]> git.lizzy.rs Git - rust.git/blob - src/librustc_resolve/late.rs
resolve: revamp already-bound check -- fix some bugs.
[rust.git] / src / librustc_resolve / late.rs
1 //! "Late resolution" is the pass that resolves most of names in a crate beside imports and macros.
2 //! It runs when the crate is fully expanded and its module structure is fully built.
3 //! So it just walks through the crate and resolves all the expressions, types, etc.
4 //!
5 //! If you wonder why there's no `early.rs`, that's because it's split into three files -
6 //! `build_reduced_graph.rs`, `macros.rs` and `resolve_imports.rs`.
7
8 use GenericParameters::*;
9 use RibKind::*;
10
11 use crate::{path_names_to_string, BindingError, CrateLint, LexicalScopeBinding};
12 use crate::{Module, ModuleOrUniformRoot, NameBindingKind, ParentScope, PathResult};
13 use crate::{ResolutionError, Resolver, Segment, UseError};
14
15 use log::debug;
16 use rustc::{bug, lint, span_bug};
17 use rustc::hir::def::{self, PartialRes, DefKind, CtorKind, PerNS};
18 use rustc::hir::def::Namespace::{self, *};
19 use rustc::hir::def_id::{DefId, CRATE_DEF_INDEX};
20 use rustc::hir::TraitCandidate;
21 use rustc::util::nodemap::{FxHashMap, FxHashSet};
22 use smallvec::{smallvec, SmallVec};
23 use syntax::{unwrap_or, walk_list};
24 use syntax::ast::*;
25 use syntax::ptr::P;
26 use syntax::symbol::{kw, sym};
27 use syntax::util::lev_distance::find_best_match_for_name;
28 use syntax::visit::{self, Visitor, FnKind};
29 use syntax_pos::Span;
30
31 use std::collections::BTreeSet;
32 use std::mem::replace;
33
34 mod diagnostics;
35
36 type Res = def::Res<NodeId>;
37
38 type IdentMap<T> = FxHashMap<Ident, T>;
39
40 /// Map from the name in a pattern to its binding mode.
41 type BindingMap = IdentMap<BindingInfo>;
42
43 #[derive(Copy, Clone, Debug)]
44 struct BindingInfo {
45     span: Span,
46     binding_mode: BindingMode,
47 }
48
49 #[derive(Copy, Clone)]
50 enum GenericParameters<'a, 'b> {
51     NoGenericParams,
52     HasGenericParams(// Type parameters.
53                       &'b Generics,
54
55                       // The kind of the rib used for type parameters.
56                       RibKind<'a>),
57 }
58
59 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
60 enum PatternSource {
61     Match,
62     Let,
63     For,
64     FnParam,
65 }
66
67 impl PatternSource {
68     fn descr(self) -> &'static str {
69         match self {
70             PatternSource::Match => "match binding",
71             PatternSource::Let => "let binding",
72             PatternSource::For => "for binding",
73             PatternSource::FnParam => "function parameter",
74         }
75     }
76 }
77
78 /// The rib kind restricts certain accesses,
79 /// e.g. to a `Res::Local` of an outer item.
80 #[derive(Copy, Clone, Debug)]
81 crate enum RibKind<'a> {
82     /// No restriction needs to be applied.
83     NormalRibKind,
84
85     /// We passed through an impl or trait and are now in one of its
86     /// methods or associated types. Allow references to ty params that impl or trait
87     /// binds. Disallow any other upvars (including other ty params that are
88     /// upvars).
89     AssocItemRibKind,
90
91     /// We passed through a function definition. Disallow upvars.
92     /// Permit only those const parameters that are specified in the function's generics.
93     FnItemRibKind,
94
95     /// We passed through an item scope. Disallow upvars.
96     ItemRibKind,
97
98     /// We're in a constant item. Can't refer to dynamic stuff.
99     ConstantItemRibKind,
100
101     /// We passed through a module.
102     ModuleRibKind(Module<'a>),
103
104     /// We passed through a `macro_rules!` statement
105     MacroDefinition(DefId),
106
107     /// All bindings in this rib are type parameters that can't be used
108     /// from the default of a type parameter because they're not declared
109     /// before said type parameter. Also see the `visit_generics` override.
110     ForwardTyParamBanRibKind,
111
112     /// We forbid the use of type parameters as the types of const parameters.
113     TyParamAsConstParamTy,
114 }
115
116 impl RibKind<'_> {
117     // Whether this rib kind contains generic parameters, as opposed to local
118     // variables.
119     crate fn contains_params(&self) -> bool {
120         match self {
121             NormalRibKind
122             | FnItemRibKind
123             | ConstantItemRibKind
124             | ModuleRibKind(_)
125             | MacroDefinition(_) => false,
126             AssocItemRibKind
127             | ItemRibKind
128             | ForwardTyParamBanRibKind
129             | TyParamAsConstParamTy => true,
130         }
131     }
132 }
133
134 /// A single local scope.
135 ///
136 /// A rib represents a scope names can live in. Note that these appear in many places, not just
137 /// around braces. At any place where the list of accessible names (of the given namespace)
138 /// changes or a new restrictions on the name accessibility are introduced, a new rib is put onto a
139 /// stack. This may be, for example, a `let` statement (because it introduces variables), a macro,
140 /// etc.
141 ///
142 /// Different [rib kinds](enum.RibKind) are transparent for different names.
143 ///
144 /// The resolution keeps a separate stack of ribs as it traverses the AST for each namespace. When
145 /// resolving, the name is looked up from inside out.
146 #[derive(Debug)]
147 crate struct Rib<'a, R = Res> {
148     pub bindings: IdentMap<R>,
149     pub kind: RibKind<'a>,
150 }
151
152 impl<'a, R> Rib<'a, R> {
153     fn new(kind: RibKind<'a>) -> Rib<'a, R> {
154         Rib {
155             bindings: Default::default(),
156             kind,
157         }
158     }
159 }
160
161 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
162 crate enum AliasPossibility {
163     No,
164     Maybe,
165 }
166
167 #[derive(Copy, Clone, Debug)]
168 crate enum PathSource<'a> {
169     // Type paths `Path`.
170     Type,
171     // Trait paths in bounds or impls.
172     Trait(AliasPossibility),
173     // Expression paths `path`, with optional parent context.
174     Expr(Option<&'a Expr>),
175     // Paths in path patterns `Path`.
176     Pat,
177     // Paths in struct expressions and patterns `Path { .. }`.
178     Struct,
179     // Paths in tuple struct patterns `Path(..)`.
180     TupleStruct,
181     // `m::A::B` in `<T as m::A>::B::C`.
182     TraitItem(Namespace),
183 }
184
185 impl<'a> PathSource<'a> {
186     fn namespace(self) -> Namespace {
187         match self {
188             PathSource::Type | PathSource::Trait(_) | PathSource::Struct => TypeNS,
189             PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct => ValueNS,
190             PathSource::TraitItem(ns) => ns,
191         }
192     }
193
194     fn defer_to_typeck(self) -> bool {
195         match self {
196             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
197             PathSource::Struct | PathSource::TupleStruct => true,
198             PathSource::Trait(_) | PathSource::TraitItem(..) => false,
199         }
200     }
201
202     fn descr_expected(self) -> &'static str {
203         match self {
204             PathSource::Type => "type",
205             PathSource::Trait(_) => "trait",
206             PathSource::Pat => "unit struct/variant or constant",
207             PathSource::Struct => "struct, variant or union type",
208             PathSource::TupleStruct => "tuple struct/variant",
209             PathSource::TraitItem(ns) => match ns {
210                 TypeNS => "associated type",
211                 ValueNS => "method or associated constant",
212                 MacroNS => bug!("associated macro"),
213             },
214             PathSource::Expr(parent) => match parent.map(|p| &p.node) {
215                 // "function" here means "anything callable" rather than `DefKind::Fn`,
216                 // this is not precise but usually more helpful than just "value".
217                 Some(&ExprKind::Call(..)) => "function",
218                 _ => "value",
219             },
220         }
221     }
222
223     crate fn is_expected(self, res: Res) -> bool {
224         match self {
225             PathSource::Type => match res {
226                 Res::Def(DefKind::Struct, _)
227                 | Res::Def(DefKind::Union, _)
228                 | Res::Def(DefKind::Enum, _)
229                 | Res::Def(DefKind::Trait, _)
230                 | Res::Def(DefKind::TraitAlias, _)
231                 | Res::Def(DefKind::TyAlias, _)
232                 | Res::Def(DefKind::AssocTy, _)
233                 | Res::PrimTy(..)
234                 | Res::Def(DefKind::TyParam, _)
235                 | Res::SelfTy(..)
236                 | Res::Def(DefKind::OpaqueTy, _)
237                 | Res::Def(DefKind::ForeignTy, _) => true,
238                 _ => false,
239             },
240             PathSource::Trait(AliasPossibility::No) => match res {
241                 Res::Def(DefKind::Trait, _) => true,
242                 _ => false,
243             },
244             PathSource::Trait(AliasPossibility::Maybe) => match res {
245                 Res::Def(DefKind::Trait, _) => true,
246                 Res::Def(DefKind::TraitAlias, _) => true,
247                 _ => false,
248             },
249             PathSource::Expr(..) => match res {
250                 Res::Def(DefKind::Ctor(_, CtorKind::Const), _)
251                 | Res::Def(DefKind::Ctor(_, CtorKind::Fn), _)
252                 | Res::Def(DefKind::Const, _)
253                 | Res::Def(DefKind::Static, _)
254                 | Res::Local(..)
255                 | Res::Def(DefKind::Fn, _)
256                 | Res::Def(DefKind::Method, _)
257                 | Res::Def(DefKind::AssocConst, _)
258                 | Res::SelfCtor(..)
259                 | Res::Def(DefKind::ConstParam, _) => true,
260                 _ => false,
261             },
262             PathSource::Pat => match res {
263                 Res::Def(DefKind::Ctor(_, CtorKind::Const), _) |
264                 Res::Def(DefKind::Const, _) | Res::Def(DefKind::AssocConst, _) |
265                 Res::SelfCtor(..) => true,
266                 _ => false,
267             },
268             PathSource::TupleStruct => match res {
269                 Res::Def(DefKind::Ctor(_, CtorKind::Fn), _) | Res::SelfCtor(..) => true,
270                 _ => false,
271             },
272             PathSource::Struct => match res {
273                 Res::Def(DefKind::Struct, _)
274                 | Res::Def(DefKind::Union, _)
275                 | Res::Def(DefKind::Variant, _)
276                 | Res::Def(DefKind::TyAlias, _)
277                 | Res::Def(DefKind::AssocTy, _)
278                 | Res::SelfTy(..) => true,
279                 _ => false,
280             },
281             PathSource::TraitItem(ns) => match res {
282                 Res::Def(DefKind::AssocConst, _)
283                 | Res::Def(DefKind::Method, _) if ns == ValueNS => true,
284                 Res::Def(DefKind::AssocTy, _) if ns == TypeNS => true,
285                 _ => false,
286             },
287         }
288     }
289
290     fn error_code(self, has_unexpected_resolution: bool) -> &'static str {
291         __diagnostic_used!(E0404);
292         __diagnostic_used!(E0405);
293         __diagnostic_used!(E0412);
294         __diagnostic_used!(E0422);
295         __diagnostic_used!(E0423);
296         __diagnostic_used!(E0425);
297         __diagnostic_used!(E0531);
298         __diagnostic_used!(E0532);
299         __diagnostic_used!(E0573);
300         __diagnostic_used!(E0574);
301         __diagnostic_used!(E0575);
302         __diagnostic_used!(E0576);
303         match (self, has_unexpected_resolution) {
304             (PathSource::Trait(_), true) => "E0404",
305             (PathSource::Trait(_), false) => "E0405",
306             (PathSource::Type, true) => "E0573",
307             (PathSource::Type, false) => "E0412",
308             (PathSource::Struct, true) => "E0574",
309             (PathSource::Struct, false) => "E0422",
310             (PathSource::Expr(..), true) => "E0423",
311             (PathSource::Expr(..), false) => "E0425",
312             (PathSource::Pat, true) | (PathSource::TupleStruct, true) => "E0532",
313             (PathSource::Pat, false) | (PathSource::TupleStruct, false) => "E0531",
314             (PathSource::TraitItem(..), true) => "E0575",
315             (PathSource::TraitItem(..), false) => "E0576",
316         }
317     }
318 }
319
320 struct LateResolutionVisitor<'a, 'b> {
321     r: &'b mut Resolver<'a>,
322
323     /// The module that represents the current item scope.
324     parent_scope: ParentScope<'a>,
325
326     /// The current set of local scopes for types and values.
327     /// FIXME #4948: Reuse ribs to avoid allocation.
328     ribs: PerNS<Vec<Rib<'a>>>,
329
330     /// The current set of local scopes, for labels.
331     label_ribs: Vec<Rib<'a, NodeId>>,
332
333     /// The trait that the current context can refer to.
334     current_trait_ref: Option<(Module<'a>, TraitRef)>,
335
336     /// The current trait's associated types' ident, used for diagnostic suggestions.
337     current_trait_assoc_types: Vec<Ident>,
338
339     /// The current self type if inside an impl (used for better errors).
340     current_self_type: Option<Ty>,
341
342     /// The current self item if inside an ADT (used for better errors).
343     current_self_item: Option<NodeId>,
344
345     /// A list of labels as of yet unused. Labels will be removed from this map when
346     /// they are used (in a `break` or `continue` statement)
347     unused_labels: FxHashMap<NodeId, Span>,
348
349     /// Only used for better errors on `fn(): fn()`.
350     current_type_ascription: Vec<Span>,
351 }
352
353 /// Walks the whole crate in DFS order, visiting each item, resolving names as it goes.
354 impl<'a, 'tcx> Visitor<'tcx> for LateResolutionVisitor<'a, '_> {
355     fn visit_item(&mut self, item: &'tcx Item) {
356         self.resolve_item(item);
357     }
358     fn visit_arm(&mut self, arm: &'tcx Arm) {
359         self.resolve_arm(arm);
360     }
361     fn visit_block(&mut self, block: &'tcx Block) {
362         self.resolve_block(block);
363     }
364     fn visit_anon_const(&mut self, constant: &'tcx AnonConst) {
365         debug!("visit_anon_const {:?}", constant);
366         self.with_constant_rib(|this| {
367             visit::walk_anon_const(this, constant);
368         });
369     }
370     fn visit_expr(&mut self, expr: &'tcx Expr) {
371         self.resolve_expr(expr, None);
372     }
373     fn visit_local(&mut self, local: &'tcx Local) {
374         self.resolve_local(local);
375     }
376     fn visit_ty(&mut self, ty: &'tcx Ty) {
377         match ty.node {
378             TyKind::Path(ref qself, ref path) => {
379                 self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
380             }
381             TyKind::ImplicitSelf => {
382                 let self_ty = Ident::with_dummy_span(kw::SelfUpper);
383                 let res = self.resolve_ident_in_lexical_scope(self_ty, TypeNS, Some(ty.id), ty.span)
384                               .map_or(Res::Err, |d| d.res());
385                 self.r.record_partial_res(ty.id, PartialRes::new(res));
386             }
387             _ => (),
388         }
389         visit::walk_ty(self, ty);
390     }
391     fn visit_poly_trait_ref(&mut self,
392                             tref: &'tcx PolyTraitRef,
393                             m: &'tcx TraitBoundModifier) {
394         self.smart_resolve_path(tref.trait_ref.ref_id, None,
395                                 &tref.trait_ref.path, PathSource::Trait(AliasPossibility::Maybe));
396         visit::walk_poly_trait_ref(self, tref, m);
397     }
398     fn visit_foreign_item(&mut self, foreign_item: &'tcx ForeignItem) {
399         let generic_params = match foreign_item.node {
400             ForeignItemKind::Fn(_, ref generics) => {
401                 HasGenericParams(generics, ItemRibKind)
402             }
403             ForeignItemKind::Static(..) => NoGenericParams,
404             ForeignItemKind::Ty => NoGenericParams,
405             ForeignItemKind::Macro(..) => NoGenericParams,
406         };
407         self.with_generic_param_rib(generic_params, |this| {
408             visit::walk_foreign_item(this, foreign_item);
409         });
410     }
411     fn visit_fn(&mut self, fn_kind: FnKind<'tcx>, declaration: &'tcx FnDecl, _: Span, _: NodeId) {
412         debug!("(resolving function) entering function");
413         let rib_kind = match fn_kind {
414             FnKind::ItemFn(..) => FnItemRibKind,
415             FnKind::Method(..) | FnKind::Closure(_) => NormalRibKind,
416         };
417
418         // Create a value rib for the function.
419         self.with_rib(ValueNS, rib_kind, |this| {
420             // Create a label rib for the function.
421             this.with_label_rib(rib_kind, |this| {
422                 // Add each argument to the rib.
423                 this.resolve_params(&declaration.inputs);
424
425                 visit::walk_fn_ret_ty(this, &declaration.output);
426
427                 // Resolve the function body, potentially inside the body of an async closure
428                 match fn_kind {
429                     FnKind::ItemFn(.., body) |
430                     FnKind::Method(.., body) => this.visit_block(body),
431                     FnKind::Closure(body) => this.visit_expr(body),
432                 };
433
434                 debug!("(resolving function) leaving function");
435             })
436         });
437     }
438
439     fn visit_generics(&mut self, generics: &'tcx Generics) {
440         // For type parameter defaults, we have to ban access
441         // to following type parameters, as the InternalSubsts can only
442         // provide previous type parameters as they're built. We
443         // put all the parameters on the ban list and then remove
444         // them one by one as they are processed and become available.
445         let mut default_ban_rib = Rib::new(ForwardTyParamBanRibKind);
446         let mut found_default = false;
447         default_ban_rib.bindings.extend(generics.params.iter()
448             .filter_map(|param| match param.kind {
449                 GenericParamKind::Const { .. } |
450                 GenericParamKind::Lifetime { .. } => None,
451                 GenericParamKind::Type { ref default, .. } => {
452                     found_default |= default.is_some();
453                     if found_default {
454                         Some((Ident::with_dummy_span(param.ident.name), Res::Err))
455                     } else {
456                         None
457                     }
458                 }
459             }));
460
461         // We also ban access to type parameters for use as the types of const parameters.
462         let mut const_ty_param_ban_rib = Rib::new(TyParamAsConstParamTy);
463         const_ty_param_ban_rib.bindings.extend(generics.params.iter()
464             .filter(|param| {
465                 if let GenericParamKind::Type { .. } = param.kind {
466                     true
467                 } else {
468                     false
469                 }
470             })
471             .map(|param| (Ident::with_dummy_span(param.ident.name), Res::Err)));
472
473         for param in &generics.params {
474             match param.kind {
475                 GenericParamKind::Lifetime { .. } => self.visit_generic_param(param),
476                 GenericParamKind::Type { ref default, .. } => {
477                     for bound in &param.bounds {
478                         self.visit_param_bound(bound);
479                     }
480
481                     if let Some(ref ty) = default {
482                         self.ribs[TypeNS].push(default_ban_rib);
483                         self.visit_ty(ty);
484                         default_ban_rib = self.ribs[TypeNS].pop().unwrap();
485                     }
486
487                     // Allow all following defaults to refer to this type parameter.
488                     default_ban_rib.bindings.remove(&Ident::with_dummy_span(param.ident.name));
489                 }
490                 GenericParamKind::Const { ref ty } => {
491                     self.ribs[TypeNS].push(const_ty_param_ban_rib);
492
493                     for bound in &param.bounds {
494                         self.visit_param_bound(bound);
495                     }
496
497                     self.visit_ty(ty);
498
499                     const_ty_param_ban_rib = self.ribs[TypeNS].pop().unwrap();
500                 }
501             }
502         }
503         for p in &generics.where_clause.predicates {
504             self.visit_where_predicate(p);
505         }
506     }
507 }
508
509 impl<'a, 'b> LateResolutionVisitor<'a, '_> {
510     fn new(resolver: &'b mut Resolver<'a>) -> LateResolutionVisitor<'a, 'b> {
511         // During late resolution we only track the module component of the parent scope,
512         // although it may be useful to track other components as well for diagnostics.
513         let graph_root = resolver.graph_root;
514         let parent_scope = ParentScope::module(graph_root);
515         let start_rib_kind = ModuleRibKind(graph_root);
516         LateResolutionVisitor {
517             r: resolver,
518             parent_scope,
519             ribs: PerNS {
520                 value_ns: vec![Rib::new(start_rib_kind)],
521                 type_ns: vec![Rib::new(start_rib_kind)],
522                 macro_ns: vec![Rib::new(start_rib_kind)],
523             },
524             label_ribs: Vec::new(),
525             current_trait_ref: None,
526             current_trait_assoc_types: Vec::new(),
527             current_self_type: None,
528             current_self_item: None,
529             unused_labels: Default::default(),
530             current_type_ascription: Vec::new(),
531         }
532     }
533
534     fn resolve_ident_in_lexical_scope(&mut self,
535                                       ident: Ident,
536                                       ns: Namespace,
537                                       record_used_id: Option<NodeId>,
538                                       path_span: Span)
539                                       -> Option<LexicalScopeBinding<'a>> {
540         self.r.resolve_ident_in_lexical_scope(
541             ident, ns, &self.parent_scope, record_used_id, path_span, &self.ribs[ns]
542         )
543     }
544
545     fn resolve_path(
546         &mut self,
547         path: &[Segment],
548         opt_ns: Option<Namespace>, // `None` indicates a module path in import
549         record_used: bool,
550         path_span: Span,
551         crate_lint: CrateLint,
552     ) -> PathResult<'a> {
553         self.r.resolve_path_with_ribs(
554             path, opt_ns, &self.parent_scope, record_used, path_span, crate_lint, Some(&self.ribs)
555         )
556     }
557
558     // AST resolution
559     //
560     // We maintain a list of value ribs and type ribs.
561     //
562     // Simultaneously, we keep track of the current position in the module
563     // graph in the `parent_scope.module` pointer. When we go to resolve a name in
564     // the value or type namespaces, we first look through all the ribs and
565     // then query the module graph. When we resolve a name in the module
566     // namespace, we can skip all the ribs (since nested modules are not
567     // allowed within blocks in Rust) and jump straight to the current module
568     // graph node.
569     //
570     // Named implementations are handled separately. When we find a method
571     // call, we consult the module node to find all of the implementations in
572     // scope. This information is lazily cached in the module node. We then
573     // generate a fake "implementation scope" containing all the
574     // implementations thus found, for compatibility with old resolve pass.
575
576     /// Do some `work` within a new innermost rib of the given `kind` in the given namespace (`ns`).
577     fn with_rib<T>(
578         &mut self,
579         ns: Namespace,
580         kind: RibKind<'a>,
581         work: impl FnOnce(&mut Self) -> T,
582     ) -> T {
583         self.ribs[ns].push(Rib::new(kind));
584         let ret = work(self);
585         self.ribs[ns].pop();
586         ret
587     }
588
589     fn with_scope<T>(&mut self, id: NodeId, f: impl FnOnce(&mut Self) -> T) -> T {
590         let id = self.r.definitions.local_def_id(id);
591         let module = self.r.module_map.get(&id).cloned(); // clones a reference
592         if let Some(module) = module {
593             // Move down in the graph.
594             let orig_module = replace(&mut self.parent_scope.module, module);
595             self.with_rib(ValueNS, ModuleRibKind(module), |this| {
596                 this.with_rib(TypeNS, ModuleRibKind(module), |this| {
597                     let ret = f(this);
598                     this.parent_scope.module = orig_module;
599                     ret
600                 })
601             })
602         } else {
603             f(self)
604         }
605     }
606
607     /// Searches the current set of local scopes for labels. Returns the first non-`None` label that
608     /// is returned by the given predicate function
609     ///
610     /// Stops after meeting a closure.
611     fn search_label<P, R>(&self, mut ident: Ident, pred: P) -> Option<R>
612         where P: Fn(&Rib<'_, NodeId>, Ident) -> Option<R>
613     {
614         for rib in self.label_ribs.iter().rev() {
615             match rib.kind {
616                 NormalRibKind => {}
617                 // If an invocation of this macro created `ident`, give up on `ident`
618                 // and switch to `ident`'s source from the macro definition.
619                 MacroDefinition(def) => {
620                     if def == self.r.macro_def(ident.span.ctxt()) {
621                         ident.span.remove_mark();
622                     }
623                 }
624                 _ => {
625                     // Do not resolve labels across function boundary
626                     return None;
627                 }
628             }
629             let r = pred(rib, ident);
630             if r.is_some() {
631                 return r;
632             }
633         }
634         None
635     }
636
637     fn resolve_adt(&mut self, item: &Item, generics: &Generics) {
638         debug!("resolve_adt");
639         self.with_current_self_item(item, |this| {
640             this.with_generic_param_rib(HasGenericParams(generics, ItemRibKind), |this| {
641                 let item_def_id = this.r.definitions.local_def_id(item.id);
642                 this.with_self_rib(Res::SelfTy(None, Some(item_def_id)), |this| {
643                     visit::walk_item(this, item);
644                 });
645             });
646         });
647     }
648
649     fn future_proof_import(&mut self, use_tree: &UseTree) {
650         let segments = &use_tree.prefix.segments;
651         if !segments.is_empty() {
652             let ident = segments[0].ident;
653             if ident.is_path_segment_keyword() || ident.span.rust_2015() {
654                 return;
655             }
656
657             let nss = match use_tree.kind {
658                 UseTreeKind::Simple(..) if segments.len() == 1 => &[TypeNS, ValueNS][..],
659                 _ => &[TypeNS],
660             };
661             let report_error = |this: &Self, ns| {
662                 let what = if ns == TypeNS { "type parameters" } else { "local variables" };
663                 this.r.session.span_err(ident.span, &format!("imports cannot refer to {}", what));
664             };
665
666             for &ns in nss {
667                 match self.resolve_ident_in_lexical_scope(ident, ns, None, use_tree.prefix.span) {
668                     Some(LexicalScopeBinding::Res(..)) => {
669                         report_error(self, ns);
670                     }
671                     Some(LexicalScopeBinding::Item(binding)) => {
672                         let orig_blacklisted_binding =
673                             replace(&mut self.r.blacklisted_binding, Some(binding));
674                         if let Some(LexicalScopeBinding::Res(..)) =
675                                 self.resolve_ident_in_lexical_scope(ident, ns, None,
676                                                                     use_tree.prefix.span) {
677                             report_error(self, ns);
678                         }
679                         self.r.blacklisted_binding = orig_blacklisted_binding;
680                     }
681                     None => {}
682                 }
683             }
684         } else if let UseTreeKind::Nested(use_trees) = &use_tree.kind {
685             for (use_tree, _) in use_trees {
686                 self.future_proof_import(use_tree);
687             }
688         }
689     }
690
691     fn resolve_item(&mut self, item: &Item) {
692         let name = item.ident.name;
693         debug!("(resolving item) resolving {} ({:?})", name, item.node);
694
695         match item.node {
696             ItemKind::TyAlias(_, ref generics) |
697             ItemKind::OpaqueTy(_, ref generics) |
698             ItemKind::Fn(_, _, ref generics, _) => {
699                 self.with_generic_param_rib(
700                     HasGenericParams(generics, ItemRibKind),
701                     |this| visit::walk_item(this, item)
702                 );
703             }
704
705             ItemKind::Enum(_, ref generics) |
706             ItemKind::Struct(_, ref generics) |
707             ItemKind::Union(_, ref generics) => {
708                 self.resolve_adt(item, generics);
709             }
710
711             ItemKind::Impl(.., ref generics, ref opt_trait_ref, ref self_type, ref impl_items) =>
712                 self.resolve_implementation(generics,
713                                             opt_trait_ref,
714                                             &self_type,
715                                             item.id,
716                                             impl_items),
717
718             ItemKind::Trait(.., ref generics, ref bounds, ref trait_items) => {
719                 // Create a new rib for the trait-wide type parameters.
720                 self.with_generic_param_rib(HasGenericParams(generics, ItemRibKind), |this| {
721                     let local_def_id = this.r.definitions.local_def_id(item.id);
722                     this.with_self_rib(Res::SelfTy(Some(local_def_id), None), |this| {
723                         this.visit_generics(generics);
724                         walk_list!(this, visit_param_bound, bounds);
725
726                         for trait_item in trait_items {
727                             this.with_trait_items(trait_items, |this| {
728                                 let generic_params = HasGenericParams(
729                                     &trait_item.generics,
730                                     AssocItemRibKind,
731                                 );
732                                 this.with_generic_param_rib(generic_params, |this| {
733                                     match trait_item.node {
734                                         TraitItemKind::Const(ref ty, ref default) => {
735                                             this.visit_ty(ty);
736
737                                             // Only impose the restrictions of
738                                             // ConstRibKind for an actual constant
739                                             // expression in a provided default.
740                                             if let Some(ref expr) = *default{
741                                                 this.with_constant_rib(|this| {
742                                                     this.visit_expr(expr);
743                                                 });
744                                             }
745                                         }
746                                         TraitItemKind::Method(_, _) => {
747                                             visit::walk_trait_item(this, trait_item)
748                                         }
749                                         TraitItemKind::Type(..) => {
750                                             visit::walk_trait_item(this, trait_item)
751                                         }
752                                         TraitItemKind::Macro(_) => {
753                                             panic!("unexpanded macro in resolve!")
754                                         }
755                                     };
756                                 });
757                             });
758                         }
759                     });
760                 });
761             }
762
763             ItemKind::TraitAlias(ref generics, ref bounds) => {
764                 // Create a new rib for the trait-wide type parameters.
765                 self.with_generic_param_rib(HasGenericParams(generics, ItemRibKind), |this| {
766                     let local_def_id = this.r.definitions.local_def_id(item.id);
767                     this.with_self_rib(Res::SelfTy(Some(local_def_id), None), |this| {
768                         this.visit_generics(generics);
769                         walk_list!(this, visit_param_bound, bounds);
770                     });
771                 });
772             }
773
774             ItemKind::Mod(_) | ItemKind::ForeignMod(_) => {
775                 self.with_scope(item.id, |this| {
776                     visit::walk_item(this, item);
777                 });
778             }
779
780             ItemKind::Static(ref ty, _, ref expr) |
781             ItemKind::Const(ref ty, ref expr) => {
782                 debug!("resolve_item ItemKind::Const");
783                 self.with_item_rib(|this| {
784                     this.visit_ty(ty);
785                     this.with_constant_rib(|this| {
786                         this.visit_expr(expr);
787                     });
788                 });
789             }
790
791             ItemKind::Use(ref use_tree) => {
792                 self.future_proof_import(use_tree);
793             }
794
795             ItemKind::ExternCrate(..) |
796             ItemKind::MacroDef(..) | ItemKind::GlobalAsm(..) => {
797                 // do nothing, these are just around to be encoded
798             }
799
800             ItemKind::Mac(_) => panic!("unexpanded macro in resolve!"),
801         }
802     }
803
804     fn with_generic_param_rib<'c, F>(&'c mut self, generic_params: GenericParameters<'a, 'c>, f: F)
805         where F: FnOnce(&mut Self)
806     {
807         debug!("with_generic_param_rib");
808         match generic_params {
809             HasGenericParams(generics, rib_kind) => {
810                 let mut function_type_rib = Rib::new(rib_kind);
811                 let mut function_value_rib = Rib::new(rib_kind);
812                 let mut seen_bindings = FxHashMap::default();
813                 // We also can't shadow bindings from the parent item
814                 if let AssocItemRibKind = rib_kind {
815                     let mut add_bindings_for_ns = |ns| {
816                         let parent_rib = self.ribs[ns].iter()
817                             .rfind(|rib| if let ItemRibKind = rib.kind { true } else { false })
818                             .expect("associated item outside of an item");
819                         seen_bindings.extend(
820                             parent_rib.bindings.iter().map(|(ident, _)| (*ident, ident.span)),
821                         );
822                     };
823                     add_bindings_for_ns(ValueNS);
824                     add_bindings_for_ns(TypeNS);
825                 }
826                 for param in &generics.params {
827                     match param.kind {
828                         GenericParamKind::Lifetime { .. } => {}
829                         GenericParamKind::Type { .. } => {
830                             let ident = param.ident.modern();
831                             debug!("with_generic_param_rib: {}", param.id);
832
833                             if seen_bindings.contains_key(&ident) {
834                                 let span = seen_bindings.get(&ident).unwrap();
835                                 let err = ResolutionError::NameAlreadyUsedInParameterList(
836                                     ident.name,
837                                     *span,
838                                 );
839                                 self.r.report_error(param.ident.span, err);
840                             }
841                             seen_bindings.entry(ident).or_insert(param.ident.span);
842
843                             // Plain insert (no renaming).
844                             let res = Res::Def(
845                                 DefKind::TyParam,
846                                 self.r.definitions.local_def_id(param.id),
847                             );
848                             function_type_rib.bindings.insert(ident, res);
849                             self.r.record_partial_res(param.id, PartialRes::new(res));
850                         }
851                         GenericParamKind::Const { .. } => {
852                             let ident = param.ident.modern();
853                             debug!("with_generic_param_rib: {}", param.id);
854
855                             if seen_bindings.contains_key(&ident) {
856                                 let span = seen_bindings.get(&ident).unwrap();
857                                 let err = ResolutionError::NameAlreadyUsedInParameterList(
858                                     ident.name,
859                                     *span,
860                                 );
861                                 self.r.report_error(param.ident.span, err);
862                             }
863                             seen_bindings.entry(ident).or_insert(param.ident.span);
864
865                             let res = Res::Def(
866                                 DefKind::ConstParam,
867                                 self.r.definitions.local_def_id(param.id),
868                             );
869                             function_value_rib.bindings.insert(ident, res);
870                             self.r.record_partial_res(param.id, PartialRes::new(res));
871                         }
872                     }
873                 }
874                 self.ribs[ValueNS].push(function_value_rib);
875                 self.ribs[TypeNS].push(function_type_rib);
876             }
877
878             NoGenericParams => {
879                 // Nothing to do.
880             }
881         }
882
883         f(self);
884
885         if let HasGenericParams(..) = generic_params {
886             self.ribs[TypeNS].pop();
887             self.ribs[ValueNS].pop();
888         }
889     }
890
891     fn with_label_rib(&mut self, kind: RibKind<'a>, f: impl FnOnce(&mut Self)) {
892         self.label_ribs.push(Rib::new(kind));
893         f(self);
894         self.label_ribs.pop();
895     }
896
897     fn with_item_rib(&mut self, f: impl FnOnce(&mut Self)) {
898         self.with_rib(ValueNS, ItemRibKind, |this| this.with_rib(TypeNS, ItemRibKind, f))
899     }
900
901     fn with_constant_rib(&mut self, f: impl FnOnce(&mut Self)) {
902         debug!("with_constant_rib");
903         self.with_rib(ValueNS, ConstantItemRibKind, |this| {
904             this.with_label_rib(ConstantItemRibKind, f);
905         });
906     }
907
908     fn with_current_self_type<T>(&mut self, self_type: &Ty, f: impl FnOnce(&mut Self) -> T) -> T {
909         // Handle nested impls (inside fn bodies)
910         let previous_value = replace(&mut self.current_self_type, Some(self_type.clone()));
911         let result = f(self);
912         self.current_self_type = previous_value;
913         result
914     }
915
916     fn with_current_self_item<T>(&mut self, self_item: &Item, f: impl FnOnce(&mut Self) -> T) -> T {
917         let previous_value = replace(&mut self.current_self_item, Some(self_item.id));
918         let result = f(self);
919         self.current_self_item = previous_value;
920         result
921     }
922
923     /// When evaluating a `trait` use its associated types' idents for suggestionsa in E0412.
924     fn with_trait_items<T>(
925         &mut self,
926         trait_items: &Vec<TraitItem>,
927         f: impl FnOnce(&mut Self) -> T,
928     ) -> T {
929         let trait_assoc_types = replace(
930             &mut self.current_trait_assoc_types,
931             trait_items.iter().filter_map(|item| match &item.node {
932                 TraitItemKind::Type(bounds, _) if bounds.len() == 0 => Some(item.ident),
933                 _ => None,
934             }).collect(),
935         );
936         let result = f(self);
937         self.current_trait_assoc_types = trait_assoc_types;
938         result
939     }
940
941     /// This is called to resolve a trait reference from an `impl` (i.e., `impl Trait for Foo`).
942     fn with_optional_trait_ref<T>(
943         &mut self,
944         opt_trait_ref: Option<&TraitRef>,
945         f: impl FnOnce(&mut Self, Option<DefId>) -> T
946     ) -> T {
947         let mut new_val = None;
948         let mut new_id = None;
949         if let Some(trait_ref) = opt_trait_ref {
950             let path: Vec<_> = Segment::from_path(&trait_ref.path);
951             let res = self.smart_resolve_path_fragment(
952                 trait_ref.ref_id,
953                 None,
954                 &path,
955                 trait_ref.path.span,
956                 PathSource::Trait(AliasPossibility::No),
957                 CrateLint::SimplePath(trait_ref.ref_id),
958             ).base_res();
959             if res != Res::Err {
960                 new_id = Some(res.def_id());
961                 let span = trait_ref.path.span;
962                 if let PathResult::Module(ModuleOrUniformRoot::Module(module)) =
963                     self.resolve_path(
964                         &path,
965                         Some(TypeNS),
966                         false,
967                         span,
968                         CrateLint::SimplePath(trait_ref.ref_id),
969                     )
970                 {
971                     new_val = Some((module, trait_ref.clone()));
972                 }
973             }
974         }
975         let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
976         let result = f(self, new_id);
977         self.current_trait_ref = original_trait_ref;
978         result
979     }
980
981     fn with_self_rib_ns(&mut self, ns: Namespace, self_res: Res, f: impl FnOnce(&mut Self)) {
982         let mut self_type_rib = Rib::new(NormalRibKind);
983
984         // Plain insert (no renaming, since types are not currently hygienic)
985         self_type_rib.bindings.insert(Ident::with_dummy_span(kw::SelfUpper), self_res);
986         self.ribs[ns].push(self_type_rib);
987         f(self);
988         self.ribs[ns].pop();
989     }
990
991     fn with_self_rib(&mut self, self_res: Res, f: impl FnOnce(&mut Self)) {
992         self.with_self_rib_ns(TypeNS, self_res, f)
993     }
994
995     fn resolve_implementation(&mut self,
996                               generics: &Generics,
997                               opt_trait_reference: &Option<TraitRef>,
998                               self_type: &Ty,
999                               item_id: NodeId,
1000                               impl_items: &[ImplItem]) {
1001         debug!("resolve_implementation");
1002         // If applicable, create a rib for the type parameters.
1003         self.with_generic_param_rib(HasGenericParams(generics, ItemRibKind), |this| {
1004             // Dummy self type for better errors if `Self` is used in the trait path.
1005             this.with_self_rib(Res::SelfTy(None, None), |this| {
1006                 // Resolve the trait reference, if necessary.
1007                 this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| {
1008                     let item_def_id = this.r.definitions.local_def_id(item_id);
1009                     this.with_self_rib(Res::SelfTy(trait_id, Some(item_def_id)), |this| {
1010                         if let Some(trait_ref) = opt_trait_reference.as_ref() {
1011                             // Resolve type arguments in the trait path.
1012                             visit::walk_trait_ref(this, trait_ref);
1013                         }
1014                         // Resolve the self type.
1015                         this.visit_ty(self_type);
1016                         // Resolve the generic parameters.
1017                         this.visit_generics(generics);
1018                         // Resolve the items within the impl.
1019                         this.with_current_self_type(self_type, |this| {
1020                             this.with_self_rib_ns(ValueNS, Res::SelfCtor(item_def_id), |this| {
1021                                 debug!("resolve_implementation with_self_rib_ns(ValueNS, ...)");
1022                                 for impl_item in impl_items {
1023                                     // We also need a new scope for the impl item type parameters.
1024                                     let generic_params = HasGenericParams(&impl_item.generics,
1025                                                                           AssocItemRibKind);
1026                                     this.with_generic_param_rib(generic_params, |this| {
1027                                         use crate::ResolutionError::*;
1028                                         match impl_item.node {
1029                                             ImplItemKind::Const(..) => {
1030                                                 debug!(
1031                                                     "resolve_implementation ImplItemKind::Const",
1032                                                 );
1033                                                 // If this is a trait impl, ensure the const
1034                                                 // exists in trait
1035                                                 this.check_trait_item(
1036                                                     impl_item.ident,
1037                                                     ValueNS,
1038                                                     impl_item.span,
1039                                                     |n, s| ConstNotMemberOfTrait(n, s),
1040                                                 );
1041
1042                                                 this.with_constant_rib(|this| {
1043                                                     visit::walk_impl_item(this, impl_item)
1044                                                 });
1045                                             }
1046                                             ImplItemKind::Method(..) => {
1047                                                 // If this is a trait impl, ensure the method
1048                                                 // exists in trait
1049                                                 this.check_trait_item(impl_item.ident,
1050                                                                       ValueNS,
1051                                                                       impl_item.span,
1052                                                     |n, s| MethodNotMemberOfTrait(n, s));
1053
1054                                                 visit::walk_impl_item(this, impl_item);
1055                                             }
1056                                             ImplItemKind::TyAlias(ref ty) => {
1057                                                 // If this is a trait impl, ensure the type
1058                                                 // exists in trait
1059                                                 this.check_trait_item(impl_item.ident,
1060                                                                       TypeNS,
1061                                                                       impl_item.span,
1062                                                     |n, s| TypeNotMemberOfTrait(n, s));
1063
1064                                                 this.visit_ty(ty);
1065                                             }
1066                                             ImplItemKind::OpaqueTy(ref bounds) => {
1067                                                 // If this is a trait impl, ensure the type
1068                                                 // exists in trait
1069                                                 this.check_trait_item(impl_item.ident,
1070                                                                       TypeNS,
1071                                                                       impl_item.span,
1072                                                     |n, s| TypeNotMemberOfTrait(n, s));
1073
1074                                                 for bound in bounds {
1075                                                     this.visit_param_bound(bound);
1076                                                 }
1077                                             }
1078                                             ImplItemKind::Macro(_) =>
1079                                                 panic!("unexpanded macro in resolve!"),
1080                                         }
1081                                     });
1082                                 }
1083                             });
1084                         });
1085                     });
1086                 });
1087             });
1088         });
1089     }
1090
1091     fn check_trait_item<F>(&mut self, ident: Ident, ns: Namespace, span: Span, err: F)
1092         where F: FnOnce(Name, &str) -> ResolutionError<'_>
1093     {
1094         // If there is a TraitRef in scope for an impl, then the method must be in the
1095         // trait.
1096         if let Some((module, _)) = self.current_trait_ref {
1097             if self.r.resolve_ident_in_module(
1098                 ModuleOrUniformRoot::Module(module),
1099                 ident,
1100                 ns,
1101                 &self.parent_scope,
1102                 false,
1103                 span,
1104             ).is_err() {
1105                 let path = &self.current_trait_ref.as_ref().unwrap().1.path;
1106                 self.r.report_error(span, err(ident.name, &path_names_to_string(path)));
1107             }
1108         }
1109     }
1110
1111     fn resolve_params(&mut self, params: &[Param]) {
1112         let mut bindings = smallvec![(false, <_>::default())];
1113         for Param { pat, ty, .. } in params {
1114             self.resolve_pattern(pat, PatternSource::FnParam, &mut bindings);
1115             self.visit_ty(ty);
1116             debug!("(resolving function / closure) recorded parameter");
1117         }
1118     }
1119
1120     fn resolve_local(&mut self, local: &Local) {
1121         // Resolve the type.
1122         walk_list!(self, visit_ty, &local.ty);
1123
1124         // Resolve the initializer.
1125         walk_list!(self, visit_expr, &local.init);
1126
1127         // Resolve the pattern.
1128         self.resolve_pattern_top(&local.pat, PatternSource::Let);
1129     }
1130
1131     // build a map from pattern identifiers to binding-info's.
1132     // this is done hygienically. This could arise for a macro
1133     // that expands into an or-pattern where one 'x' was from the
1134     // user and one 'x' came from the macro.
1135     fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
1136         let mut binding_map = FxHashMap::default();
1137
1138         pat.walk(&mut |pat| {
1139             if let PatKind::Ident(binding_mode, ident, ref sub_pat) = pat.node {
1140                 if sub_pat.is_some() || match self.r.partial_res_map.get(&pat.id)
1141                                                                   .map(|res| res.base_res()) {
1142                     Some(Res::Local(..)) => true,
1143                     _ => false,
1144                 } {
1145                     let binding_info = BindingInfo { span: ident.span, binding_mode: binding_mode };
1146                     binding_map.insert(ident, binding_info);
1147                 }
1148             }
1149             true
1150         });
1151
1152         binding_map
1153     }
1154
1155     // Checks that all of the arms in an or-pattern have exactly the
1156     // same set of bindings, with the same binding modes for each.
1157     fn check_consistent_bindings(&mut self, pats: &[P<Pat>]) {
1158         let mut missing_vars = FxHashMap::default();
1159         let mut inconsistent_vars = FxHashMap::default();
1160
1161         for pat_outer in pats.iter() {
1162             let map_outer = self.binding_mode_map(&pat_outer);
1163
1164             for pat_inner in pats.iter().filter(|pat| pat.id != pat_outer.id) {
1165                 let map_inner = self.binding_mode_map(&pat_inner);
1166
1167                 for (&key_inner, &binding_inner) in map_inner.iter() {
1168                     match map_outer.get(&key_inner) {
1169                         None => {  // missing binding
1170                             let binding_error = missing_vars
1171                                 .entry(key_inner.name)
1172                                 .or_insert(BindingError {
1173                                     name: key_inner.name,
1174                                     origin: BTreeSet::new(),
1175                                     target: BTreeSet::new(),
1176                                     could_be_path:
1177                                         key_inner.name.as_str().starts_with(char::is_uppercase)
1178                                 });
1179                             binding_error.origin.insert(binding_inner.span);
1180                             binding_error.target.insert(pat_outer.span);
1181                         }
1182                         Some(binding_outer) => {  // check consistent binding
1183                             if binding_outer.binding_mode != binding_inner.binding_mode {
1184                                 inconsistent_vars
1185                                     .entry(key_inner.name)
1186                                     .or_insert((binding_inner.span, binding_outer.span));
1187                             }
1188                         }
1189                     }
1190                 }
1191             }
1192         }
1193
1194         let mut missing_vars = missing_vars.iter_mut().collect::<Vec<_>>();
1195         missing_vars.sort();
1196         for (name, mut v) in missing_vars {
1197             if inconsistent_vars.contains_key(name) {
1198                 v.could_be_path = false;
1199             }
1200             self.r.report_error(
1201                 *v.origin.iter().next().unwrap(),
1202                 ResolutionError::VariableNotBoundInPattern(v));
1203         }
1204
1205         let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
1206         inconsistent_vars.sort();
1207         for (name, v) in inconsistent_vars {
1208             self.r.report_error(v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
1209         }
1210     }
1211
1212     fn resolve_arm(&mut self, arm: &Arm) {
1213         self.with_rib(ValueNS, NormalRibKind, |this| {
1214             this.resolve_pats(&arm.pats, PatternSource::Match);
1215             walk_list!(this, visit_expr, &arm.guard);
1216             this.visit_expr(&arm.body);
1217         });
1218     }
1219
1220     /// Arising from `source`, resolve a sequence of patterns (top level or-patterns).
1221     fn resolve_pats(&mut self, pats: &[P<Pat>], source: PatternSource) {
1222         let mut bindings = smallvec![(true, <_>::default())];
1223         for pat in pats {
1224             bindings.push((false, <_>::default()));
1225             self.resolve_pattern(pat, source, &mut bindings);
1226             let collected = bindings.pop().unwrap().1;
1227             bindings.last_mut().unwrap().1.extend(collected);
1228         }
1229         // This has to happen *after* we determine which pat_idents are variants
1230         if pats.len() > 1 {
1231             self.check_consistent_bindings(pats);
1232         }
1233     }
1234
1235     fn resolve_pattern_top(&mut self, pat: &Pat, pat_src: PatternSource) {
1236         self.resolve_pattern(pat, pat_src, &mut smallvec![(false, <_>::default())]);
1237     }
1238
1239     fn resolve_pattern(
1240         &mut self,
1241         pat: &Pat,
1242         pat_src: PatternSource,
1243         bindings: &mut SmallVec<[(bool, FxHashSet<Ident>); 1]>,
1244     ) {
1245         self.resolve_pattern_inner(pat, pat_src, bindings);
1246         visit::walk_pat(self, pat);
1247     }
1248
1249     fn resolve_pattern_inner(
1250         &mut self,
1251         pat: &Pat,
1252         pat_src: PatternSource,
1253         bindings: &mut SmallVec<[(bool, FxHashSet<Ident>); 1]>,
1254     ) {
1255         // Visit all direct subpatterns of this pattern.
1256         pat.walk(&mut |pat| {
1257             debug!("resolve_pattern pat={:?} node={:?}", pat, pat.node);
1258             match pat.node {
1259                 PatKind::Ident(bmode, ident, ref sub) => {
1260                     // First try to resolve the identifier as some existing entity,
1261                     // then fall back to a fresh binding.
1262                     let has_sub = sub.is_some();
1263                     let res = self.try_resolve_as_non_binding(pat_src, pat, bmode, ident, has_sub)
1264                         .unwrap_or_else(|| self.fresh_binding(ident, pat.id, pat_src, bindings));
1265                     self.r.record_partial_res(pat.id, PartialRes::new(res));
1266                 }
1267                 PatKind::TupleStruct(ref path, ..) => {
1268                     self.smart_resolve_path(pat.id, None, path, PathSource::TupleStruct);
1269                 }
1270                 PatKind::Path(ref qself, ref path) => {
1271                     self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
1272                 }
1273                 PatKind::Struct(ref path, ..) => {
1274                     self.smart_resolve_path(pat.id, None, path, PathSource::Struct);
1275                 }
1276                 PatKind::Or(ref ps) => {
1277                     // Add a new set of bindings to the stack. `true` here records that when a
1278                     // binding already exists in this set, it should not result in an error because
1279                     // `V1(a) | V2(a)` must be allowed and are checked for consistency later.
1280                     bindings.push((true, <_>::default()));
1281                     for p in ps {
1282                         // Now we need to switch back to a product context so that each
1283                         // part of the or-pattern internally rejects already bound names.
1284                         // For example, `V1(a) | V2(a, a)` and `V1(a, a) | V2(a)` are bad.
1285                         bindings.push((false, <_>::default()));
1286                         self.resolve_pattern_inner(p, pat_src, bindings);
1287                         // Move up the non-overlapping bindings to the or-pattern.
1288                         // Existing bindings just get "merged".
1289                         let collected = bindings.pop().unwrap().1;
1290                         bindings.last_mut().unwrap().1.extend(collected);
1291                     }
1292                     // This or-pattern itself can itself be part of a product,
1293                     // e.g. `(V1(a) | V2(a), a)` or `(a, V1(a) | V2(a))`.
1294                     // Both cases bind `a` again in a product pattern and must be rejected.
1295                     let collected = bindings.pop().unwrap().1;
1296                     bindings.last_mut().unwrap().1.extend(collected);
1297
1298                     // Prevent visiting `ps` as we've already done so above.
1299                     return false;
1300                 }
1301                 _ => {}
1302             }
1303             true
1304         });
1305     }
1306
1307     fn fresh_binding(
1308         &mut self,
1309         ident: Ident,
1310         pat_id: NodeId,
1311         pat_src: PatternSource,
1312         bindings: &mut SmallVec<[(bool, FxHashSet<Ident>); 1]>,
1313     ) -> Res {
1314         // Add the binding to the local ribs, if it doesn't already exist in the bindings map.
1315         // (We must not add it if it's in the bindings map because that breaks the assumptions
1316         // later passes make about or-patterns.)
1317         let ident = ident.modern_and_legacy();
1318
1319         // Walk outwards the stack of products / or-patterns and
1320         // find out if the identifier has been bound in any of these.
1321         let mut already_bound_and = false;
1322         let mut already_bound_or = false;
1323         for (is_sum, set) in bindings.iter_mut().rev() {
1324             match (is_sum, set.get(&ident).cloned()) {
1325                 // Already bound in a product pattern, e.g. `(a, a)` which is not allowed.
1326                 (false, Some(..)) => already_bound_and = true,
1327                 // Already bound in an or-pattern, e.g. `V1(a) | V2(a)`.
1328                 // This is *required* for consistency which is checked later.
1329                 (true, Some(..)) => already_bound_or = true,
1330                 // Not already bound here.
1331                 _ => {}
1332             }
1333         }
1334
1335         if already_bound_and {
1336             // Overlap in a product pattern somewhere; report an error.
1337             use ResolutionError::*;
1338             let error = match pat_src {
1339                 // `fn f(a: u8, a: u8)`:
1340                 PatternSource::FnParam => IdentifierBoundMoreThanOnceInParameterList,
1341                 // `Variant(a, a)`:
1342                 _ => IdentifierBoundMoreThanOnceInSamePattern,
1343             };
1344             self.r.report_error(ident.span, error(&ident.as_str()));
1345         }
1346
1347         // Record as bound if it's valid:
1348         let ident_valid = ident.name != kw::Invalid;
1349         if ident_valid {
1350             bindings.last_mut().unwrap().1.insert(ident);
1351         }
1352
1353         if already_bound_or {
1354             // `Variant1(a) | Variant2(a)`, ok
1355             // Reuse definition from the first `a`.
1356             self.innermost_rib_bindings(ValueNS)[&ident]
1357         } else {
1358             let res = Res::Local(pat_id);
1359             if ident_valid {
1360                 // A completely fresh binding add to the set if it's valid.
1361                 self.innermost_rib_bindings(ValueNS).insert(ident, res);
1362             }
1363             res
1364         }
1365     }
1366
1367     fn innermost_rib_bindings(&mut self, ns: Namespace) -> &mut IdentMap<Res> {
1368         &mut self.ribs[ns].last_mut().unwrap().bindings
1369     }
1370
1371     fn try_resolve_as_non_binding(
1372         &mut self,
1373         pat_src: PatternSource,
1374         pat: &Pat,
1375         bm: BindingMode,
1376         ident: Ident,
1377         has_sub: bool,
1378     ) -> Option<Res> {
1379         let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, None, pat.span)?.item()?;
1380         let res = binding.res();
1381
1382         // An immutable (no `mut`) by-value (no `ref`) binding pattern without
1383         // a sub pattern (no `@ $pat`) is syntactically ambiguous as it could
1384         // also be interpreted as a path to e.g. a constant, variant, etc.
1385         let is_syntactic_ambiguity = !has_sub && bm == BindingMode::ByValue(Mutability::Immutable);
1386
1387         match res {
1388             Res::Def(DefKind::Ctor(_, CtorKind::Const), _) |
1389             Res::Def(DefKind::Const, _) if is_syntactic_ambiguity => {
1390                 // Disambiguate in favor of a unit struct/variant or constant pattern.
1391                 self.r.record_use(ident, ValueNS, binding, false);
1392                 Some(res)
1393             }
1394             Res::Def(DefKind::Ctor(..), _)
1395             | Res::Def(DefKind::Const, _)
1396             | Res::Def(DefKind::Static, _) => {
1397                 // This is unambiguously a fresh binding, either syntactically
1398                 // (e.g., `IDENT @ PAT` or `ref IDENT`) or because `IDENT` resolves
1399                 // to something unusable as a pattern (e.g., constructor function),
1400                 // but we still conservatively report an error, see
1401                 // issues/33118#issuecomment-233962221 for one reason why.
1402                 self.r.report_error(
1403                     ident.span,
1404                     ResolutionError::BindingShadowsSomethingUnacceptable(
1405                         pat_src.descr(),
1406                         ident.name,
1407                         binding,
1408                     ),
1409                 );
1410                 None
1411             }
1412             Res::Def(DefKind::Fn, _) | Res::Err => {
1413                 // These entities are explicitly allowed to be shadowed by fresh bindings.
1414                 None
1415             }
1416             res => {
1417                 span_bug!(ident.span, "unexpected resolution for an \
1418                                         identifier in pattern: {:?}", res);
1419             }
1420         }
1421     }
1422
1423     // High-level and context dependent path resolution routine.
1424     // Resolves the path and records the resolution into definition map.
1425     // If resolution fails tries several techniques to find likely
1426     // resolution candidates, suggest imports or other help, and report
1427     // errors in user friendly way.
1428     fn smart_resolve_path(&mut self,
1429                           id: NodeId,
1430                           qself: Option<&QSelf>,
1431                           path: &Path,
1432                           source: PathSource<'_>) {
1433         self.smart_resolve_path_fragment(
1434             id,
1435             qself,
1436             &Segment::from_path(path),
1437             path.span,
1438             source,
1439             CrateLint::SimplePath(id),
1440         );
1441     }
1442
1443     fn smart_resolve_path_fragment(&mut self,
1444                                    id: NodeId,
1445                                    qself: Option<&QSelf>,
1446                                    path: &[Segment],
1447                                    span: Span,
1448                                    source: PathSource<'_>,
1449                                    crate_lint: CrateLint)
1450                                    -> PartialRes {
1451         let ns = source.namespace();
1452         let is_expected = &|res| source.is_expected(res);
1453
1454         let report_errors = |this: &mut Self, res: Option<Res>| {
1455             let (err, candidates) = this.smart_resolve_report_errors(path, span, source, res);
1456             let def_id = this.parent_scope.module.normal_ancestor_id;
1457             let node_id = this.r.definitions.as_local_node_id(def_id).unwrap();
1458             let better = res.is_some();
1459             this.r.use_injections.push(UseError { err, candidates, node_id, better });
1460             PartialRes::new(Res::Err)
1461         };
1462
1463         let partial_res = match self.resolve_qpath_anywhere(
1464             id,
1465             qself,
1466             path,
1467             ns,
1468             span,
1469             source.defer_to_typeck(),
1470             crate_lint,
1471         ) {
1472             Some(partial_res) if partial_res.unresolved_segments() == 0 => {
1473                 if is_expected(partial_res.base_res()) || partial_res.base_res() == Res::Err {
1474                     partial_res
1475                 } else {
1476                     // Add a temporary hack to smooth the transition to new struct ctor
1477                     // visibility rules. See #38932 for more details.
1478                     let mut res = None;
1479                     if let Res::Def(DefKind::Struct, def_id) = partial_res.base_res() {
1480                         if let Some((ctor_res, ctor_vis))
1481                                 = self.r.struct_constructors.get(&def_id).cloned() {
1482                             if is_expected(ctor_res) &&
1483                                self.r.is_accessible_from(ctor_vis, self.parent_scope.module) {
1484                                 let lint = lint::builtin::LEGACY_CONSTRUCTOR_VISIBILITY;
1485                                 self.r.session.buffer_lint(lint, id, span,
1486                                     "private struct constructors are not usable through \
1487                                      re-exports in outer modules",
1488                                 );
1489                                 res = Some(PartialRes::new(ctor_res));
1490                             }
1491                         }
1492                     }
1493
1494                     res.unwrap_or_else(|| report_errors(self, Some(partial_res.base_res())))
1495                 }
1496             }
1497             Some(partial_res) if source.defer_to_typeck() => {
1498                 // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
1499                 // or `<T>::A::B`. If `B` should be resolved in value namespace then
1500                 // it needs to be added to the trait map.
1501                 if ns == ValueNS {
1502                     let item_name = path.last().unwrap().ident;
1503                     let traits = self.get_traits_containing_item(item_name, ns);
1504                     self.r.trait_map.insert(id, traits);
1505                 }
1506
1507                 let mut std_path = vec![Segment::from_ident(Ident::with_dummy_span(sym::std))];
1508                 std_path.extend(path);
1509                 if self.r.primitive_type_table.primitive_types.contains_key(&path[0].ident.name) {
1510                     let cl = CrateLint::No;
1511                     let ns = Some(ns);
1512                     if let PathResult::Module(_) | PathResult::NonModule(_) =
1513                             self.resolve_path(&std_path, ns, false, span, cl) {
1514                         // check if we wrote `str::from_utf8` instead of `std::str::from_utf8`
1515                         let item_span = path.iter().last().map(|segment| segment.ident.span)
1516                             .unwrap_or(span);
1517                         debug!("accessed item from `std` submodule as a bare type {:?}", std_path);
1518                         let mut hm = self.r.session.confused_type_with_std_module.borrow_mut();
1519                         hm.insert(item_span, span);
1520                         // In some places (E0223) we only have access to the full path
1521                         hm.insert(span, span);
1522                     }
1523                 }
1524                 partial_res
1525             }
1526             _ => report_errors(self, None)
1527         };
1528
1529         if let PathSource::TraitItem(..) = source {} else {
1530             // Avoid recording definition of `A::B` in `<T as A>::B::C`.
1531             self.r.record_partial_res(id, partial_res);
1532         }
1533         partial_res
1534     }
1535
1536     fn self_type_is_available(&mut self, span: Span) -> bool {
1537         let binding = self.resolve_ident_in_lexical_scope(
1538             Ident::with_dummy_span(kw::SelfUpper),
1539             TypeNS,
1540             None,
1541             span,
1542         );
1543         if let Some(LexicalScopeBinding::Res(res)) = binding { res != Res::Err } else { false }
1544     }
1545
1546     fn self_value_is_available(&mut self, self_span: Span, path_span: Span) -> bool {
1547         let ident = Ident::new(kw::SelfLower, self_span);
1548         let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, None, path_span);
1549         if let Some(LexicalScopeBinding::Res(res)) = binding { res != Res::Err } else { false }
1550     }
1551
1552     // Resolve in alternative namespaces if resolution in the primary namespace fails.
1553     fn resolve_qpath_anywhere(
1554         &mut self,
1555         id: NodeId,
1556         qself: Option<&QSelf>,
1557         path: &[Segment],
1558         primary_ns: Namespace,
1559         span: Span,
1560         defer_to_typeck: bool,
1561         crate_lint: CrateLint,
1562     ) -> Option<PartialRes> {
1563         let mut fin_res = None;
1564         for (i, ns) in [primary_ns, TypeNS, ValueNS].iter().cloned().enumerate() {
1565             if i == 0 || ns != primary_ns {
1566                 match self.resolve_qpath(id, qself, path, ns, span, crate_lint) {
1567                     // If defer_to_typeck, then resolution > no resolution,
1568                     // otherwise full resolution > partial resolution > no resolution.
1569                     Some(partial_res) if partial_res.unresolved_segments() == 0 ||
1570                                          defer_to_typeck =>
1571                         return Some(partial_res),
1572                     partial_res => if fin_res.is_none() { fin_res = partial_res },
1573                 }
1574             }
1575         }
1576
1577         // `MacroNS`
1578         assert!(primary_ns != MacroNS);
1579         if qself.is_none() {
1580             let path_seg = |seg: &Segment| PathSegment::from_ident(seg.ident);
1581             let path = Path { segments: path.iter().map(path_seg).collect(), span };
1582             if let Ok((_, res)) = self.r.resolve_macro_path(
1583                 &path, None, &self.parent_scope, false, false
1584             ) {
1585                 return Some(PartialRes::new(res));
1586             }
1587         }
1588
1589         fin_res
1590     }
1591
1592     /// Handles paths that may refer to associated items.
1593     fn resolve_qpath(
1594         &mut self,
1595         id: NodeId,
1596         qself: Option<&QSelf>,
1597         path: &[Segment],
1598         ns: Namespace,
1599         span: Span,
1600         crate_lint: CrateLint,
1601     ) -> Option<PartialRes> {
1602         debug!(
1603             "resolve_qpath(id={:?}, qself={:?}, path={:?}, ns={:?}, span={:?})",
1604             id,
1605             qself,
1606             path,
1607             ns,
1608             span,
1609         );
1610
1611         if let Some(qself) = qself {
1612             if qself.position == 0 {
1613                 // This is a case like `<T>::B`, where there is no
1614                 // trait to resolve.  In that case, we leave the `B`
1615                 // segment to be resolved by type-check.
1616                 return Some(PartialRes::with_unresolved_segments(
1617                     Res::Def(DefKind::Mod, DefId::local(CRATE_DEF_INDEX)), path.len()
1618                 ));
1619             }
1620
1621             // Make sure `A::B` in `<T as A::B>::C` is a trait item.
1622             //
1623             // Currently, `path` names the full item (`A::B::C`, in
1624             // our example).  so we extract the prefix of that that is
1625             // the trait (the slice upto and including
1626             // `qself.position`). And then we recursively resolve that,
1627             // but with `qself` set to `None`.
1628             //
1629             // However, setting `qself` to none (but not changing the
1630             // span) loses the information about where this path
1631             // *actually* appears, so for the purposes of the crate
1632             // lint we pass along information that this is the trait
1633             // name from a fully qualified path, and this also
1634             // contains the full span (the `CrateLint::QPathTrait`).
1635             let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
1636             let partial_res = self.smart_resolve_path_fragment(
1637                 id,
1638                 None,
1639                 &path[..=qself.position],
1640                 span,
1641                 PathSource::TraitItem(ns),
1642                 CrateLint::QPathTrait {
1643                     qpath_id: id,
1644                     qpath_span: qself.path_span,
1645                 },
1646             );
1647
1648             // The remaining segments (the `C` in our example) will
1649             // have to be resolved by type-check, since that requires doing
1650             // trait resolution.
1651             return Some(PartialRes::with_unresolved_segments(
1652                 partial_res.base_res(),
1653                 partial_res.unresolved_segments() + path.len() - qself.position - 1,
1654             ));
1655         }
1656
1657         let result = match self.resolve_path(&path, Some(ns), true, span, crate_lint) {
1658             PathResult::NonModule(path_res) => path_res,
1659             PathResult::Module(ModuleOrUniformRoot::Module(module)) if !module.is_normal() => {
1660                 PartialRes::new(module.res().unwrap())
1661             }
1662             // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
1663             // don't report an error right away, but try to fallback to a primitive type.
1664             // So, we are still able to successfully resolve something like
1665             //
1666             // use std::u8; // bring module u8 in scope
1667             // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
1668             //     u8::max_value() // OK, resolves to associated function <u8>::max_value,
1669             //                     // not to non-existent std::u8::max_value
1670             // }
1671             //
1672             // Such behavior is required for backward compatibility.
1673             // The same fallback is used when `a` resolves to nothing.
1674             PathResult::Module(ModuleOrUniformRoot::Module(_)) |
1675             PathResult::Failed { .. }
1676                     if (ns == TypeNS || path.len() > 1) &&
1677                        self.r.primitive_type_table.primitive_types
1678                            .contains_key(&path[0].ident.name) => {
1679                 let prim = self.r.primitive_type_table.primitive_types[&path[0].ident.name];
1680                 PartialRes::with_unresolved_segments(Res::PrimTy(prim), path.len() - 1)
1681             }
1682             PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
1683                 PartialRes::new(module.res().unwrap()),
1684             PathResult::Failed { is_error_from_last_segment: false, span, label, suggestion } => {
1685                 self.r.report_error(span, ResolutionError::FailedToResolve { label, suggestion });
1686                 PartialRes::new(Res::Err)
1687             }
1688             PathResult::Module(..) | PathResult::Failed { .. } => return None,
1689             PathResult::Indeterminate => bug!("indetermined path result in resolve_qpath"),
1690         };
1691
1692         if path.len() > 1 && result.base_res() != Res::Err &&
1693            path[0].ident.name != kw::PathRoot &&
1694            path[0].ident.name != kw::DollarCrate {
1695             let unqualified_result = {
1696                 match self.resolve_path(
1697                     &[*path.last().unwrap()],
1698                     Some(ns),
1699                     false,
1700                     span,
1701                     CrateLint::No,
1702                 ) {
1703                     PathResult::NonModule(path_res) => path_res.base_res(),
1704                     PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
1705                         module.res().unwrap(),
1706                     _ => return Some(result),
1707                 }
1708             };
1709             if result.base_res() == unqualified_result {
1710                 let lint = lint::builtin::UNUSED_QUALIFICATIONS;
1711                 self.r.session.buffer_lint(lint, id, span, "unnecessary qualification")
1712             }
1713         }
1714
1715         Some(result)
1716     }
1717
1718     fn with_resolved_label(&mut self, label: Option<Label>, id: NodeId, f: impl FnOnce(&mut Self)) {
1719         if let Some(label) = label {
1720             self.unused_labels.insert(id, label.ident.span);
1721             self.with_label_rib(NormalRibKind, |this| {
1722                 let ident = label.ident.modern_and_legacy();
1723                 this.label_ribs.last_mut().unwrap().bindings.insert(ident, id);
1724                 f(this);
1725             });
1726         } else {
1727             f(self);
1728         }
1729     }
1730
1731     fn resolve_labeled_block(&mut self, label: Option<Label>, id: NodeId, block: &Block) {
1732         self.with_resolved_label(label, id, |this| this.visit_block(block));
1733     }
1734
1735     fn resolve_block(&mut self, block: &Block) {
1736         debug!("(resolving block) entering block");
1737         // Move down in the graph, if there's an anonymous module rooted here.
1738         let orig_module = self.parent_scope.module;
1739         let anonymous_module = self.r.block_map.get(&block.id).cloned(); // clones a reference
1740
1741         let mut num_macro_definition_ribs = 0;
1742         if let Some(anonymous_module) = anonymous_module {
1743             debug!("(resolving block) found anonymous module, moving down");
1744             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
1745             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
1746             self.parent_scope.module = anonymous_module;
1747         } else {
1748             self.ribs[ValueNS].push(Rib::new(NormalRibKind));
1749         }
1750
1751         // Descend into the block.
1752         for stmt in &block.stmts {
1753             if let StmtKind::Item(ref item) = stmt.node {
1754                 if let ItemKind::MacroDef(..) = item.node {
1755                     num_macro_definition_ribs += 1;
1756                     let res = self.r.definitions.local_def_id(item.id);
1757                     self.ribs[ValueNS].push(Rib::new(MacroDefinition(res)));
1758                     self.label_ribs.push(Rib::new(MacroDefinition(res)));
1759                 }
1760             }
1761
1762             self.visit_stmt(stmt);
1763         }
1764
1765         // Move back up.
1766         self.parent_scope.module = orig_module;
1767         for _ in 0 .. num_macro_definition_ribs {
1768             self.ribs[ValueNS].pop();
1769             self.label_ribs.pop();
1770         }
1771         self.ribs[ValueNS].pop();
1772         if anonymous_module.is_some() {
1773             self.ribs[TypeNS].pop();
1774         }
1775         debug!("(resolving block) leaving block");
1776     }
1777
1778     fn resolve_expr(&mut self, expr: &Expr, parent: Option<&Expr>) {
1779         // First, record candidate traits for this expression if it could
1780         // result in the invocation of a method call.
1781
1782         self.record_candidate_traits_for_expr_if_necessary(expr);
1783
1784         // Next, resolve the node.
1785         match expr.node {
1786             ExprKind::Path(ref qself, ref path) => {
1787                 self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
1788                 visit::walk_expr(self, expr);
1789             }
1790
1791             ExprKind::Struct(ref path, ..) => {
1792                 self.smart_resolve_path(expr.id, None, path, PathSource::Struct);
1793                 visit::walk_expr(self, expr);
1794             }
1795
1796             ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
1797                 let node_id = self.search_label(label.ident, |rib, ident| {
1798                     rib.bindings.get(&ident.modern_and_legacy()).cloned()
1799                 });
1800                 match node_id {
1801                     None => {
1802                         // Search again for close matches...
1803                         // Picks the first label that is "close enough", which is not necessarily
1804                         // the closest match
1805                         let close_match = self.search_label(label.ident, |rib, ident| {
1806                             let names = rib.bindings.iter().filter_map(|(id, _)| {
1807                                 if id.span.ctxt() == label.ident.span.ctxt() {
1808                                     Some(&id.name)
1809                                 } else {
1810                                     None
1811                                 }
1812                             });
1813                             find_best_match_for_name(names, &*ident.as_str(), None)
1814                         });
1815                         self.r.record_partial_res(expr.id, PartialRes::new(Res::Err));
1816                         self.r.report_error(
1817                             label.ident.span,
1818                             ResolutionError::UndeclaredLabel(&label.ident.as_str(), close_match),
1819                         );
1820                     }
1821                     Some(node_id) => {
1822                         // Since this res is a label, it is never read.
1823                         self.r.label_res_map.insert(expr.id, node_id);
1824                         self.unused_labels.remove(&node_id);
1825                     }
1826                 }
1827
1828                 // visit `break` argument if any
1829                 visit::walk_expr(self, expr);
1830             }
1831
1832             ExprKind::Let(ref pats, ref scrutinee) => {
1833                 self.visit_expr(scrutinee);
1834                 self.resolve_pats(pats, PatternSource::Let);
1835             }
1836
1837             ExprKind::If(ref cond, ref then, ref opt_else) => {
1838                 self.with_rib(ValueNS, NormalRibKind, |this| {
1839                     this.visit_expr(cond);
1840                     this.visit_block(then);
1841                 });
1842                 opt_else.as_ref().map(|expr| self.visit_expr(expr));
1843             }
1844
1845             ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),
1846
1847             ExprKind::While(ref cond, ref block, label) => {
1848                 self.with_resolved_label(label, expr.id, |this| {
1849                     this.with_rib(ValueNS, NormalRibKind, |this| {
1850                         this.visit_expr(cond);
1851                         this.visit_block(block);
1852                     })
1853                 });
1854             }
1855
1856             ExprKind::ForLoop(ref pat, ref iter_expr, ref block, label) => {
1857                 self.visit_expr(iter_expr);
1858                 self.with_rib(ValueNS, NormalRibKind, |this| {
1859                     this.resolve_pattern_top(pat, PatternSource::For);
1860                     this.resolve_labeled_block(label, expr.id, block);
1861                 });
1862             }
1863
1864             ExprKind::Block(ref block, label) => self.resolve_labeled_block(label, block.id, block),
1865
1866             // Equivalent to `visit::walk_expr` + passing some context to children.
1867             ExprKind::Field(ref subexpression, _) => {
1868                 self.resolve_expr(subexpression, Some(expr));
1869             }
1870             ExprKind::MethodCall(ref segment, ref arguments) => {
1871                 let mut arguments = arguments.iter();
1872                 self.resolve_expr(arguments.next().unwrap(), Some(expr));
1873                 for argument in arguments {
1874                     self.resolve_expr(argument, None);
1875                 }
1876                 self.visit_path_segment(expr.span, segment);
1877             }
1878
1879             ExprKind::Call(ref callee, ref arguments) => {
1880                 self.resolve_expr(callee, Some(expr));
1881                 for argument in arguments {
1882                     self.resolve_expr(argument, None);
1883                 }
1884             }
1885             ExprKind::Type(ref type_expr, _) => {
1886                 self.current_type_ascription.push(type_expr.span);
1887                 visit::walk_expr(self, expr);
1888                 self.current_type_ascription.pop();
1889             }
1890             // `async |x| ...` gets desugared to `|x| future_from_generator(|| ...)`, so we need to
1891             // resolve the arguments within the proper scopes so that usages of them inside the
1892             // closure are detected as upvars rather than normal closure arg usages.
1893             ExprKind::Closure(_, IsAsync::Async { .. }, _, ref fn_decl, ref body, _span) => {
1894                 self.with_rib(ValueNS, NormalRibKind, |this| {
1895                     // Resolve arguments:
1896                     this.resolve_params(&fn_decl.inputs);
1897                     // No need to resolve return type --
1898                     // the outer closure return type is `FunctionRetTy::Default`.
1899
1900                     // Now resolve the inner closure
1901                     {
1902                         // No need to resolve arguments: the inner closure has none.
1903                         // Resolve the return type:
1904                         visit::walk_fn_ret_ty(this, &fn_decl.output);
1905                         // Resolve the body
1906                         this.visit_expr(body);
1907                     }
1908                 });
1909             }
1910             _ => {
1911                 visit::walk_expr(self, expr);
1912             }
1913         }
1914     }
1915
1916     fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &Expr) {
1917         match expr.node {
1918             ExprKind::Field(_, ident) => {
1919                 // FIXME(#6890): Even though you can't treat a method like a
1920                 // field, we need to add any trait methods we find that match
1921                 // the field name so that we can do some nice error reporting
1922                 // later on in typeck.
1923                 let traits = self.get_traits_containing_item(ident, ValueNS);
1924                 self.r.trait_map.insert(expr.id, traits);
1925             }
1926             ExprKind::MethodCall(ref segment, ..) => {
1927                 debug!("(recording candidate traits for expr) recording traits for {}",
1928                        expr.id);
1929                 let traits = self.get_traits_containing_item(segment.ident, ValueNS);
1930                 self.r.trait_map.insert(expr.id, traits);
1931             }
1932             _ => {
1933                 // Nothing to do.
1934             }
1935         }
1936     }
1937
1938     fn get_traits_containing_item(&mut self, mut ident: Ident, ns: Namespace)
1939                                   -> Vec<TraitCandidate> {
1940         debug!("(getting traits containing item) looking for '{}'", ident.name);
1941
1942         let mut found_traits = Vec::new();
1943         // Look for the current trait.
1944         if let Some((module, _)) = self.current_trait_ref {
1945             if self.r.resolve_ident_in_module(
1946                 ModuleOrUniformRoot::Module(module),
1947                 ident,
1948                 ns,
1949                 &self.parent_scope,
1950                 false,
1951                 module.span,
1952             ).is_ok() {
1953                 let def_id = module.def_id().unwrap();
1954                 found_traits.push(TraitCandidate { def_id: def_id, import_ids: smallvec![] });
1955             }
1956         }
1957
1958         ident.span = ident.span.modern();
1959         let mut search_module = self.parent_scope.module;
1960         loop {
1961             self.get_traits_in_module_containing_item(ident, ns, search_module, &mut found_traits);
1962             search_module = unwrap_or!(
1963                 self.r.hygienic_lexical_parent(search_module, &mut ident.span), break
1964             );
1965         }
1966
1967         if let Some(prelude) = self.r.prelude {
1968             if !search_module.no_implicit_prelude {
1969                 self.get_traits_in_module_containing_item(ident, ns, prelude, &mut found_traits);
1970             }
1971         }
1972
1973         found_traits
1974     }
1975
1976     fn get_traits_in_module_containing_item(&mut self,
1977                                             ident: Ident,
1978                                             ns: Namespace,
1979                                             module: Module<'a>,
1980                                             found_traits: &mut Vec<TraitCandidate>) {
1981         assert!(ns == TypeNS || ns == ValueNS);
1982         let mut traits = module.traits.borrow_mut();
1983         if traits.is_none() {
1984             let mut collected_traits = Vec::new();
1985             module.for_each_child(self.r, |_, name, ns, binding| {
1986                 if ns != TypeNS { return }
1987                 match binding.res() {
1988                     Res::Def(DefKind::Trait, _) |
1989                     Res::Def(DefKind::TraitAlias, _) => collected_traits.push((name, binding)),
1990                     _ => (),
1991                 }
1992             });
1993             *traits = Some(collected_traits.into_boxed_slice());
1994         }
1995
1996         for &(trait_name, binding) in traits.as_ref().unwrap().iter() {
1997             // Traits have pseudo-modules that can be used to search for the given ident.
1998             if let Some(module) = binding.module() {
1999                 let mut ident = ident;
2000                 if ident.span.glob_adjust(
2001                     module.expansion,
2002                     binding.span,
2003                 ).is_none() {
2004                     continue
2005                 }
2006                 if self.r.resolve_ident_in_module_unadjusted(
2007                     ModuleOrUniformRoot::Module(module),
2008                     ident,
2009                     ns,
2010                     &self.parent_scope,
2011                     false,
2012                     module.span,
2013                 ).is_ok() {
2014                     let import_ids = self.find_transitive_imports(&binding.kind, trait_name);
2015                     let trait_def_id = module.def_id().unwrap();
2016                     found_traits.push(TraitCandidate { def_id: trait_def_id, import_ids });
2017                 }
2018             } else if let Res::Def(DefKind::TraitAlias, _) = binding.res() {
2019                 // For now, just treat all trait aliases as possible candidates, since we don't
2020                 // know if the ident is somewhere in the transitive bounds.
2021                 let import_ids = self.find_transitive_imports(&binding.kind, trait_name);
2022                 let trait_def_id = binding.res().def_id();
2023                 found_traits.push(TraitCandidate { def_id: trait_def_id, import_ids });
2024             } else {
2025                 bug!("candidate is not trait or trait alias?")
2026             }
2027         }
2028     }
2029
2030     fn find_transitive_imports(&mut self, mut kind: &NameBindingKind<'_>,
2031                                trait_name: Ident) -> SmallVec<[NodeId; 1]> {
2032         let mut import_ids = smallvec![];
2033         while let NameBindingKind::Import { directive, binding, .. } = kind {
2034             self.r.maybe_unused_trait_imports.insert(directive.id);
2035             self.r.add_to_glob_map(&directive, trait_name);
2036             import_ids.push(directive.id);
2037             kind = &binding.kind;
2038         };
2039         import_ids
2040     }
2041 }
2042
2043 impl<'a> Resolver<'a> {
2044     pub(crate) fn late_resolve_crate(&mut self, krate: &Crate) {
2045         let mut late_resolution_visitor = LateResolutionVisitor::new(self);
2046         visit::walk_crate(&mut late_resolution_visitor, krate);
2047         for (id, span) in late_resolution_visitor.unused_labels.iter() {
2048             self.session.buffer_lint(lint::builtin::UNUSED_LABELS, *id, *span, "unused label");
2049         }
2050     }
2051 }