]> git.lizzy.rs Git - rust.git/blob - src/librustc_resolve/lib.rs
resolve: Fallback to extern prelude in 2015 imports used from global 2018 edition
[rust.git] / src / librustc_resolve / lib.rs
1 // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 #![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
12        html_favicon_url = "https://doc.rust-lang.org/favicon.ico",
13        html_root_url = "https://doc.rust-lang.org/nightly/")]
14
15 #![feature(crate_visibility_modifier)]
16 #![feature(label_break_value)]
17 #![feature(nll)]
18 #![feature(rustc_diagnostic_macros)]
19 #![feature(slice_sort_by_cached_key)]
20
21 #[macro_use]
22 extern crate bitflags;
23 #[macro_use]
24 extern crate log;
25 #[macro_use]
26 extern crate syntax;
27 extern crate syntax_pos;
28 extern crate rustc_errors as errors;
29 extern crate arena;
30 #[macro_use]
31 extern crate rustc;
32 extern crate rustc_data_structures;
33 extern crate rustc_metadata;
34
35 pub use rustc::hir::def::{Namespace, PerNS};
36
37 use self::TypeParameters::*;
38 use self::RibKind::*;
39
40 use rustc::hir::map::{Definitions, DefCollector};
41 use rustc::hir::{self, PrimTy, Bool, Char, Float, Int, Uint, Str};
42 use rustc::middle::cstore::CrateStore;
43 use rustc::session::Session;
44 use rustc::lint;
45 use rustc::hir::def::*;
46 use rustc::hir::def::Namespace::*;
47 use rustc::hir::def_id::{CRATE_DEF_INDEX, LOCAL_CRATE, DefId};
48 use rustc::hir::{Freevar, FreevarMap, TraitCandidate, TraitMap, GlobMap};
49 use rustc::session::config::nightly_options;
50 use rustc::ty;
51 use rustc::util::nodemap::{NodeMap, NodeSet, FxHashMap, FxHashSet, DefIdMap};
52
53 use rustc_metadata::creader::CrateLoader;
54 use rustc_metadata::cstore::CStore;
55
56 use syntax::source_map::SourceMap;
57 use syntax::ext::hygiene::{Mark, Transparency, SyntaxContext};
58 use syntax::ast::{self, Name, NodeId, Ident, FloatTy, IntTy, UintTy};
59 use syntax::ext::base::SyntaxExtension;
60 use syntax::ext::base::Determinacy::{self, Determined, Undetermined};
61 use syntax::ext::base::MacroKind;
62 use syntax::symbol::{Symbol, keywords};
63 use syntax::util::lev_distance::find_best_match_for_name;
64
65 use syntax::visit::{self, FnKind, Visitor};
66 use syntax::attr;
67 use syntax::ast::{CRATE_NODE_ID, Arm, IsAsync, BindingMode, Block, Crate, Expr, ExprKind};
68 use syntax::ast::{FnDecl, ForeignItem, ForeignItemKind, GenericParamKind, Generics};
69 use syntax::ast::{Item, ItemKind, ImplItem, ImplItemKind};
70 use syntax::ast::{Label, Local, Mutability, Pat, PatKind, Path};
71 use syntax::ast::{QSelf, TraitItemKind, TraitRef, Ty, TyKind};
72 use syntax::ptr::P;
73
74 use syntax_pos::{Span, DUMMY_SP, MultiSpan};
75 use errors::{Applicability, DiagnosticBuilder, DiagnosticId};
76
77 use std::cell::{Cell, RefCell};
78 use std::{cmp, fmt, iter, ptr};
79 use std::collections::BTreeSet;
80 use std::mem::replace;
81 use rustc_data_structures::ptr_key::PtrKey;
82 use rustc_data_structures::sync::Lrc;
83
84 use resolve_imports::{ImportDirective, ImportDirectiveSubclass, NameResolution, ImportResolver};
85 use macros::{InvocationData, LegacyBinding, ParentScope};
86
87 // NB: This module needs to be declared first so diagnostics are
88 // registered before they are used.
89 mod diagnostics;
90 mod error_reporting;
91 mod macros;
92 mod check_unused;
93 mod build_reduced_graph;
94 mod resolve_imports;
95
96 fn is_known_tool(name: Name) -> bool {
97     ["clippy", "rustfmt"].contains(&&*name.as_str())
98 }
99
100 enum Weak {
101     Yes,
102     No,
103 }
104
105 enum ScopeSet {
106     Import(Namespace),
107     AbsolutePath(Namespace),
108     Macro(MacroKind),
109     Module,
110 }
111
112 /// A free importable items suggested in case of resolution failure.
113 struct ImportSuggestion {
114     path: Path,
115 }
116
117 /// A field or associated item from self type suggested in case of resolution failure.
118 enum AssocSuggestion {
119     Field,
120     MethodWithSelf,
121     AssocItem,
122 }
123
124 #[derive(Eq)]
125 struct BindingError {
126     name: Name,
127     origin: BTreeSet<Span>,
128     target: BTreeSet<Span>,
129 }
130
131 impl PartialOrd for BindingError {
132     fn partial_cmp(&self, other: &BindingError) -> Option<cmp::Ordering> {
133         Some(self.cmp(other))
134     }
135 }
136
137 impl PartialEq for BindingError {
138     fn eq(&self, other: &BindingError) -> bool {
139         self.name == other.name
140     }
141 }
142
143 impl Ord for BindingError {
144     fn cmp(&self, other: &BindingError) -> cmp::Ordering {
145         self.name.cmp(&other.name)
146     }
147 }
148
149 enum ResolutionError<'a> {
150     /// error E0401: can't use type parameters from outer function
151     TypeParametersFromOuterFunction(Def),
152     /// error E0403: the name is already used for a type parameter in this type parameter list
153     NameAlreadyUsedInTypeParameterList(Name, &'a Span),
154     /// error E0407: method is not a member of trait
155     MethodNotMemberOfTrait(Name, &'a str),
156     /// error E0437: type is not a member of trait
157     TypeNotMemberOfTrait(Name, &'a str),
158     /// error E0438: const is not a member of trait
159     ConstNotMemberOfTrait(Name, &'a str),
160     /// error E0408: variable `{}` is not bound in all patterns
161     VariableNotBoundInPattern(&'a BindingError),
162     /// error E0409: variable `{}` is bound in inconsistent ways within the same match arm
163     VariableBoundWithDifferentMode(Name, Span),
164     /// error E0415: identifier is bound more than once in this parameter list
165     IdentifierBoundMoreThanOnceInParameterList(&'a str),
166     /// error E0416: identifier is bound more than once in the same pattern
167     IdentifierBoundMoreThanOnceInSamePattern(&'a str),
168     /// error E0426: use of undeclared label
169     UndeclaredLabel(&'a str, Option<Name>),
170     /// error E0429: `self` imports are only allowed within a { } list
171     SelfImportsOnlyAllowedWithin,
172     /// error E0430: `self` import can only appear once in the list
173     SelfImportCanOnlyAppearOnceInTheList,
174     /// error E0431: `self` import can only appear in an import list with a non-empty prefix
175     SelfImportOnlyInImportListWithNonEmptyPrefix,
176     /// error E0433: failed to resolve
177     FailedToResolve(&'a str),
178     /// error E0434: can't capture dynamic environment in a fn item
179     CannotCaptureDynamicEnvironmentInFnItem,
180     /// error E0435: attempt to use a non-constant value in a constant
181     AttemptToUseNonConstantValueInConstant,
182     /// error E0530: X bindings cannot shadow Ys
183     BindingShadowsSomethingUnacceptable(&'a str, Name, &'a NameBinding<'a>),
184     /// error E0128: type parameters with a default cannot use forward declared identifiers
185     ForwardDeclaredTyParam,
186 }
187
188 /// Combines an error with provided span and emits it
189 ///
190 /// This takes the error provided, combines it with the span and any additional spans inside the
191 /// error and emits it.
192 fn resolve_error<'sess, 'a>(resolver: &'sess Resolver,
193                             span: Span,
194                             resolution_error: ResolutionError<'a>) {
195     resolve_struct_error(resolver, span, resolution_error).emit();
196 }
197
198 fn resolve_struct_error<'sess, 'a>(resolver: &'sess Resolver,
199                                    span: Span,
200                                    resolution_error: ResolutionError<'a>)
201                                    -> DiagnosticBuilder<'sess> {
202     match resolution_error {
203         ResolutionError::TypeParametersFromOuterFunction(outer_def) => {
204             let mut err = struct_span_err!(resolver.session,
205                                            span,
206                                            E0401,
207                                            "can't use type parameters from outer function");
208             err.span_label(span, "use of type variable from outer function");
209
210             let cm = resolver.session.source_map();
211             match outer_def {
212                 Def::SelfTy(maybe_trait_defid, maybe_impl_defid) => {
213                     if let Some(impl_span) = maybe_impl_defid.and_then(|def_id| {
214                         resolver.definitions.opt_span(def_id)
215                     }) {
216                         err.span_label(
217                             reduce_impl_span_to_impl_keyword(cm, impl_span),
218                             "`Self` type implicitly declared here, by this `impl`",
219                         );
220                     }
221                     match (maybe_trait_defid, maybe_impl_defid) {
222                         (Some(_), None) => {
223                             err.span_label(span, "can't use `Self` here");
224                         }
225                         (_, Some(_)) => {
226                             err.span_label(span, "use a type here instead");
227                         }
228                         (None, None) => bug!("`impl` without trait nor type?"),
229                     }
230                     return err;
231                 },
232                 Def::TyParam(typaram_defid) => {
233                     if let Some(typaram_span) = resolver.definitions.opt_span(typaram_defid) {
234                         err.span_label(typaram_span, "type variable from outer function");
235                     }
236                 },
237                 _ => {
238                     bug!("TypeParametersFromOuterFunction should only be used with Def::SelfTy or \
239                          Def::TyParam")
240                 }
241             }
242
243             // Try to retrieve the span of the function signature and generate a new message with
244             // a local type parameter
245             let sugg_msg = "try using a local type parameter instead";
246             if let Some((sugg_span, new_snippet)) = cm.generate_local_type_param_snippet(span) {
247                 // Suggest the modification to the user
248                 err.span_suggestion_with_applicability(
249                     sugg_span,
250                     sugg_msg,
251                     new_snippet,
252                     Applicability::MachineApplicable,
253                 );
254             } else if let Some(sp) = cm.generate_fn_name_span(span) {
255                 err.span_label(sp, "try adding a local type parameter in this method instead");
256             } else {
257                 err.help("try using a local type parameter instead");
258             }
259
260             err
261         }
262         ResolutionError::NameAlreadyUsedInTypeParameterList(name, first_use_span) => {
263              let mut err = struct_span_err!(resolver.session,
264                                             span,
265                                             E0403,
266                                             "the name `{}` is already used for a type parameter \
267                                             in this type parameter list",
268                                             name);
269              err.span_label(span, "already used");
270              err.span_label(first_use_span.clone(), format!("first use of `{}`", name));
271              err
272         }
273         ResolutionError::MethodNotMemberOfTrait(method, trait_) => {
274             let mut err = struct_span_err!(resolver.session,
275                                            span,
276                                            E0407,
277                                            "method `{}` is not a member of trait `{}`",
278                                            method,
279                                            trait_);
280             err.span_label(span, format!("not a member of trait `{}`", trait_));
281             err
282         }
283         ResolutionError::TypeNotMemberOfTrait(type_, trait_) => {
284             let mut err = struct_span_err!(resolver.session,
285                              span,
286                              E0437,
287                              "type `{}` is not a member of trait `{}`",
288                              type_,
289                              trait_);
290             err.span_label(span, format!("not a member of trait `{}`", trait_));
291             err
292         }
293         ResolutionError::ConstNotMemberOfTrait(const_, trait_) => {
294             let mut err = struct_span_err!(resolver.session,
295                              span,
296                              E0438,
297                              "const `{}` is not a member of trait `{}`",
298                              const_,
299                              trait_);
300             err.span_label(span, format!("not a member of trait `{}`", trait_));
301             err
302         }
303         ResolutionError::VariableNotBoundInPattern(binding_error) => {
304             let target_sp = binding_error.target.iter().cloned().collect::<Vec<_>>();
305             let msp = MultiSpan::from_spans(target_sp.clone());
306             let msg = format!("variable `{}` is not bound in all patterns", binding_error.name);
307             let mut err = resolver.session.struct_span_err_with_code(
308                 msp,
309                 &msg,
310                 DiagnosticId::Error("E0408".into()),
311             );
312             for sp in target_sp {
313                 err.span_label(sp, format!("pattern doesn't bind `{}`", binding_error.name));
314             }
315             let origin_sp = binding_error.origin.iter().cloned();
316             for sp in origin_sp {
317                 err.span_label(sp, "variable not in all patterns");
318             }
319             err
320         }
321         ResolutionError::VariableBoundWithDifferentMode(variable_name,
322                                                         first_binding_span) => {
323             let mut err = struct_span_err!(resolver.session,
324                              span,
325                              E0409,
326                              "variable `{}` is bound in inconsistent \
327                              ways within the same match arm",
328                              variable_name);
329             err.span_label(span, "bound in different ways");
330             err.span_label(first_binding_span, "first binding");
331             err
332         }
333         ResolutionError::IdentifierBoundMoreThanOnceInParameterList(identifier) => {
334             let mut err = struct_span_err!(resolver.session,
335                              span,
336                              E0415,
337                              "identifier `{}` is bound more than once in this parameter list",
338                              identifier);
339             err.span_label(span, "used as parameter more than once");
340             err
341         }
342         ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(identifier) => {
343             let mut err = struct_span_err!(resolver.session,
344                              span,
345                              E0416,
346                              "identifier `{}` is bound more than once in the same pattern",
347                              identifier);
348             err.span_label(span, "used in a pattern more than once");
349             err
350         }
351         ResolutionError::UndeclaredLabel(name, lev_candidate) => {
352             let mut err = struct_span_err!(resolver.session,
353                                            span,
354                                            E0426,
355                                            "use of undeclared label `{}`",
356                                            name);
357             if let Some(lev_candidate) = lev_candidate {
358                 err.span_label(span, format!("did you mean `{}`?", lev_candidate));
359             } else {
360                 err.span_label(span, format!("undeclared label `{}`", name));
361             }
362             err
363         }
364         ResolutionError::SelfImportsOnlyAllowedWithin => {
365             struct_span_err!(resolver.session,
366                              span,
367                              E0429,
368                              "{}",
369                              "`self` imports are only allowed within a { } list")
370         }
371         ResolutionError::SelfImportCanOnlyAppearOnceInTheList => {
372             let mut err = struct_span_err!(resolver.session, span, E0430,
373                                            "`self` import can only appear once in an import list");
374             err.span_label(span, "can only appear once in an import list");
375             err
376         }
377         ResolutionError::SelfImportOnlyInImportListWithNonEmptyPrefix => {
378             let mut err = struct_span_err!(resolver.session, span, E0431,
379                                            "`self` import can only appear in an import list with \
380                                             a non-empty prefix");
381             err.span_label(span, "can only appear in an import list with a non-empty prefix");
382             err
383         }
384         ResolutionError::FailedToResolve(msg) => {
385             let mut err = struct_span_err!(resolver.session, span, E0433,
386                                            "failed to resolve: {}", msg);
387             err.span_label(span, msg);
388             err
389         }
390         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem => {
391             let mut err = struct_span_err!(resolver.session,
392                                            span,
393                                            E0434,
394                                            "{}",
395                                            "can't capture dynamic environment in a fn item");
396             err.help("use the `|| { ... }` closure form instead");
397             err
398         }
399         ResolutionError::AttemptToUseNonConstantValueInConstant => {
400             let mut err = struct_span_err!(resolver.session, span, E0435,
401                                            "attempt to use a non-constant value in a constant");
402             err.span_label(span, "non-constant value");
403             err
404         }
405         ResolutionError::BindingShadowsSomethingUnacceptable(what_binding, name, binding) => {
406             let shadows_what = binding.descr();
407             let mut err = struct_span_err!(resolver.session, span, E0530, "{}s cannot shadow {}s",
408                                            what_binding, shadows_what);
409             err.span_label(span, format!("cannot be named the same as {} {}",
410                                          binding.article(), shadows_what));
411             let participle = if binding.is_import() { "imported" } else { "defined" };
412             let msg = format!("the {} `{}` is {} here", shadows_what, name, participle);
413             err.span_label(binding.span, msg);
414             err
415         }
416         ResolutionError::ForwardDeclaredTyParam => {
417             let mut err = struct_span_err!(resolver.session, span, E0128,
418                                            "type parameters with a default cannot use \
419                                             forward declared identifiers");
420             err.span_label(
421                 span, "defaulted type parameters cannot be forward declared".to_string());
422             err
423         }
424     }
425 }
426
427 /// Adjust the impl span so that just the `impl` keyword is taken by removing
428 /// everything after `<` (`"impl<T> Iterator for A<T> {}" -> "impl"`) and
429 /// everything after the first whitespace (`"impl Iterator for A" -> "impl"`)
430 ///
431 /// Attention: The method used is very fragile since it essentially duplicates the work of the
432 /// parser. If you need to use this function or something similar, please consider updating the
433 /// source_map functions and this function to something more robust.
434 fn reduce_impl_span_to_impl_keyword(cm: &SourceMap, impl_span: Span) -> Span {
435     let impl_span = cm.span_until_char(impl_span, '<');
436     let impl_span = cm.span_until_whitespace(impl_span);
437     impl_span
438 }
439
440 #[derive(Copy, Clone, Debug)]
441 struct BindingInfo {
442     span: Span,
443     binding_mode: BindingMode,
444 }
445
446 /// Map from the name in a pattern to its binding mode.
447 type BindingMap = FxHashMap<Ident, BindingInfo>;
448
449 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
450 enum PatternSource {
451     Match,
452     IfLet,
453     WhileLet,
454     Let,
455     For,
456     FnParam,
457 }
458
459 impl PatternSource {
460     fn descr(self) -> &'static str {
461         match self {
462             PatternSource::Match => "match binding",
463             PatternSource::IfLet => "if let binding",
464             PatternSource::WhileLet => "while let binding",
465             PatternSource::Let => "let binding",
466             PatternSource::For => "for binding",
467             PatternSource::FnParam => "function parameter",
468         }
469     }
470 }
471
472 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
473 enum AliasPossibility {
474     No,
475     Maybe,
476 }
477
478 #[derive(Copy, Clone, Debug)]
479 enum PathSource<'a> {
480     // Type paths `Path`.
481     Type,
482     // Trait paths in bounds or impls.
483     Trait(AliasPossibility),
484     // Expression paths `path`, with optional parent context.
485     Expr(Option<&'a Expr>),
486     // Paths in path patterns `Path`.
487     Pat,
488     // Paths in struct expressions and patterns `Path { .. }`.
489     Struct,
490     // Paths in tuple struct patterns `Path(..)`.
491     TupleStruct,
492     // `m::A::B` in `<T as m::A>::B::C`.
493     TraitItem(Namespace),
494     // Path in `pub(path)`
495     Visibility,
496 }
497
498 impl<'a> PathSource<'a> {
499     fn namespace(self) -> Namespace {
500         match self {
501             PathSource::Type | PathSource::Trait(_) | PathSource::Struct |
502             PathSource::Visibility => TypeNS,
503             PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct => ValueNS,
504             PathSource::TraitItem(ns) => ns,
505         }
506     }
507
508     fn global_by_default(self) -> bool {
509         match self {
510             PathSource::Visibility => true,
511             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
512             PathSource::Struct | PathSource::TupleStruct |
513             PathSource::Trait(_) | PathSource::TraitItem(..) => false,
514         }
515     }
516
517     fn defer_to_typeck(self) -> bool {
518         match self {
519             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
520             PathSource::Struct | PathSource::TupleStruct => true,
521             PathSource::Trait(_) | PathSource::TraitItem(..) |
522             PathSource::Visibility => false,
523         }
524     }
525
526     fn descr_expected(self) -> &'static str {
527         match self {
528             PathSource::Type => "type",
529             PathSource::Trait(_) => "trait",
530             PathSource::Pat => "unit struct/variant or constant",
531             PathSource::Struct => "struct, variant or union type",
532             PathSource::TupleStruct => "tuple struct/variant",
533             PathSource::Visibility => "module",
534             PathSource::TraitItem(ns) => match ns {
535                 TypeNS => "associated type",
536                 ValueNS => "method or associated constant",
537                 MacroNS => bug!("associated macro"),
538             },
539             PathSource::Expr(parent) => match parent.map(|p| &p.node) {
540                 // "function" here means "anything callable" rather than `Def::Fn`,
541                 // this is not precise but usually more helpful than just "value".
542                 Some(&ExprKind::Call(..)) => "function",
543                 _ => "value",
544             },
545         }
546     }
547
548     fn is_expected(self, def: Def) -> bool {
549         match self {
550             PathSource::Type => match def {
551                 Def::Struct(..) | Def::Union(..) | Def::Enum(..) |
552                 Def::Trait(..) | Def::TraitAlias(..) | Def::TyAlias(..) |
553                 Def::AssociatedTy(..) | Def::PrimTy(..) | Def::TyParam(..) |
554                 Def::SelfTy(..) | Def::Existential(..) |
555                 Def::ForeignTy(..) => true,
556                 _ => false,
557             },
558             PathSource::Trait(AliasPossibility::No) => match def {
559                 Def::Trait(..) => true,
560                 _ => false,
561             },
562             PathSource::Trait(AliasPossibility::Maybe) => match def {
563                 Def::Trait(..) => true,
564                 Def::TraitAlias(..) => true,
565                 _ => false,
566             },
567             PathSource::Expr(..) => match def {
568                 Def::StructCtor(_, CtorKind::Const) | Def::StructCtor(_, CtorKind::Fn) |
569                 Def::VariantCtor(_, CtorKind::Const) | Def::VariantCtor(_, CtorKind::Fn) |
570                 Def::Const(..) | Def::Static(..) | Def::Local(..) | Def::Upvar(..) |
571                 Def::Fn(..) | Def::Method(..) | Def::AssociatedConst(..) |
572                 Def::SelfCtor(..) => true,
573                 _ => false,
574             },
575             PathSource::Pat => match def {
576                 Def::StructCtor(_, CtorKind::Const) |
577                 Def::VariantCtor(_, CtorKind::Const) |
578                 Def::Const(..) | Def::AssociatedConst(..) |
579                 Def::SelfCtor(..) => true,
580                 _ => false,
581             },
582             PathSource::TupleStruct => match def {
583                 Def::StructCtor(_, CtorKind::Fn) |
584                 Def::VariantCtor(_, CtorKind::Fn) |
585                 Def::SelfCtor(..) => true,
586                 _ => false,
587             },
588             PathSource::Struct => match def {
589                 Def::Struct(..) | Def::Union(..) | Def::Variant(..) |
590                 Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => true,
591                 _ => false,
592             },
593             PathSource::TraitItem(ns) => match def {
594                 Def::AssociatedConst(..) | Def::Method(..) if ns == ValueNS => true,
595                 Def::AssociatedTy(..) if ns == TypeNS => true,
596                 _ => false,
597             },
598             PathSource::Visibility => match def {
599                 Def::Mod(..) => true,
600                 _ => false,
601             },
602         }
603     }
604
605     fn error_code(self, has_unexpected_resolution: bool) -> &'static str {
606         __diagnostic_used!(E0404);
607         __diagnostic_used!(E0405);
608         __diagnostic_used!(E0412);
609         __diagnostic_used!(E0422);
610         __diagnostic_used!(E0423);
611         __diagnostic_used!(E0425);
612         __diagnostic_used!(E0531);
613         __diagnostic_used!(E0532);
614         __diagnostic_used!(E0573);
615         __diagnostic_used!(E0574);
616         __diagnostic_used!(E0575);
617         __diagnostic_used!(E0576);
618         __diagnostic_used!(E0577);
619         __diagnostic_used!(E0578);
620         match (self, has_unexpected_resolution) {
621             (PathSource::Trait(_), true) => "E0404",
622             (PathSource::Trait(_), false) => "E0405",
623             (PathSource::Type, true) => "E0573",
624             (PathSource::Type, false) => "E0412",
625             (PathSource::Struct, true) => "E0574",
626             (PathSource::Struct, false) => "E0422",
627             (PathSource::Expr(..), true) => "E0423",
628             (PathSource::Expr(..), false) => "E0425",
629             (PathSource::Pat, true) | (PathSource::TupleStruct, true) => "E0532",
630             (PathSource::Pat, false) | (PathSource::TupleStruct, false) => "E0531",
631             (PathSource::TraitItem(..), true) => "E0575",
632             (PathSource::TraitItem(..), false) => "E0576",
633             (PathSource::Visibility, true) => "E0577",
634             (PathSource::Visibility, false) => "E0578",
635         }
636     }
637 }
638
639 // A minimal representation of a path segment. We use this in resolve because
640 // we synthesize 'path segments' which don't have the rest of an AST or HIR
641 // PathSegment.
642 #[derive(Clone, Copy, Debug)]
643 pub struct Segment {
644     ident: Ident,
645     id: Option<NodeId>,
646 }
647
648 impl Segment {
649     fn from_path(path: &Path) -> Vec<Segment> {
650         path.segments.iter().map(|s| s.into()).collect()
651     }
652
653     fn from_ident(ident: Ident) -> Segment {
654         Segment {
655             ident,
656             id: None,
657         }
658     }
659
660     fn names_to_string(segments: &[Segment]) -> String {
661         names_to_string(&segments.iter()
662                             .map(|seg| seg.ident)
663                             .collect::<Vec<_>>())
664     }
665 }
666
667 impl<'a> From<&'a ast::PathSegment> for Segment {
668     fn from(seg: &'a ast::PathSegment) -> Segment {
669         Segment {
670             ident: seg.ident,
671             id: Some(seg.id),
672         }
673     }
674 }
675
676 struct UsePlacementFinder {
677     target_module: NodeId,
678     span: Option<Span>,
679     found_use: bool,
680 }
681
682 impl UsePlacementFinder {
683     fn check(krate: &Crate, target_module: NodeId) -> (Option<Span>, bool) {
684         let mut finder = UsePlacementFinder {
685             target_module,
686             span: None,
687             found_use: false,
688         };
689         visit::walk_crate(&mut finder, krate);
690         (finder.span, finder.found_use)
691     }
692 }
693
694 impl<'tcx> Visitor<'tcx> for UsePlacementFinder {
695     fn visit_mod(
696         &mut self,
697         module: &'tcx ast::Mod,
698         _: Span,
699         _: &[ast::Attribute],
700         node_id: NodeId,
701     ) {
702         if self.span.is_some() {
703             return;
704         }
705         if node_id != self.target_module {
706             visit::walk_mod(self, module);
707             return;
708         }
709         // find a use statement
710         for item in &module.items {
711             match item.node {
712                 ItemKind::Use(..) => {
713                     // don't suggest placing a use before the prelude
714                     // import or other generated ones
715                     if item.span.ctxt().outer().expn_info().is_none() {
716                         self.span = Some(item.span.shrink_to_lo());
717                         self.found_use = true;
718                         return;
719                     }
720                 },
721                 // don't place use before extern crate
722                 ItemKind::ExternCrate(_) => {}
723                 // but place them before the first other item
724                 _ => if self.span.map_or(true, |span| item.span < span ) {
725                     if item.span.ctxt().outer().expn_info().is_none() {
726                         // don't insert between attributes and an item
727                         if item.attrs.is_empty() {
728                             self.span = Some(item.span.shrink_to_lo());
729                         } else {
730                             // find the first attribute on the item
731                             for attr in &item.attrs {
732                                 if self.span.map_or(true, |span| attr.span < span) {
733                                     self.span = Some(attr.span.shrink_to_lo());
734                                 }
735                             }
736                         }
737                     }
738                 },
739             }
740         }
741     }
742 }
743
744 /// This thing walks the whole crate in DFS manner, visiting each item, resolving names as it goes.
745 impl<'a, 'tcx, 'cl> Visitor<'tcx> for Resolver<'a, 'cl> {
746     fn visit_item(&mut self, item: &'tcx Item) {
747         self.resolve_item(item);
748     }
749     fn visit_arm(&mut self, arm: &'tcx Arm) {
750         self.resolve_arm(arm);
751     }
752     fn visit_block(&mut self, block: &'tcx Block) {
753         self.resolve_block(block);
754     }
755     fn visit_anon_const(&mut self, constant: &'tcx ast::AnonConst) {
756         self.with_constant_rib(|this| {
757             visit::walk_anon_const(this, constant);
758         });
759     }
760     fn visit_expr(&mut self, expr: &'tcx Expr) {
761         self.resolve_expr(expr, None);
762     }
763     fn visit_local(&mut self, local: &'tcx Local) {
764         self.resolve_local(local);
765     }
766     fn visit_ty(&mut self, ty: &'tcx Ty) {
767         match ty.node {
768             TyKind::Path(ref qself, ref path) => {
769                 self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
770             }
771             TyKind::ImplicitSelf => {
772                 let self_ty = keywords::SelfType.ident();
773                 let def = self.resolve_ident_in_lexical_scope(self_ty, TypeNS, Some(ty.id), ty.span)
774                               .map_or(Def::Err, |d| d.def());
775                 self.record_def(ty.id, PathResolution::new(def));
776             }
777             _ => (),
778         }
779         visit::walk_ty(self, ty);
780     }
781     fn visit_poly_trait_ref(&mut self,
782                             tref: &'tcx ast::PolyTraitRef,
783                             m: &'tcx ast::TraitBoundModifier) {
784         self.smart_resolve_path(tref.trait_ref.ref_id, None,
785                                 &tref.trait_ref.path, PathSource::Trait(AliasPossibility::Maybe));
786         visit::walk_poly_trait_ref(self, tref, m);
787     }
788     fn visit_foreign_item(&mut self, foreign_item: &'tcx ForeignItem) {
789         let type_parameters = match foreign_item.node {
790             ForeignItemKind::Fn(_, ref generics) => {
791                 HasTypeParameters(generics, ItemRibKind)
792             }
793             ForeignItemKind::Static(..) => NoTypeParameters,
794             ForeignItemKind::Ty => NoTypeParameters,
795             ForeignItemKind::Macro(..) => NoTypeParameters,
796         };
797         self.with_type_parameter_rib(type_parameters, |this| {
798             visit::walk_foreign_item(this, foreign_item);
799         });
800     }
801     fn visit_fn(&mut self,
802                 function_kind: FnKind<'tcx>,
803                 declaration: &'tcx FnDecl,
804                 _: Span,
805                 node_id: NodeId)
806     {
807         let (rib_kind, asyncness) = match function_kind {
808             FnKind::ItemFn(_, ref header, ..) =>
809                 (ItemRibKind, header.asyncness),
810             FnKind::Method(_, ref sig, _, _) =>
811                 (TraitOrImplItemRibKind, sig.header.asyncness),
812             FnKind::Closure(_) =>
813                 // Async closures aren't resolved through `visit_fn`-- they're
814                 // processed separately
815                 (ClosureRibKind(node_id), IsAsync::NotAsync),
816         };
817
818         // Create a value rib for the function.
819         self.ribs[ValueNS].push(Rib::new(rib_kind));
820
821         // Create a label rib for the function.
822         self.label_ribs.push(Rib::new(rib_kind));
823
824         // Add each argument to the rib.
825         let mut bindings_list = FxHashMap::default();
826         for argument in &declaration.inputs {
827             self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
828
829             self.visit_ty(&argument.ty);
830
831             debug!("(resolving function) recorded argument");
832         }
833         visit::walk_fn_ret_ty(self, &declaration.output);
834
835         // Resolve the function body, potentially inside the body of an async closure
836         if let IsAsync::Async { closure_id, .. } = asyncness {
837             let rib_kind = ClosureRibKind(closure_id);
838             self.ribs[ValueNS].push(Rib::new(rib_kind));
839             self.label_ribs.push(Rib::new(rib_kind));
840         }
841
842         match function_kind {
843             FnKind::ItemFn(.., body) |
844             FnKind::Method(.., body) => {
845                 self.visit_block(body);
846             }
847             FnKind::Closure(body) => {
848                 self.visit_expr(body);
849             }
850         };
851
852         // Leave the body of the async closure
853         if asyncness.is_async() {
854             self.label_ribs.pop();
855             self.ribs[ValueNS].pop();
856         }
857
858         debug!("(resolving function) leaving function");
859
860         self.label_ribs.pop();
861         self.ribs[ValueNS].pop();
862     }
863     fn visit_generics(&mut self, generics: &'tcx Generics) {
864         // For type parameter defaults, we have to ban access
865         // to following type parameters, as the Substs can only
866         // provide previous type parameters as they're built. We
867         // put all the parameters on the ban list and then remove
868         // them one by one as they are processed and become available.
869         let mut default_ban_rib = Rib::new(ForwardTyParamBanRibKind);
870         let mut found_default = false;
871         default_ban_rib.bindings.extend(generics.params.iter()
872             .filter_map(|param| match param.kind {
873                 GenericParamKind::Lifetime { .. } => None,
874                 GenericParamKind::Type { ref default, .. } => {
875                     found_default |= default.is_some();
876                     if found_default {
877                         Some((Ident::with_empty_ctxt(param.ident.name), Def::Err))
878                     } else {
879                         None
880                     }
881                 }
882             }));
883
884         for param in &generics.params {
885             match param.kind {
886                 GenericParamKind::Lifetime { .. } => self.visit_generic_param(param),
887                 GenericParamKind::Type { ref default, .. } => {
888                     for bound in &param.bounds {
889                         self.visit_param_bound(bound);
890                     }
891
892                     if let Some(ref ty) = default {
893                         self.ribs[TypeNS].push(default_ban_rib);
894                         self.visit_ty(ty);
895                         default_ban_rib = self.ribs[TypeNS].pop().unwrap();
896                     }
897
898                     // Allow all following defaults to refer to this type parameter.
899                     default_ban_rib.bindings.remove(&Ident::with_empty_ctxt(param.ident.name));
900                 }
901             }
902         }
903         for p in &generics.where_clause.predicates {
904             self.visit_where_predicate(p);
905         }
906     }
907 }
908
909 #[derive(Copy, Clone)]
910 enum TypeParameters<'a, 'b> {
911     NoTypeParameters,
912     HasTypeParameters(// Type parameters.
913                       &'b Generics,
914
915                       // The kind of the rib used for type parameters.
916                       RibKind<'a>),
917 }
918
919 /// The rib kind controls the translation of local
920 /// definitions (`Def::Local`) to upvars (`Def::Upvar`).
921 #[derive(Copy, Clone, Debug)]
922 enum RibKind<'a> {
923     /// No translation needs to be applied.
924     NormalRibKind,
925
926     /// We passed through a closure scope at the given node ID.
927     /// Translate upvars as appropriate.
928     ClosureRibKind(NodeId /* func id */),
929
930     /// We passed through an impl or trait and are now in one of its
931     /// methods or associated types. Allow references to ty params that impl or trait
932     /// binds. Disallow any other upvars (including other ty params that are
933     /// upvars).
934     TraitOrImplItemRibKind,
935
936     /// We passed through an item scope. Disallow upvars.
937     ItemRibKind,
938
939     /// We're in a constant item. Can't refer to dynamic stuff.
940     ConstantItemRibKind,
941
942     /// We passed through a module.
943     ModuleRibKind(Module<'a>),
944
945     /// We passed through a `macro_rules!` statement
946     MacroDefinition(DefId),
947
948     /// All bindings in this rib are type parameters that can't be used
949     /// from the default of a type parameter because they're not declared
950     /// before said type parameter. Also see the `visit_generics` override.
951     ForwardTyParamBanRibKind,
952 }
953
954 /// One local scope.
955 ///
956 /// A rib represents a scope names can live in. Note that these appear in many places, not just
957 /// around braces. At any place where the list of accessible names (of the given namespace)
958 /// changes or a new restrictions on the name accessibility are introduced, a new rib is put onto a
959 /// stack. This may be, for example, a `let` statement (because it introduces variables), a macro,
960 /// etc.
961 ///
962 /// Different [rib kinds](enum.RibKind) are transparent for different names.
963 ///
964 /// The resolution keeps a separate stack of ribs as it traverses the AST for each namespace. When
965 /// resolving, the name is looked up from inside out.
966 #[derive(Debug)]
967 struct Rib<'a> {
968     bindings: FxHashMap<Ident, Def>,
969     kind: RibKind<'a>,
970 }
971
972 impl<'a> Rib<'a> {
973     fn new(kind: RibKind<'a>) -> Rib<'a> {
974         Rib {
975             bindings: Default::default(),
976             kind,
977         }
978     }
979 }
980
981 /// An intermediate resolution result.
982 ///
983 /// This refers to the thing referred by a name. The difference between `Def` and `Item` is that
984 /// items are visible in their whole block, while defs only from the place they are defined
985 /// forward.
986 enum LexicalScopeBinding<'a> {
987     Item(&'a NameBinding<'a>),
988     Def(Def),
989 }
990
991 impl<'a> LexicalScopeBinding<'a> {
992     fn item(self) -> Option<&'a NameBinding<'a>> {
993         match self {
994             LexicalScopeBinding::Item(binding) => Some(binding),
995             _ => None,
996         }
997     }
998
999     fn def(self) -> Def {
1000         match self {
1001             LexicalScopeBinding::Item(binding) => binding.def(),
1002             LexicalScopeBinding::Def(def) => def,
1003         }
1004     }
1005 }
1006
1007 #[derive(Copy, Clone, Debug)]
1008 enum ModuleOrUniformRoot<'a> {
1009     /// Regular module.
1010     Module(Module<'a>),
1011
1012     /// Virtual module that denotes resolution in crate root with fallback to extern prelude.
1013     CrateRootAndExternPrelude,
1014
1015     /// Virtual module that denotes resolution in extern prelude.
1016     /// Used for paths starting with `::` on 2018 edition or `extern::`.
1017     ExternPrelude,
1018
1019     /// Virtual module that denotes resolution in current scope.
1020     /// Used only for resolving single-segment imports. The reason it exists is that import paths
1021     /// are always split into two parts, the first of which should be some kind of module.
1022     CurrentScope,
1023 }
1024
1025 impl<'a> PartialEq for ModuleOrUniformRoot<'a> {
1026     fn eq(&self, other: &Self) -> bool {
1027         match (*self, *other) {
1028             (ModuleOrUniformRoot::Module(lhs),
1029              ModuleOrUniformRoot::Module(rhs)) => ptr::eq(lhs, rhs),
1030             (ModuleOrUniformRoot::CrateRootAndExternPrelude,
1031              ModuleOrUniformRoot::CrateRootAndExternPrelude) |
1032             (ModuleOrUniformRoot::ExternPrelude, ModuleOrUniformRoot::ExternPrelude) |
1033             (ModuleOrUniformRoot::CurrentScope, ModuleOrUniformRoot::CurrentScope) => true,
1034             _ => false,
1035         }
1036     }
1037 }
1038
1039 #[derive(Clone, Debug)]
1040 enum PathResult<'a> {
1041     Module(ModuleOrUniformRoot<'a>),
1042     NonModule(PathResolution),
1043     Indeterminate,
1044     Failed(Span, String, bool /* is the error from the last segment? */),
1045 }
1046
1047 enum ModuleKind {
1048     /// An anonymous module, eg. just a block.
1049     ///
1050     /// ```
1051     /// fn main() {
1052     ///     fn f() {} // (1)
1053     ///     { // This is an anonymous module
1054     ///         f(); // This resolves to (2) as we are inside the block.
1055     ///         fn f() {} // (2)
1056     ///     }
1057     ///     f(); // Resolves to (1)
1058     /// }
1059     /// ```
1060     Block(NodeId),
1061     /// Any module with a name.
1062     ///
1063     /// This could be:
1064     ///
1065     /// * A normal module â€’ either `mod from_file;` or `mod from_block { }`.
1066     /// * A trait or an enum (it implicitly contains associated types, methods and variant
1067     ///   constructors).
1068     Def(Def, Name),
1069 }
1070
1071 /// One node in the tree of modules.
1072 pub struct ModuleData<'a> {
1073     parent: Option<Module<'a>>,
1074     kind: ModuleKind,
1075
1076     // The def id of the closest normal module (`mod`) ancestor (including this module).
1077     normal_ancestor_id: DefId,
1078
1079     resolutions: RefCell<FxHashMap<(Ident, Namespace), &'a RefCell<NameResolution<'a>>>>,
1080     single_segment_macro_resolutions: RefCell<Vec<(Ident, MacroKind, ParentScope<'a>,
1081                                                    Option<&'a NameBinding<'a>>)>>,
1082     multi_segment_macro_resolutions: RefCell<Vec<(Vec<Segment>, Span, MacroKind, ParentScope<'a>,
1083                                                   Option<Def>)>>,
1084     builtin_attrs: RefCell<Vec<(Ident, ParentScope<'a>)>>,
1085
1086     // Macro invocations that can expand into items in this module.
1087     unresolved_invocations: RefCell<FxHashSet<Mark>>,
1088
1089     no_implicit_prelude: bool,
1090
1091     glob_importers: RefCell<Vec<&'a ImportDirective<'a>>>,
1092     globs: RefCell<Vec<&'a ImportDirective<'a>>>,
1093
1094     // Used to memoize the traits in this module for faster searches through all traits in scope.
1095     traits: RefCell<Option<Box<[(Ident, &'a NameBinding<'a>)]>>>,
1096
1097     // Whether this module is populated. If not populated, any attempt to
1098     // access the children must be preceded with a
1099     // `populate_module_if_necessary` call.
1100     populated: Cell<bool>,
1101
1102     /// Span of the module itself. Used for error reporting.
1103     span: Span,
1104
1105     expansion: Mark,
1106 }
1107
1108 type Module<'a> = &'a ModuleData<'a>;
1109
1110 impl<'a> ModuleData<'a> {
1111     fn new(parent: Option<Module<'a>>,
1112            kind: ModuleKind,
1113            normal_ancestor_id: DefId,
1114            expansion: Mark,
1115            span: Span) -> Self {
1116         ModuleData {
1117             parent,
1118             kind,
1119             normal_ancestor_id,
1120             resolutions: Default::default(),
1121             single_segment_macro_resolutions: RefCell::new(Vec::new()),
1122             multi_segment_macro_resolutions: RefCell::new(Vec::new()),
1123             builtin_attrs: RefCell::new(Vec::new()),
1124             unresolved_invocations: Default::default(),
1125             no_implicit_prelude: false,
1126             glob_importers: RefCell::new(Vec::new()),
1127             globs: RefCell::new(Vec::new()),
1128             traits: RefCell::new(None),
1129             populated: Cell::new(normal_ancestor_id.is_local()),
1130             span,
1131             expansion,
1132         }
1133     }
1134
1135     fn for_each_child<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1136         for (&(ident, ns), name_resolution) in self.resolutions.borrow().iter() {
1137             name_resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1138         }
1139     }
1140
1141     fn for_each_child_stable<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1142         let resolutions = self.resolutions.borrow();
1143         let mut resolutions = resolutions.iter().collect::<Vec<_>>();
1144         resolutions.sort_by_cached_key(|&(&(ident, ns), _)| (ident.as_str(), ns));
1145         for &(&(ident, ns), &resolution) in resolutions.iter() {
1146             resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1147         }
1148     }
1149
1150     fn def(&self) -> Option<Def> {
1151         match self.kind {
1152             ModuleKind::Def(def, _) => Some(def),
1153             _ => None,
1154         }
1155     }
1156
1157     fn def_id(&self) -> Option<DefId> {
1158         self.def().as_ref().map(Def::def_id)
1159     }
1160
1161     // `self` resolves to the first module ancestor that `is_normal`.
1162     fn is_normal(&self) -> bool {
1163         match self.kind {
1164             ModuleKind::Def(Def::Mod(_), _) => true,
1165             _ => false,
1166         }
1167     }
1168
1169     fn is_trait(&self) -> bool {
1170         match self.kind {
1171             ModuleKind::Def(Def::Trait(_), _) => true,
1172             _ => false,
1173         }
1174     }
1175
1176     fn is_local(&self) -> bool {
1177         self.normal_ancestor_id.is_local()
1178     }
1179
1180     fn nearest_item_scope(&'a self) -> Module<'a> {
1181         if self.is_trait() { self.parent.unwrap() } else { self }
1182     }
1183
1184     fn is_ancestor_of(&self, mut other: &Self) -> bool {
1185         while !ptr::eq(self, other) {
1186             if let Some(parent) = other.parent {
1187                 other = parent;
1188             } else {
1189                 return false;
1190             }
1191         }
1192         true
1193     }
1194 }
1195
1196 impl<'a> fmt::Debug for ModuleData<'a> {
1197     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1198         write!(f, "{:?}", self.def())
1199     }
1200 }
1201
1202 /// Records a possibly-private value, type, or module definition.
1203 #[derive(Clone, Debug)]
1204 pub struct NameBinding<'a> {
1205     kind: NameBindingKind<'a>,
1206     expansion: Mark,
1207     span: Span,
1208     vis: ty::Visibility,
1209 }
1210
1211 pub trait ToNameBinding<'a> {
1212     fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a>;
1213 }
1214
1215 impl<'a> ToNameBinding<'a> for &'a NameBinding<'a> {
1216     fn to_name_binding(self, _: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> {
1217         self
1218     }
1219 }
1220
1221 #[derive(Clone, Debug)]
1222 enum NameBindingKind<'a> {
1223     Def(Def, /* is_macro_export */ bool),
1224     Module(Module<'a>),
1225     Import {
1226         binding: &'a NameBinding<'a>,
1227         directive: &'a ImportDirective<'a>,
1228         used: Cell<bool>,
1229     },
1230     Ambiguity {
1231         kind: AmbiguityKind,
1232         b1: &'a NameBinding<'a>,
1233         b2: &'a NameBinding<'a>,
1234     }
1235 }
1236
1237 struct PrivacyError<'a>(Span, Ident, &'a NameBinding<'a>);
1238
1239 struct UseError<'a> {
1240     err: DiagnosticBuilder<'a>,
1241     /// Attach `use` statements for these candidates
1242     candidates: Vec<ImportSuggestion>,
1243     /// The node id of the module to place the use statements in
1244     node_id: NodeId,
1245     /// Whether the diagnostic should state that it's "better"
1246     better: bool,
1247 }
1248
1249 #[derive(Clone, Copy, PartialEq, Debug)]
1250 enum AmbiguityKind {
1251     Import,
1252     AbsolutePath,
1253     BuiltinAttr,
1254     DeriveHelper,
1255     LegacyHelperVsPrelude,
1256     LegacyVsModern,
1257     GlobVsOuter,
1258     GlobVsGlob,
1259     GlobVsExpanded,
1260     MoreExpandedVsOuter,
1261 }
1262
1263 impl AmbiguityKind {
1264     fn descr(self) -> &'static str {
1265         match self {
1266             AmbiguityKind::Import =>
1267                 "name vs any other name during import resolution",
1268             AmbiguityKind::AbsolutePath =>
1269                 "name in the crate root vs extern crate during absolute path resolution",
1270             AmbiguityKind::BuiltinAttr =>
1271                 "built-in attribute vs any other name",
1272             AmbiguityKind::DeriveHelper =>
1273                 "derive helper attribute vs any other name",
1274             AmbiguityKind::LegacyHelperVsPrelude =>
1275                 "legacy plugin helper attribute vs name from prelude",
1276             AmbiguityKind::LegacyVsModern =>
1277                 "`macro_rules` vs non-`macro_rules` from other module",
1278             AmbiguityKind::GlobVsOuter =>
1279                 "glob import vs any other name from outer scope during import/macro resolution",
1280             AmbiguityKind::GlobVsGlob =>
1281                 "glob import vs glob import in the same module",
1282             AmbiguityKind::GlobVsExpanded =>
1283                 "glob import vs macro-expanded name in the same \
1284                  module during import/macro resolution",
1285             AmbiguityKind::MoreExpandedVsOuter =>
1286                 "macro-expanded name vs less macro-expanded name \
1287                  from outer scope during import/macro resolution",
1288         }
1289     }
1290 }
1291
1292 /// Miscellaneous bits of metadata for better ambiguity error reporting.
1293 #[derive(Clone, Copy, PartialEq)]
1294 enum AmbiguityErrorMisc {
1295     SuggestSelf,
1296     FromPrelude,
1297     None,
1298 }
1299
1300 struct AmbiguityError<'a> {
1301     kind: AmbiguityKind,
1302     ident: Ident,
1303     b1: &'a NameBinding<'a>,
1304     b2: &'a NameBinding<'a>,
1305     misc1: AmbiguityErrorMisc,
1306     misc2: AmbiguityErrorMisc,
1307 }
1308
1309 impl<'a> NameBinding<'a> {
1310     fn module(&self) -> Option<Module<'a>> {
1311         match self.kind {
1312             NameBindingKind::Module(module) => Some(module),
1313             NameBindingKind::Import { binding, .. } => binding.module(),
1314             _ => None,
1315         }
1316     }
1317
1318     fn def(&self) -> Def {
1319         match self.kind {
1320             NameBindingKind::Def(def, _) => def,
1321             NameBindingKind::Module(module) => module.def().unwrap(),
1322             NameBindingKind::Import { binding, .. } => binding.def(),
1323             NameBindingKind::Ambiguity { .. } => Def::Err,
1324         }
1325     }
1326
1327     fn def_ignoring_ambiguity(&self) -> Def {
1328         match self.kind {
1329             NameBindingKind::Import { binding, .. } => binding.def_ignoring_ambiguity(),
1330             NameBindingKind::Ambiguity { b1, .. } => b1.def_ignoring_ambiguity(),
1331             _ => self.def(),
1332         }
1333     }
1334
1335     // We sometimes need to treat variants as `pub` for backwards compatibility
1336     fn pseudo_vis(&self) -> ty::Visibility {
1337         if self.is_variant() && self.def().def_id().is_local() {
1338             ty::Visibility::Public
1339         } else {
1340             self.vis
1341         }
1342     }
1343
1344     fn is_variant(&self) -> bool {
1345         match self.kind {
1346             NameBindingKind::Def(Def::Variant(..), _) |
1347             NameBindingKind::Def(Def::VariantCtor(..), _) => true,
1348             _ => false,
1349         }
1350     }
1351
1352     fn is_extern_crate(&self) -> bool {
1353         match self.kind {
1354             NameBindingKind::Import {
1355                 directive: &ImportDirective {
1356                     subclass: ImportDirectiveSubclass::ExternCrate { .. }, ..
1357                 }, ..
1358             } => true,
1359             NameBindingKind::Module(
1360                 &ModuleData { kind: ModuleKind::Def(Def::Mod(def_id), _), .. }
1361             ) => def_id.index == CRATE_DEF_INDEX,
1362             _ => false,
1363         }
1364     }
1365
1366     fn is_import(&self) -> bool {
1367         match self.kind {
1368             NameBindingKind::Import { .. } => true,
1369             _ => false,
1370         }
1371     }
1372
1373     fn is_glob_import(&self) -> bool {
1374         match self.kind {
1375             NameBindingKind::Import { directive, .. } => directive.is_glob(),
1376             NameBindingKind::Ambiguity { b1, .. } => b1.is_glob_import(),
1377             _ => false,
1378         }
1379     }
1380
1381     fn is_importable(&self) -> bool {
1382         match self.def() {
1383             Def::AssociatedConst(..) | Def::Method(..) | Def::AssociatedTy(..) => false,
1384             _ => true,
1385         }
1386     }
1387
1388     fn is_macro_def(&self) -> bool {
1389         match self.kind {
1390             NameBindingKind::Def(Def::Macro(..), _) => true,
1391             _ => false,
1392         }
1393     }
1394
1395     fn macro_kind(&self) -> Option<MacroKind> {
1396         match self.def_ignoring_ambiguity() {
1397             Def::Macro(_, kind) => Some(kind),
1398             Def::NonMacroAttr(..) => Some(MacroKind::Attr),
1399             _ => None,
1400         }
1401     }
1402
1403     fn descr(&self) -> &'static str {
1404         if self.is_extern_crate() { "extern crate" } else { self.def().kind_name() }
1405     }
1406
1407     fn article(&self) -> &'static str {
1408         if self.is_extern_crate() { "an" } else { self.def().article() }
1409     }
1410
1411     // Suppose that we resolved macro invocation with `invoc_parent_expansion` to binding `binding`
1412     // at some expansion round `max(invoc, binding)` when they both emerged from macros.
1413     // Then this function returns `true` if `self` may emerge from a macro *after* that
1414     // in some later round and screw up our previously found resolution.
1415     // See more detailed explanation in
1416     // https://github.com/rust-lang/rust/pull/53778#issuecomment-419224049
1417     fn may_appear_after(&self, invoc_parent_expansion: Mark, binding: &NameBinding) -> bool {
1418         // self > max(invoc, binding) => !(self <= invoc || self <= binding)
1419         // Expansions are partially ordered, so "may appear after" is an inversion of
1420         // "certainly appears before or simultaneously" and includes unordered cases.
1421         let self_parent_expansion = self.expansion;
1422         let other_parent_expansion = binding.expansion;
1423         let certainly_before_other_or_simultaneously =
1424             other_parent_expansion.is_descendant_of(self_parent_expansion);
1425         let certainly_before_invoc_or_simultaneously =
1426             invoc_parent_expansion.is_descendant_of(self_parent_expansion);
1427         !(certainly_before_other_or_simultaneously || certainly_before_invoc_or_simultaneously)
1428     }
1429 }
1430
1431 /// Interns the names of the primitive types.
1432 ///
1433 /// All other types are defined somewhere and possibly imported, but the primitive ones need
1434 /// special handling, since they have no place of origin.
1435 #[derive(Default)]
1436 struct PrimitiveTypeTable {
1437     primitive_types: FxHashMap<Name, PrimTy>,
1438 }
1439
1440 impl PrimitiveTypeTable {
1441     fn new() -> PrimitiveTypeTable {
1442         let mut table = PrimitiveTypeTable::default();
1443
1444         table.intern("bool", Bool);
1445         table.intern("char", Char);
1446         table.intern("f32", Float(FloatTy::F32));
1447         table.intern("f64", Float(FloatTy::F64));
1448         table.intern("isize", Int(IntTy::Isize));
1449         table.intern("i8", Int(IntTy::I8));
1450         table.intern("i16", Int(IntTy::I16));
1451         table.intern("i32", Int(IntTy::I32));
1452         table.intern("i64", Int(IntTy::I64));
1453         table.intern("i128", Int(IntTy::I128));
1454         table.intern("str", Str);
1455         table.intern("usize", Uint(UintTy::Usize));
1456         table.intern("u8", Uint(UintTy::U8));
1457         table.intern("u16", Uint(UintTy::U16));
1458         table.intern("u32", Uint(UintTy::U32));
1459         table.intern("u64", Uint(UintTy::U64));
1460         table.intern("u128", Uint(UintTy::U128));
1461         table
1462     }
1463
1464     fn intern(&mut self, string: &str, primitive_type: PrimTy) {
1465         self.primitive_types.insert(Symbol::intern(string), primitive_type);
1466     }
1467 }
1468
1469 #[derive(Default, Clone)]
1470 pub struct ExternPreludeEntry<'a> {
1471     extern_crate_item: Option<&'a NameBinding<'a>>,
1472     pub introduced_by_item: bool,
1473 }
1474
1475 /// The main resolver class.
1476 ///
1477 /// This is the visitor that walks the whole crate.
1478 pub struct Resolver<'a, 'b: 'a> {
1479     session: &'a Session,
1480     cstore: &'a CStore,
1481
1482     pub definitions: Definitions,
1483
1484     graph_root: Module<'a>,
1485
1486     prelude: Option<Module<'a>>,
1487     pub extern_prelude: FxHashMap<Ident, ExternPreludeEntry<'a>>,
1488
1489     /// n.b. This is used only for better diagnostics, not name resolution itself.
1490     has_self: FxHashSet<DefId>,
1491
1492     /// Names of fields of an item `DefId` accessible with dot syntax.
1493     /// Used for hints during error reporting.
1494     field_names: FxHashMap<DefId, Vec<Name>>,
1495
1496     /// All imports known to succeed or fail.
1497     determined_imports: Vec<&'a ImportDirective<'a>>,
1498
1499     /// All non-determined imports.
1500     indeterminate_imports: Vec<&'a ImportDirective<'a>>,
1501
1502     /// The module that represents the current item scope.
1503     current_module: Module<'a>,
1504
1505     /// The current set of local scopes for types and values.
1506     /// FIXME #4948: Reuse ribs to avoid allocation.
1507     ribs: PerNS<Vec<Rib<'a>>>,
1508
1509     /// The current set of local scopes, for labels.
1510     label_ribs: Vec<Rib<'a>>,
1511
1512     /// The trait that the current context can refer to.
1513     current_trait_ref: Option<(Module<'a>, TraitRef)>,
1514
1515     /// The current self type if inside an impl (used for better errors).
1516     current_self_type: Option<Ty>,
1517
1518     /// The current self item if inside an ADT (used for better errors).
1519     current_self_item: Option<NodeId>,
1520
1521     /// FIXME: Refactor things so that this is passed through arguments and not resolver.
1522     last_import_segment: bool,
1523
1524     /// The idents for the primitive types.
1525     primitive_type_table: PrimitiveTypeTable,
1526
1527     def_map: DefMap,
1528     import_map: ImportMap,
1529     pub freevars: FreevarMap,
1530     freevars_seen: NodeMap<NodeMap<usize>>,
1531     pub export_map: ExportMap,
1532     pub trait_map: TraitMap,
1533
1534     /// A map from nodes to anonymous modules.
1535     /// Anonymous modules are pseudo-modules that are implicitly created around items
1536     /// contained within blocks.
1537     ///
1538     /// For example, if we have this:
1539     ///
1540     ///  fn f() {
1541     ///      fn g() {
1542     ///          ...
1543     ///      }
1544     ///  }
1545     ///
1546     /// There will be an anonymous module created around `g` with the ID of the
1547     /// entry block for `f`.
1548     block_map: NodeMap<Module<'a>>,
1549     module_map: FxHashMap<DefId, Module<'a>>,
1550     extern_module_map: FxHashMap<(DefId, bool /* MacrosOnly? */), Module<'a>>,
1551     binding_parent_modules: FxHashMap<PtrKey<'a, NameBinding<'a>>, Module<'a>>,
1552
1553     pub make_glob_map: bool,
1554     /// Maps imports to the names of items actually imported (this actually maps
1555     /// all imports, but only glob imports are actually interesting).
1556     pub glob_map: GlobMap,
1557
1558     used_imports: FxHashSet<(NodeId, Namespace)>,
1559     pub maybe_unused_trait_imports: NodeSet,
1560     pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
1561
1562     /// A list of labels as of yet unused. Labels will be removed from this map when
1563     /// they are used (in a `break` or `continue` statement)
1564     pub unused_labels: FxHashMap<NodeId, Span>,
1565
1566     /// privacy errors are delayed until the end in order to deduplicate them
1567     privacy_errors: Vec<PrivacyError<'a>>,
1568     /// ambiguity errors are delayed for deduplication
1569     ambiguity_errors: Vec<AmbiguityError<'a>>,
1570     /// `use` injections are delayed for better placement and deduplication
1571     use_injections: Vec<UseError<'a>>,
1572     /// crate-local macro expanded `macro_export` referred to by a module-relative path
1573     macro_expanded_macro_export_errors: BTreeSet<(Span, Span)>,
1574
1575     arenas: &'a ResolverArenas<'a>,
1576     dummy_binding: &'a NameBinding<'a>,
1577
1578     crate_loader: &'a mut CrateLoader<'b>,
1579     macro_names: FxHashSet<Ident>,
1580     builtin_macros: FxHashMap<Name, &'a NameBinding<'a>>,
1581     macro_use_prelude: FxHashMap<Name, &'a NameBinding<'a>>,
1582     pub all_macros: FxHashMap<Name, Def>,
1583     macro_map: FxHashMap<DefId, Lrc<SyntaxExtension>>,
1584     macro_defs: FxHashMap<Mark, DefId>,
1585     local_macro_def_scopes: FxHashMap<NodeId, Module<'a>>,
1586     pub whitelisted_legacy_custom_derives: Vec<Name>,
1587     pub found_unresolved_macro: bool,
1588
1589     /// List of crate local macros that we need to warn about as being unused.
1590     /// Right now this only includes macro_rules! macros, and macros 2.0.
1591     unused_macros: FxHashSet<DefId>,
1592
1593     /// Maps the `Mark` of an expansion to its containing module or block.
1594     invocations: FxHashMap<Mark, &'a InvocationData<'a>>,
1595
1596     /// Avoid duplicated errors for "name already defined".
1597     name_already_seen: FxHashMap<Name, Span>,
1598
1599     potentially_unused_imports: Vec<&'a ImportDirective<'a>>,
1600
1601     /// This table maps struct IDs into struct constructor IDs,
1602     /// it's not used during normal resolution, only for better error reporting.
1603     struct_constructors: DefIdMap<(Def, ty::Visibility)>,
1604
1605     /// Only used for better errors on `fn(): fn()`
1606     current_type_ascription: Vec<Span>,
1607
1608     injected_crate: Option<Module<'a>>,
1609 }
1610
1611 /// Nothing really interesting here, it just provides memory for the rest of the crate.
1612 #[derive(Default)]
1613 pub struct ResolverArenas<'a> {
1614     modules: arena::TypedArena<ModuleData<'a>>,
1615     local_modules: RefCell<Vec<Module<'a>>>,
1616     name_bindings: arena::TypedArena<NameBinding<'a>>,
1617     import_directives: arena::TypedArena<ImportDirective<'a>>,
1618     name_resolutions: arena::TypedArena<RefCell<NameResolution<'a>>>,
1619     invocation_data: arena::TypedArena<InvocationData<'a>>,
1620     legacy_bindings: arena::TypedArena<LegacyBinding<'a>>,
1621 }
1622
1623 impl<'a> ResolverArenas<'a> {
1624     fn alloc_module(&'a self, module: ModuleData<'a>) -> Module<'a> {
1625         let module = self.modules.alloc(module);
1626         if module.def_id().map(|def_id| def_id.is_local()).unwrap_or(true) {
1627             self.local_modules.borrow_mut().push(module);
1628         }
1629         module
1630     }
1631     fn local_modules(&'a self) -> ::std::cell::Ref<'a, Vec<Module<'a>>> {
1632         self.local_modules.borrow()
1633     }
1634     fn alloc_name_binding(&'a self, name_binding: NameBinding<'a>) -> &'a NameBinding<'a> {
1635         self.name_bindings.alloc(name_binding)
1636     }
1637     fn alloc_import_directive(&'a self, import_directive: ImportDirective<'a>)
1638                               -> &'a ImportDirective {
1639         self.import_directives.alloc(import_directive)
1640     }
1641     fn alloc_name_resolution(&'a self) -> &'a RefCell<NameResolution<'a>> {
1642         self.name_resolutions.alloc(Default::default())
1643     }
1644     fn alloc_invocation_data(&'a self, expansion_data: InvocationData<'a>)
1645                              -> &'a InvocationData<'a> {
1646         self.invocation_data.alloc(expansion_data)
1647     }
1648     fn alloc_legacy_binding(&'a self, binding: LegacyBinding<'a>) -> &'a LegacyBinding<'a> {
1649         self.legacy_bindings.alloc(binding)
1650     }
1651 }
1652
1653 impl<'a, 'b: 'a, 'cl: 'b> ty::DefIdTree for &'a Resolver<'b, 'cl> {
1654     fn parent(self, id: DefId) -> Option<DefId> {
1655         match id.krate {
1656             LOCAL_CRATE => self.definitions.def_key(id.index).parent,
1657             _ => self.cstore.def_key(id).parent,
1658         }.map(|index| DefId { index, ..id })
1659     }
1660 }
1661
1662 /// This interface is used through the AST→HIR step, to embed full paths into the HIR. After that
1663 /// the resolver is no longer needed as all the relevant information is inline.
1664 impl<'a, 'cl> hir::lowering::Resolver for Resolver<'a, 'cl> {
1665     fn resolve_hir_path(
1666         &mut self,
1667         path: &ast::Path,
1668         is_value: bool,
1669     ) -> hir::Path {
1670         self.resolve_hir_path_cb(path, is_value,
1671                                  |resolver, span, error| resolve_error(resolver, span, error))
1672     }
1673
1674     fn resolve_str_path(
1675         &mut self,
1676         span: Span,
1677         crate_root: Option<&str>,
1678         components: &[&str],
1679         is_value: bool
1680     ) -> hir::Path {
1681         let segments = iter::once(keywords::CrateRoot.ident())
1682             .chain(
1683                 crate_root.into_iter()
1684                     .chain(components.iter().cloned())
1685                     .map(Ident::from_str)
1686             ).map(|i| self.new_ast_path_segment(i)).collect::<Vec<_>>();
1687
1688
1689         let path = ast::Path {
1690             span,
1691             segments,
1692         };
1693
1694         self.resolve_hir_path(&path, is_value)
1695     }
1696
1697     fn get_resolution(&mut self, id: NodeId) -> Option<PathResolution> {
1698         self.def_map.get(&id).cloned()
1699     }
1700
1701     fn get_import(&mut self, id: NodeId) -> PerNS<Option<PathResolution>> {
1702         self.import_map.get(&id).cloned().unwrap_or_default()
1703     }
1704
1705     fn definitions(&mut self) -> &mut Definitions {
1706         &mut self.definitions
1707     }
1708 }
1709
1710 impl<'a, 'crateloader> Resolver<'a, 'crateloader> {
1711     /// Rustdoc uses this to resolve things in a recoverable way. ResolutionError<'a>
1712     /// isn't something that can be returned because it can't be made to live that long,
1713     /// and also it's a private type. Fortunately rustdoc doesn't need to know the error,
1714     /// just that an error occurred.
1715     pub fn resolve_str_path_error(&mut self, span: Span, path_str: &str, is_value: bool)
1716         -> Result<hir::Path, ()> {
1717         use std::iter;
1718         let mut errored = false;
1719
1720         let path = if path_str.starts_with("::") {
1721             ast::Path {
1722                 span,
1723                 segments: iter::once(keywords::CrateRoot.ident())
1724                     .chain({
1725                         path_str.split("::").skip(1).map(Ident::from_str)
1726                     })
1727                     .map(|i| self.new_ast_path_segment(i))
1728                     .collect(),
1729             }
1730         } else {
1731             ast::Path {
1732                 span,
1733                 segments: path_str
1734                     .split("::")
1735                     .map(Ident::from_str)
1736                     .map(|i| self.new_ast_path_segment(i))
1737                     .collect(),
1738             }
1739         };
1740         let path = self.resolve_hir_path_cb(&path, is_value, |_, _, _| errored = true);
1741         if errored || path.def == Def::Err {
1742             Err(())
1743         } else {
1744             Ok(path)
1745         }
1746     }
1747
1748     /// resolve_hir_path, but takes a callback in case there was an error
1749     fn resolve_hir_path_cb<F>(
1750         &mut self,
1751         path: &ast::Path,
1752         is_value: bool,
1753         error_callback: F,
1754     ) -> hir::Path
1755         where F: for<'c, 'b> FnOnce(&'c mut Resolver, Span, ResolutionError<'b>)
1756     {
1757         let namespace = if is_value { ValueNS } else { TypeNS };
1758         let span = path.span;
1759         let segments = &path.segments;
1760         let path = Segment::from_path(&path);
1761         // FIXME (Manishearth): Intra doc links won't get warned of epoch changes
1762         let def = match self.resolve_path_without_parent_scope(&path, Some(namespace), true,
1763                                                                span, CrateLint::No) {
1764             PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
1765                 module.def().unwrap(),
1766             PathResult::NonModule(path_res) if path_res.unresolved_segments() == 0 =>
1767                 path_res.base_def(),
1768             PathResult::NonModule(..) => {
1769                 let msg = "type-relative paths are not supported in this context";
1770                 error_callback(self, span, ResolutionError::FailedToResolve(msg));
1771                 Def::Err
1772             }
1773             PathResult::Module(..) | PathResult::Indeterminate => unreachable!(),
1774             PathResult::Failed(span, msg, _) => {
1775                 error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1776                 Def::Err
1777             }
1778         };
1779
1780         let segments: Vec<_> = segments.iter().map(|seg| {
1781             let mut hir_seg = hir::PathSegment::from_ident(seg.ident);
1782             hir_seg.def = Some(self.def_map.get(&seg.id).map_or(Def::Err, |p| p.base_def()));
1783             hir_seg
1784         }).collect();
1785         hir::Path {
1786             span,
1787             def,
1788             segments: segments.into(),
1789         }
1790     }
1791
1792     fn new_ast_path_segment(&self, ident: Ident) -> ast::PathSegment {
1793         let mut seg = ast::PathSegment::from_ident(ident);
1794         seg.id = self.session.next_node_id();
1795         seg
1796     }
1797 }
1798
1799 impl<'a, 'crateloader: 'a> Resolver<'a, 'crateloader> {
1800     pub fn new(session: &'a Session,
1801                cstore: &'a CStore,
1802                krate: &Crate,
1803                crate_name: &str,
1804                make_glob_map: MakeGlobMap,
1805                crate_loader: &'a mut CrateLoader<'crateloader>,
1806                arenas: &'a ResolverArenas<'a>)
1807                -> Resolver<'a, 'crateloader> {
1808         let root_def_id = DefId::local(CRATE_DEF_INDEX);
1809         let root_module_kind = ModuleKind::Def(Def::Mod(root_def_id), keywords::Invalid.name());
1810         let graph_root = arenas.alloc_module(ModuleData {
1811             no_implicit_prelude: attr::contains_name(&krate.attrs, "no_implicit_prelude"),
1812             ..ModuleData::new(None, root_module_kind, root_def_id, Mark::root(), krate.span)
1813         });
1814         let mut module_map = FxHashMap::default();
1815         module_map.insert(DefId::local(CRATE_DEF_INDEX), graph_root);
1816
1817         let mut definitions = Definitions::new();
1818         DefCollector::new(&mut definitions, Mark::root())
1819             .collect_root(crate_name, session.local_crate_disambiguator());
1820
1821         let mut extern_prelude: FxHashMap<Ident, ExternPreludeEntry> =
1822             session.opts.externs.iter().map(|kv| (Ident::from_str(kv.0), Default::default()))
1823                                        .collect();
1824
1825         if !attr::contains_name(&krate.attrs, "no_core") {
1826             extern_prelude.insert(Ident::from_str("core"), Default::default());
1827             if !attr::contains_name(&krate.attrs, "no_std") {
1828                 extern_prelude.insert(Ident::from_str("std"), Default::default());
1829                 if session.rust_2018() {
1830                     extern_prelude.insert(Ident::from_str("meta"), Default::default());
1831                 }
1832             }
1833         }
1834
1835         let mut invocations = FxHashMap::default();
1836         invocations.insert(Mark::root(),
1837                            arenas.alloc_invocation_data(InvocationData::root(graph_root)));
1838
1839         let mut macro_defs = FxHashMap::default();
1840         macro_defs.insert(Mark::root(), root_def_id);
1841
1842         Resolver {
1843             session,
1844
1845             cstore,
1846
1847             definitions,
1848
1849             // The outermost module has def ID 0; this is not reflected in the
1850             // AST.
1851             graph_root,
1852             prelude: None,
1853             extern_prelude,
1854
1855             has_self: FxHashSet::default(),
1856             field_names: FxHashMap::default(),
1857
1858             determined_imports: Vec::new(),
1859             indeterminate_imports: Vec::new(),
1860
1861             current_module: graph_root,
1862             ribs: PerNS {
1863                 value_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1864                 type_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1865                 macro_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1866             },
1867             label_ribs: Vec::new(),
1868
1869             current_trait_ref: None,
1870             current_self_type: None,
1871             current_self_item: None,
1872             last_import_segment: false,
1873
1874             primitive_type_table: PrimitiveTypeTable::new(),
1875
1876             def_map: Default::default(),
1877             import_map: Default::default(),
1878             freevars: Default::default(),
1879             freevars_seen: Default::default(),
1880             export_map: FxHashMap::default(),
1881             trait_map: Default::default(),
1882             module_map,
1883             block_map: Default::default(),
1884             extern_module_map: FxHashMap::default(),
1885             binding_parent_modules: FxHashMap::default(),
1886
1887             make_glob_map: make_glob_map == MakeGlobMap::Yes,
1888             glob_map: Default::default(),
1889
1890             used_imports: FxHashSet::default(),
1891             maybe_unused_trait_imports: Default::default(),
1892             maybe_unused_extern_crates: Vec::new(),
1893
1894             unused_labels: FxHashMap::default(),
1895
1896             privacy_errors: Vec::new(),
1897             ambiguity_errors: Vec::new(),
1898             use_injections: Vec::new(),
1899             macro_expanded_macro_export_errors: BTreeSet::new(),
1900
1901             arenas,
1902             dummy_binding: arenas.alloc_name_binding(NameBinding {
1903                 kind: NameBindingKind::Def(Def::Err, false),
1904                 expansion: Mark::root(),
1905                 span: DUMMY_SP,
1906                 vis: ty::Visibility::Public,
1907             }),
1908
1909             crate_loader,
1910             macro_names: FxHashSet::default(),
1911             builtin_macros: FxHashMap::default(),
1912             macro_use_prelude: FxHashMap::default(),
1913             all_macros: FxHashMap::default(),
1914             macro_map: FxHashMap::default(),
1915             invocations,
1916             macro_defs,
1917             local_macro_def_scopes: FxHashMap::default(),
1918             name_already_seen: FxHashMap::default(),
1919             whitelisted_legacy_custom_derives: Vec::new(),
1920             potentially_unused_imports: Vec::new(),
1921             struct_constructors: Default::default(),
1922             found_unresolved_macro: false,
1923             unused_macros: FxHashSet::default(),
1924             current_type_ascription: Vec::new(),
1925             injected_crate: None,
1926         }
1927     }
1928
1929     pub fn arenas() -> ResolverArenas<'a> {
1930         Default::default()
1931     }
1932
1933     /// Runs the function on each namespace.
1934     fn per_ns<F: FnMut(&mut Self, Namespace)>(&mut self, mut f: F) {
1935         f(self, TypeNS);
1936         f(self, ValueNS);
1937         f(self, MacroNS);
1938     }
1939
1940     fn macro_def(&self, mut ctxt: SyntaxContext) -> DefId {
1941         loop {
1942             match self.macro_defs.get(&ctxt.outer()) {
1943                 Some(&def_id) => return def_id,
1944                 None => ctxt.remove_mark(),
1945             };
1946         }
1947     }
1948
1949     /// Entry point to crate resolution.
1950     pub fn resolve_crate(&mut self, krate: &Crate) {
1951         ImportResolver { resolver: self }.finalize_imports();
1952         self.current_module = self.graph_root;
1953         self.finalize_current_module_macro_resolutions();
1954
1955         visit::walk_crate(self, krate);
1956
1957         check_unused::check_crate(self, krate);
1958         self.report_errors(krate);
1959         self.crate_loader.postprocess(krate);
1960     }
1961
1962     fn new_module(
1963         &self,
1964         parent: Module<'a>,
1965         kind: ModuleKind,
1966         normal_ancestor_id: DefId,
1967         expansion: Mark,
1968         span: Span,
1969     ) -> Module<'a> {
1970         let module = ModuleData::new(Some(parent), kind, normal_ancestor_id, expansion, span);
1971         self.arenas.alloc_module(module)
1972     }
1973
1974     fn record_use(&mut self, ident: Ident, ns: Namespace,
1975                   used_binding: &'a NameBinding<'a>, is_lexical_scope: bool) {
1976         match used_binding.kind {
1977             NameBindingKind::Import { directive, binding, ref used } if !used.get() => {
1978                 // Avoid marking `extern crate` items that refer to a name from extern prelude,
1979                 // but not introduce it, as used if they are accessed from lexical scope.
1980                 if is_lexical_scope {
1981                     if let Some(entry) = self.extern_prelude.get(&ident.modern()) {
1982                         if let Some(crate_item) = entry.extern_crate_item {
1983                             if ptr::eq(used_binding, crate_item) && !entry.introduced_by_item {
1984                                 return;
1985                             }
1986                         }
1987                     }
1988                 }
1989                 used.set(true);
1990                 directive.used.set(true);
1991                 self.used_imports.insert((directive.id, ns));
1992                 self.add_to_glob_map(directive.id, ident);
1993                 self.record_use(ident, ns, binding, false);
1994             }
1995             NameBindingKind::Ambiguity { kind, b1, b2 } => {
1996                 self.ambiguity_errors.push(AmbiguityError {
1997                     kind, ident, b1, b2,
1998                     misc1: AmbiguityErrorMisc::None,
1999                     misc2: AmbiguityErrorMisc::None,
2000                 });
2001             }
2002             _ => {}
2003         }
2004     }
2005
2006     fn add_to_glob_map(&mut self, id: NodeId, ident: Ident) {
2007         if self.make_glob_map {
2008             self.glob_map.entry(id).or_default().insert(ident.name);
2009         }
2010     }
2011
2012     /// This resolves the identifier `ident` in the namespace `ns` in the current lexical scope.
2013     /// More specifically, we proceed up the hierarchy of scopes and return the binding for
2014     /// `ident` in the first scope that defines it (or None if no scopes define it).
2015     ///
2016     /// A block's items are above its local variables in the scope hierarchy, regardless of where
2017     /// the items are defined in the block. For example,
2018     /// ```rust
2019     /// fn f() {
2020     ///    g(); // Since there are no local variables in scope yet, this resolves to the item.
2021     ///    let g = || {};
2022     ///    fn g() {}
2023     ///    g(); // This resolves to the local variable `g` since it shadows the item.
2024     /// }
2025     /// ```
2026     ///
2027     /// Invariant: This must only be called during main resolution, not during
2028     /// import resolution.
2029     fn resolve_ident_in_lexical_scope(&mut self,
2030                                       mut ident: Ident,
2031                                       ns: Namespace,
2032                                       record_used_id: Option<NodeId>,
2033                                       path_span: Span)
2034                                       -> Option<LexicalScopeBinding<'a>> {
2035         let record_used = record_used_id.is_some();
2036         assert!(ns == TypeNS  || ns == ValueNS);
2037         if ns == TypeNS {
2038             ident.span = if ident.name == keywords::SelfType.name() {
2039                 // FIXME(jseyfried) improve `Self` hygiene
2040                 ident.span.with_ctxt(SyntaxContext::empty())
2041             } else {
2042                 ident.span.modern()
2043             }
2044         } else {
2045             ident = ident.modern_and_legacy();
2046         }
2047
2048         // Walk backwards up the ribs in scope.
2049         let mut module = self.graph_root;
2050         for i in (0 .. self.ribs[ns].len()).rev() {
2051             if let Some(def) = self.ribs[ns][i].bindings.get(&ident).cloned() {
2052                 // The ident resolves to a type parameter or local variable.
2053                 return Some(LexicalScopeBinding::Def(
2054                     self.adjust_local_def(ns, i, def, record_used, path_span)
2055                 ));
2056             }
2057
2058             module = match self.ribs[ns][i].kind {
2059                 ModuleRibKind(module) => module,
2060                 MacroDefinition(def) if def == self.macro_def(ident.span.ctxt()) => {
2061                     // If an invocation of this macro created `ident`, give up on `ident`
2062                     // and switch to `ident`'s source from the macro definition.
2063                     ident.span.remove_mark();
2064                     continue
2065                 }
2066                 _ => continue,
2067             };
2068
2069             let item = self.resolve_ident_in_module_unadjusted(
2070                 ModuleOrUniformRoot::Module(module),
2071                 ident,
2072                 ns,
2073                 record_used,
2074                 path_span,
2075             );
2076             if let Ok(binding) = item {
2077                 // The ident resolves to an item.
2078                 return Some(LexicalScopeBinding::Item(binding));
2079             }
2080
2081             match module.kind {
2082                 ModuleKind::Block(..) => {}, // We can see through blocks
2083                 _ => break,
2084             }
2085         }
2086
2087         ident.span = ident.span.modern();
2088         let mut poisoned = None;
2089         loop {
2090             let opt_module = if let Some(node_id) = record_used_id {
2091                 self.hygienic_lexical_parent_with_compatibility_fallback(module, &mut ident.span,
2092                                                                          node_id, &mut poisoned)
2093             } else {
2094                 self.hygienic_lexical_parent(module, &mut ident.span)
2095             };
2096             module = unwrap_or!(opt_module, break);
2097             let orig_current_module = self.current_module;
2098             self.current_module = module; // Lexical resolutions can never be a privacy error.
2099             let result = self.resolve_ident_in_module_unadjusted(
2100                 ModuleOrUniformRoot::Module(module),
2101                 ident,
2102                 ns,
2103                 record_used,
2104                 path_span,
2105             );
2106             self.current_module = orig_current_module;
2107
2108             match result {
2109                 Ok(binding) => {
2110                     if let Some(node_id) = poisoned {
2111                         self.session.buffer_lint_with_diagnostic(
2112                             lint::builtin::PROC_MACRO_DERIVE_RESOLUTION_FALLBACK,
2113                             node_id, ident.span,
2114                             &format!("cannot find {} `{}` in this scope", ns.descr(), ident),
2115                             lint::builtin::BuiltinLintDiagnostics::
2116                                 ProcMacroDeriveResolutionFallback(ident.span),
2117                         );
2118                     }
2119                     return Some(LexicalScopeBinding::Item(binding))
2120                 }
2121                 Err(Determined) => continue,
2122                 Err(Undetermined) =>
2123                     span_bug!(ident.span, "undetermined resolution during main resolution pass"),
2124             }
2125         }
2126
2127         if !module.no_implicit_prelude {
2128             if ns == TypeNS {
2129                 if let Some(binding) = self.extern_prelude_get(ident, !record_used) {
2130                     return Some(LexicalScopeBinding::Item(binding));
2131                 }
2132             }
2133             if ns == TypeNS && is_known_tool(ident.name) {
2134                 let binding = (Def::ToolMod, ty::Visibility::Public,
2135                                DUMMY_SP, Mark::root()).to_name_binding(self.arenas);
2136                 return Some(LexicalScopeBinding::Item(binding));
2137             }
2138             if let Some(prelude) = self.prelude {
2139                 if let Ok(binding) = self.resolve_ident_in_module_unadjusted(
2140                     ModuleOrUniformRoot::Module(prelude),
2141                     ident,
2142                     ns,
2143                     false,
2144                     path_span,
2145                 ) {
2146                     return Some(LexicalScopeBinding::Item(binding));
2147                 }
2148             }
2149         }
2150
2151         None
2152     }
2153
2154     fn hygienic_lexical_parent(&mut self, module: Module<'a>, span: &mut Span)
2155                                -> Option<Module<'a>> {
2156         if !module.expansion.is_descendant_of(span.ctxt().outer()) {
2157             return Some(self.macro_def_scope(span.remove_mark()));
2158         }
2159
2160         if let ModuleKind::Block(..) = module.kind {
2161             return Some(module.parent.unwrap());
2162         }
2163
2164         None
2165     }
2166
2167     fn hygienic_lexical_parent_with_compatibility_fallback(&mut self, module: Module<'a>,
2168                                                            span: &mut Span, node_id: NodeId,
2169                                                            poisoned: &mut Option<NodeId>)
2170                                                            -> Option<Module<'a>> {
2171         if let module @ Some(..) = self.hygienic_lexical_parent(module, span) {
2172             return module;
2173         }
2174
2175         // We need to support the next case under a deprecation warning
2176         // ```
2177         // struct MyStruct;
2178         // ---- begin: this comes from a proc macro derive
2179         // mod implementation_details {
2180         //     // Note that `MyStruct` is not in scope here.
2181         //     impl SomeTrait for MyStruct { ... }
2182         // }
2183         // ---- end
2184         // ```
2185         // So we have to fall back to the module's parent during lexical resolution in this case.
2186         if let Some(parent) = module.parent {
2187             // Inner module is inside the macro, parent module is outside of the macro.
2188             if module.expansion != parent.expansion &&
2189             module.expansion.is_descendant_of(parent.expansion) {
2190                 // The macro is a proc macro derive
2191                 if module.expansion.looks_like_proc_macro_derive() {
2192                     if parent.expansion.is_descendant_of(span.ctxt().outer()) {
2193                         *poisoned = Some(node_id);
2194                         return module.parent;
2195                     }
2196                 }
2197             }
2198         }
2199
2200         None
2201     }
2202
2203     fn resolve_ident_in_module(
2204         &mut self,
2205         module: ModuleOrUniformRoot<'a>,
2206         ident: Ident,
2207         ns: Namespace,
2208         parent_scope: Option<&ParentScope<'a>>,
2209         record_used: bool,
2210         path_span: Span
2211     ) -> Result<&'a NameBinding<'a>, Determinacy> {
2212         self.resolve_ident_in_module_ext(
2213             module, ident, ns, parent_scope, record_used, path_span
2214         ).map_err(|(determinacy, _)| determinacy)
2215     }
2216
2217     fn resolve_ident_in_module_ext(
2218         &mut self,
2219         module: ModuleOrUniformRoot<'a>,
2220         mut ident: Ident,
2221         ns: Namespace,
2222         parent_scope: Option<&ParentScope<'a>>,
2223         record_used: bool,
2224         path_span: Span
2225     ) -> Result<&'a NameBinding<'a>, (Determinacy, Weak)> {
2226         let orig_current_module = self.current_module;
2227         match module {
2228             ModuleOrUniformRoot::Module(module) => {
2229                 ident.span = ident.span.modern();
2230                 if let Some(def) = ident.span.adjust(module.expansion) {
2231                     self.current_module = self.macro_def_scope(def);
2232                 }
2233             }
2234             ModuleOrUniformRoot::ExternPrelude => {
2235                 ident.span = ident.span.modern();
2236                 ident.span.adjust(Mark::root());
2237             }
2238             ModuleOrUniformRoot::CrateRootAndExternPrelude |
2239             ModuleOrUniformRoot::CurrentScope => {
2240                 // No adjustments
2241             }
2242         }
2243         let result = self.resolve_ident_in_module_unadjusted_ext(
2244             module, ident, ns, parent_scope, false, record_used, path_span,
2245         );
2246         self.current_module = orig_current_module;
2247         result
2248     }
2249
2250     fn resolve_crate_root(&mut self, ident: Ident) -> Module<'a> {
2251         let mut ctxt = ident.span.ctxt();
2252         let mark = if ident.name == keywords::DollarCrate.name() {
2253             // When resolving `$crate` from a `macro_rules!` invoked in a `macro`,
2254             // we don't want to pretend that the `macro_rules!` definition is in the `macro`
2255             // as described in `SyntaxContext::apply_mark`, so we ignore prepended modern marks.
2256             // FIXME: This is only a guess and it doesn't work correctly for `macro_rules!`
2257             // definitions actually produced by `macro` and `macro` definitions produced by
2258             // `macro_rules!`, but at least such configurations are not stable yet.
2259             ctxt = ctxt.modern_and_legacy();
2260             let mut iter = ctxt.marks().into_iter().rev().peekable();
2261             let mut result = None;
2262             // Find the last modern mark from the end if it exists.
2263             while let Some(&(mark, transparency)) = iter.peek() {
2264                 if transparency == Transparency::Opaque {
2265                     result = Some(mark);
2266                     iter.next();
2267                 } else {
2268                     break;
2269                 }
2270             }
2271             // Then find the last legacy mark from the end if it exists.
2272             for (mark, transparency) in iter {
2273                 if transparency == Transparency::SemiTransparent {
2274                     result = Some(mark);
2275                 } else {
2276                     break;
2277                 }
2278             }
2279             result
2280         } else {
2281             ctxt = ctxt.modern();
2282             ctxt.adjust(Mark::root())
2283         };
2284         let module = match mark {
2285             Some(def) => self.macro_def_scope(def),
2286             None => return self.graph_root,
2287         };
2288         self.get_module(DefId { index: CRATE_DEF_INDEX, ..module.normal_ancestor_id })
2289     }
2290
2291     fn resolve_self(&mut self, ctxt: &mut SyntaxContext, module: Module<'a>) -> Module<'a> {
2292         let mut module = self.get_module(module.normal_ancestor_id);
2293         while module.span.ctxt().modern() != *ctxt {
2294             let parent = module.parent.unwrap_or_else(|| self.macro_def_scope(ctxt.remove_mark()));
2295             module = self.get_module(parent.normal_ancestor_id);
2296         }
2297         module
2298     }
2299
2300     // AST resolution
2301     //
2302     // We maintain a list of value ribs and type ribs.
2303     //
2304     // Simultaneously, we keep track of the current position in the module
2305     // graph in the `current_module` pointer. When we go to resolve a name in
2306     // the value or type namespaces, we first look through all the ribs and
2307     // then query the module graph. When we resolve a name in the module
2308     // namespace, we can skip all the ribs (since nested modules are not
2309     // allowed within blocks in Rust) and jump straight to the current module
2310     // graph node.
2311     //
2312     // Named implementations are handled separately. When we find a method
2313     // call, we consult the module node to find all of the implementations in
2314     // scope. This information is lazily cached in the module node. We then
2315     // generate a fake "implementation scope" containing all the
2316     // implementations thus found, for compatibility with old resolve pass.
2317
2318     pub fn with_scope<F, T>(&mut self, id: NodeId, f: F) -> T
2319         where F: FnOnce(&mut Resolver) -> T
2320     {
2321         let id = self.definitions.local_def_id(id);
2322         let module = self.module_map.get(&id).cloned(); // clones a reference
2323         if let Some(module) = module {
2324             // Move down in the graph.
2325             let orig_module = replace(&mut self.current_module, module);
2326             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(module)));
2327             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(module)));
2328
2329             self.finalize_current_module_macro_resolutions();
2330             let ret = f(self);
2331
2332             self.current_module = orig_module;
2333             self.ribs[ValueNS].pop();
2334             self.ribs[TypeNS].pop();
2335             ret
2336         } else {
2337             f(self)
2338         }
2339     }
2340
2341     /// Searches the current set of local scopes for labels. Returns the first non-None label that
2342     /// is returned by the given predicate function
2343     ///
2344     /// Stops after meeting a closure.
2345     fn search_label<P, R>(&self, mut ident: Ident, pred: P) -> Option<R>
2346         where P: Fn(&Rib, Ident) -> Option<R>
2347     {
2348         for rib in self.label_ribs.iter().rev() {
2349             match rib.kind {
2350                 NormalRibKind => {}
2351                 // If an invocation of this macro created `ident`, give up on `ident`
2352                 // and switch to `ident`'s source from the macro definition.
2353                 MacroDefinition(def) => {
2354                     if def == self.macro_def(ident.span.ctxt()) {
2355                         ident.span.remove_mark();
2356                     }
2357                 }
2358                 _ => {
2359                     // Do not resolve labels across function boundary
2360                     return None;
2361                 }
2362             }
2363             let r = pred(rib, ident);
2364             if r.is_some() {
2365                 return r;
2366             }
2367         }
2368         None
2369     }
2370
2371     fn resolve_adt(&mut self, item: &Item, generics: &Generics) {
2372         self.with_current_self_item(item, |this| {
2373             this.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2374                 let item_def_id = this.definitions.local_def_id(item.id);
2375                 if this.session.features_untracked().self_in_typedefs {
2376                     this.with_self_rib(Def::SelfTy(None, Some(item_def_id)), |this| {
2377                         visit::walk_item(this, item);
2378                     });
2379                 } else {
2380                     visit::walk_item(this, item);
2381                 }
2382             });
2383         });
2384     }
2385
2386     fn future_proof_import(&mut self, use_tree: &ast::UseTree) {
2387         let segments = &use_tree.prefix.segments;
2388         if !segments.is_empty() {
2389             let ident = segments[0].ident;
2390             if ident.is_path_segment_keyword() || ident.span.rust_2015() {
2391                 return;
2392             }
2393
2394             let nss = match use_tree.kind {
2395                 ast::UseTreeKind::Simple(..) if segments.len() == 1 => &[TypeNS, ValueNS][..],
2396                 _ => &[TypeNS],
2397             };
2398             for &ns in nss {
2399                 if let Some(LexicalScopeBinding::Def(..)) =
2400                         self.resolve_ident_in_lexical_scope(ident, ns, None, use_tree.prefix.span) {
2401                     let what = if ns == TypeNS { "type parameters" } else { "local variables" };
2402                     self.session.span_err(ident.span, &format!("imports cannot refer to {}", what));
2403                 }
2404             }
2405         } else if let ast::UseTreeKind::Nested(use_trees) = &use_tree.kind {
2406             for (use_tree, _) in use_trees {
2407                 self.future_proof_import(use_tree);
2408             }
2409         }
2410     }
2411
2412     fn resolve_item(&mut self, item: &Item) {
2413         let name = item.ident.name;
2414         debug!("(resolving item) resolving {}", name);
2415
2416         match item.node {
2417             ItemKind::Ty(_, ref generics) |
2418             ItemKind::Fn(_, _, ref generics, _) |
2419             ItemKind::Existential(_, ref generics) => {
2420                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind),
2421                                              |this| visit::walk_item(this, item));
2422             }
2423
2424             ItemKind::Enum(_, ref generics) |
2425             ItemKind::Struct(_, ref generics) |
2426             ItemKind::Union(_, ref generics) => {
2427                 self.resolve_adt(item, generics);
2428             }
2429
2430             ItemKind::Impl(.., ref generics, ref opt_trait_ref, ref self_type, ref impl_items) =>
2431                 self.resolve_implementation(generics,
2432                                             opt_trait_ref,
2433                                             &self_type,
2434                                             item.id,
2435                                             impl_items),
2436
2437             ItemKind::Trait(.., ref generics, ref bounds, ref trait_items) => {
2438                 // Create a new rib for the trait-wide type parameters.
2439                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2440                     let local_def_id = this.definitions.local_def_id(item.id);
2441                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2442                         this.visit_generics(generics);
2443                         walk_list!(this, visit_param_bound, bounds);
2444
2445                         for trait_item in trait_items {
2446                             let type_parameters = HasTypeParameters(&trait_item.generics,
2447                                                                     TraitOrImplItemRibKind);
2448                             this.with_type_parameter_rib(type_parameters, |this| {
2449                                 match trait_item.node {
2450                                     TraitItemKind::Const(ref ty, ref default) => {
2451                                         this.visit_ty(ty);
2452
2453                                         // Only impose the restrictions of
2454                                         // ConstRibKind for an actual constant
2455                                         // expression in a provided default.
2456                                         if let Some(ref expr) = *default{
2457                                             this.with_constant_rib(|this| {
2458                                                 this.visit_expr(expr);
2459                                             });
2460                                         }
2461                                     }
2462                                     TraitItemKind::Method(_, _) => {
2463                                         visit::walk_trait_item(this, trait_item)
2464                                     }
2465                                     TraitItemKind::Type(..) => {
2466                                         visit::walk_trait_item(this, trait_item)
2467                                     }
2468                                     TraitItemKind::Macro(_) => {
2469                                         panic!("unexpanded macro in resolve!")
2470                                     }
2471                                 };
2472                             });
2473                         }
2474                     });
2475                 });
2476             }
2477
2478             ItemKind::TraitAlias(ref generics, ref bounds) => {
2479                 // Create a new rib for the trait-wide type parameters.
2480                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2481                     let local_def_id = this.definitions.local_def_id(item.id);
2482                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2483                         this.visit_generics(generics);
2484                         walk_list!(this, visit_param_bound, bounds);
2485                     });
2486                 });
2487             }
2488
2489             ItemKind::Mod(_) | ItemKind::ForeignMod(_) => {
2490                 self.with_scope(item.id, |this| {
2491                     visit::walk_item(this, item);
2492                 });
2493             }
2494
2495             ItemKind::Static(ref ty, _, ref expr) |
2496             ItemKind::Const(ref ty, ref expr) => {
2497                 self.with_item_rib(|this| {
2498                     this.visit_ty(ty);
2499                     this.with_constant_rib(|this| {
2500                         this.visit_expr(expr);
2501                     });
2502                 });
2503             }
2504
2505             ItemKind::Use(ref use_tree) => {
2506                 self.future_proof_import(use_tree);
2507             }
2508
2509             ItemKind::ExternCrate(..) |
2510             ItemKind::MacroDef(..) | ItemKind::GlobalAsm(..) => {
2511                 // do nothing, these are just around to be encoded
2512             }
2513
2514             ItemKind::Mac(_) => panic!("unexpanded macro in resolve!"),
2515         }
2516     }
2517
2518     fn with_type_parameter_rib<'b, F>(&'b mut self, type_parameters: TypeParameters<'a, 'b>, f: F)
2519         where F: FnOnce(&mut Resolver)
2520     {
2521         match type_parameters {
2522             HasTypeParameters(generics, rib_kind) => {
2523                 let mut function_type_rib = Rib::new(rib_kind);
2524                 let mut seen_bindings = FxHashMap::default();
2525                 for param in &generics.params {
2526                     match param.kind {
2527                         GenericParamKind::Lifetime { .. } => {}
2528                         GenericParamKind::Type { .. } => {
2529                             let ident = param.ident.modern();
2530                             debug!("with_type_parameter_rib: {}", param.id);
2531
2532                             if seen_bindings.contains_key(&ident) {
2533                                 let span = seen_bindings.get(&ident).unwrap();
2534                                 let err = ResolutionError::NameAlreadyUsedInTypeParameterList(
2535                                     ident.name,
2536                                     span,
2537                                 );
2538                                 resolve_error(self, param.ident.span, err);
2539                             }
2540                             seen_bindings.entry(ident).or_insert(param.ident.span);
2541
2542                         // Plain insert (no renaming).
2543                         let def = Def::TyParam(self.definitions.local_def_id(param.id));
2544                             function_type_rib.bindings.insert(ident, def);
2545                             self.record_def(param.id, PathResolution::new(def));
2546                         }
2547                     }
2548                 }
2549                 self.ribs[TypeNS].push(function_type_rib);
2550             }
2551
2552             NoTypeParameters => {
2553                 // Nothing to do.
2554             }
2555         }
2556
2557         f(self);
2558
2559         if let HasTypeParameters(..) = type_parameters {
2560             self.ribs[TypeNS].pop();
2561         }
2562     }
2563
2564     fn with_label_rib<F>(&mut self, f: F)
2565         where F: FnOnce(&mut Resolver)
2566     {
2567         self.label_ribs.push(Rib::new(NormalRibKind));
2568         f(self);
2569         self.label_ribs.pop();
2570     }
2571
2572     fn with_item_rib<F>(&mut self, f: F)
2573         where F: FnOnce(&mut Resolver)
2574     {
2575         self.ribs[ValueNS].push(Rib::new(ItemRibKind));
2576         self.ribs[TypeNS].push(Rib::new(ItemRibKind));
2577         f(self);
2578         self.ribs[TypeNS].pop();
2579         self.ribs[ValueNS].pop();
2580     }
2581
2582     fn with_constant_rib<F>(&mut self, f: F)
2583         where F: FnOnce(&mut Resolver)
2584     {
2585         self.ribs[ValueNS].push(Rib::new(ConstantItemRibKind));
2586         self.label_ribs.push(Rib::new(ConstantItemRibKind));
2587         f(self);
2588         self.label_ribs.pop();
2589         self.ribs[ValueNS].pop();
2590     }
2591
2592     fn with_current_self_type<T, F>(&mut self, self_type: &Ty, f: F) -> T
2593         where F: FnOnce(&mut Resolver) -> T
2594     {
2595         // Handle nested impls (inside fn bodies)
2596         let previous_value = replace(&mut self.current_self_type, Some(self_type.clone()));
2597         let result = f(self);
2598         self.current_self_type = previous_value;
2599         result
2600     }
2601
2602     fn with_current_self_item<T, F>(&mut self, self_item: &Item, f: F) -> T
2603         where F: FnOnce(&mut Resolver) -> T
2604     {
2605         let previous_value = replace(&mut self.current_self_item, Some(self_item.id));
2606         let result = f(self);
2607         self.current_self_item = previous_value;
2608         result
2609     }
2610
2611     /// This is called to resolve a trait reference from an `impl` (i.e. `impl Trait for Foo`)
2612     fn with_optional_trait_ref<T, F>(&mut self, opt_trait_ref: Option<&TraitRef>, f: F) -> T
2613         where F: FnOnce(&mut Resolver, Option<DefId>) -> T
2614     {
2615         let mut new_val = None;
2616         let mut new_id = None;
2617         if let Some(trait_ref) = opt_trait_ref {
2618             let path: Vec<_> = Segment::from_path(&trait_ref.path);
2619             let def = self.smart_resolve_path_fragment(
2620                 trait_ref.ref_id,
2621                 None,
2622                 &path,
2623                 trait_ref.path.span,
2624                 PathSource::Trait(AliasPossibility::No),
2625                 CrateLint::SimplePath(trait_ref.ref_id),
2626             ).base_def();
2627             if def != Def::Err {
2628                 new_id = Some(def.def_id());
2629                 let span = trait_ref.path.span;
2630                 if let PathResult::Module(ModuleOrUniformRoot::Module(module)) =
2631                     self.resolve_path_without_parent_scope(
2632                         &path,
2633                         Some(TypeNS),
2634                         false,
2635                         span,
2636                         CrateLint::SimplePath(trait_ref.ref_id),
2637                     )
2638                 {
2639                     new_val = Some((module, trait_ref.clone()));
2640                 }
2641             }
2642         }
2643         let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
2644         let result = f(self, new_id);
2645         self.current_trait_ref = original_trait_ref;
2646         result
2647     }
2648
2649     fn with_self_rib<F>(&mut self, self_def: Def, f: F)
2650         where F: FnOnce(&mut Resolver)
2651     {
2652         let mut self_type_rib = Rib::new(NormalRibKind);
2653
2654         // plain insert (no renaming, types are not currently hygienic....)
2655         self_type_rib.bindings.insert(keywords::SelfType.ident(), self_def);
2656         self.ribs[TypeNS].push(self_type_rib);
2657         f(self);
2658         self.ribs[TypeNS].pop();
2659     }
2660
2661     fn with_self_struct_ctor_rib<F>(&mut self, impl_id: DefId, f: F)
2662         where F: FnOnce(&mut Resolver)
2663     {
2664         let self_def = Def::SelfCtor(impl_id);
2665         let mut self_type_rib = Rib::new(NormalRibKind);
2666         self_type_rib.bindings.insert(keywords::SelfType.ident(), self_def);
2667         self.ribs[ValueNS].push(self_type_rib);
2668         f(self);
2669         self.ribs[ValueNS].pop();
2670     }
2671
2672     fn resolve_implementation(&mut self,
2673                               generics: &Generics,
2674                               opt_trait_reference: &Option<TraitRef>,
2675                               self_type: &Ty,
2676                               item_id: NodeId,
2677                               impl_items: &[ImplItem]) {
2678         // If applicable, create a rib for the type parameters.
2679         self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2680             // Dummy self type for better errors if `Self` is used in the trait path.
2681             this.with_self_rib(Def::SelfTy(None, None), |this| {
2682                 // Resolve the trait reference, if necessary.
2683                 this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| {
2684                     let item_def_id = this.definitions.local_def_id(item_id);
2685                     this.with_self_rib(Def::SelfTy(trait_id, Some(item_def_id)), |this| {
2686                         if let Some(trait_ref) = opt_trait_reference.as_ref() {
2687                             // Resolve type arguments in the trait path.
2688                             visit::walk_trait_ref(this, trait_ref);
2689                         }
2690                         // Resolve the self type.
2691                         this.visit_ty(self_type);
2692                         // Resolve the type parameters.
2693                         this.visit_generics(generics);
2694                         // Resolve the items within the impl.
2695                         this.with_current_self_type(self_type, |this| {
2696                             this.with_self_struct_ctor_rib(item_def_id, |this| {
2697                                 for impl_item in impl_items {
2698                                     this.resolve_visibility(&impl_item.vis);
2699
2700                                     // We also need a new scope for the impl item type parameters.
2701                                     let type_parameters = HasTypeParameters(&impl_item.generics,
2702                                                                             TraitOrImplItemRibKind);
2703                                     this.with_type_parameter_rib(type_parameters, |this| {
2704                                         use self::ResolutionError::*;
2705                                         match impl_item.node {
2706                                             ImplItemKind::Const(..) => {
2707                                                 // If this is a trait impl, ensure the const
2708                                                 // exists in trait
2709                                                 this.check_trait_item(impl_item.ident,
2710                                                                       ValueNS,
2711                                                                       impl_item.span,
2712                                                     |n, s| ConstNotMemberOfTrait(n, s));
2713                                                 this.with_constant_rib(|this|
2714                                                     visit::walk_impl_item(this, impl_item)
2715                                                 );
2716                                             }
2717                                             ImplItemKind::Method(..) => {
2718                                                 // If this is a trait impl, ensure the method
2719                                                 // exists in trait
2720                                                 this.check_trait_item(impl_item.ident,
2721                                                                       ValueNS,
2722                                                                       impl_item.span,
2723                                                     |n, s| MethodNotMemberOfTrait(n, s));
2724
2725                                                 visit::walk_impl_item(this, impl_item);
2726                                             }
2727                                             ImplItemKind::Type(ref ty) => {
2728                                                 // If this is a trait impl, ensure the type
2729                                                 // exists in trait
2730                                                 this.check_trait_item(impl_item.ident,
2731                                                                       TypeNS,
2732                                                                       impl_item.span,
2733                                                     |n, s| TypeNotMemberOfTrait(n, s));
2734
2735                                                 this.visit_ty(ty);
2736                                             }
2737                                             ImplItemKind::Existential(ref bounds) => {
2738                                                 // If this is a trait impl, ensure the type
2739                                                 // exists in trait
2740                                                 this.check_trait_item(impl_item.ident,
2741                                                                       TypeNS,
2742                                                                       impl_item.span,
2743                                                     |n, s| TypeNotMemberOfTrait(n, s));
2744
2745                                                 for bound in bounds {
2746                                                     this.visit_param_bound(bound);
2747                                                 }
2748                                             }
2749                                             ImplItemKind::Macro(_) =>
2750                                                 panic!("unexpanded macro in resolve!"),
2751                                         }
2752                                     });
2753                                 }
2754                             });
2755                         });
2756                     });
2757                 });
2758             });
2759         });
2760     }
2761
2762     fn check_trait_item<F>(&mut self, ident: Ident, ns: Namespace, span: Span, err: F)
2763         where F: FnOnce(Name, &str) -> ResolutionError
2764     {
2765         // If there is a TraitRef in scope for an impl, then the method must be in the
2766         // trait.
2767         if let Some((module, _)) = self.current_trait_ref {
2768             if self.resolve_ident_in_module(
2769                 ModuleOrUniformRoot::Module(module),
2770                 ident,
2771                 ns,
2772                 None,
2773                 false,
2774                 span,
2775             ).is_err() {
2776                 let path = &self.current_trait_ref.as_ref().unwrap().1.path;
2777                 resolve_error(self, span, err(ident.name, &path_names_to_string(path)));
2778             }
2779         }
2780     }
2781
2782     fn resolve_local(&mut self, local: &Local) {
2783         // Resolve the type.
2784         walk_list!(self, visit_ty, &local.ty);
2785
2786         // Resolve the initializer.
2787         walk_list!(self, visit_expr, &local.init);
2788
2789         // Resolve the pattern.
2790         self.resolve_pattern(&local.pat, PatternSource::Let, &mut FxHashMap::default());
2791     }
2792
2793     // build a map from pattern identifiers to binding-info's.
2794     // this is done hygienically. This could arise for a macro
2795     // that expands into an or-pattern where one 'x' was from the
2796     // user and one 'x' came from the macro.
2797     fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
2798         let mut binding_map = FxHashMap::default();
2799
2800         pat.walk(&mut |pat| {
2801             if let PatKind::Ident(binding_mode, ident, ref sub_pat) = pat.node {
2802                 if sub_pat.is_some() || match self.def_map.get(&pat.id).map(|res| res.base_def()) {
2803                     Some(Def::Local(..)) => true,
2804                     _ => false,
2805                 } {
2806                     let binding_info = BindingInfo { span: ident.span, binding_mode: binding_mode };
2807                     binding_map.insert(ident, binding_info);
2808                 }
2809             }
2810             true
2811         });
2812
2813         binding_map
2814     }
2815
2816     // check that all of the arms in an or-pattern have exactly the
2817     // same set of bindings, with the same binding modes for each.
2818     fn check_consistent_bindings(&mut self, pats: &[P<Pat>]) {
2819         if pats.is_empty() {
2820             return;
2821         }
2822
2823         let mut missing_vars = FxHashMap::default();
2824         let mut inconsistent_vars = FxHashMap::default();
2825         for (i, p) in pats.iter().enumerate() {
2826             let map_i = self.binding_mode_map(&p);
2827
2828             for (j, q) in pats.iter().enumerate() {
2829                 if i == j {
2830                     continue;
2831                 }
2832
2833                 let map_j = self.binding_mode_map(&q);
2834                 for (&key, &binding_i) in &map_i {
2835                     if map_j.is_empty() {                   // Account for missing bindings when
2836                         let binding_error = missing_vars    // map_j has none.
2837                             .entry(key.name)
2838                             .or_insert(BindingError {
2839                                 name: key.name,
2840                                 origin: BTreeSet::new(),
2841                                 target: BTreeSet::new(),
2842                             });
2843                         binding_error.origin.insert(binding_i.span);
2844                         binding_error.target.insert(q.span);
2845                     }
2846                     for (&key_j, &binding_j) in &map_j {
2847                         match map_i.get(&key_j) {
2848                             None => {  // missing binding
2849                                 let binding_error = missing_vars
2850                                     .entry(key_j.name)
2851                                     .or_insert(BindingError {
2852                                         name: key_j.name,
2853                                         origin: BTreeSet::new(),
2854                                         target: BTreeSet::new(),
2855                                     });
2856                                 binding_error.origin.insert(binding_j.span);
2857                                 binding_error.target.insert(p.span);
2858                             }
2859                             Some(binding_i) => {  // check consistent binding
2860                                 if binding_i.binding_mode != binding_j.binding_mode {
2861                                     inconsistent_vars
2862                                         .entry(key.name)
2863                                         .or_insert((binding_j.span, binding_i.span));
2864                                 }
2865                             }
2866                         }
2867                     }
2868                 }
2869             }
2870         }
2871         let mut missing_vars = missing_vars.iter().collect::<Vec<_>>();
2872         missing_vars.sort();
2873         for (_, v) in missing_vars {
2874             resolve_error(self,
2875                           *v.origin.iter().next().unwrap(),
2876                           ResolutionError::VariableNotBoundInPattern(v));
2877         }
2878         let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
2879         inconsistent_vars.sort();
2880         for (name, v) in inconsistent_vars {
2881             resolve_error(self, v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
2882         }
2883     }
2884
2885     fn resolve_arm(&mut self, arm: &Arm) {
2886         self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2887
2888         let mut bindings_list = FxHashMap::default();
2889         for pattern in &arm.pats {
2890             self.resolve_pattern(&pattern, PatternSource::Match, &mut bindings_list);
2891         }
2892
2893         // This has to happen *after* we determine which pat_idents are variants
2894         self.check_consistent_bindings(&arm.pats);
2895
2896         if let Some(ast::Guard::If(ref expr)) = arm.guard {
2897             self.visit_expr(expr)
2898         }
2899         self.visit_expr(&arm.body);
2900
2901         self.ribs[ValueNS].pop();
2902     }
2903
2904     fn resolve_block(&mut self, block: &Block) {
2905         debug!("(resolving block) entering block");
2906         // Move down in the graph, if there's an anonymous module rooted here.
2907         let orig_module = self.current_module;
2908         let anonymous_module = self.block_map.get(&block.id).cloned(); // clones a reference
2909
2910         let mut num_macro_definition_ribs = 0;
2911         if let Some(anonymous_module) = anonymous_module {
2912             debug!("(resolving block) found anonymous module, moving down");
2913             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2914             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2915             self.current_module = anonymous_module;
2916             self.finalize_current_module_macro_resolutions();
2917         } else {
2918             self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2919         }
2920
2921         // Descend into the block.
2922         for stmt in &block.stmts {
2923             if let ast::StmtKind::Item(ref item) = stmt.node {
2924                 if let ast::ItemKind::MacroDef(..) = item.node {
2925                     num_macro_definition_ribs += 1;
2926                     let def = self.definitions.local_def_id(item.id);
2927                     self.ribs[ValueNS].push(Rib::new(MacroDefinition(def)));
2928                     self.label_ribs.push(Rib::new(MacroDefinition(def)));
2929                 }
2930             }
2931
2932             self.visit_stmt(stmt);
2933         }
2934
2935         // Move back up.
2936         self.current_module = orig_module;
2937         for _ in 0 .. num_macro_definition_ribs {
2938             self.ribs[ValueNS].pop();
2939             self.label_ribs.pop();
2940         }
2941         self.ribs[ValueNS].pop();
2942         if anonymous_module.is_some() {
2943             self.ribs[TypeNS].pop();
2944         }
2945         debug!("(resolving block) leaving block");
2946     }
2947
2948     fn fresh_binding(&mut self,
2949                      ident: Ident,
2950                      pat_id: NodeId,
2951                      outer_pat_id: NodeId,
2952                      pat_src: PatternSource,
2953                      bindings: &mut FxHashMap<Ident, NodeId>)
2954                      -> PathResolution {
2955         // Add the binding to the local ribs, if it
2956         // doesn't already exist in the bindings map. (We
2957         // must not add it if it's in the bindings map
2958         // because that breaks the assumptions later
2959         // passes make about or-patterns.)
2960         let ident = ident.modern_and_legacy();
2961         let mut def = Def::Local(pat_id);
2962         match bindings.get(&ident).cloned() {
2963             Some(id) if id == outer_pat_id => {
2964                 // `Variant(a, a)`, error
2965                 resolve_error(
2966                     self,
2967                     ident.span,
2968                     ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(
2969                         &ident.as_str())
2970                 );
2971             }
2972             Some(..) if pat_src == PatternSource::FnParam => {
2973                 // `fn f(a: u8, a: u8)`, error
2974                 resolve_error(
2975                     self,
2976                     ident.span,
2977                     ResolutionError::IdentifierBoundMoreThanOnceInParameterList(
2978                         &ident.as_str())
2979                 );
2980             }
2981             Some(..) if pat_src == PatternSource::Match ||
2982                         pat_src == PatternSource::IfLet ||
2983                         pat_src == PatternSource::WhileLet => {
2984                 // `Variant1(a) | Variant2(a)`, ok
2985                 // Reuse definition from the first `a`.
2986                 def = self.ribs[ValueNS].last_mut().unwrap().bindings[&ident];
2987             }
2988             Some(..) => {
2989                 span_bug!(ident.span, "two bindings with the same name from \
2990                                        unexpected pattern source {:?}", pat_src);
2991             }
2992             None => {
2993                 // A completely fresh binding, add to the lists if it's valid.
2994                 if ident.name != keywords::Invalid.name() {
2995                     bindings.insert(ident, outer_pat_id);
2996                     self.ribs[ValueNS].last_mut().unwrap().bindings.insert(ident, def);
2997                 }
2998             }
2999         }
3000
3001         PathResolution::new(def)
3002     }
3003
3004     fn resolve_pattern(&mut self,
3005                        pat: &Pat,
3006                        pat_src: PatternSource,
3007                        // Maps idents to the node ID for the
3008                        // outermost pattern that binds them.
3009                        bindings: &mut FxHashMap<Ident, NodeId>) {
3010         // Visit all direct subpatterns of this pattern.
3011         let outer_pat_id = pat.id;
3012         pat.walk(&mut |pat| {
3013             match pat.node {
3014                 PatKind::Ident(bmode, ident, ref opt_pat) => {
3015                     // First try to resolve the identifier as some existing
3016                     // entity, then fall back to a fresh binding.
3017                     let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS,
3018                                                                       None, pat.span)
3019                                       .and_then(LexicalScopeBinding::item);
3020                     let resolution = binding.map(NameBinding::def).and_then(|def| {
3021                         let is_syntactic_ambiguity = opt_pat.is_none() &&
3022                             bmode == BindingMode::ByValue(Mutability::Immutable);
3023                         match def {
3024                             Def::StructCtor(_, CtorKind::Const) |
3025                             Def::VariantCtor(_, CtorKind::Const) |
3026                             Def::Const(..) if is_syntactic_ambiguity => {
3027                                 // Disambiguate in favor of a unit struct/variant
3028                                 // or constant pattern.
3029                                 self.record_use(ident, ValueNS, binding.unwrap(), false);
3030                                 Some(PathResolution::new(def))
3031                             }
3032                             Def::StructCtor(..) | Def::VariantCtor(..) |
3033                             Def::Const(..) | Def::Static(..) => {
3034                                 // This is unambiguously a fresh binding, either syntactically
3035                                 // (e.g. `IDENT @ PAT` or `ref IDENT`) or because `IDENT` resolves
3036                                 // to something unusable as a pattern (e.g. constructor function),
3037                                 // but we still conservatively report an error, see
3038                                 // issues/33118#issuecomment-233962221 for one reason why.
3039                                 resolve_error(
3040                                     self,
3041                                     ident.span,
3042                                     ResolutionError::BindingShadowsSomethingUnacceptable(
3043                                         pat_src.descr(), ident.name, binding.unwrap())
3044                                 );
3045                                 None
3046                             }
3047                             Def::Fn(..) | Def::Err => {
3048                                 // These entities are explicitly allowed
3049                                 // to be shadowed by fresh bindings.
3050                                 None
3051                             }
3052                             def => {
3053                                 span_bug!(ident.span, "unexpected definition for an \
3054                                                        identifier in pattern: {:?}", def);
3055                             }
3056                         }
3057                     }).unwrap_or_else(|| {
3058                         self.fresh_binding(ident, pat.id, outer_pat_id, pat_src, bindings)
3059                     });
3060
3061                     self.record_def(pat.id, resolution);
3062                 }
3063
3064                 PatKind::TupleStruct(ref path, ..) => {
3065                     self.smart_resolve_path(pat.id, None, path, PathSource::TupleStruct);
3066                 }
3067
3068                 PatKind::Path(ref qself, ref path) => {
3069                     self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
3070                 }
3071
3072                 PatKind::Struct(ref path, ..) => {
3073                     self.smart_resolve_path(pat.id, None, path, PathSource::Struct);
3074                 }
3075
3076                 _ => {}
3077             }
3078             true
3079         });
3080
3081         visit::walk_pat(self, pat);
3082     }
3083
3084     // High-level and context dependent path resolution routine.
3085     // Resolves the path and records the resolution into definition map.
3086     // If resolution fails tries several techniques to find likely
3087     // resolution candidates, suggest imports or other help, and report
3088     // errors in user friendly way.
3089     fn smart_resolve_path(&mut self,
3090                           id: NodeId,
3091                           qself: Option<&QSelf>,
3092                           path: &Path,
3093                           source: PathSource)
3094                           -> PathResolution {
3095         self.smart_resolve_path_with_crate_lint(id, qself, path, source, CrateLint::SimplePath(id))
3096     }
3097
3098     /// A variant of `smart_resolve_path` where you also specify extra
3099     /// information about where the path came from; this extra info is
3100     /// sometimes needed for the lint that recommends rewriting
3101     /// absolute paths to `crate`, so that it knows how to frame the
3102     /// suggestion. If you are just resolving a path like `foo::bar`
3103     /// that appears...somewhere, though, then you just want
3104     /// `CrateLint::SimplePath`, which is what `smart_resolve_path`
3105     /// already provides.
3106     fn smart_resolve_path_with_crate_lint(
3107         &mut self,
3108         id: NodeId,
3109         qself: Option<&QSelf>,
3110         path: &Path,
3111         source: PathSource,
3112         crate_lint: CrateLint
3113     ) -> PathResolution {
3114         self.smart_resolve_path_fragment(
3115             id,
3116             qself,
3117             &Segment::from_path(path),
3118             path.span,
3119             source,
3120             crate_lint,
3121         )
3122     }
3123
3124     fn smart_resolve_path_fragment(&mut self,
3125                                    id: NodeId,
3126                                    qself: Option<&QSelf>,
3127                                    path: &[Segment],
3128                                    span: Span,
3129                                    source: PathSource,
3130                                    crate_lint: CrateLint)
3131                                    -> PathResolution {
3132         let ident_span = path.last().map_or(span, |ident| ident.ident.span);
3133         let ns = source.namespace();
3134         let is_expected = &|def| source.is_expected(def);
3135         let is_enum_variant = &|def| if let Def::Variant(..) = def { true } else { false };
3136
3137         // Base error is amended with one short label and possibly some longer helps/notes.
3138         let report_errors = |this: &mut Self, def: Option<Def>| {
3139             // Make the base error.
3140             let expected = source.descr_expected();
3141             let path_str = Segment::names_to_string(path);
3142             let item_str = path.last().unwrap().ident;
3143             let code = source.error_code(def.is_some());
3144             let (base_msg, fallback_label, base_span) = if let Some(def) = def {
3145                 (format!("expected {}, found {} `{}`", expected, def.kind_name(), path_str),
3146                  format!("not a {}", expected),
3147                  span)
3148             } else {
3149                 let item_span = path.last().unwrap().ident.span;
3150                 let (mod_prefix, mod_str) = if path.len() == 1 {
3151                     (String::new(), "this scope".to_string())
3152                 } else if path.len() == 2 && path[0].ident.name == keywords::CrateRoot.name() {
3153                     (String::new(), "the crate root".to_string())
3154                 } else {
3155                     let mod_path = &path[..path.len() - 1];
3156                     let mod_prefix = match this.resolve_path_without_parent_scope(
3157                         mod_path, Some(TypeNS), false, span, CrateLint::No
3158                     ) {
3159                         PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3160                             module.def(),
3161                         _ => None,
3162                     }.map_or(String::new(), |def| format!("{} ", def.kind_name()));
3163                     (mod_prefix, format!("`{}`", Segment::names_to_string(mod_path)))
3164                 };
3165                 (format!("cannot find {} `{}` in {}{}", expected, item_str, mod_prefix, mod_str),
3166                  format!("not found in {}", mod_str),
3167                  item_span)
3168             };
3169             let code = DiagnosticId::Error(code.into());
3170             let mut err = this.session.struct_span_err_with_code(base_span, &base_msg, code);
3171
3172             // Emit help message for fake-self from other languages like `this`(javascript)
3173             if ["this", "my"].contains(&&*item_str.as_str())
3174                 && this.self_value_is_available(path[0].ident.span, span) {
3175                 err.span_suggestion_with_applicability(
3176                     span,
3177                     "did you mean",
3178                     "self".to_string(),
3179                     Applicability::MaybeIncorrect,
3180                 );
3181             }
3182
3183             // Emit special messages for unresolved `Self` and `self`.
3184             if is_self_type(path, ns) {
3185                 __diagnostic_used!(E0411);
3186                 err.code(DiagnosticId::Error("E0411".into()));
3187                 let available_in = if this.session.features_untracked().self_in_typedefs {
3188                     "impls, traits, and type definitions"
3189                 } else {
3190                     "traits and impls"
3191                 };
3192                 err.span_label(span, format!("`Self` is only available in {}", available_in));
3193                 if this.current_self_item.is_some() && nightly_options::is_nightly_build() {
3194                     err.help("add #![feature(self_in_typedefs)] to the crate attributes \
3195                               to enable");
3196                 }
3197                 return (err, Vec::new());
3198             }
3199             if is_self_value(path, ns) {
3200                 __diagnostic_used!(E0424);
3201                 err.code(DiagnosticId::Error("E0424".into()));
3202                 err.span_label(span, format!("`self` value is a keyword \
3203                                                only available in \
3204                                                methods with `self` parameter"));
3205                 return (err, Vec::new());
3206             }
3207
3208             // Try to lookup the name in more relaxed fashion for better error reporting.
3209             let ident = path.last().unwrap().ident;
3210             let candidates = this.lookup_import_candidates(ident, ns, is_expected);
3211             if candidates.is_empty() && is_expected(Def::Enum(DefId::local(CRATE_DEF_INDEX))) {
3212                 let enum_candidates =
3213                     this.lookup_import_candidates(ident, ns, is_enum_variant);
3214                 let mut enum_candidates = enum_candidates.iter()
3215                     .map(|suggestion| import_candidate_to_paths(&suggestion)).collect::<Vec<_>>();
3216                 enum_candidates.sort();
3217                 for (sp, variant_path, enum_path) in enum_candidates {
3218                     if sp.is_dummy() {
3219                         let msg = format!("there is an enum variant `{}`, \
3220                                         try using `{}`?",
3221                                         variant_path,
3222                                         enum_path);
3223                         err.help(&msg);
3224                     } else {
3225                         err.span_suggestion_with_applicability(
3226                             span,
3227                             "you can try using the variant's enum",
3228                             enum_path,
3229                             Applicability::MachineApplicable,
3230                         );
3231                     }
3232                 }
3233             }
3234             if path.len() == 1 && this.self_type_is_available(span) {
3235                 if let Some(candidate) = this.lookup_assoc_candidate(ident, ns, is_expected) {
3236                     let self_is_available = this.self_value_is_available(path[0].ident.span, span);
3237                     match candidate {
3238                         AssocSuggestion::Field => {
3239                             err.span_suggestion_with_applicability(
3240                                 span,
3241                                 "try",
3242                                 format!("self.{}", path_str),
3243                                 Applicability::MachineApplicable,
3244                             );
3245                             if !self_is_available {
3246                                 err.span_label(span, format!("`self` value is a keyword \
3247                                                                only available in \
3248                                                                methods with `self` parameter"));
3249                             }
3250                         }
3251                         AssocSuggestion::MethodWithSelf if self_is_available => {
3252                             err.span_suggestion_with_applicability(
3253                                 span,
3254                                 "try",
3255                                 format!("self.{}", path_str),
3256                                 Applicability::MachineApplicable,
3257                             );
3258                         }
3259                         AssocSuggestion::MethodWithSelf | AssocSuggestion::AssocItem => {
3260                             err.span_suggestion_with_applicability(
3261                                 span,
3262                                 "try",
3263                                 format!("Self::{}", path_str),
3264                                 Applicability::MachineApplicable,
3265                             );
3266                         }
3267                     }
3268                     return (err, candidates);
3269                 }
3270             }
3271
3272             let mut levenshtein_worked = false;
3273
3274             // Try Levenshtein.
3275             if let Some(candidate) = this.lookup_typo_candidate(path, ns, is_expected, span) {
3276                 err.span_label(ident_span, format!("did you mean `{}`?", candidate));
3277                 levenshtein_worked = true;
3278             }
3279
3280             // Try context dependent help if relaxed lookup didn't work.
3281             if let Some(def) = def {
3282                 match (def, source) {
3283                     (Def::Macro(..), _) => {
3284                         err.span_label(span, format!("did you mean `{}!(...)`?", path_str));
3285                         return (err, candidates);
3286                     }
3287                     (Def::TyAlias(..), PathSource::Trait(_)) => {
3288                         err.span_label(span, "type aliases cannot be used as traits");
3289                         if nightly_options::is_nightly_build() {
3290                             err.note("did you mean to use a trait alias?");
3291                         }
3292                         return (err, candidates);
3293                     }
3294                     (Def::Mod(..), PathSource::Expr(Some(parent))) => match parent.node {
3295                         ExprKind::Field(_, ident) => {
3296                             err.span_label(parent.span, format!("did you mean `{}::{}`?",
3297                                                                  path_str, ident));
3298                             return (err, candidates);
3299                         }
3300                         ExprKind::MethodCall(ref segment, ..) => {
3301                             err.span_label(parent.span, format!("did you mean `{}::{}(...)`?",
3302                                                                  path_str, segment.ident));
3303                             return (err, candidates);
3304                         }
3305                         _ => {}
3306                     },
3307                     (Def::Enum(..), PathSource::TupleStruct)
3308                         | (Def::Enum(..), PathSource::Expr(..))  => {
3309                         if let Some(variants) = this.collect_enum_variants(def) {
3310                             err.note(&format!("did you mean to use one \
3311                                                of the following variants?\n{}",
3312                                 variants.iter()
3313                                     .map(|suggestion| path_names_to_string(suggestion))
3314                                     .map(|suggestion| format!("- `{}`", suggestion))
3315                                     .collect::<Vec<_>>()
3316                                     .join("\n")));
3317
3318                         } else {
3319                             err.note("did you mean to use one of the enum's variants?");
3320                         }
3321                         return (err, candidates);
3322                     },
3323                     (Def::Struct(def_id), _) if ns == ValueNS => {
3324                         if let Some((ctor_def, ctor_vis))
3325                                 = this.struct_constructors.get(&def_id).cloned() {
3326                             let accessible_ctor = this.is_accessible(ctor_vis);
3327                             if is_expected(ctor_def) && !accessible_ctor {
3328                                 err.span_label(span, format!("constructor is not visible \
3329                                                               here due to private fields"));
3330                             }
3331                         } else {
3332                             // HACK(estebank): find a better way to figure out that this was a
3333                             // parser issue where a struct literal is being used on an expression
3334                             // where a brace being opened means a block is being started. Look
3335                             // ahead for the next text to see if `span` is followed by a `{`.
3336                             let sm = this.session.source_map();
3337                             let mut sp = span;
3338                             loop {
3339                                 sp = sm.next_point(sp);
3340                                 match sm.span_to_snippet(sp) {
3341                                     Ok(ref snippet) => {
3342                                         if snippet.chars().any(|c| { !c.is_whitespace() }) {
3343                                             break;
3344                                         }
3345                                     }
3346                                     _ => break,
3347                                 }
3348                             }
3349                             let followed_by_brace = match sm.span_to_snippet(sp) {
3350                                 Ok(ref snippet) if snippet == "{" => true,
3351                                 _ => false,
3352                             };
3353                             match source {
3354                                 PathSource::Expr(Some(parent)) => {
3355                                     match parent.node {
3356                                         ExprKind::MethodCall(ref path_assignment, _)  => {
3357                                             err.span_suggestion_with_applicability(
3358                                                 sm.start_point(parent.span)
3359                                                   .to(path_assignment.ident.span),
3360                                                 "use `::` to access an associated function",
3361                                                 format!("{}::{}",
3362                                                         path_str,
3363                                                         path_assignment.ident),
3364                                                 Applicability::MaybeIncorrect
3365                                             );
3366                                             return (err, candidates);
3367                                         },
3368                                         _ => {
3369                                             err.span_label(
3370                                                 span,
3371                                                 format!("did you mean `{} {{ /* fields */ }}`?",
3372                                                         path_str),
3373                                             );
3374                                             return (err, candidates);
3375                                         },
3376                                     }
3377                                 },
3378                                 PathSource::Expr(None) if followed_by_brace == true => {
3379                                     err.span_label(
3380                                         span,
3381                                         format!("did you mean `({} {{ /* fields */ }})`?",
3382                                                 path_str),
3383                                     );
3384                                     return (err, candidates);
3385                                 },
3386                                 _ => {
3387                                     err.span_label(
3388                                         span,
3389                                         format!("did you mean `{} {{ /* fields */ }}`?",
3390                                                 path_str),
3391                                     );
3392                                     return (err, candidates);
3393                                 },
3394                             }
3395                         }
3396                         return (err, candidates);
3397                     }
3398                     (Def::Union(..), _) |
3399                     (Def::Variant(..), _) |
3400                     (Def::VariantCtor(_, CtorKind::Fictive), _) if ns == ValueNS => {
3401                         err.span_label(span, format!("did you mean `{} {{ /* fields */ }}`?",
3402                                                      path_str));
3403                         return (err, candidates);
3404                     }
3405                     (Def::SelfTy(..), _) if ns == ValueNS => {
3406                         err.span_label(span, fallback_label);
3407                         err.note("can't use `Self` as a constructor, you must use the \
3408                                   implemented struct");
3409                         return (err, candidates);
3410                     }
3411                     (Def::TyAlias(_), _) | (Def::AssociatedTy(..), _) if ns == ValueNS => {
3412                         err.note("can't use a type alias as a constructor");
3413                         return (err, candidates);
3414                     }
3415                     _ => {}
3416                 }
3417             }
3418
3419             // Fallback label.
3420             if !levenshtein_worked {
3421                 err.span_label(base_span, fallback_label);
3422                 this.type_ascription_suggestion(&mut err, base_span);
3423             }
3424             (err, candidates)
3425         };
3426         let report_errors = |this: &mut Self, def: Option<Def>| {
3427             let (err, candidates) = report_errors(this, def);
3428             let def_id = this.current_module.normal_ancestor_id;
3429             let node_id = this.definitions.as_local_node_id(def_id).unwrap();
3430             let better = def.is_some();
3431             this.use_injections.push(UseError { err, candidates, node_id, better });
3432             err_path_resolution()
3433         };
3434
3435         let resolution = match self.resolve_qpath_anywhere(
3436             id,
3437             qself,
3438             path,
3439             ns,
3440             span,
3441             source.defer_to_typeck(),
3442             source.global_by_default(),
3443             crate_lint,
3444         ) {
3445             Some(resolution) if resolution.unresolved_segments() == 0 => {
3446                 if is_expected(resolution.base_def()) || resolution.base_def() == Def::Err {
3447                     resolution
3448                 } else {
3449                     // Add a temporary hack to smooth the transition to new struct ctor
3450                     // visibility rules. See #38932 for more details.
3451                     let mut res = None;
3452                     if let Def::Struct(def_id) = resolution.base_def() {
3453                         if let Some((ctor_def, ctor_vis))
3454                                 = self.struct_constructors.get(&def_id).cloned() {
3455                             if is_expected(ctor_def) && self.is_accessible(ctor_vis) {
3456                                 let lint = lint::builtin::LEGACY_CONSTRUCTOR_VISIBILITY;
3457                                 self.session.buffer_lint(lint, id, span,
3458                                     "private struct constructors are not usable through \
3459                                      re-exports in outer modules",
3460                                 );
3461                                 res = Some(PathResolution::new(ctor_def));
3462                             }
3463                         }
3464                     }
3465
3466                     res.unwrap_or_else(|| report_errors(self, Some(resolution.base_def())))
3467                 }
3468             }
3469             Some(resolution) if source.defer_to_typeck() => {
3470                 // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
3471                 // or `<T>::A::B`. If `B` should be resolved in value namespace then
3472                 // it needs to be added to the trait map.
3473                 if ns == ValueNS {
3474                     let item_name = path.last().unwrap().ident;
3475                     let traits = self.get_traits_containing_item(item_name, ns);
3476                     self.trait_map.insert(id, traits);
3477                 }
3478                 resolution
3479             }
3480             _ => report_errors(self, None)
3481         };
3482
3483         if let PathSource::TraitItem(..) = source {} else {
3484             // Avoid recording definition of `A::B` in `<T as A>::B::C`.
3485             self.record_def(id, resolution);
3486         }
3487         resolution
3488     }
3489
3490     fn type_ascription_suggestion(&self,
3491                                   err: &mut DiagnosticBuilder,
3492                                   base_span: Span) {
3493         debug!("type_ascription_suggetion {:?}", base_span);
3494         let cm = self.session.source_map();
3495         debug!("self.current_type_ascription {:?}", self.current_type_ascription);
3496         if let Some(sp) = self.current_type_ascription.last() {
3497             let mut sp = *sp;
3498             loop {  // try to find the `:`, bail on first non-':'/non-whitespace
3499                 sp = cm.next_point(sp);
3500                 if let Ok(snippet) = cm.span_to_snippet(sp.to(cm.next_point(sp))) {
3501                     debug!("snippet {:?}", snippet);
3502                     let line_sp = cm.lookup_char_pos(sp.hi()).line;
3503                     let line_base_sp = cm.lookup_char_pos(base_span.lo()).line;
3504                     debug!("{:?} {:?}", line_sp, line_base_sp);
3505                     if snippet == ":" {
3506                         err.span_label(base_span,
3507                                        "expecting a type here because of type ascription");
3508                         if line_sp != line_base_sp {
3509                             err.span_suggestion_short_with_applicability(
3510                                 sp,
3511                                 "did you mean to use `;` here instead?",
3512                                 ";".to_string(),
3513                                 Applicability::MaybeIncorrect,
3514                             );
3515                         }
3516                         break;
3517                     } else if !snippet.trim().is_empty() {
3518                         debug!("tried to find type ascription `:` token, couldn't find it");
3519                         break;
3520                     }
3521                 } else {
3522                     break;
3523                 }
3524             }
3525         }
3526     }
3527
3528     fn self_type_is_available(&mut self, span: Span) -> bool {
3529         let binding = self.resolve_ident_in_lexical_scope(keywords::SelfType.ident(),
3530                                                           TypeNS, None, span);
3531         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3532     }
3533
3534     fn self_value_is_available(&mut self, self_span: Span, path_span: Span) -> bool {
3535         let ident = Ident::new(keywords::SelfValue.name(), self_span);
3536         let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, None, path_span);
3537         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3538     }
3539
3540     // Resolve in alternative namespaces if resolution in the primary namespace fails.
3541     fn resolve_qpath_anywhere(&mut self,
3542                               id: NodeId,
3543                               qself: Option<&QSelf>,
3544                               path: &[Segment],
3545                               primary_ns: Namespace,
3546                               span: Span,
3547                               defer_to_typeck: bool,
3548                               global_by_default: bool,
3549                               crate_lint: CrateLint)
3550                               -> Option<PathResolution> {
3551         let mut fin_res = None;
3552         // FIXME: can't resolve paths in macro namespace yet, macros are
3553         // processed by the little special hack below.
3554         for (i, ns) in [primary_ns, TypeNS, ValueNS, /*MacroNS*/].iter().cloned().enumerate() {
3555             if i == 0 || ns != primary_ns {
3556                 match self.resolve_qpath(id, qself, path, ns, span, global_by_default, crate_lint) {
3557                     // If defer_to_typeck, then resolution > no resolution,
3558                     // otherwise full resolution > partial resolution > no resolution.
3559                     Some(res) if res.unresolved_segments() == 0 || defer_to_typeck =>
3560                         return Some(res),
3561                     res => if fin_res.is_none() { fin_res = res },
3562                 };
3563             }
3564         }
3565         if primary_ns != MacroNS &&
3566            (self.macro_names.contains(&path[0].ident.modern()) ||
3567             self.builtin_macros.get(&path[0].ident.name).cloned()
3568                                .and_then(NameBinding::macro_kind) == Some(MacroKind::Bang) ||
3569             self.macro_use_prelude.get(&path[0].ident.name).cloned()
3570                                   .and_then(NameBinding::macro_kind) == Some(MacroKind::Bang)) {
3571             // Return some dummy definition, it's enough for error reporting.
3572             return Some(
3573                 PathResolution::new(Def::Macro(DefId::local(CRATE_DEF_INDEX), MacroKind::Bang))
3574             );
3575         }
3576         fin_res
3577     }
3578
3579     /// Handles paths that may refer to associated items.
3580     fn resolve_qpath(&mut self,
3581                      id: NodeId,
3582                      qself: Option<&QSelf>,
3583                      path: &[Segment],
3584                      ns: Namespace,
3585                      span: Span,
3586                      global_by_default: bool,
3587                      crate_lint: CrateLint)
3588                      -> Option<PathResolution> {
3589         debug!(
3590             "resolve_qpath(id={:?}, qself={:?}, path={:?}, \
3591              ns={:?}, span={:?}, global_by_default={:?})",
3592             id,
3593             qself,
3594             path,
3595             ns,
3596             span,
3597             global_by_default,
3598         );
3599
3600         if let Some(qself) = qself {
3601             if qself.position == 0 {
3602                 // This is a case like `<T>::B`, where there is no
3603                 // trait to resolve.  In that case, we leave the `B`
3604                 // segment to be resolved by type-check.
3605                 return Some(PathResolution::with_unresolved_segments(
3606                     Def::Mod(DefId::local(CRATE_DEF_INDEX)), path.len()
3607                 ));
3608             }
3609
3610             // Make sure `A::B` in `<T as A::B>::C` is a trait item.
3611             //
3612             // Currently, `path` names the full item (`A::B::C`, in
3613             // our example).  so we extract the prefix of that that is
3614             // the trait (the slice upto and including
3615             // `qself.position`). And then we recursively resolve that,
3616             // but with `qself` set to `None`.
3617             //
3618             // However, setting `qself` to none (but not changing the
3619             // span) loses the information about where this path
3620             // *actually* appears, so for the purposes of the crate
3621             // lint we pass along information that this is the trait
3622             // name from a fully qualified path, and this also
3623             // contains the full span (the `CrateLint::QPathTrait`).
3624             let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
3625             let res = self.smart_resolve_path_fragment(
3626                 id,
3627                 None,
3628                 &path[..qself.position + 1],
3629                 span,
3630                 PathSource::TraitItem(ns),
3631                 CrateLint::QPathTrait {
3632                     qpath_id: id,
3633                     qpath_span: qself.path_span,
3634                 },
3635             );
3636
3637             // The remaining segments (the `C` in our example) will
3638             // have to be resolved by type-check, since that requires doing
3639             // trait resolution.
3640             return Some(PathResolution::with_unresolved_segments(
3641                 res.base_def(), res.unresolved_segments() + path.len() - qself.position - 1
3642             ));
3643         }
3644
3645         let result = match self.resolve_path_without_parent_scope(
3646             &path,
3647             Some(ns),
3648             true,
3649             span,
3650             crate_lint,
3651         ) {
3652             PathResult::NonModule(path_res) => path_res,
3653             PathResult::Module(ModuleOrUniformRoot::Module(module)) if !module.is_normal() => {
3654                 PathResolution::new(module.def().unwrap())
3655             }
3656             // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
3657             // don't report an error right away, but try to fallback to a primitive type.
3658             // So, we are still able to successfully resolve something like
3659             //
3660             // use std::u8; // bring module u8 in scope
3661             // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
3662             //     u8::max_value() // OK, resolves to associated function <u8>::max_value,
3663             //                     // not to non-existent std::u8::max_value
3664             // }
3665             //
3666             // Such behavior is required for backward compatibility.
3667             // The same fallback is used when `a` resolves to nothing.
3668             PathResult::Module(ModuleOrUniformRoot::Module(_)) |
3669             PathResult::Failed(..)
3670                     if (ns == TypeNS || path.len() > 1) &&
3671                        self.primitive_type_table.primitive_types
3672                            .contains_key(&path[0].ident.name) => {
3673                 let prim = self.primitive_type_table.primitive_types[&path[0].ident.name];
3674                 PathResolution::with_unresolved_segments(Def::PrimTy(prim), path.len() - 1)
3675             }
3676             PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3677                 PathResolution::new(module.def().unwrap()),
3678             PathResult::Failed(span, msg, false) => {
3679                 resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
3680                 err_path_resolution()
3681             }
3682             PathResult::Module(..) | PathResult::Failed(..) => return None,
3683             PathResult::Indeterminate => bug!("indetermined path result in resolve_qpath"),
3684         };
3685
3686         if path.len() > 1 && !global_by_default && result.base_def() != Def::Err &&
3687            path[0].ident.name != keywords::CrateRoot.name() &&
3688            path[0].ident.name != keywords::DollarCrate.name() {
3689             let unqualified_result = {
3690                 match self.resolve_path_without_parent_scope(
3691                     &[*path.last().unwrap()],
3692                     Some(ns),
3693                     false,
3694                     span,
3695                     CrateLint::No,
3696                 ) {
3697                     PathResult::NonModule(path_res) => path_res.base_def(),
3698                     PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3699                         module.def().unwrap(),
3700                     _ => return Some(result),
3701                 }
3702             };
3703             if result.base_def() == unqualified_result {
3704                 let lint = lint::builtin::UNUSED_QUALIFICATIONS;
3705                 self.session.buffer_lint(lint, id, span, "unnecessary qualification")
3706             }
3707         }
3708
3709         Some(result)
3710     }
3711
3712     fn resolve_path_without_parent_scope(
3713         &mut self,
3714         path: &[Segment],
3715         opt_ns: Option<Namespace>, // `None` indicates a module path in import
3716         record_used: bool,
3717         path_span: Span,
3718         crate_lint: CrateLint,
3719     ) -> PathResult<'a> {
3720         // Macro and import paths must have full parent scope available during resolution,
3721         // other paths will do okay with parent module alone.
3722         assert!(opt_ns != None && opt_ns != Some(MacroNS));
3723         let parent_scope = ParentScope { module: self.current_module, ..self.dummy_parent_scope() };
3724         self.resolve_path(path, opt_ns, &parent_scope, record_used, path_span, crate_lint)
3725     }
3726
3727     fn resolve_path(
3728         &mut self,
3729         path: &[Segment],
3730         opt_ns: Option<Namespace>, // `None` indicates a module path in import
3731         parent_scope: &ParentScope<'a>,
3732         record_used: bool,
3733         path_span: Span,
3734         crate_lint: CrateLint,
3735     ) -> PathResult<'a> {
3736         let mut module = None;
3737         let mut allow_super = true;
3738         let mut second_binding = None;
3739         self.current_module = parent_scope.module;
3740
3741         debug!(
3742             "resolve_path(path={:?}, opt_ns={:?}, record_used={:?}, \
3743              path_span={:?}, crate_lint={:?})",
3744             path,
3745             opt_ns,
3746             record_used,
3747             path_span,
3748             crate_lint,
3749         );
3750
3751         for (i, &Segment { ident, id }) in path.iter().enumerate() {
3752             debug!("resolve_path ident {} {:?} {:?}", i, ident, id);
3753             let record_segment_def = |this: &mut Self, def| {
3754                 if record_used {
3755                     if let Some(id) = id {
3756                         if !this.def_map.contains_key(&id) {
3757                             assert!(id != ast::DUMMY_NODE_ID, "Trying to resolve dummy id");
3758                             this.record_def(id, PathResolution::new(def));
3759                         }
3760                     }
3761                 }
3762             };
3763
3764             let is_last = i == path.len() - 1;
3765             let ns = if is_last { opt_ns.unwrap_or(TypeNS) } else { TypeNS };
3766             let name = ident.name;
3767
3768             allow_super &= ns == TypeNS &&
3769                 (name == keywords::SelfValue.name() ||
3770                  name == keywords::Super.name());
3771
3772             if ns == TypeNS {
3773                 if allow_super && name == keywords::Super.name() {
3774                     let mut ctxt = ident.span.ctxt().modern();
3775                     let self_module = match i {
3776                         0 => Some(self.resolve_self(&mut ctxt, self.current_module)),
3777                         _ => match module {
3778                             Some(ModuleOrUniformRoot::Module(module)) => Some(module),
3779                             _ => None,
3780                         },
3781                     };
3782                     if let Some(self_module) = self_module {
3783                         if let Some(parent) = self_module.parent {
3784                             module = Some(ModuleOrUniformRoot::Module(
3785                                 self.resolve_self(&mut ctxt, parent)));
3786                             continue;
3787                         }
3788                     }
3789                     let msg = "there are too many initial `super`s.".to_string();
3790                     return PathResult::Failed(ident.span, msg, false);
3791                 }
3792                 if i == 0 {
3793                     if name == keywords::SelfValue.name() {
3794                         let mut ctxt = ident.span.ctxt().modern();
3795                         module = Some(ModuleOrUniformRoot::Module(
3796                             self.resolve_self(&mut ctxt, self.current_module)));
3797                         continue;
3798                     }
3799                     if name == keywords::Extern.name() ||
3800                        name == keywords::CrateRoot.name() && ident.span.rust_2018() {
3801                         module = Some(ModuleOrUniformRoot::ExternPrelude);
3802                         continue;
3803                     }
3804                     if name == keywords::CrateRoot.name() &&
3805                        ident.span.rust_2015() && self.session.rust_2018() {
3806                         // `::a::b` from 2015 macro on 2018 global edition
3807                         module = Some(ModuleOrUniformRoot::CrateRootAndExternPrelude);
3808                         continue;
3809                     }
3810                     if name == keywords::CrateRoot.name() ||
3811                        name == keywords::Crate.name() ||
3812                        name == keywords::DollarCrate.name() {
3813                         // `::a::b`, `crate::a::b` or `$crate::a::b`
3814                         module = Some(ModuleOrUniformRoot::Module(
3815                             self.resolve_crate_root(ident)));
3816                         continue;
3817                     }
3818                 }
3819             }
3820
3821             // Report special messages for path segment keywords in wrong positions.
3822             if ident.is_path_segment_keyword() && i != 0 {
3823                 let name_str = if name == keywords::CrateRoot.name() {
3824                     "crate root".to_string()
3825                 } else {
3826                     format!("`{}`", name)
3827                 };
3828                 let msg = if i == 1 && path[0].ident.name == keywords::CrateRoot.name() {
3829                     format!("global paths cannot start with {}", name_str)
3830                 } else {
3831                     format!("{} in paths can only be used in start position", name_str)
3832                 };
3833                 return PathResult::Failed(ident.span, msg, false);
3834             }
3835
3836             let binding = if let Some(module) = module {
3837                 self.resolve_ident_in_module(module, ident, ns, None, record_used, path_span)
3838             } else if opt_ns.is_none() || opt_ns == Some(MacroNS) {
3839                 assert!(ns == TypeNS);
3840                 let scopes = if opt_ns.is_none() { ScopeSet::Import(ns) } else { ScopeSet::Module };
3841                 self.early_resolve_ident_in_lexical_scope(ident, scopes, parent_scope, record_used,
3842                                                           record_used, path_span)
3843             } else {
3844                 let record_used_id =
3845                     if record_used { crate_lint.node_id().or(Some(CRATE_NODE_ID)) } else { None };
3846                 match self.resolve_ident_in_lexical_scope(ident, ns, record_used_id, path_span) {
3847                     // we found a locally-imported or available item/module
3848                     Some(LexicalScopeBinding::Item(binding)) => Ok(binding),
3849                     // we found a local variable or type param
3850                     Some(LexicalScopeBinding::Def(def))
3851                             if opt_ns == Some(TypeNS) || opt_ns == Some(ValueNS) => {
3852                         record_segment_def(self, def);
3853                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3854                             def, path.len() - 1
3855                         ));
3856                     }
3857                     _ => Err(Determinacy::determined(record_used)),
3858                 }
3859             };
3860
3861             match binding {
3862                 Ok(binding) => {
3863                     if i == 1 {
3864                         second_binding = Some(binding);
3865                     }
3866                     let def = binding.def();
3867                     let maybe_assoc = opt_ns != Some(MacroNS) && PathSource::Type.is_expected(def);
3868                     if let Some(next_module) = binding.module() {
3869                         module = Some(ModuleOrUniformRoot::Module(next_module));
3870                         record_segment_def(self, def);
3871                     } else if def == Def::ToolMod && i + 1 != path.len() {
3872                         let def = Def::NonMacroAttr(NonMacroAttrKind::Tool);
3873                         return PathResult::NonModule(PathResolution::new(def));
3874                     } else if def == Def::Err {
3875                         return PathResult::NonModule(err_path_resolution());
3876                     } else if opt_ns.is_some() && (is_last || maybe_assoc) {
3877                         self.lint_if_path_starts_with_module(
3878                             crate_lint,
3879                             path,
3880                             path_span,
3881                             second_binding,
3882                         );
3883                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3884                             def, path.len() - i - 1
3885                         ));
3886                     } else {
3887                         return PathResult::Failed(ident.span,
3888                                                   format!("not a module `{}`", ident),
3889                                                   is_last);
3890                     }
3891                 }
3892                 Err(Undetermined) => return PathResult::Indeterminate,
3893                 Err(Determined) => {
3894                     if let Some(ModuleOrUniformRoot::Module(module)) = module {
3895                         if opt_ns.is_some() && !module.is_normal() {
3896                             return PathResult::NonModule(PathResolution::with_unresolved_segments(
3897                                 module.def().unwrap(), path.len() - i
3898                             ));
3899                         }
3900                     }
3901                     let module_def = match module {
3902                         Some(ModuleOrUniformRoot::Module(module)) => module.def(),
3903                         _ => None,
3904                     };
3905                     let msg = if module_def == self.graph_root.def() {
3906                         let is_mod = |def| match def { Def::Mod(..) => true, _ => false };
3907                         let mut candidates =
3908                             self.lookup_import_candidates(ident, TypeNS, is_mod);
3909                         candidates.sort_by_cached_key(|c| {
3910                             (c.path.segments.len(), c.path.to_string())
3911                         });
3912                         if let Some(candidate) = candidates.get(0) {
3913                             format!("did you mean `{}`?", candidate.path)
3914                         } else {
3915                             format!("maybe a missing `extern crate {};`?", ident)
3916                         }
3917                     } else if i == 0 {
3918                         format!("use of undeclared type or module `{}`", ident)
3919                     } else {
3920                         format!("could not find `{}` in `{}`", ident, path[i - 1].ident)
3921                     };
3922                     return PathResult::Failed(ident.span, msg, is_last);
3923                 }
3924             }
3925         }
3926
3927         self.lint_if_path_starts_with_module(crate_lint, path, path_span, second_binding);
3928
3929         PathResult::Module(match module {
3930             Some(module) => module,
3931             None if path.is_empty() => ModuleOrUniformRoot::CurrentScope,
3932             _ => span_bug!(path_span, "resolve_path: non-empty path `{:?}` has no module", path),
3933         })
3934     }
3935
3936     fn lint_if_path_starts_with_module(
3937         &self,
3938         crate_lint: CrateLint,
3939         path: &[Segment],
3940         path_span: Span,
3941         second_binding: Option<&NameBinding>,
3942     ) {
3943         let (diag_id, diag_span) = match crate_lint {
3944             CrateLint::No => return,
3945             CrateLint::SimplePath(id) => (id, path_span),
3946             CrateLint::UsePath { root_id, root_span } => (root_id, root_span),
3947             CrateLint::QPathTrait { qpath_id, qpath_span } => (qpath_id, qpath_span),
3948         };
3949
3950         let first_name = match path.get(0) {
3951             // In the 2018 edition this lint is a hard error, so nothing to do
3952             Some(seg) if seg.ident.span.rust_2015() => seg.ident.name,
3953             _ => return,
3954         };
3955
3956         // We're only interested in `use` paths which should start with
3957         // `{{root}}` or `extern` currently.
3958         if first_name != keywords::Extern.name() && first_name != keywords::CrateRoot.name() {
3959             return
3960         }
3961
3962         match path.get(1) {
3963             // If this import looks like `crate::...` it's already good
3964             Some(Segment { ident, .. }) if ident.name == keywords::Crate.name() => return,
3965             // Otherwise go below to see if it's an extern crate
3966             Some(_) => {}
3967             // If the path has length one (and it's `CrateRoot` most likely)
3968             // then we don't know whether we're gonna be importing a crate or an
3969             // item in our crate. Defer this lint to elsewhere
3970             None => return,
3971         }
3972
3973         // If the first element of our path was actually resolved to an
3974         // `ExternCrate` (also used for `crate::...`) then no need to issue a
3975         // warning, this looks all good!
3976         if let Some(binding) = second_binding {
3977             if let NameBindingKind::Import { directive: d, .. } = binding.kind {
3978                 // Careful: we still want to rewrite paths from
3979                 // renamed extern crates.
3980                 if let ImportDirectiveSubclass::ExternCrate { source: None, .. } = d.subclass {
3981                     return
3982                 }
3983             }
3984         }
3985
3986         let diag = lint::builtin::BuiltinLintDiagnostics
3987             ::AbsPathWithModule(diag_span);
3988         self.session.buffer_lint_with_diagnostic(
3989             lint::builtin::ABSOLUTE_PATHS_NOT_STARTING_WITH_CRATE,
3990             diag_id, diag_span,
3991             "absolute paths must start with `self`, `super`, \
3992             `crate`, or an external crate name in the 2018 edition",
3993             diag);
3994     }
3995
3996     // Resolve a local definition, potentially adjusting for closures.
3997     fn adjust_local_def(&mut self,
3998                         ns: Namespace,
3999                         rib_index: usize,
4000                         mut def: Def,
4001                         record_used: bool,
4002                         span: Span) -> Def {
4003         let ribs = &self.ribs[ns][rib_index + 1..];
4004
4005         // An invalid forward use of a type parameter from a previous default.
4006         if let ForwardTyParamBanRibKind = self.ribs[ns][rib_index].kind {
4007             if record_used {
4008                 resolve_error(self, span, ResolutionError::ForwardDeclaredTyParam);
4009             }
4010             assert_eq!(def, Def::Err);
4011             return Def::Err;
4012         }
4013
4014         match def {
4015             Def::Upvar(..) => {
4016                 span_bug!(span, "unexpected {:?} in bindings", def)
4017             }
4018             Def::Local(node_id) => {
4019                 for rib in ribs {
4020                     match rib.kind {
4021                         NormalRibKind | ModuleRibKind(..) | MacroDefinition(..) |
4022                         ForwardTyParamBanRibKind => {
4023                             // Nothing to do. Continue.
4024                         }
4025                         ClosureRibKind(function_id) => {
4026                             let prev_def = def;
4027
4028                             let seen = self.freevars_seen
4029                                            .entry(function_id)
4030                                            .or_default();
4031                             if let Some(&index) = seen.get(&node_id) {
4032                                 def = Def::Upvar(node_id, index, function_id);
4033                                 continue;
4034                             }
4035                             let vec = self.freevars
4036                                           .entry(function_id)
4037                                           .or_default();
4038                             let depth = vec.len();
4039                             def = Def::Upvar(node_id, depth, function_id);
4040
4041                             if record_used {
4042                                 vec.push(Freevar {
4043                                     def: prev_def,
4044                                     span,
4045                                 });
4046                                 seen.insert(node_id, depth);
4047                             }
4048                         }
4049                         ItemRibKind | TraitOrImplItemRibKind => {
4050                             // This was an attempt to access an upvar inside a
4051                             // named function item. This is not allowed, so we
4052                             // report an error.
4053                             if record_used {
4054                                 resolve_error(self, span,
4055                                     ResolutionError::CannotCaptureDynamicEnvironmentInFnItem);
4056                             }
4057                             return Def::Err;
4058                         }
4059                         ConstantItemRibKind => {
4060                             // Still doesn't deal with upvars
4061                             if record_used {
4062                                 resolve_error(self, span,
4063                                     ResolutionError::AttemptToUseNonConstantValueInConstant);
4064                             }
4065                             return Def::Err;
4066                         }
4067                     }
4068                 }
4069             }
4070             Def::TyParam(..) | Def::SelfTy(..) => {
4071                 for rib in ribs {
4072                     match rib.kind {
4073                         NormalRibKind | TraitOrImplItemRibKind | ClosureRibKind(..) |
4074                         ModuleRibKind(..) | MacroDefinition(..) | ForwardTyParamBanRibKind |
4075                         ConstantItemRibKind => {
4076                             // Nothing to do. Continue.
4077                         }
4078                         ItemRibKind => {
4079                             // This was an attempt to use a type parameter outside
4080                             // its scope.
4081                             if record_used {
4082                                 resolve_error(self, span,
4083                                     ResolutionError::TypeParametersFromOuterFunction(def));
4084                             }
4085                             return Def::Err;
4086                         }
4087                     }
4088                 }
4089             }
4090             _ => {}
4091         }
4092         def
4093     }
4094
4095     fn lookup_assoc_candidate<FilterFn>(&mut self,
4096                                         ident: Ident,
4097                                         ns: Namespace,
4098                                         filter_fn: FilterFn)
4099                                         -> Option<AssocSuggestion>
4100         where FilterFn: Fn(Def) -> bool
4101     {
4102         fn extract_node_id(t: &Ty) -> Option<NodeId> {
4103             match t.node {
4104                 TyKind::Path(None, _) => Some(t.id),
4105                 TyKind::Rptr(_, ref mut_ty) => extract_node_id(&mut_ty.ty),
4106                 // This doesn't handle the remaining `Ty` variants as they are not
4107                 // that commonly the self_type, it might be interesting to provide
4108                 // support for those in future.
4109                 _ => None,
4110             }
4111         }
4112
4113         // Fields are generally expected in the same contexts as locals.
4114         if filter_fn(Def::Local(ast::DUMMY_NODE_ID)) {
4115             if let Some(node_id) = self.current_self_type.as_ref().and_then(extract_node_id) {
4116                 // Look for a field with the same name in the current self_type.
4117                 if let Some(resolution) = self.def_map.get(&node_id) {
4118                     match resolution.base_def() {
4119                         Def::Struct(did) | Def::Union(did)
4120                                 if resolution.unresolved_segments() == 0 => {
4121                             if let Some(field_names) = self.field_names.get(&did) {
4122                                 if field_names.iter().any(|&field_name| ident.name == field_name) {
4123                                     return Some(AssocSuggestion::Field);
4124                                 }
4125                             }
4126                         }
4127                         _ => {}
4128                     }
4129                 }
4130             }
4131         }
4132
4133         // Look for associated items in the current trait.
4134         if let Some((module, _)) = self.current_trait_ref {
4135             if let Ok(binding) = self.resolve_ident_in_module(
4136                     ModuleOrUniformRoot::Module(module),
4137                     ident,
4138                     ns,
4139                     None,
4140                     false,
4141                     module.span,
4142                 ) {
4143                 let def = binding.def();
4144                 if filter_fn(def) {
4145                     return Some(if self.has_self.contains(&def.def_id()) {
4146                         AssocSuggestion::MethodWithSelf
4147                     } else {
4148                         AssocSuggestion::AssocItem
4149                     });
4150                 }
4151             }
4152         }
4153
4154         None
4155     }
4156
4157     fn lookup_typo_candidate<FilterFn>(&mut self,
4158                                        path: &[Segment],
4159                                        ns: Namespace,
4160                                        filter_fn: FilterFn,
4161                                        span: Span)
4162                                        -> Option<Symbol>
4163         where FilterFn: Fn(Def) -> bool
4164     {
4165         let add_module_candidates = |module: Module, names: &mut Vec<Name>| {
4166             for (&(ident, _), resolution) in module.resolutions.borrow().iter() {
4167                 if let Some(binding) = resolution.borrow().binding {
4168                     if filter_fn(binding.def()) {
4169                         names.push(ident.name);
4170                     }
4171                 }
4172             }
4173         };
4174
4175         let mut names = Vec::new();
4176         if path.len() == 1 {
4177             // Search in lexical scope.
4178             // Walk backwards up the ribs in scope and collect candidates.
4179             for rib in self.ribs[ns].iter().rev() {
4180                 // Locals and type parameters
4181                 for (ident, def) in &rib.bindings {
4182                     if filter_fn(*def) {
4183                         names.push(ident.name);
4184                     }
4185                 }
4186                 // Items in scope
4187                 if let ModuleRibKind(module) = rib.kind {
4188                     // Items from this module
4189                     add_module_candidates(module, &mut names);
4190
4191                     if let ModuleKind::Block(..) = module.kind {
4192                         // We can see through blocks
4193                     } else {
4194                         // Items from the prelude
4195                         if !module.no_implicit_prelude {
4196                             names.extend(self.extern_prelude.iter().map(|(ident, _)| ident.name));
4197                             if let Some(prelude) = self.prelude {
4198                                 add_module_candidates(prelude, &mut names);
4199                             }
4200                         }
4201                         break;
4202                     }
4203                 }
4204             }
4205             // Add primitive types to the mix
4206             if filter_fn(Def::PrimTy(Bool)) {
4207                 names.extend(
4208                     self.primitive_type_table.primitive_types.iter().map(|(name, _)| name)
4209                 )
4210             }
4211         } else {
4212             // Search in module.
4213             let mod_path = &path[..path.len() - 1];
4214             if let PathResult::Module(module) = self.resolve_path_without_parent_scope(
4215                 mod_path, Some(TypeNS), false, span, CrateLint::No
4216             ) {
4217                 if let ModuleOrUniformRoot::Module(module) = module {
4218                     add_module_candidates(module, &mut names);
4219                 }
4220             }
4221         }
4222
4223         let name = path[path.len() - 1].ident.name;
4224         // Make sure error reporting is deterministic.
4225         names.sort_by_cached_key(|name| name.as_str());
4226         match find_best_match_for_name(names.iter(), &name.as_str(), None) {
4227             Some(found) if found != name => Some(found),
4228             _ => None,
4229         }
4230     }
4231
4232     fn with_resolved_label<F>(&mut self, label: Option<Label>, id: NodeId, f: F)
4233         where F: FnOnce(&mut Resolver)
4234     {
4235         if let Some(label) = label {
4236             self.unused_labels.insert(id, label.ident.span);
4237             let def = Def::Label(id);
4238             self.with_label_rib(|this| {
4239                 let ident = label.ident.modern_and_legacy();
4240                 this.label_ribs.last_mut().unwrap().bindings.insert(ident, def);
4241                 f(this);
4242             });
4243         } else {
4244             f(self);
4245         }
4246     }
4247
4248     fn resolve_labeled_block(&mut self, label: Option<Label>, id: NodeId, block: &Block) {
4249         self.with_resolved_label(label, id, |this| this.visit_block(block));
4250     }
4251
4252     fn resolve_expr(&mut self, expr: &Expr, parent: Option<&Expr>) {
4253         // First, record candidate traits for this expression if it could
4254         // result in the invocation of a method call.
4255
4256         self.record_candidate_traits_for_expr_if_necessary(expr);
4257
4258         // Next, resolve the node.
4259         match expr.node {
4260             ExprKind::Path(ref qself, ref path) => {
4261                 self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
4262                 visit::walk_expr(self, expr);
4263             }
4264
4265             ExprKind::Struct(ref path, ..) => {
4266                 self.smart_resolve_path(expr.id, None, path, PathSource::Struct);
4267                 visit::walk_expr(self, expr);
4268             }
4269
4270             ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
4271                 let def = self.search_label(label.ident, |rib, ident| {
4272                     rib.bindings.get(&ident.modern_and_legacy()).cloned()
4273                 });
4274                 match def {
4275                     None => {
4276                         // Search again for close matches...
4277                         // Picks the first label that is "close enough", which is not necessarily
4278                         // the closest match
4279                         let close_match = self.search_label(label.ident, |rib, ident| {
4280                             let names = rib.bindings.iter().map(|(id, _)| &id.name);
4281                             find_best_match_for_name(names, &*ident.as_str(), None)
4282                         });
4283                         self.record_def(expr.id, err_path_resolution());
4284                         resolve_error(self,
4285                                       label.ident.span,
4286                                       ResolutionError::UndeclaredLabel(&label.ident.as_str(),
4287                                                                        close_match));
4288                     }
4289                     Some(Def::Label(id)) => {
4290                         // Since this def is a label, it is never read.
4291                         self.record_def(expr.id, PathResolution::new(Def::Label(id)));
4292                         self.unused_labels.remove(&id);
4293                     }
4294                     Some(_) => {
4295                         span_bug!(expr.span, "label wasn't mapped to a label def!");
4296                     }
4297                 }
4298
4299                 // visit `break` argument if any
4300                 visit::walk_expr(self, expr);
4301             }
4302
4303             ExprKind::IfLet(ref pats, ref subexpression, ref if_block, ref optional_else) => {
4304                 self.visit_expr(subexpression);
4305
4306                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
4307                 let mut bindings_list = FxHashMap::default();
4308                 for pat in pats {
4309                     self.resolve_pattern(pat, PatternSource::IfLet, &mut bindings_list);
4310                 }
4311                 // This has to happen *after* we determine which pat_idents are variants
4312                 self.check_consistent_bindings(pats);
4313                 self.visit_block(if_block);
4314                 self.ribs[ValueNS].pop();
4315
4316                 optional_else.as_ref().map(|expr| self.visit_expr(expr));
4317             }
4318
4319             ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),
4320
4321             ExprKind::While(ref subexpression, ref block, label) => {
4322                 self.with_resolved_label(label, expr.id, |this| {
4323                     this.visit_expr(subexpression);
4324                     this.visit_block(block);
4325                 });
4326             }
4327
4328             ExprKind::WhileLet(ref pats, ref subexpression, ref block, label) => {
4329                 self.with_resolved_label(label, expr.id, |this| {
4330                     this.visit_expr(subexpression);
4331                     this.ribs[ValueNS].push(Rib::new(NormalRibKind));
4332                     let mut bindings_list = FxHashMap::default();
4333                     for pat in pats {
4334                         this.resolve_pattern(pat, PatternSource::WhileLet, &mut bindings_list);
4335                     }
4336                     // This has to happen *after* we determine which pat_idents are variants
4337                     this.check_consistent_bindings(pats);
4338                     this.visit_block(block);
4339                     this.ribs[ValueNS].pop();
4340                 });
4341             }
4342
4343             ExprKind::ForLoop(ref pattern, ref subexpression, ref block, label) => {
4344                 self.visit_expr(subexpression);
4345                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
4346                 self.resolve_pattern(pattern, PatternSource::For, &mut FxHashMap::default());
4347
4348                 self.resolve_labeled_block(label, expr.id, block);
4349
4350                 self.ribs[ValueNS].pop();
4351             }
4352
4353             ExprKind::Block(ref block, label) => self.resolve_labeled_block(label, block.id, block),
4354
4355             // Equivalent to `visit::walk_expr` + passing some context to children.
4356             ExprKind::Field(ref subexpression, _) => {
4357                 self.resolve_expr(subexpression, Some(expr));
4358             }
4359             ExprKind::MethodCall(ref segment, ref arguments) => {
4360                 let mut arguments = arguments.iter();
4361                 self.resolve_expr(arguments.next().unwrap(), Some(expr));
4362                 for argument in arguments {
4363                     self.resolve_expr(argument, None);
4364                 }
4365                 self.visit_path_segment(expr.span, segment);
4366             }
4367
4368             ExprKind::Call(ref callee, ref arguments) => {
4369                 self.resolve_expr(callee, Some(expr));
4370                 for argument in arguments {
4371                     self.resolve_expr(argument, None);
4372                 }
4373             }
4374             ExprKind::Type(ref type_expr, _) => {
4375                 self.current_type_ascription.push(type_expr.span);
4376                 visit::walk_expr(self, expr);
4377                 self.current_type_ascription.pop();
4378             }
4379             // Resolve the body of async exprs inside the async closure to which they desugar
4380             ExprKind::Async(_, async_closure_id, ref block) => {
4381                 let rib_kind = ClosureRibKind(async_closure_id);
4382                 self.ribs[ValueNS].push(Rib::new(rib_kind));
4383                 self.label_ribs.push(Rib::new(rib_kind));
4384                 self.visit_block(&block);
4385                 self.label_ribs.pop();
4386                 self.ribs[ValueNS].pop();
4387             }
4388             // `async |x| ...` gets desugared to `|x| future_from_generator(|| ...)`, so we need to
4389             // resolve the arguments within the proper scopes so that usages of them inside the
4390             // closure are detected as upvars rather than normal closure arg usages.
4391             ExprKind::Closure(
4392                 _, IsAsync::Async { closure_id: inner_closure_id, .. }, _,
4393                 ref fn_decl, ref body, _span,
4394             ) => {
4395                 let rib_kind = ClosureRibKind(expr.id);
4396                 self.ribs[ValueNS].push(Rib::new(rib_kind));
4397                 self.label_ribs.push(Rib::new(rib_kind));
4398                 // Resolve arguments:
4399                 let mut bindings_list = FxHashMap::default();
4400                 for argument in &fn_decl.inputs {
4401                     self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
4402                     self.visit_ty(&argument.ty);
4403                 }
4404                 // No need to resolve return type-- the outer closure return type is
4405                 // FunctionRetTy::Default
4406
4407                 // Now resolve the inner closure
4408                 {
4409                     let rib_kind = ClosureRibKind(inner_closure_id);
4410                     self.ribs[ValueNS].push(Rib::new(rib_kind));
4411                     self.label_ribs.push(Rib::new(rib_kind));
4412                     // No need to resolve arguments: the inner closure has none.
4413                     // Resolve the return type:
4414                     visit::walk_fn_ret_ty(self, &fn_decl.output);
4415                     // Resolve the body
4416                     self.visit_expr(body);
4417                     self.label_ribs.pop();
4418                     self.ribs[ValueNS].pop();
4419                 }
4420                 self.label_ribs.pop();
4421                 self.ribs[ValueNS].pop();
4422             }
4423             _ => {
4424                 visit::walk_expr(self, expr);
4425             }
4426         }
4427     }
4428
4429     fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &Expr) {
4430         match expr.node {
4431             ExprKind::Field(_, ident) => {
4432                 // FIXME(#6890): Even though you can't treat a method like a
4433                 // field, we need to add any trait methods we find that match
4434                 // the field name so that we can do some nice error reporting
4435                 // later on in typeck.
4436                 let traits = self.get_traits_containing_item(ident, ValueNS);
4437                 self.trait_map.insert(expr.id, traits);
4438             }
4439             ExprKind::MethodCall(ref segment, ..) => {
4440                 debug!("(recording candidate traits for expr) recording traits for {}",
4441                        expr.id);
4442                 let traits = self.get_traits_containing_item(segment.ident, ValueNS);
4443                 self.trait_map.insert(expr.id, traits);
4444             }
4445             _ => {
4446                 // Nothing to do.
4447             }
4448         }
4449     }
4450
4451     fn get_traits_containing_item(&mut self, mut ident: Ident, ns: Namespace)
4452                                   -> Vec<TraitCandidate> {
4453         debug!("(getting traits containing item) looking for '{}'", ident.name);
4454
4455         let mut found_traits = Vec::new();
4456         // Look for the current trait.
4457         if let Some((module, _)) = self.current_trait_ref {
4458             if self.resolve_ident_in_module(
4459                 ModuleOrUniformRoot::Module(module),
4460                 ident,
4461                 ns,
4462                 None,
4463                 false,
4464                 module.span,
4465             ).is_ok() {
4466                 let def_id = module.def_id().unwrap();
4467                 found_traits.push(TraitCandidate { def_id: def_id, import_id: None });
4468             }
4469         }
4470
4471         ident.span = ident.span.modern();
4472         let mut search_module = self.current_module;
4473         loop {
4474             self.get_traits_in_module_containing_item(ident, ns, search_module, &mut found_traits);
4475             search_module = unwrap_or!(
4476                 self.hygienic_lexical_parent(search_module, &mut ident.span), break
4477             );
4478         }
4479
4480         if let Some(prelude) = self.prelude {
4481             if !search_module.no_implicit_prelude {
4482                 self.get_traits_in_module_containing_item(ident, ns, prelude, &mut found_traits);
4483             }
4484         }
4485
4486         found_traits
4487     }
4488
4489     fn get_traits_in_module_containing_item(&mut self,
4490                                             ident: Ident,
4491                                             ns: Namespace,
4492                                             module: Module<'a>,
4493                                             found_traits: &mut Vec<TraitCandidate>) {
4494         assert!(ns == TypeNS || ns == ValueNS);
4495         let mut traits = module.traits.borrow_mut();
4496         if traits.is_none() {
4497             let mut collected_traits = Vec::new();
4498             module.for_each_child(|name, ns, binding| {
4499                 if ns != TypeNS { return }
4500                 if let Def::Trait(_) = binding.def() {
4501                     collected_traits.push((name, binding));
4502                 }
4503             });
4504             *traits = Some(collected_traits.into_boxed_slice());
4505         }
4506
4507         for &(trait_name, binding) in traits.as_ref().unwrap().iter() {
4508             let module = binding.module().unwrap();
4509             let mut ident = ident;
4510             if ident.span.glob_adjust(module.expansion, binding.span.ctxt().modern()).is_none() {
4511                 continue
4512             }
4513             if self.resolve_ident_in_module_unadjusted(
4514                 ModuleOrUniformRoot::Module(module),
4515                 ident,
4516                 ns,
4517                 false,
4518                 module.span,
4519             ).is_ok() {
4520                 let import_id = match binding.kind {
4521                     NameBindingKind::Import { directive, .. } => {
4522                         self.maybe_unused_trait_imports.insert(directive.id);
4523                         self.add_to_glob_map(directive.id, trait_name);
4524                         Some(directive.id)
4525                     }
4526                     _ => None,
4527                 };
4528                 let trait_def_id = module.def_id().unwrap();
4529                 found_traits.push(TraitCandidate { def_id: trait_def_id, import_id: import_id });
4530             }
4531         }
4532     }
4533
4534     fn lookup_import_candidates_from_module<FilterFn>(&mut self,
4535                                           lookup_ident: Ident,
4536                                           namespace: Namespace,
4537                                           start_module: &'a ModuleData<'a>,
4538                                           crate_name: Ident,
4539                                           filter_fn: FilterFn)
4540                                           -> Vec<ImportSuggestion>
4541         where FilterFn: Fn(Def) -> bool
4542     {
4543         let mut candidates = Vec::new();
4544         let mut seen_modules = FxHashSet::default();
4545         let not_local_module = crate_name != keywords::Crate.ident();
4546         let mut worklist = vec![(start_module, Vec::<ast::PathSegment>::new(), not_local_module)];
4547
4548         while let Some((in_module,
4549                         path_segments,
4550                         in_module_is_extern)) = worklist.pop() {
4551             self.populate_module_if_necessary(in_module);
4552
4553             // We have to visit module children in deterministic order to avoid
4554             // instabilities in reported imports (#43552).
4555             in_module.for_each_child_stable(|ident, ns, name_binding| {
4556                 // avoid imports entirely
4557                 if name_binding.is_import() && !name_binding.is_extern_crate() { return; }
4558                 // avoid non-importable candidates as well
4559                 if !name_binding.is_importable() { return; }
4560
4561                 // collect results based on the filter function
4562                 if ident.name == lookup_ident.name && ns == namespace {
4563                     if filter_fn(name_binding.def()) {
4564                         // create the path
4565                         let mut segms = path_segments.clone();
4566                         if lookup_ident.span.rust_2018() {
4567                             // crate-local absolute paths start with `crate::` in edition 2018
4568                             // FIXME: may also be stabilized for Rust 2015 (Issues #45477, #44660)
4569                             segms.insert(
4570                                 0, ast::PathSegment::from_ident(crate_name)
4571                             );
4572                         }
4573
4574                         segms.push(ast::PathSegment::from_ident(ident));
4575                         let path = Path {
4576                             span: name_binding.span,
4577                             segments: segms,
4578                         };
4579                         // the entity is accessible in the following cases:
4580                         // 1. if it's defined in the same crate, it's always
4581                         // accessible (since private entities can be made public)
4582                         // 2. if it's defined in another crate, it's accessible
4583                         // only if both the module is public and the entity is
4584                         // declared as public (due to pruning, we don't explore
4585                         // outside crate private modules => no need to check this)
4586                         if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
4587                             candidates.push(ImportSuggestion { path });
4588                         }
4589                     }
4590                 }
4591
4592                 // collect submodules to explore
4593                 if let Some(module) = name_binding.module() {
4594                     // form the path
4595                     let mut path_segments = path_segments.clone();
4596                     path_segments.push(ast::PathSegment::from_ident(ident));
4597
4598                     let is_extern_crate_that_also_appears_in_prelude =
4599                         name_binding.is_extern_crate() &&
4600                         lookup_ident.span.rust_2018();
4601
4602                     let is_visible_to_user =
4603                         !in_module_is_extern || name_binding.vis == ty::Visibility::Public;
4604
4605                     if !is_extern_crate_that_also_appears_in_prelude && is_visible_to_user {
4606                         // add the module to the lookup
4607                         let is_extern = in_module_is_extern || name_binding.is_extern_crate();
4608                         if seen_modules.insert(module.def_id().unwrap()) {
4609                             worklist.push((module, path_segments, is_extern));
4610                         }
4611                     }
4612                 }
4613             })
4614         }
4615
4616         candidates
4617     }
4618
4619     /// When name resolution fails, this method can be used to look up candidate
4620     /// entities with the expected name. It allows filtering them using the
4621     /// supplied predicate (which should be used to only accept the types of
4622     /// definitions expected e.g. traits). The lookup spans across all crates.
4623     ///
4624     /// NOTE: The method does not look into imports, but this is not a problem,
4625     /// since we report the definitions (thus, the de-aliased imports).
4626     fn lookup_import_candidates<FilterFn>(&mut self,
4627                                           lookup_ident: Ident,
4628                                           namespace: Namespace,
4629                                           filter_fn: FilterFn)
4630                                           -> Vec<ImportSuggestion>
4631         where FilterFn: Fn(Def) -> bool
4632     {
4633         let mut suggestions = self.lookup_import_candidates_from_module(
4634             lookup_ident, namespace, self.graph_root, keywords::Crate.ident(), &filter_fn);
4635
4636         if lookup_ident.span.rust_2018() {
4637             let extern_prelude_names = self.extern_prelude.clone();
4638             for (ident, _) in extern_prelude_names.into_iter() {
4639                 if let Some(crate_id) = self.crate_loader.maybe_process_path_extern(ident.name,
4640                                                                                     ident.span) {
4641                     let crate_root = self.get_module(DefId {
4642                         krate: crate_id,
4643                         index: CRATE_DEF_INDEX,
4644                     });
4645                     self.populate_module_if_necessary(&crate_root);
4646
4647                     suggestions.extend(self.lookup_import_candidates_from_module(
4648                         lookup_ident, namespace, crate_root, ident, &filter_fn));
4649                 }
4650             }
4651         }
4652
4653         suggestions
4654     }
4655
4656     fn find_module(&mut self,
4657                    module_def: Def)
4658                    -> Option<(Module<'a>, ImportSuggestion)>
4659     {
4660         let mut result = None;
4661         let mut seen_modules = FxHashSet::default();
4662         let mut worklist = vec![(self.graph_root, Vec::new())];
4663
4664         while let Some((in_module, path_segments)) = worklist.pop() {
4665             // abort if the module is already found
4666             if result.is_some() { break; }
4667
4668             self.populate_module_if_necessary(in_module);
4669
4670             in_module.for_each_child_stable(|ident, _, name_binding| {
4671                 // abort if the module is already found or if name_binding is private external
4672                 if result.is_some() || !name_binding.vis.is_visible_locally() {
4673                     return
4674                 }
4675                 if let Some(module) = name_binding.module() {
4676                     // form the path
4677                     let mut path_segments = path_segments.clone();
4678                     path_segments.push(ast::PathSegment::from_ident(ident));
4679                     if module.def() == Some(module_def) {
4680                         let path = Path {
4681                             span: name_binding.span,
4682                             segments: path_segments,
4683                         };
4684                         result = Some((module, ImportSuggestion { path }));
4685                     } else {
4686                         // add the module to the lookup
4687                         if seen_modules.insert(module.def_id().unwrap()) {
4688                             worklist.push((module, path_segments));
4689                         }
4690                     }
4691                 }
4692             });
4693         }
4694
4695         result
4696     }
4697
4698     fn collect_enum_variants(&mut self, enum_def: Def) -> Option<Vec<Path>> {
4699         if let Def::Enum(..) = enum_def {} else {
4700             panic!("Non-enum def passed to collect_enum_variants: {:?}", enum_def)
4701         }
4702
4703         self.find_module(enum_def).map(|(enum_module, enum_import_suggestion)| {
4704             self.populate_module_if_necessary(enum_module);
4705
4706             let mut variants = Vec::new();
4707             enum_module.for_each_child_stable(|ident, _, name_binding| {
4708                 if let Def::Variant(..) = name_binding.def() {
4709                     let mut segms = enum_import_suggestion.path.segments.clone();
4710                     segms.push(ast::PathSegment::from_ident(ident));
4711                     variants.push(Path {
4712                         span: name_binding.span,
4713                         segments: segms,
4714                     });
4715                 }
4716             });
4717             variants
4718         })
4719     }
4720
4721     fn record_def(&mut self, node_id: NodeId, resolution: PathResolution) {
4722         debug!("(recording def) recording {:?} for {}", resolution, node_id);
4723         if let Some(prev_res) = self.def_map.insert(node_id, resolution) {
4724             panic!("path resolved multiple times ({:?} before, {:?} now)", prev_res, resolution);
4725         }
4726     }
4727
4728     fn resolve_visibility(&mut self, vis: &ast::Visibility) -> ty::Visibility {
4729         match vis.node {
4730             ast::VisibilityKind::Public => ty::Visibility::Public,
4731             ast::VisibilityKind::Crate(..) => {
4732                 ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX))
4733             }
4734             ast::VisibilityKind::Inherited => {
4735                 ty::Visibility::Restricted(self.current_module.normal_ancestor_id)
4736             }
4737             ast::VisibilityKind::Restricted { ref path, id, .. } => {
4738                 // For visibilities we are not ready to provide correct implementation of "uniform
4739                 // paths" right now, so on 2018 edition we only allow module-relative paths for now.
4740                 // On 2015 edition visibilities are resolved as crate-relative by default,
4741                 // so we are prepending a root segment if necessary.
4742                 let ident = path.segments.get(0).expect("empty path in visibility").ident;
4743                 let crate_root = if ident.is_path_segment_keyword() {
4744                     None
4745                 } else if ident.span.rust_2018() {
4746                     let msg = "relative paths are not supported in visibilities on 2018 edition";
4747                     self.session.struct_span_err(ident.span, msg)
4748                                 .span_suggestion(path.span, "try", format!("crate::{}", path))
4749                                 .emit();
4750                     return ty::Visibility::Public;
4751                 } else {
4752                     let ctxt = ident.span.ctxt();
4753                     Some(Segment::from_ident(Ident::new(
4754                         keywords::CrateRoot.name(), path.span.shrink_to_lo().with_ctxt(ctxt)
4755                     )))
4756                 };
4757
4758                 let segments = crate_root.into_iter()
4759                     .chain(path.segments.iter().map(|seg| seg.into())).collect::<Vec<_>>();
4760                 let def = self.smart_resolve_path_fragment(
4761                     id,
4762                     None,
4763                     &segments,
4764                     path.span,
4765                     PathSource::Visibility,
4766                     CrateLint::SimplePath(id),
4767                 ).base_def();
4768                 if def == Def::Err {
4769                     ty::Visibility::Public
4770                 } else {
4771                     let vis = ty::Visibility::Restricted(def.def_id());
4772                     if self.is_accessible(vis) {
4773                         vis
4774                     } else {
4775                         self.session.span_err(path.span, "visibilities can only be restricted \
4776                                                           to ancestor modules");
4777                         ty::Visibility::Public
4778                     }
4779                 }
4780             }
4781         }
4782     }
4783
4784     fn is_accessible(&self, vis: ty::Visibility) -> bool {
4785         vis.is_accessible_from(self.current_module.normal_ancestor_id, self)
4786     }
4787
4788     fn is_accessible_from(&self, vis: ty::Visibility, module: Module<'a>) -> bool {
4789         vis.is_accessible_from(module.normal_ancestor_id, self)
4790     }
4791
4792     fn set_binding_parent_module(&mut self, binding: &'a NameBinding<'a>, module: Module<'a>) {
4793         if let Some(old_module) = self.binding_parent_modules.insert(PtrKey(binding), module) {
4794             if !ptr::eq(module, old_module) {
4795                 span_bug!(binding.span, "parent module is reset for binding");
4796             }
4797         }
4798     }
4799
4800     fn disambiguate_legacy_vs_modern(
4801         &self,
4802         legacy: &'a NameBinding<'a>,
4803         modern: &'a NameBinding<'a>,
4804     ) -> bool {
4805         // Some non-controversial subset of ambiguities "modern macro name" vs "macro_rules"
4806         // is disambiguated to mitigate regressions from macro modularization.
4807         // Scoping for `macro_rules` behaves like scoping for `let` at module level, in general.
4808         match (self.binding_parent_modules.get(&PtrKey(legacy)),
4809                self.binding_parent_modules.get(&PtrKey(modern))) {
4810             (Some(legacy), Some(modern)) =>
4811                 legacy.normal_ancestor_id == modern.normal_ancestor_id &&
4812                 modern.is_ancestor_of(legacy),
4813             _ => false,
4814         }
4815     }
4816
4817     fn binding_description(&self, b: &NameBinding, ident: Ident, from_prelude: bool) -> String {
4818         if b.span.is_dummy() {
4819             let add_built_in = match b.def() {
4820                 // These already contain the "built-in" prefix or look bad with it.
4821                 Def::NonMacroAttr(..) | Def::PrimTy(..) | Def::ToolMod => false,
4822                 _ => true,
4823             };
4824             let (built_in, from) = if from_prelude {
4825                 ("", " from prelude")
4826             } else if b.is_extern_crate() && !b.is_import() &&
4827                         self.session.opts.externs.get(&ident.as_str()).is_some() {
4828                 ("", " passed with `--extern`")
4829             } else if add_built_in {
4830                 (" built-in", "")
4831             } else {
4832                 ("", "")
4833             };
4834
4835             let article = if built_in.is_empty() { b.article() } else { "a" };
4836             format!("{a}{built_in} {thing}{from}",
4837                     a = article, thing = b.descr(), built_in = built_in, from = from)
4838         } else {
4839             let introduced = if b.is_import() { "imported" } else { "defined" };
4840             format!("the {thing} {introduced} here",
4841                     thing = b.descr(), introduced = introduced)
4842         }
4843     }
4844
4845     fn report_ambiguity_error(&self, ambiguity_error: &AmbiguityError) {
4846         let AmbiguityError { kind, ident, b1, b2, misc1, misc2 } = *ambiguity_error;
4847         let (b1, b2, misc1, misc2, swapped) = if b2.span.is_dummy() && !b1.span.is_dummy() {
4848             // We have to print the span-less alternative first, otherwise formatting looks bad.
4849             (b2, b1, misc2, misc1, true)
4850         } else {
4851             (b1, b2, misc1, misc2, false)
4852         };
4853
4854         let mut err = struct_span_err!(self.session, ident.span, E0659,
4855                                        "`{ident}` is ambiguous ({why})",
4856                                        ident = ident, why = kind.descr());
4857         err.span_label(ident.span, "ambiguous name");
4858
4859         let mut could_refer_to = |b: &NameBinding, misc: AmbiguityErrorMisc, also: &str| {
4860             let what = self.binding_description(b, ident, misc == AmbiguityErrorMisc::FromPrelude);
4861             let note_msg = format!("`{ident}` could{also} refer to {what}",
4862                                    ident = ident, also = also, what = what);
4863
4864             let mut help_msgs = Vec::new();
4865             if b.is_glob_import() && (kind == AmbiguityKind::GlobVsGlob ||
4866                                       kind == AmbiguityKind::GlobVsExpanded ||
4867                                       kind == AmbiguityKind::GlobVsOuter &&
4868                                       swapped != also.is_empty()) {
4869                 help_msgs.push(format!("consider adding an explicit import of \
4870                                         `{ident}` to disambiguate", ident = ident))
4871             }
4872             if b.is_extern_crate() && ident.span.rust_2018() {
4873                 help_msgs.push(format!("use `::{ident}` to refer to this {thing} unambiguously",
4874                                        ident = ident, thing = b.descr()))
4875             }
4876             if misc == AmbiguityErrorMisc::SuggestSelf {
4877                 help_msgs.push(format!("use `self::{ident}` to refer to this {thing} unambiguously",
4878                                        ident = ident, thing = b.descr()))
4879             }
4880
4881             if b.span.is_dummy() {
4882                 err.note(&note_msg);
4883             } else {
4884                 err.span_note(b.span, &note_msg);
4885             }
4886             for (i, help_msg) in help_msgs.iter().enumerate() {
4887                 let or = if i == 0 { "" } else { "or " };
4888                 err.help(&format!("{}{}", or, help_msg));
4889             }
4890         };
4891
4892         could_refer_to(b1, misc1, "");
4893         could_refer_to(b2, misc2, " also");
4894         err.emit();
4895     }
4896
4897     fn report_errors(&mut self, krate: &Crate) {
4898         self.report_with_use_injections(krate);
4899
4900         for &(span_use, span_def) in &self.macro_expanded_macro_export_errors {
4901             let msg = "macro-expanded `macro_export` macros from the current crate \
4902                        cannot be referred to by absolute paths";
4903             self.session.buffer_lint_with_diagnostic(
4904                 lint::builtin::MACRO_EXPANDED_MACRO_EXPORTS_ACCESSED_BY_ABSOLUTE_PATHS,
4905                 CRATE_NODE_ID, span_use, msg,
4906                 lint::builtin::BuiltinLintDiagnostics::
4907                     MacroExpandedMacroExportsAccessedByAbsolutePaths(span_def),
4908             );
4909         }
4910
4911         for ambiguity_error in &self.ambiguity_errors {
4912             self.report_ambiguity_error(ambiguity_error);
4913         }
4914
4915         let mut reported_spans = FxHashSet::default();
4916         for &PrivacyError(dedup_span, ident, binding) in &self.privacy_errors {
4917             if reported_spans.insert(dedup_span) {
4918                 span_err!(self.session, ident.span, E0603, "{} `{}` is private",
4919                           binding.descr(), ident.name);
4920             }
4921         }
4922     }
4923
4924     fn report_with_use_injections(&mut self, krate: &Crate) {
4925         for UseError { mut err, candidates, node_id, better } in self.use_injections.drain(..) {
4926             let (span, found_use) = UsePlacementFinder::check(krate, node_id);
4927             if !candidates.is_empty() {
4928                 show_candidates(&mut err, span, &candidates, better, found_use);
4929             }
4930             err.emit();
4931         }
4932     }
4933
4934     fn report_conflict<'b>(&mut self,
4935                        parent: Module,
4936                        ident: Ident,
4937                        ns: Namespace,
4938                        new_binding: &NameBinding<'b>,
4939                        old_binding: &NameBinding<'b>) {
4940         // Error on the second of two conflicting names
4941         if old_binding.span.lo() > new_binding.span.lo() {
4942             return self.report_conflict(parent, ident, ns, old_binding, new_binding);
4943         }
4944
4945         let container = match parent.kind {
4946             ModuleKind::Def(Def::Mod(_), _) => "module",
4947             ModuleKind::Def(Def::Trait(_), _) => "trait",
4948             ModuleKind::Block(..) => "block",
4949             _ => "enum",
4950         };
4951
4952         let old_noun = match old_binding.is_import() {
4953             true => "import",
4954             false => "definition",
4955         };
4956
4957         let new_participle = match new_binding.is_import() {
4958             true => "imported",
4959             false => "defined",
4960         };
4961
4962         let (name, span) = (ident.name, self.session.source_map().def_span(new_binding.span));
4963
4964         if let Some(s) = self.name_already_seen.get(&name) {
4965             if s == &span {
4966                 return;
4967             }
4968         }
4969
4970         let old_kind = match (ns, old_binding.module()) {
4971             (ValueNS, _) => "value",
4972             (MacroNS, _) => "macro",
4973             (TypeNS, _) if old_binding.is_extern_crate() => "extern crate",
4974             (TypeNS, Some(module)) if module.is_normal() => "module",
4975             (TypeNS, Some(module)) if module.is_trait() => "trait",
4976             (TypeNS, _) => "type",
4977         };
4978
4979         let msg = format!("the name `{}` is defined multiple times", name);
4980
4981         let mut err = match (old_binding.is_extern_crate(), new_binding.is_extern_crate()) {
4982             (true, true) => struct_span_err!(self.session, span, E0259, "{}", msg),
4983             (true, _) | (_, true) => match new_binding.is_import() && old_binding.is_import() {
4984                 true => struct_span_err!(self.session, span, E0254, "{}", msg),
4985                 false => struct_span_err!(self.session, span, E0260, "{}", msg),
4986             },
4987             _ => match (old_binding.is_import(), new_binding.is_import()) {
4988                 (false, false) => struct_span_err!(self.session, span, E0428, "{}", msg),
4989                 (true, true) => struct_span_err!(self.session, span, E0252, "{}", msg),
4990                 _ => struct_span_err!(self.session, span, E0255, "{}", msg),
4991             },
4992         };
4993
4994         err.note(&format!("`{}` must be defined only once in the {} namespace of this {}",
4995                           name,
4996                           ns.descr(),
4997                           container));
4998
4999         err.span_label(span, format!("`{}` re{} here", name, new_participle));
5000         if !old_binding.span.is_dummy() {
5001             err.span_label(self.session.source_map().def_span(old_binding.span),
5002                            format!("previous {} of the {} `{}` here", old_noun, old_kind, name));
5003         }
5004
5005         // See https://github.com/rust-lang/rust/issues/32354
5006         if old_binding.is_import() || new_binding.is_import() {
5007             let binding = if new_binding.is_import() && !new_binding.span.is_dummy() {
5008                 new_binding
5009             } else {
5010                 old_binding
5011             };
5012
5013             let cm = self.session.source_map();
5014             let rename_msg = "you can use `as` to change the binding name of the import";
5015
5016             if let (
5017                 Ok(snippet),
5018                 NameBindingKind::Import { directive, ..},
5019                 _dummy @ false,
5020             ) = (
5021                 cm.span_to_snippet(binding.span),
5022                 binding.kind.clone(),
5023                 binding.span.is_dummy(),
5024             ) {
5025                 let suggested_name = if name.as_str().chars().next().unwrap().is_uppercase() {
5026                     format!("Other{}", name)
5027                 } else {
5028                     format!("other_{}", name)
5029                 };
5030
5031                 err.span_suggestion_with_applicability(
5032                     binding.span,
5033                     &rename_msg,
5034                     match directive.subclass {
5035                         ImportDirectiveSubclass::SingleImport { type_ns_only: true, .. } =>
5036                             format!("self as {}", suggested_name),
5037                         ImportDirectiveSubclass::SingleImport { source, .. } =>
5038                             format!(
5039                                 "{} as {}{}",
5040                                 &snippet[..((source.span.hi().0 - binding.span.lo().0) as usize)],
5041                                 suggested_name,
5042                                 if snippet.ends_with(";") {
5043                                     ";"
5044                                 } else {
5045                                     ""
5046                                 }
5047                             ),
5048                         ImportDirectiveSubclass::ExternCrate { source, target, .. } =>
5049                             format!(
5050                                 "extern crate {} as {};",
5051                                 source.unwrap_or(target.name),
5052                                 suggested_name,
5053                             ),
5054                         _ => unreachable!(),
5055                     },
5056                     Applicability::MaybeIncorrect,
5057                 );
5058             } else {
5059                 err.span_label(binding.span, rename_msg);
5060             }
5061         }
5062
5063         err.emit();
5064         self.name_already_seen.insert(name, span);
5065     }
5066
5067     fn extern_prelude_get(&mut self, ident: Ident, speculative: bool)
5068                           -> Option<&'a NameBinding<'a>> {
5069         if ident.is_path_segment_keyword() {
5070             // Make sure `self`, `super` etc produce an error when passed to here.
5071             return None;
5072         }
5073         self.extern_prelude.get(&ident.modern()).cloned().and_then(|entry| {
5074             if let Some(binding) = entry.extern_crate_item {
5075                 Some(binding)
5076             } else {
5077                 let crate_id = if !speculative {
5078                     self.crate_loader.process_path_extern(ident.name, ident.span)
5079                 } else if let Some(crate_id) =
5080                         self.crate_loader.maybe_process_path_extern(ident.name, ident.span) {
5081                     crate_id
5082                 } else {
5083                     return None;
5084                 };
5085                 let crate_root = self.get_module(DefId { krate: crate_id, index: CRATE_DEF_INDEX });
5086                 self.populate_module_if_necessary(&crate_root);
5087                 Some((crate_root, ty::Visibility::Public, DUMMY_SP, Mark::root())
5088                     .to_name_binding(self.arenas))
5089             }
5090         })
5091     }
5092 }
5093
5094 fn is_self_type(path: &[Segment], namespace: Namespace) -> bool {
5095     namespace == TypeNS && path.len() == 1 && path[0].ident.name == keywords::SelfType.name()
5096 }
5097
5098 fn is_self_value(path: &[Segment], namespace: Namespace) -> bool {
5099     namespace == ValueNS && path.len() == 1 && path[0].ident.name == keywords::SelfValue.name()
5100 }
5101
5102 fn names_to_string(idents: &[Ident]) -> String {
5103     let mut result = String::new();
5104     for (i, ident) in idents.iter()
5105                             .filter(|ident| ident.name != keywords::CrateRoot.name())
5106                             .enumerate() {
5107         if i > 0 {
5108             result.push_str("::");
5109         }
5110         result.push_str(&ident.as_str());
5111     }
5112     result
5113 }
5114
5115 fn path_names_to_string(path: &Path) -> String {
5116     names_to_string(&path.segments.iter()
5117                         .map(|seg| seg.ident)
5118                         .collect::<Vec<_>>())
5119 }
5120
5121 /// Get the path for an enum and the variant from an `ImportSuggestion` for an enum variant.
5122 fn import_candidate_to_paths(suggestion: &ImportSuggestion) -> (Span, String, String) {
5123     let variant_path = &suggestion.path;
5124     let variant_path_string = path_names_to_string(variant_path);
5125
5126     let path_len = suggestion.path.segments.len();
5127     let enum_path = ast::Path {
5128         span: suggestion.path.span,
5129         segments: suggestion.path.segments[0..path_len - 1].to_vec(),
5130     };
5131     let enum_path_string = path_names_to_string(&enum_path);
5132
5133     (suggestion.path.span, variant_path_string, enum_path_string)
5134 }
5135
5136
5137 /// When an entity with a given name is not available in scope, we search for
5138 /// entities with that name in all crates. This method allows outputting the
5139 /// results of this search in a programmer-friendly way
5140 fn show_candidates(err: &mut DiagnosticBuilder,
5141                    // This is `None` if all placement locations are inside expansions
5142                    span: Option<Span>,
5143                    candidates: &[ImportSuggestion],
5144                    better: bool,
5145                    found_use: bool) {
5146
5147     // we want consistent results across executions, but candidates are produced
5148     // by iterating through a hash map, so make sure they are ordered:
5149     let mut path_strings: Vec<_> =
5150         candidates.into_iter().map(|c| path_names_to_string(&c.path)).collect();
5151     path_strings.sort();
5152
5153     let better = if better { "better " } else { "" };
5154     let msg_diff = match path_strings.len() {
5155         1 => " is found in another module, you can import it",
5156         _ => "s are found in other modules, you can import them",
5157     };
5158     let msg = format!("possible {}candidate{} into scope", better, msg_diff);
5159
5160     if let Some(span) = span {
5161         for candidate in &mut path_strings {
5162             // produce an additional newline to separate the new use statement
5163             // from the directly following item.
5164             let additional_newline = if found_use {
5165                 ""
5166             } else {
5167                 "\n"
5168             };
5169             *candidate = format!("use {};\n{}", candidate, additional_newline);
5170         }
5171
5172         err.span_suggestions_with_applicability(
5173             span,
5174             &msg,
5175             path_strings.into_iter(),
5176             Applicability::Unspecified,
5177         );
5178     } else {
5179         let mut msg = msg;
5180         msg.push(':');
5181         for candidate in path_strings {
5182             msg.push('\n');
5183             msg.push_str(&candidate);
5184         }
5185     }
5186 }
5187
5188 /// A somewhat inefficient routine to obtain the name of a module.
5189 fn module_to_string(module: Module) -> Option<String> {
5190     let mut names = Vec::new();
5191
5192     fn collect_mod(names: &mut Vec<Ident>, module: Module) {
5193         if let ModuleKind::Def(_, name) = module.kind {
5194             if let Some(parent) = module.parent {
5195                 names.push(Ident::with_empty_ctxt(name));
5196                 collect_mod(names, parent);
5197             }
5198         } else {
5199             // danger, shouldn't be ident?
5200             names.push(Ident::from_str("<opaque>"));
5201             collect_mod(names, module.parent.unwrap());
5202         }
5203     }
5204     collect_mod(&mut names, module);
5205
5206     if names.is_empty() {
5207         return None;
5208     }
5209     Some(names_to_string(&names.into_iter()
5210                         .rev()
5211                         .collect::<Vec<_>>()))
5212 }
5213
5214 fn err_path_resolution() -> PathResolution {
5215     PathResolution::new(Def::Err)
5216 }
5217
5218 #[derive(PartialEq,Copy, Clone)]
5219 pub enum MakeGlobMap {
5220     Yes,
5221     No,
5222 }
5223
5224 #[derive(Copy, Clone, Debug)]
5225 enum CrateLint {
5226     /// Do not issue the lint
5227     No,
5228
5229     /// This lint applies to some random path like `impl ::foo::Bar`
5230     /// or whatever. In this case, we can take the span of that path.
5231     SimplePath(NodeId),
5232
5233     /// This lint comes from a `use` statement. In this case, what we
5234     /// care about really is the *root* `use` statement; e.g., if we
5235     /// have nested things like `use a::{b, c}`, we care about the
5236     /// `use a` part.
5237     UsePath { root_id: NodeId, root_span: Span },
5238
5239     /// This is the "trait item" from a fully qualified path. For example,
5240     /// we might be resolving  `X::Y::Z` from a path like `<T as X::Y>::Z`.
5241     /// The `path_span` is the span of the to the trait itself (`X::Y`).
5242     QPathTrait { qpath_id: NodeId, qpath_span: Span },
5243 }
5244
5245 impl CrateLint {
5246     fn node_id(&self) -> Option<NodeId> {
5247         match *self {
5248             CrateLint::No => None,
5249             CrateLint::SimplePath(id) |
5250             CrateLint::UsePath { root_id: id, .. } |
5251             CrateLint::QPathTrait { qpath_id: id, .. } => Some(id),
5252         }
5253     }
5254 }
5255
5256 __build_diagnostic_array! { librustc_resolve, DIAGNOSTICS }