]> git.lizzy.rs Git - rust.git/blob - src/librustc_resolve/lib.rs
save analysis: don't dump macro refs
[rust.git] / src / librustc_resolve / lib.rs
1 // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 #![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
12        html_favicon_url = "https://doc.rust-lang.org/favicon.ico",
13        html_root_url = "https://doc.rust-lang.org/nightly/")]
14
15 #![feature(crate_visibility_modifier)]
16 #![feature(nll)]
17 #![feature(rustc_diagnostic_macros)]
18 #![feature(slice_sort_by_cached_key)]
19
20 #[macro_use]
21 extern crate bitflags;
22 #[macro_use]
23 extern crate log;
24 #[macro_use]
25 extern crate syntax;
26 extern crate syntax_pos;
27 extern crate rustc_errors as errors;
28 extern crate arena;
29 #[macro_use]
30 extern crate rustc;
31 extern crate rustc_data_structures;
32 extern crate rustc_metadata;
33
34 pub use rustc::hir::def::{Namespace, PerNS};
35
36 use self::TypeParameters::*;
37 use self::RibKind::*;
38
39 use rustc::hir::map::{Definitions, DefCollector};
40 use rustc::hir::{self, PrimTy, Bool, Char, Float, Int, Uint, Str};
41 use rustc::middle::cstore::CrateStore;
42 use rustc::session::Session;
43 use rustc::lint;
44 use rustc::hir::def::*;
45 use rustc::hir::def::Namespace::*;
46 use rustc::hir::def_id::{CRATE_DEF_INDEX, LOCAL_CRATE, DefId};
47 use rustc::hir::{Freevar, FreevarMap, TraitCandidate, TraitMap, GlobMap};
48 use rustc::session::config::nightly_options;
49 use rustc::ty;
50 use rustc::util::nodemap::{NodeMap, NodeSet, FxHashMap, FxHashSet, DefIdMap};
51
52 use rustc_metadata::creader::CrateLoader;
53 use rustc_metadata::cstore::CStore;
54
55 use syntax::source_map::SourceMap;
56 use syntax::ext::hygiene::{Mark, Transparency, SyntaxContext};
57 use syntax::ast::{self, Name, NodeId, Ident, FloatTy, IntTy, UintTy};
58 use syntax::ext::base::SyntaxExtension;
59 use syntax::ext::base::Determinacy::{self, Determined, Undetermined};
60 use syntax::ext::base::MacroKind;
61 use syntax::feature_gate::{emit_feature_err, GateIssue};
62 use syntax::symbol::{Symbol, keywords};
63 use syntax::util::lev_distance::find_best_match_for_name;
64
65 use syntax::visit::{self, FnKind, Visitor};
66 use syntax::attr;
67 use syntax::ast::{CRATE_NODE_ID, Arm, IsAsync, BindingMode, Block, Crate, Expr, ExprKind};
68 use syntax::ast::{FnDecl, ForeignItem, ForeignItemKind, GenericParamKind, Generics};
69 use syntax::ast::{Item, ItemKind, ImplItem, ImplItemKind};
70 use syntax::ast::{Label, Local, Mutability, Pat, PatKind, Path};
71 use syntax::ast::{QSelf, TraitItemKind, TraitRef, Ty, TyKind};
72 use syntax::ptr::P;
73
74 use syntax_pos::{Span, DUMMY_SP, MultiSpan};
75 use errors::{Applicability, DiagnosticBuilder, DiagnosticId};
76
77 use std::cell::{Cell, RefCell};
78 use std::{cmp, fmt, iter, ptr};
79 use std::collections::BTreeSet;
80 use std::mem::replace;
81 use rustc_data_structures::ptr_key::PtrKey;
82 use rustc_data_structures::sync::Lrc;
83
84 use resolve_imports::{ImportDirective, ImportDirectiveSubclass, NameResolution, ImportResolver};
85 use macros::{InvocationData, LegacyBinding, ParentScope};
86
87 // NB: This module needs to be declared first so diagnostics are
88 // registered before they are used.
89 mod diagnostics;
90 mod error_reporting;
91 mod macros;
92 mod check_unused;
93 mod build_reduced_graph;
94 mod resolve_imports;
95
96 fn is_known_tool(name: Name) -> bool {
97     ["clippy", "rustfmt"].contains(&&*name.as_str())
98 }
99
100 /// A free importable items suggested in case of resolution failure.
101 struct ImportSuggestion {
102     path: Path,
103 }
104
105 /// A field or associated item from self type suggested in case of resolution failure.
106 enum AssocSuggestion {
107     Field,
108     MethodWithSelf,
109     AssocItem,
110 }
111
112 #[derive(Eq)]
113 struct BindingError {
114     name: Name,
115     origin: BTreeSet<Span>,
116     target: BTreeSet<Span>,
117 }
118
119 impl PartialOrd for BindingError {
120     fn partial_cmp(&self, other: &BindingError) -> Option<cmp::Ordering> {
121         Some(self.cmp(other))
122     }
123 }
124
125 impl PartialEq for BindingError {
126     fn eq(&self, other: &BindingError) -> bool {
127         self.name == other.name
128     }
129 }
130
131 impl Ord for BindingError {
132     fn cmp(&self, other: &BindingError) -> cmp::Ordering {
133         self.name.cmp(&other.name)
134     }
135 }
136
137 enum ResolutionError<'a> {
138     /// error E0401: can't use type parameters from outer function
139     TypeParametersFromOuterFunction(Def),
140     /// error E0403: the name is already used for a type parameter in this type parameter list
141     NameAlreadyUsedInTypeParameterList(Name, &'a Span),
142     /// error E0407: method is not a member of trait
143     MethodNotMemberOfTrait(Name, &'a str),
144     /// error E0437: type is not a member of trait
145     TypeNotMemberOfTrait(Name, &'a str),
146     /// error E0438: const is not a member of trait
147     ConstNotMemberOfTrait(Name, &'a str),
148     /// error E0408: variable `{}` is not bound in all patterns
149     VariableNotBoundInPattern(&'a BindingError),
150     /// error E0409: variable `{}` is bound in inconsistent ways within the same match arm
151     VariableBoundWithDifferentMode(Name, Span),
152     /// error E0415: identifier is bound more than once in this parameter list
153     IdentifierBoundMoreThanOnceInParameterList(&'a str),
154     /// error E0416: identifier is bound more than once in the same pattern
155     IdentifierBoundMoreThanOnceInSamePattern(&'a str),
156     /// error E0426: use of undeclared label
157     UndeclaredLabel(&'a str, Option<Name>),
158     /// error E0429: `self` imports are only allowed within a { } list
159     SelfImportsOnlyAllowedWithin,
160     /// error E0430: `self` import can only appear once in the list
161     SelfImportCanOnlyAppearOnceInTheList,
162     /// error E0431: `self` import can only appear in an import list with a non-empty prefix
163     SelfImportOnlyInImportListWithNonEmptyPrefix,
164     /// error E0433: failed to resolve
165     FailedToResolve(&'a str),
166     /// error E0434: can't capture dynamic environment in a fn item
167     CannotCaptureDynamicEnvironmentInFnItem,
168     /// error E0435: attempt to use a non-constant value in a constant
169     AttemptToUseNonConstantValueInConstant,
170     /// error E0530: X bindings cannot shadow Ys
171     BindingShadowsSomethingUnacceptable(&'a str, Name, &'a NameBinding<'a>),
172     /// error E0128: type parameters with a default cannot use forward declared identifiers
173     ForwardDeclaredTyParam,
174 }
175
176 /// Combines an error with provided span and emits it
177 ///
178 /// This takes the error provided, combines it with the span and any additional spans inside the
179 /// error and emits it.
180 fn resolve_error<'sess, 'a>(resolver: &'sess Resolver,
181                             span: Span,
182                             resolution_error: ResolutionError<'a>) {
183     resolve_struct_error(resolver, span, resolution_error).emit();
184 }
185
186 fn resolve_struct_error<'sess, 'a>(resolver: &'sess Resolver,
187                                    span: Span,
188                                    resolution_error: ResolutionError<'a>)
189                                    -> DiagnosticBuilder<'sess> {
190     match resolution_error {
191         ResolutionError::TypeParametersFromOuterFunction(outer_def) => {
192             let mut err = struct_span_err!(resolver.session,
193                                            span,
194                                            E0401,
195                                            "can't use type parameters from outer function");
196             err.span_label(span, "use of type variable from outer function");
197
198             let cm = resolver.session.source_map();
199             match outer_def {
200                 Def::SelfTy(maybe_trait_defid, maybe_impl_defid) => {
201                     if let Some(impl_span) = maybe_impl_defid.and_then(|def_id| {
202                         resolver.definitions.opt_span(def_id)
203                     }) {
204                         err.span_label(
205                             reduce_impl_span_to_impl_keyword(cm, impl_span),
206                             "`Self` type implicitly declared here, by this `impl`",
207                         );
208                     }
209                     match (maybe_trait_defid, maybe_impl_defid) {
210                         (Some(_), None) => {
211                             err.span_label(span, "can't use `Self` here");
212                         }
213                         (_, Some(_)) => {
214                             err.span_label(span, "use a type here instead");
215                         }
216                         (None, None) => bug!("`impl` without trait nor type?"),
217                     }
218                     return err;
219                 },
220                 Def::TyParam(typaram_defid) => {
221                     if let Some(typaram_span) = resolver.definitions.opt_span(typaram_defid) {
222                         err.span_label(typaram_span, "type variable from outer function");
223                     }
224                 },
225                 _ => {
226                     bug!("TypeParametersFromOuterFunction should only be used with Def::SelfTy or \
227                          Def::TyParam")
228                 }
229             }
230
231             // Try to retrieve the span of the function signature and generate a new message with
232             // a local type parameter
233             let sugg_msg = "try using a local type parameter instead";
234             if let Some((sugg_span, new_snippet)) = cm.generate_local_type_param_snippet(span) {
235                 // Suggest the modification to the user
236                 err.span_suggestion_with_applicability(
237                     sugg_span,
238                     sugg_msg,
239                     new_snippet,
240                     Applicability::MachineApplicable,
241                 );
242             } else if let Some(sp) = cm.generate_fn_name_span(span) {
243                 err.span_label(sp, "try adding a local type parameter in this method instead");
244             } else {
245                 err.help("try using a local type parameter instead");
246             }
247
248             err
249         }
250         ResolutionError::NameAlreadyUsedInTypeParameterList(name, first_use_span) => {
251              let mut err = struct_span_err!(resolver.session,
252                                             span,
253                                             E0403,
254                                             "the name `{}` is already used for a type parameter \
255                                             in this type parameter list",
256                                             name);
257              err.span_label(span, "already used");
258              err.span_label(first_use_span.clone(), format!("first use of `{}`", name));
259              err
260         }
261         ResolutionError::MethodNotMemberOfTrait(method, trait_) => {
262             let mut err = struct_span_err!(resolver.session,
263                                            span,
264                                            E0407,
265                                            "method `{}` is not a member of trait `{}`",
266                                            method,
267                                            trait_);
268             err.span_label(span, format!("not a member of trait `{}`", trait_));
269             err
270         }
271         ResolutionError::TypeNotMemberOfTrait(type_, trait_) => {
272             let mut err = struct_span_err!(resolver.session,
273                              span,
274                              E0437,
275                              "type `{}` is not a member of trait `{}`",
276                              type_,
277                              trait_);
278             err.span_label(span, format!("not a member of trait `{}`", trait_));
279             err
280         }
281         ResolutionError::ConstNotMemberOfTrait(const_, trait_) => {
282             let mut err = struct_span_err!(resolver.session,
283                              span,
284                              E0438,
285                              "const `{}` is not a member of trait `{}`",
286                              const_,
287                              trait_);
288             err.span_label(span, format!("not a member of trait `{}`", trait_));
289             err
290         }
291         ResolutionError::VariableNotBoundInPattern(binding_error) => {
292             let target_sp = binding_error.target.iter().cloned().collect::<Vec<_>>();
293             let msp = MultiSpan::from_spans(target_sp.clone());
294             let msg = format!("variable `{}` is not bound in all patterns", binding_error.name);
295             let mut err = resolver.session.struct_span_err_with_code(
296                 msp,
297                 &msg,
298                 DiagnosticId::Error("E0408".into()),
299             );
300             for sp in target_sp {
301                 err.span_label(sp, format!("pattern doesn't bind `{}`", binding_error.name));
302             }
303             let origin_sp = binding_error.origin.iter().cloned();
304             for sp in origin_sp {
305                 err.span_label(sp, "variable not in all patterns");
306             }
307             err
308         }
309         ResolutionError::VariableBoundWithDifferentMode(variable_name,
310                                                         first_binding_span) => {
311             let mut err = struct_span_err!(resolver.session,
312                              span,
313                              E0409,
314                              "variable `{}` is bound in inconsistent \
315                              ways within the same match arm",
316                              variable_name);
317             err.span_label(span, "bound in different ways");
318             err.span_label(first_binding_span, "first binding");
319             err
320         }
321         ResolutionError::IdentifierBoundMoreThanOnceInParameterList(identifier) => {
322             let mut err = struct_span_err!(resolver.session,
323                              span,
324                              E0415,
325                              "identifier `{}` is bound more than once in this parameter list",
326                              identifier);
327             err.span_label(span, "used as parameter more than once");
328             err
329         }
330         ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(identifier) => {
331             let mut err = struct_span_err!(resolver.session,
332                              span,
333                              E0416,
334                              "identifier `{}` is bound more than once in the same pattern",
335                              identifier);
336             err.span_label(span, "used in a pattern more than once");
337             err
338         }
339         ResolutionError::UndeclaredLabel(name, lev_candidate) => {
340             let mut err = struct_span_err!(resolver.session,
341                                            span,
342                                            E0426,
343                                            "use of undeclared label `{}`",
344                                            name);
345             if let Some(lev_candidate) = lev_candidate {
346                 err.span_label(span, format!("did you mean `{}`?", lev_candidate));
347             } else {
348                 err.span_label(span, format!("undeclared label `{}`", name));
349             }
350             err
351         }
352         ResolutionError::SelfImportsOnlyAllowedWithin => {
353             struct_span_err!(resolver.session,
354                              span,
355                              E0429,
356                              "{}",
357                              "`self` imports are only allowed within a { } list")
358         }
359         ResolutionError::SelfImportCanOnlyAppearOnceInTheList => {
360             let mut err = struct_span_err!(resolver.session, span, E0430,
361                                            "`self` import can only appear once in an import list");
362             err.span_label(span, "can only appear once in an import list");
363             err
364         }
365         ResolutionError::SelfImportOnlyInImportListWithNonEmptyPrefix => {
366             let mut err = struct_span_err!(resolver.session, span, E0431,
367                                            "`self` import can only appear in an import list with \
368                                             a non-empty prefix");
369             err.span_label(span, "can only appear in an import list with a non-empty prefix");
370             err
371         }
372         ResolutionError::FailedToResolve(msg) => {
373             let mut err = struct_span_err!(resolver.session, span, E0433,
374                                            "failed to resolve. {}", msg);
375             err.span_label(span, msg);
376             err
377         }
378         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem => {
379             let mut err = struct_span_err!(resolver.session,
380                                            span,
381                                            E0434,
382                                            "{}",
383                                            "can't capture dynamic environment in a fn item");
384             err.help("use the `|| { ... }` closure form instead");
385             err
386         }
387         ResolutionError::AttemptToUseNonConstantValueInConstant => {
388             let mut err = struct_span_err!(resolver.session, span, E0435,
389                                            "attempt to use a non-constant value in a constant");
390             err.span_label(span, "non-constant value");
391             err
392         }
393         ResolutionError::BindingShadowsSomethingUnacceptable(what_binding, name, binding) => {
394             let shadows_what = PathResolution::new(binding.def()).kind_name();
395             let mut err = struct_span_err!(resolver.session,
396                                            span,
397                                            E0530,
398                                            "{}s cannot shadow {}s", what_binding, shadows_what);
399             err.span_label(span, format!("cannot be named the same as a {}", shadows_what));
400             let participle = if binding.is_import() { "imported" } else { "defined" };
401             let msg = format!("a {} `{}` is {} here", shadows_what, name, participle);
402             err.span_label(binding.span, msg);
403             err
404         }
405         ResolutionError::ForwardDeclaredTyParam => {
406             let mut err = struct_span_err!(resolver.session, span, E0128,
407                                            "type parameters with a default cannot use \
408                                             forward declared identifiers");
409             err.span_label(
410                 span, "defaulted type parameters cannot be forward declared".to_string());
411             err
412         }
413     }
414 }
415
416 /// Adjust the impl span so that just the `impl` keyword is taken by removing
417 /// everything after `<` (`"impl<T> Iterator for A<T> {}" -> "impl"`) and
418 /// everything after the first whitespace (`"impl Iterator for A" -> "impl"`)
419 ///
420 /// Attention: The method used is very fragile since it essentially duplicates the work of the
421 /// parser. If you need to use this function or something similar, please consider updating the
422 /// source_map functions and this function to something more robust.
423 fn reduce_impl_span_to_impl_keyword(cm: &SourceMap, impl_span: Span) -> Span {
424     let impl_span = cm.span_until_char(impl_span, '<');
425     let impl_span = cm.span_until_whitespace(impl_span);
426     impl_span
427 }
428
429 #[derive(Copy, Clone, Debug)]
430 struct BindingInfo {
431     span: Span,
432     binding_mode: BindingMode,
433 }
434
435 /// Map from the name in a pattern to its binding mode.
436 type BindingMap = FxHashMap<Ident, BindingInfo>;
437
438 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
439 enum PatternSource {
440     Match,
441     IfLet,
442     WhileLet,
443     Let,
444     For,
445     FnParam,
446 }
447
448 impl PatternSource {
449     fn descr(self) -> &'static str {
450         match self {
451             PatternSource::Match => "match binding",
452             PatternSource::IfLet => "if let binding",
453             PatternSource::WhileLet => "while let binding",
454             PatternSource::Let => "let binding",
455             PatternSource::For => "for binding",
456             PatternSource::FnParam => "function parameter",
457         }
458     }
459 }
460
461 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
462 enum AliasPossibility {
463     No,
464     Maybe,
465 }
466
467 #[derive(Copy, Clone, Debug)]
468 enum PathSource<'a> {
469     // Type paths `Path`.
470     Type,
471     // Trait paths in bounds or impls.
472     Trait(AliasPossibility),
473     // Expression paths `path`, with optional parent context.
474     Expr(Option<&'a Expr>),
475     // Paths in path patterns `Path`.
476     Pat,
477     // Paths in struct expressions and patterns `Path { .. }`.
478     Struct,
479     // Paths in tuple struct patterns `Path(..)`.
480     TupleStruct,
481     // `m::A::B` in `<T as m::A>::B::C`.
482     TraitItem(Namespace),
483     // Path in `pub(path)`
484     Visibility,
485 }
486
487 impl<'a> PathSource<'a> {
488     fn namespace(self) -> Namespace {
489         match self {
490             PathSource::Type | PathSource::Trait(_) | PathSource::Struct |
491             PathSource::Visibility => TypeNS,
492             PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct => ValueNS,
493             PathSource::TraitItem(ns) => ns,
494         }
495     }
496
497     fn global_by_default(self) -> bool {
498         match self {
499             PathSource::Visibility => true,
500             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
501             PathSource::Struct | PathSource::TupleStruct |
502             PathSource::Trait(_) | PathSource::TraitItem(..) => false,
503         }
504     }
505
506     fn defer_to_typeck(self) -> bool {
507         match self {
508             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
509             PathSource::Struct | PathSource::TupleStruct => true,
510             PathSource::Trait(_) | PathSource::TraitItem(..) |
511             PathSource::Visibility => false,
512         }
513     }
514
515     fn descr_expected(self) -> &'static str {
516         match self {
517             PathSource::Type => "type",
518             PathSource::Trait(_) => "trait",
519             PathSource::Pat => "unit struct/variant or constant",
520             PathSource::Struct => "struct, variant or union type",
521             PathSource::TupleStruct => "tuple struct/variant",
522             PathSource::Visibility => "module",
523             PathSource::TraitItem(ns) => match ns {
524                 TypeNS => "associated type",
525                 ValueNS => "method or associated constant",
526                 MacroNS => bug!("associated macro"),
527             },
528             PathSource::Expr(parent) => match parent.map(|p| &p.node) {
529                 // "function" here means "anything callable" rather than `Def::Fn`,
530                 // this is not precise but usually more helpful than just "value".
531                 Some(&ExprKind::Call(..)) => "function",
532                 _ => "value",
533             },
534         }
535     }
536
537     fn is_expected(self, def: Def) -> bool {
538         match self {
539             PathSource::Type => match def {
540                 Def::Struct(..) | Def::Union(..) | Def::Enum(..) |
541                 Def::Trait(..) | Def::TyAlias(..) | Def::AssociatedTy(..) |
542                 Def::PrimTy(..) | Def::TyParam(..) | Def::SelfTy(..) |
543                 Def::Existential(..) |
544                 Def::ForeignTy(..) => true,
545                 _ => false,
546             },
547             PathSource::Trait(AliasPossibility::No) => match def {
548                 Def::Trait(..) => true,
549                 _ => false,
550             },
551             PathSource::Trait(AliasPossibility::Maybe) => match def {
552                 Def::Trait(..) => true,
553                 Def::TraitAlias(..) => true,
554                 _ => false,
555             },
556             PathSource::Expr(..) => match def {
557                 Def::StructCtor(_, CtorKind::Const) | Def::StructCtor(_, CtorKind::Fn) |
558                 Def::VariantCtor(_, CtorKind::Const) | Def::VariantCtor(_, CtorKind::Fn) |
559                 Def::Const(..) | Def::Static(..) | Def::Local(..) | Def::Upvar(..) |
560                 Def::Fn(..) | Def::Method(..) | Def::AssociatedConst(..) |
561                 Def::SelfCtor(..) => true,
562                 _ => false,
563             },
564             PathSource::Pat => match def {
565                 Def::StructCtor(_, CtorKind::Const) |
566                 Def::VariantCtor(_, CtorKind::Const) |
567                 Def::Const(..) | Def::AssociatedConst(..) |
568                 Def::SelfCtor(..) => true,
569                 _ => false,
570             },
571             PathSource::TupleStruct => match def {
572                 Def::StructCtor(_, CtorKind::Fn) |
573                 Def::VariantCtor(_, CtorKind::Fn) |
574                 Def::SelfCtor(..) => true,
575                 _ => false,
576             },
577             PathSource::Struct => match def {
578                 Def::Struct(..) | Def::Union(..) | Def::Variant(..) |
579                 Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => true,
580                 _ => false,
581             },
582             PathSource::TraitItem(ns) => match def {
583                 Def::AssociatedConst(..) | Def::Method(..) if ns == ValueNS => true,
584                 Def::AssociatedTy(..) if ns == TypeNS => true,
585                 _ => false,
586             },
587             PathSource::Visibility => match def {
588                 Def::Mod(..) => true,
589                 _ => false,
590             },
591         }
592     }
593
594     fn error_code(self, has_unexpected_resolution: bool) -> &'static str {
595         __diagnostic_used!(E0404);
596         __diagnostic_used!(E0405);
597         __diagnostic_used!(E0412);
598         __diagnostic_used!(E0422);
599         __diagnostic_used!(E0423);
600         __diagnostic_used!(E0425);
601         __diagnostic_used!(E0531);
602         __diagnostic_used!(E0532);
603         __diagnostic_used!(E0573);
604         __diagnostic_used!(E0574);
605         __diagnostic_used!(E0575);
606         __diagnostic_used!(E0576);
607         __diagnostic_used!(E0577);
608         __diagnostic_used!(E0578);
609         match (self, has_unexpected_resolution) {
610             (PathSource::Trait(_), true) => "E0404",
611             (PathSource::Trait(_), false) => "E0405",
612             (PathSource::Type, true) => "E0573",
613             (PathSource::Type, false) => "E0412",
614             (PathSource::Struct, true) => "E0574",
615             (PathSource::Struct, false) => "E0422",
616             (PathSource::Expr(..), true) => "E0423",
617             (PathSource::Expr(..), false) => "E0425",
618             (PathSource::Pat, true) | (PathSource::TupleStruct, true) => "E0532",
619             (PathSource::Pat, false) | (PathSource::TupleStruct, false) => "E0531",
620             (PathSource::TraitItem(..), true) => "E0575",
621             (PathSource::TraitItem(..), false) => "E0576",
622             (PathSource::Visibility, true) => "E0577",
623             (PathSource::Visibility, false) => "E0578",
624         }
625     }
626 }
627
628 // A minimal representation of a path segment. We use this in resolve because
629 // we synthesize 'path segments' which don't have the rest of an AST or HIR
630 // PathSegment.
631 #[derive(Clone, Copy, Debug)]
632 pub struct Segment {
633     ident: Ident,
634     id: Option<NodeId>,
635 }
636
637 impl Segment {
638     fn from_path(path: &Path) -> Vec<Segment> {
639         path.segments.iter().map(|s| s.into()).collect()
640     }
641
642     fn from_ident(ident: Ident) -> Segment {
643         Segment {
644             ident,
645             id: None,
646         }
647     }
648
649     fn names_to_string(segments: &[Segment]) -> String {
650         names_to_string(&segments.iter()
651                             .map(|seg| seg.ident)
652                             .collect::<Vec<_>>())
653     }
654 }
655
656 impl<'a> From<&'a ast::PathSegment> for Segment {
657     fn from(seg: &'a ast::PathSegment) -> Segment {
658         Segment {
659             ident: seg.ident,
660             id: Some(seg.id),
661         }
662     }
663 }
664
665 struct UsePlacementFinder {
666     target_module: NodeId,
667     span: Option<Span>,
668     found_use: bool,
669 }
670
671 impl UsePlacementFinder {
672     fn check(krate: &Crate, target_module: NodeId) -> (Option<Span>, bool) {
673         let mut finder = UsePlacementFinder {
674             target_module,
675             span: None,
676             found_use: false,
677         };
678         visit::walk_crate(&mut finder, krate);
679         (finder.span, finder.found_use)
680     }
681 }
682
683 impl<'tcx> Visitor<'tcx> for UsePlacementFinder {
684     fn visit_mod(
685         &mut self,
686         module: &'tcx ast::Mod,
687         _: Span,
688         _: &[ast::Attribute],
689         node_id: NodeId,
690     ) {
691         if self.span.is_some() {
692             return;
693         }
694         if node_id != self.target_module {
695             visit::walk_mod(self, module);
696             return;
697         }
698         // find a use statement
699         for item in &module.items {
700             match item.node {
701                 ItemKind::Use(..) => {
702                     // don't suggest placing a use before the prelude
703                     // import or other generated ones
704                     if item.span.ctxt().outer().expn_info().is_none() {
705                         self.span = Some(item.span.shrink_to_lo());
706                         self.found_use = true;
707                         return;
708                     }
709                 },
710                 // don't place use before extern crate
711                 ItemKind::ExternCrate(_) => {}
712                 // but place them before the first other item
713                 _ => if self.span.map_or(true, |span| item.span < span ) {
714                     if item.span.ctxt().outer().expn_info().is_none() {
715                         // don't insert between attributes and an item
716                         if item.attrs.is_empty() {
717                             self.span = Some(item.span.shrink_to_lo());
718                         } else {
719                             // find the first attribute on the item
720                             for attr in &item.attrs {
721                                 if self.span.map_or(true, |span| attr.span < span) {
722                                     self.span = Some(attr.span.shrink_to_lo());
723                                 }
724                             }
725                         }
726                     }
727                 },
728             }
729         }
730     }
731 }
732
733 /// This thing walks the whole crate in DFS manner, visiting each item, resolving names as it goes.
734 impl<'a, 'tcx, 'cl> Visitor<'tcx> for Resolver<'a, 'cl> {
735     fn visit_item(&mut self, item: &'tcx Item) {
736         self.resolve_item(item);
737     }
738     fn visit_arm(&mut self, arm: &'tcx Arm) {
739         self.resolve_arm(arm);
740     }
741     fn visit_block(&mut self, block: &'tcx Block) {
742         self.resolve_block(block);
743     }
744     fn visit_anon_const(&mut self, constant: &'tcx ast::AnonConst) {
745         self.with_constant_rib(|this| {
746             visit::walk_anon_const(this, constant);
747         });
748     }
749     fn visit_expr(&mut self, expr: &'tcx Expr) {
750         self.resolve_expr(expr, None);
751     }
752     fn visit_local(&mut self, local: &'tcx Local) {
753         self.resolve_local(local);
754     }
755     fn visit_ty(&mut self, ty: &'tcx Ty) {
756         match ty.node {
757             TyKind::Path(ref qself, ref path) => {
758                 self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
759             }
760             TyKind::ImplicitSelf => {
761                 let self_ty = keywords::SelfType.ident();
762                 let def = self.resolve_ident_in_lexical_scope(self_ty, TypeNS, Some(ty.id), ty.span)
763                               .map_or(Def::Err, |d| d.def());
764                 self.record_def(ty.id, PathResolution::new(def));
765             }
766             _ => (),
767         }
768         visit::walk_ty(self, ty);
769     }
770     fn visit_poly_trait_ref(&mut self,
771                             tref: &'tcx ast::PolyTraitRef,
772                             m: &'tcx ast::TraitBoundModifier) {
773         self.smart_resolve_path(tref.trait_ref.ref_id, None,
774                                 &tref.trait_ref.path, PathSource::Trait(AliasPossibility::Maybe));
775         visit::walk_poly_trait_ref(self, tref, m);
776     }
777     fn visit_foreign_item(&mut self, foreign_item: &'tcx ForeignItem) {
778         let type_parameters = match foreign_item.node {
779             ForeignItemKind::Fn(_, ref generics) => {
780                 HasTypeParameters(generics, ItemRibKind)
781             }
782             ForeignItemKind::Static(..) => NoTypeParameters,
783             ForeignItemKind::Ty => NoTypeParameters,
784             ForeignItemKind::Macro(..) => NoTypeParameters,
785         };
786         self.with_type_parameter_rib(type_parameters, |this| {
787             visit::walk_foreign_item(this, foreign_item);
788         });
789     }
790     fn visit_fn(&mut self,
791                 function_kind: FnKind<'tcx>,
792                 declaration: &'tcx FnDecl,
793                 _: Span,
794                 node_id: NodeId)
795     {
796         let (rib_kind, asyncness) = match function_kind {
797             FnKind::ItemFn(_, ref header, ..) =>
798                 (ItemRibKind, header.asyncness),
799             FnKind::Method(_, ref sig, _, _) =>
800                 (TraitOrImplItemRibKind, sig.header.asyncness),
801             FnKind::Closure(_) =>
802                 // Async closures aren't resolved through `visit_fn`-- they're
803                 // processed separately
804                 (ClosureRibKind(node_id), IsAsync::NotAsync),
805         };
806
807         // Create a value rib for the function.
808         self.ribs[ValueNS].push(Rib::new(rib_kind));
809
810         // Create a label rib for the function.
811         self.label_ribs.push(Rib::new(rib_kind));
812
813         // Add each argument to the rib.
814         let mut bindings_list = FxHashMap::default();
815         for argument in &declaration.inputs {
816             self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
817
818             self.visit_ty(&argument.ty);
819
820             debug!("(resolving function) recorded argument");
821         }
822         visit::walk_fn_ret_ty(self, &declaration.output);
823
824         // Resolve the function body, potentially inside the body of an async closure
825         if let IsAsync::Async { closure_id, .. } = asyncness {
826             let rib_kind = ClosureRibKind(closure_id);
827             self.ribs[ValueNS].push(Rib::new(rib_kind));
828             self.label_ribs.push(Rib::new(rib_kind));
829         }
830
831         match function_kind {
832             FnKind::ItemFn(.., body) |
833             FnKind::Method(.., body) => {
834                 self.visit_block(body);
835             }
836             FnKind::Closure(body) => {
837                 self.visit_expr(body);
838             }
839         };
840
841         // Leave the body of the async closure
842         if asyncness.is_async() {
843             self.label_ribs.pop();
844             self.ribs[ValueNS].pop();
845         }
846
847         debug!("(resolving function) leaving function");
848
849         self.label_ribs.pop();
850         self.ribs[ValueNS].pop();
851     }
852     fn visit_generics(&mut self, generics: &'tcx Generics) {
853         // For type parameter defaults, we have to ban access
854         // to following type parameters, as the Substs can only
855         // provide previous type parameters as they're built. We
856         // put all the parameters on the ban list and then remove
857         // them one by one as they are processed and become available.
858         let mut default_ban_rib = Rib::new(ForwardTyParamBanRibKind);
859         let mut found_default = false;
860         default_ban_rib.bindings.extend(generics.params.iter()
861             .filter_map(|param| match param.kind {
862                 GenericParamKind::Lifetime { .. } => None,
863                 GenericParamKind::Type { ref default, .. } => {
864                     found_default |= default.is_some();
865                     if found_default {
866                         Some((Ident::with_empty_ctxt(param.ident.name), Def::Err))
867                     } else {
868                         None
869                     }
870                 }
871             }));
872
873         for param in &generics.params {
874             match param.kind {
875                 GenericParamKind::Lifetime { .. } => self.visit_generic_param(param),
876                 GenericParamKind::Type { ref default, .. } => {
877                     for bound in &param.bounds {
878                         self.visit_param_bound(bound);
879                     }
880
881                     if let Some(ref ty) = default {
882                         self.ribs[TypeNS].push(default_ban_rib);
883                         self.visit_ty(ty);
884                         default_ban_rib = self.ribs[TypeNS].pop().unwrap();
885                     }
886
887                     // Allow all following defaults to refer to this type parameter.
888                     default_ban_rib.bindings.remove(&Ident::with_empty_ctxt(param.ident.name));
889                 }
890             }
891         }
892         for p in &generics.where_clause.predicates {
893             self.visit_where_predicate(p);
894         }
895     }
896 }
897
898 #[derive(Copy, Clone)]
899 enum TypeParameters<'a, 'b> {
900     NoTypeParameters,
901     HasTypeParameters(// Type parameters.
902                       &'b Generics,
903
904                       // The kind of the rib used for type parameters.
905                       RibKind<'a>),
906 }
907
908 /// The rib kind controls the translation of local
909 /// definitions (`Def::Local`) to upvars (`Def::Upvar`).
910 #[derive(Copy, Clone, Debug)]
911 enum RibKind<'a> {
912     /// No translation needs to be applied.
913     NormalRibKind,
914
915     /// We passed through a closure scope at the given node ID.
916     /// Translate upvars as appropriate.
917     ClosureRibKind(NodeId /* func id */),
918
919     /// We passed through an impl or trait and are now in one of its
920     /// methods or associated types. Allow references to ty params that impl or trait
921     /// binds. Disallow any other upvars (including other ty params that are
922     /// upvars).
923     TraitOrImplItemRibKind,
924
925     /// We passed through an item scope. Disallow upvars.
926     ItemRibKind,
927
928     /// We're in a constant item. Can't refer to dynamic stuff.
929     ConstantItemRibKind,
930
931     /// We passed through a module.
932     ModuleRibKind(Module<'a>),
933
934     /// We passed through a `macro_rules!` statement
935     MacroDefinition(DefId),
936
937     /// All bindings in this rib are type parameters that can't be used
938     /// from the default of a type parameter because they're not declared
939     /// before said type parameter. Also see the `visit_generics` override.
940     ForwardTyParamBanRibKind,
941 }
942
943 /// One local scope.
944 ///
945 /// A rib represents a scope names can live in. Note that these appear in many places, not just
946 /// around braces. At any place where the list of accessible names (of the given namespace)
947 /// changes or a new restrictions on the name accessibility are introduced, a new rib is put onto a
948 /// stack. This may be, for example, a `let` statement (because it introduces variables), a macro,
949 /// etc.
950 ///
951 /// Different [rib kinds](enum.RibKind) are transparent for different names.
952 ///
953 /// The resolution keeps a separate stack of ribs as it traverses the AST for each namespace. When
954 /// resolving, the name is looked up from inside out.
955 #[derive(Debug)]
956 struct Rib<'a> {
957     bindings: FxHashMap<Ident, Def>,
958     kind: RibKind<'a>,
959 }
960
961 impl<'a> Rib<'a> {
962     fn new(kind: RibKind<'a>) -> Rib<'a> {
963         Rib {
964             bindings: Default::default(),
965             kind,
966         }
967     }
968 }
969
970 /// An intermediate resolution result.
971 ///
972 /// This refers to the thing referred by a name. The difference between `Def` and `Item` is that
973 /// items are visible in their whole block, while defs only from the place they are defined
974 /// forward.
975 enum LexicalScopeBinding<'a> {
976     Item(&'a NameBinding<'a>),
977     Def(Def),
978 }
979
980 impl<'a> LexicalScopeBinding<'a> {
981     fn item(self) -> Option<&'a NameBinding<'a>> {
982         match self {
983             LexicalScopeBinding::Item(binding) => Some(binding),
984             _ => None,
985         }
986     }
987
988     fn def(self) -> Def {
989         match self {
990             LexicalScopeBinding::Item(binding) => binding.def(),
991             LexicalScopeBinding::Def(def) => def,
992         }
993     }
994 }
995
996 #[derive(Copy, Clone, Debug)]
997 pub enum ModuleOrUniformRoot<'a> {
998     /// Regular module.
999     Module(Module<'a>),
1000
1001     /// The `{{root}}` (`CrateRoot` aka "global") / `extern` initial segment
1002     /// in which external crates resolve, and also `crate` (only in `{{root}}`,
1003     /// but *not* `extern`), in the Rust 2018 edition.
1004     UniformRoot(Name),
1005 }
1006
1007 #[derive(Clone, Debug)]
1008 enum PathResult<'a> {
1009     Module(ModuleOrUniformRoot<'a>),
1010     NonModule(PathResolution),
1011     Indeterminate,
1012     Failed(Span, String, bool /* is the error from the last segment? */),
1013 }
1014
1015 enum ModuleKind {
1016     /// An anonymous module, eg. just a block.
1017     ///
1018     /// ```
1019     /// fn main() {
1020     ///     fn f() {} // (1)
1021     ///     { // This is an anonymous module
1022     ///         f(); // This resolves to (2) as we are inside the block.
1023     ///         fn f() {} // (2)
1024     ///     }
1025     ///     f(); // Resolves to (1)
1026     /// }
1027     /// ```
1028     Block(NodeId),
1029     /// Any module with a name.
1030     ///
1031     /// This could be:
1032     ///
1033     /// * A normal module â€’ either `mod from_file;` or `mod from_block { }`.
1034     /// * A trait or an enum (it implicitly contains associated types, methods and variant
1035     ///   constructors).
1036     Def(Def, Name),
1037 }
1038
1039 /// One node in the tree of modules.
1040 pub struct ModuleData<'a> {
1041     parent: Option<Module<'a>>,
1042     kind: ModuleKind,
1043
1044     // The def id of the closest normal module (`mod`) ancestor (including this module).
1045     normal_ancestor_id: DefId,
1046
1047     resolutions: RefCell<FxHashMap<(Ident, Namespace), &'a RefCell<NameResolution<'a>>>>,
1048     legacy_macro_resolutions: RefCell<Vec<(Ident, MacroKind, ParentScope<'a>,
1049                                            Option<&'a NameBinding<'a>>)>>,
1050     macro_resolutions: RefCell<Vec<(Vec<Segment>, ParentScope<'a>, Span)>>,
1051     builtin_attrs: RefCell<Vec<(Ident, ParentScope<'a>)>>,
1052
1053     // Macro invocations that can expand into items in this module.
1054     unresolved_invocations: RefCell<FxHashSet<Mark>>,
1055
1056     no_implicit_prelude: bool,
1057
1058     glob_importers: RefCell<Vec<&'a ImportDirective<'a>>>,
1059     globs: RefCell<Vec<&'a ImportDirective<'a>>>,
1060
1061     // Used to memoize the traits in this module for faster searches through all traits in scope.
1062     traits: RefCell<Option<Box<[(Ident, &'a NameBinding<'a>)]>>>,
1063
1064     // Whether this module is populated. If not populated, any attempt to
1065     // access the children must be preceded with a
1066     // `populate_module_if_necessary` call.
1067     populated: Cell<bool>,
1068
1069     /// Span of the module itself. Used for error reporting.
1070     span: Span,
1071
1072     expansion: Mark,
1073 }
1074
1075 type Module<'a> = &'a ModuleData<'a>;
1076
1077 impl<'a> ModuleData<'a> {
1078     fn new(parent: Option<Module<'a>>,
1079            kind: ModuleKind,
1080            normal_ancestor_id: DefId,
1081            expansion: Mark,
1082            span: Span) -> Self {
1083         ModuleData {
1084             parent,
1085             kind,
1086             normal_ancestor_id,
1087             resolutions: Default::default(),
1088             legacy_macro_resolutions: RefCell::new(Vec::new()),
1089             macro_resolutions: RefCell::new(Vec::new()),
1090             builtin_attrs: RefCell::new(Vec::new()),
1091             unresolved_invocations: Default::default(),
1092             no_implicit_prelude: false,
1093             glob_importers: RefCell::new(Vec::new()),
1094             globs: RefCell::new(Vec::new()),
1095             traits: RefCell::new(None),
1096             populated: Cell::new(normal_ancestor_id.is_local()),
1097             span,
1098             expansion,
1099         }
1100     }
1101
1102     fn for_each_child<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1103         for (&(ident, ns), name_resolution) in self.resolutions.borrow().iter() {
1104             name_resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1105         }
1106     }
1107
1108     fn for_each_child_stable<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1109         let resolutions = self.resolutions.borrow();
1110         let mut resolutions = resolutions.iter().collect::<Vec<_>>();
1111         resolutions.sort_by_cached_key(|&(&(ident, ns), _)| (ident.as_str(), ns));
1112         for &(&(ident, ns), &resolution) in resolutions.iter() {
1113             resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1114         }
1115     }
1116
1117     fn def(&self) -> Option<Def> {
1118         match self.kind {
1119             ModuleKind::Def(def, _) => Some(def),
1120             _ => None,
1121         }
1122     }
1123
1124     fn def_id(&self) -> Option<DefId> {
1125         self.def().as_ref().map(Def::def_id)
1126     }
1127
1128     // `self` resolves to the first module ancestor that `is_normal`.
1129     fn is_normal(&self) -> bool {
1130         match self.kind {
1131             ModuleKind::Def(Def::Mod(_), _) => true,
1132             _ => false,
1133         }
1134     }
1135
1136     fn is_trait(&self) -> bool {
1137         match self.kind {
1138             ModuleKind::Def(Def::Trait(_), _) => true,
1139             _ => false,
1140         }
1141     }
1142
1143     fn is_local(&self) -> bool {
1144         self.normal_ancestor_id.is_local()
1145     }
1146
1147     fn nearest_item_scope(&'a self) -> Module<'a> {
1148         if self.is_trait() { self.parent.unwrap() } else { self }
1149     }
1150
1151     fn is_ancestor_of(&self, mut other: &Self) -> bool {
1152         while !ptr::eq(self, other) {
1153             if let Some(parent) = other.parent {
1154                 other = parent;
1155             } else {
1156                 return false;
1157             }
1158         }
1159         true
1160     }
1161 }
1162
1163 impl<'a> fmt::Debug for ModuleData<'a> {
1164     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1165         write!(f, "{:?}", self.def())
1166     }
1167 }
1168
1169 /// Records a possibly-private value, type, or module definition.
1170 #[derive(Clone, Debug)]
1171 pub struct NameBinding<'a> {
1172     kind: NameBindingKind<'a>,
1173     expansion: Mark,
1174     span: Span,
1175     vis: ty::Visibility,
1176 }
1177
1178 pub trait ToNameBinding<'a> {
1179     fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a>;
1180 }
1181
1182 impl<'a> ToNameBinding<'a> for &'a NameBinding<'a> {
1183     fn to_name_binding(self, _: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> {
1184         self
1185     }
1186 }
1187
1188 #[derive(Clone, Debug)]
1189 enum NameBindingKind<'a> {
1190     Def(Def, /* is_macro_export */ bool),
1191     Module(Module<'a>),
1192     Import {
1193         binding: &'a NameBinding<'a>,
1194         directive: &'a ImportDirective<'a>,
1195         used: Cell<bool>,
1196     },
1197     Ambiguity {
1198         b1: &'a NameBinding<'a>,
1199         b2: &'a NameBinding<'a>,
1200     }
1201 }
1202
1203 struct PrivacyError<'a>(Span, Ident, &'a NameBinding<'a>);
1204
1205 struct UseError<'a> {
1206     err: DiagnosticBuilder<'a>,
1207     /// Attach `use` statements for these candidates
1208     candidates: Vec<ImportSuggestion>,
1209     /// The node id of the module to place the use statements in
1210     node_id: NodeId,
1211     /// Whether the diagnostic should state that it's "better"
1212     better: bool,
1213 }
1214
1215 struct AmbiguityError<'a> {
1216     ident: Ident,
1217     b1: &'a NameBinding<'a>,
1218     b2: &'a NameBinding<'a>,
1219 }
1220
1221 impl<'a> NameBinding<'a> {
1222     fn module(&self) -> Option<Module<'a>> {
1223         match self.kind {
1224             NameBindingKind::Module(module) => Some(module),
1225             NameBindingKind::Import { binding, .. } => binding.module(),
1226             _ => None,
1227         }
1228     }
1229
1230     fn def(&self) -> Def {
1231         match self.kind {
1232             NameBindingKind::Def(def, _) => def,
1233             NameBindingKind::Module(module) => module.def().unwrap(),
1234             NameBindingKind::Import { binding, .. } => binding.def(),
1235             NameBindingKind::Ambiguity { .. } => Def::Err,
1236         }
1237     }
1238
1239     fn def_ignoring_ambiguity(&self) -> Def {
1240         match self.kind {
1241             NameBindingKind::Import { binding, .. } => binding.def_ignoring_ambiguity(),
1242             NameBindingKind::Ambiguity { b1, .. } => b1.def_ignoring_ambiguity(),
1243             _ => self.def(),
1244         }
1245     }
1246
1247     // We sometimes need to treat variants as `pub` for backwards compatibility
1248     fn pseudo_vis(&self) -> ty::Visibility {
1249         if self.is_variant() && self.def().def_id().is_local() {
1250             ty::Visibility::Public
1251         } else {
1252             self.vis
1253         }
1254     }
1255
1256     fn is_variant(&self) -> bool {
1257         match self.kind {
1258             NameBindingKind::Def(Def::Variant(..), _) |
1259             NameBindingKind::Def(Def::VariantCtor(..), _) => true,
1260             _ => false,
1261         }
1262     }
1263
1264     fn is_extern_crate(&self) -> bool {
1265         match self.kind {
1266             NameBindingKind::Import {
1267                 directive: &ImportDirective {
1268                     subclass: ImportDirectiveSubclass::ExternCrate { .. }, ..
1269                 }, ..
1270             } => true,
1271             _ => false,
1272         }
1273     }
1274
1275     fn is_import(&self) -> bool {
1276         match self.kind {
1277             NameBindingKind::Import { .. } => true,
1278             _ => false,
1279         }
1280     }
1281
1282     fn is_glob_import(&self) -> bool {
1283         match self.kind {
1284             NameBindingKind::Import { directive, .. } => directive.is_glob(),
1285             NameBindingKind::Ambiguity { b1, .. } => b1.is_glob_import(),
1286             _ => false,
1287         }
1288     }
1289
1290     fn is_importable(&self) -> bool {
1291         match self.def() {
1292             Def::AssociatedConst(..) | Def::Method(..) | Def::AssociatedTy(..) => false,
1293             _ => true,
1294         }
1295     }
1296
1297     fn is_macro_def(&self) -> bool {
1298         match self.kind {
1299             NameBindingKind::Def(Def::Macro(..), _) => true,
1300             _ => false,
1301         }
1302     }
1303
1304     fn macro_kind(&self) -> Option<MacroKind> {
1305         match self.def_ignoring_ambiguity() {
1306             Def::Macro(_, kind) => Some(kind),
1307             Def::NonMacroAttr(..) => Some(MacroKind::Attr),
1308             _ => None,
1309         }
1310     }
1311
1312     fn descr(&self) -> &'static str {
1313         if self.is_extern_crate() { "extern crate" } else { self.def().kind_name() }
1314     }
1315
1316     // Suppose that we resolved macro invocation with `invoc_parent_expansion` to binding `binding`
1317     // at some expansion round `max(invoc, binding)` when they both emerged from macros.
1318     // Then this function returns `true` if `self` may emerge from a macro *after* that
1319     // in some later round and screw up our previously found resolution.
1320     // See more detailed explanation in
1321     // https://github.com/rust-lang/rust/pull/53778#issuecomment-419224049
1322     fn may_appear_after(&self, invoc_parent_expansion: Mark, binding: &NameBinding) -> bool {
1323         // self > max(invoc, binding) => !(self <= invoc || self <= binding)
1324         // Expansions are partially ordered, so "may appear after" is an inversion of
1325         // "certainly appears before or simultaneously" and includes unordered cases.
1326         let self_parent_expansion = self.expansion;
1327         let other_parent_expansion = binding.expansion;
1328         let certainly_before_other_or_simultaneously =
1329             other_parent_expansion.is_descendant_of(self_parent_expansion);
1330         let certainly_before_invoc_or_simultaneously =
1331             invoc_parent_expansion.is_descendant_of(self_parent_expansion);
1332         !(certainly_before_other_or_simultaneously || certainly_before_invoc_or_simultaneously)
1333     }
1334 }
1335
1336 /// Interns the names of the primitive types.
1337 ///
1338 /// All other types are defined somewhere and possibly imported, but the primitive ones need
1339 /// special handling, since they have no place of origin.
1340 #[derive(Default)]
1341 struct PrimitiveTypeTable {
1342     primitive_types: FxHashMap<Name, PrimTy>,
1343 }
1344
1345 impl PrimitiveTypeTable {
1346     fn new() -> PrimitiveTypeTable {
1347         let mut table = PrimitiveTypeTable::default();
1348
1349         table.intern("bool", Bool);
1350         table.intern("char", Char);
1351         table.intern("f32", Float(FloatTy::F32));
1352         table.intern("f64", Float(FloatTy::F64));
1353         table.intern("isize", Int(IntTy::Isize));
1354         table.intern("i8", Int(IntTy::I8));
1355         table.intern("i16", Int(IntTy::I16));
1356         table.intern("i32", Int(IntTy::I32));
1357         table.intern("i64", Int(IntTy::I64));
1358         table.intern("i128", Int(IntTy::I128));
1359         table.intern("str", Str);
1360         table.intern("usize", Uint(UintTy::Usize));
1361         table.intern("u8", Uint(UintTy::U8));
1362         table.intern("u16", Uint(UintTy::U16));
1363         table.intern("u32", Uint(UintTy::U32));
1364         table.intern("u64", Uint(UintTy::U64));
1365         table.intern("u128", Uint(UintTy::U128));
1366         table
1367     }
1368
1369     fn intern(&mut self, string: &str, primitive_type: PrimTy) {
1370         self.primitive_types.insert(Symbol::intern(string), primitive_type);
1371     }
1372 }
1373
1374 #[derive(Default, Clone)]
1375 pub struct ExternPreludeEntry<'a> {
1376     extern_crate_item: Option<&'a NameBinding<'a>>,
1377     pub introduced_by_item: bool,
1378 }
1379
1380 /// The main resolver class.
1381 ///
1382 /// This is the visitor that walks the whole crate.
1383 pub struct Resolver<'a, 'b: 'a> {
1384     session: &'a Session,
1385     cstore: &'a CStore,
1386
1387     pub definitions: Definitions,
1388
1389     graph_root: Module<'a>,
1390
1391     prelude: Option<Module<'a>>,
1392     pub extern_prelude: FxHashMap<Ident, ExternPreludeEntry<'a>>,
1393
1394     /// n.b. This is used only for better diagnostics, not name resolution itself.
1395     has_self: FxHashSet<DefId>,
1396
1397     /// Names of fields of an item `DefId` accessible with dot syntax.
1398     /// Used for hints during error reporting.
1399     field_names: FxHashMap<DefId, Vec<Name>>,
1400
1401     /// All imports known to succeed or fail.
1402     determined_imports: Vec<&'a ImportDirective<'a>>,
1403
1404     /// All non-determined imports.
1405     indeterminate_imports: Vec<&'a ImportDirective<'a>>,
1406
1407     /// The module that represents the current item scope.
1408     current_module: Module<'a>,
1409
1410     /// The current set of local scopes for types and values.
1411     /// FIXME #4948: Reuse ribs to avoid allocation.
1412     ribs: PerNS<Vec<Rib<'a>>>,
1413
1414     /// The current set of local scopes, for labels.
1415     label_ribs: Vec<Rib<'a>>,
1416
1417     /// The trait that the current context can refer to.
1418     current_trait_ref: Option<(Module<'a>, TraitRef)>,
1419
1420     /// The current self type if inside an impl (used for better errors).
1421     current_self_type: Option<Ty>,
1422
1423     /// The current self item if inside an ADT (used for better errors).
1424     current_self_item: Option<NodeId>,
1425
1426     /// The idents for the primitive types.
1427     primitive_type_table: PrimitiveTypeTable,
1428
1429     def_map: DefMap,
1430     import_map: ImportMap,
1431     pub freevars: FreevarMap,
1432     freevars_seen: NodeMap<NodeMap<usize>>,
1433     pub export_map: ExportMap,
1434     pub trait_map: TraitMap,
1435
1436     /// A map from nodes to anonymous modules.
1437     /// Anonymous modules are pseudo-modules that are implicitly created around items
1438     /// contained within blocks.
1439     ///
1440     /// For example, if we have this:
1441     ///
1442     ///  fn f() {
1443     ///      fn g() {
1444     ///          ...
1445     ///      }
1446     ///  }
1447     ///
1448     /// There will be an anonymous module created around `g` with the ID of the
1449     /// entry block for `f`.
1450     block_map: NodeMap<Module<'a>>,
1451     module_map: FxHashMap<DefId, Module<'a>>,
1452     extern_module_map: FxHashMap<(DefId, bool /* MacrosOnly? */), Module<'a>>,
1453     binding_parent_modules: FxHashMap<PtrKey<'a, NameBinding<'a>>, Module<'a>>,
1454
1455     pub make_glob_map: bool,
1456     /// Maps imports to the names of items actually imported (this actually maps
1457     /// all imports, but only glob imports are actually interesting).
1458     pub glob_map: GlobMap,
1459
1460     used_imports: FxHashSet<(NodeId, Namespace)>,
1461     pub maybe_unused_trait_imports: NodeSet,
1462     pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
1463
1464     /// A list of labels as of yet unused. Labels will be removed from this map when
1465     /// they are used (in a `break` or `continue` statement)
1466     pub unused_labels: FxHashMap<NodeId, Span>,
1467
1468     /// privacy errors are delayed until the end in order to deduplicate them
1469     privacy_errors: Vec<PrivacyError<'a>>,
1470     /// ambiguity errors are delayed for deduplication
1471     ambiguity_errors: Vec<AmbiguityError<'a>>,
1472     /// `use` injections are delayed for better placement and deduplication
1473     use_injections: Vec<UseError<'a>>,
1474     /// crate-local macro expanded `macro_export` referred to by a module-relative path
1475     macro_expanded_macro_export_errors: BTreeSet<(Span, Span)>,
1476
1477     arenas: &'a ResolverArenas<'a>,
1478     dummy_binding: &'a NameBinding<'a>,
1479
1480     crate_loader: &'a mut CrateLoader<'b>,
1481     macro_names: FxHashSet<Ident>,
1482     builtin_macros: FxHashMap<Name, &'a NameBinding<'a>>,
1483     macro_use_prelude: FxHashMap<Name, &'a NameBinding<'a>>,
1484     pub all_macros: FxHashMap<Name, Def>,
1485     macro_map: FxHashMap<DefId, Lrc<SyntaxExtension>>,
1486     macro_defs: FxHashMap<Mark, DefId>,
1487     local_macro_def_scopes: FxHashMap<NodeId, Module<'a>>,
1488     pub whitelisted_legacy_custom_derives: Vec<Name>,
1489     pub found_unresolved_macro: bool,
1490
1491     /// List of crate local macros that we need to warn about as being unused.
1492     /// Right now this only includes macro_rules! macros, and macros 2.0.
1493     unused_macros: FxHashSet<DefId>,
1494
1495     /// Maps the `Mark` of an expansion to its containing module or block.
1496     invocations: FxHashMap<Mark, &'a InvocationData<'a>>,
1497
1498     /// Avoid duplicated errors for "name already defined".
1499     name_already_seen: FxHashMap<Name, Span>,
1500
1501     potentially_unused_imports: Vec<&'a ImportDirective<'a>>,
1502
1503     /// This table maps struct IDs into struct constructor IDs,
1504     /// it's not used during normal resolution, only for better error reporting.
1505     struct_constructors: DefIdMap<(Def, ty::Visibility)>,
1506
1507     /// Only used for better errors on `fn(): fn()`
1508     current_type_ascription: Vec<Span>,
1509
1510     injected_crate: Option<Module<'a>>,
1511 }
1512
1513 /// Nothing really interesting here, it just provides memory for the rest of the crate.
1514 #[derive(Default)]
1515 pub struct ResolverArenas<'a> {
1516     modules: arena::TypedArena<ModuleData<'a>>,
1517     local_modules: RefCell<Vec<Module<'a>>>,
1518     name_bindings: arena::TypedArena<NameBinding<'a>>,
1519     import_directives: arena::TypedArena<ImportDirective<'a>>,
1520     name_resolutions: arena::TypedArena<RefCell<NameResolution<'a>>>,
1521     invocation_data: arena::TypedArena<InvocationData<'a>>,
1522     legacy_bindings: arena::TypedArena<LegacyBinding<'a>>,
1523 }
1524
1525 impl<'a> ResolverArenas<'a> {
1526     fn alloc_module(&'a self, module: ModuleData<'a>) -> Module<'a> {
1527         let module = self.modules.alloc(module);
1528         if module.def_id().map(|def_id| def_id.is_local()).unwrap_or(true) {
1529             self.local_modules.borrow_mut().push(module);
1530         }
1531         module
1532     }
1533     fn local_modules(&'a self) -> ::std::cell::Ref<'a, Vec<Module<'a>>> {
1534         self.local_modules.borrow()
1535     }
1536     fn alloc_name_binding(&'a self, name_binding: NameBinding<'a>) -> &'a NameBinding<'a> {
1537         self.name_bindings.alloc(name_binding)
1538     }
1539     fn alloc_import_directive(&'a self, import_directive: ImportDirective<'a>)
1540                               -> &'a ImportDirective {
1541         self.import_directives.alloc(import_directive)
1542     }
1543     fn alloc_name_resolution(&'a self) -> &'a RefCell<NameResolution<'a>> {
1544         self.name_resolutions.alloc(Default::default())
1545     }
1546     fn alloc_invocation_data(&'a self, expansion_data: InvocationData<'a>)
1547                              -> &'a InvocationData<'a> {
1548         self.invocation_data.alloc(expansion_data)
1549     }
1550     fn alloc_legacy_binding(&'a self, binding: LegacyBinding<'a>) -> &'a LegacyBinding<'a> {
1551         self.legacy_bindings.alloc(binding)
1552     }
1553 }
1554
1555 impl<'a, 'b: 'a, 'cl: 'b> ty::DefIdTree for &'a Resolver<'b, 'cl> {
1556     fn parent(self, id: DefId) -> Option<DefId> {
1557         match id.krate {
1558             LOCAL_CRATE => self.definitions.def_key(id.index).parent,
1559             _ => self.cstore.def_key(id).parent,
1560         }.map(|index| DefId { index, ..id })
1561     }
1562 }
1563
1564 /// This interface is used through the AST→HIR step, to embed full paths into the HIR. After that
1565 /// the resolver is no longer needed as all the relevant information is inline.
1566 impl<'a, 'cl> hir::lowering::Resolver for Resolver<'a, 'cl> {
1567     fn resolve_hir_path(
1568         &mut self,
1569         path: &ast::Path,
1570         is_value: bool,
1571     ) -> hir::Path {
1572         self.resolve_hir_path_cb(path, is_value,
1573                                  |resolver, span, error| resolve_error(resolver, span, error))
1574     }
1575
1576     fn resolve_str_path(
1577         &mut self,
1578         span: Span,
1579         crate_root: Option<&str>,
1580         components: &[&str],
1581         is_value: bool
1582     ) -> hir::Path {
1583         let segments = iter::once(keywords::CrateRoot.ident())
1584             .chain(
1585                 crate_root.into_iter()
1586                     .chain(components.iter().cloned())
1587                     .map(Ident::from_str)
1588             ).map(|i| self.new_ast_path_segment(i)).collect::<Vec<_>>();
1589
1590
1591         let path = ast::Path {
1592             span,
1593             segments,
1594         };
1595
1596         self.resolve_hir_path(&path, is_value)
1597     }
1598
1599     fn get_resolution(&mut self, id: NodeId) -> Option<PathResolution> {
1600         self.def_map.get(&id).cloned()
1601     }
1602
1603     fn get_import(&mut self, id: NodeId) -> PerNS<Option<PathResolution>> {
1604         self.import_map.get(&id).cloned().unwrap_or_default()
1605     }
1606
1607     fn definitions(&mut self) -> &mut Definitions {
1608         &mut self.definitions
1609     }
1610 }
1611
1612 impl<'a, 'crateloader> Resolver<'a, 'crateloader> {
1613     /// Rustdoc uses this to resolve things in a recoverable way. ResolutionError<'a>
1614     /// isn't something that can be returned because it can't be made to live that long,
1615     /// and also it's a private type. Fortunately rustdoc doesn't need to know the error,
1616     /// just that an error occurred.
1617     pub fn resolve_str_path_error(&mut self, span: Span, path_str: &str, is_value: bool)
1618         -> Result<hir::Path, ()> {
1619         use std::iter;
1620         let mut errored = false;
1621
1622         let path = if path_str.starts_with("::") {
1623             ast::Path {
1624                 span,
1625                 segments: iter::once(keywords::CrateRoot.ident())
1626                     .chain({
1627                         path_str.split("::").skip(1).map(Ident::from_str)
1628                     })
1629                     .map(|i| self.new_ast_path_segment(i))
1630                     .collect(),
1631             }
1632         } else {
1633             ast::Path {
1634                 span,
1635                 segments: path_str
1636                     .split("::")
1637                     .map(Ident::from_str)
1638                     .map(|i| self.new_ast_path_segment(i))
1639                     .collect(),
1640             }
1641         };
1642         let path = self.resolve_hir_path_cb(&path, is_value, |_, _, _| errored = true);
1643         if errored || path.def == Def::Err {
1644             Err(())
1645         } else {
1646             Ok(path)
1647         }
1648     }
1649
1650     /// resolve_hir_path, but takes a callback in case there was an error
1651     fn resolve_hir_path_cb<F>(
1652         &mut self,
1653         path: &ast::Path,
1654         is_value: bool,
1655         error_callback: F,
1656     ) -> hir::Path
1657         where F: for<'c, 'b> FnOnce(&'c mut Resolver, Span, ResolutionError<'b>)
1658     {
1659         let namespace = if is_value { ValueNS } else { TypeNS };
1660         let span = path.span;
1661         let segments = &path.segments;
1662         let path = Segment::from_path(&path);
1663         // FIXME (Manishearth): Intra doc links won't get warned of epoch changes
1664         let def = match self.resolve_path_without_parent_scope(None, &path, Some(namespace),
1665                                                                true, span, CrateLint::No) {
1666             PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
1667                 module.def().unwrap(),
1668             PathResult::NonModule(path_res) if path_res.unresolved_segments() == 0 =>
1669                 path_res.base_def(),
1670             PathResult::NonModule(..) => {
1671                 let msg = "type-relative paths are not supported in this context";
1672                 error_callback(self, span, ResolutionError::FailedToResolve(msg));
1673                 Def::Err
1674             }
1675             PathResult::Module(ModuleOrUniformRoot::UniformRoot(_)) |
1676             PathResult::Indeterminate => unreachable!(),
1677             PathResult::Failed(span, msg, _) => {
1678                 error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1679                 Def::Err
1680             }
1681         };
1682
1683         let segments: Vec<_> = segments.iter().map(|seg| {
1684             let mut hir_seg = hir::PathSegment::from_ident(seg.ident);
1685             hir_seg.def = Some(self.def_map.get(&seg.id).map_or(Def::Err, |p| p.base_def()));
1686             hir_seg
1687         }).collect();
1688         hir::Path {
1689             span,
1690             def,
1691             segments: segments.into(),
1692         }
1693     }
1694
1695     fn new_ast_path_segment(&self, ident: Ident) -> ast::PathSegment {
1696         let mut seg = ast::PathSegment::from_ident(ident);
1697         seg.id = self.session.next_node_id();
1698         seg
1699     }
1700 }
1701
1702 impl<'a, 'crateloader: 'a> Resolver<'a, 'crateloader> {
1703     pub fn new(session: &'a Session,
1704                cstore: &'a CStore,
1705                krate: &Crate,
1706                crate_name: &str,
1707                make_glob_map: MakeGlobMap,
1708                crate_loader: &'a mut CrateLoader<'crateloader>,
1709                arenas: &'a ResolverArenas<'a>)
1710                -> Resolver<'a, 'crateloader> {
1711         let root_def_id = DefId::local(CRATE_DEF_INDEX);
1712         let root_module_kind = ModuleKind::Def(Def::Mod(root_def_id), keywords::Invalid.name());
1713         let graph_root = arenas.alloc_module(ModuleData {
1714             no_implicit_prelude: attr::contains_name(&krate.attrs, "no_implicit_prelude"),
1715             ..ModuleData::new(None, root_module_kind, root_def_id, Mark::root(), krate.span)
1716         });
1717         let mut module_map = FxHashMap::default();
1718         module_map.insert(DefId::local(CRATE_DEF_INDEX), graph_root);
1719
1720         let mut definitions = Definitions::new();
1721         DefCollector::new(&mut definitions, Mark::root())
1722             .collect_root(crate_name, session.local_crate_disambiguator());
1723
1724         let mut extern_prelude: FxHashMap<Ident, ExternPreludeEntry> =
1725             session.opts.externs.iter().map(|kv| (Ident::from_str(kv.0), Default::default()))
1726                                        .collect();
1727
1728         if !attr::contains_name(&krate.attrs, "no_core") {
1729             extern_prelude.insert(Ident::from_str("core"), Default::default());
1730             if !attr::contains_name(&krate.attrs, "no_std") {
1731                 extern_prelude.insert(Ident::from_str("std"), Default::default());
1732                 if session.rust_2018() {
1733                     extern_prelude.insert(Ident::from_str("meta"), Default::default());
1734                 }
1735             }
1736         }
1737
1738         let mut invocations = FxHashMap::default();
1739         invocations.insert(Mark::root(),
1740                            arenas.alloc_invocation_data(InvocationData::root(graph_root)));
1741
1742         let mut macro_defs = FxHashMap::default();
1743         macro_defs.insert(Mark::root(), root_def_id);
1744
1745         Resolver {
1746             session,
1747
1748             cstore,
1749
1750             definitions,
1751
1752             // The outermost module has def ID 0; this is not reflected in the
1753             // AST.
1754             graph_root,
1755             prelude: None,
1756             extern_prelude,
1757
1758             has_self: FxHashSet::default(),
1759             field_names: FxHashMap::default(),
1760
1761             determined_imports: Vec::new(),
1762             indeterminate_imports: Vec::new(),
1763
1764             current_module: graph_root,
1765             ribs: PerNS {
1766                 value_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1767                 type_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1768                 macro_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1769             },
1770             label_ribs: Vec::new(),
1771
1772             current_trait_ref: None,
1773             current_self_type: None,
1774             current_self_item: None,
1775
1776             primitive_type_table: PrimitiveTypeTable::new(),
1777
1778             def_map: NodeMap(),
1779             import_map: NodeMap(),
1780             freevars: NodeMap(),
1781             freevars_seen: NodeMap(),
1782             export_map: FxHashMap::default(),
1783             trait_map: NodeMap(),
1784             module_map,
1785             block_map: NodeMap(),
1786             extern_module_map: FxHashMap::default(),
1787             binding_parent_modules: FxHashMap::default(),
1788
1789             make_glob_map: make_glob_map == MakeGlobMap::Yes,
1790             glob_map: NodeMap(),
1791
1792             used_imports: FxHashSet::default(),
1793             maybe_unused_trait_imports: NodeSet(),
1794             maybe_unused_extern_crates: Vec::new(),
1795
1796             unused_labels: FxHashMap::default(),
1797
1798             privacy_errors: Vec::new(),
1799             ambiguity_errors: Vec::new(),
1800             use_injections: Vec::new(),
1801             macro_expanded_macro_export_errors: BTreeSet::new(),
1802
1803             arenas,
1804             dummy_binding: arenas.alloc_name_binding(NameBinding {
1805                 kind: NameBindingKind::Def(Def::Err, false),
1806                 expansion: Mark::root(),
1807                 span: DUMMY_SP,
1808                 vis: ty::Visibility::Public,
1809             }),
1810
1811             crate_loader,
1812             macro_names: FxHashSet::default(),
1813             builtin_macros: FxHashMap::default(),
1814             macro_use_prelude: FxHashMap::default(),
1815             all_macros: FxHashMap::default(),
1816             macro_map: FxHashMap::default(),
1817             invocations,
1818             macro_defs,
1819             local_macro_def_scopes: FxHashMap::default(),
1820             name_already_seen: FxHashMap::default(),
1821             whitelisted_legacy_custom_derives: Vec::new(),
1822             potentially_unused_imports: Vec::new(),
1823             struct_constructors: DefIdMap(),
1824             found_unresolved_macro: false,
1825             unused_macros: FxHashSet::default(),
1826             current_type_ascription: Vec::new(),
1827             injected_crate: None,
1828         }
1829     }
1830
1831     pub fn arenas() -> ResolverArenas<'a> {
1832         Default::default()
1833     }
1834
1835     /// Runs the function on each namespace.
1836     fn per_ns<F: FnMut(&mut Self, Namespace)>(&mut self, mut f: F) {
1837         f(self, TypeNS);
1838         f(self, ValueNS);
1839         f(self, MacroNS);
1840     }
1841
1842     fn macro_def(&self, mut ctxt: SyntaxContext) -> DefId {
1843         loop {
1844             match self.macro_defs.get(&ctxt.outer()) {
1845                 Some(&def_id) => return def_id,
1846                 None => ctxt.remove_mark(),
1847             };
1848         }
1849     }
1850
1851     /// Entry point to crate resolution.
1852     pub fn resolve_crate(&mut self, krate: &Crate) {
1853         ImportResolver { resolver: self }.finalize_imports();
1854         self.current_module = self.graph_root;
1855         self.finalize_current_module_macro_resolutions();
1856
1857         visit::walk_crate(self, krate);
1858
1859         check_unused::check_crate(self, krate);
1860         self.report_errors(krate);
1861         self.crate_loader.postprocess(krate);
1862     }
1863
1864     fn new_module(
1865         &self,
1866         parent: Module<'a>,
1867         kind: ModuleKind,
1868         normal_ancestor_id: DefId,
1869         expansion: Mark,
1870         span: Span,
1871     ) -> Module<'a> {
1872         let module = ModuleData::new(Some(parent), kind, normal_ancestor_id, expansion, span);
1873         self.arenas.alloc_module(module)
1874     }
1875
1876     fn record_use(&mut self, ident: Ident, ns: Namespace, binding: &'a NameBinding<'a>)
1877                   -> bool /* true if an error was reported */ {
1878         match binding.kind {
1879             NameBindingKind::Import { directive, binding, ref used }
1880                     if !used.get() => {
1881                 used.set(true);
1882                 directive.used.set(true);
1883                 self.used_imports.insert((directive.id, ns));
1884                 self.add_to_glob_map(directive.id, ident);
1885                 self.record_use(ident, ns, binding)
1886             }
1887             NameBindingKind::Import { .. } => false,
1888             NameBindingKind::Ambiguity { b1, b2 } => {
1889                 self.ambiguity_errors.push(AmbiguityError { ident, b1, b2 });
1890                 true
1891             }
1892             _ => false
1893         }
1894     }
1895
1896     fn add_to_glob_map(&mut self, id: NodeId, ident: Ident) {
1897         if self.make_glob_map {
1898             self.glob_map.entry(id).or_default().insert(ident.name);
1899         }
1900     }
1901
1902     /// This resolves the identifier `ident` in the namespace `ns` in the current lexical scope.
1903     /// More specifically, we proceed up the hierarchy of scopes and return the binding for
1904     /// `ident` in the first scope that defines it (or None if no scopes define it).
1905     ///
1906     /// A block's items are above its local variables in the scope hierarchy, regardless of where
1907     /// the items are defined in the block. For example,
1908     /// ```rust
1909     /// fn f() {
1910     ///    g(); // Since there are no local variables in scope yet, this resolves to the item.
1911     ///    let g = || {};
1912     ///    fn g() {}
1913     ///    g(); // This resolves to the local variable `g` since it shadows the item.
1914     /// }
1915     /// ```
1916     ///
1917     /// Invariant: This must only be called during main resolution, not during
1918     /// import resolution.
1919     fn resolve_ident_in_lexical_scope(&mut self,
1920                                       mut ident: Ident,
1921                                       ns: Namespace,
1922                                       record_used_id: Option<NodeId>,
1923                                       path_span: Span)
1924                                       -> Option<LexicalScopeBinding<'a>> {
1925         let record_used = record_used_id.is_some();
1926         assert!(ns == TypeNS  || ns == ValueNS);
1927         if ns == TypeNS {
1928             ident.span = if ident.name == keywords::SelfType.name() {
1929                 // FIXME(jseyfried) improve `Self` hygiene
1930                 ident.span.with_ctxt(SyntaxContext::empty())
1931             } else {
1932                 ident.span.modern()
1933             }
1934         } else {
1935             ident = ident.modern_and_legacy();
1936         }
1937
1938         // Walk backwards up the ribs in scope.
1939         let mut module = self.graph_root;
1940         for i in (0 .. self.ribs[ns].len()).rev() {
1941             if let Some(def) = self.ribs[ns][i].bindings.get(&ident).cloned() {
1942                 // The ident resolves to a type parameter or local variable.
1943                 return Some(LexicalScopeBinding::Def(
1944                     self.adjust_local_def(ns, i, def, record_used, path_span)
1945                 ));
1946             }
1947
1948             module = match self.ribs[ns][i].kind {
1949                 ModuleRibKind(module) => module,
1950                 MacroDefinition(def) if def == self.macro_def(ident.span.ctxt()) => {
1951                     // If an invocation of this macro created `ident`, give up on `ident`
1952                     // and switch to `ident`'s source from the macro definition.
1953                     ident.span.remove_mark();
1954                     continue
1955                 }
1956                 _ => continue,
1957             };
1958
1959             let item = self.resolve_ident_in_module_unadjusted(
1960                 ModuleOrUniformRoot::Module(module),
1961                 ident,
1962                 ns,
1963                 false,
1964                 record_used,
1965                 path_span,
1966             );
1967             if let Ok(binding) = item {
1968                 // The ident resolves to an item.
1969                 return Some(LexicalScopeBinding::Item(binding));
1970             }
1971
1972             match module.kind {
1973                 ModuleKind::Block(..) => {}, // We can see through blocks
1974                 _ => break,
1975             }
1976         }
1977
1978         ident.span = ident.span.modern();
1979         let mut poisoned = None;
1980         loop {
1981             let opt_module = if let Some(node_id) = record_used_id {
1982                 self.hygienic_lexical_parent_with_compatibility_fallback(module, &mut ident.span,
1983                                                                          node_id, &mut poisoned)
1984             } else {
1985                 self.hygienic_lexical_parent(module, &mut ident.span)
1986             };
1987             module = unwrap_or!(opt_module, break);
1988             let orig_current_module = self.current_module;
1989             self.current_module = module; // Lexical resolutions can never be a privacy error.
1990             let result = self.resolve_ident_in_module_unadjusted(
1991                 ModuleOrUniformRoot::Module(module),
1992                 ident,
1993                 ns,
1994                 false,
1995                 record_used,
1996                 path_span,
1997             );
1998             self.current_module = orig_current_module;
1999
2000             match result {
2001                 Ok(binding) => {
2002                     if let Some(node_id) = poisoned {
2003                         self.session.buffer_lint_with_diagnostic(
2004                             lint::builtin::PROC_MACRO_DERIVE_RESOLUTION_FALLBACK,
2005                             node_id, ident.span,
2006                             &format!("cannot find {} `{}` in this scope", ns.descr(), ident),
2007                             lint::builtin::BuiltinLintDiagnostics::
2008                                 ProcMacroDeriveResolutionFallback(ident.span),
2009                         );
2010                     }
2011                     return Some(LexicalScopeBinding::Item(binding))
2012                 }
2013                 Err(Determined) => continue,
2014                 Err(Undetermined) =>
2015                     span_bug!(ident.span, "undetermined resolution during main resolution pass"),
2016             }
2017         }
2018
2019         if !module.no_implicit_prelude {
2020             if ns == TypeNS {
2021                 if let Some(binding) = self.extern_prelude_get(ident, !record_used, false) {
2022                     return Some(LexicalScopeBinding::Item(binding));
2023                 }
2024             }
2025             if ns == TypeNS && is_known_tool(ident.name) {
2026                 let binding = (Def::ToolMod, ty::Visibility::Public,
2027                                ident.span, Mark::root()).to_name_binding(self.arenas);
2028                 return Some(LexicalScopeBinding::Item(binding));
2029             }
2030             if let Some(prelude) = self.prelude {
2031                 if let Ok(binding) = self.resolve_ident_in_module_unadjusted(
2032                     ModuleOrUniformRoot::Module(prelude),
2033                     ident,
2034                     ns,
2035                     false,
2036                     false,
2037                     path_span,
2038                 ) {
2039                     return Some(LexicalScopeBinding::Item(binding));
2040                 }
2041             }
2042         }
2043
2044         None
2045     }
2046
2047     fn hygienic_lexical_parent(&mut self, module: Module<'a>, span: &mut Span)
2048                                -> Option<Module<'a>> {
2049         if !module.expansion.is_descendant_of(span.ctxt().outer()) {
2050             return Some(self.macro_def_scope(span.remove_mark()));
2051         }
2052
2053         if let ModuleKind::Block(..) = module.kind {
2054             return Some(module.parent.unwrap());
2055         }
2056
2057         None
2058     }
2059
2060     fn hygienic_lexical_parent_with_compatibility_fallback(&mut self, module: Module<'a>,
2061                                                            span: &mut Span, node_id: NodeId,
2062                                                            poisoned: &mut Option<NodeId>)
2063                                                            -> Option<Module<'a>> {
2064         if let module @ Some(..) = self.hygienic_lexical_parent(module, span) {
2065             return module;
2066         }
2067
2068         // We need to support the next case under a deprecation warning
2069         // ```
2070         // struct MyStruct;
2071         // ---- begin: this comes from a proc macro derive
2072         // mod implementation_details {
2073         //     // Note that `MyStruct` is not in scope here.
2074         //     impl SomeTrait for MyStruct { ... }
2075         // }
2076         // ---- end
2077         // ```
2078         // So we have to fall back to the module's parent during lexical resolution in this case.
2079         if let Some(parent) = module.parent {
2080             // Inner module is inside the macro, parent module is outside of the macro.
2081             if module.expansion != parent.expansion &&
2082             module.expansion.is_descendant_of(parent.expansion) {
2083                 // The macro is a proc macro derive
2084                 if module.expansion.looks_like_proc_macro_derive() {
2085                     if parent.expansion.is_descendant_of(span.ctxt().outer()) {
2086                         *poisoned = Some(node_id);
2087                         return module.parent;
2088                     }
2089                 }
2090             }
2091         }
2092
2093         None
2094     }
2095
2096     fn resolve_ident_in_module(&mut self,
2097                                module: ModuleOrUniformRoot<'a>,
2098                                mut ident: Ident,
2099                                ns: Namespace,
2100                                record_used: bool,
2101                                span: Span)
2102                                -> Result<&'a NameBinding<'a>, Determinacy> {
2103         ident.span = ident.span.modern();
2104         let orig_current_module = self.current_module;
2105         if let ModuleOrUniformRoot::Module(module) = module {
2106             if let Some(def) = ident.span.adjust(module.expansion) {
2107                 self.current_module = self.macro_def_scope(def);
2108             }
2109         }
2110         let result = self.resolve_ident_in_module_unadjusted(
2111             module, ident, ns, false, record_used, span,
2112         );
2113         self.current_module = orig_current_module;
2114         result
2115     }
2116
2117     fn resolve_crate_root(&mut self, ident: Ident) -> Module<'a> {
2118         let mut ctxt = ident.span.ctxt();
2119         let mark = if ident.name == keywords::DollarCrate.name() {
2120             // When resolving `$crate` from a `macro_rules!` invoked in a `macro`,
2121             // we don't want to pretend that the `macro_rules!` definition is in the `macro`
2122             // as described in `SyntaxContext::apply_mark`, so we ignore prepended modern marks.
2123             // FIXME: This is only a guess and it doesn't work correctly for `macro_rules!`
2124             // definitions actually produced by `macro` and `macro` definitions produced by
2125             // `macro_rules!`, but at least such configurations are not stable yet.
2126             ctxt = ctxt.modern_and_legacy();
2127             let mut iter = ctxt.marks().into_iter().rev().peekable();
2128             let mut result = None;
2129             // Find the last modern mark from the end if it exists.
2130             while let Some(&(mark, transparency)) = iter.peek() {
2131                 if transparency == Transparency::Opaque {
2132                     result = Some(mark);
2133                     iter.next();
2134                 } else {
2135                     break;
2136                 }
2137             }
2138             // Then find the last legacy mark from the end if it exists.
2139             for (mark, transparency) in iter {
2140                 if transparency == Transparency::SemiTransparent {
2141                     result = Some(mark);
2142                 } else {
2143                     break;
2144                 }
2145             }
2146             result
2147         } else {
2148             ctxt = ctxt.modern();
2149             ctxt.adjust(Mark::root())
2150         };
2151         let module = match mark {
2152             Some(def) => self.macro_def_scope(def),
2153             None => return self.graph_root,
2154         };
2155         self.get_module(DefId { index: CRATE_DEF_INDEX, ..module.normal_ancestor_id })
2156     }
2157
2158     fn resolve_self(&mut self, ctxt: &mut SyntaxContext, module: Module<'a>) -> Module<'a> {
2159         let mut module = self.get_module(module.normal_ancestor_id);
2160         while module.span.ctxt().modern() != *ctxt {
2161             let parent = module.parent.unwrap_or_else(|| self.macro_def_scope(ctxt.remove_mark()));
2162             module = self.get_module(parent.normal_ancestor_id);
2163         }
2164         module
2165     }
2166
2167     // AST resolution
2168     //
2169     // We maintain a list of value ribs and type ribs.
2170     //
2171     // Simultaneously, we keep track of the current position in the module
2172     // graph in the `current_module` pointer. When we go to resolve a name in
2173     // the value or type namespaces, we first look through all the ribs and
2174     // then query the module graph. When we resolve a name in the module
2175     // namespace, we can skip all the ribs (since nested modules are not
2176     // allowed within blocks in Rust) and jump straight to the current module
2177     // graph node.
2178     //
2179     // Named implementations are handled separately. When we find a method
2180     // call, we consult the module node to find all of the implementations in
2181     // scope. This information is lazily cached in the module node. We then
2182     // generate a fake "implementation scope" containing all the
2183     // implementations thus found, for compatibility with old resolve pass.
2184
2185     pub fn with_scope<F, T>(&mut self, id: NodeId, f: F) -> T
2186         where F: FnOnce(&mut Resolver) -> T
2187     {
2188         let id = self.definitions.local_def_id(id);
2189         let module = self.module_map.get(&id).cloned(); // clones a reference
2190         if let Some(module) = module {
2191             // Move down in the graph.
2192             let orig_module = replace(&mut self.current_module, module);
2193             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(module)));
2194             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(module)));
2195
2196             self.finalize_current_module_macro_resolutions();
2197             let ret = f(self);
2198
2199             self.current_module = orig_module;
2200             self.ribs[ValueNS].pop();
2201             self.ribs[TypeNS].pop();
2202             ret
2203         } else {
2204             f(self)
2205         }
2206     }
2207
2208     /// Searches the current set of local scopes for labels. Returns the first non-None label that
2209     /// is returned by the given predicate function
2210     ///
2211     /// Stops after meeting a closure.
2212     fn search_label<P, R>(&self, mut ident: Ident, pred: P) -> Option<R>
2213         where P: Fn(&Rib, Ident) -> Option<R>
2214     {
2215         for rib in self.label_ribs.iter().rev() {
2216             match rib.kind {
2217                 NormalRibKind => {}
2218                 // If an invocation of this macro created `ident`, give up on `ident`
2219                 // and switch to `ident`'s source from the macro definition.
2220                 MacroDefinition(def) => {
2221                     if def == self.macro_def(ident.span.ctxt()) {
2222                         ident.span.remove_mark();
2223                     }
2224                 }
2225                 _ => {
2226                     // Do not resolve labels across function boundary
2227                     return None;
2228                 }
2229             }
2230             let r = pred(rib, ident);
2231             if r.is_some() {
2232                 return r;
2233             }
2234         }
2235         None
2236     }
2237
2238     fn resolve_adt(&mut self, item: &Item, generics: &Generics) {
2239         self.with_current_self_item(item, |this| {
2240             this.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2241                 let item_def_id = this.definitions.local_def_id(item.id);
2242                 if this.session.features_untracked().self_in_typedefs {
2243                     this.with_self_rib(Def::SelfTy(None, Some(item_def_id)), |this| {
2244                         visit::walk_item(this, item);
2245                     });
2246                 } else {
2247                     visit::walk_item(this, item);
2248                 }
2249             });
2250         });
2251     }
2252
2253     fn resolve_item(&mut self, item: &Item) {
2254         let name = item.ident.name;
2255         debug!("(resolving item) resolving {}", name);
2256
2257         match item.node {
2258             ItemKind::Ty(_, ref generics) |
2259             ItemKind::Fn(_, _, ref generics, _) |
2260             ItemKind::Existential(_, ref generics) => {
2261                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind),
2262                                              |this| visit::walk_item(this, item));
2263             }
2264
2265             ItemKind::Enum(_, ref generics) |
2266             ItemKind::Struct(_, ref generics) |
2267             ItemKind::Union(_, ref generics) => {
2268                 self.resolve_adt(item, generics);
2269             }
2270
2271             ItemKind::Impl(.., ref generics, ref opt_trait_ref, ref self_type, ref impl_items) =>
2272                 self.resolve_implementation(generics,
2273                                             opt_trait_ref,
2274                                             &self_type,
2275                                             item.id,
2276                                             impl_items),
2277
2278             ItemKind::Trait(.., ref generics, ref bounds, ref trait_items) => {
2279                 // Create a new rib for the trait-wide type parameters.
2280                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2281                     let local_def_id = this.definitions.local_def_id(item.id);
2282                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2283                         this.visit_generics(generics);
2284                         walk_list!(this, visit_param_bound, bounds);
2285
2286                         for trait_item in trait_items {
2287                             let type_parameters = HasTypeParameters(&trait_item.generics,
2288                                                                     TraitOrImplItemRibKind);
2289                             this.with_type_parameter_rib(type_parameters, |this| {
2290                                 match trait_item.node {
2291                                     TraitItemKind::Const(ref ty, ref default) => {
2292                                         this.visit_ty(ty);
2293
2294                                         // Only impose the restrictions of
2295                                         // ConstRibKind for an actual constant
2296                                         // expression in a provided default.
2297                                         if let Some(ref expr) = *default{
2298                                             this.with_constant_rib(|this| {
2299                                                 this.visit_expr(expr);
2300                                             });
2301                                         }
2302                                     }
2303                                     TraitItemKind::Method(_, _) => {
2304                                         visit::walk_trait_item(this, trait_item)
2305                                     }
2306                                     TraitItemKind::Type(..) => {
2307                                         visit::walk_trait_item(this, trait_item)
2308                                     }
2309                                     TraitItemKind::Macro(_) => {
2310                                         panic!("unexpanded macro in resolve!")
2311                                     }
2312                                 };
2313                             });
2314                         }
2315                     });
2316                 });
2317             }
2318
2319             ItemKind::TraitAlias(ref generics, ref bounds) => {
2320                 // Create a new rib for the trait-wide type parameters.
2321                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2322                     let local_def_id = this.definitions.local_def_id(item.id);
2323                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2324                         this.visit_generics(generics);
2325                         walk_list!(this, visit_param_bound, bounds);
2326                     });
2327                 });
2328             }
2329
2330             ItemKind::Mod(_) | ItemKind::ForeignMod(_) => {
2331                 self.with_scope(item.id, |this| {
2332                     visit::walk_item(this, item);
2333                 });
2334             }
2335
2336             ItemKind::Static(ref ty, _, ref expr) |
2337             ItemKind::Const(ref ty, ref expr) => {
2338                 self.with_item_rib(|this| {
2339                     this.visit_ty(ty);
2340                     this.with_constant_rib(|this| {
2341                         this.visit_expr(expr);
2342                     });
2343                 });
2344             }
2345
2346             ItemKind::Use(..) | ItemKind::ExternCrate(..) |
2347             ItemKind::MacroDef(..) | ItemKind::GlobalAsm(..) => {
2348                 // do nothing, these are just around to be encoded
2349             }
2350
2351             ItemKind::Mac(_) => panic!("unexpanded macro in resolve!"),
2352         }
2353     }
2354
2355     fn with_type_parameter_rib<'b, F>(&'b mut self, type_parameters: TypeParameters<'a, 'b>, f: F)
2356         where F: FnOnce(&mut Resolver)
2357     {
2358         match type_parameters {
2359             HasTypeParameters(generics, rib_kind) => {
2360                 let mut function_type_rib = Rib::new(rib_kind);
2361                 let mut seen_bindings = FxHashMap::default();
2362                 for param in &generics.params {
2363                     match param.kind {
2364                         GenericParamKind::Lifetime { .. } => {}
2365                         GenericParamKind::Type { .. } => {
2366                             let ident = param.ident.modern();
2367                             debug!("with_type_parameter_rib: {}", param.id);
2368
2369                             if seen_bindings.contains_key(&ident) {
2370                                 let span = seen_bindings.get(&ident).unwrap();
2371                                 let err = ResolutionError::NameAlreadyUsedInTypeParameterList(
2372                                     ident.name,
2373                                     span,
2374                                 );
2375                                 resolve_error(self, param.ident.span, err);
2376                             }
2377                             seen_bindings.entry(ident).or_insert(param.ident.span);
2378
2379                         // Plain insert (no renaming).
2380                         let def = Def::TyParam(self.definitions.local_def_id(param.id));
2381                             function_type_rib.bindings.insert(ident, def);
2382                             self.record_def(param.id, PathResolution::new(def));
2383                         }
2384                     }
2385                 }
2386                 self.ribs[TypeNS].push(function_type_rib);
2387             }
2388
2389             NoTypeParameters => {
2390                 // Nothing to do.
2391             }
2392         }
2393
2394         f(self);
2395
2396         if let HasTypeParameters(..) = type_parameters {
2397             self.ribs[TypeNS].pop();
2398         }
2399     }
2400
2401     fn with_label_rib<F>(&mut self, f: F)
2402         where F: FnOnce(&mut Resolver)
2403     {
2404         self.label_ribs.push(Rib::new(NormalRibKind));
2405         f(self);
2406         self.label_ribs.pop();
2407     }
2408
2409     fn with_item_rib<F>(&mut self, f: F)
2410         where F: FnOnce(&mut Resolver)
2411     {
2412         self.ribs[ValueNS].push(Rib::new(ItemRibKind));
2413         self.ribs[TypeNS].push(Rib::new(ItemRibKind));
2414         f(self);
2415         self.ribs[TypeNS].pop();
2416         self.ribs[ValueNS].pop();
2417     }
2418
2419     fn with_constant_rib<F>(&mut self, f: F)
2420         where F: FnOnce(&mut Resolver)
2421     {
2422         self.ribs[ValueNS].push(Rib::new(ConstantItemRibKind));
2423         self.label_ribs.push(Rib::new(ConstantItemRibKind));
2424         f(self);
2425         self.label_ribs.pop();
2426         self.ribs[ValueNS].pop();
2427     }
2428
2429     fn with_current_self_type<T, F>(&mut self, self_type: &Ty, f: F) -> T
2430         where F: FnOnce(&mut Resolver) -> T
2431     {
2432         // Handle nested impls (inside fn bodies)
2433         let previous_value = replace(&mut self.current_self_type, Some(self_type.clone()));
2434         let result = f(self);
2435         self.current_self_type = previous_value;
2436         result
2437     }
2438
2439     fn with_current_self_item<T, F>(&mut self, self_item: &Item, f: F) -> T
2440         where F: FnOnce(&mut Resolver) -> T
2441     {
2442         let previous_value = replace(&mut self.current_self_item, Some(self_item.id));
2443         let result = f(self);
2444         self.current_self_item = previous_value;
2445         result
2446     }
2447
2448     /// This is called to resolve a trait reference from an `impl` (i.e. `impl Trait for Foo`)
2449     fn with_optional_trait_ref<T, F>(&mut self, opt_trait_ref: Option<&TraitRef>, f: F) -> T
2450         where F: FnOnce(&mut Resolver, Option<DefId>) -> T
2451     {
2452         let mut new_val = None;
2453         let mut new_id = None;
2454         if let Some(trait_ref) = opt_trait_ref {
2455             let path: Vec<_> = Segment::from_path(&trait_ref.path);
2456             let def = self.smart_resolve_path_fragment(
2457                 trait_ref.ref_id,
2458                 None,
2459                 &path,
2460                 trait_ref.path.span,
2461                 PathSource::Trait(AliasPossibility::No),
2462                 CrateLint::SimplePath(trait_ref.ref_id),
2463             ).base_def();
2464             if def != Def::Err {
2465                 new_id = Some(def.def_id());
2466                 let span = trait_ref.path.span;
2467                 if let PathResult::Module(ModuleOrUniformRoot::Module(module)) =
2468                     self.resolve_path_without_parent_scope(
2469                         None,
2470                         &path,
2471                         Some(TypeNS),
2472                         false,
2473                         span,
2474                         CrateLint::SimplePath(trait_ref.ref_id),
2475                     )
2476                 {
2477                     new_val = Some((module, trait_ref.clone()));
2478                 }
2479             }
2480         }
2481         let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
2482         let result = f(self, new_id);
2483         self.current_trait_ref = original_trait_ref;
2484         result
2485     }
2486
2487     fn with_self_rib<F>(&mut self, self_def: Def, f: F)
2488         where F: FnOnce(&mut Resolver)
2489     {
2490         let mut self_type_rib = Rib::new(NormalRibKind);
2491
2492         // plain insert (no renaming, types are not currently hygienic....)
2493         self_type_rib.bindings.insert(keywords::SelfType.ident(), self_def);
2494         self.ribs[TypeNS].push(self_type_rib);
2495         f(self);
2496         self.ribs[TypeNS].pop();
2497     }
2498
2499     fn with_self_struct_ctor_rib<F>(&mut self, impl_id: DefId, f: F)
2500         where F: FnOnce(&mut Resolver)
2501     {
2502         let self_def = Def::SelfCtor(impl_id);
2503         let mut self_type_rib = Rib::new(NormalRibKind);
2504         self_type_rib.bindings.insert(keywords::SelfType.ident(), self_def);
2505         self.ribs[ValueNS].push(self_type_rib);
2506         f(self);
2507         self.ribs[ValueNS].pop();
2508     }
2509
2510     fn resolve_implementation(&mut self,
2511                               generics: &Generics,
2512                               opt_trait_reference: &Option<TraitRef>,
2513                               self_type: &Ty,
2514                               item_id: NodeId,
2515                               impl_items: &[ImplItem]) {
2516         // If applicable, create a rib for the type parameters.
2517         self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2518             // Dummy self type for better errors if `Self` is used in the trait path.
2519             this.with_self_rib(Def::SelfTy(None, None), |this| {
2520                 // Resolve the trait reference, if necessary.
2521                 this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| {
2522                     let item_def_id = this.definitions.local_def_id(item_id);
2523                     this.with_self_rib(Def::SelfTy(trait_id, Some(item_def_id)), |this| {
2524                         if let Some(trait_ref) = opt_trait_reference.as_ref() {
2525                             // Resolve type arguments in the trait path.
2526                             visit::walk_trait_ref(this, trait_ref);
2527                         }
2528                         // Resolve the self type.
2529                         this.visit_ty(self_type);
2530                         // Resolve the type parameters.
2531                         this.visit_generics(generics);
2532                         // Resolve the items within the impl.
2533                         this.with_current_self_type(self_type, |this| {
2534                             this.with_self_struct_ctor_rib(item_def_id, |this| {
2535                                 for impl_item in impl_items {
2536                                     this.resolve_visibility(&impl_item.vis);
2537
2538                                     // We also need a new scope for the impl item type parameters.
2539                                     let type_parameters = HasTypeParameters(&impl_item.generics,
2540                                                                             TraitOrImplItemRibKind);
2541                                     this.with_type_parameter_rib(type_parameters, |this| {
2542                                         use self::ResolutionError::*;
2543                                         match impl_item.node {
2544                                             ImplItemKind::Const(..) => {
2545                                                 // If this is a trait impl, ensure the const
2546                                                 // exists in trait
2547                                                 this.check_trait_item(impl_item.ident,
2548                                                                       ValueNS,
2549                                                                       impl_item.span,
2550                                                     |n, s| ConstNotMemberOfTrait(n, s));
2551                                                 this.with_constant_rib(|this|
2552                                                     visit::walk_impl_item(this, impl_item)
2553                                                 );
2554                                             }
2555                                             ImplItemKind::Method(..) => {
2556                                                 // If this is a trait impl, ensure the method
2557                                                 // exists in trait
2558                                                 this.check_trait_item(impl_item.ident,
2559                                                                       ValueNS,
2560                                                                       impl_item.span,
2561                                                     |n, s| MethodNotMemberOfTrait(n, s));
2562
2563                                                 visit::walk_impl_item(this, impl_item);
2564                                             }
2565                                             ImplItemKind::Type(ref ty) => {
2566                                                 // If this is a trait impl, ensure the type
2567                                                 // exists in trait
2568                                                 this.check_trait_item(impl_item.ident,
2569                                                                       TypeNS,
2570                                                                       impl_item.span,
2571                                                     |n, s| TypeNotMemberOfTrait(n, s));
2572
2573                                                 this.visit_ty(ty);
2574                                             }
2575                                             ImplItemKind::Existential(ref bounds) => {
2576                                                 // If this is a trait impl, ensure the type
2577                                                 // exists in trait
2578                                                 this.check_trait_item(impl_item.ident,
2579                                                                       TypeNS,
2580                                                                       impl_item.span,
2581                                                     |n, s| TypeNotMemberOfTrait(n, s));
2582
2583                                                 for bound in bounds {
2584                                                     this.visit_param_bound(bound);
2585                                                 }
2586                                             }
2587                                             ImplItemKind::Macro(_) =>
2588                                                 panic!("unexpanded macro in resolve!"),
2589                                         }
2590                                     });
2591                                 }
2592                             });
2593                         });
2594                     });
2595                 });
2596             });
2597         });
2598     }
2599
2600     fn check_trait_item<F>(&mut self, ident: Ident, ns: Namespace, span: Span, err: F)
2601         where F: FnOnce(Name, &str) -> ResolutionError
2602     {
2603         // If there is a TraitRef in scope for an impl, then the method must be in the
2604         // trait.
2605         if let Some((module, _)) = self.current_trait_ref {
2606             if self.resolve_ident_in_module(
2607                 ModuleOrUniformRoot::Module(module),
2608                 ident,
2609                 ns,
2610                 false,
2611                 span,
2612             ).is_err() {
2613                 let path = &self.current_trait_ref.as_ref().unwrap().1.path;
2614                 resolve_error(self, span, err(ident.name, &path_names_to_string(path)));
2615             }
2616         }
2617     }
2618
2619     fn resolve_local(&mut self, local: &Local) {
2620         // Resolve the type.
2621         walk_list!(self, visit_ty, &local.ty);
2622
2623         // Resolve the initializer.
2624         walk_list!(self, visit_expr, &local.init);
2625
2626         // Resolve the pattern.
2627         self.resolve_pattern(&local.pat, PatternSource::Let, &mut FxHashMap::default());
2628     }
2629
2630     // build a map from pattern identifiers to binding-info's.
2631     // this is done hygienically. This could arise for a macro
2632     // that expands into an or-pattern where one 'x' was from the
2633     // user and one 'x' came from the macro.
2634     fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
2635         let mut binding_map = FxHashMap::default();
2636
2637         pat.walk(&mut |pat| {
2638             if let PatKind::Ident(binding_mode, ident, ref sub_pat) = pat.node {
2639                 if sub_pat.is_some() || match self.def_map.get(&pat.id).map(|res| res.base_def()) {
2640                     Some(Def::Local(..)) => true,
2641                     _ => false,
2642                 } {
2643                     let binding_info = BindingInfo { span: ident.span, binding_mode: binding_mode };
2644                     binding_map.insert(ident, binding_info);
2645                 }
2646             }
2647             true
2648         });
2649
2650         binding_map
2651     }
2652
2653     // check that all of the arms in an or-pattern have exactly the
2654     // same set of bindings, with the same binding modes for each.
2655     fn check_consistent_bindings(&mut self, pats: &[P<Pat>]) {
2656         if pats.is_empty() {
2657             return;
2658         }
2659
2660         let mut missing_vars = FxHashMap::default();
2661         let mut inconsistent_vars = FxHashMap::default();
2662         for (i, p) in pats.iter().enumerate() {
2663             let map_i = self.binding_mode_map(&p);
2664
2665             for (j, q) in pats.iter().enumerate() {
2666                 if i == j {
2667                     continue;
2668                 }
2669
2670                 let map_j = self.binding_mode_map(&q);
2671                 for (&key, &binding_i) in &map_i {
2672                     if map_j.is_empty() {                   // Account for missing bindings when
2673                         let binding_error = missing_vars    // map_j has none.
2674                             .entry(key.name)
2675                             .or_insert(BindingError {
2676                                 name: key.name,
2677                                 origin: BTreeSet::new(),
2678                                 target: BTreeSet::new(),
2679                             });
2680                         binding_error.origin.insert(binding_i.span);
2681                         binding_error.target.insert(q.span);
2682                     }
2683                     for (&key_j, &binding_j) in &map_j {
2684                         match map_i.get(&key_j) {
2685                             None => {  // missing binding
2686                                 let binding_error = missing_vars
2687                                     .entry(key_j.name)
2688                                     .or_insert(BindingError {
2689                                         name: key_j.name,
2690                                         origin: BTreeSet::new(),
2691                                         target: BTreeSet::new(),
2692                                     });
2693                                 binding_error.origin.insert(binding_j.span);
2694                                 binding_error.target.insert(p.span);
2695                             }
2696                             Some(binding_i) => {  // check consistent binding
2697                                 if binding_i.binding_mode != binding_j.binding_mode {
2698                                     inconsistent_vars
2699                                         .entry(key.name)
2700                                         .or_insert((binding_j.span, binding_i.span));
2701                                 }
2702                             }
2703                         }
2704                     }
2705                 }
2706             }
2707         }
2708         let mut missing_vars = missing_vars.iter().collect::<Vec<_>>();
2709         missing_vars.sort();
2710         for (_, v) in missing_vars {
2711             resolve_error(self,
2712                           *v.origin.iter().next().unwrap(),
2713                           ResolutionError::VariableNotBoundInPattern(v));
2714         }
2715         let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
2716         inconsistent_vars.sort();
2717         for (name, v) in inconsistent_vars {
2718             resolve_error(self, v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
2719         }
2720     }
2721
2722     fn resolve_arm(&mut self, arm: &Arm) {
2723         self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2724
2725         let mut bindings_list = FxHashMap::default();
2726         for pattern in &arm.pats {
2727             self.resolve_pattern(&pattern, PatternSource::Match, &mut bindings_list);
2728         }
2729
2730         // This has to happen *after* we determine which pat_idents are variants
2731         self.check_consistent_bindings(&arm.pats);
2732
2733         if let Some(ast::Guard::If(ref expr)) = arm.guard {
2734             self.visit_expr(expr)
2735         }
2736         self.visit_expr(&arm.body);
2737
2738         self.ribs[ValueNS].pop();
2739     }
2740
2741     fn resolve_block(&mut self, block: &Block) {
2742         debug!("(resolving block) entering block");
2743         // Move down in the graph, if there's an anonymous module rooted here.
2744         let orig_module = self.current_module;
2745         let anonymous_module = self.block_map.get(&block.id).cloned(); // clones a reference
2746
2747         let mut num_macro_definition_ribs = 0;
2748         if let Some(anonymous_module) = anonymous_module {
2749             debug!("(resolving block) found anonymous module, moving down");
2750             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2751             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2752             self.current_module = anonymous_module;
2753             self.finalize_current_module_macro_resolutions();
2754         } else {
2755             self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2756         }
2757
2758         // Descend into the block.
2759         for stmt in &block.stmts {
2760             if let ast::StmtKind::Item(ref item) = stmt.node {
2761                 if let ast::ItemKind::MacroDef(..) = item.node {
2762                     num_macro_definition_ribs += 1;
2763                     let def = self.definitions.local_def_id(item.id);
2764                     self.ribs[ValueNS].push(Rib::new(MacroDefinition(def)));
2765                     self.label_ribs.push(Rib::new(MacroDefinition(def)));
2766                 }
2767             }
2768
2769             self.visit_stmt(stmt);
2770         }
2771
2772         // Move back up.
2773         self.current_module = orig_module;
2774         for _ in 0 .. num_macro_definition_ribs {
2775             self.ribs[ValueNS].pop();
2776             self.label_ribs.pop();
2777         }
2778         self.ribs[ValueNS].pop();
2779         if anonymous_module.is_some() {
2780             self.ribs[TypeNS].pop();
2781         }
2782         debug!("(resolving block) leaving block");
2783     }
2784
2785     fn fresh_binding(&mut self,
2786                      ident: Ident,
2787                      pat_id: NodeId,
2788                      outer_pat_id: NodeId,
2789                      pat_src: PatternSource,
2790                      bindings: &mut FxHashMap<Ident, NodeId>)
2791                      -> PathResolution {
2792         // Add the binding to the local ribs, if it
2793         // doesn't already exist in the bindings map. (We
2794         // must not add it if it's in the bindings map
2795         // because that breaks the assumptions later
2796         // passes make about or-patterns.)
2797         let ident = ident.modern_and_legacy();
2798         let mut def = Def::Local(pat_id);
2799         match bindings.get(&ident).cloned() {
2800             Some(id) if id == outer_pat_id => {
2801                 // `Variant(a, a)`, error
2802                 resolve_error(
2803                     self,
2804                     ident.span,
2805                     ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(
2806                         &ident.as_str())
2807                 );
2808             }
2809             Some(..) if pat_src == PatternSource::FnParam => {
2810                 // `fn f(a: u8, a: u8)`, error
2811                 resolve_error(
2812                     self,
2813                     ident.span,
2814                     ResolutionError::IdentifierBoundMoreThanOnceInParameterList(
2815                         &ident.as_str())
2816                 );
2817             }
2818             Some(..) if pat_src == PatternSource::Match ||
2819                         pat_src == PatternSource::IfLet ||
2820                         pat_src == PatternSource::WhileLet => {
2821                 // `Variant1(a) | Variant2(a)`, ok
2822                 // Reuse definition from the first `a`.
2823                 def = self.ribs[ValueNS].last_mut().unwrap().bindings[&ident];
2824             }
2825             Some(..) => {
2826                 span_bug!(ident.span, "two bindings with the same name from \
2827                                        unexpected pattern source {:?}", pat_src);
2828             }
2829             None => {
2830                 // A completely fresh binding, add to the lists if it's valid.
2831                 if ident.name != keywords::Invalid.name() {
2832                     bindings.insert(ident, outer_pat_id);
2833                     self.ribs[ValueNS].last_mut().unwrap().bindings.insert(ident, def);
2834                 }
2835             }
2836         }
2837
2838         PathResolution::new(def)
2839     }
2840
2841     fn resolve_pattern(&mut self,
2842                        pat: &Pat,
2843                        pat_src: PatternSource,
2844                        // Maps idents to the node ID for the
2845                        // outermost pattern that binds them.
2846                        bindings: &mut FxHashMap<Ident, NodeId>) {
2847         // Visit all direct subpatterns of this pattern.
2848         let outer_pat_id = pat.id;
2849         pat.walk(&mut |pat| {
2850             match pat.node {
2851                 PatKind::Ident(bmode, ident, ref opt_pat) => {
2852                     // First try to resolve the identifier as some existing
2853                     // entity, then fall back to a fresh binding.
2854                     let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS,
2855                                                                       None, pat.span)
2856                                       .and_then(LexicalScopeBinding::item);
2857                     let resolution = binding.map(NameBinding::def).and_then(|def| {
2858                         let is_syntactic_ambiguity = opt_pat.is_none() &&
2859                             bmode == BindingMode::ByValue(Mutability::Immutable);
2860                         match def {
2861                             Def::StructCtor(_, CtorKind::Const) |
2862                             Def::VariantCtor(_, CtorKind::Const) |
2863                             Def::Const(..) if is_syntactic_ambiguity => {
2864                                 // Disambiguate in favor of a unit struct/variant
2865                                 // or constant pattern.
2866                                 self.record_use(ident, ValueNS, binding.unwrap());
2867                                 Some(PathResolution::new(def))
2868                             }
2869                             Def::StructCtor(..) | Def::VariantCtor(..) |
2870                             Def::Const(..) | Def::Static(..) => {
2871                                 // This is unambiguously a fresh binding, either syntactically
2872                                 // (e.g. `IDENT @ PAT` or `ref IDENT`) or because `IDENT` resolves
2873                                 // to something unusable as a pattern (e.g. constructor function),
2874                                 // but we still conservatively report an error, see
2875                                 // issues/33118#issuecomment-233962221 for one reason why.
2876                                 resolve_error(
2877                                     self,
2878                                     ident.span,
2879                                     ResolutionError::BindingShadowsSomethingUnacceptable(
2880                                         pat_src.descr(), ident.name, binding.unwrap())
2881                                 );
2882                                 None
2883                             }
2884                             Def::Fn(..) | Def::Err => {
2885                                 // These entities are explicitly allowed
2886                                 // to be shadowed by fresh bindings.
2887                                 None
2888                             }
2889                             def => {
2890                                 span_bug!(ident.span, "unexpected definition for an \
2891                                                        identifier in pattern: {:?}", def);
2892                             }
2893                         }
2894                     }).unwrap_or_else(|| {
2895                         self.fresh_binding(ident, pat.id, outer_pat_id, pat_src, bindings)
2896                     });
2897
2898                     self.record_def(pat.id, resolution);
2899                 }
2900
2901                 PatKind::TupleStruct(ref path, ..) => {
2902                     self.smart_resolve_path(pat.id, None, path, PathSource::TupleStruct);
2903                 }
2904
2905                 PatKind::Path(ref qself, ref path) => {
2906                     self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
2907                 }
2908
2909                 PatKind::Struct(ref path, ..) => {
2910                     self.smart_resolve_path(pat.id, None, path, PathSource::Struct);
2911                 }
2912
2913                 _ => {}
2914             }
2915             true
2916         });
2917
2918         visit::walk_pat(self, pat);
2919     }
2920
2921     // High-level and context dependent path resolution routine.
2922     // Resolves the path and records the resolution into definition map.
2923     // If resolution fails tries several techniques to find likely
2924     // resolution candidates, suggest imports or other help, and report
2925     // errors in user friendly way.
2926     fn smart_resolve_path(&mut self,
2927                           id: NodeId,
2928                           qself: Option<&QSelf>,
2929                           path: &Path,
2930                           source: PathSource)
2931                           -> PathResolution {
2932         self.smart_resolve_path_with_crate_lint(id, qself, path, source, CrateLint::SimplePath(id))
2933     }
2934
2935     /// A variant of `smart_resolve_path` where you also specify extra
2936     /// information about where the path came from; this extra info is
2937     /// sometimes needed for the lint that recommends rewriting
2938     /// absolute paths to `crate`, so that it knows how to frame the
2939     /// suggestion. If you are just resolving a path like `foo::bar`
2940     /// that appears...somewhere, though, then you just want
2941     /// `CrateLint::SimplePath`, which is what `smart_resolve_path`
2942     /// already provides.
2943     fn smart_resolve_path_with_crate_lint(
2944         &mut self,
2945         id: NodeId,
2946         qself: Option<&QSelf>,
2947         path: &Path,
2948         source: PathSource,
2949         crate_lint: CrateLint
2950     ) -> PathResolution {
2951         self.smart_resolve_path_fragment(
2952             id,
2953             qself,
2954             &Segment::from_path(path),
2955             path.span,
2956             source,
2957             crate_lint,
2958         )
2959     }
2960
2961     fn smart_resolve_path_fragment(&mut self,
2962                                    id: NodeId,
2963                                    qself: Option<&QSelf>,
2964                                    path: &[Segment],
2965                                    span: Span,
2966                                    source: PathSource,
2967                                    crate_lint: CrateLint)
2968                                    -> PathResolution {
2969         let ident_span = path.last().map_or(span, |ident| ident.ident.span);
2970         let ns = source.namespace();
2971         let is_expected = &|def| source.is_expected(def);
2972         let is_enum_variant = &|def| if let Def::Variant(..) = def { true } else { false };
2973
2974         // Base error is amended with one short label and possibly some longer helps/notes.
2975         let report_errors = |this: &mut Self, def: Option<Def>| {
2976             // Make the base error.
2977             let expected = source.descr_expected();
2978             let path_str = Segment::names_to_string(path);
2979             let item_str = path.last().unwrap().ident;
2980             let code = source.error_code(def.is_some());
2981             let (base_msg, fallback_label, base_span) = if let Some(def) = def {
2982                 (format!("expected {}, found {} `{}`", expected, def.kind_name(), path_str),
2983                  format!("not a {}", expected),
2984                  span)
2985             } else {
2986                 let item_span = path.last().unwrap().ident.span;
2987                 let (mod_prefix, mod_str) = if path.len() == 1 {
2988                     (String::new(), "this scope".to_string())
2989                 } else if path.len() == 2 && path[0].ident.name == keywords::CrateRoot.name() {
2990                     (String::new(), "the crate root".to_string())
2991                 } else {
2992                     let mod_path = &path[..path.len() - 1];
2993                     let mod_prefix = match this.resolve_path_without_parent_scope(
2994                         None, mod_path, Some(TypeNS), false, span, CrateLint::No
2995                     ) {
2996                         PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
2997                             module.def(),
2998                         _ => None,
2999                     }.map_or(String::new(), |def| format!("{} ", def.kind_name()));
3000                     (mod_prefix, format!("`{}`", Segment::names_to_string(mod_path)))
3001                 };
3002                 (format!("cannot find {} `{}` in {}{}", expected, item_str, mod_prefix, mod_str),
3003                  format!("not found in {}", mod_str),
3004                  item_span)
3005             };
3006             let code = DiagnosticId::Error(code.into());
3007             let mut err = this.session.struct_span_err_with_code(base_span, &base_msg, code);
3008
3009             // Emit help message for fake-self from other languages like `this`(javascript)
3010             if ["this", "my"].contains(&&*item_str.as_str())
3011                 && this.self_value_is_available(path[0].ident.span, span) {
3012                 err.span_suggestion_with_applicability(
3013                     span,
3014                     "did you mean",
3015                     "self".to_string(),
3016                     Applicability::MaybeIncorrect,
3017                 );
3018             }
3019
3020             // Emit special messages for unresolved `Self` and `self`.
3021             if is_self_type(path, ns) {
3022                 __diagnostic_used!(E0411);
3023                 err.code(DiagnosticId::Error("E0411".into()));
3024                 let available_in = if this.session.features_untracked().self_in_typedefs {
3025                     "impls, traits, and type definitions"
3026                 } else {
3027                     "traits and impls"
3028                 };
3029                 err.span_label(span, format!("`Self` is only available in {}", available_in));
3030                 if this.current_self_item.is_some() && nightly_options::is_nightly_build() {
3031                     err.help("add #![feature(self_in_typedefs)] to the crate attributes \
3032                               to enable");
3033                 }
3034                 return (err, Vec::new());
3035             }
3036             if is_self_value(path, ns) {
3037                 __diagnostic_used!(E0424);
3038                 err.code(DiagnosticId::Error("E0424".into()));
3039                 err.span_label(span, format!("`self` value is a keyword \
3040                                                only available in \
3041                                                methods with `self` parameter"));
3042                 return (err, Vec::new());
3043             }
3044
3045             // Try to lookup the name in more relaxed fashion for better error reporting.
3046             let ident = path.last().unwrap().ident;
3047             let candidates = this.lookup_import_candidates(ident.name, ns, is_expected);
3048             if candidates.is_empty() && is_expected(Def::Enum(DefId::local(CRATE_DEF_INDEX))) {
3049                 let enum_candidates =
3050                     this.lookup_import_candidates(ident.name, ns, is_enum_variant);
3051                 let mut enum_candidates = enum_candidates.iter()
3052                     .map(|suggestion| import_candidate_to_paths(&suggestion)).collect::<Vec<_>>();
3053                 enum_candidates.sort();
3054                 for (sp, variant_path, enum_path) in enum_candidates {
3055                     if sp.is_dummy() {
3056                         let msg = format!("there is an enum variant `{}`, \
3057                                         try using `{}`?",
3058                                         variant_path,
3059                                         enum_path);
3060                         err.help(&msg);
3061                     } else {
3062                         err.span_suggestion_with_applicability(
3063                             span,
3064                             "you can try using the variant's enum",
3065                             enum_path,
3066                             Applicability::MachineApplicable,
3067                         );
3068                     }
3069                 }
3070             }
3071             if path.len() == 1 && this.self_type_is_available(span) {
3072                 if let Some(candidate) = this.lookup_assoc_candidate(ident, ns, is_expected) {
3073                     let self_is_available = this.self_value_is_available(path[0].ident.span, span);
3074                     match candidate {
3075                         AssocSuggestion::Field => {
3076                             err.span_suggestion_with_applicability(
3077                                 span,
3078                                 "try",
3079                                 format!("self.{}", path_str),
3080                                 Applicability::MachineApplicable,
3081                             );
3082                             if !self_is_available {
3083                                 err.span_label(span, format!("`self` value is a keyword \
3084                                                                only available in \
3085                                                                methods with `self` parameter"));
3086                             }
3087                         }
3088                         AssocSuggestion::MethodWithSelf if self_is_available => {
3089                             err.span_suggestion_with_applicability(
3090                                 span,
3091                                 "try",
3092                                 format!("self.{}", path_str),
3093                                 Applicability::MachineApplicable,
3094                             );
3095                         }
3096                         AssocSuggestion::MethodWithSelf | AssocSuggestion::AssocItem => {
3097                             err.span_suggestion_with_applicability(
3098                                 span,
3099                                 "try",
3100                                 format!("Self::{}", path_str),
3101                                 Applicability::MachineApplicable,
3102                             );
3103                         }
3104                     }
3105                     return (err, candidates);
3106                 }
3107             }
3108
3109             let mut levenshtein_worked = false;
3110
3111             // Try Levenshtein.
3112             if let Some(candidate) = this.lookup_typo_candidate(path, ns, is_expected, span) {
3113                 err.span_label(ident_span, format!("did you mean `{}`?", candidate));
3114                 levenshtein_worked = true;
3115             }
3116
3117             // Try context dependent help if relaxed lookup didn't work.
3118             if let Some(def) = def {
3119                 match (def, source) {
3120                     (Def::Macro(..), _) => {
3121                         err.span_label(span, format!("did you mean `{}!(...)`?", path_str));
3122                         return (err, candidates);
3123                     }
3124                     (Def::TyAlias(..), PathSource::Trait(_)) => {
3125                         err.span_label(span, "type aliases cannot be used for traits");
3126                         return (err, candidates);
3127                     }
3128                     (Def::Mod(..), PathSource::Expr(Some(parent))) => match parent.node {
3129                         ExprKind::Field(_, ident) => {
3130                             err.span_label(parent.span, format!("did you mean `{}::{}`?",
3131                                                                  path_str, ident));
3132                             return (err, candidates);
3133                         }
3134                         ExprKind::MethodCall(ref segment, ..) => {
3135                             err.span_label(parent.span, format!("did you mean `{}::{}(...)`?",
3136                                                                  path_str, segment.ident));
3137                             return (err, candidates);
3138                         }
3139                         _ => {}
3140                     },
3141                     (Def::Enum(..), PathSource::TupleStruct)
3142                         | (Def::Enum(..), PathSource::Expr(..))  => {
3143                         if let Some(variants) = this.collect_enum_variants(def) {
3144                             err.note(&format!("did you mean to use one \
3145                                                of the following variants?\n{}",
3146                                 variants.iter()
3147                                     .map(|suggestion| path_names_to_string(suggestion))
3148                                     .map(|suggestion| format!("- `{}`", suggestion))
3149                                     .collect::<Vec<_>>()
3150                                     .join("\n")));
3151
3152                         } else {
3153                             err.note("did you mean to use one of the enum's variants?");
3154                         }
3155                         return (err, candidates);
3156                     },
3157                     (Def::Struct(def_id), _) if ns == ValueNS => {
3158                         if let Some((ctor_def, ctor_vis))
3159                                 = this.struct_constructors.get(&def_id).cloned() {
3160                             let accessible_ctor = this.is_accessible(ctor_vis);
3161                             if is_expected(ctor_def) && !accessible_ctor {
3162                                 err.span_label(span, format!("constructor is not visible \
3163                                                               here due to private fields"));
3164                             }
3165                         } else {
3166                             // HACK(estebank): find a better way to figure out that this was a
3167                             // parser issue where a struct literal is being used on an expression
3168                             // where a brace being opened means a block is being started. Look
3169                             // ahead for the next text to see if `span` is followed by a `{`.
3170                             let sm = this.session.source_map();
3171                             let mut sp = span;
3172                             loop {
3173                                 sp = sm.next_point(sp);
3174                                 match sm.span_to_snippet(sp) {
3175                                     Ok(ref snippet) => {
3176                                         if snippet.chars().any(|c| { !c.is_whitespace() }) {
3177                                             break;
3178                                         }
3179                                     }
3180                                     _ => break,
3181                                 }
3182                             }
3183                             let followed_by_brace = match sm.span_to_snippet(sp) {
3184                                 Ok(ref snippet) if snippet == "{" => true,
3185                                 _ => false,
3186                             };
3187                             match source {
3188                                 PathSource::Expr(Some(parent)) => {
3189                                     match parent.node {
3190                                         ExprKind::MethodCall(ref path_assignment, _)  => {
3191                                             err.span_suggestion_with_applicability(
3192                                                 sm.start_point(parent.span)
3193                                                   .to(path_assignment.ident.span),
3194                                                 "use `::` to access an associated function",
3195                                                 format!("{}::{}",
3196                                                         path_str,
3197                                                         path_assignment.ident),
3198                                                 Applicability::MaybeIncorrect
3199                                             );
3200                                             return (err, candidates);
3201                                         },
3202                                         _ => {
3203                                             err.span_label(
3204                                                 span,
3205                                                 format!("did you mean `{} {{ /* fields */ }}`?",
3206                                                         path_str),
3207                                             );
3208                                             return (err, candidates);
3209                                         },
3210                                     }
3211                                 },
3212                                 PathSource::Expr(None) if followed_by_brace == true => {
3213                                     err.span_label(
3214                                         span,
3215                                         format!("did you mean `({} {{ /* fields */ }})`?",
3216                                                 path_str),
3217                                     );
3218                                     return (err, candidates);
3219                                 },
3220                                 _ => {
3221                                     err.span_label(
3222                                         span,
3223                                         format!("did you mean `{} {{ /* fields */ }}`?",
3224                                                 path_str),
3225                                     );
3226                                     return (err, candidates);
3227                                 },
3228                             }
3229                         }
3230                         return (err, candidates);
3231                     }
3232                     (Def::Union(..), _) |
3233                     (Def::Variant(..), _) |
3234                     (Def::VariantCtor(_, CtorKind::Fictive), _) if ns == ValueNS => {
3235                         err.span_label(span, format!("did you mean `{} {{ /* fields */ }}`?",
3236                                                      path_str));
3237                         return (err, candidates);
3238                     }
3239                     (Def::SelfTy(..), _) if ns == ValueNS => {
3240                         err.span_label(span, fallback_label);
3241                         err.note("can't use `Self` as a constructor, you must use the \
3242                                   implemented struct");
3243                         return (err, candidates);
3244                     }
3245                     (Def::TyAlias(_), _) | (Def::AssociatedTy(..), _) if ns == ValueNS => {
3246                         err.note("can't use a type alias as a constructor");
3247                         return (err, candidates);
3248                     }
3249                     _ => {}
3250                 }
3251             }
3252
3253             // Fallback label.
3254             if !levenshtein_worked {
3255                 err.span_label(base_span, fallback_label);
3256                 this.type_ascription_suggestion(&mut err, base_span);
3257             }
3258             (err, candidates)
3259         };
3260         let report_errors = |this: &mut Self, def: Option<Def>| {
3261             let (err, candidates) = report_errors(this, def);
3262             let def_id = this.current_module.normal_ancestor_id;
3263             let node_id = this.definitions.as_local_node_id(def_id).unwrap();
3264             let better = def.is_some();
3265             this.use_injections.push(UseError { err, candidates, node_id, better });
3266             err_path_resolution()
3267         };
3268
3269         let resolution = match self.resolve_qpath_anywhere(
3270             id,
3271             qself,
3272             path,
3273             ns,
3274             span,
3275             source.defer_to_typeck(),
3276             source.global_by_default(),
3277             crate_lint,
3278         ) {
3279             Some(resolution) if resolution.unresolved_segments() == 0 => {
3280                 if is_expected(resolution.base_def()) || resolution.base_def() == Def::Err {
3281                     resolution
3282                 } else {
3283                     // Add a temporary hack to smooth the transition to new struct ctor
3284                     // visibility rules. See #38932 for more details.
3285                     let mut res = None;
3286                     if let Def::Struct(def_id) = resolution.base_def() {
3287                         if let Some((ctor_def, ctor_vis))
3288                                 = self.struct_constructors.get(&def_id).cloned() {
3289                             if is_expected(ctor_def) && self.is_accessible(ctor_vis) {
3290                                 let lint = lint::builtin::LEGACY_CONSTRUCTOR_VISIBILITY;
3291                                 self.session.buffer_lint(lint, id, span,
3292                                     "private struct constructors are not usable through \
3293                                      re-exports in outer modules",
3294                                 );
3295                                 res = Some(PathResolution::new(ctor_def));
3296                             }
3297                         }
3298                     }
3299
3300                     res.unwrap_or_else(|| report_errors(self, Some(resolution.base_def())))
3301                 }
3302             }
3303             Some(resolution) if source.defer_to_typeck() => {
3304                 // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
3305                 // or `<T>::A::B`. If `B` should be resolved in value namespace then
3306                 // it needs to be added to the trait map.
3307                 if ns == ValueNS {
3308                     let item_name = path.last().unwrap().ident;
3309                     let traits = self.get_traits_containing_item(item_name, ns);
3310                     self.trait_map.insert(id, traits);
3311                 }
3312                 resolution
3313             }
3314             _ => report_errors(self, None)
3315         };
3316
3317         if let PathSource::TraitItem(..) = source {} else {
3318             // Avoid recording definition of `A::B` in `<T as A>::B::C`.
3319             self.record_def(id, resolution);
3320         }
3321         resolution
3322     }
3323
3324     fn type_ascription_suggestion(&self,
3325                                   err: &mut DiagnosticBuilder,
3326                                   base_span: Span) {
3327         debug!("type_ascription_suggetion {:?}", base_span);
3328         let cm = self.session.source_map();
3329         debug!("self.current_type_ascription {:?}", self.current_type_ascription);
3330         if let Some(sp) = self.current_type_ascription.last() {
3331             let mut sp = *sp;
3332             loop {  // try to find the `:`, bail on first non-':'/non-whitespace
3333                 sp = cm.next_point(sp);
3334                 if let Ok(snippet) = cm.span_to_snippet(sp.to(cm.next_point(sp))) {
3335                     debug!("snippet {:?}", snippet);
3336                     let line_sp = cm.lookup_char_pos(sp.hi()).line;
3337                     let line_base_sp = cm.lookup_char_pos(base_span.lo()).line;
3338                     debug!("{:?} {:?}", line_sp, line_base_sp);
3339                     if snippet == ":" {
3340                         err.span_label(base_span,
3341                                        "expecting a type here because of type ascription");
3342                         if line_sp != line_base_sp {
3343                             err.span_suggestion_short_with_applicability(
3344                                 sp,
3345                                 "did you mean to use `;` here instead?",
3346                                 ";".to_string(),
3347                                 Applicability::MaybeIncorrect,
3348                             );
3349                         }
3350                         break;
3351                     } else if !snippet.trim().is_empty() {
3352                         debug!("tried to find type ascription `:` token, couldn't find it");
3353                         break;
3354                     }
3355                 } else {
3356                     break;
3357                 }
3358             }
3359         }
3360     }
3361
3362     fn self_type_is_available(&mut self, span: Span) -> bool {
3363         let binding = self.resolve_ident_in_lexical_scope(keywords::SelfType.ident(),
3364                                                           TypeNS, None, span);
3365         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3366     }
3367
3368     fn self_value_is_available(&mut self, self_span: Span, path_span: Span) -> bool {
3369         let ident = Ident::new(keywords::SelfValue.name(), self_span);
3370         let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, None, path_span);
3371         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3372     }
3373
3374     // Resolve in alternative namespaces if resolution in the primary namespace fails.
3375     fn resolve_qpath_anywhere(&mut self,
3376                               id: NodeId,
3377                               qself: Option<&QSelf>,
3378                               path: &[Segment],
3379                               primary_ns: Namespace,
3380                               span: Span,
3381                               defer_to_typeck: bool,
3382                               global_by_default: bool,
3383                               crate_lint: CrateLint)
3384                               -> Option<PathResolution> {
3385         let mut fin_res = None;
3386         // FIXME: can't resolve paths in macro namespace yet, macros are
3387         // processed by the little special hack below.
3388         for (i, ns) in [primary_ns, TypeNS, ValueNS, /*MacroNS*/].iter().cloned().enumerate() {
3389             if i == 0 || ns != primary_ns {
3390                 match self.resolve_qpath(id, qself, path, ns, span, global_by_default, crate_lint) {
3391                     // If defer_to_typeck, then resolution > no resolution,
3392                     // otherwise full resolution > partial resolution > no resolution.
3393                     Some(res) if res.unresolved_segments() == 0 || defer_to_typeck =>
3394                         return Some(res),
3395                     res => if fin_res.is_none() { fin_res = res },
3396                 };
3397             }
3398         }
3399         if primary_ns != MacroNS &&
3400            (self.macro_names.contains(&path[0].ident.modern()) ||
3401             self.builtin_macros.get(&path[0].ident.name).cloned()
3402                                .and_then(NameBinding::macro_kind) == Some(MacroKind::Bang) ||
3403             self.macro_use_prelude.get(&path[0].ident.name).cloned()
3404                                   .and_then(NameBinding::macro_kind) == Some(MacroKind::Bang)) {
3405             // Return some dummy definition, it's enough for error reporting.
3406             return Some(
3407                 PathResolution::new(Def::Macro(DefId::local(CRATE_DEF_INDEX), MacroKind::Bang))
3408             );
3409         }
3410         fin_res
3411     }
3412
3413     /// Handles paths that may refer to associated items.
3414     fn resolve_qpath(&mut self,
3415                      id: NodeId,
3416                      qself: Option<&QSelf>,
3417                      path: &[Segment],
3418                      ns: Namespace,
3419                      span: Span,
3420                      global_by_default: bool,
3421                      crate_lint: CrateLint)
3422                      -> Option<PathResolution> {
3423         debug!(
3424             "resolve_qpath(id={:?}, qself={:?}, path={:?}, \
3425              ns={:?}, span={:?}, global_by_default={:?})",
3426             id,
3427             qself,
3428             path,
3429             ns,
3430             span,
3431             global_by_default,
3432         );
3433
3434         if let Some(qself) = qself {
3435             if qself.position == 0 {
3436                 // This is a case like `<T>::B`, where there is no
3437                 // trait to resolve.  In that case, we leave the `B`
3438                 // segment to be resolved by type-check.
3439                 return Some(PathResolution::with_unresolved_segments(
3440                     Def::Mod(DefId::local(CRATE_DEF_INDEX)), path.len()
3441                 ));
3442             }
3443
3444             // Make sure `A::B` in `<T as A::B>::C` is a trait item.
3445             //
3446             // Currently, `path` names the full item (`A::B::C`, in
3447             // our example).  so we extract the prefix of that that is
3448             // the trait (the slice upto and including
3449             // `qself.position`). And then we recursively resolve that,
3450             // but with `qself` set to `None`.
3451             //
3452             // However, setting `qself` to none (but not changing the
3453             // span) loses the information about where this path
3454             // *actually* appears, so for the purposes of the crate
3455             // lint we pass along information that this is the trait
3456             // name from a fully qualified path, and this also
3457             // contains the full span (the `CrateLint::QPathTrait`).
3458             let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
3459             let res = self.smart_resolve_path_fragment(
3460                 id,
3461                 None,
3462                 &path[..qself.position + 1],
3463                 span,
3464                 PathSource::TraitItem(ns),
3465                 CrateLint::QPathTrait {
3466                     qpath_id: id,
3467                     qpath_span: qself.path_span,
3468                 },
3469             );
3470
3471             // The remaining segments (the `C` in our example) will
3472             // have to be resolved by type-check, since that requires doing
3473             // trait resolution.
3474             return Some(PathResolution::with_unresolved_segments(
3475                 res.base_def(), res.unresolved_segments() + path.len() - qself.position - 1
3476             ));
3477         }
3478
3479         let result = match self.resolve_path_without_parent_scope(
3480             None,
3481             &path,
3482             Some(ns),
3483             true,
3484             span,
3485             crate_lint,
3486         ) {
3487             PathResult::NonModule(path_res) => path_res,
3488             PathResult::Module(ModuleOrUniformRoot::Module(module)) if !module.is_normal() => {
3489                 PathResolution::new(module.def().unwrap())
3490             }
3491             // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
3492             // don't report an error right away, but try to fallback to a primitive type.
3493             // So, we are still able to successfully resolve something like
3494             //
3495             // use std::u8; // bring module u8 in scope
3496             // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
3497             //     u8::max_value() // OK, resolves to associated function <u8>::max_value,
3498             //                     // not to non-existent std::u8::max_value
3499             // }
3500             //
3501             // Such behavior is required for backward compatibility.
3502             // The same fallback is used when `a` resolves to nothing.
3503             PathResult::Module(ModuleOrUniformRoot::Module(_)) |
3504             PathResult::Failed(..)
3505                     if (ns == TypeNS || path.len() > 1) &&
3506                        self.primitive_type_table.primitive_types
3507                            .contains_key(&path[0].ident.name) => {
3508                 let prim = self.primitive_type_table.primitive_types[&path[0].ident.name];
3509                 PathResolution::with_unresolved_segments(Def::PrimTy(prim), path.len() - 1)
3510             }
3511             PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3512                 PathResolution::new(module.def().unwrap()),
3513             PathResult::Failed(span, msg, false) => {
3514                 resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
3515                 err_path_resolution()
3516             }
3517             PathResult::Module(ModuleOrUniformRoot::UniformRoot(_)) |
3518             PathResult::Failed(..) => return None,
3519             PathResult::Indeterminate => bug!("indetermined path result in resolve_qpath"),
3520         };
3521
3522         if path.len() > 1 && !global_by_default && result.base_def() != Def::Err &&
3523            path[0].ident.name != keywords::CrateRoot.name() &&
3524            path[0].ident.name != keywords::DollarCrate.name() {
3525             let unqualified_result = {
3526                 match self.resolve_path_without_parent_scope(
3527                     None,
3528                     &[*path.last().unwrap()],
3529                     Some(ns),
3530                     false,
3531                     span,
3532                     CrateLint::No,
3533                 ) {
3534                     PathResult::NonModule(path_res) => path_res.base_def(),
3535                     PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3536                         module.def().unwrap(),
3537                     _ => return Some(result),
3538                 }
3539             };
3540             if result.base_def() == unqualified_result {
3541                 let lint = lint::builtin::UNUSED_QUALIFICATIONS;
3542                 self.session.buffer_lint(lint, id, span, "unnecessary qualification")
3543             }
3544         }
3545
3546         Some(result)
3547     }
3548
3549     fn resolve_path_without_parent_scope(
3550         &mut self,
3551         base_module: Option<ModuleOrUniformRoot<'a>>,
3552         path: &[Segment],
3553         opt_ns: Option<Namespace>, // `None` indicates a module path
3554         record_used: bool,
3555         path_span: Span,
3556         crate_lint: CrateLint,
3557     ) -> PathResult<'a> {
3558         // Macro and import paths must have full parent scope available during resolution,
3559         // other paths will do okay with parent module alone.
3560         assert!(opt_ns != None && opt_ns != Some(MacroNS));
3561         let parent_scope = ParentScope { module: self.current_module, ..self.dummy_parent_scope() };
3562         self.resolve_path(base_module, path, opt_ns, &parent_scope,
3563                           record_used, path_span, crate_lint)
3564     }
3565
3566     fn resolve_path(
3567         &mut self,
3568         base_module: Option<ModuleOrUniformRoot<'a>>,
3569         path: &[Segment],
3570         opt_ns: Option<Namespace>, // `None` indicates a module path
3571         parent_scope: &ParentScope<'a>,
3572         record_used: bool,
3573         path_span: Span,
3574         crate_lint: CrateLint,
3575     ) -> PathResult<'a> {
3576         let mut module = base_module;
3577         let mut allow_super = true;
3578         let mut second_binding = None;
3579         self.current_module = parent_scope.module;
3580
3581         debug!(
3582             "resolve_path(path={:?}, opt_ns={:?}, record_used={:?}, \
3583              path_span={:?}, crate_lint={:?})",
3584             path,
3585             opt_ns,
3586             record_used,
3587             path_span,
3588             crate_lint,
3589         );
3590
3591         for (i, &Segment { ident, id }) in path.iter().enumerate() {
3592             debug!("resolve_path ident {} {:?} {:?}", i, ident, id);
3593             let record_segment_def = |this: &mut Self, def| {
3594                 if record_used {
3595                     if let Some(id) = id {
3596                         if !this.def_map.contains_key(&id) {
3597                             assert!(id != ast::DUMMY_NODE_ID, "Trying to resolve dummy id");
3598                             this.record_def(id, PathResolution::new(def));
3599                         }
3600                     }
3601                 }
3602             };
3603
3604             let is_last = i == path.len() - 1;
3605             let ns = if is_last { opt_ns.unwrap_or(TypeNS) } else { TypeNS };
3606             let name = ident.name;
3607
3608             allow_super &= ns == TypeNS &&
3609                 (name == keywords::SelfValue.name() ||
3610                  name == keywords::Super.name());
3611
3612             if ns == TypeNS {
3613                 if allow_super && name == keywords::Super.name() {
3614                     let mut ctxt = ident.span.ctxt().modern();
3615                     let self_module = match i {
3616                         0 => Some(self.resolve_self(&mut ctxt, self.current_module)),
3617                         _ => match module {
3618                             Some(ModuleOrUniformRoot::Module(module)) => Some(module),
3619                             _ => None,
3620                         },
3621                     };
3622                     if let Some(self_module) = self_module {
3623                         if let Some(parent) = self_module.parent {
3624                             module = Some(ModuleOrUniformRoot::Module(
3625                                 self.resolve_self(&mut ctxt, parent)));
3626                             continue;
3627                         }
3628                     }
3629                     let msg = "There are too many initial `super`s.".to_string();
3630                     return PathResult::Failed(ident.span, msg, false);
3631                 }
3632                 if i == 0 {
3633                     if name == keywords::SelfValue.name() {
3634                         let mut ctxt = ident.span.ctxt().modern();
3635                         module = Some(ModuleOrUniformRoot::Module(
3636                             self.resolve_self(&mut ctxt, self.current_module)));
3637                         continue;
3638                     }
3639                     if name == keywords::Extern.name() ||
3640                        name == keywords::CrateRoot.name() &&
3641                        self.session.rust_2018() {
3642                         module = Some(ModuleOrUniformRoot::UniformRoot(name));
3643                         continue;
3644                     }
3645                     if name == keywords::CrateRoot.name() ||
3646                        name == keywords::Crate.name() ||
3647                        name == keywords::DollarCrate.name() {
3648                         // `::a::b`, `crate::a::b` or `$crate::a::b`
3649                         module = Some(ModuleOrUniformRoot::Module(
3650                             self.resolve_crate_root(ident)));
3651                         continue;
3652                     }
3653                 }
3654             }
3655
3656             // Report special messages for path segment keywords in wrong positions.
3657             if ident.is_path_segment_keyword() && i != 0 {
3658                 let name_str = if name == keywords::CrateRoot.name() {
3659                     "crate root".to_string()
3660                 } else {
3661                     format!("`{}`", name)
3662                 };
3663                 let msg = if i == 1 && path[0].ident.name == keywords::CrateRoot.name() {
3664                     format!("global paths cannot start with {}", name_str)
3665                 } else {
3666                     format!("{} in paths can only be used in start position", name_str)
3667                 };
3668                 return PathResult::Failed(ident.span, msg, false);
3669             }
3670
3671             let binding = if let Some(module) = module {
3672                 self.resolve_ident_in_module(module, ident, ns, record_used, path_span)
3673             } else if opt_ns == Some(MacroNS) {
3674                 assert!(ns == TypeNS);
3675                 self.early_resolve_ident_in_lexical_scope(ident, ns, None, parent_scope,
3676                                                           record_used, record_used, path_span)
3677             } else {
3678                 let record_used_id =
3679                     if record_used { crate_lint.node_id().or(Some(CRATE_NODE_ID)) } else { None };
3680                 match self.resolve_ident_in_lexical_scope(ident, ns, record_used_id, path_span) {
3681                     // we found a locally-imported or available item/module
3682                     Some(LexicalScopeBinding::Item(binding)) => Ok(binding),
3683                     // we found a local variable or type param
3684                     Some(LexicalScopeBinding::Def(def))
3685                             if opt_ns == Some(TypeNS) || opt_ns == Some(ValueNS) => {
3686                         record_segment_def(self, def);
3687                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3688                             def, path.len() - 1
3689                         ));
3690                     }
3691                     _ => Err(if record_used { Determined } else { Undetermined }),
3692                 }
3693             };
3694
3695             match binding {
3696                 Ok(binding) => {
3697                     if i == 1 {
3698                         second_binding = Some(binding);
3699                     }
3700                     let def = binding.def();
3701                     let maybe_assoc = opt_ns != Some(MacroNS) && PathSource::Type.is_expected(def);
3702                     if let Some(next_module) = binding.module() {
3703                         module = Some(ModuleOrUniformRoot::Module(next_module));
3704                         record_segment_def(self, def);
3705                     } else if def == Def::ToolMod && i + 1 != path.len() {
3706                         let def = Def::NonMacroAttr(NonMacroAttrKind::Tool);
3707                         return PathResult::NonModule(PathResolution::new(def));
3708                     } else if def == Def::Err {
3709                         return PathResult::NonModule(err_path_resolution());
3710                     } else if opt_ns.is_some() && (is_last || maybe_assoc) {
3711                         self.lint_if_path_starts_with_module(
3712                             crate_lint,
3713                             path,
3714                             path_span,
3715                             second_binding,
3716                         );
3717                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3718                             def, path.len() - i - 1
3719                         ));
3720                     } else {
3721                         return PathResult::Failed(ident.span,
3722                                                   format!("Not a module `{}`", ident),
3723                                                   is_last);
3724                     }
3725                 }
3726                 Err(Undetermined) => return PathResult::Indeterminate,
3727                 Err(Determined) => {
3728                     if let Some(ModuleOrUniformRoot::Module(module)) = module {
3729                         if opt_ns.is_some() && !module.is_normal() {
3730                             return PathResult::NonModule(PathResolution::with_unresolved_segments(
3731                                 module.def().unwrap(), path.len() - i
3732                             ));
3733                         }
3734                     }
3735                     let module_def = match module {
3736                         Some(ModuleOrUniformRoot::Module(module)) => module.def(),
3737                         _ => None,
3738                     };
3739                     let msg = if module_def == self.graph_root.def() {
3740                         let is_mod = |def| match def { Def::Mod(..) => true, _ => false };
3741                         let mut candidates =
3742                             self.lookup_import_candidates(name, TypeNS, is_mod);
3743                         candidates.sort_by_cached_key(|c| {
3744                             (c.path.segments.len(), c.path.to_string())
3745                         });
3746                         if let Some(candidate) = candidates.get(0) {
3747                             format!("Did you mean `{}`?", candidate.path)
3748                         } else {
3749                             format!("Maybe a missing `extern crate {};`?", ident)
3750                         }
3751                     } else if i == 0 {
3752                         format!("Use of undeclared type or module `{}`", ident)
3753                     } else {
3754                         format!("Could not find `{}` in `{}`", ident, path[i - 1].ident)
3755                     };
3756                     return PathResult::Failed(ident.span, msg, is_last);
3757                 }
3758             }
3759         }
3760
3761         self.lint_if_path_starts_with_module(crate_lint, path, path_span, second_binding);
3762
3763         PathResult::Module(module.unwrap_or_else(|| {
3764             span_bug!(path_span, "resolve_path: empty(?) path {:?} has no module", path);
3765         }))
3766     }
3767
3768     fn lint_if_path_starts_with_module(
3769         &self,
3770         crate_lint: CrateLint,
3771         path: &[Segment],
3772         path_span: Span,
3773         second_binding: Option<&NameBinding>,
3774     ) {
3775         // In the 2018 edition this lint is a hard error, so nothing to do
3776         if self.session.rust_2018() {
3777             return
3778         }
3779
3780         let (diag_id, diag_span) = match crate_lint {
3781             CrateLint::No => return,
3782             CrateLint::SimplePath(id) => (id, path_span),
3783             CrateLint::UsePath { root_id, root_span } => (root_id, root_span),
3784             CrateLint::QPathTrait { qpath_id, qpath_span } => (qpath_id, qpath_span),
3785         };
3786
3787         let first_name = match path.get(0) {
3788             Some(ident) => ident.ident.name,
3789             None => return,
3790         };
3791
3792         // We're only interested in `use` paths which should start with
3793         // `{{root}}` or `extern` currently.
3794         if first_name != keywords::Extern.name() && first_name != keywords::CrateRoot.name() {
3795             return
3796         }
3797
3798         match path.get(1) {
3799             // If this import looks like `crate::...` it's already good
3800             Some(Segment { ident, .. }) if ident.name == keywords::Crate.name() => return,
3801             // Otherwise go below to see if it's an extern crate
3802             Some(_) => {}
3803             // If the path has length one (and it's `CrateRoot` most likely)
3804             // then we don't know whether we're gonna be importing a crate or an
3805             // item in our crate. Defer this lint to elsewhere
3806             None => return,
3807         }
3808
3809         // If the first element of our path was actually resolved to an
3810         // `ExternCrate` (also used for `crate::...`) then no need to issue a
3811         // warning, this looks all good!
3812         if let Some(binding) = second_binding {
3813             if let NameBindingKind::Import { directive: d, .. } = binding.kind {
3814                 // Careful: we still want to rewrite paths from
3815                 // renamed extern crates.
3816                 if let ImportDirectiveSubclass::ExternCrate { source: None, .. } = d.subclass {
3817                     return
3818                 }
3819             }
3820         }
3821
3822         let diag = lint::builtin::BuiltinLintDiagnostics
3823             ::AbsPathWithModule(diag_span);
3824         self.session.buffer_lint_with_diagnostic(
3825             lint::builtin::ABSOLUTE_PATHS_NOT_STARTING_WITH_CRATE,
3826             diag_id, diag_span,
3827             "absolute paths must start with `self`, `super`, \
3828             `crate`, or an external crate name in the 2018 edition",
3829             diag);
3830     }
3831
3832     // Resolve a local definition, potentially adjusting for closures.
3833     fn adjust_local_def(&mut self,
3834                         ns: Namespace,
3835                         rib_index: usize,
3836                         mut def: Def,
3837                         record_used: bool,
3838                         span: Span) -> Def {
3839         let ribs = &self.ribs[ns][rib_index + 1..];
3840
3841         // An invalid forward use of a type parameter from a previous default.
3842         if let ForwardTyParamBanRibKind = self.ribs[ns][rib_index].kind {
3843             if record_used {
3844                 resolve_error(self, span, ResolutionError::ForwardDeclaredTyParam);
3845             }
3846             assert_eq!(def, Def::Err);
3847             return Def::Err;
3848         }
3849
3850         match def {
3851             Def::Upvar(..) => {
3852                 span_bug!(span, "unexpected {:?} in bindings", def)
3853             }
3854             Def::Local(node_id) => {
3855                 for rib in ribs {
3856                     match rib.kind {
3857                         NormalRibKind | ModuleRibKind(..) | MacroDefinition(..) |
3858                         ForwardTyParamBanRibKind => {
3859                             // Nothing to do. Continue.
3860                         }
3861                         ClosureRibKind(function_id) => {
3862                             let prev_def = def;
3863
3864                             let seen = self.freevars_seen
3865                                            .entry(function_id)
3866                                            .or_default();
3867                             if let Some(&index) = seen.get(&node_id) {
3868                                 def = Def::Upvar(node_id, index, function_id);
3869                                 continue;
3870                             }
3871                             let vec = self.freevars
3872                                           .entry(function_id)
3873                                           .or_default();
3874                             let depth = vec.len();
3875                             def = Def::Upvar(node_id, depth, function_id);
3876
3877                             if record_used {
3878                                 vec.push(Freevar {
3879                                     def: prev_def,
3880                                     span,
3881                                 });
3882                                 seen.insert(node_id, depth);
3883                             }
3884                         }
3885                         ItemRibKind | TraitOrImplItemRibKind => {
3886                             // This was an attempt to access an upvar inside a
3887                             // named function item. This is not allowed, so we
3888                             // report an error.
3889                             if record_used {
3890                                 resolve_error(self, span,
3891                                         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem);
3892                             }
3893                             return Def::Err;
3894                         }
3895                         ConstantItemRibKind => {
3896                             // Still doesn't deal with upvars
3897                             if record_used {
3898                                 resolve_error(self, span,
3899                                         ResolutionError::AttemptToUseNonConstantValueInConstant);
3900                             }
3901                             return Def::Err;
3902                         }
3903                     }
3904                 }
3905             }
3906             Def::TyParam(..) | Def::SelfTy(..) => {
3907                 for rib in ribs {
3908                     match rib.kind {
3909                         NormalRibKind | TraitOrImplItemRibKind | ClosureRibKind(..) |
3910                         ModuleRibKind(..) | MacroDefinition(..) | ForwardTyParamBanRibKind |
3911                         ConstantItemRibKind => {
3912                             // Nothing to do. Continue.
3913                         }
3914                         ItemRibKind => {
3915                             // This was an attempt to use a type parameter outside
3916                             // its scope.
3917                             if record_used {
3918                                 resolve_error(self, span,
3919                                     ResolutionError::TypeParametersFromOuterFunction(def));
3920                             }
3921                             return Def::Err;
3922                         }
3923                     }
3924                 }
3925             }
3926             _ => {}
3927         }
3928         def
3929     }
3930
3931     fn lookup_assoc_candidate<FilterFn>(&mut self,
3932                                         ident: Ident,
3933                                         ns: Namespace,
3934                                         filter_fn: FilterFn)
3935                                         -> Option<AssocSuggestion>
3936         where FilterFn: Fn(Def) -> bool
3937     {
3938         fn extract_node_id(t: &Ty) -> Option<NodeId> {
3939             match t.node {
3940                 TyKind::Path(None, _) => Some(t.id),
3941                 TyKind::Rptr(_, ref mut_ty) => extract_node_id(&mut_ty.ty),
3942                 // This doesn't handle the remaining `Ty` variants as they are not
3943                 // that commonly the self_type, it might be interesting to provide
3944                 // support for those in future.
3945                 _ => None,
3946             }
3947         }
3948
3949         // Fields are generally expected in the same contexts as locals.
3950         if filter_fn(Def::Local(ast::DUMMY_NODE_ID)) {
3951             if let Some(node_id) = self.current_self_type.as_ref().and_then(extract_node_id) {
3952                 // Look for a field with the same name in the current self_type.
3953                 if let Some(resolution) = self.def_map.get(&node_id) {
3954                     match resolution.base_def() {
3955                         Def::Struct(did) | Def::Union(did)
3956                                 if resolution.unresolved_segments() == 0 => {
3957                             if let Some(field_names) = self.field_names.get(&did) {
3958                                 if field_names.iter().any(|&field_name| ident.name == field_name) {
3959                                     return Some(AssocSuggestion::Field);
3960                                 }
3961                             }
3962                         }
3963                         _ => {}
3964                     }
3965                 }
3966             }
3967         }
3968
3969         // Look for associated items in the current trait.
3970         if let Some((module, _)) = self.current_trait_ref {
3971             if let Ok(binding) = self.resolve_ident_in_module(
3972                     ModuleOrUniformRoot::Module(module),
3973                     ident,
3974                     ns,
3975                     false,
3976                     module.span,
3977                 ) {
3978                 let def = binding.def();
3979                 if filter_fn(def) {
3980                     return Some(if self.has_self.contains(&def.def_id()) {
3981                         AssocSuggestion::MethodWithSelf
3982                     } else {
3983                         AssocSuggestion::AssocItem
3984                     });
3985                 }
3986             }
3987         }
3988
3989         None
3990     }
3991
3992     fn lookup_typo_candidate<FilterFn>(&mut self,
3993                                        path: &[Segment],
3994                                        ns: Namespace,
3995                                        filter_fn: FilterFn,
3996                                        span: Span)
3997                                        -> Option<Symbol>
3998         where FilterFn: Fn(Def) -> bool
3999     {
4000         let add_module_candidates = |module: Module, names: &mut Vec<Name>| {
4001             for (&(ident, _), resolution) in module.resolutions.borrow().iter() {
4002                 if let Some(binding) = resolution.borrow().binding {
4003                     if filter_fn(binding.def()) {
4004                         names.push(ident.name);
4005                     }
4006                 }
4007             }
4008         };
4009
4010         let mut names = Vec::new();
4011         if path.len() == 1 {
4012             // Search in lexical scope.
4013             // Walk backwards up the ribs in scope and collect candidates.
4014             for rib in self.ribs[ns].iter().rev() {
4015                 // Locals and type parameters
4016                 for (ident, def) in &rib.bindings {
4017                     if filter_fn(*def) {
4018                         names.push(ident.name);
4019                     }
4020                 }
4021                 // Items in scope
4022                 if let ModuleRibKind(module) = rib.kind {
4023                     // Items from this module
4024                     add_module_candidates(module, &mut names);
4025
4026                     if let ModuleKind::Block(..) = module.kind {
4027                         // We can see through blocks
4028                     } else {
4029                         // Items from the prelude
4030                         if !module.no_implicit_prelude {
4031                             names.extend(self.extern_prelude.iter().map(|(ident, _)| ident.name));
4032                             if let Some(prelude) = self.prelude {
4033                                 add_module_candidates(prelude, &mut names);
4034                             }
4035                         }
4036                         break;
4037                     }
4038                 }
4039             }
4040             // Add primitive types to the mix
4041             if filter_fn(Def::PrimTy(Bool)) {
4042                 names.extend(
4043                     self.primitive_type_table.primitive_types.iter().map(|(name, _)| name)
4044                 )
4045             }
4046         } else {
4047             // Search in module.
4048             let mod_path = &path[..path.len() - 1];
4049             if let PathResult::Module(module) = self.resolve_path_without_parent_scope(
4050                 None, mod_path, Some(TypeNS), false, span, CrateLint::No
4051             ) {
4052                 if let ModuleOrUniformRoot::Module(module) = module {
4053                     add_module_candidates(module, &mut names);
4054                 }
4055             }
4056         }
4057
4058         let name = path[path.len() - 1].ident.name;
4059         // Make sure error reporting is deterministic.
4060         names.sort_by_cached_key(|name| name.as_str());
4061         match find_best_match_for_name(names.iter(), &name.as_str(), None) {
4062             Some(found) if found != name => Some(found),
4063             _ => None,
4064         }
4065     }
4066
4067     fn with_resolved_label<F>(&mut self, label: Option<Label>, id: NodeId, f: F)
4068         where F: FnOnce(&mut Resolver)
4069     {
4070         if let Some(label) = label {
4071             self.unused_labels.insert(id, label.ident.span);
4072             let def = Def::Label(id);
4073             self.with_label_rib(|this| {
4074                 let ident = label.ident.modern_and_legacy();
4075                 this.label_ribs.last_mut().unwrap().bindings.insert(ident, def);
4076                 f(this);
4077             });
4078         } else {
4079             f(self);
4080         }
4081     }
4082
4083     fn resolve_labeled_block(&mut self, label: Option<Label>, id: NodeId, block: &Block) {
4084         self.with_resolved_label(label, id, |this| this.visit_block(block));
4085     }
4086
4087     fn resolve_expr(&mut self, expr: &Expr, parent: Option<&Expr>) {
4088         // First, record candidate traits for this expression if it could
4089         // result in the invocation of a method call.
4090
4091         self.record_candidate_traits_for_expr_if_necessary(expr);
4092
4093         // Next, resolve the node.
4094         match expr.node {
4095             ExprKind::Path(ref qself, ref path) => {
4096                 self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
4097                 visit::walk_expr(self, expr);
4098             }
4099
4100             ExprKind::Struct(ref path, ..) => {
4101                 self.smart_resolve_path(expr.id, None, path, PathSource::Struct);
4102                 visit::walk_expr(self, expr);
4103             }
4104
4105             ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
4106                 let def = self.search_label(label.ident, |rib, ident| {
4107                     rib.bindings.get(&ident.modern_and_legacy()).cloned()
4108                 });
4109                 match def {
4110                     None => {
4111                         // Search again for close matches...
4112                         // Picks the first label that is "close enough", which is not necessarily
4113                         // the closest match
4114                         let close_match = self.search_label(label.ident, |rib, ident| {
4115                             let names = rib.bindings.iter().map(|(id, _)| &id.name);
4116                             find_best_match_for_name(names, &*ident.as_str(), None)
4117                         });
4118                         self.record_def(expr.id, err_path_resolution());
4119                         resolve_error(self,
4120                                       label.ident.span,
4121                                       ResolutionError::UndeclaredLabel(&label.ident.as_str(),
4122                                                                        close_match));
4123                     }
4124                     Some(Def::Label(id)) => {
4125                         // Since this def is a label, it is never read.
4126                         self.record_def(expr.id, PathResolution::new(Def::Label(id)));
4127                         self.unused_labels.remove(&id);
4128                     }
4129                     Some(_) => {
4130                         span_bug!(expr.span, "label wasn't mapped to a label def!");
4131                     }
4132                 }
4133
4134                 // visit `break` argument if any
4135                 visit::walk_expr(self, expr);
4136             }
4137
4138             ExprKind::IfLet(ref pats, ref subexpression, ref if_block, ref optional_else) => {
4139                 self.visit_expr(subexpression);
4140
4141                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
4142                 let mut bindings_list = FxHashMap::default();
4143                 for pat in pats {
4144                     self.resolve_pattern(pat, PatternSource::IfLet, &mut bindings_list);
4145                 }
4146                 // This has to happen *after* we determine which pat_idents are variants
4147                 self.check_consistent_bindings(pats);
4148                 self.visit_block(if_block);
4149                 self.ribs[ValueNS].pop();
4150
4151                 optional_else.as_ref().map(|expr| self.visit_expr(expr));
4152             }
4153
4154             ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),
4155
4156             ExprKind::While(ref subexpression, ref block, label) => {
4157                 self.with_resolved_label(label, expr.id, |this| {
4158                     this.visit_expr(subexpression);
4159                     this.visit_block(block);
4160                 });
4161             }
4162
4163             ExprKind::WhileLet(ref pats, ref subexpression, ref block, label) => {
4164                 self.with_resolved_label(label, expr.id, |this| {
4165                     this.visit_expr(subexpression);
4166                     this.ribs[ValueNS].push(Rib::new(NormalRibKind));
4167                     let mut bindings_list = FxHashMap::default();
4168                     for pat in pats {
4169                         this.resolve_pattern(pat, PatternSource::WhileLet, &mut bindings_list);
4170                     }
4171                     // This has to happen *after* we determine which pat_idents are variants
4172                     this.check_consistent_bindings(pats);
4173                     this.visit_block(block);
4174                     this.ribs[ValueNS].pop();
4175                 });
4176             }
4177
4178             ExprKind::ForLoop(ref pattern, ref subexpression, ref block, label) => {
4179                 self.visit_expr(subexpression);
4180                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
4181                 self.resolve_pattern(pattern, PatternSource::For, &mut FxHashMap::default());
4182
4183                 self.resolve_labeled_block(label, expr.id, block);
4184
4185                 self.ribs[ValueNS].pop();
4186             }
4187
4188             ExprKind::Block(ref block, label) => self.resolve_labeled_block(label, block.id, block),
4189
4190             // Equivalent to `visit::walk_expr` + passing some context to children.
4191             ExprKind::Field(ref subexpression, _) => {
4192                 self.resolve_expr(subexpression, Some(expr));
4193             }
4194             ExprKind::MethodCall(ref segment, ref arguments) => {
4195                 let mut arguments = arguments.iter();
4196                 self.resolve_expr(arguments.next().unwrap(), Some(expr));
4197                 for argument in arguments {
4198                     self.resolve_expr(argument, None);
4199                 }
4200                 self.visit_path_segment(expr.span, segment);
4201             }
4202
4203             ExprKind::Call(ref callee, ref arguments) => {
4204                 self.resolve_expr(callee, Some(expr));
4205                 for argument in arguments {
4206                     self.resolve_expr(argument, None);
4207                 }
4208             }
4209             ExprKind::Type(ref type_expr, _) => {
4210                 self.current_type_ascription.push(type_expr.span);
4211                 visit::walk_expr(self, expr);
4212                 self.current_type_ascription.pop();
4213             }
4214             // Resolve the body of async exprs inside the async closure to which they desugar
4215             ExprKind::Async(_, async_closure_id, ref block) => {
4216                 let rib_kind = ClosureRibKind(async_closure_id);
4217                 self.ribs[ValueNS].push(Rib::new(rib_kind));
4218                 self.label_ribs.push(Rib::new(rib_kind));
4219                 self.visit_block(&block);
4220                 self.label_ribs.pop();
4221                 self.ribs[ValueNS].pop();
4222             }
4223             // `async |x| ...` gets desugared to `|x| future_from_generator(|| ...)`, so we need to
4224             // resolve the arguments within the proper scopes so that usages of them inside the
4225             // closure are detected as upvars rather than normal closure arg usages.
4226             ExprKind::Closure(
4227                 _, IsAsync::Async { closure_id: inner_closure_id, .. }, _,
4228                 ref fn_decl, ref body, _span,
4229             ) => {
4230                 let rib_kind = ClosureRibKind(expr.id);
4231                 self.ribs[ValueNS].push(Rib::new(rib_kind));
4232                 self.label_ribs.push(Rib::new(rib_kind));
4233                 // Resolve arguments:
4234                 let mut bindings_list = FxHashMap::default();
4235                 for argument in &fn_decl.inputs {
4236                     self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
4237                     self.visit_ty(&argument.ty);
4238                 }
4239                 // No need to resolve return type-- the outer closure return type is
4240                 // FunctionRetTy::Default
4241
4242                 // Now resolve the inner closure
4243                 {
4244                     let rib_kind = ClosureRibKind(inner_closure_id);
4245                     self.ribs[ValueNS].push(Rib::new(rib_kind));
4246                     self.label_ribs.push(Rib::new(rib_kind));
4247                     // No need to resolve arguments: the inner closure has none.
4248                     // Resolve the return type:
4249                     visit::walk_fn_ret_ty(self, &fn_decl.output);
4250                     // Resolve the body
4251                     self.visit_expr(body);
4252                     self.label_ribs.pop();
4253                     self.ribs[ValueNS].pop();
4254                 }
4255                 self.label_ribs.pop();
4256                 self.ribs[ValueNS].pop();
4257             }
4258             _ => {
4259                 visit::walk_expr(self, expr);
4260             }
4261         }
4262     }
4263
4264     fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &Expr) {
4265         match expr.node {
4266             ExprKind::Field(_, ident) => {
4267                 // FIXME(#6890): Even though you can't treat a method like a
4268                 // field, we need to add any trait methods we find that match
4269                 // the field name so that we can do some nice error reporting
4270                 // later on in typeck.
4271                 let traits = self.get_traits_containing_item(ident, ValueNS);
4272                 self.trait_map.insert(expr.id, traits);
4273             }
4274             ExprKind::MethodCall(ref segment, ..) => {
4275                 debug!("(recording candidate traits for expr) recording traits for {}",
4276                        expr.id);
4277                 let traits = self.get_traits_containing_item(segment.ident, ValueNS);
4278                 self.trait_map.insert(expr.id, traits);
4279             }
4280             _ => {
4281                 // Nothing to do.
4282             }
4283         }
4284     }
4285
4286     fn get_traits_containing_item(&mut self, mut ident: Ident, ns: Namespace)
4287                                   -> Vec<TraitCandidate> {
4288         debug!("(getting traits containing item) looking for '{}'", ident.name);
4289
4290         let mut found_traits = Vec::new();
4291         // Look for the current trait.
4292         if let Some((module, _)) = self.current_trait_ref {
4293             if self.resolve_ident_in_module(
4294                 ModuleOrUniformRoot::Module(module),
4295                 ident,
4296                 ns,
4297                 false,
4298                 module.span,
4299             ).is_ok() {
4300                 let def_id = module.def_id().unwrap();
4301                 found_traits.push(TraitCandidate { def_id: def_id, import_id: None });
4302             }
4303         }
4304
4305         ident.span = ident.span.modern();
4306         let mut search_module = self.current_module;
4307         loop {
4308             self.get_traits_in_module_containing_item(ident, ns, search_module, &mut found_traits);
4309             search_module = unwrap_or!(
4310                 self.hygienic_lexical_parent(search_module, &mut ident.span), break
4311             );
4312         }
4313
4314         if let Some(prelude) = self.prelude {
4315             if !search_module.no_implicit_prelude {
4316                 self.get_traits_in_module_containing_item(ident, ns, prelude, &mut found_traits);
4317             }
4318         }
4319
4320         found_traits
4321     }
4322
4323     fn get_traits_in_module_containing_item(&mut self,
4324                                             ident: Ident,
4325                                             ns: Namespace,
4326                                             module: Module<'a>,
4327                                             found_traits: &mut Vec<TraitCandidate>) {
4328         assert!(ns == TypeNS || ns == ValueNS);
4329         let mut traits = module.traits.borrow_mut();
4330         if traits.is_none() {
4331             let mut collected_traits = Vec::new();
4332             module.for_each_child(|name, ns, binding| {
4333                 if ns != TypeNS { return }
4334                 if let Def::Trait(_) = binding.def() {
4335                     collected_traits.push((name, binding));
4336                 }
4337             });
4338             *traits = Some(collected_traits.into_boxed_slice());
4339         }
4340
4341         for &(trait_name, binding) in traits.as_ref().unwrap().iter() {
4342             let module = binding.module().unwrap();
4343             let mut ident = ident;
4344             if ident.span.glob_adjust(module.expansion, binding.span.ctxt().modern()).is_none() {
4345                 continue
4346             }
4347             if self.resolve_ident_in_module_unadjusted(
4348                 ModuleOrUniformRoot::Module(module),
4349                 ident,
4350                 ns,
4351                 false,
4352                 false,
4353                 module.span,
4354             ).is_ok() {
4355                 let import_id = match binding.kind {
4356                     NameBindingKind::Import { directive, .. } => {
4357                         self.maybe_unused_trait_imports.insert(directive.id);
4358                         self.add_to_glob_map(directive.id, trait_name);
4359                         Some(directive.id)
4360                     }
4361                     _ => None,
4362                 };
4363                 let trait_def_id = module.def_id().unwrap();
4364                 found_traits.push(TraitCandidate { def_id: trait_def_id, import_id: import_id });
4365             }
4366         }
4367     }
4368
4369     fn lookup_import_candidates_from_module<FilterFn>(&mut self,
4370                                           lookup_name: Name,
4371                                           namespace: Namespace,
4372                                           start_module: &'a ModuleData<'a>,
4373                                           crate_name: Ident,
4374                                           filter_fn: FilterFn)
4375                                           -> Vec<ImportSuggestion>
4376         where FilterFn: Fn(Def) -> bool
4377     {
4378         let mut candidates = Vec::new();
4379         let mut seen_modules = FxHashSet::default();
4380         let not_local_module = crate_name != keywords::Crate.ident();
4381         let mut worklist = vec![(start_module, Vec::<ast::PathSegment>::new(), not_local_module)];
4382
4383         while let Some((in_module,
4384                         path_segments,
4385                         in_module_is_extern)) = worklist.pop() {
4386             self.populate_module_if_necessary(in_module);
4387
4388             // We have to visit module children in deterministic order to avoid
4389             // instabilities in reported imports (#43552).
4390             in_module.for_each_child_stable(|ident, ns, name_binding| {
4391                 // avoid imports entirely
4392                 if name_binding.is_import() && !name_binding.is_extern_crate() { return; }
4393                 // avoid non-importable candidates as well
4394                 if !name_binding.is_importable() { return; }
4395
4396                 // collect results based on the filter function
4397                 if ident.name == lookup_name && ns == namespace {
4398                     if filter_fn(name_binding.def()) {
4399                         // create the path
4400                         let mut segms = path_segments.clone();
4401                         if self.session.rust_2018() {
4402                             // crate-local absolute paths start with `crate::` in edition 2018
4403                             // FIXME: may also be stabilized for Rust 2015 (Issues #45477, #44660)
4404                             segms.insert(
4405                                 0, ast::PathSegment::from_ident(crate_name)
4406                             );
4407                         }
4408
4409                         segms.push(ast::PathSegment::from_ident(ident));
4410                         let path = Path {
4411                             span: name_binding.span,
4412                             segments: segms,
4413                         };
4414                         // the entity is accessible in the following cases:
4415                         // 1. if it's defined in the same crate, it's always
4416                         // accessible (since private entities can be made public)
4417                         // 2. if it's defined in another crate, it's accessible
4418                         // only if both the module is public and the entity is
4419                         // declared as public (due to pruning, we don't explore
4420                         // outside crate private modules => no need to check this)
4421                         if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
4422                             candidates.push(ImportSuggestion { path: path });
4423                         }
4424                     }
4425                 }
4426
4427                 // collect submodules to explore
4428                 if let Some(module) = name_binding.module() {
4429                     // form the path
4430                     let mut path_segments = path_segments.clone();
4431                     path_segments.push(ast::PathSegment::from_ident(ident));
4432
4433                     let is_extern_crate_that_also_appears_in_prelude =
4434                         name_binding.is_extern_crate() &&
4435                         self.session.rust_2018();
4436
4437                     let is_visible_to_user =
4438                         !in_module_is_extern || name_binding.vis == ty::Visibility::Public;
4439
4440                     if !is_extern_crate_that_also_appears_in_prelude && is_visible_to_user {
4441                         // add the module to the lookup
4442                         let is_extern = in_module_is_extern || name_binding.is_extern_crate();
4443                         if seen_modules.insert(module.def_id().unwrap()) {
4444                             worklist.push((module, path_segments, is_extern));
4445                         }
4446                     }
4447                 }
4448             })
4449         }
4450
4451         candidates
4452     }
4453
4454     /// When name resolution fails, this method can be used to look up candidate
4455     /// entities with the expected name. It allows filtering them using the
4456     /// supplied predicate (which should be used to only accept the types of
4457     /// definitions expected e.g. traits). The lookup spans across all crates.
4458     ///
4459     /// NOTE: The method does not look into imports, but this is not a problem,
4460     /// since we report the definitions (thus, the de-aliased imports).
4461     fn lookup_import_candidates<FilterFn>(&mut self,
4462                                           lookup_name: Name,
4463                                           namespace: Namespace,
4464                                           filter_fn: FilterFn)
4465                                           -> Vec<ImportSuggestion>
4466         where FilterFn: Fn(Def) -> bool
4467     {
4468         let mut suggestions = self.lookup_import_candidates_from_module(
4469             lookup_name, namespace, self.graph_root, keywords::Crate.ident(), &filter_fn);
4470
4471         if self.session.rust_2018() {
4472             let extern_prelude_names = self.extern_prelude.clone();
4473             for (ident, _) in extern_prelude_names.into_iter() {
4474                 if let Some(crate_id) = self.crate_loader.maybe_process_path_extern(ident.name,
4475                                                                                     ident.span) {
4476                     let crate_root = self.get_module(DefId {
4477                         krate: crate_id,
4478                         index: CRATE_DEF_INDEX,
4479                     });
4480                     self.populate_module_if_necessary(&crate_root);
4481
4482                     suggestions.extend(self.lookup_import_candidates_from_module(
4483                         lookup_name, namespace, crate_root, ident, &filter_fn));
4484                 }
4485             }
4486         }
4487
4488         suggestions
4489     }
4490
4491     fn find_module(&mut self,
4492                    module_def: Def)
4493                    -> Option<(Module<'a>, ImportSuggestion)>
4494     {
4495         let mut result = None;
4496         let mut seen_modules = FxHashSet::default();
4497         let mut worklist = vec![(self.graph_root, Vec::new())];
4498
4499         while let Some((in_module, path_segments)) = worklist.pop() {
4500             // abort if the module is already found
4501             if result.is_some() { break; }
4502
4503             self.populate_module_if_necessary(in_module);
4504
4505             in_module.for_each_child_stable(|ident, _, name_binding| {
4506                 // abort if the module is already found or if name_binding is private external
4507                 if result.is_some() || !name_binding.vis.is_visible_locally() {
4508                     return
4509                 }
4510                 if let Some(module) = name_binding.module() {
4511                     // form the path
4512                     let mut path_segments = path_segments.clone();
4513                     path_segments.push(ast::PathSegment::from_ident(ident));
4514                     if module.def() == Some(module_def) {
4515                         let path = Path {
4516                             span: name_binding.span,
4517                             segments: path_segments,
4518                         };
4519                         result = Some((module, ImportSuggestion { path: path }));
4520                     } else {
4521                         // add the module to the lookup
4522                         if seen_modules.insert(module.def_id().unwrap()) {
4523                             worklist.push((module, path_segments));
4524                         }
4525                     }
4526                 }
4527             });
4528         }
4529
4530         result
4531     }
4532
4533     fn collect_enum_variants(&mut self, enum_def: Def) -> Option<Vec<Path>> {
4534         if let Def::Enum(..) = enum_def {} else {
4535             panic!("Non-enum def passed to collect_enum_variants: {:?}", enum_def)
4536         }
4537
4538         self.find_module(enum_def).map(|(enum_module, enum_import_suggestion)| {
4539             self.populate_module_if_necessary(enum_module);
4540
4541             let mut variants = Vec::new();
4542             enum_module.for_each_child_stable(|ident, _, name_binding| {
4543                 if let Def::Variant(..) = name_binding.def() {
4544                     let mut segms = enum_import_suggestion.path.segments.clone();
4545                     segms.push(ast::PathSegment::from_ident(ident));
4546                     variants.push(Path {
4547                         span: name_binding.span,
4548                         segments: segms,
4549                     });
4550                 }
4551             });
4552             variants
4553         })
4554     }
4555
4556     fn record_def(&mut self, node_id: NodeId, resolution: PathResolution) {
4557         debug!("(recording def) recording {:?} for {}", resolution, node_id);
4558         if let Some(prev_res) = self.def_map.insert(node_id, resolution) {
4559             panic!("path resolved multiple times ({:?} before, {:?} now)", prev_res, resolution);
4560         }
4561     }
4562
4563     fn resolve_visibility(&mut self, vis: &ast::Visibility) -> ty::Visibility {
4564         match vis.node {
4565             ast::VisibilityKind::Public => ty::Visibility::Public,
4566             ast::VisibilityKind::Crate(..) => {
4567                 ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX))
4568             }
4569             ast::VisibilityKind::Inherited => {
4570                 ty::Visibility::Restricted(self.current_module.normal_ancestor_id)
4571             }
4572             ast::VisibilityKind::Restricted { ref path, id, .. } => {
4573                 // Visibilities are resolved as global by default, add starting root segment.
4574                 let segments = path.make_root().iter().chain(path.segments.iter())
4575                     .map(|seg| Segment { ident: seg.ident, id: Some(seg.id) })
4576                     .collect::<Vec<_>>();
4577                 let def = self.smart_resolve_path_fragment(
4578                     id,
4579                     None,
4580                     &segments,
4581                     path.span,
4582                     PathSource::Visibility,
4583                     CrateLint::SimplePath(id),
4584                 ).base_def();
4585                 if def == Def::Err {
4586                     ty::Visibility::Public
4587                 } else {
4588                     let vis = ty::Visibility::Restricted(def.def_id());
4589                     if self.is_accessible(vis) {
4590                         vis
4591                     } else {
4592                         self.session.span_err(path.span, "visibilities can only be restricted \
4593                                                           to ancestor modules");
4594                         ty::Visibility::Public
4595                     }
4596                 }
4597             }
4598         }
4599     }
4600
4601     fn is_accessible(&self, vis: ty::Visibility) -> bool {
4602         vis.is_accessible_from(self.current_module.normal_ancestor_id, self)
4603     }
4604
4605     fn is_accessible_from(&self, vis: ty::Visibility, module: Module<'a>) -> bool {
4606         vis.is_accessible_from(module.normal_ancestor_id, self)
4607     }
4608
4609     fn set_binding_parent_module(&mut self, binding: &'a NameBinding<'a>, module: Module<'a>) {
4610         if let Some(old_module) = self.binding_parent_modules.insert(PtrKey(binding), module) {
4611             if !ptr::eq(module, old_module) {
4612                 span_bug!(binding.span, "parent module is reset for binding");
4613             }
4614         }
4615     }
4616
4617     fn disambiguate_legacy_vs_modern(
4618         &self,
4619         legacy: &'a NameBinding<'a>,
4620         modern: &'a NameBinding<'a>,
4621     ) -> bool {
4622         // Some non-controversial subset of ambiguities "modern macro name" vs "macro_rules"
4623         // is disambiguated to mitigate regressions from macro modularization.
4624         // Scoping for `macro_rules` behaves like scoping for `let` at module level, in general.
4625         match (self.binding_parent_modules.get(&PtrKey(legacy)),
4626                self.binding_parent_modules.get(&PtrKey(modern))) {
4627             (Some(legacy), Some(modern)) =>
4628                 legacy.normal_ancestor_id == modern.normal_ancestor_id &&
4629                 modern.is_ancestor_of(legacy),
4630             _ => false,
4631         }
4632     }
4633
4634     fn report_ambiguity_error(&self, ident: Ident, b1: &NameBinding, b2: &NameBinding) {
4635         let participle = |is_import: bool| if is_import { "imported" } else { "defined" };
4636         let msg1 =
4637             format!("`{}` could refer to the name {} here", ident, participle(b1.is_import()));
4638         let msg2 =
4639             format!("`{}` could also refer to the name {} here", ident, participle(b2.is_import()));
4640         let note = if b1.expansion != Mark::root() {
4641             Some(if let Def::Macro(..) = b1.def() {
4642                 format!("macro-expanded {} do not shadow",
4643                         if b1.is_import() { "macro imports" } else { "macros" })
4644             } else {
4645                 format!("macro-expanded {} do not shadow when used in a macro invocation path",
4646                         if b1.is_import() { "imports" } else { "items" })
4647             })
4648         } else if b1.is_glob_import() {
4649             Some(format!("consider adding an explicit import of `{}` to disambiguate", ident))
4650         } else {
4651             None
4652         };
4653
4654         let mut err = struct_span_err!(self.session, ident.span, E0659, "`{}` is ambiguous", ident);
4655         err.span_label(ident.span, "ambiguous name");
4656         err.span_note(b1.span, &msg1);
4657         match b2.def() {
4658             Def::Macro(..) if b2.span.is_dummy() =>
4659                 err.note(&format!("`{}` is also a builtin macro", ident)),
4660             _ => err.span_note(b2.span, &msg2),
4661         };
4662         if let Some(note) = note {
4663             err.note(&note);
4664         }
4665         err.emit();
4666     }
4667
4668     fn report_errors(&mut self, krate: &Crate) {
4669         self.report_with_use_injections(krate);
4670         let mut reported_spans = FxHashSet::default();
4671
4672         for &(span_use, span_def) in &self.macro_expanded_macro_export_errors {
4673             let msg = "macro-expanded `macro_export` macros from the current crate \
4674                        cannot be referred to by absolute paths";
4675             self.session.buffer_lint_with_diagnostic(
4676                 lint::builtin::MACRO_EXPANDED_MACRO_EXPORTS_ACCESSED_BY_ABSOLUTE_PATHS,
4677                 CRATE_NODE_ID, span_use, msg,
4678                 lint::builtin::BuiltinLintDiagnostics::
4679                     MacroExpandedMacroExportsAccessedByAbsolutePaths(span_def),
4680             );
4681         }
4682
4683         for &AmbiguityError { ident, b1, b2 } in &self.ambiguity_errors {
4684             if reported_spans.insert(ident.span) {
4685                 self.report_ambiguity_error(ident, b1, b2);
4686             }
4687         }
4688
4689         for &PrivacyError(dedup_span, ident, binding) in &self.privacy_errors {
4690             if reported_spans.insert(dedup_span) {
4691                 span_err!(self.session, ident.span, E0603, "{} `{}` is private",
4692                           binding.descr(), ident.name);
4693             }
4694         }
4695     }
4696
4697     fn report_with_use_injections(&mut self, krate: &Crate) {
4698         for UseError { mut err, candidates, node_id, better } in self.use_injections.drain(..) {
4699             let (span, found_use) = UsePlacementFinder::check(krate, node_id);
4700             if !candidates.is_empty() {
4701                 show_candidates(&mut err, span, &candidates, better, found_use);
4702             }
4703             err.emit();
4704         }
4705     }
4706
4707     fn report_conflict<'b>(&mut self,
4708                        parent: Module,
4709                        ident: Ident,
4710                        ns: Namespace,
4711                        new_binding: &NameBinding<'b>,
4712                        old_binding: &NameBinding<'b>) {
4713         // Error on the second of two conflicting names
4714         if old_binding.span.lo() > new_binding.span.lo() {
4715             return self.report_conflict(parent, ident, ns, old_binding, new_binding);
4716         }
4717
4718         let container = match parent.kind {
4719             ModuleKind::Def(Def::Mod(_), _) => "module",
4720             ModuleKind::Def(Def::Trait(_), _) => "trait",
4721             ModuleKind::Block(..) => "block",
4722             _ => "enum",
4723         };
4724
4725         let old_noun = match old_binding.is_import() {
4726             true => "import",
4727             false => "definition",
4728         };
4729
4730         let new_participle = match new_binding.is_import() {
4731             true => "imported",
4732             false => "defined",
4733         };
4734
4735         let (name, span) = (ident.name, self.session.source_map().def_span(new_binding.span));
4736
4737         if let Some(s) = self.name_already_seen.get(&name) {
4738             if s == &span {
4739                 return;
4740             }
4741         }
4742
4743         let old_kind = match (ns, old_binding.module()) {
4744             (ValueNS, _) => "value",
4745             (MacroNS, _) => "macro",
4746             (TypeNS, _) if old_binding.is_extern_crate() => "extern crate",
4747             (TypeNS, Some(module)) if module.is_normal() => "module",
4748             (TypeNS, Some(module)) if module.is_trait() => "trait",
4749             (TypeNS, _) => "type",
4750         };
4751
4752         let msg = format!("the name `{}` is defined multiple times", name);
4753
4754         let mut err = match (old_binding.is_extern_crate(), new_binding.is_extern_crate()) {
4755             (true, true) => struct_span_err!(self.session, span, E0259, "{}", msg),
4756             (true, _) | (_, true) => match new_binding.is_import() && old_binding.is_import() {
4757                 true => struct_span_err!(self.session, span, E0254, "{}", msg),
4758                 false => struct_span_err!(self.session, span, E0260, "{}", msg),
4759             },
4760             _ => match (old_binding.is_import(), new_binding.is_import()) {
4761                 (false, false) => struct_span_err!(self.session, span, E0428, "{}", msg),
4762                 (true, true) => struct_span_err!(self.session, span, E0252, "{}", msg),
4763                 _ => struct_span_err!(self.session, span, E0255, "{}", msg),
4764             },
4765         };
4766
4767         err.note(&format!("`{}` must be defined only once in the {} namespace of this {}",
4768                           name,
4769                           ns.descr(),
4770                           container));
4771
4772         err.span_label(span, format!("`{}` re{} here", name, new_participle));
4773         if !old_binding.span.is_dummy() {
4774             err.span_label(self.session.source_map().def_span(old_binding.span),
4775                            format!("previous {} of the {} `{}` here", old_noun, old_kind, name));
4776         }
4777
4778         // See https://github.com/rust-lang/rust/issues/32354
4779         if old_binding.is_import() || new_binding.is_import() {
4780             let binding = if new_binding.is_import() && !new_binding.span.is_dummy() {
4781                 new_binding
4782             } else {
4783                 old_binding
4784             };
4785
4786             let cm = self.session.source_map();
4787             let rename_msg = "you can use `as` to change the binding name of the import";
4788
4789             if let (
4790                 Ok(snippet),
4791                 NameBindingKind::Import { directive, ..},
4792                 _dummy @ false,
4793             ) = (
4794                 cm.span_to_snippet(binding.span),
4795                 binding.kind.clone(),
4796                 binding.span.is_dummy(),
4797             ) {
4798                 let suggested_name = if name.as_str().chars().next().unwrap().is_uppercase() {
4799                     format!("Other{}", name)
4800                 } else {
4801                     format!("other_{}", name)
4802                 };
4803
4804                 err.span_suggestion_with_applicability(
4805                     binding.span,
4806                     &rename_msg,
4807                     match (&directive.subclass, snippet.as_ref()) {
4808                         (ImportDirectiveSubclass::SingleImport { .. }, "self") =>
4809                             format!("self as {}", suggested_name),
4810                         (ImportDirectiveSubclass::SingleImport { source, .. }, _) =>
4811                             format!(
4812                                 "{} as {}{}",
4813                                 &snippet[..((source.span.hi().0 - binding.span.lo().0) as usize)],
4814                                 suggested_name,
4815                                 if snippet.ends_with(";") {
4816                                     ";"
4817                                 } else {
4818                                     ""
4819                                 }
4820                             ),
4821                         (ImportDirectiveSubclass::ExternCrate { source, target, .. }, _) =>
4822                             format!(
4823                                 "extern crate {} as {};",
4824                                 source.unwrap_or(target.name),
4825                                 suggested_name,
4826                             ),
4827                         (_, _) => unreachable!(),
4828                     },
4829                     Applicability::MaybeIncorrect,
4830                 );
4831             } else {
4832                 err.span_label(binding.span, rename_msg);
4833             }
4834         }
4835
4836         err.emit();
4837         self.name_already_seen.insert(name, span);
4838     }
4839
4840     fn extern_prelude_get(&mut self, ident: Ident, speculative: bool, skip_feature_gate: bool)
4841                           -> Option<&'a NameBinding<'a>> {
4842         self.extern_prelude.get(&ident.modern()).cloned().and_then(|entry| {
4843             if let Some(binding) = entry.extern_crate_item {
4844                 if !speculative && !skip_feature_gate && entry.introduced_by_item &&
4845                    !self.session.features_untracked().extern_crate_item_prelude {
4846                     emit_feature_err(&self.session.parse_sess, "extern_crate_item_prelude",
4847                                      ident.span, GateIssue::Language,
4848                                      "use of extern prelude names introduced \
4849                                       with `extern crate` items is unstable");
4850                 }
4851                 Some(binding)
4852             } else {
4853                 let crate_id = if !speculative {
4854                     self.crate_loader.process_path_extern(ident.name, ident.span)
4855                 } else if let Some(crate_id) =
4856                         self.crate_loader.maybe_process_path_extern(ident.name, ident.span) {
4857                     crate_id
4858                 } else {
4859                     return None;
4860                 };
4861                 let crate_root = self.get_module(DefId { krate: crate_id, index: CRATE_DEF_INDEX });
4862                 self.populate_module_if_necessary(&crate_root);
4863                 Some((crate_root, ty::Visibility::Public, ident.span, Mark::root())
4864                     .to_name_binding(self.arenas))
4865             }
4866         })
4867     }
4868 }
4869
4870 fn is_self_type(path: &[Segment], namespace: Namespace) -> bool {
4871     namespace == TypeNS && path.len() == 1 && path[0].ident.name == keywords::SelfType.name()
4872 }
4873
4874 fn is_self_value(path: &[Segment], namespace: Namespace) -> bool {
4875     namespace == ValueNS && path.len() == 1 && path[0].ident.name == keywords::SelfValue.name()
4876 }
4877
4878 fn names_to_string(idents: &[Ident]) -> String {
4879     let mut result = String::new();
4880     for (i, ident) in idents.iter()
4881                             .filter(|ident| ident.name != keywords::CrateRoot.name())
4882                             .enumerate() {
4883         if i > 0 {
4884             result.push_str("::");
4885         }
4886         result.push_str(&ident.as_str());
4887     }
4888     result
4889 }
4890
4891 fn path_names_to_string(path: &Path) -> String {
4892     names_to_string(&path.segments.iter()
4893                         .map(|seg| seg.ident)
4894                         .collect::<Vec<_>>())
4895 }
4896
4897 /// Get the path for an enum and the variant from an `ImportSuggestion` for an enum variant.
4898 fn import_candidate_to_paths(suggestion: &ImportSuggestion) -> (Span, String, String) {
4899     let variant_path = &suggestion.path;
4900     let variant_path_string = path_names_to_string(variant_path);
4901
4902     let path_len = suggestion.path.segments.len();
4903     let enum_path = ast::Path {
4904         span: suggestion.path.span,
4905         segments: suggestion.path.segments[0..path_len - 1].to_vec(),
4906     };
4907     let enum_path_string = path_names_to_string(&enum_path);
4908
4909     (suggestion.path.span, variant_path_string, enum_path_string)
4910 }
4911
4912
4913 /// When an entity with a given name is not available in scope, we search for
4914 /// entities with that name in all crates. This method allows outputting the
4915 /// results of this search in a programmer-friendly way
4916 fn show_candidates(err: &mut DiagnosticBuilder,
4917                    // This is `None` if all placement locations are inside expansions
4918                    span: Option<Span>,
4919                    candidates: &[ImportSuggestion],
4920                    better: bool,
4921                    found_use: bool) {
4922
4923     // we want consistent results across executions, but candidates are produced
4924     // by iterating through a hash map, so make sure they are ordered:
4925     let mut path_strings: Vec<_> =
4926         candidates.into_iter().map(|c| path_names_to_string(&c.path)).collect();
4927     path_strings.sort();
4928
4929     let better = if better { "better " } else { "" };
4930     let msg_diff = match path_strings.len() {
4931         1 => " is found in another module, you can import it",
4932         _ => "s are found in other modules, you can import them",
4933     };
4934     let msg = format!("possible {}candidate{} into scope", better, msg_diff);
4935
4936     if let Some(span) = span {
4937         for candidate in &mut path_strings {
4938             // produce an additional newline to separate the new use statement
4939             // from the directly following item.
4940             let additional_newline = if found_use {
4941                 ""
4942             } else {
4943                 "\n"
4944             };
4945             *candidate = format!("use {};\n{}", candidate, additional_newline);
4946         }
4947
4948         err.span_suggestions_with_applicability(
4949             span,
4950             &msg,
4951             path_strings,
4952             Applicability::Unspecified,
4953         );
4954     } else {
4955         let mut msg = msg;
4956         msg.push(':');
4957         for candidate in path_strings {
4958             msg.push('\n');
4959             msg.push_str(&candidate);
4960         }
4961     }
4962 }
4963
4964 /// A somewhat inefficient routine to obtain the name of a module.
4965 fn module_to_string(module: Module) -> Option<String> {
4966     let mut names = Vec::new();
4967
4968     fn collect_mod(names: &mut Vec<Ident>, module: Module) {
4969         if let ModuleKind::Def(_, name) = module.kind {
4970             if let Some(parent) = module.parent {
4971                 names.push(Ident::with_empty_ctxt(name));
4972                 collect_mod(names, parent);
4973             }
4974         } else {
4975             // danger, shouldn't be ident?
4976             names.push(Ident::from_str("<opaque>"));
4977             collect_mod(names, module.parent.unwrap());
4978         }
4979     }
4980     collect_mod(&mut names, module);
4981
4982     if names.is_empty() {
4983         return None;
4984     }
4985     Some(names_to_string(&names.into_iter()
4986                         .rev()
4987                         .collect::<Vec<_>>()))
4988 }
4989
4990 fn err_path_resolution() -> PathResolution {
4991     PathResolution::new(Def::Err)
4992 }
4993
4994 #[derive(PartialEq,Copy, Clone)]
4995 pub enum MakeGlobMap {
4996     Yes,
4997     No,
4998 }
4999
5000 #[derive(Copy, Clone, Debug)]
5001 enum CrateLint {
5002     /// Do not issue the lint
5003     No,
5004
5005     /// This lint applies to some random path like `impl ::foo::Bar`
5006     /// or whatever. In this case, we can take the span of that path.
5007     SimplePath(NodeId),
5008
5009     /// This lint comes from a `use` statement. In this case, what we
5010     /// care about really is the *root* `use` statement; e.g., if we
5011     /// have nested things like `use a::{b, c}`, we care about the
5012     /// `use a` part.
5013     UsePath { root_id: NodeId, root_span: Span },
5014
5015     /// This is the "trait item" from a fully qualified path. For example,
5016     /// we might be resolving  `X::Y::Z` from a path like `<T as X::Y>::Z`.
5017     /// The `path_span` is the span of the to the trait itself (`X::Y`).
5018     QPathTrait { qpath_id: NodeId, qpath_span: Span },
5019 }
5020
5021 impl CrateLint {
5022     fn node_id(&self) -> Option<NodeId> {
5023         match *self {
5024             CrateLint::No => None,
5025             CrateLint::SimplePath(id) |
5026             CrateLint::UsePath { root_id: id, .. } |
5027             CrateLint::QPathTrait { qpath_id: id, .. } => Some(id),
5028         }
5029     }
5030 }
5031
5032 __build_diagnostic_array! { librustc_resolve, DIAGNOSTICS }