]> git.lizzy.rs Git - rust.git/blob - src/librustc_resolve/late.rs
Rollup merge of #69473 - contrun:update-llvm, r=nikomatsakis
[rust.git] / src / librustc_resolve / late.rs
1 //! "Late resolution" is the pass that resolves most of names in a crate beside imports and macros.
2 //! It runs when the crate is fully expanded and its module structure is fully built.
3 //! So it just walks through the crate and resolves all the expressions, types, etc.
4 //!
5 //! If you wonder why there's no `early.rs`, that's because it's split into three files -
6 //! `build_reduced_graph.rs`, `macros.rs` and `imports.rs`.
7
8 use RibKind::*;
9
10 use crate::{path_names_to_string, BindingError, CrateLint, LexicalScopeBinding};
11 use crate::{Module, ModuleOrUniformRoot, NameBindingKind, ParentScope, PathResult};
12 use crate::{ResolutionError, Resolver, Segment, UseError};
13
14 use rustc::{bug, lint, span_bug};
15 use rustc_data_structures::fx::{FxHashMap, FxHashSet};
16 use rustc_errors::DiagnosticId;
17 use rustc_hir::def::Namespace::{self, *};
18 use rustc_hir::def::{self, CtorKind, DefKind, PartialRes, PerNS};
19 use rustc_hir::def_id::{DefId, CRATE_DEF_INDEX};
20 use rustc_hir::TraitCandidate;
21 use rustc_span::symbol::{kw, sym};
22 use rustc_span::Span;
23 use smallvec::{smallvec, SmallVec};
24 use syntax::ast::*;
25 use syntax::ptr::P;
26 use syntax::util::lev_distance::find_best_match_for_name;
27 use syntax::visit::{self, AssocCtxt, FnCtxt, FnKind, Visitor};
28 use syntax::{unwrap_or, walk_list};
29
30 use log::debug;
31 use std::collections::BTreeSet;
32 use std::mem::replace;
33
34 mod diagnostics;
35 crate mod lifetimes;
36
37 type Res = def::Res<NodeId>;
38
39 type IdentMap<T> = FxHashMap<Ident, T>;
40
41 /// Map from the name in a pattern to its binding mode.
42 type BindingMap = IdentMap<BindingInfo>;
43
44 #[derive(Copy, Clone, Debug)]
45 struct BindingInfo {
46     span: Span,
47     binding_mode: BindingMode,
48 }
49
50 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
51 enum PatternSource {
52     Match,
53     Let,
54     For,
55     FnParam,
56 }
57
58 impl PatternSource {
59     fn descr(self) -> &'static str {
60         match self {
61             PatternSource::Match => "match binding",
62             PatternSource::Let => "let binding",
63             PatternSource::For => "for binding",
64             PatternSource::FnParam => "function parameter",
65         }
66     }
67 }
68
69 /// Denotes whether the context for the set of already bound bindings is a `Product`
70 /// or `Or` context. This is used in e.g., `fresh_binding` and `resolve_pattern_inner`.
71 /// See those functions for more information.
72 #[derive(PartialEq)]
73 enum PatBoundCtx {
74     /// A product pattern context, e.g., `Variant(a, b)`.
75     Product,
76     /// An or-pattern context, e.g., `p_0 | ... | p_n`.
77     Or,
78 }
79
80 /// Does this the item (from the item rib scope) allow generic parameters?
81 #[derive(Copy, Clone, Debug, Eq, PartialEq)]
82 crate enum HasGenericParams {
83     Yes,
84     No,
85 }
86
87 /// The rib kind restricts certain accesses,
88 /// e.g. to a `Res::Local` of an outer item.
89 #[derive(Copy, Clone, Debug)]
90 crate enum RibKind<'a> {
91     /// No restriction needs to be applied.
92     NormalRibKind,
93
94     /// We passed through an impl or trait and are now in one of its
95     /// methods or associated types. Allow references to ty params that impl or trait
96     /// binds. Disallow any other upvars (including other ty params that are
97     /// upvars).
98     AssocItemRibKind,
99
100     /// We passed through a function definition. Disallow upvars.
101     /// Permit only those const parameters that are specified in the function's generics.
102     FnItemRibKind,
103
104     /// We passed through an item scope. Disallow upvars.
105     ItemRibKind(HasGenericParams),
106
107     /// We're in a constant item. Can't refer to dynamic stuff.
108     ConstantItemRibKind,
109
110     /// We passed through a module.
111     ModuleRibKind(Module<'a>),
112
113     /// We passed through a `macro_rules!` statement
114     MacroDefinition(DefId),
115
116     /// All bindings in this rib are type parameters that can't be used
117     /// from the default of a type parameter because they're not declared
118     /// before said type parameter. Also see the `visit_generics` override.
119     ForwardTyParamBanRibKind,
120 }
121
122 impl RibKind<'_> {
123     // Whether this rib kind contains generic parameters, as opposed to local
124     // variables.
125     crate fn contains_params(&self) -> bool {
126         match self {
127             NormalRibKind | FnItemRibKind | ConstantItemRibKind | ModuleRibKind(_)
128             | MacroDefinition(_) => false,
129             AssocItemRibKind | ItemRibKind(_) | ForwardTyParamBanRibKind => true,
130         }
131     }
132 }
133
134 /// A single local scope.
135 ///
136 /// A rib represents a scope names can live in. Note that these appear in many places, not just
137 /// around braces. At any place where the list of accessible names (of the given namespace)
138 /// changes or a new restrictions on the name accessibility are introduced, a new rib is put onto a
139 /// stack. This may be, for example, a `let` statement (because it introduces variables), a macro,
140 /// etc.
141 ///
142 /// Different [rib kinds](enum.RibKind) are transparent for different names.
143 ///
144 /// The resolution keeps a separate stack of ribs as it traverses the AST for each namespace. When
145 /// resolving, the name is looked up from inside out.
146 #[derive(Debug)]
147 crate struct Rib<'a, R = Res> {
148     pub bindings: IdentMap<R>,
149     pub kind: RibKind<'a>,
150 }
151
152 impl<'a, R> Rib<'a, R> {
153     fn new(kind: RibKind<'a>) -> Rib<'a, R> {
154         Rib { bindings: Default::default(), kind }
155     }
156 }
157
158 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
159 crate enum AliasPossibility {
160     No,
161     Maybe,
162 }
163
164 #[derive(Copy, Clone, Debug)]
165 crate enum PathSource<'a> {
166     // Type paths `Path`.
167     Type,
168     // Trait paths in bounds or impls.
169     Trait(AliasPossibility),
170     // Expression paths `path`, with optional parent context.
171     Expr(Option<&'a Expr>),
172     // Paths in path patterns `Path`.
173     Pat,
174     // Paths in struct expressions and patterns `Path { .. }`.
175     Struct,
176     // Paths in tuple struct patterns `Path(..)`.
177     TupleStruct,
178     // `m::A::B` in `<T as m::A>::B::C`.
179     TraitItem(Namespace),
180 }
181
182 impl<'a> PathSource<'a> {
183     fn namespace(self) -> Namespace {
184         match self {
185             PathSource::Type | PathSource::Trait(_) | PathSource::Struct => TypeNS,
186             PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct => ValueNS,
187             PathSource::TraitItem(ns) => ns,
188         }
189     }
190
191     fn defer_to_typeck(self) -> bool {
192         match self {
193             PathSource::Type
194             | PathSource::Expr(..)
195             | PathSource::Pat
196             | PathSource::Struct
197             | PathSource::TupleStruct => true,
198             PathSource::Trait(_) | PathSource::TraitItem(..) => false,
199         }
200     }
201
202     fn descr_expected(self) -> &'static str {
203         match &self {
204             PathSource::Type => "type",
205             PathSource::Trait(_) => "trait",
206             PathSource::Pat => "unit struct, unit variant or constant",
207             PathSource::Struct => "struct, variant or union type",
208             PathSource::TupleStruct => "tuple struct or tuple variant",
209             PathSource::TraitItem(ns) => match ns {
210                 TypeNS => "associated type",
211                 ValueNS => "method or associated constant",
212                 MacroNS => bug!("associated macro"),
213             },
214             PathSource::Expr(parent) => match &parent.as_ref().map(|p| &p.kind) {
215                 // "function" here means "anything callable" rather than `DefKind::Fn`,
216                 // this is not precise but usually more helpful than just "value".
217                 Some(ExprKind::Call(call_expr, _)) => match &call_expr.kind {
218                     ExprKind::Path(_, path) => {
219                         let mut msg = "function";
220                         if let Some(segment) = path.segments.iter().last() {
221                             if let Some(c) = segment.ident.to_string().chars().next() {
222                                 if c.is_uppercase() {
223                                     msg = "function, tuple struct or tuple variant";
224                                 }
225                             }
226                         }
227                         msg
228                     }
229                     _ => "function",
230                 },
231                 _ => "value",
232             },
233         }
234     }
235
236     crate fn is_expected(self, res: Res) -> bool {
237         match self {
238             PathSource::Type => match res {
239                 Res::Def(DefKind::Struct, _)
240                 | Res::Def(DefKind::Union, _)
241                 | Res::Def(DefKind::Enum, _)
242                 | Res::Def(DefKind::Trait, _)
243                 | Res::Def(DefKind::TraitAlias, _)
244                 | Res::Def(DefKind::TyAlias, _)
245                 | Res::Def(DefKind::AssocTy, _)
246                 | Res::PrimTy(..)
247                 | Res::Def(DefKind::TyParam, _)
248                 | Res::SelfTy(..)
249                 | Res::Def(DefKind::OpaqueTy, _)
250                 | Res::Def(DefKind::ForeignTy, _) => true,
251                 _ => false,
252             },
253             PathSource::Trait(AliasPossibility::No) => match res {
254                 Res::Def(DefKind::Trait, _) => true,
255                 _ => false,
256             },
257             PathSource::Trait(AliasPossibility::Maybe) => match res {
258                 Res::Def(DefKind::Trait, _) => true,
259                 Res::Def(DefKind::TraitAlias, _) => true,
260                 _ => false,
261             },
262             PathSource::Expr(..) => match res {
263                 Res::Def(DefKind::Ctor(_, CtorKind::Const), _)
264                 | Res::Def(DefKind::Ctor(_, CtorKind::Fn), _)
265                 | Res::Def(DefKind::Const, _)
266                 | Res::Def(DefKind::Static, _)
267                 | Res::Local(..)
268                 | Res::Def(DefKind::Fn, _)
269                 | Res::Def(DefKind::Method, _)
270                 | Res::Def(DefKind::AssocConst, _)
271                 | Res::SelfCtor(..)
272                 | Res::Def(DefKind::ConstParam, _) => true,
273                 _ => false,
274             },
275             PathSource::Pat => match res {
276                 Res::Def(DefKind::Ctor(_, CtorKind::Const), _)
277                 | Res::Def(DefKind::Const, _)
278                 | Res::Def(DefKind::AssocConst, _)
279                 | Res::SelfCtor(..) => true,
280                 _ => false,
281             },
282             PathSource::TupleStruct => match res {
283                 Res::Def(DefKind::Ctor(_, CtorKind::Fn), _) | Res::SelfCtor(..) => true,
284                 _ => false,
285             },
286             PathSource::Struct => match res {
287                 Res::Def(DefKind::Struct, _)
288                 | Res::Def(DefKind::Union, _)
289                 | Res::Def(DefKind::Variant, _)
290                 | Res::Def(DefKind::TyAlias, _)
291                 | Res::Def(DefKind::AssocTy, _)
292                 | Res::SelfTy(..) => true,
293                 _ => false,
294             },
295             PathSource::TraitItem(ns) => match res {
296                 Res::Def(DefKind::AssocConst, _) | Res::Def(DefKind::Method, _)
297                     if ns == ValueNS =>
298                 {
299                     true
300                 }
301                 Res::Def(DefKind::AssocTy, _) if ns == TypeNS => true,
302                 _ => false,
303             },
304         }
305     }
306
307     fn error_code(self, has_unexpected_resolution: bool) -> DiagnosticId {
308         use rustc_errors::error_code;
309         match (self, has_unexpected_resolution) {
310             (PathSource::Trait(_), true) => error_code!(E0404),
311             (PathSource::Trait(_), false) => error_code!(E0405),
312             (PathSource::Type, true) => error_code!(E0573),
313             (PathSource::Type, false) => error_code!(E0412),
314             (PathSource::Struct, true) => error_code!(E0574),
315             (PathSource::Struct, false) => error_code!(E0422),
316             (PathSource::Expr(..), true) => error_code!(E0423),
317             (PathSource::Expr(..), false) => error_code!(E0425),
318             (PathSource::Pat, true) | (PathSource::TupleStruct, true) => error_code!(E0532),
319             (PathSource::Pat, false) | (PathSource::TupleStruct, false) => error_code!(E0531),
320             (PathSource::TraitItem(..), true) => error_code!(E0575),
321             (PathSource::TraitItem(..), false) => error_code!(E0576),
322         }
323     }
324 }
325
326 #[derive(Default)]
327 struct DiagnosticMetadata<'ast> {
328     /// The current trait's associated types' ident, used for diagnostic suggestions.
329     current_trait_assoc_types: Vec<Ident>,
330
331     /// The current self type if inside an impl (used for better errors).
332     current_self_type: Option<Ty>,
333
334     /// The current self item if inside an ADT (used for better errors).
335     current_self_item: Option<NodeId>,
336
337     /// The current trait (used to suggest).
338     current_item: Option<&'ast Item>,
339
340     /// When processing generics and encountering a type not found, suggest introducing a type
341     /// param.
342     currently_processing_generics: bool,
343
344     /// The current enclosing function (used for better errors).
345     current_function: Option<Span>,
346
347     /// A list of labels as of yet unused. Labels will be removed from this map when
348     /// they are used (in a `break` or `continue` statement)
349     unused_labels: FxHashMap<NodeId, Span>,
350
351     /// Only used for better errors on `fn(): fn()`.
352     current_type_ascription: Vec<Span>,
353
354     /// Only used for better errors on `let <pat>: <expr, not type>;`.
355     current_let_binding: Option<(Span, Option<Span>, Option<Span>)>,
356 }
357
358 struct LateResolutionVisitor<'a, 'b, 'ast> {
359     r: &'b mut Resolver<'a>,
360
361     /// The module that represents the current item scope.
362     parent_scope: ParentScope<'a>,
363
364     /// The current set of local scopes for types and values.
365     /// FIXME #4948: Reuse ribs to avoid allocation.
366     ribs: PerNS<Vec<Rib<'a>>>,
367
368     /// The current set of local scopes, for labels.
369     label_ribs: Vec<Rib<'a, NodeId>>,
370
371     /// The trait that the current context can refer to.
372     current_trait_ref: Option<(Module<'a>, TraitRef)>,
373
374     /// Fields used to add information to diagnostic errors.
375     diagnostic_metadata: DiagnosticMetadata<'ast>,
376 }
377
378 /// Walks the whole crate in DFS order, visiting each item, resolving names as it goes.
379 impl<'a, 'ast> Visitor<'ast> for LateResolutionVisitor<'a, '_, 'ast> {
380     fn visit_item(&mut self, item: &'ast Item) {
381         let prev = replace(&mut self.diagnostic_metadata.current_item, Some(item));
382         self.resolve_item(item);
383         self.diagnostic_metadata.current_item = prev;
384     }
385     fn visit_arm(&mut self, arm: &'ast Arm) {
386         self.resolve_arm(arm);
387     }
388     fn visit_block(&mut self, block: &'ast Block) {
389         self.resolve_block(block);
390     }
391     fn visit_anon_const(&mut self, constant: &'ast AnonConst) {
392         debug!("visit_anon_const {:?}", constant);
393         self.with_constant_rib(|this| {
394             visit::walk_anon_const(this, constant);
395         });
396     }
397     fn visit_expr(&mut self, expr: &'ast Expr) {
398         self.resolve_expr(expr, None);
399     }
400     fn visit_local(&mut self, local: &'ast Local) {
401         let local_spans = match local.pat.kind {
402             // We check for this to avoid tuple struct fields.
403             PatKind::Wild => None,
404             _ => Some((
405                 local.pat.span,
406                 local.ty.as_ref().map(|ty| ty.span),
407                 local.init.as_ref().map(|init| init.span),
408             )),
409         };
410         let original = replace(&mut self.diagnostic_metadata.current_let_binding, local_spans);
411         self.resolve_local(local);
412         self.diagnostic_metadata.current_let_binding = original;
413     }
414     fn visit_ty(&mut self, ty: &'ast Ty) {
415         match ty.kind {
416             TyKind::Path(ref qself, ref path) => {
417                 self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
418             }
419             TyKind::ImplicitSelf => {
420                 let self_ty = Ident::with_dummy_span(kw::SelfUpper);
421                 let res = self
422                     .resolve_ident_in_lexical_scope(self_ty, TypeNS, Some(ty.id), ty.span)
423                     .map_or(Res::Err, |d| d.res());
424                 self.r.record_partial_res(ty.id, PartialRes::new(res));
425             }
426             _ => (),
427         }
428         visit::walk_ty(self, ty);
429     }
430     fn visit_poly_trait_ref(&mut self, tref: &'ast PolyTraitRef, m: &'ast TraitBoundModifier) {
431         self.smart_resolve_path(
432             tref.trait_ref.ref_id,
433             None,
434             &tref.trait_ref.path,
435             PathSource::Trait(AliasPossibility::Maybe),
436         );
437         visit::walk_poly_trait_ref(self, tref, m);
438     }
439     fn visit_foreign_item(&mut self, foreign_item: &'ast ForeignItem) {
440         match foreign_item.kind {
441             ForeignItemKind::Fn(_, _, ref generics, _)
442             | ForeignItemKind::TyAlias(_, ref generics, ..) => {
443                 self.with_generic_param_rib(generics, ItemRibKind(HasGenericParams::Yes), |this| {
444                     visit::walk_foreign_item(this, foreign_item);
445                 });
446             }
447             ForeignItemKind::Const(..) | ForeignItemKind::Static(..) => {
448                 self.with_item_rib(HasGenericParams::No, |this| {
449                     visit::walk_foreign_item(this, foreign_item);
450                 });
451             }
452             ForeignItemKind::Macro(..) => {
453                 visit::walk_foreign_item(self, foreign_item);
454             }
455         }
456     }
457     fn visit_fn(&mut self, fn_kind: FnKind<'ast>, sp: Span, _: NodeId) {
458         let rib_kind = match fn_kind {
459             FnKind::Fn(FnCtxt::Foreign, ..) => return visit::walk_fn(self, fn_kind, sp),
460             FnKind::Fn(FnCtxt::Free, ..) => FnItemRibKind,
461             FnKind::Fn(FnCtxt::Assoc(_), ..) | FnKind::Closure(..) => NormalRibKind,
462         };
463         let previous_value = replace(&mut self.diagnostic_metadata.current_function, Some(sp));
464         debug!("(resolving function) entering function");
465         let declaration = fn_kind.decl();
466
467         // Create a value rib for the function.
468         self.with_rib(ValueNS, rib_kind, |this| {
469             // Create a label rib for the function.
470             this.with_label_rib(rib_kind, |this| {
471                 // Add each argument to the rib.
472                 this.resolve_params(&declaration.inputs);
473
474                 visit::walk_fn_ret_ty(this, &declaration.output);
475
476                 // Resolve the function body, potentially inside the body of an async closure
477                 match fn_kind {
478                     FnKind::Fn(.., body) => walk_list!(this, visit_block, body),
479                     FnKind::Closure(_, body) => this.visit_expr(body),
480                 };
481
482                 debug!("(resolving function) leaving function");
483             })
484         });
485         self.diagnostic_metadata.current_function = previous_value;
486     }
487
488     fn visit_generics(&mut self, generics: &'ast Generics) {
489         // For type parameter defaults, we have to ban access
490         // to following type parameters, as the InternalSubsts can only
491         // provide previous type parameters as they're built. We
492         // put all the parameters on the ban list and then remove
493         // them one by one as they are processed and become available.
494         let mut default_ban_rib = Rib::new(ForwardTyParamBanRibKind);
495         let mut found_default = false;
496         default_ban_rib.bindings.extend(generics.params.iter().filter_map(
497             |param| match param.kind {
498                 GenericParamKind::Const { .. } | GenericParamKind::Lifetime { .. } => None,
499                 GenericParamKind::Type { ref default, .. } => {
500                     found_default |= default.is_some();
501                     found_default.then_some((Ident::with_dummy_span(param.ident.name), Res::Err))
502                 }
503             },
504         ));
505
506         // rust-lang/rust#61631: The type `Self` is essentially
507         // another type parameter. For ADTs, we consider it
508         // well-defined only after all of the ADT type parameters have
509         // been provided. Therefore, we do not allow use of `Self`
510         // anywhere in ADT type parameter defaults.
511         //
512         // (We however cannot ban `Self` for defaults on *all* generic
513         // lists; e.g. trait generics can usefully refer to `Self`,
514         // such as in the case of `trait Add<Rhs = Self>`.)
515         if self.diagnostic_metadata.current_self_item.is_some() {
516             // (`Some` if + only if we are in ADT's generics.)
517             default_ban_rib.bindings.insert(Ident::with_dummy_span(kw::SelfUpper), Res::Err);
518         }
519
520         for param in &generics.params {
521             match param.kind {
522                 GenericParamKind::Lifetime { .. } => self.visit_generic_param(param),
523                 GenericParamKind::Type { ref default, .. } => {
524                     for bound in &param.bounds {
525                         self.visit_param_bound(bound);
526                     }
527
528                     if let Some(ref ty) = default {
529                         self.ribs[TypeNS].push(default_ban_rib);
530                         self.visit_ty(ty);
531                         default_ban_rib = self.ribs[TypeNS].pop().unwrap();
532                     }
533
534                     // Allow all following defaults to refer to this type parameter.
535                     default_ban_rib.bindings.remove(&Ident::with_dummy_span(param.ident.name));
536                 }
537                 GenericParamKind::Const { ref ty } => {
538                     for bound in &param.bounds {
539                         self.visit_param_bound(bound);
540                     }
541                     self.visit_ty(ty);
542                 }
543             }
544         }
545         for p in &generics.where_clause.predicates {
546             self.visit_where_predicate(p);
547         }
548     }
549
550     fn visit_generic_arg(&mut self, arg: &'ast GenericArg) {
551         debug!("visit_generic_arg({:?})", arg);
552         let prev = replace(&mut self.diagnostic_metadata.currently_processing_generics, true);
553         match arg {
554             GenericArg::Type(ref ty) => {
555                 // We parse const arguments as path types as we cannot distiguish them during
556                 // parsing. We try to resolve that ambiguity by attempting resolution the type
557                 // namespace first, and if that fails we try again in the value namespace. If
558                 // resolution in the value namespace succeeds, we have an generic const argument on
559                 // our hands.
560                 if let TyKind::Path(ref qself, ref path) = ty.kind {
561                     // We cannot disambiguate multi-segment paths right now as that requires type
562                     // checking.
563                     if path.segments.len() == 1 && path.segments[0].args.is_none() {
564                         let mut check_ns = |ns| {
565                             self.resolve_ident_in_lexical_scope(
566                                 path.segments[0].ident,
567                                 ns,
568                                 None,
569                                 path.span,
570                             )
571                             .is_some()
572                         };
573                         if !check_ns(TypeNS) && check_ns(ValueNS) {
574                             // This must be equivalent to `visit_anon_const`, but we cannot call it
575                             // directly due to visitor lifetimes so we have to copy-paste some code.
576                             self.with_constant_rib(|this| {
577                                 this.smart_resolve_path(
578                                     ty.id,
579                                     qself.as_ref(),
580                                     path,
581                                     PathSource::Expr(None),
582                                 );
583
584                                 if let Some(ref qself) = *qself {
585                                     this.visit_ty(&qself.ty);
586                                 }
587                                 this.visit_path(path, ty.id);
588                             });
589
590                             self.diagnostic_metadata.currently_processing_generics = prev;
591                             return;
592                         }
593                     }
594                 }
595
596                 self.visit_ty(ty);
597             }
598             GenericArg::Lifetime(lt) => self.visit_lifetime(lt),
599             GenericArg::Const(ct) => self.visit_anon_const(ct),
600         }
601         self.diagnostic_metadata.currently_processing_generics = prev;
602     }
603 }
604
605 impl<'a, 'b, 'ast> LateResolutionVisitor<'a, 'b, 'ast> {
606     fn new(resolver: &'b mut Resolver<'a>) -> LateResolutionVisitor<'a, 'b, 'ast> {
607         // During late resolution we only track the module component of the parent scope,
608         // although it may be useful to track other components as well for diagnostics.
609         let graph_root = resolver.graph_root;
610         let parent_scope = ParentScope::module(graph_root);
611         let start_rib_kind = ModuleRibKind(graph_root);
612         LateResolutionVisitor {
613             r: resolver,
614             parent_scope,
615             ribs: PerNS {
616                 value_ns: vec![Rib::new(start_rib_kind)],
617                 type_ns: vec![Rib::new(start_rib_kind)],
618                 macro_ns: vec![Rib::new(start_rib_kind)],
619             },
620             label_ribs: Vec::new(),
621             current_trait_ref: None,
622             diagnostic_metadata: DiagnosticMetadata::default(),
623         }
624     }
625
626     fn resolve_ident_in_lexical_scope(
627         &mut self,
628         ident: Ident,
629         ns: Namespace,
630         record_used_id: Option<NodeId>,
631         path_span: Span,
632     ) -> Option<LexicalScopeBinding<'a>> {
633         self.r.resolve_ident_in_lexical_scope(
634             ident,
635             ns,
636             &self.parent_scope,
637             record_used_id,
638             path_span,
639             &self.ribs[ns],
640         )
641     }
642
643     fn resolve_path(
644         &mut self,
645         path: &[Segment],
646         opt_ns: Option<Namespace>, // `None` indicates a module path in import
647         record_used: bool,
648         path_span: Span,
649         crate_lint: CrateLint,
650     ) -> PathResult<'a> {
651         self.r.resolve_path_with_ribs(
652             path,
653             opt_ns,
654             &self.parent_scope,
655             record_used,
656             path_span,
657             crate_lint,
658             Some(&self.ribs),
659         )
660     }
661
662     // AST resolution
663     //
664     // We maintain a list of value ribs and type ribs.
665     //
666     // Simultaneously, we keep track of the current position in the module
667     // graph in the `parent_scope.module` pointer. When we go to resolve a name in
668     // the value or type namespaces, we first look through all the ribs and
669     // then query the module graph. When we resolve a name in the module
670     // namespace, we can skip all the ribs (since nested modules are not
671     // allowed within blocks in Rust) and jump straight to the current module
672     // graph node.
673     //
674     // Named implementations are handled separately. When we find a method
675     // call, we consult the module node to find all of the implementations in
676     // scope. This information is lazily cached in the module node. We then
677     // generate a fake "implementation scope" containing all the
678     // implementations thus found, for compatibility with old resolve pass.
679
680     /// Do some `work` within a new innermost rib of the given `kind` in the given namespace (`ns`).
681     fn with_rib<T>(
682         &mut self,
683         ns: Namespace,
684         kind: RibKind<'a>,
685         work: impl FnOnce(&mut Self) -> T,
686     ) -> T {
687         self.ribs[ns].push(Rib::new(kind));
688         let ret = work(self);
689         self.ribs[ns].pop();
690         ret
691     }
692
693     fn with_scope<T>(&mut self, id: NodeId, f: impl FnOnce(&mut Self) -> T) -> T {
694         let id = self.r.definitions.local_def_id(id);
695         let module = self.r.module_map.get(&id).cloned(); // clones a reference
696         if let Some(module) = module {
697             // Move down in the graph.
698             let orig_module = replace(&mut self.parent_scope.module, module);
699             self.with_rib(ValueNS, ModuleRibKind(module), |this| {
700                 this.with_rib(TypeNS, ModuleRibKind(module), |this| {
701                     let ret = f(this);
702                     this.parent_scope.module = orig_module;
703                     ret
704                 })
705             })
706         } else {
707             f(self)
708         }
709     }
710
711     /// Searches the current set of local scopes for labels. Returns the first non-`None` label that
712     /// is returned by the given predicate function
713     ///
714     /// Stops after meeting a closure.
715     fn search_label<P, R>(&self, mut ident: Ident, pred: P) -> Option<R>
716     where
717         P: Fn(&Rib<'_, NodeId>, Ident) -> Option<R>,
718     {
719         for rib in self.label_ribs.iter().rev() {
720             match rib.kind {
721                 NormalRibKind => {}
722                 // If an invocation of this macro created `ident`, give up on `ident`
723                 // and switch to `ident`'s source from the macro definition.
724                 MacroDefinition(def) => {
725                     if def == self.r.macro_def(ident.span.ctxt()) {
726                         ident.span.remove_mark();
727                     }
728                 }
729                 _ => {
730                     // Do not resolve labels across function boundary
731                     return None;
732                 }
733             }
734             let r = pred(rib, ident);
735             if r.is_some() {
736                 return r;
737             }
738         }
739         None
740     }
741
742     fn resolve_adt(&mut self, item: &'ast Item, generics: &'ast Generics) {
743         debug!("resolve_adt");
744         self.with_current_self_item(item, |this| {
745             this.with_generic_param_rib(generics, ItemRibKind(HasGenericParams::Yes), |this| {
746                 let item_def_id = this.r.definitions.local_def_id(item.id);
747                 this.with_self_rib(Res::SelfTy(None, Some(item_def_id)), |this| {
748                     visit::walk_item(this, item);
749                 });
750             });
751         });
752     }
753
754     fn future_proof_import(&mut self, use_tree: &UseTree) {
755         let segments = &use_tree.prefix.segments;
756         if !segments.is_empty() {
757             let ident = segments[0].ident;
758             if ident.is_path_segment_keyword() || ident.span.rust_2015() {
759                 return;
760             }
761
762             let nss = match use_tree.kind {
763                 UseTreeKind::Simple(..) if segments.len() == 1 => &[TypeNS, ValueNS][..],
764                 _ => &[TypeNS],
765             };
766             let report_error = |this: &Self, ns| {
767                 let what = if ns == TypeNS { "type parameters" } else { "local variables" };
768                 this.r.session.span_err(ident.span, &format!("imports cannot refer to {}", what));
769             };
770
771             for &ns in nss {
772                 match self.resolve_ident_in_lexical_scope(ident, ns, None, use_tree.prefix.span) {
773                     Some(LexicalScopeBinding::Res(..)) => {
774                         report_error(self, ns);
775                     }
776                     Some(LexicalScopeBinding::Item(binding)) => {
777                         let orig_blacklisted_binding =
778                             replace(&mut self.r.blacklisted_binding, Some(binding));
779                         if let Some(LexicalScopeBinding::Res(..)) = self
780                             .resolve_ident_in_lexical_scope(ident, ns, None, use_tree.prefix.span)
781                         {
782                             report_error(self, ns);
783                         }
784                         self.r.blacklisted_binding = orig_blacklisted_binding;
785                     }
786                     None => {}
787                 }
788             }
789         } else if let UseTreeKind::Nested(use_trees) = &use_tree.kind {
790             for (use_tree, _) in use_trees {
791                 self.future_proof_import(use_tree);
792             }
793         }
794     }
795
796     fn resolve_item(&mut self, item: &'ast Item) {
797         let name = item.ident.name;
798         debug!("(resolving item) resolving {} ({:?})", name, item.kind);
799
800         match item.kind {
801             ItemKind::TyAlias(_, ref generics, _, _) | ItemKind::Fn(_, _, ref generics, _) => {
802                 self.with_generic_param_rib(generics, ItemRibKind(HasGenericParams::Yes), |this| {
803                     visit::walk_item(this, item)
804                 });
805             }
806
807             ItemKind::Enum(_, ref generics)
808             | ItemKind::Struct(_, ref generics)
809             | ItemKind::Union(_, ref generics) => {
810                 self.resolve_adt(item, generics);
811             }
812
813             ItemKind::Impl {
814                 ref generics,
815                 ref of_trait,
816                 ref self_ty,
817                 items: ref impl_items,
818                 ..
819             } => {
820                 self.resolve_implementation(generics, of_trait, &self_ty, item.id, impl_items);
821             }
822
823             ItemKind::Trait(.., ref generics, ref bounds, ref trait_items) => {
824                 // Create a new rib for the trait-wide type parameters.
825                 self.with_generic_param_rib(generics, ItemRibKind(HasGenericParams::Yes), |this| {
826                     let local_def_id = this.r.definitions.local_def_id(item.id);
827                     this.with_self_rib(Res::SelfTy(Some(local_def_id), None), |this| {
828                         this.visit_generics(generics);
829                         walk_list!(this, visit_param_bound, bounds);
830
831                         let walk_assoc_item = |this: &mut Self, generics, item| {
832                             this.with_generic_param_rib(generics, AssocItemRibKind, |this| {
833                                 visit::walk_assoc_item(this, item, AssocCtxt::Trait)
834                             });
835                         };
836
837                         for item in trait_items {
838                             this.with_trait_items(trait_items, |this| {
839                                 match &item.kind {
840                                     AssocItemKind::Static(ty, _, default)
841                                     | AssocItemKind::Const(_, ty, default) => {
842                                         this.visit_ty(ty);
843                                         // Only impose the restrictions of `ConstRibKind` for an
844                                         // actual constant expression in a provided default.
845                                         if let Some(expr) = default {
846                                             this.with_constant_rib(|this| this.visit_expr(expr));
847                                         }
848                                     }
849                                     AssocItemKind::Fn(_, _, generics, _) => {
850                                         walk_assoc_item(this, generics, item);
851                                     }
852                                     AssocItemKind::TyAlias(_, generics, _, _) => {
853                                         walk_assoc_item(this, generics, item);
854                                     }
855                                     AssocItemKind::Macro(_) => {
856                                         panic!("unexpanded macro in resolve!")
857                                     }
858                                 };
859                             });
860                         }
861                     });
862                 });
863             }
864
865             ItemKind::TraitAlias(ref generics, ref bounds) => {
866                 // Create a new rib for the trait-wide type parameters.
867                 self.with_generic_param_rib(generics, ItemRibKind(HasGenericParams::Yes), |this| {
868                     let local_def_id = this.r.definitions.local_def_id(item.id);
869                     this.with_self_rib(Res::SelfTy(Some(local_def_id), None), |this| {
870                         this.visit_generics(generics);
871                         walk_list!(this, visit_param_bound, bounds);
872                     });
873                 });
874             }
875
876             ItemKind::Mod(_) | ItemKind::ForeignMod(_) => {
877                 self.with_scope(item.id, |this| {
878                     visit::walk_item(this, item);
879                 });
880             }
881
882             ItemKind::Static(ref ty, _, ref expr) | ItemKind::Const(_, ref ty, ref expr) => {
883                 debug!("resolve_item ItemKind::Const");
884                 self.with_item_rib(HasGenericParams::No, |this| {
885                     this.visit_ty(ty);
886                     if let Some(expr) = expr {
887                         this.with_constant_rib(|this| this.visit_expr(expr));
888                     }
889                 });
890             }
891
892             ItemKind::Use(ref use_tree) => {
893                 self.future_proof_import(use_tree);
894             }
895
896             ItemKind::ExternCrate(..) | ItemKind::MacroDef(..) | ItemKind::GlobalAsm(..) => {
897                 // do nothing, these are just around to be encoded
898             }
899
900             ItemKind::Mac(_) => panic!("unexpanded macro in resolve!"),
901         }
902     }
903
904     fn with_generic_param_rib<'c, F>(&'c mut self, generics: &'c Generics, kind: RibKind<'a>, f: F)
905     where
906         F: FnOnce(&mut Self),
907     {
908         debug!("with_generic_param_rib");
909         let mut function_type_rib = Rib::new(kind);
910         let mut function_value_rib = Rib::new(kind);
911         let mut seen_bindings = FxHashMap::default();
912
913         // We also can't shadow bindings from the parent item
914         if let AssocItemRibKind = kind {
915             let mut add_bindings_for_ns = |ns| {
916                 let parent_rib = self.ribs[ns]
917                     .iter()
918                     .rfind(|r| if let ItemRibKind(_) = r.kind { true } else { false })
919                     .expect("associated item outside of an item");
920                 seen_bindings
921                     .extend(parent_rib.bindings.iter().map(|(ident, _)| (*ident, ident.span)));
922             };
923             add_bindings_for_ns(ValueNS);
924             add_bindings_for_ns(TypeNS);
925         }
926
927         for param in &generics.params {
928             if let GenericParamKind::Lifetime { .. } = param.kind {
929                 continue;
930             }
931
932             let def_kind = match param.kind {
933                 GenericParamKind::Type { .. } => DefKind::TyParam,
934                 GenericParamKind::Const { .. } => DefKind::ConstParam,
935                 _ => unreachable!(),
936             };
937
938             let ident = param.ident.modern();
939             debug!("with_generic_param_rib: {}", param.id);
940
941             if seen_bindings.contains_key(&ident) {
942                 let span = seen_bindings.get(&ident).unwrap();
943                 let err = ResolutionError::NameAlreadyUsedInParameterList(ident.name, *span);
944                 self.r.report_error(param.ident.span, err);
945             }
946             seen_bindings.entry(ident).or_insert(param.ident.span);
947
948             // Plain insert (no renaming).
949             let res = Res::Def(def_kind, self.r.definitions.local_def_id(param.id));
950
951             match param.kind {
952                 GenericParamKind::Type { .. } => {
953                     function_type_rib.bindings.insert(ident, res);
954                     self.r.record_partial_res(param.id, PartialRes::new(res));
955                 }
956                 GenericParamKind::Const { .. } => {
957                     function_value_rib.bindings.insert(ident, res);
958                     self.r.record_partial_res(param.id, PartialRes::new(res));
959                 }
960                 _ => unreachable!(),
961             }
962         }
963
964         self.ribs[ValueNS].push(function_value_rib);
965         self.ribs[TypeNS].push(function_type_rib);
966
967         f(self);
968
969         self.ribs[TypeNS].pop();
970         self.ribs[ValueNS].pop();
971     }
972
973     fn with_label_rib(&mut self, kind: RibKind<'a>, f: impl FnOnce(&mut Self)) {
974         self.label_ribs.push(Rib::new(kind));
975         f(self);
976         self.label_ribs.pop();
977     }
978
979     fn with_item_rib(&mut self, has_generic_params: HasGenericParams, f: impl FnOnce(&mut Self)) {
980         let kind = ItemRibKind(has_generic_params);
981         self.with_rib(ValueNS, kind, |this| this.with_rib(TypeNS, kind, f))
982     }
983
984     fn with_constant_rib(&mut self, f: impl FnOnce(&mut Self)) {
985         debug!("with_constant_rib");
986         self.with_rib(ValueNS, ConstantItemRibKind, |this| {
987             this.with_label_rib(ConstantItemRibKind, f);
988         });
989     }
990
991     fn with_current_self_type<T>(&mut self, self_type: &Ty, f: impl FnOnce(&mut Self) -> T) -> T {
992         // Handle nested impls (inside fn bodies)
993         let previous_value =
994             replace(&mut self.diagnostic_metadata.current_self_type, Some(self_type.clone()));
995         let result = f(self);
996         self.diagnostic_metadata.current_self_type = previous_value;
997         result
998     }
999
1000     fn with_current_self_item<T>(&mut self, self_item: &Item, f: impl FnOnce(&mut Self) -> T) -> T {
1001         let previous_value =
1002             replace(&mut self.diagnostic_metadata.current_self_item, Some(self_item.id));
1003         let result = f(self);
1004         self.diagnostic_metadata.current_self_item = previous_value;
1005         result
1006     }
1007
1008     /// When evaluating a `trait` use its associated types' idents for suggestionsa in E0412.
1009     fn with_trait_items<T>(
1010         &mut self,
1011         trait_items: &Vec<P<AssocItem>>,
1012         f: impl FnOnce(&mut Self) -> T,
1013     ) -> T {
1014         let trait_assoc_types = replace(
1015             &mut self.diagnostic_metadata.current_trait_assoc_types,
1016             trait_items
1017                 .iter()
1018                 .filter_map(|item| match &item.kind {
1019                     AssocItemKind::TyAlias(_, _, bounds, _) if bounds.len() == 0 => {
1020                         Some(item.ident)
1021                     }
1022                     _ => None,
1023                 })
1024                 .collect(),
1025         );
1026         let result = f(self);
1027         self.diagnostic_metadata.current_trait_assoc_types = trait_assoc_types;
1028         result
1029     }
1030
1031     /// This is called to resolve a trait reference from an `impl` (i.e., `impl Trait for Foo`).
1032     fn with_optional_trait_ref<T>(
1033         &mut self,
1034         opt_trait_ref: Option<&TraitRef>,
1035         f: impl FnOnce(&mut Self, Option<DefId>) -> T,
1036     ) -> T {
1037         let mut new_val = None;
1038         let mut new_id = None;
1039         if let Some(trait_ref) = opt_trait_ref {
1040             let path: Vec<_> = Segment::from_path(&trait_ref.path);
1041             let res = self.smart_resolve_path_fragment(
1042                 trait_ref.ref_id,
1043                 None,
1044                 &path,
1045                 trait_ref.path.span,
1046                 PathSource::Trait(AliasPossibility::No),
1047                 CrateLint::SimplePath(trait_ref.ref_id),
1048             );
1049             let res = res.base_res();
1050             if res != Res::Err {
1051                 new_id = Some(res.def_id());
1052                 let span = trait_ref.path.span;
1053                 if let PathResult::Module(ModuleOrUniformRoot::Module(module)) = self.resolve_path(
1054                     &path,
1055                     Some(TypeNS),
1056                     false,
1057                     span,
1058                     CrateLint::SimplePath(trait_ref.ref_id),
1059                 ) {
1060                     new_val = Some((module, trait_ref.clone()));
1061                 }
1062             }
1063         }
1064         let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
1065         let result = f(self, new_id);
1066         self.current_trait_ref = original_trait_ref;
1067         result
1068     }
1069
1070     fn with_self_rib_ns(&mut self, ns: Namespace, self_res: Res, f: impl FnOnce(&mut Self)) {
1071         let mut self_type_rib = Rib::new(NormalRibKind);
1072
1073         // Plain insert (no renaming, since types are not currently hygienic)
1074         self_type_rib.bindings.insert(Ident::with_dummy_span(kw::SelfUpper), self_res);
1075         self.ribs[ns].push(self_type_rib);
1076         f(self);
1077         self.ribs[ns].pop();
1078     }
1079
1080     fn with_self_rib(&mut self, self_res: Res, f: impl FnOnce(&mut Self)) {
1081         self.with_self_rib_ns(TypeNS, self_res, f)
1082     }
1083
1084     fn resolve_implementation(
1085         &mut self,
1086         generics: &'ast Generics,
1087         opt_trait_reference: &'ast Option<TraitRef>,
1088         self_type: &'ast Ty,
1089         item_id: NodeId,
1090         impl_items: &'ast [P<AssocItem>],
1091     ) {
1092         debug!("resolve_implementation");
1093         // If applicable, create a rib for the type parameters.
1094         self.with_generic_param_rib(generics, ItemRibKind(HasGenericParams::Yes), |this| {
1095             // Dummy self type for better errors if `Self` is used in the trait path.
1096             this.with_self_rib(Res::SelfTy(None, None), |this| {
1097                 // Resolve the trait reference, if necessary.
1098                 this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| {
1099                     let item_def_id = this.r.definitions.local_def_id(item_id);
1100                     this.with_self_rib(Res::SelfTy(trait_id, Some(item_def_id)), |this| {
1101                         if let Some(trait_ref) = opt_trait_reference.as_ref() {
1102                             // Resolve type arguments in the trait path.
1103                             visit::walk_trait_ref(this, trait_ref);
1104                         }
1105                         // Resolve the self type.
1106                         this.visit_ty(self_type);
1107                         // Resolve the generic parameters.
1108                         this.visit_generics(generics);
1109                         // Resolve the items within the impl.
1110                         this.with_current_self_type(self_type, |this| {
1111                             this.with_self_rib_ns(ValueNS, Res::SelfCtor(item_def_id), |this| {
1112                                 debug!("resolve_implementation with_self_rib_ns(ValueNS, ...)");
1113                                 for item in impl_items {
1114                                     use crate::ResolutionError::*;
1115                                     match &item.kind {
1116                                         AssocItemKind::Static(..) | AssocItemKind::Const(..) => {
1117                                             debug!("resolve_implementation AssocItemKind::Const",);
1118                                             // If this is a trait impl, ensure the const
1119                                             // exists in trait
1120                                             this.check_trait_item(
1121                                                 item.ident,
1122                                                 ValueNS,
1123                                                 item.span,
1124                                                 |n, s| ConstNotMemberOfTrait(n, s),
1125                                             );
1126
1127                                             this.with_constant_rib(|this| {
1128                                                 visit::walk_assoc_item(this, item, AssocCtxt::Impl)
1129                                             });
1130                                         }
1131                                         AssocItemKind::Fn(_, _, generics, _) => {
1132                                             // We also need a new scope for the impl item type parameters.
1133                                             this.with_generic_param_rib(
1134                                                 generics,
1135                                                 AssocItemRibKind,
1136                                                 |this| {
1137                                                     // If this is a trait impl, ensure the method
1138                                                     // exists in trait
1139                                                     this.check_trait_item(
1140                                                         item.ident,
1141                                                         ValueNS,
1142                                                         item.span,
1143                                                         |n, s| MethodNotMemberOfTrait(n, s),
1144                                                     );
1145
1146                                                     visit::walk_assoc_item(
1147                                                         this,
1148                                                         item,
1149                                                         AssocCtxt::Impl,
1150                                                     )
1151                                                 },
1152                                             );
1153                                         }
1154                                         AssocItemKind::TyAlias(_, generics, _, _) => {
1155                                             // We also need a new scope for the impl item type parameters.
1156                                             this.with_generic_param_rib(
1157                                                 generics,
1158                                                 AssocItemRibKind,
1159                                                 |this| {
1160                                                     // If this is a trait impl, ensure the type
1161                                                     // exists in trait
1162                                                     this.check_trait_item(
1163                                                         item.ident,
1164                                                         TypeNS,
1165                                                         item.span,
1166                                                         |n, s| TypeNotMemberOfTrait(n, s),
1167                                                     );
1168
1169                                                     visit::walk_assoc_item(
1170                                                         this,
1171                                                         item,
1172                                                         AssocCtxt::Impl,
1173                                                     )
1174                                                 },
1175                                             );
1176                                         }
1177                                         AssocItemKind::Macro(_) => {
1178                                             panic!("unexpanded macro in resolve!")
1179                                         }
1180                                     }
1181                                 }
1182                             });
1183                         });
1184                     });
1185                 });
1186             });
1187         });
1188     }
1189
1190     fn check_trait_item<F>(&mut self, ident: Ident, ns: Namespace, span: Span, err: F)
1191     where
1192         F: FnOnce(Name, &str) -> ResolutionError<'_>,
1193     {
1194         // If there is a TraitRef in scope for an impl, then the method must be in the
1195         // trait.
1196         if let Some((module, _)) = self.current_trait_ref {
1197             if self
1198                 .r
1199                 .resolve_ident_in_module(
1200                     ModuleOrUniformRoot::Module(module),
1201                     ident,
1202                     ns,
1203                     &self.parent_scope,
1204                     false,
1205                     span,
1206                 )
1207                 .is_err()
1208             {
1209                 let path = &self.current_trait_ref.as_ref().unwrap().1.path;
1210                 self.r.report_error(span, err(ident.name, &path_names_to_string(path)));
1211             }
1212         }
1213     }
1214
1215     fn resolve_params(&mut self, params: &'ast [Param]) {
1216         let mut bindings = smallvec![(PatBoundCtx::Product, Default::default())];
1217         for Param { pat, ty, .. } in params {
1218             self.resolve_pattern(pat, PatternSource::FnParam, &mut bindings);
1219             self.visit_ty(ty);
1220             debug!("(resolving function / closure) recorded parameter");
1221         }
1222     }
1223
1224     fn resolve_local(&mut self, local: &'ast Local) {
1225         // Resolve the type.
1226         walk_list!(self, visit_ty, &local.ty);
1227
1228         // Resolve the initializer.
1229         walk_list!(self, visit_expr, &local.init);
1230
1231         // Resolve the pattern.
1232         self.resolve_pattern_top(&local.pat, PatternSource::Let);
1233     }
1234
1235     /// build a map from pattern identifiers to binding-info's.
1236     /// this is done hygienically. This could arise for a macro
1237     /// that expands into an or-pattern where one 'x' was from the
1238     /// user and one 'x' came from the macro.
1239     fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
1240         let mut binding_map = FxHashMap::default();
1241
1242         pat.walk(&mut |pat| {
1243             match pat.kind {
1244                 PatKind::Ident(binding_mode, ident, ref sub_pat)
1245                     if sub_pat.is_some() || self.is_base_res_local(pat.id) =>
1246                 {
1247                     binding_map.insert(ident, BindingInfo { span: ident.span, binding_mode });
1248                 }
1249                 PatKind::Or(ref ps) => {
1250                     // Check the consistency of this or-pattern and
1251                     // then add all bindings to the larger map.
1252                     for bm in self.check_consistent_bindings(ps) {
1253                         binding_map.extend(bm);
1254                     }
1255                     return false;
1256                 }
1257                 _ => {}
1258             }
1259
1260             true
1261         });
1262
1263         binding_map
1264     }
1265
1266     fn is_base_res_local(&self, nid: NodeId) -> bool {
1267         match self.r.partial_res_map.get(&nid).map(|res| res.base_res()) {
1268             Some(Res::Local(..)) => true,
1269             _ => false,
1270         }
1271     }
1272
1273     /// Checks that all of the arms in an or-pattern have exactly the
1274     /// same set of bindings, with the same binding modes for each.
1275     fn check_consistent_bindings(&mut self, pats: &[P<Pat>]) -> Vec<BindingMap> {
1276         let mut missing_vars = FxHashMap::default();
1277         let mut inconsistent_vars = FxHashMap::default();
1278
1279         // 1) Compute the binding maps of all arms.
1280         let maps = pats.iter().map(|pat| self.binding_mode_map(pat)).collect::<Vec<_>>();
1281
1282         // 2) Record any missing bindings or binding mode inconsistencies.
1283         for (map_outer, pat_outer) in pats.iter().enumerate().map(|(idx, pat)| (&maps[idx], pat)) {
1284             // Check against all arms except for the same pattern which is always self-consistent.
1285             let inners = pats
1286                 .iter()
1287                 .enumerate()
1288                 .filter(|(_, pat)| pat.id != pat_outer.id)
1289                 .flat_map(|(idx, _)| maps[idx].iter())
1290                 .map(|(key, binding)| (key.name, map_outer.get(&key), binding));
1291
1292             for (name, info, &binding_inner) in inners {
1293                 match info {
1294                     None => {
1295                         // The inner binding is missing in the outer.
1296                         let binding_error =
1297                             missing_vars.entry(name).or_insert_with(|| BindingError {
1298                                 name,
1299                                 origin: BTreeSet::new(),
1300                                 target: BTreeSet::new(),
1301                                 could_be_path: name.as_str().starts_with(char::is_uppercase),
1302                             });
1303                         binding_error.origin.insert(binding_inner.span);
1304                         binding_error.target.insert(pat_outer.span);
1305                     }
1306                     Some(binding_outer) => {
1307                         if binding_outer.binding_mode != binding_inner.binding_mode {
1308                             // The binding modes in the outer and inner bindings differ.
1309                             inconsistent_vars
1310                                 .entry(name)
1311                                 .or_insert((binding_inner.span, binding_outer.span));
1312                         }
1313                     }
1314                 }
1315             }
1316         }
1317
1318         // 3) Report all missing variables we found.
1319         let mut missing_vars = missing_vars.iter_mut().collect::<Vec<_>>();
1320         missing_vars.sort();
1321         for (name, mut v) in missing_vars {
1322             if inconsistent_vars.contains_key(name) {
1323                 v.could_be_path = false;
1324             }
1325             self.r.report_error(
1326                 *v.origin.iter().next().unwrap(),
1327                 ResolutionError::VariableNotBoundInPattern(v),
1328             );
1329         }
1330
1331         // 4) Report all inconsistencies in binding modes we found.
1332         let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
1333         inconsistent_vars.sort();
1334         for (name, v) in inconsistent_vars {
1335             self.r.report_error(v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
1336         }
1337
1338         // 5) Finally bubble up all the binding maps.
1339         maps
1340     }
1341
1342     /// Check the consistency of the outermost or-patterns.
1343     fn check_consistent_bindings_top(&mut self, pat: &'ast Pat) {
1344         pat.walk(&mut |pat| match pat.kind {
1345             PatKind::Or(ref ps) => {
1346                 self.check_consistent_bindings(ps);
1347                 false
1348             }
1349             _ => true,
1350         })
1351     }
1352
1353     fn resolve_arm(&mut self, arm: &'ast Arm) {
1354         self.with_rib(ValueNS, NormalRibKind, |this| {
1355             this.resolve_pattern_top(&arm.pat, PatternSource::Match);
1356             walk_list!(this, visit_expr, &arm.guard);
1357             this.visit_expr(&arm.body);
1358         });
1359     }
1360
1361     /// Arising from `source`, resolve a top level pattern.
1362     fn resolve_pattern_top(&mut self, pat: &'ast Pat, pat_src: PatternSource) {
1363         let mut bindings = smallvec![(PatBoundCtx::Product, Default::default())];
1364         self.resolve_pattern(pat, pat_src, &mut bindings);
1365     }
1366
1367     fn resolve_pattern(
1368         &mut self,
1369         pat: &'ast Pat,
1370         pat_src: PatternSource,
1371         bindings: &mut SmallVec<[(PatBoundCtx, FxHashSet<Ident>); 1]>,
1372     ) {
1373         self.resolve_pattern_inner(pat, pat_src, bindings);
1374         // This has to happen *after* we determine which pat_idents are variants:
1375         self.check_consistent_bindings_top(pat);
1376         visit::walk_pat(self, pat);
1377     }
1378
1379     /// Resolve bindings in a pattern. This is a helper to `resolve_pattern`.
1380     ///
1381     /// ### `bindings`
1382     ///
1383     /// A stack of sets of bindings accumulated.
1384     ///
1385     /// In each set, `PatBoundCtx::Product` denotes that a found binding in it should
1386     /// be interpreted as re-binding an already bound binding. This results in an error.
1387     /// Meanwhile, `PatBound::Or` denotes that a found binding in the set should result
1388     /// in reusing this binding rather than creating a fresh one.
1389     ///
1390     /// When called at the top level, the stack must have a single element
1391     /// with `PatBound::Product`. Otherwise, pushing to the stack happens as
1392     /// or-patterns (`p_0 | ... | p_n`) are encountered and the context needs
1393     /// to be switched to `PatBoundCtx::Or` and then `PatBoundCtx::Product` for each `p_i`.
1394     /// When each `p_i` has been dealt with, the top set is merged with its parent.
1395     /// When a whole or-pattern has been dealt with, the thing happens.
1396     ///
1397     /// See the implementation and `fresh_binding` for more details.
1398     fn resolve_pattern_inner(
1399         &mut self,
1400         pat: &Pat,
1401         pat_src: PatternSource,
1402         bindings: &mut SmallVec<[(PatBoundCtx, FxHashSet<Ident>); 1]>,
1403     ) {
1404         // Visit all direct subpatterns of this pattern.
1405         pat.walk(&mut |pat| {
1406             debug!("resolve_pattern pat={:?} node={:?}", pat, pat.kind);
1407             match pat.kind {
1408                 PatKind::Ident(bmode, ident, ref sub) => {
1409                     // First try to resolve the identifier as some existing entity,
1410                     // then fall back to a fresh binding.
1411                     let has_sub = sub.is_some();
1412                     let res = self
1413                         .try_resolve_as_non_binding(pat_src, pat, bmode, ident, has_sub)
1414                         .unwrap_or_else(|| self.fresh_binding(ident, pat.id, pat_src, bindings));
1415                     self.r.record_partial_res(pat.id, PartialRes::new(res));
1416                 }
1417                 PatKind::TupleStruct(ref path, ..) => {
1418                     self.smart_resolve_path(pat.id, None, path, PathSource::TupleStruct);
1419                 }
1420                 PatKind::Path(ref qself, ref path) => {
1421                     self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
1422                 }
1423                 PatKind::Struct(ref path, ..) => {
1424                     self.smart_resolve_path(pat.id, None, path, PathSource::Struct);
1425                 }
1426                 PatKind::Or(ref ps) => {
1427                     // Add a new set of bindings to the stack. `Or` here records that when a
1428                     // binding already exists in this set, it should not result in an error because
1429                     // `V1(a) | V2(a)` must be allowed and are checked for consistency later.
1430                     bindings.push((PatBoundCtx::Or, Default::default()));
1431                     for p in ps {
1432                         // Now we need to switch back to a product context so that each
1433                         // part of the or-pattern internally rejects already bound names.
1434                         // For example, `V1(a) | V2(a, a)` and `V1(a, a) | V2(a)` are bad.
1435                         bindings.push((PatBoundCtx::Product, Default::default()));
1436                         self.resolve_pattern_inner(p, pat_src, bindings);
1437                         // Move up the non-overlapping bindings to the or-pattern.
1438                         // Existing bindings just get "merged".
1439                         let collected = bindings.pop().unwrap().1;
1440                         bindings.last_mut().unwrap().1.extend(collected);
1441                     }
1442                     // This or-pattern itself can itself be part of a product,
1443                     // e.g. `(V1(a) | V2(a), a)` or `(a, V1(a) | V2(a))`.
1444                     // Both cases bind `a` again in a product pattern and must be rejected.
1445                     let collected = bindings.pop().unwrap().1;
1446                     bindings.last_mut().unwrap().1.extend(collected);
1447
1448                     // Prevent visiting `ps` as we've already done so above.
1449                     return false;
1450                 }
1451                 _ => {}
1452             }
1453             true
1454         });
1455     }
1456
1457     fn fresh_binding(
1458         &mut self,
1459         ident: Ident,
1460         pat_id: NodeId,
1461         pat_src: PatternSource,
1462         bindings: &mut SmallVec<[(PatBoundCtx, FxHashSet<Ident>); 1]>,
1463     ) -> Res {
1464         // Add the binding to the local ribs, if it doesn't already exist in the bindings map.
1465         // (We must not add it if it's in the bindings map because that breaks the assumptions
1466         // later passes make about or-patterns.)
1467         let ident = ident.modern_and_legacy();
1468
1469         let mut bound_iter = bindings.iter().filter(|(_, set)| set.contains(&ident));
1470         // Already bound in a product pattern? e.g. `(a, a)` which is not allowed.
1471         let already_bound_and = bound_iter.clone().any(|(ctx, _)| *ctx == PatBoundCtx::Product);
1472         // Already bound in an or-pattern? e.g. `V1(a) | V2(a)`.
1473         // This is *required* for consistency which is checked later.
1474         let already_bound_or = bound_iter.any(|(ctx, _)| *ctx == PatBoundCtx::Or);
1475
1476         if already_bound_and {
1477             // Overlap in a product pattern somewhere; report an error.
1478             use ResolutionError::*;
1479             let error = match pat_src {
1480                 // `fn f(a: u8, a: u8)`:
1481                 PatternSource::FnParam => IdentifierBoundMoreThanOnceInParameterList,
1482                 // `Variant(a, a)`:
1483                 _ => IdentifierBoundMoreThanOnceInSamePattern,
1484             };
1485             self.r.report_error(ident.span, error(&ident.as_str()));
1486         }
1487
1488         // Record as bound if it's valid:
1489         let ident_valid = ident.name != kw::Invalid;
1490         if ident_valid {
1491             bindings.last_mut().unwrap().1.insert(ident);
1492         }
1493
1494         if already_bound_or {
1495             // `Variant1(a) | Variant2(a)`, ok
1496             // Reuse definition from the first `a`.
1497             self.innermost_rib_bindings(ValueNS)[&ident]
1498         } else {
1499             let res = Res::Local(pat_id);
1500             if ident_valid {
1501                 // A completely fresh binding add to the set if it's valid.
1502                 self.innermost_rib_bindings(ValueNS).insert(ident, res);
1503             }
1504             res
1505         }
1506     }
1507
1508     fn innermost_rib_bindings(&mut self, ns: Namespace) -> &mut IdentMap<Res> {
1509         &mut self.ribs[ns].last_mut().unwrap().bindings
1510     }
1511
1512     fn try_resolve_as_non_binding(
1513         &mut self,
1514         pat_src: PatternSource,
1515         pat: &Pat,
1516         bm: BindingMode,
1517         ident: Ident,
1518         has_sub: bool,
1519     ) -> Option<Res> {
1520         let binding =
1521             self.resolve_ident_in_lexical_scope(ident, ValueNS, None, pat.span)?.item()?;
1522         let res = binding.res();
1523
1524         // An immutable (no `mut`) by-value (no `ref`) binding pattern without
1525         // a sub pattern (no `@ $pat`) is syntactically ambiguous as it could
1526         // also be interpreted as a path to e.g. a constant, variant, etc.
1527         let is_syntactic_ambiguity = !has_sub && bm == BindingMode::ByValue(Mutability::Not);
1528
1529         match res {
1530             Res::Def(DefKind::Ctor(_, CtorKind::Const), _) | Res::Def(DefKind::Const, _)
1531                 if is_syntactic_ambiguity =>
1532             {
1533                 // Disambiguate in favor of a unit struct/variant or constant pattern.
1534                 self.r.record_use(ident, ValueNS, binding, false);
1535                 Some(res)
1536             }
1537             Res::Def(DefKind::Ctor(..), _)
1538             | Res::Def(DefKind::Const, _)
1539             | Res::Def(DefKind::Static, _) => {
1540                 // This is unambiguously a fresh binding, either syntactically
1541                 // (e.g., `IDENT @ PAT` or `ref IDENT`) or because `IDENT` resolves
1542                 // to something unusable as a pattern (e.g., constructor function),
1543                 // but we still conservatively report an error, see
1544                 // issues/33118#issuecomment-233962221 for one reason why.
1545                 self.r.report_error(
1546                     ident.span,
1547                     ResolutionError::BindingShadowsSomethingUnacceptable(
1548                         pat_src.descr(),
1549                         ident.name,
1550                         binding,
1551                     ),
1552                 );
1553                 None
1554             }
1555             Res::Def(DefKind::Fn, _) | Res::Err => {
1556                 // These entities are explicitly allowed to be shadowed by fresh bindings.
1557                 None
1558             }
1559             res => {
1560                 span_bug!(
1561                     ident.span,
1562                     "unexpected resolution for an \
1563                                         identifier in pattern: {:?}",
1564                     res
1565                 );
1566             }
1567         }
1568     }
1569
1570     // High-level and context dependent path resolution routine.
1571     // Resolves the path and records the resolution into definition map.
1572     // If resolution fails tries several techniques to find likely
1573     // resolution candidates, suggest imports or other help, and report
1574     // errors in user friendly way.
1575     fn smart_resolve_path(
1576         &mut self,
1577         id: NodeId,
1578         qself: Option<&QSelf>,
1579         path: &Path,
1580         source: PathSource<'ast>,
1581     ) {
1582         self.smart_resolve_path_fragment(
1583             id,
1584             qself,
1585             &Segment::from_path(path),
1586             path.span,
1587             source,
1588             CrateLint::SimplePath(id),
1589         );
1590     }
1591
1592     fn smart_resolve_path_fragment(
1593         &mut self,
1594         id: NodeId,
1595         qself: Option<&QSelf>,
1596         path: &[Segment],
1597         span: Span,
1598         source: PathSource<'ast>,
1599         crate_lint: CrateLint,
1600     ) -> PartialRes {
1601         let ns = source.namespace();
1602         let is_expected = &|res| source.is_expected(res);
1603
1604         let report_errors = |this: &mut Self, res: Option<Res>| {
1605             let (err, candidates) = this.smart_resolve_report_errors(path, span, source, res);
1606             let def_id = this.parent_scope.module.normal_ancestor_id;
1607             let node_id = this.r.definitions.as_local_node_id(def_id).unwrap();
1608             let better = res.is_some();
1609             let suggestion =
1610                 if res.is_none() { this.report_missing_type_error(path) } else { None };
1611             this.r.use_injections.push(UseError { err, candidates, node_id, better, suggestion });
1612             PartialRes::new(Res::Err)
1613         };
1614
1615         let partial_res = match self.resolve_qpath_anywhere(
1616             id,
1617             qself,
1618             path,
1619             ns,
1620             span,
1621             source.defer_to_typeck(),
1622             crate_lint,
1623         ) {
1624             Some(partial_res) if partial_res.unresolved_segments() == 0 => {
1625                 if is_expected(partial_res.base_res()) || partial_res.base_res() == Res::Err {
1626                     partial_res
1627                 } else {
1628                     report_errors(self, Some(partial_res.base_res()))
1629                 }
1630             }
1631             Some(partial_res) if source.defer_to_typeck() => {
1632                 // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
1633                 // or `<T>::A::B`. If `B` should be resolved in value namespace then
1634                 // it needs to be added to the trait map.
1635                 if ns == ValueNS {
1636                     let item_name = path.last().unwrap().ident;
1637                     let traits = self.get_traits_containing_item(item_name, ns);
1638                     self.r.trait_map.insert(id, traits);
1639                 }
1640
1641                 let mut std_path = vec![Segment::from_ident(Ident::with_dummy_span(sym::std))];
1642                 std_path.extend(path);
1643                 if self.r.primitive_type_table.primitive_types.contains_key(&path[0].ident.name) {
1644                     let cl = CrateLint::No;
1645                     let ns = Some(ns);
1646                     if let PathResult::Module(_) | PathResult::NonModule(_) =
1647                         self.resolve_path(&std_path, ns, false, span, cl)
1648                     {
1649                         // check if we wrote `str::from_utf8` instead of `std::str::from_utf8`
1650                         let item_span =
1651                             path.iter().last().map(|segment| segment.ident.span).unwrap_or(span);
1652                         debug!("accessed item from `std` submodule as a bare type {:?}", std_path);
1653                         let mut hm = self.r.session.confused_type_with_std_module.borrow_mut();
1654                         hm.insert(item_span, span);
1655                         // In some places (E0223) we only have access to the full path
1656                         hm.insert(span, span);
1657                     }
1658                 }
1659                 partial_res
1660             }
1661             _ => report_errors(self, None),
1662         };
1663
1664         if let PathSource::TraitItem(..) = source {
1665         } else {
1666             // Avoid recording definition of `A::B` in `<T as A>::B::C`.
1667             self.r.record_partial_res(id, partial_res);
1668         }
1669         partial_res
1670     }
1671
1672     fn self_type_is_available(&mut self, span: Span) -> bool {
1673         let binding = self.resolve_ident_in_lexical_scope(
1674             Ident::with_dummy_span(kw::SelfUpper),
1675             TypeNS,
1676             None,
1677             span,
1678         );
1679         if let Some(LexicalScopeBinding::Res(res)) = binding { res != Res::Err } else { false }
1680     }
1681
1682     fn self_value_is_available(&mut self, self_span: Span, path_span: Span) -> bool {
1683         let ident = Ident::new(kw::SelfLower, self_span);
1684         let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, None, path_span);
1685         if let Some(LexicalScopeBinding::Res(res)) = binding { res != Res::Err } else { false }
1686     }
1687
1688     // Resolve in alternative namespaces if resolution in the primary namespace fails.
1689     fn resolve_qpath_anywhere(
1690         &mut self,
1691         id: NodeId,
1692         qself: Option<&QSelf>,
1693         path: &[Segment],
1694         primary_ns: Namespace,
1695         span: Span,
1696         defer_to_typeck: bool,
1697         crate_lint: CrateLint,
1698     ) -> Option<PartialRes> {
1699         let mut fin_res = None;
1700         for (i, ns) in [primary_ns, TypeNS, ValueNS].iter().cloned().enumerate() {
1701             if i == 0 || ns != primary_ns {
1702                 match self.resolve_qpath(id, qself, path, ns, span, crate_lint) {
1703                     // If defer_to_typeck, then resolution > no resolution,
1704                     // otherwise full resolution > partial resolution > no resolution.
1705                     Some(partial_res)
1706                         if partial_res.unresolved_segments() == 0 || defer_to_typeck =>
1707                     {
1708                         return Some(partial_res);
1709                     }
1710                     partial_res => {
1711                         if fin_res.is_none() {
1712                             fin_res = partial_res
1713                         }
1714                     }
1715                 }
1716             }
1717         }
1718
1719         // `MacroNS`
1720         assert!(primary_ns != MacroNS);
1721         if qself.is_none() {
1722             let path_seg = |seg: &Segment| PathSegment::from_ident(seg.ident);
1723             let path = Path { segments: path.iter().map(path_seg).collect(), span };
1724             if let Ok((_, res)) =
1725                 self.r.resolve_macro_path(&path, None, &self.parent_scope, false, false)
1726             {
1727                 return Some(PartialRes::new(res));
1728             }
1729         }
1730
1731         fin_res
1732     }
1733
1734     /// Handles paths that may refer to associated items.
1735     fn resolve_qpath(
1736         &mut self,
1737         id: NodeId,
1738         qself: Option<&QSelf>,
1739         path: &[Segment],
1740         ns: Namespace,
1741         span: Span,
1742         crate_lint: CrateLint,
1743     ) -> Option<PartialRes> {
1744         debug!(
1745             "resolve_qpath(id={:?}, qself={:?}, path={:?}, ns={:?}, span={:?})",
1746             id, qself, path, ns, span,
1747         );
1748
1749         if let Some(qself) = qself {
1750             if qself.position == 0 {
1751                 // This is a case like `<T>::B`, where there is no
1752                 // trait to resolve.  In that case, we leave the `B`
1753                 // segment to be resolved by type-check.
1754                 return Some(PartialRes::with_unresolved_segments(
1755                     Res::Def(DefKind::Mod, DefId::local(CRATE_DEF_INDEX)),
1756                     path.len(),
1757                 ));
1758             }
1759
1760             // Make sure `A::B` in `<T as A::B>::C` is a trait item.
1761             //
1762             // Currently, `path` names the full item (`A::B::C`, in
1763             // our example).  so we extract the prefix of that that is
1764             // the trait (the slice upto and including
1765             // `qself.position`). And then we recursively resolve that,
1766             // but with `qself` set to `None`.
1767             //
1768             // However, setting `qself` to none (but not changing the
1769             // span) loses the information about where this path
1770             // *actually* appears, so for the purposes of the crate
1771             // lint we pass along information that this is the trait
1772             // name from a fully qualified path, and this also
1773             // contains the full span (the `CrateLint::QPathTrait`).
1774             let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
1775             let partial_res = self.smart_resolve_path_fragment(
1776                 id,
1777                 None,
1778                 &path[..=qself.position],
1779                 span,
1780                 PathSource::TraitItem(ns),
1781                 CrateLint::QPathTrait { qpath_id: id, qpath_span: qself.path_span },
1782             );
1783
1784             // The remaining segments (the `C` in our example) will
1785             // have to be resolved by type-check, since that requires doing
1786             // trait resolution.
1787             return Some(PartialRes::with_unresolved_segments(
1788                 partial_res.base_res(),
1789                 partial_res.unresolved_segments() + path.len() - qself.position - 1,
1790             ));
1791         }
1792
1793         let result = match self.resolve_path(&path, Some(ns), true, span, crate_lint) {
1794             PathResult::NonModule(path_res) => path_res,
1795             PathResult::Module(ModuleOrUniformRoot::Module(module)) if !module.is_normal() => {
1796                 PartialRes::new(module.res().unwrap())
1797             }
1798             // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
1799             // don't report an error right away, but try to fallback to a primitive type.
1800             // So, we are still able to successfully resolve something like
1801             //
1802             // use std::u8; // bring module u8 in scope
1803             // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
1804             //     u8::max_value() // OK, resolves to associated function <u8>::max_value,
1805             //                     // not to non-existent std::u8::max_value
1806             // }
1807             //
1808             // Such behavior is required for backward compatibility.
1809             // The same fallback is used when `a` resolves to nothing.
1810             PathResult::Module(ModuleOrUniformRoot::Module(_)) | PathResult::Failed { .. }
1811                 if (ns == TypeNS || path.len() > 1)
1812                     && self
1813                         .r
1814                         .primitive_type_table
1815                         .primitive_types
1816                         .contains_key(&path[0].ident.name) =>
1817             {
1818                 let prim = self.r.primitive_type_table.primitive_types[&path[0].ident.name];
1819                 PartialRes::with_unresolved_segments(Res::PrimTy(prim), path.len() - 1)
1820             }
1821             PathResult::Module(ModuleOrUniformRoot::Module(module)) => {
1822                 PartialRes::new(module.res().unwrap())
1823             }
1824             PathResult::Failed { is_error_from_last_segment: false, span, label, suggestion } => {
1825                 self.r.report_error(span, ResolutionError::FailedToResolve { label, suggestion });
1826                 PartialRes::new(Res::Err)
1827             }
1828             PathResult::Module(..) | PathResult::Failed { .. } => return None,
1829             PathResult::Indeterminate => bug!("indetermined path result in resolve_qpath"),
1830         };
1831
1832         if path.len() > 1
1833             && result.base_res() != Res::Err
1834             && path[0].ident.name != kw::PathRoot
1835             && path[0].ident.name != kw::DollarCrate
1836         {
1837             let unqualified_result = {
1838                 match self.resolve_path(
1839                     &[*path.last().unwrap()],
1840                     Some(ns),
1841                     false,
1842                     span,
1843                     CrateLint::No,
1844                 ) {
1845                     PathResult::NonModule(path_res) => path_res.base_res(),
1846                     PathResult::Module(ModuleOrUniformRoot::Module(module)) => {
1847                         module.res().unwrap()
1848                     }
1849                     _ => return Some(result),
1850                 }
1851             };
1852             if result.base_res() == unqualified_result {
1853                 let lint = lint::builtin::UNUSED_QUALIFICATIONS;
1854                 self.r.lint_buffer.buffer_lint(lint, id, span, "unnecessary qualification")
1855             }
1856         }
1857
1858         Some(result)
1859     }
1860
1861     fn with_resolved_label(&mut self, label: Option<Label>, id: NodeId, f: impl FnOnce(&mut Self)) {
1862         if let Some(label) = label {
1863             if label.ident.as_str().as_bytes()[1] != b'_' {
1864                 self.diagnostic_metadata.unused_labels.insert(id, label.ident.span);
1865             }
1866             self.with_label_rib(NormalRibKind, |this| {
1867                 let ident = label.ident.modern_and_legacy();
1868                 this.label_ribs.last_mut().unwrap().bindings.insert(ident, id);
1869                 f(this);
1870             });
1871         } else {
1872             f(self);
1873         }
1874     }
1875
1876     fn resolve_labeled_block(&mut self, label: Option<Label>, id: NodeId, block: &'ast Block) {
1877         self.with_resolved_label(label, id, |this| this.visit_block(block));
1878     }
1879
1880     fn resolve_block(&mut self, block: &'ast Block) {
1881         debug!("(resolving block) entering block");
1882         // Move down in the graph, if there's an anonymous module rooted here.
1883         let orig_module = self.parent_scope.module;
1884         let anonymous_module = self.r.block_map.get(&block.id).cloned(); // clones a reference
1885
1886         let mut num_macro_definition_ribs = 0;
1887         if let Some(anonymous_module) = anonymous_module {
1888             debug!("(resolving block) found anonymous module, moving down");
1889             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
1890             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
1891             self.parent_scope.module = anonymous_module;
1892         } else {
1893             self.ribs[ValueNS].push(Rib::new(NormalRibKind));
1894         }
1895
1896         // Descend into the block.
1897         for stmt in &block.stmts {
1898             if let StmtKind::Item(ref item) = stmt.kind {
1899                 if let ItemKind::MacroDef(..) = item.kind {
1900                     num_macro_definition_ribs += 1;
1901                     let res = self.r.definitions.local_def_id(item.id);
1902                     self.ribs[ValueNS].push(Rib::new(MacroDefinition(res)));
1903                     self.label_ribs.push(Rib::new(MacroDefinition(res)));
1904                 }
1905             }
1906
1907             self.visit_stmt(stmt);
1908         }
1909
1910         // Move back up.
1911         self.parent_scope.module = orig_module;
1912         for _ in 0..num_macro_definition_ribs {
1913             self.ribs[ValueNS].pop();
1914             self.label_ribs.pop();
1915         }
1916         self.ribs[ValueNS].pop();
1917         if anonymous_module.is_some() {
1918             self.ribs[TypeNS].pop();
1919         }
1920         debug!("(resolving block) leaving block");
1921     }
1922
1923     fn resolve_expr(&mut self, expr: &'ast Expr, parent: Option<&'ast Expr>) {
1924         // First, record candidate traits for this expression if it could
1925         // result in the invocation of a method call.
1926
1927         self.record_candidate_traits_for_expr_if_necessary(expr);
1928
1929         // Next, resolve the node.
1930         match expr.kind {
1931             ExprKind::Path(ref qself, ref path) => {
1932                 self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
1933                 visit::walk_expr(self, expr);
1934             }
1935
1936             ExprKind::Struct(ref path, ..) => {
1937                 self.smart_resolve_path(expr.id, None, path, PathSource::Struct);
1938                 visit::walk_expr(self, expr);
1939             }
1940
1941             ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
1942                 let node_id = self.search_label(label.ident, |rib, ident| {
1943                     rib.bindings.get(&ident.modern_and_legacy()).cloned()
1944                 });
1945                 match node_id {
1946                     None => {
1947                         // Search again for close matches...
1948                         // Picks the first label that is "close enough", which is not necessarily
1949                         // the closest match
1950                         let close_match = self.search_label(label.ident, |rib, ident| {
1951                             let names = rib.bindings.iter().filter_map(|(id, _)| {
1952                                 if id.span.ctxt() == label.ident.span.ctxt() {
1953                                     Some(&id.name)
1954                                 } else {
1955                                     None
1956                                 }
1957                             });
1958                             find_best_match_for_name(names, &ident.as_str(), None)
1959                         });
1960                         self.r.record_partial_res(expr.id, PartialRes::new(Res::Err));
1961                         self.r.report_error(
1962                             label.ident.span,
1963                             ResolutionError::UndeclaredLabel(&label.ident.as_str(), close_match),
1964                         );
1965                     }
1966                     Some(node_id) => {
1967                         // Since this res is a label, it is never read.
1968                         self.r.label_res_map.insert(expr.id, node_id);
1969                         self.diagnostic_metadata.unused_labels.remove(&node_id);
1970                     }
1971                 }
1972
1973                 // visit `break` argument if any
1974                 visit::walk_expr(self, expr);
1975             }
1976
1977             ExprKind::Let(ref pat, ref scrutinee) => {
1978                 self.visit_expr(scrutinee);
1979                 self.resolve_pattern_top(pat, PatternSource::Let);
1980             }
1981
1982             ExprKind::If(ref cond, ref then, ref opt_else) => {
1983                 self.with_rib(ValueNS, NormalRibKind, |this| {
1984                     this.visit_expr(cond);
1985                     this.visit_block(then);
1986                 });
1987                 opt_else.as_ref().map(|expr| self.visit_expr(expr));
1988             }
1989
1990             ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),
1991
1992             ExprKind::While(ref cond, ref block, label) => {
1993                 self.with_resolved_label(label, expr.id, |this| {
1994                     this.with_rib(ValueNS, NormalRibKind, |this| {
1995                         this.visit_expr(cond);
1996                         this.visit_block(block);
1997                     })
1998                 });
1999             }
2000
2001             ExprKind::ForLoop(ref pat, ref iter_expr, ref block, label) => {
2002                 self.visit_expr(iter_expr);
2003                 self.with_rib(ValueNS, NormalRibKind, |this| {
2004                     this.resolve_pattern_top(pat, PatternSource::For);
2005                     this.resolve_labeled_block(label, expr.id, block);
2006                 });
2007             }
2008
2009             ExprKind::Block(ref block, label) => self.resolve_labeled_block(label, block.id, block),
2010
2011             // Equivalent to `visit::walk_expr` + passing some context to children.
2012             ExprKind::Field(ref subexpression, _) => {
2013                 self.resolve_expr(subexpression, Some(expr));
2014             }
2015             ExprKind::MethodCall(ref segment, ref arguments) => {
2016                 let mut arguments = arguments.iter();
2017                 self.resolve_expr(arguments.next().unwrap(), Some(expr));
2018                 for argument in arguments {
2019                     self.resolve_expr(argument, None);
2020                 }
2021                 self.visit_path_segment(expr.span, segment);
2022             }
2023
2024             ExprKind::Call(ref callee, ref arguments) => {
2025                 self.resolve_expr(callee, Some(expr));
2026                 for argument in arguments {
2027                     self.resolve_expr(argument, None);
2028                 }
2029             }
2030             ExprKind::Type(ref type_expr, _) => {
2031                 self.diagnostic_metadata.current_type_ascription.push(type_expr.span);
2032                 visit::walk_expr(self, expr);
2033                 self.diagnostic_metadata.current_type_ascription.pop();
2034             }
2035             // `async |x| ...` gets desugared to `|x| future_from_generator(|| ...)`, so we need to
2036             // resolve the arguments within the proper scopes so that usages of them inside the
2037             // closure are detected as upvars rather than normal closure arg usages.
2038             ExprKind::Closure(_, Async::Yes { .. }, _, ref fn_decl, ref body, _span) => {
2039                 self.with_rib(ValueNS, NormalRibKind, |this| {
2040                     // Resolve arguments:
2041                     this.resolve_params(&fn_decl.inputs);
2042                     // No need to resolve return type --
2043                     // the outer closure return type is `FnRetTy::Default`.
2044
2045                     // Now resolve the inner closure
2046                     {
2047                         // No need to resolve arguments: the inner closure has none.
2048                         // Resolve the return type:
2049                         visit::walk_fn_ret_ty(this, &fn_decl.output);
2050                         // Resolve the body
2051                         this.visit_expr(body);
2052                     }
2053                 });
2054             }
2055             _ => {
2056                 visit::walk_expr(self, expr);
2057             }
2058         }
2059     }
2060
2061     fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &'ast Expr) {
2062         match expr.kind {
2063             ExprKind::Field(_, ident) => {
2064                 // FIXME(#6890): Even though you can't treat a method like a
2065                 // field, we need to add any trait methods we find that match
2066                 // the field name so that we can do some nice error reporting
2067                 // later on in typeck.
2068                 let traits = self.get_traits_containing_item(ident, ValueNS);
2069                 self.r.trait_map.insert(expr.id, traits);
2070             }
2071             ExprKind::MethodCall(ref segment, ..) => {
2072                 debug!("(recording candidate traits for expr) recording traits for {}", expr.id);
2073                 let traits = self.get_traits_containing_item(segment.ident, ValueNS);
2074                 self.r.trait_map.insert(expr.id, traits);
2075             }
2076             _ => {
2077                 // Nothing to do.
2078             }
2079         }
2080     }
2081
2082     fn get_traits_containing_item(
2083         &mut self,
2084         mut ident: Ident,
2085         ns: Namespace,
2086     ) -> Vec<TraitCandidate<NodeId>> {
2087         debug!("(getting traits containing item) looking for '{}'", ident.name);
2088
2089         let mut found_traits = Vec::new();
2090         // Look for the current trait.
2091         if let Some((module, _)) = self.current_trait_ref {
2092             if self
2093                 .r
2094                 .resolve_ident_in_module(
2095                     ModuleOrUniformRoot::Module(module),
2096                     ident,
2097                     ns,
2098                     &self.parent_scope,
2099                     false,
2100                     module.span,
2101                 )
2102                 .is_ok()
2103             {
2104                 let def_id = module.def_id().unwrap();
2105                 found_traits.push(TraitCandidate { def_id: def_id, import_ids: smallvec![] });
2106             }
2107         }
2108
2109         ident.span = ident.span.modern();
2110         let mut search_module = self.parent_scope.module;
2111         loop {
2112             self.get_traits_in_module_containing_item(ident, ns, search_module, &mut found_traits);
2113             search_module =
2114                 unwrap_or!(self.r.hygienic_lexical_parent(search_module, &mut ident.span), break);
2115         }
2116
2117         if let Some(prelude) = self.r.prelude {
2118             if !search_module.no_implicit_prelude {
2119                 self.get_traits_in_module_containing_item(ident, ns, prelude, &mut found_traits);
2120             }
2121         }
2122
2123         found_traits
2124     }
2125
2126     fn get_traits_in_module_containing_item(
2127         &mut self,
2128         ident: Ident,
2129         ns: Namespace,
2130         module: Module<'a>,
2131         found_traits: &mut Vec<TraitCandidate<NodeId>>,
2132     ) {
2133         assert!(ns == TypeNS || ns == ValueNS);
2134         let mut traits = module.traits.borrow_mut();
2135         if traits.is_none() {
2136             let mut collected_traits = Vec::new();
2137             module.for_each_child(self.r, |_, name, ns, binding| {
2138                 if ns != TypeNS {
2139                     return;
2140                 }
2141                 match binding.res() {
2142                     Res::Def(DefKind::Trait, _) | Res::Def(DefKind::TraitAlias, _) => {
2143                         collected_traits.push((name, binding))
2144                     }
2145                     _ => (),
2146                 }
2147             });
2148             *traits = Some(collected_traits.into_boxed_slice());
2149         }
2150
2151         for &(trait_name, binding) in traits.as_ref().unwrap().iter() {
2152             // Traits have pseudo-modules that can be used to search for the given ident.
2153             if let Some(module) = binding.module() {
2154                 let mut ident = ident;
2155                 if ident.span.glob_adjust(module.expansion, binding.span).is_none() {
2156                     continue;
2157                 }
2158                 if self
2159                     .r
2160                     .resolve_ident_in_module_unadjusted(
2161                         ModuleOrUniformRoot::Module(module),
2162                         ident,
2163                         ns,
2164                         &self.parent_scope,
2165                         false,
2166                         module.span,
2167                     )
2168                     .is_ok()
2169                 {
2170                     let import_ids = self.find_transitive_imports(&binding.kind, trait_name);
2171                     let trait_def_id = module.def_id().unwrap();
2172                     found_traits.push(TraitCandidate { def_id: trait_def_id, import_ids });
2173                 }
2174             } else if let Res::Def(DefKind::TraitAlias, _) = binding.res() {
2175                 // For now, just treat all trait aliases as possible candidates, since we don't
2176                 // know if the ident is somewhere in the transitive bounds.
2177                 let import_ids = self.find_transitive_imports(&binding.kind, trait_name);
2178                 let trait_def_id = binding.res().def_id();
2179                 found_traits.push(TraitCandidate { def_id: trait_def_id, import_ids });
2180             } else {
2181                 bug!("candidate is not trait or trait alias?")
2182             }
2183         }
2184     }
2185
2186     fn find_transitive_imports(
2187         &mut self,
2188         mut kind: &NameBindingKind<'_>,
2189         trait_name: Ident,
2190     ) -> SmallVec<[NodeId; 1]> {
2191         let mut import_ids = smallvec![];
2192         while let NameBindingKind::Import { directive, binding, .. } = kind {
2193             self.r.maybe_unused_trait_imports.insert(directive.id);
2194             self.r.add_to_glob_map(&directive, trait_name);
2195             import_ids.push(directive.id);
2196             kind = &binding.kind;
2197         }
2198         import_ids
2199     }
2200 }
2201
2202 impl<'a> Resolver<'a> {
2203     pub(crate) fn late_resolve_crate(&mut self, krate: &Crate) {
2204         let mut late_resolution_visitor = LateResolutionVisitor::new(self);
2205         visit::walk_crate(&mut late_resolution_visitor, krate);
2206         for (id, span) in late_resolution_visitor.diagnostic_metadata.unused_labels.iter() {
2207             self.lint_buffer.buffer_lint(lint::builtin::UNUSED_LABELS, *id, *span, "unused label");
2208         }
2209     }
2210 }