]> git.lizzy.rs Git - rust.git/blob - src/librustc_resolve/late.rs
TAIT: adjust resolve
[rust.git] / src / librustc_resolve / late.rs
1 //! "Late resolution" is the pass that resolves most of names in a crate beside imports and macros.
2 //! It runs when the crate is fully expanded and its module structure is fully built.
3 //! So it just walks through the crate and resolves all the expressions, types, etc.
4 //!
5 //! If you wonder why there's no `early.rs`, that's because it's split into three files -
6 //! `build_reduced_graph.rs`, `macros.rs` and `resolve_imports.rs`.
7
8 use RibKind::*;
9
10 use crate::{path_names_to_string, BindingError, CrateLint, LexicalScopeBinding};
11 use crate::{Module, ModuleOrUniformRoot, NameBindingKind, ParentScope, PathResult};
12 use crate::{ResolutionError, Resolver, Segment, UseError};
13
14 use log::debug;
15 use rustc::{bug, lint, span_bug};
16 use rustc::hir::def::{self, PartialRes, DefKind, CtorKind, PerNS};
17 use rustc::hir::def::Namespace::{self, *};
18 use rustc::hir::def_id::{DefId, CRATE_DEF_INDEX};
19 use rustc::hir::TraitCandidate;
20 use rustc::util::nodemap::{FxHashMap, FxHashSet};
21 use smallvec::{smallvec, SmallVec};
22 use syntax::{unwrap_or, walk_list};
23 use syntax::ast::*;
24 use syntax::ptr::P;
25 use syntax::symbol::{kw, sym};
26 use syntax::util::lev_distance::find_best_match_for_name;
27 use syntax::visit::{self, Visitor, FnKind};
28 use syntax_pos::Span;
29
30 use std::collections::BTreeSet;
31 use std::mem::replace;
32
33 mod diagnostics;
34
35 type Res = def::Res<NodeId>;
36
37 type IdentMap<T> = FxHashMap<Ident, T>;
38
39 /// Map from the name in a pattern to its binding mode.
40 type BindingMap = IdentMap<BindingInfo>;
41
42 #[derive(Copy, Clone, Debug)]
43 struct BindingInfo {
44     span: Span,
45     binding_mode: BindingMode,
46 }
47
48 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
49 enum PatternSource {
50     Match,
51     Let,
52     For,
53     FnParam,
54 }
55
56 impl PatternSource {
57     fn descr(self) -> &'static str {
58         match self {
59             PatternSource::Match => "match binding",
60             PatternSource::Let => "let binding",
61             PatternSource::For => "for binding",
62             PatternSource::FnParam => "function parameter",
63         }
64     }
65 }
66
67 /// Denotes whether the context for the set of already bound bindings is a `Product`
68 /// or `Or` context. This is used in e.g., `fresh_binding` and `resolve_pattern_inner`.
69 /// See those functions for more information.
70 enum PatBoundCtx {
71     /// A product pattern context, e.g., `Variant(a, b)`.
72     Product,
73     /// An or-pattern context, e.g., `p_0 | ... | p_n`.
74     Or,
75 }
76
77 /// Does this the item (from the item rib scope) allow generic parameters?
78 #[derive(Copy, Clone, Debug, Eq, PartialEq)]
79 crate enum HasGenericParams { Yes, No }
80
81 /// The rib kind restricts certain accesses,
82 /// e.g. to a `Res::Local` of an outer item.
83 #[derive(Copy, Clone, Debug)]
84 crate enum RibKind<'a> {
85     /// No restriction needs to be applied.
86     NormalRibKind,
87
88     /// We passed through an impl or trait and are now in one of its
89     /// methods or associated types. Allow references to ty params that impl or trait
90     /// binds. Disallow any other upvars (including other ty params that are
91     /// upvars).
92     AssocItemRibKind,
93
94     /// We passed through a function definition. Disallow upvars.
95     /// Permit only those const parameters that are specified in the function's generics.
96     FnItemRibKind,
97
98     /// We passed through an item scope. Disallow upvars.
99     ItemRibKind(HasGenericParams),
100
101     /// We're in a constant item. Can't refer to dynamic stuff.
102     ConstantItemRibKind,
103
104     /// We passed through a module.
105     ModuleRibKind(Module<'a>),
106
107     /// We passed through a `macro_rules!` statement
108     MacroDefinition(DefId),
109
110     /// All bindings in this rib are type parameters that can't be used
111     /// from the default of a type parameter because they're not declared
112     /// before said type parameter. Also see the `visit_generics` override.
113     ForwardTyParamBanRibKind,
114 }
115
116 impl RibKind<'_> {
117     // Whether this rib kind contains generic parameters, as opposed to local
118     // variables.
119     crate fn contains_params(&self) -> bool {
120         match self {
121             NormalRibKind
122             | FnItemRibKind
123             | ConstantItemRibKind
124             | ModuleRibKind(_)
125             | MacroDefinition(_) => false,
126             AssocItemRibKind
127             | ItemRibKind(_)
128             | ForwardTyParamBanRibKind => true,
129         }
130     }
131 }
132
133 /// A single local scope.
134 ///
135 /// A rib represents a scope names can live in. Note that these appear in many places, not just
136 /// around braces. At any place where the list of accessible names (of the given namespace)
137 /// changes or a new restrictions on the name accessibility are introduced, a new rib is put onto a
138 /// stack. This may be, for example, a `let` statement (because it introduces variables), a macro,
139 /// etc.
140 ///
141 /// Different [rib kinds](enum.RibKind) are transparent for different names.
142 ///
143 /// The resolution keeps a separate stack of ribs as it traverses the AST for each namespace. When
144 /// resolving, the name is looked up from inside out.
145 #[derive(Debug)]
146 crate struct Rib<'a, R = Res> {
147     pub bindings: IdentMap<R>,
148     pub kind: RibKind<'a>,
149 }
150
151 impl<'a, R> Rib<'a, R> {
152     fn new(kind: RibKind<'a>) -> Rib<'a, R> {
153         Rib {
154             bindings: Default::default(),
155             kind,
156         }
157     }
158 }
159
160 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
161 crate enum AliasPossibility {
162     No,
163     Maybe,
164 }
165
166 #[derive(Copy, Clone, Debug)]
167 crate enum PathSource<'a> {
168     // Type paths `Path`.
169     Type,
170     // Trait paths in bounds or impls.
171     Trait(AliasPossibility),
172     // Expression paths `path`, with optional parent context.
173     Expr(Option<&'a Expr>),
174     // Paths in path patterns `Path`.
175     Pat,
176     // Paths in struct expressions and patterns `Path { .. }`.
177     Struct,
178     // Paths in tuple struct patterns `Path(..)`.
179     TupleStruct,
180     // `m::A::B` in `<T as m::A>::B::C`.
181     TraitItem(Namespace),
182 }
183
184 impl<'a> PathSource<'a> {
185     fn namespace(self) -> Namespace {
186         match self {
187             PathSource::Type | PathSource::Trait(_) | PathSource::Struct => TypeNS,
188             PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct => ValueNS,
189             PathSource::TraitItem(ns) => ns,
190         }
191     }
192
193     fn defer_to_typeck(self) -> bool {
194         match self {
195             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
196             PathSource::Struct | PathSource::TupleStruct => true,
197             PathSource::Trait(_) | PathSource::TraitItem(..) => false,
198         }
199     }
200
201     fn descr_expected(self) -> &'static str {
202         match &self {
203             PathSource::Type => "type",
204             PathSource::Trait(_) => "trait",
205             PathSource::Pat => "unit struct, unit variant or constant",
206             PathSource::Struct => "struct, variant or union type",
207             PathSource::TupleStruct => "tuple struct or tuple variant",
208             PathSource::TraitItem(ns) => match ns {
209                 TypeNS => "associated type",
210                 ValueNS => "method or associated constant",
211                 MacroNS => bug!("associated macro"),
212             },
213             PathSource::Expr(parent) => match &parent.as_ref().map(|p| &p.kind) {
214                 // "function" here means "anything callable" rather than `DefKind::Fn`,
215                 // this is not precise but usually more helpful than just "value".
216                 Some(ExprKind::Call(call_expr, _)) => {
217                     match &call_expr.kind {
218                         ExprKind::Path(_, path) => {
219                             let mut msg = "function";
220                             if let Some(segment) = path.segments.iter().last() {
221                                 if let Some(c) = segment.ident.to_string().chars().next() {
222                                     if c.is_uppercase() {
223                                         msg = "function, tuple struct or tuple variant";
224                                     }
225                                 }
226                             }
227                             msg
228                         }
229                         _ => "function"
230                     }
231                 }
232                 _ => "value",
233             },
234         }
235     }
236
237     crate fn is_expected(self, res: Res) -> bool {
238         match self {
239             PathSource::Type => match res {
240                 Res::Def(DefKind::Struct, _)
241                 | Res::Def(DefKind::Union, _)
242                 | Res::Def(DefKind::Enum, _)
243                 | Res::Def(DefKind::Trait, _)
244                 | Res::Def(DefKind::TraitAlias, _)
245                 | Res::Def(DefKind::TyAlias, _)
246                 | Res::Def(DefKind::AssocTy, _)
247                 | Res::PrimTy(..)
248                 | Res::Def(DefKind::TyParam, _)
249                 | Res::SelfTy(..)
250                 | Res::Def(DefKind::OpaqueTy, _)
251                 | Res::Def(DefKind::ForeignTy, _) => true,
252                 _ => false,
253             },
254             PathSource::Trait(AliasPossibility::No) => match res {
255                 Res::Def(DefKind::Trait, _) => true,
256                 _ => false,
257             },
258             PathSource::Trait(AliasPossibility::Maybe) => match res {
259                 Res::Def(DefKind::Trait, _) => true,
260                 Res::Def(DefKind::TraitAlias, _) => true,
261                 _ => false,
262             },
263             PathSource::Expr(..) => match res {
264                 Res::Def(DefKind::Ctor(_, CtorKind::Const), _)
265                 | Res::Def(DefKind::Ctor(_, CtorKind::Fn), _)
266                 | Res::Def(DefKind::Const, _)
267                 | Res::Def(DefKind::Static, _)
268                 | Res::Local(..)
269                 | Res::Def(DefKind::Fn, _)
270                 | Res::Def(DefKind::Method, _)
271                 | Res::Def(DefKind::AssocConst, _)
272                 | Res::SelfCtor(..)
273                 | Res::Def(DefKind::ConstParam, _) => true,
274                 _ => false,
275             },
276             PathSource::Pat => match res {
277                 Res::Def(DefKind::Ctor(_, CtorKind::Const), _) |
278                 Res::Def(DefKind::Const, _) | Res::Def(DefKind::AssocConst, _) |
279                 Res::SelfCtor(..) => true,
280                 _ => false,
281             },
282             PathSource::TupleStruct => match res {
283                 Res::Def(DefKind::Ctor(_, CtorKind::Fn), _) | Res::SelfCtor(..) => true,
284                 _ => false,
285             },
286             PathSource::Struct => match res {
287                 Res::Def(DefKind::Struct, _)
288                 | Res::Def(DefKind::Union, _)
289                 | Res::Def(DefKind::Variant, _)
290                 | Res::Def(DefKind::TyAlias, _)
291                 | Res::Def(DefKind::AssocTy, _)
292                 | Res::SelfTy(..) => true,
293                 _ => false,
294             },
295             PathSource::TraitItem(ns) => match res {
296                 Res::Def(DefKind::AssocConst, _)
297                 | Res::Def(DefKind::Method, _) if ns == ValueNS => true,
298                 Res::Def(DefKind::AssocTy, _) if ns == TypeNS => true,
299                 _ => false,
300             },
301         }
302     }
303
304     fn error_code(self, has_unexpected_resolution: bool) -> &'static str {
305         syntax::diagnostic_used!(E0404);
306         syntax::diagnostic_used!(E0405);
307         syntax::diagnostic_used!(E0412);
308         syntax::diagnostic_used!(E0422);
309         syntax::diagnostic_used!(E0423);
310         syntax::diagnostic_used!(E0425);
311         syntax::diagnostic_used!(E0531);
312         syntax::diagnostic_used!(E0532);
313         syntax::diagnostic_used!(E0573);
314         syntax::diagnostic_used!(E0574);
315         syntax::diagnostic_used!(E0575);
316         syntax::diagnostic_used!(E0576);
317         match (self, has_unexpected_resolution) {
318             (PathSource::Trait(_), true) => "E0404",
319             (PathSource::Trait(_), false) => "E0405",
320             (PathSource::Type, true) => "E0573",
321             (PathSource::Type, false) => "E0412",
322             (PathSource::Struct, true) => "E0574",
323             (PathSource::Struct, false) => "E0422",
324             (PathSource::Expr(..), true) => "E0423",
325             (PathSource::Expr(..), false) => "E0425",
326             (PathSource::Pat, true) | (PathSource::TupleStruct, true) => "E0532",
327             (PathSource::Pat, false) | (PathSource::TupleStruct, false) => "E0531",
328             (PathSource::TraitItem(..), true) => "E0575",
329             (PathSource::TraitItem(..), false) => "E0576",
330         }
331     }
332 }
333
334 #[derive(Default)]
335 struct DiagnosticMetadata {
336     /// The current trait's associated types' ident, used for diagnostic suggestions.
337     current_trait_assoc_types: Vec<Ident>,
338
339     /// The current self type if inside an impl (used for better errors).
340     current_self_type: Option<Ty>,
341
342     /// The current self item if inside an ADT (used for better errors).
343     current_self_item: Option<NodeId>,
344
345     /// The current enclosing funciton (used for better errors).
346     current_function: Option<Span>,
347
348     /// A list of labels as of yet unused. Labels will be removed from this map when
349     /// they are used (in a `break` or `continue` statement)
350     unused_labels: FxHashMap<NodeId, Span>,
351
352     /// Only used for better errors on `fn(): fn()`.
353     current_type_ascription: Vec<Span>,
354
355     /// Only used for better errors on `let <pat>: <expr, not type>;`.
356     current_let_binding: Option<(Span, Option<Span>, Option<Span>)>,
357 }
358
359 struct LateResolutionVisitor<'a, 'b> {
360     r: &'b mut Resolver<'a>,
361
362     /// The module that represents the current item scope.
363     parent_scope: ParentScope<'a>,
364
365     /// The current set of local scopes for types and values.
366     /// FIXME #4948: Reuse ribs to avoid allocation.
367     ribs: PerNS<Vec<Rib<'a>>>,
368
369     /// The current set of local scopes, for labels.
370     label_ribs: Vec<Rib<'a, NodeId>>,
371
372     /// The trait that the current context can refer to.
373     current_trait_ref: Option<(Module<'a>, TraitRef)>,
374
375     /// Fields used to add information to diagnostic errors.
376     diagnostic_metadata: DiagnosticMetadata,
377 }
378
379 /// Walks the whole crate in DFS order, visiting each item, resolving names as it goes.
380 impl<'a, 'tcx> Visitor<'tcx> for LateResolutionVisitor<'a, '_> {
381     fn visit_item(&mut self, item: &'tcx Item) {
382         self.resolve_item(item);
383     }
384     fn visit_arm(&mut self, arm: &'tcx Arm) {
385         self.resolve_arm(arm);
386     }
387     fn visit_block(&mut self, block: &'tcx Block) {
388         self.resolve_block(block);
389     }
390     fn visit_anon_const(&mut self, constant: &'tcx AnonConst) {
391         debug!("visit_anon_const {:?}", constant);
392         self.with_constant_rib(|this| {
393             visit::walk_anon_const(this, constant);
394         });
395     }
396     fn visit_expr(&mut self, expr: &'tcx Expr) {
397         self.resolve_expr(expr, None);
398     }
399     fn visit_local(&mut self, local: &'tcx Local) {
400         let local_spans = match local.pat.kind {
401             // We check for this to avoid tuple struct fields.
402             PatKind::Wild => None,
403             _ => Some((
404                 local.pat.span,
405                 local.ty.as_ref().map(|ty| ty.span),
406                 local.init.as_ref().map(|init| init.span),
407             )),
408         };
409         let original = replace(&mut self.diagnostic_metadata.current_let_binding, local_spans);
410         self.resolve_local(local);
411         self.diagnostic_metadata.current_let_binding = original;
412     }
413     fn visit_ty(&mut self, ty: &'tcx Ty) {
414         match ty.kind {
415             TyKind::Path(ref qself, ref path) => {
416                 self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
417             }
418             TyKind::ImplicitSelf => {
419                 let self_ty = Ident::with_dummy_span(kw::SelfUpper);
420                 let res = self.resolve_ident_in_lexical_scope(self_ty, TypeNS, Some(ty.id), ty.span)
421                               .map_or(Res::Err, |d| d.res());
422                 self.r.record_partial_res(ty.id, PartialRes::new(res));
423             }
424             _ => (),
425         }
426         visit::walk_ty(self, ty);
427     }
428     fn visit_poly_trait_ref(&mut self,
429                             tref: &'tcx PolyTraitRef,
430                             m: &'tcx TraitBoundModifier) {
431         self.smart_resolve_path(tref.trait_ref.ref_id, None,
432                                 &tref.trait_ref.path, PathSource::Trait(AliasPossibility::Maybe));
433         visit::walk_poly_trait_ref(self, tref, m);
434     }
435     fn visit_foreign_item(&mut self, foreign_item: &'tcx ForeignItem) {
436         match foreign_item.kind {
437             ForeignItemKind::Fn(_, ref generics) => {
438                 self.with_generic_param_rib(generics, ItemRibKind(HasGenericParams::Yes), |this| {
439                     visit::walk_foreign_item(this, foreign_item);
440                 });
441             }
442             ForeignItemKind::Static(..) => {
443                 self.with_item_rib(HasGenericParams::No, |this| {
444                     visit::walk_foreign_item(this, foreign_item);
445                 });
446             }
447             ForeignItemKind::Ty | ForeignItemKind::Macro(..) => {
448                 visit::walk_foreign_item(self, foreign_item);
449             }
450         }
451     }
452     fn visit_fn(&mut self, fn_kind: FnKind<'tcx>, declaration: &'tcx FnDecl, sp: Span, _: NodeId) {
453         let previous_value = replace(&mut self.diagnostic_metadata.current_function, Some(sp));
454         debug!("(resolving function) entering function");
455         let rib_kind = match fn_kind {
456             FnKind::ItemFn(..) => FnItemRibKind,
457             FnKind::Method(..) | FnKind::Closure(_) => NormalRibKind,
458         };
459
460         // Create a value rib for the function.
461         self.with_rib(ValueNS, rib_kind, |this| {
462             // Create a label rib for the function.
463             this.with_label_rib(rib_kind, |this| {
464                 // Add each argument to the rib.
465                 this.resolve_params(&declaration.inputs);
466
467                 visit::walk_fn_ret_ty(this, &declaration.output);
468
469                 // Resolve the function body, potentially inside the body of an async closure
470                 match fn_kind {
471                     FnKind::ItemFn(.., body) |
472                     FnKind::Method(.., body) => this.visit_block(body),
473                     FnKind::Closure(body) => this.visit_expr(body),
474                 };
475
476                 debug!("(resolving function) leaving function");
477             })
478         });
479         self.diagnostic_metadata.current_function = previous_value;
480     }
481
482     fn visit_generics(&mut self, generics: &'tcx Generics) {
483         // For type parameter defaults, we have to ban access
484         // to following type parameters, as the InternalSubsts can only
485         // provide previous type parameters as they're built. We
486         // put all the parameters on the ban list and then remove
487         // them one by one as they are processed and become available.
488         let mut default_ban_rib = Rib::new(ForwardTyParamBanRibKind);
489         let mut found_default = false;
490         default_ban_rib.bindings.extend(generics.params.iter()
491             .filter_map(|param| match param.kind {
492                 GenericParamKind::Const { .. } |
493                 GenericParamKind::Lifetime { .. } => None,
494                 GenericParamKind::Type { ref default, .. } => {
495                     found_default |= default.is_some();
496                     if found_default {
497                         Some((Ident::with_dummy_span(param.ident.name), Res::Err))
498                     } else {
499                         None
500                     }
501                 }
502             }));
503
504         // rust-lang/rust#61631: The type `Self` is essentially
505         // another type parameter. For ADTs, we consider it
506         // well-defined only after all of the ADT type parameters have
507         // been provided. Therefore, we do not allow use of `Self`
508         // anywhere in ADT type parameter defaults.
509         //
510         // (We however cannot ban `Self` for defaults on *all* generic
511         // lists; e.g. trait generics can usefully refer to `Self`,
512         // such as in the case of `trait Add<Rhs = Self>`.)
513         if self.diagnostic_metadata.current_self_item.is_some() {
514             // (`Some` if + only if we are in ADT's generics.)
515             default_ban_rib.bindings.insert(Ident::with_dummy_span(kw::SelfUpper), Res::Err);
516         }
517
518         for param in &generics.params {
519             match param.kind {
520                 GenericParamKind::Lifetime { .. } => self.visit_generic_param(param),
521                 GenericParamKind::Type { ref default, .. } => {
522                     for bound in &param.bounds {
523                         self.visit_param_bound(bound);
524                     }
525
526                     if let Some(ref ty) = default {
527                         self.ribs[TypeNS].push(default_ban_rib);
528                         self.visit_ty(ty);
529                         default_ban_rib = self.ribs[TypeNS].pop().unwrap();
530                     }
531
532                     // Allow all following defaults to refer to this type parameter.
533                     default_ban_rib.bindings.remove(&Ident::with_dummy_span(param.ident.name));
534                 }
535                 GenericParamKind::Const { ref ty } => {
536                     for bound in &param.bounds {
537                         self.visit_param_bound(bound);
538                     }
539                     self.visit_ty(ty);
540                 }
541             }
542         }
543         for p in &generics.where_clause.predicates {
544             self.visit_where_predicate(p);
545         }
546     }
547 }
548
549 impl<'a, 'b> LateResolutionVisitor<'a, '_> {
550     fn new(resolver: &'b mut Resolver<'a>) -> LateResolutionVisitor<'a, 'b> {
551         // During late resolution we only track the module component of the parent scope,
552         // although it may be useful to track other components as well for diagnostics.
553         let graph_root = resolver.graph_root;
554         let parent_scope = ParentScope::module(graph_root);
555         let start_rib_kind = ModuleRibKind(graph_root);
556         LateResolutionVisitor {
557             r: resolver,
558             parent_scope,
559             ribs: PerNS {
560                 value_ns: vec![Rib::new(start_rib_kind)],
561                 type_ns: vec![Rib::new(start_rib_kind)],
562                 macro_ns: vec![Rib::new(start_rib_kind)],
563             },
564             label_ribs: Vec::new(),
565             current_trait_ref: None,
566             diagnostic_metadata: DiagnosticMetadata::default(),
567         }
568     }
569
570     fn resolve_ident_in_lexical_scope(&mut self,
571                                       ident: Ident,
572                                       ns: Namespace,
573                                       record_used_id: Option<NodeId>,
574                                       path_span: Span)
575                                       -> Option<LexicalScopeBinding<'a>> {
576         self.r.resolve_ident_in_lexical_scope(
577             ident, ns, &self.parent_scope, record_used_id, path_span, &self.ribs[ns]
578         )
579     }
580
581     fn resolve_path(
582         &mut self,
583         path: &[Segment],
584         opt_ns: Option<Namespace>, // `None` indicates a module path in import
585         record_used: bool,
586         path_span: Span,
587         crate_lint: CrateLint,
588     ) -> PathResult<'a> {
589         self.r.resolve_path_with_ribs(
590             path, opt_ns, &self.parent_scope, record_used, path_span, crate_lint, Some(&self.ribs)
591         )
592     }
593
594     // AST resolution
595     //
596     // We maintain a list of value ribs and type ribs.
597     //
598     // Simultaneously, we keep track of the current position in the module
599     // graph in the `parent_scope.module` pointer. When we go to resolve a name in
600     // the value or type namespaces, we first look through all the ribs and
601     // then query the module graph. When we resolve a name in the module
602     // namespace, we can skip all the ribs (since nested modules are not
603     // allowed within blocks in Rust) and jump straight to the current module
604     // graph node.
605     //
606     // Named implementations are handled separately. When we find a method
607     // call, we consult the module node to find all of the implementations in
608     // scope. This information is lazily cached in the module node. We then
609     // generate a fake "implementation scope" containing all the
610     // implementations thus found, for compatibility with old resolve pass.
611
612     /// Do some `work` within a new innermost rib of the given `kind` in the given namespace (`ns`).
613     fn with_rib<T>(
614         &mut self,
615         ns: Namespace,
616         kind: RibKind<'a>,
617         work: impl FnOnce(&mut Self) -> T,
618     ) -> T {
619         self.ribs[ns].push(Rib::new(kind));
620         let ret = work(self);
621         self.ribs[ns].pop();
622         ret
623     }
624
625     fn with_scope<T>(&mut self, id: NodeId, f: impl FnOnce(&mut Self) -> T) -> T {
626         let id = self.r.definitions.local_def_id(id);
627         let module = self.r.module_map.get(&id).cloned(); // clones a reference
628         if let Some(module) = module {
629             // Move down in the graph.
630             let orig_module = replace(&mut self.parent_scope.module, module);
631             self.with_rib(ValueNS, ModuleRibKind(module), |this| {
632                 this.with_rib(TypeNS, ModuleRibKind(module), |this| {
633                     let ret = f(this);
634                     this.parent_scope.module = orig_module;
635                     ret
636                 })
637             })
638         } else {
639             f(self)
640         }
641     }
642
643     /// Searches the current set of local scopes for labels. Returns the first non-`None` label that
644     /// is returned by the given predicate function
645     ///
646     /// Stops after meeting a closure.
647     fn search_label<P, R>(&self, mut ident: Ident, pred: P) -> Option<R>
648         where P: Fn(&Rib<'_, NodeId>, Ident) -> Option<R>
649     {
650         for rib in self.label_ribs.iter().rev() {
651             match rib.kind {
652                 NormalRibKind => {}
653                 // If an invocation of this macro created `ident`, give up on `ident`
654                 // and switch to `ident`'s source from the macro definition.
655                 MacroDefinition(def) => {
656                     if def == self.r.macro_def(ident.span.ctxt()) {
657                         ident.span.remove_mark();
658                     }
659                 }
660                 _ => {
661                     // Do not resolve labels across function boundary
662                     return None;
663                 }
664             }
665             let r = pred(rib, ident);
666             if r.is_some() {
667                 return r;
668             }
669         }
670         None
671     }
672
673     fn resolve_adt(&mut self, item: &Item, generics: &Generics) {
674         debug!("resolve_adt");
675         self.with_current_self_item(item, |this| {
676             this.with_generic_param_rib(generics, ItemRibKind(HasGenericParams::Yes), |this| {
677                 let item_def_id = this.r.definitions.local_def_id(item.id);
678                 this.with_self_rib(Res::SelfTy(None, Some(item_def_id)), |this| {
679                     visit::walk_item(this, item);
680                 });
681             });
682         });
683     }
684
685     fn future_proof_import(&mut self, use_tree: &UseTree) {
686         let segments = &use_tree.prefix.segments;
687         if !segments.is_empty() {
688             let ident = segments[0].ident;
689             if ident.is_path_segment_keyword() || ident.span.rust_2015() {
690                 return;
691             }
692
693             let nss = match use_tree.kind {
694                 UseTreeKind::Simple(..) if segments.len() == 1 => &[TypeNS, ValueNS][..],
695                 _ => &[TypeNS],
696             };
697             let report_error = |this: &Self, ns| {
698                 let what = if ns == TypeNS { "type parameters" } else { "local variables" };
699                 this.r.session.span_err(ident.span, &format!("imports cannot refer to {}", what));
700             };
701
702             for &ns in nss {
703                 match self.resolve_ident_in_lexical_scope(ident, ns, None, use_tree.prefix.span) {
704                     Some(LexicalScopeBinding::Res(..)) => {
705                         report_error(self, ns);
706                     }
707                     Some(LexicalScopeBinding::Item(binding)) => {
708                         let orig_blacklisted_binding =
709                             replace(&mut self.r.blacklisted_binding, Some(binding));
710                         if let Some(LexicalScopeBinding::Res(..)) =
711                                 self.resolve_ident_in_lexical_scope(ident, ns, None,
712                                                                     use_tree.prefix.span) {
713                             report_error(self, ns);
714                         }
715                         self.r.blacklisted_binding = orig_blacklisted_binding;
716                     }
717                     None => {}
718                 }
719             }
720         } else if let UseTreeKind::Nested(use_trees) = &use_tree.kind {
721             for (use_tree, _) in use_trees {
722                 self.future_proof_import(use_tree);
723             }
724         }
725     }
726
727     fn resolve_item(&mut self, item: &Item) {
728         let name = item.ident.name;
729         debug!("(resolving item) resolving {} ({:?})", name, item.kind);
730
731         match item.kind {
732             ItemKind::TyAlias(_, ref generics) |
733             ItemKind::Fn(_, ref generics, _) => {
734                 self.with_generic_param_rib(generics, ItemRibKind(HasGenericParams::Yes),
735                                             |this| visit::walk_item(this, item));
736             }
737
738             ItemKind::Enum(_, ref generics) |
739             ItemKind::Struct(_, ref generics) |
740             ItemKind::Union(_, ref generics) => {
741                 self.resolve_adt(item, generics);
742             }
743
744             ItemKind::Impl(.., ref generics, ref opt_trait_ref, ref self_type, ref impl_items) =>
745                 self.resolve_implementation(generics,
746                                             opt_trait_ref,
747                                             &self_type,
748                                             item.id,
749                                             impl_items),
750
751             ItemKind::Trait(.., ref generics, ref bounds, ref trait_items) => {
752                 // Create a new rib for the trait-wide type parameters.
753                 self.with_generic_param_rib(generics, ItemRibKind(HasGenericParams::Yes), |this| {
754                     let local_def_id = this.r.definitions.local_def_id(item.id);
755                     this.with_self_rib(Res::SelfTy(Some(local_def_id), None), |this| {
756                         this.visit_generics(generics);
757                         walk_list!(this, visit_param_bound, bounds);
758
759                         for trait_item in trait_items {
760                             this.with_trait_items(trait_items, |this| {
761                                 this.with_generic_param_rib(&trait_item.generics, AssocItemRibKind,
762                                     |this| {
763                                         match trait_item.kind {
764                                             TraitItemKind::Const(ref ty, ref default) => {
765                                                 this.visit_ty(ty);
766
767                                                 // Only impose the restrictions of
768                                                 // ConstRibKind for an actual constant
769                                                 // expression in a provided default.
770                                                 if let Some(ref expr) = *default{
771                                                     this.with_constant_rib(|this| {
772                                                         this.visit_expr(expr);
773                                                     });
774                                                 }
775                                             }
776                                             TraitItemKind::Method(_, _) => {
777                                                 visit::walk_trait_item(this, trait_item)
778                                             }
779                                             TraitItemKind::Type(..) => {
780                                                 visit::walk_trait_item(this, trait_item)
781                                             }
782                                             TraitItemKind::Macro(_) => {
783                                                 panic!("unexpanded macro in resolve!")
784                                             }
785                                         };
786                                     });
787                             });
788                         }
789                     });
790                 });
791             }
792
793             ItemKind::TraitAlias(ref generics, ref bounds) => {
794                 // Create a new rib for the trait-wide type parameters.
795                 self.with_generic_param_rib(generics, ItemRibKind(HasGenericParams::Yes), |this| {
796                     let local_def_id = this.r.definitions.local_def_id(item.id);
797                     this.with_self_rib(Res::SelfTy(Some(local_def_id), None), |this| {
798                         this.visit_generics(generics);
799                         walk_list!(this, visit_param_bound, bounds);
800                     });
801                 });
802             }
803
804             ItemKind::Mod(_) | ItemKind::ForeignMod(_) => {
805                 self.with_scope(item.id, |this| {
806                     visit::walk_item(this, item);
807                 });
808             }
809
810             ItemKind::Static(ref ty, _, ref expr) |
811             ItemKind::Const(ref ty, ref expr) => {
812                 debug!("resolve_item ItemKind::Const");
813                 self.with_item_rib(HasGenericParams::No, |this| {
814                     this.visit_ty(ty);
815                     this.with_constant_rib(|this| {
816                         this.visit_expr(expr);
817                     });
818                 });
819             }
820
821             ItemKind::Use(ref use_tree) => {
822                 self.future_proof_import(use_tree);
823             }
824
825             ItemKind::ExternCrate(..) |
826             ItemKind::MacroDef(..) | ItemKind::GlobalAsm(..) => {
827                 // do nothing, these are just around to be encoded
828             }
829
830             ItemKind::Mac(_) => panic!("unexpanded macro in resolve!"),
831         }
832     }
833
834     fn with_generic_param_rib<'c, F>(&'c mut self, generics: &'c Generics, kind: RibKind<'a>, f: F)
835         where F: FnOnce(&mut Self)
836     {
837         debug!("with_generic_param_rib");
838         let mut function_type_rib = Rib::new(kind);
839         let mut function_value_rib = Rib::new(kind);
840         let mut seen_bindings = FxHashMap::default();
841
842         // We also can't shadow bindings from the parent item
843         if let AssocItemRibKind = kind {
844             let mut add_bindings_for_ns = |ns| {
845                 let parent_rib = self.ribs[ns].iter()
846                     .rfind(|r| if let ItemRibKind(_) = r.kind { true } else { false })
847                     .expect("associated item outside of an item");
848                 seen_bindings.extend(
849                     parent_rib.bindings.iter().map(|(ident, _)| (*ident, ident.span)),
850                 );
851             };
852             add_bindings_for_ns(ValueNS);
853             add_bindings_for_ns(TypeNS);
854         }
855
856         for param in &generics.params {
857             if let GenericParamKind::Lifetime { .. } = param.kind {
858                 continue;
859             }
860
861             let def_kind = match param.kind {
862                 GenericParamKind::Type { .. } => DefKind::TyParam,
863                 GenericParamKind::Const { .. } => DefKind::ConstParam,
864                 _ => unreachable!(),
865             };
866
867             let ident = param.ident.modern();
868             debug!("with_generic_param_rib: {}", param.id);
869
870             if seen_bindings.contains_key(&ident) {
871                 let span = seen_bindings.get(&ident).unwrap();
872                 let err = ResolutionError::NameAlreadyUsedInParameterList(
873                     ident.name,
874                     *span,
875                 );
876                 self.r.report_error(param.ident.span, err);
877             }
878             seen_bindings.entry(ident).or_insert(param.ident.span);
879
880             // Plain insert (no renaming).
881             let res = Res::Def(def_kind, self.r.definitions.local_def_id(param.id));
882
883             match param.kind {
884                 GenericParamKind::Type { .. } => {
885                     function_type_rib.bindings.insert(ident, res);
886                     self.r.record_partial_res(param.id, PartialRes::new(res));
887                 }
888                 GenericParamKind::Const { .. } => {
889                     function_value_rib.bindings.insert(ident, res);
890                     self.r.record_partial_res(param.id, PartialRes::new(res));
891                 }
892                 _ => unreachable!(),
893             }
894         }
895
896         self.ribs[ValueNS].push(function_value_rib);
897         self.ribs[TypeNS].push(function_type_rib);
898
899         f(self);
900
901         self.ribs[TypeNS].pop();
902         self.ribs[ValueNS].pop();
903     }
904
905     fn with_label_rib(&mut self, kind: RibKind<'a>, f: impl FnOnce(&mut Self)) {
906         self.label_ribs.push(Rib::new(kind));
907         f(self);
908         self.label_ribs.pop();
909     }
910
911     fn with_item_rib(&mut self, has_generic_params: HasGenericParams, f: impl FnOnce(&mut Self)) {
912         let kind = ItemRibKind(has_generic_params);
913         self.with_rib(ValueNS, kind, |this| this.with_rib(TypeNS, kind, f))
914     }
915
916     fn with_constant_rib(&mut self, f: impl FnOnce(&mut Self)) {
917         debug!("with_constant_rib");
918         self.with_rib(ValueNS, ConstantItemRibKind, |this| {
919             this.with_label_rib(ConstantItemRibKind, f);
920         });
921     }
922
923     fn with_current_self_type<T>(&mut self, self_type: &Ty, f: impl FnOnce(&mut Self) -> T) -> T {
924         // Handle nested impls (inside fn bodies)
925         let previous_value = replace(
926             &mut self.diagnostic_metadata.current_self_type,
927             Some(self_type.clone()),
928         );
929         let result = f(self);
930         self.diagnostic_metadata.current_self_type = previous_value;
931         result
932     }
933
934     fn with_current_self_item<T>(&mut self, self_item: &Item, f: impl FnOnce(&mut Self) -> T) -> T {
935         let previous_value = replace(
936             &mut self.diagnostic_metadata.current_self_item,
937             Some(self_item.id),
938         );
939         let result = f(self);
940         self.diagnostic_metadata.current_self_item = previous_value;
941         result
942     }
943
944     /// When evaluating a `trait` use its associated types' idents for suggestionsa in E0412.
945     fn with_trait_items<T>(
946         &mut self,
947         trait_items: &Vec<TraitItem>,
948         f: impl FnOnce(&mut Self) -> T,
949     ) -> T {
950         let trait_assoc_types = replace(
951             &mut self.diagnostic_metadata.current_trait_assoc_types,
952             trait_items.iter().filter_map(|item| match &item.kind {
953                 TraitItemKind::Type(bounds, _) if bounds.len() == 0 => Some(item.ident),
954                 _ => None,
955             }).collect(),
956         );
957         let result = f(self);
958         self.diagnostic_metadata.current_trait_assoc_types = trait_assoc_types;
959         result
960     }
961
962     /// This is called to resolve a trait reference from an `impl` (i.e., `impl Trait for Foo`).
963     fn with_optional_trait_ref<T>(
964         &mut self,
965         opt_trait_ref: Option<&TraitRef>,
966         f: impl FnOnce(&mut Self, Option<DefId>) -> T
967     ) -> T {
968         let mut new_val = None;
969         let mut new_id = None;
970         if let Some(trait_ref) = opt_trait_ref {
971             let path: Vec<_> = Segment::from_path(&trait_ref.path);
972             let res = self.smart_resolve_path_fragment(
973                 trait_ref.ref_id,
974                 None,
975                 &path,
976                 trait_ref.path.span,
977                 PathSource::Trait(AliasPossibility::No),
978                 CrateLint::SimplePath(trait_ref.ref_id),
979             ).base_res();
980             if res != Res::Err {
981                 new_id = Some(res.def_id());
982                 let span = trait_ref.path.span;
983                 if let PathResult::Module(ModuleOrUniformRoot::Module(module)) =
984                     self.resolve_path(
985                         &path,
986                         Some(TypeNS),
987                         false,
988                         span,
989                         CrateLint::SimplePath(trait_ref.ref_id),
990                     )
991                 {
992                     new_val = Some((module, trait_ref.clone()));
993                 }
994             }
995         }
996         let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
997         let result = f(self, new_id);
998         self.current_trait_ref = original_trait_ref;
999         result
1000     }
1001
1002     fn with_self_rib_ns(&mut self, ns: Namespace, self_res: Res, f: impl FnOnce(&mut Self)) {
1003         let mut self_type_rib = Rib::new(NormalRibKind);
1004
1005         // Plain insert (no renaming, since types are not currently hygienic)
1006         self_type_rib.bindings.insert(Ident::with_dummy_span(kw::SelfUpper), self_res);
1007         self.ribs[ns].push(self_type_rib);
1008         f(self);
1009         self.ribs[ns].pop();
1010     }
1011
1012     fn with_self_rib(&mut self, self_res: Res, f: impl FnOnce(&mut Self)) {
1013         self.with_self_rib_ns(TypeNS, self_res, f)
1014     }
1015
1016     fn resolve_implementation(&mut self,
1017                               generics: &Generics,
1018                               opt_trait_reference: &Option<TraitRef>,
1019                               self_type: &Ty,
1020                               item_id: NodeId,
1021                               impl_items: &[ImplItem]) {
1022         debug!("resolve_implementation");
1023         // If applicable, create a rib for the type parameters.
1024         self.with_generic_param_rib(generics, ItemRibKind(HasGenericParams::Yes), |this| {
1025             // Dummy self type for better errors if `Self` is used in the trait path.
1026             this.with_self_rib(Res::SelfTy(None, None), |this| {
1027                 // Resolve the trait reference, if necessary.
1028                 this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| {
1029                     let item_def_id = this.r.definitions.local_def_id(item_id);
1030                     this.with_self_rib(Res::SelfTy(trait_id, Some(item_def_id)), |this| {
1031                         if let Some(trait_ref) = opt_trait_reference.as_ref() {
1032                             // Resolve type arguments in the trait path.
1033                             visit::walk_trait_ref(this, trait_ref);
1034                         }
1035                         // Resolve the self type.
1036                         this.visit_ty(self_type);
1037                         // Resolve the generic parameters.
1038                         this.visit_generics(generics);
1039                         // Resolve the items within the impl.
1040                         this.with_current_self_type(self_type, |this| {
1041                             this.with_self_rib_ns(ValueNS, Res::SelfCtor(item_def_id), |this| {
1042                                 debug!("resolve_implementation with_self_rib_ns(ValueNS, ...)");
1043                                 for impl_item in impl_items {
1044                                     // We also need a new scope for the impl item type parameters.
1045                                     this.with_generic_param_rib(&impl_item.generics,
1046                                                                 AssocItemRibKind,
1047                                                                 |this| {
1048                                         use crate::ResolutionError::*;
1049                                         match impl_item.kind {
1050                                             ImplItemKind::Const(..) => {
1051                                                 debug!(
1052                                                     "resolve_implementation ImplItemKind::Const",
1053                                                 );
1054                                                 // If this is a trait impl, ensure the const
1055                                                 // exists in trait
1056                                                 this.check_trait_item(
1057                                                     impl_item.ident,
1058                                                     ValueNS,
1059                                                     impl_item.span,
1060                                                     |n, s| ConstNotMemberOfTrait(n, s),
1061                                                 );
1062
1063                                                 this.with_constant_rib(|this| {
1064                                                     visit::walk_impl_item(this, impl_item)
1065                                                 });
1066                                             }
1067                                             ImplItemKind::Method(..) => {
1068                                                 // If this is a trait impl, ensure the method
1069                                                 // exists in trait
1070                                                 this.check_trait_item(impl_item.ident,
1071                                                                       ValueNS,
1072                                                                       impl_item.span,
1073                                                     |n, s| MethodNotMemberOfTrait(n, s));
1074
1075                                                 visit::walk_impl_item(this, impl_item);
1076                                             }
1077                                             ImplItemKind::TyAlias(ref ty) => {
1078                                                 // If this is a trait impl, ensure the type
1079                                                 // exists in trait
1080                                                 this.check_trait_item(impl_item.ident,
1081                                                                       TypeNS,
1082                                                                       impl_item.span,
1083                                                     |n, s| TypeNotMemberOfTrait(n, s));
1084
1085                                                 this.visit_ty(ty);
1086                                             }
1087                                             ImplItemKind::Macro(_) =>
1088                                                 panic!("unexpanded macro in resolve!"),
1089                                         }
1090                                     });
1091                                 }
1092                             });
1093                         });
1094                     });
1095                 });
1096             });
1097         });
1098     }
1099
1100     fn check_trait_item<F>(&mut self, ident: Ident, ns: Namespace, span: Span, err: F)
1101         where F: FnOnce(Name, &str) -> ResolutionError<'_>
1102     {
1103         // If there is a TraitRef in scope for an impl, then the method must be in the
1104         // trait.
1105         if let Some((module, _)) = self.current_trait_ref {
1106             if self.r.resolve_ident_in_module(
1107                 ModuleOrUniformRoot::Module(module),
1108                 ident,
1109                 ns,
1110                 &self.parent_scope,
1111                 false,
1112                 span,
1113             ).is_err() {
1114                 let path = &self.current_trait_ref.as_ref().unwrap().1.path;
1115                 self.r.report_error(span, err(ident.name, &path_names_to_string(path)));
1116             }
1117         }
1118     }
1119
1120     fn resolve_params(&mut self, params: &[Param]) {
1121         let mut bindings = smallvec![(PatBoundCtx::Product, Default::default())];
1122         for Param { pat, ty, .. } in params {
1123             self.resolve_pattern(pat, PatternSource::FnParam, &mut bindings);
1124             self.visit_ty(ty);
1125             debug!("(resolving function / closure) recorded parameter");
1126         }
1127     }
1128
1129     fn resolve_local(&mut self, local: &Local) {
1130         // Resolve the type.
1131         walk_list!(self, visit_ty, &local.ty);
1132
1133         // Resolve the initializer.
1134         walk_list!(self, visit_expr, &local.init);
1135
1136         // Resolve the pattern.
1137         self.resolve_pattern_top(&local.pat, PatternSource::Let);
1138     }
1139
1140     /// build a map from pattern identifiers to binding-info's.
1141     /// this is done hygienically. This could arise for a macro
1142     /// that expands into an or-pattern where one 'x' was from the
1143     /// user and one 'x' came from the macro.
1144     fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
1145         let mut binding_map = FxHashMap::default();
1146
1147         pat.walk(&mut |pat| {
1148             match pat.kind {
1149                 PatKind::Ident(binding_mode, ident, ref sub_pat)
1150                     if sub_pat.is_some() || self.is_base_res_local(pat.id) =>
1151                 {
1152                     binding_map.insert(ident, BindingInfo { span: ident.span, binding_mode });
1153                 }
1154                 PatKind::Or(ref ps) => {
1155                     // Check the consistency of this or-pattern and
1156                     // then add all bindings to the larger map.
1157                     for bm in self.check_consistent_bindings(ps) {
1158                         binding_map.extend(bm);
1159                     }
1160                     return false;
1161                 }
1162                 _ => {}
1163             }
1164
1165             true
1166         });
1167
1168         binding_map
1169     }
1170
1171     fn is_base_res_local(&self, nid: NodeId) -> bool {
1172         match self.r.partial_res_map.get(&nid).map(|res| res.base_res()) {
1173             Some(Res::Local(..)) => true,
1174             _ => false,
1175         }
1176     }
1177
1178     /// Checks that all of the arms in an or-pattern have exactly the
1179     /// same set of bindings, with the same binding modes for each.
1180     fn check_consistent_bindings(&mut self, pats: &[P<Pat>]) -> Vec<BindingMap> {
1181         let mut missing_vars = FxHashMap::default();
1182         let mut inconsistent_vars = FxHashMap::default();
1183
1184         // 1) Compute the binding maps of all arms.
1185         let maps = pats.iter()
1186             .map(|pat| self.binding_mode_map(pat))
1187             .collect::<Vec<_>>();
1188
1189         // 2) Record any missing bindings or binding mode inconsistencies.
1190         for (map_outer, pat_outer) in pats.iter().enumerate().map(|(idx, pat)| (&maps[idx], pat)) {
1191             // Check against all arms except for the same pattern which is always self-consistent.
1192             let inners = pats.iter().enumerate()
1193                 .filter(|(_, pat)| pat.id != pat_outer.id)
1194                 .flat_map(|(idx, _)| maps[idx].iter())
1195                 .map(|(key, binding)| (key.name, map_outer.get(&key), binding));
1196
1197             for (name, info, &binding_inner) in inners {
1198                 match info {
1199                     None => { // The inner binding is missing in the outer.
1200                         let binding_error = missing_vars
1201                             .entry(name)
1202                             .or_insert_with(|| BindingError {
1203                                 name,
1204                                 origin: BTreeSet::new(),
1205                                 target: BTreeSet::new(),
1206                                 could_be_path: name.as_str().starts_with(char::is_uppercase),
1207                             });
1208                         binding_error.origin.insert(binding_inner.span);
1209                         binding_error.target.insert(pat_outer.span);
1210                     }
1211                     Some(binding_outer) => {
1212                         if binding_outer.binding_mode != binding_inner.binding_mode {
1213                             // The binding modes in the outer and inner bindings differ.
1214                             inconsistent_vars
1215                                 .entry(name)
1216                                 .or_insert((binding_inner.span, binding_outer.span));
1217                         }
1218                     }
1219                 }
1220             }
1221         }
1222
1223         // 3) Report all missing variables we found.
1224         let mut missing_vars = missing_vars.iter_mut().collect::<Vec<_>>();
1225         missing_vars.sort();
1226         for (name, mut v) in missing_vars {
1227             if inconsistent_vars.contains_key(name) {
1228                 v.could_be_path = false;
1229             }
1230             self.r.report_error(
1231                 *v.origin.iter().next().unwrap(),
1232                 ResolutionError::VariableNotBoundInPattern(v));
1233         }
1234
1235         // 4) Report all inconsistencies in binding modes we found.
1236         let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
1237         inconsistent_vars.sort();
1238         for (name, v) in inconsistent_vars {
1239             self.r.report_error(v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
1240         }
1241
1242         // 5) Finally bubble up all the binding maps.
1243         maps
1244     }
1245
1246     /// Check the consistency of the outermost or-patterns.
1247     fn check_consistent_bindings_top(&mut self, pat: &Pat) {
1248         pat.walk(&mut |pat| match pat.kind {
1249             PatKind::Or(ref ps) => {
1250                 self.check_consistent_bindings(ps);
1251                 false
1252             },
1253             _ => true,
1254         })
1255     }
1256
1257     fn resolve_arm(&mut self, arm: &Arm) {
1258         self.with_rib(ValueNS, NormalRibKind, |this| {
1259             this.resolve_pattern_top(&arm.pat, PatternSource::Match);
1260             walk_list!(this, visit_expr, &arm.guard);
1261             this.visit_expr(&arm.body);
1262         });
1263     }
1264
1265     /// Arising from `source`, resolve a top level pattern.
1266     fn resolve_pattern_top(&mut self, pat: &Pat, pat_src: PatternSource) {
1267         let mut bindings = smallvec![(PatBoundCtx::Product, Default::default())];
1268         self.resolve_pattern(pat, pat_src, &mut bindings);
1269     }
1270
1271     fn resolve_pattern(
1272         &mut self,
1273         pat: &Pat,
1274         pat_src: PatternSource,
1275         bindings: &mut SmallVec<[(PatBoundCtx, FxHashSet<Ident>); 1]>,
1276     ) {
1277         self.resolve_pattern_inner(pat, pat_src, bindings);
1278         // This has to happen *after* we determine which pat_idents are variants:
1279         self.check_consistent_bindings_top(pat);
1280         visit::walk_pat(self, pat);
1281     }
1282
1283     /// Resolve bindings in a pattern. This is a helper to `resolve_pattern`.
1284     ///
1285     /// ### `bindings`
1286     ///
1287     /// A stack of sets of bindings accumulated.
1288     ///
1289     /// In each set, `PatBoundCtx::Product` denotes that a found binding in it should
1290     /// be interpreted as re-binding an already bound binding. This results in an error.
1291     /// Meanwhile, `PatBound::Or` denotes that a found binding in the set should result
1292     /// in reusing this binding rather than creating a fresh one.
1293     ///
1294     /// When called at the top level, the stack must have a single element
1295     /// with `PatBound::Product`. Otherwise, pushing to the stack happens as
1296     /// or-patterns (`p_0 | ... | p_n`) are encountered and the context needs
1297     /// to be switched to `PatBoundCtx::Or` and then `PatBoundCtx::Product` for each `p_i`.
1298     /// When each `p_i` has been dealt with, the top set is merged with its parent.
1299     /// When a whole or-pattern has been dealt with, the thing happens.
1300     ///
1301     /// See the implementation and `fresh_binding` for more details.
1302     fn resolve_pattern_inner(
1303         &mut self,
1304         pat: &Pat,
1305         pat_src: PatternSource,
1306         bindings: &mut SmallVec<[(PatBoundCtx, FxHashSet<Ident>); 1]>,
1307     ) {
1308         // Visit all direct subpatterns of this pattern.
1309         pat.walk(&mut |pat| {
1310             debug!("resolve_pattern pat={:?} node={:?}", pat, pat.kind);
1311             match pat.kind {
1312                 PatKind::Ident(bmode, ident, ref sub) => {
1313                     // First try to resolve the identifier as some existing entity,
1314                     // then fall back to a fresh binding.
1315                     let has_sub = sub.is_some();
1316                     let res = self.try_resolve_as_non_binding(pat_src, pat, bmode, ident, has_sub)
1317                         .unwrap_or_else(|| self.fresh_binding(ident, pat.id, pat_src, bindings));
1318                     self.r.record_partial_res(pat.id, PartialRes::new(res));
1319                 }
1320                 PatKind::TupleStruct(ref path, ..) => {
1321                     self.smart_resolve_path(pat.id, None, path, PathSource::TupleStruct);
1322                 }
1323                 PatKind::Path(ref qself, ref path) => {
1324                     self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
1325                 }
1326                 PatKind::Struct(ref path, ..) => {
1327                     self.smart_resolve_path(pat.id, None, path, PathSource::Struct);
1328                 }
1329                 PatKind::Or(ref ps) => {
1330                     // Add a new set of bindings to the stack. `Or` here records that when a
1331                     // binding already exists in this set, it should not result in an error because
1332                     // `V1(a) | V2(a)` must be allowed and are checked for consistency later.
1333                     bindings.push((PatBoundCtx::Or, Default::default()));
1334                     for p in ps {
1335                         // Now we need to switch back to a product context so that each
1336                         // part of the or-pattern internally rejects already bound names.
1337                         // For example, `V1(a) | V2(a, a)` and `V1(a, a) | V2(a)` are bad.
1338                         bindings.push((PatBoundCtx::Product, Default::default()));
1339                         self.resolve_pattern_inner(p, pat_src, bindings);
1340                         // Move up the non-overlapping bindings to the or-pattern.
1341                         // Existing bindings just get "merged".
1342                         let collected = bindings.pop().unwrap().1;
1343                         bindings.last_mut().unwrap().1.extend(collected);
1344                     }
1345                     // This or-pattern itself can itself be part of a product,
1346                     // e.g. `(V1(a) | V2(a), a)` or `(a, V1(a) | V2(a))`.
1347                     // Both cases bind `a` again in a product pattern and must be rejected.
1348                     let collected = bindings.pop().unwrap().1;
1349                     bindings.last_mut().unwrap().1.extend(collected);
1350
1351                     // Prevent visiting `ps` as we've already done so above.
1352                     return false;
1353                 }
1354                 _ => {}
1355             }
1356             true
1357         });
1358     }
1359
1360     fn fresh_binding(
1361         &mut self,
1362         ident: Ident,
1363         pat_id: NodeId,
1364         pat_src: PatternSource,
1365         bindings: &mut SmallVec<[(PatBoundCtx, FxHashSet<Ident>); 1]>,
1366     ) -> Res {
1367         // Add the binding to the local ribs, if it doesn't already exist in the bindings map.
1368         // (We must not add it if it's in the bindings map because that breaks the assumptions
1369         // later passes make about or-patterns.)
1370         let ident = ident.modern_and_legacy();
1371
1372         // Walk outwards the stack of products / or-patterns and
1373         // find out if the identifier has been bound in any of these.
1374         let mut already_bound_and = false;
1375         let mut already_bound_or = false;
1376         for (is_sum, set) in bindings.iter_mut().rev() {
1377             match (is_sum, set.get(&ident).cloned()) {
1378                 // Already bound in a product pattern, e.g. `(a, a)` which is not allowed.
1379                 (PatBoundCtx::Product, Some(..)) => already_bound_and = true,
1380                 // Already bound in an or-pattern, e.g. `V1(a) | V2(a)`.
1381                 // This is *required* for consistency which is checked later.
1382                 (PatBoundCtx::Or, Some(..)) => already_bound_or = true,
1383                 // Not already bound here.
1384                 _ => {}
1385             }
1386         }
1387
1388         if already_bound_and {
1389             // Overlap in a product pattern somewhere; report an error.
1390             use ResolutionError::*;
1391             let error = match pat_src {
1392                 // `fn f(a: u8, a: u8)`:
1393                 PatternSource::FnParam => IdentifierBoundMoreThanOnceInParameterList,
1394                 // `Variant(a, a)`:
1395                 _ => IdentifierBoundMoreThanOnceInSamePattern,
1396             };
1397             self.r.report_error(ident.span, error(&ident.as_str()));
1398         }
1399
1400         // Record as bound if it's valid:
1401         let ident_valid = ident.name != kw::Invalid;
1402         if ident_valid {
1403             bindings.last_mut().unwrap().1.insert(ident);
1404         }
1405
1406         if already_bound_or {
1407             // `Variant1(a) | Variant2(a)`, ok
1408             // Reuse definition from the first `a`.
1409             self.innermost_rib_bindings(ValueNS)[&ident]
1410         } else {
1411             let res = Res::Local(pat_id);
1412             if ident_valid {
1413                 // A completely fresh binding add to the set if it's valid.
1414                 self.innermost_rib_bindings(ValueNS).insert(ident, res);
1415             }
1416             res
1417         }
1418     }
1419
1420     fn innermost_rib_bindings(&mut self, ns: Namespace) -> &mut IdentMap<Res> {
1421         &mut self.ribs[ns].last_mut().unwrap().bindings
1422     }
1423
1424     fn try_resolve_as_non_binding(
1425         &mut self,
1426         pat_src: PatternSource,
1427         pat: &Pat,
1428         bm: BindingMode,
1429         ident: Ident,
1430         has_sub: bool,
1431     ) -> Option<Res> {
1432         let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, None, pat.span)?.item()?;
1433         let res = binding.res();
1434
1435         // An immutable (no `mut`) by-value (no `ref`) binding pattern without
1436         // a sub pattern (no `@ $pat`) is syntactically ambiguous as it could
1437         // also be interpreted as a path to e.g. a constant, variant, etc.
1438         let is_syntactic_ambiguity = !has_sub && bm == BindingMode::ByValue(Mutability::Immutable);
1439
1440         match res {
1441             Res::Def(DefKind::Ctor(_, CtorKind::Const), _) |
1442             Res::Def(DefKind::Const, _) if is_syntactic_ambiguity => {
1443                 // Disambiguate in favor of a unit struct/variant or constant pattern.
1444                 self.r.record_use(ident, ValueNS, binding, false);
1445                 Some(res)
1446             }
1447             Res::Def(DefKind::Ctor(..), _)
1448             | Res::Def(DefKind::Const, _)
1449             | Res::Def(DefKind::Static, _) => {
1450                 // This is unambiguously a fresh binding, either syntactically
1451                 // (e.g., `IDENT @ PAT` or `ref IDENT`) or because `IDENT` resolves
1452                 // to something unusable as a pattern (e.g., constructor function),
1453                 // but we still conservatively report an error, see
1454                 // issues/33118#issuecomment-233962221 for one reason why.
1455                 self.r.report_error(
1456                     ident.span,
1457                     ResolutionError::BindingShadowsSomethingUnacceptable(
1458                         pat_src.descr(),
1459                         ident.name,
1460                         binding,
1461                     ),
1462                 );
1463                 None
1464             }
1465             Res::Def(DefKind::Fn, _) | Res::Err => {
1466                 // These entities are explicitly allowed to be shadowed by fresh bindings.
1467                 None
1468             }
1469             res => {
1470                 span_bug!(ident.span, "unexpected resolution for an \
1471                                         identifier in pattern: {:?}", res);
1472             }
1473         }
1474     }
1475
1476     // High-level and context dependent path resolution routine.
1477     // Resolves the path and records the resolution into definition map.
1478     // If resolution fails tries several techniques to find likely
1479     // resolution candidates, suggest imports or other help, and report
1480     // errors in user friendly way.
1481     fn smart_resolve_path(&mut self,
1482                           id: NodeId,
1483                           qself: Option<&QSelf>,
1484                           path: &Path,
1485                           source: PathSource<'_>) {
1486         self.smart_resolve_path_fragment(
1487             id,
1488             qself,
1489             &Segment::from_path(path),
1490             path.span,
1491             source,
1492             CrateLint::SimplePath(id),
1493         );
1494     }
1495
1496     fn smart_resolve_path_fragment(&mut self,
1497                                    id: NodeId,
1498                                    qself: Option<&QSelf>,
1499                                    path: &[Segment],
1500                                    span: Span,
1501                                    source: PathSource<'_>,
1502                                    crate_lint: CrateLint)
1503                                    -> PartialRes {
1504         let ns = source.namespace();
1505         let is_expected = &|res| source.is_expected(res);
1506
1507         let report_errors = |this: &mut Self, res: Option<Res>| {
1508             let (err, candidates) = this.smart_resolve_report_errors(path, span, source, res);
1509             let def_id = this.parent_scope.module.normal_ancestor_id;
1510             let node_id = this.r.definitions.as_local_node_id(def_id).unwrap();
1511             let better = res.is_some();
1512             this.r.use_injections.push(UseError { err, candidates, node_id, better });
1513             PartialRes::new(Res::Err)
1514         };
1515
1516         let partial_res = match self.resolve_qpath_anywhere(
1517             id,
1518             qself,
1519             path,
1520             ns,
1521             span,
1522             source.defer_to_typeck(),
1523             crate_lint,
1524         ) {
1525             Some(partial_res) if partial_res.unresolved_segments() == 0 => {
1526                 if is_expected(partial_res.base_res()) || partial_res.base_res() == Res::Err {
1527                     partial_res
1528                 } else {
1529                     report_errors(self, Some(partial_res.base_res()))
1530                 }
1531             }
1532             Some(partial_res) if source.defer_to_typeck() => {
1533                 // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
1534                 // or `<T>::A::B`. If `B` should be resolved in value namespace then
1535                 // it needs to be added to the trait map.
1536                 if ns == ValueNS {
1537                     let item_name = path.last().unwrap().ident;
1538                     let traits = self.get_traits_containing_item(item_name, ns);
1539                     self.r.trait_map.insert(id, traits);
1540                 }
1541
1542                 let mut std_path = vec![Segment::from_ident(Ident::with_dummy_span(sym::std))];
1543                 std_path.extend(path);
1544                 if self.r.primitive_type_table.primitive_types.contains_key(&path[0].ident.name) {
1545                     let cl = CrateLint::No;
1546                     let ns = Some(ns);
1547                     if let PathResult::Module(_) | PathResult::NonModule(_) =
1548                             self.resolve_path(&std_path, ns, false, span, cl) {
1549                         // check if we wrote `str::from_utf8` instead of `std::str::from_utf8`
1550                         let item_span = path.iter().last().map(|segment| segment.ident.span)
1551                             .unwrap_or(span);
1552                         debug!("accessed item from `std` submodule as a bare type {:?}", std_path);
1553                         let mut hm = self.r.session.confused_type_with_std_module.borrow_mut();
1554                         hm.insert(item_span, span);
1555                         // In some places (E0223) we only have access to the full path
1556                         hm.insert(span, span);
1557                     }
1558                 }
1559                 partial_res
1560             }
1561             _ => report_errors(self, None)
1562         };
1563
1564         if let PathSource::TraitItem(..) = source {} else {
1565             // Avoid recording definition of `A::B` in `<T as A>::B::C`.
1566             self.r.record_partial_res(id, partial_res);
1567         }
1568         partial_res
1569     }
1570
1571     fn self_type_is_available(&mut self, span: Span) -> bool {
1572         let binding = self.resolve_ident_in_lexical_scope(
1573             Ident::with_dummy_span(kw::SelfUpper),
1574             TypeNS,
1575             None,
1576             span,
1577         );
1578         if let Some(LexicalScopeBinding::Res(res)) = binding { res != Res::Err } else { false }
1579     }
1580
1581     fn self_value_is_available(&mut self, self_span: Span, path_span: Span) -> bool {
1582         let ident = Ident::new(kw::SelfLower, self_span);
1583         let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, None, path_span);
1584         if let Some(LexicalScopeBinding::Res(res)) = binding { res != Res::Err } else { false }
1585     }
1586
1587     // Resolve in alternative namespaces if resolution in the primary namespace fails.
1588     fn resolve_qpath_anywhere(
1589         &mut self,
1590         id: NodeId,
1591         qself: Option<&QSelf>,
1592         path: &[Segment],
1593         primary_ns: Namespace,
1594         span: Span,
1595         defer_to_typeck: bool,
1596         crate_lint: CrateLint,
1597     ) -> Option<PartialRes> {
1598         let mut fin_res = None;
1599         for (i, ns) in [primary_ns, TypeNS, ValueNS].iter().cloned().enumerate() {
1600             if i == 0 || ns != primary_ns {
1601                 match self.resolve_qpath(id, qself, path, ns, span, crate_lint) {
1602                     // If defer_to_typeck, then resolution > no resolution,
1603                     // otherwise full resolution > partial resolution > no resolution.
1604                     Some(partial_res) if partial_res.unresolved_segments() == 0 ||
1605                                          defer_to_typeck =>
1606                         return Some(partial_res),
1607                     partial_res => if fin_res.is_none() { fin_res = partial_res },
1608                 }
1609             }
1610         }
1611
1612         // `MacroNS`
1613         assert!(primary_ns != MacroNS);
1614         if qself.is_none() {
1615             let path_seg = |seg: &Segment| PathSegment::from_ident(seg.ident);
1616             let path = Path { segments: path.iter().map(path_seg).collect(), span };
1617             if let Ok((_, res)) = self.r.resolve_macro_path(
1618                 &path, None, &self.parent_scope, false, false
1619             ) {
1620                 return Some(PartialRes::new(res));
1621             }
1622         }
1623
1624         fin_res
1625     }
1626
1627     /// Handles paths that may refer to associated items.
1628     fn resolve_qpath(
1629         &mut self,
1630         id: NodeId,
1631         qself: Option<&QSelf>,
1632         path: &[Segment],
1633         ns: Namespace,
1634         span: Span,
1635         crate_lint: CrateLint,
1636     ) -> Option<PartialRes> {
1637         debug!(
1638             "resolve_qpath(id={:?}, qself={:?}, path={:?}, ns={:?}, span={:?})",
1639             id,
1640             qself,
1641             path,
1642             ns,
1643             span,
1644         );
1645
1646         if let Some(qself) = qself {
1647             if qself.position == 0 {
1648                 // This is a case like `<T>::B`, where there is no
1649                 // trait to resolve.  In that case, we leave the `B`
1650                 // segment to be resolved by type-check.
1651                 return Some(PartialRes::with_unresolved_segments(
1652                     Res::Def(DefKind::Mod, DefId::local(CRATE_DEF_INDEX)), path.len()
1653                 ));
1654             }
1655
1656             // Make sure `A::B` in `<T as A::B>::C` is a trait item.
1657             //
1658             // Currently, `path` names the full item (`A::B::C`, in
1659             // our example).  so we extract the prefix of that that is
1660             // the trait (the slice upto and including
1661             // `qself.position`). And then we recursively resolve that,
1662             // but with `qself` set to `None`.
1663             //
1664             // However, setting `qself` to none (but not changing the
1665             // span) loses the information about where this path
1666             // *actually* appears, so for the purposes of the crate
1667             // lint we pass along information that this is the trait
1668             // name from a fully qualified path, and this also
1669             // contains the full span (the `CrateLint::QPathTrait`).
1670             let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
1671             let partial_res = self.smart_resolve_path_fragment(
1672                 id,
1673                 None,
1674                 &path[..=qself.position],
1675                 span,
1676                 PathSource::TraitItem(ns),
1677                 CrateLint::QPathTrait {
1678                     qpath_id: id,
1679                     qpath_span: qself.path_span,
1680                 },
1681             );
1682
1683             // The remaining segments (the `C` in our example) will
1684             // have to be resolved by type-check, since that requires doing
1685             // trait resolution.
1686             return Some(PartialRes::with_unresolved_segments(
1687                 partial_res.base_res(),
1688                 partial_res.unresolved_segments() + path.len() - qself.position - 1,
1689             ));
1690         }
1691
1692         let result = match self.resolve_path(&path, Some(ns), true, span, crate_lint) {
1693             PathResult::NonModule(path_res) => path_res,
1694             PathResult::Module(ModuleOrUniformRoot::Module(module)) if !module.is_normal() => {
1695                 PartialRes::new(module.res().unwrap())
1696             }
1697             // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
1698             // don't report an error right away, but try to fallback to a primitive type.
1699             // So, we are still able to successfully resolve something like
1700             //
1701             // use std::u8; // bring module u8 in scope
1702             // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
1703             //     u8::max_value() // OK, resolves to associated function <u8>::max_value,
1704             //                     // not to non-existent std::u8::max_value
1705             // }
1706             //
1707             // Such behavior is required for backward compatibility.
1708             // The same fallback is used when `a` resolves to nothing.
1709             PathResult::Module(ModuleOrUniformRoot::Module(_)) |
1710             PathResult::Failed { .. }
1711                     if (ns == TypeNS || path.len() > 1) &&
1712                        self.r.primitive_type_table.primitive_types
1713                            .contains_key(&path[0].ident.name) => {
1714                 let prim = self.r.primitive_type_table.primitive_types[&path[0].ident.name];
1715                 PartialRes::with_unresolved_segments(Res::PrimTy(prim), path.len() - 1)
1716             }
1717             PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
1718                 PartialRes::new(module.res().unwrap()),
1719             PathResult::Failed { is_error_from_last_segment: false, span, label, suggestion } => {
1720                 self.r.report_error(span, ResolutionError::FailedToResolve { label, suggestion });
1721                 PartialRes::new(Res::Err)
1722             }
1723             PathResult::Module(..) | PathResult::Failed { .. } => return None,
1724             PathResult::Indeterminate => bug!("indetermined path result in resolve_qpath"),
1725         };
1726
1727         if path.len() > 1 && result.base_res() != Res::Err &&
1728            path[0].ident.name != kw::PathRoot &&
1729            path[0].ident.name != kw::DollarCrate {
1730             let unqualified_result = {
1731                 match self.resolve_path(
1732                     &[*path.last().unwrap()],
1733                     Some(ns),
1734                     false,
1735                     span,
1736                     CrateLint::No,
1737                 ) {
1738                     PathResult::NonModule(path_res) => path_res.base_res(),
1739                     PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
1740                         module.res().unwrap(),
1741                     _ => return Some(result),
1742                 }
1743             };
1744             if result.base_res() == unqualified_result {
1745                 let lint = lint::builtin::UNUSED_QUALIFICATIONS;
1746                 self.r.lint_buffer.buffer_lint(lint, id, span, "unnecessary qualification")
1747             }
1748         }
1749
1750         Some(result)
1751     }
1752
1753     fn with_resolved_label(&mut self, label: Option<Label>, id: NodeId, f: impl FnOnce(&mut Self)) {
1754         if let Some(label) = label {
1755             self.diagnostic_metadata.unused_labels.insert(id, label.ident.span);
1756             self.with_label_rib(NormalRibKind, |this| {
1757                 let ident = label.ident.modern_and_legacy();
1758                 this.label_ribs.last_mut().unwrap().bindings.insert(ident, id);
1759                 f(this);
1760             });
1761         } else {
1762             f(self);
1763         }
1764     }
1765
1766     fn resolve_labeled_block(&mut self, label: Option<Label>, id: NodeId, block: &Block) {
1767         self.with_resolved_label(label, id, |this| this.visit_block(block));
1768     }
1769
1770     fn resolve_block(&mut self, block: &Block) {
1771         debug!("(resolving block) entering block");
1772         // Move down in the graph, if there's an anonymous module rooted here.
1773         let orig_module = self.parent_scope.module;
1774         let anonymous_module = self.r.block_map.get(&block.id).cloned(); // clones a reference
1775
1776         let mut num_macro_definition_ribs = 0;
1777         if let Some(anonymous_module) = anonymous_module {
1778             debug!("(resolving block) found anonymous module, moving down");
1779             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
1780             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
1781             self.parent_scope.module = anonymous_module;
1782         } else {
1783             self.ribs[ValueNS].push(Rib::new(NormalRibKind));
1784         }
1785
1786         // Descend into the block.
1787         for stmt in &block.stmts {
1788             if let StmtKind::Item(ref item) = stmt.kind {
1789                 if let ItemKind::MacroDef(..) = item.kind {
1790                     num_macro_definition_ribs += 1;
1791                     let res = self.r.definitions.local_def_id(item.id);
1792                     self.ribs[ValueNS].push(Rib::new(MacroDefinition(res)));
1793                     self.label_ribs.push(Rib::new(MacroDefinition(res)));
1794                 }
1795             }
1796
1797             self.visit_stmt(stmt);
1798         }
1799
1800         // Move back up.
1801         self.parent_scope.module = orig_module;
1802         for _ in 0 .. num_macro_definition_ribs {
1803             self.ribs[ValueNS].pop();
1804             self.label_ribs.pop();
1805         }
1806         self.ribs[ValueNS].pop();
1807         if anonymous_module.is_some() {
1808             self.ribs[TypeNS].pop();
1809         }
1810         debug!("(resolving block) leaving block");
1811     }
1812
1813     fn resolve_expr(&mut self, expr: &Expr, parent: Option<&Expr>) {
1814         // First, record candidate traits for this expression if it could
1815         // result in the invocation of a method call.
1816
1817         self.record_candidate_traits_for_expr_if_necessary(expr);
1818
1819         // Next, resolve the node.
1820         match expr.kind {
1821             ExprKind::Path(ref qself, ref path) => {
1822                 self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
1823                 visit::walk_expr(self, expr);
1824             }
1825
1826             ExprKind::Struct(ref path, ..) => {
1827                 self.smart_resolve_path(expr.id, None, path, PathSource::Struct);
1828                 visit::walk_expr(self, expr);
1829             }
1830
1831             ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
1832                 let node_id = self.search_label(label.ident, |rib, ident| {
1833                     rib.bindings.get(&ident.modern_and_legacy()).cloned()
1834                 });
1835                 match node_id {
1836                     None => {
1837                         // Search again for close matches...
1838                         // Picks the first label that is "close enough", which is not necessarily
1839                         // the closest match
1840                         let close_match = self.search_label(label.ident, |rib, ident| {
1841                             let names = rib.bindings.iter().filter_map(|(id, _)| {
1842                                 if id.span.ctxt() == label.ident.span.ctxt() {
1843                                     Some(&id.name)
1844                                 } else {
1845                                     None
1846                                 }
1847                             });
1848                             find_best_match_for_name(names, &ident.as_str(), None)
1849                         });
1850                         self.r.record_partial_res(expr.id, PartialRes::new(Res::Err));
1851                         self.r.report_error(
1852                             label.ident.span,
1853                             ResolutionError::UndeclaredLabel(&label.ident.as_str(), close_match),
1854                         );
1855                     }
1856                     Some(node_id) => {
1857                         // Since this res is a label, it is never read.
1858                         self.r.label_res_map.insert(expr.id, node_id);
1859                         self.diagnostic_metadata.unused_labels.remove(&node_id);
1860                     }
1861                 }
1862
1863                 // visit `break` argument if any
1864                 visit::walk_expr(self, expr);
1865             }
1866
1867             ExprKind::Let(ref pat, ref scrutinee) => {
1868                 self.visit_expr(scrutinee);
1869                 self.resolve_pattern_top(pat, PatternSource::Let);
1870             }
1871
1872             ExprKind::If(ref cond, ref then, ref opt_else) => {
1873                 self.with_rib(ValueNS, NormalRibKind, |this| {
1874                     this.visit_expr(cond);
1875                     this.visit_block(then);
1876                 });
1877                 opt_else.as_ref().map(|expr| self.visit_expr(expr));
1878             }
1879
1880             ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),
1881
1882             ExprKind::While(ref cond, ref block, label) => {
1883                 self.with_resolved_label(label, expr.id, |this| {
1884                     this.with_rib(ValueNS, NormalRibKind, |this| {
1885                         this.visit_expr(cond);
1886                         this.visit_block(block);
1887                     })
1888                 });
1889             }
1890
1891             ExprKind::ForLoop(ref pat, ref iter_expr, ref block, label) => {
1892                 self.visit_expr(iter_expr);
1893                 self.with_rib(ValueNS, NormalRibKind, |this| {
1894                     this.resolve_pattern_top(pat, PatternSource::For);
1895                     this.resolve_labeled_block(label, expr.id, block);
1896                 });
1897             }
1898
1899             ExprKind::Block(ref block, label) => self.resolve_labeled_block(label, block.id, block),
1900
1901             // Equivalent to `visit::walk_expr` + passing some context to children.
1902             ExprKind::Field(ref subexpression, _) => {
1903                 self.resolve_expr(subexpression, Some(expr));
1904             }
1905             ExprKind::MethodCall(ref segment, ref arguments) => {
1906                 let mut arguments = arguments.iter();
1907                 self.resolve_expr(arguments.next().unwrap(), Some(expr));
1908                 for argument in arguments {
1909                     self.resolve_expr(argument, None);
1910                 }
1911                 self.visit_path_segment(expr.span, segment);
1912             }
1913
1914             ExprKind::Call(ref callee, ref arguments) => {
1915                 self.resolve_expr(callee, Some(expr));
1916                 for argument in arguments {
1917                     self.resolve_expr(argument, None);
1918                 }
1919             }
1920             ExprKind::Type(ref type_expr, _) => {
1921                 self.diagnostic_metadata.current_type_ascription.push(type_expr.span);
1922                 visit::walk_expr(self, expr);
1923                 self.diagnostic_metadata.current_type_ascription.pop();
1924             }
1925             // `async |x| ...` gets desugared to `|x| future_from_generator(|| ...)`, so we need to
1926             // resolve the arguments within the proper scopes so that usages of them inside the
1927             // closure are detected as upvars rather than normal closure arg usages.
1928             ExprKind::Closure(_, IsAsync::Async { .. }, _, ref fn_decl, ref body, _span) => {
1929                 self.with_rib(ValueNS, NormalRibKind, |this| {
1930                     // Resolve arguments:
1931                     this.resolve_params(&fn_decl.inputs);
1932                     // No need to resolve return type --
1933                     // the outer closure return type is `FunctionRetTy::Default`.
1934
1935                     // Now resolve the inner closure
1936                     {
1937                         // No need to resolve arguments: the inner closure has none.
1938                         // Resolve the return type:
1939                         visit::walk_fn_ret_ty(this, &fn_decl.output);
1940                         // Resolve the body
1941                         this.visit_expr(body);
1942                     }
1943                 });
1944             }
1945             _ => {
1946                 visit::walk_expr(self, expr);
1947             }
1948         }
1949     }
1950
1951     fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &Expr) {
1952         match expr.kind {
1953             ExprKind::Field(_, ident) => {
1954                 // FIXME(#6890): Even though you can't treat a method like a
1955                 // field, we need to add any trait methods we find that match
1956                 // the field name so that we can do some nice error reporting
1957                 // later on in typeck.
1958                 let traits = self.get_traits_containing_item(ident, ValueNS);
1959                 self.r.trait_map.insert(expr.id, traits);
1960             }
1961             ExprKind::MethodCall(ref segment, ..) => {
1962                 debug!("(recording candidate traits for expr) recording traits for {}",
1963                        expr.id);
1964                 let traits = self.get_traits_containing_item(segment.ident, ValueNS);
1965                 self.r.trait_map.insert(expr.id, traits);
1966             }
1967             _ => {
1968                 // Nothing to do.
1969             }
1970         }
1971     }
1972
1973     fn get_traits_containing_item(&mut self, mut ident: Ident, ns: Namespace)
1974                                   -> Vec<TraitCandidate> {
1975         debug!("(getting traits containing item) looking for '{}'", ident.name);
1976
1977         let mut found_traits = Vec::new();
1978         // Look for the current trait.
1979         if let Some((module, _)) = self.current_trait_ref {
1980             if self.r.resolve_ident_in_module(
1981                 ModuleOrUniformRoot::Module(module),
1982                 ident,
1983                 ns,
1984                 &self.parent_scope,
1985                 false,
1986                 module.span,
1987             ).is_ok() {
1988                 let def_id = module.def_id().unwrap();
1989                 found_traits.push(TraitCandidate { def_id: def_id, import_ids: smallvec![] });
1990             }
1991         }
1992
1993         ident.span = ident.span.modern();
1994         let mut search_module = self.parent_scope.module;
1995         loop {
1996             self.get_traits_in_module_containing_item(ident, ns, search_module, &mut found_traits);
1997             search_module = unwrap_or!(
1998                 self.r.hygienic_lexical_parent(search_module, &mut ident.span), break
1999             );
2000         }
2001
2002         if let Some(prelude) = self.r.prelude {
2003             if !search_module.no_implicit_prelude {
2004                 self.get_traits_in_module_containing_item(ident, ns, prelude, &mut found_traits);
2005             }
2006         }
2007
2008         found_traits
2009     }
2010
2011     fn get_traits_in_module_containing_item(&mut self,
2012                                             ident: Ident,
2013                                             ns: Namespace,
2014                                             module: Module<'a>,
2015                                             found_traits: &mut Vec<TraitCandidate>) {
2016         assert!(ns == TypeNS || ns == ValueNS);
2017         let mut traits = module.traits.borrow_mut();
2018         if traits.is_none() {
2019             let mut collected_traits = Vec::new();
2020             module.for_each_child(self.r, |_, name, ns, binding| {
2021                 if ns != TypeNS { return }
2022                 match binding.res() {
2023                     Res::Def(DefKind::Trait, _) |
2024                     Res::Def(DefKind::TraitAlias, _) => collected_traits.push((name, binding)),
2025                     _ => (),
2026                 }
2027             });
2028             *traits = Some(collected_traits.into_boxed_slice());
2029         }
2030
2031         for &(trait_name, binding) in traits.as_ref().unwrap().iter() {
2032             // Traits have pseudo-modules that can be used to search for the given ident.
2033             if let Some(module) = binding.module() {
2034                 let mut ident = ident;
2035                 if ident.span.glob_adjust(
2036                     module.expansion,
2037                     binding.span,
2038                 ).is_none() {
2039                     continue
2040                 }
2041                 if self.r.resolve_ident_in_module_unadjusted(
2042                     ModuleOrUniformRoot::Module(module),
2043                     ident,
2044                     ns,
2045                     &self.parent_scope,
2046                     false,
2047                     module.span,
2048                 ).is_ok() {
2049                     let import_ids = self.find_transitive_imports(&binding.kind, trait_name);
2050                     let trait_def_id = module.def_id().unwrap();
2051                     found_traits.push(TraitCandidate { def_id: trait_def_id, import_ids });
2052                 }
2053             } else if let Res::Def(DefKind::TraitAlias, _) = binding.res() {
2054                 // For now, just treat all trait aliases as possible candidates, since we don't
2055                 // know if the ident is somewhere in the transitive bounds.
2056                 let import_ids = self.find_transitive_imports(&binding.kind, trait_name);
2057                 let trait_def_id = binding.res().def_id();
2058                 found_traits.push(TraitCandidate { def_id: trait_def_id, import_ids });
2059             } else {
2060                 bug!("candidate is not trait or trait alias?")
2061             }
2062         }
2063     }
2064
2065     fn find_transitive_imports(&mut self, mut kind: &NameBindingKind<'_>,
2066                                trait_name: Ident) -> SmallVec<[NodeId; 1]> {
2067         let mut import_ids = smallvec![];
2068         while let NameBindingKind::Import { directive, binding, .. } = kind {
2069             self.r.maybe_unused_trait_imports.insert(directive.id);
2070             self.r.add_to_glob_map(&directive, trait_name);
2071             import_ids.push(directive.id);
2072             kind = &binding.kind;
2073         };
2074         import_ids
2075     }
2076 }
2077
2078 impl<'a> Resolver<'a> {
2079     pub(crate) fn late_resolve_crate(&mut self, krate: &Crate) {
2080         let mut late_resolution_visitor = LateResolutionVisitor::new(self);
2081         visit::walk_crate(&mut late_resolution_visitor, krate);
2082         for (id, span) in late_resolution_visitor.diagnostic_metadata.unused_labels.iter() {
2083             self.lint_buffer.buffer_lint(lint::builtin::UNUSED_LABELS, *id, *span, "unused label");
2084         }
2085     }
2086 }