunction(def));
3502                             }
3503                             return Def::Err;
3504                         }
3505                     }
3506                 }
3507             }
3508             _ => {}
3509         }
3510         return def;
3511     }
3512
3513     fn lookup_assoc_candidate<FilterFn>(&mut self,
3514                                         ident: Ident,
3515                                         ns: Namespace,
3516                                         filter_fn: FilterFn)
3517                                         -> Option<AssocSuggestion>
3518         where FilterFn: Fn(Def) -> bool
3519     {
3520         fn extract_node_id(t: &Ty) -> Option<NodeId> {
3521             match t.node {
3522                 TyKind::Path(None, _) => Some(t.id),
3523                 TyKind::Rptr(_, ref mut_ty) => extract_node_id(&mut_ty.ty),
3524                 // This doesn't handle the remaining `Ty` variants as they are not
3525                 // that commonly the self_type, it might be interesting to provide
3526                 // support for those in future.
3527                 _ => None,
3528             }
3529         }
3530
3531         // Fields are generally expected in the same contexts as locals.
3532         if filter_fn(Def::Local(ast::DUMMY_NODE_ID)) {
3533             if let Some(node_id) = self.current_self_type.as_ref().and_then(extract_node_id) {
3534                 // Look for a field with the same name in the current self_type.
3535                 if let Some(resolution) = self.def_map.get(&node_id) {
3536                     match resolution.base_def() {
3537                         Def::Struct(did) | Def::Union(did)
3538                                 if resolution.unresolved_segments() == 0 => {
3539                             if let Some(field_names) = self.field_names.get(&did) {
3540                                 if field_names.iter().any(|&field_name| ident.name == field_name) {
3541                                     return Some(AssocSuggestion::Field);
3542                                 }
3543                             }
3544                         }
3545                         _ => {}
3546                     }
3547                 }
3548             }
3549         }
3550
3551         // Look for associated items in the current trait.
3552         if let Some((module, _)) = self.current_trait_ref {
3553             if let Ok(binding) =
3554                     self.resolve_ident_in_module(module, ident, ns, false, false, module.span) {
3555                 let def = binding.def();
3556                 if filter_fn(def) {
3557                     return Some(if self.has_self.contains(&def.def_id()) {
3558                         AssocSuggestion::MethodWithSelf
3559                     } else {
3560                         AssocSuggestion::AssocItem
3561                     });
3562                 }
3563             }
3564         }
3565
3566         None
3567     }
3568
3569     fn lookup_typo_candidate<FilterFn>(&mut self,
3570                                        path: &[Ident],
3571                                        ns: Namespace,
3572                                        filter_fn: FilterFn,
3573                                        span: Span)
3574                                        -> Option<Symbol>
3575         where FilterFn: Fn(Def) -> bool
3576     {
3577         let add_module_candidates = |module: Module, names: &mut Vec<Name>| {
3578             for (&(ident, _), resolution) in module.resolutions.borrow().iter() {
3579                 if let Some(binding) = resolution.borrow().binding {
3580                     if filter_fn(binding.def()) {
3581                         names.push(ident.name);
3582                     }
3583                 }
3584             }
3585         };
3586
3587         let mut names = Vec::new();
3588         if path.len() == 1 {
3589             // Search in lexical scope.
3590             // Walk backwards up the ribs in scope and collect candidates.
3591             for rib in self.ribs[ns].iter().rev() {
3592                 // Locals and type parameters
3593                 for (ident, def) in &rib.bindings {
3594                     if filter_fn(*def) {
3595                         names.push(ident.name);
3596                     }
3597                 }
3598                 // Items in scope
3599                 if let ModuleRibKind(module) = rib.kind {
3600                     // Items from this module
3601                     add_module_candidates(module, &mut names);
3602
3603                     if let ModuleKind::Block(..) = module.kind {
3604                         // We can see through blocks
3605                     } else {
3606                         // Items from the prelude
3607                         if !module.no_implicit_prelude {
3608                             names.extend(self.extern_prelude.iter().cloned());
3609                             if let Some(prelude) = self.prelude {
3610                                 add_module_candidates(prelude, &mut names);
3611                             }
3612                         }
3613                         break;
3614                     }
3615                 }
3616             }
3617             // Add primitive types to the mix
3618             if filter_fn(Def::PrimTy(TyBool)) {
3619                 for (name, _) in &self.primitive_type_table.primitive_types {
3620                     names.push(*name);
3621                 }
3622             }
3623         } else {
3624             // Search in module.
3625             let mod_path = &path[..path.len() - 1];
3626             if let PathResult::Module(module) = self.resolve_path(mod_path, Some(TypeNS),
3627                                                                   false, span, None) {
3628                 add_module_candidates(module, &mut names);
3629             }
3630         }
3631
3632         let name = path[path.len() - 1].name;
3633         // Make sure error reporting is deterministic.
3634         names.sort_by_cached_key(|name| name.as_str());
3635         match find_best_match_for_name(names.iter(), &name.as_str(), None) {
3636             Some(found) if found != name => Some(found),
3637             _ => None,
3638         }
3639     }
3640
3641     fn with_resolved_label<F>(&mut self, label: Option<Label>, id: NodeId, f: F)
3642         where F: FnOnce(&mut Resolver)
3643     {
3644         if let Some(label) = label {
3645             let def = Def::Label(id);
3646             self.with_label_rib(|this| {
3647                 this.label_ribs.last_mut().unwrap().bindings.insert(label.ident, def);
3648                 f(this);
3649             });
3650         } else {
3651             f(self);
3652         }
3653     }
3654
3655     fn resolve_labeled_block(&mut self, label: Option<Label>, id: NodeId, block: &Block) {
3656         self.with_resolved_label(label, id, |this| this.visit_block(block));
3657     }
3658
3659     fn resolve_expr(&mut self, expr: &Expr, parent: Option<&Expr>) {
3660         // First, record candidate traits for this expression if it could
3661         // result in the invocation of a method call.
3662
3663         self.record_candidate_traits_for_expr_if_necessary(expr);
3664
3665         // Next, resolve the node.
3666         match expr.node {
3667             ExprKind::Path(ref qself, ref path) => {
3668                 self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
3669                 visit::walk_expr(self, expr);
3670             }
3671
3672             ExprKind::Struct(ref path, ..) => {
3673                 self.smart_resolve_path(expr.id, None, path, PathSource::Struct);
3674                 visit::walk_expr(self, expr);
3675             }
3676
3677             ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
3678                 match self.search_label(label.ident, |rib, id| rib.bindings.get(&id).cloned()) {
3679                     None => {
3680                         // Search again for close matches...
3681                         // Picks the first label that is "close enough", which is not necessarily
3682                         // the closest match
3683                         let close_match = self.search_label(label.ident, |rib, ident| {
3684                             let names = rib.bindings.iter().map(|(id, _)| &id.name);
3685                             find_best_match_for_name(names, &*ident.name.as_str(), None)
3686                         });
3687                         self.record_def(expr.id, err_path_resolution());
3688                         resolve_error(self,
3689                                       label.ident.span,
3690                                       ResolutionError::UndeclaredLabel(&label.ident.name.as_str(),
3691                                                                        close_match));
3692                     }
3693                     Some(def @ Def::Label(_)) => {
3694                         // Since this def is a label, it is never read.
3695                         self.record_def(expr.id, PathResolution::new(def));
3696                     }
3697                     Some(_) => {
3698                         span_bug!(expr.span, "label wasn't mapped to a label def!");
3699                     }
3700                 }
3701
3702                 // visit `break` argument if any
3703                 visit::walk_expr(self, expr);
3704             }
3705
3706             ExprKind::IfLet(ref pats, ref subexpression, ref if_block, ref optional_else) => {
3707                 self.visit_expr(subexpression);
3708
3709                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
3710                 let mut bindings_list = FxHashMap();
3711                 for pat in pats {
3712                     self.resolve_pattern(pat, PatternSource::IfLet, &mut bindings_list);
3713                 }
3714                 // This has to happen *after* we determine which pat_idents are variants
3715                 self.check_consistent_bindings(pats);
3716                 self.visit_block(if_block);
3717                 self.ribs[ValueNS].pop();
3718
3719                 optional_else.as_ref().map(|expr| self.visit_expr(expr));
3720             }
3721
3722             ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),
3723
3724             ExprKind::While(ref subexpression, ref block, label) => {
3725                 self.with_resolved_label(label, expr.id, |this| {
3726                     this.visit_expr(subexpression);
3727                     this.visit_block(block);
3728                 });
3729             }
3730
3731             ExprKind::WhileLet(ref pats, ref subexpression, ref block, label) => {
3732                 self.with_resolved_label(label, expr.id, |this| {
3733                     this.visit_expr(subexpression);
3734                     this.ribs[ValueNS].push(Rib::new(NormalRibKind));
3735                     let mut bindings_list = FxHashMap();
3736                     for pat in pats {
3737                         this.resolve_pattern(pat, PatternSource::WhileLet, &mut bindings_list);
3738                     }
3739                     // This has to happen *after* we determine which pat_idents are variants
3740                     this.check_consistent_bindings(pats);
3741                     this.visit_block(block);
3742                     this.ribs[ValueNS].pop();
3743                 });
3744             }
3745
3746             ExprKind::ForLoop(ref pattern, ref subexpression, ref block, label) => {
3747                 self.visit_expr(subexpression);
3748                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
3749                 self.resolve_pattern(pattern, PatternSource::For, &mut FxHashMap());
3750
3751                 self.resolve_labeled_block(label, expr.id, block);
3752
3753                 self.ribs[ValueNS].pop();
3754             }
3755
3756             // Equivalent to `visit::walk_expr` + passing some context to children.
3757             ExprKind::Field(ref subexpression, _) => {
3758                 self.resolve_expr(subexpression, Some(expr));
3759             }
3760             ExprKind::MethodCall(ref segment, ref arguments) => {
3761                 let mut arguments = arguments.iter();
3762                 self.resolve_expr(arguments.next().unwrap(), Some(expr));
3763                 for argument in arguments {
3764                     self.resolve_expr(argument, None);
3765                 }
3766                 self.visit_path_segment(expr.span, segment);
3767             }
3768
3769             ExprKind::Repeat(ref element, ref count) => {
3770                 self.visit_expr(element);
3771                 self.with_constant_rib(|this| {
3772                     this.visit_expr(count);
3773                 });
3774             }
3775             ExprKind::Call(ref callee, ref arguments) => {
3776                 self.resolve_expr(callee, Some(expr));
3777                 for argument in arguments {
3778                     self.resolve_expr(argument, None);
3779                 }
3780             }
3781             ExprKind::Type(ref type_expr, _) => {
3782                 self.current_type_ascription.push(type_expr.span);
3783                 visit::walk_expr(self, expr);
3784                 self.current_type_ascription.pop();
3785             }
3786             _ => {
3787                 visit::walk_expr(self, expr);
3788             }
3789         }
3790     }
3791
3792     fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &Expr) {
3793         match expr.node {
3794             ExprKind::Field(_, ident) => {
3795                 // FIXME(#6890): Even though you can't treat a method like a
3796                 // field, we need to add any trait methods we find that match
3797                 // the field name so that we can do some nice error reporting
3798                 // later on in typeck.
3799                 let traits = self.get_traits_containing_item(ident, ValueNS);
3800                 self.trait_map.insert(expr.id, traits);
3801             }
3802             ExprKind::MethodCall(ref segment, ..) => {
3803                 debug!("(recording candidate traits for expr) recording traits for {}",
3804                        expr.id);
3805                 let traits = self.get_traits_containing_item(segment.ident, ValueNS);
3806                 self.trait_map.insert(expr.id, traits);
3807             }
3808             _ => {
3809                 // Nothing to do.
3810             }
3811         }
3812     }
3813
3814     fn get_traits_containing_item(&mut self, mut ident: Ident, ns: Namespace)
3815                                   -> Vec<TraitCandidate> {
3816         debug!("(getting traits containing item) looking for '{}'", ident.name);
3817
3818         let mut found_traits = Vec::new();
3819         // Look for the current trait.
3820         if let Some((module, _)) = self.current_trait_ref {
3821             if self.resolve_ident_in_module(module, ident, ns, false, false, module.span).is_ok() {
3822                 let def_id = module.def_id().unwrap();
3823                 found_traits.push(TraitCandidate { def_id: def_id, import_id: None });
3824             }
3825         }
3826
3827         ident.span = ident.span.modern();
3828         let mut search_module = self.current_module;
3829         loop {
3830             self.get_traits_in_module_containing_item(ident, ns, search_module, &mut found_traits);
3831             search_module =
3832                 unwrap_or!(self.hygienic_lexical_parent(search_module, &mut ident.span), break);
3833         }
3834
3835         if let Some(prelude) = self.prelude {
3836             if !search_module.no_implicit_prelude {
3837                 self.get_traits_in_module_containing_item(ident, ns, prelude, &mut found_traits);
3838             }
3839         }
3840
3841         found_traits
3842     }
3843
3844     fn get_traits_in_module_containing_item(&mut self,
3845                                             ident: Ident,
3846                                             ns: Namespace,
3847                                             module: Module<'a>,
3848                                             found_traits: &mut Vec<TraitCandidate>) {
3849         let mut traits = module.traits.borrow_mut();
3850         if traits.is_none() {
3851             let mut collected_traits = Vec::new();
3852             module.for_each_child(|name, ns, binding| {
3853                 if ns != TypeNS { return }
3854                 if let Def::Trait(_) = binding.def() {
3855                     collected_traits.push((name, binding));
3856                 }
3857             });
3858             *traits = Some(collected_traits.into_boxed_slice());
3859         }
3860
3861         for &(trait_name, binding) in traits.as_ref().unwrap().iter() {
3862             let module = binding.module().unwrap();
3863             let mut ident = ident;
3864             if ident.span.glob_adjust(module.expansion, binding.span.ctxt().modern()).is_none() {
3865                 continue
3866             }
3867             if self.resolve_ident_in_module_unadjusted(module, ident, ns, false, false, module.span)
3868                    .is_ok() {
3869                 let import_id = match binding.kind {
3870                     NameBindingKind::Import { directive, .. } => {
3871                         self.maybe_unused_trait_imports.insert(directive.id);
3872                         self.add_to_glob_map(directive.id, trait_name);
3873                         Some(directive.id)
3874                     }
3875                     _ => None,
3876                 };
3877                 let trait_def_id = module.def_id().unwrap();
3878                 found_traits.push(TraitCandidate { def_id: trait_def_id, import_id: import_id });
3879             }
3880         }
3881     }
3882
3883     /// When name resolution fails, this method can be used to look up candidate
3884     /// entities with the expected name. It allows filtering them using the
3885     /// supplied predicate (which should be used to only accept the types of
3886     /// definitions expected e.g. traits). The lookup spans across all crates.
3887     ///
3888     /// NOTE: The method does not look into imports, but this is not a problem,
3889     /// since we report the definitions (thus, the de-aliased imports).
3890     fn lookup_import_candidates<FilterFn>(&mut self,
3891                                           lookup_name: Name,
3892                                           namespace: Namespace,
3893                                           filter_fn: FilterFn)
3894                                           -> Vec<ImportSuggestion>
3895         where FilterFn: Fn(Def) -> bool
3896     {
3897         let mut candidates = Vec::new();
3898         let mut worklist = Vec::new();
3899         let mut seen_modules = FxHashSet();
3900         worklist.push((self.graph_root, Vec::new(), false));
3901
3902         while let Some((in_module,
3903                         path_segments,
3904                         in_module_is_extern)) = worklist.pop() {
3905             self.populate_module_if_necessary(in_module);
3906
3907             // We have to visit module children in deterministic order to avoid
3908             // instabilities in reported imports (#43552).
3909             in_module.for_each_child_stable(|ident, ns, name_binding| {
3910                 // avoid imports entirely
3911                 if name_binding.is_import() && !name_binding.is_extern_crate() { return; }
3912                 // avoid non-importable candidates as well
3913                 if !name_binding.is_importable() { return; }
3914
3915                 // collect results based on the filter function
3916                 if ident.name == lookup_name && ns == namespace {
3917                     if filter_fn(name_binding.def()) {
3918                         // create the path
3919                         let mut segms = path_segments.clone();
3920                         segms.push(ast::PathSegment::from_ident(ident));
3921                         let path = Path {
3922                             span: name_binding.span,
3923                             segments: segms,
3924                         };
3925                         // the entity is accessible in the following cases:
3926                         // 1. if it's defined in the same crate, it's always
3927                         // accessible (since private entities can be made public)
3928                         // 2. if it's defined in another crate, it's accessible
3929                         // only if both the module is public and the entity is
3930                         // declared as public (due to pruning, we don't explore
3931                         // outside crate private modules => no need to check this)
3932                         if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
3933                             candidates.push(ImportSuggestion { path: path });
3934                         }
3935                     }
3936                 }
3937
3938                 // collect submodules to explore
3939                 if let Some(module) = name_binding.module() {
3940                     // form the path
3941                     let mut path_segments = path_segments.clone();
3942                     path_segments.push(ast::PathSegment::from_ident(ident));
3943
3944                     if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
3945                         // add the module to the lookup
3946                         let is_extern = in_module_is_extern || name_binding.is_extern_crate();
3947                         if seen_modules.insert(module.def_id().unwrap()) {
3948                             worklist.push((module, path_segments, is_extern));
3949                         }
3950                     }
3951                 }
3952             })
3953         }
3954
3955         candidates
3956     }
3957
3958     fn find_module(&mut self,
3959                    module_def: Def)
3960                    -> Option<(Module<'a>, ImportSuggestion)>
3961     {
3962         let mut result = None;
3963         let mut worklist = Vec::new();
3964         let mut seen_modules = FxHashSet();
3965         worklist.push((self.graph_root, Vec::new()));
3966
3967         while let Some((in_module, path_segments)) = worklist.pop() {
3968             // abort if the module is already found
3969             if let Some(_) = result { break; }
3970
3971             self.populate_module_if_necessary(in_module);
3972
3973             in_module.for_each_child_stable(|ident, _, name_binding| {
3974                 // abort if the module is already found or if name_binding is private external
3975                 if result.is_some() || !name_binding.vis.is_visible_locally() {
3976                     return
3977                 }
3978                 if let Some(module) = name_binding.module() {
3979                     // form the path
3980                     let mut path_segments = path_segments.clone();
3981                     path_segments.push(ast::PathSegment::from_ident(ident));
3982                     if module.def() == Some(module_def) {
3983                         let path = Path {
3984                             span: name_binding.span,
3985                             segments: path_segments,
3986                         };
3987                         result = Some((module, ImportSuggestion { path: path }));
3988                     } else {
3989                         // add the module to the lookup
3990                         if seen_modules.insert(module.def_id().unwrap()) {
3991                             worklist.push((module, path_segments));
3992                         }
3993                     }
3994                 }
3995             });
3996         }
3997
3998         result
3999     }
4000
4001     fn collect_enum_variants(&mut self, enum_def: Def) -> Option<Vec<Path>> {
4002         if let Def::Enum(..) = enum_def {} else {
4003             panic!("Non-enum def passed to collect_enum_variants: {:?}", enum_def)
4004         }
4005
4006         self.find_module(enum_def).map(|(enum_module, enum_import_suggestion)| {
4007             self.populate_module_if_necessary(enum_module);
4008
4009             let mut variants = Vec::new();
4010             enum_module.for_each_child_stable(|ident, _, name_binding| {
4011                 if let Def::Variant(..) = name_binding.def() {
4012                     let mut segms = enum_import_suggestion.path.segments.clone();
4013                     segms.push(ast::PathSegment::from_ident(ident));
4014                     variants.push(Path {
4015                         span: name_binding.span,
4016                         segments: segms,
4017                     });
4018                 }
4019             });
4020             variants
4021         })
4022     }
4023
4024     fn record_def(&mut self, node_id: NodeId, resolution: PathResolution) {
4025         debug!("(recording def) recording {:?} for {}", resolution, node_id);
4026         if let Some(prev_res) = self.def_map.insert(node_id, resolution) {
4027             panic!("path resolved multiple times ({:?} before, {:?} now)", prev_res, resolution);
4028         }
4029     }
4030
4031     fn resolve_visibility(&mut self, vis: &ast::Visibility) -> ty::Visibility {
4032         match vis.node {
4033             ast::VisibilityKind::Public => ty::Visibility::Public,
4034             ast::VisibilityKind::Crate(..) => {
4035                 ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX))
4036             }
4037             ast::VisibilityKind::Inherited => {
4038                 ty::Visibility::Restricted(self.current_module.normal_ancestor_id)
4039             }
4040             ast::VisibilityKind::Restricted { ref path, id, .. } => {
4041                 // Visibilities are resolved as global by default, add starting root segment.
4042                 let segments = path.make_root().iter().chain(path.segments.iter())
4043                     .map(|seg| seg.ident)
4044                     .collect::<Vec<_>>();
4045                 let def = self.smart_resolve_path_fragment(id, None, &segments, path.span,
4046                                                            PathSource::Visibility).base_def();
4047                 if def == Def::Err {
4048                     ty::Visibility::Public
4049                 } else {
4050                     let vis = ty::Visibility::Restricted(def.def_id());
4051                     if self.is_accessible(vis) {
4052                         vis
4053                     } else {
4054                         self.session.span_err(path.span, "visibilities can only be restricted \
4055                                                           to ancestor modules");
4056                         ty::Visibility::Public
4057                     }
4058                 }
4059             }
4060         }
4061     }
4062
4063     fn is_accessible(&self, vis: ty::Visibility) -> bool {
4064         vis.is_accessible_from(self.current_module.normal_ancestor_id, self)
4065     }
4066
4067     fn is_accessible_from(&self, vis: ty::Visibility, module: Module<'a>) -> bool {
4068         vis.is_accessible_from(module.normal_ancestor_id, self)
4069     }
4070
4071     fn report_errors(&mut self, krate: &Crate) {
4072         self.report_shadowing_errors();
4073         self.report_with_use_injections(krate);
4074         self.report_proc_macro_import(krate);
4075         let mut reported_spans = FxHashSet();
4076
4077         for &AmbiguityError { span, name, b1, b2, lexical, legacy } in &self.ambiguity_errors {
4078             if !reported_spans.insert(span) { continue }
4079             let participle = |binding: &NameBinding| {
4080                 if binding.is_import() { "imported" } else { "defined" }
4081             };
4082             let msg1 = format!("`{}` could refer to the name {} here", name, participle(b1));
4083             let msg2 = format!("`{}` could also refer to the name {} here", name, participle(b2));
4084             let note = if b1.expansion == Mark::root() || !lexical && b1.is_glob_import() {
4085                 format!("consider adding an explicit import of `{}` to disambiguate", name)
4086             } else if let Def::Macro(..) = b1.def() {
4087                 format!("macro-expanded {} do not shadow",
4088                         if b1.is_import() { "macro imports" } else { "macros" })
4089             } else {
4090                 format!("macro-expanded {} do not shadow when used in a macro invocation path",
4091                         if b1.is_import() { "imports" } else { "items" })
4092             };
4093             if legacy {
4094                 let id = match b2.kind {
4095                     NameBindingKind::Import { directive, .. } => directive.id,
4096                     _ => unreachable!(),
4097                 };
4098                 let mut span = MultiSpan::from_span(span);
4099                 span.push_span_label(b1.span, msg1);
4100                 span.push_span_label(b2.span, msg2);
4101                 let msg = format!("`{}` is ambiguous", name);
4102                 self.session.buffer_lint(lint::builtin::LEGACY_IMPORTS, id, span, &msg);
4103             } else {
4104                 let mut err =
4105                     struct_span_err!(self.session, span, E0659, "`{}` is ambiguous", name);
4106                 err.span_note(b1.span, &msg1);
4107                 match b2.def() {
4108                     Def::Macro(..) if b2.span == DUMMY_SP =>
4109                         err.note(&format!("`{}` is also a builtin macro", name)),
4110                     _ => err.span_note(b2.span, &msg2),
4111                 };
4112                 err.note(&note).emit();
4113             }
4114         }
4115
4116         for &PrivacyError(span, name, binding) in &self.privacy_errors {
4117             if !reported_spans.insert(span) { continue }
4118             span_err!(self.session, span, E0603, "{} `{}` is private", binding.descr(), name);
4119         }
4120     }
4121
4122     fn report_with_use_injections(&mut self, krate: &Crate) {
4123         for UseError { mut err, candidates, node_id, better } in self.use_injections.drain(..) {
4124             let (span, found_use) = UsePlacementFinder::check(krate, node_id);
4125             if !candidates.is_empty() {
4126                 show_candidates(&mut err, span, &candidates, better, found_use);
4127             }
4128             err.emit();
4129         }
4130     }
4131
4132     fn report_shadowing_errors(&mut self) {
4133         for (ident, scope) in replace(&mut self.lexical_macro_resolutions, Vec::new()) {
4134             self.resolve_legacy_scope(scope, ident, true);
4135         }
4136
4137         let mut reported_errors = FxHashSet();
4138         for binding in replace(&mut self.disallowed_shadowing, Vec::new()) {
4139             if self.resolve_legacy_scope(&binding.parent, binding.ident, false).is_some() &&
4140                reported_errors.insert((binding.ident, binding.span)) {
4141                 let msg = format!("`{}` is already in scope", binding.ident);
4142                 self.session.struct_span_err(binding.span, &msg)
4143                     .note("macro-expanded `macro_rules!`s may not shadow \
4144                            existing macros (see RFC 1560)")
4145                     .emit();
4146             }
4147         }
4148     }
4149
4150     fn report_conflict<'b>(&mut self,
4151                        parent: Module,
4152                        ident: Ident,
4153                        ns: Namespace,
4154                        new_binding: &NameBinding<'b>,
4155                        old_binding: &NameBinding<'b>) {
4156         // Error on the second of two conflicting names
4157         if old_binding.span.lo() > new_binding.span.lo() {
4158             return self.report_conflict(parent, ident, ns, old_binding, new_binding);
4159         }
4160
4161         let container = match parent.kind {
4162             ModuleKind::Def(Def::Mod(_), _) => "module",
4163             ModuleKind::Def(Def::Trait(_), _) => "trait",
4164             ModuleKind::Block(..) => "block",
4165             _ => "enum",
4166         };
4167
4168         let old_noun = match old_binding.is_import() {
4169             true => "import",
4170             false => "definition",
4171         };
4172
4173         let new_participle = match new_binding.is_import() {
4174             true => "imported",
4175             false => "defined",
4176         };
4177
4178         let (name, span) = (ident.name, self.session.codemap().def_span(new_binding.span));
4179
4180         if let Some(s) = self.name_already_seen.get(&name) {
4181             if s == &span {
4182                 return;
4183             }
4184         }
4185
4186         let old_kind = match (ns, old_binding.module()) {
4187             (ValueNS, _) => "value",
4188             (MacroNS, _) => "macro",
4189             (TypeNS, _) if old_binding.is_extern_crate() => "extern crate",
4190             (TypeNS, Some(module)) if module.is_normal() => "module",
4191             (TypeNS, Some(module)) if module.is_trait() => "trait",
4192             (TypeNS, _) => "type",
4193         };
4194
4195         let namespace = match ns {
4196             ValueNS => "value",
4197             MacroNS => "macro",
4198             TypeNS => "type",
4199         };
4200
4201         let msg = format!("the name `{}` is defined multiple times", name);
4202
4203         let mut err = match (old_binding.is_extern_crate(), new_binding.is_extern_crate()) {
4204             (true, true) => struct_span_err!(self.session, span, E0259, "{}", msg),
4205             (true, _) | (_, true) => match new_binding.is_import() && old_binding.is_import() {
4206                 true => struct_span_err!(self.session, span, E0254, "{}", msg),
4207                 false => struct_span_err!(self.session, span, E0260, "{}", msg),
4208             },
4209             _ => match (old_binding.is_import(), new_binding.is_import()) {
4210                 (false, false) => struct_span_err!(self.session, span, E0428, "{}", msg),
4211                 (true, true) => struct_span_err!(self.session, span, E0252, "{}", msg),
4212                 _ => struct_span_err!(self.session, span, E0255, "{}", msg),
4213             },
4214         };
4215
4216         err.note(&format!("`{}` must be defined only once in the {} namespace of this {}",
4217                           name,
4218                           namespace,
4219                           container));
4220
4221         err.span_label(span, format!("`{}` re{} here", name, new_participle));
4222         if old_binding.span != DUMMY_SP {
4223             err.span_label(self.session.codemap().def_span(old_binding.span),
4224                            format!("previous {} of the {} `{}` here", old_noun, old_kind, name));
4225         }
4226
4227         // See https://github.com/rust-lang/rust/issues/32354
4228         if old_binding.is_import() || new_binding.is_import() {
4229             let binding = if new_binding.is_import() && new_binding.span != DUMMY_SP {
4230                 new_binding
4231             } else {
4232                 old_binding
4233             };
4234
4235             let cm = self.session.codemap();
4236             let rename_msg = "You can use `as` to change the binding name of the import";
4237
4238             if let (Ok(snippet), false) = (cm.span_to_snippet(binding.span),
4239                                            binding.is_renamed_extern_crate()) {
4240                 let suggested_name = if name.as_str().chars().next().unwrap().is_uppercase() {
4241                     format!("Other{}", name)
4242                 } else {
4243                     format!("other_{}", name)
4244                 };
4245
4246                 err.span_suggestion(binding.span,
4247                                     rename_msg,
4248                                     if snippet.ends_with(';') {
4249                                         format!("{} as {};",
4250                                                 &snippet[..snippet.len()-1],
4251                                                 suggested_name)
4252                                     } else {
4253                                         format!("{} as {}", snippet, suggested_name)
4254                                     });
4255             } else {
4256                 err.span_label(binding.span, rename_msg);
4257             }
4258         }
4259
4260         err.emit();
4261         self.name_already_seen.insert(name, span);
4262     }
4263
4264     fn warn_legacy_self_import(&self, directive: &'a ImportDirective<'a>) {
4265         let (id, span) = (directive.id, directive.span);
4266         let msg = "`self` no longer imports values";
4267         self.session.buffer_lint(lint::builtin::LEGACY_IMPORTS, id, span, msg);
4268     }
4269
4270     fn check_proc_macro_attrs(&mut self, attrs: &[ast::Attribute]) {
4271         if self.proc_macro_enabled { return; }
4272
4273         for attr in attrs {
4274             if attr.path.segments.len() > 1 {
4275                 continue
4276             }
4277             let ident = attr.path.segments[0].ident;
4278             let result = self.resolve_lexical_macro_path_segment(ident,
4279                                                                  MacroNS,
4280                                                                  false,
4281                                                                  attr.path.span);
4282             if let Ok(binding) = result {
4283                 if let SyntaxExtension::AttrProcMacro(..) = *binding.binding().get_macro(self) {
4284                     attr::mark_known(attr);
4285
4286                     let msg = "attribute procedural macros are experimental";
4287                     let feature = "proc_macro";
4288
4289                     feature_err(&self.session.parse_sess, feature,
4290                                 attr.span, GateIssue::Language, msg)
4291                         .span_label(binding.span(), "procedural macro imported here")
4292                         .emit();
4293                 }
4294             }
4295         }
4296     }
4297 }
4298
4299 fn is_self_type(path: &[Ident], namespace: Namespace) -> bool {
4300     namespace == TypeNS && path.len() == 1 && path[0].name == keywords::SelfType.name()
4301 }
4302
4303 fn is_self_value(path: &[Ident], namespace: Namespace) -> bool {
4304     namespace == ValueNS && path.len() == 1 && path[0].name == keywords::SelfValue.name()
4305 }
4306
4307 fn names_to_string(idents: &[Ident]) -> String {
4308     let mut result = String::new();
4309     for (i, ident) in idents.iter()
4310                             .filter(|ident| ident.name != keywords::CrateRoot.name())
4311                             .enumerate() {
4312         if i > 0 {
4313             result.push_str("::");
4314         }
4315         result.push_str(&ident.name.as_str());
4316     }
4317     result
4318 }
4319
4320 fn path_names_to_string(path: &Path) -> String {
4321     names_to_string(&path.segments.iter()
4322                         .map(|seg| seg.ident)
4323                         .collect::<Vec<_>>())
4324 }
4325
4326 /// Get the path for an enum and the variant from an `ImportSuggestion` for an enum variant.
4327 fn import_candidate_to_paths(suggestion: &ImportSuggestion) -> (Span, String, String) {
4328     let variant_path = &suggestion.path;
4329     let variant_path_string = path_names_to_string(variant_path);
4330
4331     let path_len = suggestion.path.segments.len();
4332     let enum_path = ast::Path {
4333         span: suggestion.path.span,
4334         segments: suggestion.path.segments[0..path_len - 1].to_vec(),
4335     };
4336     let enum_path_string = path_names_to_string(&enum_path);
4337
4338     (suggestion.path.span, variant_path_string, enum_path_string)
4339 }
4340
4341
4342 /// When an entity with a given name is not available in scope, we search for
4343 /// entities with that name in all crates. This method allows outputting the
4344 /// results of this search in a programmer-friendly way
4345 fn show_candidates(err: &mut DiagnosticBuilder,
4346                    // This is `None` if all placement locations are inside expansions
4347                    span: Option<Span>,
4348                    candidates: &[ImportSuggestion],
4349                    better: bool,
4350                    found_use: bool) {
4351
4352     // we want consistent results across executions, but candidates are produced
4353     // by iterating through a hash map, so make sure they are ordered:
4354     let mut path_strings: Vec<_> =
4355         candidates.into_iter().map(|c| path_names_to_string(&c.path)).collect();
4356     path_strings.sort();
4357
4358     let better = if better { "better " } else { "" };
4359     let msg_diff = match path_strings.len() {
4360         1 => " is found in another module, you can import it",
4361         _ => "s are found in other modules, you can import them",
4362     };
4363     let msg = format!("possible {}candidate{} into scope", better, msg_diff);
4364
4365     if let Some(span) = span {
4366         for candidate in &mut path_strings {
4367             // produce an additional newline to separate the new use statement
4368             // from the directly following item.
4369             let additional_newline = if found_use {
4370                 ""
4371             } else {
4372                 "\n"
4373             };
4374             *candidate = format!("use {};\n{}", candidate, additional_newline);
4375         }
4376
4377         err.span_suggestions(span, &msg, path_strings);
4378     } else {
4379         let mut msg = msg;
4380         msg.push(':');
4381         for candidate in path_strings {
4382             msg.push('\n');
4383             msg.push_str(&candidate);
4384         }
4385     }
4386 }
4387
4388 /// A somewhat inefficient routine to obtain the name of a module.
4389 fn module_to_string(module: Module) -> Option<String> {
4390     let mut names = Vec::new();
4391
4392     fn collect_mod(names: &mut Vec<Ident>, module: Module) {
4393         if let ModuleKind::Def(_, name) = module.kind {
4394             if let Some(parent) = module.parent {
4395                 names.push(Ident::with_empty_ctxt(name));
4396                 collect_mod(names, parent);
4397             }
4398         } else {
4399             // danger, shouldn't be ident?
4400             names.push(Ident::from_str("<opaque>"));
4401             collect_mod(names, module.parent.unwrap());
4402         }
4403     }
4404     collect_mod(&mut names, module);
4405
4406     if names.is_empty() {
4407         return None;
4408     }
4409     Some(names_to_string(&names.into_iter()
4410                         .rev()
4411                         .collect::<Vec<_>>()))
4412 }
4413
4414 fn err_path_resolution() -> PathResolution {
4415     PathResolution::new(Def::Err)
4416 }
4417
4418 #[derive(PartialEq,Copy, Clone)]
4419 pub enum MakeGlobMap {
4420     Yes,
4421     No,
4422 }
4423
4424 __build_diagnostic_array! { librustc_resolve, DIAGNOSTICS }