]> git.lizzy.rs Git - rust.git/blob - src/librustc_resolve/late.rs
Rollup merge of #66197 - Centril:transparent-ast, r=varkor
[rust.git] / src / librustc_resolve / late.rs
1 //! "Late resolution" is the pass that resolves most of names in a crate beside imports and macros.
2 //! It runs when the crate is fully expanded and its module structure is fully built.
3 //! So it just walks through the crate and resolves all the expressions, types, etc.
4 //!
5 //! If you wonder why there's no `early.rs`, that's because it's split into three files -
6 //! `build_reduced_graph.rs`, `macros.rs` and `resolve_imports.rs`.
7
8 use RibKind::*;
9
10 use crate::{path_names_to_string, BindingError, CrateLint, LexicalScopeBinding};
11 use crate::{Module, ModuleOrUniformRoot, NameBindingKind, ParentScope, PathResult};
12 use crate::{ResolutionError, Resolver, Segment, UseError};
13
14 use log::debug;
15 use rustc::{bug, lint, span_bug};
16 use rustc::hir::def::{self, PartialRes, DefKind, CtorKind, PerNS};
17 use rustc::hir::def::Namespace::{self, *};
18 use rustc::hir::def_id::{DefId, CRATE_DEF_INDEX};
19 use rustc::hir::TraitCandidate;
20 use rustc::util::nodemap::{FxHashMap, FxHashSet};
21 use smallvec::{smallvec, SmallVec};
22 use syntax::{unwrap_or, walk_list};
23 use syntax::ast::*;
24 use syntax::ptr::P;
25 use syntax::symbol::{kw, sym};
26 use syntax::util::lev_distance::find_best_match_for_name;
27 use syntax::visit::{self, Visitor, FnKind};
28 use syntax_pos::Span;
29
30 use std::collections::BTreeSet;
31 use std::mem::replace;
32
33 use rustc_error_codes::*;
34
35 mod diagnostics;
36
37 type Res = def::Res<NodeId>;
38
39 type IdentMap<T> = FxHashMap<Ident, T>;
40
41 /// Map from the name in a pattern to its binding mode.
42 type BindingMap = IdentMap<BindingInfo>;
43
44 #[derive(Copy, Clone, Debug)]
45 struct BindingInfo {
46     span: Span,
47     binding_mode: BindingMode,
48 }
49
50 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
51 enum PatternSource {
52     Match,
53     Let,
54     For,
55     FnParam,
56 }
57
58 impl PatternSource {
59     fn descr(self) -> &'static str {
60         match self {
61             PatternSource::Match => "match binding",
62             PatternSource::Let => "let binding",
63             PatternSource::For => "for binding",
64             PatternSource::FnParam => "function parameter",
65         }
66     }
67 }
68
69 /// Denotes whether the context for the set of already bound bindings is a `Product`
70 /// or `Or` context. This is used in e.g., `fresh_binding` and `resolve_pattern_inner`.
71 /// See those functions for more information.
72 enum PatBoundCtx {
73     /// A product pattern context, e.g., `Variant(a, b)`.
74     Product,
75     /// An or-pattern context, e.g., `p_0 | ... | p_n`.
76     Or,
77 }
78
79 /// Does this the item (from the item rib scope) allow generic parameters?
80 #[derive(Copy, Clone, Debug, Eq, PartialEq)]
81 crate enum HasGenericParams { Yes, No }
82
83 /// The rib kind restricts certain accesses,
84 /// e.g. to a `Res::Local` of an outer item.
85 #[derive(Copy, Clone, Debug)]
86 crate enum RibKind<'a> {
87     /// No restriction needs to be applied.
88     NormalRibKind,
89
90     /// We passed through an impl or trait and are now in one of its
91     /// methods or associated types. Allow references to ty params that impl or trait
92     /// binds. Disallow any other upvars (including other ty params that are
93     /// upvars).
94     AssocItemRibKind,
95
96     /// We passed through a function definition. Disallow upvars.
97     /// Permit only those const parameters that are specified in the function's generics.
98     FnItemRibKind,
99
100     /// We passed through an item scope. Disallow upvars.
101     ItemRibKind(HasGenericParams),
102
103     /// We're in a constant item. Can't refer to dynamic stuff.
104     ConstantItemRibKind,
105
106     /// We passed through a module.
107     ModuleRibKind(Module<'a>),
108
109     /// We passed through a `macro_rules!` statement
110     MacroDefinition(DefId),
111
112     /// All bindings in this rib are type parameters that can't be used
113     /// from the default of a type parameter because they're not declared
114     /// before said type parameter. Also see the `visit_generics` override.
115     ForwardTyParamBanRibKind,
116 }
117
118 impl RibKind<'_> {
119     // Whether this rib kind contains generic parameters, as opposed to local
120     // variables.
121     crate fn contains_params(&self) -> bool {
122         match self {
123             NormalRibKind
124             | FnItemRibKind
125             | ConstantItemRibKind
126             | ModuleRibKind(_)
127             | MacroDefinition(_) => false,
128             AssocItemRibKind
129             | ItemRibKind(_)
130             | ForwardTyParamBanRibKind => true,
131         }
132     }
133 }
134
135 /// A single local scope.
136 ///
137 /// A rib represents a scope names can live in. Note that these appear in many places, not just
138 /// around braces. At any place where the list of accessible names (of the given namespace)
139 /// changes or a new restrictions on the name accessibility are introduced, a new rib is put onto a
140 /// stack. This may be, for example, a `let` statement (because it introduces variables), a macro,
141 /// etc.
142 ///
143 /// Different [rib kinds](enum.RibKind) are transparent for different names.
144 ///
145 /// The resolution keeps a separate stack of ribs as it traverses the AST for each namespace. When
146 /// resolving, the name is looked up from inside out.
147 #[derive(Debug)]
148 crate struct Rib<'a, R = Res> {
149     pub bindings: IdentMap<R>,
150     pub kind: RibKind<'a>,
151 }
152
153 impl<'a, R> Rib<'a, R> {
154     fn new(kind: RibKind<'a>) -> Rib<'a, R> {
155         Rib {
156             bindings: Default::default(),
157             kind,
158         }
159     }
160 }
161
162 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
163 crate enum AliasPossibility {
164     No,
165     Maybe,
166 }
167
168 #[derive(Copy, Clone, Debug)]
169 crate enum PathSource<'a> {
170     // Type paths `Path`.
171     Type,
172     // Trait paths in bounds or impls.
173     Trait(AliasPossibility),
174     // Expression paths `path`, with optional parent context.
175     Expr(Option<&'a Expr>),
176     // Paths in path patterns `Path`.
177     Pat,
178     // Paths in struct expressions and patterns `Path { .. }`.
179     Struct,
180     // Paths in tuple struct patterns `Path(..)`.
181     TupleStruct,
182     // `m::A::B` in `<T as m::A>::B::C`.
183     TraitItem(Namespace),
184 }
185
186 impl<'a> PathSource<'a> {
187     fn namespace(self) -> Namespace {
188         match self {
189             PathSource::Type | PathSource::Trait(_) | PathSource::Struct => TypeNS,
190             PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct => ValueNS,
191             PathSource::TraitItem(ns) => ns,
192         }
193     }
194
195     fn defer_to_typeck(self) -> bool {
196         match self {
197             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
198             PathSource::Struct | PathSource::TupleStruct => true,
199             PathSource::Trait(_) | PathSource::TraitItem(..) => false,
200         }
201     }
202
203     fn descr_expected(self) -> &'static str {
204         match &self {
205             PathSource::Type => "type",
206             PathSource::Trait(_) => "trait",
207             PathSource::Pat => "unit struct, unit variant or constant",
208             PathSource::Struct => "struct, variant or union type",
209             PathSource::TupleStruct => "tuple struct or tuple variant",
210             PathSource::TraitItem(ns) => match ns {
211                 TypeNS => "associated type",
212                 ValueNS => "method or associated constant",
213                 MacroNS => bug!("associated macro"),
214             },
215             PathSource::Expr(parent) => match &parent.as_ref().map(|p| &p.kind) {
216                 // "function" here means "anything callable" rather than `DefKind::Fn`,
217                 // this is not precise but usually more helpful than just "value".
218                 Some(ExprKind::Call(call_expr, _)) => {
219                     match &call_expr.kind {
220                         ExprKind::Path(_, path) => {
221                             let mut msg = "function";
222                             if let Some(segment) = path.segments.iter().last() {
223                                 if let Some(c) = segment.ident.to_string().chars().next() {
224                                     if c.is_uppercase() {
225                                         msg = "function, tuple struct or tuple variant";
226                                     }
227                                 }
228                             }
229                             msg
230                         }
231                         _ => "function"
232                     }
233                 }
234                 _ => "value",
235             },
236         }
237     }
238
239     crate fn is_expected(self, res: Res) -> bool {
240         match self {
241             PathSource::Type => match res {
242                 Res::Def(DefKind::Struct, _)
243                 | Res::Def(DefKind::Union, _)
244                 | Res::Def(DefKind::Enum, _)
245                 | Res::Def(DefKind::Trait, _)
246                 | Res::Def(DefKind::TraitAlias, _)
247                 | Res::Def(DefKind::TyAlias, _)
248                 | Res::Def(DefKind::AssocTy, _)
249                 | Res::PrimTy(..)
250                 | Res::Def(DefKind::TyParam, _)
251                 | Res::SelfTy(..)
252                 | Res::Def(DefKind::OpaqueTy, _)
253                 | Res::Def(DefKind::ForeignTy, _) => true,
254                 _ => false,
255             },
256             PathSource::Trait(AliasPossibility::No) => match res {
257                 Res::Def(DefKind::Trait, _) => true,
258                 _ => false,
259             },
260             PathSource::Trait(AliasPossibility::Maybe) => match res {
261                 Res::Def(DefKind::Trait, _) => true,
262                 Res::Def(DefKind::TraitAlias, _) => true,
263                 _ => false,
264             },
265             PathSource::Expr(..) => match res {
266                 Res::Def(DefKind::Ctor(_, CtorKind::Const), _)
267                 | Res::Def(DefKind::Ctor(_, CtorKind::Fn), _)
268                 | Res::Def(DefKind::Const, _)
269                 | Res::Def(DefKind::Static, _)
270                 | Res::Local(..)
271                 | Res::Def(DefKind::Fn, _)
272                 | Res::Def(DefKind::Method, _)
273                 | Res::Def(DefKind::AssocConst, _)
274                 | Res::SelfCtor(..)
275                 | Res::Def(DefKind::ConstParam, _) => true,
276                 _ => false,
277             },
278             PathSource::Pat => match res {
279                 Res::Def(DefKind::Ctor(_, CtorKind::Const), _) |
280                 Res::Def(DefKind::Const, _) | Res::Def(DefKind::AssocConst, _) |
281                 Res::SelfCtor(..) => true,
282                 _ => false,
283             },
284             PathSource::TupleStruct => match res {
285                 Res::Def(DefKind::Ctor(_, CtorKind::Fn), _) | Res::SelfCtor(..) => true,
286                 _ => false,
287             },
288             PathSource::Struct => match res {
289                 Res::Def(DefKind::Struct, _)
290                 | Res::Def(DefKind::Union, _)
291                 | Res::Def(DefKind::Variant, _)
292                 | Res::Def(DefKind::TyAlias, _)
293                 | Res::Def(DefKind::AssocTy, _)
294                 | Res::SelfTy(..) => true,
295                 _ => false,
296             },
297             PathSource::TraitItem(ns) => match res {
298                 Res::Def(DefKind::AssocConst, _)
299                 | Res::Def(DefKind::Method, _) if ns == ValueNS => true,
300                 Res::Def(DefKind::AssocTy, _) if ns == TypeNS => true,
301                 _ => false,
302             },
303         }
304     }
305
306     fn error_code(self, has_unexpected_resolution: bool) -> &'static str {
307         syntax::diagnostic_used!(E0404);
308         syntax::diagnostic_used!(E0405);
309         syntax::diagnostic_used!(E0412);
310         syntax::diagnostic_used!(E0422);
311         syntax::diagnostic_used!(E0423);
312         syntax::diagnostic_used!(E0425);
313         syntax::diagnostic_used!(E0531);
314         syntax::diagnostic_used!(E0532);
315         syntax::diagnostic_used!(E0573);
316         syntax::diagnostic_used!(E0574);
317         syntax::diagnostic_used!(E0575);
318         syntax::diagnostic_used!(E0576);
319         match (self, has_unexpected_resolution) {
320             (PathSource::Trait(_), true) => "E0404",
321             (PathSource::Trait(_), false) => "E0405",
322             (PathSource::Type, true) => "E0573",
323             (PathSource::Type, false) => "E0412",
324             (PathSource::Struct, true) => "E0574",
325             (PathSource::Struct, false) => "E0422",
326             (PathSource::Expr(..), true) => "E0423",
327             (PathSource::Expr(..), false) => "E0425",
328             (PathSource::Pat, true) | (PathSource::TupleStruct, true) => "E0532",
329             (PathSource::Pat, false) | (PathSource::TupleStruct, false) => "E0531",
330             (PathSource::TraitItem(..), true) => "E0575",
331             (PathSource::TraitItem(..), false) => "E0576",
332         }
333     }
334 }
335
336 #[derive(Default)]
337 struct DiagnosticMetadata {
338     /// The current trait's associated types' ident, used for diagnostic suggestions.
339     current_trait_assoc_types: Vec<Ident>,
340
341     /// The current self type if inside an impl (used for better errors).
342     current_self_type: Option<Ty>,
343
344     /// The current self item if inside an ADT (used for better errors).
345     current_self_item: Option<NodeId>,
346
347     /// The current enclosing funciton (used for better errors).
348     current_function: Option<Span>,
349
350     /// A list of labels as of yet unused. Labels will be removed from this map when
351     /// they are used (in a `break` or `continue` statement)
352     unused_labels: FxHashMap<NodeId, Span>,
353
354     /// Only used for better errors on `fn(): fn()`.
355     current_type_ascription: Vec<Span>,
356
357     /// Only used for better errors on `let <pat>: <expr, not type>;`.
358     current_let_binding: Option<(Span, Option<Span>, Option<Span>)>,
359 }
360
361 struct LateResolutionVisitor<'a, 'b> {
362     r: &'b mut Resolver<'a>,
363
364     /// The module that represents the current item scope.
365     parent_scope: ParentScope<'a>,
366
367     /// The current set of local scopes for types and values.
368     /// FIXME #4948: Reuse ribs to avoid allocation.
369     ribs: PerNS<Vec<Rib<'a>>>,
370
371     /// The current set of local scopes, for labels.
372     label_ribs: Vec<Rib<'a, NodeId>>,
373
374     /// The trait that the current context can refer to.
375     current_trait_ref: Option<(Module<'a>, TraitRef)>,
376
377     /// Fields used to add information to diagnostic errors.
378     diagnostic_metadata: DiagnosticMetadata,
379 }
380
381 /// Walks the whole crate in DFS order, visiting each item, resolving names as it goes.
382 impl<'a, 'tcx> Visitor<'tcx> for LateResolutionVisitor<'a, '_> {
383     fn visit_item(&mut self, item: &'tcx Item) {
384         self.resolve_item(item);
385     }
386     fn visit_arm(&mut self, arm: &'tcx Arm) {
387         self.resolve_arm(arm);
388     }
389     fn visit_block(&mut self, block: &'tcx Block) {
390         self.resolve_block(block);
391     }
392     fn visit_anon_const(&mut self, constant: &'tcx AnonConst) {
393         debug!("visit_anon_const {:?}", constant);
394         self.with_constant_rib(|this| {
395             visit::walk_anon_const(this, constant);
396         });
397     }
398     fn visit_expr(&mut self, expr: &'tcx Expr) {
399         self.resolve_expr(expr, None);
400     }
401     fn visit_local(&mut self, local: &'tcx Local) {
402         let local_spans = match local.pat.kind {
403             // We check for this to avoid tuple struct fields.
404             PatKind::Wild => None,
405             _ => Some((
406                 local.pat.span,
407                 local.ty.as_ref().map(|ty| ty.span),
408                 local.init.as_ref().map(|init| init.span),
409             )),
410         };
411         let original = replace(&mut self.diagnostic_metadata.current_let_binding, local_spans);
412         self.resolve_local(local);
413         self.diagnostic_metadata.current_let_binding = original;
414     }
415     fn visit_ty(&mut self, ty: &'tcx Ty) {
416         match ty.kind {
417             TyKind::Path(ref qself, ref path) => {
418                 self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
419             }
420             TyKind::ImplicitSelf => {
421                 let self_ty = Ident::with_dummy_span(kw::SelfUpper);
422                 let res = self.resolve_ident_in_lexical_scope(self_ty, TypeNS, Some(ty.id), ty.span)
423                               .map_or(Res::Err, |d| d.res());
424                 self.r.record_partial_res(ty.id, PartialRes::new(res));
425             }
426             _ => (),
427         }
428         visit::walk_ty(self, ty);
429     }
430     fn visit_poly_trait_ref(&mut self,
431                             tref: &'tcx PolyTraitRef,
432                             m: &'tcx TraitBoundModifier) {
433         self.smart_resolve_path(tref.trait_ref.ref_id, None,
434                                 &tref.trait_ref.path, PathSource::Trait(AliasPossibility::Maybe));
435         visit::walk_poly_trait_ref(self, tref, m);
436     }
437     fn visit_foreign_item(&mut self, foreign_item: &'tcx ForeignItem) {
438         match foreign_item.kind {
439             ForeignItemKind::Fn(_, ref generics) => {
440                 self.with_generic_param_rib(generics, ItemRibKind(HasGenericParams::Yes), |this| {
441                     visit::walk_foreign_item(this, foreign_item);
442                 });
443             }
444             ForeignItemKind::Static(..) => {
445                 self.with_item_rib(HasGenericParams::No, |this| {
446                     visit::walk_foreign_item(this, foreign_item);
447                 });
448             }
449             ForeignItemKind::Ty | ForeignItemKind::Macro(..) => {
450                 visit::walk_foreign_item(self, foreign_item);
451             }
452         }
453     }
454     fn visit_fn(&mut self, fn_kind: FnKind<'tcx>, declaration: &'tcx FnDecl, sp: Span, _: NodeId) {
455         let previous_value = replace(&mut self.diagnostic_metadata.current_function, Some(sp));
456         debug!("(resolving function) entering function");
457         let rib_kind = match fn_kind {
458             FnKind::ItemFn(..) => FnItemRibKind,
459             FnKind::Method(..) | FnKind::Closure(_) => NormalRibKind,
460         };
461
462         // Create a value rib for the function.
463         self.with_rib(ValueNS, rib_kind, |this| {
464             // Create a label rib for the function.
465             this.with_label_rib(rib_kind, |this| {
466                 // Add each argument to the rib.
467                 this.resolve_params(&declaration.inputs);
468
469                 visit::walk_fn_ret_ty(this, &declaration.output);
470
471                 // Resolve the function body, potentially inside the body of an async closure
472                 match fn_kind {
473                     FnKind::ItemFn(.., body) |
474                     FnKind::Method(.., body) => this.visit_block(body),
475                     FnKind::Closure(body) => this.visit_expr(body),
476                 };
477
478                 debug!("(resolving function) leaving function");
479             })
480         });
481         self.diagnostic_metadata.current_function = previous_value;
482     }
483
484     fn visit_generics(&mut self, generics: &'tcx Generics) {
485         // For type parameter defaults, we have to ban access
486         // to following type parameters, as the InternalSubsts can only
487         // provide previous type parameters as they're built. We
488         // put all the parameters on the ban list and then remove
489         // them one by one as they are processed and become available.
490         let mut default_ban_rib = Rib::new(ForwardTyParamBanRibKind);
491         let mut found_default = false;
492         default_ban_rib.bindings.extend(generics.params.iter()
493             .filter_map(|param| match param.kind {
494                 GenericParamKind::Const { .. } |
495                 GenericParamKind::Lifetime { .. } => None,
496                 GenericParamKind::Type { ref default, .. } => {
497                     found_default |= default.is_some();
498                     if found_default {
499                         Some((Ident::with_dummy_span(param.ident.name), Res::Err))
500                     } else {
501                         None
502                     }
503                 }
504             }));
505
506         // rust-lang/rust#61631: The type `Self` is essentially
507         // another type parameter. For ADTs, we consider it
508         // well-defined only after all of the ADT type parameters have
509         // been provided. Therefore, we do not allow use of `Self`
510         // anywhere in ADT type parameter defaults.
511         //
512         // (We however cannot ban `Self` for defaults on *all* generic
513         // lists; e.g. trait generics can usefully refer to `Self`,
514         // such as in the case of `trait Add<Rhs = Self>`.)
515         if self.diagnostic_metadata.current_self_item.is_some() {
516             // (`Some` if + only if we are in ADT's generics.)
517             default_ban_rib.bindings.insert(Ident::with_dummy_span(kw::SelfUpper), Res::Err);
518         }
519
520         for param in &generics.params {
521             match param.kind {
522                 GenericParamKind::Lifetime { .. } => self.visit_generic_param(param),
523                 GenericParamKind::Type { ref default, .. } => {
524                     for bound in &param.bounds {
525                         self.visit_param_bound(bound);
526                     }
527
528                     if let Some(ref ty) = default {
529                         self.ribs[TypeNS].push(default_ban_rib);
530                         self.visit_ty(ty);
531                         default_ban_rib = self.ribs[TypeNS].pop().unwrap();
532                     }
533
534                     // Allow all following defaults to refer to this type parameter.
535                     default_ban_rib.bindings.remove(&Ident::with_dummy_span(param.ident.name));
536                 }
537                 GenericParamKind::Const { ref ty } => {
538                     for bound in &param.bounds {
539                         self.visit_param_bound(bound);
540                     }
541                     self.visit_ty(ty);
542                 }
543             }
544         }
545         for p in &generics.where_clause.predicates {
546             self.visit_where_predicate(p);
547         }
548     }
549 }
550
551 impl<'a, 'b> LateResolutionVisitor<'a, '_> {
552     fn new(resolver: &'b mut Resolver<'a>) -> LateResolutionVisitor<'a, 'b> {
553         // During late resolution we only track the module component of the parent scope,
554         // although it may be useful to track other components as well for diagnostics.
555         let graph_root = resolver.graph_root;
556         let parent_scope = ParentScope::module(graph_root);
557         let start_rib_kind = ModuleRibKind(graph_root);
558         LateResolutionVisitor {
559             r: resolver,
560             parent_scope,
561             ribs: PerNS {
562                 value_ns: vec![Rib::new(start_rib_kind)],
563                 type_ns: vec![Rib::new(start_rib_kind)],
564                 macro_ns: vec![Rib::new(start_rib_kind)],
565             },
566             label_ribs: Vec::new(),
567             current_trait_ref: None,
568             diagnostic_metadata: DiagnosticMetadata::default(),
569         }
570     }
571
572     fn resolve_ident_in_lexical_scope(&mut self,
573                                       ident: Ident,
574                                       ns: Namespace,
575                                       record_used_id: Option<NodeId>,
576                                       path_span: Span)
577                                       -> Option<LexicalScopeBinding<'a>> {
578         self.r.resolve_ident_in_lexical_scope(
579             ident, ns, &self.parent_scope, record_used_id, path_span, &self.ribs[ns]
580         )
581     }
582
583     fn resolve_path(
584         &mut self,
585         path: &[Segment],
586         opt_ns: Option<Namespace>, // `None` indicates a module path in import
587         record_used: bool,
588         path_span: Span,
589         crate_lint: CrateLint,
590     ) -> PathResult<'a> {
591         self.r.resolve_path_with_ribs(
592             path, opt_ns, &self.parent_scope, record_used, path_span, crate_lint, Some(&self.ribs)
593         )
594     }
595
596     // AST resolution
597     //
598     // We maintain a list of value ribs and type ribs.
599     //
600     // Simultaneously, we keep track of the current position in the module
601     // graph in the `parent_scope.module` pointer. When we go to resolve a name in
602     // the value or type namespaces, we first look through all the ribs and
603     // then query the module graph. When we resolve a name in the module
604     // namespace, we can skip all the ribs (since nested modules are not
605     // allowed within blocks in Rust) and jump straight to the current module
606     // graph node.
607     //
608     // Named implementations are handled separately. When we find a method
609     // call, we consult the module node to find all of the implementations in
610     // scope. This information is lazily cached in the module node. We then
611     // generate a fake "implementation scope" containing all the
612     // implementations thus found, for compatibility with old resolve pass.
613
614     /// Do some `work` within a new innermost rib of the given `kind` in the given namespace (`ns`).
615     fn with_rib<T>(
616         &mut self,
617         ns: Namespace,
618         kind: RibKind<'a>,
619         work: impl FnOnce(&mut Self) -> T,
620     ) -> T {
621         self.ribs[ns].push(Rib::new(kind));
622         let ret = work(self);
623         self.ribs[ns].pop();
624         ret
625     }
626
627     fn with_scope<T>(&mut self, id: NodeId, f: impl FnOnce(&mut Self) -> T) -> T {
628         let id = self.r.definitions.local_def_id(id);
629         let module = self.r.module_map.get(&id).cloned(); // clones a reference
630         if let Some(module) = module {
631             // Move down in the graph.
632             let orig_module = replace(&mut self.parent_scope.module, module);
633             self.with_rib(ValueNS, ModuleRibKind(module), |this| {
634                 this.with_rib(TypeNS, ModuleRibKind(module), |this| {
635                     let ret = f(this);
636                     this.parent_scope.module = orig_module;
637                     ret
638                 })
639             })
640         } else {
641             f(self)
642         }
643     }
644
645     /// Searches the current set of local scopes for labels. Returns the first non-`None` label that
646     /// is returned by the given predicate function
647     ///
648     /// Stops after meeting a closure.
649     fn search_label<P, R>(&self, mut ident: Ident, pred: P) -> Option<R>
650         where P: Fn(&Rib<'_, NodeId>, Ident) -> Option<R>
651     {
652         for rib in self.label_ribs.iter().rev() {
653             match rib.kind {
654                 NormalRibKind => {}
655                 // If an invocation of this macro created `ident`, give up on `ident`
656                 // and switch to `ident`'s source from the macro definition.
657                 MacroDefinition(def) => {
658                     if def == self.r.macro_def(ident.span.ctxt()) {
659                         ident.span.remove_mark();
660                     }
661                 }
662                 _ => {
663                     // Do not resolve labels across function boundary
664                     return None;
665                 }
666             }
667             let r = pred(rib, ident);
668             if r.is_some() {
669                 return r;
670             }
671         }
672         None
673     }
674
675     fn resolve_adt(&mut self, item: &Item, generics: &Generics) {
676         debug!("resolve_adt");
677         self.with_current_self_item(item, |this| {
678             this.with_generic_param_rib(generics, ItemRibKind(HasGenericParams::Yes), |this| {
679                 let item_def_id = this.r.definitions.local_def_id(item.id);
680                 this.with_self_rib(Res::SelfTy(None, Some(item_def_id)), |this| {
681                     visit::walk_item(this, item);
682                 });
683             });
684         });
685     }
686
687     fn future_proof_import(&mut self, use_tree: &UseTree) {
688         let segments = &use_tree.prefix.segments;
689         if !segments.is_empty() {
690             let ident = segments[0].ident;
691             if ident.is_path_segment_keyword() || ident.span.rust_2015() {
692                 return;
693             }
694
695             let nss = match use_tree.kind {
696                 UseTreeKind::Simple(..) if segments.len() == 1 => &[TypeNS, ValueNS][..],
697                 _ => &[TypeNS],
698             };
699             let report_error = |this: &Self, ns| {
700                 let what = if ns == TypeNS { "type parameters" } else { "local variables" };
701                 this.r.session.span_err(ident.span, &format!("imports cannot refer to {}", what));
702             };
703
704             for &ns in nss {
705                 match self.resolve_ident_in_lexical_scope(ident, ns, None, use_tree.prefix.span) {
706                     Some(LexicalScopeBinding::Res(..)) => {
707                         report_error(self, ns);
708                     }
709                     Some(LexicalScopeBinding::Item(binding)) => {
710                         let orig_blacklisted_binding =
711                             replace(&mut self.r.blacklisted_binding, Some(binding));
712                         if let Some(LexicalScopeBinding::Res(..)) =
713                                 self.resolve_ident_in_lexical_scope(ident, ns, None,
714                                                                     use_tree.prefix.span) {
715                             report_error(self, ns);
716                         }
717                         self.r.blacklisted_binding = orig_blacklisted_binding;
718                     }
719                     None => {}
720                 }
721             }
722         } else if let UseTreeKind::Nested(use_trees) = &use_tree.kind {
723             for (use_tree, _) in use_trees {
724                 self.future_proof_import(use_tree);
725             }
726         }
727     }
728
729     fn resolve_item(&mut self, item: &Item) {
730         let name = item.ident.name;
731         debug!("(resolving item) resolving {} ({:?})", name, item.kind);
732
733         match item.kind {
734             ItemKind::TyAlias(_, ref generics) |
735             ItemKind::Fn(_, ref generics, _) => {
736                 self.with_generic_param_rib(generics, ItemRibKind(HasGenericParams::Yes),
737                                             |this| visit::walk_item(this, item));
738             }
739
740             ItemKind::Enum(_, ref generics) |
741             ItemKind::Struct(_, ref generics) |
742             ItemKind::Union(_, ref generics) => {
743                 self.resolve_adt(item, generics);
744             }
745
746             ItemKind::Impl(.., ref generics, ref opt_trait_ref, ref self_type, ref impl_items) =>
747                 self.resolve_implementation(generics,
748                                             opt_trait_ref,
749                                             &self_type,
750                                             item.id,
751                                             impl_items),
752
753             ItemKind::Trait(.., ref generics, ref bounds, ref trait_items) => {
754                 // Create a new rib for the trait-wide type parameters.
755                 self.with_generic_param_rib(generics, ItemRibKind(HasGenericParams::Yes), |this| {
756                     let local_def_id = this.r.definitions.local_def_id(item.id);
757                     this.with_self_rib(Res::SelfTy(Some(local_def_id), None), |this| {
758                         this.visit_generics(generics);
759                         walk_list!(this, visit_param_bound, bounds);
760
761                         for trait_item in trait_items {
762                             this.with_trait_items(trait_items, |this| {
763                                 this.with_generic_param_rib(&trait_item.generics, AssocItemRibKind,
764                                     |this| {
765                                         match trait_item.kind {
766                                             TraitItemKind::Const(ref ty, ref default) => {
767                                                 this.visit_ty(ty);
768
769                                                 // Only impose the restrictions of
770                                                 // ConstRibKind for an actual constant
771                                                 // expression in a provided default.
772                                                 if let Some(ref expr) = *default{
773                                                     this.with_constant_rib(|this| {
774                                                         this.visit_expr(expr);
775                                                     });
776                                                 }
777                                             }
778                                             TraitItemKind::Method(_, _) => {
779                                                 visit::walk_trait_item(this, trait_item)
780                                             }
781                                             TraitItemKind::Type(..) => {
782                                                 visit::walk_trait_item(this, trait_item)
783                                             }
784                                             TraitItemKind::Macro(_) => {
785                                                 panic!("unexpanded macro in resolve!")
786                                             }
787                                         };
788                                     });
789                             });
790                         }
791                     });
792                 });
793             }
794
795             ItemKind::TraitAlias(ref generics, ref bounds) => {
796                 // Create a new rib for the trait-wide type parameters.
797                 self.with_generic_param_rib(generics, ItemRibKind(HasGenericParams::Yes), |this| {
798                     let local_def_id = this.r.definitions.local_def_id(item.id);
799                     this.with_self_rib(Res::SelfTy(Some(local_def_id), None), |this| {
800                         this.visit_generics(generics);
801                         walk_list!(this, visit_param_bound, bounds);
802                     });
803                 });
804             }
805
806             ItemKind::Mod(_) | ItemKind::ForeignMod(_) => {
807                 self.with_scope(item.id, |this| {
808                     visit::walk_item(this, item);
809                 });
810             }
811
812             ItemKind::Static(ref ty, _, ref expr) |
813             ItemKind::Const(ref ty, ref expr) => {
814                 debug!("resolve_item ItemKind::Const");
815                 self.with_item_rib(HasGenericParams::No, |this| {
816                     this.visit_ty(ty);
817                     this.with_constant_rib(|this| {
818                         this.visit_expr(expr);
819                     });
820                 });
821             }
822
823             ItemKind::Use(ref use_tree) => {
824                 self.future_proof_import(use_tree);
825             }
826
827             ItemKind::ExternCrate(..) |
828             ItemKind::MacroDef(..) | ItemKind::GlobalAsm(..) => {
829                 // do nothing, these are just around to be encoded
830             }
831
832             ItemKind::Mac(_) => panic!("unexpanded macro in resolve!"),
833         }
834     }
835
836     fn with_generic_param_rib<'c, F>(&'c mut self, generics: &'c Generics, kind: RibKind<'a>, f: F)
837         where F: FnOnce(&mut Self)
838     {
839         debug!("with_generic_param_rib");
840         let mut function_type_rib = Rib::new(kind);
841         let mut function_value_rib = Rib::new(kind);
842         let mut seen_bindings = FxHashMap::default();
843
844         // We also can't shadow bindings from the parent item
845         if let AssocItemRibKind = kind {
846             let mut add_bindings_for_ns = |ns| {
847                 let parent_rib = self.ribs[ns].iter()
848                     .rfind(|r| if let ItemRibKind(_) = r.kind { true } else { false })
849                     .expect("associated item outside of an item");
850                 seen_bindings.extend(
851                     parent_rib.bindings.iter().map(|(ident, _)| (*ident, ident.span)),
852                 );
853             };
854             add_bindings_for_ns(ValueNS);
855             add_bindings_for_ns(TypeNS);
856         }
857
858         for param in &generics.params {
859             if let GenericParamKind::Lifetime { .. } = param.kind {
860                 continue;
861             }
862
863             let def_kind = match param.kind {
864                 GenericParamKind::Type { .. } => DefKind::TyParam,
865                 GenericParamKind::Const { .. } => DefKind::ConstParam,
866                 _ => unreachable!(),
867             };
868
869             let ident = param.ident.modern();
870             debug!("with_generic_param_rib: {}", param.id);
871
872             if seen_bindings.contains_key(&ident) {
873                 let span = seen_bindings.get(&ident).unwrap();
874                 let err = ResolutionError::NameAlreadyUsedInParameterList(
875                     ident.name,
876                     *span,
877                 );
878                 self.r.report_error(param.ident.span, err);
879             }
880             seen_bindings.entry(ident).or_insert(param.ident.span);
881
882             // Plain insert (no renaming).
883             let res = Res::Def(def_kind, self.r.definitions.local_def_id(param.id));
884
885             match param.kind {
886                 GenericParamKind::Type { .. } => {
887                     function_type_rib.bindings.insert(ident, res);
888                     self.r.record_partial_res(param.id, PartialRes::new(res));
889                 }
890                 GenericParamKind::Const { .. } => {
891                     function_value_rib.bindings.insert(ident, res);
892                     self.r.record_partial_res(param.id, PartialRes::new(res));
893                 }
894                 _ => unreachable!(),
895             }
896         }
897
898         self.ribs[ValueNS].push(function_value_rib);
899         self.ribs[TypeNS].push(function_type_rib);
900
901         f(self);
902
903         self.ribs[TypeNS].pop();
904         self.ribs[ValueNS].pop();
905     }
906
907     fn with_label_rib(&mut self, kind: RibKind<'a>, f: impl FnOnce(&mut Self)) {
908         self.label_ribs.push(Rib::new(kind));
909         f(self);
910         self.label_ribs.pop();
911     }
912
913     fn with_item_rib(&mut self, has_generic_params: HasGenericParams, f: impl FnOnce(&mut Self)) {
914         let kind = ItemRibKind(has_generic_params);
915         self.with_rib(ValueNS, kind, |this| this.with_rib(TypeNS, kind, f))
916     }
917
918     fn with_constant_rib(&mut self, f: impl FnOnce(&mut Self)) {
919         debug!("with_constant_rib");
920         self.with_rib(ValueNS, ConstantItemRibKind, |this| {
921             this.with_label_rib(ConstantItemRibKind, f);
922         });
923     }
924
925     fn with_current_self_type<T>(&mut self, self_type: &Ty, f: impl FnOnce(&mut Self) -> T) -> T {
926         // Handle nested impls (inside fn bodies)
927         let previous_value = replace(
928             &mut self.diagnostic_metadata.current_self_type,
929             Some(self_type.clone()),
930         );
931         let result = f(self);
932         self.diagnostic_metadata.current_self_type = previous_value;
933         result
934     }
935
936     fn with_current_self_item<T>(&mut self, self_item: &Item, f: impl FnOnce(&mut Self) -> T) -> T {
937         let previous_value = replace(
938             &mut self.diagnostic_metadata.current_self_item,
939             Some(self_item.id),
940         );
941         let result = f(self);
942         self.diagnostic_metadata.current_self_item = previous_value;
943         result
944     }
945
946     /// When evaluating a `trait` use its associated types' idents for suggestionsa in E0412.
947     fn with_trait_items<T>(
948         &mut self,
949         trait_items: &Vec<TraitItem>,
950         f: impl FnOnce(&mut Self) -> T,
951     ) -> T {
952         let trait_assoc_types = replace(
953             &mut self.diagnostic_metadata.current_trait_assoc_types,
954             trait_items.iter().filter_map(|item| match &item.kind {
955                 TraitItemKind::Type(bounds, _) if bounds.len() == 0 => Some(item.ident),
956                 _ => None,
957             }).collect(),
958         );
959         let result = f(self);
960         self.diagnostic_metadata.current_trait_assoc_types = trait_assoc_types;
961         result
962     }
963
964     /// This is called to resolve a trait reference from an `impl` (i.e., `impl Trait for Foo`).
965     fn with_optional_trait_ref<T>(
966         &mut self,
967         opt_trait_ref: Option<&TraitRef>,
968         f: impl FnOnce(&mut Self, Option<DefId>) -> T
969     ) -> T {
970         let mut new_val = None;
971         let mut new_id = None;
972         if let Some(trait_ref) = opt_trait_ref {
973             let path: Vec<_> = Segment::from_path(&trait_ref.path);
974             let res = self.smart_resolve_path_fragment(
975                 trait_ref.ref_id,
976                 None,
977                 &path,
978                 trait_ref.path.span,
979                 PathSource::Trait(AliasPossibility::No),
980                 CrateLint::SimplePath(trait_ref.ref_id),
981             ).base_res();
982             if res != Res::Err {
983                 new_id = Some(res.def_id());
984                 let span = trait_ref.path.span;
985                 if let PathResult::Module(ModuleOrUniformRoot::Module(module)) =
986                     self.resolve_path(
987                         &path,
988                         Some(TypeNS),
989                         false,
990                         span,
991                         CrateLint::SimplePath(trait_ref.ref_id),
992                     )
993                 {
994                     new_val = Some((module, trait_ref.clone()));
995                 }
996             }
997         }
998         let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
999         let result = f(self, new_id);
1000         self.current_trait_ref = original_trait_ref;
1001         result
1002     }
1003
1004     fn with_self_rib_ns(&mut self, ns: Namespace, self_res: Res, f: impl FnOnce(&mut Self)) {
1005         let mut self_type_rib = Rib::new(NormalRibKind);
1006
1007         // Plain insert (no renaming, since types are not currently hygienic)
1008         self_type_rib.bindings.insert(Ident::with_dummy_span(kw::SelfUpper), self_res);
1009         self.ribs[ns].push(self_type_rib);
1010         f(self);
1011         self.ribs[ns].pop();
1012     }
1013
1014     fn with_self_rib(&mut self, self_res: Res, f: impl FnOnce(&mut Self)) {
1015         self.with_self_rib_ns(TypeNS, self_res, f)
1016     }
1017
1018     fn resolve_implementation(&mut self,
1019                               generics: &Generics,
1020                               opt_trait_reference: &Option<TraitRef>,
1021                               self_type: &Ty,
1022                               item_id: NodeId,
1023                               impl_items: &[ImplItem]) {
1024         debug!("resolve_implementation");
1025         // If applicable, create a rib for the type parameters.
1026         self.with_generic_param_rib(generics, ItemRibKind(HasGenericParams::Yes), |this| {
1027             // Dummy self type for better errors if `Self` is used in the trait path.
1028             this.with_self_rib(Res::SelfTy(None, None), |this| {
1029                 // Resolve the trait reference, if necessary.
1030                 this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| {
1031                     let item_def_id = this.r.definitions.local_def_id(item_id);
1032                     this.with_self_rib(Res::SelfTy(trait_id, Some(item_def_id)), |this| {
1033                         if let Some(trait_ref) = opt_trait_reference.as_ref() {
1034                             // Resolve type arguments in the trait path.
1035                             visit::walk_trait_ref(this, trait_ref);
1036                         }
1037                         // Resolve the self type.
1038                         this.visit_ty(self_type);
1039                         // Resolve the generic parameters.
1040                         this.visit_generics(generics);
1041                         // Resolve the items within the impl.
1042                         this.with_current_self_type(self_type, |this| {
1043                             this.with_self_rib_ns(ValueNS, Res::SelfCtor(item_def_id), |this| {
1044                                 debug!("resolve_implementation with_self_rib_ns(ValueNS, ...)");
1045                                 for impl_item in impl_items {
1046                                     // We also need a new scope for the impl item type parameters.
1047                                     this.with_generic_param_rib(&impl_item.generics,
1048                                                                 AssocItemRibKind,
1049                                                                 |this| {
1050                                         use crate::ResolutionError::*;
1051                                         match impl_item.kind {
1052                                             ImplItemKind::Const(..) => {
1053                                                 debug!(
1054                                                     "resolve_implementation ImplItemKind::Const",
1055                                                 );
1056                                                 // If this is a trait impl, ensure the const
1057                                                 // exists in trait
1058                                                 this.check_trait_item(
1059                                                     impl_item.ident,
1060                                                     ValueNS,
1061                                                     impl_item.span,
1062                                                     |n, s| ConstNotMemberOfTrait(n, s),
1063                                                 );
1064
1065                                                 this.with_constant_rib(|this| {
1066                                                     visit::walk_impl_item(this, impl_item)
1067                                                 });
1068                                             }
1069                                             ImplItemKind::Method(..) => {
1070                                                 // If this is a trait impl, ensure the method
1071                                                 // exists in trait
1072                                                 this.check_trait_item(impl_item.ident,
1073                                                                       ValueNS,
1074                                                                       impl_item.span,
1075                                                     |n, s| MethodNotMemberOfTrait(n, s));
1076
1077                                                 visit::walk_impl_item(this, impl_item);
1078                                             }
1079                                             ImplItemKind::TyAlias(ref ty) => {
1080                                                 // If this is a trait impl, ensure the type
1081                                                 // exists in trait
1082                                                 this.check_trait_item(impl_item.ident,
1083                                                                       TypeNS,
1084                                                                       impl_item.span,
1085                                                     |n, s| TypeNotMemberOfTrait(n, s));
1086
1087                                                 this.visit_ty(ty);
1088                                             }
1089                                             ImplItemKind::Macro(_) =>
1090                                                 panic!("unexpanded macro in resolve!"),
1091                                         }
1092                                     });
1093                                 }
1094                             });
1095                         });
1096                     });
1097                 });
1098             });
1099         });
1100     }
1101
1102     fn check_trait_item<F>(&mut self, ident: Ident, ns: Namespace, span: Span, err: F)
1103         where F: FnOnce(Name, &str) -> ResolutionError<'_>
1104     {
1105         // If there is a TraitRef in scope for an impl, then the method must be in the
1106         // trait.
1107         if let Some((module, _)) = self.current_trait_ref {
1108             if self.r.resolve_ident_in_module(
1109                 ModuleOrUniformRoot::Module(module),
1110                 ident,
1111                 ns,
1112                 &self.parent_scope,
1113                 false,
1114                 span,
1115             ).is_err() {
1116                 let path = &self.current_trait_ref.as_ref().unwrap().1.path;
1117                 self.r.report_error(span, err(ident.name, &path_names_to_string(path)));
1118             }
1119         }
1120     }
1121
1122     fn resolve_params(&mut self, params: &[Param]) {
1123         let mut bindings = smallvec![(PatBoundCtx::Product, Default::default())];
1124         for Param { pat, ty, .. } in params {
1125             self.resolve_pattern(pat, PatternSource::FnParam, &mut bindings);
1126             self.visit_ty(ty);
1127             debug!("(resolving function / closure) recorded parameter");
1128         }
1129     }
1130
1131     fn resolve_local(&mut self, local: &Local) {
1132         // Resolve the type.
1133         walk_list!(self, visit_ty, &local.ty);
1134
1135         // Resolve the initializer.
1136         walk_list!(self, visit_expr, &local.init);
1137
1138         // Resolve the pattern.
1139         self.resolve_pattern_top(&local.pat, PatternSource::Let);
1140     }
1141
1142     /// build a map from pattern identifiers to binding-info's.
1143     /// this is done hygienically. This could arise for a macro
1144     /// that expands into an or-pattern where one 'x' was from the
1145     /// user and one 'x' came from the macro.
1146     fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
1147         let mut binding_map = FxHashMap::default();
1148
1149         pat.walk(&mut |pat| {
1150             match pat.kind {
1151                 PatKind::Ident(binding_mode, ident, ref sub_pat)
1152                     if sub_pat.is_some() || self.is_base_res_local(pat.id) =>
1153                 {
1154                     binding_map.insert(ident, BindingInfo { span: ident.span, binding_mode });
1155                 }
1156                 PatKind::Or(ref ps) => {
1157                     // Check the consistency of this or-pattern and
1158                     // then add all bindings to the larger map.
1159                     for bm in self.check_consistent_bindings(ps) {
1160                         binding_map.extend(bm);
1161                     }
1162                     return false;
1163                 }
1164                 _ => {}
1165             }
1166
1167             true
1168         });
1169
1170         binding_map
1171     }
1172
1173     fn is_base_res_local(&self, nid: NodeId) -> bool {
1174         match self.r.partial_res_map.get(&nid).map(|res| res.base_res()) {
1175             Some(Res::Local(..)) => true,
1176             _ => false,
1177         }
1178     }
1179
1180     /// Checks that all of the arms in an or-pattern have exactly the
1181     /// same set of bindings, with the same binding modes for each.
1182     fn check_consistent_bindings(&mut self, pats: &[P<Pat>]) -> Vec<BindingMap> {
1183         let mut missing_vars = FxHashMap::default();
1184         let mut inconsistent_vars = FxHashMap::default();
1185
1186         // 1) Compute the binding maps of all arms.
1187         let maps = pats.iter()
1188             .map(|pat| self.binding_mode_map(pat))
1189             .collect::<Vec<_>>();
1190
1191         // 2) Record any missing bindings or binding mode inconsistencies.
1192         for (map_outer, pat_outer) in pats.iter().enumerate().map(|(idx, pat)| (&maps[idx], pat)) {
1193             // Check against all arms except for the same pattern which is always self-consistent.
1194             let inners = pats.iter().enumerate()
1195                 .filter(|(_, pat)| pat.id != pat_outer.id)
1196                 .flat_map(|(idx, _)| maps[idx].iter())
1197                 .map(|(key, binding)| (key.name, map_outer.get(&key), binding));
1198
1199             for (name, info, &binding_inner) in inners {
1200                 match info {
1201                     None => { // The inner binding is missing in the outer.
1202                         let binding_error = missing_vars
1203                             .entry(name)
1204                             .or_insert_with(|| BindingError {
1205                                 name,
1206                                 origin: BTreeSet::new(),
1207                                 target: BTreeSet::new(),
1208                                 could_be_path: name.as_str().starts_with(char::is_uppercase),
1209                             });
1210                         binding_error.origin.insert(binding_inner.span);
1211                         binding_error.target.insert(pat_outer.span);
1212                     }
1213                     Some(binding_outer) => {
1214                         if binding_outer.binding_mode != binding_inner.binding_mode {
1215                             // The binding modes in the outer and inner bindings differ.
1216                             inconsistent_vars
1217                                 .entry(name)
1218                                 .or_insert((binding_inner.span, binding_outer.span));
1219                         }
1220                     }
1221                 }
1222             }
1223         }
1224
1225         // 3) Report all missing variables we found.
1226         let mut missing_vars = missing_vars.iter_mut().collect::<Vec<_>>();
1227         missing_vars.sort();
1228         for (name, mut v) in missing_vars {
1229             if inconsistent_vars.contains_key(name) {
1230                 v.could_be_path = false;
1231             }
1232             self.r.report_error(
1233                 *v.origin.iter().next().unwrap(),
1234                 ResolutionError::VariableNotBoundInPattern(v));
1235         }
1236
1237         // 4) Report all inconsistencies in binding modes we found.
1238         let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
1239         inconsistent_vars.sort();
1240         for (name, v) in inconsistent_vars {
1241             self.r.report_error(v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
1242         }
1243
1244         // 5) Finally bubble up all the binding maps.
1245         maps
1246     }
1247
1248     /// Check the consistency of the outermost or-patterns.
1249     fn check_consistent_bindings_top(&mut self, pat: &Pat) {
1250         pat.walk(&mut |pat| match pat.kind {
1251             PatKind::Or(ref ps) => {
1252                 self.check_consistent_bindings(ps);
1253                 false
1254             },
1255             _ => true,
1256         })
1257     }
1258
1259     fn resolve_arm(&mut self, arm: &Arm) {
1260         self.with_rib(ValueNS, NormalRibKind, |this| {
1261             this.resolve_pattern_top(&arm.pat, PatternSource::Match);
1262             walk_list!(this, visit_expr, &arm.guard);
1263             this.visit_expr(&arm.body);
1264         });
1265     }
1266
1267     /// Arising from `source`, resolve a top level pattern.
1268     fn resolve_pattern_top(&mut self, pat: &Pat, pat_src: PatternSource) {
1269         let mut bindings = smallvec![(PatBoundCtx::Product, Default::default())];
1270         self.resolve_pattern(pat, pat_src, &mut bindings);
1271     }
1272
1273     fn resolve_pattern(
1274         &mut self,
1275         pat: &Pat,
1276         pat_src: PatternSource,
1277         bindings: &mut SmallVec<[(PatBoundCtx, FxHashSet<Ident>); 1]>,
1278     ) {
1279         self.resolve_pattern_inner(pat, pat_src, bindings);
1280         // This has to happen *after* we determine which pat_idents are variants:
1281         self.check_consistent_bindings_top(pat);
1282         visit::walk_pat(self, pat);
1283     }
1284
1285     /// Resolve bindings in a pattern. This is a helper to `resolve_pattern`.
1286     ///
1287     /// ### `bindings`
1288     ///
1289     /// A stack of sets of bindings accumulated.
1290     ///
1291     /// In each set, `PatBoundCtx::Product` denotes that a found binding in it should
1292     /// be interpreted as re-binding an already bound binding. This results in an error.
1293     /// Meanwhile, `PatBound::Or` denotes that a found binding in the set should result
1294     /// in reusing this binding rather than creating a fresh one.
1295     ///
1296     /// When called at the top level, the stack must have a single element
1297     /// with `PatBound::Product`. Otherwise, pushing to the stack happens as
1298     /// or-patterns (`p_0 | ... | p_n`) are encountered and the context needs
1299     /// to be switched to `PatBoundCtx::Or` and then `PatBoundCtx::Product` for each `p_i`.
1300     /// When each `p_i` has been dealt with, the top set is merged with its parent.
1301     /// When a whole or-pattern has been dealt with, the thing happens.
1302     ///
1303     /// See the implementation and `fresh_binding` for more details.
1304     fn resolve_pattern_inner(
1305         &mut self,
1306         pat: &Pat,
1307         pat_src: PatternSource,
1308         bindings: &mut SmallVec<[(PatBoundCtx, FxHashSet<Ident>); 1]>,
1309     ) {
1310         // Visit all direct subpatterns of this pattern.
1311         pat.walk(&mut |pat| {
1312             debug!("resolve_pattern pat={:?} node={:?}", pat, pat.kind);
1313             match pat.kind {
1314                 PatKind::Ident(bmode, ident, ref sub) => {
1315                     // First try to resolve the identifier as some existing entity,
1316                     // then fall back to a fresh binding.
1317                     let has_sub = sub.is_some();
1318                     let res = self.try_resolve_as_non_binding(pat_src, pat, bmode, ident, has_sub)
1319                         .unwrap_or_else(|| self.fresh_binding(ident, pat.id, pat_src, bindings));
1320                     self.r.record_partial_res(pat.id, PartialRes::new(res));
1321                 }
1322                 PatKind::TupleStruct(ref path, ..) => {
1323                     self.smart_resolve_path(pat.id, None, path, PathSource::TupleStruct);
1324                 }
1325                 PatKind::Path(ref qself, ref path) => {
1326                     self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
1327                 }
1328                 PatKind::Struct(ref path, ..) => {
1329                     self.smart_resolve_path(pat.id, None, path, PathSource::Struct);
1330                 }
1331                 PatKind::Or(ref ps) => {
1332                     // Add a new set of bindings to the stack. `Or` here records that when a
1333                     // binding already exists in this set, it should not result in an error because
1334                     // `V1(a) | V2(a)` must be allowed and are checked for consistency later.
1335                     bindings.push((PatBoundCtx::Or, Default::default()));
1336                     for p in ps {
1337                         // Now we need to switch back to a product context so that each
1338                         // part of the or-pattern internally rejects already bound names.
1339                         // For example, `V1(a) | V2(a, a)` and `V1(a, a) | V2(a)` are bad.
1340                         bindings.push((PatBoundCtx::Product, Default::default()));
1341                         self.resolve_pattern_inner(p, pat_src, bindings);
1342                         // Move up the non-overlapping bindings to the or-pattern.
1343                         // Existing bindings just get "merged".
1344                         let collected = bindings.pop().unwrap().1;
1345                         bindings.last_mut().unwrap().1.extend(collected);
1346                     }
1347                     // This or-pattern itself can itself be part of a product,
1348                     // e.g. `(V1(a) | V2(a), a)` or `(a, V1(a) | V2(a))`.
1349                     // Both cases bind `a` again in a product pattern and must be rejected.
1350                     let collected = bindings.pop().unwrap().1;
1351                     bindings.last_mut().unwrap().1.extend(collected);
1352
1353                     // Prevent visiting `ps` as we've already done so above.
1354                     return false;
1355                 }
1356                 _ => {}
1357             }
1358             true
1359         });
1360     }
1361
1362     fn fresh_binding(
1363         &mut self,
1364         ident: Ident,
1365         pat_id: NodeId,
1366         pat_src: PatternSource,
1367         bindings: &mut SmallVec<[(PatBoundCtx, FxHashSet<Ident>); 1]>,
1368     ) -> Res {
1369         // Add the binding to the local ribs, if it doesn't already exist in the bindings map.
1370         // (We must not add it if it's in the bindings map because that breaks the assumptions
1371         // later passes make about or-patterns.)
1372         let ident = ident.modern_and_legacy();
1373
1374         // Walk outwards the stack of products / or-patterns and
1375         // find out if the identifier has been bound in any of these.
1376         let mut already_bound_and = false;
1377         let mut already_bound_or = false;
1378         for (is_sum, set) in bindings.iter_mut().rev() {
1379             match (is_sum, set.get(&ident).cloned()) {
1380                 // Already bound in a product pattern, e.g. `(a, a)` which is not allowed.
1381                 (PatBoundCtx::Product, Some(..)) => already_bound_and = true,
1382                 // Already bound in an or-pattern, e.g. `V1(a) | V2(a)`.
1383                 // This is *required* for consistency which is checked later.
1384                 (PatBoundCtx::Or, Some(..)) => already_bound_or = true,
1385                 // Not already bound here.
1386                 _ => {}
1387             }
1388         }
1389
1390         if already_bound_and {
1391             // Overlap in a product pattern somewhere; report an error.
1392             use ResolutionError::*;
1393             let error = match pat_src {
1394                 // `fn f(a: u8, a: u8)`:
1395                 PatternSource::FnParam => IdentifierBoundMoreThanOnceInParameterList,
1396                 // `Variant(a, a)`:
1397                 _ => IdentifierBoundMoreThanOnceInSamePattern,
1398             };
1399             self.r.report_error(ident.span, error(&ident.as_str()));
1400         }
1401
1402         // Record as bound if it's valid:
1403         let ident_valid = ident.name != kw::Invalid;
1404         if ident_valid {
1405             bindings.last_mut().unwrap().1.insert(ident);
1406         }
1407
1408         if already_bound_or {
1409             // `Variant1(a) | Variant2(a)`, ok
1410             // Reuse definition from the first `a`.
1411             self.innermost_rib_bindings(ValueNS)[&ident]
1412         } else {
1413             let res = Res::Local(pat_id);
1414             if ident_valid {
1415                 // A completely fresh binding add to the set if it's valid.
1416                 self.innermost_rib_bindings(ValueNS).insert(ident, res);
1417             }
1418             res
1419         }
1420     }
1421
1422     fn innermost_rib_bindings(&mut self, ns: Namespace) -> &mut IdentMap<Res> {
1423         &mut self.ribs[ns].last_mut().unwrap().bindings
1424     }
1425
1426     fn try_resolve_as_non_binding(
1427         &mut self,
1428         pat_src: PatternSource,
1429         pat: &Pat,
1430         bm: BindingMode,
1431         ident: Ident,
1432         has_sub: bool,
1433     ) -> Option<Res> {
1434         let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, None, pat.span)?.item()?;
1435         let res = binding.res();
1436
1437         // An immutable (no `mut`) by-value (no `ref`) binding pattern without
1438         // a sub pattern (no `@ $pat`) is syntactically ambiguous as it could
1439         // also be interpreted as a path to e.g. a constant, variant, etc.
1440         let is_syntactic_ambiguity = !has_sub && bm == BindingMode::ByValue(Mutability::Immutable);
1441
1442         match res {
1443             Res::Def(DefKind::Ctor(_, CtorKind::Const), _) |
1444             Res::Def(DefKind::Const, _) if is_syntactic_ambiguity => {
1445                 // Disambiguate in favor of a unit struct/variant or constant pattern.
1446                 self.r.record_use(ident, ValueNS, binding, false);
1447                 Some(res)
1448             }
1449             Res::Def(DefKind::Ctor(..), _)
1450             | Res::Def(DefKind::Const, _)
1451             | Res::Def(DefKind::Static, _) => {
1452                 // This is unambiguously a fresh binding, either syntactically
1453                 // (e.g., `IDENT @ PAT` or `ref IDENT`) or because `IDENT` resolves
1454                 // to something unusable as a pattern (e.g., constructor function),
1455                 // but we still conservatively report an error, see
1456                 // issues/33118#issuecomment-233962221 for one reason why.
1457                 self.r.report_error(
1458                     ident.span,
1459                     ResolutionError::BindingShadowsSomethingUnacceptable(
1460                         pat_src.descr(),
1461                         ident.name,
1462                         binding,
1463                     ),
1464                 );
1465                 None
1466             }
1467             Res::Def(DefKind::Fn, _) | Res::Err => {
1468                 // These entities are explicitly allowed to be shadowed by fresh bindings.
1469                 None
1470             }
1471             res => {
1472                 span_bug!(ident.span, "unexpected resolution for an \
1473                                         identifier in pattern: {:?}", res);
1474             }
1475         }
1476     }
1477
1478     // High-level and context dependent path resolution routine.
1479     // Resolves the path and records the resolution into definition map.
1480     // If resolution fails tries several techniques to find likely
1481     // resolution candidates, suggest imports or other help, and report
1482     // errors in user friendly way.
1483     fn smart_resolve_path(&mut self,
1484                           id: NodeId,
1485                           qself: Option<&QSelf>,
1486                           path: &Path,
1487                           source: PathSource<'_>) {
1488         self.smart_resolve_path_fragment(
1489             id,
1490             qself,
1491             &Segment::from_path(path),
1492             path.span,
1493             source,
1494             CrateLint::SimplePath(id),
1495         );
1496     }
1497
1498     fn smart_resolve_path_fragment(&mut self,
1499                                    id: NodeId,
1500                                    qself: Option<&QSelf>,
1501                                    path: &[Segment],
1502                                    span: Span,
1503                                    source: PathSource<'_>,
1504                                    crate_lint: CrateLint)
1505                                    -> PartialRes {
1506         let ns = source.namespace();
1507         let is_expected = &|res| source.is_expected(res);
1508
1509         let report_errors = |this: &mut Self, res: Option<Res>| {
1510             let (err, candidates) = this.smart_resolve_report_errors(path, span, source, res);
1511             let def_id = this.parent_scope.module.normal_ancestor_id;
1512             let node_id = this.r.definitions.as_local_node_id(def_id).unwrap();
1513             let better = res.is_some();
1514             this.r.use_injections.push(UseError { err, candidates, node_id, better });
1515             PartialRes::new(Res::Err)
1516         };
1517
1518         let partial_res = match self.resolve_qpath_anywhere(
1519             id,
1520             qself,
1521             path,
1522             ns,
1523             span,
1524             source.defer_to_typeck(),
1525             crate_lint,
1526         ) {
1527             Some(partial_res) if partial_res.unresolved_segments() == 0 => {
1528                 if is_expected(partial_res.base_res()) || partial_res.base_res() == Res::Err {
1529                     partial_res
1530                 } else {
1531                     report_errors(self, Some(partial_res.base_res()))
1532                 }
1533             }
1534             Some(partial_res) if source.defer_to_typeck() => {
1535                 // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
1536                 // or `<T>::A::B`. If `B` should be resolved in value namespace then
1537                 // it needs to be added to the trait map.
1538                 if ns == ValueNS {
1539                     let item_name = path.last().unwrap().ident;
1540                     let traits = self.get_traits_containing_item(item_name, ns);
1541                     self.r.trait_map.insert(id, traits);
1542                 }
1543
1544                 let mut std_path = vec![Segment::from_ident(Ident::with_dummy_span(sym::std))];
1545                 std_path.extend(path);
1546                 if self.r.primitive_type_table.primitive_types.contains_key(&path[0].ident.name) {
1547                     let cl = CrateLint::No;
1548                     let ns = Some(ns);
1549                     if let PathResult::Module(_) | PathResult::NonModule(_) =
1550                             self.resolve_path(&std_path, ns, false, span, cl) {
1551                         // check if we wrote `str::from_utf8` instead of `std::str::from_utf8`
1552                         let item_span = path.iter().last().map(|segment| segment.ident.span)
1553                             .unwrap_or(span);
1554                         debug!("accessed item from `std` submodule as a bare type {:?}", std_path);
1555                         let mut hm = self.r.session.confused_type_with_std_module.borrow_mut();
1556                         hm.insert(item_span, span);
1557                         // In some places (E0223) we only have access to the full path
1558                         hm.insert(span, span);
1559                     }
1560                 }
1561                 partial_res
1562             }
1563             _ => report_errors(self, None)
1564         };
1565
1566         if let PathSource::TraitItem(..) = source {} else {
1567             // Avoid recording definition of `A::B` in `<T as A>::B::C`.
1568             self.r.record_partial_res(id, partial_res);
1569         }
1570         partial_res
1571     }
1572
1573     fn self_type_is_available(&mut self, span: Span) -> bool {
1574         let binding = self.resolve_ident_in_lexical_scope(
1575             Ident::with_dummy_span(kw::SelfUpper),
1576             TypeNS,
1577             None,
1578             span,
1579         );
1580         if let Some(LexicalScopeBinding::Res(res)) = binding { res != Res::Err } else { false }
1581     }
1582
1583     fn self_value_is_available(&mut self, self_span: Span, path_span: Span) -> bool {
1584         let ident = Ident::new(kw::SelfLower, self_span);
1585         let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, None, path_span);
1586         if let Some(LexicalScopeBinding::Res(res)) = binding { res != Res::Err } else { false }
1587     }
1588
1589     // Resolve in alternative namespaces if resolution in the primary namespace fails.
1590     fn resolve_qpath_anywhere(
1591         &mut self,
1592         id: NodeId,
1593         qself: Option<&QSelf>,
1594         path: &[Segment],
1595         primary_ns: Namespace,
1596         span: Span,
1597         defer_to_typeck: bool,
1598         crate_lint: CrateLint,
1599     ) -> Option<PartialRes> {
1600         let mut fin_res = None;
1601         for (i, ns) in [primary_ns, TypeNS, ValueNS].iter().cloned().enumerate() {
1602             if i == 0 || ns != primary_ns {
1603                 match self.resolve_qpath(id, qself, path, ns, span, crate_lint) {
1604                     // If defer_to_typeck, then resolution > no resolution,
1605                     // otherwise full resolution > partial resolution > no resolution.
1606                     Some(partial_res) if partial_res.unresolved_segments() == 0 ||
1607                                          defer_to_typeck =>
1608                         return Some(partial_res),
1609                     partial_res => if fin_res.is_none() { fin_res = partial_res },
1610                 }
1611             }
1612         }
1613
1614         // `MacroNS`
1615         assert!(primary_ns != MacroNS);
1616         if qself.is_none() {
1617             let path_seg = |seg: &Segment| PathSegment::from_ident(seg.ident);
1618             let path = Path { segments: path.iter().map(path_seg).collect(), span };
1619             if let Ok((_, res)) = self.r.resolve_macro_path(
1620                 &path, None, &self.parent_scope, false, false
1621             ) {
1622                 return Some(PartialRes::new(res));
1623             }
1624         }
1625
1626         fin_res
1627     }
1628
1629     /// Handles paths that may refer to associated items.
1630     fn resolve_qpath(
1631         &mut self,
1632         id: NodeId,
1633         qself: Option<&QSelf>,
1634         path: &[Segment],
1635         ns: Namespace,
1636         span: Span,
1637         crate_lint: CrateLint,
1638     ) -> Option<PartialRes> {
1639         debug!(
1640             "resolve_qpath(id={:?}, qself={:?}, path={:?}, ns={:?}, span={:?})",
1641             id,
1642             qself,
1643             path,
1644             ns,
1645             span,
1646         );
1647
1648         if let Some(qself) = qself {
1649             if qself.position == 0 {
1650                 // This is a case like `<T>::B`, where there is no
1651                 // trait to resolve.  In that case, we leave the `B`
1652                 // segment to be resolved by type-check.
1653                 return Some(PartialRes::with_unresolved_segments(
1654                     Res::Def(DefKind::Mod, DefId::local(CRATE_DEF_INDEX)), path.len()
1655                 ));
1656             }
1657
1658             // Make sure `A::B` in `<T as A::B>::C` is a trait item.
1659             //
1660             // Currently, `path` names the full item (`A::B::C`, in
1661             // our example).  so we extract the prefix of that that is
1662             // the trait (the slice upto and including
1663             // `qself.position`). And then we recursively resolve that,
1664             // but with `qself` set to `None`.
1665             //
1666             // However, setting `qself` to none (but not changing the
1667             // span) loses the information about where this path
1668             // *actually* appears, so for the purposes of the crate
1669             // lint we pass along information that this is the trait
1670             // name from a fully qualified path, and this also
1671             // contains the full span (the `CrateLint::QPathTrait`).
1672             let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
1673             let partial_res = self.smart_resolve_path_fragment(
1674                 id,
1675                 None,
1676                 &path[..=qself.position],
1677                 span,
1678                 PathSource::TraitItem(ns),
1679                 CrateLint::QPathTrait {
1680                     qpath_id: id,
1681                     qpath_span: qself.path_span,
1682                 },
1683             );
1684
1685             // The remaining segments (the `C` in our example) will
1686             // have to be resolved by type-check, since that requires doing
1687             // trait resolution.
1688             return Some(PartialRes::with_unresolved_segments(
1689                 partial_res.base_res(),
1690                 partial_res.unresolved_segments() + path.len() - qself.position - 1,
1691             ));
1692         }
1693
1694         let result = match self.resolve_path(&path, Some(ns), true, span, crate_lint) {
1695             PathResult::NonModule(path_res) => path_res,
1696             PathResult::Module(ModuleOrUniformRoot::Module(module)) if !module.is_normal() => {
1697                 PartialRes::new(module.res().unwrap())
1698             }
1699             // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
1700             // don't report an error right away, but try to fallback to a primitive type.
1701             // So, we are still able to successfully resolve something like
1702             //
1703             // use std::u8; // bring module u8 in scope
1704             // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
1705             //     u8::max_value() // OK, resolves to associated function <u8>::max_value,
1706             //                     // not to non-existent std::u8::max_value
1707             // }
1708             //
1709             // Such behavior is required for backward compatibility.
1710             // The same fallback is used when `a` resolves to nothing.
1711             PathResult::Module(ModuleOrUniformRoot::Module(_)) |
1712             PathResult::Failed { .. }
1713                     if (ns == TypeNS || path.len() > 1) &&
1714                        self.r.primitive_type_table.primitive_types
1715                            .contains_key(&path[0].ident.name) => {
1716                 let prim = self.r.primitive_type_table.primitive_types[&path[0].ident.name];
1717                 PartialRes::with_unresolved_segments(Res::PrimTy(prim), path.len() - 1)
1718             }
1719             PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
1720                 PartialRes::new(module.res().unwrap()),
1721             PathResult::Failed { is_error_from_last_segment: false, span, label, suggestion } => {
1722                 self.r.report_error(span, ResolutionError::FailedToResolve { label, suggestion });
1723                 PartialRes::new(Res::Err)
1724             }
1725             PathResult::Module(..) | PathResult::Failed { .. } => return None,
1726             PathResult::Indeterminate => bug!("indetermined path result in resolve_qpath"),
1727         };
1728
1729         if path.len() > 1 && result.base_res() != Res::Err &&
1730            path[0].ident.name != kw::PathRoot &&
1731            path[0].ident.name != kw::DollarCrate {
1732             let unqualified_result = {
1733                 match self.resolve_path(
1734                     &[*path.last().unwrap()],
1735                     Some(ns),
1736                     false,
1737                     span,
1738                     CrateLint::No,
1739                 ) {
1740                     PathResult::NonModule(path_res) => path_res.base_res(),
1741                     PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
1742                         module.res().unwrap(),
1743                     _ => return Some(result),
1744                 }
1745             };
1746             if result.base_res() == unqualified_result {
1747                 let lint = lint::builtin::UNUSED_QUALIFICATIONS;
1748                 self.r.lint_buffer.buffer_lint(lint, id, span, "unnecessary qualification")
1749             }
1750         }
1751
1752         Some(result)
1753     }
1754
1755     fn with_resolved_label(&mut self, label: Option<Label>, id: NodeId, f: impl FnOnce(&mut Self)) {
1756         if let Some(label) = label {
1757             if label.ident.as_str().as_bytes()[1] != b'_' {
1758                 self.diagnostic_metadata.unused_labels.insert(id, label.ident.span);
1759             }
1760             self.with_label_rib(NormalRibKind, |this| {
1761                 let ident = label.ident.modern_and_legacy();
1762                 this.label_ribs.last_mut().unwrap().bindings.insert(ident, id);
1763                 f(this);
1764             });
1765         } else {
1766             f(self);
1767         }
1768     }
1769
1770     fn resolve_labeled_block(&mut self, label: Option<Label>, id: NodeId, block: &Block) {
1771         self.with_resolved_label(label, id, |this| this.visit_block(block));
1772     }
1773
1774     fn resolve_block(&mut self, block: &Block) {
1775         debug!("(resolving block) entering block");
1776         // Move down in the graph, if there's an anonymous module rooted here.
1777         let orig_module = self.parent_scope.module;
1778         let anonymous_module = self.r.block_map.get(&block.id).cloned(); // clones a reference
1779
1780         let mut num_macro_definition_ribs = 0;
1781         if let Some(anonymous_module) = anonymous_module {
1782             debug!("(resolving block) found anonymous module, moving down");
1783             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
1784             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
1785             self.parent_scope.module = anonymous_module;
1786         } else {
1787             self.ribs[ValueNS].push(Rib::new(NormalRibKind));
1788         }
1789
1790         // Descend into the block.
1791         for stmt in &block.stmts {
1792             if let StmtKind::Item(ref item) = stmt.kind {
1793                 if let ItemKind::MacroDef(..) = item.kind {
1794                     num_macro_definition_ribs += 1;
1795                     let res = self.r.definitions.local_def_id(item.id);
1796                     self.ribs[ValueNS].push(Rib::new(MacroDefinition(res)));
1797                     self.label_ribs.push(Rib::new(MacroDefinition(res)));
1798                 }
1799             }
1800
1801             self.visit_stmt(stmt);
1802         }
1803
1804         // Move back up.
1805         self.parent_scope.module = orig_module;
1806         for _ in 0 .. num_macro_definition_ribs {
1807             self.ribs[ValueNS].pop();
1808             self.label_ribs.pop();
1809         }
1810         self.ribs[ValueNS].pop();
1811         if anonymous_module.is_some() {
1812             self.ribs[TypeNS].pop();
1813         }
1814         debug!("(resolving block) leaving block");
1815     }
1816
1817     fn resolve_expr(&mut self, expr: &Expr, parent: Option<&Expr>) {
1818         // First, record candidate traits for this expression if it could
1819         // result in the invocation of a method call.
1820
1821         self.record_candidate_traits_for_expr_if_necessary(expr);
1822
1823         // Next, resolve the node.
1824         match expr.kind {
1825             ExprKind::Path(ref qself, ref path) => {
1826                 self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
1827                 visit::walk_expr(self, expr);
1828             }
1829
1830             ExprKind::Struct(ref path, ..) => {
1831                 self.smart_resolve_path(expr.id, None, path, PathSource::Struct);
1832                 visit::walk_expr(self, expr);
1833             }
1834
1835             ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
1836                 let node_id = self.search_label(label.ident, |rib, ident| {
1837                     rib.bindings.get(&ident.modern_and_legacy()).cloned()
1838                 });
1839                 match node_id {
1840                     None => {
1841                         // Search again for close matches...
1842                         // Picks the first label that is "close enough", which is not necessarily
1843                         // the closest match
1844                         let close_match = self.search_label(label.ident, |rib, ident| {
1845                             let names = rib.bindings.iter().filter_map(|(id, _)| {
1846                                 if id.span.ctxt() == label.ident.span.ctxt() {
1847                                     Some(&id.name)
1848                                 } else {
1849                                     None
1850                                 }
1851                             });
1852                             find_best_match_for_name(names, &ident.as_str(), None)
1853                         });
1854                         self.r.record_partial_res(expr.id, PartialRes::new(Res::Err));
1855                         self.r.report_error(
1856                             label.ident.span,
1857                             ResolutionError::UndeclaredLabel(&label.ident.as_str(), close_match),
1858                         );
1859                     }
1860                     Some(node_id) => {
1861                         // Since this res is a label, it is never read.
1862                         self.r.label_res_map.insert(expr.id, node_id);
1863                         self.diagnostic_metadata.unused_labels.remove(&node_id);
1864                     }
1865                 }
1866
1867                 // visit `break` argument if any
1868                 visit::walk_expr(self, expr);
1869             }
1870
1871             ExprKind::Let(ref pat, ref scrutinee) => {
1872                 self.visit_expr(scrutinee);
1873                 self.resolve_pattern_top(pat, PatternSource::Let);
1874             }
1875
1876             ExprKind::If(ref cond, ref then, ref opt_else) => {
1877                 self.with_rib(ValueNS, NormalRibKind, |this| {
1878                     this.visit_expr(cond);
1879                     this.visit_block(then);
1880                 });
1881                 opt_else.as_ref().map(|expr| self.visit_expr(expr));
1882             }
1883
1884             ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),
1885
1886             ExprKind::While(ref cond, ref block, label) => {
1887                 self.with_resolved_label(label, expr.id, |this| {
1888                     this.with_rib(ValueNS, NormalRibKind, |this| {
1889                         this.visit_expr(cond);
1890                         this.visit_block(block);
1891                     })
1892                 });
1893             }
1894
1895             ExprKind::ForLoop(ref pat, ref iter_expr, ref block, label) => {
1896                 self.visit_expr(iter_expr);
1897                 self.with_rib(ValueNS, NormalRibKind, |this| {
1898                     this.resolve_pattern_top(pat, PatternSource::For);
1899                     this.resolve_labeled_block(label, expr.id, block);
1900                 });
1901             }
1902
1903             ExprKind::Block(ref block, label) => self.resolve_labeled_block(label, block.id, block),
1904
1905             // Equivalent to `visit::walk_expr` + passing some context to children.
1906             ExprKind::Field(ref subexpression, _) => {
1907                 self.resolve_expr(subexpression, Some(expr));
1908             }
1909             ExprKind::MethodCall(ref segment, ref arguments) => {
1910                 let mut arguments = arguments.iter();
1911                 self.resolve_expr(arguments.next().unwrap(), Some(expr));
1912                 for argument in arguments {
1913                     self.resolve_expr(argument, None);
1914                 }
1915                 self.visit_path_segment(expr.span, segment);
1916             }
1917
1918             ExprKind::Call(ref callee, ref arguments) => {
1919                 self.resolve_expr(callee, Some(expr));
1920                 for argument in arguments {
1921                     self.resolve_expr(argument, None);
1922                 }
1923             }
1924             ExprKind::Type(ref type_expr, _) => {
1925                 self.diagnostic_metadata.current_type_ascription.push(type_expr.span);
1926                 visit::walk_expr(self, expr);
1927                 self.diagnostic_metadata.current_type_ascription.pop();
1928             }
1929             // `async |x| ...` gets desugared to `|x| future_from_generator(|| ...)`, so we need to
1930             // resolve the arguments within the proper scopes so that usages of them inside the
1931             // closure are detected as upvars rather than normal closure arg usages.
1932             ExprKind::Closure(_, IsAsync::Async { .. }, _, ref fn_decl, ref body, _span) => {
1933                 self.with_rib(ValueNS, NormalRibKind, |this| {
1934                     // Resolve arguments:
1935                     this.resolve_params(&fn_decl.inputs);
1936                     // No need to resolve return type --
1937                     // the outer closure return type is `FunctionRetTy::Default`.
1938
1939                     // Now resolve the inner closure
1940                     {
1941                         // No need to resolve arguments: the inner closure has none.
1942                         // Resolve the return type:
1943                         visit::walk_fn_ret_ty(this, &fn_decl.output);
1944                         // Resolve the body
1945                         this.visit_expr(body);
1946                     }
1947                 });
1948             }
1949             _ => {
1950                 visit::walk_expr(self, expr);
1951             }
1952         }
1953     }
1954
1955     fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &Expr) {
1956         match expr.kind {
1957             ExprKind::Field(_, ident) => {
1958                 // FIXME(#6890): Even though you can't treat a method like a
1959                 // field, we need to add any trait methods we find that match
1960                 // the field name so that we can do some nice error reporting
1961                 // later on in typeck.
1962                 let traits = self.get_traits_containing_item(ident, ValueNS);
1963                 self.r.trait_map.insert(expr.id, traits);
1964             }
1965             ExprKind::MethodCall(ref segment, ..) => {
1966                 debug!("(recording candidate traits for expr) recording traits for {}",
1967                        expr.id);
1968                 let traits = self.get_traits_containing_item(segment.ident, ValueNS);
1969                 self.r.trait_map.insert(expr.id, traits);
1970             }
1971             _ => {
1972                 // Nothing to do.
1973             }
1974         }
1975     }
1976
1977     fn get_traits_containing_item(&mut self, mut ident: Ident, ns: Namespace)
1978                                   -> Vec<TraitCandidate> {
1979         debug!("(getting traits containing item) looking for '{}'", ident.name);
1980
1981         let mut found_traits = Vec::new();
1982         // Look for the current trait.
1983         if let Some((module, _)) = self.current_trait_ref {
1984             if self.r.resolve_ident_in_module(
1985                 ModuleOrUniformRoot::Module(module),
1986                 ident,
1987                 ns,
1988                 &self.parent_scope,
1989                 false,
1990                 module.span,
1991             ).is_ok() {
1992                 let def_id = module.def_id().unwrap();
1993                 found_traits.push(TraitCandidate { def_id: def_id, import_ids: smallvec![] });
1994             }
1995         }
1996
1997         ident.span = ident.span.modern();
1998         let mut search_module = self.parent_scope.module;
1999         loop {
2000             self.get_traits_in_module_containing_item(ident, ns, search_module, &mut found_traits);
2001             search_module = unwrap_or!(
2002                 self.r.hygienic_lexical_parent(search_module, &mut ident.span), break
2003             );
2004         }
2005
2006         if let Some(prelude) = self.r.prelude {
2007             if !search_module.no_implicit_prelude {
2008                 self.get_traits_in_module_containing_item(ident, ns, prelude, &mut found_traits);
2009             }
2010         }
2011
2012         found_traits
2013     }
2014
2015     fn get_traits_in_module_containing_item(&mut self,
2016                                             ident: Ident,
2017                                             ns: Namespace,
2018                                             module: Module<'a>,
2019                                             found_traits: &mut Vec<TraitCandidate>) {
2020         assert!(ns == TypeNS || ns == ValueNS);
2021         let mut traits = module.traits.borrow_mut();
2022         if traits.is_none() {
2023             let mut collected_traits = Vec::new();
2024             module.for_each_child(self.r, |_, name, ns, binding| {
2025                 if ns != TypeNS { return }
2026                 match binding.res() {
2027                     Res::Def(DefKind::Trait, _) |
2028                     Res::Def(DefKind::TraitAlias, _) => collected_traits.push((name, binding)),
2029                     _ => (),
2030                 }
2031             });
2032             *traits = Some(collected_traits.into_boxed_slice());
2033         }
2034
2035         for &(trait_name, binding) in traits.as_ref().unwrap().iter() {
2036             // Traits have pseudo-modules that can be used to search for the given ident.
2037             if let Some(module) = binding.module() {
2038                 let mut ident = ident;
2039                 if ident.span.glob_adjust(
2040                     module.expansion,
2041                     binding.span,
2042                 ).is_none() {
2043                     continue
2044                 }
2045                 if self.r.resolve_ident_in_module_unadjusted(
2046                     ModuleOrUniformRoot::Module(module),
2047                     ident,
2048                     ns,
2049                     &self.parent_scope,
2050                     false,
2051                     module.span,
2052                 ).is_ok() {
2053                     let import_ids = self.find_transitive_imports(&binding.kind, trait_name);
2054                     let trait_def_id = module.def_id().unwrap();
2055                     found_traits.push(TraitCandidate { def_id: trait_def_id, import_ids });
2056                 }
2057             } else if let Res::Def(DefKind::TraitAlias, _) = binding.res() {
2058                 // For now, just treat all trait aliases as possible candidates, since we don't
2059                 // know if the ident is somewhere in the transitive bounds.
2060                 let import_ids = self.find_transitive_imports(&binding.kind, trait_name);
2061                 let trait_def_id = binding.res().def_id();
2062                 found_traits.push(TraitCandidate { def_id: trait_def_id, import_ids });
2063             } else {
2064                 bug!("candidate is not trait or trait alias?")
2065             }
2066         }
2067     }
2068
2069     fn find_transitive_imports(&mut self, mut kind: &NameBindingKind<'_>,
2070                                trait_name: Ident) -> SmallVec<[NodeId; 1]> {
2071         let mut import_ids = smallvec![];
2072         while let NameBindingKind::Import { directive, binding, .. } = kind {
2073             self.r.maybe_unused_trait_imports.insert(directive.id);
2074             self.r.add_to_glob_map(&directive, trait_name);
2075             import_ids.push(directive.id);
2076             kind = &binding.kind;
2077         };
2078         import_ids
2079     }
2080 }
2081
2082 impl<'a> Resolver<'a> {
2083     pub(crate) fn late_resolve_crate(&mut self, krate: &Crate) {
2084         let mut late_resolution_visitor = LateResolutionVisitor::new(self);
2085         visit::walk_crate(&mut late_resolution_visitor, krate);
2086         for (id, span) in late_resolution_visitor.diagnostic_metadata.unused_labels.iter() {
2087             self.lint_buffer.buffer_lint(lint::builtin::UNUSED_LABELS, *id, *span, "unused label");
2088         }
2089     }
2090 }