]> git.lizzy.rs Git - rust.git/blob - src/librustc_resolve/lib.rs
0f6a97423091796dc83d97866b4a8d238c99f4bc
[rust.git] / src / librustc_resolve / lib.rs
1 // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 #![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
12        html_favicon_url = "https://doc.rust-lang.org/favicon.ico",
13        html_root_url = "https://doc.rust-lang.org/nightly/")]
14
15 #![feature(crate_visibility_modifier)]
16 #![cfg_attr(not(stage0), feature(nll))]
17 #![cfg_attr(not(stage0), feature(infer_outlives_requirements))]
18 #![feature(rustc_diagnostic_macros)]
19 #![feature(slice_sort_by_cached_key)]
20
21 #[macro_use]
22 extern crate log;
23 #[macro_use]
24 extern crate syntax;
25 extern crate syntax_pos;
26 extern crate rustc_errors as errors;
27 extern crate arena;
28 #[macro_use]
29 extern crate rustc;
30 extern crate rustc_data_structures;
31 extern crate rustc_metadata;
32
33 pub use rustc::hir::def::{Namespace, PerNS};
34
35 use self::TypeParameters::*;
36 use self::RibKind::*;
37
38 use rustc::hir::map::{Definitions, DefCollector};
39 use rustc::hir::{self, PrimTy, Bool, Char, Float, Int, Uint, Str};
40 use rustc::middle::cstore::CrateStore;
41 use rustc::session::Session;
42 use rustc::lint;
43 use rustc::hir::def::*;
44 use rustc::hir::def::Namespace::*;
45 use rustc::hir::def_id::{CRATE_DEF_INDEX, LOCAL_CRATE, DefId};
46 use rustc::ty;
47 use rustc::hir::{Freevar, FreevarMap, TraitCandidate, TraitMap, GlobMap};
48 use rustc::util::nodemap::{NodeMap, NodeSet, FxHashMap, FxHashSet, DefIdMap};
49
50 use rustc_metadata::creader::CrateLoader;
51 use rustc_metadata::cstore::CStore;
52
53 use syntax::source_map::SourceMap;
54 use syntax::ext::hygiene::{Mark, Transparency, SyntaxContext};
55 use syntax::ast::{self, Name, NodeId, Ident, FloatTy, IntTy, UintTy};
56 use syntax::ext::base::SyntaxExtension;
57 use syntax::ext::base::Determinacy::{self, Determined, Undetermined};
58 use syntax::ext::base::MacroKind;
59 use syntax::symbol::{Symbol, keywords};
60 use syntax::util::lev_distance::find_best_match_for_name;
61
62 use syntax::visit::{self, FnKind, Visitor};
63 use syntax::attr;
64 use syntax::ast::{CRATE_NODE_ID, Arm, IsAsync, BindingMode, Block, Crate, Expr, ExprKind};
65 use syntax::ast::{FnDecl, ForeignItem, ForeignItemKind, GenericParamKind, Generics};
66 use syntax::ast::{Item, ItemKind, ImplItem, ImplItemKind};
67 use syntax::ast::{Label, Local, Mutability, Pat, PatKind, Path};
68 use syntax::ast::{QSelf, TraitItemKind, TraitRef, Ty, TyKind};
69 use syntax::feature_gate::{feature_err, GateIssue};
70 use syntax::ptr::P;
71
72 use syntax_pos::{Span, DUMMY_SP, MultiSpan};
73 use errors::{Applicability, DiagnosticBuilder, DiagnosticId};
74
75 use std::cell::{Cell, RefCell};
76 use std::cmp;
77 use std::collections::BTreeSet;
78 use std::fmt;
79 use std::iter;
80 use std::mem::replace;
81 use rustc_data_structures::sync::Lrc;
82
83 use resolve_imports::{ImportDirective, ImportDirectiveSubclass, NameResolution, ImportResolver};
84 use macros::{InvocationData, LegacyBinding};
85
86 // NB: This module needs to be declared first so diagnostics are
87 // registered before they are used.
88 mod diagnostics;
89
90 mod macros;
91 mod check_unused;
92 mod build_reduced_graph;
93 mod resolve_imports;
94
95 fn is_known_tool(name: Name) -> bool {
96     ["clippy", "rustfmt"].contains(&&*name.as_str())
97 }
98
99 /// A free importable items suggested in case of resolution failure.
100 struct ImportSuggestion {
101     path: Path,
102 }
103
104 /// A field or associated item from self type suggested in case of resolution failure.
105 enum AssocSuggestion {
106     Field,
107     MethodWithSelf,
108     AssocItem,
109 }
110
111 #[derive(Eq)]
112 struct BindingError {
113     name: Name,
114     origin: BTreeSet<Span>,
115     target: BTreeSet<Span>,
116 }
117
118 impl PartialOrd for BindingError {
119     fn partial_cmp(&self, other: &BindingError) -> Option<cmp::Ordering> {
120         Some(self.cmp(other))
121     }
122 }
123
124 impl PartialEq for BindingError {
125     fn eq(&self, other: &BindingError) -> bool {
126         self.name == other.name
127     }
128 }
129
130 impl Ord for BindingError {
131     fn cmp(&self, other: &BindingError) -> cmp::Ordering {
132         self.name.cmp(&other.name)
133     }
134 }
135
136 enum ResolutionError<'a> {
137     /// error E0401: can't use type parameters from outer function
138     TypeParametersFromOuterFunction(Def),
139     /// error E0403: the name is already used for a type parameter in this type parameter list
140     NameAlreadyUsedInTypeParameterList(Name, &'a Span),
141     /// error E0407: method is not a member of trait
142     MethodNotMemberOfTrait(Name, &'a str),
143     /// error E0437: type is not a member of trait
144     TypeNotMemberOfTrait(Name, &'a str),
145     /// error E0438: const is not a member of trait
146     ConstNotMemberOfTrait(Name, &'a str),
147     /// error E0408: variable `{}` is not bound in all patterns
148     VariableNotBoundInPattern(&'a BindingError),
149     /// error E0409: variable `{}` is bound in inconsistent ways within the same match arm
150     VariableBoundWithDifferentMode(Name, Span),
151     /// error E0415: identifier is bound more than once in this parameter list
152     IdentifierBoundMoreThanOnceInParameterList(&'a str),
153     /// error E0416: identifier is bound more than once in the same pattern
154     IdentifierBoundMoreThanOnceInSamePattern(&'a str),
155     /// error E0426: use of undeclared label
156     UndeclaredLabel(&'a str, Option<Name>),
157     /// error E0429: `self` imports are only allowed within a { } list
158     SelfImportsOnlyAllowedWithin,
159     /// error E0430: `self` import can only appear once in the list
160     SelfImportCanOnlyAppearOnceInTheList,
161     /// error E0431: `self` import can only appear in an import list with a non-empty prefix
162     SelfImportOnlyInImportListWithNonEmptyPrefix,
163     /// error E0432: unresolved import
164     UnresolvedImport(Option<(Span, &'a str, &'a str)>),
165     /// error E0433: failed to resolve
166     FailedToResolve(&'a str),
167     /// error E0434: can't capture dynamic environment in a fn item
168     CannotCaptureDynamicEnvironmentInFnItem,
169     /// error E0435: attempt to use a non-constant value in a constant
170     AttemptToUseNonConstantValueInConstant,
171     /// error E0530: X bindings cannot shadow Ys
172     BindingShadowsSomethingUnacceptable(&'a str, Name, &'a NameBinding<'a>),
173     /// error E0128: type parameters with a default cannot use forward declared identifiers
174     ForwardDeclaredTyParam,
175 }
176
177 /// Combines an error with provided span and emits it
178 ///
179 /// This takes the error provided, combines it with the span and any additional spans inside the
180 /// error and emits it.
181 fn resolve_error<'sess, 'a>(resolver: &'sess Resolver,
182                             span: Span,
183                             resolution_error: ResolutionError<'a>) {
184     resolve_struct_error(resolver, span, resolution_error).emit();
185 }
186
187 fn resolve_struct_error<'sess, 'a>(resolver: &'sess Resolver,
188                                    span: Span,
189                                    resolution_error: ResolutionError<'a>)
190                                    -> DiagnosticBuilder<'sess> {
191     match resolution_error {
192         ResolutionError::TypeParametersFromOuterFunction(outer_def) => {
193             let mut err = struct_span_err!(resolver.session,
194                                            span,
195                                            E0401,
196                                            "can't use type parameters from outer function");
197             err.span_label(span, "use of type variable from outer function");
198
199             let cm = resolver.session.source_map();
200             match outer_def {
201                 Def::SelfTy(_, maybe_impl_defid) => {
202                     if let Some(impl_span) = maybe_impl_defid.map_or(None,
203                             |def_id| resolver.definitions.opt_span(def_id)) {
204                         err.span_label(reduce_impl_span_to_impl_keyword(cm, impl_span),
205                                     "`Self` type implicitly declared here, on the `impl`");
206                     }
207                 },
208                 Def::TyParam(typaram_defid) => {
209                     if let Some(typaram_span) = resolver.definitions.opt_span(typaram_defid) {
210                         err.span_label(typaram_span, "type variable from outer function");
211                     }
212                 },
213                 _ => {
214                     bug!("TypeParametersFromOuterFunction should only be used with Def::SelfTy or \
215                          Def::TyParam")
216                 }
217             }
218
219             // Try to retrieve the span of the function signature and generate a new message with
220             // a local type parameter
221             let sugg_msg = "try using a local type parameter instead";
222             if let Some((sugg_span, new_snippet)) = cm.generate_local_type_param_snippet(span) {
223                 // Suggest the modification to the user
224                 err.span_suggestion_with_applicability(
225                     sugg_span,
226                     sugg_msg,
227                     new_snippet,
228                     Applicability::MachineApplicable,
229                 );
230             } else if let Some(sp) = cm.generate_fn_name_span(span) {
231                 err.span_label(sp, "try adding a local type parameter in this method instead");
232             } else {
233                 err.help("try using a local type parameter instead");
234             }
235
236             err
237         }
238         ResolutionError::NameAlreadyUsedInTypeParameterList(name, first_use_span) => {
239              let mut err = struct_span_err!(resolver.session,
240                                             span,
241                                             E0403,
242                                             "the name `{}` is already used for a type parameter \
243                                             in this type parameter list",
244                                             name);
245              err.span_label(span, "already used");
246              err.span_label(first_use_span.clone(), format!("first use of `{}`", name));
247              err
248         }
249         ResolutionError::MethodNotMemberOfTrait(method, trait_) => {
250             let mut err = struct_span_err!(resolver.session,
251                                            span,
252                                            E0407,
253                                            "method `{}` is not a member of trait `{}`",
254                                            method,
255                                            trait_);
256             err.span_label(span, format!("not a member of trait `{}`", trait_));
257             err
258         }
259         ResolutionError::TypeNotMemberOfTrait(type_, trait_) => {
260             let mut err = struct_span_err!(resolver.session,
261                              span,
262                              E0437,
263                              "type `{}` is not a member of trait `{}`",
264                              type_,
265                              trait_);
266             err.span_label(span, format!("not a member of trait `{}`", trait_));
267             err
268         }
269         ResolutionError::ConstNotMemberOfTrait(const_, trait_) => {
270             let mut err = struct_span_err!(resolver.session,
271                              span,
272                              E0438,
273                              "const `{}` is not a member of trait `{}`",
274                              const_,
275                              trait_);
276             err.span_label(span, format!("not a member of trait `{}`", trait_));
277             err
278         }
279         ResolutionError::VariableNotBoundInPattern(binding_error) => {
280             let target_sp = binding_error.target.iter().cloned().collect::<Vec<_>>();
281             let msp = MultiSpan::from_spans(target_sp.clone());
282             let msg = format!("variable `{}` is not bound in all patterns", binding_error.name);
283             let mut err = resolver.session.struct_span_err_with_code(
284                 msp,
285                 &msg,
286                 DiagnosticId::Error("E0408".into()),
287             );
288             for sp in target_sp {
289                 err.span_label(sp, format!("pattern doesn't bind `{}`", binding_error.name));
290             }
291             let origin_sp = binding_error.origin.iter().cloned();
292             for sp in origin_sp {
293                 err.span_label(sp, "variable not in all patterns");
294             }
295             err
296         }
297         ResolutionError::VariableBoundWithDifferentMode(variable_name,
298                                                         first_binding_span) => {
299             let mut err = struct_span_err!(resolver.session,
300                              span,
301                              E0409,
302                              "variable `{}` is bound in inconsistent \
303                              ways within the same match arm",
304                              variable_name);
305             err.span_label(span, "bound in different ways");
306             err.span_label(first_binding_span, "first binding");
307             err
308         }
309         ResolutionError::IdentifierBoundMoreThanOnceInParameterList(identifier) => {
310             let mut err = struct_span_err!(resolver.session,
311                              span,
312                              E0415,
313                              "identifier `{}` is bound more than once in this parameter list",
314                              identifier);
315             err.span_label(span, "used as parameter more than once");
316             err
317         }
318         ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(identifier) => {
319             let mut err = struct_span_err!(resolver.session,
320                              span,
321                              E0416,
322                              "identifier `{}` is bound more than once in the same pattern",
323                              identifier);
324             err.span_label(span, "used in a pattern more than once");
325             err
326         }
327         ResolutionError::UndeclaredLabel(name, lev_candidate) => {
328             let mut err = struct_span_err!(resolver.session,
329                                            span,
330                                            E0426,
331                                            "use of undeclared label `{}`",
332                                            name);
333             if let Some(lev_candidate) = lev_candidate {
334                 err.span_label(span, format!("did you mean `{}`?", lev_candidate));
335             } else {
336                 err.span_label(span, format!("undeclared label `{}`", name));
337             }
338             err
339         }
340         ResolutionError::SelfImportsOnlyAllowedWithin => {
341             struct_span_err!(resolver.session,
342                              span,
343                              E0429,
344                              "{}",
345                              "`self` imports are only allowed within a { } list")
346         }
347         ResolutionError::SelfImportCanOnlyAppearOnceInTheList => {
348             let mut err = struct_span_err!(resolver.session, span, E0430,
349                                            "`self` import can only appear once in an import list");
350             err.span_label(span, "can only appear once in an import list");
351             err
352         }
353         ResolutionError::SelfImportOnlyInImportListWithNonEmptyPrefix => {
354             let mut err = struct_span_err!(resolver.session, span, E0431,
355                                            "`self` import can only appear in an import list with \
356                                             a non-empty prefix");
357             err.span_label(span, "can only appear in an import list with a non-empty prefix");
358             err
359         }
360         ResolutionError::UnresolvedImport(name) => {
361             let (span, msg) = match name {
362                 Some((sp, n, _)) => (sp, format!("unresolved import `{}`", n)),
363                 None => (span, "unresolved import".to_owned()),
364             };
365             let mut err = struct_span_err!(resolver.session, span, E0432, "{}", msg);
366             if let Some((_, _, p)) = name {
367                 err.span_label(span, p);
368             }
369             err
370         }
371         ResolutionError::FailedToResolve(msg) => {
372             let mut err = struct_span_err!(resolver.session, span, E0433,
373                                            "failed to resolve. {}", msg);
374             err.span_label(span, msg);
375             err
376         }
377         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem => {
378             let mut err = struct_span_err!(resolver.session,
379                                            span,
380                                            E0434,
381                                            "{}",
382                                            "can't capture dynamic environment in a fn item");
383             err.help("use the `|| { ... }` closure form instead");
384             err
385         }
386         ResolutionError::AttemptToUseNonConstantValueInConstant => {
387             let mut err = struct_span_err!(resolver.session, span, E0435,
388                                            "attempt to use a non-constant value in a constant");
389             err.span_label(span, "non-constant value");
390             err
391         }
392         ResolutionError::BindingShadowsSomethingUnacceptable(what_binding, name, binding) => {
393             let shadows_what = PathResolution::new(binding.def()).kind_name();
394             let mut err = struct_span_err!(resolver.session,
395                                            span,
396                                            E0530,
397                                            "{}s cannot shadow {}s", what_binding, shadows_what);
398             err.span_label(span, format!("cannot be named the same as a {}", shadows_what));
399             let participle = if binding.is_import() { "imported" } else { "defined" };
400             let msg = format!("a {} `{}` is {} here", shadows_what, name, participle);
401             err.span_label(binding.span, msg);
402             err
403         }
404         ResolutionError::ForwardDeclaredTyParam => {
405             let mut err = struct_span_err!(resolver.session, span, E0128,
406                                            "type parameters with a default cannot use \
407                                             forward declared identifiers");
408             err.span_label(
409                 span, "defaulted type parameters cannot be forward declared".to_string());
410             err
411         }
412     }
413 }
414
415 /// Adjust the impl span so that just the `impl` keyword is taken by removing
416 /// everything after `<` (`"impl<T> Iterator for A<T> {}" -> "impl"`) and
417 /// everything after the first whitespace (`"impl Iterator for A" -> "impl"`)
418 ///
419 /// Attention: The method used is very fragile since it essentially duplicates the work of the
420 /// parser. If you need to use this function or something similar, please consider updating the
421 /// source_map functions and this function to something more robust.
422 fn reduce_impl_span_to_impl_keyword(cm: &SourceMap, impl_span: Span) -> Span {
423     let impl_span = cm.span_until_char(impl_span, '<');
424     let impl_span = cm.span_until_whitespace(impl_span);
425     impl_span
426 }
427
428 #[derive(Copy, Clone, Debug)]
429 struct BindingInfo {
430     span: Span,
431     binding_mode: BindingMode,
432 }
433
434 /// Map from the name in a pattern to its binding mode.
435 type BindingMap = FxHashMap<Ident, BindingInfo>;
436
437 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
438 enum PatternSource {
439     Match,
440     IfLet,
441     WhileLet,
442     Let,
443     For,
444     FnParam,
445 }
446
447 impl PatternSource {
448     fn descr(self) -> &'static str {
449         match self {
450             PatternSource::Match => "match binding",
451             PatternSource::IfLet => "if let binding",
452             PatternSource::WhileLet => "while let binding",
453             PatternSource::Let => "let binding",
454             PatternSource::For => "for binding",
455             PatternSource::FnParam => "function parameter",
456         }
457     }
458 }
459
460 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
461 enum AliasPossibility {
462     No,
463     Maybe,
464 }
465
466 #[derive(Copy, Clone, Debug)]
467 enum PathSource<'a> {
468     // Type paths `Path`.
469     Type,
470     // Trait paths in bounds or impls.
471     Trait(AliasPossibility),
472     // Expression paths `path`, with optional parent context.
473     Expr(Option<&'a Expr>),
474     // Paths in path patterns `Path`.
475     Pat,
476     // Paths in struct expressions and patterns `Path { .. }`.
477     Struct,
478     // Paths in tuple struct patterns `Path(..)`.
479     TupleStruct,
480     // `m::A::B` in `<T as m::A>::B::C`.
481     TraitItem(Namespace),
482     // Path in `pub(path)`
483     Visibility,
484     // Path in `use a::b::{...};`
485     ImportPrefix,
486 }
487
488 impl<'a> PathSource<'a> {
489     fn namespace(self) -> Namespace {
490         match self {
491             PathSource::Type | PathSource::Trait(_) | PathSource::Struct |
492             PathSource::Visibility | PathSource::ImportPrefix => TypeNS,
493             PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct => ValueNS,
494             PathSource::TraitItem(ns) => ns,
495         }
496     }
497
498     fn global_by_default(self) -> bool {
499         match self {
500             PathSource::Visibility | PathSource::ImportPrefix => true,
501             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
502             PathSource::Struct | PathSource::TupleStruct |
503             PathSource::Trait(_) | PathSource::TraitItem(..) => false,
504         }
505     }
506
507     fn defer_to_typeck(self) -> bool {
508         match self {
509             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
510             PathSource::Struct | PathSource::TupleStruct => true,
511             PathSource::Trait(_) | PathSource::TraitItem(..) |
512             PathSource::Visibility | PathSource::ImportPrefix => false,
513         }
514     }
515
516     fn descr_expected(self) -> &'static str {
517         match self {
518             PathSource::Type => "type",
519             PathSource::Trait(_) => "trait",
520             PathSource::Pat => "unit struct/variant or constant",
521             PathSource::Struct => "struct, variant or union type",
522             PathSource::TupleStruct => "tuple struct/variant",
523             PathSource::Visibility => "module",
524             PathSource::ImportPrefix => "module or enum",
525             PathSource::TraitItem(ns) => match ns {
526                 TypeNS => "associated type",
527                 ValueNS => "method or associated constant",
528                 MacroNS => bug!("associated macro"),
529             },
530             PathSource::Expr(parent) => match parent.map(|p| &p.node) {
531                 // "function" here means "anything callable" rather than `Def::Fn`,
532                 // this is not precise but usually more helpful than just "value".
533                 Some(&ExprKind::Call(..)) => "function",
534                 _ => "value",
535             },
536         }
537     }
538
539     fn is_expected(self, def: Def) -> bool {
540         match self {
541             PathSource::Type => match def {
542                 Def::Struct(..) | Def::Union(..) | Def::Enum(..) |
543                 Def::Trait(..) | Def::TyAlias(..) | Def::AssociatedTy(..) |
544                 Def::PrimTy(..) | Def::TyParam(..) | Def::SelfTy(..) |
545                 Def::Existential(..) |
546                 Def::ForeignTy(..) => true,
547                 _ => false,
548             },
549             PathSource::Trait(AliasPossibility::No) => match def {
550                 Def::Trait(..) => true,
551                 _ => false,
552             },
553             PathSource::Trait(AliasPossibility::Maybe) => match def {
554                 Def::Trait(..) => true,
555                 Def::TraitAlias(..) => true,
556                 _ => false,
557             },
558             PathSource::Expr(..) => match def {
559                 Def::StructCtor(_, CtorKind::Const) | Def::StructCtor(_, CtorKind::Fn) |
560                 Def::VariantCtor(_, CtorKind::Const) | Def::VariantCtor(_, CtorKind::Fn) |
561                 Def::Const(..) | Def::Static(..) | Def::Local(..) | Def::Upvar(..) |
562                 Def::Fn(..) | Def::Method(..) | Def::AssociatedConst(..) => true,
563                 _ => false,
564             },
565             PathSource::Pat => match def {
566                 Def::StructCtor(_, CtorKind::Const) |
567                 Def::VariantCtor(_, CtorKind::Const) |
568                 Def::Const(..) | Def::AssociatedConst(..) => true,
569                 _ => false,
570             },
571             PathSource::TupleStruct => match def {
572                 Def::StructCtor(_, CtorKind::Fn) | Def::VariantCtor(_, CtorKind::Fn) => true,
573                 _ => false,
574             },
575             PathSource::Struct => match def {
576                 Def::Struct(..) | Def::Union(..) | Def::Variant(..) |
577                 Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => true,
578                 _ => false,
579             },
580             PathSource::TraitItem(ns) => match def {
581                 Def::AssociatedConst(..) | Def::Method(..) if ns == ValueNS => true,
582                 Def::AssociatedTy(..) if ns == TypeNS => true,
583                 _ => false,
584             },
585             PathSource::ImportPrefix => match def {
586                 Def::Mod(..) | Def::Enum(..) => true,
587                 _ => false,
588             },
589             PathSource::Visibility => match def {
590                 Def::Mod(..) => true,
591                 _ => false,
592             },
593         }
594     }
595
596     fn error_code(self, has_unexpected_resolution: bool) -> &'static str {
597         __diagnostic_used!(E0404);
598         __diagnostic_used!(E0405);
599         __diagnostic_used!(E0412);
600         __diagnostic_used!(E0422);
601         __diagnostic_used!(E0423);
602         __diagnostic_used!(E0425);
603         __diagnostic_used!(E0531);
604         __diagnostic_used!(E0532);
605         __diagnostic_used!(E0573);
606         __diagnostic_used!(E0574);
607         __diagnostic_used!(E0575);
608         __diagnostic_used!(E0576);
609         __diagnostic_used!(E0577);
610         __diagnostic_used!(E0578);
611         match (self, has_unexpected_resolution) {
612             (PathSource::Trait(_), true) => "E0404",
613             (PathSource::Trait(_), false) => "E0405",
614             (PathSource::Type, true) => "E0573",
615             (PathSource::Type, false) => "E0412",
616             (PathSource::Struct, true) => "E0574",
617             (PathSource::Struct, false) => "E0422",
618             (PathSource::Expr(..), true) => "E0423",
619             (PathSource::Expr(..), false) => "E0425",
620             (PathSource::Pat, true) | (PathSource::TupleStruct, true) => "E0532",
621             (PathSource::Pat, false) | (PathSource::TupleStruct, false) => "E0531",
622             (PathSource::TraitItem(..), true) => "E0575",
623             (PathSource::TraitItem(..), false) => "E0576",
624             (PathSource::Visibility, true) | (PathSource::ImportPrefix, true) => "E0577",
625             (PathSource::Visibility, false) | (PathSource::ImportPrefix, false) => "E0578",
626         }
627     }
628 }
629
630 struct UsePlacementFinder {
631     target_module: NodeId,
632     span: Option<Span>,
633     found_use: bool,
634 }
635
636 impl UsePlacementFinder {
637     fn check(krate: &Crate, target_module: NodeId) -> (Option<Span>, bool) {
638         let mut finder = UsePlacementFinder {
639             target_module,
640             span: None,
641             found_use: false,
642         };
643         visit::walk_crate(&mut finder, krate);
644         (finder.span, finder.found_use)
645     }
646 }
647
648 impl<'tcx> Visitor<'tcx> for UsePlacementFinder {
649     fn visit_mod(
650         &mut self,
651         module: &'tcx ast::Mod,
652         _: Span,
653         _: &[ast::Attribute],
654         node_id: NodeId,
655     ) {
656         if self.span.is_some() {
657             return;
658         }
659         if node_id != self.target_module {
660             visit::walk_mod(self, module);
661             return;
662         }
663         // find a use statement
664         for item in &module.items {
665             match item.node {
666                 ItemKind::Use(..) => {
667                     // don't suggest placing a use before the prelude
668                     // import or other generated ones
669                     if item.span.ctxt().outer().expn_info().is_none() {
670                         self.span = Some(item.span.shrink_to_lo());
671                         self.found_use = true;
672                         return;
673                     }
674                 },
675                 // don't place use before extern crate
676                 ItemKind::ExternCrate(_) => {}
677                 // but place them before the first other item
678                 _ => if self.span.map_or(true, |span| item.span < span ) {
679                     if item.span.ctxt().outer().expn_info().is_none() {
680                         // don't insert between attributes and an item
681                         if item.attrs.is_empty() {
682                             self.span = Some(item.span.shrink_to_lo());
683                         } else {
684                             // find the first attribute on the item
685                             for attr in &item.attrs {
686                                 if self.span.map_or(true, |span| attr.span < span) {
687                                     self.span = Some(attr.span.shrink_to_lo());
688                                 }
689                             }
690                         }
691                     }
692                 },
693             }
694         }
695     }
696 }
697
698 /// This thing walks the whole crate in DFS manner, visiting each item, resolving names as it goes.
699 impl<'a, 'tcx, 'cl> Visitor<'tcx> for Resolver<'a, 'cl> {
700     fn visit_item(&mut self, item: &'tcx Item) {
701         self.resolve_item(item);
702     }
703     fn visit_arm(&mut self, arm: &'tcx Arm) {
704         self.resolve_arm(arm);
705     }
706     fn visit_block(&mut self, block: &'tcx Block) {
707         self.resolve_block(block);
708     }
709     fn visit_anon_const(&mut self, constant: &'tcx ast::AnonConst) {
710         self.with_constant_rib(|this| {
711             visit::walk_anon_const(this, constant);
712         });
713     }
714     fn visit_expr(&mut self, expr: &'tcx Expr) {
715         self.resolve_expr(expr, None);
716     }
717     fn visit_local(&mut self, local: &'tcx Local) {
718         self.resolve_local(local);
719     }
720     fn visit_ty(&mut self, ty: &'tcx Ty) {
721         match ty.node {
722             TyKind::Path(ref qself, ref path) => {
723                 self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
724             }
725             TyKind::ImplicitSelf => {
726                 let self_ty = keywords::SelfType.ident();
727                 let def = self.resolve_ident_in_lexical_scope(self_ty, TypeNS, Some(ty.id), ty.span)
728                               .map_or(Def::Err, |d| d.def());
729                 self.record_def(ty.id, PathResolution::new(def));
730             }
731             _ => (),
732         }
733         visit::walk_ty(self, ty);
734     }
735     fn visit_poly_trait_ref(&mut self,
736                             tref: &'tcx ast::PolyTraitRef,
737                             m: &'tcx ast::TraitBoundModifier) {
738         self.smart_resolve_path(tref.trait_ref.ref_id, None,
739                                 &tref.trait_ref.path, PathSource::Trait(AliasPossibility::Maybe));
740         visit::walk_poly_trait_ref(self, tref, m);
741     }
742     fn visit_foreign_item(&mut self, foreign_item: &'tcx ForeignItem) {
743         let type_parameters = match foreign_item.node {
744             ForeignItemKind::Fn(_, ref generics) => {
745                 HasTypeParameters(generics, ItemRibKind)
746             }
747             ForeignItemKind::Static(..) => NoTypeParameters,
748             ForeignItemKind::Ty => NoTypeParameters,
749             ForeignItemKind::Macro(..) => NoTypeParameters,
750         };
751         self.with_type_parameter_rib(type_parameters, |this| {
752             visit::walk_foreign_item(this, foreign_item);
753         });
754     }
755     fn visit_fn(&mut self,
756                 function_kind: FnKind<'tcx>,
757                 declaration: &'tcx FnDecl,
758                 _: Span,
759                 node_id: NodeId)
760     {
761         let (rib_kind, asyncness) = match function_kind {
762             FnKind::ItemFn(_, ref header, ..) =>
763                 (ItemRibKind, header.asyncness),
764             FnKind::Method(_, ref sig, _, _) =>
765                 (TraitOrImplItemRibKind, sig.header.asyncness),
766             FnKind::Closure(_) =>
767                 // Async closures aren't resolved through `visit_fn`-- they're
768                 // processed separately
769                 (ClosureRibKind(node_id), IsAsync::NotAsync),
770         };
771
772         // Create a value rib for the function.
773         self.ribs[ValueNS].push(Rib::new(rib_kind));
774
775         // Create a label rib for the function.
776         self.label_ribs.push(Rib::new(rib_kind));
777
778         // Add each argument to the rib.
779         let mut bindings_list = FxHashMap();
780         for argument in &declaration.inputs {
781             self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
782
783             self.visit_ty(&argument.ty);
784
785             debug!("(resolving function) recorded argument");
786         }
787         visit::walk_fn_ret_ty(self, &declaration.output);
788
789         // Resolve the function body, potentially inside the body of an async closure
790         if let IsAsync::Async { closure_id, .. } = asyncness {
791             let rib_kind = ClosureRibKind(closure_id);
792             self.ribs[ValueNS].push(Rib::new(rib_kind));
793             self.label_ribs.push(Rib::new(rib_kind));
794         }
795
796         match function_kind {
797             FnKind::ItemFn(.., body) |
798             FnKind::Method(.., body) => {
799                 self.visit_block(body);
800             }
801             FnKind::Closure(body) => {
802                 self.visit_expr(body);
803             }
804         };
805
806         // Leave the body of the async closure
807         if asyncness.is_async() {
808             self.label_ribs.pop();
809             self.ribs[ValueNS].pop();
810         }
811
812         debug!("(resolving function) leaving function");
813
814         self.label_ribs.pop();
815         self.ribs[ValueNS].pop();
816     }
817     fn visit_generics(&mut self, generics: &'tcx Generics) {
818         // For type parameter defaults, we have to ban access
819         // to following type parameters, as the Substs can only
820         // provide previous type parameters as they're built. We
821         // put all the parameters on the ban list and then remove
822         // them one by one as they are processed and become available.
823         let mut default_ban_rib = Rib::new(ForwardTyParamBanRibKind);
824         let mut found_default = false;
825         default_ban_rib.bindings.extend(generics.params.iter()
826             .filter_map(|param| match param.kind {
827                 GenericParamKind::Lifetime { .. } => None,
828                 GenericParamKind::Type { ref default, .. } => {
829                     found_default |= default.is_some();
830                     if found_default {
831                         Some((Ident::with_empty_ctxt(param.ident.name), Def::Err))
832                     } else {
833                         None
834                     }
835                 }
836             }));
837
838         for param in &generics.params {
839             match param.kind {
840                 GenericParamKind::Lifetime { .. } => self.visit_generic_param(param),
841                 GenericParamKind::Type { ref default, .. } => {
842                     for bound in &param.bounds {
843                         self.visit_param_bound(bound);
844                     }
845
846                     if let Some(ref ty) = default {
847                         self.ribs[TypeNS].push(default_ban_rib);
848                         self.visit_ty(ty);
849                         default_ban_rib = self.ribs[TypeNS].pop().unwrap();
850                     }
851
852                     // Allow all following defaults to refer to this type parameter.
853                     default_ban_rib.bindings.remove(&Ident::with_empty_ctxt(param.ident.name));
854                 }
855             }
856         }
857         for p in &generics.where_clause.predicates {
858             self.visit_where_predicate(p);
859         }
860     }
861 }
862
863 #[derive(Copy, Clone)]
864 enum TypeParameters<'a, 'b> {
865     NoTypeParameters,
866     HasTypeParameters(// Type parameters.
867                       &'b Generics,
868
869                       // The kind of the rib used for type parameters.
870                       RibKind<'a>),
871 }
872
873 /// The rib kind controls the translation of local
874 /// definitions (`Def::Local`) to upvars (`Def::Upvar`).
875 #[derive(Copy, Clone, Debug)]
876 enum RibKind<'a> {
877     /// No translation needs to be applied.
878     NormalRibKind,
879
880     /// We passed through a closure scope at the given node ID.
881     /// Translate upvars as appropriate.
882     ClosureRibKind(NodeId /* func id */),
883
884     /// We passed through an impl or trait and are now in one of its
885     /// methods or associated types. Allow references to ty params that impl or trait
886     /// binds. Disallow any other upvars (including other ty params that are
887     /// upvars).
888     TraitOrImplItemRibKind,
889
890     /// We passed through an item scope. Disallow upvars.
891     ItemRibKind,
892
893     /// We're in a constant item. Can't refer to dynamic stuff.
894     ConstantItemRibKind,
895
896     /// We passed through a module.
897     ModuleRibKind(Module<'a>),
898
899     /// We passed through a `macro_rules!` statement
900     MacroDefinition(DefId),
901
902     /// All bindings in this rib are type parameters that can't be used
903     /// from the default of a type parameter because they're not declared
904     /// before said type parameter. Also see the `visit_generics` override.
905     ForwardTyParamBanRibKind,
906 }
907
908 /// One local scope.
909 ///
910 /// A rib represents a scope names can live in. Note that these appear in many places, not just
911 /// around braces. At any place where the list of accessible names (of the given namespace)
912 /// changes or a new restrictions on the name accessibility are introduced, a new rib is put onto a
913 /// stack. This may be, for example, a `let` statement (because it introduces variables), a macro,
914 /// etc.
915 ///
916 /// Different [rib kinds](enum.RibKind) are transparent for different names.
917 ///
918 /// The resolution keeps a separate stack of ribs as it traverses the AST for each namespace. When
919 /// resolving, the name is looked up from inside out.
920 #[derive(Debug)]
921 struct Rib<'a> {
922     bindings: FxHashMap<Ident, Def>,
923     kind: RibKind<'a>,
924 }
925
926 impl<'a> Rib<'a> {
927     fn new(kind: RibKind<'a>) -> Rib<'a> {
928         Rib {
929             bindings: FxHashMap(),
930             kind,
931         }
932     }
933 }
934
935 /// An intermediate resolution result.
936 ///
937 /// This refers to the thing referred by a name. The difference between `Def` and `Item` is that
938 /// items are visible in their whole block, while defs only from the place they are defined
939 /// forward.
940 enum LexicalScopeBinding<'a> {
941     Item(&'a NameBinding<'a>),
942     Def(Def),
943 }
944
945 impl<'a> LexicalScopeBinding<'a> {
946     fn item(self) -> Option<&'a NameBinding<'a>> {
947         match self {
948             LexicalScopeBinding::Item(binding) => Some(binding),
949             _ => None,
950         }
951     }
952
953     fn def(self) -> Def {
954         match self {
955             LexicalScopeBinding::Item(binding) => binding.def(),
956             LexicalScopeBinding::Def(def) => def,
957         }
958     }
959 }
960
961 #[derive(Copy, Clone, Debug)]
962 pub enum ModuleOrUniformRoot<'a> {
963     /// Regular module.
964     Module(Module<'a>),
965
966     /// The `{{root}}` (`CrateRoot` aka "global") / `extern` initial segment
967     /// in which external crates resolve, and also `crate` (only in `{{root}}`,
968     /// but *not* `extern`), in the Rust 2018 edition.
969     UniformRoot(Name),
970 }
971
972 #[derive(Clone, Debug)]
973 enum PathResult<'a> {
974     Module(ModuleOrUniformRoot<'a>),
975     NonModule(PathResolution),
976     Indeterminate,
977     Failed(Span, String, bool /* is the error from the last segment? */),
978 }
979
980 enum ModuleKind {
981     /// An anonymous module, eg. just a block.
982     ///
983     /// ```
984     /// fn main() {
985     ///     fn f() {} // (1)
986     ///     { // This is an anonymous module
987     ///         f(); // This resolves to (2) as we are inside the block.
988     ///         fn f() {} // (2)
989     ///     }
990     ///     f(); // Resolves to (1)
991     /// }
992     /// ```
993     Block(NodeId),
994     /// Any module with a name.
995     ///
996     /// This could be:
997     ///
998     /// * A normal module â€’ either `mod from_file;` or `mod from_block { }`.
999     /// * A trait or an enum (it implicitly contains associated types, methods and variant
1000     ///   constructors).
1001     Def(Def, Name),
1002 }
1003
1004 /// One node in the tree of modules.
1005 pub struct ModuleData<'a> {
1006     parent: Option<Module<'a>>,
1007     kind: ModuleKind,
1008
1009     // The def id of the closest normal module (`mod`) ancestor (including this module).
1010     normal_ancestor_id: DefId,
1011
1012     resolutions: RefCell<FxHashMap<(Ident, Namespace), &'a RefCell<NameResolution<'a>>>>,
1013     legacy_macro_resolutions: RefCell<Vec<(Mark, Ident, MacroKind, Option<Def>)>>,
1014     macro_resolutions: RefCell<Vec<(Box<[Ident]>, Span)>>,
1015
1016     // Macro invocations that can expand into items in this module.
1017     unresolved_invocations: RefCell<FxHashSet<Mark>>,
1018
1019     no_implicit_prelude: bool,
1020
1021     glob_importers: RefCell<Vec<&'a ImportDirective<'a>>>,
1022     globs: RefCell<Vec<&'a ImportDirective<'a>>>,
1023
1024     // Used to memoize the traits in this module for faster searches through all traits in scope.
1025     traits: RefCell<Option<Box<[(Ident, &'a NameBinding<'a>)]>>>,
1026
1027     // Whether this module is populated. If not populated, any attempt to
1028     // access the children must be preceded with a
1029     // `populate_module_if_necessary` call.
1030     populated: Cell<bool>,
1031
1032     /// Span of the module itself. Used for error reporting.
1033     span: Span,
1034
1035     expansion: Mark,
1036 }
1037
1038 type Module<'a> = &'a ModuleData<'a>;
1039
1040 impl<'a> ModuleData<'a> {
1041     fn new(parent: Option<Module<'a>>,
1042            kind: ModuleKind,
1043            normal_ancestor_id: DefId,
1044            expansion: Mark,
1045            span: Span) -> Self {
1046         ModuleData {
1047             parent,
1048             kind,
1049             normal_ancestor_id,
1050             resolutions: RefCell::new(FxHashMap()),
1051             legacy_macro_resolutions: RefCell::new(Vec::new()),
1052             macro_resolutions: RefCell::new(Vec::new()),
1053             unresolved_invocations: RefCell::new(FxHashSet()),
1054             no_implicit_prelude: false,
1055             glob_importers: RefCell::new(Vec::new()),
1056             globs: RefCell::new(Vec::new()),
1057             traits: RefCell::new(None),
1058             populated: Cell::new(normal_ancestor_id.is_local()),
1059             span,
1060             expansion,
1061         }
1062     }
1063
1064     fn for_each_child<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1065         for (&(ident, ns), name_resolution) in self.resolutions.borrow().iter() {
1066             name_resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1067         }
1068     }
1069
1070     fn for_each_child_stable<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1071         let resolutions = self.resolutions.borrow();
1072         let mut resolutions = resolutions.iter().collect::<Vec<_>>();
1073         resolutions.sort_by_cached_key(|&(&(ident, ns), _)| (ident.as_str(), ns));
1074         for &(&(ident, ns), &resolution) in resolutions.iter() {
1075             resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1076         }
1077     }
1078
1079     fn def(&self) -> Option<Def> {
1080         match self.kind {
1081             ModuleKind::Def(def, _) => Some(def),
1082             _ => None,
1083         }
1084     }
1085
1086     fn def_id(&self) -> Option<DefId> {
1087         self.def().as_ref().map(Def::def_id)
1088     }
1089
1090     // `self` resolves to the first module ancestor that `is_normal`.
1091     fn is_normal(&self) -> bool {
1092         match self.kind {
1093             ModuleKind::Def(Def::Mod(_), _) => true,
1094             _ => false,
1095         }
1096     }
1097
1098     fn is_trait(&self) -> bool {
1099         match self.kind {
1100             ModuleKind::Def(Def::Trait(_), _) => true,
1101             _ => false,
1102         }
1103     }
1104
1105     fn is_local(&self) -> bool {
1106         self.normal_ancestor_id.is_local()
1107     }
1108
1109     fn nearest_item_scope(&'a self) -> Module<'a> {
1110         if self.is_trait() { self.parent.unwrap() } else { self }
1111     }
1112 }
1113
1114 impl<'a> fmt::Debug for ModuleData<'a> {
1115     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1116         write!(f, "{:?}", self.def())
1117     }
1118 }
1119
1120 /// Records a possibly-private value, type, or module definition.
1121 #[derive(Clone, Debug)]
1122 pub struct NameBinding<'a> {
1123     kind: NameBindingKind<'a>,
1124     expansion: Mark,
1125     span: Span,
1126     vis: ty::Visibility,
1127 }
1128
1129 pub trait ToNameBinding<'a> {
1130     fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a>;
1131 }
1132
1133 impl<'a> ToNameBinding<'a> for &'a NameBinding<'a> {
1134     fn to_name_binding(self, _: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> {
1135         self
1136     }
1137 }
1138
1139 #[derive(Clone, Debug)]
1140 enum NameBindingKind<'a> {
1141     Def(Def, /* is_macro_export */ bool),
1142     Module(Module<'a>),
1143     Import {
1144         binding: &'a NameBinding<'a>,
1145         directive: &'a ImportDirective<'a>,
1146         used: Cell<bool>,
1147     },
1148     Ambiguity {
1149         b1: &'a NameBinding<'a>,
1150         b2: &'a NameBinding<'a>,
1151     }
1152 }
1153
1154 struct PrivacyError<'a>(Span, Name, &'a NameBinding<'a>);
1155
1156 struct UseError<'a> {
1157     err: DiagnosticBuilder<'a>,
1158     /// Attach `use` statements for these candidates
1159     candidates: Vec<ImportSuggestion>,
1160     /// The node id of the module to place the use statements in
1161     node_id: NodeId,
1162     /// Whether the diagnostic should state that it's "better"
1163     better: bool,
1164 }
1165
1166 struct AmbiguityError<'a> {
1167     span: Span,
1168     name: Name,
1169     lexical: bool,
1170     b1: &'a NameBinding<'a>,
1171     b2: &'a NameBinding<'a>,
1172 }
1173
1174 impl<'a> NameBinding<'a> {
1175     fn module(&self) -> Option<Module<'a>> {
1176         match self.kind {
1177             NameBindingKind::Module(module) => Some(module),
1178             NameBindingKind::Import { binding, .. } => binding.module(),
1179             _ => None,
1180         }
1181     }
1182
1183     fn def(&self) -> Def {
1184         match self.kind {
1185             NameBindingKind::Def(def, _) => def,
1186             NameBindingKind::Module(module) => module.def().unwrap(),
1187             NameBindingKind::Import { binding, .. } => binding.def(),
1188             NameBindingKind::Ambiguity { .. } => Def::Err,
1189         }
1190     }
1191
1192     fn def_ignoring_ambiguity(&self) -> Def {
1193         match self.kind {
1194             NameBindingKind::Import { binding, .. } => binding.def_ignoring_ambiguity(),
1195             NameBindingKind::Ambiguity { b1, .. } => b1.def_ignoring_ambiguity(),
1196             _ => self.def(),
1197         }
1198     }
1199
1200     fn get_macro<'b: 'a>(&self, resolver: &mut Resolver<'a, 'b>) -> Lrc<SyntaxExtension> {
1201         resolver.get_macro(self.def_ignoring_ambiguity())
1202     }
1203
1204     // We sometimes need to treat variants as `pub` for backwards compatibility
1205     fn pseudo_vis(&self) -> ty::Visibility {
1206         if self.is_variant() && self.def().def_id().is_local() {
1207             ty::Visibility::Public
1208         } else {
1209             self.vis
1210         }
1211     }
1212
1213     fn is_variant(&self) -> bool {
1214         match self.kind {
1215             NameBindingKind::Def(Def::Variant(..), _) |
1216             NameBindingKind::Def(Def::VariantCtor(..), _) => true,
1217             _ => false,
1218         }
1219     }
1220
1221     fn is_extern_crate(&self) -> bool {
1222         match self.kind {
1223             NameBindingKind::Import {
1224                 directive: &ImportDirective {
1225                     subclass: ImportDirectiveSubclass::ExternCrate(_), ..
1226                 }, ..
1227             } => true,
1228             _ => false,
1229         }
1230     }
1231
1232     fn is_import(&self) -> bool {
1233         match self.kind {
1234             NameBindingKind::Import { .. } => true,
1235             _ => false,
1236         }
1237     }
1238
1239     fn is_renamed_extern_crate(&self) -> bool {
1240         if let NameBindingKind::Import { directive, ..} = self.kind {
1241             if let ImportDirectiveSubclass::ExternCrate(Some(_)) = directive.subclass {
1242                 return true;
1243             }
1244         }
1245         false
1246     }
1247
1248     fn is_glob_import(&self) -> bool {
1249         match self.kind {
1250             NameBindingKind::Import { directive, .. } => directive.is_glob(),
1251             NameBindingKind::Ambiguity { b1, .. } => b1.is_glob_import(),
1252             _ => false,
1253         }
1254     }
1255
1256     fn is_importable(&self) -> bool {
1257         match self.def() {
1258             Def::AssociatedConst(..) | Def::Method(..) | Def::AssociatedTy(..) => false,
1259             _ => true,
1260         }
1261     }
1262
1263     fn is_macro_def(&self) -> bool {
1264         match self.kind {
1265             NameBindingKind::Def(Def::Macro(..), _) => true,
1266             _ => false,
1267         }
1268     }
1269
1270     fn descr(&self) -> &'static str {
1271         if self.is_extern_crate() { "extern crate" } else { self.def().kind_name() }
1272     }
1273 }
1274
1275 /// Interns the names of the primitive types.
1276 ///
1277 /// All other types are defined somewhere and possibly imported, but the primitive ones need
1278 /// special handling, since they have no place of origin.
1279 struct PrimitiveTypeTable {
1280     primitive_types: FxHashMap<Name, PrimTy>,
1281 }
1282
1283 impl PrimitiveTypeTable {
1284     fn new() -> PrimitiveTypeTable {
1285         let mut table = PrimitiveTypeTable { primitive_types: FxHashMap() };
1286
1287         table.intern("bool", Bool);
1288         table.intern("char", Char);
1289         table.intern("f32", Float(FloatTy::F32));
1290         table.intern("f64", Float(FloatTy::F64));
1291         table.intern("isize", Int(IntTy::Isize));
1292         table.intern("i8", Int(IntTy::I8));
1293         table.intern("i16", Int(IntTy::I16));
1294         table.intern("i32", Int(IntTy::I32));
1295         table.intern("i64", Int(IntTy::I64));
1296         table.intern("i128", Int(IntTy::I128));
1297         table.intern("str", Str);
1298         table.intern("usize", Uint(UintTy::Usize));
1299         table.intern("u8", Uint(UintTy::U8));
1300         table.intern("u16", Uint(UintTy::U16));
1301         table.intern("u32", Uint(UintTy::U32));
1302         table.intern("u64", Uint(UintTy::U64));
1303         table.intern("u128", Uint(UintTy::U128));
1304         table
1305     }
1306
1307     fn intern(&mut self, string: &str, primitive_type: PrimTy) {
1308         self.primitive_types.insert(Symbol::intern(string), primitive_type);
1309     }
1310 }
1311
1312 /// The main resolver class.
1313 ///
1314 /// This is the visitor that walks the whole crate.
1315 pub struct Resolver<'a, 'b: 'a> {
1316     session: &'a Session,
1317     cstore: &'a CStore,
1318
1319     pub definitions: Definitions,
1320
1321     graph_root: Module<'a>,
1322
1323     prelude: Option<Module<'a>>,
1324     extern_prelude: FxHashSet<Name>,
1325
1326     /// n.b. This is used only for better diagnostics, not name resolution itself.
1327     has_self: FxHashSet<DefId>,
1328
1329     /// Names of fields of an item `DefId` accessible with dot syntax.
1330     /// Used for hints during error reporting.
1331     field_names: FxHashMap<DefId, Vec<Name>>,
1332
1333     /// All imports known to succeed or fail.
1334     determined_imports: Vec<&'a ImportDirective<'a>>,
1335
1336     /// All non-determined imports.
1337     indeterminate_imports: Vec<&'a ImportDirective<'a>>,
1338
1339     /// The module that represents the current item scope.
1340     current_module: Module<'a>,
1341
1342     /// The current set of local scopes for types and values.
1343     /// FIXME #4948: Reuse ribs to avoid allocation.
1344     ribs: PerNS<Vec<Rib<'a>>>,
1345
1346     /// The current set of local scopes, for labels.
1347     label_ribs: Vec<Rib<'a>>,
1348
1349     /// The trait that the current context can refer to.
1350     current_trait_ref: Option<(Module<'a>, TraitRef)>,
1351
1352     /// The current self type if inside an impl (used for better errors).
1353     current_self_type: Option<Ty>,
1354
1355     /// The idents for the primitive types.
1356     primitive_type_table: PrimitiveTypeTable,
1357
1358     def_map: DefMap,
1359     import_map: ImportMap,
1360     pub freevars: FreevarMap,
1361     freevars_seen: NodeMap<NodeMap<usize>>,
1362     pub export_map: ExportMap,
1363     pub trait_map: TraitMap,
1364
1365     /// A map from nodes to anonymous modules.
1366     /// Anonymous modules are pseudo-modules that are implicitly created around items
1367     /// contained within blocks.
1368     ///
1369     /// For example, if we have this:
1370     ///
1371     ///  fn f() {
1372     ///      fn g() {
1373     ///          ...
1374     ///      }
1375     ///  }
1376     ///
1377     /// There will be an anonymous module created around `g` with the ID of the
1378     /// entry block for `f`.
1379     block_map: NodeMap<Module<'a>>,
1380     module_map: FxHashMap<DefId, Module<'a>>,
1381     extern_module_map: FxHashMap<(DefId, bool /* MacrosOnly? */), Module<'a>>,
1382
1383     pub make_glob_map: bool,
1384     /// Maps imports to the names of items actually imported (this actually maps
1385     /// all imports, but only glob imports are actually interesting).
1386     pub glob_map: GlobMap,
1387
1388     used_imports: FxHashSet<(NodeId, Namespace)>,
1389     pub maybe_unused_trait_imports: NodeSet,
1390     pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
1391
1392     /// A list of labels as of yet unused. Labels will be removed from this map when
1393     /// they are used (in a `break` or `continue` statement)
1394     pub unused_labels: FxHashMap<NodeId, Span>,
1395
1396     /// privacy errors are delayed until the end in order to deduplicate them
1397     privacy_errors: Vec<PrivacyError<'a>>,
1398     /// ambiguity errors are delayed for deduplication
1399     ambiguity_errors: Vec<AmbiguityError<'a>>,
1400     /// `use` injections are delayed for better placement and deduplication
1401     use_injections: Vec<UseError<'a>>,
1402     /// `use` injections for proc macros wrongly imported with #[macro_use]
1403     proc_mac_errors: Vec<macros::ProcMacError>,
1404     /// crate-local macro expanded `macro_export` referred to by a module-relative path
1405     macro_expanded_macro_export_errors: BTreeSet<(Span, Span)>,
1406     /// macro-expanded `macro_rules` shadowing existing macros
1407     disallowed_shadowing: Vec<&'a LegacyBinding<'a>>,
1408
1409     arenas: &'a ResolverArenas<'a>,
1410     dummy_binding: &'a NameBinding<'a>,
1411
1412     crate_loader: &'a mut CrateLoader<'b>,
1413     macro_names: FxHashSet<Ident>,
1414     macro_prelude: FxHashMap<Name, &'a NameBinding<'a>>,
1415     pub all_macros: FxHashMap<Name, Def>,
1416     macro_map: FxHashMap<DefId, Lrc<SyntaxExtension>>,
1417     macro_defs: FxHashMap<Mark, DefId>,
1418     local_macro_def_scopes: FxHashMap<NodeId, Module<'a>>,
1419     pub whitelisted_legacy_custom_derives: Vec<Name>,
1420     pub found_unresolved_macro: bool,
1421
1422     /// List of crate local macros that we need to warn about as being unused.
1423     /// Right now this only includes macro_rules! macros, and macros 2.0.
1424     unused_macros: FxHashSet<DefId>,
1425
1426     /// Maps the `Mark` of an expansion to its containing module or block.
1427     invocations: FxHashMap<Mark, &'a InvocationData<'a>>,
1428
1429     /// Avoid duplicated errors for "name already defined".
1430     name_already_seen: FxHashMap<Name, Span>,
1431
1432     /// A set of procedural macros imported by `#[macro_use]` that have already been warned about
1433     warned_proc_macros: FxHashSet<Name>,
1434
1435     potentially_unused_imports: Vec<&'a ImportDirective<'a>>,
1436
1437     /// This table maps struct IDs into struct constructor IDs,
1438     /// it's not used during normal resolution, only for better error reporting.
1439     struct_constructors: DefIdMap<(Def, ty::Visibility)>,
1440
1441     /// Only used for better errors on `fn(): fn()`
1442     current_type_ascription: Vec<Span>,
1443
1444     injected_crate: Option<Module<'a>>,
1445
1446     /// Only supposed to be used by rustdoc, otherwise should be false.
1447     pub ignore_extern_prelude_feature: bool,
1448 }
1449
1450 /// Nothing really interesting here, it just provides memory for the rest of the crate.
1451 pub struct ResolverArenas<'a> {
1452     modules: arena::TypedArena<ModuleData<'a>>,
1453     local_modules: RefCell<Vec<Module<'a>>>,
1454     name_bindings: arena::TypedArena<NameBinding<'a>>,
1455     import_directives: arena::TypedArena<ImportDirective<'a>>,
1456     name_resolutions: arena::TypedArena<RefCell<NameResolution<'a>>>,
1457     invocation_data: arena::TypedArena<InvocationData<'a>>,
1458     legacy_bindings: arena::TypedArena<LegacyBinding<'a>>,
1459 }
1460
1461 impl<'a> ResolverArenas<'a> {
1462     fn alloc_module(&'a self, module: ModuleData<'a>) -> Module<'a> {
1463         let module = self.modules.alloc(module);
1464         if module.def_id().map(|def_id| def_id.is_local()).unwrap_or(true) {
1465             self.local_modules.borrow_mut().push(module);
1466         }
1467         module
1468     }
1469     fn local_modules(&'a self) -> ::std::cell::Ref<'a, Vec<Module<'a>>> {
1470         self.local_modules.borrow()
1471     }
1472     fn alloc_name_binding(&'a self, name_binding: NameBinding<'a>) -> &'a NameBinding<'a> {
1473         self.name_bindings.alloc(name_binding)
1474     }
1475     fn alloc_import_directive(&'a self, import_directive: ImportDirective<'a>)
1476                               -> &'a ImportDirective {
1477         self.import_directives.alloc(import_directive)
1478     }
1479     fn alloc_name_resolution(&'a self) -> &'a RefCell<NameResolution<'a>> {
1480         self.name_resolutions.alloc(Default::default())
1481     }
1482     fn alloc_invocation_data(&'a self, expansion_data: InvocationData<'a>)
1483                              -> &'a InvocationData<'a> {
1484         self.invocation_data.alloc(expansion_data)
1485     }
1486     fn alloc_legacy_binding(&'a self, binding: LegacyBinding<'a>) -> &'a LegacyBinding<'a> {
1487         self.legacy_bindings.alloc(binding)
1488     }
1489 }
1490
1491 impl<'a, 'b: 'a, 'cl: 'b> ty::DefIdTree for &'a Resolver<'b, 'cl> {
1492     fn parent(self, id: DefId) -> Option<DefId> {
1493         match id.krate {
1494             LOCAL_CRATE => self.definitions.def_key(id.index).parent,
1495             _ => self.cstore.def_key(id).parent,
1496         }.map(|index| DefId { index, ..id })
1497     }
1498 }
1499
1500 /// This interface is used through the AST→HIR step, to embed full paths into the HIR. After that
1501 /// the resolver is no longer needed as all the relevant information is inline.
1502 impl<'a, 'cl> hir::lowering::Resolver for Resolver<'a, 'cl> {
1503     fn resolve_hir_path(&mut self, path: &mut hir::Path, is_value: bool) {
1504         self.resolve_hir_path_cb(path, is_value,
1505                                  |resolver, span, error| resolve_error(resolver, span, error))
1506     }
1507
1508     fn resolve_str_path(
1509         &mut self,
1510         span: Span,
1511         crate_root: Option<&str>,
1512         components: &[&str],
1513         args: Option<P<hir::GenericArgs>>,
1514         is_value: bool
1515     ) -> hir::Path {
1516         let mut segments = iter::once(keywords::CrateRoot.ident())
1517             .chain(
1518                 crate_root.into_iter()
1519                     .chain(components.iter().cloned())
1520                     .map(Ident::from_str)
1521             ).map(hir::PathSegment::from_ident).collect::<Vec<_>>();
1522
1523         if let Some(args) = args {
1524             let ident = segments.last().unwrap().ident;
1525             *segments.last_mut().unwrap() = hir::PathSegment {
1526                 ident,
1527                 args: Some(args),
1528                 infer_types: true,
1529             };
1530         }
1531
1532         let mut path = hir::Path {
1533             span,
1534             def: Def::Err,
1535             segments: segments.into(),
1536         };
1537
1538         self.resolve_hir_path(&mut path, is_value);
1539         path
1540     }
1541
1542     fn get_resolution(&mut self, id: NodeId) -> Option<PathResolution> {
1543         self.def_map.get(&id).cloned()
1544     }
1545
1546     fn get_import(&mut self, id: NodeId) -> PerNS<Option<PathResolution>> {
1547         self.import_map.get(&id).cloned().unwrap_or_default()
1548     }
1549
1550     fn definitions(&mut self) -> &mut Definitions {
1551         &mut self.definitions
1552     }
1553 }
1554
1555 impl<'a, 'crateloader> Resolver<'a, 'crateloader> {
1556     /// Rustdoc uses this to resolve things in a recoverable way. ResolutionError<'a>
1557     /// isn't something that can be returned because it can't be made to live that long,
1558     /// and also it's a private type. Fortunately rustdoc doesn't need to know the error,
1559     /// just that an error occurred.
1560     pub fn resolve_str_path_error(&mut self, span: Span, path_str: &str, is_value: bool)
1561         -> Result<hir::Path, ()> {
1562         use std::iter;
1563         let mut errored = false;
1564
1565         let mut path = if path_str.starts_with("::") {
1566             hir::Path {
1567                 span,
1568                 def: Def::Err,
1569                 segments: iter::once(keywords::CrateRoot.ident()).chain({
1570                     path_str.split("::").skip(1).map(Ident::from_str)
1571                 }).map(hir::PathSegment::from_ident).collect(),
1572             }
1573         } else {
1574             hir::Path {
1575                 span,
1576                 def: Def::Err,
1577                 segments: path_str.split("::").map(Ident::from_str)
1578                                   .map(hir::PathSegment::from_ident).collect(),
1579             }
1580         };
1581         self.resolve_hir_path_cb(&mut path, is_value, |_, _, _| errored = true);
1582         if errored || path.def == Def::Err {
1583             Err(())
1584         } else {
1585             Ok(path)
1586         }
1587     }
1588
1589     /// resolve_hir_path, but takes a callback in case there was an error
1590     fn resolve_hir_path_cb<F>(&mut self, path: &mut hir::Path, is_value: bool, error_callback: F)
1591         where F: for<'c, 'b> FnOnce(&'c mut Resolver, Span, ResolutionError<'b>)
1592     {
1593         let namespace = if is_value { ValueNS } else { TypeNS };
1594         let hir::Path { ref segments, span, ref mut def } = *path;
1595         let path: Vec<_> = segments.iter().map(|seg| seg.ident).collect();
1596         // FIXME (Manishearth): Intra doc links won't get warned of epoch changes
1597         match self.resolve_path(None, &path, Some(namespace), true, span, CrateLint::No) {
1598             PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
1599                 *def = module.def().unwrap(),
1600             PathResult::NonModule(path_res) if path_res.unresolved_segments() == 0 =>
1601                 *def = path_res.base_def(),
1602             PathResult::NonModule(..) => match self.resolve_path(
1603                 None,
1604                 &path,
1605                 None,
1606                 true,
1607                 span,
1608                 CrateLint::No,
1609             ) {
1610                 PathResult::Failed(span, msg, _) => {
1611                     error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1612                 }
1613                 _ => {}
1614             },
1615             PathResult::Module(ModuleOrUniformRoot::UniformRoot(_)) |
1616             PathResult::Indeterminate => unreachable!(),
1617             PathResult::Failed(span, msg, _) => {
1618                 error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1619             }
1620         }
1621     }
1622 }
1623
1624 impl<'a, 'crateloader: 'a> Resolver<'a, 'crateloader> {
1625     pub fn new(session: &'a Session,
1626                cstore: &'a CStore,
1627                krate: &Crate,
1628                crate_name: &str,
1629                make_glob_map: MakeGlobMap,
1630                crate_loader: &'a mut CrateLoader<'crateloader>,
1631                arenas: &'a ResolverArenas<'a>)
1632                -> Resolver<'a, 'crateloader> {
1633         let root_def_id = DefId::local(CRATE_DEF_INDEX);
1634         let root_module_kind = ModuleKind::Def(Def::Mod(root_def_id), keywords::Invalid.name());
1635         let graph_root = arenas.alloc_module(ModuleData {
1636             no_implicit_prelude: attr::contains_name(&krate.attrs, "no_implicit_prelude"),
1637             ..ModuleData::new(None, root_module_kind, root_def_id, Mark::root(), krate.span)
1638         });
1639         let mut module_map = FxHashMap();
1640         module_map.insert(DefId::local(CRATE_DEF_INDEX), graph_root);
1641
1642         let mut definitions = Definitions::new();
1643         DefCollector::new(&mut definitions, Mark::root())
1644             .collect_root(crate_name, session.local_crate_disambiguator());
1645
1646         let mut extern_prelude: FxHashSet<Name> =
1647             session.opts.externs.iter().map(|kv| Symbol::intern(kv.0)).collect();
1648         if !attr::contains_name(&krate.attrs, "no_core") {
1649             if !attr::contains_name(&krate.attrs, "no_std") {
1650                 extern_prelude.insert(Symbol::intern("std"));
1651             } else {
1652                 extern_prelude.insert(Symbol::intern("core"));
1653             }
1654         }
1655
1656         let mut invocations = FxHashMap();
1657         invocations.insert(Mark::root(),
1658                            arenas.alloc_invocation_data(InvocationData::root(graph_root)));
1659
1660         let mut macro_defs = FxHashMap();
1661         macro_defs.insert(Mark::root(), root_def_id);
1662
1663         Resolver {
1664             session,
1665
1666             cstore,
1667
1668             definitions,
1669
1670             // The outermost module has def ID 0; this is not reflected in the
1671             // AST.
1672             graph_root,
1673             prelude: None,
1674             extern_prelude,
1675
1676             has_self: FxHashSet(),
1677             field_names: FxHashMap(),
1678
1679             determined_imports: Vec::new(),
1680             indeterminate_imports: Vec::new(),
1681
1682             current_module: graph_root,
1683             ribs: PerNS {
1684                 value_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1685                 type_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1686                 macro_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1687             },
1688             label_ribs: Vec::new(),
1689
1690             current_trait_ref: None,
1691             current_self_type: None,
1692
1693             primitive_type_table: PrimitiveTypeTable::new(),
1694
1695             def_map: NodeMap(),
1696             import_map: NodeMap(),
1697             freevars: NodeMap(),
1698             freevars_seen: NodeMap(),
1699             export_map: FxHashMap(),
1700             trait_map: NodeMap(),
1701             module_map,
1702             block_map: NodeMap(),
1703             extern_module_map: FxHashMap(),
1704
1705             make_glob_map: make_glob_map == MakeGlobMap::Yes,
1706             glob_map: NodeMap(),
1707
1708             used_imports: FxHashSet(),
1709             maybe_unused_trait_imports: NodeSet(),
1710             maybe_unused_extern_crates: Vec::new(),
1711
1712             unused_labels: FxHashMap(),
1713
1714             privacy_errors: Vec::new(),
1715             ambiguity_errors: Vec::new(),
1716             use_injections: Vec::new(),
1717             proc_mac_errors: Vec::new(),
1718             disallowed_shadowing: Vec::new(),
1719             macro_expanded_macro_export_errors: BTreeSet::new(),
1720
1721             arenas,
1722             dummy_binding: arenas.alloc_name_binding(NameBinding {
1723                 kind: NameBindingKind::Def(Def::Err, false),
1724                 expansion: Mark::root(),
1725                 span: DUMMY_SP,
1726                 vis: ty::Visibility::Public,
1727             }),
1728
1729             crate_loader,
1730             macro_names: FxHashSet(),
1731             macro_prelude: FxHashMap(),
1732             all_macros: FxHashMap(),
1733             macro_map: FxHashMap(),
1734             invocations,
1735             macro_defs,
1736             local_macro_def_scopes: FxHashMap(),
1737             name_already_seen: FxHashMap(),
1738             whitelisted_legacy_custom_derives: Vec::new(),
1739             warned_proc_macros: FxHashSet(),
1740             potentially_unused_imports: Vec::new(),
1741             struct_constructors: DefIdMap(),
1742             found_unresolved_macro: false,
1743             unused_macros: FxHashSet(),
1744             current_type_ascription: Vec::new(),
1745             injected_crate: None,
1746             ignore_extern_prelude_feature: false,
1747         }
1748     }
1749
1750     pub fn arenas() -> ResolverArenas<'a> {
1751         ResolverArenas {
1752             modules: arena::TypedArena::new(),
1753             local_modules: RefCell::new(Vec::new()),
1754             name_bindings: arena::TypedArena::new(),
1755             import_directives: arena::TypedArena::new(),
1756             name_resolutions: arena::TypedArena::new(),
1757             invocation_data: arena::TypedArena::new(),
1758             legacy_bindings: arena::TypedArena::new(),
1759         }
1760     }
1761
1762     /// Runs the function on each namespace.
1763     fn per_ns<F: FnMut(&mut Self, Namespace)>(&mut self, mut f: F) {
1764         f(self, TypeNS);
1765         f(self, ValueNS);
1766         f(self, MacroNS);
1767     }
1768
1769     fn macro_def(&self, mut ctxt: SyntaxContext) -> DefId {
1770         loop {
1771             match self.macro_defs.get(&ctxt.outer()) {
1772                 Some(&def_id) => return def_id,
1773                 None => ctxt.remove_mark(),
1774             };
1775         }
1776     }
1777
1778     /// Entry point to crate resolution.
1779     pub fn resolve_crate(&mut self, krate: &Crate) {
1780         ImportResolver { resolver: self }.finalize_imports();
1781         self.current_module = self.graph_root;
1782         self.finalize_current_module_macro_resolutions();
1783
1784         visit::walk_crate(self, krate);
1785
1786         check_unused::check_crate(self, krate);
1787         self.report_errors(krate);
1788         self.crate_loader.postprocess(krate);
1789     }
1790
1791     fn new_module(
1792         &self,
1793         parent: Module<'a>,
1794         kind: ModuleKind,
1795         normal_ancestor_id: DefId,
1796         expansion: Mark,
1797         span: Span,
1798     ) -> Module<'a> {
1799         let module = ModuleData::new(Some(parent), kind, normal_ancestor_id, expansion, span);
1800         self.arenas.alloc_module(module)
1801     }
1802
1803     fn record_use(&mut self, ident: Ident, ns: Namespace, binding: &'a NameBinding<'a>, span: Span)
1804                   -> bool /* true if an error was reported */ {
1805         match binding.kind {
1806             NameBindingKind::Import { directive, binding, ref used }
1807                     if !used.get() => {
1808                 used.set(true);
1809                 directive.used.set(true);
1810                 self.used_imports.insert((directive.id, ns));
1811                 self.add_to_glob_map(directive.id, ident);
1812                 self.record_use(ident, ns, binding, span)
1813             }
1814             NameBindingKind::Import { .. } => false,
1815             NameBindingKind::Ambiguity { b1, b2 } => {
1816                 self.ambiguity_errors.push(AmbiguityError {
1817                     span, name: ident.name, lexical: false, b1, b2,
1818                 });
1819                 true
1820             }
1821             _ => false
1822         }
1823     }
1824
1825     fn add_to_glob_map(&mut self, id: NodeId, ident: Ident) {
1826         if self.make_glob_map {
1827             self.glob_map.entry(id).or_default().insert(ident.name);
1828         }
1829     }
1830
1831     /// This resolves the identifier `ident` in the namespace `ns` in the current lexical scope.
1832     /// More specifically, we proceed up the hierarchy of scopes and return the binding for
1833     /// `ident` in the first scope that defines it (or None if no scopes define it).
1834     ///
1835     /// A block's items are above its local variables in the scope hierarchy, regardless of where
1836     /// the items are defined in the block. For example,
1837     /// ```rust
1838     /// fn f() {
1839     ///    g(); // Since there are no local variables in scope yet, this resolves to the item.
1840     ///    let g = || {};
1841     ///    fn g() {}
1842     ///    g(); // This resolves to the local variable `g` since it shadows the item.
1843     /// }
1844     /// ```
1845     ///
1846     /// Invariant: This must only be called during main resolution, not during
1847     /// import resolution.
1848     fn resolve_ident_in_lexical_scope(&mut self,
1849                                       mut ident: Ident,
1850                                       ns: Namespace,
1851                                       record_used_id: Option<NodeId>,
1852                                       path_span: Span)
1853                                       -> Option<LexicalScopeBinding<'a>> {
1854         let record_used = record_used_id.is_some();
1855         assert!(ns == TypeNS  || ns == ValueNS);
1856         if ns == TypeNS {
1857             ident.span = if ident.name == keywords::SelfType.name() {
1858                 // FIXME(jseyfried) improve `Self` hygiene
1859                 ident.span.with_ctxt(SyntaxContext::empty())
1860             } else {
1861                 ident.span.modern()
1862             }
1863         } else {
1864             ident = ident.modern_and_legacy();
1865         }
1866
1867         // Walk backwards up the ribs in scope.
1868         let mut module = self.graph_root;
1869         for i in (0 .. self.ribs[ns].len()).rev() {
1870             if let Some(def) = self.ribs[ns][i].bindings.get(&ident).cloned() {
1871                 // The ident resolves to a type parameter or local variable.
1872                 return Some(LexicalScopeBinding::Def(
1873                     self.adjust_local_def(ns, i, def, record_used, path_span)
1874                 ));
1875             }
1876
1877             module = match self.ribs[ns][i].kind {
1878                 ModuleRibKind(module) => module,
1879                 MacroDefinition(def) if def == self.macro_def(ident.span.ctxt()) => {
1880                     // If an invocation of this macro created `ident`, give up on `ident`
1881                     // and switch to `ident`'s source from the macro definition.
1882                     ident.span.remove_mark();
1883                     continue
1884                 }
1885                 _ => continue,
1886             };
1887
1888             let item = self.resolve_ident_in_module_unadjusted(
1889                 ModuleOrUniformRoot::Module(module),
1890                 ident,
1891                 ns,
1892                 false,
1893                 record_used,
1894                 path_span,
1895             );
1896             if let Ok(binding) = item {
1897                 // The ident resolves to an item.
1898                 return Some(LexicalScopeBinding::Item(binding));
1899             }
1900
1901             match module.kind {
1902                 ModuleKind::Block(..) => {}, // We can see through blocks
1903                 _ => break,
1904             }
1905         }
1906
1907         ident.span = ident.span.modern();
1908         let mut poisoned = None;
1909         loop {
1910             let opt_module = if let Some(node_id) = record_used_id {
1911                 self.hygienic_lexical_parent_with_compatibility_fallback(module, &mut ident.span,
1912                                                                          node_id, &mut poisoned)
1913             } else {
1914                 self.hygienic_lexical_parent(module, &mut ident.span)
1915             };
1916             module = unwrap_or!(opt_module, break);
1917             let orig_current_module = self.current_module;
1918             self.current_module = module; // Lexical resolutions can never be a privacy error.
1919             let result = self.resolve_ident_in_module_unadjusted(
1920                 ModuleOrUniformRoot::Module(module),
1921                 ident,
1922                 ns,
1923                 false,
1924                 record_used,
1925                 path_span,
1926             );
1927             self.current_module = orig_current_module;
1928
1929             match result {
1930                 Ok(binding) => {
1931                     if let Some(node_id) = poisoned {
1932                         self.session.buffer_lint_with_diagnostic(
1933                             lint::builtin::PROC_MACRO_DERIVE_RESOLUTION_FALLBACK,
1934                             node_id, ident.span,
1935                             &format!("cannot find {} `{}` in this scope", ns.descr(), ident),
1936                             lint::builtin::BuiltinLintDiagnostics::
1937                                 ProcMacroDeriveResolutionFallback(ident.span),
1938                         );
1939                     }
1940                     return Some(LexicalScopeBinding::Item(binding))
1941                 }
1942                 Err(Determined) => continue,
1943                 Err(Undetermined) =>
1944                     span_bug!(ident.span, "undetermined resolution during main resolution pass"),
1945             }
1946         }
1947
1948         if !module.no_implicit_prelude {
1949             // `record_used` means that we don't try to load crates during speculative resolution
1950             if record_used && ns == TypeNS && self.extern_prelude.contains(&ident.name) {
1951                 if !self.session.features_untracked().extern_prelude &&
1952                    !self.ignore_extern_prelude_feature {
1953                     feature_err(&self.session.parse_sess, "extern_prelude",
1954                                 ident.span, GateIssue::Language,
1955                                 "access to extern crates through prelude is experimental").emit();
1956                 }
1957
1958                 let crate_root = self.load_extern_prelude_crate_if_needed(ident);
1959
1960                 let binding = (crate_root, ty::Visibility::Public,
1961                                ident.span, Mark::root()).to_name_binding(self.arenas);
1962                 return Some(LexicalScopeBinding::Item(binding));
1963             }
1964             if ns == TypeNS && is_known_tool(ident.name) {
1965                 let binding = (Def::ToolMod, ty::Visibility::Public,
1966                                ident.span, Mark::root()).to_name_binding(self.arenas);
1967                 return Some(LexicalScopeBinding::Item(binding));
1968             }
1969             if let Some(prelude) = self.prelude {
1970                 if let Ok(binding) = self.resolve_ident_in_module_unadjusted(
1971                     ModuleOrUniformRoot::Module(prelude),
1972                     ident,
1973                     ns,
1974                     false,
1975                     false,
1976                     path_span,
1977                 ) {
1978                     return Some(LexicalScopeBinding::Item(binding));
1979                 }
1980             }
1981         }
1982
1983         None
1984     }
1985
1986     fn load_extern_prelude_crate_if_needed(&mut self, ident: Ident) -> Module<'a> {
1987         let crate_id = self.crate_loader.process_path_extern(ident.name, ident.span);
1988         let crate_root = self.get_module(DefId { krate: crate_id, index: CRATE_DEF_INDEX });
1989         self.populate_module_if_necessary(&crate_root);
1990         crate_root
1991     }
1992
1993     fn hygienic_lexical_parent(&mut self, module: Module<'a>, span: &mut Span)
1994                                -> Option<Module<'a>> {
1995         if !module.expansion.is_descendant_of(span.ctxt().outer()) {
1996             return Some(self.macro_def_scope(span.remove_mark()));
1997         }
1998
1999         if let ModuleKind::Block(..) = module.kind {
2000             return Some(module.parent.unwrap());
2001         }
2002
2003         None
2004     }
2005
2006     fn hygienic_lexical_parent_with_compatibility_fallback(&mut self, module: Module<'a>,
2007                                                            span: &mut Span, node_id: NodeId,
2008                                                            poisoned: &mut Option<NodeId>)
2009                                                            -> Option<Module<'a>> {
2010         if let module @ Some(..) = self.hygienic_lexical_parent(module, span) {
2011             return module;
2012         }
2013
2014         // We need to support the next case under a deprecation warning
2015         // ```
2016         // struct MyStruct;
2017         // ---- begin: this comes from a proc macro derive
2018         // mod implementation_details {
2019         //     // Note that `MyStruct` is not in scope here.
2020         //     impl SomeTrait for MyStruct { ... }
2021         // }
2022         // ---- end
2023         // ```
2024         // So we have to fall back to the module's parent during lexical resolution in this case.
2025         if let Some(parent) = module.parent {
2026             // Inner module is inside the macro, parent module is outside of the macro.
2027             if module.expansion != parent.expansion &&
2028             module.expansion.is_descendant_of(parent.expansion) {
2029                 // The macro is a proc macro derive
2030                 if module.expansion.looks_like_proc_macro_derive() {
2031                     if parent.expansion.is_descendant_of(span.ctxt().outer()) {
2032                         *poisoned = Some(node_id);
2033                         return module.parent;
2034                     }
2035                 }
2036             }
2037         }
2038
2039         None
2040     }
2041
2042     fn resolve_ident_in_module(&mut self,
2043                                module: ModuleOrUniformRoot<'a>,
2044                                mut ident: Ident,
2045                                ns: Namespace,
2046                                record_used: bool,
2047                                span: Span)
2048                                -> Result<&'a NameBinding<'a>, Determinacy> {
2049         ident.span = ident.span.modern();
2050         let orig_current_module = self.current_module;
2051         if let ModuleOrUniformRoot::Module(module) = module {
2052             if let Some(def) = ident.span.adjust(module.expansion) {
2053                 self.current_module = self.macro_def_scope(def);
2054             }
2055         }
2056         let result = self.resolve_ident_in_module_unadjusted(
2057             module, ident, ns, false, record_used, span,
2058         );
2059         self.current_module = orig_current_module;
2060         result
2061     }
2062
2063     fn resolve_crate_root(&mut self, ident: Ident) -> Module<'a> {
2064         let mut ctxt = ident.span.ctxt();
2065         let mark = if ident.name == keywords::DollarCrate.name() {
2066             // When resolving `$crate` from a `macro_rules!` invoked in a `macro`,
2067             // we don't want to pretend that the `macro_rules!` definition is in the `macro`
2068             // as described in `SyntaxContext::apply_mark`, so we ignore prepended modern marks.
2069             // FIXME: This is only a guess and it doesn't work correctly for `macro_rules!`
2070             // definitions actually produced by `macro` and `macro` definitions produced by
2071             // `macro_rules!`, but at least such configurations are not stable yet.
2072             ctxt = ctxt.modern_and_legacy();
2073             let mut iter = ctxt.marks().into_iter().rev().peekable();
2074             let mut result = None;
2075             // Find the last modern mark from the end if it exists.
2076             while let Some(&(mark, transparency)) = iter.peek() {
2077                 if transparency == Transparency::Opaque {
2078                     result = Some(mark);
2079                     iter.next();
2080                 } else {
2081                     break;
2082                 }
2083             }
2084             // Then find the last legacy mark from the end if it exists.
2085             for (mark, transparency) in iter {
2086                 if transparency == Transparency::SemiTransparent {
2087                     result = Some(mark);
2088                 } else {
2089                     break;
2090                 }
2091             }
2092             result
2093         } else {
2094             ctxt = ctxt.modern();
2095             ctxt.adjust(Mark::root())
2096         };
2097         let module = match mark {
2098             Some(def) => self.macro_def_scope(def),
2099             None => return self.graph_root,
2100         };
2101         self.get_module(DefId { index: CRATE_DEF_INDEX, ..module.normal_ancestor_id })
2102     }
2103
2104     fn resolve_self(&mut self, ctxt: &mut SyntaxContext, module: Module<'a>) -> Module<'a> {
2105         let mut module = self.get_module(module.normal_ancestor_id);
2106         while module.span.ctxt().modern() != *ctxt {
2107             let parent = module.parent.unwrap_or_else(|| self.macro_def_scope(ctxt.remove_mark()));
2108             module = self.get_module(parent.normal_ancestor_id);
2109         }
2110         module
2111     }
2112
2113     // AST resolution
2114     //
2115     // We maintain a list of value ribs and type ribs.
2116     //
2117     // Simultaneously, we keep track of the current position in the module
2118     // graph in the `current_module` pointer. When we go to resolve a name in
2119     // the value or type namespaces, we first look through all the ribs and
2120     // then query the module graph. When we resolve a name in the module
2121     // namespace, we can skip all the ribs (since nested modules are not
2122     // allowed within blocks in Rust) and jump straight to the current module
2123     // graph node.
2124     //
2125     // Named implementations are handled separately. When we find a method
2126     // call, we consult the module node to find all of the implementations in
2127     // scope. This information is lazily cached in the module node. We then
2128     // generate a fake "implementation scope" containing all the
2129     // implementations thus found, for compatibility with old resolve pass.
2130
2131     pub fn with_scope<F, T>(&mut self, id: NodeId, f: F) -> T
2132         where F: FnOnce(&mut Resolver) -> T
2133     {
2134         let id = self.definitions.local_def_id(id);
2135         let module = self.module_map.get(&id).cloned(); // clones a reference
2136         if let Some(module) = module {
2137             // Move down in the graph.
2138             let orig_module = replace(&mut self.current_module, module);
2139             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(module)));
2140             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(module)));
2141
2142             self.finalize_current_module_macro_resolutions();
2143             let ret = f(self);
2144
2145             self.current_module = orig_module;
2146             self.ribs[ValueNS].pop();
2147             self.ribs[TypeNS].pop();
2148             ret
2149         } else {
2150             f(self)
2151         }
2152     }
2153
2154     /// Searches the current set of local scopes for labels. Returns the first non-None label that
2155     /// is returned by the given predicate function
2156     ///
2157     /// Stops after meeting a closure.
2158     fn search_label<P, R>(&self, mut ident: Ident, pred: P) -> Option<R>
2159         where P: Fn(&Rib, Ident) -> Option<R>
2160     {
2161         for rib in self.label_ribs.iter().rev() {
2162             match rib.kind {
2163                 NormalRibKind => {}
2164                 // If an invocation of this macro created `ident`, give up on `ident`
2165                 // and switch to `ident`'s source from the macro definition.
2166                 MacroDefinition(def) => {
2167                     if def == self.macro_def(ident.span.ctxt()) {
2168                         ident.span.remove_mark();
2169                     }
2170                 }
2171                 _ => {
2172                     // Do not resolve labels across function boundary
2173                     return None;
2174                 }
2175             }
2176             let r = pred(rib, ident);
2177             if r.is_some() {
2178                 return r;
2179             }
2180         }
2181         None
2182     }
2183
2184     fn resolve_item(&mut self, item: &Item) {
2185         let name = item.ident.name;
2186         debug!("(resolving item) resolving {}", name);
2187
2188         match item.node {
2189             ItemKind::Ty(_, ref generics) |
2190             ItemKind::Fn(_, _, ref generics, _) |
2191             ItemKind::Existential(_, ref generics) => {
2192                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind),
2193                                              |this| visit::walk_item(this, item));
2194             }
2195
2196             ItemKind::Enum(_, ref generics) |
2197             ItemKind::Struct(_, ref generics) |
2198             ItemKind::Union(_, ref generics) => {
2199                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2200                     let item_def_id = this.definitions.local_def_id(item.id);
2201                     if this.session.features_untracked().self_in_typedefs {
2202                         this.with_self_rib(Def::SelfTy(None, Some(item_def_id)), |this| {
2203                             visit::walk_item(this, item);
2204                         });
2205                     } else {
2206                         visit::walk_item(this, item);
2207                     }
2208                 });
2209             }
2210
2211             ItemKind::Impl(.., ref generics, ref opt_trait_ref, ref self_type, ref impl_items) =>
2212                 self.resolve_implementation(generics,
2213                                             opt_trait_ref,
2214                                             &self_type,
2215                                             item.id,
2216                                             impl_items),
2217
2218             ItemKind::Trait(.., ref generics, ref bounds, ref trait_items) => {
2219                 // Create a new rib for the trait-wide type parameters.
2220                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2221                     let local_def_id = this.definitions.local_def_id(item.id);
2222                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2223                         this.visit_generics(generics);
2224                         walk_list!(this, visit_param_bound, bounds);
2225
2226                         for trait_item in trait_items {
2227                             let type_parameters = HasTypeParameters(&trait_item.generics,
2228                                                                     TraitOrImplItemRibKind);
2229                             this.with_type_parameter_rib(type_parameters, |this| {
2230                                 match trait_item.node {
2231                                     TraitItemKind::Const(ref ty, ref default) => {
2232                                         this.visit_ty(ty);
2233
2234                                         // Only impose the restrictions of
2235                                         // ConstRibKind for an actual constant
2236                                         // expression in a provided default.
2237                                         if let Some(ref expr) = *default{
2238                                             this.with_constant_rib(|this| {
2239                                                 this.visit_expr(expr);
2240                                             });
2241                                         }
2242                                     }
2243                                     TraitItemKind::Method(_, _) => {
2244                                         visit::walk_trait_item(this, trait_item)
2245                                     }
2246                                     TraitItemKind::Type(..) => {
2247                                         visit::walk_trait_item(this, trait_item)
2248                                     }
2249                                     TraitItemKind::Macro(_) => {
2250                                         panic!("unexpanded macro in resolve!")
2251                                     }
2252                                 };
2253                             });
2254                         }
2255                     });
2256                 });
2257             }
2258
2259             ItemKind::TraitAlias(ref generics, ref bounds) => {
2260                 // Create a new rib for the trait-wide type parameters.
2261                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2262                     let local_def_id = this.definitions.local_def_id(item.id);
2263                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2264                         this.visit_generics(generics);
2265                         walk_list!(this, visit_param_bound, bounds);
2266                     });
2267                 });
2268             }
2269
2270             ItemKind::Mod(_) | ItemKind::ForeignMod(_) => {
2271                 self.with_scope(item.id, |this| {
2272                     visit::walk_item(this, item);
2273                 });
2274             }
2275
2276             ItemKind::Static(ref ty, _, ref expr) |
2277             ItemKind::Const(ref ty, ref expr) => {
2278                 self.with_item_rib(|this| {
2279                     this.visit_ty(ty);
2280                     this.with_constant_rib(|this| {
2281                         this.visit_expr(expr);
2282                     });
2283                 });
2284             }
2285
2286             ItemKind::Use(ref use_tree) => {
2287                 // Imports are resolved as global by default, add starting root segment.
2288                 let path = Path {
2289                     segments: use_tree.prefix.make_root().into_iter().collect(),
2290                     span: use_tree.span,
2291                 };
2292                 self.resolve_use_tree(item.id, use_tree.span, item.id, use_tree, &path);
2293             }
2294
2295             ItemKind::ExternCrate(_) | ItemKind::MacroDef(..) | ItemKind::GlobalAsm(_) => {
2296                 // do nothing, these are just around to be encoded
2297             }
2298
2299             ItemKind::Mac(_) => panic!("unexpanded macro in resolve!"),
2300         }
2301     }
2302
2303     /// For the most part, use trees are desugared into `ImportDirective` instances
2304     /// when building the reduced graph (see `build_reduced_graph_for_use_tree`). But
2305     /// there is one special case we handle here: an empty nested import like
2306     /// `a::{b::{}}`, which desugares into...no import directives.
2307     fn resolve_use_tree(
2308         &mut self,
2309         root_id: NodeId,
2310         root_span: Span,
2311         id: NodeId,
2312         use_tree: &ast::UseTree,
2313         prefix: &Path,
2314     ) {
2315         match use_tree.kind {
2316             ast::UseTreeKind::Nested(ref items) => {
2317                 let path = Path {
2318                     segments: prefix.segments
2319                         .iter()
2320                         .chain(use_tree.prefix.segments.iter())
2321                         .cloned()
2322                         .collect(),
2323                     span: prefix.span.to(use_tree.prefix.span),
2324                 };
2325
2326                 if items.len() == 0 {
2327                     // Resolve prefix of an import with empty braces (issue #28388).
2328                     self.smart_resolve_path_with_crate_lint(
2329                         id,
2330                         None,
2331                         &path,
2332                         PathSource::ImportPrefix,
2333                         CrateLint::UsePath { root_id, root_span },
2334                     );
2335                 } else {
2336                     for &(ref tree, nested_id) in items {
2337                         self.resolve_use_tree(root_id, root_span, nested_id, tree, &path);
2338                     }
2339                 }
2340             }
2341             ast::UseTreeKind::Simple(..) => {},
2342             ast::UseTreeKind::Glob => {},
2343         }
2344     }
2345
2346     fn with_type_parameter_rib<'b, F>(&'b mut self, type_parameters: TypeParameters<'a, 'b>, f: F)
2347         where F: FnOnce(&mut Resolver)
2348     {
2349         match type_parameters {
2350             HasTypeParameters(generics, rib_kind) => {
2351                 let mut function_type_rib = Rib::new(rib_kind);
2352                 let mut seen_bindings = FxHashMap();
2353                 for param in &generics.params {
2354                     match param.kind {
2355                         GenericParamKind::Lifetime { .. } => {}
2356                         GenericParamKind::Type { .. } => {
2357                             let ident = param.ident.modern();
2358                             debug!("with_type_parameter_rib: {}", param.id);
2359
2360                             if seen_bindings.contains_key(&ident) {
2361                                 let span = seen_bindings.get(&ident).unwrap();
2362                                 let err = ResolutionError::NameAlreadyUsedInTypeParameterList(
2363                                     ident.name,
2364                                     span,
2365                                 );
2366                                 resolve_error(self, param.ident.span, err);
2367                             }
2368                             seen_bindings.entry(ident).or_insert(param.ident.span);
2369
2370                         // Plain insert (no renaming).
2371                         let def = Def::TyParam(self.definitions.local_def_id(param.id));
2372                             function_type_rib.bindings.insert(ident, def);
2373                             self.record_def(param.id, PathResolution::new(def));
2374                         }
2375                     }
2376                 }
2377                 self.ribs[TypeNS].push(function_type_rib);
2378             }
2379
2380             NoTypeParameters => {
2381                 // Nothing to do.
2382             }
2383         }
2384
2385         f(self);
2386
2387         if let HasTypeParameters(..) = type_parameters {
2388             self.ribs[TypeNS].pop();
2389         }
2390     }
2391
2392     fn with_label_rib<F>(&mut self, f: F)
2393         where F: FnOnce(&mut Resolver)
2394     {
2395         self.label_ribs.push(Rib::new(NormalRibKind));
2396         f(self);
2397         self.label_ribs.pop();
2398     }
2399
2400     fn with_item_rib<F>(&mut self, f: F)
2401         where F: FnOnce(&mut Resolver)
2402     {
2403         self.ribs[ValueNS].push(Rib::new(ItemRibKind));
2404         self.ribs[TypeNS].push(Rib::new(ItemRibKind));
2405         f(self);
2406         self.ribs[TypeNS].pop();
2407         self.ribs[ValueNS].pop();
2408     }
2409
2410     fn with_constant_rib<F>(&mut self, f: F)
2411         where F: FnOnce(&mut Resolver)
2412     {
2413         self.ribs[ValueNS].push(Rib::new(ConstantItemRibKind));
2414         self.label_ribs.push(Rib::new(ConstantItemRibKind));
2415         f(self);
2416         self.label_ribs.pop();
2417         self.ribs[ValueNS].pop();
2418     }
2419
2420     fn with_current_self_type<T, F>(&mut self, self_type: &Ty, f: F) -> T
2421         where F: FnOnce(&mut Resolver) -> T
2422     {
2423         // Handle nested impls (inside fn bodies)
2424         let previous_value = replace(&mut self.current_self_type, Some(self_type.clone()));
2425         let result = f(self);
2426         self.current_self_type = previous_value;
2427         result
2428     }
2429
2430     /// This is called to resolve a trait reference from an `impl` (i.e. `impl Trait for Foo`)
2431     fn with_optional_trait_ref<T, F>(&mut self, opt_trait_ref: Option<&TraitRef>, f: F) -> T
2432         where F: FnOnce(&mut Resolver, Option<DefId>) -> T
2433     {
2434         let mut new_val = None;
2435         let mut new_id = None;
2436         if let Some(trait_ref) = opt_trait_ref {
2437             let path: Vec<_> = trait_ref.path.segments.iter()
2438                 .map(|seg| seg.ident)
2439                 .collect();
2440             let def = self.smart_resolve_path_fragment(
2441                 trait_ref.ref_id,
2442                 None,
2443                 &path,
2444                 trait_ref.path.span,
2445                 PathSource::Trait(AliasPossibility::No),
2446                 CrateLint::SimplePath(trait_ref.ref_id),
2447             ).base_def();
2448             if def != Def::Err {
2449                 new_id = Some(def.def_id());
2450                 let span = trait_ref.path.span;
2451                 if let PathResult::Module(ModuleOrUniformRoot::Module(module)) =
2452                     self.resolve_path(
2453                         None,
2454                         &path,
2455                         None,
2456                         false,
2457                         span,
2458                         CrateLint::SimplePath(trait_ref.ref_id),
2459                     )
2460                 {
2461                     new_val = Some((module, trait_ref.clone()));
2462                 }
2463             }
2464         }
2465         let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
2466         let result = f(self, new_id);
2467         self.current_trait_ref = original_trait_ref;
2468         result
2469     }
2470
2471     fn with_self_rib<F>(&mut self, self_def: Def, f: F)
2472         where F: FnOnce(&mut Resolver)
2473     {
2474         let mut self_type_rib = Rib::new(NormalRibKind);
2475
2476         // plain insert (no renaming, types are not currently hygienic....)
2477         self_type_rib.bindings.insert(keywords::SelfType.ident(), self_def);
2478         self.ribs[TypeNS].push(self_type_rib);
2479         f(self);
2480         self.ribs[TypeNS].pop();
2481     }
2482
2483     fn resolve_implementation(&mut self,
2484                               generics: &Generics,
2485                               opt_trait_reference: &Option<TraitRef>,
2486                               self_type: &Ty,
2487                               item_id: NodeId,
2488                               impl_items: &[ImplItem]) {
2489         // If applicable, create a rib for the type parameters.
2490         self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2491             // Dummy self type for better errors if `Self` is used in the trait path.
2492             this.with_self_rib(Def::SelfTy(None, None), |this| {
2493                 // Resolve the trait reference, if necessary.
2494                 this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| {
2495                     let item_def_id = this.definitions.local_def_id(item_id);
2496                     this.with_self_rib(Def::SelfTy(trait_id, Some(item_def_id)), |this| {
2497                         if let Some(trait_ref) = opt_trait_reference.as_ref() {
2498                             // Resolve type arguments in the trait path.
2499                             visit::walk_trait_ref(this, trait_ref);
2500                         }
2501                         // Resolve the self type.
2502                         this.visit_ty(self_type);
2503                         // Resolve the type parameters.
2504                         this.visit_generics(generics);
2505                         // Resolve the items within the impl.
2506                         this.with_current_self_type(self_type, |this| {
2507                             for impl_item in impl_items {
2508                                 this.resolve_visibility(&impl_item.vis);
2509
2510                                 // We also need a new scope for the impl item type parameters.
2511                                 let type_parameters = HasTypeParameters(&impl_item.generics,
2512                                                                         TraitOrImplItemRibKind);
2513                                 this.with_type_parameter_rib(type_parameters, |this| {
2514                                     use self::ResolutionError::*;
2515                                     match impl_item.node {
2516                                         ImplItemKind::Const(..) => {
2517                                             // If this is a trait impl, ensure the const
2518                                             // exists in trait
2519                                             this.check_trait_item(impl_item.ident,
2520                                                                   ValueNS,
2521                                                                   impl_item.span,
2522                                                 |n, s| ConstNotMemberOfTrait(n, s));
2523                                             this.with_constant_rib(|this|
2524                                                 visit::walk_impl_item(this, impl_item)
2525                                             );
2526                                         }
2527                                         ImplItemKind::Method(..) => {
2528                                             // If this is a trait impl, ensure the method
2529                                             // exists in trait
2530                                             this.check_trait_item(impl_item.ident,
2531                                                                   ValueNS,
2532                                                                   impl_item.span,
2533                                                 |n, s| MethodNotMemberOfTrait(n, s));
2534
2535                                             visit::walk_impl_item(this, impl_item);
2536                                         }
2537                                         ImplItemKind::Type(ref ty) => {
2538                                             // If this is a trait impl, ensure the type
2539                                             // exists in trait
2540                                             this.check_trait_item(impl_item.ident,
2541                                                                   TypeNS,
2542                                                                   impl_item.span,
2543                                                 |n, s| TypeNotMemberOfTrait(n, s));
2544
2545                                             this.visit_ty(ty);
2546                                         }
2547                                         ImplItemKind::Existential(ref bounds) => {
2548                                             // If this is a trait impl, ensure the type
2549                                             // exists in trait
2550                                             this.check_trait_item(impl_item.ident,
2551                                                                   TypeNS,
2552                                                                   impl_item.span,
2553                                                 |n, s| TypeNotMemberOfTrait(n, s));
2554
2555                                             for bound in bounds {
2556                                                 this.visit_param_bound(bound);
2557                                             }
2558                                         }
2559                                         ImplItemKind::Macro(_) =>
2560                                             panic!("unexpanded macro in resolve!"),
2561                                     }
2562                                 });
2563                             }
2564                         });
2565                     });
2566                 });
2567             });
2568         });
2569     }
2570
2571     fn check_trait_item<F>(&mut self, ident: Ident, ns: Namespace, span: Span, err: F)
2572         where F: FnOnce(Name, &str) -> ResolutionError
2573     {
2574         // If there is a TraitRef in scope for an impl, then the method must be in the
2575         // trait.
2576         if let Some((module, _)) = self.current_trait_ref {
2577             if self.resolve_ident_in_module(
2578                 ModuleOrUniformRoot::Module(module),
2579                 ident,
2580                 ns,
2581                 false,
2582                 span,
2583             ).is_err() {
2584                 let path = &self.current_trait_ref.as_ref().unwrap().1.path;
2585                 resolve_error(self, span, err(ident.name, &path_names_to_string(path)));
2586             }
2587         }
2588     }
2589
2590     fn resolve_local(&mut self, local: &Local) {
2591         // Resolve the type.
2592         walk_list!(self, visit_ty, &local.ty);
2593
2594         // Resolve the initializer.
2595         walk_list!(self, visit_expr, &local.init);
2596
2597         // Resolve the pattern.
2598         self.resolve_pattern(&local.pat, PatternSource::Let, &mut FxHashMap());
2599     }
2600
2601     // build a map from pattern identifiers to binding-info's.
2602     // this is done hygienically. This could arise for a macro
2603     // that expands into an or-pattern where one 'x' was from the
2604     // user and one 'x' came from the macro.
2605     fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
2606         let mut binding_map = FxHashMap();
2607
2608         pat.walk(&mut |pat| {
2609             if let PatKind::Ident(binding_mode, ident, ref sub_pat) = pat.node {
2610                 if sub_pat.is_some() || match self.def_map.get(&pat.id).map(|res| res.base_def()) {
2611                     Some(Def::Local(..)) => true,
2612                     _ => false,
2613                 } {
2614                     let binding_info = BindingInfo { span: ident.span, binding_mode: binding_mode };
2615                     binding_map.insert(ident, binding_info);
2616                 }
2617             }
2618             true
2619         });
2620
2621         binding_map
2622     }
2623
2624     // check that all of the arms in an or-pattern have exactly the
2625     // same set of bindings, with the same binding modes for each.
2626     fn check_consistent_bindings(&mut self, pats: &[P<Pat>]) {
2627         if pats.is_empty() {
2628             return;
2629         }
2630
2631         let mut missing_vars = FxHashMap();
2632         let mut inconsistent_vars = FxHashMap();
2633         for (i, p) in pats.iter().enumerate() {
2634             let map_i = self.binding_mode_map(&p);
2635
2636             for (j, q) in pats.iter().enumerate() {
2637                 if i == j {
2638                     continue;
2639                 }
2640
2641                 let map_j = self.binding_mode_map(&q);
2642                 for (&key, &binding_i) in &map_i {
2643                     if map_j.len() == 0 {                   // Account for missing bindings when
2644                         let binding_error = missing_vars    // map_j has none.
2645                             .entry(key.name)
2646                             .or_insert(BindingError {
2647                                 name: key.name,
2648                                 origin: BTreeSet::new(),
2649                                 target: BTreeSet::new(),
2650                             });
2651                         binding_error.origin.insert(binding_i.span);
2652                         binding_error.target.insert(q.span);
2653                     }
2654                     for (&key_j, &binding_j) in &map_j {
2655                         match map_i.get(&key_j) {
2656                             None => {  // missing binding
2657                                 let binding_error = missing_vars
2658                                     .entry(key_j.name)
2659                                     .or_insert(BindingError {
2660                                         name: key_j.name,
2661                                         origin: BTreeSet::new(),
2662                                         target: BTreeSet::new(),
2663                                     });
2664                                 binding_error.origin.insert(binding_j.span);
2665                                 binding_error.target.insert(p.span);
2666                             }
2667                             Some(binding_i) => {  // check consistent binding
2668                                 if binding_i.binding_mode != binding_j.binding_mode {
2669                                     inconsistent_vars
2670                                         .entry(key.name)
2671                                         .or_insert((binding_j.span, binding_i.span));
2672                                 }
2673                             }
2674                         }
2675                     }
2676                 }
2677             }
2678         }
2679         let mut missing_vars = missing_vars.iter().collect::<Vec<_>>();
2680         missing_vars.sort();
2681         for (_, v) in missing_vars {
2682             resolve_error(self,
2683                           *v.origin.iter().next().unwrap(),
2684                           ResolutionError::VariableNotBoundInPattern(v));
2685         }
2686         let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
2687         inconsistent_vars.sort();
2688         for (name, v) in inconsistent_vars {
2689             resolve_error(self, v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
2690         }
2691     }
2692
2693     fn resolve_arm(&mut self, arm: &Arm) {
2694         self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2695
2696         let mut bindings_list = FxHashMap();
2697         for pattern in &arm.pats {
2698             self.resolve_pattern(&pattern, PatternSource::Match, &mut bindings_list);
2699         }
2700
2701         // This has to happen *after* we determine which pat_idents are variants
2702         self.check_consistent_bindings(&arm.pats);
2703
2704         match arm.guard {
2705             Some(ast::Guard::If(ref expr)) => self.visit_expr(expr),
2706             _ => {}
2707         }
2708         self.visit_expr(&arm.body);
2709
2710         self.ribs[ValueNS].pop();
2711     }
2712
2713     fn resolve_block(&mut self, block: &Block) {
2714         debug!("(resolving block) entering block");
2715         // Move down in the graph, if there's an anonymous module rooted here.
2716         let orig_module = self.current_module;
2717         let anonymous_module = self.block_map.get(&block.id).cloned(); // clones a reference
2718
2719         let mut num_macro_definition_ribs = 0;
2720         if let Some(anonymous_module) = anonymous_module {
2721             debug!("(resolving block) found anonymous module, moving down");
2722             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2723             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2724             self.current_module = anonymous_module;
2725             self.finalize_current_module_macro_resolutions();
2726         } else {
2727             self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2728         }
2729
2730         // Descend into the block.
2731         for stmt in &block.stmts {
2732             if let ast::StmtKind::Item(ref item) = stmt.node {
2733                 if let ast::ItemKind::MacroDef(..) = item.node {
2734                     num_macro_definition_ribs += 1;
2735                     let def = self.definitions.local_def_id(item.id);
2736                     self.ribs[ValueNS].push(Rib::new(MacroDefinition(def)));
2737                     self.label_ribs.push(Rib::new(MacroDefinition(def)));
2738                 }
2739             }
2740
2741             self.visit_stmt(stmt);
2742         }
2743
2744         // Move back up.
2745         self.current_module = orig_module;
2746         for _ in 0 .. num_macro_definition_ribs {
2747             self.ribs[ValueNS].pop();
2748             self.label_ribs.pop();
2749         }
2750         self.ribs[ValueNS].pop();
2751         if anonymous_module.is_some() {
2752             self.ribs[TypeNS].pop();
2753         }
2754         debug!("(resolving block) leaving block");
2755     }
2756
2757     fn fresh_binding(&mut self,
2758                      ident: Ident,
2759                      pat_id: NodeId,
2760                      outer_pat_id: NodeId,
2761                      pat_src: PatternSource,
2762                      bindings: &mut FxHashMap<Ident, NodeId>)
2763                      -> PathResolution {
2764         // Add the binding to the local ribs, if it
2765         // doesn't already exist in the bindings map. (We
2766         // must not add it if it's in the bindings map
2767         // because that breaks the assumptions later
2768         // passes make about or-patterns.)
2769         let ident = ident.modern_and_legacy();
2770         let mut def = Def::Local(pat_id);
2771         match bindings.get(&ident).cloned() {
2772             Some(id) if id == outer_pat_id => {
2773                 // `Variant(a, a)`, error
2774                 resolve_error(
2775                     self,
2776                     ident.span,
2777                     ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(
2778                         &ident.as_str())
2779                 );
2780             }
2781             Some(..) if pat_src == PatternSource::FnParam => {
2782                 // `fn f(a: u8, a: u8)`, error
2783                 resolve_error(
2784                     self,
2785                     ident.span,
2786                     ResolutionError::IdentifierBoundMoreThanOnceInParameterList(
2787                         &ident.as_str())
2788                 );
2789             }
2790             Some(..) if pat_src == PatternSource::Match ||
2791                         pat_src == PatternSource::IfLet ||
2792                         pat_src == PatternSource::WhileLet => {
2793                 // `Variant1(a) | Variant2(a)`, ok
2794                 // Reuse definition from the first `a`.
2795                 def = self.ribs[ValueNS].last_mut().unwrap().bindings[&ident];
2796             }
2797             Some(..) => {
2798                 span_bug!(ident.span, "two bindings with the same name from \
2799                                        unexpected pattern source {:?}", pat_src);
2800             }
2801             None => {
2802                 // A completely fresh binding, add to the lists if it's valid.
2803                 if ident.name != keywords::Invalid.name() {
2804                     bindings.insert(ident, outer_pat_id);
2805                     self.ribs[ValueNS].last_mut().unwrap().bindings.insert(ident, def);
2806                 }
2807             }
2808         }
2809
2810         PathResolution::new(def)
2811     }
2812
2813     fn resolve_pattern(&mut self,
2814                        pat: &Pat,
2815                        pat_src: PatternSource,
2816                        // Maps idents to the node ID for the
2817                        // outermost pattern that binds them.
2818                        bindings: &mut FxHashMap<Ident, NodeId>) {
2819         // Visit all direct subpatterns of this pattern.
2820         let outer_pat_id = pat.id;
2821         pat.walk(&mut |pat| {
2822             match pat.node {
2823                 PatKind::Ident(bmode, ident, ref opt_pat) => {
2824                     // First try to resolve the identifier as some existing
2825                     // entity, then fall back to a fresh binding.
2826                     let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS,
2827                                                                       None, pat.span)
2828                                       .and_then(LexicalScopeBinding::item);
2829                     let resolution = binding.map(NameBinding::def).and_then(|def| {
2830                         let is_syntactic_ambiguity = opt_pat.is_none() &&
2831                             bmode == BindingMode::ByValue(Mutability::Immutable);
2832                         match def {
2833                             Def::StructCtor(_, CtorKind::Const) |
2834                             Def::VariantCtor(_, CtorKind::Const) |
2835                             Def::Const(..) if is_syntactic_ambiguity => {
2836                                 // Disambiguate in favor of a unit struct/variant
2837                                 // or constant pattern.
2838                                 self.record_use(ident, ValueNS, binding.unwrap(), ident.span);
2839                                 Some(PathResolution::new(def))
2840                             }
2841                             Def::StructCtor(..) | Def::VariantCtor(..) |
2842                             Def::Const(..) | Def::Static(..) => {
2843                                 // This is unambiguously a fresh binding, either syntactically
2844                                 // (e.g. `IDENT @ PAT` or `ref IDENT`) or because `IDENT` resolves
2845                                 // to something unusable as a pattern (e.g. constructor function),
2846                                 // but we still conservatively report an error, see
2847                                 // issues/33118#issuecomment-233962221 for one reason why.
2848                                 resolve_error(
2849                                     self,
2850                                     ident.span,
2851                                     ResolutionError::BindingShadowsSomethingUnacceptable(
2852                                         pat_src.descr(), ident.name, binding.unwrap())
2853                                 );
2854                                 None
2855                             }
2856                             Def::Fn(..) | Def::Err => {
2857                                 // These entities are explicitly allowed
2858                                 // to be shadowed by fresh bindings.
2859                                 None
2860                             }
2861                             def => {
2862                                 span_bug!(ident.span, "unexpected definition for an \
2863                                                        identifier in pattern: {:?}", def);
2864                             }
2865                         }
2866                     }).unwrap_or_else(|| {
2867                         self.fresh_binding(ident, pat.id, outer_pat_id, pat_src, bindings)
2868                     });
2869
2870                     self.record_def(pat.id, resolution);
2871                 }
2872
2873                 PatKind::TupleStruct(ref path, ..) => {
2874                     self.smart_resolve_path(pat.id, None, path, PathSource::TupleStruct);
2875                 }
2876
2877                 PatKind::Path(ref qself, ref path) => {
2878                     self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
2879                 }
2880
2881                 PatKind::Struct(ref path, ..) => {
2882                     self.smart_resolve_path(pat.id, None, path, PathSource::Struct);
2883                 }
2884
2885                 _ => {}
2886             }
2887             true
2888         });
2889
2890         visit::walk_pat(self, pat);
2891     }
2892
2893     // High-level and context dependent path resolution routine.
2894     // Resolves the path and records the resolution into definition map.
2895     // If resolution fails tries several techniques to find likely
2896     // resolution candidates, suggest imports or other help, and report
2897     // errors in user friendly way.
2898     fn smart_resolve_path(&mut self,
2899                           id: NodeId,
2900                           qself: Option<&QSelf>,
2901                           path: &Path,
2902                           source: PathSource)
2903                           -> PathResolution {
2904         self.smart_resolve_path_with_crate_lint(id, qself, path, source, CrateLint::SimplePath(id))
2905     }
2906
2907     /// A variant of `smart_resolve_path` where you also specify extra
2908     /// information about where the path came from; this extra info is
2909     /// sometimes needed for the lint that recommends rewriting
2910     /// absolute paths to `crate`, so that it knows how to frame the
2911     /// suggestion. If you are just resolving a path like `foo::bar`
2912     /// that appears...somewhere, though, then you just want
2913     /// `CrateLint::SimplePath`, which is what `smart_resolve_path`
2914     /// already provides.
2915     fn smart_resolve_path_with_crate_lint(
2916         &mut self,
2917         id: NodeId,
2918         qself: Option<&QSelf>,
2919         path: &Path,
2920         source: PathSource,
2921         crate_lint: CrateLint
2922     ) -> PathResolution {
2923         let segments = &path.segments.iter()
2924             .map(|seg| seg.ident)
2925             .collect::<Vec<_>>();
2926         self.smart_resolve_path_fragment(id, qself, segments, path.span, source, crate_lint)
2927     }
2928
2929     fn smart_resolve_path_fragment(&mut self,
2930                                    id: NodeId,
2931                                    qself: Option<&QSelf>,
2932                                    path: &[Ident],
2933                                    span: Span,
2934                                    source: PathSource,
2935                                    crate_lint: CrateLint)
2936                                    -> PathResolution {
2937         let ident_span = path.last().map_or(span, |ident| ident.span);
2938         let ns = source.namespace();
2939         let is_expected = &|def| source.is_expected(def);
2940         let is_enum_variant = &|def| if let Def::Variant(..) = def { true } else { false };
2941
2942         // Base error is amended with one short label and possibly some longer helps/notes.
2943         let report_errors = |this: &mut Self, def: Option<Def>| {
2944             // Make the base error.
2945             let expected = source.descr_expected();
2946             let path_str = names_to_string(path);
2947             let code = source.error_code(def.is_some());
2948             let (base_msg, fallback_label, base_span) = if let Some(def) = def {
2949                 (format!("expected {}, found {} `{}`", expected, def.kind_name(), path_str),
2950                  format!("not a {}", expected),
2951                  span)
2952             } else {
2953                 let item_str = path[path.len() - 1];
2954                 let item_span = path[path.len() - 1].span;
2955                 let (mod_prefix, mod_str) = if path.len() == 1 {
2956                     (String::new(), "this scope".to_string())
2957                 } else if path.len() == 2 && path[0].name == keywords::CrateRoot.name() {
2958                     (String::new(), "the crate root".to_string())
2959                 } else {
2960                     let mod_path = &path[..path.len() - 1];
2961                     let mod_prefix = match this.resolve_path(None, mod_path, Some(TypeNS),
2962                                                              false, span, CrateLint::No) {
2963                         PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
2964                             module.def(),
2965                         _ => None,
2966                     }.map_or(String::new(), |def| format!("{} ", def.kind_name()));
2967                     (mod_prefix, format!("`{}`", names_to_string(mod_path)))
2968                 };
2969                 (format!("cannot find {} `{}` in {}{}", expected, item_str, mod_prefix, mod_str),
2970                  format!("not found in {}", mod_str),
2971                  item_span)
2972             };
2973             let code = DiagnosticId::Error(code.into());
2974             let mut err = this.session.struct_span_err_with_code(base_span, &base_msg, code);
2975
2976             // Emit special messages for unresolved `Self` and `self`.
2977             if is_self_type(path, ns) {
2978                 __diagnostic_used!(E0411);
2979                 err.code(DiagnosticId::Error("E0411".into()));
2980                 let available_in = if this.session.features_untracked().self_in_typedefs {
2981                     "impls, traits, and type definitions"
2982                 } else {
2983                     "traits and impls"
2984                 };
2985                 err.span_label(span, format!("`Self` is only available in {}", available_in));
2986                 return (err, Vec::new());
2987             }
2988             if is_self_value(path, ns) {
2989                 __diagnostic_used!(E0424);
2990                 err.code(DiagnosticId::Error("E0424".into()));
2991                 err.span_label(span, format!("`self` value is only available in \
2992                                                methods with `self` parameter"));
2993                 return (err, Vec::new());
2994             }
2995
2996             // Try to lookup the name in more relaxed fashion for better error reporting.
2997             let ident = *path.last().unwrap();
2998             let candidates = this.lookup_import_candidates(ident.name, ns, is_expected);
2999             if candidates.is_empty() && is_expected(Def::Enum(DefId::local(CRATE_DEF_INDEX))) {
3000                 let enum_candidates =
3001                     this.lookup_import_candidates(ident.name, ns, is_enum_variant);
3002                 let mut enum_candidates = enum_candidates.iter()
3003                     .map(|suggestion| import_candidate_to_paths(&suggestion)).collect::<Vec<_>>();
3004                 enum_candidates.sort();
3005                 for (sp, variant_path, enum_path) in enum_candidates {
3006                     if sp.is_dummy() {
3007                         let msg = format!("there is an enum variant `{}`, \
3008                                         try using `{}`?",
3009                                         variant_path,
3010                                         enum_path);
3011                         err.help(&msg);
3012                     } else {
3013                         err.span_suggestion_with_applicability(
3014                             span,
3015                             "you can try using the variant's enum",
3016                             enum_path,
3017                             Applicability::MachineApplicable,
3018                         );
3019                     }
3020                 }
3021             }
3022             if path.len() == 1 && this.self_type_is_available(span) {
3023                 if let Some(candidate) = this.lookup_assoc_candidate(ident, ns, is_expected) {
3024                     let self_is_available = this.self_value_is_available(path[0].span, span);
3025                     match candidate {
3026                         AssocSuggestion::Field => {
3027                             err.span_suggestion_with_applicability(
3028                                 span,
3029                                 "try",
3030                                 format!("self.{}", path_str),
3031                                 Applicability::MachineApplicable,
3032                             );
3033                             if !self_is_available {
3034                                 err.span_label(span, format!("`self` value is only available in \
3035                                                                methods with `self` parameter"));
3036                             }
3037                         }
3038                         AssocSuggestion::MethodWithSelf if self_is_available => {
3039                             err.span_suggestion_with_applicability(
3040                                 span,
3041                                 "try",
3042                                 format!("self.{}", path_str),
3043                                 Applicability::MachineApplicable,
3044                             );
3045                         }
3046                         AssocSuggestion::MethodWithSelf | AssocSuggestion::AssocItem => {
3047                             err.span_suggestion_with_applicability(
3048                                 span,
3049                                 "try",
3050                                 format!("Self::{}", path_str),
3051                                 Applicability::MachineApplicable,
3052                             );
3053                         }
3054                     }
3055                     return (err, candidates);
3056                 }
3057             }
3058
3059             let mut levenshtein_worked = false;
3060
3061             // Try Levenshtein.
3062             if let Some(candidate) = this.lookup_typo_candidate(path, ns, is_expected, span) {
3063                 err.span_label(ident_span, format!("did you mean `{}`?", candidate));
3064                 levenshtein_worked = true;
3065             }
3066
3067             // Try context dependent help if relaxed lookup didn't work.
3068             if let Some(def) = def {
3069                 match (def, source) {
3070                     (Def::Macro(..), _) => {
3071                         err.span_label(span, format!("did you mean `{}!(...)`?", path_str));
3072                         return (err, candidates);
3073                     }
3074                     (Def::TyAlias(..), PathSource::Trait(_)) => {
3075                         err.span_label(span, "type aliases cannot be used for traits");
3076                         return (err, candidates);
3077                     }
3078                     (Def::Mod(..), PathSource::Expr(Some(parent))) => match parent.node {
3079                         ExprKind::Field(_, ident) => {
3080                             err.span_label(parent.span, format!("did you mean `{}::{}`?",
3081                                                                  path_str, ident));
3082                             return (err, candidates);
3083                         }
3084                         ExprKind::MethodCall(ref segment, ..) => {
3085                             err.span_label(parent.span, format!("did you mean `{}::{}(...)`?",
3086                                                                  path_str, segment.ident));
3087                             return (err, candidates);
3088                         }
3089                         _ => {}
3090                     },
3091                     (Def::Enum(..), PathSource::TupleStruct)
3092                         | (Def::Enum(..), PathSource::Expr(..))  => {
3093                         if let Some(variants) = this.collect_enum_variants(def) {
3094                             err.note(&format!("did you mean to use one \
3095                                                of the following variants?\n{}",
3096                                 variants.iter()
3097                                     .map(|suggestion| path_names_to_string(suggestion))
3098                                     .map(|suggestion| format!("- `{}`", suggestion))
3099                                     .collect::<Vec<_>>()
3100                                     .join("\n")));
3101
3102                         } else {
3103                             err.note("did you mean to use one of the enum's variants?");
3104                         }
3105                         return (err, candidates);
3106                     },
3107                     (Def::Struct(def_id), _) if ns == ValueNS => {
3108                         if let Some((ctor_def, ctor_vis))
3109                                 = this.struct_constructors.get(&def_id).cloned() {
3110                             let accessible_ctor = this.is_accessible(ctor_vis);
3111                             if is_expected(ctor_def) && !accessible_ctor {
3112                                 err.span_label(span, format!("constructor is not visible \
3113                                                               here due to private fields"));
3114                             }
3115                         } else {
3116                             // HACK(estebank): find a better way to figure out that this was a
3117                             // parser issue where a struct literal is being used on an expression
3118                             // where a brace being opened means a block is being started. Look
3119                             // ahead for the next text to see if `span` is followed by a `{`.
3120                             let cm = this.session.source_map();
3121                             let mut sp = span;
3122                             loop {
3123                                 sp = cm.next_point(sp);
3124                                 match cm.span_to_snippet(sp) {
3125                                     Ok(ref snippet) => {
3126                                         if snippet.chars().any(|c| { !c.is_whitespace() }) {
3127                                             break;
3128                                         }
3129                                     }
3130                                     _ => break,
3131                                 }
3132                             }
3133                             let followed_by_brace = match cm.span_to_snippet(sp) {
3134                                 Ok(ref snippet) if snippet == "{" => true,
3135                                 _ => false,
3136                             };
3137                             if let (PathSource::Expr(None), true) = (source, followed_by_brace) {
3138                                 err.span_label(
3139                                     span,
3140                                     format!("did you mean `({} {{ /* fields */ }})`?", path_str),
3141                                 );
3142                             } else {
3143                                 err.span_label(
3144                                     span,
3145                                     format!("did you mean `{} {{ /* fields */ }}`?", path_str),
3146                                 );
3147                             }
3148                         }
3149                         return (err, candidates);
3150                     }
3151                     (Def::Union(..), _) |
3152                     (Def::Variant(..), _) |
3153                     (Def::VariantCtor(_, CtorKind::Fictive), _) if ns == ValueNS => {
3154                         err.span_label(span, format!("did you mean `{} {{ /* fields */ }}`?",
3155                                                      path_str));
3156                         return (err, candidates);
3157                     }
3158                     (Def::SelfTy(..), _) if ns == ValueNS => {
3159                         err.span_label(span, fallback_label);
3160                         err.note("can't use `Self` as a constructor, you must use the \
3161                                   implemented struct");
3162                         return (err, candidates);
3163                     }
3164                     (Def::TyAlias(_), _) | (Def::AssociatedTy(..), _) if ns == ValueNS => {
3165                         err.note("can't use a type alias as a constructor");
3166                         return (err, candidates);
3167                     }
3168                     _ => {}
3169                 }
3170             }
3171
3172             // Fallback label.
3173             if !levenshtein_worked {
3174                 err.span_label(base_span, fallback_label);
3175                 this.type_ascription_suggestion(&mut err, base_span);
3176             }
3177             (err, candidates)
3178         };
3179         let report_errors = |this: &mut Self, def: Option<Def>| {
3180             let (err, candidates) = report_errors(this, def);
3181             let def_id = this.current_module.normal_ancestor_id;
3182             let node_id = this.definitions.as_local_node_id(def_id).unwrap();
3183             let better = def.is_some();
3184             this.use_injections.push(UseError { err, candidates, node_id, better });
3185             err_path_resolution()
3186         };
3187
3188         let resolution = match self.resolve_qpath_anywhere(
3189             id,
3190             qself,
3191             path,
3192             ns,
3193             span,
3194             source.defer_to_typeck(),
3195             source.global_by_default(),
3196             crate_lint,
3197         ) {
3198             Some(resolution) if resolution.unresolved_segments() == 0 => {
3199                 if is_expected(resolution.base_def()) || resolution.base_def() == Def::Err {
3200                     resolution
3201                 } else {
3202                     // Add a temporary hack to smooth the transition to new struct ctor
3203                     // visibility rules. See #38932 for more details.
3204                     let mut res = None;
3205                     if let Def::Struct(def_id) = resolution.base_def() {
3206                         if let Some((ctor_def, ctor_vis))
3207                                 = self.struct_constructors.get(&def_id).cloned() {
3208                             if is_expected(ctor_def) && self.is_accessible(ctor_vis) {
3209                                 let lint = lint::builtin::LEGACY_CONSTRUCTOR_VISIBILITY;
3210                                 self.session.buffer_lint(lint, id, span,
3211                                     "private struct constructors are not usable through \
3212                                      re-exports in outer modules",
3213                                 );
3214                                 res = Some(PathResolution::new(ctor_def));
3215                             }
3216                         }
3217                     }
3218
3219                     res.unwrap_or_else(|| report_errors(self, Some(resolution.base_def())))
3220                 }
3221             }
3222             Some(resolution) if source.defer_to_typeck() => {
3223                 // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
3224                 // or `<T>::A::B`. If `B` should be resolved in value namespace then
3225                 // it needs to be added to the trait map.
3226                 if ns == ValueNS {
3227                     let item_name = *path.last().unwrap();
3228                     let traits = self.get_traits_containing_item(item_name, ns);
3229                     self.trait_map.insert(id, traits);
3230                 }
3231                 resolution
3232             }
3233             _ => report_errors(self, None)
3234         };
3235
3236         if let PathSource::TraitItem(..) = source {} else {
3237             // Avoid recording definition of `A::B` in `<T as A>::B::C`.
3238             self.record_def(id, resolution);
3239         }
3240         resolution
3241     }
3242
3243     fn type_ascription_suggestion(&self,
3244                                   err: &mut DiagnosticBuilder,
3245                                   base_span: Span) {
3246         debug!("type_ascription_suggetion {:?}", base_span);
3247         let cm = self.session.source_map();
3248         debug!("self.current_type_ascription {:?}", self.current_type_ascription);
3249         if let Some(sp) = self.current_type_ascription.last() {
3250             let mut sp = *sp;
3251             loop {  // try to find the `:`, bail on first non-':'/non-whitespace
3252                 sp = cm.next_point(sp);
3253                 if let Ok(snippet) = cm.span_to_snippet(sp.to(cm.next_point(sp))) {
3254                     debug!("snippet {:?}", snippet);
3255                     let line_sp = cm.lookup_char_pos(sp.hi()).line;
3256                     let line_base_sp = cm.lookup_char_pos(base_span.lo()).line;
3257                     debug!("{:?} {:?}", line_sp, line_base_sp);
3258                     if snippet == ":" {
3259                         err.span_label(base_span,
3260                                        "expecting a type here because of type ascription");
3261                         if line_sp != line_base_sp {
3262                             err.span_suggestion_short(sp,
3263                                                       "did you mean to use `;` here instead?",
3264                                                       ";".to_string());
3265                         }
3266                         break;
3267                     } else if snippet.trim().len() != 0  {
3268                         debug!("tried to find type ascription `:` token, couldn't find it");
3269                         break;
3270                     }
3271                 } else {
3272                     break;
3273                 }
3274             }
3275         }
3276     }
3277
3278     fn self_type_is_available(&mut self, span: Span) -> bool {
3279         let binding = self.resolve_ident_in_lexical_scope(keywords::SelfType.ident(),
3280                                                           TypeNS, None, span);
3281         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3282     }
3283
3284     fn self_value_is_available(&mut self, self_span: Span, path_span: Span) -> bool {
3285         let ident = Ident::new(keywords::SelfValue.name(), self_span);
3286         let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, None, path_span);
3287         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3288     }
3289
3290     // Resolve in alternative namespaces if resolution in the primary namespace fails.
3291     fn resolve_qpath_anywhere(&mut self,
3292                               id: NodeId,
3293                               qself: Option<&QSelf>,
3294                               path: &[Ident],
3295                               primary_ns: Namespace,
3296                               span: Span,
3297                               defer_to_typeck: bool,
3298                               global_by_default: bool,
3299                               crate_lint: CrateLint)
3300                               -> Option<PathResolution> {
3301         let mut fin_res = None;
3302         // FIXME: can't resolve paths in macro namespace yet, macros are
3303         // processed by the little special hack below.
3304         for (i, ns) in [primary_ns, TypeNS, ValueNS, /*MacroNS*/].iter().cloned().enumerate() {
3305             if i == 0 || ns != primary_ns {
3306                 match self.resolve_qpath(id, qself, path, ns, span, global_by_default, crate_lint) {
3307                     // If defer_to_typeck, then resolution > no resolution,
3308                     // otherwise full resolution > partial resolution > no resolution.
3309                     Some(res) if res.unresolved_segments() == 0 || defer_to_typeck =>
3310                         return Some(res),
3311                     res => if fin_res.is_none() { fin_res = res },
3312                 };
3313             }
3314         }
3315         let is_global = self.macro_prelude.get(&path[0].name).cloned()
3316             .map(|binding| binding.get_macro(self).kind() == MacroKind::Bang).unwrap_or(false);
3317         if primary_ns != MacroNS && (is_global ||
3318                                      self.macro_names.contains(&path[0].modern())) {
3319             // Return some dummy definition, it's enough for error reporting.
3320             return Some(
3321                 PathResolution::new(Def::Macro(DefId::local(CRATE_DEF_INDEX), MacroKind::Bang))
3322             );
3323         }
3324         fin_res
3325     }
3326
3327     /// Handles paths that may refer to associated items.
3328     fn resolve_qpath(&mut self,
3329                      id: NodeId,
3330                      qself: Option<&QSelf>,
3331                      path: &[Ident],
3332                      ns: Namespace,
3333                      span: Span,
3334                      global_by_default: bool,
3335                      crate_lint: CrateLint)
3336                      -> Option<PathResolution> {
3337         debug!(
3338             "resolve_qpath(id={:?}, qself={:?}, path={:?}, \
3339              ns={:?}, span={:?}, global_by_default={:?})",
3340             id,
3341             qself,
3342             path,
3343             ns,
3344             span,
3345             global_by_default,
3346         );
3347
3348         if let Some(qself) = qself {
3349             if qself.position == 0 {
3350                 // This is a case like `<T>::B`, where there is no
3351                 // trait to resolve.  In that case, we leave the `B`
3352                 // segment to be resolved by type-check.
3353                 return Some(PathResolution::with_unresolved_segments(
3354                     Def::Mod(DefId::local(CRATE_DEF_INDEX)), path.len()
3355                 ));
3356             }
3357
3358             // Make sure `A::B` in `<T as A::B>::C` is a trait item.
3359             //
3360             // Currently, `path` names the full item (`A::B::C`, in
3361             // our example).  so we extract the prefix of that that is
3362             // the trait (the slice upto and including
3363             // `qself.position`). And then we recursively resolve that,
3364             // but with `qself` set to `None`.
3365             //
3366             // However, setting `qself` to none (but not changing the
3367             // span) loses the information about where this path
3368             // *actually* appears, so for the purposes of the crate
3369             // lint we pass along information that this is the trait
3370             // name from a fully qualified path, and this also
3371             // contains the full span (the `CrateLint::QPathTrait`).
3372             let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
3373             let res = self.smart_resolve_path_fragment(
3374                 id,
3375                 None,
3376                 &path[..qself.position + 1],
3377                 span,
3378                 PathSource::TraitItem(ns),
3379                 CrateLint::QPathTrait {
3380                     qpath_id: id,
3381                     qpath_span: qself.path_span,
3382                 },
3383             );
3384
3385             // The remaining segments (the `C` in our example) will
3386             // have to be resolved by type-check, since that requires doing
3387             // trait resolution.
3388             return Some(PathResolution::with_unresolved_segments(
3389                 res.base_def(), res.unresolved_segments() + path.len() - qself.position - 1
3390             ));
3391         }
3392
3393         let result = match self.resolve_path(
3394             None,
3395             &path,
3396             Some(ns),
3397             true,
3398             span,
3399             crate_lint,
3400         ) {
3401             PathResult::NonModule(path_res) => path_res,
3402             PathResult::Module(ModuleOrUniformRoot::Module(module)) if !module.is_normal() => {
3403                 PathResolution::new(module.def().unwrap())
3404             }
3405             // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
3406             // don't report an error right away, but try to fallback to a primitive type.
3407             // So, we are still able to successfully resolve something like
3408             //
3409             // use std::u8; // bring module u8 in scope
3410             // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
3411             //     u8::max_value() // OK, resolves to associated function <u8>::max_value,
3412             //                     // not to non-existent std::u8::max_value
3413             // }
3414             //
3415             // Such behavior is required for backward compatibility.
3416             // The same fallback is used when `a` resolves to nothing.
3417             PathResult::Module(ModuleOrUniformRoot::Module(_)) |
3418             PathResult::Failed(..)
3419                     if (ns == TypeNS || path.len() > 1) &&
3420                        self.primitive_type_table.primitive_types
3421                            .contains_key(&path[0].name) => {
3422                 let prim = self.primitive_type_table.primitive_types[&path[0].name];
3423                 PathResolution::with_unresolved_segments(Def::PrimTy(prim), path.len() - 1)
3424             }
3425             PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3426                 PathResolution::new(module.def().unwrap()),
3427             PathResult::Failed(span, msg, false) => {
3428                 resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
3429                 err_path_resolution()
3430             }
3431             PathResult::Module(ModuleOrUniformRoot::UniformRoot(_)) |
3432             PathResult::Failed(..) => return None,
3433             PathResult::Indeterminate => bug!("indetermined path result in resolve_qpath"),
3434         };
3435
3436         if path.len() > 1 && !global_by_default && result.base_def() != Def::Err &&
3437            path[0].name != keywords::CrateRoot.name() &&
3438            path[0].name != keywords::DollarCrate.name() {
3439             let unqualified_result = {
3440                 match self.resolve_path(
3441                     None,
3442                     &[*path.last().unwrap()],
3443                     Some(ns),
3444                     false,
3445                     span,
3446                     CrateLint::No,
3447                 ) {
3448                     PathResult::NonModule(path_res) => path_res.base_def(),
3449                     PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3450                         module.def().unwrap(),
3451                     _ => return Some(result),
3452                 }
3453             };
3454             if result.base_def() == unqualified_result {
3455                 let lint = lint::builtin::UNUSED_QUALIFICATIONS;
3456                 self.session.buffer_lint(lint, id, span, "unnecessary qualification")
3457             }
3458         }
3459
3460         Some(result)
3461     }
3462
3463     fn resolve_path(
3464         &mut self,
3465         base_module: Option<ModuleOrUniformRoot<'a>>,
3466         path: &[Ident],
3467         opt_ns: Option<Namespace>, // `None` indicates a module path
3468         record_used: bool,
3469         path_span: Span,
3470         crate_lint: CrateLint,
3471     ) -> PathResult<'a> {
3472         let mut module = base_module;
3473         let mut allow_super = true;
3474         let mut second_binding = None;
3475
3476         debug!(
3477             "resolve_path(path={:?}, opt_ns={:?}, record_used={:?}, \
3478              path_span={:?}, crate_lint={:?})",
3479             path,
3480             opt_ns,
3481             record_used,
3482             path_span,
3483             crate_lint,
3484         );
3485
3486         for (i, &ident) in path.iter().enumerate() {
3487             debug!("resolve_path ident {} {:?}", i, ident);
3488             let is_last = i == path.len() - 1;
3489             let ns = if is_last { opt_ns.unwrap_or(TypeNS) } else { TypeNS };
3490             let name = ident.name;
3491
3492             allow_super &= ns == TypeNS &&
3493                 (name == keywords::SelfValue.name() ||
3494                  name == keywords::Super.name());
3495
3496             if ns == TypeNS {
3497                 if allow_super && name == keywords::Super.name() {
3498                     let mut ctxt = ident.span.ctxt().modern();
3499                     let self_module = match i {
3500                         0 => Some(self.resolve_self(&mut ctxt, self.current_module)),
3501                         _ => match module {
3502                             Some(ModuleOrUniformRoot::Module(module)) => Some(module),
3503                             _ => None,
3504                         },
3505                     };
3506                     if let Some(self_module) = self_module {
3507                         if let Some(parent) = self_module.parent {
3508                             module = Some(ModuleOrUniformRoot::Module(
3509                                 self.resolve_self(&mut ctxt, parent)));
3510                             continue;
3511                         }
3512                     }
3513                     let msg = "There are too many initial `super`s.".to_string();
3514                     return PathResult::Failed(ident.span, msg, false);
3515                 }
3516                 if i == 0 {
3517                     if name == keywords::SelfValue.name() {
3518                         let mut ctxt = ident.span.ctxt().modern();
3519                         module = Some(ModuleOrUniformRoot::Module(
3520                             self.resolve_self(&mut ctxt, self.current_module)));
3521                         continue;
3522                     }
3523                     if name == keywords::Extern.name() ||
3524                        name == keywords::CrateRoot.name() &&
3525                        self.session.features_untracked().extern_absolute_paths &&
3526                        self.session.rust_2018() {
3527                         module = Some(ModuleOrUniformRoot::UniformRoot(name));
3528                         continue;
3529                     }
3530                     if name == keywords::CrateRoot.name() ||
3531                        name == keywords::Crate.name() ||
3532                        name == keywords::DollarCrate.name() {
3533                         // `::a::b`, `crate::a::b` or `$crate::a::b`
3534                         module = Some(ModuleOrUniformRoot::Module(
3535                             self.resolve_crate_root(ident)));
3536                         continue;
3537                     }
3538                 }
3539             }
3540
3541             // Report special messages for path segment keywords in wrong positions.
3542             if ident.is_path_segment_keyword() && i != 0 {
3543                 let name_str = if name == keywords::CrateRoot.name() {
3544                     "crate root".to_string()
3545                 } else {
3546                     format!("`{}`", name)
3547                 };
3548                 let msg = if i == 1 && path[0].name == keywords::CrateRoot.name() {
3549                     format!("global paths cannot start with {}", name_str)
3550                 } else {
3551                     format!("{} in paths can only be used in start position", name_str)
3552                 };
3553                 return PathResult::Failed(ident.span, msg, false);
3554             }
3555
3556             let binding = if let Some(module) = module {
3557                 self.resolve_ident_in_module(module, ident, ns, record_used, path_span)
3558             } else if opt_ns == Some(MacroNS) {
3559                 assert!(ns == TypeNS);
3560                 self.resolve_lexical_macro_path_segment(ident, ns, record_used, record_used,
3561                                                         false, path_span).map(|(b, _)| b)
3562             } else {
3563                 let record_used_id =
3564                     if record_used { crate_lint.node_id().or(Some(CRATE_NODE_ID)) } else { None };
3565                 match self.resolve_ident_in_lexical_scope(ident, ns, record_used_id, path_span) {
3566                     // we found a locally-imported or available item/module
3567                     Some(LexicalScopeBinding::Item(binding)) => Ok(binding),
3568                     // we found a local variable or type param
3569                     Some(LexicalScopeBinding::Def(def))
3570                             if opt_ns == Some(TypeNS) || opt_ns == Some(ValueNS) => {
3571                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3572                             def, path.len() - 1
3573                         ));
3574                     }
3575                     _ => Err(if record_used { Determined } else { Undetermined }),
3576                 }
3577             };
3578
3579             match binding {
3580                 Ok(binding) => {
3581                     if i == 1 {
3582                         second_binding = Some(binding);
3583                     }
3584                     let def = binding.def();
3585                     let maybe_assoc = opt_ns != Some(MacroNS) && PathSource::Type.is_expected(def);
3586                     if let Some(next_module) = binding.module() {
3587                         module = Some(ModuleOrUniformRoot::Module(next_module));
3588                     } else if def == Def::ToolMod && i + 1 != path.len() {
3589                         let def = Def::NonMacroAttr(NonMacroAttrKind::Tool);
3590                         return PathResult::NonModule(PathResolution::new(def));
3591                     } else if def == Def::Err {
3592                         return PathResult::NonModule(err_path_resolution());
3593                     } else if opt_ns.is_some() && (is_last || maybe_assoc) {
3594                         self.lint_if_path_starts_with_module(
3595                             crate_lint,
3596                             path,
3597                             path_span,
3598                             second_binding,
3599                         );
3600                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3601                             def, path.len() - i - 1
3602                         ));
3603                     } else {
3604                         return PathResult::Failed(ident.span,
3605                                                   format!("Not a module `{}`", ident),
3606                                                   is_last);
3607                     }
3608                 }
3609                 Err(Undetermined) => return PathResult::Indeterminate,
3610                 Err(Determined) => {
3611                     if let Some(ModuleOrUniformRoot::Module(module)) = module {
3612                         if opt_ns.is_some() && !module.is_normal() {
3613                             return PathResult::NonModule(PathResolution::with_unresolved_segments(
3614                                 module.def().unwrap(), path.len() - i
3615                             ));
3616                         }
3617                     }
3618                     let module_def = match module {
3619                         Some(ModuleOrUniformRoot::Module(module)) => module.def(),
3620                         _ => None,
3621                     };
3622                     let msg = if module_def == self.graph_root.def() {
3623                         let is_mod = |def| match def { Def::Mod(..) => true, _ => false };
3624                         let mut candidates =
3625                             self.lookup_import_candidates(name, TypeNS, is_mod);
3626                         candidates.sort_by_cached_key(|c| {
3627                             (c.path.segments.len(), c.path.to_string())
3628                         });
3629                         if let Some(candidate) = candidates.get(0) {
3630                             format!("Did you mean `{}`?", candidate.path)
3631                         } else {
3632                             format!("Maybe a missing `extern crate {};`?", ident)
3633                         }
3634                     } else if i == 0 {
3635                         format!("Use of undeclared type or module `{}`", ident)
3636                     } else {
3637                         format!("Could not find `{}` in `{}`", ident, path[i - 1])
3638                     };
3639                     return PathResult::Failed(ident.span, msg, is_last);
3640                 }
3641             }
3642         }
3643
3644         self.lint_if_path_starts_with_module(crate_lint, path, path_span, second_binding);
3645
3646         PathResult::Module(module.unwrap_or_else(|| {
3647             span_bug!(path_span, "resolve_path: empty(?) path {:?} has no module", path);
3648         }))
3649
3650     }
3651
3652     fn lint_if_path_starts_with_module(
3653         &self,
3654         crate_lint: CrateLint,
3655         path: &[Ident],
3656         path_span: Span,
3657         second_binding: Option<&NameBinding>,
3658     ) {
3659         // In the 2018 edition this lint is a hard error, so nothing to do
3660         if self.session.rust_2018() {
3661             return
3662         }
3663
3664         // In the 2015 edition there's no use in emitting lints unless the
3665         // crate's already enabled the feature that we're going to suggest
3666         if !self.session.features_untracked().crate_in_paths {
3667             return
3668         }
3669
3670         let (diag_id, diag_span) = match crate_lint {
3671             CrateLint::No => return,
3672             CrateLint::SimplePath(id) => (id, path_span),
3673             CrateLint::UsePath { root_id, root_span } => (root_id, root_span),
3674             CrateLint::QPathTrait { qpath_id, qpath_span } => (qpath_id, qpath_span),
3675         };
3676
3677         let first_name = match path.get(0) {
3678             Some(ident) => ident.name,
3679             None => return,
3680         };
3681
3682         // We're only interested in `use` paths which should start with
3683         // `{{root}}` or `extern` currently.
3684         if first_name != keywords::Extern.name() && first_name != keywords::CrateRoot.name() {
3685             return
3686         }
3687
3688         match path.get(1) {
3689             // If this import looks like `crate::...` it's already good
3690             Some(ident) if ident.name == keywords::Crate.name() => return,
3691             // Otherwise go below to see if it's an extern crate
3692             Some(_) => {}
3693             // If the path has length one (and it's `CrateRoot` most likely)
3694             // then we don't know whether we're gonna be importing a crate or an
3695             // item in our crate. Defer this lint to elsewhere
3696             None => return,
3697         }
3698
3699         // If the first element of our path was actually resolved to an
3700         // `ExternCrate` (also used for `crate::...`) then no need to issue a
3701         // warning, this looks all good!
3702         if let Some(binding) = second_binding {
3703             if let NameBindingKind::Import { directive: d, .. } = binding.kind {
3704                 // Careful: we still want to rewrite paths from
3705                 // renamed extern crates.
3706                 if let ImportDirectiveSubclass::ExternCrate(None) = d.subclass {
3707                     return
3708                 }
3709             }
3710         }
3711
3712         let diag = lint::builtin::BuiltinLintDiagnostics
3713             ::AbsPathWithModule(diag_span);
3714         self.session.buffer_lint_with_diagnostic(
3715             lint::builtin::ABSOLUTE_PATHS_NOT_STARTING_WITH_CRATE,
3716             diag_id, diag_span,
3717             "absolute paths must start with `self`, `super`, \
3718             `crate`, or an external crate name in the 2018 edition",
3719             diag);
3720     }
3721
3722     // Resolve a local definition, potentially adjusting for closures.
3723     fn adjust_local_def(&mut self,
3724                         ns: Namespace,
3725                         rib_index: usize,
3726                         mut def: Def,
3727                         record_used: bool,
3728                         span: Span) -> Def {
3729         let ribs = &self.ribs[ns][rib_index + 1..];
3730
3731         // An invalid forward use of a type parameter from a previous default.
3732         if let ForwardTyParamBanRibKind = self.ribs[ns][rib_index].kind {
3733             if record_used {
3734                 resolve_error(self, span, ResolutionError::ForwardDeclaredTyParam);
3735             }
3736             assert_eq!(def, Def::Err);
3737             return Def::Err;
3738         }
3739
3740         match def {
3741             Def::Upvar(..) => {
3742                 span_bug!(span, "unexpected {:?} in bindings", def)
3743             }
3744             Def::Local(node_id) => {
3745                 for rib in ribs {
3746                     match rib.kind {
3747                         NormalRibKind | ModuleRibKind(..) | MacroDefinition(..) |
3748                         ForwardTyParamBanRibKind => {
3749                             // Nothing to do. Continue.
3750                         }
3751                         ClosureRibKind(function_id) => {
3752                             let prev_def = def;
3753
3754                             let seen = self.freevars_seen
3755                                            .entry(function_id)
3756                                            .or_default();
3757                             if let Some(&index) = seen.get(&node_id) {
3758                                 def = Def::Upvar(node_id, index, function_id);
3759                                 continue;
3760                             }
3761                             let vec = self.freevars
3762                                           .entry(function_id)
3763                                           .or_default();
3764                             let depth = vec.len();
3765                             def = Def::Upvar(node_id, depth, function_id);
3766
3767                             if record_used {
3768                                 vec.push(Freevar {
3769                                     def: prev_def,
3770                                     span,
3771                                 });
3772                                 seen.insert(node_id, depth);
3773                             }
3774                         }
3775                         ItemRibKind | TraitOrImplItemRibKind => {
3776                             // This was an attempt to access an upvar inside a
3777                             // named function item. This is not allowed, so we
3778                             // report an error.
3779                             if record_used {
3780                                 resolve_error(self, span,
3781                                         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem);
3782                             }
3783                             return Def::Err;
3784                         }
3785                         ConstantItemRibKind => {
3786                             // Still doesn't deal with upvars
3787                             if record_used {
3788                                 resolve_error(self, span,
3789                                         ResolutionError::AttemptToUseNonConstantValueInConstant);
3790                             }
3791                             return Def::Err;
3792                         }
3793                     }
3794                 }
3795             }
3796             Def::TyParam(..) | Def::SelfTy(..) => {
3797                 for rib in ribs {
3798                     match rib.kind {
3799                         NormalRibKind | TraitOrImplItemRibKind | ClosureRibKind(..) |
3800                         ModuleRibKind(..) | MacroDefinition(..) | ForwardTyParamBanRibKind |
3801                         ConstantItemRibKind => {
3802                             // Nothing to do. Continue.
3803                         }
3804                         ItemRibKind => {
3805                             // This was an attempt to use a type parameter outside
3806                             // its scope.
3807                             if record_used {
3808                                 resolve_error(self, span,
3809                                     ResolutionError::TypeParametersFromOuterFunction(def));
3810                             }
3811                             return Def::Err;
3812                         }
3813                     }
3814                 }
3815             }
3816             _ => {}
3817         }
3818         return def;
3819     }
3820
3821     fn lookup_assoc_candidate<FilterFn>(&mut self,
3822                                         ident: Ident,
3823                                         ns: Namespace,
3824                                         filter_fn: FilterFn)
3825                                         -> Option<AssocSuggestion>
3826         where FilterFn: Fn(Def) -> bool
3827     {
3828         fn extract_node_id(t: &Ty) -> Option<NodeId> {
3829             match t.node {
3830                 TyKind::Path(None, _) => Some(t.id),
3831                 TyKind::Rptr(_, ref mut_ty) => extract_node_id(&mut_ty.ty),
3832                 // This doesn't handle the remaining `Ty` variants as they are not
3833                 // that commonly the self_type, it might be interesting to provide
3834                 // support for those in future.
3835                 _ => None,
3836             }
3837         }
3838
3839         // Fields are generally expected in the same contexts as locals.
3840         if filter_fn(Def::Local(ast::DUMMY_NODE_ID)) {
3841             if let Some(node_id) = self.current_self_type.as_ref().and_then(extract_node_id) {
3842                 // Look for a field with the same name in the current self_type.
3843                 if let Some(resolution) = self.def_map.get(&node_id) {
3844                     match resolution.base_def() {
3845                         Def::Struct(did) | Def::Union(did)
3846                                 if resolution.unresolved_segments() == 0 => {
3847                             if let Some(field_names) = self.field_names.get(&did) {
3848                                 if field_names.iter().any(|&field_name| ident.name == field_name) {
3849                                     return Some(AssocSuggestion::Field);
3850                                 }
3851                             }
3852                         }
3853                         _ => {}
3854                     }
3855                 }
3856             }
3857         }
3858
3859         // Look for associated items in the current trait.
3860         if let Some((module, _)) = self.current_trait_ref {
3861             if let Ok(binding) = self.resolve_ident_in_module(
3862                     ModuleOrUniformRoot::Module(module),
3863                     ident,
3864                     ns,
3865                     false,
3866                     module.span,
3867                 ) {
3868                 let def = binding.def();
3869                 if filter_fn(def) {
3870                     return Some(if self.has_self.contains(&def.def_id()) {
3871                         AssocSuggestion::MethodWithSelf
3872                     } else {
3873                         AssocSuggestion::AssocItem
3874                     });
3875                 }
3876             }
3877         }
3878
3879         None
3880     }
3881
3882     fn lookup_typo_candidate<FilterFn>(&mut self,
3883                                        path: &[Ident],
3884                                        ns: Namespace,
3885                                        filter_fn: FilterFn,
3886                                        span: Span)
3887                                        -> Option<Symbol>
3888         where FilterFn: Fn(Def) -> bool
3889     {
3890         let add_module_candidates = |module: Module, names: &mut Vec<Name>| {
3891             for (&(ident, _), resolution) in module.resolutions.borrow().iter() {
3892                 if let Some(binding) = resolution.borrow().binding {
3893                     if filter_fn(binding.def()) {
3894                         names.push(ident.name);
3895                     }
3896                 }
3897             }
3898         };
3899
3900         let mut names = Vec::new();
3901         if path.len() == 1 {
3902             // Search in lexical scope.
3903             // Walk backwards up the ribs in scope and collect candidates.
3904             for rib in self.ribs[ns].iter().rev() {
3905                 // Locals and type parameters
3906                 for (ident, def) in &rib.bindings {
3907                     if filter_fn(*def) {
3908                         names.push(ident.name);
3909                     }
3910                 }
3911                 // Items in scope
3912                 if let ModuleRibKind(module) = rib.kind {
3913                     // Items from this module
3914                     add_module_candidates(module, &mut names);
3915
3916                     if let ModuleKind::Block(..) = module.kind {
3917                         // We can see through blocks
3918                     } else {
3919                         // Items from the prelude
3920                         if !module.no_implicit_prelude {
3921                             names.extend(self.extern_prelude.iter().cloned());
3922                             if let Some(prelude) = self.prelude {
3923                                 add_module_candidates(prelude, &mut names);
3924                             }
3925                         }
3926                         break;
3927                     }
3928                 }
3929             }
3930             // Add primitive types to the mix
3931             if filter_fn(Def::PrimTy(Bool)) {
3932                 names.extend(
3933                     self.primitive_type_table.primitive_types.iter().map(|(name, _)| name)
3934                 )
3935             }
3936         } else {
3937             // Search in module.
3938             let mod_path = &path[..path.len() - 1];
3939             if let PathResult::Module(module) = self.resolve_path(None, mod_path, Some(TypeNS),
3940                                                                   false, span, CrateLint::No) {
3941                 if let ModuleOrUniformRoot::Module(module) = module {
3942                     add_module_candidates(module, &mut names);
3943                 }
3944             }
3945         }
3946
3947         let name = path[path.len() - 1].name;
3948         // Make sure error reporting is deterministic.
3949         names.sort_by_cached_key(|name| name.as_str());
3950         match find_best_match_for_name(names.iter(), &name.as_str(), None) {
3951             Some(found) if found != name => Some(found),
3952             _ => None,
3953         }
3954     }
3955
3956     fn with_resolved_label<F>(&mut self, label: Option<Label>, id: NodeId, f: F)
3957         where F: FnOnce(&mut Resolver)
3958     {
3959         if let Some(label) = label {
3960             self.unused_labels.insert(id, label.ident.span);
3961             let def = Def::Label(id);
3962             self.with_label_rib(|this| {
3963                 let ident = label.ident.modern_and_legacy();
3964                 this.label_ribs.last_mut().unwrap().bindings.insert(ident, def);
3965                 f(this);
3966             });
3967         } else {
3968             f(self);
3969         }
3970     }
3971
3972     fn resolve_labeled_block(&mut self, label: Option<Label>, id: NodeId, block: &Block) {
3973         self.with_resolved_label(label, id, |this| this.visit_block(block));
3974     }
3975
3976     fn resolve_expr(&mut self, expr: &Expr, parent: Option<&Expr>) {
3977         // First, record candidate traits for this expression if it could
3978         // result in the invocation of a method call.
3979
3980         self.record_candidate_traits_for_expr_if_necessary(expr);
3981
3982         // Next, resolve the node.
3983         match expr.node {
3984             ExprKind::Path(ref qself, ref path) => {
3985                 self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
3986                 visit::walk_expr(self, expr);
3987             }
3988
3989             ExprKind::Struct(ref path, ..) => {
3990                 self.smart_resolve_path(expr.id, None, path, PathSource::Struct);
3991                 visit::walk_expr(self, expr);
3992             }
3993
3994             ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
3995                 let def = self.search_label(label.ident, |rib, ident| {
3996                     rib.bindings.get(&ident.modern_and_legacy()).cloned()
3997                 });
3998                 match def {
3999                     None => {
4000                         // Search again for close matches...
4001                         // Picks the first label that is "close enough", which is not necessarily
4002                         // the closest match
4003                         let close_match = self.search_label(label.ident, |rib, ident| {
4004                             let names = rib.bindings.iter().map(|(id, _)| &id.name);
4005                             find_best_match_for_name(names, &*ident.as_str(), None)
4006                         });
4007                         self.record_def(expr.id, err_path_resolution());
4008                         resolve_error(self,
4009                                       label.ident.span,
4010                                       ResolutionError::UndeclaredLabel(&label.ident.as_str(),
4011                                                                        close_match));
4012                     }
4013                     Some(Def::Label(id)) => {
4014                         // Since this def is a label, it is never read.
4015                         self.record_def(expr.id, PathResolution::new(Def::Label(id)));
4016                         self.unused_labels.remove(&id);
4017                     }
4018                     Some(_) => {
4019                         span_bug!(expr.span, "label wasn't mapped to a label def!");
4020                     }
4021                 }
4022
4023                 // visit `break` argument if any
4024                 visit::walk_expr(self, expr);
4025             }
4026
4027             ExprKind::IfLet(ref pats, ref subexpression, ref if_block, ref optional_else) => {
4028                 self.visit_expr(subexpression);
4029
4030                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
4031                 let mut bindings_list = FxHashMap();
4032                 for pat in pats {
4033                     self.resolve_pattern(pat, PatternSource::IfLet, &mut bindings_list);
4034                 }
4035                 // This has to happen *after* we determine which pat_idents are variants
4036                 self.check_consistent_bindings(pats);
4037                 self.visit_block(if_block);
4038                 self.ribs[ValueNS].pop();
4039
4040                 optional_else.as_ref().map(|expr| self.visit_expr(expr));
4041             }
4042
4043             ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),
4044
4045             ExprKind::While(ref subexpression, ref block, label) => {
4046                 self.with_resolved_label(label, expr.id, |this| {
4047                     this.visit_expr(subexpression);
4048                     this.visit_block(block);
4049                 });
4050             }
4051
4052             ExprKind::WhileLet(ref pats, ref subexpression, ref block, label) => {
4053                 self.with_resolved_label(label, expr.id, |this| {
4054                     this.visit_expr(subexpression);
4055                     this.ribs[ValueNS].push(Rib::new(NormalRibKind));
4056                     let mut bindings_list = FxHashMap();
4057                     for pat in pats {
4058                         this.resolve_pattern(pat, PatternSource::WhileLet, &mut bindings_list);
4059                     }
4060                     // This has to happen *after* we determine which pat_idents are variants
4061                     this.check_consistent_bindings(pats);
4062                     this.visit_block(block);
4063                     this.ribs[ValueNS].pop();
4064                 });
4065             }
4066
4067             ExprKind::ForLoop(ref pattern, ref subexpression, ref block, label) => {
4068                 self.visit_expr(subexpression);
4069                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
4070                 self.resolve_pattern(pattern, PatternSource::For, &mut FxHashMap());
4071
4072                 self.resolve_labeled_block(label, expr.id, block);
4073
4074                 self.ribs[ValueNS].pop();
4075             }
4076
4077             ExprKind::Block(ref block, label) => self.resolve_labeled_block(label, block.id, block),
4078
4079             // Equivalent to `visit::walk_expr` + passing some context to children.
4080             ExprKind::Field(ref subexpression, _) => {
4081                 self.resolve_expr(subexpression, Some(expr));
4082             }
4083             ExprKind::MethodCall(ref segment, ref arguments) => {
4084                 let mut arguments = arguments.iter();
4085                 self.resolve_expr(arguments.next().unwrap(), Some(expr));
4086                 for argument in arguments {
4087                     self.resolve_expr(argument, None);
4088                 }
4089                 self.visit_path_segment(expr.span, segment);
4090             }
4091
4092             ExprKind::Call(ref callee, ref arguments) => {
4093                 self.resolve_expr(callee, Some(expr));
4094                 for argument in arguments {
4095                     self.resolve_expr(argument, None);
4096                 }
4097             }
4098             ExprKind::Type(ref type_expr, _) => {
4099                 self.current_type_ascription.push(type_expr.span);
4100                 visit::walk_expr(self, expr);
4101                 self.current_type_ascription.pop();
4102             }
4103             // Resolve the body of async exprs inside the async closure to which they desugar
4104             ExprKind::Async(_, async_closure_id, ref block) => {
4105                 let rib_kind = ClosureRibKind(async_closure_id);
4106                 self.ribs[ValueNS].push(Rib::new(rib_kind));
4107                 self.label_ribs.push(Rib::new(rib_kind));
4108                 self.visit_block(&block);
4109                 self.label_ribs.pop();
4110                 self.ribs[ValueNS].pop();
4111             }
4112             // `async |x| ...` gets desugared to `|x| future_from_generator(|| ...)`, so we need to
4113             // resolve the arguments within the proper scopes so that usages of them inside the
4114             // closure are detected as upvars rather than normal closure arg usages.
4115             ExprKind::Closure(
4116                 _, IsAsync::Async { closure_id: inner_closure_id, .. }, _,
4117                 ref fn_decl, ref body, _span,
4118             ) => {
4119                 let rib_kind = ClosureRibKind(expr.id);
4120                 self.ribs[ValueNS].push(Rib::new(rib_kind));
4121                 self.label_ribs.push(Rib::new(rib_kind));
4122                 // Resolve arguments:
4123                 let mut bindings_list = FxHashMap();
4124                 for argument in &fn_decl.inputs {
4125                     self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
4126                     self.visit_ty(&argument.ty);
4127                 }
4128                 // No need to resolve return type-- the outer closure return type is
4129                 // FunctionRetTy::Default
4130
4131                 // Now resolve the inner closure
4132                 {
4133                     let rib_kind = ClosureRibKind(inner_closure_id);
4134                     self.ribs[ValueNS].push(Rib::new(rib_kind));
4135                     self.label_ribs.push(Rib::new(rib_kind));
4136                     // No need to resolve arguments: the inner closure has none.
4137                     // Resolve the return type:
4138                     visit::walk_fn_ret_ty(self, &fn_decl.output);
4139                     // Resolve the body
4140                     self.visit_expr(body);
4141                     self.label_ribs.pop();
4142                     self.ribs[ValueNS].pop();
4143                 }
4144                 self.label_ribs.pop();
4145                 self.ribs[ValueNS].pop();
4146             }
4147             _ => {
4148                 visit::walk_expr(self, expr);
4149             }
4150         }
4151     }
4152
4153     fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &Expr) {
4154         match expr.node {
4155             ExprKind::Field(_, ident) => {
4156                 // FIXME(#6890): Even though you can't treat a method like a
4157                 // field, we need to add any trait methods we find that match
4158                 // the field name so that we can do some nice error reporting
4159                 // later on in typeck.
4160                 let traits = self.get_traits_containing_item(ident, ValueNS);
4161                 self.trait_map.insert(expr.id, traits);
4162             }
4163             ExprKind::MethodCall(ref segment, ..) => {
4164                 debug!("(recording candidate traits for expr) recording traits for {}",
4165                        expr.id);
4166                 let traits = self.get_traits_containing_item(segment.ident, ValueNS);
4167                 self.trait_map.insert(expr.id, traits);
4168             }
4169             _ => {
4170                 // Nothing to do.
4171             }
4172         }
4173     }
4174
4175     fn get_traits_containing_item(&mut self, mut ident: Ident, ns: Namespace)
4176                                   -> Vec<TraitCandidate> {
4177         debug!("(getting traits containing item) looking for '{}'", ident.name);
4178
4179         let mut found_traits = Vec::new();
4180         // Look for the current trait.
4181         if let Some((module, _)) = self.current_trait_ref {
4182             if self.resolve_ident_in_module(
4183                 ModuleOrUniformRoot::Module(module),
4184                 ident,
4185                 ns,
4186                 false,
4187                 module.span,
4188             ).is_ok() {
4189                 let def_id = module.def_id().unwrap();
4190                 found_traits.push(TraitCandidate { def_id: def_id, import_id: None });
4191             }
4192         }
4193
4194         ident.span = ident.span.modern();
4195         let mut search_module = self.current_module;
4196         loop {
4197             self.get_traits_in_module_containing_item(ident, ns, search_module, &mut found_traits);
4198             search_module = unwrap_or!(
4199                 self.hygienic_lexical_parent(search_module, &mut ident.span), break
4200             );
4201         }
4202
4203         if let Some(prelude) = self.prelude {
4204             if !search_module.no_implicit_prelude {
4205                 self.get_traits_in_module_containing_item(ident, ns, prelude, &mut found_traits);
4206             }
4207         }
4208
4209         found_traits
4210     }
4211
4212     fn get_traits_in_module_containing_item(&mut self,
4213                                             ident: Ident,
4214                                             ns: Namespace,
4215                                             module: Module<'a>,
4216                                             found_traits: &mut Vec<TraitCandidate>) {
4217         assert!(ns == TypeNS || ns == ValueNS);
4218         let mut traits = module.traits.borrow_mut();
4219         if traits.is_none() {
4220             let mut collected_traits = Vec::new();
4221             module.for_each_child(|name, ns, binding| {
4222                 if ns != TypeNS { return }
4223                 if let Def::Trait(_) = binding.def() {
4224                     collected_traits.push((name, binding));
4225                 }
4226             });
4227             *traits = Some(collected_traits.into_boxed_slice());
4228         }
4229
4230         for &(trait_name, binding) in traits.as_ref().unwrap().iter() {
4231             let module = binding.module().unwrap();
4232             let mut ident = ident;
4233             if ident.span.glob_adjust(module.expansion, binding.span.ctxt().modern()).is_none() {
4234                 continue
4235             }
4236             if self.resolve_ident_in_module_unadjusted(
4237                 ModuleOrUniformRoot::Module(module),
4238                 ident,
4239                 ns,
4240                 false,
4241                 false,
4242                 module.span,
4243             ).is_ok() {
4244                 let import_id = match binding.kind {
4245                     NameBindingKind::Import { directive, .. } => {
4246                         self.maybe_unused_trait_imports.insert(directive.id);
4247                         self.add_to_glob_map(directive.id, trait_name);
4248                         Some(directive.id)
4249                     }
4250                     _ => None,
4251                 };
4252                 let trait_def_id = module.def_id().unwrap();
4253                 found_traits.push(TraitCandidate { def_id: trait_def_id, import_id: import_id });
4254             }
4255         }
4256     }
4257
4258     fn lookup_import_candidates_from_module<FilterFn>(&mut self,
4259                                           lookup_name: Name,
4260                                           namespace: Namespace,
4261                                           start_module: &'a ModuleData<'a>,
4262                                           crate_name: Ident,
4263                                           filter_fn: FilterFn)
4264                                           -> Vec<ImportSuggestion>
4265         where FilterFn: Fn(Def) -> bool
4266     {
4267         let mut candidates = Vec::new();
4268         let mut worklist = Vec::new();
4269         let mut seen_modules = FxHashSet();
4270         let not_local_module = crate_name != keywords::Crate.ident();
4271         worklist.push((start_module, Vec::<ast::PathSegment>::new(), not_local_module));
4272
4273         while let Some((in_module,
4274                         path_segments,
4275                         in_module_is_extern)) = worklist.pop() {
4276             self.populate_module_if_necessary(in_module);
4277
4278             // We have to visit module children in deterministic order to avoid
4279             // instabilities in reported imports (#43552).
4280             in_module.for_each_child_stable(|ident, ns, name_binding| {
4281                 // avoid imports entirely
4282                 if name_binding.is_import() && !name_binding.is_extern_crate() { return; }
4283                 // avoid non-importable candidates as well
4284                 if !name_binding.is_importable() { return; }
4285
4286                 // collect results based on the filter function
4287                 if ident.name == lookup_name && ns == namespace {
4288                     if filter_fn(name_binding.def()) {
4289                         // create the path
4290                         let mut segms = path_segments.clone();
4291                         if self.session.rust_2018() {
4292                             // crate-local absolute paths start with `crate::` in edition 2018
4293                             // FIXME: may also be stabilized for Rust 2015 (Issues #45477, #44660)
4294                             segms.insert(
4295                                 0, ast::PathSegment::from_ident(crate_name)
4296                             );
4297                         }
4298
4299                         segms.push(ast::PathSegment::from_ident(ident));
4300                         let path = Path {
4301                             span: name_binding.span,
4302                             segments: segms,
4303                         };
4304                         // the entity is accessible in the following cases:
4305                         // 1. if it's defined in the same crate, it's always
4306                         // accessible (since private entities can be made public)
4307                         // 2. if it's defined in another crate, it's accessible
4308                         // only if both the module is public and the entity is
4309                         // declared as public (due to pruning, we don't explore
4310                         // outside crate private modules => no need to check this)
4311                         if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
4312                             candidates.push(ImportSuggestion { path: path });
4313                         }
4314                     }
4315                 }
4316
4317                 // collect submodules to explore
4318                 if let Some(module) = name_binding.module() {
4319                     // form the path
4320                     let mut path_segments = path_segments.clone();
4321                     path_segments.push(ast::PathSegment::from_ident(ident));
4322
4323                     let is_extern_crate_that_also_appears_in_prelude =
4324                         name_binding.is_extern_crate() &&
4325                         self.session.rust_2018();
4326
4327                     let is_visible_to_user =
4328                         !in_module_is_extern || name_binding.vis == ty::Visibility::Public;
4329
4330                     if !is_extern_crate_that_also_appears_in_prelude && is_visible_to_user {
4331                         // add the module to the lookup
4332                         let is_extern = in_module_is_extern || name_binding.is_extern_crate();
4333                         if seen_modules.insert(module.def_id().unwrap()) {
4334                             worklist.push((module, path_segments, is_extern));
4335                         }
4336                     }
4337                 }
4338             })
4339         }
4340
4341         candidates
4342     }
4343
4344     /// When name resolution fails, this method can be used to look up candidate
4345     /// entities with the expected name. It allows filtering them using the
4346     /// supplied predicate (which should be used to only accept the types of
4347     /// definitions expected e.g. traits). The lookup spans across all crates.
4348     ///
4349     /// NOTE: The method does not look into imports, but this is not a problem,
4350     /// since we report the definitions (thus, the de-aliased imports).
4351     fn lookup_import_candidates<FilterFn>(&mut self,
4352                                           lookup_name: Name,
4353                                           namespace: Namespace,
4354                                           filter_fn: FilterFn)
4355                                           -> Vec<ImportSuggestion>
4356         where FilterFn: Fn(Def) -> bool
4357     {
4358         let mut suggestions = vec![];
4359
4360         suggestions.extend(
4361             self.lookup_import_candidates_from_module(
4362                 lookup_name, namespace, self.graph_root, keywords::Crate.ident(), &filter_fn
4363             )
4364         );
4365
4366         if self.session.features_untracked().extern_prelude {
4367             let extern_prelude_names = self.extern_prelude.clone();
4368             for &krate_name in extern_prelude_names.iter() {
4369                 let krate_ident = Ident::with_empty_ctxt(krate_name);
4370                 let external_prelude_module = self.load_extern_prelude_crate_if_needed(krate_ident);
4371
4372                 suggestions.extend(
4373                     self.lookup_import_candidates_from_module(
4374                         lookup_name, namespace, external_prelude_module, krate_ident, &filter_fn
4375                     )
4376                 );
4377             }
4378         }
4379
4380         suggestions
4381     }
4382
4383     fn find_module(&mut self,
4384                    module_def: Def)
4385                    -> Option<(Module<'a>, ImportSuggestion)>
4386     {
4387         let mut result = None;
4388         let mut worklist = Vec::new();
4389         let mut seen_modules = FxHashSet();
4390         worklist.push((self.graph_root, Vec::new()));
4391
4392         while let Some((in_module, path_segments)) = worklist.pop() {
4393             // abort if the module is already found
4394             if result.is_some() { break; }
4395
4396             self.populate_module_if_necessary(in_module);
4397
4398             in_module.for_each_child_stable(|ident, _, name_binding| {
4399                 // abort if the module is already found or if name_binding is private external
4400                 if result.is_some() || !name_binding.vis.is_visible_locally() {
4401                     return
4402                 }
4403                 if let Some(module) = name_binding.module() {
4404                     // form the path
4405                     let mut path_segments = path_segments.clone();
4406                     path_segments.push(ast::PathSegment::from_ident(ident));
4407                     if module.def() == Some(module_def) {
4408                         let path = Path {
4409                             span: name_binding.span,
4410                             segments: path_segments,
4411                         };
4412                         result = Some((module, ImportSuggestion { path: path }));
4413                     } else {
4414                         // add the module to the lookup
4415                         if seen_modules.insert(module.def_id().unwrap()) {
4416                             worklist.push((module, path_segments));
4417                         }
4418                     }
4419                 }
4420             });
4421         }
4422
4423         result
4424     }
4425
4426     fn collect_enum_variants(&mut self, enum_def: Def) -> Option<Vec<Path>> {
4427         if let Def::Enum(..) = enum_def {} else {
4428             panic!("Non-enum def passed to collect_enum_variants: {:?}", enum_def)
4429         }
4430
4431         self.find_module(enum_def).map(|(enum_module, enum_import_suggestion)| {
4432             self.populate_module_if_necessary(enum_module);
4433
4434             let mut variants = Vec::new();
4435             enum_module.for_each_child_stable(|ident, _, name_binding| {
4436                 if let Def::Variant(..) = name_binding.def() {
4437                     let mut segms = enum_import_suggestion.path.segments.clone();
4438                     segms.push(ast::PathSegment::from_ident(ident));
4439                     variants.push(Path {
4440                         span: name_binding.span,
4441                         segments: segms,
4442                     });
4443                 }
4444             });
4445             variants
4446         })
4447     }
4448
4449     fn record_def(&mut self, node_id: NodeId, resolution: PathResolution) {
4450         debug!("(recording def) recording {:?} for {}", resolution, node_id);
4451         if let Some(prev_res) = self.def_map.insert(node_id, resolution) {
4452             panic!("path resolved multiple times ({:?} before, {:?} now)", prev_res, resolution);
4453         }
4454     }
4455
4456     fn resolve_visibility(&mut self, vis: &ast::Visibility) -> ty::Visibility {
4457         match vis.node {
4458             ast::VisibilityKind::Public => ty::Visibility::Public,
4459             ast::VisibilityKind::Crate(..) => {
4460                 ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX))
4461             }
4462             ast::VisibilityKind::Inherited => {
4463                 ty::Visibility::Restricted(self.current_module.normal_ancestor_id)
4464             }
4465             ast::VisibilityKind::Restricted { ref path, id, .. } => {
4466                 // Visibilities are resolved as global by default, add starting root segment.
4467                 let segments = path.make_root().iter().chain(path.segments.iter())
4468                     .map(|seg| seg.ident)
4469                     .collect::<Vec<_>>();
4470                 let def = self.smart_resolve_path_fragment(
4471                     id,
4472                     None,
4473                     &segments,
4474                     path.span,
4475                     PathSource::Visibility,
4476                     CrateLint::SimplePath(id),
4477                 ).base_def();
4478                 if def == Def::Err {
4479                     ty::Visibility::Public
4480                 } else {
4481                     let vis = ty::Visibility::Restricted(def.def_id());
4482                     if self.is_accessible(vis) {
4483                         vis
4484                     } else {
4485                         self.session.span_err(path.span, "visibilities can only be restricted \
4486                                                           to ancestor modules");
4487                         ty::Visibility::Public
4488                     }
4489                 }
4490             }
4491         }
4492     }
4493
4494     fn is_accessible(&self, vis: ty::Visibility) -> bool {
4495         vis.is_accessible_from(self.current_module.normal_ancestor_id, self)
4496     }
4497
4498     fn is_accessible_from(&self, vis: ty::Visibility, module: Module<'a>) -> bool {
4499         vis.is_accessible_from(module.normal_ancestor_id, self)
4500     }
4501
4502     fn report_ambiguity_error(
4503         &self, name: Name, span: Span, _lexical: bool,
4504         def1: Def, is_import1: bool, is_glob1: bool, from_expansion1: bool, span1: Span,
4505         def2: Def, is_import2: bool, _is_glob2: bool, _from_expansion2: bool, span2: Span,
4506     ) {
4507         let participle = |is_import: bool| if is_import { "imported" } else { "defined" };
4508         let msg1 = format!("`{}` could refer to the name {} here", name, participle(is_import1));
4509         let msg2 =
4510             format!("`{}` could also refer to the name {} here", name, participle(is_import2));
4511         let note = if from_expansion1 {
4512             Some(if let Def::Macro(..) = def1 {
4513                 format!("macro-expanded {} do not shadow",
4514                         if is_import1 { "macro imports" } else { "macros" })
4515             } else {
4516                 format!("macro-expanded {} do not shadow when used in a macro invocation path",
4517                         if is_import1 { "imports" } else { "items" })
4518             })
4519         } else if is_glob1 {
4520             Some(format!("consider adding an explicit import of `{}` to disambiguate", name))
4521         } else {
4522             None
4523         };
4524
4525         let mut err = struct_span_err!(self.session, span, E0659, "`{}` is ambiguous", name);
4526         err.span_note(span1, &msg1);
4527         match def2 {
4528             Def::Macro(..) if span2.is_dummy() =>
4529                 err.note(&format!("`{}` is also a builtin macro", name)),
4530             _ => err.span_note(span2, &msg2),
4531         };
4532         if let Some(note) = note {
4533             err.note(&note);
4534         }
4535         err.emit();
4536     }
4537
4538     fn report_errors(&mut self, krate: &Crate) {
4539         self.report_shadowing_errors();
4540         self.report_with_use_injections(krate);
4541         self.report_proc_macro_import(krate);
4542         let mut reported_spans = FxHashSet();
4543
4544         for &(span_use, span_def) in &self.macro_expanded_macro_export_errors {
4545             let msg = "macro-expanded `macro_export` macros from the current crate \
4546                        cannot be referred to by absolute paths";
4547             self.session.buffer_lint_with_diagnostic(
4548                 lint::builtin::MACRO_EXPANDED_MACRO_EXPORTS_ACCESSED_BY_ABSOLUTE_PATHS,
4549                 CRATE_NODE_ID, span_use, msg,
4550                 lint::builtin::BuiltinLintDiagnostics::
4551                     MacroExpandedMacroExportsAccessedByAbsolutePaths(span_def),
4552             );
4553         }
4554
4555         for &AmbiguityError { span, name, b1, b2, lexical } in &self.ambiguity_errors {
4556             if reported_spans.insert(span) {
4557                 self.report_ambiguity_error(
4558                     name, span, lexical,
4559                     b1.def(), b1.is_import(), b1.is_glob_import(),
4560                     b1.expansion != Mark::root(), b1.span,
4561                     b2.def(), b2.is_import(), b2.is_glob_import(),
4562                     b2.expansion != Mark::root(), b2.span,
4563                 );
4564             }
4565         }
4566
4567         for &PrivacyError(span, name, binding) in &self.privacy_errors {
4568             if !reported_spans.insert(span) { continue }
4569             span_err!(self.session, span, E0603, "{} `{}` is private", binding.descr(), name);
4570         }
4571     }
4572
4573     fn report_with_use_injections(&mut self, krate: &Crate) {
4574         for UseError { mut err, candidates, node_id, better } in self.use_injections.drain(..) {
4575             let (span, found_use) = UsePlacementFinder::check(krate, node_id);
4576             if !candidates.is_empty() {
4577                 show_candidates(&mut err, span, &candidates, better, found_use);
4578             }
4579             err.emit();
4580         }
4581     }
4582
4583     fn report_shadowing_errors(&mut self) {
4584         let mut reported_errors = FxHashSet();
4585         for binding in replace(&mut self.disallowed_shadowing, Vec::new()) {
4586             if self.resolve_legacy_scope(&binding.parent, binding.ident, false).is_some() &&
4587                reported_errors.insert((binding.ident, binding.span)) {
4588                 let msg = format!("`{}` is already in scope", binding.ident);
4589                 self.session.struct_span_err(binding.span, &msg)
4590                     .note("macro-expanded `macro_rules!`s may not shadow \
4591                            existing macros (see RFC 1560)")
4592                     .emit();
4593             }
4594         }
4595     }
4596
4597     fn report_conflict<'b>(&mut self,
4598                        parent: Module,
4599                        ident: Ident,
4600                        ns: Namespace,
4601                        new_binding: &NameBinding<'b>,
4602                        old_binding: &NameBinding<'b>) {
4603         // Error on the second of two conflicting names
4604         if old_binding.span.lo() > new_binding.span.lo() {
4605             return self.report_conflict(parent, ident, ns, old_binding, new_binding);
4606         }
4607
4608         let container = match parent.kind {
4609             ModuleKind::Def(Def::Mod(_), _) => "module",
4610             ModuleKind::Def(Def::Trait(_), _) => "trait",
4611             ModuleKind::Block(..) => "block",
4612             _ => "enum",
4613         };
4614
4615         let old_noun = match old_binding.is_import() {
4616             true => "import",
4617             false => "definition",
4618         };
4619
4620         let new_participle = match new_binding.is_import() {
4621             true => "imported",
4622             false => "defined",
4623         };
4624
4625         let (name, span) = (ident.name, self.session.source_map().def_span(new_binding.span));
4626
4627         if let Some(s) = self.name_already_seen.get(&name) {
4628             if s == &span {
4629                 return;
4630             }
4631         }
4632
4633         let old_kind = match (ns, old_binding.module()) {
4634             (ValueNS, _) => "value",
4635             (MacroNS, _) => "macro",
4636             (TypeNS, _) if old_binding.is_extern_crate() => "extern crate",
4637             (TypeNS, Some(module)) if module.is_normal() => "module",
4638             (TypeNS, Some(module)) if module.is_trait() => "trait",
4639             (TypeNS, _) => "type",
4640         };
4641
4642         let msg = format!("the name `{}` is defined multiple times", name);
4643
4644         let mut err = match (old_binding.is_extern_crate(), new_binding.is_extern_crate()) {
4645             (true, true) => struct_span_err!(self.session, span, E0259, "{}", msg),
4646             (true, _) | (_, true) => match new_binding.is_import() && old_binding.is_import() {
4647                 true => struct_span_err!(self.session, span, E0254, "{}", msg),
4648                 false => struct_span_err!(self.session, span, E0260, "{}", msg),
4649             },
4650             _ => match (old_binding.is_import(), new_binding.is_import()) {
4651                 (false, false) => struct_span_err!(self.session, span, E0428, "{}", msg),
4652                 (true, true) => struct_span_err!(self.session, span, E0252, "{}", msg),
4653                 _ => struct_span_err!(self.session, span, E0255, "{}", msg),
4654             },
4655         };
4656
4657         err.note(&format!("`{}` must be defined only once in the {} namespace of this {}",
4658                           name,
4659                           ns.descr(),
4660                           container));
4661
4662         err.span_label(span, format!("`{}` re{} here", name, new_participle));
4663         if !old_binding.span.is_dummy() {
4664             err.span_label(self.session.source_map().def_span(old_binding.span),
4665                            format!("previous {} of the {} `{}` here", old_noun, old_kind, name));
4666         }
4667
4668         // See https://github.com/rust-lang/rust/issues/32354
4669         if old_binding.is_import() || new_binding.is_import() {
4670             let binding = if new_binding.is_import() && !new_binding.span.is_dummy() {
4671                 new_binding
4672             } else {
4673                 old_binding
4674             };
4675
4676             let cm = self.session.source_map();
4677             let rename_msg = "You can use `as` to change the binding name of the import";
4678
4679             if let (Ok(snippet), false) = (cm.span_to_snippet(binding.span),
4680                                            binding.is_renamed_extern_crate()) {
4681                 let suggested_name = if name.as_str().chars().next().unwrap().is_uppercase() {
4682                     format!("Other{}", name)
4683                 } else {
4684                     format!("other_{}", name)
4685                 };
4686
4687                 err.span_suggestion_with_applicability(
4688                     binding.span,
4689                     rename_msg,
4690                     if snippet.ends_with(';') {
4691                         format!("{} as {};", &snippet[..snippet.len() - 1], suggested_name)
4692                     } else {
4693                         format!("{} as {}", snippet, suggested_name)
4694                     },
4695                     Applicability::MachineApplicable,
4696                 );
4697             } else {
4698                 err.span_label(binding.span, rename_msg);
4699             }
4700         }
4701
4702         err.emit();
4703         self.name_already_seen.insert(name, span);
4704     }
4705 }
4706
4707 fn is_self_type(path: &[Ident], namespace: Namespace) -> bool {
4708     namespace == TypeNS && path.len() == 1 && path[0].name == keywords::SelfType.name()
4709 }
4710
4711 fn is_self_value(path: &[Ident], namespace: Namespace) -> bool {
4712     namespace == ValueNS && path.len() == 1 && path[0].name == keywords::SelfValue.name()
4713 }
4714
4715 fn names_to_string(idents: &[Ident]) -> String {
4716     let mut result = String::new();
4717     for (i, ident) in idents.iter()
4718                             .filter(|ident| ident.name != keywords::CrateRoot.name())
4719                             .enumerate() {
4720         if i > 0 {
4721             result.push_str("::");
4722         }
4723         result.push_str(&ident.as_str());
4724     }
4725     result
4726 }
4727
4728 fn path_names_to_string(path: &Path) -> String {
4729     names_to_string(&path.segments.iter()
4730                         .map(|seg| seg.ident)
4731                         .collect::<Vec<_>>())
4732 }
4733
4734 /// Get the path for an enum and the variant from an `ImportSuggestion` for an enum variant.
4735 fn import_candidate_to_paths(suggestion: &ImportSuggestion) -> (Span, String, String) {
4736     let variant_path = &suggestion.path;
4737     let variant_path_string = path_names_to_string(variant_path);
4738
4739     let path_len = suggestion.path.segments.len();
4740     let enum_path = ast::Path {
4741         span: suggestion.path.span,
4742         segments: suggestion.path.segments[0..path_len - 1].to_vec(),
4743     };
4744     let enum_path_string = path_names_to_string(&enum_path);
4745
4746     (suggestion.path.span, variant_path_string, enum_path_string)
4747 }
4748
4749
4750 /// When an entity with a given name is not available in scope, we search for
4751 /// entities with that name in all crates. This method allows outputting the
4752 /// results of this search in a programmer-friendly way
4753 fn show_candidates(err: &mut DiagnosticBuilder,
4754                    // This is `None` if all placement locations are inside expansions
4755                    span: Option<Span>,
4756                    candidates: &[ImportSuggestion],
4757                    better: bool,
4758                    found_use: bool) {
4759
4760     // we want consistent results across executions, but candidates are produced
4761     // by iterating through a hash map, so make sure they are ordered:
4762     let mut path_strings: Vec<_> =
4763         candidates.into_iter().map(|c| path_names_to_string(&c.path)).collect();
4764     path_strings.sort();
4765
4766     let better = if better { "better " } else { "" };
4767     let msg_diff = match path_strings.len() {
4768         1 => " is found in another module, you can import it",
4769         _ => "s are found in other modules, you can import them",
4770     };
4771     let msg = format!("possible {}candidate{} into scope", better, msg_diff);
4772
4773     if let Some(span) = span {
4774         for candidate in &mut path_strings {
4775             // produce an additional newline to separate the new use statement
4776             // from the directly following item.
4777             let additional_newline = if found_use {
4778                 ""
4779             } else {
4780                 "\n"
4781             };
4782             *candidate = format!("use {};\n{}", candidate, additional_newline);
4783         }
4784
4785         err.span_suggestions(span, &msg, path_strings);
4786     } else {
4787         let mut msg = msg;
4788         msg.push(':');
4789         for candidate in path_strings {
4790             msg.push('\n');
4791             msg.push_str(&candidate);
4792         }
4793     }
4794 }
4795
4796 /// A somewhat inefficient routine to obtain the name of a module.
4797 fn module_to_string(module: Module) -> Option<String> {
4798     let mut names = Vec::new();
4799
4800     fn collect_mod(names: &mut Vec<Ident>, module: Module) {
4801         if let ModuleKind::Def(_, name) = module.kind {
4802             if let Some(parent) = module.parent {
4803                 names.push(Ident::with_empty_ctxt(name));
4804                 collect_mod(names, parent);
4805             }
4806         } else {
4807             // danger, shouldn't be ident?
4808             names.push(Ident::from_str("<opaque>"));
4809             collect_mod(names, module.parent.unwrap());
4810         }
4811     }
4812     collect_mod(&mut names, module);
4813
4814     if names.is_empty() {
4815         return None;
4816     }
4817     Some(names_to_string(&names.into_iter()
4818                         .rev()
4819                         .collect::<Vec<_>>()))
4820 }
4821
4822 fn err_path_resolution() -> PathResolution {
4823     PathResolution::new(Def::Err)
4824 }
4825
4826 #[derive(PartialEq,Copy, Clone)]
4827 pub enum MakeGlobMap {
4828     Yes,
4829     No,
4830 }
4831
4832 #[derive(Copy, Clone, Debug)]
4833 enum CrateLint {
4834     /// Do not issue the lint
4835     No,
4836
4837     /// This lint applies to some random path like `impl ::foo::Bar`
4838     /// or whatever. In this case, we can take the span of that path.
4839     SimplePath(NodeId),
4840
4841     /// This lint comes from a `use` statement. In this case, what we
4842     /// care about really is the *root* `use` statement; e.g., if we
4843     /// have nested things like `use a::{b, c}`, we care about the
4844     /// `use a` part.
4845     UsePath { root_id: NodeId, root_span: Span },
4846
4847     /// This is the "trait item" from a fully qualified path. For example,
4848     /// we might be resolving  `X::Y::Z` from a path like `<T as X::Y>::Z`.
4849     /// The `path_span` is the span of the to the trait itself (`X::Y`).
4850     QPathTrait { qpath_id: NodeId, qpath_span: Span },
4851 }
4852
4853 impl CrateLint {
4854     fn node_id(&self) -> Option<NodeId> {
4855         match *self {
4856             CrateLint::No => None,
4857             CrateLint::SimplePath(id) |
4858             CrateLint::UsePath { root_id: id, .. } |
4859             CrateLint::QPathTrait { qpath_id: id, .. } => Some(id),
4860         }
4861     }
4862 }
4863
4864 __build_diagnostic_array! { librustc_resolve, DIAGNOSTICS }